12.07.2015 Views

reverse osmosis desalination plant in nuweiba city (case study) - IWTC

reverse osmosis desalination plant in nuweiba city (case study) - IWTC

reverse osmosis desalination plant in nuweiba city (case study) - IWTC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptSal<strong>in</strong>e water is pumped from the beach wells through the deep well pumps to a PVCheader and then to the sand filters (activated carbon filters) as shown <strong>in</strong> Fig. 1. Dur<strong>in</strong>gthis process, the water is sterilized to prevent the growth of bacteria and algae.Activated carbon (AC) filtration is most effective <strong>in</strong> remov<strong>in</strong>g organic contam<strong>in</strong>antsfrom sal<strong>in</strong>e water. AC filtration is recognized by the Water Quality Association(WQA) as an acceptable method to ma<strong>in</strong>ta<strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water contam<strong>in</strong>ants with<strong>in</strong> thelimits of the Environmental Protection Agency (EPA) and national dr<strong>in</strong>k<strong>in</strong>g waterstandards.Under normal circumstances when shutdown occurs, the permeate pumps will startand flush out the sea water from the membranes. The system has been designed so thatonly one unit of the <strong>plant</strong> can be cleaned at a time. Recirculation of the clean<strong>in</strong>g fluidsis handled by only one chemical clean<strong>in</strong>g pump. Post treatment of the product waterconsists of chlor<strong>in</strong>at<strong>in</strong>g to allow chlor<strong>in</strong>e residual and pH adjustment with<strong>in</strong> theacceptable range of 7.5 to 8.5 ppm. The <strong>plant</strong> is provided with one cartridge filterwhich ensure that particles larger than 5 microns, carried over from the dual mediafilters will not enter the membranes. This filter is constructed from sta<strong>in</strong>less steel fortotal corrosion resistance.The hydraulic turbocharger is a turb<strong>in</strong>e mounted on a common shaft with a centrifugalpump. The turb<strong>in</strong>e recovers and uses the hydraulic energy from the high pressure br<strong>in</strong>eto drive the <strong>in</strong>tegral centrifugal pump. The pump impeller boosts the pressure of thefeed stream. The pump-turb<strong>in</strong>e root is free to seek its own speed of rotation.The membranes sta<strong>in</strong>less steel skid consists of 15 vessels; each one conta<strong>in</strong>s 5elements of membranes of spiral wound type. The membrane is only a sk<strong>in</strong> of about0.0025 mm thick. The membranes are rather porous plastic with active chemical sites.Its permeability is affected by water chemical contents, temperature, pressure andsal<strong>in</strong>ity. The pressure required to operate the RO <strong>plant</strong> <strong>in</strong> Nuweiba City is 60-70 bar.Dur<strong>in</strong>g the normal operation of the RO <strong>plant</strong>, the follow<strong>in</strong>g data have been recordeddaily from 2001 up to now:1- The pressure before and after each filter, pump, turbocharger and RO element.2- Temperature before and after each RO element.3- Thermal conductivity before and after each RO element. Sal<strong>in</strong>ity of a stream iscalculated from the measured thermal conductivity.4- The mass flow rate of both the product water and br<strong>in</strong>e.On the other hand, site experimental work has been carried out on one RO unit of the<strong>plant</strong> to <strong>study</strong> the effect of feed water temperature, pressure and sal<strong>in</strong>ity on theproductivity of the unit. The change <strong>in</strong> the sal<strong>in</strong>ity of feed water was carried out byadd<strong>in</strong>g product water to the feed sal<strong>in</strong>e water. The pressure of the feed water waschanged by the pump and by pass<strong>in</strong>g the feed water. To <strong>study</strong> the effect of temperatureof the feed water, tests are carried out dur<strong>in</strong>g different times of the year with differentambient temperatures. The product mass flow rate, pressure and temperature aremeasured by the same <strong>in</strong>strumentation attached to the RO <strong>desal<strong>in</strong>ation</strong> <strong>plant</strong>.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptRESULTS AND DISCUSSIONTo <strong>study</strong> the effect of a certa<strong>in</strong> parameter on the system performance, other parametersare kept constant dur<strong>in</strong>g the experimental work. Results of the site experimental workthat expla<strong>in</strong> the <strong>in</strong>fluence of the ma<strong>in</strong> operat<strong>in</strong>g parameters are graphically depicted <strong>in</strong>Figures 2 to 6. The effect of the feed water pressure on the productivity is shown onFig. 2 at a feed water temperature 28°C and sal<strong>in</strong>ity 44000 ppm. The productivity<strong>in</strong>creases as the feed pressure <strong>in</strong>creases. The productivity is expressed as a percentageof the nom<strong>in</strong>al value of the unit (1000 m 3 /day or 41.67 m 3 /hr). The productivity<strong>in</strong>creases from 7.2 to 124.8 % correspond<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> the feed pressure from41.37 to 72.4 bar respectively. The relation is almost l<strong>in</strong>ear between the feed pressureand the productivity.Productivity, %1401201008060Feed temperature = 28 ο CFeed sal<strong>in</strong>ity = 44000 ppm4020040 50 60 70 80Pressure, barFigure 2. Effect of feed water pressure on the productivityFigure 3 shows the effect of feed water temperature on the productivity of the RO<strong>plant</strong>. The results of this experiment are taken at different times of the year to obta<strong>in</strong>different values of feed water temperatures. It is clear from the figure that theproductivity percent <strong>in</strong>creases also l<strong>in</strong>early with <strong>in</strong>creas<strong>in</strong>g the feed water temperature.The productivity <strong>in</strong>creases from 74.4 to 112.8% correspond<strong>in</strong>g to an <strong>in</strong>crease <strong>in</strong> thefeed temperature from 10 to 32°C respectively, at a feed pressure of 63 bar. Therefore,<strong>in</strong> hot and arid zone, where water temperature is high, the RO productivity can be<strong>in</strong>creased which resulted <strong>in</strong> low power consumption and cost.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptProductivity, %120116112108Feed temperature = 28 ο CFeed pressure = 63 bar10410010000 20000 30000 40000 50000Feed water sal<strong>in</strong>ity, ppmFigure 5. Effect of feed water sal<strong>in</strong>ity on the productivityThe sal<strong>in</strong>ity of feed water affects also the sal<strong>in</strong>ity of the product water as shown <strong>in</strong>Fig. 6. The sal<strong>in</strong>ity of product water <strong>in</strong>creases by <strong>in</strong>creas<strong>in</strong>g the sal<strong>in</strong>ity of the feedwater. The sal<strong>in</strong>ity of feed water <strong>in</strong>creases from 67 to 350 ppm correspond<strong>in</strong>g to an<strong>in</strong>crease <strong>in</strong> the feed water sal<strong>in</strong>ity from 15000 to 45000 ppm respectively. Thisexperiment is carried out at a feed pressure 63 bar and feed water temperature of 28°C.The above read<strong>in</strong>gs are taken dur<strong>in</strong>g 24 hours with one hour <strong>in</strong>terval on the first day ofeach month. The daily average values of the measured data are calculated for test<strong>in</strong>gthe performance of each component and detect any changes of the <strong>plant</strong> performance.The recorded data dur<strong>in</strong>g the years 2002 and 2005 are shown <strong>in</strong> Appendix A. Themeasured data are recorded from the attached <strong>in</strong>struments to the <strong>plant</strong>. Therefore, thepressure is recorded as psi.Permeate sal<strong>in</strong>ity, ppm400300200100Feed temperature = 28 ο CFeed pressure = 63 bar010000 20000 30000 40000 50000Feed water sal<strong>in</strong>ity, ppmFigure 6. Effect of feed water sal<strong>in</strong>ity on the product sal<strong>in</strong>ity


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptEconomical AnalysisIn order to evaluate precisely the RO process, an economical analysis is important.The analysis is made for one unit (1000 m 3 /day). In addition to the capital cost, themajor factors that <strong>in</strong>fluence the cost are the power consumption, runn<strong>in</strong>g andma<strong>in</strong>tenance costs.A- Power consumption costUs<strong>in</strong>g power from local power network (Price of one kWh is 0.22 LE); thefollow<strong>in</strong>g <strong>in</strong>dividual power consumption for each component of the <strong>plant</strong> isrecorded and illustrated <strong>in</strong> Table 1.Table 1 Energy requirementsPump Power (kW) kWh/m 3Sea water pump 18 0.432Filter pump 18 0.432Additive pumps 1 0.024Product pump 3 0.072RO HP pump 285 6.840Total 325 7.800Power cost for one m 3 product water = 7.8 x 0.22 = 1.716 LE/m 3B- Chemical requirementsTable 2 shows the costs of chemical treatment as an average dur<strong>in</strong>g the operationperiod.Table 2 Chemical cost per m 3 product waterItem gr/m 3 Cost, LE/m 3Ca O Cl (Pre + Post) 20 0.03H Cl (30%) 100 0.08Anti Scalant 10 0.25Na O H 80 0.04Others ----- 0.12Total ----- 0.52C- Ma<strong>in</strong>tenance and repairThe average cost values of ma<strong>in</strong>tenance and repair dur<strong>in</strong>g the normal operation ofthe <strong>plant</strong> are shown <strong>in</strong> Table 3.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptTable 3 Ma<strong>in</strong>tenance and repair costs per m 3 product waterOperation Name Cost, LE/m 3Cartridge filter 0.03Pumps and motors 0.08Controls and electrical, etc. 0.05Instrument, etc. 0.03Miscellaneous 0.05Total 0.24D- Labor and adm<strong>in</strong>istrationLabor and adm<strong>in</strong>istration costs are estimated by 0.50 LE per m 3 product water asan average value.E- Capital costFor one unit, the capital cost is estimated by 5,500,000 LE.Work<strong>in</strong>g days = 335 per yearExpected life time = 10 yearsCapital cost per 1 m 3 5500000product water =10 × 335 × 1000F- Cost of wells and <strong>plant</strong> civil workCivil work cost per 1 m 3 product water = 0.274 LE/m 3=1.6423LE/mTotal cost per 1 m 3 = 1.716 + 0.520 + 0.240 + 0.500 + 1.642 + 0.274 = 4.892 LE/m 3From the above cost analysis, it appears that the major factors affect<strong>in</strong>g the productwater cost are the capital and power costs as shown <strong>in</strong> Fig. 7. Surpris<strong>in</strong>gly, thechemical treatment cost is one of the lowest <strong>in</strong> percentage. This is may be due to thefact that the <strong>plant</strong> membranes are new and <strong>in</strong> a good condition.The RO system is reliable for operation; it does not require any skill operator andsimple to <strong>in</strong>stall. The only <strong>in</strong>convenient is its high operat<strong>in</strong>g cost. In this <strong>case</strong> the highoperation cost comes from two items; power cost 35% and capital cost 33.6%.Ma<strong>in</strong>tenance and repairs present only 5% and chemical treatment 10%. The highcapital cost is due to the well system. Desal<strong>in</strong>ation is a high energy consumptionprocess. The energy shar<strong>in</strong>g amounts to 30-50% of total production cost. Due to therapid progress <strong>in</strong> sea water <strong>reverse</strong> <strong>osmosis</strong> technology, the cost has decreased.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptCost per cubic meter, LE/m 321.61.20.80.4PowerCapitalChemicalLaborCivilMa<strong>in</strong>tenance0ItemFigure 7. The capital and operation cost of the RO <strong>plant</strong>S<strong>in</strong>ce all the components are new and satisfy the design conditions, the performance ofthe new RO <strong>desal<strong>in</strong>ation</strong> <strong>plant</strong> is very good. The performance of the <strong>plant</strong> should bekept at the same level dur<strong>in</strong>g its operation period. The ma<strong>in</strong>tenance schedule is knownto be very responsible about this issue. A part of this <strong>case</strong> <strong>study</strong> is to evaluate thema<strong>in</strong>tenance schedule of the RO <strong>plant</strong>. Therefore, the ma<strong>in</strong>tenance processes arerecorded dur<strong>in</strong>g the operation of the RO <strong>plant</strong> as shown <strong>in</strong> Appendix B. Thisma<strong>in</strong>tenance schedule is strictly applied. Therefore, there is no noticeable change ofthe <strong>plant</strong> read<strong>in</strong>gs dur<strong>in</strong>g the period of operation as seen <strong>in</strong> appendix A.CONCLUSIONSReverse <strong>osmosis</strong> <strong>desal<strong>in</strong>ation</strong> <strong>plant</strong> <strong>in</strong> Nuweiba City <strong>in</strong> S<strong>in</strong>ai, Egypt (5000 m 3 /day) istaken as a <strong>case</strong> <strong>study</strong>. Experimental tests are carried out <strong>in</strong> site to evaluate the <strong>plant</strong>performance. The follow<strong>in</strong>g conclusions are obta<strong>in</strong>ed based on 5 years of operationperiod from 2001 of the RO <strong>desal<strong>in</strong>ation</strong> <strong>plant</strong>:1- The RO system is found to be sensitive to the variation <strong>in</strong> the feed watertemperature, pressure and sal<strong>in</strong>ity;a) Higher feed water temperature <strong>in</strong>creases the <strong>plant</strong> productivity.b) Increas<strong>in</strong>g the feed water pressure <strong>in</strong>creases the <strong>plant</strong> productivity, butdecreases the permeate sal<strong>in</strong>ity.c) Higher feed water sal<strong>in</strong>ity reports lower productivity and higher product watersal<strong>in</strong>ity.2- The used ma<strong>in</strong>tenance schedule (for 5 years operation) is seen to be suitable for the<strong>plant</strong>, s<strong>in</strong>ce the change <strong>in</strong> <strong>plant</strong> performance dur<strong>in</strong>g the operation period is notnoticeable.3- The cost analysis of the RO <strong>plant</strong> reveals that the major factors affect<strong>in</strong>g the productwater cost are the power consumption cost (35%) and capital cost (33.6%) whilethe chemical treatment represents 10% of the total cost.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptREFERENCES1- Machado, D.R., Hasson, D., and Semiat, R., "Effect of Solvent Properties onPermeate Flow through Nanofiltration Membranes. Part I: Investigation ofParameters Affect<strong>in</strong>g Solvent Flux," Journal of Membrane Science, Vol. 163,1999, pp. 93-102.2- Wilf, M., and Schierach, M.K., "Improved Performance and Cost Reduction of ROSeawater Systems Us<strong>in</strong>g UF Pretreatment," Desal<strong>in</strong>ation, Vol. 135, 2001, pp. 61-68.3- El-Saie, M.H.A., El-Saie, Y.M.H.A., and Abd El Aziz, M., "Experimental ROFacility to Study the Heat<strong>in</strong>g Effect of Raw Water on the Vary<strong>in</strong>g Ma<strong>in</strong>Parameters," Desal<strong>in</strong>ation, Vol. 134, 2001, pp. 63-76.4- Goosen, M.F.A., Sablani, S.S., Al-Maskari, S.S., Al-Belushi, R.H., and Wilf, M.,"Effect of Feed Temperature on Permeate Flux and Mass Transfer Coefficient <strong>in</strong>Spiral-Wound Reverse Osmosis Systems," Desal<strong>in</strong>ation, Vol. 144, 2002, pp. 367-372.5- Arora, M., Maheshwari, R.C., Ja<strong>in</strong>, S.K., and Gupta, A., "Use of MembraneTechnology for Potable Water Production," Desal<strong>in</strong>ation, Vol. 170, 2004, pp. 105-112.6- Drak, A., Gluc<strong>in</strong>a, K., Busch, M., Hasson, D., La<strong>in</strong>e, J.M., and Semiat, R.,"Laboratory Technique for Predict<strong>in</strong>g the Scal<strong>in</strong>g Propensity of RO Feed Waters,"Desal<strong>in</strong>ation, Vol. 132 (1-3), 2000, pp. 233-242.7- Villafafila, A., and Mujtaba, I.M., "Fresh Water by Reverse Osmosis BasedDesal<strong>in</strong>ation: Simulation and Optimisation," Desal<strong>in</strong>ation, Vol. 155, 2003, pp. l-13.8- Abbas, A., "Simulation and Optimization of an Industrial Reverse Osmosis WaterDesal<strong>in</strong>ation Plant," Proceed<strong>in</strong>gs of IMEC2004, International MechanicalEng<strong>in</strong>eer<strong>in</strong>g Conference, December 5-8, 2004, Kuwait, IMEC04-2056.9- Hafez, A., and El-Manharawy, S., "Economics of Seawater RO Desal<strong>in</strong>ation <strong>in</strong> theRed Sea Region, Egypt. Part 1. A Case Study," Desal<strong>in</strong>ation, Vol. 153, 2002,pp. 335-347.10- Abou Rayan, M., and Khaled, I., "Seawater Desal<strong>in</strong>ation by Reverse Osmosis(Case Study)," Desal<strong>in</strong>ation, Vol. 153, 2002, pp. 245-251.11- Djebedjian, B., Gad, H.E., Khaled, I., and Abou Rayan, M., "An ExperimentalInvestigation on the Reverse Osmosis Desal<strong>in</strong>ation system," The 5 th InternationalEng<strong>in</strong>eer<strong>in</strong>g Conference, Sharm El-Sheikh, Egypt, 27-31 March, 2006, pp. M-99−M-111.


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptAPPENDIX ANormal read<strong>in</strong>gs of Nuweiba RO <strong>plant</strong> for years 2002 and 2005DATESand FilterPressure(psi)Table 4 Measured data for year 2002CartridgeFilter Pressure(psi)HPPPr.Out(psi)MembraneTurboPressurePr.(psi)In(psi) In OutProductWaterFlowRate(m 3 /h)RejectWaterFlowRate(m 3 /h)ProductWaterConductivity(µ S/cm)In Out Diff In Out Diff1/1/2002 7 1 6 38 29 9 700 630 975 935 47 103 7642/1/2002 11 1 10 38 28 10 700 630 980 940 48 102 7653/1/2002 11 1 10 38 26 12 700 630 975 935 48 102 7704/1/2002 11 1 10 38 25 13 700 630 980 940 47 103 7715/1/2002 7 1 6 38 21 17 690 625 970 930 48 102 7756/1/2002 11 1 10 38 19 19 690 625 975 940 47 103 7797/1/2002 7 1 6 38 18 20 690 625 970 930 45 105 7808/1/2002 7 1 6 38 19 19 695 625 970 930 45 105 7859/1/2002 12 1 11 38 19 19 690 625 980 935 45 105 79010/1/2002 12 1 11 38 18 20 690 625 975 935 46 104 79811/1/2002 11 0 10 38 14 24 690 620 975 935 45 105 81012/1/2002 12 1 11 38 32 6 705 620 970 930 45 105 770DATESand FilterPressure(psi)Table 5 Measured data for year 2005CartridgeFilter Pressure(psi)HPPPr.Out(psi)TurboPr.In(psi)MembranePressure(psi)ProductWaterFlowRate(m 3 /h)RejectWaterFlowRate(m 3 /h)ProductWaterConductivity(µ S/cm)In Out Diff In Out DiffIn Out1/1/2005 12 0 12 38 33 5 705 615 970 945 47 103 7862/1/2005 12 1 11 38 33 5 705 625 970 930 48 102 7803/1/2005 12 1 11 38 33 5 705 620 970 930 48 102 7894/1/2005 12 0 12 38 33 5 700 620 970 930 49 101 7855/1/2005 7 0 7 38 32 6 700 625 980 940 48 102 7926/1/2005 11 0 11 38 32 6 700 630 970 935 47 103 7997/1/2005 11 1 10 38 32 6 695 625 970 935 46 104 7938/1/2005 12 1 11 38 31 7 700 625 980 935 46 104 8069/1/2005 8 1 7 38 30 8 700 620 980 940 46 104 81910/1/2005 8 0 8 38 29 9 700 625 970 940 46 104 78511/1/2005 12 0 12 38 27 11 700 625 970 930 45 105 78012/1/2005 12 1 11 38 25 13 690 620 970 930 45 105 784


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptAPPENDIX BThe ma<strong>in</strong>tenance procedure of Nuweiba RO <strong>plant</strong>Periodical ma<strong>in</strong>tenance for sand filtersNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Filter body& filter clean<strong>in</strong>g x2 Check<strong>in</strong>g forleakage x3 Tighten<strong>in</strong>gflanges and valves x4 Check<strong>in</strong>gvalves x5 Discharg<strong>in</strong>gwater from sump x6 Check<strong>in</strong>gdos<strong>in</strong>g connections x7Record<strong>in</strong>gpressure gaugesread<strong>in</strong>gsx8 Manual backwash x9 Check<strong>in</strong>g leakage <strong>in</strong> air l<strong>in</strong>es x10 Check<strong>in</strong>g thecontrol panel x11Check<strong>in</strong>g theauto valvessequencex12Calibrationof pressuretransmittersx13 Check<strong>in</strong>gfilter media xPeriodical ma<strong>in</strong>tenance for feed pumpsNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g for pump body x2Check<strong>in</strong>g oil & lubricationlevelx3 Check<strong>in</strong>g (heat-noise-vibration) x4 Check<strong>in</strong>g for leakage x5 Tighten<strong>in</strong>gflanges and valves x6 Check<strong>in</strong>gvalves x7 Record<strong>in</strong>g motor current x8Record<strong>in</strong>gpressure gaugesread<strong>in</strong>gsx9 Check<strong>in</strong>g thecontrol panel x10 Check<strong>in</strong>g the circuit breakers x11 Check<strong>in</strong>g the contactors x12 Check<strong>in</strong>g the motor cable x13 Check<strong>in</strong>g pump parts x14 Check<strong>in</strong>g the motor x


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptPeriodical ma<strong>in</strong>tenance for cartridge filters areaNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g pump body x2Check<strong>in</strong>g the oil andlubrications levelx3Check<strong>in</strong>g for (heat - noise -vibration)x4 Check<strong>in</strong>g for leakage x5 Tighten<strong>in</strong>gflanges and valves x6 Check<strong>in</strong>gvalves x7 Record<strong>in</strong>g motor current x8Record<strong>in</strong>gpressure gaugesread<strong>in</strong>gsx9 Check<strong>in</strong>gthe control panel x10 Check<strong>in</strong>g the circuit breakers x11 Check<strong>in</strong>g the contactors x12 Check<strong>in</strong>g the motor cable x13 Check<strong>in</strong>g pump parts x14 Check<strong>in</strong>g the motor xPeriodical ma<strong>in</strong>tenance for high pressure pumpsNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g for pump body x2Greas<strong>in</strong>gthe mov<strong>in</strong>g parts andboltsx3Check<strong>in</strong>g for (heat - noise -vibration)x4 Check<strong>in</strong>gfor leakage x5 Tighten<strong>in</strong>gflanges and valves x6 Check<strong>in</strong>gvalves x7 Record<strong>in</strong>g motor current x8Record<strong>in</strong>goperat<strong>in</strong>g hours andstop hoursx9 Record<strong>in</strong>gflow and pressure x10 Check<strong>in</strong>goil level x11 Check<strong>in</strong>gthe soft starter x12 Check<strong>in</strong>gthe control panel x13 Check<strong>in</strong>g the circuit breakers x14 Check<strong>in</strong>g the contactors x15 Check<strong>in</strong>g the motor cable x16 Check<strong>in</strong>gpump alignment x17 Check<strong>in</strong>g pump parts x18 Check<strong>in</strong>g the motor x


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptPeriodical ma<strong>in</strong>tenance for RO unitsNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Clean<strong>in</strong>gunit area x2Record<strong>in</strong>gflow, pressure andTDSx3Record<strong>in</strong>gTDS for eachpressure vesselx4 Tighten<strong>in</strong>gflanges and valves x5 Check<strong>in</strong>gfor leakage x6Check<strong>in</strong>gfor leakage <strong>in</strong> airl<strong>in</strong>esx7Check<strong>in</strong>gthe auto valvessequencex8 Flush<strong>in</strong>gunit after stop x9 Check<strong>in</strong>gturb<strong>in</strong>e operation x10 Check<strong>in</strong>gturb<strong>in</strong>e parts x11Calibrationof pressuretransmittersx12 Calibrationof flow transmitters x13Calibrationof conductivitymeterx14 Calibrationof feed valve x15 Chemicalclean<strong>in</strong>g for units xPeriodical ma<strong>in</strong>tenance for product tanksNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1Check<strong>in</strong>gChlor<strong>in</strong>e and pH +dos<strong>in</strong>gx2 Flush<strong>in</strong>gtanks x3 Clean<strong>in</strong>g<strong>in</strong>let sleeves x4 Tak<strong>in</strong>gsamples for analysis x5 Chemicalclean<strong>in</strong>g of tanks x6 Calibration of level switches xPeriodical ma<strong>in</strong>tenance for power panels (MMC)No. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dryclean<strong>in</strong>g for panels x2Clean<strong>in</strong>g<strong>in</strong>ternal componentswith airx3 Chang<strong>in</strong>gburned led x4 Check<strong>in</strong>gfuses x5 Tighten<strong>in</strong>gcables fixation x


Eleventh International Water Technology Conference, <strong>IWTC</strong>11 2007 Sharm El-Sheikh, EgyptPeriodical ma<strong>in</strong>tenance for br<strong>in</strong>e and back wash pumpsNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g for pump body x2Check<strong>in</strong>g the oil andlubrications levelx3Check<strong>in</strong>g for (heat - noise -vibration)x4 Check<strong>in</strong>g for leakage x5 Tighten<strong>in</strong>gflanges and valves x6 Check<strong>in</strong>gvalves x7 Record<strong>in</strong>g motor current x8 Record<strong>in</strong>goperation hours x9 Check<strong>in</strong>gwater levels <strong>in</strong> tanks x10 Discharg<strong>in</strong>gwater from sump x11 Check<strong>in</strong>gthe control panel x12 Check<strong>in</strong>g the circuit breakers x13 Check<strong>in</strong>g the contactors x14 Check<strong>in</strong>g the motor cable x15 Check<strong>in</strong>g pump parts x16 Check<strong>in</strong>g the motor xPeriodical ma<strong>in</strong>tenance for dos<strong>in</strong>g pumps and tanksNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g for pump body x2 Check<strong>in</strong>gtanks levels x3 Check<strong>in</strong>gpumps flow x4 Check<strong>in</strong>gfor leakage x5 Check<strong>in</strong>glevel switches x6 Clean<strong>in</strong>gtanks and l<strong>in</strong>es xPeriodical ma<strong>in</strong>tenance for pump<strong>in</strong>g stationNo. Ma<strong>in</strong>tenancestepsDaily Weekly Monthly Yearly Yearly Yearly1 Dry clean<strong>in</strong>g for pump body x2Check<strong>in</strong>g the oil andlubrications levelx3Check<strong>in</strong>g for (heat - noise -vibration)x4 Check<strong>in</strong>g for leakage x5 Tighten<strong>in</strong>g flanges and valves x6 Check<strong>in</strong>g valves x7 Record<strong>in</strong>g motor current x8Record<strong>in</strong>g pressure gaugesread<strong>in</strong>gsx9 Check<strong>in</strong>g <strong>city</strong> tanks levels x10 Check<strong>in</strong>g storage tanks levels x11 Discharg<strong>in</strong>g water from sump x12Check<strong>in</strong>g the operation ofventilation systemx13 Check<strong>in</strong>g the control panel x14 Check<strong>in</strong>g the circuit breakers x15 Check<strong>in</strong>g the contactors x16 Check<strong>in</strong>g the motor cable x17 Check<strong>in</strong>g pump alignment x18 Check<strong>in</strong>g pump parts x

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!