12.07.2015 Views

Practical Robust Optimization - an introduction - - LNMB

Practical Robust Optimization - an introduction - - LNMB

Practical Robust Optimization - an introduction - - LNMB

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Overview■Motivation for <strong>Robust</strong> <strong>Optimization</strong> (RO)◆◆Flaw of using nominal valuesWhy RO c<strong>an</strong> make a difference■■■■■■<strong>Robust</strong> <strong>Optimization</strong> MethodologyDeriving tractable <strong>Robust</strong> Counterparts<strong>Practical</strong> issues<strong>Practical</strong> exampleAdjustable <strong>Robust</strong> <strong>Optimization</strong>Concluding remarksF A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N2 / 53


Google results ...■■■■■■■”<strong>Robust</strong> <strong>Optimization</strong>” – 186,000 hits” ... <strong>an</strong>d logistics” – 30,000 hits” ... <strong>an</strong>d supply chain” – 34,000 hits” ... <strong>an</strong>d production” – 67,000 hits” ... <strong>an</strong>d energy” – 74,000 hits” ... <strong>an</strong>d fin<strong>an</strong>ce” – 35,000 hits” ... <strong>an</strong>d engineering” – 116,000 hitsF A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N3 / 53


What sets great optimization apart?“The <strong>Optimization</strong> Edge” (2011) by Steve ShashiharaOne of the eight differentiators for “great optimization” mentioned:Good optimization gives you the best choice based on the data.Great optimization is “robust” <strong>an</strong>d resilient in the face of ch<strong>an</strong>ge<strong>an</strong>d data errors.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N4 / 53


Uncertainty in optimization problems<strong>Optimization</strong> problems often contain uncertain parameters, due to■■■measurement/rounding errorse.g. temperature, current inventoryestimation errorse.g. dem<strong>an</strong>d, cost or pricesimplementation errorse.g. length, depth, width, voltageFlaw of using nominal values in optimization problems.RO: find a solution that is robust against this uncertainty in theparameters.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N5 / 53


Flaw of using nominal values<strong>Optimization</strong> based on nominal values often lead to (severe)infeasibilities.Taken from “Flaw of averages” (2009,2012), Sam Savage.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N6 / 53


Flaw of using nominal values<strong>Optimization</strong> based on nominal values often lead to (severe)infeasibilities.Consider the constraint: a T x ≤ b, where■a is uncertain,āis nominal value.■ a = ā+ρζ, <strong>an</strong>d−1 ≤ ζ i ≤ 1.■ζ is uniformly distributed.Assume:this constraint is binding in the optimal nominal solution ¯x(fora = ā).F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N7 / 53


Flaw of using nominal valuesConstraint: a T x = (ā+ρζ) T x = ā T x+ρζ T x ≤ b.Probability of infeasibility= 0.5!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N8 / 53


Flaw of using nominal values<strong>Optimization</strong> based on nominal values often lead to (severe)infeasibilities.Consider the binding constraints: (a k ) T x ≤ b k ,■a k is uncertain,ā k is nominal value.■ a k = ā k +ρ k ζ k , <strong>an</strong>d−1 ≤ ζ k i ≤ 1.■ζ k are independent <strong>an</strong>d uniformly distributed.k = 1,..,N.Assume: theseN constraints are binding in the optimal solution(fora = ā).Probability of infeasibility= 1− ( 12) N.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N9 / 53


Flaw of using nominal values<strong>Optimization</strong> based on nominal values often lead to (severe)infeasibilities.Consider the constraints: 3.000x 1 −2.999x 2 +... ≤ 1.Suppose:■■■x 1 = x 2 = 1000 is optimalthe number3.000 is uncertainmaximal deviation is1%.Then LHS of constraint c<strong>an</strong> be3.030∗1,000−2.999∗1,000+.... = 31 > 1F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N10 / 53


Flaw of using nominal valuesConsider PILOT4 from NETLIB (1,000 variables, 410 constraints).Constraint # 372:ā T x = −15.79081x 826 −8.598819x 827 −1.88789x 828 −1.362417x 829 −1.526049x 830−0.031883x 849 −28.725555x 850 −10.792065x 851 −0.19004x 852 −2.757176x 853−12.290832x 854 +717.562256x 855 −0.057865x 856 −3.785417x 857 −78.30661x 858−122.163055x 859 −6.46609x 860 −0.48371x 861 −0.615264x 862 −1.353783x 863−84.644257x 864 −122.459045x 865 −43.15593x 866 −1.712592x 870 −0.401597x 871+x 880 −0.96049x 898 −0.946049x 916≥ b = 23.387405Most coefficients are ”ugly reals” (like - 15.79081).Highly unlikely that coefficients are known to this accuracy.Only exception: the coefficient 1 atx 880 - it perhaps reflects thestructure of the problem <strong>an</strong>d might be exact.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N11 / 53


Flaw of using nominal valuesā T x = −15.79081x 826 −8.598819x 827 −1.88789x 828 −1.362417x 829 −1.526049x 830−0.031883x 849 −28.725555x 850 −10.792065x 851 −0.19004x 852 −2.757176x 853−12.290832x 854 +717.562256x 855 −0.057865x 856 −3.785417x 857 −78.30661x 858−122.163055x 859 −6.46609x 860 −0.48371x 861 −0.615264x 862 −1.353783x 863−84.644257x 864 −122.459045x 865 −43.15593x 866 −1.712592x 870 −0.401597x 871+x 880 −0.96049x 898 −0.946049x 916≥ b = 23.387405Suppose: accuracy is 0.1%:(∗)∣ atruei −ā i∣ ∣ ≤ 0.001|āi |.Worst case: the constraint c<strong>an</strong> be violated by as much as 450%:mina true satisfies (∗)(atrue ) T¯x−b = −128.8 ≈ −4.5b.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N12 / 53


Flaw of using nominal valuesAssume “r<strong>an</strong>dom uncertainty”:a truei = ā i +ǫ i |ā i |, ǫ i ∼ Uniform[−0.001,0.001]Based on 1,000 simulations:V = max[ b−(a true ) T¯x|b|],0.Prob {V >0} Prob{V >150%} Me<strong>an</strong>(V)0.50 0.18 125%=⇒ The nominal solution is highly “unreliable”F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N13 / 53


Flaw of using nominal valuesAmong 90 NETLIB LP problems:■In 19 problems0.01% - perturbation−→ more th<strong>an</strong> 5%-violations of (someof) the constraints■In 13 of these 19 problems0.01%-perturbation −→ more th<strong>an</strong> 50% violations of theconstraints.■In 6 of these 13 problemsconstraint violaton was over 100%; in one problem even210,000%.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N14 / 53


Why RO c<strong>an</strong> make a difference ...Extreme situation:Take solutionx 2 on the optimal facet, which is much more robust!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N15 / 53


Why RO c<strong>an</strong> make a difference ...Extreme situation: x 2 −ζx 1 = 1, where−0.1 ≤ ζ ≤ 0.1.Takex 2 on optimal facet, which is (much) more robust!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N16 / 53


History of <strong>Robust</strong> <strong>Optimization</strong>■ Early work by Soyster (1973) <strong>an</strong>d Kouvelis (1997).■■Started with papers in 1997-1998: Ben-Tal, El Ghaoui,Nemirovski.Since 2000 m<strong>an</strong>y papers on RO.■ Budget uncertainty set (Bertsimas <strong>an</strong>d Sim, 2004).■ Adjustable <strong>Robust</strong> <strong>Optimization</strong> (Ben-Tal et al. 2004).■■Book: <strong>Robust</strong> <strong>Optimization</strong> (2009) by Ben-Tal, El Ghaoui, <strong>an</strong>dNemirovski.<strong>Practical</strong> relev<strong>an</strong>ce: m<strong>an</strong>y applications!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N17 / 53


BookImport<strong>an</strong>t chapters: Preface, Chapter 1 <strong>an</strong>d Chapter 14.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N18 / 53


Relation with sensitivity <strong>an</strong>alysis (SA)■■■SA is post <strong>an</strong>alysis (“post mortem”).SA only <strong>an</strong>alyzes infinitesimal ch<strong>an</strong>ges (shadowprices,reduced costs).SA only <strong>an</strong>alyzes ch<strong>an</strong>ges in one or a few parameters.<strong>Robust</strong> <strong>Optimization</strong>:■■takes data uncertainty into account already at the modellingstage;to ”immunize” solutions against uncertainty.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N19 / 53


Relation with Stochastic Programming“Large” data uncertainty is modelled in a stochastic fashion <strong>an</strong>dthen processed via Stochastic Programming techniques.Disadv<strong>an</strong>tages:■■■Often difficult to specify reliably the distribution of uncertaindata.Expectations/probabilities often difficult to calculate.Feasible region often nonconvex.<strong>Robust</strong> <strong>Optimization</strong>:■■does not assume stochastic nature of the uncertain data;remains computationally tractable.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N20 / 53


Basic assumptions in RO1. The optimization variables represent “here <strong>an</strong>d now”decisions.2. The decision maker is fully responsible for decisions made(only) when the actual data is within the uncertainty set.3. The constraints of the uncertain problem in question are“hard”.Later on:[1] will be alleviated by “adjustable robust optimization”;[3] will be alleviated by “globalized robust optimization”.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N21 / 53


Introduction to robust linear optimization<strong>Robust</strong> counterpart:(RC)max{c T x : Ax ≤ b, ∀A ∈ U},wherex ∈ R n , <strong>an</strong>dU is a given uncertainty region.We may assume w.l.o.g.:■■■■objective is certainRHS is certainU is closed <strong>an</strong>d convexconstraintwise uncertainty.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N22 / 53


Hence, we focus onwhere■■(a+Bζ) T x ≤ β, ∀ζ ∈ Z,ζ ∈ R L is the primitive uncertain vectorB ∈ R n×L■ Z is the uncertainty region; often|L| ≪ n.Example: factor model in portfolio problems.This is a semi-infinite optimization problem.Goal: obtain computationally tractable reformulation!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N23 / 53


Tractable robust counterparts(a+Bζ) T x ≤ β, ∀ζ ∈ Z.Uncertainty region Z <strong>Robust</strong> Counterpart TractabilityBox ‖ζ‖ ∞ ≤ ρ a T x+ρ‖B T x‖ 1 ≤ β LPBall/ellipsoidal ‖ζ‖ 2 ≤ ρ a T x+ρ‖B T x‖ 2 ≤ β CQP⎧⎪⎨ a T x+d T y ≤ βPolyhedral Dζ +d ≥ 0 D⎪⎩T y = −B T x LPy ≥ 0⎧⎪⎨ a T x+d T y ≤ βCone (closed, convex, pointed) Dζ +d ∈ K D⎪⎩T y = −B T xy ∈ K ∗Conic Opt.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N24 / 53


RC for box uncertaintyThis is equivalent to:(a+Bζ) T x ≤ β ∀ζ : ‖ζ‖ ∞ ≤ 1. (1)max (a+Bζ) T x = a T x+ max (B T x) T ζ ≤ β.ζ:‖ζ‖ ∞ ≤1ζ:‖ζ‖ ∞ ≤1We have:maxζ:‖ζ‖ ∞ ≤1 (BT x) T ζ = maxζ:|ζ i |≤1∑(B T x) i ζ i = ∑ ii|(B T x) i | = ‖B T x‖ 1 .Hence, (1) is equivalent to:a T x+‖B T x‖ 1 ≤ β.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N25 / 53


RC for ball uncertaintyThis is equivalent to:(a+Bζ) T x ≤ β ∀ζ : ‖ζ‖ 2 ≤ 1. (2)a T x+ max (B T x) T ζ ≤ β,ζ:‖ζ‖ 2 ≤1Intermezzo: max ζ {d T ζ : ‖ζ‖ 2 ≤ 1} ormax{d T ζ : ζ T ζ ≤ 1}Lagr<strong>an</strong>ge: d = λζ, <strong>an</strong>dλ = ‖d‖ 2 .Optimal objective value: dT dλ = ‖d‖ 2.Hence (2) is equivalent to:a T x+‖B T x‖ 2 ≤ β.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N26 / 53


This is equivalent to:Note that by dualityRC for polyhedral uncertainty(a+Bζ) T x ≤ β ∀ζ : Dζ +d ≥ 0.a T x+ maxζ : Dζ+d≥0 (BT x) T ζ ≤ β. (3)max{(B T x) T ζ : Dζ +d ≥ 0} = min{d T y : D T y = −B T x, y ≥ 0}.Hence (3) is equivalent toa T x+miny{d T y : D T y = −B T x, y ≥ 0} ≤ β,ora T x+d T y ≤ β, D T y = −B T x, y ≥ 0.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N27 / 53


Budget uncertainty regionOften used uncertainty region (Bertsimas <strong>an</strong>d Sim, 2004):{ζ : ‖ζ‖ ∞ ≤ 1, number of elements ≠ 0 at most Γ}which is equivalent to (only for linear uncertain constraints):{ζ : ‖ζ‖ ∞ ≤ 1, ‖ζ‖ 1 ≤ Γ}.This is a polyhedral uncertainty set.Hence, (RC) c<strong>an</strong> be reformulated as LP.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N28 / 53


ExampleAccuracy in uncertain data is 0.1%, in the worst case.<strong>Robust</strong> Counterpart:−15.79081x 826 −8.598819x 827 −1.88789x 828 −1.362417x 829 −1.526049x 830−0.031883x 849 −28.725555x 850 −10.792065x 851 −0.19004x 852 −2.757176x 853−12.290832x 854 +717.562256x 855 −0.057865x 856 −3.785417x 857 −78.30661x 858−122.163055x 859 −6.46609x 860 −0.48371x 861 −0.615264x 862 −1.353783x 863−84.644257x 864 −122.459045x 865 −43.15593x 866 −1.712592x 870 −0.401597x 871+x 880 −0.96049x 898 −0.946049x 916−0.001 ∑ i |ā ix i | ≥ b = 23.387405<strong>Robust</strong> solution:■does not violate the constraints■ increase in objective value is less th<strong>an</strong> 1%!Remember: nominal F A C U L Tsolution Y O F E C O N O M I Cyields S A N D B U S I Na E S450% S A D M I N I S T Rviolation!A T I O N29 / 53


Pl<strong>an</strong>ning of Air Traffic ControllersMaster thesis by Dori v<strong>an</strong> Hulst (Quintiq)■■■■■Pl<strong>an</strong>ning is done 2-3 months ahead.Different “shift types” c<strong>an</strong> be used.Under capacity is d<strong>an</strong>gerous, hence costly.Nominal prolbem is a MIP model.Uncertainty in dem<strong>an</strong>d=#pl<strong>an</strong>es in air corridors.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N30 / 53


Pl<strong>an</strong>ning of Air Traffic ControllersUncertainty in dem<strong>an</strong>d per day:This is polyhedral uncertainty!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N31 / 53


Pl<strong>an</strong>ning of Air Traffic ControllersResults:Costs Under =4.2 Costs Under =1.9Nominal <strong>Robust</strong> Nominal <strong>Robust</strong>Labour costs nominal curve 433 762 426 675Labour costs worst case 2054 882 1179 795Average labour costs 1293 759 830 694Average std per day of av. costs 13.2 2.4 6.2 2.2Average under-utilization (hours) 67 6 67 14Percentage of times better 14% 86% 34% 66%F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N32 / 53


Why ellipsoidal uncertainty?1. Resulting <strong>Robust</strong> Counterpart is tractable (namely CQP).2. Much less conservative th<strong>an</strong> box uncertainty.3. Arises naturally from statistical considerations:Confidence sets in regressionConfidence set for covari<strong>an</strong>ce...4. Is a safe approximation for ch<strong>an</strong>ce constraint.1, 2 <strong>an</strong>d 4 also hold for budget uncertainty!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N33 / 53


Safe approximation of ch<strong>an</strong>ce constraintSuppose: ζ i are stochastic <strong>an</strong>d independent, with knownsupport, say[−1,1], <strong>an</strong>d zero me<strong>an</strong>.Consider: U Ω = {ζ : ‖ζ‖ 2 ≤ Ω} (ball)Ifxsatisfies (4) then:(RC) (a+Bζ) T x ≤ β, ∀ζ ∈ U Ω . (4)Prob ( (a+Bζ) T x ≤ β ) ≥ 1−exp(−Ω 2 /2) =: 1−ǫ.Example: Ω = 7.44 =⇒ ǫ = 10 −12 .Same result forU Ω = {ζ : ‖ζ‖ 2 ≤ Ω, ‖ζ‖ ∞ ≤ 1} (ball-box).F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N34 / 53


Is <strong>Robust</strong> <strong>Optimization</strong> too pessimistic?■■■■■■In m<strong>an</strong>y cases the constraint is strict, e.g. safety restrictions.User c<strong>an</strong> adapt level of protection.Overly pessimistic solutions may be caused by modelingerrors.Use Globalized <strong>Robust</strong> Counterparts.<strong>Robust</strong> solutions often perform well on the average.Ch<strong>an</strong>ce constraints c<strong>an</strong> be approximated.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N35 / 53


Bridge that was not robust ...F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N36 / 53


Recipe for RO■ Step 0.– Check whether nominal solution is robust.– Check whether SP c<strong>an</strong> solve your problem.■ Step 1.– Determine uncertain parameters.– Determine uncertainty region.■ Step 2.– Derive tractable robust counterpart (exact or approxim.).■ Step 3.– Solve tractable robust counterpart.■ Step 4.– Check robustness of robust solution.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N37 / 53


Multistage problemsSome of the decisionsx j :■■should be made when actual data becomes partially knownc<strong>an</strong> depend on the corresponding portions of the data.Examples:■■Inventory problem with uncertain dem<strong>an</strong>d.e.g. replenishment ordersx t of daytusually c<strong>an</strong> depend onactual dem<strong>an</strong>ds at days1,...,t−1.Brachytherapy with inaccuracy in positioning needles.e.g. position of needlekc<strong>an</strong> depend on actual position ofneedles1,...,k −1.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N38 / 53


Multistage problemsConsider the following constraint of a multi-stage problem:where(ARC) (a+Bζ) T x+d T y ≤ β, ∀ζ ∈ Z,■■x is non-adjustabley is adjustable (fixed recourse).ARC st<strong>an</strong>ds for Adjustable <strong>Robust</strong> Counterpart.Hence: y = y(ζ).This leads to <strong>an</strong> NP-hard problem!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N39 / 53


Linear Decision Rule(ARC) (a+Bζ) T x+d T y ≤ β, ∀ζ ∈ Z,Linear decision rule y = u+Vζ is often very effective:(AARC) (a+Bζ) T x+d T (u+Vζ) ≤ β, ∀ζ ∈ Z,or equivalently(AARC) a T x+d T u+(B T x+V T d) T ζ ≤ β, ∀ζ ∈ Z.This problem is linear inx<strong>an</strong>dζ; hence previous results apply!AARC st<strong>an</strong>ds for Affinely Adjustable <strong>Robust</strong> Counterpart.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N40 / 53


Example: inventory problems⎧min ∑ Tt=1 c tx t + ∑ Tt=1 h tI t⎪⎨ I t = I t−1 +x t −d t , ∀tI t ≥ 0, ∀t0 ≤ x t ≤ U t , ∀t⎪⎩...Dem<strong>an</strong>dd t is uncertain: we assume interval uncertainty.x t <strong>an</strong>dI t are adjustable: linear decision rulesx t = u t +∑t−1i=1v it d i , I t = w t +∑t−1i=1z it d iOne c<strong>an</strong> vary the “information base”!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N41 / 53


AARC shows often very good behaviour (Ben-Tal et al., 2004):Unc.ty (%) Opt(ARC) Opt(AARC) Opt(RC)10 13531.8 13531.8 (+0.0%) 15033.4 (+11.1%)20 15063.5 15063.5 (+0.0%) 18066.7 (+19.9%)30 16595.3 16595.3 (+0.0%) 21100.0 (+27.1%)40 18127.0 18127.0 (+0.0%) 24300.0 (+34.1%)50 19658.7 19658.7 (+0.0%) 27500.0 (+39.9%)60 21190.5 21190.5 (+0.0%) 30700.0 (+44.9%)70 22722.2 22722.2 (+0.0%) 33960.0 (+49.5%)F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N42 / 53


whereZ 1 ⊂ Z 2 .Example:Globalized robust counterpart(a+Bζ) T x ≤ β +αdist(ζ,Z 1 ) ∀ζ ∈ Z 2 ,■ Z 1 = {ζ : ‖ζ‖ 2 ≤ ρ 1 }, Z 2 = {ζ : ‖ζ‖ ∞ ≤ ρ 2 },ρ 1 ≤ ρ 2 .■ dist(ζ,Z 1 ) = min ζ′ ∈Z 1‖ζ −ζ ′ ‖ 2 .Globalized <strong>Robust</strong> Counterpart (GRC):{a T x+ρ 2 ‖v‖ 1 +ρ 1 ‖B T x−v‖ 2 ≤ β‖B T x−v‖ 2 ≤ αThis is a system of conic quadratic constraints.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N43 / 53


Adv<strong>an</strong>tage of Globalized <strong>Robust</strong> Counterpart:■■■■Relaxes assumption [3]: ”Constraints of uncertain problemare hard”.Smooth behaviour.Often better ‘average behaviour’.GRC is still tractable for m<strong>an</strong>y choices ofZ 1 ,Z 2 , <strong>an</strong>ddist<strong>an</strong>ce function.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N44 / 53


Modelling issuesRCs of two equivalent problems may not be equivalent.Example 1:(RP) (2+ζ)x 1 ≤ 1 ∀ζ : |ζ| ≤ 1{(2+ζ)x 1 +s = 1 ∀ζ : |ζ| ≤ 1(RP)s ≥ 0Nominal problems are equivalent, but:Feasible set for(RP): x 1 ≤ 1/3Feasible set for(RP): x 1 = 0.Try to avoid equality constraints (e.g. using elimination)!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N45 / 53


Example 2:(RP) |x 1 −ζ|+|x 2 −ζ| ≤ 2 ∀ζ : |ζ| ≤ 1or(RP)⎧y 1 +y 2 ≤ 2⎪⎨ y 1 ≥ x 1 −ζ ∀ζ : |ζ| ≤ 1y 1 ≥ ζ −x 1 ∀ζ : |ζ| ≤ 1y 2 ≥ x 2 −ζ ∀ζ : |ζ| ≤ 1⎪⎩y 2 ≥ ζ −x 2 ∀ζ : |ζ| ≤ 1x = (1,−1) is feasible for(RP) but not for(RP)!Be careful with “splitting up” constraints!F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N46 / 53


Example 2:(RP) |x 1 −ζ|+|x 2 −ζ| ≤ 2 ∀ζ : |ζ| ≤ 1Correct reformulation:(RP)⎧x 1 −ζ +x 2 −ζ ≤ 2 ∀ζ : |ζ| ≤ 1⎪⎨x 1 −ζ −(x 2 −ζ) ≤ 2 ∀ζ : |ζ| ≤ 1−(x 1 −ζ)+x 2 −ζ ≤ 2 ∀ζ : |ζ| ≤ 1⎪⎩−(x 1 −ζ)−(x 2 −ζ) ≤ 2 ∀ζ : |ζ| ≤ 1.See Gorissen et al. (2012).F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N47 / 53


General remarks■■■■■RC reformulations also valid for MIP problems.Structure (e.g. network, total unimodularity) often destroyedby RC.Analyze robustness of nominal <strong>an</strong>d robust optimal solution.There are no methods known that c<strong>an</strong> deal with integeradjustable variables.RO methodology implemented in modelling packages asYalmip, ROME, AIMMS.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N48 / 53


Extensions■■■■■Tractable robust counterpart for other uncertainty regions,e.g. defined by separable convex functions.Tractable robust counterpart for problems with certain typesof non-affine uncertain parameters.Example: (1+ζ 2 1)x 1 +ζ 1 ζ 2 x 2 ≤ 5, ∀ζ : ‖ζ‖ 2 ≤ 1.Tractable (approximations of) robust counterpart for (conic)quadratic, SDP <strong>an</strong>d other nonlinear problems.Tractable robust counterpart for certain classes of nonlineardecision rules.Globalized robust counterpart for nonlinear optimizationproblems.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N49 / 53


Application areas of ROHundreds of papers on applications in the following categories:■■■■■■■■■■■Circuit designSignal processing / signal estimationCommunicationControlStructural optimization / material design / shape designMech<strong>an</strong>ical EngineeringOpticsApplied PhysicsChemical engineeringMedical applicationsComputer ScienceF A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N50 / 53


■■■■■■■■■■■■■Machine learningAgricultureWater resources / water m<strong>an</strong>agement / hydrologyEnergy / EnvironmentVehicle routingInventory / Supply chain m<strong>an</strong>agementFacility locationTr<strong>an</strong>sportation / civil engineeringRevenue M<strong>an</strong>agementMainten<strong>an</strong>ceFin<strong>an</strong>ceDesign of ExperimentsStatisticsF A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N51 / 53


Application: C<strong>an</strong>cer treatment■ Treatment pl<strong>an</strong> optimization:– tumor should get prescribed dose– healthy org<strong>an</strong>s should be spared.■ Formulated as a large LP probem.■ Uncertainties in location of tumor / org<strong>an</strong>s.e.g. because of breathing■ <strong>Robust</strong> solution much better th<strong>an</strong> nominal solution.■ See e.g.: Olafsson <strong>an</strong>d Wright (2006).F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N52 / 53


Conclusions■■■■<strong>Practical</strong> optimization problems often contain uncertainparameters.RO is a tractable way to obtain robust solutions:Provides a natural way for modelling uncertainty.<strong>Robust</strong> counterpart is often tractable.The basic paradigm of RO is “worst-case”, but also oftenimproves average behaviour.Adjustable RO is <strong>an</strong> efficient way to solve multistageproblems.■RO implemented in modelling software packages.F A C U L T Y O F E C O N O M I C S A N D B U S I N E S S A D M I N I S T R A T I O N53 / 53

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!