12.07.2015 Views

ion-induced instability of diocotron modes in electron - Nonneutral ...

ion-induced instability of diocotron modes in electron - Nonneutral ...

ion-induced instability of diocotron modes in electron - Nonneutral ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

f Rd2d s<strong>in</strong>(θ d /2)H 2+L bncL end∏θ dB, zFig. 2. Cartoon <strong>of</strong> the phase shift θ d and the correspond<strong>in</strong>gdisplacement 2d s<strong>in</strong>(θ d /2) acquired by an average <strong>ion</strong>dur<strong>in</strong>g <strong>diocotron</strong> cycle <strong>in</strong> the double-well trap.Note that symmetry dictates that the end drift <strong>of</strong> the whole<strong>ion</strong> fract<strong>ion</strong> is well represented by the drift <strong>of</strong> an <strong>ion</strong>com<strong>in</strong>g from the <strong>electron</strong> column center. Upon theirreturn <strong>in</strong>to <strong>electron</strong> column, after be<strong>in</strong>g smashed by theplasma rotat<strong>ion</strong> along a circular orbit <strong>of</strong> radius2d s<strong>in</strong>(θ d /2), the <strong>ion</strong>s acquire a change <strong>in</strong> their meansquare-radius(MSR) equal to δr 2 = 2d 2 (1-cosθ d ). S<strong>in</strong>cewe have assumed that the <strong>ion</strong> mot<strong>ion</strong> becomes stochasticon the <strong>diocotron</strong> time scale t d = 1/f m , the <strong>ion</strong>s diffuse <strong>in</strong>the oscillat<strong>in</strong>g m θ -wave perturbat<strong>ion</strong> at a rate D m ª δr 2 f m ,which results <strong>in</strong>to the net change <strong>of</strong> the MSR accumulatedby the whole <strong>ion</strong> fract<strong>ion</strong> N i dur<strong>in</strong>g their active lifetime t lf<strong>in</strong> the <strong>electron</strong> column equal to( )N Δr ≡ N D τ = N f τ × 1− cos θ . (1)2i i m lf i m lf dAccord<strong>in</strong>g to the conservat<strong>ion</strong> <strong>of</strong> canonical angularmomentum 6 , the rate <strong>of</strong> change <strong>in</strong> the MSR <strong>of</strong> <strong>ion</strong>s has tobe balanced by the rate <strong>of</strong> change <strong>in</strong> the MSR <strong>of</strong> thewhole <strong>electron</strong> column, which moves further <strong>of</strong>f-axis as2N D = N 2 γ d .(2)i m e mThis gives us the <strong><strong>in</strong>stability</strong> with the m θ -mode growth rate<strong>in</strong> the form( N N ) f ⎡ ( )γm=i e m× ⎣1 −cos 2 πτend τbnc⎤⎦ . (3)Us<strong>in</strong>g partial neutralizat<strong>ion</strong> equality for the <strong>diocotron</strong><strong>modes</strong>, Df m /f m = N i /N e , we can rewrite g m as( )Kabantsev and Driscollγm=Δ fm× ⎡⎣ 1−cos 2 πτend τbnc⎤⎦ , (4)which is much more convenient for comparison to theexperiment, s<strong>in</strong>ce both g m and Df m can be simultaneouslymeasured. This result is rather remarkable <strong>in</strong> itssimplicity: the growth rate <strong>of</strong> any <strong>diocotron</strong> mode isdef<strong>in</strong>ed by its frequency, by plasma’s fract<strong>ion</strong>alneutralizat<strong>ion</strong>, and by the bounce-averaged phase shiftbetween the <strong>ion</strong> and <strong>electron</strong> EμB drifts.In the straightforward comparison to characteristicgrowth rate <strong>of</strong> classical flute <strong>modes</strong> 1 , g ~ υ T /L B (whereL B is a scale length for the axial B-field variat<strong>ion</strong>s), thedouble-well traps case is equivalent to an effectiveL B ~ R p /[1-cos(2pt end /t bnc )], which may get extremelyshort (L B ~ R p /2) from the mirror traps po<strong>in</strong>t <strong>of</strong> view.f mION-INDUCED INSTABILITY OF DIOCOTRON MODESNote that the growth rate g m for the trapped-<strong>ion</strong><strong><strong>in</strong>duced</strong><strong><strong>in</strong>stability</strong> <strong>of</strong> <strong>diocotron</strong> <strong>modes</strong> is also funct<strong>ion</strong>allysimilar to the growth rate <strong>of</strong> the pass<strong>in</strong>g-<strong>ion</strong>-<strong><strong>in</strong>duced</strong><strong><strong>in</strong>stability</strong> <strong>of</strong> <strong>diocotron</strong> <strong>modes</strong> 7 , which may be expressedas g sp = (N i /N e ) f sp μ[1-cos(2pf R /f sp )]. Here, f sp ≈ 1/t bnc isthe <strong>ion</strong> s<strong>in</strong>gle pass time through the <strong>electron</strong> column, andf R is the <strong>electron</strong> column rotat<strong>ion</strong> frequency. This pass<strong>in</strong>g<strong>ion</strong>-<strong><strong>in</strong>duced</strong><strong><strong>in</strong>stability</strong> gives us the background growthrate <strong>in</strong> case <strong>of</strong> modulated <strong>ion</strong> trapp<strong>in</strong>g experiments.II. SOME EXPERMENTAL RESULTSThe growth rates g m (t) for the k z = 0, m θ = 1,2,3…<strong>diocotron</strong> <strong>modes</strong> are measured by digitiz<strong>in</strong>g the amplitudeA m (t) <strong>of</strong> correspond<strong>in</strong>g wall potentials <strong><strong>in</strong>duced</strong> by the<strong>diocotron</strong> oscillat<strong>ion</strong>s at the azimuthally sectoredelectrodes. These amplitudes are verified (and calibrated)by tak<strong>in</strong>g correspond<strong>in</strong>g (r,θ ) moments <strong>of</strong> 2D-densitydistribut<strong>ion</strong> <strong>of</strong> the dumped <strong>electron</strong> column from a CCDcamera diagnostic 8 . In the experiments, we usually keepthe mode amplitudes, d m (t) ª A m (t)/R w (scaled by the wallradius R w ), small enough (d m § 0.01) to have nonl<strong>in</strong>eareffects well constra<strong>in</strong>ed. The trapped <strong>ion</strong> fract<strong>ion</strong>N i (t)/N e is obta<strong>in</strong>ed simultaneously with g m (t) bymeasur<strong>in</strong>g the relative frequency change <strong>of</strong> the m θ = 1<strong>diocotron</strong> mode Df 1 (t)/f 1 dur<strong>in</strong>g modulated <strong>ion</strong> beamtrapp<strong>in</strong>g, s<strong>in</strong>ce fract<strong>ion</strong>al neutralizat<strong>ion</strong> gives frequencychange as Df 1 = (N i /N e ) f 1 .Figure 3 demonstrates the 2-decade exponentialgrowth <strong>of</strong> the m θ = 1 <strong>diocotron</strong> mode <strong>in</strong> l<strong>in</strong>ear regime.Here, the <strong>ion</strong> fract<strong>ion</strong> N i /N e º 5ÿ10 -4 , and f 1 º 4 kHz(B = 7 kG). Note that f 1 º f R (R p /R w ) 2 . Modes with higherm θ -wave numbers show faster <strong>in</strong>itial growth <strong>in</strong> accordwith their higher frequencies 9 f m ≈ [m θ -1 + (R p /R w ) 2 ] f R ,i.e., g m / g 1 º f m / f 1 , but then they rapidly approachnonl<strong>in</strong>ear saturat<strong>ion</strong> due to spatial Landau damp<strong>in</strong>g <strong>in</strong> theradial edge <strong>of</strong> the plasma column.While frequencies <strong>of</strong> <strong>diocotron</strong> mode are obviousfunct<strong>ion</strong> <strong>of</strong> B (f m ∂ 1/B), their growth rates, normalized bythe <strong>ion</strong> product<strong>ion</strong> (<strong>in</strong>ject<strong>ion</strong> current) rate per <strong>electron</strong>, n i ,show no dependence on B (see Fig. 4). This is consistentwith the measured l<strong>in</strong>ear B-scal<strong>in</strong>g <strong>of</strong> the active <strong>ion</strong>lifetime t lf ≡ N i /N e n i <strong>in</strong> <strong>electron</strong> column (Fig. 5), whichalso <strong>in</strong>dicates an EμB drift nature <strong>of</strong> the <strong>ion</strong> radial losses.For our plasma and trap parameters it takes fromhundreds to thousands <strong>of</strong> <strong>diocotron</strong> cycles for an average<strong>ion</strong> to reach the radial edge <strong>of</strong> <strong>electron</strong> plasma, and details<strong>of</strong> this process are still ill understood.Besides the rather trivial l<strong>in</strong>ear dependence <strong>of</strong> g m onthe <strong>ion</strong> fract<strong>ion</strong>, we have also qualitatively verified thes<strong>in</strong> 2 -dependence, g 1 /Df 1 = 2s<strong>in</strong> 2 (pt end /t bnc ), on theeffective charge separat<strong>ion</strong>. The most simple double-wellconfigurat<strong>ion</strong> (adjacent cyl<strong>in</strong>ders used to conf<strong>in</strong>e<strong>electron</strong>s and <strong>ion</strong>s) typically gives us t end /t bnc º 0.1,which should result <strong>in</strong>to the slope g 1 /Df 1 º 0.2. Figure 6TRANSACTIONS OF FUSION SCIENCE AND TECHNOLOGY VOL. 51 FEB. 2007 97


Broadly, the different bounce-averaged azimuthal drifts <strong>of</strong><strong>electron</strong>s and <strong>ion</strong>s tends to polarize the <strong>diocotron</strong> modedensity perturbat<strong>ion</strong>s, thereby develop<strong>in</strong>g <strong><strong>in</strong>stability</strong>similar to the classical flute MHD-<strong><strong>in</strong>stability</strong> <strong>of</strong> neutralplasmas conf<strong>in</strong>ed <strong>in</strong> non-uniform magnetic fields. Themajor factor that dist<strong>in</strong>guishes charged plasma behavior<strong>in</strong> our experiment from neutral plasma conf<strong>in</strong>ement is thatthis charge separat<strong>ion</strong> ma<strong>in</strong>ly comes from the two speciessampl<strong>in</strong>g different radial electric fields at the plasmacolumn ends (prevalent importance <strong>of</strong> this effect fordouble-well traps was first ment<strong>ion</strong>ed by Pasqu<strong>in</strong>i andFajans 15,16 ). However, it allows us an easy control overthe effective drift separat<strong>ion</strong> <strong>of</strong> oppositely charge particles<strong>in</strong> the wave perturbat<strong>ion</strong>, by simply vary<strong>in</strong>g the ratio <strong>of</strong>the <strong>ion</strong> end transit time t end (by adjust<strong>in</strong>g the end lengthL end or the potentials) to the total bounce time t bnc .As a result, the measured trapped-<strong>ion</strong>-<strong><strong>in</strong>duced</strong> growthrates show a rather simple dependence( N N ) f ⎡1 cos( 2 )γ = × ⎣ − πτ τm i e m end bncverified <strong>in</strong> a broad range <strong>of</strong> relevant plasma and trapparameters. Hav<strong>in</strong>g just the l<strong>in</strong>ear reduct<strong>ion</strong> factor, N i /N e ,this strong exponential <strong><strong>in</strong>stability</strong> has no threshold on thesmallness <strong>of</strong> the <strong>ion</strong> fract<strong>ion</strong>, and without pay<strong>in</strong>g properattent<strong>ion</strong> it may lead to significant rate <strong>of</strong> particle radialtransport and losses <strong>in</strong> double-well conf<strong>in</strong>ementconfigurat<strong>ion</strong>s.ACKNOWLEDGMENTSThis work was supported by Nat<strong>ion</strong>al ScienceFoundat<strong>ion</strong> Grant No. PHY0354979.REFERENCESKabantsev and Driscoll[1] M. N. ROSENBLUTH and C. L. LONGMIRE,“Stability <strong>of</strong> Plasmas Conf<strong>in</strong>ed by MagneticFields,” Annals <strong>of</strong> Physics, 1, 120 (1957).[2] G. GABRIELSE et al., “Background-FreeObservat<strong>ion</strong> <strong>of</strong> Cold Antihydrogen with Field-Ionizat<strong>ion</strong> Analysis <strong>of</strong> Its States,” Phys. Rev.Letters, 89, 213401 (2002).[3] M. AMORETTI et al., “CompleteNondestructive Diagnostic <strong>of</strong> <strong>Nonneutral</strong>Plasmas Based on the Detect<strong>ion</strong> <strong>of</strong> ElectrostaticModes,” Phys. Plasmas, 10, 3056 (2003).[4] A. A. Kabantsev et al., “Trapped Particles andAsymmetry-Induced Transport,” Phys. Plasmas,10, 1628 (2003).[5] C. F. DRISCOLL, K. S. FINE and J. H.MALMBERG, “Reduct<strong>ion</strong> <strong>of</strong> Radial Losses <strong>in</strong> aPure Electron Plasma,” Phys. Fluids, 29, 2015(1986).[6] T. M. O’NEIL, “A Conf<strong>in</strong>ement Theory for<strong>Nonneutral</strong> Plasmas,” Phys. Fluids, 23, 2216(1980).⎤⎦ION-INDUCED INSTABILITY OF DIOCOTRON MODES[7] A. A. KABANTSEV and C. F. DRISCOLL,“Fast Measurements <strong>of</strong> PicoAmp Plasma FlowsUs<strong>in</strong>g Trapped Electron Clouds,” Rev. Sci.Instrum., 75, 3628 (2004).[8] K. S. FINE, W. G. FLYNN, A. C. CASS, and C.F. DRISCOLL, “Relaxat<strong>ion</strong> <strong>of</strong> 2D Turbulence toVortex Crystals,” Phys. Rev. Letters, 75, 3277(1995).[9] S. A. PRASAD and T. M. O’NEIL, “Waves <strong>in</strong> aCold Pure Electron Plasma <strong>of</strong> F<strong>in</strong>ite Length,”Phys. Fluids, 26, 665 (1983).[10] R. H. LEVY, J. D. DAUGHERTY, and O.BUNEMANM, “Ion Resonance Instability <strong>in</strong>Grossly <strong>Nonneutral</strong> Plasmas,” Phys. Fluids, 12,2616 (1969).[11] A. J. PEURRUNG, J. NOTTE, and J. FAJANS,“Observat<strong>ion</strong> <strong>of</strong> the Ion Resonance Instability,”Phys. Rev. Letters, 70, 295 (1993).[12] J. FAJANS, “Transient Ion ResonanceInstability,” Phys. Fluids B, 5, 3127 (1993).[13] M. R. STONEKING, M. A. GROWDON, M. L.MILNE, and R. T. PETERSON, “Poloidal ExBDrift Used as an Effective Rotat<strong>ion</strong>al Transformto Achieve Long Conf<strong>in</strong>ement Times <strong>in</strong> aToroidal Electron Plasma,” Phys. Rev, Letters,92, 095003 (2004).[14] G. BETTEGA et al., “ExperimentalInvestigat<strong>ion</strong> <strong>of</strong> the Ion Resonance Instability <strong>in</strong>a Trapped Electron Plasma,” Plasma Phys.Contr. Fus<strong>ion</strong>, 47, 1697 (2005).[15] T. PASQUINI and J. FAJANS, “Ion ResonanceInstability <strong>in</strong> a Double Well Trap,” Programme& Abstracts <strong>of</strong> 3 rd Internat<strong>ion</strong>al Conference onTrapped Charged Particles and FundamentalInteract<strong>ion</strong>s, Wildbad Kreuth, Germany, August2002, p. 83, 292 nd WE-Heraeus Sem<strong>in</strong>ar (2002).[16] T. PASQUINI and J. FAJANS, “Ion ResonanceInstability <strong>in</strong> a Double Well Trap,” Bull. Am.Phys. Society, Orlando, Florida, November 2002,Vol. 47, No. 9, p. 127, AIP (2002).TRANSACTIONS OF FUSION SCIENCE AND TECHNOLOGY VOL. 51 FEB. 2007 99

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!