12.07.2015 Views

Superconductivity through Quantum Critical Fluctuations in the ...

Superconductivity through Quantum Critical Fluctuations in the ...

Superconductivity through Quantum Critical Fluctuations in the ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

t f<strong>in</strong>ite temperature where <strong>the</strong> correlation funcder-parameterphase. Never<strong>the</strong>less e ı changes a from phaseexponential transitiontoPr<strong>in</strong>cipal Steps:temperature where <strong>the</strong> correlation funcarametere ı changes from exponential totransition. The quantum dissipative generalizatiomodel <strong>in</strong>cludes two dynamical terms and is given bpower law. This is <strong>the</strong> Kosterlitz-Thoulesstransition. 25,26 The quantum dissipative generalizmodel <strong>in</strong>cludes two dynamical terms and is giveZ = D i exp − 0= Z D i exp − 0S diss =−d0did ij,klC2 2 ij − J cos ij − klij,kl ij − kl ij,kl − ij − kl − + S diss ,e capacitance andS=R Q /R, where R Q =h/4e 2 .cs of this phase transition diss d ,=−isd0better understoodij,kl<strong>in</strong> terms of <strong>the</strong> − topological defects of <strong>the</strong> system. To dndard procedure of us<strong>in</strong>g <strong>the</strong> Villa<strong>in</strong> transform and <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> phase degrees of freedom. 20 Thacitance olves expand<strong>in</strong>g Villa<strong>in</strong> =R Transformation:<strong>the</strong> Q periodic /R, where function R Q =h/4e <strong>in</strong> terms 2 . of a periodic Gaussianthis phase transitionexp − J is better understood 1 − cos ij − kl <strong>in</strong> termsij,klm ij;klexp − of J <strong>the</strong> topological defects of ij − kl − 2m ij;kl /2 2 ,<strong>the</strong> system. Tprocedure of us<strong>in</strong>g <strong>the</strong> Villa<strong>in</strong> transform and <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> phase degrees of freedom. 20ij,klre <strong>in</strong>tegers that live on <strong>the</strong> l<strong>in</strong>ks of <strong>the</strong> orig<strong>in</strong>al. We can comb<strong>in</strong>e <strong>the</strong> two l<strong>in</strong>k variables m i,j;i+1,jto one <strong>in</strong>tegrated two-component over. vector m i,j that lives onof <strong>the</strong> lattice see Fig. 1. We expand <strong>the</strong> quadtransform to Fourier space. Keep<strong>in</strong>g <strong>the</strong> lead-diC2 2 ij − J cos ij − kl xy − x+1,y − 2m xx,y+ S diss ,2 ij − kl − ij − kl 2expand<strong>in</strong>g <strong>the</strong> periodic function <strong>in</strong> terms of a periodic Gaussianexp − J ij,kl1 − cos ij − kl m ij;klexp − J ij − kl − 2m ij;kl /2 2 ,ij,klNow <strong>the</strong> model is Gaussian <strong>in</strong> <strong>the</strong>θ’swhich can be, 2 a 2 2 xx xy +4a x xy m x,yxwhere m x,y is <strong>the</strong> x component of <strong>the</strong> vector field<strong>the</strong> <strong>in</strong>teger m . In <strong>the</strong> absence of dissipation,egers that live on <strong>the</strong> l<strong>in</strong>ks of <strong>the</strong> orig<strong>in</strong>al − − 2m x 2 a 2 2 +4a m x+

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!