12.07.2015 Views

Ant species richness, endemicity and functional groups, along an ...

Ant species richness, endemicity and functional groups, along an ...

Ant species richness, endemicity and functional groups, along an ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

ASIAN MYRMECOLOGY Volume 5, 79–101, 2013Issn 1985-1944 © Hi m e n d e r Bh a r t i, Ya s h Pa u l Sh a r m a, Me e n a k s h i Bh a r t i a n d Ma r t i n Pf e i ff e r<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>,<strong>along</strong> <strong>an</strong> elevational gradient in the HimalayasHi m e n d e r Bh a r t i 1 , Ya s h Pa u l Sh a r m a 1 , Me e n a k s h i Bh a r t i 1 a n dMa r t i n Pf e i ff e r 21Department of Zoology <strong><strong>an</strong>d</strong> Environmental Sciences, Punjabi University,Patiala, Punjab, India. 2 Department of Ecology, National University ofMongolia, Ula<strong>an</strong>baatar, MongoliaCorresponding author: Dr Himender Bharti, Department of Zoology <strong><strong>an</strong>d</strong>Environmental Sciences, Punjabi University, Patiala, Punjab, India-147002Corresponding author's email: himenderbharti@gmail.comABSTRACT. In this study we investigate variation in <strong>species</strong> density, <strong>species</strong><strong>richness</strong>, abund<strong>an</strong>ce <strong><strong>an</strong>d</strong> <strong>functional</strong>-<strong>groups</strong> composition <strong>along</strong> <strong>an</strong> elevationalgradient in Jammu-Kashmir Himalaya. We tested the hypotheses that (1) <strong>species</strong><strong>richness</strong> <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce decrease with increase in elevation with respect totemperature ch<strong>an</strong>ge, <strong><strong>an</strong>d</strong> (2) assemblage composition ch<strong>an</strong>ges with <strong>an</strong> increase inelevation with respect to <strong>functional</strong>-group composition. We employed differentsampling methods like pitfall traps, leaf-litter sifting, stick beating, soil cores,honey baits <strong><strong>an</strong>d</strong> h<strong><strong>an</strong>d</strong> picking to sample <strong>an</strong>ts. Among the 144 <strong>species</strong> collected,the first two elevations (500 <strong><strong>an</strong>d</strong> 1000 m) were dominated by Indo-Malay<strong>an</strong>elements, while above 2000 m assemblages were dominated by Palaearcticelements. We observed that <strong>an</strong>t <strong>species</strong> <strong>richness</strong> increased with <strong>an</strong> initial increasein elevation, peaked at mid-elevation <strong><strong>an</strong>d</strong> thereafter decreased, thus forming amid-elevation peak. The pattern observed could be attributed to the optimalclimatic conditions present at mid-altitude. While seven <strong>functional</strong> <strong>groups</strong> of<strong>an</strong>ts were collected at the lowest altitude, only three <strong>functional</strong> <strong>groups</strong> weredetected at the highest altitude, namely “General Myrmicinae”, “Opportunists”<strong><strong>an</strong>d</strong> “Cold-climate Specialists”. Twenty-three percent of the recorded <strong>species</strong>are endemic to the study region, with Myrmica <strong>species</strong> dominating this group.The presence of invasive <strong>species</strong> at lower elevations indicates a high degree ofdisturb<strong>an</strong>ce in the Himalay<strong>an</strong> ecosystem.Keywords: <strong>an</strong>ts; abund<strong>an</strong>ce; biological conservation, <strong>endemicity</strong>; <strong>functional</strong><strong>groups</strong>; Himalaya; mid elevation peak; <strong>species</strong> <strong>richness</strong>; zoogeographicalaffinities; IndiaINTRODUCTIONElevation-gradient studies with differentmodel org<strong>an</strong>isms date back to the early days ofbiogeography. As examples of a strong ecologicalpattern, elevation gradients provide <strong>an</strong> insight into thehistorical <strong><strong>an</strong>d</strong> contemporary forces that shape life onearth (Lomolino 2001; Rahbek 2005; McCain 2009;Colwell & R<strong>an</strong>gel 2010). Moreover, these studieshelp to measure the health of ecosystems, as theorg<strong>an</strong>isms which constitute <strong>an</strong> ecosystem generallyencapsulate all aspects of their environment, <strong><strong>an</strong>d</strong>therefore are genuine indicators of perturbations<strong><strong>an</strong>d</strong> <strong>an</strong>thropogenic disturb<strong>an</strong>ces. <strong>Ant</strong>s, well knownfor their signific<strong>an</strong>ce in ecology, are being used formonitoring ecosystem health, being diverse, abund<strong>an</strong>t<strong><strong>an</strong>d</strong> hypersensitive to environmental ch<strong>an</strong>ges (Lachet al. 2010 <strong><strong>an</strong>d</strong> references therein).


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas81Fig. 1. Map showing the five study sites in Himalaya. Given is the area of Kashmir, with India’s northernmoststate Jammu <strong><strong>an</strong>d</strong> Kashmir in colour. The blue dots represent our study sites: 1 Barwal 500 m; 2 Sukarala 1000m; 3 Sarthal 2000 m; 4 S<strong><strong>an</strong>d</strong>ar 3000 m; 5 Affarwatt 4000 m. Different colours represent differing politicalsubdivisions, some of which are pooled.2000 m: Sarthal (Kathua District), 32°48’46” N, 75°45’45” E; a plot in the LesserHimalayas dominated mainly by trees like Pinus,Quercus, Rhododendron, Populus, Jugl<strong>an</strong>s<strong><strong>an</strong>d</strong> Larix spp., <strong><strong>an</strong>d</strong> a sub-tropical-temperatetr<strong>an</strong>sitional zone in the Himalayas.3000 m: S<strong><strong>an</strong>d</strong>ar (Kishatwar District),32°29’10” N, 75°50’29” E; a moist temperateforest in the Lesser Himalayas, consisting mainlyof trees of Cedrus, Pinus, Picea, Abies, Taxodium,<strong><strong>an</strong>d</strong> Betula.4000 m: Affarwatt (Gulmarg, BaramullaDistrict, northwest Jammu-&-Kashmir),33°54’28” N, 74°24’22”E; <strong>an</strong> alpine zone inthe Upper Himalayas that included shrubslike Rhododendron spp., mosses, lichens, <strong><strong>an</strong>d</strong>wild flowers such as Meconopsis spp. <strong><strong>an</strong>d</strong>Leontopodium alpinum Colm. ex Cass.An t Sa m p l i n g. The sampling wascarried out using st<strong><strong>an</strong>d</strong>ard protocols designed forelevation-gradient studies by Fisher (2004). Ateach elevation a 250 m tr<strong>an</strong>sect <strong>along</strong> the contourwas set with 25 plots. Each plot was 5m 2 in size<strong><strong>an</strong>d</strong> they were placed 5 m apart <strong>along</strong> the tr<strong>an</strong>sect.At each plot we used six different samplingtechniques (pitfall traps, Winkler sacks, stickbeating, soil core, honey bait <strong><strong>an</strong>d</strong> h<strong><strong>an</strong>d</strong> picking) tocollect <strong>an</strong>ts. <strong>Ant</strong>s from all the collection methodswere pooled to provide one measure for each plot.At 4000 m only h<strong><strong>an</strong>d</strong>-picking (two visits) wasused. Each site was sampled on three occasions(two at 4000 m), sp<strong>an</strong>ning the summer months(Table 1), from 2007 to 2010. During a samplingmonth each site was visited on one day, <strong><strong>an</strong>d</strong> againtwo to three days later to collect the pitfall-trapcontents. On the second visit each month (from06:00 h to 18:00 h) the other sampling methodswere applied, <strong><strong>an</strong>d</strong> abiotic factors were measured.Pitfall traps were made up of test tubeswith <strong>an</strong> internal diameter of 18 mm <strong><strong>an</strong>d</strong> a lengthof 150 mm, which were partly filled to a depth ofabout 50 mm with soapy water <strong><strong>an</strong>d</strong> 5% ethyleneglycol solution, inserted into PVC sleeves, <strong><strong>an</strong>d</strong>buried with the rim flush with the soil surface.Traps were set for 48 to 72 hours each time. Afteremptying the traps on the second visit each month,leaf litter inside each quadrat/plot was collected<strong><strong>an</strong>d</strong> sifted through a wire sieve with square holesof 1 × 1 cm; before sifting, the material waschopped with a machete to disturb <strong>an</strong>t nests insmall twigs <strong><strong>an</strong>d</strong> decayed logs. <strong>Ant</strong>s <strong><strong>an</strong>d</strong> otherinvertebrates were extracted from the sifted litterduring a 48-hour period in Winkler sacks. Tosample <strong>an</strong>ts on trees, bushes etc. the stick beating


82 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferTable 1: Data regarding abiotic <strong><strong>an</strong>d</strong> biotic factors pertaining to different elevations. Given are altitude of samplesite; r<strong>an</strong>ge of collecting months; me<strong>an</strong> daytime air temperature during sampling months, with st<strong><strong>an</strong>d</strong>ard deviation<strong><strong>an</strong>d</strong> r<strong>an</strong>ge during the collection period; r<strong>an</strong>ge of <strong>an</strong>nual rainfall as obtained from local meteorological stations;local relative humidity at time of sampling; thickness of the leaf-litter as measured during sampling; <strong><strong>an</strong>d</strong> remarkson the <strong>species</strong> composition of vegetation at sampling sites.Altitude(m)5001000200030004000R<strong>an</strong>ge ofcollectingmonthsApril-OctoberApril-OctoberMay-SeptemberMay-SeptemberJuly-SeptemberAveragetemperature(°C)35SD ± 3.6527.0 - 40.130.8SD ± 4.6725.0 - 38.923.5SD ± 2.8918.0 - 27.115.4SD ± 2.0812.9 - 19.18.4SD ± 2.065.4 - 11.4Annualrainfall(mm)1,100-1,300 mm1,115-1,136mm1,100-1,476 mm600-900 mm200-500 mmRelativehumidity(%)Leaf-litterthickness(cm)65% 0.5 cm36% 1.5 cm37% 2.7 cm26% 2.3 cm16% -VegetationSubtropical dry deciduous forest(Acacia catechu, Dalbergiasissoo, Acacia modesta, Bombaxceiba, Eucalyptus robusta,Dendrocalamus strictus, scatteredsmall trees, shrubs <strong><strong>an</strong>d</strong> coarsegrasses)Subtropical mixed pine-deciduousforest (Pinus roxburghii, Dalbergiasissoo, Olea europaea cuspidata,Albizia amara <strong><strong>an</strong>d</strong> other broadleaved <strong>species</strong>)Subtropical-temperate tr<strong>an</strong>sitionalzone (Cedrus deodara, Pinuswallichi<strong>an</strong>a, Picea smithi<strong>an</strong>a,Jugl<strong>an</strong>s regia, Acer laevigatum,Prunus persica, Aesculus indica<strong><strong>an</strong>d</strong> Fraxinus excelsior)Himalay<strong>an</strong> moist temperate forest(Cedrus deodara, Pinuswallichi<strong>an</strong>a, Picea smithi<strong>an</strong>a,Pinus gerardi<strong>an</strong>a, Abies pindrow,Jugl<strong>an</strong>s regia, Kalop<strong>an</strong>axseptemlobus, Parud avium var.avium, Aesculus indica, Fraxinusfloribunda <strong><strong>an</strong>d</strong> Quercus pubescenspubescens)Mountain shrub (above tree line)(Rhododendron shrub, Doronicum,Delphinium, Genti<strong>an</strong>a,Polygonum, Carag<strong>an</strong>a, Saxifraga,Draba <strong><strong>an</strong>d</strong> Gypsophila)method was used. Soil core extraction was usedto target hypogaeic <strong>an</strong>ts, where soil cores 20 x 20x 15 cm deep were taken at equal intervals <strong>along</strong>the tr<strong>an</strong>sect. These soil cores were sifted using ah<strong><strong>an</strong>d</strong> sieve p<strong>an</strong> to collect <strong>an</strong>ts. Finally, <strong>an</strong>ts werecollected by honey baits (set for 30 to 40 minutes)<strong><strong>an</strong>d</strong> h<strong><strong>an</strong>d</strong> picking methods (one person workingfor five hours) as well.To maximise ecosystem representativenessof the study we preferentially sampled sites farinside typical habitats, to minimise edge effects.Habitat/abiotic parameters, such as temperature(recorded hourly from 06:00 h to 18:00 h onsampling days), humidity, <strong><strong>an</strong>d</strong> leaf-litter layerthickness, were recorded at each site during thetime of sampling, <strong><strong>an</strong>d</strong> precipitation data wasprocured from local meteorological stations.Da t a An a l y s i s. To <strong>an</strong>alyse the <strong>species</strong>abund<strong>an</strong>ce <strong><strong>an</strong>d</strong> <strong>species</strong> diversity at each elevation<strong><strong>an</strong>d</strong> the differences in community composition


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas83between different elevations, data was <strong>an</strong>alysedon the basis of true/actual abund<strong>an</strong>ces usingsoftware ‘EstimateSWin 8.0.0.’ (Colwell 2006)<strong><strong>an</strong>d</strong> several beta-diversity indices. Samples werealso <strong>an</strong>alysed for worker density, <strong>species</strong> density,<strong>species</strong>-specific worker density <strong><strong>an</strong>d</strong> occup<strong>an</strong>cyrate for each elevation.Assemblage <strong>species</strong> <strong>richness</strong> wascalculated using non-parametric methods, Chaoincidence-based coverage estimator (ICE)<strong><strong>an</strong>d</strong> Chao 2. Sample heterogeneity was givenaccording to Jost’s (2006) three different ordersof diversity, with 0 D = <strong>species</strong> <strong>richness</strong>, 1 D =Sh<strong>an</strong>non diversity (exponential of Sh<strong>an</strong>nonentropy) <strong><strong>an</strong>d</strong> 2 D = inverse Simpson concentration.The different orders of diversity c<strong>an</strong> be calculatedaccording to the general formula,≡ =11/(1−)with the order of diversity q being the exponent<strong><strong>an</strong>d</strong> superscript of the formula (Jost 2006).Faunal turnover between two sites was the inverseof the proportion of <strong>species</strong> present at the first sitethat were also present at the second site. If <strong>an</strong> <strong>an</strong>t<strong>species</strong> was absent from one altitude but presentat <strong>an</strong> altitude above <strong><strong>an</strong>d</strong> below, it was assumedthat the <strong>species</strong> was missed during samplingrather th<strong>an</strong> absent from that altitude. The <strong>species</strong>was therefore recorded as potentially present <strong><strong>an</strong>d</strong>the faunal turnover was calculated using presentplus potentially-present <strong>species</strong>.Faunal similarity was calculated usingthe Sorensen qu<strong>an</strong>titative index <strong><strong>an</strong>d</strong> Jaccardsimilarity index. Community dissimilarity(ß-diversity) was measured with the help ofWhittaker’s index.To comprehend the impact of stress<strong><strong>an</strong>d</strong> disturb<strong>an</strong>ce on community compositionof <strong>an</strong>ts at different elevations in the regionof study, the <strong>species</strong> collected were broadlycategorised on the basis of <strong>functional</strong> <strong>groups</strong>distinguished by Andersen (2000) <strong><strong>an</strong>d</strong> fieldobservations by the first author sp<strong>an</strong>ning a periodof 15 years. Eight <strong>functional</strong> <strong>groups</strong> (FGs) wereidentified <strong><strong>an</strong>d</strong> used to categorise the Himalay<strong>an</strong><strong>an</strong>t community based on habitat use, feedingecology, competitive interactions <strong><strong>an</strong>d</strong> phylogenyof <strong>species</strong>. The “Domin<strong>an</strong>t Dolichoderinae”group was not observed in this study; althoughDolichoderinae were present, they did notexert such a domin<strong>an</strong>t impact. Nevertheless allCamponotini (Camponotus <strong><strong>an</strong>d</strong> Polyrhachis spp.)were assigned to the “Subordinate Camponotini”category, due to their similar behaviour <strong><strong>an</strong>d</strong>low trophic position, i.e. herbivory (Pfeiffer,unpublished observations). “GeneralisedMyrmicinae” included abund<strong>an</strong>t <strong>species</strong> ofthat subfamily, e.g. all <strong>species</strong> of Pheidole,Crematogaster <strong><strong>an</strong>d</strong> Messor; “Cryptic Species”comprised typical inconspicuous leaf littergenera, e.g. Mayriella; “Hot-climate Specialists”included taxa of hot dry climates, for exampleCataglyphis, while “Specialised Predators” were<strong>an</strong>ts with morphological adaptations to hunting,e.g. Anochetus <strong><strong>an</strong>d</strong> other Ponerinae. “TropicalclimateSpecialists” incorporated <strong>species</strong> withmoist-tropical origin <strong><strong>an</strong>d</strong> centre of distribution,e.g. Oecophylla <strong><strong>an</strong>d</strong> Tetraponera. While “ColdclimateSpecialists” comprised mainly Formica<strong><strong>an</strong>d</strong> Lasius <strong>species</strong> <strong><strong>an</strong>d</strong> climate specialists fromother genera, the “Opportunists” includedunspecialised, poorly-competitive <strong>an</strong>ts whichpredominate where stress or disturb<strong>an</strong>ce limitother <strong>an</strong>ts, <strong><strong>an</strong>d</strong> we put most <strong>species</strong> of Myrmica,Aphaenogaster <strong><strong>an</strong>d</strong> Tetramorium there, as well asinvasives like Nyl<strong><strong>an</strong>d</strong>eria bourbonica.Aenictinae, 2.08% Cerapachyinae, 1.39%Pseudomyrmecinae, 2.08%Dolichoderinae, 3.47%Ponerinae, 8.34%Dorylinae, 1.39%Myrmicinae, 54.86%Formicinae, 26.39%Fig. 2. Species-<strong>richness</strong> pattern of subfamilies inJammu-Kashmir Himalaya. Given are the membersof subfamilies as percentages of a total of 274<strong>species</strong> occurrences.


84 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferAppendix 1. List of <strong>species</strong> recorded at different elevations <strong>along</strong> with their representation as per <strong>functional</strong> group scheme. Given is subfamily <strong><strong>an</strong>d</strong> <strong>species</strong> of <strong>an</strong>ts;<strong>functional</strong> group (FG) identity coded as CCS = Cold-climate Specialist, CRY = Cryptic Species, GM = Generalised Myrmicinae, SC = Subordinate Camponotini, HCS =Hot-climate Specialist, OPP = Opportunist, SP = Specialist Predator, TCS = Tropical-climate Specialist; <strong><strong>an</strong>d</strong> presence at different altitudes. Invasive <strong>species</strong> are markedwith *, while endemic <strong>species</strong> are marked with # .Subfamily Species FG 500 m 1000m 2000m 3000m 4000mAenictinae Aenictus aitkenii Forel, 1901 TCS 7 9 0 0 0# Aenictus doryloides Wilson, 1964 TCS 0 4 0 0 0Aenictus pachycerus (Smith, F., 1858) TCS 6 6 0 0 0Cerapachyinae Cerapachys biroi Forel, 1907 SP 15 3 0 0 0Cerapachys longitarsus (Mayr, 1879) SP 6 1 0 0 0Dolichoderinae Chronoxenus myops (Forel, 1895) TCS 11 18 0 0 0Dolichoderus taprob<strong>an</strong>ae (Smith, F., 1858) TCS 0 10 0 0 0Dolichoderus thoracicus (Smith, F., 1860) OPP 0 0 11 0 0*Tapinoma mel<strong>an</strong>ocephalum (Fabricius, 1793) OPP 10 5 6 9 0*Technomyrmex albipes (Smith, F., 1861) OPP 5 14 0 0 0Dorylinae Dorylus labiatus Shuckard, 1840 TCS 7 0 0 0 0Dorylus orientalis Westwood, 1835 TCS 14 9 11 0 0Formicinae Camponotus compressus (Fabricius, 1787) SC 2 11 10 0 0# Camponotus himalay<strong>an</strong>us Forel, 1893 SC 0 0 18 7 0Camponotus oblongus binominatus Forel, 1916 SC 2 0 0 0 0Camponotus parius Emery, 1889 SC 3 10 0 0 0Camponotus rufoglaucus (Jerdon, 1851) SC 0 2 0 0 0Camponotus sericeus (Fabricius, 1798) SC 8 2 0 0 0Camponotus wasm<strong>an</strong>ni Emery, 1893 SC 9 4 0 0 0# Cataglyphis cugiai Menozzi, 1939 HCS 0 0 12 9 0Cataglyphis longipedem (Eichwald, 1841) HCS 7 0 0 0 0Formica clara Forel, 1886 CCS 0 0 11 7 0


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas85Formica cunicularia Latreille, 1798 CCS 0 0 10 13 0Formica fusca Linnaeus, 1758 OPP 0 0 11 0 3Formica gagates Latreille, 1798 CCS 0 0 0 0 5Formica gagatoides Ruzsky, 1904 CCS 0 0 3 8 0Formica s<strong>an</strong>guinea Latreille, 1798 CCS 0 0 5 8 0Formica truncorum Fabricius, 1804 CCS 0 0 10 7 0# Lasius alienoflavus Bingham, 1903 CCS 0 0 7 7 0Lasius alienus (Foerster, 1850) CCS 0 0 7 8 0Lasius brunneus (Latreille, 1798) CCS 0 0 10 13 0Lasius niger (Linnaeus, 1758) CCS 0 0 5 9 0Lasius talpa Wilson, 1955 CCS 0 0 11 12 0Lepisiota capensis (Mayr, 1862) CRY 5 4 11 11 0*Lepisiota frauenfeldi integra (Forel, 1894) OPP 3 5 0 0 0*Lepisiota opaca (Forel, 1892) OPP 0 7 0 0 0Lepisiota opaca pulchella (Forel, 1892) CRY 6 0 0 0 0Nyl<strong><strong>an</strong>d</strong>eria aseta (Forel, 1902) OPP 12 0 0 0 0Nyl<strong><strong>an</strong>d</strong>eria bourbonica (Forel, 1886) OPP 13 0 0 0 0Nyl<strong><strong>an</strong>d</strong>eria taylori (Forel, 1894) OPP 0 11 4 0 0Oecophylla smaragdina (Fabricius, 1775) TCS 10 12 0 0 0*Paratrechina longicornis (Latreille, 1802) OPP 10 0 0 0 0Plagiolepis dichroa Forel, 1902 CRY 9 11 0 0 0Plagiolepis jerdonii Forel, 1894 CRY 0 10 10 0 0Polyrhachis exercita (Walker, 1859) SC 11 0 0 0 0Polyrhachis illaudata Walker, 1859 SC 1 6 10 0 0Polyrhachis lacteipennis Smith, F., 1858 SC 9 5 16 0 0Polyrhachis punctillata smythiesii Forel, 1895 SC 10 0 0 0 0


86 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferPrenolepis naoroji Forel, 1902 CCS 0 4 0 0 0Pseudolasius familiaris (Smith, F., 1860) TCS 0 0 9 9 0Myrmicinae #Aphaenogaster cristata (Forel, 1902) OPP 0 0 9 13 0Aphaenogaster feae Emery, 1899 OPP 0 3 12 10 0Aphaenogaster rothneyi (Forel, 1902) OPP 0 0 8 11 0# Aphaenogaster sagei (Forel, 1902) OPP 0 0 6 9Aphaenogaster sagei pachei (Forel, 1906) CCS 0 0 0 0 6# Aphaenogaster smythiesii (Forel, 1902) OPP 0 0 8 7# Aphaenogaster smythiesii prudens (Forel, 1902) OPP 0 0 3 9 0*Cardiocondyla nuda (Mayr, 1866) OPP 9 16 0 0 0*Cardiocondyla wroughtonii (Forel, 1890) OPP 0 11 0 0 0Cataulacus taprob<strong>an</strong>ae Smith, F., 1853 TCS 0 0 5 0 0Crematogaster <strong>an</strong>thracina Smith, F., 1857 GM 0 10 0 0 0Crematogaster biroi Mayr, 1897 GM 10 8 0 0 0Crematogaster flava Forel, 1886 GM 5 10 4 0 0Crematogaster politula Forel, 1902 GM 0 5 16 12 0Crematogaster rogenhoferi Mayr, 1879 GM 0 9 0 0 0# Crematogaster sagei Forel, 1902 GM 0 2 14 8 0Crematogaster subnuda Mayr, 1879 GM 7 7 10 0 0# Lophomyrmex ambiguus Rigato, 1994 TCS 0 17 0 0 0Lophomyrmex bedoti Emery, 1893 TCS 10 9 0 0 0Lophomyrmex quadrispinosus (Jerdon, 1851) TCS 9 9 0 0 0Mayriella tr<strong>an</strong>sfuga Baroni Urb<strong>an</strong>i, 1977 CRY 7 7 0 0 0Mer<strong>an</strong>oplus bicolor (Guerin-Meneville,1844) HCS 12 8 0 0 0Messor himalay<strong>an</strong>us (Forel, 1902) GM 5 9 8 8 0Messor instabilis (Smith,F., 1858) GM 8 9 7 13 0


88 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferMyrmicaria brunnea Saunders, 1842 GM 9 5 0 0 0Pheidole binghamii Forel, 1902 GM 0 10 0 0 0Pheidole fervens Smith, F., 1858 GM 0 5 13 0 0Pheidole indica Mayr, 1879 GM 15 7 13 0 0# Pheidole jucunda Forel, 1885 GM 0 0 0 9 3Pheidole jucunda fossulata Forel, 1902 GM 8 7 6 0 0Pheidole latinoda <strong>an</strong>gustior Forel, 1902 GM 6 0 0 0 0Pheidole latinoda major Forel, 1885 GM 0 17 0 0 0Pheidole longipes (Latreille, 1802) GM 0 7 0 0 0# Pheidole sagei Forel, 1902 GM 0 0 8 8 4Pheidole sharpi Forel, 1902 GM 9 0 0 0 0Pheidole smythiesii Forel, 1902 GM 0 11 10 0 0Pheidole spathifera aspatha Forel, 1902 GM 4 7 0 0 0Pheidole spathifera Forel, 1902 GM 8 0 0 0Pheidole watsoni Forel, 1902 GM 3 0 0 0 0Pheidole woodmasoni Forel, 1885 GM 2 5 0 0 0Pheidologeton affinis (Jerdon, 1851) GM 0 2 0 0 0Recurvidris recurvispinosa (Forel, 1890) CRY 0 3 0 0 0*Solenopsis geminata (Fabricius, 1804) OPP 0 0 6 0 0# Stenamma sp. CCS 0 0 9 0 0# Temnothorax desioi (Menozzi, 1939) CCS 0 0 0 11 0# Temnothorax desioi mel<strong>an</strong>icus (Menozzi, 1939) CCS 0 0 0 6 0# Temnothorax fultonii (Forel, 1902) CCS 0 0 10 13 0Temnothorax rothneyi (Forel, 1902) CCS 0 0 6 12 0* # Tetramorium caespitum (Linnaeus, 1758) OPP 2 0 7 8 0*Tetramorium l<strong>an</strong>uginosum Mayr, 1870 OPP 5 2 1 0 0


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas89*Tetramorium simillimum (Smith, F., 1851) OPP 0 0 12 0 0*Tetramorium smithi Mayr, 1879 OPP 0 7 0 0 0Tetramorium walshi (Forel, 1890) OPP 8 3 0 0 0Ponerinae Anochetus graeffei Mayr, 1870 SP 0 6 0 0 0Harpegnathos venator (Smith, F., 1858) SP 9 3 0 0 0Hypoponera confinis (Roger, 1860) CRY 0 12 9 0 0Leptogenys diminuta (Smith, F., 1857) SP 8 3 11 0 0Leptogenys sp. SP 0 0 12 0 0Odontomachus monticola Emery, 1892 SP 6 0 0 0 0Odontomachus rixosus Smith, F., 1857 SP 0 12 0 0 0*Odontoponera tr<strong>an</strong>sversa (Smith, F., 1857) SP 17 6 0 0 0Pachycondyla bispinosa Smith, F., 1858 SP 13 13 0 0 0Pachycondyla luteipes (Mayr, 1862) SP 4 7 11 0 0Pachycondyla rufipes (Jerdon, 1851) SP 12 6 7 0 0Pachycondyla sulcata (Mayr, 1867) SP 5 0 0 0 0Pseudomyrmecinae Tetraponera allabor<strong>an</strong>s (Walker, 1859) TCS 4 4 6 0 0Tetraponera nigra (Jerdon, 1851) TCS 4 2 0 0 0Tetraponera rufonigra (Jerdon, 1851) TCS 5 2 0 0 0


90 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin Pfeiffer9080GeneraSpeciesNumbers of genera <strong><strong>an</strong>d</strong> <strong>species</strong>706050403020100500 m 1000 m 2000 m 3000 m 4000 mAltitudesFig. 3. Numbers of <strong>an</strong>t genera <strong><strong>an</strong>d</strong> <strong>species</strong> at different altitudes <strong>along</strong> our altitudinal tr<strong>an</strong>sect.Table 2: Import<strong>an</strong>t ecological parameters of the <strong>an</strong>t communities at different altitudes. Given are the followingparameters: occup<strong>an</strong>cy rate, the proportion of samples with <strong>an</strong>ts; worker density, the me<strong>an</strong> number of workersper sample, log-tr<strong>an</strong>sformed; <strong>species</strong> density, the me<strong>an</strong> number of <strong>species</strong> per sample; maximum <strong>species</strong>number per sample; proportion of the single most abund<strong>an</strong>t <strong>species</strong> at each site, a <strong>species</strong>-specific measureof relative worker density; <strong><strong>an</strong>d</strong> me<strong>an</strong> population density per <strong>species</strong>, the ratio of me<strong>an</strong> (log tr<strong>an</strong>sformed) <strong>an</strong>tworker density to <strong>species</strong> <strong>richness</strong>.Altitude (m)Parameters 500 1000 2000 3000 4000Occup<strong>an</strong>cy rate 1.00 1.00 1.00 1.00 0.88Worker density (log n+1) 2.84 2.92 2.94 2.85 1.65Species density 18.6 23.7 27.0 16.6 1.44Maximum <strong>species</strong> number 47 60 55 24 4Proportion of single most abund<strong>an</strong>t <strong>species</strong> 0.64 0.64 0.64 0.6 0.24at each siteMe<strong>an</strong> population density 0.04 0.03 0.03 0.06 0.16RESULTSA total of 8022 <strong>an</strong>t individuals were recorded,<strong><strong>an</strong>d</strong> identified to 144 <strong>species</strong> from 45 generarepresenting eight subfamilies (Fig. 2, Appendix1). Species <strong>richness</strong> <strong><strong>an</strong>d</strong> number of genera washighest at 1000 m, with 78 <strong>species</strong> from 35genera, <strong><strong>an</strong>d</strong> decreased with the further increasein elevation to only ten <strong>species</strong>, from four genera,at 4000 m (Fig. 3). Pheidole was the only genus


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas91Fig. 4. Comparison of observed <strong>species</strong> <strong>richness</strong> with<strong>richness</strong> estimators, Chao 2 <strong><strong>an</strong>d</strong> ICE. The unit of theabscissa was taken as number of individuals (Longinoet al. 2002) <strong><strong>an</strong>d</strong> all estimator curves were plotted withnumber of individuals on the abscissa. As <strong>richness</strong>estimates are highly influenced by rare <strong>species</strong>, the uniques<strong><strong>an</strong>d</strong> duplicates were also plotted <strong>along</strong> with the estimatorsfor each elevation. Note the different scaling of Y- <strong><strong>an</strong>d</strong> X-axes for the 4000 m graph.observed to be present <strong>along</strong> the wholetr<strong>an</strong>sect.Samples were <strong>an</strong>alysed foroccup<strong>an</strong>cy rate, worker density, <strong>species</strong>density, <strong>species</strong>-specific worker density of themost abund<strong>an</strong>t <strong>species</strong>, <strong><strong>an</strong>d</strong> me<strong>an</strong> populationdensity (all results in Table 2). The occup<strong>an</strong>cyrate (proportion of samples containing <strong>an</strong>ts)was 100% up to 3000 m <strong><strong>an</strong>d</strong> then dropped to88% at 4000 m. Me<strong>an</strong> worker density (me<strong>an</strong>number of workers per sample) showed a riseup to 2000 m, slightly declined at 3000 m <strong><strong>an</strong>d</strong>then abruptly fell at 4000 m. Species densityremained high up to 2000 m <strong><strong>an</strong>d</strong> then declinedat 3000 m <strong><strong>an</strong>d</strong> attained a very low valueat 4000 m. Occup<strong>an</strong>cy by the single mostabund<strong>an</strong>t <strong>species</strong>, a measure of numericaldomin<strong>an</strong>ce, was const<strong>an</strong>t at the first threeelevations, then decreased at 3000 m <strong><strong>an</strong>d</strong>abruptly dropped at 4000 m. From the abovestated values it was observed that the decreasein occup<strong>an</strong>cy rates <strong><strong>an</strong>d</strong> worker density withincrease in elevation was occurred at higherelevation th<strong>an</strong> that of <strong>species</strong> density. Me<strong>an</strong>population density per <strong>species</strong> was const<strong>an</strong>tup to 2000 m, almost doubled at 3000 m <strong><strong>an</strong>d</strong>was greatest at 4000 m.Non-parametric <strong>species</strong>-<strong>richness</strong>estimators ICE <strong><strong>an</strong>d</strong> Chao 2 were plotted <strong>along</strong>with the observed <strong>species</strong> <strong>richness</strong> to estimatethe <strong>species</strong> <strong>richness</strong> at different elevations(Fig. 4). Estimators were quite high at lowersample numbers, but quickly consolidated<strong><strong>an</strong>d</strong> aligned with observed <strong>species</strong> <strong>richness</strong>,thus demonstrating the high coverage of oursamples. Similarly, rare <strong>species</strong> (ratio ofnumber of <strong>species</strong> that occur in one sampleto the number of <strong>species</strong> that occur in two)declined with higher sample number. Only at4000 m altitude did ‘uniques’ <strong><strong>an</strong>d</strong> duplicatesrise for half of the samples pooled, whichcould be attributed to low worker density atthis altitude.True Sh<strong>an</strong>non diversity 1 D was 54.7at 1000 m <strong><strong>an</strong>d</strong> 63.7 at 2000 m (Table 3).These high values reflected the huge numberof <strong>species</strong> per sample recorded at thesealtitudes. On the other h<strong><strong>an</strong>d</strong> high Simpsondiversity 2 D stressed the domin<strong>an</strong>ce of certain<strong>species</strong>, especially at lower elevations.


92 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferTable 3: Alpha diversity measurements for different elevations. Given is altitude, <strong>species</strong> <strong>richness</strong> 0 D, Sh<strong>an</strong>nonIndex H, Sh<strong>an</strong>non Diversity 1 D <strong><strong>an</strong>d</strong> Simpson Diversity 2 D, as calculated from the inverse of the Simpsonconcentration <strong><strong>an</strong>d</strong> Simpson Evenness.Altitude(m)Species<strong>richness</strong> 0 D Sh<strong>an</strong>non Index H Sh<strong>an</strong>nonDiversity 1 DInverse* of the Simpsonconcentration 2 DSimpson Evenness(E 1/2D )500 66 3.98 53.8 48.6 0.741000 78 4.00 54.7 44.4 0.572000 75 4.15 63.7 55.2 0.743000 45 3.76 42.9 42.8 0.954000 10 2.24 9.38 9.45 0.95*Calculated asS2 2D = 1/ p ii=1Percentage of <strong>species</strong> at this altitude2220181614121086420500 m 1000 m 2000 m 3000 m 4000 mAltitudeTramp <strong>species</strong>SpeciesSOCs2220181614121086420Percentage of SOCs at this altitudeFig. 5. Distribution pattern of tramp (invasive) <strong>species</strong> of <strong>an</strong>ts at different elevations in Jammu-Kashmir Himalaya.Given are the percentage of all <strong>species</strong> which are tramp <strong>species</strong>, <strong><strong>an</strong>d</strong> the percentage of all <strong>species</strong> occurrences(SOCs) which are tramps, at each altitude.Disturb<strong>an</strong>ce at lower elevations c<strong>an</strong> also bejudged by the high presence of invasive/tramp<strong><strong>an</strong>d</strong> opportunistic <strong>species</strong> at these altitudes (Fig.5, Appendix 1). Study of the inventory of <strong>an</strong>tsat different altitudes revealed that at 500 m, 11(17%) of 66 <strong>species</strong> were invasive <strong><strong>an</strong>d</strong> 21% were“Opportunists” (Fig. 6). Similarly at 1000 m, 14(18%) of 78 <strong>species</strong> were invasive <strong><strong>an</strong>d</strong> 22% were“Opportunists”. At 2000 m, the percentage of“Opportunists” rose to 45% (i.e. 34 <strong>species</strong> outof 75 represented this altitude) <strong><strong>an</strong>d</strong> 10 invasives.The number of invasive <strong>species</strong> decreased totwo at 3000 m, <strong><strong>an</strong>d</strong> none were reported from4000 m. The <strong>an</strong>t assemblages at 3000 m <strong><strong>an</strong>d</strong>


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas93100Relative proportion of each <strong>functional</strong> groupat each level of elevation [%]806040200500 m 1000 m 2000 m 3000 m 4000 mAltitudeTropical Climate SpecialistsSpecialist PredatorsHot Climate SpecialistsGeneralised MyrmicinaeOpportunistsCryptic SpeciesSubordinate CamponotiniCold Climate SpecialistsFig. 6. Functional-group composition of <strong>an</strong>ts in Jammu-Kashmir Himalaya. Given is the percentage of total<strong>species</strong> occurrences in each <strong>functional</strong> group. Invasive <strong>species</strong> are included in the “Opportunist” group.4000 m were mainly composed of stress-toler<strong>an</strong>thigh-altitude <strong>species</strong>.The relationship of communitycomposition to elevation was calculated usingpresent plus potentially-present <strong>species</strong> (Table 4).All 146 <strong>an</strong>t <strong>species</strong> were included in the <strong>an</strong>alysis.The highest faunal turnover between adjacentTable 4: Number of <strong>an</strong>t <strong>species</strong> recorded at eachelevation in Jammu-Kashmir Himalaya with potentiallypresent <strong>species</strong>, which were recorded at the elevationsbelow <strong><strong>an</strong>d</strong> above.Altitude(metres)PresentNumber of <strong>species</strong>Present + Potentiallypresent500 66 661000 78 792000 75 753000 45 464000 10 11altitudes was between 3000 m <strong><strong>an</strong>d</strong> 4000 m, where84.8 % of the <strong>species</strong> ch<strong>an</strong>ged (Table 5).The similarity indices Sorensenqu<strong>an</strong>titative <strong><strong>an</strong>d</strong> Jaccard similarity index (Table6), based on abund<strong>an</strong>ce data <strong><strong>an</strong>d</strong> incidencedata, indicated that the most similar pairs ofcommunities were at 500 m <strong><strong>an</strong>d</strong> 1000 m, <strong><strong>an</strong>d</strong>at 2000 m <strong><strong>an</strong>d</strong> 3000 m. The dissimilarity in the<strong>an</strong>t fauna between two elevations was calculatedby Whittaker’s measure <strong><strong>an</strong>d</strong> the results revealedthat assemblages at 500 m <strong><strong>an</strong>d</strong> 1000 m werecompletely dissimilar to that at 4000 m (Table 7)<strong><strong>an</strong>d</strong> did not share even a single <strong>species</strong>, therebyindicating very high beta diversity.DISCUSSIONSpecies <strong>richness</strong> <strong><strong>an</strong>d</strong> <strong>an</strong>t densitySpecies <strong>richness</strong> is usually enh<strong>an</strong>ced on mountainslopes (Lomolino 2001), <strong><strong>an</strong>d</strong> the Himalay<strong>an</strong>altitudinal gradient we studied corroborates this.Using a set of different methods, we collected


94 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferTable 5: Faunal turnover between different altitudes (%), computed as the proportion of <strong>species</strong> at a givenelevation that is not present at <strong>an</strong>other elevation. Table is read by row to column, so that only 6.5% of the <strong>species</strong>in the 3000 m community were absent at 2000 m, whereas 42.7% of the <strong>species</strong> at 2000 m were absent at 3000 m.Faunal turnover was highest (100%) in both directions between 500 m <strong><strong>an</strong>d</strong> 4000 m, <strong><strong>an</strong>d</strong> between 1000 m <strong><strong>an</strong>d</strong>4000 m.Altitude (m)Altitude (m) 500 1000 2000 3000 4000500 - 22.7 68.2 90.9 1001000 35.4 - 60.8 88.6 1002000 72.0 58.7 - 42.7 92.03000 87.0 80.4 6.5 - 84.84000 100 100 40.0 30.0 -Table 6. Sorensen qu<strong>an</strong>titative index (below diagonal) <strong><strong>an</strong>d</strong> Jaccard similarity index (above diagonal) as measuresof beta diversity among different altitudes.Altitude (m)Altitude (m) 500 1000 2000 3000 4000500 0.543 0.175 0.057 0.0001000 0.626 - 0.252 0.078 0.0002000 0.247 0.309 - 0.551 0.0763000 0.111 0.131 0.675 - 0.1504000 0.000 0.000 0.051 0.066 -Table 7. Whittaker’s index of beta diversity.Altitude (m)Altitude (m) 500 1000 2000 30001000 0.305 - - -2000 0.702 0.608 - -3000 0.892 0.870 0.300 -4000 1.000 1.000 0.858 0.745


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas95144 <strong>species</strong> <strong><strong>an</strong>d</strong> sub<strong>species</strong>, from 45 genera<strong><strong>an</strong>d</strong> eight subfamilies, of Formicidae, includingseveral <strong>species</strong> previously unknown to science.We recorded <strong>an</strong>ts <strong>along</strong> the whole gradient from500 m to 4000 m. The occup<strong>an</strong>cy rates <strong><strong>an</strong>d</strong>worker density decreased slowly with increasein elevation as compared with <strong>species</strong> densitywhich decreased sharply. High-altitude generalike Formica <strong><strong>an</strong>d</strong> Myrmica showed higherdensities th<strong>an</strong> their counterparts in domin<strong>an</strong>ce(like Myrmicaria, Aenictus, Oecophylla etc.) atlower elevations. As a result the me<strong>an</strong> populationdensity per <strong>species</strong> increased exponentially withincrease in elevation, so at higher altitudes thedecrease in diversity was compensated by <strong>an</strong>increase in worker density for each <strong>species</strong>, apattern named by Longino & Colwell (2011) as“density compensation”.Zoogeographical affinities <strong><strong>an</strong>d</strong> endemism inthe Himalayas‘Himalaya’ is biogeographically most complex<strong><strong>an</strong>d</strong> diverse. Any attempt to underst<strong><strong>an</strong>d</strong> thealtitudinal patterns of diversity in the regionmust be based on a biogeographical assessment.Our study in North-western Himalaya is the firsteffort to depict the elevational gradient in the <strong>an</strong>tfauna of the region, <strong><strong>an</strong>d</strong> gives a very interestingpicture. The elevations of 500 m <strong><strong>an</strong>d</strong> 1000 m fallwithin the Shivalik or Sub-Himalay<strong>an</strong> r<strong>an</strong>ge. TheShivalik r<strong>an</strong>ge is quite young in origin (25 mya)<strong><strong>an</strong>d</strong> low-lying, harbouring a subtropical type ofvegetation (Table 1). Temperature is high <strong><strong>an</strong>d</strong>the <strong>an</strong>t fauna is dominated by tropical generaof the Oriental, like Pheidole, Polyrhachis <strong><strong>an</strong>d</strong>Crematogaster, <strong><strong>an</strong>d</strong> wet tropical <strong>species</strong> likeHarpegnathos venator, Lophomyrmex bedoti <strong><strong>an</strong>d</strong>Mer<strong>an</strong>oplus bicolor.On the other h<strong><strong>an</strong>d</strong>, l<strong><strong>an</strong>d</strong> at <strong>an</strong> elevationof 2000 m falls under the temperate zone <strong><strong>an</strong>d</strong>geologically represents the Lesser Himalayas(the r<strong>an</strong>ges of Nagtiba, Dholadhar, Pir-P<strong>an</strong>jal,North-Kashmir, Mahabharat, Mussoorie <strong><strong>an</strong>d</strong>Rat<strong>an</strong>pir). The <strong>an</strong>t community at this elevation isdominated by Palaearctic elements, followed byIndo-Malay<strong>an</strong> elements <strong><strong>an</strong>d</strong> others, contributedby modern tramp <strong>species</strong> (Afrotropical,Australi<strong>an</strong>, Malagasy, Neotropical <strong><strong>an</strong>d</strong> Nearcticelements) (Bharti 2008). The domin<strong>an</strong>ce ofPalaearctic <strong>species</strong>, which are well adapted tolow-temperature stress, is clearly attributed to thelower temperature; me<strong>an</strong> daytime temperaturein the collection months (24°C) was 7°C lowerth<strong>an</strong> at 1000 m. This effect c<strong>an</strong> be noticed on thevegetation as well, as cold-toler<strong>an</strong>t Cedrus foreststarts dominating at 1,800 m a.s.l. Moreover, thisaltitude represents a tr<strong>an</strong>sition boundary betweenthe Indo-Malay<strong>an</strong> <strong><strong>an</strong>d</strong> Palaearctic regions in termsof the <strong>an</strong>t fauna in Himalaya. Faunal turnovervalues indicate community replacement of about60% between 1000 m <strong><strong>an</strong>d</strong> 2000 m.Elevations of 3000 m <strong><strong>an</strong>d</strong> 4000 mgeologically represent the Greater Himalayas.The lower temperature at these elevations has amarked impact on ecology. The zone at 3000 m isdominated by gymnosperms, but above this limitclosed forests disappear. These ecological factorsfavour the proliferation of Palaearctic elements,<strong><strong>an</strong>d</strong> the highest turnover between successiveascending altitudes was found here (Table 5).The <strong>an</strong>t assemblage at these elevations is mainlydominated by the cold-resist<strong>an</strong>t genera Formica,Aphaenogaster, Myrmica <strong><strong>an</strong>d</strong> Temnothorax.As stated by M<strong>an</strong>i (1995) the customaryphyto-geographical division of the Himalay<strong>an</strong>forests separates a Western Himalay<strong>an</strong> forestprovince, as distinct from the Eastern Himalay<strong>an</strong>forest province. The flora of the former regionhas its affinities with Indo-Malay<strong>an</strong> elements<strong><strong>an</strong>d</strong> at high altitudes most of it is Palaearctic,with some Afrotropical <strong><strong>an</strong>d</strong> Mediterr<strong>an</strong>e<strong>an</strong>elements. Almost the same pattern was observedduring the present study in the case of the <strong>an</strong>ts,the ecological conditions up to 2000 m favourIndo-Malay<strong>an</strong> elements <strong><strong>an</strong>d</strong> above 2000 mthe region is purely dominated by Palaearcticelements, while elements of other faunas arerestricted to tramp <strong>species</strong>, e.g. M. pharaonis, T.l<strong>an</strong>uginosum <strong><strong>an</strong>d</strong> T. simillimum.Twenty-three percent of the <strong>species</strong>have been found to be endemic to this region(Fig. 7). Almost half of these are contributed byMyrmica (45%). As elucidated by Radchenko &Elmes (2010), Myrmica <strong>species</strong> from Himalayahave plesiomorphic features, <strong><strong>an</strong>d</strong> m<strong>an</strong>y of the<strong>species</strong> <strong><strong>an</strong>d</strong> <strong>species</strong>-<strong>groups</strong> of this region possessmorphological characters that are unique <strong><strong>an</strong>d</strong> arerarely found in the Myrmica <strong>species</strong> reportedfrom adjacent regions. It has been suggested


96 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin Pfeiffer8080Percentage of <strong>species</strong> at this altitude706050403020Endemic <strong>species</strong>SpeciesSOCs706050403020Percentage of SOCs at this altitude10100500 m 1000 m 2000 m 3000 m 4000 mAltitudeFig. 7. Occurrence of endemic <strong>an</strong>t <strong>species</strong> at different elevations in Jammu-Kashmir Himalaya. Given are thepercentages of all <strong>species</strong> which are endemic to the Himalayas, <strong><strong>an</strong>d</strong> the percentages of all <strong>species</strong> occurrences(SOCs) which are Himalaya-endemic, at each altitude.0that the Myrmica fauna of the Himalayas hasremained fairly isolated from adjoining regions(Bharti 2008; Radchenko & Elmes 2010; Bharti& Sharma 2011a, b, c), since the Himalay<strong>an</strong>r<strong>an</strong>ges to the North <strong><strong>an</strong>d</strong> East might have formed<strong>an</strong> almost-insuperable geographical barrierfor Myrmica, while further south, tropical <strong><strong>an</strong>d</strong>subtropical conditions limited the opportunityfor interch<strong>an</strong>ge with other faunas. Long-termisolation of the genus Myrmica from adjoiningregions may have led to high degrees ofendemism in this group. The present study foundthat endemism (the proportion of <strong>species</strong> endemicto the Himalayas) increased with elevation <strong><strong>an</strong>d</strong>peaked in high-altitude sites (Fig. 7). This c<strong>an</strong>be attributed to <strong>species</strong> radiation operating in theregion <strong><strong>an</strong>d</strong> points towards environmental filteringat higher altitudes: the harsh environmentalconditions allow only a subset of <strong>an</strong>t genera topersist, <strong><strong>an</strong>d</strong> these may undergo a radiation intoempty ecological niches.Analysis in terms of <strong>functional</strong> <strong>groups</strong>The elevations under study fall under threeclimatic zones: sub-tropical (500 m <strong><strong>an</strong>d</strong> 1000 m),sub-temperate (2000 m) <strong><strong>an</strong>d</strong> temperate (3000 m<strong><strong>an</strong>d</strong> 4000 m). Elevations of 500 m <strong><strong>an</strong>d</strong> 1000 m arewarm <strong><strong>an</strong>d</strong> open habitats with <strong>an</strong> average daytimetemperature of 35°C <strong><strong>an</strong>d</strong> 30°C, respectively (Aprilto October). The impact of low-temperaturestress is negligible at these two altitudes <strong><strong>an</strong>d</strong>therefore the community composition at theselevels should mainly be regulated by competition(Andersen 2000). These elevations were observedto be behaviourally dominated by “GeneralisedMyrmicines” > “Opportunists” > “TropicalclimateSpecialists” (Fig. 6). But the presenceof disturb<strong>an</strong>ce specialised “Opportunist” <strong>species</strong>of Paratrechina, Tapinoma, Tetramorium <strong><strong>an</strong>d</strong>Monomorium indicates severe disturb<strong>an</strong>ce atthese elevations, as was observed by Narendra etal. (2011) who found similar genera as indicatorsof disturbed habitat in the lowl<strong><strong>an</strong>d</strong>s of theIndi<strong>an</strong> Western Ghats. Similarly, Greenslade &Greenslade (1977) reported from the Solomon


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas97Isl<strong><strong>an</strong>d</strong>s that tree-clearing favoured opportunist<strong>species</strong> of the above-mentioned genera. Habitatsat <strong>an</strong> elevation of 2000 m were cool <strong><strong>an</strong>d</strong> open(average daytime temperature 24°C) <strong><strong>an</strong>d</strong>experienced moderate levels of low-temperaturestress. This elevation was dominated by“Opportunists” (43%), “Generalised Myrmicines”(16%) <strong><strong>an</strong>d</strong> “Cold-climate Specialists” (15%). Thisproliferation of “Opportunists”, which made up35 out of 75 <strong>species</strong>, is especially interesting asthe group comprises both tropical <strong><strong>an</strong>d</strong> Palaearcticelements, the former characterised by mostlyp<strong>an</strong>tropical tramp <strong>species</strong> that signify fragmented/disturbed habitats (20 <strong>species</strong> in genera likeMonomorium, Tapinoma <strong><strong>an</strong>d</strong> Technomyrmex),the latter stress-specialists (Formica, Myrmica)whose presence indicates low-temperature stress.This corroborates the finding that “Opportunists”,apart from being indicators of disturb<strong>an</strong>ce, are alsomore ecologically import<strong>an</strong>t in cool-temperateregions (Andersen 2000).A marked decrease in “Cryptic Species”was also observed at 2000 m. The areas at2000 m <strong><strong>an</strong>d</strong> 3000 m remain snow-clad for threeto four months in a year, <strong><strong>an</strong>d</strong> frost <strong><strong>an</strong>d</strong> ice reducethe ability for “Cryptic Species” to make nests orforage on/in the ground. The elevations of 3000 m<strong><strong>an</strong>d</strong> 4000 m (average daytime temperature duringcollection times: 15°C <strong><strong>an</strong>d</strong> 8.4°C respectively)are subject to extreme low-temperature stress(a primary stressor). These elevations wereobserved to be behaviourally dominated by“Opportunists” (45% at 3000 m <strong><strong>an</strong>d</strong> 42% at4000 m) <strong><strong>an</strong>d</strong> “Cold-climate Specialists” (32% at3000 m <strong><strong>an</strong>d</strong> 39% at 4000 m). While the allocationof <strong>species</strong> between these categories is debateable,the behavioural domin<strong>an</strong>ce of stress-toler<strong>an</strong>tformicines (Formica, Lasius) could be relatedto thermoregulation properties of their nests, assome <strong>species</strong> have nest mounts, which produceheat with decaying materials, or rely on metabolicheat production (Holldobler & Wilson 1990).Other <strong>species</strong> of Formica <strong><strong>an</strong>d</strong> Myrmica use acombination of nest architecture <strong><strong>an</strong>d</strong> biochemicalmech<strong>an</strong>isms for cold-resist<strong>an</strong>ce. While theirnests maintain a temperature about 10° C higherth<strong>an</strong> necessary for survival, <strong>an</strong>ts c<strong>an</strong> overwinterin a supercooled state, which allows them tosurvive very low temperatures, e.g. F. gagatoidesRuszky c<strong>an</strong> resist -27°C to -31°C (Berm<strong>an</strong> et al.2010). In Siberia this <strong>species</strong> exists in extremehabitats <strong><strong>an</strong>d</strong> is known as polyarny muravey (thepolar <strong>an</strong>t); we have found it only up to 3000 m,but as its physiological abilities would allow itto reach much higher altitudes, it could also befound higher up. Interestingly we also found two<strong>species</strong> of Pheidole which were able to inhabitthe highest zone.The adverse climatic conditionsprevalent at higher altitudes reduced the numberof <strong>functional</strong> <strong>groups</strong> from a maximum of eightto three. But the loss of <strong>functional</strong> <strong>groups</strong> due toenvironmental filtering was compensated by <strong>an</strong>increase in the number of <strong>species</strong> per <strong>functional</strong>group (S/F ratio). Similarly density compensationat higher altitudes maintains the local biomass of<strong>an</strong> area, <strong><strong>an</strong>d</strong> also ecosystem reliability to a certainextent (Colwell & Lees 2000).The <strong>functional</strong>-group (FG) classification(Andersen 2000 <strong><strong>an</strong>d</strong> papers cited within) isbased on <strong>an</strong>ts from Australia, <strong><strong>an</strong>d</strong> its applicationto non-Australi<strong>an</strong> <strong>an</strong>t faunas is problematic(e.g. Pfeiffer et al. 2003; Narendra et al. 2011).Its value has repeatedly been questioned, <strong><strong>an</strong>d</strong>it has not been helpful in predicting <strong>species</strong>interactions in Western Ghats’ <strong>an</strong>t communitiesin India; however, it proved to be useful inpredicting habitat use of <strong>species</strong> (Narendra etal. 2011). An uncritical use of this classificationshould be avoided (Andersen 2010), <strong><strong>an</strong>d</strong>although the <strong>species</strong> classifications we haveapplied in the present study are based on years ofcareful investigation in local conditions (Bharti,unpublished) some, e.g. the almost bl<strong>an</strong>ketgroupingof Myrmica as “Opportunists”, meritfurther discussion, as some members of this genusexhibit extraordinary cold-hardiness (Berm<strong>an</strong>n etal. 2010) <strong><strong>an</strong>d</strong> might equally be counted as “ColdclimateSpecialists”, so borders between these<strong>groups</strong> are flexible. Hence other authors mayplace certain <strong>species</strong> in different FGs, dependingon local situation (e.g. Nur-Zati et al. 2011).For the present study, however, we regard theadapted FG classification as helpful, although werecognise the need for further studies which mayrefine the crude genus-based FG classificationwith more <strong>species</strong>-based categories or the use ofrefined <strong>functional</strong> groupings, e.g. according tonest type (Ryder Wilkie et al. 2010).


98 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferLeaf litter thickness [cm]54321Temperature [°C]706050403020Temperature [°C]Leaf litter thickness [cm]Species <strong>richness</strong><strong>Ant</strong> abund<strong>an</strong>ce [%]9080706050403020Species <strong>richness</strong>40353025201510<strong>Ant</strong> abund<strong>an</strong>ce [%]1010500500 m 1000 m 2000 m 3000 m 4000 m00AltitudeFig. 8. Species <strong>richness</strong> <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce compared to temperature <strong><strong>an</strong>d</strong> leaf litter thickness <strong>along</strong> the altitudinaltr<strong>an</strong>sect. A pronounced mid- elevation peak in terms of <strong>species</strong> <strong>richness</strong> <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce coincides with a peak inleaf litter thickness, while temperature declines linearly. Note the four Y axes, each with differing units <strong><strong>an</strong>d</strong> scales:Y left [temperature in °C], Y’left [leaf litter thickness in cm], Y right [number of <strong>species</strong>], Y’ right [abund<strong>an</strong>ce asa percentage of total <strong>an</strong>t abund<strong>an</strong>ce at all altitudes].Altitudinal pattern of diversityAs expected diversity was lowest at highestelevations. The lowest diversity <strong><strong>an</strong>d</strong> <strong>species</strong>density were found at 4000 m, <strong><strong>an</strong>d</strong> although thesedata might be influenced by lower samplingeffort,they mainly reflect the adverse climateconditions at the highest sampling point.Although <strong>species</strong> <strong>richness</strong> was highestat 1000 m altitude, with 78 <strong>species</strong> recorded,Sh<strong>an</strong>non <strong><strong>an</strong>d</strong> Simpson diversity both peaked at2000 m, thus indicating <strong>an</strong> increasing overlap of<strong>species</strong> r<strong>an</strong>ges towards the centre of the domain,which could well be explained by the mid-domaineffect (MDE). The elevational r<strong>an</strong>ge of a <strong>species</strong>is bounded by the highest <strong><strong>an</strong>d</strong> lowest elevationpossible in the region. A peak in <strong>species</strong> <strong>richness</strong>at mid-elevations may be due to the limits imposedby geographic boundaries of <strong>species</strong> with differentaltitudinal r<strong>an</strong>ges: <strong>species</strong> with larger r<strong>an</strong>ges willautomatically overlap in the centre (S<strong><strong>an</strong>d</strong>ers 2002).Furthermore worker density, <strong>species</strong> density <strong><strong>an</strong>d</strong>occup<strong>an</strong>cy rates were highest at <strong>an</strong> elevation of2000 m, pointing towards a mid-elevation peakin terms of both <strong>species</strong> <strong>richness</strong> <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce,<strong><strong>an</strong>d</strong> above this elevation a gradual decrease(Fig. 8). Underlying this pattern is the overlap ofbiogeographical realms at 2000 m, with <strong>species</strong>of the Oriental dominating below <strong><strong>an</strong>d</strong> those of thePalaearctic above.Similar patterns have been recordedby Fisher (1996, 1997, 1998, 1999, 2004) inMadagascar <strong><strong>an</strong>d</strong> by Samson et al. (1997) forarboreal <strong><strong>an</strong>d</strong> ground-dwelling <strong>an</strong>t <strong>species</strong> in thePhilippines. In a widespread survey of leaf-litter<strong>an</strong>t diversity, Ward (2000) found that <strong>species</strong><strong>richness</strong> peaked at mid-elevations in the tropics,but decreased continuously with elevation intemperate regions. In contrast, Brühl et al.(1999) observed a decrease in <strong>species</strong> diversitywith increase in altitude, at Mount Kinabalu intropical Borneo, where no mid-domain effect wasrecorded. Recently, Longino & Colwell (2011)also recorded a mid-domain effect in their study


<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas99on Barva Tr<strong>an</strong>sect in Costa Rica. A decrease in<strong>species</strong> diversity at elevations above 2000 mduring the present study could be due to adverseenvironmental conditions like the decrease intemperature, food stress, other altitude-relatedstress, lack of trees, scarcity of litter, or nestingstress coupled with foraging difficulty.Invasive <strong>species</strong> <strong><strong>an</strong>d</strong> habitat disturb<strong>an</strong>ceOn the other h<strong><strong>an</strong>d</strong>, our study also points towardshabitat disturb<strong>an</strong>ce in the Himalay<strong>an</strong> ecosystem.Although the sampling was conducted in theinterior of the forest to avoid ecological edgeeffects, of the 144 <strong>species</strong> recorded, 19 weretramp/invasive. Most invasive <strong>species</strong> occurredat the lower sites at 500 m <strong><strong>an</strong>d</strong> 1000 m, theirnumber <strong><strong>an</strong>d</strong> occurence decreasing dramaticallyat 3000 m <strong><strong>an</strong>d</strong> none being reported from 4000 m(Fig. 5). Moreover opportunistic <strong>species</strong> – afterexclusion of cold-stress specialists – comprisedmore th<strong>an</strong> 20% of the <strong>an</strong>t assemblage at the firsttwo elevations <strong><strong>an</strong>d</strong> 25% at 2000 m. At the sametime the number <strong><strong>an</strong>d</strong> proportion of endemic<strong>species</strong> rose strongly with altitude (Fig. 7). Whilethe lower abund<strong>an</strong>ce of invasive <strong>species</strong> at thehigher altitudes may be due to their lower coldtoler<strong>an</strong>ceas well as the lower habitat disturb<strong>an</strong>cein higher areas, the high numbers of opportunistic<strong><strong>an</strong>d</strong> invasive <strong>species</strong> at the lower altitudesdemonstrates the <strong>an</strong>thropogenic disturb<strong>an</strong>ce ofthese sites.According to Connell (1978), theoccurrence of low evenness values may indicatea fragmented/disturbed habitat, <strong><strong>an</strong>d</strong> disturb<strong>an</strong>cec<strong>an</strong> cause <strong>an</strong> increase in both <strong>richness</strong> of the <strong>an</strong>tassemblage <strong><strong>an</strong>d</strong> variation in <strong>species</strong> abund<strong>an</strong>ce(i.e. lower evenness). While diversity was highestat 2000 m <strong><strong>an</strong>d</strong> <strong>species</strong> <strong>richness</strong> at 1000 m, thelowest evenness was at 1000 m, followed by500 m <strong><strong>an</strong>d</strong> 2000 m. Although natural stochasticityc<strong>an</strong>not be ruled out, <strong>an</strong> influence of hum<strong>an</strong> impactis supported by the high <strong>richness</strong> of invasive <strong><strong>an</strong>d</strong>opportunistic <strong>species</strong>.Thus our finding of the mid-domain peakin diversity could stem from hum<strong>an</strong> disturb<strong>an</strong>ceof habitats at the foot of the mountains. AsWolda (1987) pointed out, sampling over longtime periods generally reveals greatest <strong>richness</strong>at lower elevations, <strong><strong>an</strong>d</strong> the presence of midelevationpeaks in <strong>richness</strong> could be due to<strong>an</strong>thropogenic or other sorts of disturb<strong>an</strong>ce atlower elevations which affect natural diversity(see also Dunn et al. 2010). In fact, in most ofthe tropical <strong><strong>an</strong>d</strong> subtropical regions, the lowerdomain is heavily impacted by long-termhum<strong>an</strong> disturb<strong>an</strong>ce, e.g. forest lost <strong><strong>an</strong>d</strong> habitatdegradation <strong><strong>an</strong>d</strong> fragmentation (Sodhi et al. 2007<strong><strong>an</strong>d</strong> references cited therein). This was also thecase in the Himalayas, where the naturally high<strong>richness</strong> of tropical <strong>species</strong> may be impacted bythe presence of opportunist <strong>species</strong>, pointing toa habitat undergoing tr<strong>an</strong>sformation because ofperturbations caused by hum<strong>an</strong> activities.ACKNOWLEDGEMENTSSincere th<strong>an</strong>ks are due to Dr Robert Colwell, DrCarsten Brühl <strong><strong>an</strong>d</strong> Dr Omid Paknia for valuablediscussion related to the study <strong><strong>an</strong>d</strong> the preparationof the m<strong>an</strong>uscript. Deep appreciation is also dueto Dr Alex<strong><strong>an</strong>d</strong>er Radchenko <strong><strong>an</strong>d</strong> Dr GrahamElmes for sharing their experiences on Himalay<strong>an</strong>Myrmica. Fin<strong>an</strong>cial assist<strong>an</strong>ce rendered by theDepartment of Science <strong><strong>an</strong>d</strong> Technology (gr<strong>an</strong>tno. SR/SO/AS-65/2007), Ministry of Science <strong><strong>an</strong>d</strong>Technology, Government of India, New Delhi isgratefully acknowledged. We are grateful to DrAjay Narendra <strong><strong>an</strong>d</strong> Dr Simon Robson for helpfulcomments during the review of the paper <strong><strong>an</strong>d</strong> toDr John Fellowes for his attentive English editing<strong><strong>an</strong>d</strong> further discussion at this stage.REFERENCESAndersen AN, 1995. Measuring more of biodiversity:Genus <strong>richness</strong> as a surrogate for <strong>species</strong><strong>richness</strong> in Australi<strong>an</strong> <strong>an</strong>t faunas. BiologicalConservation 73: 39-44.Andersen AN, 2000. A global ecology of rainforest<strong>an</strong>ts: Functional <strong>groups</strong> in relation toenvironmental stress <strong><strong>an</strong>d</strong> disturb<strong>an</strong>ce. In:<strong>Ant</strong>s: St<strong><strong>an</strong>d</strong>ard Methods for Measuring<strong><strong>an</strong>d</strong> Monitoring Biodiversity (Agosti D,Majer JD, Alonso EL <strong><strong>an</strong>d</strong> Schultz TR, eds),Smithsoni<strong>an</strong> Institute Press, Washington,DC, 25-34.Andersen AN, 2010. Functional <strong>groups</strong> in <strong>an</strong>tcommunity ecology. In: <strong>Ant</strong> Ecology (LachL, Parr CL <strong><strong>an</strong>d</strong> Abbott KL, eds), OxfordUniversity Press, Oxford, 142-144.


100 Himender Bharti, Yash Paul Sharma, Meenakshi Bharti <strong><strong>an</strong>d</strong> Martin PfeifferAraujo ML <strong><strong>an</strong>d</strong> Fern<strong><strong>an</strong>d</strong>es GW, 2003. Altitudinalpatterns in a tropical <strong>an</strong>t assemblage <strong><strong>an</strong>d</strong>variation in <strong>species</strong> <strong>richness</strong> betweenhabitats. Lundi<strong>an</strong>a 4: 103-109.Berm<strong>an</strong> DI, Alfimov AV, Zhigulskaya ZA <strong><strong>an</strong>d</strong> LeirikhAI, 2010. Overwintering <strong><strong>an</strong>d</strong> Cold-hardinessof <strong>Ant</strong>s in the Northeast of Asia, Pensoft,Sofia, 294 pp.Bharti H, 2008. Altitudinal diversity of <strong>an</strong>ts inHimalay<strong>an</strong> regions (Hymenoptera:Formicidae). Sociobiology 52(2): 305-322.Bharti H <strong><strong>an</strong>d</strong> Sharma YP, 2011a. Myrmica elmesi(Hymenoptera, Formicidae) a new <strong>species</strong>from Himalaya. ZooKeys 124: 51-58.Bharti H <strong><strong>an</strong>d</strong> Sharma YP, 2011b. Myrmica radchenkoi, <strong>an</strong>ew <strong>species</strong> of <strong>an</strong>t (Hymenoptera: Formicidae)from Indi<strong>an</strong> Himalaya. Sociobiology 58(2):427-434.Bharti H <strong><strong>an</strong>d</strong> Sharma YP, 2011c. Myrmic<strong>along</strong>isculpta, a new <strong>species</strong> from Himalaya(Hymenoptera: Formicidae: Myrmicinae).Acta Entomologica Musei Nationalis Pragae51(2): 723-729.Brühl CA, Maryati Mohamed M <strong><strong>an</strong>d</strong> Linsenmair KE,1999. Altitudinal distribution of leaf litter<strong>an</strong>ts <strong>along</strong> a tr<strong>an</strong>sect in primary forests onMount Kinabalu, Sabah, Malaysia. Journalof Tropical Ecology 15: 265-267.Colwell RK, 2006. EstimateS: Statistical Estimation ofSpecies Richness <strong><strong>an</strong>d</strong> Shared Species fromSamples, 8.00 edn. University of Connecticut.Colwell RK <strong><strong>an</strong>d</strong> Lees DC, 2000. The mid-domain effect:geometric constraints on the geographyof <strong>species</strong> <strong>richness</strong>. Trends in Ecology <strong><strong>an</strong>d</strong>Evolution 15:70-76.Colwell RK <strong><strong>an</strong>d</strong> R<strong>an</strong>gel TF, 2010. A stochastic,evolutionary model for r<strong>an</strong>ge shifts<strong><strong>an</strong>d</strong> <strong>richness</strong> on tropical elevationalgradients under Quaternary glacial cycles.Philosophical Tr<strong>an</strong>sactions of the RoyalSociety 365: 3695-3707.Connell JH, 1978. Diversity in tropical rain forest <strong><strong>an</strong>d</strong>coral reefs. Science 199: 1302-1310.Dunn RR, Guénard B, Weiser MD <strong><strong>an</strong>d</strong> S<strong><strong>an</strong>d</strong>ers NJ,2010. Geographic gradients. In: <strong>Ant</strong> Ecology(Lach L, Parr CL <strong><strong>an</strong>d</strong> Abbott KL, eds),Oxford University Press, Oxford, 38-58.Fisher BL, 1996. <strong>Ant</strong> diversity patterns <strong>along</strong> elevationalgradients in the Reserve Naturelle Integraled’Andringitra, Madagascar. Fieldi<strong>an</strong>aZoology 85: 93-108.Fisher BL, 1997. Biogeography <strong><strong>an</strong>d</strong> ecology of the<strong>an</strong>t fauna of Madagascar (Hymenoptera:Formicidae). Journal of Natural History 31:269-302.Fisher BL, 1998. <strong>Ant</strong> diversity patterns <strong>along</strong>elevational gradients in the Reserve Specialed’Anj<strong>an</strong>aharibe-Sud <strong><strong>an</strong>d</strong> on the westernMasoala Peninsula, Madagascar. Fieldi<strong>an</strong>aZoology 90: 93-108.Fisher BL, 1999. <strong>Ant</strong> diversity patterns <strong>along</strong> elevationalgradients in the Reserve Naturelle Integraled’Andringitra, Madagascar. Fieldi<strong>an</strong>aZoology 94: 129-147.Fisher BL, 2004. Diversity patterns of <strong>an</strong>ts (Hymenoptera:Formicidae) <strong>along</strong> <strong>an</strong> elevational gradient onMount Doudou in South-Western Gabon.Memoirs of the California Academy ofSciences 28: 269-286.Greenslade PJM <strong><strong>an</strong>d</strong> Greenslade P, 1977. Some effects ofvegetation cover <strong><strong>an</strong>d</strong> disturb<strong>an</strong>ce on a tropical<strong>an</strong>t fauna. Insects Sociaux 24: 163-182.Grytnes J <strong><strong>an</strong>d</strong> McCain CM, 2007. Elevational trendsin biodiversity. Encyclopedia of Biodiversity5: 1-8.Holldobler B <strong><strong>an</strong>d</strong> Wilson EO, 1990. The <strong>Ant</strong>s. BelknapPress, Harvard University Cambridge.Holldobler B <strong><strong>an</strong>d</strong> Wilson EO, 2009. The Super-Org<strong>an</strong>ism: The Beauty, Eleg<strong>an</strong>ce, <strong><strong>an</strong>d</strong>Str<strong>an</strong>geness of Insect Societies. W.W. Norton& Comp<strong>an</strong>y, New York–London.Jost L, 2006. Entropy <strong><strong>an</strong>d</strong> diversity. Oikos 113(2):363-375.Lach L, Parr CL <strong><strong>an</strong>d</strong> Abbott KL, 2010. <strong>Ant</strong> Ecology.Oxford University Press, Oxford, 402 pp.Lomolino MV, 2001. Elevational gradients of <strong>species</strong>density:historical <strong><strong>an</strong>d</strong> prospective views.Global Ecology <strong><strong>an</strong>d</strong> Biogeography 10: 3-13.Longino J, Coddington JA <strong><strong>an</strong>d</strong> Colwell RK, 2002.The <strong>an</strong>t fauna of a tropical rainforest:estimating <strong>species</strong> <strong>richness</strong> three differentways. Ecology 83: 689-702.Longino JT <strong><strong>an</strong>d</strong> Colwell RK, 2011. Density, <strong>species</strong>composition, <strong><strong>an</strong>d</strong> <strong>richness</strong> of <strong>an</strong>ts on <strong>an</strong>eotropical elevational gradient. Ecosphere2: 1-20.Malsch AKF, Fiala B, Maschwitz U, Maryati M, NaisJ <strong><strong>an</strong>d</strong> Linsenmair KE, 2008. An <strong>an</strong>alysis ofdeclining <strong>an</strong>t <strong>species</strong> <strong>richness</strong> with increasingelevation at Mount Kinabalu, Sabah, Borneo.Asi<strong>an</strong> Myrmecology 2: 33-49.M<strong>an</strong>i MS, 1962. Introduction to High-altitudeEntomology. Methuen & Comp<strong>an</strong>y Ltd.,London, 305 pp.M<strong>an</strong>i MS, 1968. Ecology <strong><strong>an</strong>d</strong> Biogeography of HighaltitudeInsects. Dr W. Junk N.V. Publishers,The Hague, 528 pp.M<strong>an</strong>i MS, 1995. Biogeography in India. SuryaPublications, India, 130 pp.McCain CM, 2009. Global <strong>an</strong>alysis of bird elevationaldiversity. Global Ecology <strong><strong>an</strong>d</strong> Biogeography18: 346-360.Narendra A, Gibb H <strong><strong>an</strong>d</strong> Ali TM, 2011. Structure of


101<strong>Ant</strong> <strong>species</strong> <strong>richness</strong>, <strong>endemicity</strong> <strong><strong>an</strong>d</strong> <strong>functional</strong> <strong>groups</strong>, <strong>along</strong> <strong>an</strong> elevational gradient in the Himalayas<strong>an</strong>t assemblages in Western Ghats, India:role of habitat, disturb<strong>an</strong>ce <strong><strong>an</strong>d</strong> introduced<strong>species</strong>. Insect Conservation <strong><strong>an</strong>d</strong> Diversity4: 132-141.Nur-Zati AM, Salim HMW, Fletcher C, Kassim AR <strong><strong>an</strong>d</strong>Potts MD, 2011. Taxonomic <strong><strong>an</strong>d</strong> <strong>functional</strong>diversity of <strong>an</strong>ts (Hymenoptera: Formicinae)in the upper dipterocarp forest in PeninsularMalaysia. The Raffles Bulletin of Zoology59(2): 181-194.Peck LS, Mcquaid B <strong><strong>an</strong>d</strong> Campbell CL, 1998. Using<strong>an</strong>t <strong>species</strong> (Hymenoptera: Formicidae) asa biological indicator of agro ecosystemcondition. Environmental Entomology 27:1102-1110.Pfeiffer M, Chimedregzen L <strong><strong>an</strong>d</strong> Ulykp<strong>an</strong> K, 2003.Community org<strong>an</strong>ization <strong><strong>an</strong>d</strong> <strong>species</strong><strong>richness</strong> of <strong>an</strong>ts (Hymenoptera/Formicidae)in Mongolia <strong>along</strong> <strong>an</strong> ecological gradientfrom steppe to Gobi Desert. Journal ofBiogeography 30(12): 1921-1935.Radchenko AG <strong><strong>an</strong>d</strong> Elmes GW, 2010. Myrmica <strong>Ant</strong>s(Hymenoptera: Formicidae) of the OldWorld. Natura Optima Dux Foundation,Warsaw, 789 pp.Rahbek C, 1995. The elevational gradients of <strong>species</strong><strong>richness</strong>: a uniform pattern? Ecography 18:2.Rahbek C, 2005. The role of spatial scale <strong><strong>an</strong>d</strong> theperception of large-scale <strong>species</strong>-<strong>richness</strong>patterns. Ecology Letters 8: 224-239.Ryder Wilkie KT, Mertl AL <strong><strong>an</strong>d</strong> Tr<strong>an</strong>iello JFA, 2010.Species diversity <strong><strong>an</strong>d</strong> distribution patterns ofthe <strong>an</strong>ts of Amazoni<strong>an</strong> Ecuador. PLoS One5(10): e13146.Samson DA, Rickart EA <strong><strong>an</strong>d</strong> Gonzales PC, 1997. <strong>Ant</strong>diversity <strong><strong>an</strong>d</strong> abund<strong>an</strong>ce <strong>along</strong> <strong>an</strong> elevationalgradient in the Philippines. Biotropica 29(3):349-363.S<strong><strong>an</strong>d</strong>ers NJ, 2002. Elevational gradients in <strong>an</strong>t <strong>species</strong><strong>richness</strong>: area, geometry, <strong><strong>an</strong>d</strong> Rapoport’srule. Ecography 25: 25-32.S<strong><strong>an</strong>d</strong>ers NJ, Moss J <strong><strong>an</strong>d</strong> Wagner D, 2003. Patterns of <strong>an</strong>t<strong>species</strong> <strong>richness</strong> <strong>along</strong> elevational gradientsin <strong>an</strong> arid ecosystem. Global Ecology &Biogeography 12(2): 93-102.Sodhi NS, Brook BW <strong><strong>an</strong>d</strong> Bradshaw CJA, 2007.Tropical Conservation Biology. Blackwell,Malden, Oxford, Victoria, 332 pp.Ward PS, 2000. Broad-scale patterns of diversity in leaflitter <strong>an</strong>t communities. In: <strong>Ant</strong>s: St<strong><strong>an</strong>d</strong>ardMethods for Measuring <strong><strong>an</strong>d</strong> MonitoringBiodiversity (Agosti D, Majer JD, Alonso LE<strong><strong>an</strong>d</strong> Schultz TR, eds), Smithoni<strong>an</strong> InstitutionPress, Washington, London, 99-121.Wolda H, 1987. Altitude, habitat <strong><strong>an</strong>d</strong> tropical insectdiversity. Biological Journal of the Linne<strong>an</strong>Society 30: 313-323.ASIAN MYRMECOLOGYA Journal of the International Network for the Study of Asi<strong>an</strong> <strong>Ant</strong>sCommunicating Editors: Simon K. A. Robson & John R. Fellowes

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!