12.07.2015 Views

The Thermal and Rainwater Runoff Performance of an Extensive ...

The Thermal and Rainwater Runoff Performance of an Extensive ...

The Thermal and Rainwater Runoff Performance of an Extensive ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Department <strong>of</strong> Mech<strong>an</strong>ical Engineering<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong><strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong>SystemAuthor: Niall CarrollSupervisor: Pr<strong>of</strong>essor John CounsellA thesis submitted in partial fulfilment for the requirement <strong>of</strong> degree inMaster <strong>of</strong> Science in Renewable Energy Systems <strong><strong>an</strong>d</strong> the Environment2010Niall Carroll Page 1<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Copyright DeclarationThis thesis is the result <strong>of</strong> the author’s original research. It has been composed by theauthor <strong><strong>an</strong>d</strong> has not been previously submitted for examination which has led to theaward <strong>of</strong> a degree.<strong>The</strong> copyright <strong>of</strong> this thesis belongs to the author under the terms <strong>of</strong> the UnitedKingdom Copyright Acts as qualified by University <strong>of</strong> Strathclyde Regulation 3.50.Due acknowledgement must always be made <strong>of</strong> the use <strong>of</strong> <strong>an</strong>y material contained in,or derived from, this thesis.Signed: Niall Carroll Date: 16 th September 2010.Niall Carroll Page 2<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


AbstractThis project addresses the thermal <strong><strong>an</strong>d</strong> rainwater run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> extensivegreen ro<strong>of</strong> systems. Of the three different types <strong>of</strong> green ro<strong>of</strong> system (extensive, semiintensive<strong><strong>an</strong>d</strong> intensive), extensive systems are the most easily established <strong><strong>an</strong>d</strong> providea valid alternative to conventional ro<strong>of</strong>ing materials for most applications.<strong>The</strong> objective <strong>of</strong> the project was to set up a test rig in order to assess the thermalperform<strong>an</strong>ce <strong>of</strong> a commercially available extensive green ro<strong>of</strong> system <strong><strong>an</strong>d</strong> to compareits rainwater run<strong>of</strong>f perform<strong>an</strong>ce with that <strong>of</strong> a perspex sheet (to replicate aphotovoltaic p<strong>an</strong>el).<strong>The</strong> results for the thermal perform<strong>an</strong>ce <strong>of</strong> the green ro<strong>of</strong> were obtained usingLabview Signal Express. <strong>The</strong> results showed that the green ro<strong>of</strong> provided a coolingeffect for the room temperature beneath.Results from the comparison in run<strong>of</strong>f between a green ro<strong>of</strong> <strong><strong>an</strong>d</strong> a ‘PV p<strong>an</strong>el’ suggestthat green ro<strong>of</strong>s have the capability to <strong>of</strong>fset the ‘poorer’ run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> PVp<strong>an</strong>els. This provides <strong>an</strong> additional benefit to the cooling effect on PV efficiency.It was concluded that the comparison <strong>of</strong> run<strong>of</strong>f between green ro<strong>of</strong>s <strong><strong>an</strong>d</strong> PV p<strong>an</strong>elsprovides <strong>an</strong> area for further research to draw more conclusive results.Niall Carroll Page 3<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


AcknowledgementsI would like to th<strong>an</strong>k everybody who contributed their time <strong><strong>an</strong>d</strong> effort in completing thisproject: Pr<strong>of</strong>essor John Counsell, Pat McGinness <strong><strong>an</strong>d</strong> Jim Docherty at the University <strong>of</strong>Strathclyde for technical support <strong><strong>an</strong>d</strong> guid<strong>an</strong>ce.I would also like to th<strong>an</strong>k Vinny Fryars at Bauder <strong><strong>an</strong>d</strong> Gordon Watson at TQR Ltd. forhelping to provide the sedum bl<strong>an</strong>ket. Th<strong>an</strong>ks also to my brother in law Colin Law forbuilding the green ro<strong>of</strong> rest rig.Niall Carroll Page 4<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Table <strong>of</strong> Contents1 Introduction………………………………………..……….Page 131.1 Green Ro<strong>of</strong> Definition………………………………Page 131.2 Background………………………………………….Page 131.3 History <strong>of</strong> Green Ro<strong>of</strong>s……………………………...Page 142 Types <strong>of</strong> Green Ro<strong>of</strong>……………………………………….Page 152.1 Intensive……………………………………………..Page 152.2 Semi-intensive……………………………………….Page 162.3 <strong>Extensive</strong>……………………………………….……Page 172.3.1 Sedum Mats………………………………………Page 182.3.2 Substrate Based Ro<strong>of</strong>s………………………...…Page 182.3.3 Green/Brown Ro<strong>of</strong>s for Biodiversity……………Page 193 Construction <strong>of</strong> Green Ro<strong>of</strong>s………………………………Page 213.1 Warm Green Ro<strong>of</strong> Construction……………………Page 223.2 Inverted Warm Green Ro<strong>of</strong> Construction…………..Page 233.3 Cold Green Ro<strong>of</strong> Construction……………………..Page 243.4 Structural Support <strong>of</strong> Green Ro<strong>of</strong>s…………………Page 243.5 Green Ro<strong>of</strong> Components…………………………...Page 253.5.1 Root Barrier……………………………………..Page 253.5.2 Drainage Layer………………………………….Page 25Niall Carroll Page 5<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


3.5.3 Substrate………………………………………….Page 263.5.4 Vegetation Layer…………………………………Page 274 Benefits <strong>of</strong> Green Ro<strong>of</strong>s……………………………………Page 284.1 Biodiversity………………………………………….Page 304.2 Sustainable Drainage……………………..…….……Page 304.3 Climate Ch<strong>an</strong>ge Mitigation <strong><strong>an</strong>d</strong> Adaption……….….Page 314.4 Reducing the Urb<strong>an</strong> Heat Isl<strong><strong>an</strong>d</strong> Effect…………..….Page 334.5 Sound Insulation………………………………..……Page 344.6 Building Fabric…………………………………...….Page 354.7 Green Ro<strong>of</strong>s <strong><strong>an</strong>d</strong> Solar P<strong>an</strong>els……………….………Page 365 UK Policy on Green Ro<strong>of</strong>s…………………………………Page 376 Green Ro<strong>of</strong> Research………………….……………………Page 386.1 <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> Green Ro<strong>of</strong>s…………...….Page 386.1.1 Reduction <strong>of</strong> Heat Flux <strong><strong>an</strong>d</strong> Solar Reflectivity…..Page 386.1.2 <strong>The</strong>rmal Mass…………………………………….Page 396.1.3 Substrate Thickness <strong><strong>an</strong>d</strong> Moisture Content………Page 406.1.4 Evaporative Effect <strong><strong>an</strong>d</strong> Substrate MoistureContent…………………………………………..Page 416.2 Rainfall <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> Green Ro<strong>of</strong>s………Page 42Niall Carroll Page 6<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


6.2.1 Rainfall <strong>Run<strong>of</strong>f</strong> Relationship with StorageCapacity………………………………………….Page 426.2.2 Role <strong>of</strong> Vegetation…………………………….…Page 436.2.3 Influence <strong>of</strong> Slope…………………………….….Page 437 Methodology……………………………………………….Page 447.1 Green Ro<strong>of</strong> Test Rig for <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>……..Page 447.1.1 Sedum Bl<strong>an</strong>ket……………………………….…..Page 467.1.2 NI USB-9211………………………………….…Page 477.1.3 <strong>The</strong>rmocouples……………………………….….Page 487.1.4 NI USB-6008……………………….……………Page 507.1.5 Humidity Sensor…………………………………Page 517.1.6 NI DAQmx <strong><strong>an</strong>d</strong> Labview Signal Express………..Page 557.1.6.1 Data Acquisition Method………………….Page 557.1.6.2 <strong>The</strong>rmocouple Step………………………..Page 557.1.6.3 Humidity Sensor Step……………………..Page 567.2 Green Ro<strong>of</strong> Energy Bal<strong>an</strong>ce…………………………Page 587.3 Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong>…………...Page 618 Results <strong><strong>an</strong>d</strong> Analysis……………………………………….Page 648.1 <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>……………………………….Page 648.1.1 Test 1…………………………………………..…Page 64Niall Carroll Page 7<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


8.1.2 Test 2………………………….………………….Page 658.1.3 Energy Bal<strong>an</strong>ce…………………………………..Page 668.2 <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong>………….…………..Page 669 Conclusions <strong><strong>an</strong>d</strong> Recommendations…………….………….Page 689.1 Conclusions……………………………….…………Page 689.2 Recommendations……………………….…………..Page 68References……………………………………………………...…Page 69Niall Carroll Page 8<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


List <strong>of</strong> FiguresFigure 1: Traditional Viking House (Newfoundl<strong><strong>an</strong>d</strong>)……….….Page 13Figure 2: 18 th Century Farm Building (Norway)………………..Page 13Figure 3: Intensive Green Ro<strong>of</strong> (Beijing, China)……………….Page 15Figure 4: Semi-Intensive Green Ro<strong>of</strong> (Mer<strong>an</strong>o, Italy)………….Page 16Figure 5: <strong>Extensive</strong> Green Ro<strong>of</strong> (Prague, Czech Republic)….…Page 17Figure 6: Sedum Mat System (Ultra Light-weight)………….…Page 18Figure 7: <strong>Extensive</strong> Hydro Seeded………………………….….Page 18Figure 8: Green Ro<strong>of</strong> System for Biodiversity…………….…..Page 19Figure 9:Typical Green Ro<strong>of</strong> Construction(with no insulation)………………………………….Page 21Figure 10: Warm Green Ro<strong>of</strong> Construction…………………….Page 22Figure 11: Inverted Warm Green Ro<strong>of</strong> Construction………...…Page 23Figure 12: Cold Green Ro<strong>of</strong> Construction………………………Page 24Figure 13: Typical Example <strong>of</strong> Green Ro<strong>of</strong> Drainage Systems...Page 26Figure 14: Example <strong>of</strong> Urb<strong>an</strong> Heat Isl<strong><strong>an</strong>d</strong> Effect……………….Page 33Figure 15: Green Ro<strong>of</strong> with Photovoltaic P<strong>an</strong>els……………….Page 36Figure 16:Summer Temperatures <strong>of</strong> Reference Ro<strong>of</strong> <strong><strong>an</strong>d</strong>Green Ro<strong>of</strong>………………………………………….Page 39Niall Carroll Page 9<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 17:Annual Energy Consumption <strong>of</strong> Different Ro<strong>of</strong>Types………………………………………………..Page 40Figure 18:Energy Exch<strong>an</strong>ges <strong>of</strong> Dry/Wet Green Ro<strong>of</strong>s<strong><strong>an</strong>d</strong> a Traditional Ro<strong>of</strong> (summer)……………………Page 41Figure 19:<strong>Run<strong>of</strong>f</strong> from Green Ro<strong>of</strong> (dashed line) for givenRain Event (solid line)………………………………Page 42Figure 20: Green Ro<strong>of</strong> Test Rig for <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>…….Page 45Figure 21: Green Ro<strong>of</strong> Test Rig………………………………...Page 46Figure 22: Bauder XF301 Sedum Bl<strong>an</strong>ket……………………...Page 46Figure 23: NI USB-9211 Measuring Device……………………Page 47Figure 24:NI USB-9211 <strong>The</strong>rmocouple TerminalAssignments…………………………………..…….Page 48Figure 25: NI USB-9211 <strong>The</strong>rmocouple Attachment………….Page 49Figure 26:Under Ro<strong>of</strong> <strong><strong>an</strong>d</strong> Substrate <strong>The</strong>rmocouplePlacement…………………………………………..Page 49Figure 27: Type K <strong>The</strong>rmocouple……………………………..Page 49Figure 28: Green Ro<strong>of</strong> <strong>The</strong>rmocouple Placement……………..Page 50Figure 29: NI USB-6008 Measuring Device……….....…..…...Page 50Figure 30: HIH-4000 Humidity Sensor………………………..Page 51Figure 31: HIH-4000 Dimensions <strong><strong>an</strong>d</strong> Terminals……………..Page 51Niall Carroll Page 10<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 32: Humidity Sensor Located in Substrate……………..Page 52Figure 33: NI USB-6008 Terminal Assignments………………Page 53Figure 34: Voltage Output vs. % RH…………………………..Page 54Figure 35: Labview Signal Express <strong>The</strong>rmocouple Setup……..Page 56Figure 36: Labview Signal Express Voltage Input Setup……...Page 57Figure 37:Energy Exch<strong>an</strong>ge between <strong>an</strong> <strong>Extensive</strong> GreenRo<strong>of</strong> <strong><strong>an</strong>d</strong> its Environment………………………….Page 58Figure 38: Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong>………….Page 62Figure 39:Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong>with Artificial Rain Event…………………………Page 63Figure 40:Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong>with Sprinkler…………………………………….Page 64Figure 41: Test 1 Green Ro<strong>of</strong> Test Rig Temperatures………..Page 65Figure 42: Test 2 Green Ro<strong>of</strong> Test Rig Temperatures………..Page 66Figure 43:Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong><strong>Perform<strong>an</strong>ce</strong> for 1 mm/min Rain Event…………..Page 67Figure 44:Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong><strong>Perform<strong>an</strong>ce</strong> for 2 mm/min Rain Event…………..Page 68Niall Carroll Page 11<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


List <strong>of</strong> TablesTable 1: Summary <strong>of</strong> Green Ro<strong>of</strong> Types……………………..Page 20Table 2: NI USB-6008 Terminal Assignments……………….Page 53Niall Carroll Page 12<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


1 Introduction1.1 Green Ro<strong>of</strong> DefinitionA green ro<strong>of</strong> (also known as <strong>an</strong> eco-ro<strong>of</strong>, nature ro<strong>of</strong>, living ro<strong>of</strong> or ro<strong>of</strong> greening system) is aliving, vegetative system that contains a substrate (growing media) <strong><strong>an</strong>d</strong> a vegetation layer atits outermost surface [1]. <strong>The</strong> design <strong><strong>an</strong>d</strong> construction between the ro<strong>of</strong> structure <strong><strong>an</strong>d</strong> thegrowing media varies, but typically includes a geo-textile filter, drainage layer, root barrier<strong><strong>an</strong>d</strong> a waterpro<strong>of</strong> membr<strong>an</strong>e. Depending upon the vegetation layer, the growing media depthc<strong>an</strong> vary from 20mm (for extensive systems utilising sedum mats) to 1500mm (for intensivesystems containing large shrubs <strong><strong>an</strong>d</strong> trees).1.2 Background<strong>The</strong> concept <strong>of</strong> the green ro<strong>of</strong> is not a new phenomena; with its basic functionality beingutilised for several centuries. More recently, increasing urb<strong>an</strong>isation <strong><strong>an</strong>d</strong> the encroachment <strong>of</strong>‘urb<strong>an</strong> sprawl’ on to green belt areas has led to a ‘greying’ <strong>of</strong> the l<strong><strong>an</strong>d</strong>scape <strong><strong>an</strong>d</strong> a reduction inamenable space. <strong>The</strong> increase in urb<strong>an</strong> density in order to reduce this urb<strong>an</strong> sprawl <strong><strong>an</strong>d</strong> theresulting loss in geographical identity - along with increasing environmental awareness - hasincreased the awareness <strong>of</strong> the adv<strong>an</strong>tages that green ro<strong>of</strong>s c<strong>an</strong> bring.Green ro<strong>of</strong> systems c<strong>an</strong> provide a number <strong>of</strong> adv<strong>an</strong>tages, r<strong>an</strong>ging from the associatedenvironmental <strong><strong>an</strong>d</strong> ecological issues, through to the aesthetic impact <strong>of</strong> new <strong><strong>an</strong>d</strong> existingdevelopment. <strong>The</strong>y c<strong>an</strong> be used as a way <strong>of</strong> compensating for increased urb<strong>an</strong> density –providing a visual <strong><strong>an</strong>d</strong> recreational escape from the ‘concrete jungles’ <strong>of</strong> urb<strong>an</strong> l<strong><strong>an</strong>d</strong>scapes.<strong>The</strong>y c<strong>an</strong> also allow rural buildings to blend in with their surroundings – <strong>an</strong> import<strong>an</strong>t benefitespecially in areas <strong>of</strong> natural scenic beauty.M<strong>an</strong>y Europe<strong>an</strong> countries have already acknowledged the related benefits <strong>of</strong> green ro<strong>of</strong>s. InGerm<strong>an</strong>y, government legislation <strong><strong>an</strong>d</strong> fiscal incentive encourages their widespread use. Thishas resulted in over 80 million m 2 <strong>of</strong> green ro<strong>of</strong>s, compared with only 1 million m 2 in the UK[2].Niall Carroll Page 13<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


In the UK, there is as <strong>of</strong> yet no building regulations related specifically to green ro<strong>of</strong>s, only tothe general st<strong><strong>an</strong>d</strong>ards <strong>of</strong> ro<strong>of</strong> construction. Green ro<strong>of</strong>s c<strong>an</strong> be constructed to meet thesest<strong><strong>an</strong>d</strong>ards.<strong>The</strong>refore, further research in to the thermal <strong><strong>an</strong>d</strong> run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> green ro<strong>of</strong>s would bebeneficial in integrating them into UK building regulations <strong><strong>an</strong>d</strong> st<strong><strong>an</strong>d</strong>ards.1.3 History <strong>of</strong> Green Ro<strong>of</strong>sAlthough the term ‘green ro<strong>of</strong>’ seems relatively modern, green ro<strong>of</strong>s have in fact existed forseveral centuries in Northern Europe. Green ro<strong>of</strong>s <strong>of</strong> turf construction were a commonelement found in vernacular styles <strong>of</strong> buildings in Northern Scotl<strong><strong>an</strong>d</strong>, Icel<strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong> otherSc<strong><strong>an</strong>d</strong>inavi<strong>an</strong> countries; <strong><strong>an</strong>d</strong> even at the turn <strong>of</strong> the 19 th century over 50 per cent <strong>of</strong>inhabit<strong>an</strong>ts in Icel<strong><strong>an</strong>d</strong> still lived in turf-ro<strong>of</strong>ed buildings [3]. During the 19 th century, theavailability <strong>of</strong> cheap, reliable <strong><strong>an</strong>d</strong> low mainten<strong>an</strong>ce ro<strong>of</strong>ing materials brought to <strong>an</strong> end thesetraditional types <strong>of</strong> green ro<strong>of</strong> systems.Figure 1: Traditional Viking House(Newfoundl<strong><strong>an</strong>d</strong>)Figure 2: 18 th Century Farm Building(Norway)Renewed interest in green ro<strong>of</strong>s beg<strong>an</strong> to develop at the end <strong>of</strong> the 19 th century in Germ<strong>an</strong>y,where they were promoted because <strong>of</strong> their fire retarding properties. In the early 20 th century,architects such as Le Corbusier, Walter Gropius <strong><strong>an</strong>d</strong> Fr<strong>an</strong>k Lloyd Wright beg<strong>an</strong> toNiall Carroll Page 14<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


incorporate green ro<strong>of</strong>s into their designs, several <strong>of</strong> which still exist as originally conceived[3].<strong>The</strong> modern trend – associated with the green movement <strong><strong>an</strong>d</strong> sustainable design – wasestablished in Germ<strong>an</strong>y in the 1960s; with Reinhard Bornkamm, a researcher at Berlins FreeState University his first work on green ro<strong>of</strong>s in 1961 [4]. Since then, green ro<strong>of</strong>s havebecome increasingly popular in m<strong>an</strong>y countries, both as retr<strong>of</strong>it <strong><strong>an</strong>d</strong> in new constructionapplications, <strong><strong>an</strong>d</strong> m<strong>an</strong>y more research papers have been published.2 Types <strong>of</strong> Green Ro<strong>of</strong><strong>The</strong>re are several different types <strong>of</strong> green ro<strong>of</strong>: intensive, semi-intensive <strong><strong>an</strong>d</strong> extensive. <strong>The</strong>main difference between each <strong>of</strong> these types <strong>of</strong> green ro<strong>of</strong> is the depth <strong>of</strong> the substrate <strong><strong>an</strong>d</strong> thevegetation used (with a thicker layer <strong>of</strong> substrate allowing for a greater variety <strong>of</strong> pl<strong>an</strong>ts).2.1 IntensiveFigure 3: Intensive Green Ro<strong>of</strong> (Beijing, China) [5]Niall Carroll Page 15<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Intensive green ro<strong>of</strong>s have a thick layer <strong>of</strong> soil, require irrigation, <strong><strong>an</strong>d</strong> have high waterretention <strong><strong>an</strong>d</strong> fertile conditions for pl<strong>an</strong>ts. <strong>The</strong> depth <strong>of</strong> substrate is generally between 150mm<strong><strong>an</strong>d</strong> 1500mm <strong><strong>an</strong>d</strong> the vegetation used r<strong>an</strong>ges from herbaceous pl<strong>an</strong>ts, shrubs <strong><strong>an</strong>d</strong> grasses tolarger pl<strong>an</strong>ts <strong><strong>an</strong>d</strong>, in some cases, even trees. It c<strong>an</strong> be said that intensive green ro<strong>of</strong>s arecomparable to open spaces at ground level <strong><strong>an</strong>d</strong> c<strong>an</strong> be made use <strong>of</strong> by building residents. As aresult <strong>of</strong> the size <strong>of</strong> the pl<strong>an</strong>ts used, the depth <strong>of</strong> substrate <strong><strong>an</strong>d</strong> its high water retention; theweight <strong>of</strong> <strong>an</strong> intensive green ro<strong>of</strong> is signific<strong>an</strong>tly higher th<strong>an</strong> that <strong>of</strong> conventional ro<strong>of</strong>s.<strong>The</strong>refore, subst<strong>an</strong>tial reinforcement <strong>of</strong> <strong>an</strong> existing ro<strong>of</strong> structure or the inclusion <strong>of</strong>additional building structural support is required. Intensive green ro<strong>of</strong>s also require a largeamount <strong>of</strong> mainten<strong>an</strong>ce, regular irrigation <strong><strong>an</strong>d</strong> applications <strong>of</strong> fertiliser.2.2 Semi-IntensiveFigure 4: Semi-Intensive Green Ro<strong>of</strong> (Mer<strong>an</strong>o, Italy) [5]Semi-intensive green ro<strong>of</strong>s are constructed using various substrate depths (150mm to500mm), thus combining elements <strong>of</strong> extensive <strong><strong>an</strong>d</strong> intensive green ro<strong>of</strong>s. <strong>The</strong> vegetationused includes grasses, herbaceous pl<strong>an</strong>ts, shrubs <strong><strong>an</strong>d</strong> coppices. Compared with intensivegreen ro<strong>of</strong>s, the potential for using the ro<strong>of</strong> for amenity purposes is generally limited. <strong>The</strong>loads imposed by semi-intensive green ro<strong>of</strong>s are less th<strong>an</strong> those <strong>of</strong> intensive green ro<strong>of</strong>s <strong><strong>an</strong>d</strong>less irrigation <strong><strong>an</strong>d</strong> fertilisation are required.Niall Carroll Page 16<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


2.3 <strong>Extensive</strong>Figure 5: <strong>Extensive</strong> Green Ro<strong>of</strong> (Prague, Czech Republic) [5]<strong>Extensive</strong> green ro<strong>of</strong>s have a thin layer <strong>of</strong> substrate (20mm to 200mm), require little or noirrigation, <strong><strong>an</strong>d</strong> have low water retention <strong><strong>an</strong>d</strong> nutrient poor conditions for pl<strong>an</strong>ts. <strong>The</strong> thingrowing medium c<strong>an</strong> consist <strong>of</strong> recycled materials [6]. <strong>Extensive</strong> green ro<strong>of</strong>s are less costlyto install th<strong>an</strong> intensive green ro<strong>of</strong>s <strong><strong>an</strong>d</strong> are also cheaper to maintain. Generally they arepl<strong>an</strong>ted with, or colonised by, mosses, succulents, wild flowers <strong><strong>an</strong>d</strong> grasses that are able tosurvive on the shallow low-nutrient substrates. Commercial systems in the UK generally usesedum as the principal pl<strong>an</strong>t species in the vegetation layer [3]. Sedums, which are lowgrowing succulents, are favoured because they are drought <strong><strong>an</strong>d</strong> wind toler<strong>an</strong>t, from a densecovering <strong><strong>an</strong>d</strong> are aesthetically pleasing.<strong>The</strong>re are three main types <strong>of</strong> extensive green ro<strong>of</strong> system available in the UK: sedum mats;substrate based ro<strong>of</strong> <strong><strong>an</strong>d</strong> green/brown ro<strong>of</strong>s for biodiversity.Niall Carroll Page 17<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


2.31 Sedum MatsA sedum mat is a base layer <strong>of</strong> Polyester, Hessi<strong>an</strong>, or porous polythene onto which is laid20mm <strong>of</strong> growing medium. This is sprinkled with sedum cuttings <strong><strong>an</strong>d</strong> these grow into thesubstrate to maturity. When installed the Sedum bl<strong>an</strong>ket (including the 20mm <strong>of</strong> growingmedium) is rolled out onto either 50 – 70mm <strong>of</strong> growing medium (st<strong><strong>an</strong>d</strong>ard method) ordirectly onto a moisture retention bl<strong>an</strong>ket (ultra light weight method).Figure 6: Sedum Mat System (Ultra Light-weight) [5]2.32 Substrate Based Ro<strong>of</strong>70mm to 80mm <strong>of</strong> crushed recycled brick is placed on the green ro<strong>of</strong> system <strong><strong>an</strong>d</strong> plug pl<strong>an</strong>tedwith sedums or hydro-seeded with other species. This type <strong>of</strong> green ro<strong>of</strong> system contradictsthe notion that green ro<strong>of</strong>s are generally made <strong>of</strong> turf.Figure 7: <strong>Extensive</strong> Hydro Seeded [5]Niall Carroll Page 18<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


2.33 Green/Brown Ro<strong>of</strong>s for Biodiversity<strong>The</strong>se are extensive green ro<strong>of</strong>s that are designed to meet specific biodiversity targets. <strong>The</strong>segenerally require a bespoke designed system using locally characteristic substrates <strong><strong>an</strong>d</strong> pl<strong>an</strong>ts.<strong>The</strong>y c<strong>an</strong> also make use <strong>of</strong> recycled aggregate from site <strong><strong>an</strong>d</strong> be left to colonise naturally orseeded with <strong>an</strong> <strong>an</strong>nual wildflower mix or local seed source.Figure 8: Green Ro<strong>of</strong> System for Biodiversity [5]Niall Carroll Page 19<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


<strong>The</strong> following table summarises the different types <strong>of</strong> Green Ro<strong>of</strong>.<strong>Extensive</strong> GreenRo<strong>of</strong>Semi-IntensiveGreen Ro<strong>of</strong>Intensive GreenRo<strong>of</strong>Mainten<strong>an</strong>ce Low Periodically HighIrrigation No Periodically RegularlyPl<strong>an</strong>t CommunitiesMoss, Sedum, HerbsGrass, Herbs <strong><strong>an</strong>d</strong>Lawn, Shrubs <strong><strong>an</strong>d</strong><strong><strong>an</strong>d</strong> GrassesShrubsTreesSubstrate Depth 20 – 200mm 150 – 500mm 150 – 1500mmWeight 60 – 150 kg/m 2 120 – 200 kg/m 2 180 – 500 kg/m 2Cost Low Middle HighUseEcologicalDesignedGreenPark/GardenProtection LayerRo<strong>of</strong>Table 1: Summary <strong>of</strong> Green Ro<strong>of</strong> Types [2]Niall Carroll Page 20<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


3 Construction <strong>of</strong> Green Ro<strong>of</strong>s<strong>The</strong> construction <strong>of</strong> green ro<strong>of</strong>s is fairly well established <strong><strong>an</strong>d</strong> the various layers typicallyinclude:1 Vegetation Layer2 Substrate3 Geo-textile Filter4 Drainage Layer5 Root Barrier6 Waterpro<strong>of</strong> Layer7 Ro<strong>of</strong> DeckFigure 9: Typical Green Ro<strong>of</strong>Construction (with no insulation)<strong>The</strong> inclusion <strong>of</strong> insulation in green ro<strong>of</strong> construction depends upon the type <strong>of</strong> ro<strong>of</strong> beinginstalled. Ro<strong>of</strong>s are either pitched or flat. A pitched ro<strong>of</strong> is defined as a ro<strong>of</strong> with a slopegreater th<strong>an</strong> 10 degrees [7]. For the majority <strong>of</strong> pitched ro<strong>of</strong>s the insulation is usually placedbeneath the waterpro<strong>of</strong> membr<strong>an</strong>e.Niall Carroll Page 21<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


A flat ro<strong>of</strong> is defined as a ro<strong>of</strong> with a slope <strong>of</strong> 10 degrees or less [7].Flat ro<strong>of</strong>s are normally categorized as one <strong>of</strong> the following three types, depending upon thelocation <strong>of</strong> the insulation <strong><strong>an</strong>d</strong> waterpro<strong>of</strong>ing membr<strong>an</strong>e.3.1 Warm Green Ro<strong>of</strong> ConstructionInsulation is placed between the exterior waterpro<strong>of</strong> layer <strong><strong>an</strong>d</strong> the ro<strong>of</strong> deck. A vapour barrierreduces condensation <strong><strong>an</strong>d</strong> no internal ventilation <strong>of</strong> the ro<strong>of</strong> interior is required.Figure 10: Warm Green Ro<strong>of</strong> ConstructionNiall Carroll Page 22<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


3.2 Inverted Warm Green Ro<strong>of</strong> ConstructionInsulation is located on the exterior <strong>of</strong> the waterpro<strong>of</strong> layer. <strong>The</strong> insulation must beimpervious to water eg. extruded polystyrene). <strong>The</strong> waterpro<strong>of</strong> layer acts as a vapour barrier,preventing condensation between itself <strong><strong>an</strong>d</strong> the deck. <strong>The</strong> thermal insulation layer (as well asthe vegetation layer <strong><strong>an</strong>d</strong> substrate) protects the waterpro<strong>of</strong> layer from temperature extremes.<strong>The</strong> root barrier must be located below the insulation.Figure 11: Inverted Warm Green Ro<strong>of</strong> Construction3.3 Cold Green Ro<strong>of</strong> ConstructionNiall Carroll Page 23<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Insulation is located on the interior side <strong>of</strong> the ro<strong>of</strong>. <strong>The</strong> deck is not warmed by the buildinginterior <strong><strong>an</strong>d</strong> ventilation is required above the insulating layer to reduce condensation. <strong>The</strong>waterpro<strong>of</strong> layer is protected from UV radiation <strong><strong>an</strong>d</strong> extremes <strong>of</strong> temperature by thevegetation <strong><strong>an</strong>d</strong> substrate layers.Figure 12: Cold Green Ro<strong>of</strong> Construction3.4 Structural Support <strong>of</strong> Green Ro<strong>of</strong>sWhen a green ro<strong>of</strong> is designed for a new or existing building, the weight <strong>of</strong> the ro<strong>of</strong> must beaccounted for. <strong>The</strong> saturated weight <strong>of</strong> the soil must be measured when calculating theimplied loads.<strong>The</strong> amount <strong>of</strong> structure required to support a green ro<strong>of</strong> depends primarily on the type <strong>of</strong>green ro<strong>of</strong> system installed: intensive or extensive. <strong>The</strong> nature <strong>of</strong> intensive ro<strong>of</strong>s may requirethe inclusion <strong>of</strong> a reinforced concrete or steel structure for additional support [8], due to theincreased substrate depth <strong>of</strong> up to 1500mm. This me<strong>an</strong>s the cost <strong>of</strong> construction will risesubst<strong>an</strong>tially. <strong>The</strong>refore, intensive green ro<strong>of</strong>s are generally applied to large structures withmultiple levels as the required structural support is already in place.For low-rise buildings extensive ro<strong>of</strong>s are most commonly used as the cost <strong>of</strong> additionalstructural support required for intensive green ro<strong>of</strong>s makes the construction very expensive.Niall Carroll Page 24<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Although less versatile th<strong>an</strong> intensive green ro<strong>of</strong>s, they are cheaper in terms <strong>of</strong> construction<strong><strong>an</strong>d</strong> mainten<strong>an</strong>ce due to the reduced substrate depth (typically less th<strong>an</strong> 200 mm) [3].3.5 Green Ro<strong>of</strong> Components<strong>The</strong> four main components <strong>of</strong> a green ro<strong>of</strong> system (the root barrier, drainage layer, substrate<strong><strong>an</strong>d</strong> vegetation layer) are discussed in more detail as follows.3.51 Root Barrier<strong>The</strong> root barrier is <strong>an</strong> essential part <strong>of</strong> a green ro<strong>of</strong> system because it prevents the roots <strong>of</strong>vigorous pl<strong>an</strong>t species penetrating through to the waterpro<strong>of</strong> membr<strong>an</strong>e. <strong>The</strong> type <strong>of</strong> rootbarrier used will depend upon the system <strong><strong>an</strong>d</strong> the type <strong>of</strong> pl<strong>an</strong>ts used <strong><strong>an</strong>d</strong> is therefore usuallyspecified by the green ro<strong>of</strong> supplier or waterpro<strong>of</strong>ing supplier.3.52 Drainage Layer<strong>The</strong> purpose <strong>of</strong> the drainage layer is, in combination with the substrate, to control the waterretention properties <strong>of</strong> the green ro<strong>of</strong> [3]. <strong>The</strong> key benefits <strong>of</strong> the drainage layer include:• Reduction <strong>of</strong> water ponding on the ro<strong>of</strong>. This is particularly import<strong>an</strong>t on flat ro<strong>of</strong>constructions as prolonged water ponding c<strong>an</strong> result in structural fatigue.• Providing the correct drainage conditions to allow desired vegetation to survive <strong><strong>an</strong>d</strong>flourish. If a green ro<strong>of</strong> is too free draining then pl<strong>an</strong>ts may die back during dryperiods. Conversely, if the drainage is insufficient then waterlogging may occurwhich c<strong>an</strong> cause pl<strong>an</strong>ts to rot.• <strong>The</strong> control <strong>of</strong> the amount <strong><strong>an</strong>d</strong> timing <strong>of</strong> rainwater run<strong>of</strong>f. This contributes to them<strong>an</strong>agement <strong>of</strong> stormwater run<strong>of</strong>f <strong><strong>an</strong>d</strong> helps to meet pl<strong>an</strong>ning <strong><strong>an</strong>d</strong> regulatoryconstraints.Niall Carroll Page 25<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Drainage layers c<strong>an</strong> be divided into two main categories:1. Gr<strong>an</strong>ular materials including s<strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong> gravel, lava <strong><strong>an</strong>d</strong> pumice, exp<strong><strong>an</strong>d</strong>ed clay<strong><strong>an</strong>d</strong> slate. Recycled materials such as foamed glass, crushed brick <strong><strong>an</strong>d</strong> ro<strong>of</strong>tiles.2. Modular systems which typically comprise <strong>of</strong> pr<strong>of</strong>iled or dimpled sheets <strong>of</strong>plastic. <strong>The</strong>se act as reservoirs to hold water, with cross drainage for excesswater.Pr<strong>of</strong>iled Plastic Drainage LayerS<strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong> Gravel Drainage LayerFigure 13: Typical Example <strong>of</strong> Green Ro<strong>of</strong> Drainage Systems3.53 Substrate<strong>The</strong> purpose <strong>of</strong> the substrate layer is to provide the mech<strong>an</strong>ical strength, open pore structure,nutrients, chemical composition <strong><strong>an</strong>d</strong> drainage properties that the desired pl<strong>an</strong>t species require[3].Intensive green ro<strong>of</strong>s require a deep <strong><strong>an</strong>d</strong> fertile substrate layer. <strong>The</strong> topsoil is relatively dense<strong><strong>an</strong>d</strong> heavy when saturated, therefore load <strong><strong>an</strong>d</strong> mainten<strong>an</strong>ce requirements are generally <strong>an</strong>accepted part <strong>of</strong> intensive ro<strong>of</strong> design.In contrast, extensive ro<strong>of</strong> systems are generally implemented where weight <strong><strong>an</strong>d</strong> mainten<strong>an</strong>cerequirements are key design constraints. <strong>The</strong>refore substrates are lightweight with a lownutrient content.3.54 Vegetation LayerNiall Carroll Page 26<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


<strong>The</strong>re are four main methods <strong>of</strong> establishing vegetation on a green ro<strong>of</strong>:1. Vegetation Mats are the most expensive way <strong>of</strong> greening a ro<strong>of</strong> but provide90-100 % vegetation cover when installed.2. Plug Pl<strong>an</strong>ting involves pl<strong>an</strong>ting a pot grown pl<strong>an</strong>t directly into the substrate.This allows for the easy mixing <strong>of</strong> pl<strong>an</strong>t species but takes longer to establishvegetation coverage.3. Seeds <strong><strong>an</strong>d</strong> Cuttings c<strong>an</strong> be h<strong><strong>an</strong>d</strong> distributed or sprayed onto a ro<strong>of</strong> in a gel orhydromulch that holds the seeds in place until pl<strong>an</strong>ts are established. Costeffective but is a slow method <strong>of</strong> achieving vegetation cover.4. Natural Colonisation is the cheapest <strong><strong>an</strong>d</strong> most environmentally <strong><strong>an</strong>d</strong>ecologically beneficial way <strong>of</strong> vegetating a green ro<strong>of</strong>. It involves allowing abare substrate to colonise naturally in sympathy with its local environment.However, this c<strong>an</strong> result in varying aesthetic appeal.<strong>The</strong> choice in vegetation primarily depends upon the type <strong>of</strong> green ro<strong>of</strong> - intensive orextensive – <strong><strong>an</strong>d</strong> the structural loads these impose. Other factors include: aesthetic appeal,cost, run<strong>of</strong>f characteristics <strong><strong>an</strong>d</strong> biodiversity benefits.4 Benefits <strong>of</strong> Green Ro<strong>of</strong>sGreen ro<strong>of</strong>s have several social, economic <strong><strong>an</strong>d</strong> environmental benefits <strong><strong>an</strong>d</strong> c<strong>an</strong> contributepositively towards issues such as biodiversity, climate ch<strong>an</strong>ge mitigation, flood prevention<strong><strong>an</strong>d</strong> increasing green space in urb<strong>an</strong> areas. <strong>The</strong> main benefits <strong>of</strong> green ro<strong>of</strong>s from BrownlieNiall Carroll Page 27<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


(1990) [9], Johnston (1995) [10], Johnston & Newton (1993) [11], Osmundson (1999) [12]<strong><strong>an</strong>d</strong> Wells (2001) [13] c<strong>an</strong> be summarised as follows:Environment• attenuation <strong>of</strong> storm water run-<strong>of</strong>f• run-<strong>of</strong>f attenuation reduces sewer overflows• option <strong>of</strong> cle<strong>an</strong>ing <strong><strong>an</strong>d</strong> recycling grey water (wastewater generated from domesticactivities such as laundry, dishwashing, <strong><strong>an</strong>d</strong> bathing which c<strong>an</strong> be recycled on-sitefor uses such as l<strong><strong>an</strong>d</strong>scape irrigation <strong><strong>an</strong>d</strong> constructed wetl<strong><strong>an</strong>d</strong>s)• absorption <strong>of</strong> air pollut<strong>an</strong>ts <strong><strong>an</strong>d</strong> dust• reduction in the ‘urb<strong>an</strong> heat isl<strong><strong>an</strong>d</strong>’ effect• increased humidity• absorption <strong>of</strong> noise• absorption <strong>of</strong> electromagnetic radiation• helping to absorb greenhouse gases (particularly CO 2 ) <strong><strong>an</strong>d</strong> giving <strong>of</strong>f oxygen• use <strong>of</strong> recycled materialsEcology <strong><strong>an</strong>d</strong> Biodiversity• provision <strong>of</strong> new wildlife habitat• replacement <strong>of</strong> habitat lost through development• provision <strong>of</strong> quiet refuges• providing links or stepping stones in green space networks• <strong>of</strong>ten only available green space in urb<strong>an</strong> coreAmenity• more options for designers• hides grey <strong><strong>an</strong>d</strong> uniform ro<strong>of</strong>ing materials• screens equipment• provides attractive views <strong>of</strong> vegetationNiall Carroll Page 28<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


• extension <strong>of</strong> park system• provides gardens – more recreational spaceHealth• psychological benefits <strong>of</strong> contact with nature• improved air quality – helping to reduce respiratory diseases• improved water qualityBuilding Fabric• protecting the ro<strong>of</strong> from UV radiation• protecting the ro<strong>of</strong> from mech<strong>an</strong>ical damage• reducing diurnal/seasonal temperature ch<strong>an</strong>ges in ro<strong>of</strong>• may improve thermal insulationEconomic• extension <strong>of</strong> ro<strong>of</strong> life• attracts buyers/ten<strong>an</strong>ts• may reduce water/sewer charges• reduce heating <strong><strong>an</strong>d</strong> air conditioning costs• use <strong>of</strong> recycled materials from site reduces costsSome <strong>of</strong> the key benefits <strong>of</strong> green ro<strong>of</strong>s are discussed in more detail as follows.4.1 BiodiversityGreen ro<strong>of</strong>s have considerable potential to provide biodiversity benefits; especially in urb<strong>an</strong>areas. <strong>The</strong>y c<strong>an</strong> help in meeting national, regional <strong><strong>an</strong>d</strong> local biodiversity action pl<strong>an</strong> targetswhich were implemented in 1994 (after the UK signed up to the convention on biologicalNiall Carroll Page 29<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


diversity at the UNCED conference in Rio, 1992) [3]. Some <strong>of</strong> the main adv<strong>an</strong>tages greenro<strong>of</strong>s provide for improving biodiversity include:• Helping to remedy areas <strong>of</strong> deficiency, ie providing new habitat in areas whichare currently lacking in wildlife habitat• Creating new links in <strong>an</strong> intermittent network <strong>of</strong> habitats, thereby facilitatingmovement <strong><strong>an</strong>d</strong> dispersal <strong>of</strong> wildlife• Providing additional habitat for rare, protected or otherwise import<strong>an</strong>t species [8]4.2 Sustainable DrainageSurface water drainage systems that follow the principles <strong>of</strong> sustainable development arecollectively referred to in the UK as sustainable drainage systems (SUDS). In urb<strong>an</strong> areas, upto 75% <strong>of</strong> rainwater becomes run-<strong>of</strong>f due to the development <strong>of</strong> ground space through whichrain water c<strong>an</strong>not be lost by permeation [14]. <strong>The</strong>refore, it is import<strong>an</strong>t to try <strong><strong>an</strong>d</strong> replicatenatural drainage systems <strong><strong>an</strong>d</strong> processes in order to reduce this run-<strong>of</strong>f. SUDS objectives areto:• Replicate natural drainage as closely as possible• Control the qu<strong>an</strong>tity <strong><strong>an</strong>d</strong> quality <strong>of</strong> the run-<strong>of</strong>f from development sites• Maximise amenity <strong><strong>an</strong>d</strong> biodiversity opportunitiesOnce established, a green ro<strong>of</strong> c<strong>an</strong> signific<strong>an</strong>tly reduce both peak flow rates <strong><strong>an</strong>d</strong> total run<strong>of</strong>fvolume <strong>of</strong> rainwater from the ro<strong>of</strong> compared to a conventional ro<strong>of</strong>. Green ro<strong>of</strong>s storerainwater in the pl<strong>an</strong>ts <strong><strong>an</strong>d</strong> substrate <strong><strong>an</strong>d</strong> release water back into the atmosphere throughevapotr<strong>an</strong>spiration [15]. <strong>The</strong> amount <strong>of</strong> water that is stored on a green ro<strong>of</strong> <strong><strong>an</strong>d</strong> thenevapotr<strong>an</strong>spired into the atmosphere is dependent on the depth <strong><strong>an</strong>d</strong> type <strong>of</strong> growing medium,type <strong>of</strong> drainage layer, vegetation used <strong><strong>an</strong>d</strong> regional weather. Green ro<strong>of</strong>s c<strong>an</strong> easily meetSUDS st<strong><strong>an</strong>d</strong>ards <strong>of</strong> preventing run-<strong>of</strong>f from rainfall events <strong>of</strong> up to 5mm.Niall Carroll Page 30<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


In summer, green ro<strong>of</strong>s c<strong>an</strong> retain 70–80% <strong>of</strong> rainfall <strong><strong>an</strong>d</strong> in winter they retain 10–35%depending on type <strong><strong>an</strong>d</strong> depth <strong>of</strong> substrate <strong><strong>an</strong>d</strong> type <strong>of</strong> vegetation [16]. During winter, there isgreater rainfall <strong><strong>an</strong>d</strong> less evapotr<strong>an</strong>spiration by the pl<strong>an</strong>ts because there is less growth.Overall, the deeper the substrate the greater the average <strong>an</strong>nual water retention. Intensivegreen ro<strong>of</strong>s with deeper substrates c<strong>an</strong> hold up to 20% <strong>of</strong> the rainfall absorbed for up to 2months [12].4.3 Climate Ch<strong>an</strong>ge Mitigation <strong><strong>an</strong>d</strong> AdaptionIn the UK, buildings are responsible for 45 percent <strong>of</strong> CO 2 emissions: 27% <strong>of</strong> the UK’semissions come from homes, 18% from non-residential buildings [17]. A high proportion <strong>of</strong>these emissions are from heating <strong><strong>an</strong>d</strong> cooling the internal environment. Reducing the energyconsumption <strong>of</strong> the UK’s buildings will reduce their contribution to climate ch<strong>an</strong>ge. <strong>The</strong>IPCC (Intergovernmental P<strong>an</strong>el on Climate Ch<strong>an</strong>ge) have said that buildings provide some <strong>of</strong>the greatest, most cost effective <strong><strong>an</strong>d</strong> fastest opportunities to tackle climate ch<strong>an</strong>ge. Greenro<strong>of</strong>s c<strong>an</strong> signific<strong>an</strong>tly reduce the cooling loads <strong>of</strong> buildings, resulting in reduced air coolingrequirements <strong><strong>an</strong>d</strong> therefore reduced energy consumption <strong><strong>an</strong>d</strong> the associated output <strong>of</strong>atmospheric carbon dioxide.<strong>The</strong> insulation levels required to meet current UK Building Regulations ensure that theinternal thermal perform<strong>an</strong>ce is largely isolated from external environmental conditions(ro<strong>of</strong>s should meet a maximum U-value <strong>of</strong> 0.16 W/m 2 K). <strong>The</strong>refore, the effect <strong>of</strong> green ro<strong>of</strong>son thermal insulation on new builds is negligible. When retr<strong>of</strong>itting a green ro<strong>of</strong>, green ro<strong>of</strong>materials should not be used as a substitute for insulation.Green ro<strong>of</strong>s c<strong>an</strong> also reduce the daily temperature fluctuations <strong>of</strong> building ro<strong>of</strong>s. <strong>The</strong> diurnaltemperature r<strong>an</strong>ge (the difference between minimum <strong><strong>an</strong>d</strong> maximum temperatures over a 24hour period) at the waterpro<strong>of</strong> layer <strong>of</strong> a green ro<strong>of</strong> is signific<strong>an</strong>tly less th<strong>an</strong> that <strong>of</strong> aconventional bitumen covered ro<strong>of</strong>; <strong><strong>an</strong>d</strong> is typically below 10 o C during the summer for <strong>an</strong>extensive green ro<strong>of</strong>. Some <strong>of</strong> the factors which affect the thermal properties <strong>of</strong> a green ro<strong>of</strong>include:Niall Carroll Page 31<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


• Evapotr<strong>an</strong>spiration from the pl<strong>an</strong>ts <strong><strong>an</strong>d</strong> substrates, which uses a considerableproportion <strong>of</strong> the incoming solar radiation compared with non-green ro<strong>of</strong>s• Green ro<strong>of</strong>s have a large thermal mass, which stores energy <strong><strong>an</strong>d</strong> delays thetr<strong>an</strong>sfer <strong>of</strong> heat to <strong><strong>an</strong>d</strong> from the building fabric• <strong>The</strong> absorption <strong>of</strong> solar radiation by pl<strong>an</strong>ts for photosynthesis• Pl<strong>an</strong>ts have a higher equivalent albedo (solar radiation reflectivity) th<strong>an</strong> m<strong>an</strong>yst<strong><strong>an</strong>d</strong>ard ro<strong>of</strong> surfaces<strong>The</strong> reduction in the diurnal temperature r<strong>an</strong>ge <strong>of</strong> green ro<strong>of</strong>s also extends the life <strong>of</strong> thewater pro<strong>of</strong> layer. <strong>The</strong> green ro<strong>of</strong> also protects the waterpro<strong>of</strong> layer from UV light (whichdisrupt the chemical bonds) <strong><strong>an</strong>d</strong> from puncture by falling objects [3].Overall, a smaller proportion <strong>of</strong> incoming solar radiation is converted into heat on a greenro<strong>of</strong> - in comparison with a conventional ro<strong>of</strong> – so less heat is tr<strong>an</strong>sferred to the widerenvironment. This is <strong>an</strong> import<strong>an</strong>t factor affecting the local urb<strong>an</strong> climate.4.4 Reducing the Urb<strong>an</strong> Heat Isl<strong><strong>an</strong>d</strong> EffectNiall Carroll Page 32<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


<strong>The</strong> urb<strong>an</strong> heat isl<strong><strong>an</strong>d</strong> effect describes the phenomena <strong>of</strong> higher average temperatures inurb<strong>an</strong> areas compared with surrounding rural areas. This c<strong>an</strong> lead to <strong>an</strong> increase in air-bornpollution <strong><strong>an</strong>d</strong> <strong>an</strong> increased use <strong>of</strong> air conditioning.Figure 14: Example <strong>of</strong> Urb<strong>an</strong> Heat Isl<strong><strong>an</strong>d</strong> Effect [18]A number <strong>of</strong> complex factors contribute to the urb<strong>an</strong> heat isl<strong><strong>an</strong>d</strong> effect. <strong>The</strong>se include [19]:• Reduction <strong>of</strong> evaporating surfaces – more energy turned into sensible heat <strong><strong>an</strong>d</strong>less into latent heat• <strong>The</strong>rmal properties <strong>of</strong> materials – increased storage <strong>of</strong> sensible heat in buildingfabric• Anthropogenic heat released – from combustion <strong>of</strong> fuels <strong><strong>an</strong>d</strong> metabolism <strong>of</strong><strong>an</strong>imals/people• C<strong>an</strong>yon radiative effect – decrease <strong>of</strong> long-wave radiation lost to the sky <strong><strong>an</strong>d</strong>retained in the urb<strong>an</strong> area due to radiation interch<strong>an</strong>ge between especially tallbuildings within relatively narrow streets <strong><strong>an</strong>d</strong> reduction <strong>of</strong> albedo due to multiplereflection <strong>of</strong> short-wave radiation between building surfacesNiall Carroll Page 33<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


• Urb<strong>an</strong> greenhouse effect – increase <strong>of</strong> long-wave radiation reflected from thepolluted, warmer urb<strong>an</strong> atmosphere• Reduced turbulent heat tr<strong>an</strong>sfer – tr<strong>an</strong>sfer <strong>of</strong> heat to the air is reduced due to lessair turbulence in streetsOne solution for reducing the effect <strong>of</strong> the urb<strong>an</strong> heat isl<strong><strong>an</strong>d</strong> effect is to introduce morevegetation into the urb<strong>an</strong> environment to provide shading <strong><strong>an</strong>d</strong> cooling throughevapotr<strong>an</strong>spiration. Another solution is to increase the reflectiveness (or albedo) <strong>of</strong> ro<strong>of</strong>s <strong><strong>an</strong>d</strong>other exposed surfaces. This will reflect a higher proportion <strong>of</strong> the received solar radiationback to the sky; producing less sensible heat.Green ro<strong>of</strong>s combine both <strong>of</strong> these solutions <strong><strong>an</strong>d</strong> are increasingly being proposed asmitigation for the urb<strong>an</strong> heat isl<strong><strong>an</strong>d</strong> effect. Green ro<strong>of</strong>s have a high equivalent albedo <strong>of</strong>between 0.7 <strong><strong>an</strong>d</strong> 0.85, depending upon the availability <strong>of</strong> water for evapotr<strong>an</strong>spiration [20].Evaporative cooling on green ro<strong>of</strong>s works by increasing humidity <strong><strong>an</strong>d</strong> reducing the amount <strong>of</strong>energy available for conversion into sensible heat. During warmer, drier months the reducedmoisture content <strong>of</strong> a green ro<strong>of</strong> reduces the real evapotr<strong>an</strong>spiration rate compared with thetheoretical potential evapotr<strong>an</strong>spiration rate, thus reducing the cooling effect. <strong>The</strong>refore, inwarmer, drier months irrigation may be required to maintain the evapotr<strong>an</strong>spiration benefits<strong>of</strong> green ro<strong>of</strong>s.4.5 Sound Insulation<strong>The</strong> combination <strong>of</strong> soil, pl<strong>an</strong>ts <strong><strong>an</strong>d</strong> trapped layers <strong>of</strong> air within green ro<strong>of</strong> systems c<strong>an</strong> act asa sound insulation barrier. Sound waves are absorbed, reflected or deflected. <strong>The</strong> substratetends to block lower sound frequencies <strong><strong>an</strong>d</strong> the vegetation blocks higher frequencies. <strong>The</strong>amount <strong>of</strong> sound insulation a green ro<strong>of</strong> provides mainly depends on the depth <strong>of</strong> substrateused.Research has shown that a depth <strong>of</strong> growing medium <strong>of</strong> 20-100 mm c<strong>an</strong> achieve <strong>an</strong> extrasound pressure level attenuation <strong>of</strong> 10-40 dB, depending on frequency [15]. This compareswith a typical reduction <strong>of</strong> 43 dB for a 100 mm concrete wall. Compared with a conventionalro<strong>of</strong>, green ro<strong>of</strong>s c<strong>an</strong> reduce sound within a building by 8 dB or more [21].Niall Carroll Page 34<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


4.6 Building FabricWhen vegetation is introduced to ro<strong>of</strong>s, the underlying materials <strong>of</strong> the structure areeffectively given a bl<strong>an</strong>ket <strong>of</strong> protection. This bl<strong>an</strong>ket prolongs the ro<strong>of</strong>s lifesp<strong>an</strong> <strong><strong>an</strong>d</strong> reducesthe stress applied to the ro<strong>of</strong>ing materials [6].<strong>The</strong> key benefits for protecting the building fabric for green ro<strong>of</strong>s are [8]:• Protecting the ro<strong>of</strong> from ultra violet radiation.• Reducing diurnal/seasonal temperatures ch<strong>an</strong>ges in the ro<strong>of</strong>.Ultra violet light c<strong>an</strong> have a damaging effect on ro<strong>of</strong>ing materials when high levels <strong>of</strong>exposure occur. <strong>The</strong> ultra-violet radiation causes ro<strong>of</strong>ing materials to lose their inherentstrength which c<strong>an</strong> result in subst<strong>an</strong>tial mainten<strong>an</strong>ce costs. Likewise, large fluctuations in<strong>an</strong>nual <strong><strong>an</strong>d</strong> diurnal temperatures cause ro<strong>of</strong>ing materials to exp<strong><strong>an</strong>d</strong> <strong><strong>an</strong>d</strong> contract [8]. <strong>The</strong>stress incurred by these fluctuations c<strong>an</strong> be sufficient to cause the eventual failure <strong>of</strong> the ro<strong>of</strong>.<strong>The</strong> layer <strong>of</strong> vegetation acts as a buffering system to the physical impact imposed by ultravioletradiation <strong><strong>an</strong>d</strong> temperature variations within the ro<strong>of</strong>. <strong>The</strong> inclusion <strong>of</strong> a barrier system,against root penetration, is essential when providing protection to the waterpro<strong>of</strong> membr<strong>an</strong>e.4.7 Green Ro<strong>of</strong>s <strong><strong>an</strong>d</strong> Solar P<strong>an</strong>elsNiall Carroll Page 35<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


<strong>The</strong> perception that buildings c<strong>an</strong> either have green ro<strong>of</strong>s or solar production at ro<strong>of</strong> level, butnot both, is a mistaken one. <strong>The</strong>re is subst<strong>an</strong>tial evidence from Germ<strong>an</strong>y that the use <strong>of</strong> solarthermal <strong><strong>an</strong>d</strong> photovoltaics (PV) with green ro<strong>of</strong>s provides dual benefits in terms <strong>of</strong> energyproduction <strong><strong>an</strong>d</strong> energy saved.Figure 15: Green Ro<strong>of</strong> with Photovoltaic P<strong>an</strong>els [5]PV A-Frame p<strong>an</strong>els at ro<strong>of</strong> level are known to work more efficiently when installed on agreen ro<strong>of</strong> rather th<strong>an</strong> a on a conventional surface. <strong>The</strong> green ro<strong>of</strong> element c<strong>an</strong> increase theefficiency <strong>of</strong> PV p<strong>an</strong>els by reducing temperature fluctuations at ro<strong>of</strong> level <strong><strong>an</strong>d</strong> by maintaininga more efficient microclimate around the PV P<strong>an</strong>els. Crystalline silicon PV p<strong>an</strong>els loseroughly 0.5 % per °C in efficiency above 25°C. <strong>The</strong> green ro<strong>of</strong> serves as a natural coolingmech<strong>an</strong>ism, thereby maintaining the p<strong>an</strong>els’ efficiency [22].Solar P<strong>an</strong>els c<strong>an</strong> only be installed on green ro<strong>of</strong>s with extensive vegetation <strong><strong>an</strong>d</strong> must beinstalled above vegetation level to avoid shading <strong>of</strong> the p<strong>an</strong>els. <strong>The</strong> p<strong>an</strong>els are installed onspecial frames <strong>of</strong> aluminium which are attached to plastic boards located beneath thesubstrate [5]. This allows vegetation to grow beneath the p<strong>an</strong>els. As the solar p<strong>an</strong>els aremounted on plastic boards this distributes the load evenly across the ro<strong>of</strong>; avoiding pointloads.Niall Carroll Page 36<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


5 UK Policy on Green Ro<strong>of</strong>s<strong>The</strong>re are currently no direct references to green ro<strong>of</strong>s in the UK Building Regulations, onlyto the general st<strong><strong>an</strong>d</strong>ards <strong>of</strong> ro<strong>of</strong> construction. However, green ro<strong>of</strong>s c<strong>an</strong> be constructed tomeet these st<strong><strong>an</strong>d</strong>ards.Part L <strong>of</strong> the Building Regulations aims to subst<strong>an</strong>tially increase the energy efficiency <strong>of</strong> new<strong><strong>an</strong>d</strong> existing buildings <strong><strong>an</strong>d</strong> green ro<strong>of</strong>s c<strong>an</strong> contribute towards this by increasing insulation (asa retr<strong>of</strong>it on existing buildings).Local authorities still require the correct guid<strong>an</strong>ce on green ro<strong>of</strong>s to ensure that the highestst<strong><strong>an</strong>d</strong>ards are being met: both by suppliers <strong><strong>an</strong>d</strong> installers. This lack <strong>of</strong> a formal st<strong><strong>an</strong>d</strong>ard hasled to fears that sub-st<strong><strong>an</strong>d</strong>ard systems are being allowed to be installed <strong><strong>an</strong>d</strong> that these willdamage the reputation <strong>of</strong> green ro<strong>of</strong>s.In the absence <strong>of</strong> <strong>an</strong>y British st<strong><strong>an</strong>d</strong>ards, most m<strong>an</strong>ufacturers <strong><strong>an</strong>d</strong> installers rely upon theGerm<strong>an</strong> L<strong><strong>an</strong>d</strong>scape Development Research Society (FLL) guidelines for the design <strong><strong>an</strong>d</strong>construction <strong>of</strong> green ro<strong>of</strong>s [23].Niall Carroll Page 37<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


6 Green Ro<strong>of</strong> ResearchPrevious research concerning green ro<strong>of</strong>s has primarily focused on two key areas: thermalperform<strong>an</strong>ce <strong><strong>an</strong>d</strong> rainwater run<strong>of</strong>f perform<strong>an</strong>ce. <strong>The</strong> qu<strong>an</strong>titative <strong>an</strong>alysis <strong>of</strong> these two areashas gained increasing import<strong>an</strong>ce in recent years as green ro<strong>of</strong>s become more established.6.1 <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> Green Ro<strong>of</strong>sA number <strong>of</strong> studies on the thermal perform<strong>an</strong>ce <strong>of</strong> green ro<strong>of</strong>s have been carried out as thisis one <strong>of</strong> the most attractive benefits [24]. Green ro<strong>of</strong>s c<strong>an</strong> dissipate the heat absorbed fromthe sun in several effective methods, thereby reducing the heat tr<strong>an</strong>sferred into the building.Wong et al. [25], <strong>The</strong>odosio [26], Barrio [27], Takakura et al. [28], Onmura et al. [29] <strong><strong>an</strong>d</strong>Sailor [1] have all studied the energy bal<strong>an</strong>ce <strong>of</strong> green ro<strong>of</strong>s <strong><strong>an</strong>d</strong> concluded that the domin<strong>an</strong>tway for green ro<strong>of</strong>s to dissipate the heat absorbed is through evapotr<strong>an</strong>spiration. However,some earlier studies have suggested that thermal radiation from leaves was the domin<strong>an</strong>t form<strong>of</strong> heat dissipation [30, 31].6.11 Reduction <strong>of</strong> Heat Flux <strong><strong>an</strong>d</strong> Solar ReflectivityTypical dark ro<strong>of</strong> materials c<strong>an</strong> reach temperatures as high as 80 o C during summer months –nearly 3 times as high as <strong>an</strong> equivalent green ro<strong>of</strong> [32]. As mentioned, green ro<strong>of</strong>s dissipateheat absorbed through evapotr<strong>an</strong>spiration <strong><strong>an</strong>d</strong> also through improved reflectivity <strong>of</strong> incidentsolar radiation. <strong>The</strong> ratio <strong>of</strong> total reflected to incident electromagnetic radiation is defined asalbedo. <strong>The</strong> albedo <strong>of</strong> green ro<strong>of</strong>s is equivalent to that <strong>of</strong> a bright white ro<strong>of</strong>; with <strong>an</strong> <strong>an</strong>equivalent albedo <strong>of</strong> 0.7 - 0.85 compared with 0.1 - 0.2 for a bitumen/tar/gravel ro<strong>of</strong> [33].A study by Wong et al. [25] found that, during summer, heat absorbed by conventional darkro<strong>of</strong>s during the day continued to enter the building during the night. This effect was greatlyreduced for a green ro<strong>of</strong> thus reducing the cooling load for rooms below. A similar study byLui <strong><strong>an</strong>d</strong> Minor [34] found that heat gain through <strong>an</strong> extensive green ro<strong>of</strong> was reduced by <strong>an</strong>average <strong>of</strong> between 70 – 90 % during the summer <strong><strong>an</strong>d</strong> heat loss by 10 – 30 % in winter(compared with <strong>an</strong> insulated steel deck ro<strong>of</strong>).Niall Carroll Page 38<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 16: Summer Temperatures <strong>of</strong> Reference Ro<strong>of</strong> <strong><strong>an</strong>d</strong> Green Ro<strong>of</strong> [34]Figure 16 shows the comparison between the insulated steel deck ro<strong>of</strong> <strong><strong>an</strong>d</strong> the green ro<strong>of</strong>with thermocouples located under the ro<strong>of</strong> (E0), waterpro<strong>of</strong> membr<strong>an</strong>e (E3), subsrate (E4), inthe middle <strong>of</strong> the substrate (E5) <strong><strong>an</strong>d</strong> outside measuring the ambient air temperature (OUT).As c<strong>an</strong> be seen, the peak temperature is reduced by around half <strong><strong>an</strong>d</strong> the internal temperaturepeak is slightly delayed (although the thermal insulation <strong>of</strong> the reference ro<strong>of</strong> reduced thetr<strong>an</strong>sfer <strong>of</strong> <strong>an</strong>y heat flux).6.12 <strong>The</strong>rmal MassAs well as reducing diurnal temperature fluctuations, the thermal mass <strong>of</strong> a green ro<strong>of</strong> c<strong>an</strong>also improve the insulation properties <strong>of</strong> a building. <strong>The</strong> UK building regulations require thatthe ro<strong>of</strong> U-value be 0.25 W/m 2 or less for all types <strong>of</strong> buildings [35]. Prior to 1965, therewere no insulation requirements in building st<strong><strong>an</strong>d</strong>ards <strong><strong>an</strong>d</strong> since then the U-value hasgradually decreased from 1.42 W/m 2 . This me<strong>an</strong>s there is a lot <strong>of</strong> old building stock whichwill benefit from the insulating properties <strong>of</strong> green ro<strong>of</strong>s.Although green ro<strong>of</strong>s are predomin<strong>an</strong>tly seen as a passive cooling technique (in terms <strong>of</strong>thermal properties), there is evidence from a study by Nichaou et al. [36] suggesting thatwinter heating savings are larger th<strong>an</strong> summer cooling savings – a result especially beneficialfor the UK.Niall Carroll Page 39<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 17: Annual Energy Consumption <strong>of</strong> Different Ro<strong>of</strong> Types [25]Figure 17 shows the results <strong>of</strong> a study by Wong et al. [25] on the insulating properties <strong>of</strong>different types <strong>of</strong> green ro<strong>of</strong> system: from extensive to intensive. <strong>The</strong> study highlights howfor uninsulated ro<strong>of</strong>s, the retr<strong>of</strong>itting <strong>of</strong> extensive green ro<strong>of</strong>s c<strong>an</strong> signific<strong>an</strong>tly reduce <strong>an</strong>nualenergy consumption (around 20 MWh for this study).6.13 Substrate Thickness <strong><strong>an</strong>d</strong> Moisture ContentLui <strong><strong>an</strong>d</strong> Minor [34] measured the heat tr<strong>an</strong>sfer difference between a 100mm, lightercoloured growing medium compared to a 75 mm deep green ro<strong>of</strong>, compared also to areference ro<strong>of</strong> with the same structure (insulated steel deck). <strong>The</strong> increased substrate depthdisplayed a lower heat gain <strong><strong>an</strong>d</strong> loss across the measured ro<strong>of</strong>ing system. <strong>The</strong>y identifiedlittle contribution from the vegetation, indicating that the thermal perform<strong>an</strong>ce was improvedby the thicker substrate. Barrio [27] used a mathematical model to assess the summer coolingpotential <strong>of</strong> green ro<strong>of</strong>s in Athens, Greece. She found that the thickness <strong>of</strong> the soil layer, itsrelative density, along with moisture content, influenced the thermal diffusivity <strong>of</strong> the soil. Asthe density decreased from 1500 kg/m 3 to 1100 kg/m 3 , the thermal conductivity <strong>of</strong> the soildecreased; hence the heat flux through the ro<strong>of</strong> decreased. Additional air pockets in the lessdense soil led to <strong>an</strong> increase in its insulating properties. Conversely, as soil moisture contentdecreased from 40 % to 20 %, the heat flux through the ro<strong>of</strong> increased, suggesting that awetter green ro<strong>of</strong> is a better insulator.Niall Carroll Page 40<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


However, the previous study mentioned by Wong et al. [25] suggests that wetter substrate is apoor insulator compared to dry. With every 100 mm increase in substrate depth, the thermalresist<strong>an</strong>ce <strong>of</strong> the dry clay soil increased by 0.4 m 2 K/W compared to only 0.063 m 2 K/W forclay soil with 40 % moisture content.6.14 Evaporative Effect <strong><strong>an</strong>d</strong> Substrate Moisture ContentFigure 18: Energy Exch<strong>an</strong>ges <strong>of</strong> Dry/Wet Green Ro<strong>of</strong>s <strong><strong>an</strong>d</strong> a Traditional Ro<strong>of</strong> (Summer)[37]Figure 17 shows the energy exch<strong>an</strong>ges on dry/wet green ro<strong>of</strong>s <strong><strong>an</strong>d</strong> a traditional ro<strong>of</strong>. <strong>The</strong>study by Lazzarin et al. [37] showed that the dry green ro<strong>of</strong> reduces the incoming heat flux by60 % (in comparison with the traditional ro<strong>of</strong>). <strong>The</strong> additional evapotr<strong>an</strong>spiration <strong>of</strong> the wetgreen ro<strong>of</strong> provides <strong>an</strong> additional passive cooling effect – removing heat from the building.A previous study by Feng et al. [38] showed that 58 % <strong>of</strong> the heat loss from a green ro<strong>of</strong> wasby evapotr<strong>an</strong>spiration <strong><strong>an</strong>d</strong> 30.9 % by long wave radiative exch<strong>an</strong>ge – with 1.2 % stored ortr<strong>an</strong>sferred to the room beneath.Niall Carroll Page 41<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


6.2 <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> Green Ro<strong>of</strong>s<strong>The</strong> rainwater run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> green ro<strong>of</strong>s (also known as the hydrologic perform<strong>an</strong>ce)c<strong>an</strong> play <strong>an</strong> import<strong>an</strong>t role in the development <strong>of</strong> sustainable drainage – especially in areaswhere space is at a premium.As mentioned previously, a green ro<strong>of</strong> ch<strong>an</strong>ges run<strong>of</strong>f compared with that from aconventional ro<strong>of</strong> through lowering (attenuation) <strong><strong>an</strong>d</strong> delaying the peak run<strong>of</strong>f (there is a timelag between the peak from a hard ro<strong>of</strong> <strong><strong>an</strong>d</strong> a green ro<strong>of</strong> for the same rain event).6.21 Rainfall <strong>Run<strong>of</strong>f</strong> Relationship with Storage Capacity<strong>The</strong> effect <strong>of</strong> green ro<strong>of</strong>s on stormwater run<strong>of</strong>f reduction is dependent upon the depth <strong>of</strong>substrate, its moisture content <strong><strong>an</strong>d</strong> the size <strong>of</strong> rainfall event. Other factors include the age <strong>of</strong>the ro<strong>of</strong>, type <strong>of</strong> vegetation cover <strong><strong>an</strong>d</strong> the slope <strong>of</strong> the ro<strong>of</strong> [39].Figure 19: <strong>Run<strong>of</strong>f</strong> from Green Ro<strong>of</strong> (dashed line) for given Rain Event (solid line) [39]<strong>The</strong> relationship between a green ro<strong>of</strong>s water retention <strong><strong>an</strong>d</strong> the size <strong>of</strong> rainfall event (<strong><strong>an</strong>d</strong> itsintensity) has been investigated in a number <strong>of</strong> studies. Carter <strong><strong>an</strong>d</strong> Rasmussen [40] found <strong>an</strong>inverse relationship between the amount <strong>of</strong> rainfall <strong><strong>an</strong>d</strong> the percentage <strong>of</strong> rain retained. Forsmall rainfall events (< 25.4 mm) 88% was retained, medium (25.4 – 76.2 mm) more th<strong>an</strong>54% was retained <strong><strong>an</strong>d</strong> for large (> 76.2 mm) 48% was retained. <strong>The</strong> conditions regarding thehumidity <strong>of</strong> the ro<strong>of</strong> materials before the storms were not given.Niall Carroll Page 42<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Similarly, Simmons et al. [41] found that small rain events <strong>of</strong> < 10 mm were all retained inthe green ro<strong>of</strong>s. For rain event <strong>of</strong> 12 mm the retention between the green ro<strong>of</strong>s varied from 88% to 26 % depending on the substrate <strong><strong>an</strong>d</strong> drainage type. <strong>The</strong> rain events <strong>of</strong> 28 mm <strong><strong>an</strong>d</strong> 49mm showed a retention <strong>of</strong> 8 - 43 % <strong><strong>an</strong>d</strong> 13 – 44 % respectively. It was further observed thatthe retention depends upon the rain event intensity ch<strong>an</strong>ges as well as the rain event size.6.22 Role <strong>of</strong> VegetationMost studies show that the type <strong><strong>an</strong>d</strong> depth <strong>of</strong> substrate has the major influence on green ro<strong>of</strong>water capacity <strong><strong>an</strong>d</strong> not the vegetation type.However, the type <strong><strong>an</strong>d</strong> cover <strong>of</strong> vegetation does play a role in the water retention <strong><strong>an</strong>d</strong> run<strong>of</strong>fcharacteristics <strong>of</strong> a green ro<strong>of</strong>. This is mainly during summer months, when there is lowerwater availability <strong><strong>an</strong>d</strong> higher temperatures.6.23 Influence <strong>of</strong> Slope<strong>The</strong> influence <strong>of</strong> slope on the run<strong>of</strong>f <strong><strong>an</strong>d</strong> retenetion characteristics <strong>of</strong> green ro<strong>of</strong>s variesbetween studies. Some studies such as Bengtsson [42] find no correlation between ro<strong>of</strong> slope<strong><strong>an</strong>d</strong> run<strong>of</strong>f, whereas a study by Getter et al. [43] found that run<strong>of</strong>f retention may depend uponthe slope.<strong>The</strong> effect <strong>of</strong> the ro<strong>of</strong> slope combines with other factors such as the substrate properties,intensity <strong>of</strong> rainfall event, flow conditions, the design <strong><strong>an</strong>d</strong> type <strong>of</strong> green ro<strong>of</strong> layers(especially drainage).<strong>The</strong> study mentioned by Getter et al. [43] found that for different rainfall events (light < 2mm, medium 2 – 10 mm, heavy > 10 mm) both the type <strong>of</strong> rainfall event <strong><strong>an</strong>d</strong> slope hadsignific<strong>an</strong>t influence over water retention. Water retention for the lowest gradient <strong>of</strong> slopewas 85 %, whereas for higher gradients 75 % <strong>of</strong> precipitation was retained (as <strong>an</strong> average <strong>of</strong>results). It was also found that retention was higher for light rain events (94 %) th<strong>an</strong> for heavyrain events (63 %) - as would be expected.Niall Carroll Page 43<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


7 MethodologyA methodology was established to assess the thermal perform<strong>an</strong>ce <strong>of</strong> a green ro<strong>of</strong> test rigwith <strong>an</strong> extensive green ro<strong>of</strong> system installed. A methodology was also established tocompare the rainfall run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> <strong>an</strong> extensive green ro<strong>of</strong> system with aPhotovoltaic (PV) p<strong>an</strong>el. For this experiment a 5 mm thick perspex sheet was used toreplicate a PV p<strong>an</strong>el.7.1 Green Ro<strong>of</strong> Test Rig for <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>A test rig was set up to measure the thermal perform<strong>an</strong>ce <strong>of</strong> a green ro<strong>of</strong>. A ro<strong>of</strong> <strong>an</strong>gle <strong>of</strong> 10degrees was chosen for a shallow flat pitch ro<strong>of</strong>. <strong>The</strong> area <strong>of</strong> the ro<strong>of</strong> was 1.2 m 2 . Fourthermocouples were attached at various points on the green ro<strong>of</strong> test rig to measure underro<strong>of</strong>, substrate, pl<strong>an</strong>t <strong><strong>an</strong>d</strong> ambient air temperature. A humidity sensor was placed in thesubstrate in order to measure its moisture content. A data acquisition system was setup usingNational Instrument hardware 9211 <strong><strong>an</strong>d</strong> 6008. NI DAQmx <strong><strong>an</strong>d</strong> Labview Signal Express wereused to log, <strong>an</strong>alyse <strong><strong>an</strong>d</strong> present the data on a laptop.Niall Carroll Page 44<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 20: Green Ro<strong>of</strong> Test Rig for <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>1. Under Ro<strong>of</strong> <strong>The</strong>rmocouple2. Substrate <strong>The</strong>rmocouple3. Pl<strong>an</strong>t <strong>The</strong>rmocouple4. Ambient Air <strong>The</strong>rmocouple5. Humidity Sensor6. NI USB-9211 Measuring Device7. NI USB-6008 Measuring DeviceNiall Carroll Page 45<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 21: Green Ro<strong>of</strong> Test Rig7.11 Sedum Bl<strong>an</strong>ket<strong>The</strong> sedum bl<strong>an</strong>ket used for the green ro<strong>of</strong> test rig was provided by Bauder Limited.<strong>The</strong> Bauder Xero Flor extensive green ro<strong>of</strong> system is constructed using low mainten<strong>an</strong>cesedum pl<strong>an</strong>ting (succulents). <strong>The</strong> pl<strong>an</strong>ts are grown on a ‘bl<strong>an</strong>ket’ that is harvested like turf<strong><strong>an</strong>d</strong> provide full coverage <strong><strong>an</strong>d</strong> increased protection for the waterpro<strong>of</strong> layer.Figure 22: Bauder XF301 Sedum Bl<strong>an</strong>ket [44]For the specified shallow flat pitch ro<strong>of</strong> 10 degrees, Bauder recommended the Bauder XF301Sedum Bl<strong>an</strong>ket. <strong>The</strong> vegetation bl<strong>an</strong>ket is pre-cultivated on a patented nylon loop <strong><strong>an</strong>d</strong> geotextilebase carrier with substrate. This is attached to <strong>an</strong> integral 8 mm moisture retentionfleece which retains moisture after rainfall allowing pl<strong>an</strong>ts to take up the water for futurestorage.Niall Carroll Page 46<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


<strong>The</strong> mineral content <strong>of</strong> the substrate consists <strong>of</strong> recycled crushed brick <strong><strong>an</strong>d</strong> exp<strong><strong>an</strong>d</strong>ed clayshale <strong><strong>an</strong>d</strong> the org<strong>an</strong>ic component is composted pine bark. It has a pH value <strong>of</strong> 6.5 – 7 <strong><strong>an</strong>d</strong> themoisture retention fleece is made from 80 % m<strong>an</strong>-made <strong><strong>an</strong>d</strong> 20% org<strong>an</strong>ic recycled fibres. <strong>The</strong>thickness – excluding vegetation – is 28 mm <strong><strong>an</strong>d</strong> the saturated weight is 44 kg/m 2 .Once installed, the sedum bl<strong>an</strong>ket requires little mainten<strong>an</strong>ce with bi<strong>an</strong>nual checks for deadvegetation <strong><strong>an</strong>d</strong> blockage <strong>of</strong> drainage outlets.For more information on the Bauder XF301 Sedum Bl<strong>an</strong>ket see Appendix 1.For this project, a NDC waterpro<strong>of</strong> membr<strong>an</strong>e was used instead <strong>of</strong> the recommended Bauder<strong>The</strong>rm<strong>of</strong>ol PVC system for ease <strong>of</strong> installation.7.12 NI USB-9211<strong>The</strong> NI USB-9211 measuring device is designed specifically for thermocouple measurements<strong><strong>an</strong>d</strong> acquires <strong><strong>an</strong>d</strong> logs up to four ch<strong>an</strong>nels <strong>of</strong> thermocouple data.Figure 23: NI USB-9211 Measuring DeviceIt was used to acquire the under ro<strong>of</strong>, substrate, pl<strong>an</strong>t <strong><strong>an</strong>d</strong> ambient air temperature.For further technical information on the NI USB-9211 see the NI website.Niall Carroll Page 47<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


7.13 <strong>The</strong>rmocouplesType K (chromel – alumel) thermocouples were used to measure the ro<strong>of</strong>, substrate, pl<strong>an</strong>t <strong><strong>an</strong>d</strong>ambient air temperature. <strong>The</strong> thermocouples were attached to the NI USB-9211 as shownbelow.Figure 24: NI USB-9211 <strong>The</strong>rmocouple Terminal Assignments<strong>The</strong> thermocouples were spot welded at the Mech<strong>an</strong>ical Engineering laboratories at theUniversity <strong>of</strong> Strathclyde.Figure 25 shows how the type K thermocouples were attached to the NI 9211 device.Niall Carroll Page 48<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 25: NI USB-9211 <strong>The</strong>rmocouple AttachmentFigure 26 shows how the thermocouples were placed on the green ro<strong>of</strong> test rig.Figure 26: Under Ro<strong>of</strong> <strong><strong>an</strong>d</strong> Substrate <strong>The</strong>rmocouple PlacementAs c<strong>an</strong> be seen in Figure 27, for the type K thermocouple the green wire is positive <strong><strong>an</strong>d</strong> thewhite wire is negative.Figure 27: Type K <strong>The</strong>rmocoupleNiall Carroll Page 49<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 28 shows the thermocouples attached to the green ro<strong>of</strong> test rig.Figure 28: Green Ro<strong>of</strong> <strong>The</strong>rmocouple Placement7.14 NI USB-6008<strong>The</strong> NI USB-6008 Measuring Device provides basic data acquisition for applications such assimple data logging, portable measurements <strong><strong>an</strong>d</strong> academic lab experiments.Figure 29: NI USB-6008 Measuring DeviceNiall Carroll Page 50<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


It was used to acquire the relative humidity (moisture content) <strong>of</strong> the substrate.For further technical information on the NI USB-6008 see the NI website.7.15 Humidity SensorA Honeywell HIH-4000 series humidity sensor was used to measure the moisture content <strong>of</strong>the substrate on the green ro<strong>of</strong>.Figure 30: HIH-4000 Humidity Sensor<strong>The</strong> humidity sensor was connected to the NI USB-6008 using a three wire connection via aterminal block.<strong>The</strong> dimensions <strong><strong>an</strong>d</strong> terminals <strong>of</strong> the humidity sensor are shown in Figure 31.Figure 31: HIH-4000 Dimensions <strong><strong>an</strong>d</strong> TerminalsNiall Carroll Page 51<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 32 shows the humidity sensor located in the substrate in order to measure the moisturecontent.Figure 32: Humidity Sensor Located in Substrate<strong>The</strong> grey, brown <strong><strong>an</strong>d</strong> black wires are the signal, 0 V <strong><strong>an</strong>d</strong> +5 V wires respectively. Figure 33shows the terminal assignments <strong>of</strong> the signal, 0 V <strong><strong>an</strong>d</strong> +5 V wires.Niall Carroll Page 52<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 33: NI USB-6008 Terminal AssignmentsTerminalGNDAI 0WireBlackGrey+5 V BrownTable 2: NI USB-6008 Terminal Assignments<strong>The</strong> relationship between the output voltage <strong>of</strong> the humidity sensor <strong><strong>an</strong>d</strong> the relative humidity(moisture content) is shown in Figure 34.Figure 34: Voltage Output vs. %RHFor further technical information on the HIH-4000 humidity sensor refer to uk.rs-online.com.Niall Carroll Page 53<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


7.16 NI DAQmx <strong><strong>an</strong>d</strong> Labview Signal ExpressNI DAQmx <strong><strong>an</strong>d</strong> Labview Signal Express s<strong>of</strong>tware were installed prior to the connection <strong>of</strong>NI devices 9211 <strong><strong>an</strong>d</strong> 6008.Once the NI devices were connected to the laptop via USB, the data acquisition system wasready for testing <strong><strong>an</strong>d</strong> running/recording results.7.161 Data Acquisition Method<strong>The</strong> following procedure was followed in Labview Signal Express:‣ Add Step‣ Acquire Signals‣ DAQmx Acquire‣ Analog InputFor the first step, temperature was selected for thermocouple measurements <strong><strong>an</strong>d</strong> for thesecond step; voltage was selected for relative humidity measurements.7.162 <strong>The</strong>rmocouple StepFigure 35 shows the thermocouple setup for the NI USB-9211 device.Niall Carroll Page 54<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 35: Labview Signal Express <strong>The</strong>rmocouple Setup‘Continuous Sampling’ was selected <strong><strong>an</strong>d</strong> the ‘Rate’ was set to 0.01 Hz. Labview SignalExpress recommended setting ‘Samples to Read’ to 1000.Adv<strong>an</strong>ced Timing required that the ‘Timeout’ between readings be adjusted according to thefollowing equation:(1)Type K thermocouples were selected <strong><strong>an</strong>d</strong> degrees Celsius were chosen as the selected units.Niall Carroll Page 55<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


7.163 Humidity Sensor StepFigure 36 shows the voltage input setup for the humidity sensor <strong><strong>an</strong>d</strong> NI USB-6008 device.Figure 36: Labview Signal Express Voltage Input Setup<strong>The</strong> same timing settings were selected as for the thermocouple setup.When the two steps had been set up a test run was undertaken to confirm accurate readingswere being taken.<strong>The</strong> data acquisition system was now setup up <strong><strong>an</strong>d</strong> data was ready to be recorded.Niall Carroll Page 56<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


7.2 Green Ro<strong>of</strong> Energy Bal<strong>an</strong>ce<strong>The</strong> green ro<strong>of</strong> energy bal<strong>an</strong>ce for extensive green ro<strong>of</strong>s proposed by Feng et al. [38] isestablished with the following prequisites:• <strong>The</strong> lawn, with 100% leaf coverage, is considered as a diffuse grey body.• <strong>The</strong>rmal effects <strong>of</strong> pl<strong>an</strong>ts metabolism - except for photosynthesis, respiration <strong><strong>an</strong>d</strong>tr<strong>an</strong>spiration – <strong><strong>an</strong>d</strong> thermal effects <strong>of</strong> microorg<strong>an</strong>isms in the soil are negligible.• <strong>The</strong> conditions with precipitation <strong><strong>an</strong>d</strong> dew are not included.• <strong>The</strong> green ro<strong>of</strong> is large enough to assume horizontal homogeneity <strong><strong>an</strong>d</strong> apply onedimensional (vertical) <strong>an</strong>alysis.<strong>The</strong> energy exch<strong>an</strong>ge between <strong>an</strong> extensive green ro<strong>of</strong> <strong><strong>an</strong>d</strong> its surrounding environment isillustrated as follows:Figure 37: Energy Exch<strong>an</strong>ge between <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> its EnvironmentUsing the first law <strong>of</strong> thermodynamics, the following energy bal<strong>an</strong>ce equation is obtained:Niall Carroll Page 57<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


q sr + q lr + q cv + q em + q tp + q ep + q sp + q ss + q tf + q ps + q rp = 0(2)Where,q sr = Heat Gain from Solar Radiation (W/m 2 )q lr = Heat Gain from Long-Wave Radiation (W/m 2 )q cv = Heat Tr<strong>an</strong>sferred by Convection (W/m 2 )q em = Heat Loss by Emission (W/m 2 )q tp = Heat Loss by Tr<strong>an</strong>spiration (W/m 2 )q ep = Heat Loss by Evaporation (W/m 2 )q sp = Heat Storage by pl<strong>an</strong>ts (W/m 2 )q ss = Heat Storage by Soil (W/m 2 )q tf = Heat Tr<strong>an</strong>sferred into the Room (W/m 2 )q ps = Solar Energy Converted by Photosynthesis (W/m 2 )q rp = Heat Generation by Respiration (W/m 2 )<strong>The</strong> vegetation <strong><strong>an</strong>d</strong> soil are considered as the system <strong><strong>an</strong>d</strong> the structural ro<strong>of</strong> <strong><strong>an</strong>d</strong> ambient airas the environment.<strong>The</strong> calculation methods for photosynthesis, respiration <strong><strong>an</strong>d</strong> metabolism as recommended byMeng et al. [45] <strong><strong>an</strong>d</strong> Feng <strong><strong>an</strong>d</strong> Chen [46] c<strong>an</strong> be integrated from time τ to time τ + Δ τ to formthe following macroscopic energy bal<strong>an</strong>ce:Niall Carroll Page 58<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


(4)Where,α s = Shortwave Absorptivity <strong>of</strong> Green Ro<strong>of</strong>q sri = Incident Solar Radiation (W/m 2 )α l = Long Wave Absorptivity <strong>of</strong> Green Ro<strong>of</strong>σ = Stef<strong>an</strong> Boltzm<strong>an</strong>n Const<strong>an</strong>t (W/m 2 K 4 )t a = Ambient Air Temperature ( o C)t d = Dew Point Temperature ( o C)ν = Wind Speed above C<strong>an</strong>opy (m/s)t p = Pl<strong>an</strong>t Temperature ( o C)ε = Emissivity <strong>of</strong> Green Ro<strong>of</strong>ι = Latent Heat <strong>of</strong> Vaporisation (kJ/kg)ρ P = Areal Density <strong>of</strong> Pl<strong>an</strong>ts (kg/m 3 )c p = Specific Heat <strong>of</strong> Pl<strong>an</strong>ts (kJ/kgK)ρ s = Areal Density <strong>of</strong> Dry Substrate (kg/m 3 )Niall Carroll Page 59<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


c s = Specific Heat <strong>of</strong> Dry Substrate (kJ/kgK)t s = Soil Temperature ( o C)q tf = Heat Tr<strong>an</strong>sferred into Room (W/m 2 )TC = Tr<strong>an</strong>spiration CoefficientR ep = Evaporation Rate (kg/m 2 s)R tp = Tr<strong>an</strong>spiration Rate (kg/m 2 s)R et = Evapotr<strong>an</strong>spiration Rate (kg/m 2 s)Of the 19 parameters in equation 2, only q sri , q tf , t a , t d , t p , t s , ν, R et need to be measured inorder to underst<strong><strong>an</strong>d</strong> the energy exch<strong>an</strong>ges in <strong>an</strong> extensive green ro<strong>of</strong>. <strong>The</strong> other parametersare either const<strong>an</strong>ts or c<strong>an</strong> be specified according to the real situations.7.3 Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong>Niall Carroll Page 60<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


A green ro<strong>of</strong> test rig was set up to compare the rainfall run<strong>of</strong>f <strong>of</strong> <strong>an</strong> extensive green ro<strong>of</strong> <strong><strong>an</strong>d</strong>a perspex p<strong>an</strong>el (to replicate a PV p<strong>an</strong>el). A 10 degree ro<strong>of</strong> <strong>an</strong>gle was specified for a shallowflat pitch ro<strong>of</strong>. Guttering was placed on the test rig to collect <strong>an</strong>y run<strong>of</strong>f <strong><strong>an</strong>d</strong> this wasmeasured using measuring cylinders.Figure 38: Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong><strong>The</strong> total area <strong>of</strong> the ro<strong>of</strong> was 1.2m 2 , with one half being the sedum bl<strong>an</strong>ket <strong><strong>an</strong>d</strong> the other halfthe Perspex p<strong>an</strong>el. <strong>The</strong> sedum bl<strong>an</strong>ket was placed in <strong>an</strong> impervious raised frame, whichallowed for run<strong>of</strong>f collection. <strong>The</strong> same sedum bl<strong>an</strong>ket was used as for the thermalperform<strong>an</strong>ce.Niall Carroll Page 61<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Artificial rains which mimicked individual rain events were applied over the test rig byme<strong>an</strong>s <strong>of</strong> a sprinkler; then run<strong>of</strong>f volumes were measured at one minute intervals usingmeasuring cylinders. <strong>The</strong> run<strong>of</strong>f from the green ro<strong>of</strong> <strong><strong>an</strong>d</strong> the perspex p<strong>an</strong>el was compared.Figure 39: Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong> with Artificial Rain EventFigure 39 <strong><strong>an</strong>d</strong> 40 show the green ro<strong>of</strong> test rig with the perspex sheetNiall Carroll Page 62<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Figure 40: Green Ro<strong>of</strong> Test Rig for Rainfall <strong>Run<strong>of</strong>f</strong> with SprinklerNiall Carroll Page 63<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


8 Results <strong><strong>an</strong>d</strong> Analysis<strong>The</strong> methodology for both thermal <strong><strong>an</strong>d</strong> rainwater run<strong>of</strong>f perform<strong>an</strong>ce was applied <strong><strong>an</strong>d</strong> resultswere obtained <strong><strong>an</strong>d</strong> <strong>an</strong>alysed. As mentioned previously, the thermal perform<strong>an</strong>ce results wereobtained using Labview Signal Express. <strong>The</strong> rainwater run<strong>of</strong>f results were obtainedm<strong>an</strong>ually.8.1 <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong>8.11 Test 1<strong>The</strong> first test was run for 3 days from the 2 nd till the 5 th <strong>of</strong> September – beginning at 1840hours <strong><strong>an</strong>d</strong> finishing at 2140 hours. Figure 41 shows the temperature distribution from variouspoints on the green ro<strong>of</strong>.Figure 41: Test 1 Green Ro<strong>of</strong> Test Rig Temperatures<strong>The</strong> white line indicates the under ro<strong>of</strong> temperature; red for the substrate temperature; greenfor the leaf temperature <strong><strong>an</strong>d</strong> blue for the ambient air temperature. As c<strong>an</strong> be seen from figure40, the peak temperature at the vegetation level is 34 o C <strong><strong>an</strong>d</strong> this occurs mid-afternoon on theNiall Carroll Page 64<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


second day <strong>of</strong> the experiment. <strong>The</strong> lowest temperature generally occurs above the green ro<strong>of</strong>– dropping to a low <strong>of</strong> around 5 – 10 o C on the second <strong><strong>an</strong>d</strong> third days.As would be expected, the highest temperatures generally occur at vegetation level; where thethermocouple is exposed to the sun but is sheltered from the wind. <strong>The</strong> substrate temperaturewould be expected to be lower, but a number <strong>of</strong> factors may explain this such as: the lowmoisture content (15 – 20 %) during the experiment; the shallow depth <strong>of</strong> substrate <strong><strong>an</strong>d</strong> ahigh content <strong>of</strong> crushed brick <strong><strong>an</strong>d</strong> clay shale <strong><strong>an</strong>d</strong> also the partially developed coverage <strong>of</strong> thesubstrate by the vegetation. Over time, as the vegetation layer further establishes, theimproved coverage would help to lower the substrates exposure to the sun, hence lowering itstemperature.8.12 Test 2<strong>The</strong> second test was run from the 8 th – 11 th <strong>of</strong> September – starting at 1840 hours <strong><strong>an</strong>d</strong>finishing at 0600 hours. <strong>The</strong> results c<strong>an</strong> be seen in figure 42.Figure 42: Test 2 Green Ro<strong>of</strong> Test Rig Temperatures<strong>The</strong> second test reflects the results <strong>of</strong> test 1 – showing that the peak daytime vegetation <strong><strong>an</strong>d</strong>substrate temperatures (25 – 26 o C) are generally higher th<strong>an</strong> the ambient air <strong><strong>an</strong>d</strong> under ro<strong>of</strong>Niall Carroll Page 65<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


temperatures. A time lag between the cooling <strong>of</strong> the sedum bl<strong>an</strong>ket <strong><strong>an</strong>d</strong> the ambient air <strong><strong>an</strong>d</strong>under ro<strong>of</strong> c<strong>an</strong> also be seen from figure 41.<strong>The</strong> moisture content for test 2 was also 15 – 20 %.8.13 Energy Bal<strong>an</strong>ceDue to the time constraints <strong>of</strong> the project, <strong>an</strong> energy bal<strong>an</strong>ce could not be carried out for tests1 <strong><strong>an</strong>d</strong> 2. <strong>The</strong> setup required to obtain the additional data for <strong>an</strong> accurate energy bal<strong>an</strong>ce (suchas incident solar radiation <strong><strong>an</strong>d</strong> wind speed above the test rig) were also beyond the scope/timeframe <strong>of</strong> this project.8.2 <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong><strong>The</strong> first artificial rain event was set for <strong>an</strong> intensity <strong>of</strong> 1 mm/min <strong><strong>an</strong>d</strong> the duration <strong>of</strong> this was20 minutes. <strong>The</strong>refore the total rainfall was 20 mm.Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong>25Rain/<strong>Run<strong>of</strong>f</strong> (mm)20151050Rainfall (mm)Green Ro<strong>of</strong><strong>Run<strong>of</strong>f</strong>PV P<strong>an</strong>el<strong>Run<strong>of</strong>f</strong>062481012141618202224262830Time (mins)Figure 43: Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> for 1 mm/min Rain EventAs c<strong>an</strong> be seen from figure 43, run<strong>of</strong>f occurs from the green ro<strong>of</strong> after 9 minutes – requiring9 mm <strong>of</strong> rainfall for run<strong>of</strong>f to occur. <strong>Run<strong>of</strong>f</strong> from the PV p<strong>an</strong>el occurs almost immediatelyNiall Carroll Page 66<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


with the artificial rain event. When the rain event stops the run<strong>of</strong>f from the PV p<strong>an</strong>el stopssoon afterwards (around 23 minutes), whereas run<strong>of</strong>f continues from the green ro<strong>of</strong>.<strong>The</strong> second artificial rain event was set for <strong>an</strong> intensity <strong>of</strong> 2 mm/min <strong><strong>an</strong>d</strong> the duration <strong>of</strong> thiswas 20 minutes. <strong>The</strong>refore the total rainfall was 40 mm.Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong>Rain/<strong>Run<strong>of</strong>f</strong> (mm)454035302520151050Rainfall (mm)Green Ro<strong>of</strong><strong>Run<strong>of</strong>f</strong>PV P<strong>an</strong>el<strong>Run<strong>of</strong>f</strong>024681012141618202224262830Time (mins)Figure 44: Green Ro<strong>of</strong> <strong><strong>an</strong>d</strong> PV P<strong>an</strong>el <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> for 2 mm/min Rain EventAs c<strong>an</strong> be seen from figure 44, run<strong>of</strong>f occurs from the green ro<strong>of</strong> after 6 minutes – requiring10 mm <strong>of</strong> rainfall for run<strong>of</strong>f to occur. <strong>Run<strong>of</strong>f</strong> from the PV p<strong>an</strong>el occurs almost immediatelywith the artificial rain event. When the rain event stops the run<strong>of</strong>f from the PV p<strong>an</strong>el stopssoon afterwards (around 25 minutes), whereas run<strong>of</strong>f continues from the green ro<strong>of</strong>.For both rainfall events, the initial moisture content <strong>of</strong> the substrate was 15 – 20%.Niall Carroll Page 67<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


9 Conclusions <strong><strong>an</strong>d</strong> Recommendations9.1 ConclusionsIn conclusion, it c<strong>an</strong> be seen the effect that the different layers <strong>of</strong> the green ro<strong>of</strong> have ontemperature. <strong>The</strong> vegetation <strong><strong>an</strong>d</strong> substrate <strong>of</strong> the sedum bl<strong>an</strong>ket absorb <strong><strong>an</strong>d</strong> dissipate heatallowing for cooler temperatures beneath the ro<strong>of</strong>. This results in higher temperatures at thesubstrate <strong><strong>an</strong>d</strong> vegetation level compared to the ambient air <strong><strong>an</strong>d</strong> under ro<strong>of</strong> temperatures.In terms <strong>of</strong> the run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> the green ro<strong>of</strong> in comparison with a perspex sheet (toreplicate a PV p<strong>an</strong>el), the sedum bl<strong>an</strong>ket delays <strong><strong>an</strong>d</strong> reduces the rainwater run<strong>of</strong>f. For arainfall intensity <strong>of</strong> 1 mm/min, 9 mm <strong>of</strong> rain is required to start run<strong>of</strong>f. For a rainfall intensity<strong>of</strong> 2 mm/min, 10 mm is required to start run<strong>of</strong>f.9.2 Recommendations<strong>The</strong> experimental scope <strong>of</strong> this project was limited by its timescale <strong><strong>an</strong>d</strong> the ability to obtain<strong><strong>an</strong>d</strong> set up the necessary equipment/apparatus within this period (<strong><strong>an</strong>d</strong> obtain/<strong>an</strong>alyse results).A study for a longer period <strong>of</strong> time would be required to obtain <strong>an</strong>y conclusive results – butthe results from this project show <strong>an</strong> example <strong>of</strong> the perform<strong>an</strong>ce <strong>of</strong> extensive green ro<strong>of</strong>s.Research into the thermal perform<strong>an</strong>ce <strong>of</strong> green ro<strong>of</strong>s is well established. However, thecomparison <strong>of</strong> rainwater run<strong>of</strong>f between green ro<strong>of</strong>s <strong><strong>an</strong>d</strong> PV p<strong>an</strong>els is <strong>an</strong> area <strong>of</strong> researchwhich could further be explored. It is established that the cooling effect <strong>of</strong> green ro<strong>of</strong>s help toimprove PV efficiency, but the evidence from this project suggests that green ro<strong>of</strong>s wouldalso <strong>of</strong>fset the ‘poorer’ run<strong>of</strong>f perform<strong>an</strong>ce <strong>of</strong> PV p<strong>an</strong>els – <strong>an</strong> additional benefit. Furtherresearch into this on a larger scale, over a longer period <strong>of</strong> time would provide moreconclusive results.Niall Carroll Page 68<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


References1. Sailor D.J. ‘A Green Ro<strong>of</strong> Model for Building Energy Simulation Programs.’ Portl<strong><strong>an</strong>d</strong>State University. 2008.2. Richardson, V. ‘Grass Roots Uprising: Green Ro<strong>of</strong>s.’ RIBA Journal, 108 (12). 2001.3. Newton. J. ‘Building Greener: Guid<strong>an</strong>ce on the use <strong>of</strong> Green Ro<strong>of</strong>s, Green Walls <strong><strong>an</strong>d</strong>Complementary Features on Buildings.’ CIRIA. 2007.4. www.metropolismag.com/story/20060911/green-ro<strong>of</strong>-timeline5. www.igra-world.com6. www.livingro<strong>of</strong>s.org7. Harrison H W. ‘Ro<strong>of</strong>s <strong><strong>an</strong>d</strong> Ro<strong>of</strong>ing.’ Building Research Establishment. 2000.8. Gr<strong>an</strong>t G. Englebeck L. <strong><strong>an</strong>d</strong> Nicholson B. ‘Green Ro<strong>of</strong>s: their existing status <strong><strong>an</strong>d</strong>potential for conserving biodiversity in urb<strong>an</strong> areas.’ English Nature ResearchReports 498. 2003.9. Brownlie, S. ‘Ro<strong>of</strong> Gardens – A Review.’ Urb<strong>an</strong> Wildlife Now, No. 7.Peterborough:Nature Conserv<strong>an</strong>cy Council. 1990.10. Johnston, J. ‘Ro<strong>of</strong>top Wildlife.’ Enact, 3. 1995.11. Johnston, J. & Newton, J. ‘Building Green: A Guide to using Pl<strong>an</strong>ts on Ro<strong>of</strong>s, Walls<strong><strong>an</strong>d</strong> Pavements.’ London Ecology Unit. 1993.12. Osmundson, T. ‘Ro<strong>of</strong> Gardens: History, Design <strong><strong>an</strong>d</strong> Construction.’ New York:Norton & Co. 1999.13. Wells, M. ‘Rarity on the Ro<strong>of</strong>? Finding Partial Solutions to Challenges <strong>of</strong> BrownfieldSite Redevelopment.’ In Practice, 33. 2001.14. Ferguson, B. ‘Introduction to Storm Water: Concept, Purpose, Design.’ 1998.15. www.thegreenro<strong>of</strong>centre.co.uk/green_ro<strong>of</strong>s/benifits_<strong>of</strong>_green_ro<strong>of</strong>s16. www.livingro<strong>of</strong>s.org/stormrun<strong>of</strong>f.htmlNiall Carroll Page 69<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


17. www.ukgbc.org18. www.epa.gov19. S<strong>an</strong>tamouris, M. ‘Energy <strong><strong>an</strong>d</strong> Climate in the Urb<strong>an</strong> Built Environment.’ James <strong><strong>an</strong>d</strong>James. 2001.20. Gaffin, S. ‘Energy Bal<strong>an</strong>ce Applied to a Comparison <strong>of</strong> White <strong><strong>an</strong>d</strong> Green Ro<strong>of</strong>Cooling Efficiency.’ Centre for Climate Research, Columbia University & Penn StateCentre for Green Ro<strong>of</strong> Research, Penn State University, USA. 2005.21. K<strong>an</strong>g & Hu<strong>an</strong>g. ‘Experimental Study <strong>of</strong> the Sound Insulation <strong>of</strong> Semi-extensiveGreen Ro<strong>of</strong>s.’ 2009.22. Knaupp, W. Staiss, F. ‘Photovoltaik: Ein Leitfaden fur Anwender.’Fachinformationsentrum Karlsruhe. 2000.23. FFL. ‘Guidelines for Pl<strong>an</strong>ning, Execution <strong><strong>an</strong>d</strong> Upkeep <strong>of</strong> Green Ro<strong>of</strong> Sites.’ ResearchAssociation for L<strong><strong>an</strong>d</strong>scape Development <strong><strong>an</strong>d</strong> L<strong><strong>an</strong>d</strong>scape Construction. 2002.24. Clark, C. Adriaens, P. Talbot F.B. ‘Green Ro<strong>of</strong> Valuation: A Probabilistic EconomicAnalysis <strong>of</strong> Environmental Benefits.’ Environmental Science <strong><strong>an</strong>d</strong> Technology, 42.2008.25. Wong, N.H. Chen, Y. Ong, C.L. Sia, A. ‘Investigation <strong>of</strong> <strong>The</strong>rmal Benefits <strong>of</strong>Ro<strong>of</strong>top Garden in the Tropical Environment’. Building <strong><strong>an</strong>d</strong> Environment, 38. 2003.26. <strong>The</strong>odosiou, T.G. ‘Summer Period Analysis <strong>of</strong> the <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> a Pl<strong>an</strong>ted Ro<strong>of</strong> as aPassive Cooling Technique.’ Energy <strong><strong>an</strong>d</strong> Buildings, 35. 2003.27. Barrio, E.P.D. ‘Analysis <strong>of</strong> the Green Ro<strong>of</strong>s Cooling Potential in Buildings.’ Energy<strong><strong>an</strong>d</strong> Buildings, 27.1998.28. Takakura, T. Kitade, S. Goto, E. ‘Cooling Effect <strong>of</strong> Greenery Cover over a Building.’Energy <strong><strong>an</strong>d</strong> Buildings, 31. 2000.29. Onmura, S. Matsumoto, M. Hokoi, S. ‘Study on Evaporative Cooling Effect <strong>of</strong> Ro<strong>of</strong>Lawn Gardens.’ Energy <strong><strong>an</strong>d</strong> Buildings, 33. 2001.30. Curtis, O.F. ‘Leaf Temperatures <strong><strong>an</strong>d</strong> the Cooling <strong>of</strong> Leaves by Radiation.’ Pl<strong>an</strong>tPhysiology, 11. 1936.Niall Carroll Page 70<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


31. Mellor, R.S. Salisbury, F.B. Raschke, K. ‘Leaf Temperatures in ControlledEnvironments.’ Pl<strong>an</strong>ta, 61. 1964.32. FiBRE - Findings in Built <strong><strong>an</strong>d</strong> Rural Environments. ‘C<strong>an</strong> Greenery Make CommercialBuildings More Green?’ Cambridge University. 2007.33. Washington State University. ‘Energy Efficiency Factsheet - Reflective Ro<strong>of</strong>Coatings.’ 1993.34. Lui, K. Minor, J. ‘<strong>Perform<strong>an</strong>ce</strong> Evaluation <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong>.’ GreeningRo<strong>of</strong>tops for Sustainable Communities. Washington, DC. 2005.35. L1A. ‘Approved Document L1A: Conservation <strong>of</strong> Fuel <strong><strong>an</strong>d</strong> Power (NewDwellings/Buildings other th<strong>an</strong> Dwellings).’ 2006.36. Niachou et al. ‘Analysis <strong>of</strong> the Green Ro<strong>of</strong> <strong>The</strong>rmal Properties <strong><strong>an</strong>d</strong> Investigation <strong>of</strong> itsEnergy <strong>Perform<strong>an</strong>ce</strong>.’ Energy <strong><strong>an</strong>d</strong> Buildings, 33. 2001.37. Lazzarin, R.M. Castellotti, F. Busato, F. ‘Experimental Measurements <strong><strong>an</strong>d</strong> NumericalModelling <strong>of</strong> a Green Ro<strong>of</strong>.’ Energy <strong><strong>an</strong>d</strong> Buildings, 37. 2005.38. Feng, C. Meng, Q. Zh<strong>an</strong>g, Y. ‘<strong>The</strong>oretical <strong><strong>an</strong>d</strong> Experimental Analysis <strong>of</strong> the EnergyBal<strong>an</strong>ce <strong>of</strong> <strong>Extensive</strong> Green Ro<strong>of</strong>s.’ BEEL, South China University <strong>of</strong> Technology.2009.39. Berndtsson, J.C. ‘Green Ro<strong>of</strong> <strong>Perform<strong>an</strong>ce</strong> Towards M<strong>an</strong>agement <strong>of</strong> <strong>Run<strong>of</strong>f</strong> WaterQu<strong>an</strong>tity <strong><strong>an</strong>d</strong> Quality: A Review.’ Lund University. 2009.40. Carter, T.L. Rasmussen, T.C. ‘Hydrologic Behaviour <strong>of</strong> Vegetated Ro<strong>of</strong>s.’ J. Am.Water Resources Association. 42. 2006.41. Simmons, M.T. Gardiner, B. Windhager, S. Tinsley, J. ‘Green Ro<strong>of</strong>s are not CreatedEqual: <strong>The</strong> Hydrologic <strong><strong>an</strong>d</strong> <strong>The</strong>rmal <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> Six Different <strong>Extensive</strong> GreenRo<strong>of</strong>s <strong><strong>an</strong>d</strong> Reflective <strong><strong>an</strong>d</strong> Non-reflective Ro<strong>of</strong>s in a Sub-tropical Climate.’ Urb<strong>an</strong>Ecosystems, 11. 2008.42. Bengtsson, L. Grahn, L. Olsson, J. ‘Hydrological Function <strong>of</strong> a Thin <strong>Extensive</strong> GreenRo<strong>of</strong> in Southern Sweden.’ Nordic Hydrol, 36. 2005.43. Getter, K.L. Rowe, D.B. Andresen, J.A. ‘Qu<strong>an</strong>tifying the Effect <strong>of</strong> Slope on<strong>Extensive</strong> Green Ro<strong>of</strong> Stormwater Retention.’ Ecological Engineer. 2007.44. www.bauder.co.uk/green-ro<strong>of</strong>-l<strong><strong>an</strong>d</strong>scapingNiall Carroll Page 71<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


45. Meng, Q. Zh<strong>an</strong>g, Y. Zh<strong>an</strong>g, L. ‘Measurement <strong>of</strong> the Equivalent <strong>The</strong>rmal Resist<strong>an</strong>ce<strong>of</strong> Ro<strong>of</strong>top Lawns in a Hot-Climate Wind Tunnel.’ Journal <strong>of</strong> Harbin Institute <strong>of</strong>Technology, 13. 2006.46. Feng, Y. Chen, Q. ‘<strong>The</strong>rmal Process <strong>of</strong> Ro<strong>of</strong> Pl<strong>an</strong>ts.’ Acta Energiae Solaris Sinica,20. 1999.Niall Carroll Page 72<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Appendix 1Niall Carroll Page 73<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System


Niall Carroll Page 74<strong>The</strong> <strong>The</strong>rmal <strong><strong>an</strong>d</strong> <strong>Rainwater</strong> <strong>Run<strong>of</strong>f</strong> <strong>Perform<strong>an</strong>ce</strong> <strong>of</strong> <strong>an</strong> <strong>Extensive</strong> Green Ro<strong>of</strong> System

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!