12.07.2015 Views

2010_Effect-of-the-concrete-density-on-the-stability - Xbloc

2010_Effect-of-the-concrete-density-on-the-stability - Xbloc

2010_Effect-of-the-concrete-density-on-the-stability - Xbloc

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Excuseme?


Damage (Nod)Damage (Nod)Damage (Nod)51,40Design value1,201,00 a = 2102 kg/m 3 a = 2465 kg/m 3 a = 2915 kg/m 30,800,600,400,200,000,00 1,00 2,00 3,00 4,00 5,00 6,00Stability Number (Ns)Figure 4 Comparis<strong>on</strong> damage development <str<strong>on</strong>g>of</str<strong>on</strong>g> armour units with 2102, 2465 and 2915 kg/m 3 , slope cot α =1.331,40Design value1,201,00 a = 2102 kg/m 3 a = 2465 kg/m 3 a = 2915 kg/m 30,800,600,400,200,000,00 1,00 2,00 3,00 4,00 5,00 6,00Stability Number (Ns)Figure 5 Comparis<strong>on</strong> damage development <str<strong>on</strong>g>of</str<strong>on</strong>g> armour units with 2102, 2465 and 2915 kg/m 3 , slope cot α = 1.51,40Design value1,201,00 a = 2102 kg/m 3 a = 2465 kg/m 3 a = 2915 kg/m 30,800,600,400,200,000,00 1,00 2,00 3,00 4,00 5,00 6,00Stability Number (Ns)Figure 6 Comparis<strong>on</strong> damage development <str<strong>on</strong>g>of</str<strong>on</strong>g> armour units with 2102, 2465 and 2915 kg/m 3 , slope cot α = 2


6From <str<strong>on</strong>g>the</str<strong>on</strong>g> model tests it can be c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific weight is not correctlydescribed by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number (H s /ΔD n ). It is found that <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number underestimates <str<strong>on</strong>g>the</str<strong>on</strong>g>positive effect <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing specific weight <strong>on</strong> a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 1:1.5 and steeper. For a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 1:2 <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>stability</strong> number tends to overestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> mass, where as <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> mass is correctly described by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number for <str<strong>on</strong>g>the</str<strong>on</strong>g> standard and light <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g>elements. The assumed dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> lift and drag forces stabilized by <str<strong>on</strong>g>the</str<strong>on</strong>g> submerged weight <strong>on</strong> which<str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number is based, does not hold for steep slopes <str<strong>on</strong>g>of</str<strong>on</strong>g> rock and Dolos and in general, <strong>Xbloc</strong> .O<str<strong>on</strong>g>the</str<strong>on</strong>g>r forces have significant influence <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong>.When assessing <str<strong>on</strong>g>the</str<strong>on</strong>g> forces <strong>on</strong> a single armour unit due to oscillati<strong>on</strong> flow over and through <str<strong>on</strong>g>the</str<strong>on</strong>g>armour several forces can be identified. It is generally known that due to <str<strong>on</strong>g>the</str<strong>on</strong>g> oscillating flow over <str<strong>on</strong>g>the</str<strong>on</strong>g>slope <str<strong>on</strong>g>the</str<strong>on</strong>g>re is lift force, drag force and inertia force acting <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> armour unit. The forces vary inmagnitude and directi<strong>on</strong> with time and depends <strong>on</strong> structural parameters and <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> breaking. Ingeneral, <str<strong>on</strong>g>the</str<strong>on</strong>g> flow forces becomes more drag and lift dominated for flatter slopes but for steep slopes <str<strong>on</strong>g>the</str<strong>on</strong>g>inertia force becomes more and more dominating (HELGASON AND BURCHARTH, 2005).Stabilizing forces can be accounted to three mechanisms; armour unit weight, fricti<strong>on</strong> andinterlocking. All types <str<strong>on</strong>g>of</str<strong>on</strong>g> elements have a partial c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weight, interlocking and fricti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g><strong>stability</strong>. The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each mechanism to <str<strong>on</strong>g>the</str<strong>on</strong>g> total <strong>stability</strong> depends am<strong>on</strong>gst o<str<strong>on</strong>g>the</str<strong>on</strong>g>rs <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g>armour units shape, placement (c<strong>on</strong>tact points) and slope angle. The stabilizing gravitati<strong>on</strong> forcereduces with increasing slope angle as functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> cosα.Interlocking and fricti<strong>on</strong> are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> (submerged) weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> elements. The fricti<strong>on</strong>force depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> normal force between <str<strong>on</strong>g>the</str<strong>on</strong>g> elements and <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tact surface area. In <str<strong>on</strong>g>the</str<strong>on</strong>g> case <str<strong>on</strong>g>of</str<strong>on</strong>g>interlocking <str<strong>on</strong>g>the</str<strong>on</strong>g> amount <str<strong>on</strong>g>of</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> surrounding block which rest <strong>on</strong> top <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> element is <str<strong>on</strong>g>of</str<strong>on</strong>g>importance Interlocking and fricti<strong>on</strong> increases with increasing slope angle due to <str<strong>on</strong>g>the</str<strong>on</strong>g> increasingcomp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> gravitati<strong>on</strong>al force parallel to <str<strong>on</strong>g>the</str<strong>on</strong>g> slope. The c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> each mechanism canhowever not be defined precisely.From <str<strong>on</strong>g>the</str<strong>on</strong>g> performed model tests with <strong>Xbloc</strong> as well as <str<strong>on</strong>g>the</str<strong>on</strong>g> results <str<strong>on</strong>g>of</str<strong>on</strong>g> HELGASON AND BURCHARTH(2005) <strong>on</strong> rock and Scholtz and Zwamborn (1982) <strong>on</strong> Dolos it can be c<strong>on</strong>cluded that <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic <strong>stability</strong> is not linear as <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number indicates. This n<strong>on</strong>linearitycan be addressed to <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interlocking and fricti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong>. In additi<strong>on</strong>, <str<strong>on</strong>g>the</str<strong>on</strong>g>c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interlocking and fricti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> influence differs for different slope angles and is<str<strong>on</strong>g>the</str<strong>on</strong>g>refore a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle.To determine <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> x in equati<strong>on</strong> (1) as a power <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> (∆) <str<strong>on</strong>g>the</str<strong>on</strong>g> method <str<strong>on</strong>g>of</str<strong>on</strong>g>ZWAMBORN (1978) is used as presented in Fig.2. First <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> numbers (H s /∆D n ) are determinedfor start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage (N od =0.05), intermediate damage (N od =0.1) and failure (N od =0.55) from <str<strong>on</strong>g>the</str<strong>on</strong>g>3 3damage curves. The <strong>stability</strong> numbers were used to plot <str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> against ( Dn/ H )cot ina log-log graph for each slope angle. The graphs are presented in Fig. 7. The functi<strong>on</strong> term3 3xf (( D / H )cot )K has been fitted through <str<strong>on</strong>g>the</str<strong>on</strong>g> data point. The following values <str<strong>on</strong>g>of</str<strong>on</strong>g> x are found:ncotα = 1.33 Start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage x = 8.8 Moderate damage x = 6.1 Failure x = 6.3cotα = 1.5 Start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage x = 3.0 Moderate damage x = 3.9 Failure x =4.65cotα = 2.0 Start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage x = 1.8 Moderate damage x = 1.7 Failure x = 1.9


7Figure 7 Relative rock volume ((D n/H s) 3 cotα) vs relative <str<strong>on</strong>g>density</str<strong>on</strong>g> for Nod = 0.05, 0.1 and 0.55; slope cotα =1.33, cotα = 1.5 and cotα = 2 (left to right).The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> and slope angle for <strong>Xbloc</strong> armour units can be described by:HsbaD (3)nIn which a and b are functi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle. The hydraulic <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Xbloc</strong> armour units can<str<strong>on</strong>g>the</str<strong>on</strong>g>refore be described as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle and relative <str<strong>on</strong>g>density</str<strong>on</strong>g> by:H K fg( ) ( , ) with: f( , ) f( ) (4)DnNo soluti<strong>on</strong> for <str<strong>on</strong>g>the</str<strong>on</strong>g> functi<strong>on</strong> f(α) and g(α) are presented in this paper as <str<strong>on</strong>g>the</str<strong>on</strong>g> range <str<strong>on</strong>g>of</str<strong>on</strong>g> tested parameters islimited. Fur<str<strong>on</strong>g>the</str<strong>on</strong>g>r research is required to validate <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> presented (4). It is also suggested toinvestigate <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> for various types <str<strong>on</strong>g>of</str<strong>on</strong>g> armour units.C<strong>on</strong>clusi<strong>on</strong>sIt is c<strong>on</strong>cluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> model tests that <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific weight <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> hydraulic <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Xbloc</strong> armour layers is not correctly described by <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number (N s ). The assumed dominance <str<strong>on</strong>g>of</str<strong>on</strong>g>lift and drag forces stabilised by <str<strong>on</strong>g>the</str<strong>on</strong>g> submerged weight <strong>on</strong> which <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number is based, does nothold because o<str<strong>on</strong>g>the</str<strong>on</strong>g>r forces have significant influence <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong>. With an increasing slope angle, <str<strong>on</strong>g>the</str<strong>on</strong>g>inertia, fricti<strong>on</strong> and interlocking force become more dominant. For <strong>Xbloc</strong> interlocking is <str<strong>on</strong>g>the</str<strong>on</strong>g> dominant<strong>stability</strong> mechanism. Although interlocking is <str<strong>on</strong>g>the</str<strong>on</strong>g> most characterising stabilisati<strong>on</strong> mechanism <str<strong>on</strong>g>the</str<strong>on</strong>g>re is apartial c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> gravity and fricti<strong>on</strong> to <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> as well. The amount <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eachmechanism to <str<strong>on</strong>g>the</str<strong>on</strong>g> total <strong>stability</strong> depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> armour units shape, placement (c<strong>on</strong>tact points) andslope angle. All <strong>stability</strong> mechanisms (gravity, fricti<strong>on</strong> and interlocking) depend <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> weight <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>element and are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope. Therefore <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific weight is always afuncti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle and depends <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> type <str<strong>on</strong>g>of</str<strong>on</strong>g> element. However, <str<strong>on</strong>g>the</str<strong>on</strong>g> c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> eachmechanism can however not be defined precisely.The influence <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific weight in relati<strong>on</strong> to <strong>stability</strong> number can be c<strong>on</strong>cluded from <str<strong>on</strong>g>the</str<strong>on</strong>g> modeltest:


Damage number Nod [-]8 The <strong>stability</strong> number underestimates <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> specific weight for single layerinterlocking armour units for a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 2:3 and steeper. The underestimati<strong>on</strong> increases forsteeper slope angles. The expected start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage (H s ≥ 120% H d ) and failure (H s ≥ 150% H d ),with H d is <str<strong>on</strong>g>the</str<strong>on</strong>g> design wave height, is underestimated for heavy <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> elements andoverestimates for <str<strong>on</strong>g>the</str<strong>on</strong>g> light <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> elements.For a slope <str<strong>on</strong>g>of</str<strong>on</strong>g> 1:2 <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> number tends to overestimate <str<strong>on</strong>g>the</str<strong>on</strong>g> effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> heavy <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g>element, where as <str<strong>on</strong>g>the</str<strong>on</strong>g> normal and light <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> element are in close resemblance with eacho<str<strong>on</strong>g>the</str<strong>on</strong>g>r and <str<strong>on</strong>g>the</str<strong>on</strong>g> expected start <str<strong>on</strong>g>of</str<strong>on</strong>g> damage (H s ≥ 120% H d ) and failure (H s ≥ 150% H d ) .The power <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> () value in <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> formula determines <str<strong>on</strong>g>the</str<strong>on</strong>g> influence <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>the</str<strong>on</strong>g> relative <str<strong>on</strong>g>density</str<strong>on</strong>g> <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> and is a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle. The hydraulic <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Xbloc</strong>armour units can <str<strong>on</strong>g>the</str<strong>on</strong>g>refore be described as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> slope angle and relative <str<strong>on</strong>g>density</str<strong>on</strong>g> by relati<strong>on</strong>(4). When <str<strong>on</strong>g>the</str<strong>on</strong>g> relati<strong>on</strong> is fitted to <str<strong>on</strong>g>the</str<strong>on</strong>g> test results <str<strong>on</strong>g>the</str<strong>on</strong>g> spread in <str<strong>on</strong>g>the</str<strong>on</strong>g> test damage curves is reducedsignificantly, see Fig.8.1.400.551.201.000.8080% c<strong>on</strong>f. bandDamage progressi<strong>on</strong>0.600.400.200.000.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80Stability number (H s /D n aΔ b )Figure 8 Damage curves with modified <strong>stability</strong> nr. (4)Discussi<strong>on</strong>In order to describe <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> complex shaped armour units <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> should be expressedas <str<strong>on</strong>g>the</str<strong>on</strong>g> sum <str<strong>on</strong>g>of</str<strong>on</strong>g> each mechanisms. It is believed to be necessary to focus <strong>on</strong> quantificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>mechanism to <str<strong>on</strong>g>the</str<strong>on</strong>g> total <strong>stability</strong> in relati<strong>on</strong> to armour unit type. Each type <str<strong>on</strong>g>of</str<strong>on</strong>g> unit will have a differentc<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weight, fricti<strong>on</strong> and interlocking to <str<strong>on</strong>g>the</str<strong>on</strong>g> total <strong>stability</strong> and all are a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> armourunit shape, placement and slope angle.ACKNOWLEDGMENTSThis research was performed under supervisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering at DelftUniversity <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology and supported by Delta Marine C<strong>on</strong>sultants. Delta Marine C<strong>on</strong>sultants is atrademark <str<strong>on</strong>g>of</str<strong>on</strong>g> BAM Infrac<strong>on</strong>sult bv.


REFERENCESBAKKER, P., VAN DEN BERGE, A., HAKENBERG, R., KLABBERS, M., MUTTRAY, M., REEDIJK, J.S.,ROVERS, I. (2003a) Development <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> breakwater armour units. Published <strong>on</strong>http://www.xbloc.com/htm/downloads.php9BAKKER,P., KLABBERS, M., REEDIJK, J.S. (2003b) Introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>Xbloc</strong> breakwater armour unit.Published <strong>on</strong> http://www.xbloc.com/htm/downloads.phpBAKKER, P., KLABBERS, M., MUTTRAY, M., VAN DEN BERGE, A. (2005) Hydraulic Performance <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Xbloc</strong> Armour Units. Published <strong>on</strong> http://www.xbloc.com/htm/downloads.phpBRANDTZAEG, A. (1966) The effect <str<strong>on</strong>g>of</str<strong>on</strong>g> unit weight <str<strong>on</strong>g>of</str<strong>on</strong>g> rock and fluid <strong>on</strong> <str<strong>on</strong>g>the</str<strong>on</strong>g> <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rubble moundbreakwaters. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 10 th ICCE 1966, Tokyo, Japan. pp 990-1003Burharth, H.F. (1993) Structural integrity and hydraulic <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dolos armour layers. Hydraulic &Coastal Engineering Laboratory, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Aalborg University, Denmark.BURHARTH, H.F., ANDERSON, O.H. (1995) On <str<strong>on</strong>g>the</str<strong>on</strong>g> One-Dimensi<strong>on</strong>al unsteady porous flow equati<strong>on</strong>.Coastal Engineering 24, Elsevier, 1995BURHARTH, H.F., ZHOU, L., TROCH, P. (1999) Scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> core material in rubble mound breakwatermodel tests. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> COPEDEC V, Cape Town, 1999COASTAL ENGINEERING MANUAL (2006) Chapter VDE ROVER, R. (2007) Breakwater <strong>stability</strong> with damaged single layer armour units. MSc <str<strong>on</strong>g>the</str<strong>on</strong>g>sis. DelftUniversity <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.HATTORRI, M., YAUCHI, E., YASUTAKA, K. (1999), Hydraulic <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> armor units in single coverlayer Proceedings Coastal structures 1999 ISBN 90-5809-092-2HELGASON, E., BURCHART, H.F., BECK, J.B. (2000) Stability <str<strong>on</strong>g>of</str<strong>on</strong>g> rubble mound breakwaters using high<str<strong>on</strong>g>density</str<strong>on</strong>g> rock. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 27 th ICCE 2000, Sydney, Australia. pp 1935-1945HELGASON, E., BURCHART, H.F. (2005) On <str<strong>on</strong>g>the</str<strong>on</strong>g> use <str<strong>on</strong>g>of</str<strong>on</strong>g> high-<str<strong>on</strong>g>density</str<strong>on</strong>g> rock in rubble mound breakwaters.Internati<strong>on</strong>al Coastal Symposium 2005, Iceland. Published <strong>on</strong>:http://www.itv.is/ics2005/Data/B6.2/Helgas<strong>on</strong>_PA.pdf (August 2009)HOLTZHAUSEN , A.H., ZWAMBORN, J.A. (1992) New <strong>stability</strong> formula for Dolosse. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>23th ICCE 1992, Venice Italy. pp 1231-1244HUGHES, S.A. (1993), Physical models and laboratory techniques in coastal engineering, WorldScientific Publishing, SingaporeITO, M, IWAGAKI, Y., MURAKAMI, H., NEMOTO, K., YAMAMOTO, M., HANZAWA, M. (1994) Stability <str<strong>on</strong>g>of</str<strong>on</strong>g>high-specific gravity armor blocks. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 24th ICCE 1994 Kobe JapanMUTTRAY, M., REEDIJK, J., VOS-ROVERS, I., BAKKER, P. (2003) Placement and structural strength <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Xbloc</strong> and o<str<strong>on</strong>g>the</str<strong>on</strong>g>r Single layer armour units. ICE C<strong>on</strong>ference <strong>on</strong> Coaslines, Structures and Breakwater2003, L<strong>on</strong>d<strong>on</strong>. Published <strong>on</strong> http://www.xbloc.com/htm/downloads.phpPILARCZYK, K.W., (1998) Dikes and Revetments, Design, Maintenance and Safety Assessment. A.A.Balkema,Rotterdam. ISBN 90-5410-455-4. pp 206-208PRICE, W.A. (1979) Static <strong>stability</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rubble mound breakwaters. Dock & Harbour Authority vol. 60ROCK MANUAL, THE (2007) The use <str<strong>on</strong>g>of</str<strong>on</strong>g> rock in hydraulic engineering, CIRIA, L<strong>on</strong>den


10SCHOLTZ , D.J.P., ZWAMBORN, J.A.(1982) Dolosse <strong>stability</strong>. <str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> block <str<strong>on</strong>g>density</str<strong>on</strong>g> and waist thickness.Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 18 th ICCE 1982, Cape Town, South Africa pp. 2026-2046SCHIERECK, G.J. (2004) Introducti<strong>on</strong> to bed, bank and shore protecti<strong>on</strong>; Engineering <str<strong>on</strong>g>the</str<strong>on</strong>g> interface <str<strong>on</strong>g>of</str<strong>on</strong>g>soil and water 2. DUP Blue Print, Delft. ISBN 90-407-1683-8TEN OEVER, E. (2006) Theoretical and Experimental Study <strong>on</strong> placement <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Xbloc</strong> armour units.Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g> 30 th ICCE 2006, San Diego, California, USATRIEMSTRA, R. (2001) The use <str<strong>on</strong>g>of</str<strong>on</strong>g> high <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> in <str<strong>on</strong>g>the</str<strong>on</strong>g> armourlayer <str<strong>on</strong>g>of</str<strong>on</strong>g> breakwaters, flume tests<strong>on</strong> high <str<strong>on</strong>g>density</str<strong>on</strong>g> <str<strong>on</strong>g>c<strong>on</strong>crete</str<strong>on</strong>g> elements. MSc Thesis. Delft University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.ZWAMBORN, J.A. (1978) Dolos packing <str<strong>on</strong>g>density</str<strong>on</strong>g> and effect <str<strong>on</strong>g>of</str<strong>on</strong>g> relative Block <str<strong>on</strong>g>density</str<strong>on</strong>g>. Proceedings <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>the</str<strong>on</strong>g>16 th ICCE 1978, Hamburg, Germany. pp 2285-2304

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!