12.07.2015 Views

Expression of a Plant Cell Wall Invertase in Roots of Arabidopsis ...

Expression of a Plant Cell Wall Invertase in Roots of Arabidopsis ...

Expression of a Plant Cell Wall Invertase in Roots of Arabidopsis ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Expression</strong> <strong>of</strong> a <strong>Cell</strong> <strong>Wall</strong> <strong>Invertase</strong> <strong>in</strong> <strong>Roots</strong> Affects Flower<strong>in</strong>g and Biomass <strong>Plant</strong> Biology 7 (2005) 471Fig.1 Construct for CIN1 expression <strong>in</strong> roots.Organization <strong>of</strong> the T-DNA region <strong>of</strong> the planttransformation vector pBI121 (Clontech) compris<strong>in</strong>gthe CIN1 cod<strong>in</strong>g sequence beh<strong>in</strong>d the1452-bp pyk10 promoter fragment C (AccessionAJ292756). An updated version <strong>of</strong> theCIN1 sequence was reported to GenBank (AccessionX81792).When we first grew the CIN1-express<strong>in</strong>g l<strong>in</strong>es on selective mediumunder optimal conditions on plates, no significant differencesto vector only transgenic controls (with Kanamyc<strong>in</strong> selection)or wild-type plants (without selection) were visible.Also, when grown on soil until 10 days after germ<strong>in</strong>ation(DAG) the transgenic l<strong>in</strong>es were <strong>in</strong>dist<strong>in</strong>guishable from wildtype. In contrast, from 10 DAG on, ppyk10C::CIN1 plants displayedenhanced overall growth with respect to shoot height,shoot branch<strong>in</strong>g, and <strong>in</strong>florescence number (Fig. 3A). Furthermore,while wild-type plants started flower<strong>in</strong>g around 24DAG, the transgenic l<strong>in</strong>es displayed an early flower<strong>in</strong>g phenotype,develop<strong>in</strong>g the primary <strong>in</strong>florescence 4 to 6 days earlierthan wild type (average 3 weeks after germ<strong>in</strong>ation). After 4weeks, ppyk10C::CIN1 plants were taller and displayed moresecondary shoots (Fig. 3A). To analyze the effects <strong>of</strong> CIN1 expression<strong>in</strong> more detail, we switched to hydroponic growthconditions (Gibeaut et al., 1997). In this hydroponic system,we could observe comparable enhanced development <strong>of</strong> theCIN1-express<strong>in</strong>g l<strong>in</strong>es as seen for soil grown plants (Fig. 3B,Table 1). In comparison to wild type, transgenic l<strong>in</strong>es developedshoots and flowers earlier and displayed a higher numberand <strong>in</strong>creased length <strong>of</strong> secondary shoots with more flowersand siliques (Table 1).CIN1-express<strong>in</strong>g plants exhibit slightly enhancedcell wall <strong>in</strong>vertase activity <strong>in</strong> rootsFig. 2 RT-PCR analyses show<strong>in</strong>g CIN1 expression <strong>in</strong> roots <strong>of</strong> transgenicl<strong>in</strong>es. (A) A specific 719-bp PCR product can be amplified from transgenic<strong>Arabidopsis</strong> l<strong>in</strong>es (ri5: lane 1, ri7: lane 2, ri10: lane 3) express<strong>in</strong>gthe heterologous <strong>in</strong>vertase gene CIN1 under control <strong>of</strong> the pyk10 C promoterbut not from wild-type plants (lane 4). Act<strong>in</strong>1 control reactionsyield<strong>in</strong>g a specific 391-bp PCR product are shown below each CIN1 reaction.All reactions were run with 30 (upper panel) and 35 PCR cycles(lower panel) to avoid saturat<strong>in</strong>g PCR conditions. (B) NoCIN1 expressioncan be detected <strong>in</strong> transgenic l<strong>in</strong>es ri5 (lanes 6 and 8) and ri7(lanes 7 and 9), which showed highest CIN1 expression <strong>in</strong> roots, withRNA from total aboveground parts (17 DAG; lanes 6 and 7) or from<strong>in</strong>florescences (29 DAG; lanes 8 and 9). Act<strong>in</strong>1 control reactions areshown below each CIN1 reaction.<strong>Expression</strong> <strong>of</strong> CIN1 <strong>in</strong> roots leads to early flower<strong>in</strong>gFor the further analyses we chose l<strong>in</strong>es ri5, ri7, and ri10, represent<strong>in</strong>gstrong, medium, and weak CIN1-express<strong>in</strong>g l<strong>in</strong>es(Fig. 2A). In the hydroponic system, we determ<strong>in</strong>ed the total<strong>in</strong>vertase activity <strong>of</strong> cell wall extracts from roots and found,for the transgenic l<strong>in</strong>es, a slight but statistically significant elevation<strong>of</strong> up to 16% (Fig. 4). However, the overall concentrations<strong>of</strong> soluble sugars (sucrose, glucose, fructose) and starch<strong>in</strong> roots <strong>of</strong> these l<strong>in</strong>es were not altered (data not shown).<strong>Expression</strong> <strong>of</strong> CIN1 <strong>in</strong> roots leads to an <strong>in</strong>crease<strong>in</strong> root mass as well as whole plant biomassIn root cross-sections, the CIN1-express<strong>in</strong>g l<strong>in</strong>es did not showchanges <strong>in</strong> cell size or cell number (data not shown). However,transgenic l<strong>in</strong>es differed from wild type <strong>in</strong> root length andeven more pronounced <strong>in</strong> secondary root number (Fig. 3B).While <strong>in</strong> the hydroponic system wild-type plants showed anaverage number <strong>of</strong> 19.6 2.1 first order secondary roots (meanvalue <strong>of</strong> 8 s<strong>in</strong>gle plants) with a low degree <strong>of</strong> higher order sideroots, transgenic ri5, ri7, and ri10 plants developed 27.0 4.6,34.0 3.9, and 28.8 3.7 secondary roots (mean values <strong>of</strong> 5s<strong>in</strong>gle plants each), respectively, with a much higher degree<strong>of</strong> higher order side roots. S<strong>in</strong>ce these higher order side rootswere extremely difficult to count, we wished to quantify thevisible differences <strong>in</strong> the transgenic l<strong>in</strong>es by determ<strong>in</strong><strong>in</strong>g root


472<strong>Plant</strong> Biology 7 (2005)C. von Schwe<strong>in</strong>ichen and M. BüttnerFig. 3 Phenotypic changes <strong>of</strong> transgenic CIN1-express<strong>in</strong>g l<strong>in</strong>es. (A)Four-week-old transgenic l<strong>in</strong>es (ri3, ri5, ri7, ri10) express<strong>in</strong>g the heterologous<strong>in</strong>vertase gene CIN1 under the control <strong>of</strong> the pyk10C-promotergrown on soil, show<strong>in</strong>g enhanced development <strong>of</strong> above-ground parts<strong>in</strong>clud<strong>in</strong>g <strong>in</strong>creased shoot branch<strong>in</strong>g and early flower<strong>in</strong>g when comparedto wild-type control plants. (B) Four-week-old transgenic l<strong>in</strong>es(ri5, ri7) grown hydroponically, show<strong>in</strong>g comparable <strong>in</strong>crease <strong>in</strong> shootbranch<strong>in</strong>g and early flower<strong>in</strong>g. In addition, enhanced root growth androot branch<strong>in</strong>g can be seen.Fig. 4 Total <strong>in</strong>vertase activity <strong>of</strong> cell wall extracts from roots. Theppyk10C::CIN1 l<strong>in</strong>es (ri5, ri7, ri10) were grown hydroponically and analyzedfor apoplastic <strong>in</strong>vertase activity us<strong>in</strong>g cell wall extracts fromroots. Data represent mean values <strong>of</strong> three <strong>in</strong>dependent measurements(bars represent the standard error SE). Transgenic l<strong>in</strong>es showslightly enhanced <strong>in</strong>vertase activity over the wild-type control.mass. We measured a clear <strong>in</strong>crease <strong>in</strong> fresh weight <strong>of</strong> up to60% as compared to wild-type plants (Fig. 5). Interest<strong>in</strong>gly,not only the root weight was significantly higher but also theshoot fresh weight showed a similar <strong>in</strong>crease (Fig. 5), result<strong>in</strong>gfrom an <strong>in</strong>crease <strong>in</strong> secondary shoot number and heightFig. 5 Biomass determ<strong>in</strong>ation <strong>of</strong> roots, shoots, and whole plants.Transgenic ppyk10C::CIN1 l<strong>in</strong>es (ri5, ri7, ri10) were grown hydroponicallyand analyzed for their fresh weight <strong>of</strong> roots, shoots, and wholeplants. Data represent mean values <strong>of</strong> ten <strong>in</strong>dependent measurements(bars represent the standard error SE). Transgenic l<strong>in</strong>es have 20±60%more biomass than the wild type.(Table 1). The relative ga<strong>in</strong> <strong>in</strong> fresh weight <strong>in</strong> the analyzedtransgenic l<strong>in</strong>es corresponds with the CIN1 expression levelsdeterm<strong>in</strong>ed by semi-quantitative RT-PCR (Fig. 2A), <strong>in</strong>dicat<strong>in</strong>ga direct effect <strong>of</strong> <strong>in</strong>vertase overexpression and root development.The same <strong>in</strong>crease could be measured after freeze-dry<strong>in</strong>gthe root or whole plant material and measur<strong>in</strong>g the dryweight (data not shown), <strong>in</strong>dicat<strong>in</strong>g that the <strong>in</strong>crease <strong>in</strong> rootand whole plant mass is not merely due to elevated water contentbut reflects <strong>in</strong>creased biomass.


<strong>Expression</strong> <strong>of</strong> a <strong>Cell</strong> <strong>Wall</strong> <strong>Invertase</strong> <strong>in</strong> <strong>Roots</strong> Affects Flower<strong>in</strong>g and Biomass <strong>Plant</strong> Biology 7 (2005) 473Table 1 Enhanced development <strong>of</strong> transgenic <strong>Arabidopsis</strong> plants express<strong>in</strong>g the cell wall <strong>in</strong>vertase CIN1 gene under control <strong>of</strong> the pyk10C promoter<strong>in</strong> comparison to wild-type plants. Mean values standard errors from at least n<strong>in</strong>e <strong>in</strong>dependent plants per l<strong>in</strong>e are shown. Probability valuesas determ<strong>in</strong>ed by Students t-tests are <strong>in</strong>dicated by asterisks: * p < 0.05, ** p < 0.01L<strong>in</strong>e 21 DAG 24 DAG 26 DAG 27 DAG 28 DAG 29 DAGNumber <strong>of</strong>shootsShoot length(mm)Total number<strong>of</strong> flowersTotal number<strong>of</strong> siliquesWT 0.25 0.13 0.83 0.11 2.42 0.63 4.00 0.77 6.08 0.92 7.08 1.04ri2 0.75 0.16* 2.63 0.75* 6.38 1.53* 8.00 1.70* 9.88 1.44* 10.88 1.19*ri3 0.56 0.18 1.78 0.64 5.44 1.28* 7.56 1.31* 9.56 1.02* 11.33 0.76**ri5 0.56 0.18 1.89 0.54 5.11 0.82** 7.44 1.02* 9.89 0.82** 11.33 1.01*ri7 0.70 0.21 2.70 0.78* 6.00 1.03** 7.30 1.19* 8.70 1.18 10.30 1.18ri10 0.78 0.32 2.56 1.08 3.67 1.15 5.00 1.46 6.67 1.60 7.67 1.76WT 0.42 0.26 4.08 1.59 24.75 7.88 47.08 12.84 79.00 17.30 112.42 18.80ri2 8.63 4.31 45.63 17.26* 104.00 26.34* 134.63 28.43* 169.38 28.90* 197.13 26.77*ri3 1.44 0.71 16.89 6.69 66.44 17.60* 103.00 20.27* 147.33 20.70* 189.11 19.58**ri5 4.33 2.71 29.56 11.81 76.44 17.98* 116.11 18.66** 157.44 17.85** 187.56 15.77**ri7 8.70 4.35 50.10 18.33 104.30 27.34* 138.00 31.10* 167.80 31.88* 196.80 30.36*ri10 6.78 5.69 23.89 15.55 53.11 23.06 74.67 26.49 100.11 30.53 123.44 32.65WT 0.00 0.00 0.00 0.00 0.33 0.26 0.92 0.48 2.42 0.91 4.58 1.42ri2 0.00 0.00 1.13 0.64 4.00 1.61 8.13 3.29 13.25 5.02 22.63 7.36*ri3 0.00 0.00 0.22 0.22 1.44 0.99 3.33 1.64 7.89 3.17 17.11 6.43ri5 0.00 0.00 0.78 0.46 2.67 1.19 4.89 1.80 11.33 3.31* 18.67 5.26*ri7 0.00 0.00 1.00 0.63 4.90 1.82 * 8.60 3.43* 16.80 5.82* 27.40 8.62*ri10 0.22 0.22 1.00 0.88 4.11 3.20 6.89 4.64 11.00 6.59 15.78 8.93WT 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.08 0.67 0.36 1.33 0.54ri2 0.00 0.00 0.50 0.38 1.75 0.90 3.00 1.32 5.75 2.14* 10.38 4.06ri3 0.00 0.00 0.00 0.00 0.33 0.33 0.67 0.47 2.11 1.40 4.56 1.96ri5 0.00 0.00 0.22 0.22 0.89 0.51 1.89 0.93 3.78 1.53 6.33 2.14*ri7 0.00 0.00 0.20 0.20 2.00 0.94 3.80 1.43* 6.60 2.41* 12.10 4.95ri10 0.00 0.00 0.57 0.57 2.43 1.97 4.43 3.66 6.29 4.62 10.29 6.78Discussion<strong>Cell</strong> wall <strong>in</strong>vertases seem to play an important role <strong>in</strong> determ<strong>in</strong><strong>in</strong>gs<strong>in</strong>k strength by <strong>in</strong>creas<strong>in</strong>g the sucrose gradient betweenthe phloem and the s<strong>in</strong>k apoplast. In order to modulateassimilate partition<strong>in</strong>g and to enhance s<strong>in</strong>k strength weexpressed a plant cell wall <strong>in</strong>vertase under the control <strong>of</strong> thepyk10C promoter fragment. This truncated promoter drivesa characteristic pattern <strong>of</strong> GUS expression <strong>in</strong> transgenic <strong>Arabidopsis</strong>plants dur<strong>in</strong>g plant development, result<strong>in</strong>g <strong>in</strong> rootspecificity <strong>in</strong> advanced developmental stages (Nitz et al.,2001). When we used this truncated promoter to drive CIN1expression, transgenic ppyk10C::CIN1 plants showed apparentchanges with respect to their flower<strong>in</strong>g time, morphology, andbiomass. Most studies address<strong>in</strong>g related questions so far haveused a yeast cell wall <strong>in</strong>vertase with a signal peptide for apoplastictarget<strong>in</strong>g (von Schaewen et al., 1990; Sonnewald et al.,1991; Bussis et al., 1997; Sonnewald et al., 1997; Weber et al.,1998; Neubohn et al., 2000; Zuther et al., 2004; Heyer et al.,2004). However, when we expressed the same yeast cell wall<strong>in</strong>vertase (k<strong>in</strong>dly provided by Pr<strong>of</strong>. U. Sonnewald) under control<strong>of</strong> the pyk10C promoter, we could not observe any effectscomparable with those found for the ppyk10C::CIN1 plants, asdescribed below. Furthermore, we used a heterologous enzymefrom a different plant species (CIN1 from C. rubrum) tocircumvent possible effects <strong>of</strong> endogenous <strong>Arabidopsis</strong> <strong>in</strong>vertase<strong>in</strong>hibitors (Gre<strong>in</strong>er et al., 1998), s<strong>in</strong>ce recent studies revealedonly limited sequence conservation between <strong>in</strong>vertase<strong>in</strong>hibitors from different plant species (Rausch and Gre<strong>in</strong>er,2004).When we exam<strong>in</strong>ed the ppyk10C::CIN1 plants <strong>in</strong> detail, wefirst found changes <strong>in</strong> flower<strong>in</strong>g time. Flower<strong>in</strong>g started 4 to6 days earlier than <strong>in</strong> wild-type control plants and a higher<strong>in</strong>florescence number developed due to more secondaryshoots. A similar phenotype was observed when a yeast cellwall <strong>in</strong>vertase gene (ScSUC2) was expressed under control <strong>of</strong>the meristem-specific KnAT1 gene promoter (Heyer et al.,2004). The pKnAT1::ScSUC2 plants develop more siliques and,<strong>in</strong> turn, a higher seed yield result<strong>in</strong>g from enhanced branch<strong>in</strong>g<strong>of</strong> the secondary shoots (axillary <strong>in</strong>florescences). While theppyk10C::CIN1 plants <strong>in</strong> our study did not show enhancedbranch<strong>in</strong>g <strong>of</strong> secondary shoots, they developed a higher number<strong>of</strong> secondary shoots and thus more siliques (Table 1).As an additional phenotypic change <strong>in</strong> the ppyk10C::CIN1plants, we observed an <strong>in</strong>crease <strong>in</strong> root fresh and dry weightresult<strong>in</strong>g from longer roots and a higher number <strong>of</strong> secondaryroots. Furthermore, transgenic plants developed more andfaster-grow<strong>in</strong>g secondary shoots lead<strong>in</strong>g to a higher freshweight as compared to wild-type control plants. These effectson aerial parts, where the pyk10C promoter is not active, maybe more <strong>in</strong>direct. Possibly, the <strong>in</strong>crease <strong>in</strong> root mass, and consequently<strong>in</strong> root surface, allows more effective absorption <strong>of</strong>


474<strong>Plant</strong> Biology 7 (2005)C. von Schwe<strong>in</strong>ichen and M. Büttnernutrients from the medium, result<strong>in</strong>g <strong>in</strong> enhanced overall development.Although we found a slight <strong>in</strong>crease <strong>in</strong> total cell wall <strong>in</strong>vertaseactivity, we could not measure significant differences <strong>in</strong> theconcentrations <strong>of</strong> soluble sugars <strong>in</strong> roots <strong>of</strong> the transgenicplants <strong>in</strong> comparison to wild type, suggest<strong>in</strong>g that the observedphenotypes do not result from changes <strong>in</strong> the steadystatelevels <strong>of</strong> these sugars. However, m<strong>in</strong>or changes <strong>in</strong> theratio <strong>of</strong> soluble sugars might lead to a short temporal or local<strong>in</strong>crease <strong>in</strong> the apoplastic hexose concentration, result<strong>in</strong>g <strong>in</strong>higher cell division activity and, <strong>in</strong> turn, to enhanced rootlength and root branch<strong>in</strong>g. Such prolonged cell division wasfound <strong>in</strong> large-seeded V. faba genotypes, where prolongedcell wall <strong>in</strong>vertase activity <strong>in</strong> the seed coat and the result<strong>in</strong>ghigh hexose conditions, f<strong>in</strong>ally lead to an <strong>in</strong>creased cell number<strong>in</strong> the embryo (Weber et al., 1996). This idea is further supportedby the f<strong>in</strong>d<strong>in</strong>g that CIN1 expression also shows similareffects when driven by a different s<strong>in</strong>k-specific promoter (vonSchwe<strong>in</strong>ichen, unpublished).The parallel overexpression <strong>of</strong> a monosaccharide transporter(AtSTP6; Scholz-Starke et al., 2003) under control <strong>of</strong> the samepromoter did not further affect the observed phenotypes <strong>of</strong>the ppyk10C::CIN1 plants (data not shown), suggest<strong>in</strong>g that <strong>in</strong>roots such a transporter is constitutively expressed and thatroot cells always have a high capacity to take up hexoses. SuchAtSTPs have already been identified <strong>in</strong> <strong>Arabidopsis</strong> roots(AtSTP1: Sauer et al., 1990; Sherson et al., 2000; AtSTP4: Truernitet al., 1996; AtSTP13: Büttner, unpublished).Taken together, the presented data suggest that the s<strong>in</strong>k capacityto take up monosaccharides is not limited and that thedecision whether s<strong>in</strong>ks are provided with sucrose or hexosesis regulated by the activity <strong>of</strong> cell wall <strong>in</strong>vertases. Therefore, itis possible to modulate carbohydrate metabolism by ectopicexpression <strong>of</strong> cell wall <strong>in</strong>vertases and thereby <strong>in</strong>fluence s<strong>in</strong>korgan size. Future experiments will be directed towards manipulat<strong>in</strong>gs<strong>in</strong>k organ size <strong>in</strong> crop plants.AcknowledgementsThis work was supported by the Deutsche Forschungsgeme<strong>in</strong>schaft(grant Bu 973/3). We thank Norbert Sauer for his cont<strong>in</strong>uoussupport and for helpful discussions. We also thank Pr<strong>of</strong>.T. Roitsch for the CrCIN1 cDNA clone and Pr<strong>of</strong>. F. Grundler forthe pyk10 promoter clone.ReferencesBalibrea Lara, M. E., Gonzalez Garcia, M. C., Fatima, T., Ehness, R., Lee,T. K., Proels, R., Tanner, W., and Roitsch, T. (2004) Extracellular <strong>in</strong>vertaseis an essential component <strong>of</strong> cytok<strong>in</strong><strong>in</strong>-mediated delay <strong>of</strong>senescence. <strong>Plant</strong> <strong>Cell</strong> 16, 1276±1287.Bürkle, L., Hibberd, J. M., Quick, W. P., Kühn, C., Hirner, B., and Frommer,W. B. (1998) The H + -sucrose cotransporter NtSUT1 is essentialfor sugar export from tobacco leaves. <strong>Plant</strong> Physiology 118, 59± 68.Bussis, D., He<strong>in</strong>eke, D., Sonnewald, U., Willmitzer, L., Raschke, K., andHeldt, H. W. (1997) Solute accumulation and decreased photosynthesis<strong>in</strong> leaves <strong>of</strong> potato plants express<strong>in</strong>g yeast-derived <strong>in</strong>vertaseeither <strong>in</strong> the apoplast, vacuole or cytosol. <strong>Plant</strong>a 202, 126 ±136.Cheng, W. H., Taliercio, E. W., and Chourey, P. S. (1996) The m<strong>in</strong>iature1seed locus <strong>of</strong> maize encodes a cell wall <strong>in</strong>vertase requiredfor normal development <strong>of</strong> endosperm and maternal cells <strong>in</strong> thepedicel. <strong>Plant</strong> <strong>Cell</strong> 8, 971 ±983.Cho, J. I., Lee, S. K., Ko, S., Kim, H. K., Jun, S. H., Lee, Y. H., Bhoo, S. H.,Lee, K. W., An, G., Hahn, T. R., and Jeon, J. S. (2005) Molecular clon<strong>in</strong>gand expression analysis <strong>of</strong> the cell-wall <strong>in</strong>vertase gene family<strong>in</strong> rice (Oryza sativa L.). <strong>Plant</strong> <strong>Cell</strong> Reports 24, 225±236.Clough, S. J. and Bent, A. F. (1998) Floral dip: a simplified method forAgrobacterium-mediated transformation <strong>of</strong> <strong>Arabidopsis</strong> thaliana.The <strong>Plant</strong> Journal 16, 735± 743.Gibeaut, D. M., Hulett, J., Cramer, G. R., and Seemann, J. R. (1997)Maximal biomass <strong>of</strong> <strong>Arabidopsis</strong> thaliana us<strong>in</strong>g a simple, lowma<strong>in</strong>tenancehydroponic method and favorable environmentalconditions. <strong>Plant</strong> Physiology 115, 317 ±319.Dick<strong>in</strong>son, C. C., Altabella, T., and Chrispeels, M. J. (1991) Slowgrowthphenotype <strong>of</strong> transgenic tomato express<strong>in</strong>g apoplasmic <strong>in</strong>vertase.<strong>Plant</strong> Physiology 95, 420 ± 425.Ehness, R. and Roitsch, T. (1997) Co-ord<strong>in</strong>ated <strong>in</strong>duction <strong>of</strong> mRNAsfor extracellular <strong>in</strong>vertase and a glucose transporter <strong>in</strong> Chenopodiumrubrum by cytok<strong>in</strong><strong>in</strong>s. The <strong>Plant</strong> Journal 11, 539± 548.Eschrich, W. (1989) Phloem unload<strong>in</strong>g <strong>of</strong> photoassimilates. In Transport<strong>of</strong> Photoassimilates (Baker, D. A. and Milburn, J. A., eds.), NewYork: Longman Scientific and Technical, pp. 206±263.Fotopoulos, V., Gilbert, M. J., Pittman, J. K., Marvier, A. C., Buchanan, A.J., Sauer, N., Hall, J. L., and Williams, L. E. (2003) The monosaccharidetransporter gene, AtSTP4, and the cell-wall <strong>in</strong>vertase, Atbetafruct1,are <strong>in</strong>duced <strong>in</strong> <strong>Arabidopsis</strong> dur<strong>in</strong>g <strong>in</strong>fection with the fungalbiotroph Erysiphe cichoracearum. <strong>Plant</strong> Physiology 132, 821 ±829.Fridman, E. and Zamir, D. (2003) Functional divergence <strong>of</strong> a syntenic<strong>in</strong>vertase gene family <strong>in</strong> tomato, potato, and <strong>Arabidopsis</strong>. <strong>Plant</strong>Physiology 131, 603 ± 609.Godt, D. E. and Roitsch, T. (1997). Regulation and tissue-specific distribution<strong>of</strong> mRNAs for three extracellular <strong>in</strong>vertase isoenzymes <strong>of</strong>tomato suggests an important function <strong>in</strong> establish<strong>in</strong>g and ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>gs<strong>in</strong>k metabolism. <strong>Plant</strong> Physiology 115, 273±282.Goetz, M., Godt, D. E., and Roitsch, T. (2000) Tissue-specific <strong>in</strong>duction<strong>of</strong> the mRNA for an extracellular <strong>in</strong>vertase isoenzyme <strong>of</strong> tomato bybrass<strong>in</strong>osteroids suggests a role for steroid hormones <strong>in</strong> assimilatepartition<strong>in</strong>g. The <strong>Plant</strong> Journal 22, 515±522.Gottwald, J. R., Krysan, P. J., Young, J. C., Evert, R. F., and Sussman, M. R.(2000) Genetic evidence for the <strong>in</strong> planta role <strong>of</strong> phloem-specificplasma membrane sucrose transporters. Proceed<strong>in</strong>gs <strong>of</strong> the NationalAcademy <strong>of</strong> Sciences <strong>of</strong> the USA 97, 13979 ± 13984.Gre<strong>in</strong>er, S., Krausgrill, S., and Rausch, T. (1998) Clon<strong>in</strong>g <strong>of</strong> a tobaccoapoplasmic <strong>in</strong>vertase <strong>in</strong>hibitor. Pro<strong>of</strong> <strong>of</strong> function <strong>of</strong> the recomb<strong>in</strong>antprote<strong>in</strong> and expression analysis dur<strong>in</strong>g plant development.<strong>Plant</strong> Physiology 116, 733±742.He<strong>in</strong>eke, D., Wildenberger, K., Sonnewald, U., Willmitzer, L., andHeldt, H. W. (1994) Accumulation <strong>of</strong> hexoses <strong>in</strong> leaf vacuoles:Studies with transgenic tobacco plants express<strong>in</strong>g yeast-derived<strong>in</strong>vertase <strong>in</strong> the cytosol, vacuole or apoplasm. <strong>Plant</strong>a 194, 29 ± 33.Heyer, A. G., Raap, M., Schroeer, B., Marty, B., and Willmitzer, L. (2004)<strong>Cell</strong> wall <strong>in</strong>vertase expression at the apical meristem alters floral,architectural, and reproductive traits <strong>in</strong> <strong>Arabidopsis</strong> thaliana. The<strong>Plant</strong> Journal 39: 161±169.Kim, J. Y., Mahe, A., Guy, S., Brangeon, J., Roche, O., Chourey, P. S., andPrioul, J. L. (2000) Characterization <strong>of</strong> two members <strong>of</strong> the maizegene family, Incw3 and Incw4, encod<strong>in</strong>g cell-wall <strong>in</strong>vertases. Gene245, 89±102.Kühn, C., Quick, W. P., Schulz, A., Riesmeier, J. W., Sonnewald, U., andFrommer, W. B. (1996) Companion cell-specific <strong>in</strong>hibition <strong>of</strong> thepotato sucrose transporter SUT1. <strong>Plant</strong>, <strong>Cell</strong> and Environment 19,1115 ±1123.Lemo<strong>in</strong>e, R., Kühn, C., Thiele, N., Delrot, S., and Frommer, W. B. (1996)Antisense <strong>in</strong>hibition <strong>of</strong> the sucrose transporter: effects on amount<strong>of</strong> carrier and sucrose transport activity. <strong>Plant</strong>, <strong>Cell</strong> and Environment19, 1124±1131.


<strong>Expression</strong> <strong>of</strong> a <strong>Cell</strong> <strong>Wall</strong> <strong>Invertase</strong> <strong>in</strong> <strong>Roots</strong> Affects Flower<strong>in</strong>g and Biomass <strong>Plant</strong> Biology 7 (2005) 475Miller, M. E. and Chourey, P. S. (1992) The maize <strong>in</strong>vertase-deficientm<strong>in</strong>iature-1 seed mutation is associated with aberrant pedicel andendosperm development. <strong>Plant</strong> <strong>Cell</strong> 4, 297±305.Neubohn, B., Gubatz, S., Wobus, U., and Weber, H. (2000) Sugar levelsaltered by ectopic expression <strong>of</strong> a yeast-derived <strong>in</strong>vertase affectcellular differentiation <strong>of</strong> develop<strong>in</strong>g cotyledons <strong>of</strong> Vicia narbonensisL. <strong>Plant</strong>a 211, 325±334.Nitz, I., Berkefeld, H., Puzio, P. S., and Grundler, F. M. (2001) Pyk10, aseedl<strong>in</strong>g and root specific gene and promoter from <strong>Arabidopsis</strong>thaliana. <strong>Plant</strong> Science 161, 337±346.Rausch, T. and Gre<strong>in</strong>er, S. (2004) <strong>Plant</strong> prote<strong>in</strong> <strong>in</strong>hibitors <strong>of</strong> <strong>in</strong>vertases.Biochimica et Biophysica Acta 1696, 253 ±261.Riesmeier, J. W., Willmitzer, L., and Frommer, W. B. (1994) Evidencefor an essential role <strong>of</strong> the sucrose transporter <strong>in</strong> phloem load<strong>in</strong>gand assimilate partition<strong>in</strong>g. The EMBO Journal 13: 1 ± 7.Roitsch, T., Bittner, M., and Godt, D. E. (1995) Induction <strong>of</strong> apoplastic<strong>in</strong>vertase <strong>of</strong> Chenopodium rubrum by D-glucose and a glucose analogand tissue-specific expression suggest a role <strong>in</strong> s<strong>in</strong>k-sourceregulation. <strong>Plant</strong> Physiology 108, 285 ±294.Ruan, Y. L. and Patrick, J. W. (1995) The cellular pathway <strong>of</strong> postphloemsugar transport <strong>in</strong> develop<strong>in</strong>g tomato fruit. <strong>Plant</strong>a 196,434±444.Sauer, N., Friedlander, K., and Gräml-Wicke, U. (1990) Primary structure,genomic organization and heterologous expression <strong>of</strong> a glucosetransporter from <strong>Arabidopsis</strong> thaliana. The EMBO Journal 9,3045 ±3050.Scholz-Starke, J., Büttner, M., and Sauer, N. (2003) AtSTP6, a new pollen-specificH + -monosaccharide symporter from <strong>Arabidopsis</strong>. <strong>Plant</strong>Physiology 131, 70± 77.Sherson, S. M., Alford, H. L., Forbes, S. M., <strong>Wall</strong>ace, G., and Smith, S. M.(2003) Roles <strong>of</strong> cell-wall <strong>in</strong>vertases and monosaccharide transporters<strong>in</strong> the growth and development <strong>of</strong> <strong>Arabidopsis</strong>. Journal <strong>of</strong>Experimental Botany 54, 525 ±531.Sherson, S. M., Hemmann, G., <strong>Wall</strong>ace, G., Forbes, S., Germa<strong>in</strong>, V.,Stadler, R., Bechtold, N., Sauer, N., and Smith, S. M. (2000) Monosaccharide/protonsymporter AtSTP1 plays a major role <strong>in</strong> uptakeand response <strong>of</strong> <strong>Arabidopsis</strong> seeds and seedl<strong>in</strong>gs to sugars. The<strong>Plant</strong> Journal 24, 849± 857.Sonnewald, U., Brauer, M., von Schaewen, A., Stitt, M., and Willmitzer,L. (1991) Transgenic tobacco plants express<strong>in</strong>g yeast-derived <strong>in</strong>vertase<strong>in</strong> either the cytosol, vacuole or apoplast: a powerful toolfor study<strong>in</strong>g sucrose metabolism and s<strong>in</strong>k/source <strong>in</strong>teractions. The<strong>Plant</strong> Journal 1, 95 ±106.Sonnewald, U. (1992) <strong>Expression</strong> <strong>of</strong> E. coli <strong>in</strong>organic pyrophosphatase<strong>in</strong> transgenic plants alters photoassimilate partition<strong>in</strong>g. The<strong>Plant</strong> Journal 2, 571±581.Sonnewald, U., Hajirezaei, M. R., Kossmann, J., Heyer, A., Trethewey,R. N., and Willmitzer, L. (1997) Increased potato tuber size result<strong>in</strong>gfrom apoplastic expression <strong>of</strong> a yeast <strong>in</strong>vertase. Nature Biotechnology15, 794±797.Tang, G. Q., Luscher, M., and Sturm, A. (1999) Antisense repression <strong>of</strong>vacuolar and cell wall <strong>in</strong>vertase <strong>in</strong> transgenic carrot alters earlyplant development and sucrose partition<strong>in</strong>g. <strong>Plant</strong> <strong>Cell</strong> 11, 177±189.Truernit, E., Schmid, J., Epple, P., Illig, J., and Sauer, N. (1996) The s<strong>in</strong>kspecificand stress-regulated <strong>Arabidopsis</strong> STP4 gene: enhanced expression<strong>of</strong> a gene encod<strong>in</strong>g a monosaccharide transporter bywound<strong>in</strong>g, elicitors, and pathogen challenge. <strong>Plant</strong> <strong>Cell</strong> 8, 2169±2182.Turgeon, R. (1989) The s<strong>in</strong>k-source transition <strong>in</strong> leaves. Annual Review<strong>of</strong> <strong>Plant</strong> Physiology and <strong>Plant</strong> Molecular Biology 40, 119±138.Tymowska-Lalanne, Z. and Kreis, M. (1998) <strong>Expression</strong> <strong>of</strong> the <strong>Arabidopsis</strong>thaliana <strong>in</strong>vertase gene family. <strong>Plant</strong>a 207, 259± 265.von Schaewen, A., Stitt, M., Schmidt, R., Sonnewald, U., and Willmitzer,L. (1990) <strong>Expression</strong> <strong>of</strong> a yeast-derived <strong>in</strong>vertase <strong>in</strong> the cellwall <strong>of</strong> tobacco and <strong>Arabidopsis</strong> plants leads to accumulation <strong>of</strong>carbohydrate and <strong>in</strong>hibition <strong>of</strong> photosynthesis and strongly <strong>in</strong>fluencesgrowth and phenotype <strong>of</strong> transgenic tobacco plants. TheEMBO Journal 9, 3033±3044.Weber, H., Buchner, P., Borisjuk, L., and Wobus, U. (1996) Sucrose metabolismdur<strong>in</strong>g cotyledon development <strong>of</strong> Vicia faba L. is controlledby the concerted action <strong>of</strong> both sucrose-phosphate synthaseand sucrose synthase: expression patterns, metabolic regulationand implications for seed development. The <strong>Plant</strong> Journal 9,841 ±850.Weber, H., Borisjuk, L., Heim, U., Sauer, N., and Wobus, U. (1997) Arole for sugar transporters dur<strong>in</strong>g seed development: molecularcharacterization <strong>of</strong> a hexose and a sucrose carrier <strong>in</strong> fava beanseeds. <strong>Plant</strong> <strong>Cell</strong> 9, 895 ±908.Weber, H., Heim, U., Golombek, S., Borisjuk, L., Manteuffel, R., andWobus, U. (1998) <strong>Expression</strong> <strong>of</strong> a yeast-derived <strong>in</strong>vertase <strong>in</strong> develop<strong>in</strong>gcotyledons <strong>of</strong> Vicia narbonensis alters the carbohydrate stateand affects storage functions. The <strong>Plant</strong> Journal 16, 163 ± 172.Weil, M. and Rausch, T. (1990) <strong>Cell</strong> wall <strong>in</strong>vertase <strong>in</strong> tobacco crowngall cells: enzyme properties and regulation by aux<strong>in</strong>. <strong>Plant</strong> Physiology94, 1575 ±1578.Zuther, E., Kwart, M., Willmitzer, L., and Heyer, A. G. (2004) <strong>Expression</strong><strong>of</strong> a yeast-derived <strong>in</strong>vertase <strong>in</strong> companion cells results <strong>in</strong>long-distance transport <strong>of</strong> a trisaccharide <strong>in</strong> an apoplastic loaderand <strong>in</strong>fluences sucrose transport. <strong>Plant</strong>a 218, 759±766.M. BüttnerMolekulare PflanzenphysiologieUniversität Erlangen-NürnbergStaudtstraûe 591058 ErlangenGermanyE-mail: mbuettne@biologie.uni-erlangen.deEditor: A. Weber

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!