12.07.2015 Views

Genetic diversity and relationships in Solanum subg ... - Springer

Genetic diversity and relationships in Solanum subg ... - Springer

Genetic diversity and relationships in Solanum subg ... - Springer

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Plant Syst Evol (2011) 291:35–47DOI 10.1007/s00606-010-0371-5ORIGINAL ARTICLE<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>.Archaesolanum (Solanaceae) based on RAPD <strong>and</strong> chloroplastPCR-RFLP analysesPeter Poczai • András Cseh • János Taller •David E. SymonReceived: 13 October 2008 / Accepted: 4 October 2010 / Published onl<strong>in</strong>e: 27 October 2010Ó Spr<strong>in</strong>ger-Verlag 2010Abstract The <strong>subg</strong>enus Archaesolanum is a groupcomposed of eight species with a characteristic chromosomenumber based on n = x = 23 <strong>and</strong> an area restrictedto the South Pacific. This <strong>subg</strong>enus is an isolated group of<strong>Solanum</strong> for which extensive <strong>in</strong>formation about phylogenetic<strong>relationships</strong> based on molecular genetic methods islack<strong>in</strong>g. This study represents an approach to analyzegenetic <strong>relationships</strong> with<strong>in</strong> this group. In this context,seven species were exam<strong>in</strong>ed us<strong>in</strong>g r<strong>and</strong>om amplifiedpolymorphic DNA (RAPD) markers. In further analysis,the amplification products of two chloroplast regions(trnS-trnG <strong>and</strong> rbcL) were studied with polymerase cha<strong>in</strong>reaction (PCR) restriction fragment length polymorphism(RFLP) method. Screen<strong>in</strong>g for the presence of uniquemitochondrial rearrangements was also carried out us<strong>in</strong>gP. Poczai (&) J. TallerDepartment of Plant Sciences <strong>and</strong> Biotechnology,Georgikon Faculty, University of Pannonia, Festetics 7,Keszthely 8360, Hungarye-mail: guan<strong>in</strong>e@ex1.georgikon.huJ. Tallere-mail: taller@ex1.georgikon.huA. CsehDepartment of Plant <strong>Genetic</strong> Resources <strong>and</strong> Organic Breed<strong>in</strong>g,Agricultural Research Institute of the Hungarian Academyof Sciences, Brunszvik u. 2, Martonvásár 2462, Hungarye-mail: <strong>and</strong>rascseh@gmail.comD. E. SymonDepartment of Environment <strong>and</strong> Heritage,Plant Bio<strong>diversity</strong> Centre, State Herbarium of South Australia,PO Box 2732, Kent Town, SA 5071, Australiae-mail: symon.david@sa.gov.auuniversal mitochondrial primers for the detection offragment length polymorphisms. We identified two majorgroups with<strong>in</strong> the <strong>subg</strong>enus; one was composed of themembers of ser. Avicularia <strong>and</strong> Lac<strong>in</strong>iata, while the otherwas formed by species belong<strong>in</strong>g to ser. Similia. It issuggested that the taxonomic status of series with<strong>in</strong> theArchaesolanum clade should be revised. The hybrid orig<strong>in</strong>of S. lac<strong>in</strong>iatum was also tested, <strong>and</strong> two hypothesesregard<strong>in</strong>g its phylogeny are assumed.Keywords Archaesolanum Phylogenetic <strong>relationships</strong> <strong>Solanum</strong> PCR-RFLP RAPD Kangaroo applesIntroductionThe diverse genus <strong>Solanum</strong> L., with approximately 1,400species, has worldwide distribution, with center of <strong>diversity</strong><strong>in</strong> South America. The species belong<strong>in</strong>g to <strong>subg</strong>.Archaesolanum Bitter ex Marzell, often called kangarooapples, are described as a dist<strong>in</strong>ctive group with no obviousclose relatives. The <strong>subg</strong>enus is represented by eight species,which occur only <strong>in</strong> the South West Pacific region(New Gu<strong>in</strong>ea, Australia, Tasmania, <strong>and</strong> New Zeal<strong>and</strong>). Thespecies are short-lived soft-wooded shrubs, 1–3 m tall,becom<strong>in</strong>g straggly with age, unarmed, glabrescent, withlarge (up to 30 cm) deeply lobed leaves <strong>in</strong> the juvenilephase, becom<strong>in</strong>g smaller (up to 10 cm) <strong>and</strong> entire <strong>in</strong> theadult stage, with violet–purple flowers <strong>in</strong> cymes grow<strong>in</strong>gat the axils of stem-fork sites (Symon 1984). The fruitsare greenish, yellowish, or scarlet; the succulent berriesproduce numerous seeds (approx. 100–600). White oryellowish stone cell aggregates are present <strong>in</strong> the driedcontents of the fruits, mixed with seeds. The fruits areeaten by birds, which are probably responsible for their123


36 P. Poczai et al.distribution throughout Australia, New Zeal<strong>and</strong>, Tasmania,<strong>and</strong> New Gu<strong>in</strong>ea (Symon 1979).Plants belong<strong>in</strong>g to this group were first collected byForster <strong>in</strong> Australia dur<strong>in</strong>g the second voyage of Capta<strong>in</strong>James Cook. Forster (1786) was the first to publish thename <strong>Solanum</strong> aviculare <strong>in</strong> the ‘‘Dissertatio <strong>in</strong>auguralisbotanico-medica de plantis esculentis <strong>in</strong>sularum oceaniaustralis.’’ S<strong>in</strong>ce then, the group has been recognized byseveral <strong>Solanum</strong> researchers, e.g., Bitter (1927), Danert(1970), D’Arcy (1972, 1990), Symon (1981, 1994), <strong>and</strong>Hunziker (2001). The <strong>subg</strong>enus was divided <strong>in</strong>to threeseries by Gerasimenko (1970): ser. Avicularia Geras.,consist<strong>in</strong>g of S. aviculare Forst. (2n = 2x = 46) <strong>and</strong>S. multivenosum Symon (2n = 4x = 92); ser. Lac<strong>in</strong>iataGeras. composed of S. lac<strong>in</strong>iatum Ait. (2n = 4x = 92),S. vescum F. Muell (2n = 2x = 46), <strong>and</strong> S. l<strong>in</strong>earifoliumGeras. ex Symon (2n = 2x = 46); <strong>and</strong> ser. Similia Geras.,with S. capsiciforme (Dom<strong>in</strong>) Baylis (2n = 2x = 46),S. simile F. Muell. (2n = 2x = 46), <strong>and</strong> S. symonii Eichler(2n = 4x = 92). Symon (1994) mentioned S. cheesemaniiGeras. <strong>and</strong> S. baylisii Geras. as separate species, but theyare now considered to be synonyms <strong>and</strong> varieties ofS. aviculare, as suggested by Baylis (1963).The basic chromosome number <strong>in</strong> <strong>subg</strong>. Archaesolanumis n = x = 23, <strong>in</strong> contrast to the n = x = 12 typical ofother members of genus <strong>Solanum</strong> (R<strong>and</strong>ell <strong>and</strong> Symon1976). Despite the name, suggest<strong>in</strong>g an archetypal <strong>Solanum</strong>,the chromosome number <strong>in</strong>dicates a derived conditionwhich has itself become polyploid (Symon 1979),probably reached by aneuploid loss from n = x = 24(R<strong>and</strong>ell <strong>and</strong> Symon 1976). It is clear that all species basedon secondary gametic numbers are polyploid; <strong>in</strong> the case ofsecondary polyploidy (Hair 1966) each number generatesits own polyploid sequence as follows: <strong>in</strong> the orig<strong>in</strong>alseries, 2n = 48 (4x) <strong>and</strong> 72 (6x); <strong>in</strong> the derived series,2n = 46 (2x 2 )(S. aviculare) <strong>and</strong> 2n = 92 (4x 2 )(S. lac<strong>in</strong>iatum)(data from Baylis 1954). Whilst these zygoticnumbers are ‘‘diploid’’ <strong>and</strong> ‘‘tetraploid’’ with respect to thesecondary basic number, x 2 = 23, the respective speciesare relatively tetraploid <strong>and</strong> octoploid <strong>in</strong> terms of the orig<strong>in</strong>albasic number, x = 12 (Hair 1966).Symon (1994) provided a prelim<strong>in</strong>ary phylogeny forthe <strong>subg</strong>enus based on morphology, but these conceptshave not been tested us<strong>in</strong>g molecular methods. To thebest of our knowledge, no study <strong>in</strong>clud<strong>in</strong>g all eight species<strong>and</strong> <strong>in</strong>vestigat<strong>in</strong>g phylogenetic <strong>relationships</strong> with<strong>in</strong>the group us<strong>in</strong>g molecular tools has yet been published.Many molecular studies on phylogenetic <strong>relationships</strong>with<strong>in</strong> the genus <strong>Solanum</strong> have <strong>in</strong>cluded species represent<strong>in</strong>gthe <strong>subg</strong>enus <strong>in</strong> their analysis. Olmstead <strong>and</strong>Palmer (1997) <strong>in</strong>cluded S. aviculare <strong>in</strong> an analysisbased on chloroplast restriction site data. Bohs <strong>and</strong>Olmstead (2001) <strong>and</strong> Bohs (2005) gave <strong>in</strong>formation aboutS. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum based on data from nuclear<strong>in</strong>ternal transcribed spacers (ITS) <strong>and</strong> ndhF gene, which<strong>in</strong>dicated that the members of <strong>subg</strong>. Archaesolanumformed a well-supported basal clade <strong>in</strong> <strong>Solanum</strong>. Us<strong>in</strong>gRAPD, Poczai et al. (2008) also found that the group wasdist<strong>in</strong>ct from the other members of the genus. It thusseems safe to say that the Archaesolanum clade representsan isolated group whose closest relatives have not yetbeen identified (Bohs 2005). Putative ancestors havecerta<strong>in</strong>ly not been recognized <strong>in</strong> Australia, nor are extra-Australian relatives apparent (Symon 1979). Althoughred-fruited species, such as S. dunalianum Gaudich.,S. viride Spreng., <strong>and</strong> S. <strong>in</strong>canoalabastrum Symon, occur<strong>in</strong> New Gu<strong>in</strong>ea, these all have stellate hairs <strong>and</strong> no stonecells; they are not related to the Archaesolanum group.Subgenus Archaesolanum represents an ambiguous case,either represent<strong>in</strong>g an early dispersal event <strong>in</strong> the genus,or a plausible case of vicariance dat<strong>in</strong>g to a time prior tothe separation of South America <strong>and</strong> Australia (Olmstead<strong>and</strong> Palmer 1997). The ndhF data of Bohs <strong>and</strong> Olmstead(1997) suggest that the ancestor of the Archaesolanumclade arrived <strong>in</strong> Australia early <strong>in</strong> the evolutionary radiationof <strong>Solanum</strong>.R<strong>and</strong>om amplified polymorphic DNA (RAPD) technique(Williams et al. 1990, 1993; Welsh <strong>and</strong> McClell<strong>and</strong>1990) is a useful tool <strong>in</strong> population <strong>and</strong> evolutionarygenetics, s<strong>in</strong>ce no prior knowledge of the genome structureor sequence data is required. RAPD has been used <strong>in</strong>several studies <strong>in</strong> the case of <strong>Solanum</strong> (e.g., Stedje <strong>and</strong>Bukenya-Ziraba 2003; Van den Berg et al. 2002; Spooneret al. 1996; Miller <strong>and</strong> Spooner 1999) to clarify phylogenetic<strong>relationships</strong> at various levels (Sheng et al. 2006;Baeza et al. 2007; Liebst 2008).Organelle DNA sequences have been used extensively<strong>in</strong> phylogenetic studies on plants. Chloroplast DNA(cpDNA) variation has proven to be immensely valuable <strong>in</strong>reconstruct<strong>in</strong>g phylogenies at the species <strong>and</strong> higher taxonomiclevel. PCR amplification with specific or universalprimers, followed by restriction digestion <strong>and</strong> electrophoreticseparation of the fragments (PCR-RFLP), is frequentlyapplied <strong>in</strong> plant phylogenetic studies (e.g., Cseh<strong>and</strong> Taller 2008; Friesen et al. 1997; Wachowiak et al.2006; Prentice et al. 2008). The comb<strong>in</strong>ation of this techniquewith other molecular methods such as <strong>in</strong>ter-simplesequence repeat (ISSR) (Huang et al. 2002), RAPD(Potok<strong>in</strong>a et al. 1999), <strong>and</strong> amplified fragment lengthpolymorphism (AFLP) (Fu et al. 2004) is also widespread.Compared with st<strong>and</strong>ard RFLP analysis us<strong>in</strong>g entirecpDNA or probe cpDNAs, RFLP analysis of PCR-amplifiedcpDNA regions has several advantages: simpleprocedure, small amounts of tissue required, <strong>and</strong> reducedtime <strong>and</strong> expense. Therefore, it is considered to be an easy<strong>and</strong> advantageous tool for detect<strong>in</strong>g cpDNA variations.123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 37Another approach for extract<strong>in</strong>g phylogenetic <strong>in</strong>formationfrom both cpDNA <strong>and</strong> mitochondrial DNA (mtDNA)is to analyze the distribution of major structural rearrangements.The mitochondrial genome evolves considerablymore slowly at the nucleotide sequence level than thenuclear or the chloroplast genomes (Palmer 1990; Wolfeet al. 1987), but the rate of rearrangements is extraord<strong>in</strong>arilyfaster <strong>in</strong> plant mtDNA than <strong>in</strong> cpDNA (Palmer <strong>and</strong>Herborn 1988), possibly mak<strong>in</strong>g it useful <strong>in</strong> <strong>in</strong>vestigationson distant phylogenetic <strong>relationships</strong>. The presence orabsence of rearrangements <strong>in</strong> a particular gene or <strong>in</strong>troncan be assayed by hybridization us<strong>in</strong>g probes specific to thegene/<strong>in</strong>tron or with the use of the PCR technique. Primersare synthesized for conserved sequences flank<strong>in</strong>g theregion of <strong>in</strong>terest, <strong>and</strong> the <strong>in</strong>terven<strong>in</strong>g sequence is amplifiedby PCR (Downie <strong>and</strong> Palmer 1992). Compar<strong>in</strong>g the size ofthe resultant PCR product with a sequence of known lengthon an agarose or polyacrylamide gel can <strong>in</strong>dicate thepresence or absence of specific gene or <strong>in</strong>tron rearrangements(Bruzdz<strong>in</strong>ski <strong>and</strong> Gelehrter 1989).The purpose of this study is to <strong>in</strong>vestigate genetic<strong>relationships</strong> <strong>in</strong> <strong>subg</strong>. Archaesolanum based on RAPDmarkers <strong>and</strong> PCR-RFLP analysis of two chloroplastregions (trnS-trnG <strong>and</strong> rbcL). Another objective of thisstudy is to reveal mitochondrial rearrangements us<strong>in</strong>guniversal primers, which could be useful for further analysisof the group.Materials <strong>and</strong> methodsPlant material <strong>and</strong> DNA extractionTaxon sampl<strong>in</strong>g <strong>in</strong>cluded seven species belong<strong>in</strong>g to <strong>subg</strong>.Archaesolanum, with two accessions from each of thespecies S. aviculare, S. lac<strong>in</strong>iatum, <strong>and</strong> S. simile <strong>and</strong> onefrom each of S. l<strong>in</strong>earifolium, S. capsiciforme, S. symonii,<strong>and</strong> S. vescum. For outgroups, seven <strong>Solanum</strong> species,represent<strong>in</strong>g different <strong>subg</strong>enera, were <strong>in</strong>cluded <strong>in</strong> theanalysis. An accession from outside the genus, Capsicumannuum, was also added <strong>in</strong> the experiments, accord<strong>in</strong>g tothe results reported by Olmstead et al. (1999) <strong>and</strong> Bohs <strong>and</strong>Olmsted (2001). Although we used only one accession foreach species <strong>in</strong> this study, our ongo<strong>in</strong>g cont<strong>in</strong>uous studieswith<strong>in</strong> different l<strong>in</strong>eages of <strong>Solanum</strong> show that <strong>in</strong>traspecificvariation does not adversely affect phylogenetic <strong>relationships</strong>between sections of <strong>Solanum</strong>, as was also shownpreviously <strong>in</strong> other groups of the genus by Spooner <strong>and</strong>Systma (1992). Voucher specimens were deposited at theherbarium of University of Pannonia, Keszthely, Hungary.Information about the accessions can be found <strong>in</strong> Table 1.Genomic DNA was extracted from approximately 50 mgof young fresh leaves us<strong>in</strong>g the procedure of Walbot <strong>and</strong>Warren (1988). RAPD f<strong>in</strong>gerpr<strong>in</strong>ts were obta<strong>in</strong>ed from DNAbulks, accord<strong>in</strong>g to Spooner et al. (1997), where five plantsfrom each accession were bulked for DNA extraction.Although fragments present <strong>in</strong> \15% of <strong>in</strong>dividuals compos<strong>in</strong>gthe DNA bulk are often observed to be lost from theb<strong>and</strong><strong>in</strong>g patterns of bulked samples (e.g., Divaret et al.1999), we designed our study to sample as many alleles aspossible with<strong>in</strong> the accessions. Additionally, the aim was toexam<strong>in</strong>e more populations, rather than more <strong>in</strong>dividuals,with<strong>in</strong> a population. Thus the bulk<strong>in</strong>g strategy described byMichelmore et al. (1991) was considered to be useful togenerate a group (e.g., population or accession) f<strong>in</strong>gerpr<strong>in</strong>tby comb<strong>in</strong><strong>in</strong>g DNA from a number of <strong>in</strong>dividuals. Thisstrategy may reduce the noise <strong>in</strong> the dataset due to markerssegregat<strong>in</strong>g with<strong>in</strong> the groups (Bussel et al. 2005) <strong>and</strong> hasbeen used successfully <strong>in</strong> the case of <strong>Solanum</strong> species (Miller<strong>and</strong> Spooner 1999; Rodríguez <strong>and</strong> Spooner 1997; Spooneret al. 1991, 1993, 1995, 1997; Clausen <strong>and</strong> Spooner 1998).RAPD amplificationIn the RAPD analysis a total of 40 primer pairs were used.Each reaction was performed twice to verify reproducibility.The primers were paired arbitrarily, but pal<strong>in</strong>dromes<strong>and</strong> complementarities with<strong>in</strong> <strong>and</strong> between primers wereavoided. The sequence of each primer was generated r<strong>and</strong>omly,compris<strong>in</strong>g 12 base oligonucleotides <strong>and</strong> *50–70%GC content. The sequences of the primers are availablefrom the correspond<strong>in</strong>g author upon request. PCR wascarried out on a 96-well RoboCycler (Stratagene, USA)us<strong>in</strong>g a 20 ll reaction mix which conta<strong>in</strong>ed the follow<strong>in</strong>g:10 ll sterile ion-exchanged water, 5 ng template DNA,1 lM of each primer, 0.2 mM dNTP (Fermentas, Lithuania),2 ll 109 PCR buffer (1 mM Tris–HCl, pH 8.8 at25°C, 1.5 mM MgCl 2 , 50 mM KCl, <strong>and</strong> 0.1% TritonX-100), <strong>and</strong> 0.5 U DyNazyme II (F<strong>in</strong>nzymes, F<strong>in</strong>l<strong>and</strong>)polymerase. Reaction conditions were 1 m<strong>in</strong> at 94°C,followed by 35 cycles of 30 s at 94°C, 1 m<strong>in</strong> at 37°C, <strong>and</strong>2 m<strong>in</strong> at 72°C. A f<strong>in</strong>al amplification for 5 m<strong>in</strong> at 72°C wasapplied. Amplification products were separated on 1.5%agarose gels (Promega, USA) <strong>in</strong> 0.59 TBE buffer (300 V,1.5 h) <strong>and</strong> post-sta<strong>in</strong>ed with ethidium bromide. The gelswere documented us<strong>in</strong>g the GeneGenius Bio Imag<strong>in</strong>g System(Syngene, UK). The b<strong>and</strong><strong>in</strong>g patterns were evaluated<strong>and</strong> annotated with the program GeneTools (Syngene, UK).Chloroplast region amplification <strong>and</strong> restrictiondigestiontrnS-trnG regionThe chloroplast <strong>in</strong>tergenic spacer between trnS <strong>and</strong> trnGwas amplified us<strong>in</strong>g the primers described by Hamilton123


38 P. Poczai et al.Table 1 Accessions of <strong>Solanum</strong> species used <strong>in</strong> the analysisTaxonomic position b Taxon Collector Accession number CollectionlocalityOrig<strong>in</strong>IngroupSubg. ArchaesolanumSer. Avicularia Geras. S. aviculare (1) Forst. Unknown 874 750 027 A I.S. aviculare (2) Forst. var. GTS Baylis 844 750 003 NZ I.latifolium Bayl.Ser. Lac<strong>in</strong>iata Geras. S. lac<strong>in</strong>iatum Ait. (1) a Unknown A24 750 011 Unknown I.S. lac<strong>in</strong>iatum Ait. (2) a DE Symon A24 750 098 A I.S. l<strong>in</strong>earifolium Geras. Unknown 814 750 056 Unknown I.S. vescum F. Muell. D Mart<strong>in</strong> 904 750 174 A I.Ser. Similia Geras. S. capsiciforme (Dom<strong>in</strong>) Bayl. Unknown 884 750 213 Unknown I.S. simile F. Muell. (1) a CR Alcock A24 750 094 A I.S. simile F. Muell. (2) a Unknown 894 750 053 A I.S. symonii Eichler N Lovett 844 750 004 A I.OutgroupSubg. LeptostemonumSect. Acanthophora S. atropurpureum Schrank. Unknown UHBG211-1471 Unknown II.Androceras S. rostratum Dunal Unknown HU1GEO20060029 Unknown III.Cryptocarpum S. sisymbriifolium Lam. Unknown HU1GEO20060053 Unknown III.Subg. M<strong>in</strong>onSect. Bravantherum S. abutiloides Bitter & Lillo Unknown UHBG211-1455 Unknown II.Subg. PotatoeSect. Dulcamara S. dulcamara L. P Poczai HU1GEO20060017 H III.Subg. <strong>Solanum</strong>Sect. <strong>Solanum</strong> S. americanum Miller. BG Redwood 904 750 023 USA I.S. physalifolium Rusby var. Unknown 894 750 076 G I.nitidibaccatum (Bitter) Edm.Genus Capsicum Capsicum annuum L. Unknown 884 750 092 Unknown I.Collection locality abbreviations: A Australia, G Germany, H Hungary, NZ New Zeal<strong>and</strong>, USA United States of America. Orig<strong>in</strong> abbreviations:I Botanical <strong>and</strong> Experimental Garden of the Radboud University, The Netherl<strong>and</strong>s. II Botanical Garden of the University of Hohenheim,Stuttgart, Germany. III Georgikon Botanical Garden of the University of Pannonia, Keszthely, Hungarya Numbers are abbreviations used <strong>in</strong> the further text, tables, <strong>and</strong> figures to dist<strong>in</strong>guish between accessionsb Accord<strong>in</strong>g to D’Arcy (1972, 1992)(1999). All PCR reactions were performed <strong>in</strong> a Master-Cycler ep384 (Eppendorf, Germany) with the same compositionas <strong>in</strong> the RAPD analysis, except that the MgCl 2concentration was adjusted to 2 mM. The thermal cyclerprogram <strong>in</strong>cluded an <strong>in</strong>itial denaturation at 94°C for 4 m<strong>in</strong>;40 cycles of 94°C for 45 s, 52°C for 1 m<strong>in</strong>, <strong>and</strong> 72°C for1 m<strong>in</strong>; with a f<strong>in</strong>al extension at 72°C for 7 m<strong>in</strong>, asdescribed by Lev<strong>in</strong> et al. (2006).rbcL1-rbcL2 regionThe sequence of the large subunit of the ribulose-1,5-bisphosphatecarboxylase gene (rbcL) was amplified us<strong>in</strong>g theprimers described by Demesure et al. (1995). The 20 llreaction solution was the same as that described above. Thethermal cycler program was the follow<strong>in</strong>g: 94°C for 1 m<strong>in</strong>;30 s at 94°C, 1 m<strong>in</strong> at 60°C, <strong>and</strong> 2 m<strong>in</strong> at 72°C for 35cycles; <strong>and</strong> a f<strong>in</strong>al cycle of 4 m<strong>in</strong> at 72°C. Further <strong>in</strong>formationabout the primers used <strong>in</strong> the study is given <strong>in</strong>Table 2.The trnS-trnG amplification products were digestedwith the restriction endonuclease enzymes H<strong>in</strong>fI, DdeI,MboI, MspI, RsaI, Taq a I, <strong>and</strong> AluI (New Engl<strong>and</strong> BiolabsInc., USA). The reaction conditions recommended by thesupplier were used for all enzymes. The restriction fragmentswere separated on 2.3% high-resolution MetaPhoragarose gel (Cambrex Bio Science Rockl<strong>and</strong>, Inc., USA),after which the products were visualized by ethidiumbromidesta<strong>in</strong><strong>in</strong>g.The rbcL1-rbcL2 region was digested with the sameenzymes except that <strong>in</strong>stead of Taq a I the AluI <strong>and</strong> HhaIrestriction endonucleases were used <strong>in</strong> the analysis. The123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 39Table 2 Details of the primers used <strong>in</strong> the study of chloroplast <strong>and</strong> mitochondrial regionsGene a Primer pairs Size(bp)G ? C(%)Anneal<strong>in</strong>gtemperature (°C)PCRproduct (bp)ChloroplastprimerstrnS-trnG trnS 5 0 -GCCGCTTTAGTCCACTCAGC-3 0 20 60 52 *700–735trnG 3 0 -CACCATTTTCACACTAAGCAAG-5 0 22 41rbcL1-rbcL2 rbcL1 5 0 -ATGTCACCACCACAAACAGAGACT-3 0 24 46 60 *1,371rbcL2 3 0 -CCTCAGGACTTGATCGACGACGAACACTTC-5 0 31 52Mitochondrialprimersatp6F-atp6R atp6F b 5 0 -GGAGG(A=I)GGAAA(C=I)TCAGT(A=I)CCAA-3 0 22 48 58 *589–610atp6R 3 0 -TAGCATCATTCAAGTAAATACA-5 0 22 27cobF-cobR cobF 5 0 -AGTTATTGGTGGGGGTTCGG-3 0 20 55 58 *290–313cobR 3 0 -CCCCAAAAGCTCATCTGACCCC-5 0 22 59cox1F-cox1R cox1F b 5 0 -GGTGCCATTGC(T=I)GGAGTGATGG-3 0 22 59 58 *1,466cox1R 3 0 -TGGAAGTTCTTCAAAAGTATG-5 0 21 33nad3F-nad3R nad3F 5 0 -AATTGTCGGCCTACGAATGTG-3 0 21 48 58 *237nad3R 3 0 -TTCATAGAGAAATCCAATCGT-5 0 21 33nad5aF-nad5aR nad5aF 5 0 -GAAATGTTTGATGCTTCTTGGG-3 0 22 41 58 *1,000nad5aR 3 0 -ACCAACATTGGCATAAAAAAAGT-5 0 23 30nad5dF-nad5dR nad5dF 5 0 -ATAAGTCAACTTCAAAGTGGA-3 0 21 33 58 *1,095–1,136nad5dR 3 0 -CATTGCAAAGGCATAATGAT-5 0 20 35rps14F-rps14R rps14F 5 0 -ATACGAGATCACAAACGTAGA-3 0 21 38 58 *114rps14R b 3 0 -CCAAGACGATTT(C=I)TTTATGCC-5 0 21 38nad4exon1-nad4exon2a nad4exon1 5 0 -CAGTGGGTTGGTCTGGTATG-3 0 20 55 58 *2,058nad4exon2a 3 0 -TCATATGGGCTACTGAGGAG-5 0 20 50a trnS-trnG, <strong>in</strong>tergenic spacer between Ser-tRNA <strong>and</strong> Gly-tRNA; rbcL1-rbcL2, subunit of the ribulose-1,5-bisphosphate carboxylase gene; atp6 (oratpF), F0-ATPase subunit 6 gene; cob, apocytochrome b gene; cox1 (or coxI), cytochrome c oxidase subunit 1 gene; nad3 (or nadC, nadhC, nadh3, ornd3), NADH-ubiqu<strong>in</strong>one oxidoreductase subunit 3 gene; nad5a (or nadF, ndhF, ndh5, nd5), NADH-ubiqu<strong>in</strong>one oxidoreductase subunit 5 gene (<strong>in</strong>tron1); nad5dF (or nadF, ndhF, ndh5,nd5), NADH-ubiqu<strong>in</strong>one oxidoreductase subunit 5 gene (<strong>in</strong>tron 2); rps14, ribosomal prote<strong>in</strong> subunit 14 gene;nad4exon1 (or nadD, ndhD, ndh4, nd4) NADH-oxidoreductase subunit 4 gene (<strong>in</strong>tron 1)b Inos<strong>in</strong>e was used <strong>in</strong> the synthesis <strong>in</strong>stead of the correspond<strong>in</strong>g nucleotide because of the nucleotide variation between plant sequencesseparation <strong>and</strong> visualization procedure was the same as thatdescribed above. The enzymes for the analysis wereselected based on the virtual digestion of the sequence dataof the fragment trnS-trnG from S. aviculare, submitted tothe NCBI database by Lev<strong>in</strong> et al. (2005) under accessionnumber AY555458. For this procedure the programNEBcutter (V<strong>in</strong>cze et al. 2003) was used.Mitochondrial region amplificationThe universal primers described by Demesure et al. (1995)for the amplification of different mitochondrial regionswere tested to detect fragment length polymorphismbetween the accessions. The contents <strong>and</strong> concentrationsused <strong>in</strong> the reaction mixture were the same as described forthe RAPD analysis. The PCR program was the follow<strong>in</strong>g:94°C for 1 m<strong>in</strong>; 30 s at 94°C, 1 m<strong>in</strong> at 58°C, <strong>and</strong> 2 m<strong>in</strong> at72°C for 35 cycles; <strong>and</strong> a f<strong>in</strong>al cycle of 4 m<strong>in</strong> at 72°C.The amplified regions <strong>and</strong> further <strong>in</strong>formation about theprimers are summarized <strong>in</strong> Table 2.RAPD data analysisOnly dist<strong>in</strong>ct, well-resolved, clear b<strong>and</strong>s were scored.Reliable b<strong>and</strong>s are thought to refer to amplicons found <strong>in</strong>replicate reactions. It was assumed that fragments ofequal length had been amplified from correspond<strong>in</strong>g loci,<strong>and</strong> the b<strong>and</strong> conventionally assumed to represent a s<strong>in</strong>gle,dom<strong>in</strong>ant, nuclear locus with two possible alleles.The amplified fragments were scored as: 1, for the presence,or 0, for the absence of homologous b<strong>and</strong>s. Fromthis b<strong>in</strong>ary matrix, a distance matrix was computedaccord<strong>in</strong>g to Nei <strong>and</strong> Li (1979) based on Dice’s similaritycoefficient (Dice 1945). A dendrogram was constructedus<strong>in</strong>g the neighbor-jo<strong>in</strong><strong>in</strong>g method described by Saitou<strong>and</strong> Nei (1987); the orig<strong>in</strong>al matrix was bootstrapped123


40 P. Poczai et al.1,000 times to check the reliability of the branch<strong>in</strong>gpatterns <strong>and</strong> the quality of the result<strong>in</strong>g phylogeneticgroups. These bootstrap values are shown at the nodes ofthe dendrogram as percentages. The FAMD program(Schlüter <strong>and</strong> Harris 2006) was used for all calculations.The tree obta<strong>in</strong>ed us<strong>in</strong>g FAMD was visualized <strong>and</strong> editedus<strong>in</strong>g the TreeView program (Page 1996).Parsimony analysis of the restriction fragmentsAll calculations were carried out us<strong>in</strong>g the program packagePHYLIP (Phylogeny Inference Package) published byFelsenste<strong>in</strong> (1989). The two data sets (trnS-trnG <strong>and</strong>rbcL1-rbcL2) were analyzed separately <strong>and</strong> <strong>in</strong> comb<strong>in</strong>ation.The discrete character data of the restriction fragmentswere coded <strong>in</strong>to a series of (0 or 1) two-statecharacters. The further analysis was carried out us<strong>in</strong>g thebranch-<strong>and</strong>-bound algorithm of the DOLPENNY programto f<strong>in</strong>d all of the most parsimonious trees implied by thedata. The data analysis was performed with the use of theDollo parsimony method. The program was set to reportevery 100 trees <strong>and</strong> 1,000 groups. From the result<strong>in</strong>g outputtrees, a consensus tree was built with the CONSENSEprogram us<strong>in</strong>g the majority rule criterion.ResultsRAPD analysisThe 40 RAPD primer pairs generated 295 reliable fragmentsfrom all the accessions analyzed. RAPD analysisus<strong>in</strong>g primer comb<strong>in</strong>ations clearly separated the accessionsused <strong>in</strong> the study. The dendrogram calculated from the datamatrix generated by the formula of Nei <strong>and</strong> Li (1979) ispresented <strong>in</strong> Fig. 1. We tried to root the result<strong>in</strong>g tree byadditionally add<strong>in</strong>g/remov<strong>in</strong>g groups <strong>and</strong> taxa used asoutgroups. In all cases a consistently dist<strong>in</strong>ct Archaesolanumclade was present among the analyzed accessions,where no significant difference was found <strong>in</strong> the overalltopology of the groups with<strong>in</strong> the Archaesolanum clade.The dendrograms <strong>in</strong> all rooted versions consistently producedtwo separate clades; one was composed of themembers of ser. Avicularia <strong>and</strong> Lac<strong>in</strong>iata, namely twoaccessions of S. aviculare, two accessions of S. lac<strong>in</strong>iatum,S. vescum, <strong>and</strong> S. l<strong>in</strong>earifolium, which exhibit close aff<strong>in</strong>itybased on the bootstrap values. S. vescum is sister to thisgroup composed of S. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum; S. l<strong>in</strong>earifoliumoccupies a basal position <strong>in</strong> this clade. Thesecond major clade was formed by members of ser. Similia.S. capsiciforme is separated from the other members of thegroup. S. symonii <strong>and</strong> the two accessions of S. simile aregrouped together.Chloroplast <strong>and</strong> mitochondrial region analysisOne amplification product per sample was obta<strong>in</strong>ed for allthe accessions exam<strong>in</strong>ed. The size of the fragmentsamplified with trnS-trnG primers was approximately710 bp among the species. The size of the rbcL1-rbcL2fragments was approximately 1,370 bp <strong>and</strong> showed novariation. Restriction enzyme assay with seven differentenzymes resulted <strong>in</strong> variable fragments <strong>in</strong> the case of thetrnS-trnG region. Approximately 10 bp differences wereobserved between the restriction fragments. The PCR-RFLP fragments of the region clearly separate two groups<strong>in</strong> the <strong>subg</strong>enus. S. lac<strong>in</strong>iatum, S. aviculare, <strong>and</strong> S. vescumcompose a group with larger fragments, while S. simile,S. symonii, <strong>and</strong> S. capsiciforme gave smaller restrictionproducts. S. l<strong>in</strong>earifolium occupied an ‘‘<strong>in</strong>termediate’’position between the two groups accord<strong>in</strong>g to the fragmentlengths of the PCR-RFLP analysis. An example is shown <strong>in</strong>Fig. 2. The observed variability <strong>in</strong> the restriction products<strong>in</strong>dicates that there are differences between the Archaesolanumspecies <strong>in</strong> the trnS-trnG region (Table 3).The rbcL1-rbcL2 region was not <strong>in</strong>formative <strong>in</strong> the caseof <strong>subg</strong>. Archaesolanum. After digestion with six restrictionendonuclease enzymes, no polymorphism wasdetectable. However, the selected enzymes had 4–9restriction sites <strong>in</strong> the 1,370-bp sequence. This similarity ofthe Archaesolanum species <strong>and</strong> their difference from theoutgroups <strong>in</strong>dicates that, although this region is un<strong>in</strong>formativeat the <strong>subg</strong>eneric level, it could be useful <strong>in</strong> highertaxonomic analyses. As the rbcL region was not <strong>in</strong>formative<strong>in</strong> the present case, it is not discussed <strong>in</strong> the follow<strong>in</strong>g.Eight mitochondrial regions were amplified to detectdifferent fragment length patterns which could be attributedto the unique replication of the mitochondrial genome.For this reason the universal primers described by Demesureet al. (1995) were used, to reveal this type of variation.The size of the PCR products <strong>and</strong> the sequence of theprimers are given <strong>in</strong> Table 2. Polymorphic fragments weredetected with the use of nad5aF-nad5aR. These primers aredesigned for the amplification of an <strong>in</strong>tron between exon 1(nad5aF) <strong>and</strong> exon 2 (nad5aR) of the nicot<strong>in</strong>amide aden<strong>in</strong>ed<strong>in</strong>ucleotide (NADH)-ubiqu<strong>in</strong>one oxidoreductase subunit5 gene. While all the species had a 1,000-bp fragment,<strong>in</strong> the case of S. vescum, S. lac<strong>in</strong>iatum, <strong>and</strong> S. l<strong>in</strong>earifoliuman *690-bp size b<strong>and</strong> was also detectable. Besidethese, S. l<strong>in</strong>earifolium also had a unique *880-bp fragment(Fig. 3).Results of the parsimony analysisThe phylogenetic tree obta<strong>in</strong>ed from the analysis of theconsensus tree construction is given <strong>in</strong> Fig. 4. The topologyof the tree constructed from the chloroplast region123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 41Fig. 1 Dendrogram constructedus<strong>in</strong>g the neighbor-jo<strong>in</strong><strong>in</strong>g (NJ)method from the RAPD datamatrix calculated with theformula given by Nei <strong>and</strong> Li(1979). The numbers at the treenodes are bootstrap values as apercentageFig. 2 Restriction patterns ofthe trnS-trnG chloroplastregion, digestion with MboI.M Molecular weight size marker(100–1,000 bp). 1S. l<strong>in</strong>earifolium; 2 S. aviculare(1), 3 S. aviculare (2); 4S.vescum; 5 S. lac<strong>in</strong>iatum (1); 6S. lac<strong>in</strong>iatum (2); 7S. capsiciforme; 8 S. symonii; 9S. simile (1); 10 S. simile (2)restriction data is almost identical to the tree topology ofthe RAPD data. The major difference is that S. symonii <strong>and</strong>S. capsiciforme formed a group together <strong>in</strong> the case of thechloroplast region. This arrangement was due to theabsence of a restriction site with RsaI <strong>in</strong> the trnS-trnGsequence unique for these species (Fig. 5).123


42 P. Poczai et al.Table 3 Restriction patterns of trnS-trnG; number of fragmentsobta<strong>in</strong>ed <strong>in</strong> the analysisAccessionDiscussionRestriction enzymeH<strong>in</strong>fI DdeI MboI MspI RsaI Taq a I AluIIngroupS. aviculare (1) 2 2 2 2 3 5 4S. aviculare (2) 2 2 2 2 3 5 4S. capsiciforme 2 2 2 2 2 4 3S. lac<strong>in</strong>iatum (1) 2 2 2 2 3 5 3S. lac<strong>in</strong>iatum (2) 2 2 2 2 3 5 3S. l<strong>in</strong>earifolium 2 2 2 2 3 5 4S. simile (1) 2 2 2 2 3 4 4S. simile (2) 2 2 2 2 3 4 4S. symonii 2 2 2 2 2 4 3S. vescum 2 2 2 2 3 5 4OutgroupS. abutiloides 2 3 0 2 3 4 2S. americanum 2 3 2 2 2 3 2S. atropurpureum 2 2 0 0 2 5 0S. dulcamara 2 2 2 2 3 4 2S. physalifolium 2 3 2 2 3 4 2S. rostratum 2 2 0 2 3 6 3S. sisymbriifolium 2 2 0 2 3 4 3C. annuum 2 2 2 2 3 3 2This study represents an approach us<strong>in</strong>g genomic DNAf<strong>in</strong>gerpr<strong>in</strong>t markers <strong>and</strong> other methods to study genetic<strong>relationships</strong> <strong>in</strong> <strong>subg</strong>. Archaesolanum. The RAPD dataobta<strong>in</strong>ed <strong>in</strong> this study are a r<strong>and</strong>om sample, represent<strong>in</strong>g allthe polymorphic RAPDs <strong>in</strong> the germplasm exam<strong>in</strong>ed.RAPDs have been shown to be useful as taxonomicmarkers for closely related species through concordantresults us<strong>in</strong>g other molecular marker systems for closelyrelated taxa elsewhere <strong>in</strong> sect. Petota (Cisneros <strong>and</strong> Quiros1995; Spooner et al. 1996). In addition, the results <strong>in</strong>dicatethat S. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum are closely related,which is strongly supported by bootstrap values. S. aviculareis easily confused with S. lac<strong>in</strong>iatum. PreviouslyS. lac<strong>in</strong>iatum was treated as a variety of S. aviculare underthe name S. aviculare var. lac<strong>in</strong>iatum (Aiton) Dom<strong>in</strong>. Bothspecies were commonly cultivated <strong>in</strong> the former USSR,Australia, <strong>and</strong> New Zeal<strong>and</strong>, <strong>and</strong> they were used <strong>in</strong> thealkaloid <strong>in</strong>dustry <strong>in</strong> the 1970s (Knapp 2006). Althoughthey are difficult to dist<strong>in</strong>guish, there are some morphologicalparameters <strong>in</strong> which they differ. S. aviculare isdiploid (2n = 2x = 46) with bright-orange or red maturefruits conta<strong>in</strong><strong>in</strong>g approx. 600 seeds per fruit, whileS. lac<strong>in</strong>iatum is tetraploid (2n = 4x = 92), with fruits thatare first green, later pal<strong>in</strong>g to yellow or orange-yellow, <strong>and</strong>conta<strong>in</strong><strong>in</strong>g approx. 200 seeds per fruit. Baylis (1954)clearly describes other characteristics: S. lac<strong>in</strong>iatum haslarger pollen gra<strong>in</strong>s, flowers, seeds, <strong>and</strong> stone-cell masses(<strong>in</strong> the fruit pulp) than S. aviculare; its corolla is deeper <strong>in</strong>color with relatively shallow lobes, the marg<strong>in</strong>s of whichflatten more completely, produc<strong>in</strong>g an emarg<strong>in</strong>ated apex.The analyses carried out provide results <strong>in</strong> re-exam<strong>in</strong><strong>in</strong>gthe putative hybrid orig<strong>in</strong> of S. lac<strong>in</strong>iatum, <strong>in</strong>dicat<strong>in</strong>g thatit is not of recent hybrid orig<strong>in</strong>. There is a lack of additivityboth <strong>in</strong> the RAPD patterns <strong>and</strong> <strong>in</strong> the PCR-RFLP analysis.In the dendrogram constructed from RAPD data, S. lac<strong>in</strong>iatumforms a group together with S. aviculare <strong>and</strong>S. vescum, <strong>and</strong> the same topology is present <strong>in</strong> the treeFig. 3 Amplification productsof nad5aF-nad5aR.M Molecular weight size marker(100 bp), the numbers <strong>in</strong>dicateladder size <strong>in</strong> bp. 1S. l<strong>in</strong>earifolium; 2 S. aviculare(1), 3 S. aviculare (2) 4S. vescum; 5 S. lac<strong>in</strong>iatum (1);6 S. lac<strong>in</strong>iatum (2); 7S. capsiciforme; 8 S. symonii; 9S. simile (1); 10 S. simile (2); 11Capsicum annuum123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 43Fig. 4 Majority rule consensustree based on the PCR-RFLPfragments obta<strong>in</strong>ed from thetwo chloroplast regions <strong>and</strong>mitochondrial fragment lengthpolymorphisms, show<strong>in</strong>gphylogenetic <strong>relationships</strong> <strong>and</strong>clades <strong>in</strong> <strong>subg</strong>. Archaesolanum.The numbers at the nodes arebootstrap replicates as apercentageFig. 5 Restriction patterns ofthe trnS-trnG chloroplastregion, digestion with RsaI.M Molecular weight size marker(100–500 bp). 1S. l<strong>in</strong>earifolium; 2. S. aviculare(1) 3 S. aviculare (2) 4S. vescum; 5 S. lac<strong>in</strong>iatum (1);6 S. lac<strong>in</strong>iatum (2); 7S. capsiciforme; 8 S. symonii; 9S. simile (1); 10 S. simile (2)from PCR-RFLP patterns. This topology is <strong>in</strong> agreementwith the crosses summarized by Symon (1994), who suggestedthat S. lac<strong>in</strong>iatum may be a hybrid of S. aviculare<strong>and</strong> S. vescum. S. aviculare <strong>and</strong> S. vescum hybridizespontaneously when the species are grown next to eachother. The hybrids are only fertile when S. vescum is<strong>in</strong>volved as the female parent (Baylis 1963).The presence of a specific fragment obta<strong>in</strong>ed from theamplification of the mtDNA region nad5aF-nad5aR alsoconfirms these results. This fragment is present <strong>in</strong> S. vescum,the hypothetical female parent, but it is absent fromS. aviculare, the putative male parent of S. lac<strong>in</strong>iatum.Accord<strong>in</strong>g to the maternal <strong>in</strong>heritance of organelle genomes,this fragment <strong>in</strong> S. vescum <strong>and</strong> <strong>in</strong> S. lac<strong>in</strong>iatum123


44 P. Poczai et al.represents a unique mitochondrial structure, which supportsthe hybridization theory. Although this type ofmitochondrial structure is present <strong>in</strong> S. l<strong>in</strong>earifolium too, itseparates from them, form<strong>in</strong>g another fragment ofapproximately 880 bp. This fragment could be a promis<strong>in</strong>gitem for further analysis of the <strong>subg</strong>enus.Hybrid speciation could occur at least two ways <strong>in</strong> thiscase: It is possible that S. lac<strong>in</strong>iatum is developed throughdiploid hybrid speciation <strong>in</strong>volv<strong>in</strong>g S. aviculare <strong>and</strong>S. vescum as female parent, <strong>and</strong> than the entire genome isduplicated through autopolyploidy. This alternativehybridization can only be achieved if S. lac<strong>in</strong>iatum is anancient hybrid. This could be supported by the uniquemitochondrial rearrangement identified. This diploidhybrid speciation could result from a normal sexual eventwhere each gamete has a haploid complement of thenuclear chromosomes from its parent, but gametes thatform the zygote come from different species (<strong>in</strong> this casefrom S. vescum <strong>and</strong> S. aviculare). From the crossesreported by Baylis (1963) it is known that partial fertilityexists between S. vescum as female parent <strong>and</strong> S. aviculare,<strong>and</strong> backcross<strong>in</strong>g is often possible, like <strong>in</strong> the typicalcase of diploid hybrid speciation. However, this hypothesiscould not expla<strong>in</strong> the extensive genomic homology detectedbetween S. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum. In the data setgenerated by the selected RAPD primers the number ofpolymorphic b<strong>and</strong>s was very low, which was also reported<strong>in</strong> our previous analysis with a different set of primers(Poczai 2007; Poczai et al. 2008).Another alternative hypothesis might be that S. lac<strong>in</strong>iatumwas developed through autopolyploid formation,where the normal genome of S. aviculare is duplicated <strong>in</strong>its entirety <strong>and</strong> produced tetraploid offspr<strong>in</strong>g which werepostzygotically isolated from their parent. Crosses madebetween S. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum led to very fewseeds, <strong>and</strong> no successful germ<strong>in</strong>ation could be detected(Gerasimenko 1969). This hypothesis could be an explanationfor the lack of additive b<strong>and</strong>s <strong>in</strong> S. lac<strong>in</strong>iatum fromS. vescum <strong>and</strong> S. aviculare, <strong>in</strong> the RAPD <strong>and</strong> cpDNAregion PCR-RFLP profile, <strong>and</strong> it also would be a reason forthe presence of the high genetic similarity betweenS. aviculare <strong>and</strong> S. lac<strong>in</strong>iatum. However, the latterhypothesis suggest<strong>in</strong>g an autopolyploid speciation eventfor S. lac<strong>in</strong>iatum seems considerably more reasonable thanhybrid <strong>in</strong>trogression through S. vescum.To clarify the relationship of S. lac<strong>in</strong>iatum to the othermembers of the group will require much <strong>in</strong>tensive phylogeneticanalysis. If S. lac<strong>in</strong>iatum resulted from an ancienthybridization, additional evidence on the hybrid orig<strong>in</strong>could be provided with particular analysis of DNAsequences. To resolve these events, reticulate evolutionshould be taken <strong>in</strong>to consideration for further <strong>in</strong>vestigations<strong>and</strong> cytogenetic analysis should also be carried out toresolve the orig<strong>in</strong> of S. lac<strong>in</strong>iatum. In addition, improvedtaxonomic sampl<strong>in</strong>g <strong>and</strong>/or use of more sensitive markerswould be required for more comprehensive underst<strong>and</strong><strong>in</strong>gof the evolutionary history of S. lac<strong>in</strong>iatum/S. aviculare.Such study based on different DNA f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g markers<strong>and</strong> sequences is underway <strong>and</strong> will be summarized <strong>in</strong> acompanion paper.Prelim<strong>in</strong>ary phylogeny constructed from the crossessummarized by Symon (1994) <strong>and</strong> based on morphologysuggests S. multivenosum as a possible parent of S. lac<strong>in</strong>iatum.However, the role of S. multivenosum <strong>in</strong> this phylogeneticconcept rema<strong>in</strong>s uncerta<strong>in</strong>, because the presentstudy did not <strong>in</strong>clude samples from S. multivenosum. Thistaxon must be <strong>in</strong>cluded <strong>in</strong> further <strong>in</strong>vestigations on thephylogenetic <strong>relationships</strong> <strong>in</strong> <strong>subg</strong>. Archaesolanum <strong>in</strong>order to clarify its position with respect to S. aviculare,S. lac<strong>in</strong>iatum, <strong>and</strong> S. vescum. The species S. multivenosumis endemic <strong>in</strong> high-altitude ([2,000 m) sites <strong>in</strong> Papua NewGu<strong>in</strong>ea, so access to good material is very difficult. Possiblyfor this reason, no plant material or herbarium specimenwas recorded <strong>in</strong> the Solanaceae Source, a globalproject for taxonomy, or by the Botanical <strong>and</strong> ExperimentalGarden of Radboud University Nijmegen, which iswhy it was not <strong>in</strong>cluded <strong>in</strong> the present analysis.S. l<strong>in</strong>earifolium formed a basal branch of the clustercomposed of S. aviculare, S. lac<strong>in</strong>iatum, <strong>and</strong> S. vescum <strong>in</strong>all the trees. Based on this topology, its closest relative isS. vescum, but the two accessions did not form a separategroup. This relationship can be expla<strong>in</strong>ed by morphologicalparameters. The well-developed s<strong>in</strong>us tissues are diagnostic<strong>in</strong> the case of S. l<strong>in</strong>earifolium, <strong>and</strong> the strongly w<strong>in</strong>gedstems (from the sessile, decurrent leaves) <strong>in</strong> the case ofS. vescum (Baylis 1954).The other clade separated <strong>in</strong> the dendrogram is composedof S. capsiciforme, S. symonii, <strong>and</strong> S. simile (twoaccessions). These species belong to ser. Similia. Theseparation of this group based on morphology was confirmedby data derived from the present <strong>in</strong>vestigation us<strong>in</strong>gmolecular genetic markers. S. symonii is often confusedwith S. simile, as the habit, green fruits, <strong>and</strong> small flowersof the two species are very similar. This morphologicalsimilarity between the two species can be detected at DNAlevel accord<strong>in</strong>g to the RAPD data. In this dendrogram thetwo species form a group together, which is supported bystrong bootstrap values of 100%. Despite the morphologicalsimilarity, the chromosome numbers of the two speciesare not the same; S. symonii is tetraploid (2n = 4x = 92),whereas S. simile is diploid (2n = 2x = 46). Crossesbetween S. simile <strong>and</strong> S. symonii <strong>and</strong> the other members ofthe <strong>subg</strong>enus have been made, but no fertile hybrids couldbe obta<strong>in</strong>ed (Baylis 1963).S. capsiciforme is sister to all the other members of thisgroup <strong>in</strong> Symon’s (1994) prelim<strong>in</strong>ary phylogeny based on123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 45morphology. In the present study it occupied a dist<strong>in</strong>ctiveplace <strong>in</strong> the cluster composed of members of ser. Similia.In the analysis of the restriction patterns of the two chloroplastregion trnS-trnG it formed a group with S. symonii.However, the RAPD data separated S. capsiciformefrom the members of the ser. Similia, <strong>and</strong> S. symonii isgrouped together with the two accessions of S. simile. Thisdifference between the results can be expla<strong>in</strong>ed by thedifferent nature of the two methods. RAPD amplifiesfragments from the whole genome, but mostly from thenuclear genome, while the restriction analysis <strong>in</strong> this studyfocused on specific regions of the chloroplast genome,detect<strong>in</strong>g site variations, <strong>in</strong> the light of which S. symonii ismore closely related to S. simile at the nuclear genomiclevel than to S. capsiciforme. However, there is evidencefrom the trnS-trnG restriction site variation that bothS. symonii <strong>and</strong> S. capsiciforme lack a cleavage site of theRsaI endonuclease enzyme. This <strong>in</strong>dicates that S. capsiciforme<strong>and</strong> S. symonii could share a common maternalancestor, but additional data will be required to prove thishypothesis.Series Similia can be easily dist<strong>in</strong>guished morphologicallyfrom the other series of <strong>subg</strong>. Archaesolanum, <strong>and</strong> theresults of the present study show that this is confirmed bymolecular genetic methods. Such a clear dist<strong>in</strong>ction cannotbe made between the members of ser. Avicularia <strong>and</strong>Lac<strong>in</strong>iata, which form a s<strong>in</strong>gle clade <strong>in</strong> the RAPD data,while the same topology could be observed <strong>in</strong> the treeobta<strong>in</strong>ed from the chloroplast data. S. aviculare, the typespecies for ser. Avicularia, <strong>and</strong> S. lac<strong>in</strong>iatum, the typespecies for ser. Lac<strong>in</strong>iata, grouped together. From thistopology it is concluded that the existence of these twotaxonomic groups must be reconsidered. S. multivenosumshould also be <strong>in</strong>cluded <strong>in</strong> further studies, <strong>and</strong> moremolecular data will be required to clarify the position of theAvicularia/Lac<strong>in</strong>iata clade. New formal taxonomic designationsfor the series <strong>in</strong> <strong>subg</strong>. Archaesolanum will beneeded. It would be reasonable to rise the series to sectionallevel, s<strong>in</strong>ce the Archaesolanum group is recognizedas a <strong>subg</strong>enus. As both the RAPD <strong>and</strong> cpDNA regionanalyses separated two groups, it is suggested to form twosections <strong>in</strong> <strong>subg</strong>. Archaesolanum. The first of these mightbe sect. Similia, consist<strong>in</strong>g of former members of ser.Similia. As the Avicularia/Lac<strong>in</strong>iata clade consists ofmembers from both ser. Avicularia <strong>and</strong> ser. Lac<strong>in</strong>iata, anew section should also be formed by unit<strong>in</strong>g these twogroups, which could be sect. Avicularia, s<strong>in</strong>ce S. avicularewas the first name published by Forster (1786).Subgenus Archaesolanum is a unique group <strong>in</strong> thegenus. The chromosome structure hypothesized to bederived from secondary polyploidy <strong>and</strong> dist<strong>in</strong>ctive habitputs them <strong>in</strong> the focus of phylogenetic <strong>in</strong>terest. This studyaimed to summarize <strong>in</strong>formation about the phylogeny ofthis exotic group <strong>and</strong> to use molecular genetic techniquesto provide more <strong>in</strong>sight <strong>in</strong>to the <strong>relationships</strong> between thespecies of the <strong>subg</strong>enus. Although implications based ongenetic <strong>relationships</strong> with<strong>in</strong> this group have been formulated,some burn<strong>in</strong>g questions rema<strong>in</strong> unanswered. Little isknown about with<strong>in</strong>- <strong>and</strong> among-population genetic<strong>diversity</strong> of each species, <strong>and</strong> the closest relatives of thegroups have even not been unambiguously identified.Analysis of divergence through time <strong>and</strong> the comb<strong>in</strong>ationof different phylogenetic methods capable of resolv<strong>in</strong>gcomplex evolutionary events would result <strong>in</strong> certa<strong>in</strong><strong>in</strong>formation about the group’s radiation, dispersal, <strong>and</strong>phylogeny.Acknowledgments Thanks are due to Gerard M. van der Weerdenfor rapid seed transfer, to the workers of the Botanical <strong>and</strong> ExperimentalGarden of the Radboud University, Nijmegen, <strong>and</strong> to L<strong>in</strong>daMagyar, K<strong>in</strong>ga Mátyás, <strong>and</strong> István Cernak for their excellentassistance. This research represents a partial fulfillment of therequirements for the degree of Doctor of Philosophy (PhD) <strong>in</strong> Plant<strong>Genetic</strong>s <strong>and</strong> Biotechnology at the University of Pannonia. Thiswork was carried out <strong>in</strong> 2007 <strong>and</strong> it was supported by the HungarianState PhD Grant provided for the first author at the University ofPannonia.ReferencesBaeza C, Schrader O, Budahn H (2007) Characterization ofgeographically isolated accessions <strong>in</strong> five Alstromeria L. species(Chile) us<strong>in</strong>g FISH of t<strong>and</strong>emly repeated DNA sequences <strong>and</strong>RAPD analysis. Plant Syst Evol 269:1–14Baylis GTS (1954) Chromosome number <strong>and</strong> distribution of <strong>Solanum</strong>aviculare Forst. <strong>and</strong> S. lac<strong>in</strong>iatum Ait. Trans Roy Soc N Z82:639–643Baylis GTS (1963) A cytogenetical study of the <strong>Solanum</strong> avicularespecies complex. Aust J Bot 11:168–177Bitter G (1927) Solanaceae. In: Hegi G (ed) Illustrierte Flora vonMittel-Europa, vol 5, Part 4. J.F. Lehmanns, Munich,pp 2548–2625Bohs L (2005) Major clades <strong>in</strong> <strong>Solanum</strong> based on ndhF sequences. In:Keat<strong>in</strong>g RC, Hollowell VC, Croat TB (eds) A festschrift forWilliam G. D’Arcy: the legacy of a taxonomist. Monographs <strong>in</strong>Systematic Botany from the Missouri Botanical Garden, vol 104.Missouri Botanical Garden Press, St. Louis, pp 27–49Bohs L, Olmstead RG (1997) Phylogenetic <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong>(Solanaceae) based on ndhF sequences. Syst Bot 22:5–17Bohs L, Olmstead RG (2001) A reassessment of Normania <strong>and</strong>Triguera (Solanaceae). Plant Syst Evol 228:33–48Bruzdz<strong>in</strong>ski CM, Gelehrter TD (1989) Determ<strong>in</strong>ation of exon-<strong>in</strong>tronstructure: a novel application of the polymerase cha<strong>in</strong> reactiontechnique. DNA 8:691–696Bussel JD, Waycott M, Chappill JA (2005) Arbitrarily amplifiedDNA merkers as characters for phylogenetic <strong>in</strong>ference. PerspectPlant Ecol 7:3–26Cisneros PL, Quiros CF (1995) Variation <strong>and</strong> phylogeny of thetriploid cultivated potato <strong>Solanum</strong> shaucha Juz. et. Buk. basedon RAPD <strong>and</strong> isozyme markers. Genet Res Crop Evol42:373–386Clausen AM, Spooner DM (1998) Molecular support for the hybridorig<strong>in</strong> of the wild potato species <strong>Solanum</strong> 9 rechei (<strong>Solanum</strong>sect. Petota). Crop Sci 38:858–865123


46 P. Poczai et al.Cseh A, Taller J (2008) <strong>Genetic</strong> <strong>diversity</strong> of ragweed (Ambrosiaartemisiifolia L.) a comparision of maternally <strong>in</strong>herited cpDNA<strong>and</strong> mtDNA. J Plant Dis Protect 21(Special Issue):389–394D’Arcy WG (1972) Solanaceae studies II: typification of subdivisionsof <strong>Solanum</strong>. Ann Mo Bot Gard 59:262–278D’Arcy WG (1991) The Solanaceae s<strong>in</strong>ce 1976, with a review of itsbiogeography. In: Hawkes JG, Lester RN, Nee M, Estrada N(eds) Solanaceae III: taxonomy, chemistry <strong>and</strong> evolution. RoyalBotanic Gardens, Kew, pp 75–137Danert S (1970) Infragenerische Taxa der Gattung <strong>Solanum</strong> L.Kulturpfl 18:253–297Demesure BN, Sodzi R, Petit J (1995) A set of universal primers foramplification of polymorphic non-cod<strong>in</strong>g regions of mitochondrial<strong>and</strong> chloroplast DNA <strong>in</strong> plants. Mol Ecol 4:129–131Dice LR (1945) Measur<strong>in</strong>g of amount of ecological associationbetween species. Ecology 26:297–302Divaret I, Margale E, Thomas G (1999) RAPD markers on seed bulksefficiently assess the genetic <strong>diversity</strong> of a Brassica oleracea L.collection. Theor Appl Genet 98:1029–1035Downie SR, Palmer JD (1992) Us<strong>in</strong>g of Chloroplast DNA rearrangements<strong>in</strong> reconstruct<strong>in</strong>g plant phylogeny. In: Soltis PS, SoltisDE, Doyle JJ (eds) Molecular systematics of plants. Spr<strong>in</strong>ger,Berl<strong>in</strong>, pp 14–36Felsenste<strong>in</strong> J (1989) PHYLIP—Phylogeny Inference Package (Version3.2). Cladistics 5:164–166Forster JGA (1786) Dissertatio <strong>in</strong>auguralis botanico-medica de plantisesculentis <strong>in</strong>sularum oceani australis. Typis Frankianus, HalleFriesen N, Borisjuk N, Mes THM, Klaas M, Hanelt P (1997)Allotetraploid orig<strong>in</strong> of Allium altyncolicum (Alliaceae, Alliumsect. Schoenoprasum) as <strong>in</strong>vestigated by karyological <strong>and</strong>molecular markers. Plant Syst Evol 206:317–335Fu CH, Chen CL, Guo WW, Deng XX (2004) GISH, AFLP <strong>and</strong> PCR-RFLP analysis of an <strong>in</strong>tergeneric somatic hybrid comb<strong>in</strong><strong>in</strong>gGoutou sour orange <strong>and</strong> Poncirus trifoliata. Plant Cell Rep23(6):391–396Gerasimenko II (1969) Inter <strong>and</strong> <strong>in</strong>traspecific hybridisation <strong>in</strong> thegenus <strong>Solanum</strong> <strong>subg</strong>enus Archaesolanum Bitter ex Marzell.Genetika 5:51–60Gerasimenko II (1970) Conspectus <strong>subg</strong>eneris Archaesolanum Bitt.Ex Marz. Generis <strong>Solanum</strong> L. Novosti Sist Vyssh Rast7:270–275Hair JB (1966) Biosystematics of the New Zeal<strong>and</strong> Flora, 1945–1964.New Zeal J Bot 4:559–595Hamilton MB (1999) Four primer pairs for the amplification ofchloroplast <strong>in</strong>tergenic regions with <strong>in</strong>traspecific variation. MolEcol 8:513–525Huang J, Corke H, Sun M (2002) Highly polymorphic AFLP markersas a complementary tool to ITS sequences <strong>in</strong> assess<strong>in</strong>g genetic<strong>diversity</strong> <strong>and</strong> phylogenetic <strong>relationships</strong> of sweetpotato (Ipomoeabatatas (L.) Lam.) <strong>and</strong> its wild relatives. Genet Res CropEvol 49(6):541–550Hunziker AT (2001) Genera Solanacearum. A. R. G. Ganter, Ruggell,pp 49–85Knapp S (2006) <strong>Solanum</strong> aviculare. In: Solanaceae Source, 2008.Available via http://www.nhm.ac.uk/research-curation/projects/solanaceaesource/taxonomy/description-detail.jsp?spnumber=1213Lev<strong>in</strong> RA, Myers NR, Bohs L (2006) Phylogenetic <strong>relationships</strong>among the ‘‘sp<strong>in</strong>y solanums’’ (<strong>Solanum</strong> <strong>subg</strong>enus Leptostemonum,Solanaceae) Am J Bot 93:157–169Liebst B (2008) Do they really hybridize? A field study <strong>in</strong> artificiallyestablished mixed populations of Euphrasia m<strong>in</strong>ima <strong>and</strong> E.salsburgensis (Orobanchaceae) <strong>in</strong> the Swiss Alps. Plant SystEvol 273:179–189Michelmore RW, Paran I, Kesseli RV (1991) Identification ofmarkers l<strong>in</strong>ked to disease resistance genes by bulked segregantanalysis: a rapid method to detect markers <strong>in</strong> specific genomicregions by us<strong>in</strong>g segregat<strong>in</strong>g populations. Proc Natl Acad SciUSA 88:9828–9832Miller JT, Spooner DM (1999) Collapse of species boundaries <strong>in</strong> thewild potato <strong>Solanum</strong> brevicaule complex (Solanaceae sect.Petota): molecular data. Plant Syst Evol 214:103–130Nei M, Li WH (1979) Mathematical model for study<strong>in</strong>g geneticvariation <strong>in</strong> terms of restriction endonucleases. Proc Natl AcadSci USA 76:5269–5273Olmstead RG, Palmer JD (1997) Implications for the phylogeny,classification, <strong>and</strong> biogeography of <strong>Solanum</strong> from cpDNArestriction site variation. Syst Bot 22:19–29Olmstead RG, Sweere JA, Spangler RE, Bohs L, Palmer JD (1999)Phylogeny <strong>and</strong> provisional classification of the Solanaceae basedon chloroplast DNA. In: Nee M, Symon DE, Lester RN, JessopJP (eds) Solanaceae IV: advances <strong>in</strong> biology <strong>and</strong> utilization.Royal Botanic Gardens, Kew, pp 111–137Page RDM (1996) TREEVIEW: an application to display phylogenetictrees on personal computers. Comput Appl Biosci12:357–358Palmer JD (1990) Contrast<strong>in</strong>g modes <strong>and</strong> tempos of genomeevolution <strong>in</strong> l<strong>and</strong> plant organelles. Trends Genet 6:115–120Palmer JD, Herbon LA (1988) Plant mitochondrial DNA evolvedrapidly <strong>in</strong> structure, but slowly <strong>in</strong> sequence. J Mol Evol28(1–2):87–97Poczai P (2007) Phylogenetic analysis of <strong>in</strong>frageneric groups <strong>in</strong> thegenus <strong>Solanum</strong>. MSc thesis, University of PannoniaPoczai P, Taller J, Szabó I (2008) Analysis of phylogenetic<strong>relationships</strong> <strong>in</strong> the genus <strong>Solanum</strong> (Solanaceae) as revaled byRAPD markers. Plant Syst Evol 275:59–67Potok<strong>in</strong>a E, Tomooka N, Duncan A, Vaughan DA, Alex<strong>and</strong>rova T,Xu RQ (1999) Phylogeny of Vicia Subgenus Vicia (Fabaceae)based on analysis of RAPDs <strong>and</strong> RFLP of PCR-amplifiedchloroplast genes. Genet Res Crop Evol 46(2):149–161Prentice HC, Malm JU, Hathaway L (2008) Chloroplast DNAvariation <strong>in</strong> the European herb Silene dioica (rad campion):postglacial migration <strong>and</strong> <strong>in</strong>terspecific <strong>in</strong>trogression. Plant SystEvol 272:23–37R<strong>and</strong>ell BR, Symon DE (1976) Chromosome numbers <strong>in</strong> Australian<strong>Solanum</strong> species. Aust J Bot 24:369–379Rodríguez A, Spooner DM (1997) Chloroplast DNA analysis of<strong>Solanum</strong> bulbocastanum <strong>and</strong> S. cardiophyllum, <strong>and</strong> evidence forthe dist<strong>in</strong>ctiveness of S. cardiophyllum subsp. ehrenbergii (sect.Petota). Syst Bot 22:31–43Saitou N, Nei M (1987) The neighbor-jo<strong>in</strong><strong>in</strong>g method: a newmethod for reconstruct<strong>in</strong>g phylogenetic trees. Mol Biol Evol4:406–425Schlüter PM, Harris SA (2006) Analysis of multilocus f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>gdata sets conta<strong>in</strong><strong>in</strong>g miss<strong>in</strong>g data. Mol Ecol Not 6:569–572Sheng HM, An LZ, Chen T, Xu SJ, Liu GX, Zheng XL, Pu LL, LiuYJ, Lian YS (2006) Analysis of the genetic <strong>diversity</strong> <strong>and</strong><strong>relationships</strong> among <strong>and</strong> with<strong>in</strong> species of Hippophae (Elaeagnaceae)based on RAPD markers. Plant Syst Evol 260:25–37Spooner DM, Systma KJ (1992) Reexam<strong>in</strong>ation of series <strong>relationships</strong>of Mexican <strong>and</strong> Central American wild potatoes (<strong>Solanum</strong> sect.Petota): evidence from chloroplast DNA restriction site variation.Syst Bot 17:432–448Spooner DM, Sytsma KJ, Conti E (1991) Chloroplast DNA evidencefor genome differentiation <strong>in</strong> wild potatoes (<strong>Solanum</strong> sect.Petota: Solanaceae). Am J Bot 78:1354–1366Spooner DM, Anderson GJ, Jansen RK (1993) Chloroplast DNAevidence for the <strong>in</strong>ter<strong>relationships</strong> of tomatoes, potatoes, <strong>and</strong>pep<strong>in</strong>os (Solanaceae). Am J Bot 80:676–688Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, ContrerasMA (1995) Comparison of four molecular markers <strong>in</strong> measur<strong>in</strong>g<strong>relationships</strong> among the wild potato relatives <strong>Solanum</strong> sectionEtuberosum (<strong>subg</strong>enus Potatoe). Theor Appl Genet 92:532–540123


<strong>Genetic</strong> <strong>diversity</strong> <strong>and</strong> <strong>relationships</strong> <strong>in</strong> <strong>Solanum</strong> <strong>subg</strong>. Archaesolanum 47Spooner DM, Tivang J, Nienhuis J, Miller JT, Douches DS, ContrerasMA (1996) Comparison of four molecular markers <strong>in</strong> measur<strong>in</strong>g<strong>relationships</strong> among the wild potato relatives <strong>Solanum</strong> sectionEtuberosum (<strong>subg</strong>enus Potatoe). Theor Appl Genet 92(5):532–540Spooner DM, Ugarte ML, Skroch PW (1997) Species boundaries <strong>and</strong><strong>in</strong>ter<strong>relationships</strong> of two closely related sympatric diploid wildpotato species, <strong>Solanum</strong> astleyi <strong>and</strong> S. boliviense., based onRAPDs. Theor Appl Genet 95(5–6):764–771Stedje B, Bukenya-Ziraba R (2003) RAPD variation <strong>in</strong> <strong>Solanum</strong>anguivi Lam. <strong>and</strong> S. aethiopicum L. (Solanaceae) <strong>in</strong> Ug<strong>and</strong>a.Euphytica 131:283–297Symon DE (1979) The genus <strong>Solanum</strong> <strong>in</strong> Australia. In: Hawkes JG,Lester RN, Skeld<strong>in</strong>g AD (eds) The biology <strong>and</strong> taxonomy of TheSolanaceae. Academic Press, London, pp 125–127Symon DE (1981) A revision of <strong>Solanum</strong> <strong>in</strong> Australia. J Adelaide BotGard 4:1–367Symon DE (1984) <strong>Solanum</strong> sect. Archaesolanum (Bitt. Ex Marzell)Danert. In: van Balgooy MMJ (ed) Pacific plant areas, vol 4.National Herbarium of the Netherl<strong>and</strong>s, pp 215–245Symon DE (1994) Kangaroo apples: <strong>Solanum</strong> sect. Archaesolanum.Published by the author, Keswick, South AustraliaVan den Berg R, Bryan G, Del Rio A, Spooner DM (2002) Reductionof species <strong>in</strong> the wild potato <strong>Solanum</strong> section Petota seriesLongipedicellata: AFLP, RAPD <strong>and</strong> chloroplast SSR data. TheorAppl Genet 105(8):1109–1114V<strong>in</strong>cze T, Posfai J, Robers RJ (2003) NEBcutter: a program to cleaveDNA with restriction enzymes. Nucleic Acids Res 31(13):3688–3691Wachowiak W, Stephan BR, Schulze I, Prus-Głowacki W, ZiegenhagenB (2006) A critical evaluation of reproductive barriersbetween closely related species us<strong>in</strong>g DNA markers–a case study<strong>in</strong> P<strong>in</strong>us. Plant Syst Evol 257:1–8Walbot V, Warren C (1988) Regulation of Mu element copy number<strong>in</strong> maize l<strong>in</strong>es with an active or <strong>in</strong>active Mutator transposableelement system. Mol Gen Genet 211(1):27–34Welsh J, McClell<strong>and</strong> M (1990) F<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g genomes us<strong>in</strong>g PCRwith arbitrary primers. Nucleic Acid Res 18:7213–7218Williams JGK, Kubelik AR, Livak KJ, Rafalski JA, T<strong>in</strong>gey SV(1990) DNA polymorphism amplified by arbitrary primers areuseful as genetic markers. Nucleic Acids Res 18:6531–6535Williams JGK, Hanafey MK, Rafalski JA, T<strong>in</strong>gey SV (1993) <strong>Genetic</strong>analysis us<strong>in</strong>g r<strong>and</strong>om amplified polymorphic DNA markers.Methods Enzym 218:704–740Wolfe KH, Li WH, Sharp PM (1987) Rates of nucleotide substitutionvary greatly among plant mitochondrial, chloroplast, <strong>and</strong> nuclearDNAs. Proc Natl Acad Sci USA 84(24):9054–9058123

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!