12.07.2015 Views

1 Prof. Dr. George Kaptay List of publications ... - Miskolci Egyetem

1 Prof. Dr. George Kaptay List of publications ... - Miskolci Egyetem

1 Prof. Dr. George Kaptay List of publications ... - Miskolci Egyetem

SHOW MORE
SHOW LESS
  • No tags were found...

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

J.145. G. <strong>Kaptay</strong>: On the atomic masses (weights?) <strong>of</strong> the elements, J. Min. Metall. B, 2012,vol.48, pp. 153-159 (2011-IF = 1.317).J144. G.<strong>Kaptay</strong>: Interfacial Forces in Dispersion Science and Technology - Journal <strong>of</strong>Dispersion Science and Technology, 2012, vol.33, pp.130-140 (2011-IF = 0.560).J143. G.<strong>Kaptay</strong>: On the optimum contact angle <strong>of</strong> stability <strong>of</strong> foams by particles – Advancesin Colloid and Interface Science, 2012, vol.170, pp. 87-88 (2011-IF = 8.120).J.142. G.<strong>Kaptay</strong>: The conversion <strong>of</strong> phase diagrams <strong>of</strong> solid solution type intoelectrochemical synthesis diagrams for binary metallic systems on inert cathodes -Electrochimica Acta, 2012, vol.60, pp.401-409. (2011-IF = 3.832)J.141. Y. Tang, Y. Du, L. Zhang, X. Yuan, G.<strong>Kaptay</strong>: Thermodynamic description <strong>of</strong> the Al–Mg–Si system using a new formulation for the excess Gibbs energy – Thermochimica Acta,2012, vol.527, pp.131-142. (2011-IF = 1.805).J.140. G.<strong>Kaptay</strong>: On the tendency <strong>of</strong> solutions to tend toward ideal solutions at hightemperatures – Metall Mater Trans A, 2012, vol.43, pp. 531-543. (2011-IF = 1.545).J.139. G.<strong>Kaptay</strong>: Interfacial phenomena in producing metallic materials. Part 5: Theinterfacial spreading force (in Hungarian). – BKL Kohászat, 2011., vol.144., No.5., pp. 9-13.(IF = 0)J.138. G.<strong>Kaptay</strong>: On the five base quantities <strong>of</strong> nature and SI (The International system <strong>of</strong>Units) – JMM B, 2011, vol47, No.2, pp.241-246. (IF = 1.317).J138-c1. KW Craig: No child left behind: teaching the metric system in US schools – Int J Appl Sci Technol,2012, vol.2, No.4, pp.40-48. – „Although there are seven base units in SI, “it is claimed that five is thesmallest number <strong>of</strong> base quantities that is sufficient to define all derived quantities and allows thedescription <strong>of</strong> all natural phenomena … length, mass, time, temperature and electric charge … The firstfour … coincide with the current list <strong>of</strong> base quantities in SI” (<strong>Kaptay</strong>, 2011, p. 242). There is a proposalto replace electric current with electric charge and to eliminate both the amount <strong>of</strong> substance andluminous intensity.” – p.41.J.137. D.Madarasz, I.Budai, G.<strong>Kaptay</strong>: Fabrication <strong>of</strong> SiC-particles shielded Al-spheres uponrecycling Al/SiC composites – Metal Mater Trans A, 2011, Volume 42, Number 6, 1439-1443 (IF = 1.545).J137-c1. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int. Sci. Conf.microCAD, 29-30 March, 2012. – „A NaCl-KCl-KF típusú sókeverékkel az alumínium olvadékban lévőSiC szemcsék is eltávolíthatóak [J137].” – 4.o.J136. I.Budai, O.Z.Nagy, G.<strong>Kaptay</strong>: Inversion <strong>of</strong> a liquid Bi/Al metallic emulsion stabilizedby solid SiC particles, Coll Surf A, 2011, vol.377, pp.325-329 (IF = 2.236)J.135. O.Verezub, Z.Kálazi, A.Sytcheva, L.Kuzsella, G.Buza, N.V.Verezub, A.Fedorov,G.<strong>Kaptay</strong>: Performance <strong>of</strong> a cutting tool made <strong>of</strong> steel matrix surface nano-compositeproduced by in-situ laser melt injection technology – J Mater Process Technol., 2011, vol.211,pp.750-758 (IF = 1.783)3


J135-c1. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „Lézer segítségével felületi kompozitok állíthatóak elő. Ebben azesetben a mátrix anyagául szolgáló fém felületét lézerrel megolvasztják, és az így kialakult fémtócsábamegfelelő sebességgel lövik az erősítő fázisnak szánt szemcséket [J135].” – 4.o.J135-c2. C.W.Rejil, I.Dinaharan, S.J.Vijay, N.Murugan: Microstructure and sliding wear behavior <strong>of</strong>AA6360/(TiC+B4C) hybrid surface composite layer synthesized by friction stir processing on aluminumsubstrate. Mater Sci Eng A, 2012, vol.552, pp.336-344. „SCLs (surface composite layers) are fabricatedusing conventional liquid phase processing methods such as high energy laser melt injection [J135], etc…„ – p.336.J134. I.Budai, G.<strong>Kaptay</strong>: Monotectic Al/Cd alloys with homogeneously dispersed Cd-dropletsstabilized by strontium aluminide precipitates – Intermetallics, 2011, vol.19. pp.423-425 (IF =1.649).J.133. <strong>Kaptay</strong> Gy.: Határfelületi jelenségek a fémesanyaggyártásban. 4.rész. A határfelületigradiens erő – BKL Kohászat, 2010., 143. évf., 5. szám, 45-54.o. (IF = 0)J.132. G.<strong>Kaptay</strong>: The Extension <strong>of</strong> the Phase Rule to Nano-Systems and on the QuaternaryPoint in One-Component Nano Phase Diagrams - J. Nanosci. Nanotechnol., 2010, vol.10,pp.8164–8170. (IF = 1.352).J.131. M.Reger, B.Vero, I.Kardos, E.R.Fabian, G.<strong>Kaptay</strong>: Diffusion <strong>of</strong> carbon in thecenterline region <strong>of</strong> continuous cast slabs – Mater Sci Forum, 2010, vol.659, pp.441-446 (IF =0)J.130. <strong>Kaptay</strong> Gy.: Határfelületi jelenségek a fémesanyaggyártásban. 3.rész. A görbületindukálta határfelületi erő – BKL Kohászat, 2010., 143. évf., 3. szám, 33-38. (IF = 0)J.129. P.Baumli, J.Sytchev, G.<strong>Kaptay</strong>: Perfect wettability <strong>of</strong> carbon by liquid aluminumachieved by a multifunctional flux. J Mater Sci, 2010, vol.45, pp.5177-5190. (IF = 1.859).J129-c1. I.N.Orbulov: Infiltration <strong>of</strong> ceramic microballons by liquid metals – research plan for SCIEX-NMS,February, 2011, 12 pp. – „There are many papers in the pr<strong>of</strong>essional literature which are dealing withthe phenomenon <strong>of</strong> infiltartion [J129]” – p.9.J129-c2. Lévai Gábor (tud. vez.: dr. Török Tamás): Acéllemezek színes tűzi horganyzása, 6. doktoriszeminárium, 2011, június 14., 28 oldal. – “<strong>Kaptay</strong> és mtsai több alkalommal publikáltak pozitíveredményeket alumíniumnak K 2 TiF 6 sóval történő ötvözéséről [129]”. – p.19.J129-c3. W.Xi, R.L. Peng, W. Wu, N. Li, S. Wang, S. Johansson: Al2O3 nanoparticle reinforced Fe-based alloyssynthesized by thermite reaction – J Mater Sci, 2012, vol.47, pp.3585-3591 – „Many studiesdemonstrate that a low interfacial energy between ceramic particles and metal matrix is the mostimportant condition for obtaining homogeneous distribution <strong>of</strong> ceramic particles in the metal matrixwhen a metal matrix components is produced by solidification process [J129]” – p.3588.J.128. Á.E. Horváth, F. Járai-Szabó, G.<strong>Kaptay</strong>, R.Vajtai, Z.Néda: Pattern formation andselection in nanotube arrays - Univ Polit Bucharest Sci Bull – Ser A - Appl Math Phys, 2010,vol.72, Iss.1, pp.27-32. (IF = 0.253).J.127. I.Budai, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> SiC and alumina particles by liquid Bi under liquidAl – J. Mater Sci, 2010, vol.45, pp.2090-2098. (IF = 1.859)J127-c1. I.Kaban, M.Köhler, W.Hoyer, L.Ratke: Catalytic efficiency <strong>of</strong> oxide particles on heterogeneousnucleation in aluminium alloy with miscibility gap – Hig Temperatures – High Pressures, 2010, vol.39,pp.347-355. – „In this case, the advancing contact angle is around 10 degrees and the receeding contactangle is around zero, which correlates with the results <strong>of</strong> work [J127] were the perfect wetting <strong>of</strong> aluminaby Bi- and Pb-rich phase has been reported” – p.352.4


J127-c2. I.Kaban, M.Köhler, L.Ratke, W.Hoyer, N.Mattern, J.Eckert, A.L.Geer: Interfacial tension, wetting andnucleation in Al-Bi and Al-Pb monotectic alloys – Acta mater, 2011, vol.59, pp. 6880-6889 – „Budai and<strong>Kaptay</strong> [J127] found that Al 2 O 3 particles were perfectly wetted by the Bi-rich phase in a solidified Al-Bialloy.” – p.6881.J.126. <strong>Kaptay</strong> Gy.: Határfelületi jelenségek a fémesanyaggyártásban. 2.rész. A határfelületiösszehúzó erő – BKL Kohászat, 2009., 142. évf., 6. szám, 37-46. (IF = 0)J.125. J.Sytchev, G.<strong>Kaptay</strong>: Influence <strong>of</strong> alkali metal on the erosion <strong>of</strong> a graphite cathode andmorphology <strong>of</strong> carbon nanotubes – Electrochim Acta, 2009, vol.54, pp. 6725-6731. (IF =3.325)J125-c1. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes and fundamental studies likewisesuggested alkali metal intercalation into graphite as an essntial step <strong>of</strong> the process [J125]” – p.151J125-c2. A.R.Kamali, D.J.Fray, C.Schwandt: Thermokinetic characterisation <strong>of</strong> lithium chloride – J Therm AnalCalorim, 2011, vol.104, pp.619-626. “More recent investigations have shown that intercalation <strong>of</strong> lithiuminto graphite may also proceed at elevated temperatures as high as 625 to 900 C [J125]” – p.619.J125-c3. AR Kamali, C Schwandt, DJ Fray: Effect <strong>of</strong> graphite electrode material on the characteristics <strong>of</strong> moltensalt electrolitically produced carbon nanomaterials – Mater Charact, 2011, vol.62, pp. 987-994. –„Fundamental investigations have reveasled that the molten salt electrolytic formation <strong>of</strong> carbonnanomaterials commences with the intercalation <strong>of</strong> alkali metal from the molten salt electrolyte into thegraphitic cathode [J125]” – p.987.J125-c4. C.Schwandt, AT Dimitrov, DJ Fray: High yield synthesis <strong>of</strong> multi-walled carbon nanotubes fromgraphite by molten salt electrolysis – Carbon, 2012, vol.50, pp. 1311-1315 – „It is generally accepted thatthe first step <strong>of</strong> the cathodic reduction is the intercalation <strong>of</strong> the alkali metal into the spacings between thegraphitic layers and the formation <strong>of</strong> intercalation compounds, MeC x [J125]” – p.1311.J125-c5. A. Juhasz-Szalai, E. Kiss-Toth-Dojcsak, P. Koska, J. Szebeni, B. Fodor: Characteristic features <strong>of</strong>carbon nanotubes and their application in living systems – Egészségtudományi Közlemények, 2012,vol.2, No.1, pp.105-111 – “Several techniques have been developed for the synthesis <strong>of</strong> CNTs,including …. molten chloride electrolysis [J125]…” – p.106.J125-c6. Hui Huang, Yang Xia, Xinyong Tao, Jun Du, Junwu Fang, Yongping Gan and Wenkui Zhang:Highly efficient electrolytic exfoliation <strong>of</strong> graphite into graphene sheets based on Li ions intercalation–expansion–microexplosion mechanism - J. Mater. Chem., 2012, vol.22, pp. 10452-10456.J125-c7. A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure andthermokinetic characteristics <strong>of</strong> electrolytic carbon nanomaterials, Corrosion Science (2012), doi:http://dx.doi.org/ - „…the reaction commences with the diffusion-controlled intercalation <strong>of</strong> Li into thebulk <strong>of</strong> the graphite cathode, and it has also been considered that Li is simply deposited onto the surface<strong>of</strong> the graphite cathode in case the rate <strong>of</strong> Li generation is faster than that <strong>of</strong> Li inward diffusion[J125].”J.124. O. Verezub, Z. Kálazi, G. Buza, N. V. Verezub, G. <strong>Kaptay</strong>: Classification <strong>of</strong> laserbeam induced surface engineering technologies and in situ synthesis <strong>of</strong> steel matrix surfacenanocomposites - Surface Engineering, 2011, vol.27, No.6, pp. 428-435 (2010-IF = 0.633)J.123. <strong>Kaptay</strong> György: Határfelületi jelenségek a fémesanyaggyártásban. 1. rész. Ahatárfelületi erők osztályozása. BKL Kohászat, 2009., 142. évf., 3. szám, 39-46.o.Helyreigazítás: 2009., 142. évf., 5. szám, 43. o.J.122. O. Verezub, Z. Kálazi, G. Buza, N.V. Verezub, G. <strong>Kaptay</strong>: In-situ synthesis <strong>of</strong> acarbide reinforced steel matrix surface nanocomposite by laser melt injection technology andsubsequent heat treatment, Surface & Coatings Technology, 2009, vol. 203, pp.3049-3057.(IF = 1.793)5


J122-c1. E.Laszlo, A.Sytcheva, J.Szucs: <strong>Dr</strong>illing <strong>of</strong> aluminium alloys and composites – Diáktudomány, A<strong>Miskolci</strong> <strong>Egyetem</strong> tudományos diákköri munkáiból, 2010, Miskolc, pp.87-98, ISBN 978-963-661-932-9 –“A kompozitok és nano-kompozitok fejlesztése az egyik fontos mérnöki feladat anyagtudomány ésgépgyártástechnológia határterületén [J122]”.J122-c2. M.J.Hamedi, M.J.Torkamany, J.Sabbaghzadeh: Effect <strong>of</strong> pulsed laser parameters on in-situ TiCsynthesis in laser surface treatment – Opt Lasers Eng, 2011, vol.49, pp.557-563. – “Recently, theapplications <strong>of</strong> the titanium carbide (TiC) composites have been increased … [J122]..” – p.557.J122-c3. B.S. Yilbas, S.S. Akhtar, A. Matthews, C. Karatas: Laser treatment <strong>of</strong> carbon film coated steel surface,Surface Eng, 2012, vol.28, No.1, pp.57-67.J122-c4. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „Lézer segítségével felületi kompozitok állíthatóak elő. Ebben azesetben a mátrix anyagául szolgáló fém felületét lézerrel megolvasztják, és az így kialakult fémtócsábamegfelelő sebességgel lövik az erősítő fázisnak szánt szemcséket [J122].” – 4.o.J122-c5. A.P.I. Popoola, B.A. Obadele, O.M. Popoola: Effects <strong>of</strong> TiC-particulate distribution in AISI 304Lstainless steel matrix - Digest Journal <strong>of</strong> Nanomaterials and Biostructures, 2012, vol. 7, No. 3, pp. 1245 –1252. „In the present investigations, TiC particulate reinforced austenitic stainless steel has beenfabricated using laser processing. Lately, the applications <strong>of</strong> carbides especially titanium carbide (TiC)composites have increased. This is as a result <strong>of</strong> the new and promising materials for wearresistant partsand high temperature engineering structural components [J122], high specific strength, low density andhigh elastic modulus.” – p.1246.J.121. I.Budai, G.<strong>Kaptay</strong>: A new class <strong>of</strong> engineering materials: particles stabilized metallicemulsions and monotectic alloys, Metall. Mater Trans A, 2009, vol.40A, pp.1524-1528. (IF =1.564)J121-c1. S.E.Friberg: Foams from Non-aqueous systems – Curr Opinion Coll Interface Sci, 2010, vol.15,pp.359-364 – “The analysis <strong>of</strong> stability and general properties <strong>of</strong> solid foams, on the other hand, hasgained a separate place in the scientific literature against the fact that their properties are as muchdependent on details <strong>of</strong> their preparation and manufacturing as on basic collid phenomena and the latterhave first been adequately examined [J121].” – p.359, “In the area <strong>of</strong> metallic foams truly significantprogress was made by <strong>Kaptay</strong> and collaborators [121]….” – p. 362.J121-c2. I.Kaban, M.Köhler, W.Hoyer, L.Ratke: Catalytic efficiency <strong>of</strong> oxide particles on heterogeneousnucleation in aluminium alloy with miscibility gap – Hig Temperatures – High Pressures, 2010, vol.39,pp.347-355. – “Unfortunately, there are practically no data on the wetting <strong>of</strong> solids at the liquid-liquidinterfaces in metallic monotectic alloys (a short view <strong>of</strong> the state <strong>of</strong> the art can be found in the recent work<strong>of</strong> Budai and <strong>Kaptay</strong> [J121])” – p.348. „In this case, the advancing contact angle is around 10 degrees andthe receeding contact angle is around zero, which correlates with the results <strong>of</strong> work [J121] were theperfect wetting <strong>of</strong> alumina by Bi- and Pb-rich phase has been reported” – p.352.J121-c3. I.Kaban, M.Köhler, L.Ratke, W.Hoyer, N.Mattern, J.Eckert, A.L.Geer: Interfacial tension, wetting andnucleation in Al-Bi and Al-Pb monotectic alloys – Acta mater, 2011, vol.59, pp.6880-6889 – „Budai and<strong>Kaptay</strong> [J121] found that Al 2 O 3 particles were perfectly wetted by the Bi-rich phase in a solidified Al-Bialloy. On the other hand, the contact angle with SiC particles at the interface between two solid phases inan Al-Bi-Si alloy was about 90 o [J121]” – p.6881.J121-c4. T.Frolov, KA Darling, LJ Kecskes, Y.Mishin: Stabilization and strengthening <strong>of</strong> nanocrystalline copperby alloying with tantalum – Acta Mater, 2010, vol.60, pp. 2158-2168 – “Alloying with immiscibleelemenets is a promising approach to the design <strong>of</strong> materials with extraordinary structural stability andmechanical strength at high temperatures [J121]” – p.2158.J.120. T.Gábor, F.H.Kármán, J.Sytchev, E.Kálmán, G.<strong>Kaptay</strong>: The separation <strong>of</strong> carbonnanotubes from chlorides – Carbon, 2009, vol.47, pp.1195-1198. (IF = 4.504)J120-c1. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „The separation <strong>of</strong> the nano-structured components from residual salt and unreacted graphite needsto be optimized. In this context, the suitability <strong>of</strong> a recently developed extraction technique using ethilacetate [J120] will be ascertained” – p.158J120-c2. Graham KA, Kulawiec M, Owens KM, Li XR, Desouki MM, Chandra D, Singh KK: NADPH oxidase4 is an oncoprotein localized to mitochondria, CANCER BIOLOGY & THERAPY 10: (3) Paper 12207.(2010)J120-c3. A. Juhasz-Szalai, E. Kiss-Toth-Dojcsak, P. Koska, J. Szebeni, B. Fodor: Characteristic features <strong>of</strong>carbon nanotubes and their application in living systems – Egészségtudományi Közlemények, 2012,6


vol.2, No.1, pp.105-111 – “Several techniques have been developed for the synthesis <strong>of</strong> CNTs,including …. molten chloride electrolysis [J120]…” – p.106.J.119. O.N.Verezub, G.<strong>Kaptay</strong>, G.Buza, N.V.Verezub: The modification <strong>of</strong> surface layers <strong>of</strong>materials by laser alloying method. Part II. Laser melt injection technology <strong>of</strong> instrumentalcarbon steels - Journal <strong>of</strong> Functional Materials, 2008, vol.2, No.4, pp.137-143. (in Russian).(IF = 0)J.118. O.N.Verezub, G.<strong>Kaptay</strong>, G.Buza, N.V.Verezub: The modification <strong>of</strong> surface layers <strong>of</strong>materials by laser alloying method. Part I. Journal <strong>of</strong> Functional Materials, 2008, vol.2, No.3,pp.82-91. (in Russian). (IF = 0)J.117. P.Baumli, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> carbon surfaces by pure molten alkali chlorides andtheir penetration into a porous graphite substrate – Mater Sci Eng A, 2008, vol.495, pp.192-196. (IF = 1.860)J117-c1. J.F.Cooper J.R.Selman: Electrochemical Oxidation <strong>of</strong> Carbon for Electric Power Generation: A Review– Abstract Book <strong>of</strong> the 214th Meeting <strong>of</strong> the Electrochemical Society, October 2008http://ecsmeet7.peerxpress.org/ms_files/ecsmeet7/2008/12/15/00001942/00/1942_0_art_0_kbxyy3.pdf -„A recent study <strong>of</strong> graphite wetting in molten chlorides indicates strong dependence on cationiccomposition and temperature [J117]”J117-c2. N.Esutathopoulos, B.<strong>Dr</strong>evet, S.Brandon, A.Virozub: Basic principles <strong>of</strong> capillarity in relation to crystalgrowth – Chapter 1 in: Crystal Growth Processes Based on Capillarity: Czochralski, Floating Zone,Shaping and Crucible Techniques, ed. by T.Duffar, 2010, John Wiley and Sons Ltd. – „Thethermodynamic adhesion <strong>of</strong> molten halides on carbon is weak, as ensured solely by physical interactions[J117]. From modeling molten halide / graphite interactions, it was shown that for the same type <strong>of</strong>halides (for instance chlorides), when the surface tension decreases, the work <strong>of</strong> adhesion increasesrapidly. According to the Young-Dupré equation, this implies a strong decrease in the contact angle(Table 1.8). Table 1.8 Reprinted with permission from [J117], copyright 2008 Elsevier Ltd.” – p.27.J117-c3. X. Liu, Z. Wang, S. Zhang: Molten Salt Synthesis and Characterization <strong>of</strong> Titanium Carbide-CoatedGraphite Flakes for Refractory Castable Applications – Int J Appl Ceram Technol, 2011, vol. 8, pp.911-919 – „Among the three molten salts, NaCl has the highest viscosity and wets graphite poorly [J117];therefore, the transport <strong>of</strong> Ti to the surface <strong>of</strong> graphite will be hindered considerably. Although LiCl hasthe lowest viscosity it does not wet graphite [J117] and consequently the delivery <strong>of</strong> Ti to the reactionsites on the graphite surface becomes difficult. Differently from these two molten salts, KCl wets graphitewell [J117] and has a low viscosity which facilitates the diffusion <strong>of</strong> Ti species in it and thus the rapid TiCcoating formation. Thanks to the useful properties <strong>of</strong> KCl salt mentioned above, the KCl–LiCl eutecticsalt was also effective in the MSS <strong>of</strong> TiC coatings”. p.914.J117-c4. I.N.Orbulov, I.Kientzl, J.T.Blücher, Á.Németh, J.Dobránszky, J.Ginsztler: Production and investigation<strong>of</strong> a metal matrix composite pipe – in: Proc <strong>of</strong> 14th European Conf on Composite Materials, Paper ID:262-ECCM14, 8 pp. – „Efforst have been done to reduce the contact angle either by coating <strong>of</strong> the fibersor by using three component reinforcement – salt – matrix systems [J117]” – p.2.J117-c5. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „.. ha a porózus test egyforma, szorosan pakoltgömbökből van kirakva, akkor a kritikus peremszög 50,7 o [], amire az első kísérleti bizonyítékBaumlitől származik [J117]” – 20.o.J117-c6. I.N.Orbulov, Á.Németh: Infiltration characteristics <strong>of</strong> carbon fiber reinforced MMCs – Mater SciForum, 2010, vol.659, pp.229-234. – „Effort have been done to reduce the contact angle either by coatingfibers or by using three component reinforcement – salt – matrix system [J117]” – p. 230.J117-c7. Youliang Cheng, Tiehu Liy, Xianliang Hou, Deqi Jing, Qiang Zhuang, Tingkai Zhao: Effects <strong>of</strong> AlCl 3 -NaCl Content on the Formation <strong>of</strong> Mesocarbon Microbeads – Int J Chem Reactor Eng, 2010, vol.8, NoteS7, pp. 1-12 – „Moreover, due to the low wettability <strong>of</strong> carbon and molten salt [J117], the morphology <strong>of</strong>obtained mesophase spheres gets more regular.” – p.5.J117-c8. Korenko M, Simko F: Measurement <strong>of</strong> Interfacial Tension in Liquid-Liquid High-Temperature Systems– J Chem Eng Data, 2010, vol.55, issue 11, pp. 4561-4573. „Baumli and <strong>Kaptay</strong> [J117] used contact anglemeasurements for the evaluation <strong>of</strong> surface tension and wettability <strong>of</strong> several chlorides (KCl, NaCl, RbCl,CsCl) on graphite and glassy carbon substrates” – p.4570.7


J117-c9. I.N.Orbulov: Infiltration <strong>of</strong> ceramic microballons by liquid metals – research plan for SCIEX-NMS,February, 2011, 12 pp. – „There are many papers int he pr<strong>of</strong>essional literature which are dealing withthe phenomenon <strong>of</strong> infiltartion [J117]” – p.9.J117-c10. Z.Tao, Q.Guo, X.Gao, L.Liu: The wettability and interface thermal resitance <strong>of</strong> copper/graphitesystem with addition <strong>of</strong> chromium – Mater Chem, 2011, vol.128, pp.228-232 – „.. there exists a criticalcontact angle for spontaneous filling the surface pores <strong>of</strong> graphite material. This value is around 50 degwhich has been demonstrated both by theory and experiment [J117]”J.116. C.Mekler, G.<strong>Kaptay</strong>: Calculation <strong>of</strong> surface tension and surface phase transition line inbinary Ga-Tl system – Mater Sci Eng A, 2008, vol.495, pp.65-69. (IF = 1.860)J116-c1. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „A paraméter a felületirétegben meglévő kötések hányada, ami 1-nél ksiebb pozitív szám, értéke 0,83 [J116]” – 31.o.J116-c2. S.H.Sheng, R.F.Zhang, S.Veprek: Phase stabilities and decomposition mechanism in the Zr-Si-Nsystem studied by combined ab initio DFT and thermodynamic calculation – Acta Mater, 2011, vol.59,pp.297-307 – “The so-called surface phase transition, which has been theoretically predicted by Cahn andrecently elaborated in more detail by <strong>Kaptay</strong> et al [J116], essentially states that the system will decreasethe high surface energy <strong>of</strong> the ionic transition metal nitride by wetting it with covalent Si3N4” – p.305.J116-c3. A.Aqra, A.Ayyad, F.Takrori: Model calculation <strong>of</strong> the surface tension <strong>of</strong> liquid Ga-Bi alloy – Appl SurfSci, 2011, vol.257, pp.3577-3580 – “It should be noted that the surface tension <strong>of</strong> liquid solders may becalculated by means <strong>of</strong> various methods such as Butler method [J116] – p.3578.J116-c4. F.Aqra, A.Ayyad: Theoretical calculations <strong>of</strong> the surface tension <strong>of</strong> Ag-Cu liquid alloys – J AlloysCompounds, 2011, vol.509, pp.5736-5739 – “Many attempts have been made to predict the surfacetension <strong>of</strong> liquid metals and alloys, such as computer simulation with Monte Carlo or molecular dynamicsmethods and models based on Butler's concept [J116]” – p.5736.J116-c5. L.E.Gonzalez, D.J.Gonzalez: Orbital free ab initio simulation <strong>of</strong> surface freezing in a dilute Ga-Tl alloy– Eur. Phys. J. Special Topics, 2011, vol. 196, pp.15-26. – “A theoretical thermodynamic calculation <strong>of</strong>the surface phase transition line, separating the regions where the segregation <strong>of</strong> a Tl-rich nanolayer takesplace or does not take place, has been pursued by Mekler and <strong>Kaptay</strong> [J116]. They obtained goodagreement with the adsorpőtion measurements <strong>of</strong> Shim et al.” - pp.17-18.J.115. G.<strong>Kaptay</strong>: A unified model for the cohesive enthalpy, critical temperature, surfacetension and volume thermal expansion coefficient <strong>of</strong> liquid metals <strong>of</strong> bcc, fcc and hcp crystals– Mater Sci Eng A, 2008, vol.495, pp.19-26. (corrigendum: see Mater Sci Eng A, 2009,vol.501, p.255.) (IF = 1.860)J115-c1. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „Az irodalmi érték: Fe-g = 2470– 0.32T mJ/, 2 [J115]” – 30.o.J115-c2. A.G.Cherevko: Nukleacionno-fluktuacionnii podhod k opredeleniiu temperaturnoi zavisimostipoverhnostnogo natiazheniia metallov – Kolloidnii zhurnal, 2009, vol.71, No.6, pp.852-859 (Nucleationfluctuationapproach to determining the temperature dependence <strong>of</strong> the surface tension <strong>of</strong> metals – ColloidJournal, 2009, vol.71, No. 6, pp. 869-876) – V rabotach [J115] bili naideni korreliacii poverhnostnogonatiazheniia vblizi temperaturi plavleniia s teplotoi plavleniia i moliarnim obiomom” – p.852.J115-c3. V.Morel, A.Bultel, B.G.Cheron: The critical temperature <strong>of</strong> aluminum – Int J Thermophys, 2009,vol.30, pp.1853-1863 – „Recently, <strong>Kaptay</strong> [J115] has given a unified model linking the cohesive enthalpy <strong>of</strong>a liquid with the melting point <strong>of</strong> alkali metals. This model also yields fairly good results for other metals.The cohesive enthalpy is defined as the energy existing in the liquid resulting from the mutual atomicattractions, which vanishes when the critical temperature is reached… (2 equations)”- p.1858. “Table 4.New estimates <strong>of</strong> the critical temperature for aluminium. Method: cohesive enthalpy, Tc = 6548 K.” –p.1861. “Finally, the recommended critical temperature <strong>of</strong> aluminium, obtained as the average <strong>of</strong> our ownresults and the latter, is 6700 800 K” – p.1862.J115-c4. F.Aqra, A.Ayyad: Theoretical calculations <strong>of</strong> the surface tension <strong>of</strong> liquid transition metals – MetalMater Trans B, 2011, vol.42B, pp.5-8 – “Few published models [J115]… ” – p.7.J115-c5. F.Aqra, A.Ayyad: Surface tension <strong>of</strong> pure liquid bismuth and its temperature dependence: Theoreticalcalculations, Mater Letters, 2011, vol.65, pp.760-762 – “few established models [J115]…” – p.760.J115-c6. F.Aqra, A.Ayyad: Surface energies <strong>of</strong> metals in both liquid and solid states – Appl Surf Sci, 2011,vol.257, pp.6372-6379. – “The surface tension <strong>of</strong> liquids is defined as the ratio <strong>of</strong> the excess surface Gibbs8


energy (expressed through excess surface enthalpy and excess surface entropy) divided by the molar surfacearea: Eq.(17-18) where f is a geometrical constant (approximately = 1.0) [J115]” – p.6375.J115-c7. F.Aqra, A.Ayyad: Surface tension <strong>of</strong> liquid alkali, alkaline, and main group metals: theoreticaltreatment and relationship investigations – Metall Mater Trans A, 2011, vol.42A, pp.2680-2684 –„Establishing an accurate, successful, and universal theoretical model for calculating the surface tension <strong>of</strong>liquid metals is necessary [J115]” – p.2680J115-c8. F.Aqra, A.Ayyad: Theoretical estimation <strong>of</strong> temperature-dependent surface tension <strong>of</strong> liquid antimony,boron and sulfur – Metall Mater Trans A, 2011, vol.42, pp.437-440 – „Few established models are universal[J115], but the agreement with experiment is not satisfactory” – p. 437.J115-c9. F.Aqra, A.Ayyad: Theoretical temperature-dependence surface tension <strong>of</strong> pure liquid gold - MaterLetters, 2011, vol.65, pp.2124-2126 – „… it is still difficult to identify successfull model for which bothaccuracy and universality apply. Although few established models are universal [J115], but the agreementwith experiment is not very satisfactory” – p. 2124.J115-c10. F.Aqra, A.Ayyad: Surface tension, surface energy and crystal-melt interfacial energy <strong>of</strong> metals –Current Applied Phys, 2012, vol.12, pp.31-35 – „… it is still difficult to identify successfull model forwhich both accuracy and universality apply. Although few established models are universal [J115], but theagreement with experiment is not very satisfactory” – p. 34.J115-c11. F.Aqra, A.Ayyad: Surface tension <strong>of</strong> pure liquid lanthanide and early actinide metals – Phys ChemLiquids, 2012, vol.50, pp. 336-345.J.114. P.Baumli, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> carbon surfaces by molten alkali chloride mixtures– Mater Sci Forum, 2008, vol.589, pp.355-359. (IF = 0)J.113. G. Buza, V. Janó, M. Svéda, O. Verezub, Z. Kálazi, G. <strong>Kaptay</strong>, A. Roósz: On thepossible mechanisms <strong>of</strong> porosity formation during laser melt injection (LMI) technology –Mater Sci Forum, 2008, vol.589, pp.79-84. (IF = 0)J.112. G.<strong>Kaptay</strong>: A CALPHAD-compatible method to calculate liquid/liquid interfacialenergies in immiscible metallic systems – Calphad, 2008, vol.32, pp.338-352. (IF = 1.530)J112-c1. J.Lee, S.Min, J.Park: Effect <strong>of</strong> Ce and La on surface property <strong>of</strong> Bi-Cu-Sn alloys – PPT file <strong>of</strong> TOFA2008, June 22-27, Krakow, Poland, 23 slides – „new equation and 2 graphs are taken from paper [J112]” –slide 18.J112-c2. J.Park, S.Min, J.Lee: Effect <strong>of</strong> REM addition on the surface tension and the critical temperature <strong>of</strong> theimmiscible liquid phase separation <strong>of</strong> the 60%Bi-24%Cu-16%Sn alloy – Korean J Mater Res, 2009, vol.19,pp. 111-114. – “Recently, <strong>Kaptay</strong> [J112] suggested a semiempirical equation to predict the interfacialtension between two immiscible liquids based on the models <strong>of</strong> Chatain et al. and Hoyer et al. Simply, theinterfacial tension can be expressed as Eq.(2) … This equation successfully described the interfcial tension<strong>of</strong> the Ga-Pb and Al-Bi systems [J112]” – p.113. “Fig. Cacilated by Eq.(2)” – p.114.J112-c3. J.Li, B.Ma, S.Min, J.Lee, Z.Yuan, L.Zang: Effect <strong>of</strong> Ce addition on macroscopic core-shell structure <strong>of</strong>Cu-Sn-Bi immiscible alloy – Mater Letteres, 2010, vol.64, pp.814-816 – “<strong>Kaptay</strong> [J112] suggested that theinterfacial tension between two immiscible liquids could be expressed by the equation: …{Eq.2}… “ – p.2.Fig.4. Temperature dependence <strong>of</strong> interfacial tension <strong>of</strong> the 24Cu – 16Sn – 60 Bi alloy with 0.05 wt % Ceaddition, calculated using Eq.(2)” – p.815.J112-c4. Mende T.: Az ESTPHAD módszer fejlesztése és alkalmazása kettő-, három- és négyalkotós rendszereklikvidusz hőmérsékletének közelítésére, PhD értekezés, (tud. vez.: Roósz A.), 2010, Miskolc, 129 o. – “A4.33 ábrán a szakirodalomból származó [J112] és a 31. egyenlettel számított szétválási görbe látható. 4.18.táblázat [J112]” – 65.o, „A reguláris elegymodellből levezethetően a szétválási hőmértésklet koncentrációfüggésérea következő egyenlet írható fel [J112]: (34) egyenlet.” – 67.o.J112-c5. Mende T., Roósz A.: Egyensúlyi fázisdiagramok nonvariáns pontjainak nagy pontossággú számításaEstphad módszerrel – BKL Kohászat, 2011, vol.144, No.3, pp.47-50.J112-c6. L.Zhao, J. Zhao: Microstructure formation in a gas-atomized drop <strong>of</strong> Al-Pb Immiscible alloy – MetallMater Trans A, 2012, doi: 10.1007/s11660-012-1313-3. – “”The critical temperature for a ternaryimmiscible alloy is determined by the alloy composition [J112]” -9


J111. G.<strong>Kaptay</strong>: Link between the semi-empirical Andrade and Shytil equations and thestatictical-mechanical Born-Green equation for viscosity and surface tension <strong>of</strong> pure liquidmetals – Metall Mater Trans B, 2008, vol.39B, pp.387-389. (IF = 0.798)J110. G.<strong>Kaptay</strong>: A new theoretical equation for temperature dependent self-diffusioncoefficient <strong>of</strong> pure liquid metals – Int J. Mater Res. (formerly Z. Metallkunde), 2008, vol.99,pp.14-17. (IF = 0.819)J110-c1. S.Yang, X.Su, J.Wang, F.Yin, Z.Li, S.Chen, C.Liu: Temperature-evolution <strong>of</strong> structure and diffusionproperties <strong>of</strong> liquid transition metals – J Non-Crystalline Solids, 2010, vol.356, pp.1061-1069 – „… arecently derived predictive equation for temperature dependence <strong>of</strong> self-diffusion coefficients <strong>of</strong> liquidmetals [J110] has been applied to give theoretical prediction. The new equation was derived combining aunified equation on the viscosity <strong>of</strong> pure liquid metals with the well known Sutherland-Einstein equationwithout any adjustable parameters. The perfect agreement <strong>of</strong> the prediction <strong>of</strong> this new equation with theexperimental values measured under micro-gravity conditions confirms its applicability. The equation hasbeen derived as: {Eq.4}… + 10 lines. The performance <strong>of</strong> the present MD study was evaluated bydetermining relative difference between the calculated and theoretical prediction values. .... The values arelisted in Table 1. Table 1. Simulated self-diffusion coefficients <strong>of</strong> liquid transition metal – 1 coloumn iscalculated by Eq.(4) [J110]”.J110-c2. DL Beke: On the composition and pressure dependence <strong>of</strong> the self-diffusion coefficient in liquid metals– Int J Mater Res, 2010, vol.101, 353-355. - „In a very recent paper <strong>Kaptay</strong> [J110] presented a unifiedequation for the temperature dependence <strong>of</strong> the self-diffusioin coefficient, D, in liquid metals. It ismentioned in [J110] that the result is also a prepequisite for modeling <strong>of</strong> the composition and pressuredependence <strong>of</strong> D.” – p.353. “.. fortunately this data collection and trial to get a relation expressing at leastthe non-reduced values <strong>of</strong> D as the function <strong>of</strong> T was already done in [J110]. Thus it is worth to comparerelation (5) with the results <strong>of</strong> [J110]: {2 equations, 9 lines copied from [J110]}. – p.354. “The use <strong>of</strong> the socalled“corrected” melting point for semi metals is a good trial in [J110]: indeed for these elements themelting point is not a good measure <strong>of</strong> the bonding strength because during melting there are changes in theelectronic structure” – p.354.J110-c3. Beke DL.: Composition and Pressure Dependence <strong>of</strong> the Diffusion Coefficients in Binary LiquidAlloys – Defect and Diffusion Forum, 2010, vol.297-301, pp.1371-1376. – „Data collection and trial to get arelation expressing at least the non-reduced values <strong>of</strong> D as the function <strong>of</strong> T* has already been done [J110].… Furthermore it was shown in [J110] that in fact the logarithm <strong>of</strong> F2*(T*) is a good linear function <strong>of</strong>Tm/T (see Figs 1-2 in [J110].” – p.1373.J110-c4. AA Simonova: Obespechenie neobhodimogo kachestva poverhnostnogo sloia obiomnichnanokristallicheskich metallov posle mechanicheskoi obrabotki – Naukovi Notatki (Inzhenerna mechanika),No.24, 2009, Luck, pp.500-506 – „Nabliudeniia, predstavlennie v rabote [J110] pokazali, shto….” – p.503.J109. G.<strong>Kaptay</strong>: The threshold pressure <strong>of</strong> infiltration into fibrous preforms normal to thefiber’s axes – Composites Science and Technology, 2008, vol.68, pp.228-237. (IF = 2.533)J109-c1. I.Kientzl, J.Dobránszky: Production and behaviuour <strong>of</strong> aluminium matrix double composite structures –Mater Sci Forum, 2008, vol.589, pp.105-110 – “<strong>Kaptay</strong>’s equation describes the threshold pressure asfunction <strong>of</strong> the contact angle and smallest separation <strong>of</strong> the fibers divided by the fibre diameter. Thethreshold pressure <strong>of</strong> non-wetting liquids is found to be inversely proportional to the smallest distancebetween the fibers although it is commonly beleived to be inversely proportional to the diameter <strong>of</strong> thefibres. Four different cases were distuinguished based on the wettability <strong>of</strong> fibres and the sapce between thefibres and the equations <strong>of</strong> thrshold pressures were worked out for all these cases [J109]” – p.105-106.„Based on <strong>Kaptay</strong>’s method the threshold pressure was calculated and plotted as function <strong>of</strong> the contactangle and relative distance between the fibers (Fig.2).” – p.107.J109-c2. Orbulov I, Németh Á, Dobránszky J: Manufacturing <strong>of</strong> Composites by Pressure infiltration, Structureand Mechanical Properties. In: Penninger A, Váradi K, Vörös G (eds.), Gépészet 2008, Proceedings <strong>of</strong> SixthConference on Mechanical Engineering, BUTE Faculty <strong>of</strong> Mechanical Engineering – “This thresholdpressure can be calculated by theoretical approaches for various systems [J109]” – p.1/9.J109-c3. Orbulov IN, Németh Á, Dobránszky J: XRD and EDS Investigations <strong>of</strong> Metal Matrix Composites andSyntactic Foams. 13th European Conference on X-Ray Spectrometry, Cavtat, Croatia, 16-20 June 2008, In:EXRS 2008 Proceedings – “The main parameter in this case is the infiltration pressure, which can beapproximated numerical calculations and is influenced by wetting” – p. 2/10.J109-c4. Kientzl I.: Alumínium mátrixú kompozithuzalok és kettőskompozit szerkezetek – PhD értekezés, 2010.,BME (tud. vezető: Dobránszky János). – „G. <strong>Kaptay</strong> azonban pontosan egy ilyen számítási módszertmutatott be cikkében határfelületi megfontolásokra alapozva munkáját [J109]. Az ebben a cikkben10


emutatott számítási eljárást ismertetem a következőkben (+ 1 oldal, 2 ábra és 16 egyenlet a cikkből)” – 21-22. o., „… a szálak olvális keresztmetszetűek, hosszirányban 12 μm, keresztirányban 7 μm, így a <strong>Kaptay</strong>által adott módszer, ami kör keresztmetszetű szálakra lett kidolgozva, csak közelítő számításokra alkalmasebben az esetben – 42. ábra” – 44.o.J109-c5. I.N.Orbulov, I.Kientzl, J.T.Blücher, Á.Németh, J.Dobránszky, J.Ginsztler: Production and investigation<strong>of</strong> a metal matrix composite pipe – in: Proc <strong>of</strong> 14th European Conf on Composite Materials, Paper ID:262-ECCM14, 8 pp. – „This threshold pressure can be estimated by theoretical approaches for variouswetting or non-wetting systems [J109]” – p.2.J109-c6. Qi LH, Xu R, Su LZ, Zhou JM, Guan JT: Dynamic measurement on infiltration process and formationmechanism <strong>of</strong> infiltration front – Trans. Nonferr Metals Soc China, 2010, vol.20, pp.980-986 – „As anindispensable step int he fabrication technologies <strong>of</strong> metal matrix composites (MMC), the liquid metalinfitration process in porous preform, such as squeeze casting, vacuum infiltration, variable pressureinfiltration and liquid infiltration-extrusion, have attracted research interest due to the significantlyeffective improvement int he properties <strong>of</strong> composite products [J109]” – p.980.J109-c7. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „.. <strong>Kaptay</strong> a hengeres szálak közé való infiltrálástvizsgálta [J109]. Az eredmények szerint a szálakkal párhuzamosan a kritikus peremszög 90 o , míg azokramerőlegesen sokkal kisebb 90 o -nál. A konkrét peremszög értéke függ a szálak térkitöltésétől…” – 20.o.„<strong>Kaptay</strong> egy új számítási módszert mutatott be határfelületi megfontolásokra alapozva munkáját [J109] +2 oldal + 14 egyenlet + 2 ábra idézet” – 21-23. o. „A <strong>Kaptay</strong> modell. 1,5 oldal elemzés… A <strong>Kaptay</strong>modell a folyamatos infiltrációhoz szükséges küszöbnyomást 0,20 – 0,77 MPa értékre becsüli. Ez atartomány a kísérleti eredményekből származó 0,62-0,83 MPa intervallummal átfedésben van, tehát ez amodell magyarázatot ad a folyamatos infiltráció nyomás-szükségletére… Összefoglalva megállapítható,hogy a White-Mortensen és a <strong>Kaptay</strong> modellek közül csak a <strong>Kaptay</strong>-modell mutatott átfedést a mérésieredményeimmel” – 60-64. oldalak. „A <strong>Kaptay</strong>-model által adott küszöbnyomásfüggvény alapján a szálakritkább elrendeződése esetén, még nagy peremszögek mellett sem nő jelentős mértékben a folyamatosinfiltrációhoz szükséges küszöbnyomások értéke” – 83.o. „2.tézis. A küszöbnyomás 0,62-0,83 MPa-osintervallumát összevetettem két elméleti modellel… .. tehát a kísérleti eredményeim matematikaiközelítésére a <strong>Kaptay</strong> modell alkalmas” – 84.o.J109-c8. I.N.Orbulov, Á.Németh: Infiltration characteristics <strong>of</strong> carbon fiber reinforced MMCs – Mater SciForum, 2010, vol.659, pp.229-234. – The threshold pressure can be estimated by theoretical approachesfor various wetting or non-wetting systems [J109]” – p. 230.J109-c9. I Kientzl, J Dobránszky, Á Németh: Effect <strong>of</strong> the Infiltration Pressure on the Properties <strong>of</strong> CompositeWires- Materials Science Forum, 2010, vol. 659, pp.177-182. – „<strong>Kaptay</strong>'s equations describe the thresholdpressure as a function <strong>of</strong> the contact angle and smallest separation <strong>of</strong> the fibres divided by the fibre diameter[J109]. The threshold pressure <strong>of</strong> non-wetting liquids is found to be inversely proportional to the smallestdistance between the fibers … „ p.177J109-c10. L.H.Qi, L.Z.Su, J.M.Zhou, J.T.Guan, X.H.Hou, H.J.Li: Infiltration characteristics <strong>of</strong> liquid AZ91Dalloy into short carbon fiber preform – J Alloys Compds, 2012, vol.527, pp.10-15. – „… much researchwork had also been conducted on the calculation <strong>of</strong> the threshold pressure for initiation <strong>of</strong> infiltration[J109]” – p.10.J109-c11. Seung-Wook Han, Nak-Sam Choi and Min-Soo Lee: Analysis <strong>of</strong> glass fabric impregnation using aresin drop method - J Mechan Sci Technol, 2012, vol. 26, pp. 1477-1482 – “The interplay between thesurface tension <strong>of</strong> the infiltrating liquid, the wettability <strong>of</strong> the fibers by the surrounding liquid and themorphological details <strong>of</strong> the preform fabric directly affects the integrity <strong>of</strong> the manufactured composites[J109]” – p.1477.J109-c12. MA You-ping, LI Xiu-lan, WANG Cheng-hui, LU Lu: Microstructure and Impact Wear Resistance <strong>of</strong>TiN Reinforced High Manganese Steel Matrix – J Iron Steel Res Int. 2012, vol. 19, No. 7, pp. 60-65 – „Themost common surface treatment route is the liquid metal infiltration …. Infiltration technique has beensuccessfully applied in wear parts [J109]” – p.60.J108. K.Wasai, G.<strong>Kaptay</strong>, K.Mukai, N.Shinozaki: Modified classical homogeneous nucleation theroyand a new minimum in free energy change 2. Behavior <strong>of</strong> free energy change with a minimumcalculated for various systems - Fluid Phase Equilibria, 2007, vol.255, pp.55-61. (IF = 1.506)11


J108-c1. S.Min, J.Park, J.Lee: Surface tension <strong>of</strong> the 60%Bi-24%Cu-16%Sn alloy and the critical temperature <strong>of</strong>the immiscible liquid phase separation – Mater Lett, 2008, vol.62, pp.4464-4466 – „In order to control thestructure <strong>of</strong> the core-shell lead-free solder ball, the surface tension and the interfacial tension between twoimmiscible liquid alloys are required [J108]” – p.4464.J108-c2. Verezub O.: Lézeresen felületkezelt szerszámacél köszörülése – Gyártóeszközök, szerszámok,szerszámgépek, 2008, No.1, pp.65-68. – „A nanométer tartományba tartozó szemcsék kiválásánakfelételeiről lásd [J108]” – p.66.J108-c3. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „Mivel a SiC képződése során azolvadék Si- és C-tartalma csökken, a nano méretű SiC csírák stabiliázlása elméletileg lehetséges [J108]” –2.o. „Wasai, <strong>Kaptay</strong>, Mukai és Shinozaki ismerték fel először [J108], hogy csíraképződés során azolvadékfázis Gibbs energiája változásának figyelmen kívül hagyása oda vezet, hogy a csíraképződési görbeegyébként létező minimum pontja nem jelenik meg… A levezetés [J108] a nemrég publikált cikkekegyszerűsített változata – 2 oldal egyenletek” – 40. o.J.107. Gábor T., Kármánné H.F., J.Sytchev, <strong>Kaptay</strong> Gy., Kálmán E.: Sóolvadékok elektrolízise soránkialakult szén nanocsövek kinyerése és minősítése – BKL Kohászat, 2007, vol.140., No.2, pp. 43-50.(IF = 0)J106. K.Wasai, G.<strong>Kaptay</strong>, K.Mukai, N.Shinozaki: Modified classical homogeneousnucleation theroy and a new minimum in free energy change 1. A new minimum and Kelvinequation – Fluid Phase Equilibria, 2007, vol.254, pp.67-74. (IF = 1.506)J106-c1. Verezub O.: Lézeresen felületkezelt szerszámacél köszörülése – Gyártóeszközök, szerszámok,szerszámgépek, 2008, No.1, pp.65-68. – „A nanométer tartományba tartozó szemcsék kiválásánakfelételeiről lásd [J106]” – p.66.J106-c2. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „Mivel a SiC képződése során azolvadék Si- és C-tartalma csökken, a nano méretű SiC csírák stabiliázlása elméletileg lehetséges [J106]” –2.o. „Wasai, <strong>Kaptay</strong>, Mukai és Shinozaki ismerték fel először [J106], hogy csíraképződés során azolvadékfázis Gibbs energiája változásának figyelmen kívül hagyása oda vezet, hogy a csíraképződési görbeegyébként létező minimum pontja nem jelenik meg… A levezetés [J106] a nemrég publikált cikkekegyszerűsített változata – 2 oldal egyenletek” – 40. o.J106-c3. Carreon-Calderon B., Soria A., Romero-Martinez A.: <strong>Dr</strong>iving Force in First-Order Phase Transitionsand Its Application to Gas Hydrate Nucleation from a Single Phase - AICHE Journal, 2009, vol.55, pp.2433-2447. – „.. authors consider the nucleation work as a maximum <strong>of</strong> the free energy surface” – p.2434.J106-c4. Teychene S., Biscans B.: Micr<strong>of</strong>luidic Device for the Crystallization <strong>of</strong> Organic Molecules in OrganicSolvents – Crystal growth & Design, 2011, vol.11, pp.4810-4818. -J105. G.<strong>Kaptay</strong>: On the wettability, encapsulation and surface phase transition in monotecticliquid metallic systems – Materials Science Forum, 2007, vol.537-538, pp.527-532 (IF = 0)J105-c1. Svéda Mária: Monotektikus felületi rétegek létrehozása lézersugaras felületkezeléssel c. PhDértekezéséhez (tudományos vezető: dr. Roósz András) – 2007. – „A nagyobb sűrűségű Pb olvadéknak azötvözett zóna felszínén való elhelyezkedése a határfelületi jelenségekkel magyarázható [J105]” – p.87.J104. I.Budai, M.Z.Benkő, G.<strong>Kaptay</strong>: Comparison <strong>of</strong> different theoretical models toexperimental data on viscosity <strong>of</strong> binary liquid alloys – Materials Science Forum, 2007,vols.537-538, pp.489-496. (IF = 0)J104-c1. D.Zivkovic: Application <strong>of</strong> the <strong>Kaptay</strong> model in calculation <strong>of</strong> ternary liquid alloys viscosities – Int JMat Res, 2008, vol.99, pp.748-750 – „<strong>Kaptay</strong>’s approach to estimate the viscosity <strong>of</strong> liquid metallic alloysfrom viscosities <strong>of</strong> pure liquid metals and thermodynamic properties <strong>of</strong> the liquid alloy has been tested fordifferent types <strong>of</strong> binary systems [J104], including those with considerable deviations from ideality” –pp.748-749.J104-c2. D.Zivkovic: A new approach to estimate the viscosity <strong>of</strong> the ternary liquid alloys using the Budai-Benko-<strong>Kaptay</strong> equation – Metall Mater Trans B, 2008, vol.39, pp.395-398 – „The new Budai-benko-<strong>Kaptay</strong> (BBK) equation has been recently derived for estimation <strong>of</strong> the viscisity <strong>of</strong> liquid alloys and testedon numerous binary systems, showing a good agreement with experimentally obtained data. Equations….… The presented new BBK equation for estimation <strong>of</strong> the viscosity <strong>of</strong> liquid metallic alloys has been12


already tested for different types <strong>of</strong> binary systems [J104], showing good compliance with experimentaldata in most cases. IN this article, the applicability <strong>of</strong> a new equation to ternary systems will be tested inexamples <strong>of</strong> Au-Ag-Cu alloys. „ – p.395, „There is an agreement between the results <strong>of</strong> the BBK equationapplication, presented in this work and the experimental literature data… the ability to predict theviscosity, even if the viscosities <strong>of</strong> the pure componnets are not known, should be underlined int heapplication <strong>of</strong> the new BBK equation and taken as an advantage among other models int he case whenthese data are not known” – p.396. „The greatest advantage <strong>of</strong> the presented BBK equation is to beaccetuated – such estimation <strong>of</strong> the viscosities <strong>of</strong> multicomponent liquid alloys demands just a fewstarting data for the calculation compared to the other known models, which makes it simple and easy toapply in different cases” – p.397.J104-c3. V.Skliarchuk, A.Iakimovich, M.Dufanec: Rozrahunok viazkosti rozplaviv sistemi Al-Cu –Vseukrainska konferencia molodich vchonich “Suchasne materialoznavstvo: materiali ta technologiiSMMT-2008. (PPT file <strong>of</strong> a conference talk) – “Modifikovane rivnannia Budai-Benko-<strong>Kaptay</strong> [J104] ….“ – p. 4, “Rozrahovani znacheniia viazkosti zgidno modeli Chabra i modifikovanogo rivnannia Budai-Benko-<strong>Kaptay</strong> dobre uzgodzhuiutsia z literaturnimi dannimi“ – p.9.J104-c4. Sklyarchuk VM, Yakimovich AS, Dufanets' MV: Calculation on Viscosity <strong>of</strong> Al-Cu Liquid Alloys –Metall<strong>of</strong>izika i noveishie technologii, 2008, vol.30, pp., 315-321.J104-c5. P.Terzieff: The viscosity <strong>of</strong> liquid alloys <strong>of</strong> polyvalent metals with Cu, Ag and Au: Theoreticaltreatments based on the enthalpy <strong>of</strong> mixing – Physica B, 2009, vol.404, pp. 2039-2044 – „The majority <strong>of</strong>the currently used viscosity models are <strong>of</strong> semi-empirical nature focused on thermodynamic quantitiessuch as enthalpy <strong>of</strong> mixing [J104]” – 2039, “The extension toi the case <strong>of</strong> multi-component systemsinvolves the volume <strong>of</strong> mixing and the enthalpy <strong>of</strong> mixing as additional input parameters [J104]: Eq.(3)” –p.2040, “Fig-s 1-10: “unified model”” – pp.2041-2033, “The least strenuous way to calculate viscosities isgiven by the unified equation <strong>of</strong> <strong>Kaptay</strong> and coworkers [J104]. Except for the Ag-Sb and some extent toCu-Sb, the excess viscosities are in reasonable numerical agreement with the experimental values (Table1). Apart from the model’s obvious overestimation <strong>of</strong> the viscosity <strong>of</strong> pure liquid Cu in Cu-BI, Cu-Pb andCu-Sn (Figs 2, 3 and 5) or the disagreement in the values <strong>of</strong> undercooled Au in Au-Sn (Fig.10) the shapes<strong>of</strong> the viscosity isotherms are found to be adequately reproduced (curves b). However, it has to be alsonoted that the experimental values reported for liquid Cu differ from one author to the other by more than1 mPaseven at the same temperature (Figs 3. and 4.). The additional isotherms (curves b’) shown for Cu-Bi, Cu-Sb, Ag-Ge and Ag-Sb were obtained by using the corrected melting temperatures for Ge (450 K),Sb (650 K) and Bi (450 K) as recommended by <strong>Kaptay</strong> [J104]. As compared to the isotherms obtainedwith the uncorrected melting temperatures (curves b) the improvemenets are extremely large for Ag-Ge(Fig.6), less pronounced for Cu-Sb and Ag-Sb (Figs 4, 8) and small for Cu-Bi (Fig.2).” – p.2043.J104-c6. P.Terzieff: Some physico-chemical properties <strong>of</strong> liquid Ag-Sn-Zn – Physica B, Condensed Matter,2010, vol.405, pp.2668-2672 – From a previous analysis it has been concluded that the semi-empiricalapprach based on <strong>Kaptay</strong>’s unified equation [J104] is one <strong>of</strong> the most convenient methods to gain a firstidea <strong>of</strong> the viscosity <strong>of</strong> muticomponent systems, even if the viscosities <strong>of</strong> the pure liquids are unknown.The application requires the melting temperatures <strong>of</strong> the components, their molar masses, and their molarvolumes. The only requirements for alloy is the knowledge <strong>of</strong> the excess volume and the enthalpy <strong>of</strong>mixing : (Eq.10)” – p.2674.J104-c7. Gasior W, Moser Z, Debski A: New data to the SURDAT-database <strong>of</strong> modeled and experimentalphysical properties <strong>of</strong> lead-free solder alloys – Arch Metall Mater, 2009, vol.54, pp. 1253-1259 –„..SURDAT database … experimental … and the viscosity calculated from the dependences proposed by… <strong>Kaptay</strong> [J104] : Eq.(6)” – p.1256. “Fig.4. Experimental (symbols) and calculated (lines) viscosity (Eq-s(1, 2, 5, 6, 7) <strong>of</strong> Ag-Sn (Fig.4a) and Sn-Zn (Fig.4b) alloys” – p.1257.J104-c8. Knott S., Terzieff P.: Calculation <strong>of</strong> the viscosity <strong>of</strong> the liquid ternary Ag-Au-Sn system – Int. J. Mater.Res., 2010, vol.101, pp.834-838. – „Several viscosity models based on thermodynamic data exist, some <strong>of</strong>them apply adjustable parameters, while others make use <strong>of</strong> universal parameters [J104] which a reconsidered to be applicable to a large class <strong>of</strong> alloy systems” – p.834, “The expression for the viscosity,given by Budai et al. [J104] is based on <strong>Kaptay</strong>-s unified equation for pure liquid metals: Eq.(3)” – p.835.Fig-s 2, 4 and Table 2 are calculated by the model [J104] – pp.836-837. “…the unified equation yields amuch better agreement for Ag-Au system” – p.836. “Conclusions: .. in case <strong>of</strong> missing experimentalevidence the unified equation might give a first reasonable estimate <strong>of</strong> the viscosity in liquidmulticomponent systems” – p.838.J104-c9. Wunderlich RK; Fecht H-J: Surface tension and viscosity <strong>of</strong> NiAl catalytic precursor alloys frommicrogravity experiments – Int J Mater Res, 2011, vol.102, pp.1164-1173. „The <strong>Kaptay</strong> model was shownto provide better agreement with observed viscosities <strong>of</strong> binary alloys [J104] than the Moelwyn-Hughesmodel. In the <strong>Kaptay</strong> model the viscosity is given by: Eq-s.(15-16), Fig.11, Table 2.” – p.1170-1171.13


J104-c10. R.N.Singh, F.Sommer: Viscosity <strong>of</strong> liquid alloys: generalization <strong>of</strong> the Andrade’s equation – MonatshChem, 2012, vol.143, pp.1235-1242. – „Results obtained from these relations have been compared withnew or given [J104] experimental viscosity data as a function <strong>of</strong> composition and temperature.” – p.1235.“A comparison <strong>of</strong> available semi-empirical models with experimental data <strong>of</strong> the viscosity <strong>of</strong> liquid alloyshas been given recently [J104]” – p.1241.J103. Baumli P., Sytchev J., <strong>Kaptay</strong> Gy.: SiC és Al 2 O 3 kerámia szemcsék felületkezelése sóolvadékban, kompozitok fejlesztése céljából – BKL Kohászat, 2006., 139. évf., 3.szám, 47-50. (IF = 0)J103-c1. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „Nagyon fontos, hogy a fémmátrixú kompozitanyagokesetében is csak akkor kapunk megfelelő műszaki tulajdonságokat, ha megfelelő a kapcsolat azerősítőanyag és a mátrixanyag határfelületén [J103]” – p.41.J103-c2. Orbulov I.: Szintaktikus fémhabok keménységmérése – Anyagvizsgálók lapja, 2009, No.1, pp.9-15. –„… vizsgálatok tárgyát képezték az erősítőanyagra felvihető különböző bevonatok is [J103].” – p.9.J102. G.<strong>Kaptay</strong>: On the equation <strong>of</strong> the maximum capillary pressure induced by solidparticles to stabilize emulsions and foams and on the emulsion stability diagram - Colloidsand Surfaces A: Physicochem. Eng. Aspects, 2006, vol.282-283, pp.387-401. (IF = 1.611)J102-c1. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ: Tailoring the microstructure <strong>of</strong> particlestabilizedwet foams - LANGMUIR 23 (3): 1025-1032 JAN 30 2007 - „These results suggest that thepreparation <strong>of</strong> wet foams that are stable against bubble coarsening and drainage requires particle sizesnot larger than a few micrometers in diameter. Theoretical calculations based ont he adsoroption energy<strong>of</strong> particles at gas – liquid interface and the maximum capillary pressure developed at the interfaceshowed that particles larger than about 3 microns are not able to stabilize foams for long period <strong>of</strong> time[J102]. These results are in the same order <strong>of</strong> magnitude as our experimental findings” – p.1029.J102-c2. C.Körner: Integral Foam Molding <strong>of</strong> Light Metals – Physical and Technological Principles –Habilitation Thesis, Erlangen, 2007 (Ref. No.132) – “<strong>Kaptay</strong> was the first who realized that stabilizationfor these kind <strong>of</strong> particles is based on the development <strong>of</strong> 3D network structures which transfer forcesfrom one interface to the other [J102].” – p.108.J102-c3. Torres LG, Iturbe R, Snowden MJ, Chowdhry BZ, Leharne SA: Preparation <strong>of</strong> o/w emulsions stabilizedby solid particles and their characterization by oscillatory rheology - COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 302 (1-3): 439-448 JUL 20 2007 – “Themagnitude <strong>of</strong> the free energy required to remove a particle from the interface between two immisciblefluids does not provide an insight into the stability <strong>of</strong> the emulsions [J102]…. It is reported that the waterfil between two drops <strong>of</strong> the discontinuous oil phase resists rupture if the contact angle <strong>of</strong> the stabilisingparticle is in the range <strong>of</strong> 15 – 90 degrees [J102]” – p.440.J102-c4. Studart AR, Gonzenbach UT, Akartuna I, Tervoort E, Gauckler LJ: Materials from foams andemulsions stabilized by colloidal particles - JOURNAL OF MATERIALS CHEMISTRY 17 (31): 3283-3289 2007 – “… stabilization is achieved for intermediate contact angles ranging from 20 to 86 deg foroil-in-water emulsions and foams, and from 94 to 160 deg for water-in-oil emulsions and mists [J102]” –p.3285, “Besides the high energy <strong>of</strong> adsorption <strong>of</strong> particles at the interface, the remarkable resistance <strong>of</strong>particle-stabilized foams and emulsions against coalescence has also been attributed to the development <strong>of</strong>capillary forces that impede thinning down the liquid film between bubbles/droplets, as well as to theformation <strong>of</strong> an attractive network <strong>of</strong> particles throghout the continouos liquid phase [J102]” – p.3286.J102-c5. SE Friberg, AA Bawab, AA Abdoh: Surface active inverse micelles – Colloid Polym Sci, 2007,vol.285, pp.1625-1630 (Ref. No.17) – “Finally <strong>Pr<strong>of</strong></strong>essor <strong>Kaptay</strong> [J102] has published a completetreatment on the influence <strong>of</strong> solid particles on the capillary pressure in their stabilization <strong>of</strong> emulsionsand foams” – p.1628.J102-c6. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „A másik csoportba sorolhatjuk azokat az anyagokat, amelyeklétrehozásánál vagy csak a tömegcsökkentés, vagy valamilyen más különleges követelmény dominál.Ezek a porózus szerkezeti anyagok [J102]” – p.41.J102-c7. L.Torres, R.Iturbe, MJ Snowden, B. Chowdhry, S.Lehrane: Can Pickering emulsion formation aid theremoval <strong>of</strong> creosote DNAPL from porous media? – Cemosphere, 2008, vol.71, pp.123-132 – “There are,however, problems with the model that undepints the development <strong>of</strong> Eq.(1) (<strong>of</strong> Binks). For example themodel does not explain experimental observation that particle stabilised emulsions are maximallystabilised when the particles display a contact angle less than 90 o [J102]…. The role <strong>of</strong> the particles in14


film stabilisation can be incorporated into a model which then predicts that the film between two drops <strong>of</strong>the discontinuous oil phase resists rupture if the contact angle <strong>of</strong> the stabilising particlesis in the rangebetween 15 and 90 deg [J102]” – p.125.J.102-c8. TN Hunter, RJ Pugh, GV Franks, GJ Jameson: The role <strong>of</strong> particles in stabilizing foams and emulsions– Adv. Colloid Interface Sci., 2008, vol.137. pp.57-81 – “A recent review by <strong>Kaptay</strong> [J102] has broughtthis mechanism back into focus, and it will be briefly surmised here. <strong>Kaptay</strong> [J102] derived …. 61 lines +Figures 4-5 + Equation (2) ” – pp.62-63.J102-c9. T.S. Horozov: Foams and foam films stabilised by solid particles - Curr Opinion in Colloid InterfaceSci, 2008, vol.13, pp.134-140. – „Several recent works [J102, etc.] treat the problem <strong>of</strong> liquid filmstability by solid particles theoretically, assuming either a bridging monolayer or a bilayer <strong>of</strong> hexagonallyclose-packed particles.” – p.137. „A recent review on this subject by <strong>Kaptay</strong> [J102] is worth to consider.There, previous and more recent theoretical results are analysed and semi-empirical equations for thedependence <strong>of</strong>maxP on the particle contact angle are obtained with the toroidal pore model. Resultsccalculated by these equations are compared in Fig.3….. description <strong>of</strong> Fig.3 (19 lines + 7 lines <strong>of</strong> figurecaption [J102])…” – p.138, „Another mechanism <strong>of</strong> foam film stabilisation by a network <strong>of</strong> particleaggregates (gel) inside the film has also been discussed in [J102] (Fig.2.c). … description (7 lines)…” –p.138, „Link between the stability <strong>of</strong> particle stabilised aqueous films and that <strong>of</strong> particle-stabilised foamsor oil-in-water (o/w) emulsions has also been discussed [J102] … description (15 lines)… .Semiquantitative arguments have been used to estimate the optimum contact angles for the highest foam(o/w emulsion) stability [J102]…decription (3 lines)…” – pp.138-139, „Smaller particles should stabilisethe film better but their attachment to the liquid surface is weaker and vica versa [J102].” – p.139. „Agood review <strong>of</strong> theoretical studies on liquid films stabilised by solid particles. Useful approximatedequations for the dependence <strong>of</strong> critical capillary pressure for film rupture on the particle contact angle areobtained. Mechanism <strong>of</strong> liquid film stabilisation by solid particles are discussed” – p.140.J102-c10. S Ata: Coalescence <strong>of</strong> bubbles covered by particles – Langmuir, 2008, vol.24, pp.6085-6091. – „Themechanism <strong>of</strong> film stabilisation has been explained by the capillary pressure between bubbles, given by{equation}. The theory was first proposed by Ivanov and co-workers and developed further by others[J102]” – p.6086-6087.J102-c11. I.Akartuna, AR Studart, E.Tervoort, UT Gozenbach, LJ Gauckler: Stabilization <strong>of</strong> oil-in-wateremulsions by colloid particles modified with short amphiphiles – Langmuir, 2008, vol.24, pp.7161-7168.– „The adsoroption energy increases monotonically with increasing contact angle reachin a maximum at90 degrees. Besides a strong adsorption at the interafce, the stabilization <strong>of</strong> emulsions also requires thatthe adsorbed particles impede thinning <strong>of</strong> the liquid film between droplets. In contract to the adsorptionenergy, earlier studies have shown that the highest resistance against film thinning is achieved forparticles forming contact angles approaching 0 and 180 degrees [J102]. COnsidering these oppositetrends, optimum contact angles between 70 and 86 degrees and between 94 and 110 degrees have beensuggested for the stabilization <strong>of</strong> oil-in-water and water-in-oil emuslions, respectively, using interfacialadsorbed particles [J102]. Under such conditions, particles should be able to sterically hinder thecoalescence <strong>of</strong> droplets over long periods <strong>of</strong> time, which has been experimentally confirmed in a number<strong>of</strong> recent studies” – p.7161.J102-c12. H.A.Wege, S.Kim, V.N.Paunov, Q.X.Zhong, O.D.Velev: Long-term stabilization <strong>of</strong> foams andemulsions with in-situ formed microparticles from hydrophobic cellulose – Langmuir, 2008, vol.24,pp.9245-9253. „Removing such particles from interface requires the expense <strong>of</strong> a significant transfereneregz, whose magnitude can be estimated by [J102]: (Eq.1).” – p.9245.J102-c13. C.Körner: Foam formation mechanism in particle suspensions applied to metallic foams – Mater SciEng A, 2008, vol.495, pp.227-235 – “Further progress to explain foam stability was made by <strong>Kaptay</strong>[J102] who uses a model <strong>of</strong> a three-dimensional network <strong>of</strong> solid, spherical particles to explain forcetransfer between two interfaces and in this way stability” – p.228.J102-c14. A.J.Klinter, G. Mendoza-Suarez, R.A.L.<strong>Dr</strong>ew: Wetting <strong>of</strong> pure aluminum and selected alloys onpolycrystalline alumina and sapphire – Mater Sci Eng A, 2008, vol.495, pp.147-152. – “Recently it hasbeen derived that the most favorable ciontact angle range for a liquid foam to be stabilized by particlesis between 70 and 86 degrees [J102]. An experimental simulation conducted by Sun et al employingethanol/water mixture and polymeric particles supports this finding showing that the most stable foamswere obtained when the liquid wetted the particles in a range <strong>of</strong> 70-85 degrees. Therefore, it is assumedthat in order to produce stable aluminum foams, the aluminum alloy melt needs to wet the addedceramic particles in this optimum contact angle range <strong>of</strong> 70-86 degrees over the temperature spanbetween that <strong>of</strong> the melt bath in the direct foaming method (typically around 750 – 800 Centigrades)and the solidification <strong>of</strong> the alloy” – p.148.J102-c15. A.J.Klinter, R.A.L.<strong>Dr</strong>ew: Evaluation <strong>of</strong> the wetting behaviour <strong>of</strong> Al-7Cu and Al-11.5Si on SiC andsapphire in terms <strong>of</strong> Al-foam stability. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart, D.C.Dunand,15


DEStech Publ. Inc, 2008, pp.23-26. – „During the early stages <strong>of</strong> Al-foam rersearch, it was found thatalumina or SiC particles are essential in order to obtain stable aluminium foams. Originally it wasbelieved that the stabilizing effect <strong>of</strong> these ceramic particles have on Al-foams was caused by an increasein bulk viscosity <strong>of</strong> the Al melt due to ceramic particles additions. In a very theoreticla approach,KAPTAY [P41, J84] later developed models suggesting that the improved foam stability was due tocapillary effects between the melt and the particles, preventing the two liquid gas interfaces <strong>of</strong> a foam cellwall from touching, and the two adjacent cells from coalescencing….. KAPTAY concluded recently in acomplex and theoretical study [J102] that the optimum contact angle for foam stabilization by a single ora closely packed double layer <strong>of</strong> particles is between 70 and 86 degrees” – p.23. „Fig-s 5 show that Al-11.5Si wets the substrate better than Al-Cu, however neither alloy reaches the optimum contact anglerange for foam stabilization [J102]” – p.25. „Conclusions. … A number <strong>of</strong> researchers have shown thatmetal foams can be produced using a verity <strong>of</strong> aluminum alloy – ceramic particle combinations (includingAl2O3, SiC and TiB2). Nevertheless, it is believed that foams with narrower pore size distribution andmore homogeneous properties can be produced if alloy-particle combinations are chosen with wettingproperties int he optimum contact angle range for foam stabilization by particles <strong>of</strong> 70 to 86 degreesderived by KAPTAY [J102]” – p.26.J102-c16. C.Koerner: Integral Foam Molding <strong>of</strong> Light Metals – Springer, 2008, 224 pp. – „ <strong>Kaptay</strong> [J102] wasthe first who realized, that stabilization for this kind <strong>of</strong> particles is based on the development <strong>of</strong> 3Dnetwork structures which transfer forces from one interface to the other” – p. 100.J102-c17. Hunter, T.N., Wanless, E.J., Jameson, G.J.: Effect <strong>of</strong> esterically bonded agents on the monolayerstructure and foamability <strong>of</strong> nano-silica - Colloids and Surfaces A: Physicochemical and EngineeringAspects, 2009, vol. 334, pp. 181 – 190. – „<strong>Kaptay</strong> [J102] has theoretically weighted the effects <strong>of</strong> weaklyand strongly hydrophobic particles and estimated that particles wit ha contact angle 70 o would beststabilize foam films with a single layer <strong>of</strong> particles. For a bi-layer <strong>of</strong> particles, the contact angle formaximum stability changes to 85 o [J102] (more in line with emulsions) suggesting concentration andconformation may affect the extent in which particles <strong>of</strong> different hydrophobicity stabilize a system” –p.181, “The weak stabilization <strong>of</strong> the SiO-dodecane dispersions highlights that the bubbles in the dynamicfoams are likely not fully loaded, and as drainage continues, bubbles interact with only a single bridginglayer <strong>of</strong> particles (giving theoretical maximum stability with particles near 70 o [J102]).” – p.186,“Following on from <strong>Kaptay</strong> [J102] and the work tabled in a pre4vious review [], it appears dynamicfoams are stabilised by species <strong>of</strong> intermediate hydrophobicity, where there is a balance <strong>of</strong> inter-bubbleand steric stabilisation forces.” – p.188.J102-c18. Hunter TN, Jameson GJ, Wanless EJ, Dupin D, Armes SP: Adsorption <strong>of</strong> Submicrometer-SizedCationic Sterically Stabilized Polystyrene Latex at the Air-Water Interface: Contact Angle Determinationby Ellipsometry - Langmuir, 2009, vol. 25, pp. 3440-3449. – „Less hydrphobic particles can alsodynamically stabilize bubbles by altering threshold capillary pressure [J102]” – p.3441.J102-c19. Fournier CO, Fradette L, Tanguy PA: Effect <strong>of</strong> dispersed phase viscosity on solid-stabilized emulsions– Chemical Engineering Research & Design, 2009, vol. 87, pp. 499-506. – „As a general rule, ahydrophobic particle favors a water-in-oil emulsion while a hydroplhilic particle generates an oil-in-wateremulsion. However, this rule may be broken depending on the number <strong>of</strong> layers the solid particles willform at the oil-water interface. Based on the energy and maximum capillary pressure considerations,<strong>Kaptay</strong> (2006) showed that for an emulsion stabilized by a single layer <strong>of</strong> particles, the contact angle foro/w emulsions must be between 15 and 90 degrees and for w/o emulsions, the contact angle must bebetween 90 and 165 degrees. For emulsions stabilized by a double layer <strong>of</strong> particles, o/w emulsions arestable for contact angle values between 15 and 129.3 degrees and w/o emulsions are stable for contactangle values between 50.7 and 165 degrees. Furthermore, the interval <strong>of</strong> optimum contact angle, for bothsingle and double particles layer appears to be between 70 and 86 degrees for o/w emulsions and between94 and 110 degrees for w/o emulsions” – pp.499-500.J102-c20. J.Frelichowska: Emulsions stabilisees par des particules solides: etudes physico-chmiques etevaluation pour l’application cutanee, PhD, L’Universite Claude Bernard Lyon 1, 2009 Jan – “La stabilitedu film de phase continue entre les gouttelettes peut aussi empecher la coalescence. Le film peut etrestabilise par des forces capillaires et/ou les proprietes theologiques de l’intergace elle-meme [J102] –p.59.J102-c21. A.J.Klinter, C.A.Leon-Patino, R.A.L. <strong>Dr</strong>ew: The optimum contact angle range for metal foamstabilization: an experimental evaluation <strong>of</strong> theory – Abstract book <strong>of</strong> 6th HTC conference, 6-9 May,2009, Athens, Greece, p.75 – „From the measured values, contact angle vs. Temperature curves weregenerated, some <strong>of</strong> which satisfy the contact angle requirement between liquid metal and ceramic particlesfor optimum metal foam stabilization proposed by <strong>Kaptay</strong> (70 to 86 degrees) [J102]. …. Comparing theexperimentally observed liquid foam stability and the resulting foam morphology with the obtained16


contact angle vs. Temperature curves allows an evaluation <strong>of</strong> <strong>Kaptay</strong>’s theooretically derivedrequirements for optimum foam stabilization by ceramic particles [J102]” – p.75.J102-c22. SE Friberg: Effect <strong>of</strong> relative humidity on the evaporation path from a phenethyl alcohol emulsion – JColl Interface Sci, 2009, vol.336, pp.786-792 – „Emulsions are one <strong>of</strong> the most important vehicles bothfor their own processing as well as their application in a large number <strong>of</strong> industries such as pharmaceutics,cosmetics, preparation <strong>of</strong> nano-particles and others. Hence, general treatments ar ereadily available andthere heas been significant progress in the more fundamental aspects <strong>of</strong> the related science [J102]” –p.786.J102-c23. Fournier CO, Fradette L, Tanguy PA: Effect <strong>of</strong> dispersed phase viscosity on solid-stabilized emulsions– 13th European Conference on Mixing, London, 14-17 April, 2009, Proceedings, 8 pp. – „As a generalrule, a hydrophobic particle favors a water-in-oil emulsion while a hydroplhilic particle generates an oilin-wateremulsion. However, this rule may be broken depending on the number <strong>of</strong> layers the solidparticles will form at the oil-water interface. Based on the energy and maximum capillary pressureconsiderations, <strong>Kaptay</strong> (2006) showed that for an emulsion stabilized by a single layer <strong>of</strong> particles, thecontact angle for o/w emulsions must be between 15 and 90 degrees and for w/o emulsions, the contactangle must be between 90 and 165 degrees. For emulsions stabilized by a double layer <strong>of</strong> particles, o/wemulsions are stable for contact angle values between 15 and 129.3 degrees and w/o emulsions are stablefor contact angle values between 50.7 and 165 degrees. Furthermore, the interval <strong>of</strong> optimum contactangle, for both single and double particles layer appears to be between 70 and 86 degrees for o/wemulsions and between 94 and 110 degrees for w/o emulsions” – p.1.J.102-c24. I.Akartuna: porous materials and capsules from particle-stabilized emulsions – PhD dissertation,Chapter 2. Zurich, 2009 – “Optimum contact angles between 70 and 86 degrees, and between 94 and 110degrees have been suggested for the stabilization <strong>of</strong> oil-in-water and water-in-oil emulsions, respectively,using interfacially adsorbed particles [J102]” – p.16.J.102-c25. I.Akartuna: porous materials and capsules from particle-stabilized emulsions – PhD dissertation,Chapter 3. Zurich, 2009 – “The adsorption <strong>of</strong> colloidal particles to liquid-liquid interfaces can be achievedby adjusting their wettability in the liquid media or, in other words, their contact angle at the liquidinterface. In general, particles with contact angles lower than 90 degrees tend to stabilize oil-in-wateremulsions, whereas particles exhibiting contact angles higher than 90 degrees yield water-in-oilemulsiopns [J102]” – p.42.J102-c26. S.N.Tan, Y.Yang, R.G.Horn: Thinning <strong>of</strong> a vertical free-draining aqueous film incorporating colloidalparticles – Langmuir, 2010, vol.26, No.1, pp.63-73. – “Various possible film stabilization mechanisms <strong>of</strong>particle stabilized films have been suggested in the literature: film stabilized by bridging particles, bilayer<strong>of</strong> hexagonally close packed particlesand network <strong>of</strong> particles aggregates (gel) inside the film [J102].” –p.71. “<strong>Kaptay</strong> [J102] used a thermodynamic approach to explain the role <strong>of</strong> particles in film stability… 12lines <strong>of</strong> description” – p.72.J102-c27. Á.Detrich, A.Deák, E.Hild, A.L.Kovács, Z.Hórvölgyi: Langmuir and Langmuir-Blodgett films <strong>of</strong>bidisperse silica nanoparticles – Langmuir, 2010, vol.26, pp.2694-2699, doi: 10.1021/1a9027207. – Thestabilizing effect <strong>of</strong> fine particles in foaming and emulsification has been extensively studied during thepast decades” – p.2694J102-c28. S.Kubowicz, J.Daillant, M.Dubois, M.Delsanti, J-M. Verbavatz, H.Möhwald: Mixed-Monolayer-Protected Gold Nanoparticles for Emulsion Stabilization – Langmuir, 2010, vol.26, No.3, pp 1642–1648.J102-c29. A.J.Klinter, C.A.Leon, R.A.L.<strong>Dr</strong>ew: The optimum contact angle range for metal foam stabilization: anexperimental comparison with the theory – J. Mater Sci., 2010, vol.45, pp.2174-2180 – „<strong>Kaptay</strong> [102]developed different models <strong>of</strong> particle arrangement – detailed description <strong>of</strong> the model in 20 lines +Fig.1” – p.1-2/7. „From particle-stabilized foams presented by other researchers it can be seen that theclosely packedd double layer or complex 3-dimensional network models proposed by <strong>Kaptay</strong> [102] arethe most representative for aluminium foams” – p.2/7. “Using the PM method, the present work aims toevaluate the possibility to predict foam expansion performance based on wetting behaviour and <strong>Kaptay</strong>’s[102] model” – p.2/7. „Assuming the closely packed double layer model (Fig.1) [102], those liquidmetal/solid particle combinations should form the most stable foams that exhibit contact angles in therange <strong>of</strong> 85-90 degrees.” – p,5/7. “This is in agreement with .. , as well as <strong>Kaptay</strong> [102] and must beinterpreted as improved wetting … “ – p.5/7. “Thus, base don the contact angle behaviour <strong>of</strong> the testedmetal/Al2O3 combinations, <strong>Kaptay</strong>’s closely packed double layer model (Fig.1) predicts the foamstability/quality sequence among these combinations correctly, with exception <strong>of</strong> Al-1Mg/Al2O3, whichshould yield foams <strong>of</strong> similar quality and expansion as Al-11.5Si/Al2O3.” – p.5/7. „It can be thereforestated that the model … is conclusive. Nevertheless, it appears that int he case <strong>of</strong> aluminium alloy foamscontaining ceramic particles, wetting experiments under idealized experimental conditions are insufficientto account for the significantly higher oxygen content <strong>of</strong> the alloys in actual foams (caused by the oxidelayers ont he metal powder) as well as reaction processes that occur during foaming. Therefore, such17


measured contact angles and <strong>Kaptay</strong>’s models can only be a rough guide to which alloy/ceramic particlecombinations may be candidates for good foams” – p.6/7. „Summary: … It has been found that the modelabout particle stabilized metal foams [J102], predicting optimum metal foam stability based on measuredcontact angles between metal and ceramic particles may be used as a general guide to select liquid andstabilizing particles” – 6/7.J102-c30. Ata S, Davis ES, Dupin D, Armes SP, Wanless EJ, Erica J.: Direct Observation <strong>of</strong> pH-InducedCoalescence <strong>of</strong> Latex-Stabilized Bubbles Using High-Speed Video Imaging – LANGMUIR, 2010, vol.26, No. 11, pp. 7865-7874 – „Less hydrophobic particles can also kinetically stabilize bubbles byretarding drainage, either by physically entrapping fluid, altering bubble curvatures and theresholdcapillary pressures [J102] or by stratifying it. – p.7866.J102-c31. YH Song, M.Tane, T.Ide, Y.Seimiya, B.Y.Hur, H.Nakajima: Fabrication <strong>of</strong> Al-3.7 pct Si-0.18 pct Mgfoam strengthened by AlN particle dispersion and its compressive properties – Metall Mater Trans A,2010, vol.41A, pp.2104-2111 – “It is well known that particles in melt can stabilize foaming behaviorby preventing the drainage effects that originate from the gravity <strong>of</strong> melt, buoyancy <strong>of</strong> pores, pressuredifference between films, plateau border in melt, etc… [J102], where the film is a thin melt sheetbetween pores and the plateau border is a node <strong>of</strong> melt surrounded by some pores. In the prevention <strong>of</strong>drainage effect, the contact angle between the particle and the melt is the most important factor [J102].… First, we focus on the change in wettability <strong>of</strong> AlN particles at high temperature, because thewettability <strong>of</strong> particles playes an important role in the stability <strong>of</strong> foaming behavior compared with theviscosity <strong>of</strong> melt [J102].” – p.2109.J102-c32. S.E.Friberg: Foams from Non-aqueous systems – Curr Opinion Coll Interface Sci, 2010, vol.15,pp.359-364 – “The solid particles act by stabilizing the surface per se as evidenced by the effect on theLaplace pressure over the liquid film [J102]” – p.361, „In the area <strong>of</strong> metallic foams truly significantprogress was made by <strong>Kaptay</strong> and collaborators, who used the theory for maximum capillary pressure[J102] to rationalize the stabilization <strong>of</strong> metal foams by small particles”. – p.362. “Surprisingly, empiricalcalculations revealed that p* to be proportional to the cosine <strong>of</strong> the contact angle with high accuracy[J102]” – p.362.J102-c33. Hórvölgyi Z.: Anorganikus részecskék folyadék-fluidum határrétegbeli diszperziói és szilárd hordozósfilmjei – MTA doktori értekezés, 2010. “A folyadék-fluidum határrétegben felhalmozódó kváziamfipatikus szilárd mikr<strong>of</strong>ázisoknak különös jelentősége van a habok és emulziók stabilizálásában[J102]” – p.1.J102-c34. X.N.Liu, Y.X.Li, X.Chen, Y.Kiu, X.L.Fan: Foam stability in gas injection foaming process – J MaterSci, 2010, vol.45. pp.6481-6493. – „<strong>Kaptay</strong> [J102] developed a theory to predict the optimum wettingangle <strong>of</strong> particles when stabilizing emulsions and foams, and 70 – 86 degrees was deduced for actualcondition in particle stabilized aluminum foams, whaich was proved to be a general guide to selectfoaming system by Klinter et al” – p.6482.J102-c35. Zhu Y, Zhang SM, Chen JD, Hu CP: High Internal Phase Emulsions Prepared with Poly(urethaneurea) Aqueous Nanodispersion at Different Temperatures – J Polymer Sci, A: Polymer Chem, 2010,vol.48, No.19, pp.4356-4360 – „It is accepted that the stability <strong>of</strong> particle stabilized emulsions is due tothe coherent particle layer around the droplets, which acts as a steric (mechanical) barrier againstcoalescence” – p.4356J102-c36. A.Bozeya, A.Al-Bawab, S.E.Friberg, R.Guo: Equilibration in a geranyl acetate emulsions – Coll. SurfA., 2011, vol.373, pp.110-115. – „..emulsions are <strong>of</strong> prime importance in a wide variety <strong>of</strong> commercialproducts with the investigations into intermetallic emulsions as chief example [J102]….” – p.110J102-c37. DP Papadopoulos, H.Omar, F.Stergioudi, SA Tsipsas, N.Michailidis: The use <strong>of</strong> dolomite as foamingagent and its effect on the microstructure <strong>of</strong> aluminium metal foams – Comparison to titanium hydride –Coll Surf A, 2010., vol.382, pp.118-123 – “It should be noted that the effect <strong>of</strong> these added particles isreported primary in the context <strong>of</strong> stabilization <strong>of</strong> <strong>of</strong> the foam through the wetting process and particleinteraction phenomena such as the development <strong>of</strong> capillary and interfacial forces and secondly as amechanism <strong>of</strong> drainage retardation” – p.118.J102-c38. PM Kruglyakov, SI Elaneva, NG Vilkova: About mechanism <strong>of</strong> foam stabilization by solid particles –Adv Coll Interface Sci, 2011, vol.165, pp.108-116 – “One more method <strong>of</strong> calcvulation <strong>of</strong> the maximumcapillary pressure is suggested by <strong>Kaptay</strong> [J102]” – p.110, “It originates in spite <strong>of</strong> the fact that thecapillary pressure in the aqueous film remains positive in conformity with Eq.4 and or theoreticalcalculations [J102]” – p.110J102-c39. Y.Peng, W.W.Liou, P.P.Parker: Analytical investigation <strong>of</strong> free surface flow in multi-layer porousmedia – Coll Surf A, 2011, vol.380, pp.213-221. – “The capillary penetration in porous media is <strong>of</strong>considerable importance for a variety <strong>of</strong> fields and application, such as soil science, powder technology,suspensions and emulsions stability [J102], and paper making technology” – p.213.18


J102-c40. Zhou J., Qiao XY, Binks BP, Sun K, Bai MW, Li YL, Liu Y: Magnetic Pickering emulsions stabilizedby Fe3O4 nanoparticles – Langmuir, 2011, vol.27, No,7, pp.3308-3316 – „<strong>Kaptay</strong> [J102] predicted thatthe optimum contact angle range is 70-86 degrees for stabilizing o/w emulsions and 94-110 degrees forstabilizing w/o emulsions” – p.3308.J102-c41. G.S. Vinod Kumar, M.Chakraborty, F. Garcia-Moreno, J.Banhart: Foamibility <strong>of</strong> MgAl 2 O 4 (spinel-)reinforced aluminum alloy composites – Metall Mater Trans A, 2011, vol.42A, pp.2898-2908 – Anoptimum wetting angle range <strong>of</strong> 75 to 85 degrees for particles was determinded experimentally by Sunand Guo. They also found stable foam for wetting angles above 90 degrees, in which case the particles arestrongly attached to the gas solid interface. This contradicts models by <strong>Kaptay</strong> [J102], who predicted thatno foam stability is possible from 20 to 90 deg wetting angle” – p2907 (this is a misunderstanding, I neverwrote that).J102-c42. XN Liu, YX Li, X Chen, XL Fan: Effect <strong>of</strong> Ca on particulate dispersion and foam stability in gasinjection foaming process – The Chinese J <strong>of</strong> Nonferrous Metals, 2011, vol.21, No.2, pp.392-398. –“…….optimum contact angle 86 degrees [J102]…” – p.396.J102-c43. S.Farrokhpay: The significance <strong>of</strong> froth stability in mienarl flotation – A review. Adv Coll InterfaceSci, 2011, vol.166, pp.1-7. – „…very hydrophilic particles (with contact angle about 0 o ) should stabiliseaqueous films better than more hydrophobic ones [J102]” – p.3 ((this is a total misunderstanding)).J102-c44. PN Sturzenegger,; UT Gonzenbach; G Burki; LJ Gauckler: Hollow calcium aluminate microcapsuleswith porous shell microstructure and unique mechanical properties – J Mater Chem, 2011, vol.21, pp.16524-16528.J102-c45. J.Zhou, L.Wang, X.Qiao, BP Binks, K.Sun: Pickering emulsions stabilized by surface-modified Fe 3 O 4nanoparticles – J Colloid Interface Sci, 2012, vol.367, pp.213-224 – „In a model considering the capillarypressure within the liquid films between droplets, <strong>Kaptay</strong> [102] predicted that for an emulsion stabilizedby a single layer <strong>of</strong> particles, for 15 degrees – 90 degrees, an o/w emulsion will be stabilized whereasfrom 90 degrees – 165 degrees a w/o emulsion will be preferred. In addition, for an emulsion stabilized bya double layer <strong>of</strong> particles, it was predicted that from 15 degrees to 129.3 degrees o/w emulsions will bestabilized whereas from 50.7 degrees till 160 degrees w/o emulsions will occur. Experimental verification<strong>of</strong> these predictions remains undone since reliable determination <strong>of</strong> the contact angle for small particles isstill a challenge”. p. 213.J102-c46. AV Nushtaeva, AA Shumkina, PM Kruglyakov, SI Elaneva: Effect <strong>of</strong> aqueous phase structuring <strong>of</strong>the properties <strong>of</strong> model emulsion film stabilized with solid microsized particles – Colloid Journal, 2011,vol.73, pp.825-833 – “There are different approaches to calculating the maximum (threshold) capillarypressure in a film stabilized by solid particles [J102]” – p.826.J102-c47. C. Chuanuwatanakul, C. Tallon, D.E. Dunstan, G.V. Franks: Controlling the microstructure <strong>of</strong>ceramic particle stabilized foams: influence <strong>of</strong> contact angle and particle aggregation – S<strong>of</strong>t Matter, 2011,vol. 7, pp. 11464-11474. – „Contact angles around 70 o produce the most stable foams (and oil in wateremulsions) becasue a balance between the energy required to remove the particle from the air/solutioninterface (into the solution) and the capillary pressure preventiung coalescence, result in maximum foamstability [J102]” – p.11472.J102-c48. S.Ata: Phenomena in the froth phase flotation – A review. Int. J. Mineral Processing, 2012, vol.102-103, pp.1-12. „More recently, the mechanism <strong>of</strong> film stabilisation by solid particles has been explainedtheoretically based on a critical pressure needed to rupture the liquid film, referred as the maximumcapillary pressure [J102]” – p.8, „The theoretical analyísis showed [102] that partices smaller than 3microns in diameter are required in order to completely stabilise thin films. Indeed, the stability <strong>of</strong> foamby hydrophobic colloidal particles is well documented in the literature [Binks et al, Hunter et al]” – p.9.J102-c49. I.Budai: Development <strong>of</strong> a mixer to fabricate particle stabilized aluminium matrix emulsions andmonotectic alloys - Mat.-wiss. u.Werkst<strong>of</strong>ftech. 2012, 43, No. 4, pp.345-349. – „Emulsions becomestabilized by the particles, if their contact angle at the interface <strong>of</strong> the two liquids is in the favorableinterval [J102]. The type <strong>of</strong> emulsions (droplets <strong>of</strong> liquid 1 in the matrix <strong>of</strong> liquid 2, or vice versa)depends both on the contact angle and on the volume fraction <strong>of</strong> the two liquids [J102]”. – p.345.J102-c50. L.K.Shrestha, K.Aramaki: Non-aqueous foams: foamtion and stability. In: Foam Engineering:Fundamentals and Applications, ed. By P.Setevenson, John Wiley & Sons, 2012, pp.169-206. – “Thestability <strong>of</strong> such foams is influenced by the particle size, concentration, hydrophobicity and particlesurfactantinteractions [J102]” – p.171J02-c51. BM Somosvári (supervisor: P. Bárczy): Foam evolution and stability at various gravity conditions –PhD thesis, Miskolc, 2012, 96 pp. – „The general equation for the so called maximum capillary pressurecan also be derived for various particle structures [J102]: … Eq.(2.8) …. ” – p.27.J102-c52. Sturzenegger, PN; Gonzenbach, UT, Koltzenburg, S. Gauckler, LJ.: Controlling the formation <strong>of</strong>particle-stabilized water-in-oil emulsions, S<strong>of</strong>t Matter, 2012, vol. 8, No. 28, pp. 3471-3479.19


J102-c53. E. Tervoort, A.R. Studart, C. Denier, L. Gauckler: Pickering emulsions stabilized by in situ grownbiologically active alkyl gallate microneedles - RSC Adv., 2012, doi: 10.1039/C2RA21253FJ102-c54. Boriphat Methachan: Study <strong>of</strong> Gas Bubbles Stabilized by Surfactants for Use as Ultrasound ContrastAgents and <strong>Dr</strong>ug Carriers – PhD Thesis, <strong>Dr</strong>exel University, June, 2012, 116 pp. “The required energy toremove the particle from its equilibrium position at the interface to the bulk liquid phases is – Eq.2.4.[J102]” – p.13. “Equation 2.4, however, does not say anything about the stability <strong>of</strong> the thin liquid layerbetween bubbles which are stabilized by particles. To answer this question, the maximum capillarypressure was introduced and can be calculated from [J102] - Eq.2.5. ” – p.14, “With equation 2.4 and 2.5,<strong>Kaptay</strong> can make the calculations that agree with the experimentally observed optimum contact angleinterval [J102]” – p.14.J102-c55. A. San-Miguel, S.H. Behrens: Influence <strong>of</strong> Nanoscale Particle Roughness on the Stability <strong>of</strong> PickeringEmulsions – Langmuir, 2012, dx.doi.org/10.1021/la302224v – „The maximum capillary pressure …describes the maximum pressure that the liquid film between two emulsion droplets in contact canwithstand before rupturing [J102]”.J102-c56. P.N. Sturzenegger, U.T. Gonzenbach, J. Martynczuk, L.J. Gauckler: Size and Microstructure Control<strong>of</strong> Calcium Aluminate Microcapsules - J. Am. Ceram. Soc., 2012, vol. 95, No.8, pp. 2481–2490 – „Basedon the probability for emulsion stability [J102] as a function <strong>of</strong> particle wetting angle [Fig. 1(b)], one canconclude that the particle wettability must be slightly below 90°.” – p.2483, „Fig.1(b). Probability for theformation <strong>of</strong> stable oil-in-water and water-in-oil emulsions as a function <strong>of</strong> particle wetting angle.[J102]”– p.2483.J101. G.<strong>Kaptay</strong>: On the temperature gradient induced interfacial gradient force, acting onprecipitated liquid droplets in monotectic liquid alloys – Materials Science Forum, 2006,vol.508, pp.269-274 (IF = 0)J101-c1. He J, Zhao J, Wang X, Zhang Q, Li H, Chen G: Investigation <strong>of</strong> rapid directional solidification <strong>of</strong> Albasedimmiscible alloys - ACTA METALLURGICA SINICA 43 (6): 561-566 JUN 2007 – „2 equations +Chinese text” – p.562.J101-c2. O.Udvardy, A.Lovas: Dynamic phenomena during sessile drop measurements due to oxide layerdisruption – Mater Sci Forum, 2008, vol.589, pp.173-178 – „The disrupted oxide on the surface <strong>of</strong> thedroplets sirl. The origin <strong>of</strong> this phenomenon can be the Marangoni convection [J101], because the surfacetension <strong>of</strong> the oxide and the pure molten metal is different and the bottom <strong>of</strong> the molten drop can be atdifferent temperatures” – p.178.J101-c3. C.Pfeiler, B.G.Thomas, M.Wu, A.Ludwig, A.Kharicha: Solidification and particle entrapment duringcontinuous casting <strong>of</strong> steel Steel Res. Int., 2008, vol.79, pp.599-607 – „A lot <strong>of</strong> theoretical approacheshave been proposed to understand the interaction <strong>of</strong> particles with a solidifying interface. Due to thecomplexity <strong>of</strong> the phenomenon the analytical models [J101] are still discussed and improved.” – p.600.J101-c4. L.Zhang, E.Wang, Z.Kang, J.He: Influence <strong>of</strong> horizontal steady magnetic field on second-phasedistribution in Zn-10%Bi hypermonotectic alloy – J Northeastern University (Natural Sci), 2010, vol.31,No.6, pp.816-819. “…. Chienes text… Eq.(2)” – p.819.J101-c5. Kang Zhiqiang, Wang Engang, Zhang Lin, Li Guimao, Zuo Xiaowei, He Jicheng: NumericalSimulation <strong>of</strong> Microstructural Evolution for Al-Bi Hypermonotectic Alloys - CHINESE JOURNAL OFRARE METALS, 2010, 34(5), DOI: 10.3969/j.issn.0258-7076.2010.05.004J101-c6. KANG Zhi-qiang WANG En-gang ZHANG Lin LI Gui-mao ZUO Xiao-wei HE Ji-cheng :Simulation study on the solidification process <strong>of</strong> Al-Bi monotectic alloys under non-gravity and gravityconditions - JOURNAL OF FUNCTIONAL MATERIALS, 2010, vol.41, No.9,http://d.wanfangdata.com.cn/periodical_gncl201009013.aspx.J101-c7. Z.Kang, E.Wang, L.Zhang, J.He: Numerical analysis <strong>of</strong> the microstructure evolution <strong>of</strong> monotecticalloys in magnetic field – Chinese J <strong>of</strong> Mater Res, 2011, vol.25, No.2, pp.124-128 – „Chinese text +Eq.(9)” – p.125.J101-c8. I.Budai: Development <strong>of</strong> a mixer to fabricate particle stabilized aluminium matrix emulsions andmonotectic alloys - Mat.-wiss. u. Werkst<strong>of</strong>ftech. 2012, 43, No. 4, pp.345-349. – „Liquid metallicemulsions not stabilized by solid particles are unstable both due to gravity and also due to the effect <strong>of</strong> theinterfacial gradient force [J101], although can be partially stabilized by fast cooling and solidification” –p.345.J101-c9. H.B.Motejadded, M.Soltanieh, S.Rastegari: Coarsening kinetics <strong>of</strong> gamma-prime precipitates indendritic regions <strong>of</strong> a Ni 3 Al base alloy – J. Mater Sci Technol, 2012, vol.48, pp.221-228. – „Increasing theannealing temperature will dcrease the interfacial energy [J108]” – p.227.20


J100. J.Sychev, N.V.Borisenko, G.<strong>Kaptay</strong>, Kh.B.Kushkhov: Intercalation <strong>of</strong> sodium andlithium into graphite as a first stage in an electrochemical method for producing carbonnanotubes – Russian Journal <strong>of</strong> Electrochemistry, 2005, vol.41, pp.956-963. (IF = 0.218)J100-c1. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes and fundamental studies likewisesuggested alkali metal intercalation into graphite as an essntial step <strong>of</strong> the process [J100]” – p.151J100-c2. A.R.Kamali, D.J.Fray, C.Schwandt: Thermokinetic characterisation <strong>of</strong> lithium chloride – J Therm AnalCalorim, 2011, vol.104, No.2, pp.619-626. “More recent investigations have shown that intercalation <strong>of</strong>lithium into graphite may also proceed at elevated temperatures as high as 625 to 900 C [J100]” – p.619.J100-c3. AR Kamali, C Schwandt, DJ Fray: Effect <strong>of</strong> graphite electrode material on the characteristics <strong>of</strong> moltensalt electrolitically produced carbon nanomaterials – Mater Charact, 2011, vol.623, pp.987-994 –„Fundamental investigations have reveasled that the molten salt electrolytic formation <strong>of</strong> carbonnanomaterials commences with the intercalation <strong>of</strong> alkali metal from the molten salt electrolyte into thegraphitic cathode [J100]” – p.987.J100-c4. Muhammad Musaddique Ali Rafique, Javed Iqbal: Production <strong>of</strong> Carbon Nanotubes by DifferentRoutes— A Review, J <strong>of</strong> Encapsulkation and Adsorption Sciences, 2011, vol.1, pp.29-34. – “In thismethod carbon nanotubes were produced at University <strong>of</strong> Miskolc by G. <strong>Kaptay</strong> & J. Sytchev [J100] byde-positing alkali metals on a graphite cathode from a high-temperature molten salt system. Thedeposited metallic atoms intercalate into the space between the graphitic sheets and diffuse towards thebulk <strong>of</strong> the graphite cathode, causing some mechanical stress inside graphite. This stress induces theablation <strong>of</strong> separate graphitic sheets, which will turn into carbon nanotubes due to interfacial forces,trying to recombine broken carbon-carbon bonds. Though this method has been reported to yield goodquality <strong>of</strong> carbon nanotubes. It is not scaleable to large scale produc-tion method to produce carbonnanotubes.” – p.32.J100-c5. C.Schwandt, AT Dimitrov, DJ Fray: High yield synthesis <strong>of</strong> multi-walled carbon nanotubes fromgraphite by molten salt electrolysis – Carbon, 2012, vol.50, pp. 1311-1315 – „It is generally accepted thatthe first step <strong>of</strong> the cathodic reduction is the intercalation <strong>of</strong> the alkali metal into the spacings between thegraphitic layers and the formation <strong>of</strong> intercalation compounds, MeC x [J100]” – p.1311.J100-c6. A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure andthermokinetic characteristics <strong>of</strong> electrolytic carbon nanomaterials, Corrosion Science (2012), doi:http://dx.doi.org/ - „…the reaction commences with the diffusion-controlled intercalation <strong>of</strong> Li into thebulk <strong>of</strong> the graphite cathode, and it has also been considered that Li is simply deposited onto the surface<strong>of</strong> the graphite cathode in case the rate <strong>of</strong> Li generation is faster than that <strong>of</strong> Li inward diffusion[J125].”J99. G.<strong>Kaptay</strong>: A method to calculate equilibrium surface phase transition lines in monotecticsystems – CALPHAD, 2005, vol.29, pp.56-67 (+ Erratum, same volume, p.262) (IF = 1.344)J.99-c1. N.Braidy, G.R.Purdy, G.A.Botton: Equilibrium and stability <strong>of</strong> phase-separating Au-Pt nanoparticles –Acta Mater, 2008, vol.56, pp.5972-5983 – “f is a constant related to the coordination number at thesurface and is equal to 1.06, based on the discussion in Ref. [J99]” – p.5974. “The Au-Pt system exhibits alarge and positive mixing energy. As a consequence, for a specific range <strong>of</strong> temperature and composition,the curves will intersect at more than one point. IN such a specifi situation the lowest surface energy willbe selected [J99]. The presence <strong>of</strong> multiple solution implies the existence <strong>of</strong> a first-order surface phasetransition [J99]” – p.5974.J99-c2. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „A paraméter a felületirétegben meglévő kötések hányada, ami 1-nél ksiebb pozitív szám, értéke 0,83 [J99]” – 31.o.J99-c3. Mende T.: Az ESTPHAD módszer fejlesztése és alkalmazása kettő-, három- és négyalkotós rendszereklikvidusz hőmérsékletének közelítésére (tud. vez.: Roósz A.), 2010, Miskolc, 129 o. – „A reguláriselegymodellből levezethetően a szétválási hőmérséklet koncentráció-függésére a következő egyenlet írhatófel [J99]: (34) egyenlet.” – 67.o.21


J99-c4. S.H.Sheng, R.F.Zhang, S.Veprek: Phase stabilities and decomposition mechanism in the Zr-Si-N systemstudied by combined ab initio DFT and thermodynamic calculation – Acta Mater, 2011, vol.59, pp.297-307 – “The so-called surface phase transition, which has been theoretically predicted by Cahn andrecently elaborated in more detail by <strong>Kaptay</strong> et al [J99], essentially states that the system will decrease thehigh surface energy <strong>of</strong> the ionic transition metal nitride by wetting it with covalent Si3N4” – p.305.J98. <strong>Kaptay</strong> Gy.: Vitacikk Réger M., Verő B., Csepeli Zs. és Szélig Á.: “Folyamatosan öntöttbugák makrodúsulása” címmel megjelent cikkéhez – BKL Kohászat, 2005., 138. évf., 3.szám, 13-16 o. (IF = 0)J98-c1. Réger Mihály és Verő Balázs válasza <strong>Kaptay</strong> György vitacikkére – BKL Kohászat, 2005., 138. évf., 5.szám, 14-18. o. – „Először is szeretenénk a köszönetünket kifejezni <strong>Kaptay</strong> Györgynek, aki vette afáradtságot, és részletesen elemezte a szóban forgó cikket… Külön köszönjük azokat a javaslatokat,melyeket a szerző a makrodúsulási modell javítása érdekében megfogalmazott [J98] …stb.. több oldalkereszthivatkozás hol elfogadva, hol nem a javaslataimat” – p.14.J97. G.<strong>Kaptay</strong>, T.Bárczy: On the asymmetrical dependence <strong>of</strong> the threshold pressure <strong>of</strong>infiltration on the wettability <strong>of</strong> the porous solid by the infiltrating liquid – J.Mater.Sci, 2005,vol.40, pp.2531-2535. (IF = 0.901)J97-c1. DA Weirauch: Technologically significant capillary phenomena in high-temperature materialsprocessing. Examples drawn from aluminum industry – Current Opp Solid State and Mater Sci, 2005,vol.9, pp.230-240 – „Progress made in understanding the effect <strong>of</strong> pore geometry in pressure infiltrationprocessing [J97] should be transferable to a better interpretation <strong>of</strong> the effect <strong>of</strong> metallostatic pressure onrefractory infiltration and corrosion” – p.237.J97-c2. R.Voytovych, V.Bougiouri, NR Calderon, J Narciso, N Eustathopoulos: Reactive infiltration <strong>of</strong> porousgraphite by NiSi alloys – Acta mater, 2008, vol. 56, pp.2237-2246 – „In real porous solids, calculationsgive the threshold pressure values in the range <strong>of</strong> 50 – 85 degrees, depending on the pore shape [J97]” –p.2344.J97-c3. I.N.Orbulov, Á.Németh, J.Dobránszky: Composite production by pressure infiltration – Mater SciForum, 2008, vol.589, pp.137-142 – “The threshold pressure can be calculated by theoretical approachesfor various systems [J97]” – p.137.J97-c4. R. Israel: Etude des Interactions Entre Silicium Liquide et Graphite pour Application á l’élaborattion dusilicium photovoltaique, PhD Thesis, Grenoble Polytechnique, 2009, (Nicolas EUSTATHOPOULOS,Denis CAMEL) – „L’équation 1.10 prévoit pour le système modèle de la figure 1.11 une infiltrationspontanée pour θ < 90°. Dans la pratique les pores ne sont pas cylindriques et leur section n’est pasconstante. Ainsi, dans l’exemple de la figure 1.15, l’infiltration ne conduit pas seulement auremplacement d’une surface du type solide-vapeur par une surface du type solide-liquide, mais aussi à uneaugmentation de la surface liquide-vapeur, augmentation qui conduit à une diminution de la force motriced’infiltration. Pour cette raison, l’infiltration totale d’une préforme poreuse sous l’effet des seules forcescapillaires a lieu pour θ < θ* où θ* est une valeur ″seuil″ inférieure à 90°. Des modèles élaborés en faisantdifférentes approximations sur la forme des pores ont conduit à des valeurs de θ* allant de 85° à 50°[Trumble, 1998; <strong>Kaptay</strong> et al, 2005].” - p.27.J97-c5. B.<strong>Dr</strong>evet, O.Pajani, N.Eustathopoulos: Wetting, infiltration and sticking phenomena in Si3N4 releasingcoatings in the growth <strong>of</strong> photovoltaic silicon – Solar Energy Materials & Solar Cells – 2010, vol.94,pp.425-431 – „Spontaneous infiltration <strong>of</strong> a liquid into a porous media occurs when the equilibriumcontact angle <strong>of</strong> the liquid on pore walls is much lower than 90 o [J97]” – p.428J97-c6. N.Eustathopoulos, R.Israel, B.<strong>Dr</strong>evet, D.Camel: Reactive infiltration by Si: Infiltration versus wetting –Scr. Mater, 2010, vol.62, pp.966-971 – “Spontaneous (pressurless) infiltration <strong>of</strong> a liquid in a porousmedium occurs when the equilibrium contact angle <strong>of</strong> the liquid on the pore walls is much lower than 90 o[J97] – p.966.J97-c7. N.C.Calderon, R.Voytovich, J.Narciso, N.Eustathopoulos: Pressurless infiltration versus wetting inAlSi/graphite system – J Mater Sci, 2010, vol.45, pp.4345-4350 – “For real porous solids, calculationsgive theta values in the range <strong>of</strong> 50 – 85 degrees depending on the pores shape [J97]” – p.4345.J97-c8. Lassiaz S., Galarneau A., Trens P., Labarre D., Mutin H., Brunel D.: Organo-lined alumina surface fromcovalent attachment <strong>of</strong> alkylphosphonate chains in aqueous solution - New J. Chem, 2010., vol.34,pp.1424-1435 – „The penetration <strong>of</strong> liquids inside these cavities also depends on the surface wettability” –p.1431.J97-c9. Kientzl I.: Alumíniummátrixú kompozitjuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „<strong>Kaptay</strong> és Bárczy [J97] megmutatták, hogy a porózusszilárd testekbe való infiltráció esetén a kritikus peremszög általában 90 o -nál kisebb” – 20.o.22


J97-c10. Y.Zhao, Y.Wang, Y.Zhou, P.Shen: Reactive wetting and infiltration <strong>of</strong> polycrystalline WC by moltenZr2Cu alloy – Scripta Mater, 2011, vol.64, pp. 229-232 – „Spontaneous infiltration <strong>of</strong> a liquid into aporous preform, which has advantages for the production <strong>of</strong> complex shaped composites to near net shapewith very low residual porosity, occurs when the contact angle <strong>of</strong> the liquid on the pore walls issignificantly less than 90 o [J97]” – p.229.J97-c11. Z.Tao, Q.Guo, X.Gao, L.Liu: The wettability and interface thermal resitance <strong>of</strong> copper/graphite systemwith addition <strong>of</strong> chromium – Mater Chem, 2011, 2011, vol.128, pp.228-232 – „.. there exists a criticalcontact angle for spontaneous filling the surface pores <strong>of</strong> graphite material. This value is around 50 degwhich has been demonstrated both by theory and experiment [J97]”J97-c12. S.Barzilai, H.Nagar, N.Froumin, N.Frage: Wetting and infiltration <strong>of</strong> volatile fluorides by In-Ti melt – JMater Sci, 2011, vol.46, pp.5698-5701 – “..a good wetting is a prerequisite condition for spontaneous(pressurless) infiltration process [J97]” – p.5698.J97-c13. Z.X. Pang, H.Q. Liu: The Transient Method and Experimental Study on Threshold Pressure Gradient <strong>of</strong>Heavy Oil in Porous Media - The Open Petroleum Engineering Journal, 2012, vol. 5, pp. 7-13. “Thesteady-state method was very difficult to accurately control flow rate <strong>of</strong> heavy oil and perfectly measuredpressure difference, especially, at lower flow rate [J97]” – p.7.J97-c14. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „ha az infiltrációhoz használt porózus anyagot szorosan illeszkedőgömbök alkotják, a közöttük lévő pórusokba a penetrációhoz szükséges kritikus peremszög 50,7 fok[J97].” – 3.o.J96. G.<strong>Kaptay</strong>: Classification and general derivation <strong>of</strong> interfacial forces, acting on phases,situated in the bulk, or at the interface <strong>of</strong> other phases – J.Mater.Sci, 2005, vol.40, pp.2125-2131 (IF = 0.901)J96-c1. SE Friberg, AA Bawab, AA Abdoh: Surface active inverse micelles – Colloid Polym Sci, 2007, vol.285,pp.1625-1630 – “For liquids at interfaces, <strong>Pr<strong>of</strong></strong>essor <strong>Kaptay</strong> [J96] has recently given a thoroughtreatment” – p.1628.J96-c2. F.D.Fisher, T.Waitz, D.Vollath, N.K.Simha: On the role <strong>of</strong> surface energy and surface stress in phasetramsformingnanoparticles – Progress in Mater Sci., 2008, vol.53, pp.481-527 – „<strong>Kaptay</strong> [J96] classifies(2γ/R) in his recent overview as the „curvature induced interfacial force”, and mentions several furthertypes <strong>of</strong> interfacial forces… „ – p.490.J96-c3. O.Udvardy, A.Lovas: Dynamic phenomena during sessile drop measurements due to oxide layerdisruption – Mater Sci Forum, 2008, vol.589, pp.173-178 – „The disrupted oxide on the surface <strong>of</strong> thedroplets sirl. The origin <strong>of</strong> this phenomenon can be the Marangoni convection [J96], because the surfacetension <strong>of</strong> the oxide and the pure molten metal is different and the bottom <strong>of</strong> the molten drop can be atdifferent temperatures” – p.178.J96-c4. C.Pfeiler, B.G.Thomas, M.Wu, A.Ludwig, A.Kharicha: Solidification and particle entrapment duringcontinuous casting <strong>of</strong> steel Steel Res. Int., 2008, vol.79, pp.599-607 – „A lot <strong>of</strong> theoretical approacheshave been proposed to understand the interaction <strong>of</strong> particles with a solidifying interface. Due to thecomplexity <strong>of</strong> the phenomenon the analytical models [J96] are still discussed and improved.” – p.600, “Atpresent, a discussion in the scientific community is ongoing whether this surface energy gradient forceacts only on liquid or gaseous phases (such as bubbles), or also on solid particles [J96]” – p.602.J96-c5. A.Javili, P.Steinmann: A finite element framework for continua with boundary energies. Part I: the twodiomensionalcase – Comput. Methods Appl. Engrg, 2009, vol.198, pp.2198-2208. – “As it has beenstudied, eg. [J96], surfaces <strong>of</strong> bodies and interfaces between pairs <strong>of</strong> bodies exhibit properties differentfrom those associated with the bulk.” – p.2198.J96-c6. SE Friberg: Effect <strong>of</strong> relative humidity on the evaporation path from a phenethyl alcohol emulsion – JColl Interface Sci, 2009, vol.336, pp.786-792 – „Emulsions are one <strong>of</strong> the most important vehicles bothfor their own processing as well as their application in a large number <strong>of</strong> industries such as pharmaceutics,cosmetics, preparation <strong>of</strong> nano-particles and others. Hence, general treatments ar ereadily available andthere heas been significant progress in the more fundamental aspects <strong>of</strong> the related science [J96]” – p.786.J96-c7. A.Javili, P.Steinmann: A finite element framework for continua with boundary energies. Part II: Thethree-diomensional case – Comput. Methods Appl. Engrg, 2010, vol.199, pp.755-765. – “These (surface)effects could phenomenologically be modlled in terms <strong>of</strong> boundaries equipped with their own potentialenergy and it has been well studied in the literature since the milestone work by Gibbs and elaborated byothers, eg. [J96]” – p.75596-c8. A.E.Karantzalis, A.Lekatou, E.Georgatis, H.Mavros: Solidification behaviour <strong>of</strong> ceramic particlereinforced Al-alloy matrices – J.Mater Sci, 2010, vol.45, pp.2165-2173 – „Especially in the case <strong>of</strong> castmetal composites, however, a contact angle <strong>of</strong> less than 90 o C (sicc) is not sufficient to lead to23


spontaneous entry <strong>of</strong> the particles but a 0 o contact angle (total spreading condition) is required as shownby the works <strong>of</strong> Nakae et al., Wu et al. and <strong>Kaptay</strong> [J96]” – p.2165J96-c9. A.Javili, P.Steinmann: On thermomechanical solids with boundary structures – Int J Solids SolidStructures, 2010, vol.47, pp.3245-3253 – “These effects could phenomenologically be modeled in terms<strong>of</strong> boundaries equipped with their own free energy and it has been well studied in the literature since themilestone work by Gibbs and elaborated by others. e.g. … by <strong>Kaptay</strong>” – p.3245.J96-c10. P.C:Millet, Yu.U.Wang: Diffuse interface field approach to modeling arbitrarily-shaped particles atfluid-fluid interfaces – J Coll Interface Sci, 2011, vol.353, pp.46-51 – “In order to verify the modelpresented in Sec.2 provides the correct magnitude and direction <strong>of</strong> the capillary force, we have simulatedthe well-defined case <strong>of</strong> a circular particle intersecting a flat interface [J96].” – p.48.J96-c11. A.Javili, P.Steinmann: A finite element framework for continua with boundary energies. Part III: Thethermomechanical case – Comput. Methods Appl. Engrg, 2011, vol. 200, pp. 1963 - 1977 – “Due to largesurface to volume ratio at a nanscale, surface behaviour becomes particularly important in nanomaterialsbehaviours. These effects could phenomenologically be modelled in terms <strong>of</strong> boundaries equipped withtheir own potential energy and it has been well studied in the literature since the milestone work by Gibbsand elaborated by others, e.g. Adam, Adamson and Gast, <strong>Kaptay</strong> [J96] and Steinmann and Hasner.” –p.1963.J96-c12. Ferenc Jarai-Szabo, Emoke Agnes Horvat, Robert Vajtai, Zoltan Neda: Spring-block approach fornanobristle patterns - arXiv:1012.0040v1 [cond-mat.mes-hall], 2010, 6 pp. – „The form <strong>of</strong> the capillaryforce acting between two micro-scale rods wetted by a liquid was measured experimentally and deducedanalytically, too [J96]” – p.3.J96-c13. Ferenc Jarai-Szabo, Emoke Agnes Horvat, Robert Vajtai, Zoltan Neda: Spring-block approach fornanobristle patterns – Chem Phys Lett, 2011, vol.511, pp.378-383 – „The capillarity force acting betweentwo micro-scale rods wetted by a liquid was measured experimentally and deduced analytically, too[J96]” – p.380.J96-c14. I.Budai: Development <strong>of</strong> a mixer to fabricate particle stabilized aluminium matrix emulsions andmonotectic alloys - Mat.-wiss. u. Werkst<strong>of</strong>ftech. 2012, 43, No. 4, pp.345-349. – „Liquid metallicemulsions not stabilized by solid particles are unstable both due to gravity and also due to the effect <strong>of</strong> theinterfacial gradient force [J96], although can be partially stabilized by fast cooling and solidification” –p.345.J96-c15. B.Ma, J.Li, Z.Peng, G.Zhang: Structural morphologies <strong>of</strong> Cu-Sn-Bi immiscible alloys with variedcomposiotions – J Alloys Compds, 2012, vol.535, pp.95-101. - „The interfacial tension between twoimmiscible liquid could be expresed by the following equation: (Eq.5)”. – p. 99.J96-c16. Balla S., Bán K., Bárdos A., Lovas A., Szabó A., Weltsch Z.: Járműanyagok - <strong>Egyetem</strong>i tananyag,szerkesztő: Lovas Antal, ISBN 978-963-279-628-4, Typotex Kiadó, Budapest, 2012, 269 pp. „5.6.1.fejezet: Marangoni áramlás [J96]” – 154-155. o., „5.6.2. fejezet: Eötvös szabály [J96]” – 155-156 o.,„5.6.3. alfejezet: Gázok adszorpciója szilárd és folyadék fázisok felületére [J96]” – 156 o.J95. G.<strong>Kaptay</strong>: A unified equation for the viscosity <strong>of</strong> liquid metals – Z.Metallkd., 2005,vol.96, pp.24-31 (IF = 0.842)J95-c1. N.Babcsán, J.Banhart: Metal Foams – towards high-temperature colloid chemistry – Chapter 11 in:„Colloidal particles at Liquid Interfaces, ed. By B.P.Binks, T.S.Horozov, Cambridge University Press,2006, pp.445-499 – „<strong>Kaptay</strong> [J95] recently derived a unified equation for the dynamic viscosity <strong>of</strong> pureliquid metals …. 1 equation is give….” – p.463-464J95-c2. Lu HM, Li G, Zhu YF, Jiang Q: Temperature dependence <strong>of</strong> self-diffusion coefficient in several liquidmetals - JOURNAL OF NON-CRYSTALLINE SOLIDS 352 (26-27): 2797-2800 AUG 1 2006 –„Recently, <strong>Kaptay</strong> [J95] also deduced similar relationship between viscosity and surface tension atmelting point while with 24 % higher slope” – p.3798.J95-c3. Lu H.M., Wang T.H., Jiang Q.: Surface tension and self-diffusion coefficient <strong>of</strong> liquid Si and Ge – JCrystal Growth, 2006, vol.293, pp.294-298 - „Recently, <strong>Kaptay</strong> [J95] also deduced similar relationshipbetween viscosity and surface tension at melting point while with 24 % higher slope” – p.296.J95-c4. D.Zivkovic: A new approach to estimate the viscosity <strong>of</strong> the ternary liquid alloys using the Budai-Benko-<strong>Kaptay</strong> equation – Metall Mater Trans B, 2008, vol.39, pp.395-398 – „According to <strong>Kaptay</strong>’sunified equation fopr the viscosity <strong>of</strong> pure liquid metals, the average values <strong>of</strong> parameters A and B…..[J95]„ – p.395.24


J95-c5. Q.Jiang, H.M.Lu: Size dependent interface energy and its applications – Surface Science Reports, 2008,vol.63, pp.427-464. – „„Recently, <strong>Kaptay</strong> [J95] also deduced similar relationship between viscosity andsurface tension at melting point while with 24 % higher slope” – p.457.J95-c6. X. Song, X.Bian, J.Zhang, J.Zhang: Temperature-dependent viscosities <strong>of</strong> eutectic Al-Si alloys modifiedwith Sr and P – J Alloy Compounds, 2009, vol.479, pp.670-673 – „Another simplified equation is alssuitable to determine the viscous flow coefficient at any temperature [J95] as the following relation….” –p.672.J95-c7. P.Terzieff: The viscosity <strong>of</strong> liquid alloys <strong>of</strong> polyvalent metals with Cu, Ag and Au: Theoreticaltreatments based on the enthalpy <strong>of</strong> mixing – Physica B, 2009, vol.404, pp. 2039-2044 – “The mostconvenient model used here is based on the unified equation for the viscosity <strong>of</strong> pure liquid metalsformulated by <strong>Kaptay</strong> [J95]. The only information needed to predict the viscosity is the meltingtemperature, the atomic mass and the molar volume <strong>of</strong> the metal under consideration. ….. For Ge, Sb andBi the corrected melting temperatures proposed by <strong>Kaptay</strong> [J95] were amployed” – p.2040, “Fig-s 1-10:“unified model”” – pp.2040-2044, “The least strenuous way to calculate viscosities is given by the unifiedequation <strong>of</strong> <strong>Kaptay</strong> and coworkers [J95]”. … The additional isotherms (curves b’) shown for Cu-Bi, Cu-Sb, Ag-Ge and Ag-Sb were obtained by using the corrected melting temperatures for Ge (450 K), Sb (650K) and Bi (450 K) as recommended by <strong>Kaptay</strong> [J95]. As compared to the isotherms obtained with theuncorrected melting temperatures (curves b) the improvemenets are extremely large for Ag-Ge (Fig.6),less pronounced for Cu-Sb and Ag-Sb (Figs 4, 8)and small for Cu-Bi (Fig.2).” – p.2043. “The obviousimprovements underline the adequateness <strong>of</strong> considerations concenrning this matter [J95]” – p.2044.J95-c8. T.Iida, R.Guthrie: Predictions for the sound velocity in various liquid metals at their melting pointtemperature – Metal Mater Trans B, 2009, vol.40B, pp.959-966. – “Table III compares experimentalvalues <strong>of</strong> the melting point viscosity <strong>of</strong> liquid molybdenum and platinum with those values calculatedusing a few models. These models are represented by the following equations: v. <strong>Kaptay</strong>’s equation (see aunified equation by <strong>Kaptay</strong> [J95]: (equation).. Table III. <strong>Kaptay</strong>” – p.963.J95-c9. DL Beke: On the composition and pressure dependence <strong>of</strong> the self-diffusion coefficient in liquid metals– Int J Mater Res, 2010, vol.101, 353-355. – „Here A = …..[J95]” – p.354. „Since int he dimensionalcombination <strong>of</strong> the viscosity, the energy scaling parameter is present, its use can be a good solution to find a„corrected” value for T min liquid state, as it was done in.[J95]” – p.354.J95-c10. Beke DL.: Composition and Pressure Dependence <strong>of</strong> the Diffusion Coefficients in Binary LiquidAlloys – Defect and Diffusion Forum, 2010, vol.297-301, pp.1371-1376. – „Note that there could be someproblems for semimetals [J95]: what about the pressure dependence <strong>of</strong> the corrected melting points forsemimetals? Here, the pressure dependence <strong>of</strong> the viscosity can be used on the relation with the meltingpoint [J95]” – p.1374.J95-c11. XP Su, S. Yang, JH Wang, NY Tang, FC Yin, Z Li, MX Zhao: A New Equation for TemperatureDependent Solute Impurity Diffusivity in Liquid Metals – J. Phase Equil. Diffusion, 2010, vol. 31, pp. 333-340. –„Abstract: An equation to predict the temperature dependence <strong>of</strong> solute impurity diffusivity in liquidmetals has been derived by combining the Sutherland-Einstein formula with <strong>Kaptay</strong>’s unified equation onthe dynamic viscosity <strong>of</strong> liquid metals.” – p.333. „Combining the Andrade equation with the activationenergy model, <strong>Kaptay</strong> has derived the following unified formula for predicting viscosity [J95]: … + 9 linesdescription” – p.334. „Conclusions: .. a new solute diffusion equation has been developed by combining theSutherland-Einstein equation and <strong>Kaptay</strong>’s unified viscosity formula. Comparison with availableexperimental data indicated a satisfactory agreement” – p.339.J95-c12. S.Yang, X.Su, J.Wang, F.Yin, N-Y. Tang, Z.Li, X.Wang, Z.Zhu, H.Tu, X.Li: Comrehensive evaluation<strong>of</strong> aluminum diffusivity in liquid zinc – Metall Mater Trans A, 2011, vol.42A, pp. 1785-1792 – „Bycombining the Sutherland-Einstein expression with <strong>Kaptay</strong>’s unified equation on the dynamic viscosity <strong>of</strong>liquid metals [J95], the authors have derived a new equation predicting the temperature dependence <strong>of</strong>solute impurity diffusivity in liquid metals” – p.1786.J95-c13. Svidró József Tamás (konzulensek: Diószegi Attila és Tóth Levente): Transzportfolyamatok afém/formázóanyag határfelületén – PhD értekezés, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011 – „A fémolvadékokviszkozitásának hőmérsékletfüggését <strong>Kaptay</strong> [J95] szerint a (2.10) egyenlet írja le, ahol….” – pp.12.J95-c14. Wunderlich RK; Fecht H-J: Surface tension and viscosity <strong>of</strong> NiAl catalytic precursor alloys frommicrogravity experiments – Int J Mater Res, 2011, vol.102, pp.1164-1173. „The <strong>Kaptay</strong> model was shownto provide better agreement with observed viscosities <strong>of</strong> binary alloys [J95] than the Moelwyn-Hughesmodel. In the <strong>Kaptay</strong> model the viscosity is given by: Eq-s.(15-16), Fig.11, Table 2.” – p.1170-1171.J95-c15. Y.Du, LJ Zhang, SL Cui, DD Zhao, DD Liu, WB Zhang, WH Sun, WQ Jie: Atomic mobilities anddiffusivities in Al alloys – Sci China, Technol Series, 2012, vol.55, No.2, pp.306-328. „Su et al proposedanother equation by combining the Sutherland-Einstein formula with <strong>Kaptay</strong>’s unified equation on thedynamic viscosity <strong>of</strong> liquid metals, which is given as follows…” – p.315.25


J95-c16. S. Hossein Elahi, H. Adelnia, and H. R. Shahverdi: A simple accurate method for measuring viscosity<strong>of</strong> liquid metals at high temperatures - J. Rheol., 2012, vol. 56, pp.941-954.J95-c17. Nakayama KS, Yokoyama Y, Wada T, Chen N, Inoue A: Formation <strong>of</strong> metallic glass nanowires byatomization – Nano Letters, 2012, vol.12, pp.2404-2407 – „Fig.3. For pure Zr, Fe, Pd and Pt, theparameters in [J95] were used” – p.2406.J95-c18. R.N.Singh, F.Sommer: Viscosity <strong>of</strong> liquid alloys: generalization <strong>of</strong> the Andrade’s equation – MonatshChem, 2012, vol.143, pp.1235-1242. – „Several relations exists int he literature to evaluate the viscosity<strong>of</strong> liquid metals [J95]” – p.1235. “<strong>Kaptay</strong> [J95] replaced r by an effective radius <strong>of</strong> the diffusing particle,the value <strong>of</strong> which is determined by the temperature-dependent volume <strong>of</strong> the liquid metal. The Stokes-Einstein relation exhibits on this basis a difference in the temperature dependence <strong>of</strong> the diffusioncoefficient and viscosity” – p.1239 [comment: this later citation is wrong, this result was published in adifferent paper J110]J94. G.<strong>Kaptay</strong>: Modelling Interfacial Energies in Metallic Systems – Materials ScienceForum, 2005, vols. 473-474, pp.1-10. (IF = 0.399)J94-c1. B.Sarler: Solution <strong>of</strong> a two-dimensional bubble shape in potential flow by the method <strong>of</strong> fundamentalsolutions – Eng. Anal. with Bound. Elem., 2006, vol.30, pp.227-235 – „Important complex-behavedparameters <strong>of</strong> such systems are the interface energies and forces [J94]” – p.227J94-c2. Gao L., Zhao J., He J.: Microstructure <strong>of</strong> rapidly solidified Cu-Co alloy – Special Casting / NonferrousAlloys, 2006, vol.26, No.10, pp.626-628 (Ref. No.17) – „… <strong>Kaptay</strong> [J94] … Chinese text… Eq.(3) .. ”pP.628.J94-c3. D.Zivkovic: A new approach to estimate the viscosity <strong>of</strong> the ternary liquid alloys using the Budai-Benko-<strong>Kaptay</strong> equation – Metall Mater Trans B, 2008, vol.39, pp.395-398 – „The semiempiricalparameter equal to q = 25.4 2 [J94] wich in physical sense is related to the cohesion energy in pureliquid metals.” – p.395.J94-c4. J.Brillo, D.Chatain, I.Egry: Surface tension <strong>of</strong> liquid binary alloys – theory versus experiment – Int J MatRes, 2009, vol.100, pp.53-58 – „A i is the surface area in a monolayer <strong>of</strong> one mole <strong>of</strong> pure, i.e. unalloyed,liquid substrate. It is calculated from the corresponding molar volume, V i <strong>of</strong> component i as foillows [J94]– equation” – p.53. “The factor accounts for a reduced coordination <strong>of</strong> atoms in the surface layer.Depending on the atomic short range order in the liquid, it varies from 0.5 to 1 [J94].” – p.54.J94-c5. Sklyarchuk VM, Yakimovich AS, Dufanets' MV: Calculation on Viscosity <strong>of</strong> Al-Cu Liquid Alloys –Metall<strong>of</strong>izika i noveishie technologii, 2008, vol.30, pp., 315-321.J94-c6. Sklyarchuk VM, Yakimovich AS, Dufanets' MV: Koeficient dinimichnoi viazkosti rozplaviv sistemi Al-Cu - Abstract konferencii SMMT-2008.J94-c7. T.Iida, R.Guthrie: Performance <strong>of</strong> a modified Skapski model for the surface tension <strong>of</strong> liquid metallicelements at their melting point temperatures – Metal Mater Trans B, 2009, vol.40B, pp.967-978. – „Aconsiderable number <strong>of</strong> research articles on the surface tension <strong>of</strong> liquid metallic elements have beenreported even in the last 10 years [J94]” – p.967.J94-c8. T.Iida, R.Guthrie: Performance <strong>of</strong> a modified Schytil model for the surface tension <strong>of</strong> liquid metallicelements at their melting point temperatures – Metal Mater Trans B, 2010, vol.41B, pp.437-447 – „Manypapers on the surface tension <strong>of</strong> metallic liquids have been published in the last 15 years or so [J94]” –p.438.J94-c9. G.Wei, X.Pan: Microstructure and Wear Resistance <strong>of</strong> Cu-based Composite Coating on 6061 AluminumAlloy by Laser Cladding – Special Casting & Nonferrous Alloys, 2010, vol.30, pp.372-375(http://d.wanfangdata.com.cn/Periodical_tzzzjyshj201004028.aspx) – „<strong>Kaptay</strong> [J94]: the equation forliquid/liquid interfacial energy” – p.373.J94-c10. XP Su, S. Yang, JH Wang, NY Tang, FC Yin, Z Li, MX Zhao: A New Equation for TemperatureDependent Solute Impurity Diffusivity in Liquid Metals – J. Phase Equil. Diffusion, 2010, vol. 31, pp.333-340. „It has been shown recently on the example <strong>of</strong> the surface tension that the cohesion energycorrelates with th emelting point <strong>of</strong> normal metals … where q is a semi-empirical parameter determinedto be q = 25.4 2 [J94]” – p.334.J94-c11. Pázmán J.: Szilíciumkarbid szemcsék kémiai nikkelezése és fémkompozitokban történő alkalmazása –PhD disszertáció (tud. vez.: Gácsi Z.), Miskolc, 2010. – “Szerencsére már ismertek olyan fogalmak, minta határfelületi feszültség, adheziós energia [J94]” – 28.o., „.. a fém-ionos határfelületi adhézió nagyobb,mint a fém-kerámia és így a kialakuló bevonat tapadása jobb, ha inos jellegű oxidréteget képezünk akovalens kötésű szilíciumkarbid szemcsék felületén [J94]” – 39.o.J94-c12. AA Simonova: Obespechenie neobhodimogo kachestva poverhnostnogo sloia obiomnichnanokristallicheskich metallov posle mechanicheskoi obrabotki – Naukovi Notatki (Inzhenerna26


mechanika), No.24, 2009, Luck, pp.500-506 – „sigma: energia stikovoi mezhzerennoi granici [J94]….” –p.502.J94-c13. Gácsi Z., Simon A., Pázmán J.: Fémkompozitok, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011. „A felületi feszültség, azadhéziós energia és a peremszög (2-6 ábra) segítséget nyújtanak a fémkompozit gyártástechnológiamegtervezésében [J94].” – 39 o.J94-c14. I.Budai: Development <strong>of</strong> a mixer to fabricate particle stabilized aluminium matrix emulsions andmonotectic alloys - Mat.-wiss. u. Werkst<strong>of</strong>ftech. 2012, 43, No. 4, pp.345-349. - „Thus, the design <strong>of</strong>particle stabilized metallic emulsions and monotectic alloys should be based on the existing databank onthe contact angle <strong>of</strong> particles at the interface <strong>of</strong> immiscible liquid metals / alloys [J94].” – p.345.J94-c15. Pázmán, J., Mádai, V., Gácsi, Z. and Kovács, Á. (2012) ‘Arrangement <strong>of</strong> the Al-Ni phases inAl/SiC(Ni)p composites’, Int. J. Microstructure and Materials Properties, 2012, vol. 7, No. 1, pp.49–63. –„… it is well known tha tthe interfacial metallic ion adhesion is stronger than metallic ceramics [J94]” –p.51.J94-c16. Balla S., Bán K., Bárdos A., Lovas A., Szabó A., Weltsch Z.: Járműanyagok - <strong>Egyetem</strong>i tananyag,szerkesztő: Lovas Antal, ISBN 978-963-279-628-4, Typotex Kiadó, Budapest, 2012, 269 pp. – „5.6.4fejezet: Felületi szegregáció [J94]” – 156-157 o., „5.6.5. fejezet: Adszorpció [J94]” – 157.o.J93. O.Verezub, G.<strong>Kaptay</strong>, T.Matsushita, K.Mukai: Penetration dynamics <strong>of</strong> solid particlesinto liquids. High-speed experimental results and modeling - Materials Science Forum, 2005,vols. 473-474, pp.429-434. (IF = 0.399)J93-c1. E.Bitay: Ceramic particle dispersion analysis in laser surface alloying – Materials Science Forum, 2006,vol.508, pp.295-300 – „Other factors, such as wettability <strong>of</strong> the particle by the liquid, drag force andgravity/buoyancy force was taken into account by some other authors [J93]” – p.298.J93-c2. Kálazi Z. (Buza G.): Alumínium lézersugaras felületötvözése – PhD szemináriumi beszámoló, 2008.december 9., <strong>Miskolci</strong> <strong>Egyetem</strong>, 22 oldal.J93-c3. Hórvölgyi Z.: Anorganikus részecskék folyadék-fluidum határrétegbeli diszperziói és szilárd hordozósfilmjei – MTA doktori értekezés, 2010. “A folyadék-fluidum határrétegben felhalmozódó kváziamfipatikus szilárd mikr<strong>of</strong>ázisoknak különös jelentősége van a habok és emulziók stabilizálásában [J93]”– p.1.J93-c4. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „Lézer segítségével felületi kompozitok állíthatóak elő. Ebben azesetben a mátrix anyagául szolgáló fém felületét lézerrel megolvasztják, és az így kialakult fémtócsábamegfelelő sebességgel lövik az erősítő fázisnak szánt szemcséket. Ezen technológiánál fontos, hogy aszemcséket milyen sebességgel lövik a fémtócsába. Ennek modellezését mutatja be a [J93] irodalom.” –4.o.J92. M.S.Yaghmaee, G.<strong>Kaptay</strong>: Stability <strong>of</strong> SiC in Al-rich corner <strong>of</strong> liquid Al-Si-Mg system -Materials Science Forum, 2005, vols. 473-474, pp.415-420. (IF = 0.399)J92-c1. E.Mostaed, A.Mostaed, H.Saghafian, A.Shokuhfar, H.R.Rezaie: Effect <strong>of</strong> SiC Particles VolumeFraction on the Mutual Diffusion <strong>of</strong> Al and Cu during Fabrication <strong>of</strong> Al-4.5wt%Cu/SiC via MechanicalAlloying – Defect and Diffusion Forum, 2009, vol.283-286, pp.499-503. – „In Eq. (1) and Eq. (2) showthe chemical reactions which take place at the temperature 923-1272 K [J92].” – p.499. „Fig.1. Thestandard Gibbs energy change and equilibrium constant as function <strong>of</strong> temperature for Eq.(2) [J92]” –p.500.J92-c2. X.Q.Luo, H.M.Guo, X.J.Yang: Heterogeneous nucleation for AZ91 with in situ synthesis Al 4 C 3 – Adv.Mater Res, 2010, vol.97-101, pp.1069-1072. „The surface <strong>of</strong> SiC particles were coated by Al 4 C 3 [J92]” –p.1071.J92-c3. E.Candan, H.V.Atkinson, Y.Turen, I.Salaoru, S.Candan: Wettability <strong>of</strong> aluminium-magnesium alloys onsilicon carbide substrates – J Amer Ceram Soc, 2011, vol.94, No.3, pp.867-874. “Yaghmaee and <strong>Kaptay</strong>[J92] have examined the stability range <strong>of</strong> SiC in ternary liquid Al-Si-Mg alloy and shown that a certainminimum critical Si content is needed in the melt to avoi the formation <strong>of</strong> Al4C3 at the interface. Thecritical Si-content has been found to increase both with temperature and with the Mg-content <strong>of</strong> the melt”– p. 868.J92-c4. Pázmán J.: Szilíciumkarbid szemcsék kémiai nikkelezése és fémkompozitokban történő alkalmazása –PhD disszertáció (tud. vez.: Gácsi Z.), Miskolc, 2010. – “Az Al4C3 vegyület kedvezőtlen tulajdonságai(rideg fázis, mely csökkenti a kompozit törési szívósságát és a hőállóságát, valamint vízzel reagálva akompozit korrózióval szembeni érzékenységét növeli meg [J92]” – 10.o.27


J92-c5. Pázmán, J., Mádai, V., Gácsi, Z. and Kovács, Á.: Arrangement <strong>of</strong> the Al-Ni phases in Al/SiC(Ni) pcomposites, Int. J. Microstructure and Materials Properties, 2012, vol. 7, No. 1, pp.49–63. – „The surfaceoxidation takes place at a temperature <strong>of</strong> 1,000°C to 1,100°C and the purpose <strong>of</strong> this procedure is toprevent the aluminium carbide formation (Al 4 C 3 ) [J92] by developing a silicon oxide layer between thesilicon carbide particles and the metallic aluminium matrix” – p.51.J92-c6. Pázmán, J., Gácsi, Z.: Studying <strong>of</strong> the microstructure int he AlCuSiMg/SiC(Nt)p composites, CD-Proc<strong>of</strong> 26. Int. Sci Conf microCAD, 29-30 March, 2012, Miskolc, Hungary. – „Surface oxidation is performedat a temperature <strong>of</strong> 1,000- 1,100°C and the purpose <strong>of</strong> this procedure is to prevent the carbide formation[J92] by developing a silicon oxide layer between the silicon carbide particles and the metallic aluminiummatrix” – p.1.J91. I.Budai, M.Z.Benkő, G.<strong>Kaptay</strong>: Analysis <strong>of</strong> literature models on viscosity <strong>of</strong> binaryliquid metallic alloys on the example <strong>of</strong> the Cu-Ag system - Materials Science Forum, 2005,vols. 473-474, pp.309-314. (IF = 0.399)J91-c1. D.Zivkovic: Estimation <strong>of</strong> the viscosity for Ag-In and In-Sb liquid alloys using different models –Z.Metallkunde, 2006, vol.97, pp.89-93 – „some models can be in conflict with experimental points, aswas already shown [J91]” – p.90, „Eq.(6) works particularly well for system in which the purecomponents have similar properties (i.e. the Ag-Cu system [J91])” – p.91.J91-c2. Brillo J, Brooks R, Egry I, Quested P: Viscosity measurement <strong>of</strong> liquid ternary Cu-Ni-Fe alloys by anoscillating cup viscometer and comparison with models - INTERNATIONAL JOURNAL OFMATERIALS RESEARCH 98 (6): 457-462 JUN 2007 – „An overview <strong>of</strong> selected models that will bediscussed in the present work is given in [J91].” – p.457.J91-c3. YH Liu: Viscosity <strong>of</strong> molten Zn-Al, Zn-Cu and Zn-Al-Cu alloys – Galvantech07 (Proceedings), 2007,pp.171-176 – „Recently it was noticed by the author that prior to Liu’s work, Budai et al [J91] had alreadymodified Seetharaman’s model based on the same argument, but used the excess enthlapy <strong>of</strong> mixing toreplace the excess Gibbs energy <strong>of</strong> mixing” – p.172. „Budai et al [J91] pointed out that a positive deltaHwould reduce rather than increase deltaG*, thus changed Eq.(7) to: {Equation 8}” – p.174. „ Summary:The thermodynamic model by Budai, Banko and <strong>Kaptay</strong> [J91] for predicting the viscosity <strong>of</strong> binary alloyshas been successfully extended and used in prediction <strong>of</strong> the viscosity <strong>of</strong> ternary Al-Cu-Zn alloys” –p.175.J91-c4. S.Gruner, W.Hoyer: The dynamic viscosity <strong>of</strong> liquid Cu-Si alloys – J Alloys Compds, 2008, vol.460,pp.496-499 – „… both linear and semi-logarithmic mixing rules are used in literature, see [J91]. ….Reviews are to be found in [J91]” – p.498.J91-c5. D.Zivkovic: Application <strong>of</strong> the <strong>Kaptay</strong> model in calculation <strong>of</strong> ternary liquid alloys viscosities – Int JMat Res, 2008, vol.99, pp.748-750 – „<strong>Kaptay</strong>’s approach to estimate the viscosity <strong>of</strong> liquid metallic alloysfrom viscosities <strong>of</strong> pure liquid metals and thermodynamic properties <strong>of</strong> the liquid alloy has been tested fordifferent types <strong>of</strong> binary systems [J91], including those with considerable deviations from ideality” –pp.748-749.J91-c6. M.Kehr, M.Schick, W.Hoyer, I.Egry: Viscosity <strong>of</strong> the binary system Al-Ni – High Temperatures – HighPressures, 2008, vol.37, pp.361-368. – “An overview <strong>of</strong> the common models is given in [J91]. Afterhaving tested a variety <strong>of</strong> models it turned out that the two models provide reasonable results in the case<strong>of</strong> Al-Ni alloys. One is the model <strong>of</strong> Kozlov [J91]:.. {Eq.2}. The second model has been developed by<strong>Kaptay</strong> [J91] {Eq-s.3-4}. “ – p.364, “The calculated data are compared to the measured data in Fig.3. TheKozlov model produces values significantly higher than the measured ones. On the other hand the<strong>Kaptay</strong>-model fits the measured values reasonably well. While the Kozlov model is taking into accountonly the viscosity <strong>of</strong> the pure liquid elements and the enthalpy <strong>of</strong> mixing, the <strong>Kaptay</strong>-model also considersthe interaction between the atoms <strong>of</strong> the liquid. Structural ordering is not taken into account in bothmodels. The partial deviations <strong>of</strong> the measured values from the smooth function <strong>of</strong> the <strong>Kaptay</strong>-model cantherefore be interpreted as a sign <strong>of</strong> structural ordering in the liquid. - pp.365-367, “Fig.3. Viscosityvalues calculated using the Kozlov-model [J91] (solid line) and the <strong>Kaptay</strong>-model [J91] (dashed line) andmeasured values <strong>of</strong> this work” – p.366.J91-c7. S. Gruner, W. Hoyer: A statistical approach to estimate the experimental uncertainty <strong>of</strong> viscosity dataobtained by the oscillating cup technique – J. Alloys Compounds, 2009, pp. 629-633 – „A variety <strong>of</strong>model equations for the viscosity <strong>of</strong> multi-component liquids have been developed – for recent reviewssee [J91]” – p.629J91-c8. S.Gruner, J.Marczinke, W.Hoyer: Short-range order and dynamic viscosity <strong>of</strong> liquid Cu-Ge alloys – JNon-Cryst. Solids, 2009, vol.355, pp.880-884 – “Reviews <strong>of</strong> possible approaches (for concentration28


dependence <strong>of</strong> viscosity) are given in [J91]. From the models presented in [J91] the Kozlov equation isselected for the present study” – p.882.J91-c9. Wunderlich RK; Fecht H-J: Surface tension and viscosity <strong>of</strong> NiAl catalytic precursor alloys frommicrogravity experiments – Int J Mater Res, 2011, vol.102, pp.1164-1173. „The <strong>Kaptay</strong> model was shownto provide better agreement with observed viscosities <strong>of</strong> binary alloys [J95] than the Moelwyn-Hughesmodel. In the <strong>Kaptay</strong> model the viscosity is given by: Eq-s.(15-16), Fig.11, Table 2.” – p.1170-1171.J91-c10. Wunderlich R.K., Fecht H.J., Egry I., Etay J., Battezzati L., Ricci E., Matsushita T., Seetharaman S.:Thermophysical Properties <strong>of</strong> a Fe-Cr-Mo Alloy in the Solid and Liquid Phase – Steel Res Int, 2012,vol.83, pp.43-54. „From more recent semi-empirical thermodynamic models [J91] an increase to 8.84mPas for an alloy with more than 94 at % Fe is not to be expected from an alloying effect”. – p.52.J91-c11. M.Schick, J.Brillo, I.Egry, B.Hallstedt: Viscosity <strong>of</strong> Al-Cu liquid alloys: measurement andthermodynamic description – J Mater Sci, 2012, doi: 10.1007/s10853-012-6710-x – “It has been argued[J91] that, in the simplest way, the pre-exponential factor <strong>of</strong> the alloy is expressed as a function <strong>of</strong> theconcentration in the following way: Eq.(10)” – p.J91-c12. R.N.Singh, F.Sommer: Viscosity <strong>of</strong> liquid alloys: generalization <strong>of</strong> the Andrade’s equation – MonatshChem, 2012, vol.143, pp.1235-1242. – „Results obtained from these relations have been compared withnew or given [J91] experimental viscosity data as a function <strong>of</strong> composition and temperature.” – p.1235.J90. T.Bárczy, G.<strong>Kaptay</strong>: Modelling the infiltration <strong>of</strong> liquid metals into porous ceramics -Materials Science Forum, 2005, vols. 473-474, pp.297-302. (IF = 0.399)J90-c1. Orbulov IN, Németh Á, Dobránszky J: XRD and EDS Investigations <strong>of</strong> Metal Matrix Composites andSyntactic Foams. 13th European Conference on X-Ray Spectrometry, Cavtat, Croatia, 16-20 June 2008,In: EXRS 2008 Proceedings. “The required pressure can be estimated by numerical methods and dependson the wetting similarly as in the case <strong>of</strong> fibre-reinforced MMCs [J90]” – p.2/10J90-c2. Orbulov I, Németh Á, Dobránszky J: Manufacturing <strong>of</strong> Composites by Pressure infiltration, Structureand Mechanical Properties. In: Penninger A, Váradi K, Vörös G (eds.), Gépészet 2008, Proceedings <strong>of</strong>Sixth Conference on Mechanical Engineering, BUTE Faculty <strong>of</strong> Mechanical Engineering – “Thisthreshold pressure can be calculated by theoretical approaches for various systems [J90]” – p.1/9.J90-c3. I.N.Orbulov, J.Dobránszky: Producing metal matrix syntactic foams by pressure infiltration – PeriodicaPolytechnica Mechanical Engineering, 2008, vol.52, No.1, pp.35-42. – „Bárczy and <strong>Kaptay</strong> (2005)developed a fully theoretical model for closely packed spheres based on the equilibrium <strong>of</strong> gravitational,capillary and outer forces. The model considered the effect <strong>of</strong> wetting angle, surface tension and volumefraction [J90] – p.35. “Eq.(1), Table 3, calculated values are given” – p.38J90-c4. I.N.Orbulov, J.Dobranszky, A.Nemeth: Microstructural characterization <strong>of</strong> syntactic foams – J MaterSci, 2009, vol.44, pp.4013-4019 – “Barczy and <strong>Kaptay</strong> [J90] developed a theoretical method byconsidering the wetting angle, surface tension and based on the equilibrium <strong>of</strong> gravitational, capillary andouter forces.” – p.4014.J90-c5. Orbulov I.N.: Szintaktikus fémhabok, PhD értekezés (Dobránszky János és Németh Árpád, BME, 2009.június) – „A küszöbnyomás elméleti becslésére Bárczy és <strong>Kaptay</strong> analitikus modellt dolgozott ki [J90]. Eza munka tartalmazza…. 1 oldal, 5 egyenlet, 2 ábra a cikkből” – 17-18. oldalak, „8. táblázat: Bárczy-<strong>Kaptay</strong> modell [J90] (számolt értékek)” – 36. oldal. „Az infiltrálási küszöbnyomás 0,5 és 0 bar között van.Ezt az értéktartományt Rohatgi és Trumble modelljei nagymértékben alulbecslik. A Bárczy-<strong>Kaptay</strong>modell helyesebb eredményt ad, bár a küszöbnyomás értéktartományát kismértékben felülbecsüli.” – 38.o.J90-c6. I.N.Orbulov, Á.Németh, J.Dobránszky: Hardness Testing <strong>of</strong> metal matrix syntactic foams – Proc. Of 7thInt Conf on Mechanical Testing, BME, Hungary, 2010, pp.16-22. – „Bárczy, <strong>Kaptay</strong> and other authorsdeveloped theoretical and semi-experimental methods to determine the threshold pressure [J90]” – p.16.J90-c7. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „.. ha a porózus test egyforma, szorosan pakoltgömbökből van kirakva, akkor a kritikus peremszög 50,7 o [J90]” – 20.o.J90-c8. Orbulov I.N.: Szintaktikus fémhabok mikroszerkezeti vizsgálata – Gép, 2010, No.11, pp.4-8 – „Bárczyés <strong>Kaptay</strong> [J90] elméleti modellt fejlesztett ki, amely figyelembe veszi a nedvesítési szöget, a felületifeszültséget és a gravitációs, kapilláris és külső erők (infiltráló nyomás) egyensúlyán alapszik”. – p.4.J90-c9. Orbulov I.N., Á.Németh: Global, depth sensing and dynamic hardness <strong>of</strong> metal matrix syntactic foams –Periodica Polytechnica, 2009, vol. 53, No.-2, pp.93-99. – „Bárczy and <strong>Kaptay</strong> developed a theoreticalmethod considering wetting angle, surface tension and based ont he equilibrium <strong>of</strong> gravitational,capillary and outer forces [J90]” – p.93.J90-c10. I.Orbulov, K.Májlinger: On the microstructure <strong>of</strong> ceramic hollow microspheres – PeriodicaPolytechnica, 2010, vol.54, No.2, pp.89-94. – „… the contact angle between the microspheres and the29


metal matrix has a detrimental effect on the infiltration characteristics and ont he threshold pressure (inthe case <strong>of</strong> pressure infiltration) [J90]” – p.90.J90-c11. I.N.Orbulov: Infiltration <strong>of</strong> ceramic microballons by liquid metals – research plan for SCIEX-NMS,February, 2011, 12 pp. – „Other articles are interested especially in the infiltration <strong>of</strong> microspheres andmicroballons and this is the case <strong>of</strong> MMSFs [J90]” – p.9.J90-c12. Svidró József Tamás (konzulensek: Diószegi Attila és Tóth Levente): Transzportfolyamatok afém/formázóanyag határfelületén – PhD értekezés, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011 – „2.3.3 alfejezet: A CPESmodell [J90]” – pp.16-17.J90-c13. Rácz A., Tóth L.F.: Eszközfejlesztés mikrogömbhéjak infiltrálásához – TDK dolgozat, 2011, BME(konzulens: Orbulov IN) – “2.9. Fémolvadék infiltrációjának modellezése porózus kerámiába [J90]” – 29-31. o.J90-c14. Orbulov I.N., Kun P., Németh Á., Dobránszky J.: Investigation <strong>of</strong> Light Weight Metal Foams. In:Borbás Lajos (ed.): 28th Danubia-Adria-Symposium on Advances in Experimental Mechanics.Siófok: GTE, 2011, pp. 267-268. „For successful pressure infiltration a threshold pressure must beensured, which can be estimated by theoretical and experimental methods [J90]” p. 267.J90-c15. E. de Lorgeril, F. Wyss, I.N. Orbulov: Modelling <strong>of</strong> metal matrix syntactic foams – description <strong>of</strong> thecompressive stress-strain curves - Periodica polytechnica Mechanical Engineering, 2011, vol.55/1, pp.29-37. – „papers on the problems <strong>of</strong> MMSF producing were also published [J90]” – p.29.J90-c16. I.N. Orbulov: Syntactic foams produced by pressure infiltration – the effect <strong>of</strong> pressure and time oninfiltration length- Periodica polytechnica Mechanical Engineering, 2011, vol.55/1, pp.21-27. – „<strong>Kaptay</strong>et al. developed a fully theoretical model for closely packed spheres (CPES) to predict the thresholdpressure for infiltration. The model based on the equilibrium <strong>of</strong> gravitational, capillary and outer forcesand considered the e_ect <strong>of</strong> wetting angle, surface tension and volume fraction [J90] + 2 equations …. ” –p.22.J90-c17. Orbulov IN: Mikrogömbhéjak nyomásos infiltrációjának vizsgálati módszere – OGÉT 2011, XIX.Nemzetközi Gépész Találkozó konferencia kiadványa, Csíksonlyó, Románia, 2011. 04.28-05.01.Szerkesztő: Csibi V-J. Kiadó: Erdélyi Magyar Műszaki Tudományos Társaság, Kolozsvár, Románia,2011, pp.296-299, ISBN: 2068-1267 – „Amennyiben a nyomás kezdeti értéke meghaladta agömbhéjak infiltrálásához szükséges, oxidos nedvesítési viszo-nyokkal számított infiltrálásiküszöbnyomást (Bárczy és <strong>Kaptay</strong> modellje szerint ~110 kPa [J90]), az ömledékfront behatolt agömbhéjak közé, amelyek – mintegy alaki ellenállást kifejtve – az infiltrálást hajtónyomáskülönbséget folyamatosan csökkentették. ” p. 2092.J90-c18. I.N.Orbulov, J.Ginsztler: Compressive characteristics <strong>of</strong> metal matrix syntactic foams – Composites A,2012, vol.43, pp.553-561. „Bárczy and <strong>Kaptay</strong> developed a new infiltration model for closely packedequal spheres CPES structire. In their study the threshold pressure, the threshold contact angle and theequilibrium height <strong>of</strong> penetration has been determined. The experiments demonstrated the reliability <strong>of</strong>the theoreetical results [J90]” – p.554.J90-c19. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „ha az infiltrációhoz használt porózus anyagot szorosan illeszkedőgömbök alkotják, a közöttük lévő pórusokba a penetrációhoz szükséges kritikus peremszög 50,7 fok[J90].” – 3.o.J90-c20. I.N.Orbulov: Infiltration and mechanical characteristics <strong>of</strong> hollow spheres reinforced metal matrixcomposites – Proc. 8th International Conference on Mechanical Engineering, 2012, pp. 403-411. – „Inorder to successful infiltration a threshold pressure must be assured by the infiltrating system. Thispressure can be determined by theoretically and experimentally. <strong>Kaptay</strong> et al developed a theoreticalmodel for closely packed spheres to predict the threshold pressure [J90].” – p.403.J90-c21. K.Májlinger, I.N.Orbulov: Elemental distribution and orientation analysis on metal matrix syntacticfoams - Proc. 8th International Conference on Mechanical Engineering, 2012, pp. 301-308. – „In all casesthe contact angle between the ceramic microspheres and the metal matrix has a detrimental effect on theinfiltration characteristics and on the threshold pressure (in the case <strong>of</strong> pressure infiltration) [J90].” –p.302J90-c22. IN Orbulov: Compressive properties <strong>of</strong> aluminium matrix syntactic foams – Mater Sci Eng A, 2012,vol.555, pp.52-56. – „In all cases poor wetting or large contact angle between the ceramic hollow spheresand the metal has a detrimental effect on the infiltration characteristics and on the threshold pressure (inthe case <strong>of</strong> pressure infiltration) [J90].” – p.53.J90-c23. IN Orbulov, K.Májlinger: Microstructure <strong>of</strong> metal-matrix composites reinforced by ceramicmicroballons – Materiali in Tehnologije, 2012, vol.46, No.4, pp.375-382. – „..the contact angle betweenthe ceramic microspheres and the metal matrix has a detrimental effect ont he infiltration characteristics..[J90]” – p.376.30


J90-c24. IN Orbulov, J.Ginsztler: Compressive Behaviour <strong>of</strong> Metal Matrix Syntactic Foams – Acta Polyt Hung,2012, vol.9, No.2, pp.43-56. – „Bárczy and <strong>Kaptay</strong> developed a new infiltration model for closely packedequal spheres structure. In their study, the threshold pressure, the threshold contact angle and theequilibrium height <strong>of</strong> penetration were determined. All these parameters are significantly different fromthose obtained from the traditional capillary penetration model, but similar to the Carman model. Theexperiments demonstrated the reliability <strong>of</strong> the theoretical results [J90]” – p.45.J89. J.Sytchev, N.Borisenko, G.<strong>Kaptay</strong>: Intercalation <strong>of</strong> lithium into graphite as the first stepto produce carbon nanotubes in an electrochemical way – Materials Science Forum, 2005,vols. 473-474, pp.147-152 (IF = 0.399)J89-c1. Adamokova M.N.: Elektrovidelenie metallicheskogo volframa, molibdena i ich karbidovi znizkotemperaturnich galogenidno-oksidnich rasplavov – Diss. na kand. him. nauk, Ekaterinburg, 2005,142 pp. – „V 2000 g. nachala publikovat rezultati issledovanii po polucheniiu nanotrubokelektroliticheskim metodom tretia gruppa – <strong>Kaptay</strong> G i Sychev J.Iv Vengrii [J89] vosproizveli rezultatirabot Fray-a, takzhe pokazali, shto elektroosozhdenie litiia, natriia, kaliia, magniia, kalciia izsootvetstvuiushich rasplavlennich hloridov privodit k polucheniu uglerodnich nanotrubok. Produktielektroliza bili issledovani metodom atomno-silovoi mikroskopii”….. „G.<strong>Kaptay</strong> i J.Sichev ssotrudnikami (Vengriia) zanimaiutsia issledovaniem mechanizma obrazovaniia uglerodnich nanotrubokpri osazhedenii shelochnich metallov (litiia i natriia) i shelochnozemelnich metallov (magniia i kalciia) izrasplavlennich solei na grafitovii katod [J89]” – p.25.J88. P.Baumli, J.Sytchev, Zs.H.Göndör, G.<strong>Kaptay</strong>: Interaction between a titanium-containingmolten salt and an alumina plate - Materials Science Forum, 2005, vols. 473-474, pp.39-44.(IF = 0.399)J88-c1. Zhai XJ, Zhang Z, Li JD, Zhang MJ: Deoxidization mechanism <strong>of</strong> in-situ electro-deoxidization <strong>of</strong> TiO2to titanium – in: TMS 2008 ANNUAL MEETING SUPPLEMENTAL PROCEEDINGS, VOL 1:MATERIALS PROCESSING AND PROPERTIES 2008, TMS, pp. 385-390.J87. G.<strong>Kaptay</strong>: A new equation for the temperature dependence <strong>of</strong> the excess Gibbs energy <strong>of</strong>solution phases – CALPHAD, 2004, vol.28, pp.115-124. (in „Top 25 articles within thejournal” – „No.13.” in 2nd quarter <strong>of</strong> 2005, „No.12” in the 4th quarter <strong>of</strong> 2005 and „No.12” in the 1stquarter <strong>of</strong> 2006) (IF = 2.119)J87-c1: Schmid-Fetzer R, Janz A, Grobner J, Ohno M: Aspects <strong>of</strong> quality assurance in a thermodynamic Mgalloy database – Adv Eng Mater, 2005, vol. 7 (12), pp. 1142-1149 - „There is no simple solution togenerally avoid the artifact <strong>of</strong> the inverted gap within the freamework <strong>of</strong> the most popular lineartemperature dependency <strong>of</strong> liquid interaction parameters. <strong>Kaptay</strong> [J87] has clearly pointed out that thelinearity results in an unrealistic exaggeration <strong>of</strong> excess mixing quantities at high temperature.However, the suggested solution <strong>of</strong> exponential temperature dependence [J87] may result in an artificialre-stabilization <strong>of</strong> the liquid phase at low temperature as detailed recently for the example <strong>of</strong> Mg-Sialloys” – p.1144.J87-c2. Arroyave R, Liu ZK: Thermodynamic modelling <strong>of</strong> the Zn-Zr system – Calphad, 2006, vol. 30, pp.1-13.– „The interaction parameters <strong>of</strong> the liquid phase are modelled with an exponential temperaturedependence, as recommended by <strong>Kaptay</strong> [J87]. In the latter case, the description <strong>of</strong> the hcp and bccphases are modified accordingly” – p.1, .. „For the long time, it has been recognized that the (linear)expression may be problematic… To alleviate this problem, <strong>Kaptay</strong> [J87] has proposed a differenttemperature dependence for the interaction parameters: (Eq.8)…. This feature essentially eliminatesinverted miscibility gaps” – p.3, .. “Model 3. The liquid and solid solution are modeled with interactionparameters that decay exponentially with temperature” – p.4, … “ ..the three models yield essentiallythe same phase diagram… Model 2 is the best… Model 3 is not satisfactory and perhaps a morecomplicated temperature dependence needs to be employed” – p.12.J87-c3. Malakhov DV, Balakumar T: Re-optimization <strong>of</strong> the Mg-Sb system under topological constraints – Int JMater Res, 2006, vol.97, pp. 517-525 – „If a better model is difficult to find, then various empirical orheurestic approaches can be tried. An interesting and very elegant semi-empirical method for getting rid<strong>of</strong> an inverted miscibility gap was recently proposed by <strong>Kaptay</strong> [J87]. The method, however, is notcapable <strong>of</strong> handling the situations when a phase becomes stable in a region within which it should notexist. Besides, a utilization <strong>of</strong> <strong>Kaptay</strong>’s fomalism in practice is hampered by the necessity to rewrite31


source codes upon which Gibbs energy minimizers and procedures for optimization are based.” – p.518.J87-c4. R.Schmid-Fetzer, D.Amdersson, P.Y.Chevalier, L.Eleno, O.Fabrichnaya, U.R.Kattner, B.Sundman,C.Wang, A.Watson, L.Zabdyr, M.Zinkevich: Assessment techniques, database design and s<strong>of</strong>twarefacilities for thermodynamics and diffusion – Calphad, 2007, vol.31, pp.38-52. – „generally, theenthalpy and the excess entropy <strong>of</strong> mixing should have the same sign [J87]…. The –a/b ratio should bein the order <strong>of</strong> 3000 K for most systems [J87]…. Another possibility is to try to avoid the artificialmiscibility gap completely, by bringing the liquid excess parameters to zero at high temperatures.<strong>Kaptay</strong> [J87] suggested an exponential function <strong>of</strong> the form ..Eq.(5).. (my equation is given)… Thereasoning proposed by <strong>Kaptay</strong> is convincing since Eq.(5) satisfies all the necessary boundary conditionsat high (and low) temperatures that are demanded. It is also true that over a limited temperature range,where actual experimental data may be provided, the exponential function does not visibly deviate froma straight line, as shown by <strong>Kaptay</strong> in a graph for the range 0.3 < T/tau < 0.4. However, no Calphadtype analysis was performed in that paper [J87].” – p.43. „We have attempted to re-model the Mg-Sisystem using (<strong>Kaptay</strong>) Eq. This is a good test system since it contains just one stoichiometricintermediate phase, Mg2Si, having a well defined Gibbs energy and so only the Gibbs energy <strong>of</strong> theliquid remains to be adjusted. In fact, the inverted gap is avoided, as expected. However, for all themodel parameter settings that came close to a proper description <strong>of</strong> at least the invariant phaseequilibria in Fig.2, another artifact at low temperature is observed.” – p.43. „Fig 3 shows an attempt toreproduce the stable phase diagram by just refitting the liquid description with two Redlich-Kisterexcess parameters (L0 and L1, with h0, h1, 0, 1) with an exponential T-dependence (Eq-s 6.a-b). Theoptimized values <strong>of</strong> the 4 coefficients resulting from using only the invariant phase equilibria (but thereare only 3 <strong>of</strong> them [GK]) as experimental information was: h0 = -95358 J/mol, 0 = 1303.8 K, h1 = 15442 793 J/mol (15 MJ/mol ?? [GK]) and 1 = 120.6146 K (120 K?? [GK]). This attempt removed theinverted miscibility gap but instead the liquid became stable at low temperature, see Fig.3 (the low-Tartifact is caused by not performing full assessment <strong>of</strong> the system and by finding 4 parameters using 3nonvariant points, meaning one <strong>of</strong> the parameters is selected freely, thus by doing so it is not proventhat the low-T artifact can happen in reality. However, it indeed proves that the low-T artifact canhappen at least in principle [GK]). This artifact may be avoided by keeping track <strong>of</strong> the values <strong>of</strong> h and or by adding extra experimental information to prevent the liquid from becoming stable below somelimit (e.g. 100 K), but it shows that the exponential model cannot be used without care” – p.44.„Therefore, the basic idea <strong>of</strong> (<strong>Kaptay</strong>) Eq is good and clearly superior to the popular linear equationand, in fact, solves the problem associated with high temperatures, but unfortunately may induce a newproblem at low temperature” – p.44.J87-c5. Malakhov DV, Balakumar T: Thermodynamic optimization under topological constraints: principles andexamples – Calphad, 2007, vol.31, pp.402-403 (ref. No.4). – „Although the importance <strong>of</strong> this problemwas understood a while ago, the first method specially tailored to struggle against inverted miscibilitygaps was proposed only two years ago [J87]. Recently, a remarkably elegant <strong>Kaptay</strong>’s approach wastried for optimizing the Zn-Zr system” – p.403.J87-c6. M.Idbenali, C.Servant, N.Selhaoui, L.Bouirden: A thermodynamic modelling <strong>of</strong> the Ba-Pb system –Calphad, vol.31, 2007, pp.479-489. – „In order to avoid during the phase diagram calculation theoccurence <strong>of</strong> an unwanted miscibility gap in the liquid phase up to 6000 K [J87], additional constraintswere imposed, such as the Gibbs energy <strong>of</strong> the liquid phase with positive curvature d 2 G/dx 2 > 0, on thewhole Pb composition range and every 500 K from 1000 to 6000 K” – p.481.J87-c7. Malakhov DV, Balakumar T: Post-optimization elimination <strong>of</strong> inverted miscibility gaps -INTERNATIONAL JOURNAL OF MATERIALS RESEARCH 98 (9): 786-796 SEP 2007 – „A veryinteresting and potentially useful refinement proposed by <strong>Kaptay</strong> [J87] has already been tried foroptimizing the Zn-Zr system…” – p.786.J87-c8. V.Grolier, R.Schmid-Fetzer: Experimental study <strong>of</strong> Au-Pt-Sn phase equilibria and thermodynamicassessment <strong>of</strong> the Au-Pt and Au-Pt-Sn systems – J. Electronic Mater, 2008, vol.37, pp.264-278 –’”<strong>Kaptay</strong> did recently propose for Calphad optimization purposes the constraint simplification: tau0 > 0[J87]” – p.272.J87-c9. M.Idbenali, C.Servant, N.Selhaoui, L.Bouirden: A thermodynamic reassessment <strong>of</strong> the Ca-Pb system –Calphad, 2008, vol.32, pp.64-73 – „In order to avoid the formation <strong>of</strong> an unwanted inverted miscibilitygap <strong>of</strong> the liquid phase during the calculation <strong>of</strong> the Ca-Pb phase diagram, constraints must be imposedduring the optimization procedure [J87]” – p.66. “Finally, we verified that no miscibility gap wascalculated with our thermodynamic optimized parameters as commended in [J87]” – p.71.J87-c10. C.Guo, Z.Du, C.Li: A thermodynamic description <strong>of</strong> the Mg-Pr-Y system – Calphad, 2008, vol.32,pp.177-187 – „<strong>Kaptay</strong> [J87] and Arroyave and Liu [J87-c2] pointed out that this expression <strong>of</strong> theRedlich-Kister equation may become problematic, especially in cases where the thermodynamic32


description is intended to be valid over a wide temperature range. Usually, the excess enthalpies andentropies <strong>of</strong> mixing have the same sign. Thus, there is always a temperature at which the L parameterchanges sign. When this change is from negative to positive, and if this effect is more dominant than the… term due to ideal mixing, then spurious miscibility gaps tend to appear.” – pp.185-186.J87-c11. M.Idbenali, N.Selhauni, L.Bouirden, C.Servant: Thermodynamic assessment <strong>of</strong> Fe-Hf binary system –J Alloys Comp., 2008, vol.456, pp.151-158 – „Two years ago, a method was propsed for avoiding theformation <strong>of</strong> an artificial inverted miscibility gap above the liquidus line [J87]…. <strong>Kaptay</strong> [J87] showedthat, when using … 13 lines + eq-s” – p.153., + “5 lines, Eq.” – p.156-157.J87-c12. H.Ran, Z.Du, C.Guo, C.Li: Thermodynamic modeling <strong>of</strong> the Ru-Zr system – J Alloys Compounds,2008, vol.464, pp.127-132. – “Abstract: The solution phases were modeled with a new semi-empiricalequation, which was recommended by <strong>Kaptay</strong>.” P.127, “.. To solve this problem, <strong>Kaptay</strong> [J87] hasproposed a new semi-empirical equation {8 lines}… In order to compare the difference for the liquidphase between the models, two sets <strong>of</strong> thermodynamic descriptions were considered: the liquid andsolid solutions are modeled with the linear temperature dependence by the Redlich-Kister equation andwith the exponential temperature dependence by the <strong>Kaptay</strong> equation [J87]” – p.128, “Table 1, <strong>Kaptay</strong>equation” – p.129, “Fig.1. Calculated Ru-Zr phase diagram by the present thermodynamic descriptionusing (A) <strong>Kaptay</strong> equation [J87] and (B) Redlich-Kister equation with experimental data” – p.130,“Fig.2, <strong>Kaptay</strong> equation [J87]”, p.130, “Fig.3, <strong>Kaptay</strong> equation”, p.130, “Table 2, <strong>Kaptay</strong> equation[J87]”, p.131, “Fig.4. Calculated Gibbs energies <strong>of</strong> the bcc solution (A2) and RuZr with CsCl-typestructure (B2) at 1800 K in the Ru-Zr system using <strong>Kaptay</strong> equation [J87]” – p.131. “Fig.5. CalculatedGibbs energies <strong>of</strong> the hcp solution (A3) and Ru 2 Zr with MgZn 2 -type structure (C14) at 2000 K in theRu-Zr system using <strong>Kaptay</strong> equation [J87]” – p.131. “The Ru-Zr phase diagram calculated by means <strong>of</strong>thermodynamic parameters using the <strong>Kaptay</strong> equation [J87] is presented in Fig.1A, and is nearlyidentical to the one represented by experimental data <strong>of</strong> Eremenko et al.” – p.131. “In view <strong>of</strong> theestimated experimental errors (about 1-2 at%), all <strong>of</strong> the 18 experimental invariant reactioncompositions in the Ru-Zr system are well reproduced by the <strong>Kaptay</strong> equation [J87]” – p.132. “It isshown that the <strong>Kaptay</strong> equation [J87] is the better one that reproduces the experimental data” – p.132.“Conclusions: A very good agreement is obtained between the calculations and experiments forRedlich-Kister and <strong>Kaptay</strong> equations, except for the liquid phase using the Redlich-Kister equationbecomes unstable at 4700 K, while it is stable at high temperature using the <strong>Kaptay</strong> equation” – p.132.J87-c13. D.V.Malakhov: On a shape-preserving thermodynamic optimization – Arch Metall Mater, 2008, vol.53,No.4, p.1097-1106. – „If the choice (<strong>of</strong> the model) was prompted by a „mathematical convenience”, i.e.if an aphysical formalism was used, then extrpolating may lead to artifacts … Among such artifacts,inverted miscibility gaps in the liquid phase at elevated temperatures are seen most frequently; thereasons behind their appearance are well understood [J87].” – p.1097.J87-c14. Y.Gao, C.Guo, C.Li, S.Cui, Z.Du: Thermodynamic modeling <strong>of</strong> the Ru-Ti system – J AlloysCompounds, 2009, vol.479, pp.148-151 – “values calculated by means <strong>of</strong> the thermodynamicparameters using the Redlich-Kister equation and the <strong>Kaptay</strong> equation are presented in Fig.1a and 1.b,respectively, nearly identical to the one represented by Eremenko.” – p.150. “In view <strong>of</strong> the estimatedexperimental errors (about 1-2 at %), most <strong>of</strong> experimental invariant reaction compositions in the Ru-Tisystem are well reproduced for Redlich-Kister and <strong>Kaptay</strong> equation.” – p.150. “Fig.2. <strong>Kaptay</strong> equation”– p.151, “Fig.3. <strong>Kaptay</strong> equation” – p.151, “Fig.3. is the calculated molar Gibbs energies <strong>of</strong> the bccsolution (A2) and RuTi with CsCl-type structure (B2) at 1600 K in the Ru-Ti system according to theRedlich-Kister equation and <strong>Kaptay</strong> equation” – p.151. “A very good agreement is obtained betweenthe experiments and two calculations for Redlich-Kister and <strong>Kaptay</strong> equation” – Conclusion, p.151.J87-c15. X.Yuan, W.Sun, Y.Du: Thermodynamic modeling <strong>of</strong> the Mg-Si system with <strong>Kaptay</strong>’s equation forexcess Gibbs energy <strong>of</strong> liquid phase – Book <strong>of</strong> Abstracts to the 38 th Calphad conference, 17-22 May,2009, Praha, page 145. – “The Mg-Si system was re-modeled using <strong>Kaptay</strong>’s equation [J87], in whichthe equation …. was introduced to describe the excess Gibbs energy <strong>of</strong> the liquid phase. Compared withthe previous assessments, in which the Redlich-Kister polynomial was used for the description <strong>of</strong> theliquid phase with a linear T-dependence <strong>of</strong> the interaction energies, the artificial inverted miscibilitygap at high temperature was removed. Moreover, the liquid phase is not restabilized at lowtemperatures. The calculated phase diagram and thermodynamic properties agree well with theexperimental data” – p.145.J87-c16. M.Li, C.Guo, C.Li, Z.Du: A thermodynamic description <strong>of</strong> the Cr-Ge system – J Alloys Compd, 2009,vol.481, pp.283-290 – “Abstract: The excess Gibbs energies for the solution phases .. were describedusing the polynomial temperature dependence and <strong>Kaptay</strong> equation” – p.283, “The miscibility gaps donot close and imply that the solution is unstable. To solve this problem <strong>Kaptay</strong> [J87] proposed a semiempiricalequation (7)…” – p.285. “<strong>Kaptay</strong> equation” – in Tables 2, 3 + in Figs 1.a, 1.b, 2, 3.a, 3.b, 3.c,6. “As shown in Table, satisfactory agreement is obtained between calculations and experimental33


values”. “Solid lines and dashed lines in Fig.1.a represent the calculated results using the polynomialtemnperature dependence and <strong>Kaptay</strong> equation [J87], respectively. As shown in Fig.1.a, solid lines areidentical to dashed lines at low temperature range. However, the liquid modeled with the polynomialtemperature dependence has the critical temperature (about 6200 K) for the inverted miscibility gap. Asmentioned in Section 3.2, the interaction parameters with the polynomial temperature dependence areonly valid below the critical temperature and <strong>Kaptay</strong> equation [J87] is applied to overcome this problemin the present work.”. “Conclusion: A good agreement is obtained between the experiments and twocalculations according to the polynomial temperature dependence and <strong>Kaptay</strong> equation”. – p.290.J87-c17. S.Arnout: PhD thesis (assessment <strong>of</strong> phase diagrams in oxide systems with Cr 2 O 3 ), KatholikeUniversitat, Leuven, 2009 – „This is a dangerous situation as it creates inverted miscibility gaps.Instead <strong>of</strong> the linear terms, <strong>Kaptay</strong> [J87] proposed to use an exponential term, which goes to zero athigh temperatures. The use <strong>of</strong> this kind <strong>of</strong> parameters has, however, not been implemented in thequasichemical model” – p.120.J87-c18. X.Yuan, W.Sun, Y.Du, D.Zhao, H.Yang: Thermodynamic modeling <strong>of</strong> Mg-Si system with the <strong>Kaptay</strong>equation for the excess Gibbs energy <strong>of</strong> the liquid phase – Calphad, 2009, vol.33, pp. 673-678. doi:10.1016/j.calphad.2009.08.004. –„Abstract: The Mg-Si system was remodeled using the <strong>Kaptay</strong>equation .. Compared with the previous assessments using a linear temperature dependence .. thearitificial inverted miscibility gap at high temperature is removed.” – p.673. „Summary: The <strong>Kaptay</strong>equation was successfully used to describe the liquid phase int he Mg-Si system.” – p.678.J87-c19. CY Zhan, W.Wang, Z.L.Tang, Z.R.Nie: Thermodynamic Research on Solution Properties <strong>of</strong> Al-ErAlloys – Mater Sci Forum, 2009, vol.610-613, pp. 674-680 – „Abstract: Mixing enthalpy <strong>of</strong> Al-Erbinary alloys system has been calculated based on Miedema model, in which a new interactionparameters Li proposed by <strong>George</strong> <strong>Kaptay</strong> was considered: Li=h0i.exp(-T/τ0i ), which are used toindirectly calculate the activity <strong>of</strong> Er in Al-Er alloys and some other thermodynamic properties, such asexcess Gibbs energy and excess entropy at 1073K.”J87-c20. X.Li, C.Li, Z.Du, C.Guo: Thermodynamic analysis on ageing process <strong>of</strong> Mg-Zn alloys – Chinesejournal at www.paper.edu.cn, 2009, vol.2, No.22, pp.2364-2372 – „… KAPTAY [J87]… Eq.(4) +parameters <strong>of</strong> Table 6”J87-c21. C.Guo, C.Li, Z.Du: A thermodynamic modeling <strong>of</strong> the Gd-Tl system – J Alloys Compounds, 2009,vol.492, pp.122-127. – „In the present work, the excess Gibbs energies<strong>of</strong> the liquid, bcc and hcpsolution phases were modeled using the polynomial temperature dependence and <strong>Kaptay</strong> equation” –p.122. „To solve this problem, <strong>Kaptay</strong> [J87] has proposed a semi-empirical equation: ….” – p.123. „Inaddition, the <strong>Kaptay</strong> equation [J87] was applied int he solutions liquid, bcc and hcp in order to avoid themetastable miscibility gap at high temperature int he liquid state… Table 3. Thermoduynamicparameters <strong>of</strong> the liquid, bcc and hcp solution phases using the <strong>Kaptay</strong> equation in the Gd-Tl system” –p.3. „Table 4. <strong>Kaptay</strong> equation…” – p.126,, „Fig.1.b Calculated Gd-Tl phase diagram using <strong>Kaptay</strong>equation [16] with experimental data” – p.126, „Fig.3. Calculated molar Gibbs energies <strong>of</strong> the bccsolutiion (A2) and GdTl with CsCl-type structure (B2) at 1300 K using polynomial temperaturedeoendence and <strong>Kaptay</strong> equation [J87] int he Gd-Tl system” – p.126, „The interaction parametersexpressed using <strong>Kaptay</strong> equation int he excess Gibbs energy for solution phases have certain physicalinterest, and can avoid the artificial miscibility gap in liquid at elevated temperature. Usually, thethermodynamic parameters optimized using <strong>Kaptay</strong> equation model are recommended to choose.However, in past decades, the interaction parameters int he excess Gibbs energy <strong>of</strong> the solution phasesfor almost all alloy systems were expressed in polynomial dependence <strong>of</strong> temperature, which were alsoused in almost all thermodynamic databases. Int he rpesent work, the thermodynamic parameters usingtwo models for solution phases are optimized.” – pp.126-127. „Conclusions. A good agreement isobtained between the experiments and two calculations according to the polynomial temperaturedependence and <strong>Kaptay</strong> equation.” – p.127.J87-c22. Z.Chunyao, W.Wei, N.Zuoren: Electron Theory Research on Al-4.5Mg-Zr-Er Alloys – MaterialsReview (in Chinese), 2009, vol.18 (http://en.cnki.com.cn/Article_en/CJFDTotal-CLDB200918026.htm)– „Interaction parameter LA-B between components proposed by <strong>George</strong> <strong>Kaptay</strong> is introduced,then theinteraction parameters between Al and Er,Zr,Mg are worked out based on Miedema model” – AbstractJ87-c23. Wang XL, Li CR, Guo GP, Du ZM, He W: Precipitation behaviour <strong>of</strong> GP zones during ageing process<strong>of</strong> Mg-Zn alloy – Acta Metall Sinica, 2010, vol. 46, No. 5, pp. 575-580 – „<strong>Kaptay</strong> Eq.(4) [J87]” – p.579J87-c24. C.Niu, M.Liu, C.Li, Z.Du, C.Guo: Thermodynamic description on the miscibility gap <strong>of</strong> the Mg-basedsolid solution in the Mg-Zn, Mg-Nd and Mg-Zn-Nd systems – Calphad, 2010, vol.34, pp. 428-433 – „Inthe present work a new, semi-empirical equation proposed by <strong>Kaptay</strong> [J87] is used to describe theinteraction parameter <strong>of</strong> the hcp-A3 solid solution, in order to prevent the apperance <strong>of</strong> the artificialmiscibility gap at high temperature” – p.429.34


J87-c25. D.V.Malakhov, M.Hosseinifar: A heuristic method to uncover a possible unsoundness <strong>of</strong> a physicalchemicalmodel – Calphad, 2010, vol.34, pp.467-477 – „Defect <strong>of</strong> such models as well as deficiencies<strong>of</strong> mathematically handy but physically reproachable formalisms usually manifest themselves in the socalledartifacts with inverted miscibility gaps [J87] being most frequent among them” – p. 468.J87-c26. S.H.Sheng, R.F.Zhang, S.Veprek: Phase stabilities and decomposition mechanism in the Zr-Si-Nsystem studied by combined ab initio DFT and thermodynamic calculation – Acta Mater, 2011, vol.59,pp.297-307 – “We consider also the exponential T-dependence which has been recently recommendedby <strong>Kaptay</strong> [J87] and successfully used for the thermodyanmic modeling <strong>of</strong> the Zn-Zr system” – p.298,“The exponential dependence <strong>of</strong> interaction parameter on temperature is given by [J87]: {Eq.(8)} +explanation” – p.303, “Fig-s 4b, 5b, 6c, 7”, - pp. 303-305, “The exponential T-dependence yields crossoverpoints <strong>of</strong> about x = 0.10-0.15 in better agreement with the experimental results than the linear one”– p.304.J87-c27. Wang W, Guo CP, Li CR, Du ZM: Thermodynamic re-modeling <strong>of</strong> the Co-Gd system – Int. J. MaterRes., 2010, vol.101, pp.1339-1346.J87-c28. P.Wang, L.Zhou, Y.Du, H.Xu, S.Liu, L.Chen, Y.Ouyang: Thermodynamic optimization <strong>of</strong> the Cu-Ndsystem – J Alloys Compounds, 2011, vol.509, pp.2679-2683 – „Due to the development <strong>of</strong> the newthermodynamic s<strong>of</strong>tware, and the increasingly enhanced awareness <strong>of</strong> these problems, they can bedetected by powerful sotware [J87]” – p.2679.J87-c29. S.Sheng: Investigations into superhard nitride- and oxide-based nanocomposites by means <strong>of</strong> combinedab-initio DFT and thermodynamic calculations – Doktors der Naturwissenschaften, TU München, 2010– „<strong>Kaptay</strong> recently recommended the use <strong>of</strong> the exponent6ial temperature dependence [J87].”, p.35.“The exponential dependence <strong>of</strong> interaction parameter on temperature given by Eq. [J87]… “ – p.43.J87-c30. Tang Y, Yuan X, Du Y: Thermodynamic modeling <strong>of</strong> the Fe-Zn system using exponential temperaturedependence for the excess Gibbs energy – JMM, 2011, vol.37, No.1, pp.1-10. “Abstract: The Fe-Znbinary system was re-modeled using exponential equation to describe the excess Gibbs energy <strong>of</strong> thesolution hases and intermetallic compounds with large homogenities. A self-consistent set <strong>of</strong>thermodyanmic parameters is obtained and the calculated phase diagram and thermodynamic propertiesusing the exponential equation agree well with the experimental data….” – p.1. “… a more generalmethod is to introduce the exponential equation, which is suggested by <strong>Kaptay</strong> in 2004 [J87], todescribe the excess Gibbs energy for the solution phase. This exponential equation has bee napplied tothe assessment <strong>of</strong> several (6) binary systems. These results support the practicability <strong>of</strong> this equation.” –p.2. “In the present work L is expressed by an exponential equation [J87] – Eq.(3)” –p.4. “..thedeviations between the calculation and experiment are very small. Besides, the miscibility gap at hightemperatures, as shown in Fig., was removed in the present work. This is an additional confirmation onthe reliability <strong>of</strong> the exponential equation” – p.6. “The present work shows that the exponential equationfor the excess Gibbs energy is very efficient to remove the artificial miscibility gap at hightemperatures. Besides, the calculated thermodynamic properties using exponential equation is is morereasonable than those due to the linear equation. It is recommended that the binary systems, which showartificial miscibility gap in the literature, should be checked and reassessed using the exponentialequation” – p.9. “.Conclusion: The exponential equation wa successfully used to describe the excessGibbs energy <strong>of</strong> both liquid and solid phases in Fe-Zn system …. The aritificial miscibility gap in theliquid phase at high temperatures was removed automatically using the exponential equation withoutapplying any thermodynamic constraints.” – p.9J87-c31. S.H.Sheng, R.F.Zhang, S.Veprek: Study <strong>of</strong> spinodal decomposition and formation <strong>of</strong> nc-Al 2 O 3 /ZrO 2nanocomposites by combined ab initio density functional theory and thermodynamic modeling – ActaMater, 2011, vol.59, pp.3498-3509. – „It will be shown that the exponential dependence, which hasbeen recommended by <strong>Kaptay</strong> [J87], yields the most reliable results” – p.3499, “Conclusions: … It hasbeen shown that using a linear temperasture dependence, or completely ignoring it, as found in manypublished papers, yields physically unsound results, because the calculated maximum spinodialtemperature is far above the melting point <strong>of</strong> the oxides. Therefore we focused on the thermodynamicmodeling using the exponential temperature dependence <strong>of</strong> the interaction parameter, as suggested by<strong>Kaptay</strong> [J87].” – p.3508.J87-c32. Weng, LD; Li, WZ; Zuo, JG; Chen, C: Osmolality and Unfrozen Water Content <strong>of</strong> AqueousSolution <strong>of</strong> Dimethyl Sulfoxide - J Chem Eng Data, 2011, vol.56, pp. 3175-3182.J87-c33. S. Bajaj, A. Landa, P. Söderlind, P.E.A. Turchi, R. Arróyave: The U–Ti system: Strengths andweaknesses <strong>of</strong> the CALPHAD method - Journal <strong>of</strong> Nuclear Materials, 2011, vol.419, pp. 177-185 –„Additionally, the manifestation <strong>of</strong> such unrealistic phase stabilities could also be prevented byintroducing special phase stability constraints (ensuring positive curvature <strong>of</strong> the Gibbs energy curvesfor the bcc phase at high temperatures, for example) such as phase stability (QF), or phase driving force35


(DGM) functions in Thermo-Calc, or by employing <strong>Kaptay</strong>’s function for the excess Gibbs energy[J87]” – p.183.J87-c34. M.Schick, B.Hallstedt, A.Glensk, B.Grabowski, T.Hickel, M.Hampi, J.Göbner, J.Neugebauer, R.Schmid-Fetzer: Combined ab-initio, experimental and Calphad approach for an improvedthermodynamic evaluation <strong>of</strong> the Mg-Si system – Calphad, 2012, vol.37, pp.77-86. – „There have beennumerous attempts to model this system thermodynamically, but despite some success severe problemsand questions remain to be solved: all evaluations except … show inverted miscibility gaps in the liquidbelow 3000 K, which are physically wrong. To avoid this problem, Yuan et al. Used the <strong>Kaptay</strong>equation [J87] instead <strong>of</strong> a standard linear temperature dependence for the liquid interaction.” - p. 77,“In contrast to Yuan et al, who used the <strong>Kaptay</strong> equation [J87], the temperature dependence <strong>of</strong> theinteraction parameters is approximated bz standard linear function…. As mentioned in the introduction,the use <strong>of</strong> the Kaptaz euqation to model the temperature dependnece <strong>of</strong> the interaction parameteres inthe liquid can help to avoid inverted miscibilitz gaps at elevated temperatures, but maz also lead toartificial phase stabilities at low temperatures, as Schmid-Fetzer et al. have shown” - p.81, “The majorremaining issue concerns the enthalpy <strong>of</strong> melting <strong>of</strong> Mg 2 Si and, connected with that, the enthalpy <strong>of</strong> theeutectic reaction L = Mg 2 Si + Si (diamond). There is a large difference between our experimental data(also supported by independent data) and our optimization (see Table 5). Any attempt to force a betterfit led to large temperature dependences <strong>of</strong> the parameters for the interaction in the liquid (i.e. a largenegative excess entropy <strong>of</strong> mixing) causing an inverted liquid miscibility gap” – p.85. ((conclusion <strong>of</strong>GK: Authors <strong>of</strong> this paper do not use my equation due to their mistaken hypothesis, although by the end<strong>of</strong> their paper they come to the point, when no other choice is left, except that spoiling theiroptimization. They selected spoiling their own paper but resist using my equation – no comment…))J87-c35. T.Abe, K.Ogawa, K.Hashimoto: Analysis <strong>of</strong> miscibility gaps based on the Redlich-Kister polynomialfor binary solutions – Calphad, 2012, vol.38, pp.161-167 - “<strong>Kaptay</strong> [J87] introduced the exponentialtemperature dependence into the R-K parameters ….. to suppress the LCP (lower critical point) at hightemperatures. However, it has been rarely used in the thermodynamic assessments.” – p.161J87-c36. Yiwen Lei, Ronglu Sun, Ying Tang, Wei Niu : Experimental and thermodynamic investigations into themicrostructure <strong>of</strong> laser clad Al-Si coatings on AZ91D alloys – Surf Coating Technol, 2012,http://dx.doi.org/10.1016/j.surfcoat.2012.07.032 - „Interaction parameters <strong>of</strong> the excess Gibbs energyfor the sublattice model are always presented using RK linear polynomial [X]. The formulation fortemperature dependent excess Gibbs energy <strong>of</strong> the sublattice model is based on the equation proposedby <strong>Kaptay</strong> [J87].”J86. G.<strong>Kaptay</strong>, T.Matsushita, K.Mukai, T.Ohuchi: On Different Modifications <strong>of</strong> theCapillary Model <strong>of</strong> Penetration <strong>of</strong> Inert Liquid Metals into Porous Refractories and theirConnection to the Pore Size Distribution <strong>of</strong> the Refractories – Metall. Mater. Trans. B, 2004,vol.35B, pp.471-486 (IF = 0.839)J86-c1. Bonadia P, Braulio MAL, Gallo JB, Pandolfelli VC: Refractory selection for long-distance moltenaluminumdelivery - AMERICAN CERAMIC SOCIETY BULLETIN 85 (8): AUG 2006 – “<strong>Kaptay</strong> etal [A67] propose a model to describe inert liquid metal penetration into porous refractories… (total 33lines + 4 equations + 1 figure describes the paper)” – p. 9303J86-c2. Kocaefe D, Ergin G, Kocaefe Y: Determining the wettability <strong>of</strong> granular alumina by aluminummagnesiumalloys using the infiltration method – Surf Interface Anal, 2008, vol. 40, pp. 1516-1522.J86-c3. Svidró József Tamás (konzulensek: Diószegi Attila és Tóth Levente): Transzportfolyamatok afém/formázóanyag határfelületén – PhD értekezés, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011 – „Emellett <strong>Kaptay</strong> [J86]leírta a „pre-penetráció” modelljét is, ami alatt a makroszkópikus penetrációhoz tartozó, küszöbnyomásalatti nyomáson fellépő viszonyleg kismértékű penetráót érti. Ehhez kidolgozta a „periodikusan változósugarú kapilláris” modellt (2.14 ábra), amely esetén ….. stb…” – pp.16-17.J85. G.<strong>Kaptay</strong>: Discussion <strong>of</strong> “Thermodynamics <strong>of</strong> Liquid Al-Na Alloys Determined byUsing CaF 2 Solid Electrolyte” published by S.G.Hansen, J.K.Tuset and G.M.Haarberg inMet.Mat.Trans.B, 2002, vol. 33B, 577-587 - Metall. Mater. Trans., 2004, vol.35B, pp.393-398 (IF = 0.839)36


J85-c1. S.G.Hansen, K.Tang: Thermodynamics <strong>of</strong> the Al-Na binary alloy – SINTEF report No.STF80MKA05211, 27 th Feb, 2006 – “<strong>Kaptay</strong> [J85] claimed that the negative deviation from Henry’s law found byHansen et al. was due to the reaction between Al vapour and NaF in the galvanic cell” – p.3. “Thisclearly indicates that the previous results are not reliable ..” – p.5.J85-c2. S.G.Hansen: The solubility <strong>of</strong> sodium in liquid aluminium – SINTEF Memo <strong>of</strong> 27 Febr, 2006 - “<strong>Kaptay</strong>[J85] claimed that the negative deviation from Henry’s law found by Hansen et al. was due to thereaction between Al vapour and NaF in the galvanic cell” – p.3. “None <strong>of</strong> the results obtained conformthe solubilities previously obtained by Hansen… ” – p.26.J85-c3. X.Yang, A.Jha, S.Ali, R.C.Cochrane: Mass-transport processes at the steel-enamel interface – MetallMater Trans B, 2006, vol.37B, pp.89-98 – “… the Marangoni convection, induced by an interfacialsurface tension gradient [J85] may promote mass transport across the interface and thereby engances therate <strong>of</strong> reactions” – p.89J85-c4. Zhang SJ, HAN QY, Liu ZK: Thermodynamic modeling <strong>of</strong> the Al-Mg-Na system – J. Alloys andCompounds, 2006, vol.419, pp.91-97 – “The controversal work <strong>of</strong> Hansen et al. was criticized by<strong>Kaptay</strong> [J85]. According to thermodynamic calculation <strong>of</strong> <strong>of</strong> <strong>Kaptay</strong> there may be reactions betweenAl(g) and NaF(s). However, Hansen et al. stood by their results. …. Their (Hansen’s) results are notused in this work due to errors as discussed above” – p.92.J85-c5. Zi-Kui Liu, S.Zhang, Q.Han, V.Sikka: The effect <strong>of</strong> impurities on the processing <strong>of</strong> aluminum alloys –Penn State, final report, September 2006. – “The controversial work <strong>of</strong> Hansen et al was criticized byMotzfeldt [] and by <strong>Kaptay</strong> [J85]. <strong>Kaptay</strong> considered the reactions between Al(g) and NaF(s) to exist inHansen-s EMF experiments based on his thermodynamic calculations. But Hansen et al stood by theirresults” – p.17.J84. G.<strong>Kaptay</strong>: Interfacial criteria for stabilization <strong>of</strong> liquid foams by solid particles –Colloids and Surfaces, A: Physicochemical and Engineering Aspects, 2003 (OR 2004)vol.230, pp.67-80. (IF = 1.513)J84-c1. N.Babcsán, D.Leitlmeier, H.P.Degischer: Foamibility <strong>of</strong> Particle Reinforced Aluminum Melt – Mat.-wiss. u. Werkst<strong>of</strong>ftech., 2003, vol.34, pp.1-8 – „<strong>Kaptay</strong> pointed out that wetting angle has to be in acertain range and particles stabilize the gas/liquid bubble interface. In the framework <strong>of</strong> a model,assuming single layer <strong>of</strong> particles between in the cell wall it was shown that the foam is stabilized onlyin the interval <strong>of</strong>’ the contact angles 10 – 90 degrees. However, when a presence <strong>of</strong> a double, or a’double+’ layer <strong>of</strong> particles is assumed to be in the cell wall, this interval increases to 10 - 129 degrees,or 10 – 170 degrees, accordingly [J84]”J84-c2. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “In themiddle 90’s –thanks for H.P.Degischer, J.Banhart and G.<strong>Kaptay</strong> – science found a partnership with thischallenging material {metallic foam} and some basic question like stability <strong>of</strong> metal foams {has been}clarified” – p.12, “ “…when a presence <strong>of</strong> a double, or a double+ layer <strong>of</strong> particles is assumed to be inthe cell wall, this interval increases to 10-129 degrees, or 10-170 degrees, accordingly. Calculating theprobability function <strong>of</strong> foam stability optimum values was found for contact angle = 75, 87 and 89degrees in a single, double and double+ layers, respectively. No stabilizing effect can be seen below 30% surface coverage <strong>of</strong> bubbles by particles [J84]” – p.34. , “<strong>Kaptay</strong> [J84] predicted that the foamibility<strong>of</strong> particle stabilized liquids strongly depends on the surface concentration <strong>of</strong> particles. This is thecase {for this work} for foams blown by Nitrogen gas, where the foam surface coverage was found tobe a segregated 40 % value (Fig.80 and Fig.81)” – p.81.J84-c3. N.Babcsán, J.Banhart, D.Leitlmeier: Metal foams - manufacture and physics <strong>of</strong> foaming - in: Proc. <strong>of</strong>Int. Conf. „Advanced Metallic Materials”, ed. by J.Jerz, P.Sebo, M.Zemankova, IMMM, SlovakAcademy <strong>of</strong> Sciences, 2003, pp. 7-15 – „<strong>Kaptay</strong> pointed out that the wetting angle has to be in a certainrange and particles stabilize the gas/liquid-bubble interface [J84]” – p.9., „It is common believe that thecomposition <strong>of</strong> the particles determines the stabilizing effect through the contact angle with the melt[J84]”, p.12.J84-c4. T.Wübben: Zur Stabilität flüssiger Metallschaume – Universität Bremen, Germany, 2003, 128 pp. - „Indiesem Zusammenhang wird das schon erwähnte Stabilisierungsmodell von G.<strong>Kaptay</strong> ausführlicherläutert und kritisch diskutiert” – p.2, „In diesem Kontext hat <strong>Kaptay</strong> [J84] ein mechanistisches Modellentwickelt, das sowohl den Einfluss der Partikelkonzentration als auch des Kontaktwinkels auf dieStabilität von Metallshaumen beschreibt. Diese Arbeit beschäftigt sich in groSen Teilen mit derUntersuchung der Gültigkeit dieses Modells. Es soll daher folgenden im Detail erläutert werden” –p.30. „Mit Ausnahme von <strong>Kaptay</strong> in [J84] geben jedoch alle Autoren nur phänomenologischeErklärungen. Die in erstmals angedeutete Hypothese wurde unter Berücksichtigung der im Rahmendieser Arbeit gewonnenen experimentellen Ergebnisse weiterentwickelt, so daS es quantitativeAussagen über die Wirksamkeit von Partikeln in Metallschaumen möglich mach [J84]” – p.31. „Der37


optimale Kontaktwinkel ist gemaS [J84] der, bei dem der Ausdruck ...(3.17) ... sein Maximum erreicht.”– p.34, „Ein weitaus entscheidenderer Kritikpunkt speziell an den quantitativen Berechnungen in [J84]ist jedoch die Annahme, das eine über die gesamte Porenoberflauche gemittelte belegungsdichte f zurberechnungvon p imm,max herangezogen werden kann, selbst dann, wenn f deutlich kleiner als 1 ist” –p.38.J84-c5. N.Babcsán, D.Leitlmeier, H.P.Degischer, H.J.Flankl: Particle stabilised liquid aluminium foams and therole <strong>of</strong> the oxide skin - in: “Cellular Metals: Manufacture, Properties, Application”, ed. by J.Banhart,N.A.Fleck, A.Mortensen, MIT Verlag, 2003, pp.101-106: “The particles can be characterized by …their wetting [J84]..”, p.101, “in Table 2: Differences and similarities in stabilization mechanism <strong>of</strong>liquid foam. Metallic foam: surface active agent (60-90 o contact angle) [J84]” – p.105.RJ84-c6. R.G.Alargova, D.S.Warhadpande, V.N.Paunov, O.D.Velev: Foam superstabilization by polymermicrorods – Langmuir, 2004, vol.20, pp.10371-10374. (Ref. No.8). – “Data and theoretical conclusionsin the literature point out that hydrophobic spherical particles may initiate foam destruction by rupturingthe foam films via a bridging-dewetting mechanism [J84].” – p. 10371.J84-c7. N.Babcsán, D.Leitlmeier, H.P.Degischer, J.Banhart: The role <strong>of</strong> oxidation in blowing particle-stabilizedaluminium foams – Advanced Engineering Materials, 2004, vol.6, pp.421-428 – „The various factorsinfluencing metallic foam stability ... the effect <strong>of</strong> particles ... wetting behavior [J84]” – p. 421,“Suitable particles (60-90 o contact angle [J84]) …. are necessary for obtaining a stable liquidaluminium foam” – p.427.J84-c8. V.Gergely, T.W.Clyne: <strong>Dr</strong>ainage in standing liquid metal foams: modelling and experimentalobservations - Acta materiala, 2004, vol.52, pp.3047-3058: „Interfacial criteria for stabilization <strong>of</strong>metallic foams by solid particles have recently been derived by <strong>Kaptay</strong> [J84]” – p.3053J84-c9. B.S.Murray, R.Ettelaie: Foam stabilty: proteins and nanoparticles – Current Opinion in Colloid &Interface Science, 2004, vol.9, pp.314-320 – „Other criteria for stability <strong>of</strong> particle-stabilized bubbleswere recently derived by <strong>Kaptay</strong> [J84]. The theoretical arguments presented in this work indicate theexistence <strong>of</strong> a maximum size (about 3 m for bubbles in water) above which particles are not effectivein prevention <strong>of</strong> coalescence.” – p.317.J84-c10. Brunke O, Odenbach S, Beckmann F: Structural characterization <strong>of</strong> aluminium foams by means microcomputed tomography – in: DEVELOPMENTS IN X-RAY TOMOGRAPHY IV Book Series:PROCEEDINGS OF THE SOCIETY OF PHOTO-OPTICAL INSTRUMENTATION ENGINEERS(SPIE), ed. by Bonse U, 2004, vol. 5535, pp. 453-463.J84-c11. Th.Wübben, S.Odenbach: On the stabilization mechanism in liquid metallic foams – PAMM (ProcAppl Math Mech), 2004, vol.4, pp.270-270 – “While some authors attribute the stability to theincreased viscosity due to solid particles that are presdent in the melt, there has also been evidence for astabilizing mechanism based on the wetting properties <strong>of</strong> solid substances [J84]” – p.270, “…the resultsgive strong evidence for the importance <strong>of</strong> interface related effects as has been postulated before [J84].According to this assumption, particles act against coalescence <strong>of</strong> pores in the liquid foam, possibly bythe mechanism described in [J84]” – p.271.J84-c12. N.Babcsán, J.Banhart, D.Leitlmeier: Metal foam – manufacture and physics <strong>of</strong> foam – Materials World,e-journal, 2005, vol.6, No.1 – “<strong>Kaptay</strong> pointed out that the wetting angle has to be in a certain range andparticles stabilize the gas/liquid-bubble interface [J84] – p.7,J84-c13. C.Körner, M.Arnold, R.F.Singer: Metal foam stabilization by oxide network particles – Mater. Sci.Eng., 2005, vol.A396, pp.28-40.: “Further progress to explain foam stability was made by <strong>Kaptay</strong> [J84].He uses a model <strong>of</strong> a 3D network <strong>of</strong> solid, spherical particles to explain force transfer between twointerfaces and in this way stability” – p.28.; .J84-c14. N.Babcsán, D.Leitlmeier, J.Banhart: metal foams – high temperature colloids. Part I. Ex situ analysis <strong>of</strong>metal foams – Colloids and Surfaces A, 2005, vol.261, pp.123- 130 – “<strong>Kaptay</strong> pointed out that thewetting angle has to be in a certain range and particles stabilize the gas/liquid-bubble interface [J84]” –p.125.J84-c15. P.M.Kruglyakov, A.V.Nushtayeva: Investigation <strong>of</strong> the influence <strong>of</strong> capillary pressure on stability <strong>of</strong> athin layer emulsion stabilized by solid particles – Colloids and Surfaces, A: Physicochem. Eng. Aspects,2005, vol.263, pp.330-335 – “Calculation <strong>of</strong> interfacial pressure separating two bubbles (drops) byparticles was given by <strong>Kaptay</strong> [J84] also, but this pressure is not equal to the capillary pressure andtherefore the stability criteria <strong>of</strong> <strong>Kaptay</strong> displays an inconsistency” – p.330.J84-c16. S-H.Park, Y-S.Um, C-H. Kum, B-Y. Hur: Thermophysical properties <strong>of</strong> Al and Mg alloys for metalfoam fabrication - Colloids and Surfaces, A: Physicochem. Eng. Aspects, 2005, vol.263, pp.280-283 -“Of-course, in the actual foaming process, the appearance <strong>of</strong> the rheological characteristics are verymuch influenced from the existing <strong>of</strong> particles [J84]” – p.280J84-c17. Th.Wübben, S.Odenbach: Stabilization <strong>of</strong> liquid metallic foams by solid particles – Colloids SurfacesA., 2005, vol.266, pp.207-213: “The stabilization model for liquid foams by solid particles is described38


in details in [J84]. We thus only give a short outline <strong>of</strong> the basics <strong>of</strong> this model” – p.207, “1 page <strong>of</strong>description twice mentioning “<strong>Kaptay</strong> model”” – p.208. “It should be pointed out that the model <strong>of</strong><strong>Kaptay</strong> does not take into account drainage and flow effects. We therefore carried out experimentsunder reduced gravity conditions” – p.209., “According to the discussion above, we thus have tomeasure the surface <strong>of</strong> the pores rather than the size <strong>of</strong> the pores to have a quantitative test <strong>of</strong> thevalidity <strong>of</strong> the model proposed by <strong>Kaptay</strong>” – p.210., “To investigate the validity <strong>of</strong> the model proposedby <strong>Kaptay</strong> [J84] we carried out experiments with two different lead powders” – p.210., “According tothe model <strong>of</strong> <strong>Kaptay</strong>, the total pore surface <strong>of</strong> a foam depend on the amount <strong>of</strong> particles present for filmstabilization” – p.211, “5. Comparison with the stabilization model by <strong>Kaptay</strong>. To compare the obtainedresults with the model proposed by <strong>Kaptay</strong> we come back to the assumption that the solid particlesoriginate from the broken oxide skins <strong>of</strong> the powder grains” – p.212, “The obtained results stronglysupport the validity <strong>of</strong> the model proposed by <strong>Kaptay</strong> [J84]” – p.213.J84-c18. A.Irretier, J.Banhart: Lead and lead alloy foams – Acta Mater., 2005, vol.53, pp.4903-4917 – “A certainoxide content is necessary to ensure foam stability… It is well known that metal foams are stabilized bysolid particles floating in the melt… Wübben could recently show [J84-c4] that the ratio between thetotal internal pore surface <strong>of</strong> a lead foam is proportional to the volume content <strong>of</strong> the entrained oxideand concluded that the oxides float on the foam films during foaming and create stabilization by a stilldisputed mechanism [J84]” – p. 4914J84-c19. N.Babcsán, F.Garcia-Moreno, D.Leitlmeier, J.Banhart: Liquid-metal foams – feasible in-situexperiments under low gravity – Materials Science Forum, 2006, vol.508, pp.275-280: “Phenomenarelated with aqueous foam stability are detailedly discussed in the literature in large monographs, butonly few <strong>publications</strong> relate to metal foams [J84]” – p.275J84-c20. Kostakis T, Ettelaie R, Murray BS: Effect <strong>of</strong> high salt concentrations on the stabilization <strong>of</strong> bubbles bysilica particles - LANGMUIR 22 (3): 1273-1280 JAN 31 2006 – “In addition, theoretical work from<strong>Kaptay</strong> [J84] postulated that solid particles can stabilize bubbles only when the bubbles are not largerthan 3 and 30 m” – p.1274J84-21. Asavavisithchai S, Kennedy AR: The effect <strong>of</strong> Mg addition on the stability <strong>of</strong> Al-Al 2 O 3 foams made by apowder metallurgy route - SCRIPTA MATERIALIA 54 (7): 1331-1334 APR 2006 – “it is generallyconsidered that particles which show good wetting with the liquid will improve the stabiulity <strong>of</strong> thefoam [J84]” – p.1331.J84-22. Park SH, Song KH, Um YS, Hur BY: Rheological characterization <strong>of</strong> Mg-Al alloys with ceramicparticles for metal foam – Mater Sci Forum, 2006, vol.510-511, pp.742-745. “no text given…”J84-c23. Gonzenbach UT, Studart AR, Tervoort E, Gauckler LJ: Ultrastable particle-stabilized foams -ANGEWANDTE CHEMIE-INTERNATIONAL EDITION 45 (21): 3526-3530 2006 - “.. modelinvestigations in the absence <strong>of</strong> surfactants performed [J84]” – p.3526.J84-c24. Friberg SE: Weight fractions in three-phase emulsions with an L-alpha phase - COLLOIDS ANDSURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 282: 369-376 JUL 20 2006 –“Emulsions with solid particles as the third phase have been investigated for a long time and have, aftera long period <strong>of</strong> only intermittent contributions, recently been the object <strong>of</strong> intense fundamentalresearch [J84]” – p.369.J84-c25. N.Babcsán, J.Banhart: Metal Foams – towards high-temperature colloid chemistry – Chapter 11 in:„Colloidal particles at Liquid Interfaces, ed. By B.P.Binks, T.S.Horozov, Cambridge University Press,2006, pp.445-499 – „Using a static model <strong>of</strong> a 3-D network <strong>of</strong> solid spherical particles he (<strong>Kaptay</strong>)attempted to explain the force transfer between two interfaces <strong>of</strong> a foam and in this way the stability viaa disjoining pressure [J84]. Various configurations <strong>of</strong> particles were considered in these models, <strong>of</strong>which three are shown in Fig.11.7. ((Fig.11.7 copied with permission <strong>of</strong> Elsevier)). The basic idea isthat a partially wetted particle is pinned to a surface since it has its lowest energy when immersed intothe liquid at a given depth....+ 10 lines description” – pp.461-462. “...It ias not evident from the imageshow mechanical forces can be transmitted from one side <strong>of</strong> a film to the other via particle networks aspostulated, e.g. by <strong>Kaptay</strong> [J84], which would be required to create a disjoining force. There are twoexplanations for these difficulties. Firstly, the 2-D character <strong>of</strong> metallographic analysis could obscurethe structure <strong>of</strong> the posztulated 3-D betworks. Secondly, it is not guaranteed that the arrangement <strong>of</strong>oarticles in solid foams is identical to that in liquid foams…” – p.489. „It is timely to give aninterpretation in terms <strong>of</strong> models such as the LP2+C model by <strong>Kaptay</strong> (see Fig.11.7.c). Accordingly, theparticles are pinned to each <strong>of</strong> the interfaces <strong>of</strong> a film by means <strong>of</strong> interfacial forces. This would explainmicrographs such as Fig.11.a. However, it is not clear how the attractive interactions between the twointerfaces are balanced. <strong>Kaptay</strong> postulates that mechanical forces are responsible for this counterpressure, the disjoining pressure, which in his model are transferred through locally densely packedlayers <strong>of</strong> particles. Experimental evidence, however, does not support the existence <strong>of</strong> such bridgesbetween the two surface layers.” – p.492. .. „Körner et al. assume that these meta-particles astabilise the39


cell walls by forming an LP1 layer in <strong>Kaptay</strong>-s notation. The idea sounds convincing, but is based onvery few and mostly indirect observations” – p.493.J84-c26. Shrestha LK, Acharya DP, Sharma SC, Aramaki K, Asaoka H, Ihara K, Tsunehiro T, Kunieda H:Aqueous foam stabilized by dispersed surfactant solid and lamellar liquid crystalline phase -JOURNAL OF COLLOID AND INTERFACE SCIENCE 301 (1): 274-281 SEP 1 2006 – Manyreports on foam and emulsion stabilized by the small solid particles are available [J84].” – p.275, „Themain factor responsible for the foam stability is the presence <strong>of</strong> colloidally dispersed particles int hecontinuous medium, which slow down the liquid drainage rate due to increased surface viscosity <strong>of</strong> thecontinuous phase [J84]…. <strong>Kaptay</strong> [J84] demonstrated enhanced stability in water based foam by silicaparticles smaller than 3 microns.” – p.280.J84-c27. Shrestha LK, Aramaki K, Kato H, Takase Y, Kunieda H: Foaming properties <strong>of</strong> monoglycerol fattyacid esters in nonpolar oil systems - LANGMUIR 22 (20): 8337-8345 SEP 26 2006 - – „.. the stability<strong>of</strong> foams is influenced by particle size, concentration, hydrphobicity and nature <strong>of</strong> the surfactant used[J84].” – p.8338, „<strong>Kaptay</strong> [J84] demonstrated the enhanced stability in a water based foam by silicaparticles < 3 micron in size” – p.8344.J84-c28. Haibel A, Rack A, Banhart J: Why are metal foams stable? - APPLIED PHYSICS LETTERS 89 (15):Art. No. 154102 OCT 9 2006 – „An idea which has recently become popular in metal foam literatureassumes that opposing partciloe-covered L/G interfaces are mechanically connected by particle bridgesacross films (Fig.1.d [J84]) – p.1, „Our analysis shows that particles do not interact accross liquid metalfilms, e.g., there is no analog to the „disjoining pressure” known to stabilize aqueous foams as claimedby several researchers [J84].” – p.3.J84-c29. J. Banhart: Metal foams: production and stability – Adv. Eng Mater., 2006, vol.8, pp.781-794 –“<strong>Kaptay</strong> analysed a number <strong>of</strong> possible particle arrangements in a film and evaluated their capability tostabilise films [J84]. Some are shown in Fig.8.. + ((17 describing lines + Fig.8))” - pp.785-786.J84-c30. J.Banhart: Metal foams: the mystery <strong>of</strong> stabilisation – in: Porous Metals and Metal FoamingTechnology, eds. H.Nakajima, N.Kanetake, the Japanese Inst. <strong>of</strong> Metals, 2006, pp.75-86 - “<strong>Kaptay</strong>analysed a number <strong>of</strong> possible particle arrangements in a film and evaluated their capability to stabilisefilms [J84]. Some are shown in Fig.8.. + ((17 describing lines + Fig.8))” - p.79.J84-c31. C.Körner: Integral Foam Molding <strong>of</strong> Light Metals – Physical and Technological Principles –Habilitation Thesis, Erlangen, 2006 – “<strong>Kaptay</strong> was the first who realized that stabilization for these kind<strong>of</strong> particles is based on the development <strong>of</strong> 3D network structures which transfer forces from oneinterface to the other [J84].” – p.108.J84-c32. E.Dickinson: Interfacial particles in food emulsions and foams – in: Colloidal Particles at LiquidInterfaces, edited by B.P.Binks and T.S.Horozov, Cambridge University Press, 2006, pp.298-327 – Theapplication <strong>of</strong> underlying principles [J84] to these systems is, however, still somewhat limited” – p.321.J84-c33. Kunieda H, Shrestha LK, Acharya DP, Kato H, Takase Y, Gutierrez JM: Super-stable nonaqueousfoams in diglycerol fatty acid esters - Non polar oil systems - JOURNAL OF DISPERSION SCIENCEAND TECHNOLOGY 28 (1): 133-142 JAN 2007 – „Recently, interest has been focused ont he foamsstabilized by the solid particles whose presence may promote or inhibit foam stability [J84]” – p.134.J84-c34. Shrestha LK, Saito E, Shrestha RG, Kato H, Takase Y, Aramaki K: Foam stabilized by dispersedsurfactant solid and lamellar liquid crystal in aqueous systems <strong>of</strong> diglycerol fatty acid esters -COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS 293 (1-3):262-271 FEB 1 2007 – “Many reports on foam and emulsion stabilized by the samll solid particles areavailable [J84].” – p.263, “<strong>Kaptay</strong> [J84] used silica particles smaller than 3 microns and demonstratedthe enhanced stability in water-based foams” – p.270.J84-c35. N.Babcsán, G.S. Vinod Kumar, B.S.Murty, J.Banhart: Grain refiners as liquid foam stabilizers – Trans.Indian Inst. Met., 2007, vol.60, pp.127-132. – „<strong>Kaptay</strong> derived a stability range <strong>of</strong> 60-90 o [J84]” –p.127.J84-c36. Yu SR, Liu J, Luo YR, Liu YH: Compressive behavior and damping property <strong>of</strong> ZA22/SiCp compositefoams - MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALSPROPERTIES MICROSTRUCTURE AND PROCESSING 457 (1-2): 325-328 MAY 25 2007 – “ ..ceramic particles … stabilized the cell walls [J84]” – p.325.J84-c37. Shrestha LK, Shrestha RG, Solans C, Aramaki K: Effect <strong>of</strong> water on foaming properties <strong>of</strong> diglycerolfatty acid ester-oil systems - LANGMUIR 23 (13): 6918-6926 JUN 19 2007 – “The stability <strong>of</strong> suchfoams was influenced by the size <strong>of</strong> the particle, concentration, hydrophobicity, and nature <strong>of</strong> thesurfactant used [J84]” – p.6918. “Several reports on the foams stabilized by particles having size <strong>of</strong> afew microns are reported [J84]” – p.6926J84-c38. Pugh RJ: Foaming in chemical surfactant free aqueous dispersions <strong>of</strong> anatase (Titanium dioxide)particles - LANGMUIR 23 (15): 7972-7980 JUL 17 2007 – “An alternative mechanism has been40


suggested which is based on a change in capillary pressure caused by the presence <strong>of</strong> small adsorbedparticles [J84]” – p.7978.J84-c39. Blute I, Pugh RJ, van de Pas J, Callaghan I: Silica nanoparticle sols 1. Surface chemicalcharacterization and evaluation <strong>of</strong> the foam generation (foamability) - JOURNAL OF COLLOID ANDINTERFACE SCIENCE 313 (2): 645-655 SEP 15 2007 – “It is also important to consider a recentalternative mechanism that has been suggested. It is based on a change in capillary pressure caused bythe presence <strong>of</strong> adsorbed particles [J84]. – pp.651-652.J84-c40. Somosvari BM, Babcsan N, Barczy P, Berthold A: PVC particles stabilized water-ethanol compoundfoams - COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS309 (1-3): 240-245 NOV 1 2007 – “<strong>Kaptay</strong> [J84] postulates that the maximum particle size that canstabilize liquid films depends on the liquid properties. For water 3 micron and for liquid metals 30micron were calculated. He also could derive theoretically, the optimum contact angles, measured bythe researchers” – p.240.J84-c41. Kim, HG Seong, BY Hur: Characteristics <strong>of</strong> Al fopam with high porosity by melt foaming method –Solid State Phenomena, 2007, vol.124-126, pp.1801-1804 – “In the melt formaing process that employsthe addition <strong>of</strong> TiH 2 in pure aluminium melt, pores generated leave individual hydrides and enter intothe pure molten aluminium due partly to buoyancy forces and due partly to the thermodynamicinstability <strong>of</strong> systems with enhanced liquid/gas interfaces [J84].” – p.1801.J84-c42. Kadoi K, Nakae H: Effect <strong>of</strong> particle addition to liquid metal on fabrication <strong>of</strong> aluminum foam - HIGHTEMPERATURE MATERIALS AND PROCESSES 26 (4): 275-283 2007 – “Some other models,similar to… were proposed… by <strong>Kaptay</strong> [J84], using an interfacial model” – p. 277.J84-c43. Gokhale AA, Sahu SN, Kulkarni VKWR, Sudhakar B, Rao NR: Effect <strong>of</strong> titanium hydride powdercharacteristics and aluminium alloy composition on foaming - HIGH TEMPERATURE MATERIALSAND PROCESSES 26 (4): 247-256 2007 – “The above results should be analyzed in light <strong>of</strong> the foamstability mechanism proposed by <strong>Kaptay</strong> [J84]. The mechanism …. {21 lines describing my paper + 1equation}” – p.255.J84-c44. Beckmann F, Grupp R, Haibel A, Huppmann M, Noethe M, Pyzalla A, Reimers W, Schreyer A, ZettlerR: In-situ synchrotron X-ray microtomography studies <strong>of</strong> microstructure and damage evolution inengineering materials - ADVANCED ENGINEERING MATERIALS 9 (11): 939-950 NOV 2007J84-c45. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „A másik csoportba sorolhatjuk azokat az anyagokat,amelyek létrehozásánál vagy csak a tömegcsökkentés, vagy valamilyen más különleges követelménydominál. Ezek a porózus szerkezeti anyagok [J84]” – p.41.J84-c46. U.T.Gozenbach, A.R.Studart, E.Tervoort, L.J.Gauckler: Tailoring the microstructure <strong>of</strong> particlestabilizedwet foams – Langmuir, 2007, vol.23, pp.1025-1032 – „These results suggest that thepreparation <strong>of</strong> wet foams that are stable against bubble coarsening and drainage requires particle sizesnot larger than a few micrometers in diameter. Theoretical calculations based ont he adsoroption energy<strong>of</strong> particles at gas – liquid interface and the maximum capillary pressure developed at the interfaceshowed that particles larger than about 3 microns are not able to stabilize foams for long period <strong>of</strong> time[J84]. These results are in the same order <strong>of</strong> magnitude as our experimental findings” – p.1029.J84-c47. H Luo, G Yao, YH Liu, XM Zhang: Study on evolution behaviours <strong>of</strong> bubble in aluminium melt -Aluminium alloys for transport, packaging, aerospace and other applications, 2007, pp.73-80.J84-c48. Z.Cao, G Yao, Y Liu: Fabrication <strong>of</strong> carbon fibers reinforced aluminium foam – Aluminium alloys fortransport, packaging, aerospace and other applications, 2007, pp.25-32J84-c49. Kostakis T, Ettelaie R, Murray BS: Enhancement <strong>of</strong> stability <strong>of</strong> bubbles to disproportionation usinghydrophilic silica particles mixed with surfactants or proteins – in: Food Colloids: Self-Assembly andMaterial Science, ed. by Dickinson E; Leser ME, Book Series: ROYAL SOCIETY OF CHEMISTRYSPECIAL PUBLICATIONS, 2007, vol. 302, pp. 357-368. – „In addition, theoretical work by <strong>Kaptay</strong>[J84] postulated that solid particles can stabilize bubbles only when the particles are not larger than 3-30 microns” – p.358J84-c50. Unterhaslberger G, Schmitt C, Shojaei-Rami S, Sanchez C: beta-lactoglobulin aggregates from heatingwith charged cosolutes: Formation, characterization and foaming – in: : Food Colloids: Self-Assemblyand Material Science, ed. by Dickinson E; Leser ME, Book Series: ROYAL SOCIETY OFCHEMISTRY SPECIAL PUBLICATIONS, 2007, vol.302, pp. 177-194. – recently, the use <strong>of</strong> silica orlatex particles with different surface properties and degree <strong>of</strong> hydrophobicity was demonstrated tostabilize interfacial films against disproportionation [J84]” – p.178.J84-c51. S.Zhang, Q.Lan, Q.Liu, J.Xu, D.Sun: Aqueous foams stabilized by Laponite and CTAB – ColloidsSurfaces A, 2008, vol.317, pp.406-413 – “The hydrphobicity <strong>of</strong> particles is generally described bycontact angle. It is an important parameter in determining … the foam stability [J84].” – p.408.41


J84-c52. TN Hunter, RJ Pugh, GV Franks, GJ Jameson: The role <strong>of</strong> particles in stabilizing foams and emulsions– Adv. Colloid Interface Sci., 2008, vol.137. pp.57-81 – “.. it is possible to calculate a theoreticalmaximum capillary pressure sustainable by a given system….Ivanov and co-workers were the first toconsider such a system [ ], and models have been further developed by others including Nushtaeva &Kruglyakov [] and <strong>Kaptay</strong> [J84].” – p.62, “<strong>Kaptay</strong> looked at general forces governing stability in foams[J84]…. + 15 lines <strong>of</strong> description” – p.75, “Another factor in equating the dominating stabilityinteraction from particle addition Is the effects <strong>of</strong> particle size. First considered in line with volumefraction by Jin et al [], and as revised by <strong>Kaptay</strong> [J84], there ares osme well grounded conclusions. + 4lines” – p.78.J84-c53. Ho PW, Li QF, Fuh JYH: Evaluation <strong>of</strong> W-Cu metal matrix composites produced by powder injectionmolding and liquid infiltration – Mater Sci Eng A, 2008, vol. 485, pp. 657-663 – „The interfacial forceacting upwards on spherical particle at a liquid/gas interface has been derived to be [J84]… (Eq.1). –see Fig.12” – p.661.J84-c54. Cao ZK, Li B, Yao GC, Wang Y: Fabrication <strong>of</strong> aluminum foam stabilized by copper-coated carbonfibers – Mater Sci Eng A, 2008, vol.486, pp.350-356 – „<strong>Kaptay</strong> evaulated the capability <strong>of</strong> six differentdefined structures which can in principle stabilize liquid foams, and concluded that loosely packed,clusthered particles, or even their network are mainly responsible for the stabilization <strong>of</strong> liquid foams[J84]” – p.350.J84-c55. S.Zhang, D.Sun, X.Dong, C.Li, J.Xu: Aqueous foams stabilized with particles and ionic surfactants –Coll Surf A, 2008, vol.324, pp.1-8 – „The stabilization mechanisms are mainly from three aspects: …and changes in capillary pressure caused by the presence <strong>of</strong> small adsorbed particles [J84]” – p.1, „.. theparticles form a steric layer or coating network that strongly hinders both shrinkage and expansion <strong>of</strong>the bubbles. The three-dimensional network has been suggested in some work [J84]” – p.4J84-c56. T.S. Horozov: Foams and foam films stabilised by solid particles - Curr Opinion in Colloid InterfaceSci, 2008, vol.13, pp.134-140. – „Several recent works [J84, etc.] treat the problem <strong>of</strong> liquid filmstability by solid particles theoretically, assuming either a bridging monolayer or a bilayer <strong>of</strong>hexagonally close-packed particles.” – p.137.J84-c57. M.Vignes-Adler: New foams: fresh challenges and opportunities – Curr Opinion in Colloid InterfaceSci, 2008, vol.13, pp.141-149. – „On the theoretical side, <strong>Kaptay</strong> derived criteria for stabilization <strong>of</strong>aqueous foams by solid particles based on the film pressure and the particle size for several geometricalarrangements <strong>of</strong> the particles inside <strong>of</strong> the foam films [J84].” – p.149.J84-c58. S Ata: Coalescence <strong>of</strong> bubbles covered by particles – Langmuir, 2008, vol.24, pp.6085-6091. - „Themechanism <strong>of</strong> film stabilisation has been explained by the capillary pressure between bubbles, given by{equation}. The theory was first proposed by Ivanov and co-workers and developed further by others[J84]” – p.6086-6087. “Recently, <strong>Kaptay</strong> [J84] extended the maximum capillary theory for variousparticle layers at the air-water interface. The optimum value <strong>of</strong> the contact angle for foam stabilizationwas found to be in the interval between 50 o and 90 o . Interestingly, his calculation showed that, to stabilizethe thin films, the particles should be smaller than 3 microns, which is contradictory to the previousstudies” – p.6086.J84-c59. Y.Luo, S.Yu, W.Li, J.Liu, M.Wei: Compressive behavior <strong>of</strong> SiC(p)/AlSi9Mg composite foams – J.Alloys Compds, 2008, vol.460, pp.294-298 – To stabilize the preparing process … ceramic particleswere added into metallic foams to form metal matrix composite foams [J84]” – p.294.J84-c60. S.Yu, Y.Luo, J.Liu: Effects <strong>of</strong> strain rate and SiC particle on the compressive property <strong>of</strong>SiC(p)/AlSi9Mg composite foams – Mater Sci Eng A, 2008, vol.487, pp.394-399 – “Recently, there is ahigh interest in using lightweight metallic foams for automotive, railway and aerospace industries forweight reduction and good mechanical and damping capacity [J84]” – p.394.J84-c61. R.J.Davenport, R.L.Pickering, A.K.Goodhead, T.P.Curtis: A universal threshold concept forhydrophobic mycolata in activated sludge foaming – Water Research, 2008, vol.42, p.3446-3454. – It isaccepted that solid particles with hydrophobic properties can lead to stable permanent foams calledthree-phase foams [J84]. – p.3446.42


J84-c62. C.Körner: Foam formation mechanism in particle suspensions applied to metallic foams – Mater SciEng A, 2008, vol.495, pp.227-235 – “Further progress to explain foam stability was made by <strong>Kaptay</strong>[J84] who uses a model <strong>of</strong> a three-dimensional network <strong>of</strong> solid, spherical particles to explain forcetransfer between two interfaces and in this way stability” – p.228.J84-c63. A.J.Klinter, G. Mendoza-Suarez, R.A.L.<strong>Dr</strong>ew: Wetting <strong>of</strong> pure aluminum and selected alloys onpolycrystalline alumina and sapphire – Mater Sci Eng A, 2008, vol.495, pp.147-152. – “Recently, it hasbeen found that the wetting behavior in metal-ceramic systems seems to play an important role in theproduction <strong>of</strong> aluminum foams [J84].” – p.147. “In theoretical models <strong>of</strong> <strong>Kaptay</strong> [J84], the stabilizingeffect <strong>of</strong> these particles on the liquid aluminum foam is credited to capillary effects between the meltand the particles, preventing the two liquid gas interfaces <strong>of</strong> a foam cell wall from touching and the twoadjacent cells from coalescence” – p.148.J84-c64. A.J.Klinter, R.A.L.<strong>Dr</strong>ew: Evaluation <strong>of</strong> the wetting behaviour <strong>of</strong> Al-7Cu and Al-11.5Si on SiC andsapphire in terms <strong>of</strong> Al-foam stability. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart,D.C.Dunand, DEStech Publ. Inc, 2008, pp.23-26. – „During the early stages <strong>of</strong> Al-foam rersearch, itwas found that alumina or SiC particles are essential in order to obtain stable aluminium foams.Originally it was believed that the stabilizing effect <strong>of</strong> these ceramic particles have on Al-foams wascaused by an increase in bulk viscosity <strong>of</strong> the Al melt due to ceramic particles additions. In a verytheoreticla approach, KAPTAY [J84] later developed models suggesting that the improved foamstability was due to capillary effects between the melt and the particles, preventing the two liquid gasinterfaces <strong>of</strong> a foam cell wall from touching, and the two adjacent cells from coalescencing.” – p.23.J84-c65. K.Kadoi, N.Babcsán, H.Nakae, F.Garcia-Moreno, J.Banhart: Methodology for the in-situ obsrevation <strong>of</strong>Alporas foams using X-ray radioscopy. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart,D.C.Dunand, DEStech Publ. Inc, 2008, pp.111-114. – „The final structure is influenced by the stability<strong>of</strong> liquid metal and the processing parameters [J84]” – p. 111.J84-c66. A.Dudka, F.Garcia-Moreno, N.Wanderka, J.Banhart: Structure and distribution <strong>of</strong> oxides in aluminiumfoam – Acta Mater, 2008, vol.56, pp.3990-4001. – „Two theories are mainly considered: i) the increase<strong>of</strong> local viscosity to an extent that the flow <strong>of</strong> liquid is blocked, and ii). stabilization <strong>of</strong> films throughoxide agglomerations or networks acting as surface active particles and inducing a particle-basedstabilization mechanism similar to the one proposed for other foaming routes [J84]” – p.3990.J84-c67. G.Morris, M.R.Pursell, S.J.Neethling, J.J.Cillers: The effect <strong>of</strong> particle hydrophobicity, separationdistance and packing patterns ont he stability <strong>of</strong> a thin film – J Coll Interface Sci, 2008, vol.327,pp.138-144. – „<strong>Kaptay</strong> [J84] also investigated the effect <strong>of</strong> attached particles stabilizing a film andshowed that if two layers <strong>of</strong> particles are attached to opposite sides <strong>of</strong> the film they can stabilise it atcontact angle above 90 deg” – p. 139, “If there are two or more layers <strong>of</strong> particles layers <strong>of</strong> particlesthey can stabilize a film above a contact angle <strong>of</strong> 90 deg, as demonstrated by <strong>Kaptay</strong> [J84]” – p.139.J84-c68. L.K.Shrestha, R.G.Shrestha, S.C.Sharma, K.Aramaki: Stabilization <strong>of</strong> nonaqueous foam with lamellarliquid crystal particles in diglycerol monolaurate/olive oil system – J Colloid Interface Sci, 2008,vol.328, pp.172-179 – “The stability <strong>of</strong> foams is influnced by the particle size, concentration,hydrophobicity and also by nature <strong>of</strong> the surfactants [J84].” – p.172, „In the case <strong>of</strong> particle-stabilizedfoaming systems, foam stability depends ont he tendency <strong>of</strong> the particles to adsorb at gas-liquidinterface, its shape and size. Silica or polymer latex particles are known to stabilize aqueous foams[J84]” – p.178.J84-c69. C.Koerner: Integral Foam Molding <strong>of</strong> Light Metals – Springer, 2008, 224 pp. – „ <strong>Kaptay</strong> [J84] was thefirst who realized, that stabilization for this kind <strong>of</strong> particles is based on the development <strong>of</strong> 3D networkstructures which transfer forces from one interface to the other” – p. 100.J84-c70. L.Pilon: Aluminum micr<strong>of</strong>oams for reduced fuel consumption and pollutant emissions <strong>of</strong> transportationsystems – University <strong>of</strong> California Energy Institute, Energy Development and Technology 013, ProjectReport, July 2008, Berkeley, 29 pp. – „Some oxide particles are formed and stabilize the bubbles asobserved with other types <strong>of</strong> the particles (<strong>Kaptay</strong>, 2003)” – p.21.J84-c71. M.Y.Jung, K.Y.Lee, J.W.Moon: Properties <strong>of</strong> froth and foam ont he seawater and inorganic saltsolution – Korean journal, 2008, vol.45, No.5, pp.474-483. „…. <strong>Kaptay</strong> 2003…” – p.476, 480J84-c72. Konno Y., Naito N., Horie W., Aramaki K.: Phase Behavior and Froth Stability in aWater/Lysophospholipid System – J. Oleo Sci, 2009, vol. 58, No.4, pp. 195-201 – „The stability <strong>of</strong> frothswas influenced by the size <strong>of</strong> the particle, concentration, hydrophobicity, and nature <strong>of</strong> surfactant used[J84]” – p.196.J84-c73. A.J.Klinter, C.A.Leon-Patino, R.A.L. <strong>Dr</strong>ew: The optimum contact angle range for metal foamstabilization: an experimental evaluation <strong>of</strong> theory – Abstract book <strong>of</strong> 6th HTC conference, 6-9 May,2009, Athens, Greece, p.75 – „From the measured values, contact angle vs. Temperature curves weregenerated, some <strong>of</strong> which satisfy the contact angle requirement between liquid metal and ceramic particlesfor optimum metal foam stabilization proposed by <strong>Kaptay</strong> (70 to 86 degrees) [J84]. …. Comparing the43


experimentally observed liquid foam stability and the resulting foam morphology with the obtainedcontact angle vs. Temperature curves allows an evaluation <strong>of</strong> <strong>Kaptay</strong>’s theooretically derivedrequirements for optimum foam stabilization by ceramic particles [J84]” – p.75.J84-c74. R.Surace, L.A.C.De Filippis, E.Niini, A.D.Ludovico, J.Orkas: Morphological investigation <strong>of</strong> foamedaluminum parts produced by melt gas injection – Adv Mater Sci Eng, 2009, Article number: 506024 „Theceramic particles trap gas bubbles owing to the favourable interface energy and serve as stabilizer <strong>of</strong> thecell wals and delay their coalescence [J84]” – p.1.J84-c75. R.Surace, S.Bruno, L.A.C.De Filippis, A.D.Ludovico: Multi-objective optimization <strong>of</strong> Al-foammanufacturing parameters – Int J Simul Modelling, 2009, vol.8, No.2, pp.81-89.J84-c76. J.C.H. Wong, E.Tervoort, S.Busano, U.T. Gozenbach, A.R. Studart, P. Ermanni, L.J. Gauckler:Macroporous polymers from particle-stabilized foams - J Mater Chem, 2009, vol.19, pp. 5129-5133J84-c77. A. Britan, M. Liverts, G. Ben-Dor: <strong>Dr</strong>ainage and attenuation capacity <strong>of</strong> particulate aqueous foams. In:Shock Waves (book), ed. by K.Hannemann and F. Seiler, Springer Berlin Heidelberg, 2009, pp. 1395-1400, DOI: 10.1007/978-3-540-85181-3.J84-c78. A.V. Byakova, A. I. Sirko, S. V. Gnyloskurenko, T. Nakamura: Aluminium foam formation frompowder compacts with calcium carbonate: In situ experiments – PPT file, presented at Metfoam 2009conference, September 1-4, 2009, Bratislava, Slovakia – „Model originally proposed by <strong>Kaptay</strong>”J84-c79. A.V.Biakova, V.P.Krasovskii, A.O.Dudnik, S.V.Gniloskurenko, A.I.Sirko: O roli smachivaemosti Iraspredeleniia tviordich chastic v stabilizacii vspenennich aliuminievich rasplavov – Adgeziia rasplavovI paika materialov, 2009, vip.42, pp.5-22. – „Fundamentalnimi teoreticheskimi issleovaniiami bilopokazano [J84]….” – p.7. „razmer tviordich vlkuchenni ne dolzhen previshat 30 mikrometrov [J84]” –p.8. „resultati nastoiashego issledovaniia daiut osnovanie polagat, shto razlichiia v stabilnosti vkarbonatnoi i gidridnoi peni mogut naiti svoio obiasnenie v ramkach modelnich predstavlenii [J84] + 25strok” – p.16. „Fig.5. Schematic presentation <strong>of</strong> the cell wall structure <strong>of</strong> carbonate and hydride titanfoams as compared with model configurations [J84]” – p.17.J84-c80. D.Li, J.Li, X.Zhang, T.Sun, G.Yao: Wetting behaviour <strong>of</strong> Al alloys on a TiH2 substrate – J AlloysComps, 2010, vol.489, pp.L1-L3. – „In theoretical models by <strong>Kaptay</strong> [J84], the stabilizing effects <strong>of</strong>these particles on the liquid aluminium foam is due to capillary effects between the melt and theparticles and this prevents the two liquid gas interfaces in a foam cell wall from touching and the twoadjacent cells from coalescing” – p.L1.J84-c81. R.G.Screstha, L.K.Shrestha, C.Solans, C.Gonzalez, K.Aramaki: Nonaqueous foam with outstandingstability in diglycerol monomyristate/olive oil system – Coll Surf A, 2010, vol.353, pp.157-165 – “Incase <strong>of</strong> particle stabilized foams, particle size, concentration, and its ability to adsorb at the interface(contact angle) plays a crucial role in the foam stability [J84]” – p.157.J84-c82. S.Barg, C.Soltmann, A.Schwab, D.Koch, W.Schwieger, G.Grathwohl: Novel open cell aluminumfoams and their use as reactive support for zeolite crystallization – J Porous Mater, 2011, vol.18, pp.89-98 – “Oxide particles withstand forces from one interface to the other in the cell walls, balancing thecapillary effects and providing stability [J84] – p.9544


J84-c83. A.J.Klinter, C.A.Leon-Patino, R.A.L.<strong>Dr</strong>ew: Wetting phenomena <strong>of</strong> Al-Cu alloys on sapphire below 800C – Acta Mater, 2010, vol.58, pp.1350-1360 – „As the wetting behaviour <strong>of</strong> liquid metals on ceramicsstrongly influences various processes like .. the quality <strong>of</strong> metal foams [J84]” – p.1350.J84-c84. B.M.Somosvári, P.Bárczy, P.Szirovicza, J.Szőke, T.Bárczy: Foam evolution and stability at elevatedgravity levels – Mater Sci Forum, 2010, vol.649, pp.391-397 –“This suspension can be considered as asimple, low-temperature analogue <strong>of</strong> metallic foams, because particle stabilization works in the case <strong>of</strong>these materials as well [J84]” – p.392.J84-c85. E.Carey, C.Stubenrauch: Foaming properties <strong>of</strong> mixtures <strong>of</strong> a non-ionic (C12DMPO) and an ionicsurfactant (C12TAB) – J Coll Interf Sci, 2010, vol.346, pp.414-423 – “Although the majority <strong>of</strong> studiesdeals with single surfactant systems, polymer-surfactant mixtures, alcohol-surfactant mixtures, solidparticles [J84] and liquid crystals have also been investigated” – p.414J84-c86. G.Morris, S.J.Neethling, J.J.Cillers: The effects <strong>of</strong> hydrophobicity and orientation <strong>of</strong> cubic particles onthe stability <strong>of</strong> thin films – Minerals Engineering, 2010, vol.23, pp.979-984 – “<strong>Kaptay</strong> [J84] found that,for a given particle spacing, the film stability increased as Theta decreased and that for a given Thetafilm stability decreased as as the particle separation increased” – p.979.J84-c87. K.E.Cole, G.D.M.Morris, J.J.Cilliers: Froth touch samples viewed with scanning electron microscopy –Minerals Engineering, 2010, vol.23, pp.1018-1022 – “<strong>Kaptay</strong> (2004) derived a model for film stabilitydeterminded by interfacial forces between two neighboring bubbles. It was found that the optimumparticle contact angle for film stability resided in the range 50 – 90 degrees for different monolayer andmultiple layer structures. Multiple layesr <strong>of</strong> particles and particle clusters had a greater stabilizinginfluence on the film compared to particle monolayers, as the capillary pressure required to rupture thefilm was greater. Loosely packed particle arrangements were considered most likely to occur, with anoptimum contact angle in the range 72 – 88.5 degrees depending on the ratio <strong>of</strong> the surface energy <strong>of</strong>the solid to the surface tension <strong>of</strong> the liquid.” – p.1019J84-c88. YH Song, M.Tane, T.Ide, Y.Seimiya, B.Y.Hur, H.Nakajima: Fabrication <strong>of</strong> Al-3.7 pCt Si-0.18 pct Mgfoam strengthened by AlN particle dispersion and its compressive properties – Metall Mater Trans A,2010, vol.41A, pp.2104-2111 – “It is well known that particles in melt can stabilize foaming behaviorby preventing the drainage effects that originate from the gravity <strong>of</strong> melt, buoyancy <strong>of</strong> pores, pressuredifference between films, plateau border in melt, etc… [J84], where the film is a thin melt sheetbetween pores and the plateau border is a node <strong>of</strong> melt surrounded by some pores. In the prevention <strong>of</strong>drainage effect, the contact angle between the particle and the melt is the most important factor [J84]. Itwas reported that the optimum contact angle for the stabilization <strong>of</strong> foaming ranges fropm 70 to 86degrees [J84]. … In adduition to Si segregation, the small clusters <strong>of</strong> AlN particles (Figure 6) possiblycontribute to the stabilization <strong>of</strong> foaming behavior, because the small clusters consisting <strong>of</strong> wettingparticles prevent the thinning <strong>of</strong> film caused by the drainage effect, by decreasing the pressuredifference between films and plateau borders in the melt [J84]. … First, we focus on the change inwettability <strong>of</strong> AlN particles at high temperature, because the wettability <strong>of</strong> particles playes an importantrole in the stability <strong>of</strong> foaming behavior compared with the viscosity <strong>of</strong> melt [J84].” – p.2109.J84-c89. G.Morris: The Effect <strong>of</strong> attached hydrophobic particles on the stability <strong>of</strong> thin films – Book <strong>of</strong>Abstracts <strong>of</strong> 9 th UK Particle Technology Forum, Riccarton, Edinburgh, 25-26 June, 2008, pp.18-19. –“Close packed spherical particles can stabilize a film up to a conrtact angle og 129 degrees [J84]” –p.19.J84-c90. JCH Wong, E Tervoort, S.Busato, UT Gozenbach, AR Studart, P.Emanni, LJ Gauckler: Designingmacroporous polymers from particle-stabilized foams – J Mater Chem, 2010, vol.20, No.27, pp.5628-5640.J84-c91. D.N.H.Tran, C.P.Whitby, D.Fornasiero, J.Ralston: Foamibility <strong>of</strong> aqueous suspensions <strong>of</strong> fine graphiteand quartz particles with a trblock copolymer – J Coll Int Sci, 2010, vol.348, pp.460-468 – “<strong>Kaptay</strong>[J84] inverstigated the general forces governing stability in the froth. He found that particles couldstabilise froths under different conditions in a range <strong>of</strong> contact angles between 20 o and 90 o .Interestingly, his model predicts that particles above 3 m would probably not be effective stabilisers,which are contradictory to the findings <strong>of</strong> Dippenaar et al., Johansson and Pugh, Aveyard et al. forexample. This emphasises that foam stability also depends on the particles size, as this governs thedegree <strong>of</strong> penetration <strong>of</strong> the liquid films” – p.460.J84-c92. L.Wang, G-C. Yao, H-J. Luo, L-S. Liang, Z-G.Zhang: Effect <strong>of</strong> addition <strong>of</strong> Mg powders on foamingbehaviours <strong>of</strong> Al foams – The Chinese J <strong>of</strong> Nonferrous Metals, 2010, vol.20, No.7, pp.1339-1345.J84-c93. X.N.Liu, Y.X.Li, X.Chen, Y.Kiu, X.L.Fan: Foam stability in gas injection foaming process – J MaterSci, 2010, vol.45. pp.6481-6493. – „the particles enhance the foam cell wall’s capacity <strong>of</strong> resistingdisturbance [J102]” – p.6482.J84-c94. Zhu Y, Zhang SM, Chen JD, Hu CP: High Internal Phase Emulsions Prepared with Poly(urethane urea)Aqueous Nanodispersion at Different Temperatures – J Polymer Sci, A: Polymer Chem, 2010, vol.48,45


No.19, pp.4356-4360 – „It is accepted that the stability <strong>of</strong> particle stabilized emulsions is due to thecoherent particle layer around the droplets, which acts as a steric (mechanical) barrier againstcoalescence” – p.4356J84-с95. G.Morris, S.J.Neethling, J.J.Cilliers: A model for investigating the behaviour <strong>of</strong> non-spherical particlesat interfaces – J Coll Interface Sci, 2011, vol.354, pp.380-385 – “Ali et al, Denkov et al, <strong>Kaptay</strong> [J84]and Morris et al agree that, for a given particle spacing, the film stability increases as the contact angledecreases whilst for a given contact angle, the film stability decreases as the particle separationincreases” – p.380.J84-c96. T.Delicato: <strong>Dr</strong>enagem de espumas gas-liquido e influencia da presenca de particluas e anti-espumantes,Dissertacao, Ribeirao Preto, Spain, 2007 – „Estudos realizados por <strong>Kaptay</strong> [J84] demonstraram queparticulas solidas podem estabiliyar espumas, dependendo do angulo de contato da particula com ainterface do filme e esse angulo deve estar entre 20 deg e 90 deg para ter efeito estabilizante.” p. 41.J84-c97 V.Kevorkijan, S.D.Skapin, I.Paulin, B.Sustarsic, M.Jenko: Synthesis and characterisation <strong>of</strong> closed cellsaluminium foams containing dolomite powder as foaming agent – Mater Technol, 2010, vol.44, pp.363-371. – „The effect <strong>of</strong> various processing parameters (temperature, time, melt viscosity, surface tension,wetting behaviour etc..) on the foamility <strong>of</strong> aluminium alloys and stability <strong>of</strong> slurry <strong>of</strong> gas bubbles inmolten metal has been also investigated” – p.363.J84-c98 M.Pliego, C.Fuentes, GJ Guiterez, A.Medina, ME Aguilar: Multiples alturas de equuilibrio en capillaresconicos – Rev Mexicana de Fisica, 2010, vol.56, pp.475-481. – „La penetración capilar de un líquidoque moja, bien o mal, a las paredes de un tubo capilar vertical o, en al caso más general, a las diversasparedes de un espacio capilar, es un fenómeno muy común y de gran interés en áreas de estdio tandiversas como son la micro y non<strong>of</strong>luídica, el mojado de medios porosos [J84], la creación desuperficies hidrófilas o hidrófobas, la recuperación de petróleo, el transporte de líquidos en plantas, etc”– p. 475.J84-c99 BM Somosvári, P.Bárczy, J.Szőke, P.Szirovicza, T.Bárczy: FOCUS: Foam evolution and stability inmicrogravity – Coll Surf A, 2011, vol.382, pp.58-63 – „Fundamentals <strong>of</strong> foam formation and evolutionare well understood, although many interesting questions emerge if we look around int he field <strong>of</strong>micr<strong>of</strong>luidics, microbubbles, particle stabilization <strong>of</strong> foams, liquid layers, or the role <strong>of</strong> gravity [J84]” –p.58J84-c100. Golestanipour, H.A.Mashhadi, M.S.Abravi, M.M.Malekjafarian, M.F.Sadeghian: Manufacturing <strong>of</strong>Al/SiC p composite foams using calcium carbonate as foaming agent – Mater Sci Technol, 2011, vol.27,pp.923-927. – “It was thought that ceramic particles changed the curvature <strong>of</strong> gas/liquid interface,increased the viscosity <strong>of</strong> melts, and stabilized the cell wall” – p.923.J84-c101 Wong JCH, Tervoort E, Busato S, Gauckler LJ, Ermanni P: Controlling phase distributions inmacroporous composite materials through particles stabilized foams – Langmuir, 2011, vol.27, No.7,pp.3254-3260 – „Particles are reported to best stabilize foams when Theta is between 43 and 90 o , thatis, when the particles are partially wetted by both fluid phases” – p.3255.J84-c102. H.M.Helwig, F.Garcia-Moreno, J.Banhart: A study <strong>of</strong> Mg and Cu additions ont he foaming behaviour<strong>of</strong> Al-Si alloys – J Mater Sci, 2011, vol.46, pp.5227-5236. – „Oxide skins or particles at the metal/gasinterface play a crucial role for metal foam stability [J84]” – p.5235.J84-103. S.Beke: Metal foaming controlled by ultrasonic waves – PhD Thesis, TU Wien, 2011, supervisors: HPDegischer and N.Babcsan. – „Several factors influence foam stability, including surface tension, …surface forces, … [J84]” – p.12.J84-c104. G.Morris, S.J.Neethling, J.J.Cilliers: An investigation <strong>of</strong> the stable orientation <strong>of</strong> orthorombic particlesin a thin film and their effect on its critical failure pressure – J Coll Interface Sci, 2011, vol.361, pp.370-380 – “Many previous analytical stuidiues, both in 2D and 3D, have analysed the effect <strong>of</strong> sphericalparticles and their properties on film stability [J84]” – p.370.J84-c105. H.Luo, P.Chen, Y.Liu, Z.Zhao: Preparation process <strong>of</strong> aluminum foam reinforced by carbon fibers –Suppl. Proc, vol.3, General Paper Selections, TMS, 2011, pp. 139-144.J84-c106. R.Surace, LAC de Filippis: Investigation and comparison <strong>of</strong> aluminium foams manufactued bydifferent techniques – chapter 6 in „Advanced Knowledge Application in Practice”, 2011, pp.95-118. –„ (particles) … also reduce the velocity <strong>of</strong> the rising bubbles by increasing the viscosity <strong>of</strong> the melt[J84]” – p.98 ((I have never said that)).J84-c107. G.D.M. Morris, S.J.Neethling, J.J. Cilliers: A Model for the Stability <strong>of</strong> Films Stabilized by RandomlyPacked Spherical Particles – Langmuir, 2011, vol.27, No.18, pp.11475-11480.J84-c108. L.J.Gauckler, A.R.Studart, E. Tervoort, U. Gonzenbach, I.Akartuna: Ultrastable particle-stabilizedemulsions – European Patent Application EP 2 361 679 A2, 27-05-2011. „In addition to surface activemolecules, it was recently recongnized that partially hydrophobic particles can als ostabilize air bubblesin surfactant-free diluted suspensions [J84]”.46


J84-c109. C. Chuanuwatanakul, C. Tallon, D.E. Dunstan, G.V. Franks: Controlling the microstructure <strong>of</strong>ceramic particle stabilized foams: influence <strong>of</strong> contact angle and particle aggregation – S<strong>of</strong>t Matter, 2011,vol. 7, pp. 11464-11474. „As a result <strong>of</strong> the addition <strong>of</strong> surfactant, and increased contact angle, the energyto detach particles from the air/solution interface increases [J84]” – p.11471. “<strong>Kaptay</strong> [J84] reported thatthe optimum contact angle value to ensure stabilitz <strong>of</strong> a foam is also dependant on the arrangement <strong>of</strong>particles and particle aggregates at the liquid-gas interface and in the cell walls. Sepcifically, the balancebetween the energy required to remove a particle from the interface and the capillary pressure which mustbe exceeded in order to coalesce bubbles results in values from about 50 degrees to nearly 90 degrees fromaximum stability foams, consistent with the contact angle values observed in this study” – p.11471.„Contact angles around 70 o produce the most stable foams (and oil in water emulsions) becasue a balancebetween the energy required to remove the particle from the air/solution interface (into the solution) andthe capillary pressure preventiung coalescence, result in maximum foam stability [J84]” – p.11472.“<strong>Kaptay</strong> [J84] and Hunter et al. stated that the critrical particle siye to promote the stabiliyation <strong>of</strong> foamsis below 20-30 microns” – p.11464.J84-c110. J.C.H. Wong, E. Tervoort, S. Busato, P. Ermanni, L.J. Gauckler: Engineering Macroporous CompositeMaterials using Competitive Adsorption in Particle-Stabilized Foams - Journal <strong>of</strong> Colloid and Interface,2012, doi: http://dx.doi.org/10.1016/j.jcis.2012.05.049 - „Particles stabilize foam interfaces mosteffectively when they are partially wetted, that is when θ is in the range <strong>of</strong> 43 – 90 ○ ” [J84]”J84-c111. BM Somosvári (supervisor: P. Bárczy): Foam evolution and stability at various gravity conditions –PhD thesis, Miskolc, 2012, 96 pp. – „Though the fundamentals <strong>of</strong> foam formation and evolution are wellunderstood, still many interesting scientific quastions appear if we look around int he field <strong>of</strong>micr<strong>of</strong>luidics, microbubbles, monodisperse system, particle stabilization <strong>of</strong> foams, liquid klayers, wetfoam dynamics, or the role <strong>of</strong> gravity [J84]” – p.2. “Accroding to [J84], six different typical particlearrangements exist that can effectively separate the two liquid-gas interfaces: i…, ii, iii…., iv…, v….,vi…. “ – p.25. “Fig.2.22. Part <strong>of</strong> the cell wall with different structures build up <strong>of</strong> the stabilizing particles….. [J84]” – p.26. “To stabilize liquid foams with particles, three subsequent events are needed, and theprobabilities <strong>of</strong> these events were deduced theoretically by G. KAPTAY in [J84]: 1…., 2….., 3…….” –p.26. “The foam heihts reached as function <strong>of</strong> contact angle can be compared to the so called product <strong>of</strong>probabilities to stabilize liquid foams [J84]” – p.61. “Table 4.0. Q values gained in the function <strong>of</strong>different selected parameter sets, together with standtard deviation and structure data [J84]” – p.62.“Fig.4.5 also clealrly shows that the p curve is in good correlation with our foam height vs contact angledata.” – p.62.J84-c112. Jang-Hoon Ha, Rizwan Ahmad, In-Hyuck Song: A novel method <strong>of</strong> coating a particle-stabilizedalumina foam on a porous alumina substrate – Mater Letters, 2012,http://dx.doi.org/10.1016/j.matlet.2012.08.007 - „Among the conventional processing methods used forthe preparation <strong>of</strong> ceramic foams are the replica and sacrificial template methods. These processingmethods use particle]stabilized direct foaming [J84], which has been extensively studied as a promisingroute for the processing <strong>of</strong> porous materials because <strong>of</strong> its exceptional stability.”J83. G.<strong>Kaptay</strong>: Equilibrium electrochemical synthesis diagrams <strong>of</strong> systems, forminghomogenoeous alloys and compounds – JMM, 2003, vol.39B, No.1-2, pp.383-405 (IF = 0)J83-c1. A.Kostov, B.Friedrich, D.Zivkovic: Predicting thermodynamic properties in Ti-Al binary system byFactSage – Comp.Mater. Sci., 2006, vol.37, pp.355-360 – „Also, there are some works on …equilibrium electrochemical synthesis diagrams <strong>of</strong> these binaries [J83].” – p.356.J82. N.Borisenko, J.Sytchev, G.<strong>Kaptay</strong>: Electrochemical study <strong>of</strong> the electrodeposition andintercalation <strong>of</strong> sodium into graphite from sodium chloride, as first step <strong>of</strong> carbon nanotubeformation – JMM, 2003, vol.39B, No.1-2, pp.369-382 (IF = 0)J82-c1. D.Fray: Electrochemical processing using molten salts - Proceedings <strong>of</strong> EUCHEM 2004 Molten SaltsConference, ed. by J.Kazmierczak and G.Zabinska-Olszak, Wroclaw, 2004, pp.47-57 “Studies haveshown that the alkali atom goes into the structure and forces out the graphite either as tubes or asgraphite sheets that quickly coil to form nanotubes [J82].” – p.56.J82-c2. S.Devyatkin: Electrochemical synthesis <strong>of</strong> carbon nanotubes in molten carbonates – Proc. <strong>of</strong> MS7, ed. byP.Taxil, C.Bessada, M.Cassir, M.Gaune-Escard, 2005, vol.1, pp.515-517 – “Molten lithium chlorideelectrolysis at current densities <strong>of</strong> over 2 A/cm 2 yields carbon nanotubes tens <strong>of</strong> nanometer in diameteron the consumable graphite cathode [J82]” – p.515.J82-c3. D.Fray: Electrochemical processing using slags, fluxes and salts – Proc. Of 7 th Intern Conf on MoltenSlags, Fluxes and Salts, The South African Institute <strong>of</strong> Mining and Metallurgy, 2004, pp. 7-12 “Studies47


have shown that it appears that the alkali atom goes into the structure and forces out the graphite, eitheras tubes or as graphite sheets that quickly coil to form nanotubes [J82].” – pp.11-12.J82-c4. DJ Fray: Innovative electrochemical processing using molten salts – Mineral Processing and ExtractiveMetallurgy, 2006, vol.115, No.1, pp.3-7. – „Studies have shown that it appears that the alkali atom goesinto the structure and forces out the graphite either as tubes or as grasphite sheets that quickly coil t<strong>of</strong>orm nanotubes [J82]” – p.7.J82-c5. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes and fundamental studies likewisesuggested alkali metal intercalation into graphite as an essntial step <strong>of</strong> the process [J82]” – p.151J82-c6. C.Schwandt, AT Dimitrov, DJ Fray: High yield synthesis <strong>of</strong> multi-walled carbon nanotubes fromgraphite by molten salt electrolysis – Carbon, 2012, vol.50, pp. 1311-1315 – „It is generally accepted thatthe first step <strong>of</strong> the cathodic reduction is the intercalation <strong>of</strong> the alkali metal into the spacings between thegraphitic layers and the formation <strong>of</strong> intercalation compounds, MeC x [J82]” – p.1311.J81. M.S.Yaghmaee, Zs.Demeter, J.Sytchev, J.Lakatos, G.<strong>Kaptay</strong>: Some aspects <strong>of</strong> theelectrochemical formation <strong>of</strong> carbon microtubes from molten chlorides – JMM, 2003,vol.39B, No.1-2, pp.343-352 (IF = 0)J81-c1. S.Volkov, I.Novoselova: Modern state <strong>of</strong> electrolytic synthesis <strong>of</strong> nanosized carbon materials in moltensalts – EUCHEM 2008 Conference on Molten Salts and Ionic Liquids, Book <strong>of</strong> Abstracts, p.161 – „Atpresent day four ways and mechanisms <strong>of</strong> electrolytic synthesis <strong>of</strong> carbon nanomaterials (CNMs) inmolten salts are known: (1) intercalation <strong>of</strong> alakali metal (lithium, sodium, potassium) in graphitecathode in chloride melts [J81]” – p.161.J81-c2. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes [J81]” – p.151J80. I.Lukovits, A.Gaovac, E.Kálmán, G.<strong>Kaptay</strong>, P.Nagy, S.Nikolic, J.Sytchev, N.Trinajstic –Nanotubes: Number <strong>of</strong> Kekulé Structures and Aromacity – J. Chem. Inf. Comput. Sci., 2003,vol.43, pp.609-614 (IF = 3.078)48


J80-c1. Randic M.: Aromaticity <strong>of</strong> polycyclic conjugated hydrocarbons – Chemical Reviews, 2003, vol.103,No.9, pp.3449-4605 – „Recently, Lukovits et al. [J80] reported on the number <strong>of</strong> Kekulé valencestructures for benzenoid belts <strong>of</strong> different lengths and widths” – p.3594J80-c2. M.V.Diudea: Stability <strong>of</strong> tubulens – Phys. Chem. Chem. Phys., 2004, vol.6, pp.332-339 – „In thisrespect, Kekule structure count [J80] aimed at measuring the aromacity <strong>of</strong> polycyclic conjugatedsystems, could help in understanding and predicting the stability and chemical behavior <strong>of</strong> suchmolecules” – p.336.J80-c3. K.Heberger: Chemometrics in Hungary (the last 10 years) – Chemometrics and Intelligent LaboratorySystems, 2004, vol.72, pp.115-122. (Ref. No. 90). – „Today, he [Lukovits] performs calculations on thenumber <strong>of</strong> Kekule structures in nanotubes [J80]”- p.118.J80-c4. F.Cai, H.Shao, C.Liu, Y.Jiang: An alternative strategy for count and storage <strong>of</strong> Kekule and longer rangeresonance valence bond structure – J. Chem. Inf. and Modelling, 2005, vol.45, p.371-378 -„There werealso particular techniques developed to work on this problem [J80] which made it possible to enumerateKekule valence structures for systems with hundreds <strong>of</strong> atoms, such as nanotubes” – p. 371.J80-c5. B.Mandal: Use <strong>of</strong> symmetry plane and subsequent substraction for obtaining eigenspectra <strong>of</strong> somecomplicated graphs in analytical forms – J. Molec. Struct – Teochem – 2005, vol.757, pp.99-111 -„Graph theory has been applied to a wide variety <strong>of</strong> chemical properties that depend on atomconnectivity in a molecule. Urrently it has been used in various fields <strong>of</strong> frontier research, such asconstruction <strong>of</strong> algorithm for computing resistance-distance matrix and its application to study cyclicity<strong>of</strong> 60 and 70 fullerene isomers, carbon nanostructure analysis [J80], ….” – p.99.J80-c6. M.Randić, X.Guo, D.Plavšić, A.T. Balaban: On the Complexity <strong>of</strong> Fullerenes and Nanotubes – in:Complexity in Chemistry, Biology, and Ecology (book), Springer US, ed. by D.Bonchev,D.H. Rouvray, 2005, pp. 1-48, DOI: 10.1007/0-387-25871-X_1J80-c7. Mandal B.: Some important formulae using the concept <strong>of</strong> graphical tree - CHEMICAL PHYSICSLETTERS 417 (4-6): 395-400 JAN 10 2006 – „Graph theory … has been used .. to study the cyclicity<strong>of</strong> … carbon nanostructure analysis [J80]..” – p.395.J80-c8. M.V.Diudea, C.L.Nagy: Aromacity <strong>of</strong> Nanostructures – Chapter 6 in: „Periodic Nanostructures”,Springer, 2007, pp.137-166 – „Attempts to predict the aromacity <strong>of</strong> nanotubes <strong>of</strong> nanotori have beendone [J80] – p.139.J80-c9. R.Ponec, S.Fias, P.Bultinck, I.Gutman, S.Stankovic: Benzoid szénhidrogének aromás és lokális aromástulajdonságairól – Magyar Kémiai Folyóirat, 2008, 1145. évf., 4. szám, 177-182 – „Lukovits István azelméleti és matematikai kémia számos területén végzett kutatómunkát. Rövid, de igen eredményestudomnényos karrierjének utolsó periódusában főként a policiklikus konjugált molekulák aromástulajdonságaival foglalkozott, elsősorban nanocsövekkel [J80] és benzoid rendszerekkel kapcsolatban”– p.177.J80-c10. R.Kutnar, D.Marusic, D.Vukicevic: On decomposition <strong>of</strong> leapfrog fullerenes – J Math Chem, 2009,vol.45, pp.406-416 – „One <strong>of</strong> the many open problems with regards to fullerenes concerns the number<strong>of</strong> Kekulé structuresd in a fullerene, the so called Kekulé number [J80]” – p.407.J80-c11. S.M.Azami, R.Pooladi, M.H.Sheiki: Local sigma-pi mixing in C 60 buckminterfullere – J. Molec.Struct., TEOCHEM, 2009, vol. 901, pp.153-156 – “The classical picture <strong>of</strong> resonance is usually appliedto fullerene and similar nanoscturctures based on Kekule structures [J80]” – p. 153.J80-c12. A. Juhasz-Szalai, E. Kiss-Toth-Dojcsak, P. Koska, J. Szebeni, B. Fodor: Characteristic features <strong>of</strong>carbon nanotubes and their application in living systems – Egészségtudományi Közlemények, 2012,vol.2, No.1, pp.105-111 – “.. the chirality <strong>of</strong> the tube is characterized by the chiral index [J80]” – p.106.J80-c13. P. Zigert, M. Berlic: Lucas Cubes and Resonance Graphs <strong>of</strong> Cyclic Polyphenanthrenes - Match-Commun in Mathem and in Comp Chem, 2012, vol.68, No.1, pp. 79-90.J79. G.<strong>Kaptay</strong>, G.Csicsovszki, M.S.Yaghmaee: An Absolute Scale for the Cohesion Energy<strong>of</strong> Pure Metals – Materials Science Forum, 2003, Vols. 414-415, pp.235-240 (IF = 0.602)J79-c1. G.L. Hornyak: Introduction to Nanoscience – Lecture 16 Energy at the Nanoscale IV - Copyright: CRCPress 2009 – „Quite an elegant way to provide an absolute (not relative) thermodynamic derivation…”J79-c2. XP Su, S. Yang, JH Wang, NY Tang, FC Yin, Z Li, MX Zhao: A New Equation for TemperatureDependent Solute Impurity Diffusivity in Liquid Metals – J. Phase Equil. Diffusion, 2010, vol. 31, pp.333-340. – „It has been shown recently on the example <strong>of</strong> the surface tension that the cohesion energycorrelates with the melting point <strong>of</strong> normal metals [J79]” – p.334.J79-c3. F.Aqra, A.Ayyad: Surface energies <strong>of</strong> metals in both liquid and solid states – Appl Surf Sci, 2011,vol.257, pp.6372-6379. – “A plot <strong>of</strong> E b(s) versus E b(L) (the values taken from ref [J79]) for 55 metalsshows a linear relation with a slope equal to 0.8837 (Fig.1)” – p.6374 “Figure 1. Cohesion energy for 55metals at 0 K versus that at melting point (data taken from ref [J79])” – p.6374.49


J78. A.Roósz, J.Farkas, G.<strong>Kaptay</strong>: Thermodynamics-based semi-empirical description <strong>of</strong> theliquidus surface and partition coefficients in ternary Al-Mg-Si alloy - Materials ScienceForum, 2003, Vols. 414-415., pp.323-328 (IF = 0.602)J78-c1. R.Zhang, L.Li, Z.Chen, Z.He, W.Jie: Calculation <strong>of</strong> phase equilibria based on the Levenberg-Marquardtmethod – J. Mater. Sci. Technol., 2005, vol.21, pp.10-12. – “The calculated values agree well with theexperimental results [J78] + Fig.2.” p. 12.J78-c2. He Z., Zhang R.J., Jie W.Q.: Phase equilibria calculation with Levenberg-Marquardt Method –Nonferrous Metals, 2006, vol.58, No.3, pp.51-53 – “Chinese text, reference in p. 52 and Fig.2. Ourmodel data are compared with his model in Fig.2” – p. 52.J78-c3. Raghavan V: Al-Mg-Si (Aluminum-Magnesium-Silicon) - JOURNAL OF PHASE EQUILIBRIA ANDDIFFUSION 28 (2): 189-191 APR 2007 – „Other recent references on the phase equilibria <strong>of</strong> thissystem include [J78].” – p.190.J77. Á.Borsik, K.K.Kelemen, G.<strong>Kaptay</strong>: A dynamic model <strong>of</strong> ceramic particle – solidificationfront interaction - Materials Science Forum, 2003, Vols. 414-415., pp.371-376 (IF = 0.602)J77-c1. Garvin JW, Yang Y, Udaykumar HS: Multiscale modeling <strong>of</strong> particle-solidification front dynamics, PartI: Methodology – Int. J. Heat Mass Transfer, 2007, vol. 50, pp. 2952-2968 – „Much <strong>of</strong> the work to dateon particle – solidification front interaction relies on simplified analytical expressions for the drag andthe repulsive intermolecular force [J77]” – p.2952, „Dynamic models that simulate the interaction andsubsequent evolution o fan initially stationary particle being pushed approached by a front have beendeveloped in recent work [J77]” – p.2953, „Previous steady-state as well as dynamic analyses <strong>of</strong>particle-front interactions have employed analytical / empirical models for the forces experienced by theparticle [J77]” – p.2959.J77-c2. Garvin JW, Yang Y, Udaykumar HS: Multiscale modeling <strong>of</strong> particle-solidification front dynamics. PartII: Pushing-engulfment transition - Int. J. Heat Mass Transfer, vol. 50. pp. 2969-2980 – „The ratio <strong>of</strong>thermal conductivity <strong>of</strong> the particle to that <strong>of</strong> <strong>of</strong> the melt plays a major role in determining thesolidification front shape [J77]” – p.2974.J77-c3. J.W.Garwin, Y.Yang, H.S.Udaykumar: Multiscale modeling <strong>of</strong> particle-solidification front dynamics.Part III: Theoretical aspects and parametric study – Preprint AFRL-MN-EG-TP-2007-7414. – „particlesolidificationfront interactions are abundant in nature and industrial applications. Examples includemicrostuctural development in metal matrix composite manufacturing [J57]” – p.1, „There have been afew dynamic models [J77] <strong>of</strong> particle-solidification front interactions” – p.5.*J76. Z.Benkő M., G.<strong>Kaptay</strong>: A Virtual LD-steel-converter - Materials Science Forum, 2003,Vols. 414-415., pp.365-370 (IF = 0.602)J75. M.S.Yaghmaee, G.<strong>Kaptay</strong>: The Solubility <strong>of</strong> Nitrogen and Nitrides in Ternary LiquidIron Alloys. The Limits <strong>of</strong> the ‘Solubility Product’ Concept - Materials Science Forum, 2003,Vols. 414-415., pp.491-496 (IF = 0.602)J75-c1. The Al-Fe-N system - Light Metal Ternary Systems: Phase Diagrams, Crystallographic andThermodynamic Data, Landolt-Borstein – Group IV Physical Chemistry, 2005, vol. 11A2.J74. G.<strong>Kaptay</strong>: Interfacial Criteria to Produce Metal Matrix Composites and Ceramic ParticleStabilized Metallic Foams - Materials Science Forum, 2003, Vols. 414-415, pp.419-424 (IF =0.602)J74-c1. T.Matsushita, K.Mukai: Penetration behaviour <strong>of</strong> molten metal into porous oxides - Tetsu-to-Hagane,2004, vol.90, pp.135 – 144 „something in Japanese” – p.138J74-c2. O.N.Verezub: Technologicheskiie osobennosti sozdaniia kompozicionnogo regirovannogo sloia narezhushei poverhnosti nizkolegirovannich stalnich instrumentov metodom lazernoi tviordotelnoiimplantacii – in: „Rezanie i instrument v technologicheskich sistemach”, 2004, vol.66, pp.25-32J74-c3. Janó V.: Study on the production <strong>of</strong> metal matrix compsites layer by layer melt injection technology –Mater Sci Forum, 2007, vols 537-538, pp.177-184.J74-c4. S.E.Frieberg: Foams from Non-aqueous systems – Curr Opinion Coll Interface Sci, 2010, vol.15,pp.359-364 – “The vital difference from organic plastic foams is the extremely high surface free energy <strong>of</strong>50


metals resulting in surface and colloidal phenomena playing substantial role: an insight recently broughtto light by the outstanding Hungarian metallurgist <strong>Kaptay</strong> [J74].” – p.360, “Metallic foams have a sizablesurface free energy and the relation to stability has recently been shown amenable to analysis by <strong>Kaptay</strong>[J74] – p.360.J74-c5. P.Padhi, S.Kar: A novel route development <strong>of</strong> bulk Al/SiC metal matrix nano composites – Journal <strong>of</strong>Nanotechnology, Vol. 2011, Article ID 413512, 5 pages, doi:10.1155/2011/413512 – “In majoprity <strong>of</strong>metal-ceramic combinations [J74] gives the critical velocity for engulfment <strong>of</strong> particulate in solidifiedmetal … Eq…(1)“ – p.4.J73. <strong>Kaptay</strong> Gy., Verezub O., Zoltai L., Boross P., Kálazi Z., Verő B.: Fémolvadékokfelületére lőtt mikroszkópikus szilárd szemcsék elmerülésének feltételei (Condition <strong>of</strong>Penetration <strong>of</strong> Microscopic Solid Particles Blown on the Surface <strong>of</strong> Liquid Metals – AnyagésKohómérnöki Tudományok, Miskolc, 2002, vol. 30., pp.5-22. (IF = 0)J72. H.B.Kushov, G.<strong>Kaptay</strong>, A.S.Uzdenova, M.K.Vinidzheva: Electrochemical SynthesisDiagrams <strong>of</strong> the Al-Gd, La-B, Gd-B and Al-La systems – Rasplavi, 2002, No.1, pp.44-48. (IF= 0)51


J71. G.<strong>Kaptay</strong>: Reduced Critical Solidification Front Velocity <strong>of</strong> Particle Engulfment due toan Interface Active Solute in the Liquid Metal – Metall. Mater. Trans., 2002, vol.33A,pp.1869-1873 (IF = 1.219)J71-c1. Bassani, B.Previtali, A.Tuissi, S.Arnaboldi, M.Vedani, G.Vimercati, G.Garagnani: Meccanismi disolidificazione e proprieta di getti in compositi a matruice in lega di aluminio – XXXIV ConvegnoNazionale, 14-17 Settembre 2005, Polytecnico Milano (Proceedings, 10 pages, No.8). – „Italiano...” –p.2.J71-c2. Bassani, P; Previtali, B; Tuissi, A; Vedani, M; Vimercati, G; Arnaboldi, S: SOLIDIFICATIONBEHAVIOUR AND MICROSTRUCTURE OF A360-SICp CAST COMPOSITES - MetallurgicalScience and Technology. 2005, Vol. 23, no. 2, pp. 3-10. – „The solidification behaviour <strong>of</strong> particulatereinforced MMCs is strongly influenced by the interaction <strong>of</strong> the solid reinforcement phase with thesolidification front… These possibilities significantly affect the degree <strong>of</strong> reinforcement distribution <strong>of</strong>the cast composite since, when the particles are rejected in the liquid phase, they will concentrate in theinterdendritic regions <strong>of</strong> the structure, leading to harmful segregation effects [J71]” – p. 4.J71-c3. A.E.Karantzalis, A.Lekatou, E.Georgatis, H.Mavros: Solidification behaviour <strong>of</strong> ceramic particlereinforced Al-alloy matrices – J.Mater Sci, 2010, vol.45, pp.2165-2173 – „… the importance <strong>of</strong> otherfactors such as interfacial characteristics and crystallographic compatibility are adressed int he works <strong>of</strong><strong>Kaptay</strong> [J71]…” – p.2165J71-c4. A.E. Karantzalis, A. Lekatou, E. Georgatis, T. Tsiligiannis, H. Mavros: Solidification observations <strong>of</strong>dendritic cast Al alloys reinforced with TiC particles – J Mater Eng Perform, 2010, vol.19, No.9,pp.1268-1275. – “The importance <strong>of</strong> other factors such as interfacial characteristics and crystallographiccompatibility are addressed in the works <strong>of</strong> <strong>Kaptay</strong> [J71]” – p.1168.J.70. S.V.Devyatkin, G.<strong>Kaptay</strong>: Physical, Chemical and Electrochemical Behaviour <strong>of</strong> BoronOxide in Cryolite-Alumina Melts – Russian Journal <strong>of</strong> Applied Chemistry, 2002, vol.75,No.4, pp.565-568 (in Russian: Zh. Prikladnoi Khimiii, 2002, vol.75., 579-582) (IF = 0.221)J70-c1. Simakov D, Vassiliev S, Tursunov P, Khasanova N, Ivanov V, Abakumov A, Alekseeva A, Antipov E,Tsirlina G: Electrodeposition <strong>of</strong> TiB2 from cryolite-alumina melts - LIGHT METALS 2008, ed. byDeYoung DH, 2008, TMS, pp. 1019-1022. - „As it follows from literature [J70], complications can gowith high volatility <strong>of</strong> boron fluoride compounds and from formation <strong>of</strong> passive insulating TiO filmwhen titanium compounds in the melt are partly reduced” – p. 1020.J69. A.Magyar, Z.Gácsi, L.Daróczi, G.<strong>Kaptay</strong>: Morphological investigation <strong>of</strong> theintermetallic phases in C/Al composite by image analysis – Image Anal. Stereol., 2001,vol.20, Suppl.1, pp.275-280 (IF = 0)J68. S.V.Devyatkin, O.I.Boiko, N.N.Uskova, G.<strong>Kaptay</strong>: Electrochemical Synthesis <strong>of</strong>Titanium Silicides from Molten Salts – Z. Naturforsch. A, 2001, vol. 56 a, pp.739-740 (IF =0.746)J67. G.<strong>Kaptay</strong>: A Model for the Solid-Liquid Interfacial Energies <strong>of</strong> Pure Metals – Trans.JWRI (Joining and Welding Research Institute), 2001, vol. 30., Special Issue, pp. 245-250.(IF = 0)J67-c1. Rontó Viktória: A szekunder dendritágak durvulása háromalkotós alumínium ötvözetek kristályosodásaközben – PhD értekezés (tud. vez.: dr. Roósz András), Miskolc, 2001. szeptember – „ értékétG.<strong>Kaptay</strong> [J67] szerint határoztam meg a szín alumíniumra meghatározott egyenlettel: {idézettegyenlet}” – 72. o.J67-c2. Rontó V., Roósz A.: A dendritág durvulás numerikus szimulációja háromalkotós Al ötvözetek esetén –Anyag- és Kohómérnöki Tudományok, Miskolc, 2001, vol.29, pp.111-121. – „szigma értékét a tisztaAl-ra megadott <strong>Kaptay</strong>-féle egyenlettel számítottuk [J67]” – p.115.J67-c3. V.Rontó, A.Roósz: Numerical Simulation <strong>of</strong> Dendrite Arm Coarsening in the Case <strong>of</strong> Ternary Liquid AlAlloys – Materials Science Forum, 2003, vols. 414-415, pp.483-490 – “The value <strong>of</strong> is calculated bythe <strong>Kaptay</strong> equation given for the poor (sic!) Al [J67]: = 73.6 + 0.0862T (mJ/m 2 )” – p.48552


J67-c4. V.M.Samsonov, O.A.Malkov: Thermodynamic model <strong>of</strong> crystallization and melting <strong>of</strong> small particles –Central Europ J <strong>of</strong> Physics, 2004, vol.2, No.1, pp.1895-1902 – „Generally, the available data on solidliquidinterfacial energies are contradictory and not quite reliable. The most accurate treatment <strong>of</strong> theproblem in question seems to belong to G.<strong>Kaptay</strong> [J67]” – p.92.J67-c5. Jones H: An evaluation <strong>of</strong> measurements <strong>of</strong> solid/liquid interfacial energies in metallic alloy systems bythe groove pr<strong>of</strong>ile method - METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE 38A (7): 1563-1569 JUL 2007 – “<strong>Kaptay</strong>calculated alpha = 0.34, 0.51, 0.58, 0.58, 0.59 and 0.59 for diamond cubic Si, cph Mg, fcc Cu, bcc Naand Fe and cph Zn and fcc Al, respectively, with their melts [J67]” – p,1565.J67-c6. A.Fukuda, T.Yoshikawa, T.Tanaka: A fundamental approach for the measurement <strong>of</strong> solid-liquidinterfacial energies – J Pys: Conf-ceries, 2009, vol.165, paper 012079, pp.1-4 – “The determinedinterfacial energy between solid copper and liquid Cu-B alloy was in good agreement with reportedvalues between solid and liquid copper <strong>of</strong> 177 – 232 mN/m [J67]” – p.3.J66. G.<strong>Kaptay</strong>, E.Báder: Ion-dipole Adhesion Energy Model for Wettability <strong>of</strong> OxideCeramics by Non-reactive Liquid Metals – Trans. JWRI (Joining and Welding ResearchInstitute), 2001, vol. 30., Special Issue, pp. 55-60. (IF = 0)J66-c1. T.Wübben: Zur Stabilität flüssiger Metallschaume – Universität Bremen, Germany, 2003, 128 pp. (ref.No.72) – “Da die Messung des Benetzungsverhaltens speziell bei Metallen wegen der hohemTemperaturen und erforderlichen hochreinen Umgebungsbedingungen aufwendig ist, beschäftigt sicheine reihe von Arbeiten mit der theoretischen Vorhersage von Kontaktwinkeln verschiedener Metall-Keramik-Materialpare [J66]. Für das System Bleioxid- Blei liegen bislang jedoch keine experimentellenDaten vor. So .. Pb/PbO = 120 o [J66]… . Sie konnte mit freundlicher Unterst-Uzung der Arbeitsgruppevon <strong>Pr<strong>of</strong></strong>. <strong>Kaptay</strong>, Universität Miskolc, Ungarn, mit dem dortigen Great durchgeführt werden. Dabeihandelt es sich um einen Ofen, in dem Metalle auf bis zu 1000 o C aufgeheizt werden können [J66]”– p.50. „Die Messung des Winkels an fünf verschieden Bleitropfen ergab einen Wert von Pb/PbO = 132 2 o ” – p.51.J66-c2. Pázmán J.: „Nanokompozitok” tárgyleírás, PPT diagyűjtemény, 2010, <strong>Miskolci</strong> <strong>Egyetem</strong>.J66-c3. A. Karasangabo, C. Bernhard: Investigation <strong>of</strong> Alumina Wetting by Fe–Ti, Fe–P and Fe–Ti–P Alloys -Journal <strong>of</strong> Adhesion Science and Technology, 2012, vol 26, Issue 8-9, 2012 pp.1141-1156.J65. E. Báder, L.Zoltai, M.Hördler, P.Arató, R.F.Singer, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> SiliconNitride Based Ceramic by Liquid Metals – Trans. JWRI (Joining and Welding ResearchInstitute), 2001, vol. 30., Special Issue, pp. 137-141. (IF = 0)J65-c1. R.Klein, M.Desmaison-Brut, P.Ginet, A.Bellosi, J.Desmaison: Wettability <strong>of</strong> silicon nitride ceramiccomposites by silver, copper and silver-copper titanium alloys – J.Eur. Ceram. Soc., 2005, vol.25,pp.1757-1763 (No.11). – “The equilibrium value (<strong>of</strong> the contact angle) between 110 and 130 degprobably corresponded to the Cu-Si 3 N 4 -Y 2 O 3 -Al 2 O 3 system [J65]” – p.1760J65-c2. M.Singh, R.Asthana, F.M.Varela, J.Martinez-Fernandez: Microstructural and mechanical evaluation <strong>of</strong> aCu-based active braze alloy to join silicon nitride ceramics – J Eur Ceram Soc, 2011, vol.31, pp.1309-1316 – “Contact angle measurements [J65] show that Ti-containing brazes rapidly wet the ceramic, andthe most significant grains are achieved at small (2-10 %) amounts <strong>of</strong> Ti at which braze ductility is notimpaired but there is sufficiently high Ti activity for reaction with Si 3 N 4 .” – p.1311.J65-c3. M.Singh, J.Martinez-Fernandez, R.Asthana, J.R. Rico: Interfacial characterization <strong>of</strong> siliconnitride/silicon nitride joints brazed using Cu-base active metal interlayers – Ceramics International,2012, vol. 38, pp.2792-2802. – Contact angle measurements [J65] reveal that Ti-containing Cu and Agbasebrazes rapidly wet silicon nitride ceramics ….” – p.2793.53


J64. G.<strong>Kaptay</strong>, K.K.Kelemen: An Interfacial Force Acting on a Spherical Particle in theInterfacial Energy Gradient – Trans. JWRI (Joining and Welding Research Institute), 2001,vol. 30., Special Issue, pp. 305-310. (IF = 0)J64-c1. O.Raychenko, A.Byakova, T.Nakamura, S.Gnyloskurenko: Thermocapillary phoresis <strong>of</strong> inclusions withinterphase surfactant – Mater Sci Eng A, 2008, vol.495, pp.326-329. – Our purpose is to derive thesteady state migration velocity <strong>of</strong> an inclusion under the above conditions (thermocapillary phoresisvelocity). The onlt driving force exerted on the inclusion in this situation –the thermocapillary force- isexpressed by the equation [J64]: {Equation + explanation is given}.” – pp.326-327.J64-c2. A.I.Raichenko: Phoresis <strong>of</strong> inclusions in viscous media under the combined action <strong>of</strong> electromagnetismand thermocapillarity: Theory. Powder Metallurgy and Metal Ceramics, 2011, vol.50, No.1-2., pp.34-42F dE / dh i is the external driving force the medium exerts on the inclusion– “The quantity i z[J64]” – p.36, The calculations similar to those represented in [J64] give: … Eq.(12)” – p.37.J63. G.<strong>Kaptay</strong>, G.Csicsovszki, M.S.Yaghmaee: Estimation <strong>of</strong> the absolute values <strong>of</strong> cohesionenergies <strong>of</strong> pure metals – Materials’ World (e-journal with ISSN 1586-0140, accessible at:http://materialworld.uni-miskolc.hu), July 2001 (IF =0)J63-c1. DE Smirnova, SV Starikov, VV Stegailov: Interatomic potential for uranium in a wide range <strong>of</strong>pressures and temperatures – J.Phys: Condens. Matter, 2012, vol.24, No.1, 015702. – “Cohesion energy<strong>of</strong> uranium = -4.20 eV (this work), and -4.22 eV [J63]” – Table 3.J63-c2. S.Sanjabi, N. Bayat: Thermodynamic modeling <strong>of</strong> particle formation and reshaping in metallic catalystnan<strong>of</strong>ilms for carbon nanotube growth – Model Simul Mater Sci Eng, 2012, vol.20, paper No. 035002(10 pp).J63-c3. D.E. Smirnova, S.V. Starikov, V.V. Stegailov: New interatomic potential <strong>of</strong> mechanical andthermodynamic properties <strong>of</strong> uranium in a wide range <strong>of</strong> pressures and temperatures – Phys MetalsMetalography, 2012, vol.113, pp.107-116 (in Russian: Fizika metallov I metallovedenie, 2012, vol.113,No.2, pp.115-124). “Table 3. In addition, the table also shows ther value <strong>of</strong> the cohesive energy <strong>of</strong>in comparison with the known value [J63] in eV = -4.20 eV (this work), and -4.22 eV [J63]”. UJ62. M.S.Yaghmaee, G.<strong>Kaptay</strong>: On the stability range <strong>of</strong> SiC in the liquid Al-Si-Mg system –Materials’ World (e-journal with ISSN 1586-0140, accessible at: http://materialworld.unimiskolc.hu),July, 2001. (IF = 0)J62-c1. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “inTable 9. Calculated thermodynamic stability range <strong>of</strong> reaction between liquid Al and ceramics – 2 nd row[J62]: Ceramic = SiC, Reaction product = Al 4 C 3 , Reaction stability range: below 7 at% Si content at themelting point, Remarks: increasing the temperature and adding extra Mg the reaction stability rangeincreases by the model, good fit with the experiments” – p.25, “At high temperature the SiC also reactswith the Al melt producing Al 4 C 3 . This is the case by our experimental results (Table 18), which arepredicted exactly by previous theoretical findings [J62]” – p.78.J62-c2. B.Dikici, M.Gavgali, C.Tekmen: Corrosion Behavior <strong>of</strong> an Artificially Aged (T6) Al–Si–Mg-basedMetal Matrix Composite - Journal <strong>of</strong> Composite Materials, Vol. 40, No. 14, 1259-1269 (2006) – „.. thereaction products, such as Al 4 C 3 that occured at the matrix-reinforcement interface also affect thecorrosion behaviour <strong>of</strong> MMCs [J62]. Al 4 C 3 has a detrimental effect on the corrosion resistance <strong>of</strong> Al-SiC composite because it is water reactive and thus increases the corrosion sensitivity <strong>of</strong> the composite[J62].J62-c3. E.E.S. Moraes, M.L.A. Graça, C.A.A. Cairo: Study <strong>of</strong> aluminium alloys wettability on SiC preform –Proc. Of 17º CBECIMat - Congresso Brasileiro de Engenharia e Ciência dos Materiais, 15 a 19 deNovembro de 2006, Foz do Iguaçu, PR, Brasil., pp. 4217-4224. – „An addition <strong>of</strong> silicon is assigned forthe infiltration, because affects the aluminium alloys fluidity positively, lowers the melting point andavoids the weak phase development. This reaction, if extensive, can be detrimental for the properties <strong>of</strong>the composites, decreases the resistance [J62], because forms a weak phase Al4C3 at the interface[J62]. However, a strong interface can be created to promote a metallurgical bonding between SiC andAl by the chemistry interdifusion and reaction“ – p.4218.J62-c4. WM Khairaldien, AA Khalil, MR Bayoumi: Production <strong>of</strong> Al-SiC composites using powder metallurgya temperatures above the Al melting point – J. Testing Evaluation, 2007, vol.35, No.6, pp.655-667. –„SiC is thermodynamically unstable at temperatures above the melting point <strong>of</strong> aluminium and reacts54


with the liquid aluminium to form aluminium carbide and silicon [J62]… This can be understood fromthe Al-Si-C phase diagram [J62]” – p.664.J62-c5. M.Gavgali, B.Dikici, F.Bedir: Corrosion susceptibility <strong>of</strong> Al-Cu/TiC MMCs fabricated by conventionalhot pressing – Indian J. Eng. Mater Sci, 2007, vol.14, pp.303-308 – In the unaging conditions severalreasons can be stated fro fluctuation in potential values such as the size and volume fraction <strong>of</strong> TiC,voids at the TiC/Al interface, reactions between the Al alloy matrix and TiC particles, segregation <strong>of</strong>alloy elements to TiC/Al interface, high dislocation densities and residual stresses formed in thevicinity <strong>of</strong> TiC particles, because corrosion resistance <strong>of</strong> AMMCs may be greatly affected by thesefactors [J62]” – p.306.J62-c6. B.Dikici, C.Tekmen, O.Yigit, M.Gavgali, U.Cocen: Detrimental effect <strong>of</strong> particle sol-gel coating on thecorrosion behavior <strong>of</strong> A380-SiC composite – Corrosion Science, 2009, vol.51, pp.469-476 – “The mainproblems in Al/SiC interface during fabrication or remelting are the interfacial chemical reactionproducts, such as Al 4 C 3 , reinforcement degradation and the lack <strong>of</strong> wettability with the matrix. Al 4 C 3has important detrimental effects, such as reducing reinforcement/matrix interfacial strength andincreasing the corrosive sensitivity <strong>of</strong> the composite [J62]” – p.469.J62-c7. B.Dikici, F.Bedir, M.Gavgali: Al/TiC in-situ nano kompozitlerin sicak presleme yontemiyle uretilmesi –5. Uluslararasi Ileri Teknolojiler Sempozyumu (IATS 09), 13-15 Mayis 2009, Karabuk, Turkiye, 5 pp,“Al4C3, in-situ kompozitlerin kullanilabilirgli ve mekanik ozellikleri uzerinde olumsuz bir etkiyesahiptir, oldukca gevrek (kirilgan) bir fazdir ve su ile reaktife olarak kompozitin korozyona karsiduyarli hale gelmesime neden olmaktadir [J62] - p.4.J62-c8. M.Akrom, P.Marwoto, Sugianto, J.Fisika: Pembuatan MMC berbasis teknologi metalurgi serbuk denganbahan baku aluminium dari limbah kaleng minumam dan aditif abu sekam padi – J. Pend Fis Ind, 2010,vol.6, No.1, pp.79-87.J62-c9. Burak Dikici, Cagri Tekmen, Mehmet Gavgali, Umit Cocen: The Effect <strong>of</strong> Electroless Ni Coating <strong>of</strong> SiCParticles on the Corrosion Behavior <strong>of</strong> A356 Based Squeeze Cast Composite - Journal <strong>of</strong> MechanicalEngineering, 2011, vol. 57, pp. 11-20 – „the corrosion susceptibility <strong>of</strong> the composite increases due tothe presence <strong>of</strong> Al4C3 phase, which forms at the SiC/Al matrix interface [J62]” – p.11.J62-c10. Z.Yaniv, I.Pavlovsky, N.Jiang, J.P.Novak, R.Fuink, M.Yang, D.Mao, S.Kim: Enhancing thermalproperties <strong>of</strong> carbon aluminium composites – US patent 2011/0027603 A1, publ. Date: Feb. 3, 2011. –„The phase diagram <strong>of</strong> Fig.14 may be found in [J62]” – p.7.J62-c11. B. Dikici: Age hardening response <strong>of</strong> an Al/TiC hot pressed multi-layered composite: Influence oncorrosion – J Comp Mater, 2012, vol. 46, pp. 471-481.J61. G.<strong>Kaptay</strong>: On the possibility to produce MgB 2 superconductive layer by electrochemicalsynthesis from molten salts – Materials’ World (e-journal with ISSN 1586-0140, accessibleat: http://materialworld.uni-miskolc.hu), July, 2001. (IF = 0)J61-c1. S.Kim, D.S.Stone, J-I.Cho, C-Y.Jeong, C-S. Kang, J-C. Bae: Phase stability determination <strong>of</strong> the Mg-Bbinary system using the CALPHAD method and ab-initio calculations – J Alloys Compounds, 2009,vol.470, pp.85-89 – “The literature establish upper and lower bounds for the formation enthalpies [J61]”– p.87. “Fig.4. Calculated formation enthalpies <strong>of</strong> magnesium borides at 298.15 K, compared toexperimental data in the literature [32]” – p.87.J60. J.Miklósi, P.Póczik, I.Sytchev, K.Papp, G.<strong>Kaptay</strong>, P.Nagy, E.Kálmán: Atomic forcemicroscopy investigation <strong>of</strong> electrochemically produced carbon nanotubes – Appl.Phys.,2001, vol. A72, pp. S189-S192. (IF = 1,722)J60-c1. G.Z.Chen, D.J.Fray: Recent development in electrolytic formation <strong>of</strong> carbon nanotubes in molten salts –J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.309-342 “While research in the electrolytic method isgathering forces around the world in the past few years [J60]” – p.311, “<strong>Kaptay</strong> and coworkers alsoinvestigated the electrolytic product by atomic force microscopy, revealing some interesting nanostructures[J60].” – p.313, “An interesting study <strong>of</strong> the electrolytic product by atomic force microscopywas jointly reported in 2001 by two Hungarian groups led by <strong>George</strong> <strong>Kaptay</strong> [J60]. In addition t<strong>of</strong>indings similar to that from SEM <strong>of</strong> the product from the solidified salt, interestingly, tori <strong>of</strong> about300-400 nanometers in diameter and 10-15 nm in height were observed on samples originated from thesurface <strong>of</strong> the cathode, see Figure 8.” – pp.327-328.J60-c2. I.A.Kinloch, G.Z.Chen, J.Howes, C.Boothroyd, C.Singh, D.J.Fray, A.H.Windle: Electrolytic, TEM andRaman studies on the production <strong>of</strong> carbon nanotubes in molten NaCl – Carbon, 2003, vol.41, pp.1127-1141 – “ <strong>Kaptay</strong> et al agrees with the initial intercalation stage but suggests that the fragmentsresponsible for the nanotube formation are graphite sheets rather than M x C y particles [J60]” – p.1128.55


J60-c3. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes [J60]” – p.151J60-c4. AR Kamali, C Schwandt, DJ Fray: Effect <strong>of</strong> graphite electrode material on the characteristics <strong>of</strong> moltensalt electrolitically produced carbon nanomaterials – Mater Charact, 2011, vol.623, pp.987-994 – „Thisfinding was then confirmed further in a number <strong>of</strong> subsequent studies, in which both lithium chloride andsodium chloride were found suitable molten salt electrolyte [J60]” – p.987J60-c5. A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation <strong>of</strong> electrolytic carbon nanomaterials, CorrosionScience, 2012, vol.54, pp.307-313. – „The cathodic reaction leads to the erosion <strong>of</strong> the graphite and therelease <strong>of</strong> a variety <strong>of</strong> carbon nanostructures including multi-walled carbon nanotubes (MWCNTs) andcarbon nanoparticles. The method has been investigated further in a number <strong>of</strong> studies [J60]” – p. 3.J60-c6. C.Schwandt, AT Dimitrov, DJ Fray: High yield synthesis <strong>of</strong> multi-walled carbon nanotubes fromgraphite by molten salt electrolysis – Carbon, 2012, vol.50, pp. 1311-1315. „The molten salt electrolysismethod <strong>of</strong> converting graphite directly into nanoscale carbon materials is a rather unknown approachtoward preparation <strong>of</strong> CNTs [J60]” – p.1311.J60-c7. A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure and thermokineticcharacteristics <strong>of</strong> electrolytic carbon nanomaterials, Corrosion Science (2012), doi: http://dx.doi.org/ -„bulk graphite sample is cathodically polarised in a molten alkali metal chloride salt, such that the alkalimetal intercalates into the graphite and disintegrates its microstructure whereby the graphite is continuallyeroded into nanometre sized carbon entities. These become detached from the graphite surface andaccumulate in the molten salt bath from where they can be harvested [J60].”J59. G.<strong>Kaptay</strong>: Discussion <strong>of</strong> a „Microscale Simulation <strong>of</strong> Settler Processes in Copper MatteSmelting by K.O.Fagerlund, H.Jalkanen, Metall. Mater. Trans. B, 2000, vol.31B, pp.439-451”– Metall. Mater. Trans. B, 2001, vol.32B, pp.555-557 (IF = 0,754)J59-c1. Xia JL, Ahokainen T, Kankaanpaa T, Jarvi J, Taskinen P: Flow and heat transfer performance <strong>of</strong> slagand matte in the settler <strong>of</strong> a copper flash smelting furnace – Steel Res Int, 2007, vol. 78, No.2, pp. 155-159 - “Recently, numerous studies have been carried out on the performance <strong>of</strong> flash smelting furnaces[J59]” – p.155.J59-c2. H.Hasinovic, SE Friberg: Destabilization mechanisms in a triple emulsion with Janus drops – J ColloidInterface Sci, 2011, vol.361, pp.581-586. – “The fundamentals <strong>of</strong> the equilibrium between gravitationaland interfacial tension forces for a pendant drop at a liquid interface was given by <strong>Kaptay</strong> [J59], whodetermined the maximum drop size <strong>of</strong> a Cu 2 S-FeS matte, floating in liquid low iron wollastonite slag inthe copper matte smelting process. … Fig.5, Eq.3” – p.585.J59-c3. A. Al-Bawab, A. Bozeya, H. Hasinovic, S.E. Friberg: Three- Phase Surfactant-less Emulsions, ArabianJournal <strong>of</strong> Chemistry (2011), doi: 10.1016/j.arabjc.2011.10.005 – „An exact solution to the problem <strong>of</strong>the passage <strong>of</strong> a drop through an interface due to gravitational forces was given by <strong>Kaptay</strong> (<strong>Kaptay</strong>2001), Figure 11. <strong>Kaptay</strong> determined the maximum drop size <strong>of</strong> a Cu2S-FeS, matte, floating on liquidlow iron wollastonite slag in the copper matte smelting process. With the interfacial tensions and thecontact angles in Figure 11 (<strong>Kaptay</strong>, 2001) known, the critical drop size was given as.. Eq.(13)…. Thenecessary information to apply equation (13) is at present not available; sufficiently accuratemeasurements <strong>of</strong> the involved factors are in progress” – p.11/33.J58. Á.Borsik, K.K.Kelemen, G.<strong>Kaptay</strong>: Dynamic simulation <strong>of</strong> the movement <strong>of</strong> ceramicparticles in front <strong>of</strong> growing solidification front – Archives <strong>of</strong> Mechanical Technology andAutomatization, 2001, vol.21, pp.19-28. (IF = 0)J57. G.<strong>Kaptay</strong>: Interfacial Criterion <strong>of</strong> Spontaneous and Forced Engulfment <strong>of</strong> ReinforcingParticles by an Advancing Solid/Liquid Interface – Metall. Mater. Trans. A., vol.32A, 2001,993-1006. (IF = 1,273)J57-c1. L.Hadji: Thermal force induced by the presence <strong>of</strong> a particle near a solidifying interface – Phys. Rev. E.,2001, vol.64, 051502/1-6 – “… Other studies have simply considered ad-hoc expressions for the dragforce that also include the thermal conductivities <strong>of</strong> the particle and the melt. These approaches areincorrect because they yield expressions for the hydrodynamic drag force that depend on the thermalproperties <strong>of</strong> the particles and thus make no sense physically. For instance, modified formulas for thedrag force have been derived, which show that the force vanishes when the particle is perfectly56


insulating. We refer the reader to the recent papers by <strong>Kaptay</strong> [J57] and to references therein for athorough discussion <strong>of</strong> results obtained using this approach. “ – p.5J57-c2.Y.M.Youssef, R.W.Hamilton, R.J.Dashwood, P.D.Lee: Latent heat evolution from TiB 2 particulatereinforced alloys – Materials Science Forum, 2002, vol.369, pp.259-264J57-c3. L.Hadji: Particle engulfment in crystal growth: the thermal puzzle – Current Topics in Crystal Growthresearch, 2002, vol.6, pp.95-104J57-c4. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 -“Contrary to aqueous systems solidification is overlapping the distribution <strong>of</strong> the particles in the liquidmetal. The solid-liquid interface can push or engulf the particles modifying their original distribution inthe liquid [J57]” – p.27J57-c5. Z.Q.Wang, X.F.Liu, Y.H.Liu, Y.H.Zhang, L.N.Yu, X.F.Bian: Structural heredity <strong>of</strong> TiC and itsinfluences on refinement behaviors <strong>of</strong> AlTiC master alloys – Trans. <strong>of</strong> Nonferrous metals Society <strong>of</strong>China, 2003, vol.13, No.4, pp.790-793. „It was reported that solidification parameters could influencethe distribution <strong>of</strong> particles in Al melt [J57]” – p.792J57-c6. Catalina AV, Stefanescu DM, Sen S: Numerical calculation <strong>of</strong> the morphology <strong>of</strong> a solid/liquid interfacenear an insoluble particle, in: MODELING OF CASTING, WELDING AND ADVANCEDSOLIDIFICATION PROCESSES, ed. by: Stefanescu DM; Warren JA; Jolly MR; Krane MJM, 2003,pp.125-132J57-c7. S.Mukherjee, D.M.Stefanescu: Liquid convection effects on the pushing-engulfment transition <strong>of</strong>insoluble particles by a solidifying interface: Part I. Analytical Calculation <strong>of</strong> the Lift Forces –Metall.Mater.Trans., 2004, vol.35A, pp.613-621 – „The full implication <strong>of</strong> the surface energy has beenrecently discussed by <strong>Kaptay</strong> [J57]” – p.614J57-c8. Y.M.Youssef, R.J.Dashwood, P.D.Lee: Effect <strong>of</strong> clustering on particle pushing and solidificationbehavior in TiB 2 reinforced aluminum PMMCs – Composites A, 2005, vol.36, pp.747-763 – „Thecontact angle value for Al/TiB 2 , the particle/vapor interfacial energy, and the liquid/vapor interfacialenergy were taken from the literature [J57]” – pp760-761.J57-c9. H.Ohta, H.Suito: Dispersion behaviour <strong>of</strong> MgO, ZrO 2 , Al 2 O 3 , CaO-Al 2 O 3 and MnO-SiO 2 deoxidationparticles during solidification <strong>of</strong> Fe-10 mass% Ni alloy – ISIJ Int., 2006, vol.46, pp.22-28 – „Footnoteto Table 2: my equation, coloumn 3 <strong>of</strong> Table 2 is calculated by this equation [ J57]” – p.27.J57-c10. H.Ohta, H.Suito: Effect <strong>of</strong> sulfur abd oxygen on engulfment and pushing <strong>of</strong> deoxidation particles <strong>of</strong>ZrO 2 and Al 2 O 3 during solidification <strong>of</strong> Fe-10mass%Ni alloy – ISIJ Int., 2006, vol.46, pp.472-479 –„Table 1 and Fig.1 – calculation <strong>of</strong> solid metal / solid particle interfacial energy [J57]” – pp. 473-474.57


J57-c11. Wang Y., Liu X.: SiC particulate reinforced aluminium matrix composites – the status and developmenttrend – Research Studies on Foundry Equipment, 2003, No.3, pp.18-22 (ref. No.16) – „Chinese text,referring to my equation 2 [J57]” – p.20.csclJ57-c12. Schaffer PL, Miller DN, Dahle AK: Crystallography <strong>of</strong> engulfed and pushed TiB 2 particles inaluminium - SCRIPTA MATERIALIA 57 (12): 1129-1132 DEC 2007 – “.. many models have beendeveloped to explain the transition between engulfment and pushing [J57]” – p.1129, p. 1132.J57-c13. J.He, J.Zhao, H.Li, X.Zhang, Q.Zhang: Directional solidification and microstructural refinement <strong>of</strong>immiscible alloys – Metall Mater Trans A, 2008, vol.39A, pp.1174-1182 – “There exists threeinteraction modes: repulsion, engulfment and entrapment [J57]” – p.1178.J57-c14. J.W.Garwin, Y.Yang, H.S.Udaykumar: Multiscale modeling <strong>of</strong> particle-solidification front dynamics.Part III: Theoretical aspects and parametric study – Preprint AFRL-MN-EG-TP-2007-7414. – „particlesolidificationfront interactions are abundant in nature and industrial applications. Examples includemicrostuctural development in metal matrix composite manufacturing [J57]” – p.1J57-c15. A.Ciftja: Solar silicon refining, inclusions, settling, filtration, wetting: PhD Thesis, NTNU, Trondheim,2009 – “The full implications <strong>of</strong> the surface energy have ben recently discussed by <strong>Kaptay</strong> [J57]” –p.22.J57-c16. A.E.Karantzalis, A.Lekatou, E.Georgatis, H.Mavros: Solidification behaviour <strong>of</strong> ceramic particlereinforced Al-alloy matrices – J.Mater Sci, 2010, vol.45, pp.2165-2173. – „… the importance <strong>of</strong> otherfactors such as interfacial characteristics and crystallographic compatibility are adressed in the works <strong>of</strong><strong>Kaptay</strong> [J57]…” – p.2167J57-c17. D.N.H.Tran, C.P.Whitby, D.Fornasiero, J.Ralston: Foamibility <strong>of</strong> aqueous suspensions <strong>of</strong> fine graphiteand quartz particles with a trblock copolymer – J Coll Int Sci, 2010, vol.348, pp.460-468 – “<strong>Kaptay</strong>[J57] inverstigated the general forces governing stability in the froth. He found that particles couldstabilise froths under different conditions in a range <strong>of</strong> contact angles between 20 o and 90 o .Interestingly, his model predicts that particles above 3 m would probably not be effective stabilisers,which are contradictory to the findings <strong>of</strong> Dippenaar et al., Johansson and Pugh, Aveyard et al. forexample. Th8is emphasises that foam stability also depends on the particles size, as this governs thedegree <strong>of</strong> penetration <strong>of</strong> the liquid films” – p.460.J57-c18. A.E.Karantzalis, A.Lekatou, E.Georgatis, T.Tsiligiannis, H.Mavros: Solidification observations <strong>of</strong>dendritic cast Al alloys reinforced with TiC particles – J Mater Eng Perform, 2010, vol.19, No.9, pp.1268-1275 – “The importance <strong>of</strong> other factors such as interfacial characteristics and crystallographiccompatibility are addressed in the works <strong>of</strong> <strong>Kaptay</strong> [J57]” – p.1268.J57-c19. A.Ciftja: Solar silicon refining, inclusions, settling, filtration, wetting: Lambert Academic Publishing,Saarbrücken, Germany, 2010 – “The full implications <strong>of</strong> the surface energy have ben recently discussedby <strong>Kaptay</strong> [J57]” – p.20.J57-c20. H.Kaftelen, N.Ünlü, G.Göller, M.L.Övegcoglu, H.Henein: Comparative processing-structure-propertystudies <strong>of</strong> Al-Cu matrix composites reinforced with TiC particulates – Composites A, 2011, vol. 42,pp.812-814 – “Due to the strong metallic nature and closely matched crystal structure with Al, TiCparticles are easily wetted by liquid Al during solidification [J57]” – p.3.J56. G.<strong>Kaptay</strong>, K.K.Kelemen: On the force acting on a sphere moving towards a solidificationfront due to an interfacial energy gradient at the sphere/liquid interface – ISIJ International,2001., vol.41., pp.305-307. (IF = 0,980)J56-c1: K.Mukai, Z.Wang, W.Lin: Reply to the Paper named „The force acting on a sphere moving towards asolidification front due to an interfacial energy gradient at the sphere/liquid interface” – ISIJInternational, 2001, vol.41., pp.308-310 – “We appreciate <strong>Kaptay</strong> and Kelemen very much for theirsincere concerning to our researches. We believe that this discussion is very helpful for furtherclarifying the mechanism <strong>of</strong> surface tension gradient influencing the behavior <strong>of</strong> particles” – p. 310,összesen 3 oldal válaszsl58


J55. Hutkainé Göndör Zs., Gál J, Zambóné Benkő M., Szontagh E., <strong>Kaptay</strong> Gy.: Alumíniumhegesztőpálcák kémiai fényesítése – Anyag- és Kohómérnöki Tudományok, 2000, vol.28.,pp.5-16. (IF = 0)J54. Báder E., <strong>Kaptay</strong> Gy.: Határfelületi energiák vizsgálata volfrám-karbid/réz-ónrendszerekben – BKL Kohászat, 2000, 133. évf., 11. szám, 431-435. (IF = 0)J53. S.V.Devyatkin, G.<strong>Kaptay</strong>: Chemical and Electrochemical Behaviour <strong>of</strong> TitaniumDiboride in Cryolite-Alumina Melt and in Molten Aluminum – Journal <strong>of</strong> Solid StateChemistry, 2000, vol.154, pp.107-109. (IF = 1.527)J53-c1. C.Bessada, E.M.Anghel: 11 B, 23 Na, 27 Al and 19 F NMR study <strong>of</strong> solid and molten Na 3 AlF 6 -Na 2 B 4 O 7 –Inorganic Chemistry, 2003, vol.42., No.12, pp.3884-3890 – „Titanium diboride ... has manyapplications. These includes ... cathodes in Hall-Heroult cells for the electrolytic production <strong>of</strong>aluminium [J53]– p.3884.J53-c2. J.Wachsmuth, R.Radhakrishnan, T.S.Sudarshan: Effect <strong>of</strong> pulsed current on reactively synthesized TiB 2consolidated by plasma pressure compaction – Powder Metallurgy, 2003, vol.46, pp.361-364 –„Although there are reports ont he potential <strong>of</strong> TiB 2 to fill these application [J53], it is difficult to sinterTiB 2 powders to full density’ – p.361.J53-c3. D.A.Weirauch Jr., W.J.Krafcik, G.Ackart, P.D.Ownby: The wettability <strong>of</strong> titanium diboride by moltenaluminum drops – J.Mater.Sci., 2005, vol.40, pp.2301-2306 – The results <strong>of</strong> subsequent studies differedwidely with no convergence <strong>of</strong> contact angle data above the well known Al wetting onset temperature<strong>of</strong> 900-1000 o C [J53].” – p.2301J53-c4. A.Changizi: Production and properties <strong>of</strong> in-situ aluminum titanium diboride composites formed by slagmetalreaction method – MSc Thesis, 2005, Middle East Technical University, Turkey – „Boron isdeposited from a cryolite-alumina melt in a 3-electron irreversible charge transfer process [J53]” – p.41,„The solubility <strong>of</strong> Al in TiB 2 is so low that it cannot be measured [J53]” – p.44.J53-c5. Celikkan H, Ozturk MK, Aydin H, Aksu ML: Boriding titanium alloys at lower temperatures usingelectrochemical methods - THIN SOLID FILMS 515 (13): 5348-5352 MAY 7 2007 – „.. the boriding<strong>of</strong> Ti alloys are generally carried out at 1000 – 1200 o C [J53]” – p.5349.J53-c6. J.Li, X.J. Lü, Y.Q. Lai, Q.Y. Li, Y.X. Liu: Research progress in TiB 2 wettable cathode for aluminumreduction - JOM, August 2008, pp.32-37 – „Coatings were also deposited from the Na 3 AlF 6 – Al 4 B 2 O 9 -TiO 2 and Na 3 AlF 6 – Al 4 B 2 O 9 -CaTiO 3 systems on graphite, glassy carbon, nickel and tungsten cathodes[J53]” – p.34.J53-c7. Simakov D, Vassiliev S, Tursunov P, Khasanova N, Ivanov V, Abakumov A, Alekseeva A, Antipov E,Tsirlina G: Electrodeposition <strong>of</strong> TiB2 from cryolite-alumina melts - LIGHT METALS 2008, ed. byDeYoung DH, 2008, TMS, pp. 1019-1022. – „Devyatkin et al. [J53] reported a principal possibility <strong>of</strong>titanium diboride electrodepostion on various metals from cryolite melt with addition <strong>of</strong> titanium andboron oxygen-containing compounds. This bath composition is already similar to alumina-cryolite melt,as some ox<strong>of</strong>luoride complexes surely appear.” – p. 1019. „As it follows from literature [J53],complications can go with high volatility <strong>of</strong> boron fluoride compounds and from formation <strong>of</strong> passiveinsulating TiO film when titanium compounds in the melt are partly reduced” – p. 1020.J53-c8. Stojanovic, M.Toplicevic, S.Ristic: Depozicija boridnih slojeva na neke obojene metale – ZastitaMaterijala, 2011, vol.52, pp.295-300. – “Celikkan i saradnici su pokusali da boriraju legure Tielektrohemijskom metodom na sobnoj temperaturi pracenom processom otpustanja na mnogo nizimtemperaturama od onih prijavljenih u literaturi [J53] - p.297.J53-c9. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on a carboncathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372. „Since1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis <strong>of</strong>borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set a goal<strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts. Theirattempts to create wettable coatings on carbon and metallic cathodes ended at the laboratory level[J53]” – p. 1367.59


J52. Z.Benkő M., <strong>Kaptay</strong> Gy.: Az LD-konverter anyagmérlege – BKL Kohászat, vol.133(2000) 6-7, pp. 241-248. (IF = 0)J51. G.<strong>Kaptay</strong>: Further Discussion <strong>of</strong> „Particle Engulfment and Pushing by SolidifyingInterfaces: Part II. Microgravity Experiments and Theoretical Analysis” – Metall. Mater.Trans. A, vol.31A (2000), 1695 – 1700. (IF = 1,361)J51-c1: D.M.Stefanescu, A.Catalina, S.Sen, F.R.Juretzko, B.K.Dhindaw, P.A.Curreri: Authors’ Reply,Metallurgical and Materials Transactions A, vol.31A (2000), 1700–1705. – „This communication iswritten in response to <strong>Kaptay</strong>’s criticism [J51]…” 5 oldal válasz.J51-c2. L.Hadji: Thermal force induced by the presence <strong>of</strong> a particle near a solidifying interface – Phys. Rev. E.,2001, vol.64, 051502/1-6 – “… Other studies have simply considered ad-hoc expressions for the dragforce that also include the thermal conductivities <strong>of</strong> the particle and the melt. These approaches areincorrect because they yield expressions for the hydrodynamic drag force that depend on the thermalproperties <strong>of</strong> the particles and thus make no sense physically. For instance, modified formulas for thedrag force have been derived, which show that the force vanishes when the particle is perfectlyinsulating. We refer the reader to the recent papers by <strong>Kaptay</strong> [J51] and to references therein for athorough discussion <strong>of</strong> results obtained using this approach. “ – p.5 (Note: this is the first publicrecognition that my discussion papers were written on a matter to be discussed – moreover, this iscoming from the same University where the original paper <strong>of</strong> Stefanescu was written)J51-c3. L.Hadji: Particle engulfment in crystal growth: the thermal puzzle – Current Topics in Crystal Growthresearch, 2002, vol.6, pp.95-104.J51-c4. J.W.Garvin, H.S.Udaykumar: <strong>Dr</strong>ag on a particle being pushed by a solidification front and itsdependence on thermal conductivities - J. <strong>of</strong> Crystal Growth, 2004, vol.267, pp.724-737 “Still underdebate [J51] is the issue <strong>of</strong> the proper form <strong>of</strong> the drag law when the solidification interface is no longerplanar…”- p.727J51-c5. DM Stefanescu: The multidisciplinary facets <strong>of</strong> particle engulfment and pushing – Trans Ind Inst.Metals, 2007, vol.60, No2-3, pp.79-86J51-c6. D.M.Stefanescu: Science and Engineering <strong>of</strong> Casting Solidification, 2nd edition, Springer, NY, 2009,395 pp. – „The main problem is the formulation and calculation <strong>of</strong> delta sigma. In spite <strong>of</strong> extensiveefforts and sometimes bitter debate [J51], it is clear that because <strong>of</strong> the uncertainties int he evaulation <strong>of</strong>the various interfacial energies, deltasigma is at best a fitting parameter – p.289.J50. M.S.Yaghmaee, G.<strong>Kaptay</strong>, G.Jánosfy: Equilibria in the liquid ternary Fe-B-N system –Materials’ World (e-journal with ISSN 1586-0140, accessible at: http://materialworld.unimiskolc.hu),April, 2000. (IF = 0)J49. M.S.Yaghmaee, G.<strong>Kaptay</strong>, G.Jánosfy: Equilibria in the Ternary Fe-Al-N System –Materials Science Forum, vols 329-330 (2000) 519-524. (IF = 0.597)J49-c1. G.Effenberg (editor): Landolt-Börstein - Numerical Data and Functional Relationships in Scinece andTechnology. New Series, Group IV: Physical Chemistry, Vol. 11A2. Ternary alloy systems. Phasediagrams, crystallographic and thermodynamic data. Subvolume A: Light Metal Systems. Part 2:Selected systems from Al-Cu-Fe to Al-Fe-Ti. Springer, 2005. The Al-Fe-N system: … These resultswere confirmed by the model <strong>of</strong> ideally associated mixture proposed by [J49]” – p.310J48. G.<strong>Kaptay</strong>, E.Báder, L.Bolyán: Interfacial Forces and Energies Relevant to Production <strong>of</strong>Metal Matrix Composites – Materials Science Forum, vols. 329-330 (2000) 151-156. (IF =0.597)J48-c1. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “Table 7.Surface tension <strong>of</strong> pure and alloyed Al and its additives, based on [J11] – {Table on and d/dT <strong>of</strong>liquid Al, Mg, Si, Zn, Mn, Cu, Cr, Ni, Fe}” – p.23., “Table 10. Contact angle <strong>of</strong> pure Al melt / particle /gas interface [J48] {Table for TiB 2 , WC, TiC, BN, SiO 2 , SiC, graphite, Al 2 O 3 , TiN} – p.25, “Surfaceconcentration <strong>of</strong> alloying elements doesn’t yield significant effects on surface tension in aluminum[J48]” – p.81.J48-c2. T.Wübben: Zur Stabilität flüssiger Metallschaume – Universität Bremen, Germany, 2003, 128 pp. (ref.No.73) – „Aufgrund ihres Kontaktwinkels von SiC/Al = 27 – 400 [J48] ...” – p.3460


J48-c3. Blücher J., Dobránszky J.: Kompozithuzallal erősített alumínium duplakompozitszerkezetek – BKLKohászat, 2003, vol.136, No.5, pp.213-217 – „A méretkorlátokhoz társul egy másik jelentős problémais: az infiltrációs folyamatok nagy nyomásából és nagy hőmérsékletéből adódó hosszú expozíciós idő,amely alatt határfelületi reakciók mehetnek végbe az erősítőszálak és az olvasztott vagy megszilárdult,de még mindig nagy hőmérsékletű mátrix között [J48]” – p.213.J48-c4. O.P.Uteza, E.G.Gamaly, A.V.Rode, M.Samoc, B.Luther-Davies: Gallium transformation underfemtosecond laser excitation: Phase coexistence and incomplete melting - Physical Review, B 70,054108 (2004) – “Transformation into the new phase would be energetically favored at the interfaceprovided the surface tension between the liquid Ga and silica is lower than that between the silica andcrystal-liquid gallium interface [J48]….the surface tension between the crystal and liquid Gallium is720 dyne/cm [J48]” – p.10.J48-c5. J.T.Blucher, J.Dobranszky, U.Narusawa: Aluminium double composite structures reinforced withcomposite wires – Mater. Sci. Eng., 2004, vol.A387-389, pp.867-872 – „..successful infiltration <strong>of</strong>carbon fibers without special surface treatments was sporadic. … Al 2 O 3 , SiO, TiN. TiB as well as Cu anNi coatings all show promising results [J48]” – p.868.J48-c6. N.Babcsán, J.Banhart, D.Leitlmeier: Metal foam – manufacture and physics <strong>of</strong> foam – Materials World,e-journal, 2005, vol.6, No.1 – “non-oxidized TiB 2 contact angle is 0 o [J48]” – p.12.J48-c7. C.Körner, M.Arnold, R.F.Singer: Metal foam stabilization by oxide network particles – Mater. Sci. Eng.,2005, vol.A396, pp.28-40.: “The equilibrium contact angle between liquid aluminium and Al 2 O 3 wasdetermined as 63 o at 1100 o C in [J48]” – p.34.J48-c8. N.Babcsán, D.Leitlmeier, J.Banhart: Metal foams – high temperature colloids. Part I. Ex situ analysis <strong>of</strong>metal foams – Colloids and Surfaces A, 2005, vol.261, pp.123- 130 – “TiB2 was chosen, as its contactangle is 98 o at 900 o C in pure Al [..], although we are aware that non-oxidized TiB2 contact anglereported to be 0 o as well [J48]” – p.127J48-c9. A.Ender, H.van den Boom, H.Kwast, H-U. Lindenberg – Metallurgical development in steel-plantinternalmulti-injection hot metal desulphurozation – Steel Research Int.,, 2005, vol.76, ppp.562-572 –„The basic principles for calculating or estimating adhesion energies and interfacial tensions aredescribed by <strong>Kaptay</strong> [J48]” – p.570J48-c10. N.Babcsán, J.Banhart: Metal Foams – towards high-temperature colloid chemistry – Chapter 11 in:„Colloidal particles at Liquid Interfaces, ed. By B.P.Binks, T.S.Horozov, Cambridge University Press,2006, pp.445-499 – „At the melting point, typical surface tensions <strong>of</strong> oxide-free and oxidised Al meltsare 1184 and 865 mNm -1 respectively [J48]” – p.462. „Some examples for the contact angle <strong>of</strong> pure Almelt / particle / gas systems at 1100 o C (no oxide layer on liquid Al, purified Ar atmosphere at 10 -8 barresidual pressure) are summarized in Table 11.7. Table 11.7 taken from ref. [J48].” – p.468.J48-c11. Kientzl I, Dobránszky J, Ginsztler J: Effect <strong>of</strong> Production Parameters on the Properties <strong>of</strong> CompositeWires - In: Papp É, Mácsay I, Holubetz L, (szerk.) Gépészet 2006 Proceedings <strong>of</strong> Fifth Conference onMechanical Engineering, Budapest University <strong>of</strong> Technology and Economics, National TechnicalInformation Centre and Library, Budapest, 2006, CD-ROM – „The looked-at wires were Nextel 440,oval cross-section fibre-reinforced Al 99.99 matrix composites [J48]” – p.3.J48-c12. I.Kientzl, I.Orbulov, J.Dobranszky, A.Németh: Mechanical behaviour Al-matrix composites wires indouble composite structures – in: „Advanced Inorganic Fibrous Composites V”, 2006, ttp, Switzerland,pp. 147-152 – „The effect <strong>of</strong> insufficient wetting between the carbon fibres and aluminium was anothercause <strong>of</strong> strength decreasing [J48]” – p. 152.J48-c13. I.Kientzl, J.Dobránszky: Production and examination <strong>of</strong> double composites – Mater Sci Forum, 2007,vol.537-538, pp.191-197.61


J48-c14. Yaghmaee MS, Shokri B: Effect <strong>of</strong> size on bulk and surface cohesion energy <strong>of</strong> metallic nano-particles- Smart Mater & Structures, 2007, vol. 16 (2), pp. 349-354 – „Surface related factors have been takenfrom [J48].” – p.351.J48-c15. N.Babcsán, G.S. Vinod Kumar, B.S.Murty, J.Banhart: Grain refiners as liquid foam stabilizers – Trans.Indian Inst. Met., 2007, vol.60, pp.127-132. – „<strong>Kaptay</strong> has reported the contact angle <strong>of</strong> TiB 2 and TiCwith Al in vacuum at 1100 o C as 0 and 10 0 , respectively [J48]. Though the conditions <strong>of</strong> foaming in thepresent study are different from the above conditions, one can get a rough idea <strong>of</strong> the wettability <strong>of</strong> thetwo particles from the above report.” – p.130.J48-c16. M.S. Yaghmaee, B. Shokri: Surface binding stability <strong>of</strong> metallic nanoparticles – Plasma ProcessPolym, 2007, vol.4, pp.5891-5896 – „The fundamental bulk thermodynamic parameters, surfacerelated factors and other data have been taken from Barin handbook and <strong>Kaptay</strong> et al [J48]respectively” – p.5894.J48-c17. ZF Xu, H Yu, ZT Wang, YH Zheng, MZ Hu, CC Cai, QS Yan: The properties thermal expansion andprocess <strong>of</strong> high volume fractions SiCp/Mg composites by vacuum-gas pressure infiltration – J.Functional Mater, 2007, VOL. 38, NO.10, PP.1610-1617 (NO.5) – „CHINESE TEXT…” – P.1610.J48-c18. JH An: Thermal stress induced voids in nanoscale Cu interconnects by in-situ TEM heating – PhDDissertation, University <strong>of</strong> texas at Austin, December 2007 – „Table 5.1. Energy values forcalculating change in free energy for void formation, SiN x surface energy [J48]” – p.155.J48-c19. N.Babcsán, B.S.Murty, G.S.Vinod Kumar, F.Garcia Moreno, J.Banhart: New foam stabilizingadditive for aluminium. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart, D.C.Dunand, DEStechPubl. Inc, 2008, pp.27-30. – „Data on the wettability <strong>of</strong> TiAl3 by Al is not available, while <strong>Kaptay</strong>[J48] has reported the contact angle <strong>of</strong> TiB2 and TiC with Al in vacuum at 1100 oC as 0 and 10degrees, respectively.” – p.29.J48-c20. Zoltai László (+Dúl Jenő): Grafitcsírák keletkezési lehetőségének elméleti vizsglata – 3.kutatószemináriumi dolgozat, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2009. február, 48 oldal – „Az irodalmi érték: SiC-g =2040 – 0.1T mJ/, 2 [J48]” – 30.o.J48-c21. A.V.Biakova, V.P.Krasovskii, A.O.Dudnik, S.V.Gniloskurenko, A.I.Sirko: O roli smachivaemosti Iraspredeleniia tviordich chastic v stabilizacii vspenennich aliuminievich rasplavov – Adgeziia rasplavovI paika materialov, 2009, vip.42, pp.5-22. – “Bolshinstvo opublikovannich v literaturedannich popoverhnostnomu natiazheniu binarnich I mnogokomponentnich aliuminievich rasplavov otnositsia koblasti temperature, namnogo previshaiushich temperature vspenivaniia [J48]” – p.8.J48-c22. B.A:Cook, A.M.Russell, J.Peters, J.L.Harringa: Estimation <strong>of</strong> surface energy and bonding betweenAlMgB14 and TiB2 – J Phys Chem Sol, 2010, vol.71, pp.824-826 – „In order to compare this withavailable publishe values for surface eneryg <strong>of</strong> TiB2, ZrB2 and HfB2 at 1300 K [J48], the T-dependence must be factored in…. Eq.(3), as derived from <strong>Kaptay</strong> [J48]…. + 10 lines” – p.3/3. “Fig.3.Estimated temperature dependence <strong>of</strong> average surface energy in single phase AlMgB14. referencevalues from <strong>Kaptay</strong> [J48]” – p.826J48-c23. A.Chamaani, E.Marzbanrad, M.R.Rahimipour, M.S. Yaghmaee, A. Aghaei, R.D. Kamachali,Y.Benhamian: Thermodynamics and molecular dynamic investigation <strong>of</strong> a possible new critical size forsurface and inner cohesive energy <strong>of</strong> Al nanoparticles – J Nanopart Res, 2011, vol.13, pp.6059-6067 –„For an implicit analysis <strong>of</strong> the fundamental bulk thermodynamic parameters, surface-related factorsand other data have been taken from the Barin handbook and <strong>Kaptay</strong> et al. [J48]” – p.6062.J48-c24. S.Asavavisithchai, AR Kennedy: In-situ oxide stabilization development <strong>of</strong> aluminum foams in powdermetallurgical route - High Temp Mater Process, 2011, vol.30, No.1-2, pp.113-120. – “Contact anglebetween Al2O3 and Al have been reported to be … 63 degrees at 1373 K [J48]” – p.119.J48-c25. Lévai Gábor (tud. vez.: dr. Török Tamás): Acéllemezek színes tűzi horganyzása, 6. doktoriszeminárium, 2011, június 14., 28 oldal. – “<strong>Kaptay</strong> és mtsai szerint a cink felületi feszültsége 820mJ/m 2 , a titán oxidé ezzel szemben csak 600 mJ/m 2 . Ennek köszönhetően a titán oxid felületifeszültsége kisebb a cinkénél [J48]”. – pp.21-22.J48-c26. Z.G. Zhang a,., Y.J. Wanga, L.J. Xiao a, L.Q. Zhang a, Y. Sub, J.S. Lin: High-temperature oxidation <strong>of</strong>hot-dip aluminizing coatings on a Ti3Al–Nb alloy and the effects <strong>of</strong> element additions – CorrosionScience, 2012, http://dx.doi.org/10.1016/j.corsci.2012.07.009 - „No report about the effect <strong>of</strong> Mn on thesurface tension <strong>of</strong> Al can be used to discuss the wettability. The order <strong>of</strong> the surface tension <strong>of</strong> puremetal at melting point is Al = Mn > Ag > Si [J48], so the effect <strong>of</strong> Mn on the surface tension <strong>of</strong> Almight be complicated.”J47. <strong>Kaptay</strong>: Interfacial Criteria to Avoid Pushing <strong>of</strong> Particles during Solidification <strong>of</strong> MetalMatrix Composites – Materials Science Forum, vols 329-330 (2000) 121-126. (IF = 0.597)J47-c1. J.T.Blucher, J.Dobranszky, U.Narusawa: Aluminium double composite structures reinforced withcomposite wires – Mater. Sci. Eng., 2004, vol.A387-389, pp.867-872 – „..successful infiltration <strong>of</strong>62


carbon fibers without special surface treatments was sporadic. … Al 2 O 3 , SiO, TiN. TiB as well as Cu anNi coatings all show promising results [J47]” – p.868.J47-c2. W.Xi, R.L. Peng, W. Wu, N. Li, S. Wang, S. Johansson: Al 2 O 3 nanoparticle reinforced Fe-based alloyssynthesized by thermite reaction – J Mater Sci, 2012, vol.47, pp.3585-3591 – „Ahead <strong>of</strong> thesolidification front, deltasigma was calculated to be 0.85 J/m2 using the following equation [J47]:Eq.(3)” – p.3588.J46. G.<strong>Kaptay</strong>, S.A.Kuznetsov: Electrochemical synthesis <strong>of</strong> refractory borides from moltensalts – Review paper – Plasmas & Ions, 2 (1999) 45-56. (IF = 0)J46-c1. H.B.Kushov, A.S.Uzdenova, M.K.Vindizheva, A.V.Zimin: Study <strong>of</strong> joint electroreduction <strong>of</strong> complexgadolinium (or lanthanum) ions with tetrafluoroborate-ions in halide melts – Advances in Molten Salts,2000., vol.1., pp. 291-297 …”Borides <strong>of</strong> rare earth metals have been synthesized in this way in works<strong>of</strong> Andrieux […] (see also review [J46])…” - p. 291, „…It should be mentioned that there is noinformation on the electrosynthesis <strong>of</strong> GdB 6 and GdB 4 phases in the literature [J46].” – p.295.J46-c2. S.V. Devyatkin: Influence <strong>of</strong> different conditions <strong>of</strong> electrochemical synthesis on the structure <strong>of</strong> thedeposited refractory compound coatings, Materials’ World (e-journal, http://materialworld.unimiskolc.hu,July, 2001 – “The results <strong>of</strong> Baraboshkin [..] obtained mainly for single metallic deposits,were extrapolated to refractory boride phases in [OJ36]” - p.1, “..This is characteristic toelectrochemical synthesis <strong>of</strong> tantalum diboride. In this case the layered type <strong>of</strong> coating structure hasbeen obtained (see Fig. 3) […]. The formation <strong>of</strong> this structure has been theoretically explained [J46]using the Equilibrium Electrochemical Synthesis (EES) Diagrams […]” – p. 3.J46-c3. J. Sytchev, H. Kushkhov: Voltammetric Investigation <strong>of</strong> the Reduction Processes <strong>of</strong> Nickel, Cobalt, andIron Ions in Chloride and Chloro-Fluoride Melts, Materials’ World (e-journal, http://materialworld.unimiskolc.hu,July, 2001 – “High-temperature electrochemical synthesis from molten salts is a veryperspective way to produce compounds <strong>of</strong> high purity, including borides [J46]”, p.1.J46-c4. L.P.Polyakova, E.G.Polyakov, O.V.Makarova, A.A.Shevirev, N.I.Bierrum: Elektrochimicheskii sintezboridov tantala v beskislorodnich i kislorodcoderzhashich ftoridnich rasplavach – Elektrokhimiia, 2001,vol. 37., pp.1451-1457: „V etoi sviazi strannoui vigliadit poziciia avtorov raboti [J46], schitaiushich,shto nabliudaiemaia struktura sostoit iz chereduiushichsia sloiev TaB i TaB 2 …” – 1454J46-c5. Kh.B.Khushkhov, M.K.Vinidzheva, A.S.Uzdenova, Z.A.Zhanikaeva: Joint electroreduction <strong>of</strong>lanthanum, gadolinium and boron in halide melts – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B,pp.275-280 – “Single borides <strong>of</strong> rare-earth metals were synthesized in the works <strong>of</strong> Andrieux [..] (seealso review[J46])” – p.278.J46-c6. P.Taxil, P.Chamelot, L.Massot, C.Hamel: Electrodeposition <strong>of</strong> alloys or compounds in molten salts andapplications – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.177-200 – „<strong>Kaptay</strong> and Kuznetsov usedequations similar to Eq.7 to calculate equilibrium potentials <strong>of</strong> the boride systems in molten salts [J46].Thermodynamic data allow these authors to elaborate so-called Electrochemical Equilibrium Synthesis(EES) diagrams where the stability <strong>of</strong> the compounds <strong>of</strong> the system B/Me is defined as a function <strong>of</strong>temperature and the depolarization term which is the second term <strong>of</strong> Eq.(5); hence these diagramsdisplay the stability <strong>of</strong> each compound <strong>of</strong> systems such as Ti/B in areas delimited by boundary linesgiven by Eq.5 computed in the temperature scale adapted to the process <strong>of</strong> preparing these alloys” –p.183.J46-c7. H.B.Kushkhov, M.K.Vinizheva, A.S.Uzdenova, Z.A.Zhanikaeva: Joint electroreduction <strong>of</strong> lanthanum,gadolinium and boron in chloride melts – Electrochemical Society Proceedings vol.2002-19, pp.616-621 – “Rare earth metal borides were first synthesized by Andrieux (see also review [J46])” – p.618J46-c8. J.H. von Barner, P.Noye, A.Barhoun, F.Lantelme: Influence <strong>of</strong> oxide and alloy formation on theelectrochemistry <strong>of</strong> Ti deposition from the NaCl-KCl-NaF-K 2 TiF 6 melt, reduced by metallic Ti –J.Electrochem.Soc., 2005, vol.152, pp. C20-C26. “<strong>Kaptay</strong> and Kuznetsov [J46] give references to most<strong>of</strong> the work done so far on TiB 2 deposition from molten salts in a recent review.” – p.C20.J46-c9. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallo-podobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “V obzore [OJ36] sistematizirovai raboti po elektrochmicheskomu sintezu boridov tugoplavkichmetallov, opisani metodi beztokovogo I elektrochmicheskogo borirovaniia. S pomoshiu ravnovesnichelektrochmicheskich diagram sinteza avtori [J46] ocenivaiut veroiatnost VES boridov 24 perehodnichmetallovi predskazivaiut ich vozmozhnuiu morfologiu” – p.190.J46-c10. V.V.Malyshev: Zashitnie pokritiia tugoplavkimi soedineniiami metallov IV-VIA grupp, nanosimie izionnich rasplavov (obzor) – Zashita metallov, 2004, vol.40, pp.584-600 - „pervie popitki sozdat iobobshit material predpriniati poka lish v statiach V.I.Shapovala i posledovatelei [J46]” – p.58463


J46-11. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) – „Using „equilibrium electrochemical synthesis diagrams”, <strong>Kaptay</strong>et al [J46] assessed the probability <strong>of</strong> high-temperature electrochemical synthesis <strong>of</strong> borides <strong>of</strong> 24transition metals and predicted their possible morphology” – p.1142.J46-c12. J.Li, B.Li, Z.Dong: Electrodeposition <strong>of</strong> [001] oriented TiB 2 coatings – Materials Letters, 2005, vol.59,pp.3234-3237 – “As compared with other possible techniques <strong>of</strong> production <strong>of</strong> refractory borides,molten salts generally can be considered as a very promising medium for chemical and electrochemicalsynthesis <strong>of</strong> different refractory borides [J46]” – p.3234J46-c13. Li Jun, Li Bing, Dong Zheng’e: Preparation <strong>of</strong> the TiB 2 coatings by electroplating in moloten salts –Rare Metals, 2005, vol.24, pp.261-266 - – “Molten salts generally can be considered as a verypromising medium for chemical and electrochemical synthesis <strong>of</strong> different refractory borides. ascompared with other possible techniques <strong>of</strong> production <strong>of</strong> refractory borides, [J46]” – p.261J46-c14. Li B, Jiang LS, Li J: Pulse electrodeposition <strong>of</strong> titanium diboride in LiF-NaF-KF melts, J Rare Earths,2005, vol. 23, pp. 66-71. - „Electrochemical synthesis has some advantages as compared with otherpossible techniques <strong>of</strong> production <strong>of</strong> refractory borides [J46]: i. smooth coatings can be deposited evenat surfaces <strong>of</strong> complicated geometry, ii. Single crystals, polycrystalline coatings and even ultradispersepowders can be deposited, iii. the composition <strong>of</strong> the deposit can be precisely controlled throughprocess parameters, iv. relatively low temperatures <strong>of</strong> synthesis, cheap and simple technologicalbackground and cheap raw materials required make the process attractive from the economic point <strong>of</strong>view” – p.66.J46-c15. Gaune-Escard M: Thermodynamics <strong>of</strong> lanthanide halides and application to high-temperature processes– Scand J Metall, 2005, vol. 34, No. 6, pp. 369-375. - “Electrochemical synthesis in molten salts wasshown to be a promising method for rare earth compounds production. It is very suitable forelectrodeposition <strong>of</strong> protective coating on massive samples <strong>of</strong> complex shapes [J46].” – p.373.J46-c16. Kartal G, Timur S, Arslan C: Effects <strong>of</strong> process current density and temperature on electrochemicalboriding <strong>of</strong> steel in molten salts - J Electronic Mater, 2005, vol. 34, No. 12, pp. 1538-1542. – “Althoughelectrochemical boriding has been studied since the 1940-s, limited research exists in English languageliterature [J46]. Nevertheless, electrochemical boriding produces thicker coating in shorter times ascompared to the thermochemical birodong techniques” – p.1538.J46-c17. L.Jiang, B.Li, J.Li: Electrodeposition <strong>of</strong> titanium diboride coating from molten salts containing oxideelectrolyte – Chinese Journal <strong>of</strong> Rare Metals, 2005, vol.29:22, No.4, pp.162-166 – Chinese text….J46-c18. Li J, Li B, Jiang LS, Dong Z, Ye YF: Preparation <strong>of</strong> highly preferred orientation TiB2 coatings – RareMetals, 2006, vol. 25, No. 2, pp. 111-117 – … electrochemical synthesis <strong>of</strong> refractory borides frommolten salts has the following advantages [J46]: …” – p.111.J46-c19. Li J, Li B, Jiang LS, Ye YF, Dong ZE: Preparation <strong>of</strong> TiB2 coatings by electroplating in KF-KClmolten salt – Rare Metal Mater Eng, 2006, vol. 35, No. 4, pp. 629-633 – “Molten salts generally can beconsidered as a very promising medium for chemical and electrochemical synthesis <strong>of</strong> differentrefractory borides, as compared with other possible techniques <strong>of</strong> production <strong>of</strong> refractory borides[J46]” – p.629.J46-c20. Li J, Li B: Preparation and characterization <strong>of</strong> highly preferred orientation TiB2 coatings - Rare MetalMater Eng, 2006, vol. 35, No 5, pp. 832-835 – Chinese text??J46-c21. Jun Li, Bing Li: Preparation <strong>of</strong> the TiB2 coatings by electroplating in molten salts – Mater Letters,2007, vol.61, NO. 6, pp. 1274-1278 – „As compared with other possible techniques <strong>of</strong> production <strong>of</strong>refractory borides, electrochemical synthesis from molten salts generally can be considered as a verypromising technique for refractory borides [J46]” – p. 1274.J46-c22. Li J, Li B: Electrochemical reduction and electrocrystallization process <strong>of</strong> B(III) in the LiF-NaF-KF-KBF4 molten salt – Rare Metals, 2007, vol. 26, No. 1, pp. 74-78 – „Molten salts can be generallyconsidered as a promising medium for the chemica land electrochemical synthesis <strong>of</strong> TiB 2 , as comparedwith other possible techniques for the production <strong>of</strong> refractory borides [J46]”- p.74.J46-c23. Celikkan H, Ozturk MK, Aydin H, Aksu ML: Boriding titanium alloys at lower temperatures usingelectrochemical methods – Thin Solid Films, 2007, vol. 515, No. 13, pp. 5348-5352 – „<strong>Kaptay</strong> et al.have explained the electrochemical boriding process in detail [J46].” – p.5348.J46-c24. Devyatkin SV: Electrochemical synthesis <strong>of</strong> binary and ternary refractory compounds in the system Ti-Si-B from chloride-fluoride melts – Z. Naturforsch A, 2007, vol. 62, No. 9, pp. 524-528 „<strong>Kaptay</strong> andKuznetsov have reviewed the published papers on electrochemical synthesis <strong>of</strong> titanium diboride inmolten salts [J46]” – p.524.J46-c25. Y Ban, Z Wang, Z Shi, H Kan, S Yang, X Cao, Z Qiu: Preparation <strong>of</strong> TiB 2 inert cathode on graphite byelectrodeposition process for aluminum electrolysis – Light Metals, 2007, pp.1055-1060.64


J46-c26. E.Bilgi, H.E.Camurlu, B.Akgün, Y.Topkaya, N.Sevinc: Formation <strong>of</strong> TiB 2 by volume combustion andmechanichemical process – Mater Res Bull, 2008, vol.43, pp.873-881 – “Fused salt electrolysis [J46] isanother technique for production <strong>of</strong> titanium diboride” – p.873.J46-c27. V.Malyshev, A.Gab, M.Gaune-Escard: Initial stages <strong>of</strong> nucleation <strong>of</strong> molybdenum and tungsten carbidephases in tungstate-molybdate-carbonate melts – J Appl Electrochem, 2008, vol.38, pp.315-320 – „Theresults <strong>of</strong> related investigations for electrodeposited Mo and W were presented earlier [J46]” – p.315.J46-c28. K.Amalajyothi, L.J.Berchmans, S.Angappan, A.Visuvasam: Electrosynthesis <strong>of</strong> cerium hexaboride bythe molten salt technique – J Crystal Growth, 2008, vol.310, pp.3376-3379 – “the combined deposition<strong>of</strong> two electro-active species at the potential more positive than their own deposition potentials at theinert cathode is possible due to their high exchange current density <strong>of</strong> the cations in the molten salts[J46]” – p.3378.J46-c29. N.Rybakova, M.Souto, H.P.Martinz, Y.Andriyko, W.Artner, J.Godinho, G.E.Nauer: Stability <strong>of</strong>electroplated titanium diboride coatings in high-temperature corrosive media – Corrosion Science,2009, vol.51, pp.1315-1321 – „The electrodeposition <strong>of</strong> TiB 2 from molten salts is significantly faster,less expensive and permits to obtain well defined and smooth deposits on different substrates withcomplicated surface pr<strong>of</strong>iles and homogeneous layer thickness [J46]” – p. 1315.J46-c30. H.Cellikan, A.E.Sanli, H.Aydin, M.L.Aksu: Mechanism <strong>of</strong> boron tribromide electrodeposition – J ApplElectrochem, 2009, vol.39, pp.1525-1533. – “The boronizing process can be carried out thermally or bythe electrolysis <strong>of</strong> molten salts [J46]” – p.1525.J46-c31. T.P. Jose, L. Sundar, L.J. Berchmans, A. Visuvasam and S. Angappan: Electrochemical Synthesis andcharacterization <strong>of</strong> BaB 6 from molten melt - Journal <strong>of</strong> Mining and Metallurgy, 2009, vol. 45 B, No.1,pp. 101 – 109. – “It is emphasized that coatings with relatively stable stoichiometry can also beobtained, if one should keep the composition <strong>of</strong> the melt constant and to keep the growing boride phaseideally planar during the process. This would ensure a constant ratio <strong>of</strong> partial current densities <strong>of</strong> thetwo components <strong>of</strong> the boride during the deposition process. Boron and metal atoms both are depositedat more positive potentials than their own equilibrium deposition potentials usually get dissolved in themelt again. But, if such unstable boron and metal atoms appear to be in contact, they will stabilize eachother with the formation <strong>of</strong> the stable boride phase [J46].J46-c32. A.Güven, B.Fiedrich: Electrochemical titanium diboride (TiB2) synthesis from fluoride melts – ProcEMC, 2009, pp.1-12. „Table 1. Electrochemical production parameters <strong>of</strong> some metal borides [J46]” –p.3.J46-c33. G. Kartal, S. Timur, M. Urgen, A. Erdemir: Electrochemical Boriding <strong>of</strong> Titanium for ImprovedMechanical Properties - Surface Coating Technol., 2010, vol.204, pp.3935-3939 – „… there are studiesrelated to the boriding possibilities <strong>of</strong> <strong>of</strong> non-ferrous metals and alloys [J46]” – p.3935.J46-c34. G.Kartal, S.Timur, O.L.Erylmaz, A.Erdemir: Influence <strong>of</strong> process duration on structure and chemistry<strong>of</strong> borided low carbon steel – Surface Coating Technology, 2010, Volume 205, Issue 5, pp 1578-1583 –“Electrochemical boriding has not attracted much attention and very limited number <strong>of</strong> publicationappeared in the open literature [J46]” – p.1581.J46-c35. L.J. Berchmans, A. Visuvasam, S. Angappan, C. Subramanian, A.K. Suri: Electrosynthesis <strong>of</strong>samarium hexaboride using tetra borate melt - Ionics, 2010, vol.16, pp.833-838. – “It is explained by<strong>Kaptay</strong> and Kuznetsov that the formation <strong>of</strong> metal borides occurs by the joint deposition <strong>of</strong> twocomponents.” – p.837.J46-c36. G.Kartal, O.L.Erylmaz, G.Krumdick, A.Erdemir, S.Timur: Kinetics <strong>of</strong> electrochemical boriding <strong>of</strong> lowcarbon steel – Appl. Surf. Sci, 2011, vol.257, pp.6928-6934 – “The majority <strong>of</strong> researches inelectrochemical boriding have primarily focused on the effects <strong>of</strong> electrolyte composition, currentdensity, and boriding temperature on the structure and composition <strong>of</strong> resultrant boride layers [J46]” –p.6928.J46-c37. O.Kahvecioglu, V.Sista, O.L.Eryilmaz, A.Erdemir, S.Timur: Ultra-fast boriding <strong>of</strong> nickel aluminide –Thin Solid Film, 2011, vol.520, pp.1575-1581 “… the diffusion <strong>of</strong> boron into the Ni 3 Al substrate beingthe rate limiting step [J46]” – p.1577J46-c38. X.Cao, H.Wang, X.Meng, C.Wang, H.Yang, X.Xue: High temperature electrochemical synthesis <strong>of</strong>tungsten boride from molten salt – Adv mater Res., 2011, vol.206-307, pp.463-466. – „The synthesiscondition is as follows [J46]: Eq.(2)…” – p. 465.J46-39. Z.Stojanovic, M.Toplicevic, S.Ristic: Depozicija boridnih slojeva na neke obojene metale – ZastitaMaterijala, 2011, vol.52, pp.295-300. – “Celikkan i saradnici su pokusali da boriraju legure Tielektrohemijskom metodom na sobnoj temperaturi pracenom processom otpustanja na mnogo nizimtemperaturama od onih prijavljenih u literaturi [J46]”- p.297.J46-c40. V.Pavlik, M.Boca: Corrosion <strong>of</strong> titanium diboride in molten FLINAK(eut) – Chemical Papers, 2012,doi: 10.2478/s11696-012-0202-y. – „Titanium diboride … is considered for the use in the process <strong>of</strong>65


aluminium production in Gereration IV molten salts nuclear reactors probably as coating layer on thetemperature stressed probes [J46]” – p.1.J45. B.Tury, J.I.Sytchev and G.<strong>Kaptay</strong>: Morphology <strong>of</strong> titanium diboride obtained byelectrochemical synthesis from molten chloro-fluoride melt - High Temperature MaterialProcesses, 1999, vol.3, p.117-126. (IF = 0.345)J45-c1. S.V. Devyatkin: Influence <strong>of</strong> different conditions <strong>of</strong> electrochemical synthesis on the structure <strong>of</strong> thedeposited refractory compound coatings, Materials’ World (e-journal, http://materialworld.unimiskolc.hu,July, 2001 – “When the pulse technique is used, irregularities can be ‘cut’ and the planarcrystallisation front can be maintained for a coating with larger thickness. This method is well knownfor the electro-crystallisation <strong>of</strong> metals from water based solutions. The same method wasexperimentally proven to provide a smoother surface <strong>of</strong> the TiB 2 coating, deposited from a chlor<strong>of</strong>luoridemelt [J45] – p.6. --J45-c2. U.Fastner, T.Steck, A.Pascual, G.Fafilek, GE Nauer: Electrochemical deposition <strong>of</strong> TiB 2 in hightemperature molten salts – J Alloys Comp., 2008, vol.452, pp.32-35 – „Among all the electrolytesreported int he literature [J45] our work was focused on….. “ – p.32.J44. Báder E., Bolyán L., <strong>Kaptay</strong> Gy., Báder I.: Határfelületi energiák vizsgálata kerámiafémolvadékrendszerek korróziója szempontjából – Korróziós Figyelő, 1999, 39. évf., 5.szám, 144-146. (IF = 0)J44-c1. Egész Ádám: Magas porozitású Al 2 O 3 kerámiák fejlesztése kartusokhoz és Al-Al 2 O 3 cermetekhez –Diplomamunka, <strong>Miskolci</strong> <strong>Egyetem</strong>, Műszaki Anyagtudományi Kar, Kerámia – és SzilikátmérnökiTanszék, 2010. „(38-as hivatkozás): 17. ábra. A peremszög változása a hőntartás függvényében.Átvéve: [J44]” – 26.o.J44-c2. Egész Ádám: Alumínium-Al 2 O 3 kompozitok fejlesztése - TDK dolgozat (konzulens: dr. Gömze László),<strong>Miskolci</strong> <strong>Egyetem</strong>, Műszaki Anyagtudományi Kar, Kerámia – és Szilikátmérnöki Tanszék, 2010. „7.ábra. A peremszög változása a hőntartás függvényében [J44]” – 12.o., „A kemence felfűtésefolyamatos, egyenletes, így a mérés végén megkaphatjuk az alumínium peremszögének folyamatosaváltozását az idő, valamint a hőmérséklet függvényében. Egy ilyen megfigyelést és mérést láthatunk a7. ábrán, amely a hőntartás függvényében szemlélteti a peremszög változását. A felvételeket 1100 Cº-onkészítették 0, 60, 300 és 600 másodperces hőntartási idők után. A képeken jól látszik, hogy azalumínium a hevítési idő növekedésével folyamatosan, egyre nagyobb mértékben terül szét azalumínium-oxid kerámia lapon, tehát nedvesíti azt. Ezen tanulmány eredményként azt állapította meg,hogy ezen a hőmérsékleten, 600 másodperces hőntartási idő után az alumínium nedvesítés peremszöge60º alá csökkent az alumínium-oxid kerámián. [J44]”. – 12-13.o.J43. Kelemen K.K., <strong>Kaptay</strong> Gy., Borsik Á.: Fémhabok – a géptervezés potenciális szerkezetianyagai (Metallic foams – potential structural materials for machine design) – Gép, 1999., 50.évf, 11. szám, 58-61. (IF = 0)J43-c1. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „A másik csoportba sorolhatjuk azokat az anyagokat,amelyek létrehozásánál vagy csak a tömegcsökkentés, vagy valamilyen más különleges követelménydominál. Ezek a porózus szerkezeti anyagok [J43]” – p.41.J42. Jánosfy Gy., <strong>Kaptay</strong> Gy., Szabó Z., Szélig Á.: A túltelítettség szerepe alumíniummalcsillapított, szilíciumszegény lágyacélok (LCAK) fémesaluímium-tartalmánakoxigénszondával történő beszabályozásában - BKL Kohászat, 1999., 132. évf., 6-7. szám,245-249 o. (IF = 0)66


J41. Báder E., <strong>Kaptay</strong> Gy.: Az öntőporok szerepe az acél folyamatos öntésekor - BKLKohászat, 1999., 132. évf., 6-7. szám, 250-254 o. (IF = 0)J40. G.<strong>Kaptay</strong>, J.Sytchev: Thermodynamic Properties <strong>of</strong> Phases and the ElectrochemicalSynthesis Diagram for the Mo-B System - Ukr. Khim. Zh., 1999, vol.65., No.5., pp.34-41. (IF= 0)J39 <strong>Kaptay</strong> G.: Discussion <strong>of</strong> „Particle Engulfment and Pushing by Solidifying Interfaces:Part II. Microgravity Experiments and Theoretical Analysis, by D.M.Stefanescu,F.R.Juretzko, B.K.Dhindaw, A.Catalina, S.Sen, P.A.Curreri, published in Metall. Mater.Trans. A, 1998, vol.29A, pp.1697-1706” - Metall. Mater. Trans. A, 1999, vol. 30A, pp.1887-1890. (IF = 0,993)J39-c1. D.M.Stefanescu, F.R.Juretzko, A.Catalina, B.K.Dhindaw, S.Sen, P.A.Curreri: Authors’ Reply toDiscussion <strong>of</strong> „Particle Engulfment and Pushing by Solidifying Interfaces: Part II. MicrogravityExperiments and Theoretical Analysis” - Metall. and Materials Trans., A, volume 30A, 1999, pp. 1890 -1894 – lásd a a teljes cikketJ39-c2: D.M.Stefanescu, A.Catalina, S.Sen, F.R.Juretzko, B.K.Dhindaw, P.A.Curreri: Authors’ Reply,Metallurgical and Materials Transactions A, vol.31A (2000), 1700–1705. – „This communication iswritten in response to <strong>Kaptay</strong>’s comments [J39]…” 5 oldal válasz.J39-c3. J.W.Garvin, H.S.Udaykumar: <strong>Dr</strong>ag on a particle being pushed by a solidification front and itsdependence on thermal conductivities - J. <strong>of</strong> Crystal Growth, 2004, vol.267, pp.724-737 “Still underdebate [J39] is the issue <strong>of</strong> the proper form <strong>of</strong> the drag law when the solidification interface is no longerplanar…”- p.727J39-c4. DM Stefanescu: The multidisciplinary facets <strong>of</strong> particle engulfment and pushing – Trans Ind Inst.Metals, 2007, vol.60, No2-3, pp.79-86J39-5. D.M.Stefanescu: Science and Engineering <strong>of</strong> Casting Solidification, 2nd edition, Springer, NY, 2009, 395pp. – „The main problem is the formulation and calculation <strong>of</strong> delta sigma. In spite <strong>of</strong> extensive effortsand sometimes bitter debate [J39], it is clear that because <strong>of</strong> the uncertainties int he evaulation <strong>of</strong> thevarious interfacial energies, deltasigma is at best a fitting parameter – p.289.J38. G.<strong>Kaptay</strong>, J.Sytchev: Thermodynamic Properties <strong>of</strong> Phases and the ElectrochemicalSynthesis Diagram for the Mo-B System - Ukr. Khim. Zh., 1999, vol.65., No.5., pp.34-41. (IF= 0)J37. <strong>Kaptay</strong> Gy., Bolyán L.: Kerámiával erősített fémmátrixú kompozitanyagok gyártásánakhatárfelületi vonatkozásai. II/2. Határfelületi energiák adatbank. Anyagpárválasztás. BKLKohászat, 1998. 131. Évfolyam, 9-10 szám, 305-314. (IF = 0)J37-c1. Magyar Anita: Karbon szállal erősített alumínium mátrixú kompozitok Al/C határfelületének jellemzése– PhD értekezés, Miskolc, 2004. – fél oldal szöveg + 1 ábra átvéve a 26. oldalon, plusz: „..magyarázat agázhólyagok keletkezésére … hogy mihelyt a hőmérséklet a 850 – 900 C-os tartoményba emelkedik(ún. kritikus hőmérséklet [J37]), az Al reakcióba lép az Al 2 O 3 -al Al 2 O gáz keletkezése közben [J37].” –p.57.67


J37-c2. Janó V., Buza G., Kálazi Z.: Diszperz eloszlású, fémmátrixú kerámia kompozitréteg létrehozásalézersugaras felületkezeléssel – BKL Kohászat, 2005., 138. évf., 3. szám, 39-44.J37-c3. Kientzl Imre: Alumínium mátrixú duplakompozit szerkezetek gyártása és vizsgálata – Diplomaterv,BME (konzulens: Dobránszky János), 2005, Bp., 110o. – „16 egyenlet, 6 ábra, 7 táblázat, összesen 11oldal átvéve [J37] „ – 32-42. o.J37-c4. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „Nagyon fontos, hogy a fémmátrixú kompozitanyagokesetében is csak akkor kapunk megfelelő műszaki tulajdonságokat, ha megfelelő a kapcsolat azerősítőanyag és a mátrixanyag határfelületén [J37]” – p.41.J37-c5. I.Kientzl, J.Dobránszky: Production and behaviuour <strong>of</strong> aluminium matrix double composite structures –Mater Sci Forum, 2008, vol.589, pp.105-110 – „The contact angle can be smaller than 140 degdepending on the fact whether there is an oxide layer on the surface <strong>of</strong> the liquid or not [J37]” – p.107.J37-c6. O.Udvardy, A.Lovas: Dynamic phenomena during sessile drop measurements due to oxide layerdisruption – Mater Sci Forum, 2008, vol.589, pp.173-178 – „The wetting phenomenon between solidsand liquids has an outstanding role in several technological processes [J37]” – p.173.J37-c7. Kientzl I, Dobránszky J: Fabrication Methods <strong>of</strong> Double Composites. In: Váradi K, Vörös G (eds.),Gépészet 2008, Proceedings <strong>of</strong> Sixth Conference on Mechanical Engineering, BUTE faculty <strong>of</strong>Mechanical Engineering, G-2008-J-01. – “The strong bonding has high significance because thecomposite wires covered by alumina skin caused by their aluminium content and there is poor wettingbetween alumina and liquid aluminium [J34]” – p.4/6.J37-c8. Orbulov I.N.: Szintaktikus fémhabok, PhD értekezés (Dobránszky János és Németh Árpád, BME, 2009.június) – „<strong>Kaptay</strong> és Bolyán összefoglaló műve szerint a peremszöget Al és SiO2, valamint Al2O3között (amelyek a gömbhéjak falanyagát alkotják), a következő, 7. táblázat foglalja össze [J37]. 7.táblázat – 4 számérték a cikkből” – 35.o.J37-c9. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – <strong>Kaptay</strong> szerzőtársaival összeállított egy olyanadatbankot, amely nagyszámú fém és kerámiaanyag határfelületi viselkedésére jellemző mérőszámottartalmaz… + 11 sor [J37]” – 28.o.J36. Tury B., Sytchev J., <strong>Kaptay</strong> Gy.: Elektrokémiai szintézissel előállított TiB 2 morfológiaivizsgálata - Gépgyártástechnológia, 1998., 38. évf., 10. szám, 111-114 o. (IF = 0)J36-c1. R.P.Pawlek: Aluminium Wettable Cathodes: An Update – in: Light Metals 2000, Ed. by R.D.Peterson,TMS 2000, pp. 449-454 – „Tury et al [J36] prepared ceramic TiB 2 by electrolysis at 700 C using amolten salt electrolyte consisting <strong>of</strong> NaCl, KCl, NaF, KBF 4 and K 2 TiF 6 . The electrolitically preparedTiB 2 has good adherence to the cathode carbon. Compact and homogenous TiB 2 is prepared at currentdensities <strong>of</strong> 150-300 mA/cm 2 ” á p.449 –J36-c2. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001. – „Tury i dr. [J36] poluchili keramicheskii TiB 2 izrasplava NaCl-KCl-NaF-KBF 4 -K 2 TiF 6 . Poluchennoie elektrochimicheskim putiom pokritie TiB 2kompaktno i odnorodno, horosho prilipaet k ugolnomu katodu” – s.16.J36-c3. Gorlanov ES, Nikiforov SA, Alternative technology to produce a wettable cathode surface layer in Alcells – Proc <strong>of</strong> the 12 th Int. Conf. “Aluminum <strong>of</strong> Siberia” (in Russian), Krasnoyarsk, 2006, pp.91-95. –„Naibolee perspektivnii, s popitkoi adaptacii k usloviiam elektroliza v krilito-glinoziomnich rasplavachpredstavlen v rabotach [J36]” – p.92.J35 Kuznetsov S.A., Kuznetsova S.V., Beliaevskii A.T., Devyatkin S.V., <strong>Kaptay</strong> G.: CathodicProcesses at Electrochemical Synthesis <strong>of</strong> Niobium Borides from Chloro-Fluoride Melts -Elektrokhimiia (Russian Journal <strong>of</strong> Electrochemistry), 34 (5) (1998) 520-527. (IF = 0,059)J35-c1. V.V.Malyshev: Zashitnie pokritiia tugoplavkimi soedineniiami metallov IV-VIA grupp, nanosimie izionnich rasplavov (obzor) – Zashita metallov, 2004, vol.40, pp.584-600 - – „az eredmények ismertetése26 + 41 sorban, állásfoglalás nélkül)” – p. 592 and 596J35-c2. O.B.Babushkhina, E.O. Lomako, W. Freyland: Electrochemistry and Raman spectroscopy <strong>of</strong> niobiumreduction in basic and acidic pyrrolidinium based ionic liquids. Part 1: 1-Butil-1-methylpyrrolidiniumchloride with NbCl 5 – Electrochimica Acta, 2012, vol.62, pp.234-241 – „The following achievementshave been made: …. Alkali fluoride-chloride melts were used as chloride electrolytes with the additive<strong>of</strong> K 2 NbF 7 [J35]” – p.234.68


J34. <strong>Kaptay</strong> Gy., Bolyán L.: Kerámiával erősített fémmátrixú kompozitanyagok gyártásánakhatárfelületi vonatkozásai. II/1. rész. Határfelületi energiák adatbank. Anyagpárválasztás. -BKL Kohászat, 1998, 131. évf., 5-6. szám, 179-185. (IF = 0)J34-c.1. Boross Péter: Karbidkerámia szemcsék viselkedése lézerrel létrehozott olvadéktócsában: TDK dolgozat,2000, tud. vez.: dr. Verő Balázs BAYATI és dr. Hárs György, BME) (ref. No.3, kicsit tévesenmegadva) – „5.táblázat. A vizsgált anyagok felületi feszültsége és hőfoktényezője [J34] (a táblázat 8, acikkemből származó adatot tartalmaz)” – 16.o. „6. táblázat – A megfelelő hőmérsékletre átszámítottfelületi feszültség és adhéziós energia értékek [J34] (a táblázat 18, a cikkemből átvett adatot tartalmaz”– 16.o.J34-c.2. Boross Péter: Lézeres átolvasztással végzett felületmódosítások, Diplomamunka, BME, Bayati, 2001.,tud.vez.: dr. Verő Balázs és dr. Hárs György. “A kerámiákra a [J34] szakirodalom nyomán az egységesközleítő –0,15 J/m 2 K értéket használtam hőfoktényezőként. .. W és cl számítását a [J34] Azirodalomban megadott peremszög - adatokból számoltam… 8.táblázat. A vizsgált anyagok felületifeszültsége és hőfoktényezője [J34].” - p.37.J34-c.3. Boross Péter, Kálazi Zoltán: A lézeres diszpergálás során fellépő jelenségek néhány elméletivonatkozása – BKL Kohászat, 2002, 135. évf., 6-7. szám, 219-223 o. – „A [J34] adatbank alapján azacélolvadékunk és a TiC között nagyjából 70 o -os peremszög van…” 219. o.J34-c4. G.Králik, P.Fülöp, B.Verő, D.Zsámbok: Laser Surface Treatment <strong>of</strong> Steels – Materials Science Forum,2003, vols.414-415, pp.21-30 – “… based on the work <strong>of</strong> Gy.<strong>Kaptay</strong> [J34] we inspected the lawsdetermining the transport <strong>of</strong> the TiC particles into the molten bath. According to theoreticalconsiderations a particle only submerges into the depth <strong>of</strong> 2r in the liquid if the wetting is perfectbetween them. Since the wetting only partial between the material and the TiC particle in the presumedthermic and ambiency circumstances the conditions <strong>of</strong> the particle to travel under the surface <strong>of</strong> themolten bath are not given.” – p.25J34-c5. Blücher J., Dobránszky J.: Kompozithuzallal erősített alumínium duplakompozitszerkezetek – BKLKohászat, 2003, vol.136, No.5, pp.213-217 – „A méretkorlátokhoz társul egy másik jelentős problémais: az infiltrációs folyamatok nagy nyomásából és nagy hőmérsékletéből adódó hosszú expozíciós idő,amely alatt határfelületi reakciók mehetnek végbe az erősítőszálak és az olvasztott vagy megszilárdult,de még mindig nagy hőmérsékletű mátrix közöt [J34]” – p.213.J34-c6. Magyar Anita: Karbon szállal erősített alumínium mátrixú kompozitok Al/C határfelületének jellemzése– PhD értekezés, Miskolc, 2004. fél oldal bevezető szöveg a cikkem alapján a 23-24 oldalakon,69


J34-c7. Kientzl Imre: Alumínium mátrixú duplakompozit szerkezetek gyártása és vizsgálata – Diplomaterv,BME (konzulens: Dobránszky János), 2005, Bp., 110o. – „16 egyenlet, 6 ábra, 7 táblázat, összesen 11oldal átvéve [J34] „ – 32-42. o.J34-c8. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „Nagyon fontos, hogy a fémmátrixú kompozitanyagokesetében is csak akkor kapunk megfelelő műszaki tulajdonságokat, ha megfelelő a kapcsolat azerősítőanyag és a mátrixanyag határfelületén [J34]” – p.41.J34-c9. Verezub O.: Lézeresen felületkezelt szerszámacél köszörülése – Gyártóeszközök, szerszámok,szerszámgépek, 2008, No.1, pp.65-68. – „Az acélolvadékba nem a szerszám felületi rétegébe tervezettTiC-szemcséket vittük be. Ennek bonyolult felületkémiai-hidrodinamikai okait részletesen tartalmazza a[J34] irodalom” – p.66.J34-c10. I.Kientzl, J.Dobránszky: Production and behaviuour <strong>of</strong> aluminium matrix double composite structures –Mater Sci Forum, 2008, vol.589, pp.105-110 – „The contact angle can be smaller than 140 degdepending on the fact whether there is an oxide layer on the surface <strong>of</strong> the liquid or not [J34]” – p.107.J34-c11. O.Udvardy, A.Lovas: Dynamic phenomena during sessile drop measurements due to oxide layerdisruption – Mater Sci Forum, 2008, vol.589, pp.173-178 – „The wetting phenomenon between solidsand liquids has an outstanding role in several technological processes [J34]” – p.173.J34-c12. Kientzl I, Dobránszky J: Fabrication Methods <strong>of</strong> Double Composites. In: Váradi K, Vörös G (eds.),Gépészet 2008, Proceedings <strong>of</strong> Sixth Conference on Mechanical Engineering, BUTE faculty <strong>of</strong>Mechanical Engineering, G-2008-J-01 – “The strong bonding has high significance because thecomposite wires covered by alumina skin caused by their aluminium content and there is poor wettingbetween alumina and liquid aluminium [J34]” – p.4/6.J34-c13. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „<strong>Kaptay</strong> szerzőtársaival összeállított egy olyanadatbankot, amely nagyszámú fém és kerámiaanyag határfelületi viselkedésére jellemző mérőszámottartalmaz… + 11 sor [J34]” – 28.o.J33. <strong>Kaptay</strong> G., Buzinkay E.: Calculation <strong>of</strong> Equilibrium Electrochemical Synthesis Diagramson an Example <strong>of</strong> the Titanium - Boron System - Molten Salts Forum 5-6 (1998) 359-362. (IF= 0)J33-c1. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte, Roumanian ChemicalQuarterly Reviews, 1998, 6(4), 233-245 – „A stochiometric compound could usually be synthesizedfrom salts provided that the following thermodynamic condition is observed [J33]: {egyenlet}. Then theequilibrium synthesis potential can be calculated as: {egyenlet}…+10 sor”, ‘238.o. –J33-c2. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte – Rev Roum de Chimie,1999, vol.44, pp.643-650. – „The equilibrium potential needed for the synthesis to occur is given by theequation [J33]: {equation cited}” – p.648J33-c3. T.P. Jose, L. Sundar, L.J. Berchmans, A. Visuvasam and S. Angappan: Eectrochemical Synthesis andcharacterization <strong>of</strong> BaB 6 from molten melt - Journal <strong>of</strong> Mining and Metallurgy, 2009, vol. 45 B, No.1,pp. 101 – 109. - The joint deposition <strong>of</strong> boron and barium in molten salts is explained by the so called‘Unstable stoichiometric way’ called ‘kinetic regime’ in the Russian literature [J33].”J33-c4. X.Cao, H.Wang, X.Meng, C.Wang, H.Yang, X.Xue: High temperature electrochemical synthesis <strong>of</strong>tungsten boride from molten salt – Adv mater Res., 2011, vol.206-307, pp.463-466. – „According to<strong>Kaptay</strong> et al. the synthesis <strong>of</strong> tungsten boride could be perfomed in “kinetic regime” [J33].” – p.465.J32a. Devyatkin S.V., <strong>Kaptay</strong> G., Poignet J.-C., Bouteillon J.: Electrochemical Synthesis <strong>of</strong>Titanium Diboride Coatings from Cryolite Melts - Molten Salts Forum 5-6 (1998) 331-334.(IF = 0)J32a-c1. S.A.Kuznetsov: Elektrokhimicheskii sintez visokotemperaturnich boridov iz solevich rasplavov –Elektrokhimiia, 1999, t.35., No.11., 1301-1317 – “Sostav elektrolitov i usloviia polucheniiatugoplavkich boridov predstavleni v tabl.2. [J32a]..” pp. 1311-1312J32a-c2. R.P.Pawlek: Aluminium Wettable Cathodes: An Update – in: Light Metals 2000, Ed.by R.D.Peterson,TMS 2000, pp. 449-454 – „Stable titanium diboride cathode coatings have been synthsized on carboncathodes in situ from cryolite alumina melts with additions <strong>of</strong> some B 2 O 3 , Al 2 O 3 and CaTiO 3. Deviatkinet al [J32a] stated that this technique is very promising to improve service characteristics <strong>of</strong> existingaluminium electrolysis cells, and that it can be used in development <strong>of</strong> new generation <strong>of</strong> aluminiumproduction cells” p.45070


J32a-c3. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001 – „Stabilnie katodnie pokritiia iz diborida titanabili sintetizirovani na ugolnie katodi iz kriolit-glinoziomnich rasplavov s dobavleniem B 2 O 3 , Al 2 O 3 iCaTiO 3 [J32a]. Devyatkin i dr. [J32a] scitaiut etot sposob perspektivnim dlia ispolzovaniia vdeistvuiushich elektroliziorach i ispolzovaniia pri razrabotke elektroliziorov novogo pokoleniia” – c.16.J32a-c4. R.Krendelsberger, M.F.Souto, J.Sytchev, J.O.Besenhard, G.Fafilek, H.Kronberger, G.E.Nauer: Textureeffects in TiB 2 coatings electrodeposited from a NaCl-KCl-K 2 TiF 6 -NaF-NaBF 4 melt at 700 o C – J.Mining and Metallurgy, 2003, vol. 39B, No.1-2, pp.269-274 – „The electrochemical synthesis <strong>of</strong> TiB 2layers has been widely studied from diverse molten salt systems [J32a]” – p.270.J32a-c5. P.Taxil, P.Chamelot, L.Massot, C.Hamel: Electrodeposition <strong>of</strong> alloys or compounds in molten salts andapplications – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.177-200 – „In the industry <strong>of</strong> aluminiumelectrowinning, titanium or zirconium borides are possibly used to protect the carbon cathodes from theelectrolyte insertion. Numerous works are dedicated to the preparation <strong>of</strong> these compounds by theelectrodeposition in molten salts, either in molten fluorides or in cryolithe media [J32a]” – p.178.J32a-c6. AL Yurkov: Refractories and carbom cathode materials for the aluminium industry – Refractories andIndustrial Ceramics, 2006, vol.47, pp.11-13 (translated from Novye Ogneupori, 2006, No.1, pp.18-21) –“Electrolytic deposition <strong>of</strong> TiB2 coatings is carried out either in situ in operating electrolysis cells, orusing specialized baths [J32]. + 14 lines description” – p.12.J32a-c7. Gorlanov ES, Nikiforov SA, Alternative technology to produce a wettable cathode surface layer in Alcells – Proc <strong>of</strong> the 12 th Int. Conf. “Aluminum <strong>of</strong> Siberia” (in Russian), Krasnoyarsk, 2006, pp.91-95. –„Naibolee perspektivnii, s popitkoi adaptacii k usloviiam elektroliza v kriolito-glinoziomnichrasplavach predstavlen v rabotach [P4]” – p.92.J32a-c8. T.P. Jose, L. Sundar, L.J. Berchmans, A. Visuvasam and S. Angappan: Eectrochemical Synthesis andcharacterization <strong>of</strong> BaB 6 from molten melt - Journal <strong>of</strong> Mining and Metallurgy, 2009, vol. 45 B, No.1,pp. 101 – 109. - The joint deposition <strong>of</strong> boron and barium in molten salts is explained by the so called‘Unstable stoichiometric way’ [J32] called ‘kinetic regime’ in the Russian literature. This will appear ifthe deposition potentials <strong>of</strong> boron and the second component <strong>of</strong> the boride, i.e. the metal component(MC) on inert cathodes are too far from each other. Barium is found to be more electronegative thanboron, so the depolarization <strong>of</strong> metal deposition should be taken into account. i.e. the condition is asfollows: …… when the above condition is fulfilled, first the macroscopic layer <strong>of</strong> one <strong>of</strong> thecomponents will be deposited on the cathode and the formation <strong>of</strong> boride will take place duringdepositing the second component on this layer with depolarization. In this case the synthesis <strong>of</strong> boride ispossible only above the limiting current density <strong>of</strong> the more electropositive component. Hence, thecomposition <strong>of</strong> the boride phase will strongly depend on the concentration <strong>of</strong> the ions <strong>of</strong> the moreelectropositive component in the melt i.e., boron concentration. It also depends on the actual cathodiccurrent density. It has been reported that during the crystal deposition, both the composition <strong>of</strong> the meltand the effective cathode surface area will continuously change, hence, the final composition <strong>of</strong> theboride will also be changed. This mechanism has been reported as ‘unstable stoichiometry way’ [J32].J32-a-c9. JRA Godinho: Optimization <strong>of</strong> TiB 2 coatings electrodepisted from halide melts – Master dissertation inChemistry, April 2008, 70 pp. – “From the 90-s onward some practical aspects <strong>of</strong> the deposition <strong>of</strong>different borides (e.g. TiB 2 ) were clarified, along with the basic electrochemical techniques andthermodynamic calculations [P3]” – p.10.J32ac10. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on acarbon cathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372.„Since 1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis<strong>of</strong> borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set agoal <strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts. Theirattempts to create wettable coatings on carbon and metallic cathodes ended at the laboratory level[J32a]” – p. 1367.J.32. S.V Devyatkin, G.<strong>Kaptay</strong>, J.C.Poignet, J.Bouteillon: Chemical and electrochemicalbehaviour <strong>of</strong> titanium oxide and complexes in cryolite-alumina melts - High TemperatureMaterial Processes, 1998, vol.2, N4, p.497-506. (IF = 0,233)J32-c1. T.E.Jent<strong>of</strong>tsen: Behaviour <strong>of</strong> iron and titanium species in cryolite-alumina melts – PhD Thesis,December 2000, Norway. – “the possibility to produce Al-Ti alloys by electrolysis as discussed by71


Devyatkin et al.” – Chapter 4, “devyatkin et al applied cyclic voltammetry to study … (+half page)” –Chapter 6.J32-c2. T.E.Jent<strong>of</strong>sten, A-A. Lorentsen, E.W.Dewing, G.M.Haarberg, J.Thonstad – Solubility <strong>of</strong> SomeTransition Metal Oxides in Cryolite Alumina Melts: Part II. Solubility <strong>of</strong> TiO 2 – Metall. Mater. Trans.,2002, vol. 33B., pp.909-913 – „The possibility <strong>of</strong> producing aluminum-titanium alloys by electrolysis,as discussed by Qiu et al […] and by Devyatkin et al [J32] is another reason for investigation” – p.909.J32-c3. Simakov D, Vassiliev S, Tursunov P, Khasanova N, Ivanov V, Abakumov A, Alekseeva A, Antipov E,Tsirlina G: Electrodeposition <strong>of</strong> TiB2 from cryolite-alumina melts - LIGHT METALS 2008, ed. byDeYoung DH, 2008, TMS, pp. 1019-1022. – „These observations agree with the literature data [J32]” –p.1020.J.31. Kuznetsov S.A., Kuznetsova S.V., Devyatkin S.V., <strong>Kaptay</strong> G.: Electrodeposition <strong>of</strong>Niobium Boride Coatings from Chloro-Fluoride Melts - Russ. J. Appl. Chem. (Zh. PrikladnoiKhimii), 71 (1998) 74-80 (IF = 0.169)J31-c1. V.V.Malyshev, High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> group IV-VImetals in ionic melts – Zh. Neorganicheskoi Khimii, 2003, vol.48 (2), pp.142-148 (ref. 32)J31-c2. V.V:Malyshev: High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> group IV-VImetals in ionic melts – Russian J Inorg Chem, 2003, vol.48, pp.142-148 – “Kuznetsov et al. [J31]obtained niobium boride coatings from chloro-fluoride melts…” – p.144.J31-c3. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallopodobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “V [J31] pokazana vozmozhnost elektrohimicheskogo sinteza pokritii boridov niobiia sispolzovaniem hloridno-ftoridnich rasplavov. Vibrani sostavi elektrolitov i opredeleni parametriprocessa, pozvoliaiushie poluchat kak kristallicheskie, tak i rentgenoamorfnie sploshnie pokritiiaboridov niobiiia. Avtorami takzhe pokazani, shto elektrochmicheskim poverhnostnim borirovaniemniobievich podlozhek mogut bit polucheni tonkoplionochnie cloi diborida niobiia. Polucheni rezultatigovoriat o tom, shto VES boridov niobiia vozmozhen lish v kineticheskom rezhime. Po mneniuavtorov, pri takom rezhime sinteza reshaiusheezhanchenie imeet koncentraciia elektropolozhitelnogokomponenta (v dannom sluchaie geptaftoroniobata kaliia)” – pp.189-191.J31-c4. V.V.Malyshev: Zashitnie pokritiia tugoplavkimi soedineniiami metallov IV-VIA grupp, nanosimie izionnich rasplavov (obzor) – Zashita metallov, 2004, vol.40, pp.584-600 - – „az eredmények ismertetése41 sorban, állásfoglalás nélkül” – p.596J31-c5. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) – Ref. No. 35. – „see Table 1” – p.1141, „Kuznetsov et al [J31]demonstrated the possibility <strong>of</strong> electrochemical synthesis <strong>of</strong> niobium boride coatings using chloridefluoridemelts” – p.1141.J31-c6. M.Noel, N.Suryanarayanan: Electrochemistry <strong>of</strong> metals and semiconductors in fluoride media –J.Appl.Electrochem., 2005, vol.35, pp.49-60 – “Niobium boride may also be obtained through similarelectrodeposition process using fluoroborate salts [J31]” – p.55.J31-c7. A.I.Hab: Hig-tempearture electrochemcial synthesis <strong>of</strong> coatings <strong>of</strong> carbides, borides and silicides <strong>of</strong>metals <strong>of</strong> the IV-VI B groups from ionic melts (review) – Materials Science, 2007, vol.43, pp.383-397(Fiziko-Himichna Mechanika Materialov, 2007, vol.43, No.3, pp.76-88) – „The cathodic process int hecourse <strong>of</strong> electrosynthesis <strong>of</strong> niobium borides were studied in [J31]. +5 lines, describing theexperimental conditions are given” – p.393.J.30. Kuznetsov S.A., Glagolevskaya A.L., Belyaevskii A.T., Devyatkin S.V., G.<strong>Kaptay</strong>:High temperature electrochemical synthesis <strong>of</strong> powders <strong>of</strong> Zirconium Diboride from chlor<strong>of</strong>luoridemelts - Rus.J.Appl.Chem., (Zh. Prikladnoi Khimii) 70 (1997) 1646-1649 (IF = 0,114)J30-c1. Shumakova NI, Procenko ZM, Gudakova GO, Bugaenko VV: Fazovii, elementnii sklad tamikrostruktura elektrolitichno otrimanich poroshkopodobnich produktiv na osnovi siliciiu, titanu, boruta ich spoluk – Bisnik Sumskogo Derzhavnogo Universiteta, Seriia Fizika, matematika, mechanika,2004, No. 10 (69), 196-205.J30-c2. VV Bugaenko, ZM Procenko, NI Shumakova: Fazovii, elmentnii ta granulometrichnii skladelektrolitichno otrimanich poroshkopodobnich produktiv na osnovi boridiv titanu – Bisnuk SumDU,2006, No.6, pp.114-122 – „Odnim iz bagatoh metodiv oderzhaniia boridiv metalic svisokotemperaturnii elektrohimichnii sintez (VES) b rozplavlenich soliovich elektrolitach, iakii sperspektivnim metodom oderzhaniia poroshkopodobnich boridiv metaliv ta nemetaliv [J30]” – p.115.72


J.29. <strong>Kaptay</strong> Gy.: Kerámiával erősített fémmátrixú kompozitok gyártásának határfelületivonatkozásai. I/2. Határfelületi kritériumok meghatározása preformába öntött MMC-kgyártásának biztosítására. BKL, Kohászat, 130 (1997) No 8-9, 311-314 (IF = 0)J29-c1. Kientzl Imre: Alumínium mátrixú duplakompozit szerkezetek gyártása és vizsgálata – Diplomaterv,BME (konzulens: Dobránszky János), 2005, Bp., 110o. – „16 egyenlet, 6 ábra, 7 táblázat, összesen 11 oldalátvéve [J29] „ – 32-42. o.J29-c2. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „Nagyon fontos, hogy a fémmátrixú kompozitanyagok esetébenis csak akkor kapunk megfelelő műszaki tulajdonságokat, ha megfelelő a kapcsolat az erősítőanyag és amátrixanyag határfelületén [J29]” – p.41.J29-c3. Orbulov I.: Szintaktikus fémhabok keménységmérése – Anyagvizsgálók lapja, 2009, No.1, pp.9-15. – „Aleggyakoribb gyártási módszerek a nyomásos infiltrálás és a keveréses eljárás. Mindkét eljárásban jelentősszerepe van a mátrix és az erősítőanyag közötti határfelületenek, amely kritériumaival <strong>Kaptay</strong> behatóanfoglalkozott [J29].” – p.9.J29-c4. Pázmán J.: Szilíciumkarbid szemcsék kémiai nikkelezése és fémkompozitokban történő alkalmazása –PhD disszertáció (tud. vez.: Gácsi Z.), Miskolc, 2010. „Ahhoz, hogy stir casting technológiával, vagyinfiltrációval megfelelő minőségű és mechamnikai tulajdonságokkal rendelkező fémkonpozitot lehessengyártani, a részecskék tökéletes nedvesítése szükséges [J29]” – 28.o.J29-c5. Kun P., Orbulov IN: AlCu5 és AlMgSi1 mátrixú szintaktikus fémhabok előállítása és vizsgálata – BKLKohászat, 2011, vol.144, No.3, pp.51-55. – „Mindkét eljárásban jelentős szerepe van a mátrix és azerősítőanyag közötti határfelületi jelenségeknek és a nedvesítésnek, amelyek vizsgálatával <strong>Kaptay</strong>behatóan foglalkozott [J29]” – p.51.J29-c6. Gácsi Z., Simon A., Pázmán J.: Fémkompozitok, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011. „Az öntészeti módszerrelgyártott fémkompozitoknál a második fézis homogén eloszlásához biztosítani kell a kerámia szemcsékolvadékba történő bevitelét és benntartását [J29]: Emellett meg kell akadályozni a részecskékkoagulációját, mely gyengítheti a határfelületi kötést.” – 38-39 o.J.28. <strong>Kaptay</strong> Gy.: Kerámiával erősített fémmátrixú kompozitok gyártásának határfelületivonatkozásai. I. rész. A határfelületi kritériumok levezetése. BKL, Kohászat, 130 (1997) No5-6, 201-208 (IF = 0)J28-c1. Csepeli Zs., Sólyom B., Gácsi Z., Buza G., Teleszky I., Kovács Á.: Részecske- és szálerősítésűfémmátrixú kompozitok előállítási lehetőségei - BKL Kohászat, 131 (1998) 41-47 – „.. a bevonatnakegyszerre kell meggátolnia a szál és a mátrix közötti diffúziót és biztosítani a bevonat és a mátrixközötti tökéletes nedvesítést [J28]… p. 45. --J28-c2. Csepeli Zsolt: Irányítottan kristályosított volfrám szállal erősített alumínium mátrixú kompozitszerkezete - PhD értekezés, Miskolc, 1997 – „A szálerősítésű kompozitok előállításához soklépcsős,nehezen automatizálható eljárásokat használnak. Az alkalmazott módszer egyik legnagyobb problémájaaz optimális nedvesítés biztosítása a szál és a mátrix között [J28].” – p.4. --J28-c3. Boross Péter: Karbidkerámia szemcsék viselkedése lézerrel létrehozott olvadéktócsában: TDK dolgozat,2000, tud. vez.: dr. Verő Balázs BAYATI és dr. Hárs György, BME) – „II.2. fejezet. Kerámiaszemcsékolvadékokban – alapfogalmak [J28]” – fejezetcím, a teljes 3. oldal idézet. “II.3. Kerámiaszemcsékolvadédkokban – elsüllyedési elméletek [J28]” – fejezetcím, a teljes 4-5 oldalakon idézetek, pl.„…amint <strong>Kaptay</strong> György [J28]-ban megmutatta… „ - 4. oldal. „…<strong>Kaptay</strong>-féle elmélet…” – 18.o.J28-c4. Boross Péter: Lézeres átolvasztással végzett felületmódosítások, Diplomamunka, ME, Bayati, 2001.,tud.vez.: dr. Verő Balázs és dr. Hárs György. „IV.2. fejezet. Felületfizikai effektusok –kerémiaszmecsék elsüllyedése. IV.2.2. Alapfogalmak [J28] – 17-18. oldalon folyamatos hivatkozés.IV.2.3. Elsüllyedés elméletek összefoglalása [J28] – 18-21 oldalakon az általam alkotott modellismertetése, egyenletekkel és két ábrával.” – 17 – 21.o.J28-c5. Boross Péter, Kálazi Zoltán: A lézeres diszpergálás során fellépő jelenségek néhány elméletivonatkozása – BKL Kohászat, 2002, 135. évf., 6-7. szám, 219-223 o. – 2 oldal szöveg + 7 egyenlet + 2ábra átvéve a 220 – 221 oldalakonJ28-c6. E.R.Fábián, P.Boross, B.Verő, P.Fülöp: Metallographic Aspects <strong>of</strong> Surface-Treated Steels by usingLaser Technology – Materials Science Forum, 2003, vols. 414-415, pp.201-206 – “The wetting theoremby G.<strong>Kaptay</strong> [J28] shows that particles with zero contact angle will sink completely in melt pool, butparticles with nonzero contact angle will sink partially, and will float on the surface. … But our systemis not in static state. This means that the static theorem [J28] is unusable, so we need to construct a73


dynamic theorem. The energy equilibrium equations and the method <strong>of</strong> [J28] are unusable too. We needto solve the problem by dynamic equations. We can determine surface forces from equationsdetermined in [J28] by gradient calculus, and we need to complete it by hydrodynamic drag force…”J28-c7. G.Králik, P.Fülöp, B.Verő, D.Zsámbok: Laser Surface Treatment <strong>of</strong> Steels – Materials Science Forum,2003, vols.414-415, pp.21-30 – “… based on the work <strong>of</strong> Gy.<strong>Kaptay</strong> [J28] we inspected the lawsdetermining the transport <strong>of</strong> the TiC particles into the molten bath. According to theoreticalconsiderations a particle only submerges into the depth <strong>of</strong> 2r in the liquid if the wetting is perfectbetween them. Since the wetting only partial between the material and the TiC particle in the presumedthermic and ambiency circumstances the conditions <strong>of</strong> the particle to travel under the surface <strong>of</strong> themolten bath are not given.” – p.25J28-c8. Magyar Anita: Karbon szállal erősített alumínium mátrixú kompozitok Al/C határfelületének jellemzése– PhD értekezés, Miskolc, 2004. – 2,5 oldal szöveg és 11 egyenlet átvéve a cikkemből a 24-26oldalakon.J28-c9. Janó V., Búza G., Kálazi Z.: Diszperz eloszlású, fémmátrixú kerámia kompozitréteg létrehozásalézersugaras felületkezeléssel – BKL Kohászat, 2005., 138. évf., 3. szám, 39-44 (No.1).J28-c10. Kientzl Imre: Alumínium mátrixú duplakompozit szerkezetek gyártása és vizsgálata – Diplomaterv,BME (konzulens: Dobránszky János), 2005, Bp., 110o.J28-c11. Orbulov I., Kientzl I., Németh Á.: Fémhabok és kompozitok előállítása infiltrálásos eljárással – BKLKohászat, 2007, vol.140, No.5, pp.41-46. – „Nagyon fontos, hogy a fémmátrixú kompozitanyagokesetében is csak akkor kapunk megfelelő műszaki tulajdonságokat, ha megfelelő a kapcsolat azerősítőanyag és a mátrixanyag határfelületén [J28]” – p.41.J28-c12. Verezub O.: Lézeresen felületkezelt szerszámacél köszörülése – Gyártóeszközök, szerszámok,szerszámgépek, 2008, No.1, pp.65-68. – „Az acélolvadékba nem a szerszám felületi rétegébe tervezettTiC-szemcséket vittük be. Ennek bionyolult felületkémiai-hidrodinamikai okait részletesen tartalmazzaa [J28] irodalom” – p.66.J28-c13. Orbulov I.: Szintaktikus fémhabok keménységmérése – Anyagvizsgálók lapja, 2009, No.1, pp.9-15. –„A leggyakoribb gyártási módszerek a nyomásos infiltrálás és a keveréses eljárás. Mindkét eljárásbanjelentős szerepe van a mátrix és az erősítőanyag közötti határfelületenek, amely kritériumaival <strong>Kaptay</strong>behatóan foglalkozott [J28].” – p.9.J28-c14. Pázmán J.: Szilíciumkarbid szemcsék kémiai nikkelezése és fémkompozitokban történő alkalmazása –PhD disszertáció (tud. vez.: Gácsi Z.), Miskolc, 2010. – „.. biztosítani kell a részecskék, sok esetben akerámia szemcsék olvadékba történő bevitalét és benntartását [J28]” – 28.o.J28-c15. Kun P., Orbulov IN: AlCu5 és AlMgSi1 mátrixú szintaktikus fémhabok előállítása és vizsgálata – BKLKohászat, 2011, vol.144, No.3, pp.51-55. – „Mindkét eljárásban jelentős szerepe van a mátrix és azerősítőanyag közötti határfelületi jelenségeknek és a nedvesítésnek, amelyek vizsgálatával <strong>Kaptay</strong>behatóan foglalkozott [J28]” – p.51.J28-c16. Gácsi Z., Simon A., Pázmán J.: Fémkompozitok, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2011. „Az öntészeti módszerrelgyártott fémkompozitoknál a második fézis homogén eloszlásához biztosítani kell a kerámia szemcsékolvadékba történő bevitelét és benntartását [J28]: Emellett meg kell akadályozni a részecskékkoagulációját, mely gyengítheti a határfelületi kötést.” – 38-39 o.74


J27. G.<strong>Kaptay</strong>, A.Lovas, F.Szigeti, P.Bárczy, L.Bolyán: Correlation between the abrasiveability <strong>of</strong> ceramic reinforced amorphous metal matrix composites and the adhesion energybetween the amorphous matrix and the ceramic particles - Materials Science and EngineeringA226-228 (1997) 1083-1088 (IF = 0,842)J27-c1. V.V.Maslov, D.Yu.Paderno, A.D.Panasyuk: Effect <strong>of</strong> Refractory Boride Particles on Crystallization <strong>of</strong>the Amorphous Alloy Fe 85 B 15 – Powder Metallurgy and Metal Ceramics, 2000, vol.39, 474-479 –„According to data in [J27], introduction <strong>of</strong> refractory particles leads to an increase in Young’smodulus, yield stress, and also wear resistance <strong>of</strong> amorphous alloy ribbons…” – 474.J27-c2. L.Ma, L.Wang, X.Guo, T.Zhang, A.Inoue: Enhanced glass-forming ability and microhardness <strong>of</strong>Ti 45 Zr 5 Cu 25 Ni 20 Sn 5 amorphous alloy by addition <strong>of</strong> TiC particles – J. <strong>of</strong> Materials Science Letters,2002, vol.21., pp.1435-1437 – „Amorphous MMCs are prepared by mechanical alloying […], meltspinning [J27] and copper mold casting […]”– p.1435.J26. <strong>Kaptay</strong> G., Bárczy P., Szigeti F., Lovas A., Gácsi Z., Bolyán L.: Interface Phenomena inProcessing <strong>of</strong> Ceramic Reinforced Amorphous Metal Composites. - J. <strong>of</strong> Non-crystallineSolids 205-207 (1996) 742-747. (IF = 1,318)RJ26/1. Jiang J.H., Li Z.L., Ye X.M., Zhou R.: Effect <strong>of</strong> matrices on dissolution <strong>of</strong> tungsten carbide partiiculates(WC) in WC reinforced iron base composites – Foundry Technology, 2007, vol.28, No.2, pp.199-203 –„G.<strong>Kaptay</strong> …. WC …. Fe40Ni40Si04B6 …. WC …. . Fe40Ni40Si04B6… WC …… [J26]” – p.199.(…. = Chinese text)RJ26/2. Li Z., Jiang Y., Ye X., ZHou R.: Dissolution <strong>of</strong> tungsten carbide particulates (WC) int he matrix <strong>of</strong> WCreinforced gray cast iron matrix composites – Acta Materiae Compositae Sinica – 2007, vol.24, No.2,pp.13-17 – „… <strong>Kaptay</strong> …. WC …. Fe40Ni40Si14B6 … {Chinese text} [J26]” – p.13.J.25. G. <strong>Kaptay</strong>: Method for Estimating Solid-Solid Interface Energies in Metal-CeramicSystems. The Aluminium-Silicon Carbide System - Materials Science Forum Vols. 215-216(1996) 475-484. (IF = 0)J25-c1. D.M.Stefanescu, F.R.Juretzko, A.Catalina, B.K.Dhindaw, S.Sen, P.A.Curreri: Authors’ Reply toDiscussion <strong>of</strong> „Particle Engulfment and Pushing by Solidifying Interfaces: Part II. MicrogravityExperiments and Theoretical Analysis” - Metall. Mater. Trans., A, volume 30A, 1999, pp. 1890 - 1894– “This is further corroborated from data that <strong>Kaptay</strong>’s generated in a different article [J25], where hehas calculated (in his Table 5) interface energies for the Al-SiC system, assuming both oxidized and notoxidized aluminum surfaces. These values are reproduced in Table II.” p.1893 –J25-c2. J.A.Vreeling, V.Ocelik, Y.T.Pei, D.T.L.van Agterveld, J.T.M. de Hosson: Laser Melt Injection inAluminum Aloys: on the Role <strong>of</strong> the Oxide Skin – Acta mater. 48 (2000) 4233 – „The values <strong>of</strong>interface energies for both oxidized and unoxidized surfaces <strong>of</strong> liquid Al are given in Table 1 [J25]. All<strong>of</strong> this indicates that the velocity <strong>of</strong> the particles and the particular state <strong>of</strong> the melt pool surface playimportant roles in the actual laser melt injection ’ process. …. Table 1. Interface energies <strong>of</strong> oxidizedand unoxidized Al in the Al(l)/SiC p system [J25] – {táblázat átmásolva [J25]-ből}” – p. 4228.J25-c3. J.A.Vreeling, V.Ocelik, Y.T.Pei, J.Th.M.de Hosson: Laser Melt Injection <strong>of</strong> SiC Particles in Al – in:„Surface Modification Technologies XIV”, ed. by T.S.Sudarshan and M.Jeandin, ASM International,Materials Park, OH, USA, 2001, pp. 619-623. – „The liquid-vapor and liquid particle interface energiesare different for oxidized and non-oxidized surfaces. The interface energies are listed in Table 1[J25]…. Table.1. Interface energies per unit area <strong>of</strong> oxidized and not-oxidized Al in the Al(l)/SiC psystem [J25]. – {táblázat átmásolva [J25]-ból}” – p. 622.J25-c4. A.Vreeling: Laser Melt Injection <strong>of</strong> Ceramic Particles in Metals – PhD Thesis, University <strong>of</strong> Groningen,Holland, 2001, pp. 136. Chapter 3. „Table 3.1. Interface tensions <strong>of</strong> oxidized and non-oxidized Al in theAl(l)/SiC p system [J25]” {táblázat átmásolva [J25]-ból}” – p.45, „Important is that lv and lp havedifferent values for oxidized and non-oxidized Al. The values <strong>of</strong> the interface tensions <strong>of</strong> the Al(l)-SiCsystem, <strong>of</strong> both oxidized and un-oxidized Al, are found in the literature and given in Table 3.1 [J25].The data in Table 3.1 are based on calculations that agree with experimental data.” – p.46.75


J25-c5. Y.T.Pei, V.Ocelik, J.Th.De Hosson: SiC p /Ti6Al4V functionally graded materials produced by laser meltinjection – Acta Materiala, 50 (2002) 2035-2051 – „…for the SiC/Ti6Al4V system lp = 1000 mJ/m 2 , pv = 1920 mJ/m 2 [J25]….” – p. 2046.J25-c6. C.Kawai: Fabrication <strong>of</strong> Al-SiC composites using a hot-forging technique and their thermal conductivity– J. <strong>of</strong> the Ceramic Society <strong>of</strong> Japan, 2002, vol.110, pp.1016-1020-„hivatkozás japánul, valószínűlegarról, hogy az Al/SiC rendszerben 1023 o C-on a peremszög 50 o [J25]” – p.1018J25-c7. J.Th.M.de Hosson, B.J.Kooi: Microstructure and properties <strong>of</strong> interfaces between dissimilar materials –in: „Handbook <strong>of</strong> Surfaces and Interfaces <strong>of</strong> Materials, vol.1., Surface and Interface Phenomena”, ed.by H.S.Nalwa, Academic Press, San Diego, 2001, Chapter 1, pp.1-113 – „The values <strong>of</strong> the interfaceenergies for both oxidized and nonoxidized surfaces <strong>of</strong> liquid Al are given in Table VII [J25] – TableVII is taken from my paper – „, p.79. „explanation in 17 lines, based on [J25]” – p.81.J25-c8. De Hosson JT, Pei YT: Functionally graded materials produced with high power lasers, in: SURFACEENGINEERING: SCIENCE AND TECHNOLOGY II, ed by Kumar A; Chung YW; Moore JJ; DollGL; Yatsui K; Misra DS, TMS, 2002, pp.163-176J25-c9. J.Th.M.deHosson, V.Ocelik, Y.Pei: Surface Engineering with lasers. Chapter 16 <strong>of</strong> the book “SurfaceModification and Mechanisms – Friction, Stress and Reaction Engineering”, ed. by G.E.Totten,H.Liang, Marcel Dekker Inc, New York, 2004, pp.603-669.J.24. G. <strong>Kaptay</strong>: Interfacial Phenomena during Melt Processing <strong>of</strong> Ceramic Particle-Reinforced Metal Matrix Composites. Part II. Interfacial Force between a Spherical Particleand an Approching Solid/Liquid Interface - Materials Science Forum Vols. 215-216 (1996)467-474. (IF = 0)J24-c1. F.R.Juretzko, D.M.Stefanescu, B.K.Dhindaw, S.Sen: Interfacial energy - Theoretical andexperimental evaluation for metal-ceramic systems – in: „Processing, Properties and Applications <strong>of</strong>Cast Metal Matrix Composites, ed. by P.K.Rohatgi, TMS, 1996, pp. 21-31 – „Recently, a third way <strong>of</strong>calculation was presented by <strong>Kaptay</strong> [J24]. According to this derivation the surface energy differenceshould be expressed as {equation is given}…” p.24J24-c2. S.Sen, B.K.Dhindaw, D.M.Stefanescu, A.Catalina, P.A.Curreri: Melt convection effects on the criticalvelocity <strong>of</strong> particle engulfment - Journal <strong>of</strong> Crystal Growth, 173 (1997) 574-584 – „According to<strong>Kaptay</strong> [J24] the interface energy difference is: {equation given}…. „ p.583J24-c3. D.M.Stefanescu, F.R.Juretzko, B.K.Dhindaw, A.Catalina, S.Sen and P.A.Curreri: Particle Engulfmentand Pushing by Solidifying Interfaces: Part II. Microgravity Experiments and Theoretical Analysis -Met. and Mat. Trans. A, volume 29A, June 1998, pp. 1697-1706 – „The expression for o and thelocal force during engulfment, as proposed by UCJ and adopted by SAS, can be derived [J24] bywriting the energy balance for the case in Fig1” p.1704 –J24-c4. D.M.Stefanescu, F.R.Juretzko, A.Catalina, B.K.Dhindaw, S.Sen, P.A.Curreri: Authors’ Reply toDiscussion <strong>of</strong> „Particle Engulfment and Pushing by Solidifying Interfaces: Part II. MicrogravityExperiments and Theoretical Analysis” - Metall. Mater. Trans., A, volume 30A, 1999, pp. 1890 – 1894– „… This derivation followed that proposed by <strong>Kaptay</strong> [J24]…” p.1890 –J24-c5: D.M.Stefanescu, A.Catalina, S.Sen, F.R.Juretzko, B.K.Dhindaw, P.A.Curreri: Authors’ Reply,Metallurgical and Materials Transactions A, vol.31A (2000), 1700–1705. – „The derivation <strong>of</strong> thisequation has been attempted earlier by <strong>Kaptay</strong> [J23] and criticized by us..” 1702-1703 o.J24-c6. Jiang ZW, Ren ZM, Zhong YB: Theoretical model for particle migrating behaviour ahead <strong>of</strong>solidification front in electromagnetic field – Shanghai Nonferrous Metals, 2000, vol.21, No.2, p.49-53(Ref. No.12). – The equation for deltasigma is cited” – p.50.J24-c7. Jiang ZW, Ren ZM, Zhong YB: Theoretical model for particle behaviour at solidifying front inelectromagnetic force field – Journal <strong>of</strong> Shanghai University, 2000, vol.4, No.3, p.246-249 (Ref.No.12). – “The equation for deltasigma is different in [J24]” – p.247.J24-c8. Á.Borsik: Dynamic Simulation <strong>of</strong> the Movement <strong>of</strong> Ceramic Particles in front <strong>of</strong> an ApproachingSolidification Front, Materials’ World (e-journal, http://material.ini.hu), July, 2001. (ref. No.24)J24-c9. Q.Sun, Y.Zhong, Z.Ren, K.Deng, K.Xu: Advances in Research on Particle-s behaviour in front <strong>of</strong>solidifying interface – Materials Review, 2003, vol.17, No.9, pp.9-12. – “G.<strong>Kaptay</strong>…. Equation (2)….Chinese text” – p.9.J24-c10. F-H. Li, S-S. Chen, Z-G. Fan: Properties <strong>of</strong> alumina particles reinforced silver composites – J. <strong>of</strong>Northeastern University, Natural Science, 2007, vol.28, pp.696-700 (Ref. No.13). – “Chinese text.” –p.697.J24-c11. W.Xi, R.L. Peng, W. Wu, N. Li, S. Wang, S. Johansson: Al2O3 nanoparticle reinforced Fe-based alloyssynthesized by thermite reaction – J Mater Sci, 2012, vol.47, pp.3585-3591. „<strong>Kaptay</strong> [J24] reported that76


if the difference in surface free energy, deltasigma is negative, the ceramic particles would be engulfedby the solidification front, leading to homogeneous distribution <strong>of</strong> the particles in the fuinal product. Incontrast, if deltasigma is positive, the ceramic particles would be pushed away from the solidificationfront. The difference in surface energy can be defined as [J24]: Eq-s (1-2)….” – p.3588.J.23. G. <strong>Kaptay</strong>: Interfacial Phenomena during Melt Processing <strong>of</strong> Ceramic Particle-Reinforced Metal Matrix Composites. Part I. Introduction (incorporation) <strong>of</strong> solid particlesinto melts - Materials Science Forum Vols. 215-216 (1996) 459-466. (IF = 0)J23-c1. J.A.Vreeling, V.Ocelik, Y.T.Pei, D.T.L.van Agterveld, J.T.M. de Hosson: Laser Melt Injection inAluminum Alloys: on the Role <strong>of</strong> the Oxide Skin – Acta mater. 48 (2000) 4225-4233 – „The totalinterface energy for a particle partially immersed in a melt at depth x, 0x2R (see Fig.5), is given by[J23]: {a cikk (2) egyenlete és 5. ábrája kimásolva [J23]-ból, további magyarázatokkal}..” – p.4228.J23-c2. E.Báder: Wettability <strong>of</strong> Alumina by Liquid Magnesium and Liquid AZ91 Alloy, Materials’ World (ejournal,http://materialworld.uni-miskolc.hu, July, 2001 – “The wettability <strong>of</strong> alumina by magnesium isa very important factor in producing metal matrix composites [J23] or metallic foams […] consisting <strong>of</strong>these two phases” – p.1 –J23-c3. J.A.Vreeling, V.Ocelik, Y.T.Pei, J.Th.M.de Hosson: Laser Melt Injection <strong>of</strong> SiC Particles in Al – in:„Surface Modification Technologies XIV”, ed. by T.S.Sudarshan and M.Jeandin, ASM International,Materials Park, OH, USA, 2001, pp. 619-623. – „If we simplify the problem by assuming that theparticles are spherical, having a radius R, the interface energy <strong>of</strong> a one-particle system can be calculatedas a function <strong>of</strong> depth x, defined in Figure 5. The total interface energy is [J23]: {a cikk (2) egyenlete és5. ábrája kimásolva [J23]-ból, további magyarázatokkal}..” – p.622.J23-c4. A.Vreeling: Laser Melt Injection <strong>of</strong> Ceramic Particles in Metals – PhD Thesis, University <strong>of</strong> Groningen,Holland, 2001, pp. 136. Chapter 3. „During penetration, the total interface energy changes because theareas <strong>of</strong> the different interfaces, which have different interface tensions, change. The total interfaceenergy for a particle that is partially immersed in a melt at depth x, where the depth x is defined inFig.3.8., is given by [J23]:… {a disszertáció (3.2) egyenlete kimásolva [J23]-ból, továbbimagyarázatokkal}..” – p.45.J23-c5. J.Th.M.de Hosson, B.J.Kooi: Microstructure and properties <strong>of</strong> interfaces between dissimilar materials –in: „Handbook <strong>of</strong> Surfaces and Interfaces <strong>of</strong> Materials, vol.1., Surface and Interface Phenomena”, ed.by H.S.Nalwa, Academic Press, San Diego, 2001, Chapter 1, pp.1-113 (ref. No.248). – „The totalinterface energy for the particle partially immersed into a melt at depth x is given by [J23].. – (myequation with explanations) –„, p.79J23-c6. HAO Xing Ming, Liu Hongmei, Zhang Feng-lin, Zhao Feng, Su Junyi: Metal matrix compositesinfiltration casting the theory and practice – Research Studies on Foundry Equipment, 2002, No.2, p.50-53 – Chinese text, Ref.No.1.J23-c7. 5 kinai: On the infiltration <strong>of</strong> metal matrix composites, 2002, No.2, Ref. No.16. (different from J23-c6 –see Google Scolar). 19. cikkJ23-c8. O.N.Verezub: Izuchenie mechanizma proniknoveniia tviordoi chastici v zhidkost, s celiu optimizaciitechnologii lazernoi tviordotelnoi implantacii – in: „Visoki Technologii v Mashinobuduvanni –Kharkiv, 2003, pp.11-16 (ref. No.11)J23-c9. Kínai jelek (Google): Materials Review, 2003, vol.17, No.9 (Ref. No.13)J23-c10. O.N.Verezub, A.I.Grabchenko, T.Matsushita: Eksperimentalno-teoreticheskoie modelirovanie dinamikiproniknoveniia legiruiushich chastic v matricu eksperimentalnogo materiala – in: „Research andEducation”, Nacionalnii Technicheskii Universitet, 2004, Harkov, pp.59-66 – „Uslovie spontannogoproniknoveniia mozhno virazit cherez bezrazmernoie chislo G [J23] – egyenlet…” – p.62, „V tretieigruppe uravnenii [J23] kriticheckii ugol kontakta raven nuliu v tom sluchaie, esli Weber kriticheskiistremitsia k nuliu. Eto polnostiu podtverzhdaiet nashi eksperimentalnie dannie” – p.64.J23-c11. J.Th.M.deHosson, V.Ocelik, Y.Pei: Surface Engineering with lasers. Chapter 16 <strong>of</strong> the book “SurfaceModification and Mechanisms – Friction, Stress and Reaction Engineering”, ed. by G.E.Totten,H.Liang, Marcel Dekker Inc, New York, 2004, pp.603-669.J23-c12. P.Boross, Z.Kálazi, O.Verezub, B.Verő: Investigation <strong>of</strong> processes evolving during thin film productionby laser surface modification – Mater. Sci. Forum, 2005, vols. 473-474, pp.303-308 – “Fig.1: Theequilibrium and the penetration depths for different contact angles [J23] + equations + text in pages303-304”J23-c13. DA Weirauch: Technologically significant capillary phenomena in high-temperature materialsprocessing. Examples drawn from aluminum industry – Current Opp Solid State and Mater Sci, 2005,vol.9, pp.230-240 – „There are several good reviews that cover capillarity in composite manufacturing77


[J22]. The general principles <strong>of</strong> particle incorporation into molten metals have been summarized in[J23].” – p.237.J23-c14. A.E.Karantzalis, A.Lekatou, E.Georgatis, H.Mavros: Solidification behaviour <strong>of</strong> ceramic particlereinforced Al-alloy matrices – J.Mater Sci, 2010, vol.45, pp.2165-2173 – „Especially in the case <strong>of</strong> castmetal composites, however, a contact angle <strong>of</strong> less than 90 o C (sicc) is not sufficient to lead tospontaneous entry <strong>of</strong> the particles but a 0 o contact angle (total spreading condition) is required as shownby the works <strong>of</strong> Nakae et al., Wu et al. and <strong>Kaptay</strong> [J23]” – p. 2165J23-c15. A.Ott: Oberflachen modification von Aluminium legierungen mit Laserstrahlung. Dissertation Uni-Stuttgart (pr<strong>of</strong>. H. Hugel), Herbert Utz Verlag, 2010.J23-c16. B.Balout: Centrifugal casting <strong>of</strong> ZA8 zinc alloy and composite A356/SiC: study and modeling <strong>of</strong>phases and particles segregation – PhD Thesis, University <strong>of</strong> Quebec, Montreal, 2010. – “Fig.14. Aspherical particle partially immersed ina liquid [J23]” – p.29. “According to <strong>Kaptay</strong> [J23], the interfaceenergy <strong>of</strong> the system can be interpreted as … 9 lines and 2 equations” – pp.30-31J.22. Bárczy P., <strong>Kaptay</strong> Gy., Gácsi Z., Lovas A., Szigeti F. Kerámiarészecskék beépülésegyorsan dermedő fémolvadékba - Publ. Univ. <strong>of</strong> Miskolc, Series B. Metallurgy vol 39 (1995),pp. 279-290. (IF = 0)J.21. Akhmedov S.N., <strong>Kaptay</strong> G., Borisoglebskii Yu.V., Gorlanov E.S., Karimov M.I., VetyukovM.M. Chemical and electrochemical behaviour <strong>of</strong> some 'new materials' in molten salts to be used foraluminium electrolysis - Molten Salt Forum vol. 1-2 (1993/94) pp. 231-232. (IF = 0)J.20. Deviatkin S.V., <strong>Kaptay</strong> G. Influence <strong>of</strong> nature <strong>of</strong> the alkali metal cation on Ti(III) - e =Ti(IV) electrochemical process in chloride melts - Molten Salt Forum vol. 1-2 (1993/94) pp.129-138. (IF = 0)J20–c1. A.Salmi, Y.Berghoute, F.Lantelme: Modelling Multistep Electrochemical Reactions in Molten SaltsElectrowinning <strong>of</strong> Refractory Metals - Electrochimica Acta, 1995, vol.40., o.4., pp.403-411 – “…However, the solubility <strong>of</strong> TiCl 4 is low [ ], [J20], and increasing the concentrations Ti(IV) results in arapid evolution <strong>of</strong> gaseous TiCl 4 .. “ p.410 –J20-c2. F.Lantelme, A.Salmi: Electrochemistry <strong>of</strong> Titanium in NaCl-KCl Mixtures and Influence <strong>of</strong> DissolvedFluoride Ions - J.Electrochem. Soc., vol. 142, No.10., 1995, pp.3451-3456 - „Figures 1 and 2 showvoltammograms …. According to previous studies [J20] the reaction corresponds to the Ti(III)/Ti(IV)couple.” p.3452 –J20-c3. F.Lantelme, K.Kuroda, A.Barhoun: Electrochemical and thermodynamic properties <strong>of</strong> titanium chloridesolutions in various alkali chloride mixtures. Electrochimica Acta, 44 (1998) 421-431 – „Equations inTable 3 show that the dissolution energy is made <strong>of</strong> two terms [J20]. The values <strong>of</strong> the enthalpies andentropies <strong>of</strong> dissolution depend on the solvent salt…” p.427 –J20-c4. F.Lantelme, A.Barhoun, K.Kuroda: Role <strong>of</strong> the oxoacidity and Ligand Effect in the Electrowinning <strong>of</strong>Titanium in Fused Salts - in Refractory Metals in Molten Salts (Their Chemistry, Electrochemistry andTechnology), ed. by D.H.Kerridgeand E.G.Polyakov – Kluwer Academic Publishers, vol.3/53, 1998,pp. 157-172 – „This result is probably due to the low solubility <strong>of</strong> TiCl 4 [J20] which evaporates andcannot be reduced during the backward sweep.” p.161 –J20-c5. F.Lantelme, A.Barhoun, M.Chemla, J.von Barner – Titanium, Boron and Titanium Diboride Depositionin Alkali Fluorochloride Melts – in Proc. <strong>of</strong> the 12 th Int. Symp. on Molten Salts, Proceedings volume99-41, ed. by P.S.Trulove, H.C.De Long, G.R.Stafford, S.Deki – The Electrochemical Society,Pennington, NJ, USA, 1999, pp.612-623 – „… When the electrode is maintained at such a positivepotential, evolution <strong>of</strong> TiCl 4 occurs. According to previous studies [J20] the reaction corresponds to theTi +4 /Ti +3 couple.” – p.614.J.19. <strong>Kaptay</strong> G., Stefanescu D.M. Theoretical Analysis <strong>of</strong> the Effect <strong>of</strong> Oxygen on thePenetration Factor in the Iron/Silica System - AFS Transactions, 1992, v. 100, pp. 707 - 712.(IF = 0)J19-c1. J.Griffin, C.E.Bates: Clean Cast Steel Technology – Final Report, University <strong>of</strong> Alabama atBirhmingham, 1995 (Ref. No.3). – „As shown in a theoretical discussion by <strong>Kaptay</strong> and Stefanescu[J19], as the oxygen content in a Fe-C melt increases the contact angle decreases rapidly” – p.6.J19-c2. H.Iwahori, Y.Sugiyama, Y.Awano, K.Yonekura, Y.Ueshima: Metal Penetration defects in cast iron –origins and countermeasures - Japan Foundry Eng. Soc, 1998, vol.33, No.4, pp.33-41. „ Japanese text”– p.34”78


J19-c3. H.Nakae, Y.Matsuda: Influence <strong>of</strong> Atmospheric Oxygen on Burn-on <strong>of</strong> Iron Castings J.Japan FoundryEng.Soc., 1999, v.71, 28-33 – „Stefanescu and coworker [J19] have simulated the mechanism <strong>of</strong>occurring burn-on during casting based on the relationship between the amount <strong>of</strong> oxygen dissolved inliquid iron and the contact angle” – p.28. (japánról angolra fordítva N.Shibata által).J19-c4. H.Nakae, Y.Matsuda: Influence <strong>of</strong> Chemical Composition <strong>of</strong> Sands on Burn-on <strong>of</strong> Iron Castings –J.Japan Foundry Eng. Soc., 2000, vol.72., pp. 102-106 (ref. No. 12) „…<strong>Kaptay</strong>… [J19]…”, 102.o.,“…<strong>Kaptay</strong>…[J19]…”, 105.o. japán nyelven előzőhöz hasonló tartalommal.J19-c5. E.Báder: Contact angle and infiltration pressure relevant to fabrication <strong>of</strong> syntactic magnesium / Al 2 O 3foams, WTM, Germany, Dec. 2000 – Dec. 2001, 26 pp. (Ref. No. 21): “The infiltration process forfabricating ceramic reinforced metal matrix composites has already been studied by the group <strong>of</strong>Mortensen […], Garcia-Cordovilla […] and <strong>Kaptay</strong> [J19]..” pp. 11,… “… in order to avoid theinfiltration ‘into the pores the pressure must be lower than the threshold pressure [J19] : {Equation iscited}..” – p. 15.J19-c6. T.Matsushita, K.Mukai: Penetration behaviour <strong>of</strong> molten metal into porous oxides - Tetsu-to-Hagane,2004, vol.90, pp.135 – 144 „in Japanese” – p.138J19-c7. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „.. ha a porózus test egyforma, szorosan pakoltgömbökből van kirakva, akkor a kritikus peremszög 50,7 o [J19]” – 20.o.J18. Gudimenko A.M., <strong>Kaptay</strong> G., Makogon V.F. Estimation <strong>of</strong> Thermodynamic Properties<strong>of</strong> Tetrachloroaluminates <strong>of</strong> Lithium, Rubidium and Caesium - Ukrainian Khim. Zh., 1992,v.58., N.4., pp. 300-305 (IF = 0)J.17. <strong>Kaptay</strong> Gy., Deviatkin S.V., Berecz E., Sh poval V.I. Átmenetifém borid bevonatokelőállítása fémeken sóolvadékok elektrolízise útján - Gépgyártástechnológia, 1991. XXXI.évf., 10. sz., 445-446 o. (IF = 0)J.16. <strong>Kaptay</strong> G. : Estimation <strong>of</strong> excess thermodynamic functions <strong>of</strong> aluminum monochloridedissolved in alkali chloride melts - Materials Science Forum Vol. 73-75 (1991), pp. 101-108(IF = 0)J.15. Roósz A., <strong>Kaptay</strong> G., Máté I., Teleszky I., Sólyom J., Regel L.L., Turchaninov A.M.The Ground-based Experiments <strong>of</strong> Shell Technology - Microgravity sci. technol. 1991., v.IV.,issue 4., pp. 245-253 (IF = 0)J15-c1. T Kraft: Numerische Simulation der Erstarrung mehrkomponentiger Legierungen 1995. Universitat,Darmstadt Disszertáció/PhDJ15-c2. Bárczy P.: Mikrogravitációs kutatások a <strong>Miskolci</strong> <strong>Egyetem</strong>en - BKL Kohászat, 1999., 132. évf., 6-7.szám, 269-274 o. – „Intenzív erőfeszítések történtek a gravitációs formatöltés helyettesítése céljából aformafém felület célirányos nedvesítési viszonyainak a kialakítására is [J15].” p.269 --J15-c3. P.Bárczy: Universal Multi-Zone Crystallizator, the ISS Oriented Hungarian Apparatus Materials ScienceForum, 329-330 (2000) 219-228 – no text is given, only the reference No. 4.J15-c4. Bárczy P., Babcsán N., Szőke J., Bárczy T.: A miskolci űrkemence - BKL Kohászat, 2000., 133. évf., 6-7. szám, 263-268.o. – “A CSSZK-1 belsejének hőmérsékletviszonyait a Fémtani Tanszék éveken átvizsgálta, modellezte és publikálta …[J15]” p. 263.J15-c5. P.Bárczy: Universal multizone crystallizator (UMC) – novel challenges and results – Vacuum, 61 (2001)419-425. – “Some years later, the temperature maps inside the capsule travelling in the tube <strong>of</strong> CSSZK1were measured and also modelled by the Institute [J15]”, p.419.J14. <strong>Kaptay</strong> G., Berecz E. Determination <strong>of</strong> the excess thermodynamic functions <strong>of</strong>components <strong>of</strong> binary salt melts in infinitely diluted solution on the basis <strong>of</strong> the idealassociated solution model. - Chemical Papers (Chemické Zvesti), 1991., v.45., N.2., pp.145-158 (IF = 0,224 (1994-es adat)79


J14-c1. Török B.: Matematikai segéderőként alkalmazható programrendszer használata ’nyersvasmetallurgiaisalakra felállított asszociált oldat-modell számításainál - in: Proc. <strong>of</strong> microCAD '97 InternationalComputer Science Conference, Section B: Metallurgy, 1997. pp. 89-93. – „Előadásom metallurgiaivonatkozása egy adott összetételű nyersvasmetallurgiai salakra felállított fizikai kémiai modell, ’amelya salakrendszert ideálisan asszociált oldatként kezeli [J14]” p.89 –J14-c2. Török Béla: A TiO 2 hatása nagyolvasztói salakok néhány metallurgiai tulajdonságára, Ph.D. értekezés,1998., 113 o. – „Számításaimhoz a <strong>Miskolci</strong> <strong>Egyetem</strong> Fizikai Kémiai Tanszékén egy korábbankidolgozott, ideálisan asszociált oldatokra készült modellt használtam fel segítségül [J14]. A modellmás, kémiai jellegű kutatások alkalmával már bevált, nyersvasmetallurgiai felhasználására ez az elsőalkalom….” p.59. –J14-c3. M.Z.Benkő: On the computer s<strong>of</strong>tware for the LD converter process at the Dunaferr Works, Materials’World (e-journal, http://materialworld.uni-miskolc.hu, July, 2001 – “The heat due to complex formationwas estimated by the associated model for the slag [J14].” – p. 6.J14-c4. Yaghmaee MS, Shokri B: Modeling the formation <strong>of</strong> strong couples in high temperature liquid -JOURNAL OF APPLIED PHYSICS 102 (1): Art. No. 014307 JUL 1 2007 – “The basic concept <strong>of</strong> themodel <strong>of</strong> an ideally associated mixture is that the major part <strong>of</strong> interaction between the components isconsumed through the formation <strong>of</strong> couples (associates) in the liquid phase [J14], while the mixture <strong>of</strong>couples and free atoms is treated as an ideal solution” – p.2, “It can be shown that the thermodynamicactivity <strong>of</strong> the mmacroscopic components is equal to the mole fraction <strong>of</strong> monomers in our model [J14]– p.3. “The equilibrium constant <strong>of</strong> the formation <strong>of</strong> FeAl can be estimated from the measured activitycoefficient <strong>of</strong> Al in pure liquid Fe at an infinitely dilute solution as follows [J14] (equation)” – p.3,J.13. <strong>Kaptay</strong> G. A theory <strong>of</strong> shapeforming processes by solidification under microgravityconditions. Part I. Basic Principles. Planar liquid/solid interface. - Materials Science ForumVol.77 (1991) pp.125-146 (IF = 0)J.12. <strong>Kaptay</strong> G., Lámer G. A theory <strong>of</strong> shapeforming processes by solidification undermicrogravity conditions. Part II. Melts covered by a deformable film. Solidification <strong>of</strong> Alalloys- Materials Science Forum Vol.77 (1991) pp.147-158 (IF = 0)J.11. <strong>Kaptay</strong> G. On surface properties <strong>of</strong> molten aluminum alloys <strong>of</strong> oxidized surface -Materials Science Forum Vol.77 (1991) pp.315-330 (IF = 0)J11-c1. D.A.Weirauch, W.M.Balaba, A.J.Perrotta: Kinetics <strong>of</strong> the reactive spreading <strong>of</strong> molten aluminum onceramic surfaces - J.Mater.Res., vol. 10., No.3., 1995, 640-650 – „Experimental conditions in this studywere chosen to avoid the severe retarding effects <strong>of</strong> the aluminium oxide film which are generallyknown to affect sessile drop experiments [J11]…” – p.640 –J11-c2. Csepeli Zsolt: Irányítottan kristályosított volfrám szállal erősített alumínium mátrixú kompozitszerkezete - PhD értekezés, Miskolc, 1997 – „A szálerősítésű kompozitok előállításához soklépcsős,nehezen automatizálható eljárásokat használnak. Az alkalmazott módszer egyik legnagyobb problémájaaz optimális nedvesítés biztosítása a szál és a mátrix között [J11].” – p.4.J11-c3. J.L.Sommer: High conductivity, low cost aluminum composite for thermal management – Reportsponsored by Defense Advanced Research Projects Agency, 1997, 57 pp. – „<strong>Kaptay</strong> suggests thatmolten aluminum will wet all ceramic surfaces if the oxide skin layer could be overcome [J11]…. Manyresearchers have shown that surface properties (surface tension, reactivity, etc…) <strong>of</strong> molten aluminumare more characteristic <strong>of</strong> super-cooled liquid Al2O3 than molten aluminum, particularly as the partialpressure <strong>of</strong> oxygen within the system is increased [J11]. As suggested by <strong>Kaptay</strong>, the contact angle <strong>of</strong>molten alumium on a wide range <strong>of</strong> ceramic substrates will fall below 90 degrees above approximately950 C in low vacuum environments [J11]. This transiiton temperature is most likely due to the Al2O3reacting with the liquid aluminum forming gaseous Al2O, according to the following chemicalreaction:… „ – p.23.J11-c4. Csepeli Zs., Sólyom B., Gácsi Z., Buza G., Teleszky I., Kovács Á.: Részecske-és szálerősítésűfémmátrixú kompozitok előállítási lehetőségei - BKL Kohászat, 131 (1998) 41-47 – „.. a bevonatnakegyszerre kell meggátolnia a szál és a mátrix közötti diffúziót és biztosítani a bevonat és a mátrixközötti tökéletes nedvesítést [OJ11]. A két, egymásnak sokszor ellentmondó feltételnek jól megfelel aTiB 2 bevonat [J11]…” p. 45. –80


J11-c5. J.A.Vreeling, V.Ocelik, Y.T.Pei, D.T.L.van Agterveld, J.T.M. de Hosson: Laser Melt Injection inAluminum Aloys: on the Role <strong>of</strong> the Oxide Skin – Acta mater. 48 (2000) 42-33 – „The oxide layer onmolten Al has a substantial influence on the wetting behavior <strong>of</strong> ceramic particles with liquid Al[J11]….. For instance, at lower temperatures (640-850 o C), the contact angle between an SiC particleand the Al melt is about 130 o , while at higher temperatures (>1100 o C) the contact angle is decreased toabout 50 o [OJ11].” – p.4225, „…the ex-situ experiments underline the behavior <strong>of</strong> this oxide skin as afunction <strong>of</strong> temperature [J11] – {18 sor magyarázat a cikkem alapján}” – p.4230.J11-c6. S.J.Roach, H.Henein, D.C.Owens: A New Techniques to Measure Dynamically the Surface Tension,Viscosity and Density <strong>of</strong> Molten Metals – Light Metals 2001, ed. by J.L.Aujier, TMS, Warrendale,2001, pp.1285-1291 – “The high surface activity <strong>of</strong> Al 2 O 3 is firmly established in the literature [J11, ..].The equilibrium constant for the formation <strong>of</strong> Al 2 O 3 is extremely large (K = 1,3 . 10 71 ). It is very difficultto reach the low oxygen partial pressure necessary to avoid formation <strong>of</strong> Al 2 O 3 [J11]” – p. 1289.J11-c7. K.I. Ibragimov, B.B.Alchagirov, T.M.Taova, A.M.Chochaeva, K.B.Khokonov: Surface Tension <strong>of</strong>Aluminium and its Alloys with Indium and Tin -–Trans. JWRI (Joining and Welding ResearchInstitute), 2001, vol. 30., Special Issue, 323-327 – „.. to study the physicochemical properties <strong>of</strong>aluminium alloys … is a very difficult problem because <strong>of</strong> very high affinity for oxygen <strong>of</strong> liquidaluminium. To study the surface properties <strong>of</strong> Al alloys the special instruments and devices, andimprovement <strong>of</strong> researching methods are required [J11].” – p.323.J11-c8. J.A.Vreeling, V.Ocelik, Y.T.Pei, J.Th.M.de Hosson: Laser Melt Injection <strong>of</strong> SiC Particles in Al – in:„Surface Modification Technologies XIV”, ed. by T.S.Sudarshan and M.Jeandin, ASM International,Materials Park, OH, USA, 2001, pp. 619-623. – It is known from literature [J11] that the oxide layer onmolten Al has a big influence on the wetting behaviour <strong>of</strong> ceramic particles with liquid Al….” - p.622.„In literature it is reported that at low temperatures (640 – 850 o C) the contact angle between the SiCparticles and Al melt is about 130 o , while at higher temperatures (>1100 o C) the contact angle isdecreased to about 50 o [J11].” – p.623.J11-c9. A.Vreeling: Laser Melt Injection <strong>of</strong> Ceramic Particles in Metals – PhD Thesis, University <strong>of</strong> Groningen,Holland, 2001, pp. 136., Chapter 3. – „The oxide layer on molten Al has a substantial influence on thewetting behaviour <strong>of</strong> ceramic particles with liquid Al [J11]… „ – p.34., „.. the ex-situ experimentsunderline the behaviour described by literature [J11]. <strong>Kaptay</strong> [J11] studied the behaviour <strong>of</strong> the oxideskin, as function <strong>of</strong> temperature. The oxide skin is present on the melt till about 850 o C. Above thistemperature, chemical interactions between Al and it oxide at the interface occur, leading to theformation <strong>of</strong> gaseous sub-oxides. Consequently, the oxide gradually disappeares and the Al surface, bygrowing Al islands, takes over with increasing temperature. At about 1100 o C the oxide is totallyremoved.” – p.41., „The oxide layer has a strong influence on the wetting behaviour. The contact anglebetween SiC and Al with oxide skin is 130 o , between SiC and Al without oxide layer 50 o , i.e. when thesurface <strong>of</strong> the Al melt is oxidized there is non-wetting behaviour, while for a clean surface there iswetting behaviour. Actually, the oxide skin prevents direct contact between the particle and Al liquid, atlow temperatures, while when no oxide layer is present there is direct contact between the particle andAl liquid. This results in chemical interactions between the particle and Al melt that lowers the energy<strong>of</strong> particle/Al interface. The wetting behaviour is therefore improved [J11]. This explains theconnection between temperature <strong>of</strong> the melt and wetting behavior. At lower temperatures (< 850 o C) <strong>of</strong>the melt, an oxide layer is present and therefore there is non-wetting behavior, while at highertemperatures <strong>of</strong> the melt (> 1100 o C), the oxide layer is disappeared, which lead to wetting behavior” –p. 50.J11-c10. L. Moraru: Surface tension <strong>of</strong> molten AlSi 12% in ultrasonic field -Proceedings <strong>of</strong> Fourteenth International Conference on Surface Modification Technologies; 2001, Paris;France; pp. 572-574. Institute <strong>of</strong> Materials, (ISSN: 1366-5510), 2001, vol.750,J11-c11. N.Babcsan, D.Leitlmeier, H.P.Degischer: Foamibility <strong>of</strong> Particle Reinforced Aluminum Melt – Mat.-wiss. u. Werkst<strong>of</strong>ftech., 2003, vol.34, pp.22-29 – „Different authors published data <strong>of</strong> surface tension <strong>of</strong>liquid aluminum and its alloys (good summary can be found in [J11])” – p.3.J11-c12. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 - “Above1050 o C the oxide layer <strong>of</strong> aluminum melt could transform to gaseous aluminum sub-oxides releasingfrom the melt [A9]: 4Al + Al 2 O 3 = 3 Al 2 O” – p.20, “Different authors published data <strong>of</strong> surface tension<strong>of</strong> liquid aluminum and its alloys (good summary can be found in [J11]). ….. <strong>Kaptay</strong> [J11] extrapolatedand compared the surface tension data <strong>of</strong> liquid Al 2 O 3 with surface tension <strong>of</strong> the oxidized moltenaluminum. He states, that oxygen, covering the surface <strong>of</strong> molten aluminum at relatively lowtemperatures is in a state <strong>of</strong> supercooled Al 2 O 3 ” – p.23.J11-c13. V.Ocelik, S.Nijman, R.van Ingen, U.Oliviera, J.Th.M. De Hosson: Laser melt injection <strong>of</strong> hard particlesinto Al and Ti alloys – processing, microstructure and mechanical behaviour – in: Surface TreatmentVI., Computer Methods and Experimental Measurements for Surface Treatment Effects, ed. by81


C.A.Bubbia, J.Th.M.de Hosson, S.I.Nishida, WIT Press, 2003, pp.140-153 – “<strong>Kaptay</strong> [J11] studied thebehaviour <strong>of</strong> this oxide skin, as a function <strong>of</strong> temperature and concluded that the oxide skin is presenton the melt till about 850 o C and above this temperature, chemical reactions between Al and its oxide atthe interface occur, leading to the formation <strong>of</strong> gaseous sub-oxides. Consequently, the oxide graduallydisappears and the Al melt surface takes over with increasing temperature by growing Al islands. Atabout 1100 o C the oxide is totally removed, according <strong>of</strong> analysis <strong>of</strong> indirect observations [J11].” –p.144J11-c14. J.Th.M.de Hosson, B.J.Kooi: Microstructure and properties <strong>of</strong> interfaces between dissimilar materials –in: „Handbook <strong>of</strong> Surfaces and Interfaces <strong>of</strong> Materials, vol.1., Surface and Interface Phenomena”, ed.by H.S.Nalwa, Academic Press, San Diego, 2001, Chapter 1, pp.1-113 (ref. No.246). – „The oxide layeron molten Al has a substantial influence on the wetting behaviour <strong>of</strong> ceramic particles with liquid Al[J11]. Usually the oxide skin forms an energy barrier for the particles to penetrate...” – p.77,J11-c15. De Hosson JT, Ocelik V, Oliveira U: Coatings with laser melt injection <strong>of</strong> ceramic particles, Surf Engin Mater Sci II, 2003, pp. 197-207.J11-c16. De Hosson JTM ; Ocelik V: Functionally graded materials produced with high power lasers, Mater SciForum, 2003, vol. 426-4, pp. 123-130.J11-c17. Magyar Anita: Karbon szállal erősített alumínium mátrixú kompozitok Al/C határfelületénekjellemzése – PhD értekezés, Miskolc, 2004. „<strong>Kaptay</strong> felvet egy kiemelkedő problémát, miszerint azalumínium olvadék felületét vékony oxidhártya fedi, amely valamelyest lecsökkenti a felületi feszültségértékét. Ennél azonban sokkal drasztikusabbnak ítéli az oxidhártya hatását az adhéziós energiára. Azoxidhártyát tehát valahogyan el kell távolítani. <strong>Kaptay</strong> szerint lehetséges megoldás az előzőekbenkifejtett nagyvákuum + nagy hőmérséklet + kis oxigén parciális nyomás recepten kívül az, ha azalumíniumot pl. 3 t%-nyi Mg-al ötvözzük, amitől a tiszta alumíniumon a tömör oxidhártya szerkezeteátalakul, és rajta keresztül lehetővé válik az alumínium és a kerámia valós kontaktusa [J11]” – p.27.J11-c18. J.Th.M.deHosson, V.Ocelik, Y.Pei: Surface Engineering with lasers. Chapter 16 <strong>of</strong> the book “SurfaceModification and Mechanisms – Friction, Stress and Reaction Engineering”, ed. by G.E.Totten,H.Liang, Marcel Dekker Inc, New York, 2004, pp.603-669.82


J11-c19. C.Körner, M.Arnold, R.F.Singer: Metal foam stabilization by oxide network particles – Mater. Sci.Eng., 2005, vol.A396, pp.28-40.: “The wetting behaviour <strong>of</strong> solid materials by molten aluminium isstrongly influenced by an oxide layer covering the surface <strong>of</strong> the melt [J11]. Generally this oxide layerprevents wetting <strong>of</strong> molten aluminium with Al 2 O 3 ” – p.34.J11-c20. S.J.Roach, H.Henein: A new method to dynamically measure the surface tension, viscoisty and density<strong>of</strong> melts – Metall.Mater.Trans., 2005, vol.36B, pp.667-676 – „Oxide accumulation has been known toaffect the surface tension <strong>of</strong> these liquids in the presence <strong>of</strong> very low levels <strong>of</strong> oxygen [J11]” – p.667,„<strong>Kaptay</strong> stated that measurements have traditionally been performed in the presence <strong>of</strong> a layer <strong>of</strong>supercooled Al 2 O 3 on the surface” – p.672.J11-c21. Ricci E, Arato E, Passerone A, Costa P: Oxygen tensioactivity on liquid-metal drops – Adv. Coll.Interface Sci., 2005, vol. 117, pp. 15-32 – “Experimental work has shown clear evidence <strong>of</strong> a decreasein the contact angle <strong>of</strong> metals and oxides with a decrease in the oxygen contant <strong>of</strong> the metal [J11]” –p.16.J11-c22. DA Weirauch: Technologically significant capillary phenomena in gigh-temperature materialsprocessing. Examples drawn from aluminum industry – Current Opp Solid State and Mater Sci, 2005,vol.9, pp.230-240 – „The wetting transition temperature is strongly dependent ont he details <strong>of</strong> theexperiment [J11]. A consequence <strong>of</strong> the dominating effect <strong>of</strong> oxide film behaviour in sessile dropexperiments involving aluminium is that alloying elements that alter the nature <strong>of</strong> the oxide film are<strong>of</strong>ten mistakenly concluded to alter wetting behaviour” – p.233, „Elements like Mg, that are claimed tobe surface active in molten aluminum through their greater affinity for oxygen than aluminum, also alterthe structure <strong>of</strong> the oxide film and promote penetration <strong>of</strong> refractories by aluminum [J11]” – p.234,„One must therefore remain cognizant <strong>of</strong> the proximity to the 900 – 100 o C wetting transitiontemperature <strong>of</strong> aluminum alloys [J11]” – p.237J11-c23. Townsend C., Henein H., Corbin S., Apte P.: Static and dynamic wettability <strong>of</strong> molten Al on Al2O3and ZrO2 substrates – Science and Engineering <strong>of</strong> Composite Materials, 2006, vol.13, pp.65-77 –„<strong>Kaptay</strong> discussed the role <strong>of</strong> alumina on the surface properties <strong>of</strong> molten aluminium [J11]. He clearlyshowed that the surface tension <strong>of</strong> molten aluminium covered with alumina decreased with increasingtemperature. In addition, the surface tension <strong>of</strong> molten alumina increased with decreasin gtemperature.The surface tension <strong>of</strong> aluminum covered with alumina seemed to coincide with the surface tension <strong>of</strong>molten alumina at the melting point <strong>of</strong> alumina. This suggests that at temperatures lower than themelting point <strong>of</strong> alumina, the surface tension <strong>of</strong> aluminium is influenced by that <strong>of</strong> alumina.Furthermore it was suggested that the increased thermodynamic stability <strong>of</strong> Al 2 O gas with increasingtemperature contributes to the reduced surface tension <strong>of</strong> aluminum.” – p. 71.J11-c24. Giuranno D, Ricci E, Arato E, Costa P.: Dynamic surface tension measurements <strong>of</strong> an aluminiumoxygensystem - ACTA MATERIALIA 54 (10): 2625-2630 JUN 2006 – “The value <strong>of</strong> surface tension<strong>of</strong> ‘pure aluminium’ is affected by a large scatter. Review papers [.. J11..] indicate values in the range<strong>of</strong> 850 – 1050 N/m at temperatures close to the melting point.” – p.2626.J11-c25. N.Babcsán, J.Banhart: Metal Foams – towards high-temperature colloid chemistry – Chapter 11 in:„Colloidal particles at Liquid Interfaces, ed. By B.P.Binks, T.S.Horozov, Cambridge University Press,2006, pp.445-499 – „Various authors have published surface tension data <strong>of</strong> liquid aluminium and itsalloys. … A good overview can be found in [J11].” – p.462.J11-c26. L.Bonaccorsi, E.Proverbio, N.Rafaelle: Microstructural investigation <strong>of</strong> interface phenomena duringPM billets foaming in hollow metal pr<strong>of</strong>iles. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart,D.C.Dunand, DEStech Publ. Inc, 2008, pp.87-90. – It is known that molten unoxidized aluminium has ahigh surface tension so that it can wet any solid material [J11]. The oxide layer which normally coverthe aluminium reduces a lot the surface energy so the contact angle, a measure <strong>of</strong> wetting capability <strong>of</strong> aliquid on a surface, is typically around 160 o , a value that display the non-wetting <strong>of</strong> solids by moltenoxidized aluminium [J11].” – p. 88.J11-c27. Davis JL, Mendez PF: Wrinkling phenomena to explain vertical fold defects in DC-cast Al-Mg4.5 -LIGHT METALS 2008, ed. by DeYoung DH, TMS, 2008, pp. 733-748. –„This is consistent with theclassic oxidation literature for molten aluminium as described by [J11]” – p.737.J11-c28. A.V.Biakova, V.P.Krasovskii, A.O.Dudnik, S.V.Gniloskurenko, A.I.Sirko: O roli smachivaemosti Iraspredeleniia tviordich chastic v stabilizacii vspenennich aliuminievich rasplavov – Adgeziia rasplavovI paika materialov, 2009, vip.42, pp.5-22. – “Bolshinstvo opublikovannich v literaturedannich (naiboleepolno predstavleno v obzore [J11]) po poverhnostnomu natiazheniu binarnich I mnogokomponentnichaliuminievich rasplavov otnositsia k oblasti temperature, namnogo previshaiushich temperaturevspenivaniia. Na tochnost rezultatov okazivaiut vliianie plionki Al2O3, prisutstvuiushie na poverhnostizhidkogo aliuminia.” – p.8.J11-c29. H.Görner: Removal <strong>of</strong> dissolved elements in aluminium by infiltration – PhD Thesis, NorwegianUniversity <strong>of</strong> Science and Technology, Trondheim, 2009 (supervisor: TA Engh). – “Elements like Mg83


alter the structure <strong>of</strong> the oxide film and promote penetration <strong>of</strong> refractories by aluminium [J11]”. – p.13.“The wetting transition temperature is stronglz dependent on the details <strong>of</strong> the experiment (thickness <strong>of</strong>oxide film, temperature, local oxzgen partial pressure) [J11]” – p.67.J11-c30. L.Bonaccorsi, E.Proverbio, N.Raffaele: Effect <strong>of</strong> interface bonding on the mechanical response <strong>of</strong>aluminium foam reinforced steel tubes – J Mater Si, 2010, vol.45, pp.1514-1522 – “The chemicalreaction can occur if liquid aluminium wets the metal case, but the pre-existing oxide film covering theprecursors and the enhanced foam oxidation during the heat treatment in air do not allow any sort <strong>of</strong>chemical bonding at the foam-tube interface [J11]” – p.1517.J11-c31. A.Ott: Oberflachen modification von Aluminium legierungen mit Laserstrahlung. Dissertation Uni-Stuttgart (pr<strong>of</strong>. H. H-gel), Herbert Utz Verlag, 2010.J11-c32. V. Ocelik, J.Th.M. De Hosson: Laser melt injection <strong>of</strong> ceramic particles in metals: processing,microstructure and properties – Int J Microstr Mater Process, 2010, vol.5, pp.116-163.J11-c33. Lai-Xin Shi, Ping Shen , Dan Zhang, Qi-Chuan Jiang: Wetting and evaporation behaviors <strong>of</strong> moltenMg–Al alloy drops on partially oxidized α-SiC substrates – Mater Chem Phys, 2011, vol.130, pp.1125-1133 – “Up to date, the wettability <strong>of</strong> SiC by pure Al and Al alloys with low concentrations <strong>of</strong> Mg(usually no more than 5 wt.%) has been investigated by many researchers [J11]” – p.1125.J.10. Borisoglebskii Yu.V., Vetyukov M.M., Karimov M.I., <strong>Kaptay</strong> G., Shkuryakov N.P.Study <strong>of</strong> wetting <strong>of</strong> refractory compounds and composites by cryolite/alumina melt andmolten aluminum (in Russian) - Tsvetn. Met. (Moscow), 199I, (2), 4I-3 (IF = 0)J10-c1: R.P.Pawlek: Recent developments <strong>of</strong> aluminium wettable cathodes for the Primary aluminium industry,part II. – ALUMINIUM, 72. Jarhgang, 1996 – ½, pp. 35-41 – “Borisoglebskii et al. also examined thepossibility <strong>of</strong> using aluminium wettable refractories in aluminium smelting….Then they examined [J10]how liquid aluminium wets graphite, titanium nitride, and composites <strong>of</strong> TiN – TiC - TiB 2 , TiB 2 – TiCcompounds and TiB 2 coatings showed the best resistance….” P.36 –J10-c2. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001. – „Issledovali, kakim obrazom zhidkii aluminiismachivaet grafit, nitrid titana, i kompozicionnie materiali TiN-TiC i TiB 2 – TiC, i ustanovili, stopokritie TiB 2 okazalos naibolee stoikim [J10]” – p. 9.J.9. Borisoglebskii Yu.V., Akhmedov S.N., <strong>Kaptay</strong> G., Vetyukov M.M., Dzambo P., RatnerA.Kh. Stability <strong>of</strong> metal-like refractory compounds in chloride melts (in Russian) - Tsvetn.Met. (Moscow), 1990, (6), 60-63 (IF = 0)J.8. <strong>Kaptay</strong> G. Kémiai reakciók vizsgálata klóraluminát olvadékban - BKL Kohászat, 123.,1990., 2. szám, 88-91. o. (IF = 0)J.7. <strong>Kaptay</strong> G., Borisoglebskii Yu.V. Evaluation <strong>of</strong> limiting activity coefficients <strong>of</strong> aluminumsubchloride in chloro-aluminate melts (in Russian) - Rasplavy, 1990, (1), 42-47 (IF = 0)J.6. Borisoglebskii Yu.V., <strong>Kaptay</strong> G., Vetyukov M.M., Gorlanov E.S. Solubility <strong>of</strong> aluminumin chloro-aluminate melts (in Russian) - Tsvetn. Met (Moscow), 1989, (12), 53-6 (IF = 0)J.5. <strong>Kaptay</strong> G., Akhmedov S.N., Borisoglebskii Yu.V., Zalite I. Thermodynamic properties <strong>of</strong>metal-like refractory compounds and their intermetallides with aluminum (in Russian) - Latv.PSR Zinat. Akad. Vestis, Kim. Ser. 1989, (2), 174-81 (IF = 0)J5-c1. G.Balducci, A.Ciccioli, G.Gigli, D.Gozzi, U.Anselmi-Tamburini: Thermodynamic Study <strong>of</strong> IntermetallicPhases in the Hf-Al System – J. <strong>of</strong> Alloys and Compounds, 1995, vol.220., pp.117-121 – „In the event<strong>of</strong> any experiental data for the Hf-Al system not being available …. the estimated S 298 o values forHfAl 3 (s) and HfAl 2 (s) [J5] were utilized….. Finally, the entropy values S 298 o for Hf 2 Al 3 (s), Hf 5 Al 4 (s)and HfAl(s) were interpolated from the estimated values for HfAl 3 (s), HfAl 2 (s) and Hf 2 Al(s) [J5]”p.119.J5-c2. Magyar Anita: Karbon szállal erősített alumínium mátrixú kompozitok Al/C határfelületének jellemzése –PhD értekezés, Miskolc, 2004. „Amennyiben az Al 3 Zr képződési szabadentalpia értékét [J5]-ből84


veszem, a szabadentalpia változásra pozitív értéket kapok” – 37.o., „Következésképpen a határfelületennagyobb valószínűséggel képződik TiC” [OJ5] – 39.o.J5-c3. Kálazi Z. (Buza G.): Alumínium lézersugaras felületötvözése – PhD szemináriumi beszámoló, 2008.december 9., <strong>Miskolci</strong> <strong>Egyetem</strong>, 22 oldal. – „Az Al 3 Nb képződési entalpiája -118,8 kJ/mol [J5]” – 8. o.J.4. Ratner A.Kh., <strong>Kaptay</strong> G. Evaluation <strong>of</strong> thermodynamic properties <strong>of</strong> molten aluminumtrifluoride (in Russian) - in : Trudi VAMI, "Povysh. Effektiv. i Nadezh. Raboty Alyum.Elektrolizerov", Leningrad, 1988, 103-6 (IF = 0)J.3. <strong>Kaptay</strong> G., Akhmedov S.N., Borisoglebskii Yu.V. Thermodynamic evaluation <strong>of</strong> thereactions <strong>of</strong> metal-like refractory compounds with molten aluminum (in Russian) - Izv.Vyssh. Uchebn. Zaved., Tsvetn. Metall. 1988, (6), 70-7 (IF = 0)J3-c1. Karimov M.I.: Development <strong>of</strong> refractory composite materials for cathodic materials to be used inAluminum electrolysis cells (in Russian). PhD Thesis, Leningrad, 1989, 274 p. (reference No 171)J3-c2. Duschanek, P.Rogl : The Al-B (aluminum-boron) system – J. Phase Equilibria and Diffusion, 1994,vol15, pp. 543-552 – „Thermodynamic data have been established by various reseacrh gropus [J3]....The coefficients for specific heat are: .... [J3]...” – p. 550, „In table 6 the entropy <strong>of</strong> αAlB 12 = 88.4J/molK [J3]”.J3-c3. Csepeli Zs., Sólyom B., Gácsi Z., Buza G., Teleszky I., Kovács Á.: Részecske- és szálerősítésűfémmátrixú kompozitok előállítási lehetőségei - BKL Kohászat, 131 (1998) 41-47 – „.. a bevonatnakegyszerre kell meggátolnia a szál és a mátrix közötti diffúziót és biztosítani a bevonat és a mátrixközötti tökéletes nedvesítést. A két, egymásnak sokszor ellentmondó feltételnek jól megfelel a TiB 2bevonat [J3]…” p. 45. –J3-c4. R.P.Pawlek: Recent developments <strong>of</strong> aluminium wettable cathodes for the primary aluminium industry,part II. – ALUMINIUM, 72. Jarhgang, 1996 – ½, pp. 35-41 – “Borisoglebskii et al. also examined thepossibility <strong>of</strong> using aluminium wettable refractories in aluminium smelting. First they studied thepublished themodynamic data so as to calculate the equilibrium constants for reactions <strong>of</strong> transitionmetal borides, nitrides and carbides with molten aluminium [J3].” p.36 –J3-c5. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001.(ref.No.53) – „Borisoglebskii Yu.V. i drugieobobshili opublikovannie dannie po termodinamike dlia raschota konstant ravnovesiia reakcii perehodaboridov, karbidov i nitridov metallov pri reakcii s rasplavlennim aliuminiem [J3]” – s.9.J3-c6. Ratner A.H., Geilikman M.B., Aleksandrovski S.V., Jiang F., Li H-G., Yin Z-M.:Thermodynamiccalculation on metallic thermoreduction during preparation <strong>of</strong> aluminum-rare master alloys – Trans.Nonferrous Met.Soc.China, 2001, vol.11, 18-21 „The procedures <strong>of</strong> estimating the standard formationenthalpy <strong>of</strong> Al 3 Sc is as follows: 1) estimate standard formation enthalpy <strong>of</strong> Al 3 Sc (-168 kJ/mol) byvariation regularities <strong>of</strong> standard fromation enthalpies <strong>of</strong> transition metal trialuminides <strong>of</strong> subgroup IV –VI reported by Ref.[OJ3]…..the estimated Gibbs energy formation energy <strong>of</strong> Al 3 Sc at eutectictemperature is –138 kJ/mol, which is very near to the average values in Refs. [J3]. ” – p.19, „inTable 1,the value <strong>of</strong> standard heat <strong>of</strong> formation <strong>of</strong> NbB 2 = -175 kJ/mol [J3]” – p.20.J3-c7. B.Liu, J.H.Edgar, Z.Gu, D.Zhuang, B.Raghothamachar, M.Dudley, A.Sarua, M.Kuball, H.M.Meyer III.:The Durability <strong>of</strong> Various Crucible Materials for Aluminum Nitride Crystal Growth by Sublimation -MRS Internet J. Nitride Semicond. Res. 9, 6(2004) – „From calculation [J3], the relative tendencies <strong>of</strong>these compounds to react with molten Al were HfC < TaC < NbC < TiC < WC, and TaN< TiN.”J3-c8. B.Predel: Landolt Börstein – Group IV Physical Chemistry, vol. 12A, supplement to subvolume IV/5a –Springer Berlin Heidelberg, 2006.J.2. Borisoglebskii Yu.V., <strong>Kaptay</strong> G., Vetyukov M.M., Boborin S.V. Durability <strong>of</strong> compositeelectrodes to be used in electrolythic deposition <strong>of</strong> aluminum from chloroaluminate melts (inRussian) - Tsvetn. Met. (Moscow), 1988, (10), 72-5 (IF = 0)J.1. <strong>Kaptay</strong> G., Borisoglebskii Yu.V., Vetyukov M.M. Equilibrium in the system moltenaluminum/chloroaluminate melt (in Russian) - Tsvetn. Met. (Moscow) 1988, (2), 40-1 (IF =0)85


B. Books and books chaptersB12. AI Grabcheko, G.<strong>Kaptay</strong>, AA Simonova, AP Tarasiuk, VV <strong>Dr</strong>agobeckii, NV Verezub:Cutting <strong>of</strong> metals with nano- and submicron bulk structure (monograph), Harkov, Ukraine,2012, 218 pp. Tochka, Harkov, Ukraine (in Russian: Rezanie metallov s obiomnoi nano- isubmikrokristallicheskoi strukturoi).B11. G.<strong>Kaptay</strong>: Equilibrium <strong>of</strong> metallic nanoparticles – in: Nanoparticles: Productionpathways and appealing applications, ed. by T.Szörényi (ISBN: 978-963-9915-45-9), College<strong>of</strong> Dunaújváros, Dunaújváros, 2011, pp. 95-113.B10. G.<strong>Kaptay</strong>, N.Babcsán: Particle Stabilized Foams. Chapter 7 in book: „FoamEngineering: Fundamentals and Applications” ed. by P.Stevenson, John Wiley & Sons, WestSussex, GB, 2012, pp.121-143.B9. <strong>Kaptay</strong> Gy.: Anyagegyensúlyok (makro-, mikro- és nanoméretű rendszerekben) - RaszterNyomda, 2011, 359 oldal, 500 példány.B9-c1. Roósz A.: Fémtan I. Raszter Nyomda, 2011.B8. <strong>Kaptay</strong> György: Határfelületi Nanojelenségek, digitális tananyag (48 dia), NemzetiTankönyvkiadó, 2011. - http://ydpteszt.infotec.hu/flipbooks/231/index_blue.htmlB7. <strong>Kaptay</strong> György: Nanoanyagok egyensúlya, digitális tananyag (24 dia), NemzetiTankönyvkiadó, 2011. - http://ydpteszt.infotec.hu/flipbooks/231/index_blue.htmlB6. G.<strong>Kaptay</strong>, G.Vermes: Interfacial forces: classification, in: Encyclopedia <strong>of</strong> Surface andColloid Science (ed by P.Somasundarar, A. Hubbard), Taylor & Francis Group, 2009, ISBN:0-87849-728-5, pp.1-19, DOI: 10.1081/E-ESCS-120044936B5. <strong>Kaptay</strong> Gy. Fémmátrixú kerámia kompozitok – 3.1. fejezet in: Műszaki felülettudományés orvosbiológiai alkalmazásai, szerk: Bertóti I., Marosi Gy., Tóth A., B+V Lap- ésKönyvkiadó Kft, Budapest, 2003, 47-59 o.B5-c1. Csanády Andrásné, Hargitai Hajnalka, Konczos Géza: Kompozitok – nanokompozitok – 2.1. fejezet in:Bevezetés a nanoszerkezetű anyagok világába (Csanády Andrásné, Kálmán Erika, Konczos Géza,szerk), MTA, ELTE Eötvös Kiadó, 2009, 45.o.B4. <strong>Kaptay</strong> Gy. Határfelületek energiaviszonyai és alapvető jelenségei – 2.2. fejezet in:Műszaki felülettudomány és orvosbiológiai alkalmazásai, szerk: Bertóti I., Marosi Gy., TóthA., B+V Lap- és Könyvkiadó Kft, Budapest, 2003, 22-46 o.B3. Fizikai-kémiai laboratóriumi gyakorlatok. Szerkesztette dr. Báder Imre. Szerző: dr BáderImre, Báder Enikő, Bolyán László, <strong>Dr</strong>. Bedő Zsuzsa, Csoma Gáborné, dr. Emmer János, dr.<strong>Kaptay</strong> György, dr. Lakatos István, dr. Lengyel Attiláné, dr. Raisz Iván, dr. Török Tamás.<strong>Miskolci</strong> <strong>Egyetem</strong>i Kiadó, 1998. (saját fejezet: Fémolvadék korróziós hatásának vizsgálatahatárfelületi jellemzők alapján. 2.4. Laboratóriumi gyakorlat, 16-20. o.)B2. G. <strong>Kaptay</strong>, E.Berecz: Electrochemical Synthesis from Molten Salts: an Application <strong>of</strong>Chemical Thermodynamics to the Synthesis <strong>of</strong> Refractory Compounds - published as Chapter11 in: „Chemical Thermodynamics - A ‘Chemistry for the 21 st Century’ monograph”, editedby Trevor Letcher, published by Blackwell Science, 1999, pp. 135-144.86


B2-c1. A.S.Uzdenova: Elektrochimicseskoe vosstanovlenie i sintez soedinenii gadoliniia, bora i aluminiia vgalogenidnich rasplavach – Dissertacia na soiskanie uchionoi stepeni kandidata khimicheskich nauk,Nalchik, 2000, 313 pp.: „..Raschot diagrammi elektrokhimicheskogo sinteza provodili po uravneniiu,privedionnomu v rabote [B2]…”, 104. o.B2-c2. H.B.Kushov, A.S.Uzdenova, M.K.Vindizheva, A.V.Zimin: Study <strong>of</strong> joint electroreduction <strong>of</strong> complexgadolinium (or lanthanum) ions with tetrafluoroborate-ions in halide melts – Advances in Molten Salts,2000., vol.1., pp. 291-297 „…calculation <strong>of</strong> the electrochemical synthesis diagrams were performed byus for the Gd-B system [..]. These calculations are performed based on the principle worked out in[B2]…” – p.295.B2-c3. H.B.Kushov, A.S.Uzdenova, M.K.Vindizheva, M.L.Balkizova: Study <strong>of</strong> joint electroreduction <strong>of</strong>complex gadolinium, lanthanum, and fluroaluminate ions in halide melts – Advances in Molten Salts,2000., vol.1., pp. 285-290. „..First, calculation <strong>of</strong> equilibrium electrochemical synthesis diagrams wereperformed by us for the Gd-Al system [… ]. These calculations are performed based on the principleworked out in [B2]..” – p.288.B2-c4. S.V. Devyatkin: Influence <strong>of</strong> different conditions <strong>of</strong> electrochemical synthesis on the structure <strong>of</strong> thedeposited refractory compound coatings, Materials’ World (e-journal, http://materialworld.unimiskolc.hu,July, 2001 – “.. This is characteristic to electrochemical synthesis <strong>of</strong> tantalum diboride. Inthis case the layered type <strong>of</strong> coating structure has been obtained (see Fig. 3) […]. The formation <strong>of</strong> thisstructure has been theoretically explained […] using the Equilibrium Electrochemical Synthesis (EES)Diagrams [B2]” – p. 3.B2-c5. J. Sytchev, H. Kushkhov: Voltammetric Investigation <strong>of</strong> the Reduction Processes <strong>of</strong> Nickel, Cobalt, andIron Ions in Chloride and Chloro-Fluoride Melts, Materials’ World (e-journal, http://materialworld.unimiskolc.hu,July, 2001 – “High-temperature electrochemical synthesis from molten salts is a veryperspective way to produce compounds <strong>of</strong> high purity, including borides [B2…]”, p.1.B2-c6. H.B.Kushkhov, M.K.Vinizheva, A.S.Uzdenova, Z.A.Zhanikaeva: Joint electroreduction <strong>of</strong> lanthanum,gadolinium and boron in chloride melts – Electrochemical Society Proceedings vol.2002-19, pp.616-621 – “The calculation <strong>of</strong> the electrochemical synthesis diagram for the La-B system has been carriedout based on the principle worked out in [B2]” – p.618.B2-c7. V.V.Malyshev, High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> group IV-VImetals in ionic melts – Russian J Inorg Chem, 2003, vol.48, pp.142-148 – “Earlier reviews systematizedinformation concerning electrosynthesis <strong>of</strong> refractory metal borides and methods <strong>of</strong> electrochemical andnonelectrochemical boronizing. So-called equilibrium electrochemical synthesis diagrams [B2] wereused to evaulate the possibility <strong>of</strong> the formation <strong>of</strong> the borides..” – p.144.B2-c8. Kh.B.Khushkhov, M.K.Vinidzheva, A.S.Uzdenova, Z.A.Zhanikaeva: Joint electroreduction <strong>of</strong>lanthanum, gadolinium and boron in halide melts – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B,pp.275-280 – “…These calculations are performed based on the principle worked out in [B2]” – p.278B2-c9. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallopodobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “V obzorach [..B2] sistematizirovai raboti po elektrochmicheskomu sintezu boridov tugoplavkichmetallov, opisani metodi beztokovogo i elektrochmicheskogo borirovaniia. S pomoshiu ravnovesnichelektrochmicheskich diagram sinteza avtori [B2] ocenivaiut veroiatnost VES boridov 24 perehodnichmetallovi predskazivaiut ich vozmozhnuiu morfologiu” – p.190.B2-c10. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) – „Using „equilibrium electrochemical synthesis diagrams”, <strong>Kaptay</strong>et al [B2] assessed the probability <strong>of</strong> high-temperature electrochemical synthesis <strong>of</strong> borides <strong>of</strong> 24transition metals and predicted their possible morphology” – p.1142.B2-c11. T.Watanabe, M.Kondo, A.Sagara: Nitriding <strong>of</strong> 316 stainless steel in molten fluoride salt by anelectrochemical technique – Electrochimica Acta, 2011, vol.58, pp.681-690. “Equilibriumelectrochemical synthesis diagram (EES) will give us a practical prospect about deposition <strong>of</strong> elementsand compounds on the surface <strong>of</strong> the specimen at a constant temperature [B2]… 6 equations….” –p.686.B1. Shapoval V.I., <strong>Kaptay</strong> G., Deviatkin S.V. High-Temperature Electrochemical Synthesis<strong>of</strong> Intermetallides <strong>of</strong> Titanium in Molten Salts - published as Chapter 18. <strong>of</strong> the book:"Electrochemical Technology: Innovation and New Developments", edited by N.Masuko,87


T.Osaka, and Y.Ito; copublished by Kodanscha Ltd and Gordon and Breach SciencePublishers S.A. in 1996 (pp. 361-378).B1-c1. F.Lantelme, A.Barhoun, A.M.Zahidi, J.H.von Barner: Titanium, boron and titanium deposition in alkalifluorochloride melts – Plasmas & Ions, 1999, 2, 133-143 -- “..There is now some interest in thepreparation <strong>of</strong> intermetallides refractory metals from electrochemical deposition at high temperature[B1]. The purpose <strong>of</strong> the present paper is to investigate the reaction mechanism <strong>of</strong> the depositionprocess..” (p.133) –B1-c2. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte – Rev Roum de Chimie, 1999,vol.44, pp.643-650. – „The equilibrium potential needed for the synthesis to occur is given by theequation [B1]: {equation cited}” – p.648B1-c3. R.Krendelsberger, M.F.Souto, J.Sytchev, J.O.Besenhard, G.Fafilek, H.Kronberger, G.E.Nauer: Textureeffects in TiB 2 coatings electrodeposited from a NaCl-KCl-K 2 TiF 6 -NaF-NaBF 4 melt at 700 o C – J.Mining and Metallurgy, 2003, vol. 39B, No.1-2, pp.269-274 – „The electrodeposition <strong>of</strong> titanium andboron from high-temperature molten salt electrolytes seems a much more intersting approach, withlower energy consumption, lower level <strong>of</strong> impurities, and a more precise stoichiometry <strong>of</strong> the product[B1]” – p.270.B1-c4. T.P. Jose, L. Sundar, L.J. Berchmans, A. Visuvasam and S. Angappan: Electrochemical Synthesis andcharacterization <strong>of</strong> BaB 6 from molten melt - Journal <strong>of</strong> Mining and Metallurgy, 2009, vol. 45 B, No.1,pp. 101 – 109. – “The joint deposition <strong>of</strong> boron and barium in molten salts is explained by the so called‘Unstable stoichiometric way’ [B1] called ‘kinetic regime’ in the Russian literature. This will appear ifthe deposition potentials <strong>of</strong> boron and the second component <strong>of</strong> the boride, i.e. the metal component(MC) on inert cathodes are too far from each other. Barium is found to be more electronegative thanboron, so the depolarization <strong>of</strong> metal deposition should be taken into account. i.e. the condition is asfollows: …… when the above condition is fulfilled, first the macroscopic layer <strong>of</strong> one <strong>of</strong> thecomponents will be deposited on the cathode and the formation <strong>of</strong> boride will take place duringdepositing the second component on this layer with depolarization. In this case the synthesis <strong>of</strong> boride ispossible only above the limiting current density <strong>of</strong> the more electropositive component. Hence, thecomposition <strong>of</strong> the boride phase will strongly depend on the concentration <strong>of</strong> the ions <strong>of</strong> the moreelectropositive component in the melt i.e., boron concentration. It also depends on the actual cathodiccurrent density. It has been reported that during the crystal deposition, both the composition <strong>of</strong> the meltand the effective cathode surface area will continuously change, hence, the final composition <strong>of</strong> theboride will also be changed. This mechanism has been reported as ‘unstable stoichiometry way’ [B1].B1-c5. JRA Godinho: Optimization <strong>of</strong> TiB 2 coatings electrodepisted from halide melts – Master dissertation inChemistry, April 2008, 70 pp. – “The model proposed by <strong>Kaptay</strong> does not assume any specific complexstructure for the active species in solutiuon. It is instead based on adatom-adatom interaction at thesurface [B1]” – p.19.B1-c6. T.Watanabe, M.Kondo, A.Sagara: Nitriding <strong>of</strong> 316 stainless steel in molten fluoride salt by anelectrochemical technique – Electrochimica Acta, 2011, vol.58, pp.681-690. “Equilibriumelectrochemical synthesis diagram (EES) will give us a practical prospect about deposition <strong>of</strong> elementsand compounds on the surface <strong>of</strong> the specimen at a constant temperature [B1]… 6 equations….” –p.686.88


E. Books and-or journal issues, editedE6. N.Eustathopoulos, G.<strong>Kaptay</strong>, P.Nikolopoulos, A.Paserone: Guest Editors’ Editorial:HTC-2009 – J Mater Sci, 2010, vol.45, pp.1977-1978. Special issue <strong>of</strong> 6th HTC: 2010,vol.45, No.8, pp. 1977-2245E5. G.<strong>Kaptay</strong> (guest editor): Journal <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, No.1-2,special issue „Electrodeposition and Electrochemical Synthesis from Ionic Liquids andMolten Salts”, 405 pp, Editorial (pp.1-2), Available at www.tf.bor.ac.yu/jmm.htm (go toSection B: Metallurgy, and to 39(1)B(2003)1-405)E4. <strong>Kaptay</strong> Gy. (szerkesztő) - <strong>Miskolci</strong> <strong>Egyetem</strong>, Doktoranduszok Fóruma 2002. november 6.- Anyag- és Kohómérnöki Kar szekciókiadványa, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2003, 77 oldal.E3. <strong>Kaptay</strong> Gy. (szerkesztő) - <strong>Miskolci</strong> <strong>Egyetem</strong>, Doktoranduszok Fóruma 2001. november 6.- Anyag- és Kohómérnöki Kar szekciókiadványa, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2003, 71 oldal.E2. G.<strong>Kaptay</strong> (guest editor): Materials’ World (e-journal with ISSN 1586-0140, accessible at:http://materialworld.uni-miskolc.hu), July 2001, 110 pp.E1. <strong>Kaptay</strong> Gy. (szerkesztő) - <strong>Miskolci</strong> <strong>Egyetem</strong>, Doktoranduszok Fóruma 2000. október 30.- Anyag- és Kohómérnöki Kar szekciókiadványa, <strong>Miskolci</strong> <strong>Egyetem</strong>, 2001, 67 oldal.89


JP. Journal papers on non-scientific issues (politics)JP14. <strong>Kaptay</strong> Gy., Krállics Gy.: Bemutatkozik a BAY-NANO kutatóintézet. Van-eperspektívája a nanotechnológiának az acélok gyártásában? – ISD Dunaferr MűszakiGazdasági Közlemények, 2007, XLVII. évf, 3. szám, 111-116. o.JP.13. <strong>Kaptay</strong> Gy.: (megjelent „Anonymus Kohászoktató” szerzői álnéven): Meddig él egycikkünk? - BKL Kohászat, 2006, 139. évf., 3. szám, 13-18 o.JP12. G.<strong>Kaptay</strong>: Book review for V.L.Cherginets, Oxoacidity: Reactions <strong>of</strong> Oxo-Compounds in IonicSolvents, vol.41 <strong>of</strong> the Series Comprehensive Chemical Kinetics, edited by N.J.B.Green, Elsevier,Amsterdam, 2005 - Electrochimica Acta, 2006, vol.51, pp.3181-3182JP11. <strong>Kaptay</strong> Gy., Z.Benkő M.: A kohászati és anyagmérnöki felsőoktatás jövője a bolognaifolyamatra való áttérés után – BKL Kohászat, 2006., 139. évf., 1. szám, 6-11JP11-c1. Dúl Jenő: A hazai öntészeti oktatás rövid története – kézirat, 2012 július, 36 oldal. „A hallgatók aszakirány-csoportokból választottak 2 szakirányt az érvényes szakirány-választási szabályok szerint. A(fél)szakirányok tantárgyait a hallgatók 22 kredit és kontaktóra keretben az 5-7. félévben tanulták [JP11].”– 5.o. „A Magyar Akkreditációs Bizottság (MAB) 2006-ban elfogadta a Műszaki Anyagtudományi Karáltal előterjesztett MSc anyagmérnök és kohómérnök szak tantervét. A képzési- és képesítésikövetelmények (KKK) és a tanterv elfogadtatásában jelentős szerepet vállalt az MTA MetallurgiaiBizottsága és a MAB szakterületünkhöz tartozó tagjai (<strong>Dr</strong>. Tardy Pál és <strong>Dr</strong>. Bakó Károly) [JP11]. „ – 7.o.JP.10. <strong>Kaptay</strong> Gy., Z.Benkő M.: A történelmi Kohómérnöki Kar szervezeti átalakítása és új képzésistruktúrája – DUNAFERR Műszaki Gazdasági Közlemények, 2004., 4. szám, 281-287.JP.9. Átalakulások az Anyag és Kohómérnöki Karon – dr. <strong>Kaptay</strong> György dékánnak azOMBKE 93. Küldöttgyűlésén elhangzott tájékoztatója – Bányászati és Kohászati Lapok,2004, 137. évfolyam, 4. szám, 37-38. o.JP9-c1. Dúl Jenő: A hazai öntészeti oktatás rövid története – kézirat, 2012 július, 36 oldal. „2004-ben a karivezetés a tanszékek összevonásáról döntött, ennek következtében a Vaskohászattani, a Fémkohászattaniés az Öntészeti intézeti tanszékeket Metallurgiai és Öntészeti Tanszék néven egyesítették [JP9]. „ – 12.o.JP.8. <strong>Kaptay</strong> Gy., Z.Benkő M., Tóth L., Károly Gy.: Beszámoló az Anyag- és KohómérnökiKaron történtekről a 2000. július 1. és 2003. október 15. közötti időszakban, avagykonszolidáció és újabb válságmenedzselés – BKL Kohászat, 2003., 136. évf., 3. szám, 113-120. oldalJP8-c1. Dúl Jenő: A hazai öntészeti oktatás rövid története – kézirat, 2012 július, 36 oldal. „A kettősspecializáció bevezetését a klasszikus kohómérnök-képzés iránti felvételi érdeklődés csökkenése és avégzettek elhelyezkedési lehetőségeinek kiterjesztése indokolta [JP8]” – 3.o. , „A fentiek és aDUNAFERR Zrt. privatizációját követő fejlesztések szakember-igénye alapján a Kari Tanács elé 2005tavaszán az a javaslat került, hogy a kohómérnöki szakon 4 szakirány helyett 2 szakirány legyen. A„metallurgus” szakirány és az „öntő” szakirány „metallurgiai és öntő szakirány” néven, a „hő- ésfelületkezelő” szakirány és az „alakítástechnológiai” szakirány „fémtechnológiai szakirány” névenkerüljön összevonásra. Ezt a javaslatot a fémtannal, az alakítástechnológiával és a metallurgiávalfoglalkozó kollégák jónak tartották, de erősen ellenezték az öntészet oktatók [JP8]” – 4.o.90


JP.7. G.<strong>Kaptay</strong>: On the activity <strong>of</strong> the LIMOS R&D Group in the field <strong>of</strong> Materials Science –Materials’ World (e-journal with ISSN 1586-0140, accessible at: http://materialworld.unimiskolc.hu),July, 2001.JP.6. <strong>Kaptay</strong> G., Z.M.Benkő: The new educational structure <strong>of</strong> the branch <strong>of</strong> metallurgicalengineering at the University <strong>of</strong> Miskolc – Materials’ World (e-journal with ISSN 1586-0140,accessible at: http://materialworld.uni-miskolc.hu), October, 2000.JP.5. <strong>Kaptay</strong> Gy., Z.Benkő M., Tóth L., Roósz A.: Beszámoló a karon 1999. júliusa és 2000.júniusa között történtekről (A Kohómérnöki Kar utolsó félévének és az Anyag- ésKohómérnöki Kar első félévének fontosabb történéseiről) – BKL Kohászat, 2000., 133.évfolyam, 6-7. szám, 221-229. o.JP.4. <strong>Kaptay</strong> Gy.: Rövid tájékoztató a TMS (AIME) 129., éves konferenciájáról – BKLKohászat, 2000., 133. évfolyam, 3. szám, 118.o.JP.3. <strong>Kaptay</strong> Gy.: Anyagfajták csoportosítása, avagy mi van a tetraéder csúcsában? A II.Országos anyagtudományi, anyagvizsgálati és anyaginformatikai konferencia és kiállítás(II.OAAAKK) emblémájának egyik lehetséges értelmezése. BKL Kohászat, 1999., 132. évf.,420.o.JP.2. <strong>Kaptay</strong> Gy., Z.Benkő M., Tóth L.: A Kohómérnöki Kar oktatási stratégiája - BKLKohászat, 1999., 132. évf., 6-7. szám, 228-235 o.JP.1. <strong>Kaptay</strong> Gy., Z.Benkő Mária, Tóth L., Roósz A.: A Kohómérnöki Kar átalakítása - az újmenedzsment első nyolc hónapja. BKL Kohászat, 1999., 132. évf., 6-7. szám, 222-227 o.91


P. Proceedings papersP.117. Á.Végh, Cs.Mekler, G<strong>Kaptay</strong>: Optimization <strong>of</strong> the Ga-Bi monotectic systems andmodelling <strong>of</strong> surface phase transition line – CD-Proc. 26th microCAD Int Sci Conf, 29-30March, 2012, Miskolc, Hungary.P.116. J.Szabó, O.Nagy, G.<strong>Kaptay</strong>: Feasibility <strong>of</strong> in-situ stabilization <strong>of</strong> liquid metallicemulsions – CD-Proc. 26th microCAD Int Sci Conf, 29-30 March, 2012, Miskolc, Hungary.P.115. AA Simonova, G.<strong>Kaptay</strong>, NV Verezub: Opredelenie oblasti racionalnich usloviilezviinoi obrabotki submikrokristallicheskich metallov – Vestnik Nac. Tech. Uni HPI,53/2010, pp.114-121.P.114. N.V.Verezub, G.<strong>Kaptay</strong>, A.A.Simonova: The management <strong>of</strong> surface quality <strong>of</strong> metalwith nano and submicron crystalline structure during machining – „Suchasni Technologii vmashinobuduvanii – NTU, Harkiv, 2010, pp.244-249.P.113. N.V.Verezub, G.<strong>Kaptay</strong>, A.A.Simonova: Metodology <strong>of</strong> mechanical processes <strong>of</strong>machining bulk nano-crystal materials (in Russian) – „Suchasni Technologii vmashinobuduvanii – NTU, Harkiv, 2008, pp.19-26.P112. J.Sytchev, N.Borisenko, H.B.Kushkhov, G.<strong>Kaptay</strong>: On the temperature dependence <strong>of</strong>lithium intercalation into graphite as the first step <strong>of</strong> carbon nanotubes electrolytic production– Proc. <strong>of</strong> MS7, ed. by P.Taxil, C.Bessada, M.Cassir, M.Gaune-Escard, vol.1, 2005, pp.237-240.P111. Budai I., Babcsán N., <strong>Kaptay</strong> Gy.: Alumíniumalapú kompozit-olvadékviszkozitásmérésének problematikája és fejlesztése a Stokes módszer alapján – Tavaszi Szélkonferencia kiadványa, 2005, pp.48-5192


P110. P.Baumli, J.Sytchev, Zs.H.Göndör, G.<strong>Kaptay</strong>: Interaction <strong>of</strong> a titanium-containing meltwith SiO 2 and Al 2 O 3 – Proceedings <strong>of</strong> EUCHEM 2004 Molten Salts Conference, ed. byJ.Kazmierczak and G.Zabinska-Olszak, Wroclaw, 2004, pp.122-127P109. G.<strong>Kaptay</strong>: Role <strong>of</strong> Interfacial Phenomena in Processing Metal-Matrix CompositeMaterials – Proceedings <strong>of</strong> the 2nd International Symposium on Light Metals and CompositeMaterials, published by the Association <strong>of</strong> Metallurgical Engineers SCG, 2004, pp.81-84P108. I.Budai, M.Z.Benkő, G.<strong>Kaptay</strong>: Comparison <strong>of</strong> theoretical models, describing theconcentration dependence <strong>of</strong> viscosity <strong>of</strong> liquid alloys on the example <strong>of</strong> the Ag-Sb system -MICROCAD 2004 Int. Conf., Section: Materials Science, 2004, University <strong>of</strong> Miskolc,Hungary, pp.27-32.P108-c1. D.Zivkovic: Estimation <strong>of</strong> the viscosity for Ag-In and In-Sb liquid alloys using different models –Z.Metallkunde, 2006, vol.97, pp.89-93 – „Recently, Budai et al [P108] gave a complete comparativesurvey on theoretical models describing the concentration dependence <strong>of</strong> viscosity <strong>of</strong> liquid alloys withthe example <strong>of</strong> Ag-Sb system.” – p.89, „some <strong>of</strong> the calculation models could be in conflict withexperimental points, as was already shown in different cases [P108]” – p.90.P107. T.Bárczy, G.<strong>Kaptay</strong>: Modelling the infitlration <strong>of</strong> liquid metals into porous ceramics -MICROCAD 2004 Int. Conf., Section: Materials Science, 2004, University <strong>of</strong> Miskolc,Hungary, pp.13-17.P106. P.Baumli, J.Sytchev, Zs.H.Göndör, G.<strong>Kaptay</strong>: Study <strong>of</strong> chemical reactions between analumina plate and titanium-containing molten salt – MICROCAD 2004 Int. Conf., Section:Chemistry, 2004, University <strong>of</strong> Miskolc, Hungary, pp.15-21.93


P105. G.<strong>Kaptay</strong>: An improved interfacial model <strong>of</strong> stabilzation <strong>of</strong> metallic foams by solidparticles - in: “Cellular Metals: Manufacture, Properties, Application”, ed. by J.Banhart,N.A.Fleck, A.Mortensen, MIT Verlag, 2003, pp.107-112.P105-c1. V.Gergely, T.W.Clyne: <strong>Dr</strong>ainage in standing liquid metal foams: modelling and experimentalobservations - Acta materiala, 2004, vol.52, pp.3047-3058: „Interfacial criteria for stabilisation <strong>of</strong>metallic foams by solid particles have recently been derived by <strong>Kaptay</strong> [P105]” – p.3053P105-c2. C.Körner, M.Hirschmann, V.Brautigam, R.F.Singer: Endogenous particle Stabilization duringmagnesium integral foam production – Advanced Engineering materials, 2004, vol.6, No.6, pp.1-6. “Itis well known, that the development <strong>of</strong> foam requires some stabilization. For metals, stabilization isrealized by obstacles captured in the cell walls threby preventing further cell wall thinning. Theseobstacles may either be compact particles like SiC or Al 2 O 3 particles [P105] or complex structures, likeoxide fragments, which act as effective particles” – p.4.P105-c3. C.Körner, M.Arnold, R.F.Singer: Metal foam stabilization by oxide network particles – Mater. Sci.Eng., 2005, vol.A396, pp.28-40.: “Further progress to explain foam stability was made by <strong>Kaptay</strong>[P105]. He uses a model <strong>of</strong> a 3D network <strong>of</strong> solid, spherical particles to explain force transfer betweentwo interfaces and in this way stability” – p.28.P105-c4. Bryant JD, Wilhelmy D, Kallivayalil J, Wang W: Development <strong>of</strong> aluminum foam processes andproducts - ALUMINIUM ALLOYS 2006, PTS 1 AND 2 MATERIALS SCIENCE FORUM 519-521:1193-1200, Part 1-2 2006 – “.. the prior particle boundaries (and in some cases residual solid phases)can be used to provide stabilization [P105]” – p.1194.P105-c5. C.Körner: Integral Foam Molding <strong>of</strong> Light Metals – Physical and Technological Principles –Habilitation Thesis, Erlangen, 2006 – “<strong>Kaptay</strong> was the first who realized that stabilization for these kind<strong>of</strong> particles is based on the development <strong>of</strong> 3D network structures which transfer forces from oneinterface to the other [P105].” – p.108.P105-c6. C.Körner: Foam formation mechanism in particle suspensions applied to metallic foams – Mater SciEng A, 2008, vol.495, pp.227-235 – “Further progress to explain foam stability was made by <strong>Kaptay</strong>[P105] who uses a model <strong>of</strong> a three-dimensional network <strong>of</strong> solid, spherical particles to explain forcetransfer between two interfaces and in this way stability” – p.228.P105-c7. A.Dudka, F.Garcia-Moreno, N.Wanderka, J.Banhart: Structure and distribution <strong>of</strong> oxides in aluminiumfoam – Acta Mater, 2008, vol.56, pp.3990-4001. – „Two theories are mainly considered: i) the increase<strong>of</strong> local viscosity to an extent that the flow <strong>of</strong> liquid is blocked, and ii). stabilization <strong>of</strong> films throughoxide agglomerations or networks acting as surface active particles and inducing a particle-basedstabilization mechanism similar to the one proposed for other foaming routes [P105]” – p.3990.P105-c8. C.Koerner: Integral Foam Molding <strong>of</strong> Light Metals – Springer, 2008, 224 pp. – „<strong>Kaptay</strong> [P105] wasthe first who realized, that stabilization for this kind <strong>of</strong> particles is based on the development <strong>of</strong> 3Dnetwork structures which transfer forces from one interface to the other” – p. 100.P105-c9. S.Beke: Metal foaming controlled by ultrasonic waves – PhD Thesis, TU Wien, 2011, supervisors: HPDegischer and N Babcsan. – „Several factors influence foam stability, including surface tension, …surface forces, … [P105]” – p.12.P105-c10. Garcia-Moreno F. ; Solorzano E. ; Banhart J.: Kinetics <strong>of</strong> coalescence in liquid aluminium foams -S<strong>of</strong>t Matter, 2011, Vol. 7 Issue: 19 pp. 9216-9223 -P104. R.Krendelsberger, A.Pascual, M.F.Souto, J.Sytchev, G.E.Nauer, G.<strong>Kaptay</strong>: Textures <strong>of</strong>TiB 2 coatings from molten salts – Proc. <strong>of</strong> Int. Symp. On Ionic Liquids in Honour <strong>of</strong> MarcelleGaune-Escard, France, 26-28 June 2003, pp.95-103P103. G.<strong>Kaptay</strong>: Classification <strong>of</strong> interfacial forces, acting on solid particles in technologies<strong>of</strong> advanced metallic materials – in: Proc. <strong>of</strong> Int. Conf. „Advanced Metallic Materials”, ed. byJ.Jerz, P.Sebo, M.Zemankova, IMMM, Slovak Academy <strong>of</strong> Sciences, 2003, pp. 135-140.94


P103-c1. C.Körner, M.Arnold, R.F.Singer: Metal foam stabilization by oxide network particles – Mater. Sci.Eng., 2005, vol.A396, pp.28-40: “It is generally accepted that foamability is intimately correlated withthe presence <strong>of</strong> particles [P103]” – p.28.P103-c2. C.Körner: Integral Foam Molding <strong>of</strong> Light Metals – Physical and Technological Principles –Habilitation Thesis, Erlangen, 2006 – “<strong>Kaptay</strong> was the first who realized that stabilization for these kind<strong>of</strong> particles is based on the development <strong>of</strong> 3D network structures which transfer forces from oneinterface to the other [P103].” – p.108.P103-c3. C.Körner: Foam formation mechanism in particle suspensions applied to metallic foams – Mater SciEng A, 2008, vol.495, pp.227-235 – “Now it is generally accepted that foamibility <strong>of</strong> metals isintimately correlated with the presence <strong>of</strong> particles [P103]. – p.227.P103-c4. C.Koerner: Integral Foam Molding <strong>of</strong> Light Metals – Springer, 2008, 224 pp. – „ <strong>Kaptay</strong> [P103] wasthe first who realized, that stabilization for this kind <strong>of</strong> particles is based on the development <strong>of</strong> 3Dnetwork structures which transfer forces from one interface to the other” – p. 100.P103-c5. G.S. Vinod Kumar, M.Chakraborty, F. Garcia-Moreno, J.Banhart: Foamibility <strong>of</strong> MgAl 2 O 4 (spinel-)reinforced aluminum alloy composites – Metall Mater Trans A, 2011, vol.42A, pp.2898-2908 –„Ceramic and intermetallic particles are required for foam stabilization [P103], which can be adisadvantage especially when SiC particles are used” – p.2898.P102. O.N.Verezub, Z.Kálazi, G.Buza, P.Boross, B.Verő, G.<strong>Kaptay</strong>: Surface Metal MatrixComposite Fe-Ti-C/TiC Layers Produced by Laser Melt Injection Technology – in: Proc. <strong>of</strong>Int. Conf. „Advanced Metallic Materials”, ed. by J.Jerz, P.Sebo, M.Zemankova, IMMM,Slovak Academy <strong>of</strong> Sciences, 2003, pp. 297-300.P101. D.Zivkovic, G.<strong>Kaptay</strong>: A new approach to estimate viscosity <strong>of</strong> ternary liquid metallicalloys – Proceedings <strong>of</strong> the 35th International October Conference on Mining and Metallurgy,ed. by R.V.Pantivic, University <strong>of</strong> Belgrade, Serbia & Montenegro, 2003, pp. 276-282P100. O.N.Verezub, A.I.Grabchenko, P.Boross, Z.Kálazi, B.Verő, G.<strong>Kaptay</strong>: Ulushsheniepoverhnostnogo sloia nizkolegirovannich instrrumentalnich materialov s pomoshiu lazernoitviordotelnoi implantacii – Vestnik Nacionalnogo technicheskogo Universiteta HPI, 2003,tom 1., No.8, pp.7-16.P99. Bárczy T., <strong>Kaptay</strong> Gy.: Az infiltráció elméleti alapjai – Fiatal Műszakiak TudományosÜlésszaka VIII., Erdélyi Múzeum Egyesület kiadványa, Kolozsvár, Románia, 2003., pp. 205-210P98 O.Verezub, P.Boross, Z.Kálazi, B.Verő, A.Grabchenko, G.<strong>Kaptay</strong>: Possibilities to ObtainW-alloyed, TiC-reinforced Composite Surface Layers on Carbon Steels by Laser MeltInjection. A theoretical Analysis. Proc. <strong>of</strong> microCAD 2003 Conference, Section Metallurgy,University <strong>of</strong> Miskolc, 2003, pp. 59-64.P97. A.Borsik, Cs.Varga, G.<strong>Kaptay</strong>: A S<strong>of</strong>tware for Determining Surface Tension <strong>of</strong> LiquidMetals from the Shape <strong>of</strong> a Sessile <strong>Dr</strong>op - Proc. <strong>of</strong> microCAD 2003 Conference, SectionMetallurgy, University <strong>of</strong> Miskolc, 2003, pp. 53-58.P96. G.<strong>Kaptay</strong>: A New Equation to Estimate the Concentration Dependence <strong>of</strong> the Viscosity<strong>of</strong> Liquid Metallic Alloys from the Heat <strong>of</strong> Mixing Data - Proc. <strong>of</strong> microCAD 2003Conference, Section Metallurgy, University <strong>of</strong> Miskolc, 2003, pp. 23-28.P96-c1. D.Zivkovic, D.Manasijevic: An optimal method to calculate the viscosity <strong>of</strong> simple liquid ternary alloysfrom the measured binary data – Calphad, 2005, vol.29, pp.312-316 – „Different models have beendeveloped to describe the viscosity <strong>of</strong> multicomponent alloys [P96]”, „The second group <strong>of</strong> models isderived regarding the activation energy <strong>of</strong> an alloy, the enthalpy <strong>of</strong> mixing and a correction associatedwith mixing <strong>of</strong> unlike atoms not involving an arbitrary parameter [P96]” – p.31295


P96-c2. D.Zivkovic: Estimation <strong>of</strong> the viscosity for Ag-In and In-Sb liquid alloys using different models –Z.Metallkunde, 2006, vol.97, pp.89-93 - „This paper presents the results <strong>of</strong> viscoisty estimation for theAg-In and In-Sb liqiud allos, using ….the <strong>Kaptay</strong> model [P96]…. The <strong>Kaptay</strong> equation [P96] wasdeveloped ….. ((11 lines + 1 equation))” – pp.90-91. „For the Ag-In alloys … the experimentalliterature data are in excellent agreement with the calculated results according to the <strong>Kaptay</strong> model atboth investigated temperatures” – p.91. „The model due to <strong>Kaptay</strong> describe the character <strong>of</strong> theexperimental data correctly at all investigated temperatures for both explored systems: - p.92.P96-c3. Brillo J, Brooks R, Egry I, Quested P: Viscosity measurement <strong>of</strong> liquid ternary Cu-Ni-Fe alloys by anoscillating cup viscometer and comparison with models - Int J Mater Res 98 (6): 457-462 JUN 2007 –Abstract: „Close agreement <strong>of</strong> the experimental results was found with the predictions <strong>of</strong> two models by<strong>Kaptay</strong> and Hirai” p.457. „For this work we consider the following models:… the <strong>Kaptay</strong>-equation[P96]…” – p.457. „The <strong>Kaptay</strong> equation [P96] relates the activation energy to the enthalpy <strong>of</strong> mixingby introducing a semiempirical parameter, which has been estimated from the properties <strong>of</strong> pure metals:Eq.(6)” – p.458. As shown in Fig.7 the … <strong>Kaptay</strong> model, Eq.(6) agree well with the experimentaldata….. The best agreement is found for the <strong>Kaptay</strong> equation, which fits to the data very closely” –p.461. Conclusions: „…At constant temperature, the experimental results were compared to severalmodels and those <strong>of</strong> <strong>Kaptay</strong> and Hirai gave the closest agreement” – p.462.P96-c4. D.Zivkovic: Application <strong>of</strong> the <strong>Kaptay</strong> model in calculation <strong>of</strong> ternary liquid alloys viscosities – Int JMat Res, 2008, vol.99, pp.748-750 – „Conclusions: The equation derived by <strong>Kaptay</strong> [P96] to extrapolatethe dynamic viscosity <strong>of</strong> pure liquid metals to the viscosity <strong>of</strong> liquid metallic alloys has been applied andtested on ternary Au – Ag - Cu system. Calculates values have been compared with literature data andgood agreement was found” – p.750.P96-c5. D.Zivkovic: A new approach to estimate the viscosity <strong>of</strong> the ternary liquid alloys using the Budai-Benko-<strong>Kaptay</strong> equation – Metall Mater Trans B, 2008, vol.39, pp.395-398 – „The rarity and controversialcharacter <strong>of</strong> experimentally determinded viscosity data for the multicomponent alloys has influenceddevelopment <strong>of</strong> different theoretical models to describe the composition dependence <strong>of</strong> the viscosity <strong>of</strong>liquid alloys [P96]” – p.395.P96-c6. J.Brillo, R.Brooks, I.Egry, P.Quested: Density and viscosity <strong>of</strong> liquid ternary Al-Cu-Ag alloys - HighTemperatures-High Pressures, 2008, Vol. 37, pp. 371–381 – “We find that the model <strong>of</strong> Hirai and <strong>Kaptay</strong>[P96] describe our data best” – p.373.P96-c7. P.Terzieff: The viscosity <strong>of</strong> liquid alloys <strong>of</strong> polyvalent metals with Cu, Ag and Au: Theoreticaltreatments based on the enthalpy <strong>of</strong> mixing – Physica B, 2009, vol.404, pp. 2039-2044 – „The majority <strong>of</strong>the currently used viscosity models are <strong>of</strong> semi-empirical nature focused on thermodynamic quantitiessuch as free energy <strong>of</strong> mixing [P96]” – 2039.P96-c8. P.Terzieff: Some physico-chemical properties <strong>of</strong> liquid Ag-Sn-Zn – Physica B, Condensed Matter, 2010,vol.405, pp.2668-2672 – „From a previous analysis it has been concluded that the semi-empirical apprachbased on <strong>Kaptay</strong>’s unified equation [P96] is one <strong>of</strong> the most convenient methods to gain a first idea <strong>of</strong> theviscosity <strong>of</strong> muticomponent systems, even if the viscosities <strong>of</strong> the pure liquids are unknown. Theapplication requires the melting temperatures <strong>of</strong> the components, their molar masses, and their molarvolumes. The only requirements for alloy is the knowledge <strong>of</strong> the excess volume and the enthalpy <strong>of</strong>mixing : (Eq.10)” – p.2672.P96-c9. Gasior W, Moser Z, Debski A: New data to the SURDAT-database <strong>of</strong> modeled and experimentalphysical properties <strong>of</strong> lead-free solder alloys – Arch Metall Mater, 2009, vol.54, pp. 1253-1259 –„..SURDAT database … experimental … and the viscosity calculated from the dependences proposed by… <strong>Kaptay</strong> [P96] : Eq.(6)” – p.1256. “Fig.4. Experimental (symbols) and calculated (lines) viscosity (Eq-s(1, 2, 5, 6, 7) <strong>of</strong> Ag-Sn (Fig.4a) and Sn-Zn (Fig.4b) alloys” – p.1257.P96-c10. Knott S., Terzieff P.: Calculation <strong>of</strong> the viscosity <strong>of</strong> the liquid ternary Ag-Au-Sn system – Int. J. Mater.Res., 2010, vol.101, pp.834-838. – „Several viscosity models based on thermodynamic data exist, some <strong>of</strong>them apply adjustable parameters, while others make use <strong>of</strong> universal parameters [P96] which a reconsidered to be applicable to a large class <strong>of</strong> alloy systems” – p.834, “The expression for the viscosity,given by Budai et al. is based on <strong>Kaptay</strong>-s unified equation [P96] for pure liquid metals: Eq.(3)” – p.835.P96-c11. OK Echendu, EC Mbamala, BC Anusionwu: Theoretical investigation <strong>of</strong> the viscosity <strong>of</strong> some liquidmetals and alloys – Physics and Chemistry <strong>of</strong> Liquids, 2011, vol.49, pp.247-258 – “The <strong>Kaptay</strong> model[P96] .. takes into account the theoretical relationship between the cohesive energy <strong>of</strong> the alloy and theactivation energy <strong>of</strong> viscous flow” – p.249.P96-c12 T. Gancarz, Z. Moser, W. Gasior, J. Pstrus, H. Henein: A Comparison <strong>of</strong> Surface Tension, Viscosity,and Density <strong>of</strong> Sn and Sn–Ag Alloys Using Different Measurement Techniques - Int J Thermophys, 2011,vol.32, pp.1210-1233: „In 2004, <strong>Kaptay</strong> [P96] proposed a modification <strong>of</strong> the Seetharaman and Sichenmodel for viscosity calculations; it consists <strong>of</strong> substituting the excess free energy into the equation <strong>of</strong>activation energy with the enthalpy <strong>of</strong> mixing multiplied by an α coefficient, which, according to the96


author, amounts to 0.155 to 0.015, resulting in the following equation for the viscosity with the followingform…” – p.1230.P96-c13. Wunderlich RK; Fecht H-J: Surface tension and viscosity <strong>of</strong> NiAl catalytic precursor alloys frommicrogravity experiments – Int J Mater Res, 2011, vol.102, pp.1164-1173. „Various thermodynamicmodels <strong>of</strong> the viscosity <strong>of</strong> binary metallic alloys have been brough forward which include the interaction<strong>of</strong> the different atomic species in terms <strong>of</strong> an interaction parameter analogous to a regular solution model”– p. 1170.P96-c14. I.Egry, M.Schick: The viscosity <strong>of</strong> eutectic Pd-Si alloys - a case study – Int J Mater Res, 2011, vol.102,pp.1468-1472. „…it cannot be explained by semi-empirical models realting the viscosity to ther enthalpy<strong>of</strong> mixing [P96]” – p.1469.P96-c15. M.Schick, J.Brillo, I.Egry, B.Hallstedt: Viscosity <strong>of</strong> Al-Cu liquid alloys: measurement andthermodynamic description – J Mater Sci, 2012, doi: 10.1007/s10853-012-6710-x – “A similar expressionis derived by <strong>Kaptay</strong> [P96], who introduces the enthalpy <strong>of</strong> mixing multiplied with a semiempirical factor,which has been adjusted to a number <strong>of</strong> certain binary alloys: Eq.(5)” – p., “The curve calculated from themodel <strong>of</strong> <strong>Kaptay</strong> [P96] exhibits a similar shape without a pronounced maximum, predicting even lowerviscosities” – p.P96-c16. R.N.Singh, F.Sommer: Viscosity <strong>of</strong> liquid alloys: generalization <strong>of</strong> the Andrade’s equation – MonatshChem, 2012, vol.143, pp.1235-1242. – „Several relations exists in the literature to evaluate the viscosity<strong>of</strong> liquid metals and <strong>of</strong> liquid alloys with known and unknown [P96] viscosities <strong>of</strong> the components.” –p.1235. “The starting point for the new model to evaluate the compositzion and temperature dependence<strong>of</strong> the viscosity is the <strong>of</strong>et used [P96] expression for pure liquids due to Andrade” – p.1235.P95. T.Bárczy, G.<strong>Kaptay</strong>: Theory <strong>of</strong> Penetration/Infiltration <strong>of</strong> Liquids into a Closely Packed,Equal Spheres (CPES) Structure - Proc. <strong>of</strong> microCAD 2003 Conference, Section MaterialsTechnology, University <strong>of</strong> Miskolc, 2003, pp. 1-6.P94. N.Borisenko, J.Sytchev, G.<strong>Kaptay</strong>: Deposition <strong>of</strong> Sodium from Molten Sodium Chlorideon Different Cathode Materials - Proc. <strong>of</strong> microCAD 2003 Conference, Section Chemistry,University <strong>of</strong> Miskolc, 2003, pp. 15-20.P93. Baumli P., H.Göndör Zs., Sytchev J., <strong>Kaptay</strong> Gy.: Kerámiaszemcsék fémmel valóbevonása sóolvadékból – Proc. <strong>of</strong> microCAD 2003 Conference, Section Chemistry,University <strong>of</strong> Miskolc, 2003, pp. 1-4.P92. M.F.Souto, I.Sytchev, A.Koepf, G.E.Nauer, G.<strong>Kaptay</strong>: Study <strong>of</strong> the Morphology <strong>of</strong> TiB 2Coatings on Molybdenium Substrate Electrodeposited from a NaCl-KCl-K 2 TiF 6 -NaBF 4 Meltat 700 o C – Proc. <strong>of</strong> the Electrochemical Society, PV 2002-19, ed. by H.C.Delong,R.W.Bradshaw, M.Matsunaga, G.R.Stafford, P.S.Trulove, 2002, pp.857-862.P91. I.Sytchev, Z.H.Göndör, G.<strong>Kaptay</strong>: Electroless Coating <strong>of</strong> Non-Conducting Surfaces andParticles with Metallic Titanium from Molten Salts – Proc. <strong>of</strong> the Electrochemical Society,PV 002-19, ed. by H.C.Delong, R.W.Bradshaw, M.Matsunaga, G.R.Stafford, P.S.Trulove,2002, pp.803-809.P90. G.<strong>Kaptay</strong>: Construction principle <strong>of</strong> complex electrochemcal synthesis (ES) diagrams onthe example <strong>of</strong> the Ti-B system – Proc. <strong>of</strong> the Electrochemical Society, PV 2002-19, ed. byH.C.Delong, R.W.Bradshaw, M.Matsunaga, G.R.Stafford, P.S.Trulove, 2002, pp.700-712.P89. G.<strong>Kaptay</strong>: Modeling Penetration <strong>of</strong> Liquid Metals into Porous Ceramics – in: AnnualReport <strong>of</strong> SVBL at KIT, Japan, No. 6, August 2002, pp.152-157.97


P88. Cs.Varga, A.Borsik, G.<strong>Kaptay</strong>: A method to determine density <strong>of</strong> liquid metals fromphotographs taken by a sessile drop method. Proc. <strong>of</strong> the microCAD 2002 Int. Sci. Conf.,University <strong>of</strong> Miskolc, 2002, pp. 87-92.P87. G.<strong>Kaptay</strong>: On the excess entropy <strong>of</strong> liquid binary metallic alloys. Proceedings <strong>of</strong> 34 thInternational October Conference on Mining and Metallurgy, ed. by Z.S.Markovic andD.T.Zivkovic, University <strong>of</strong> Belgrade, Technical Faculty <strong>of</strong> Bor, Yugoslavia, 2002, pp. 552-557.P86. G.<strong>Kaptay</strong>: On the concentration dependence <strong>of</strong> the surface tension <strong>of</strong> liquid metallicalloys. Theoretical basis - Proc. <strong>of</strong> Microcad 2002, Section: Materials Science, University <strong>of</strong>Miskolc, 2002, 45-50.P86-c1. J.Brillo, Y.Plevachuk, I.Egry: Surface tension <strong>of</strong> liquid Al-Cu-Ag ternary alloys – J Mater Sci, 2010,vol.45, pp.5150-5157 – „ A value <strong>of</strong> f = 1.06, based on a coordination number <strong>of</strong> z = 11 was suggestedrecently [P86]. Within the experimental error, the difference using the above value <strong>of</strong> f = 1.09 isnegligible” – p.5151.P85. J.Sytchev, Zs.H.Göndör, P.Baumli, Z.Gácsi, Á.Kovács, J.Sólyom, G.<strong>Kaptay</strong>: CoatingNon-conducting particles with metallic titanium in molten salts - Proc. <strong>of</strong> Microcad 2002,Section: Chemistry, University <strong>of</strong> Miskolc, 2002, 131-136.P84. O.N.Verezub, L.Zoltai, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> WC/Co/TiC ceramic substrates byliquid copper – Proc. <strong>of</strong> Microcad 2002, Section: Materials Science, University <strong>of</strong> Miskolc,2002, 107-112.P83. M.S.Yaghmaee, G.<strong>Kaptay</strong>: On the Validity <strong>of</strong> the „Solubility Product” Concept - Proc.<strong>of</strong> MICROCAD 2001, Section: Chemistry, 2001, pp. 63-68P82. Hutkainé Göndör Zs., Zambóné Benkő M., <strong>Kaptay</strong> Gy., Gál J., Szontagh E.: Új kémiaipolírozó technológiai és minősítő rendszer kifejlesztése ötvözött és ötvözetlen alumíniumhegesztőpálcák felületkezelésére - Proc. <strong>of</strong> MICROCAD 2001, Section: Chemistry, 2001, pp.23-28.P81. J.Miklósi, P.Nagy, E.Kálmán, I.Sytchev, M.S.Yaghmaee, G.<strong>Kaptay</strong>: Examination <strong>of</strong>Carbon Nanotubes Developed by the Electrochemical Synthesis - Proc. <strong>of</strong> MICROCAD 2001,Section: Chemistry, 2001, pp. 81-86P80. G.<strong>Kaptay</strong>, L.Zoltai, E.Báder: A Model to Predict Adhesion Energy and Contact Angle inSi 3 N 4 / Nonreactive Liquid Metal Systems – Proc. <strong>of</strong> MICROCAD 2001, Section:Metallurgical Science, 2001, pp. 17-22P79. G.<strong>Kaptay</strong>: A Generalized Stability Diagram <strong>of</strong> Production <strong>of</strong> Metallic Foams by the MeltRoute – in: „Cellular Metals and Metal Foaming Technology”, ed. by J.Banhart, M.F.Ashby,N.A.Fleck, MIT, Bremen, 2001, pp. 117-122.P79-c1. N.Babcsan, D.Leitlmeier, H.P.Degischer: Foamibility <strong>of</strong> Particle Reinforced Aluminum Melt – Mat.-wiss. u. Werkst<strong>of</strong>ftech., 2003, vol.34, pp.1-8 – ”The first stability map <strong>of</strong> metal foams was published byI.Jin [ ]. This map theoretically was revised by <strong>Kaptay</strong> [P79].” – p.2P79-c2. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “In themiddle <strong>of</strong> 90-s – thanks to H.P.Degischer, J.Banhart and G.<strong>Kaptay</strong> – science found a partnership with thischallenging material {metallic foam} and some basic questions like stability <strong>of</strong> <strong>of</strong> metal foams {has98


een} clarified”. – p.12, “The first stability map <strong>of</strong> metal foams was published by I.Jin [..]. This maptheoretically was revised by <strong>Kaptay</strong> [P79]” – p.34.P79-c3. Babcsán N., Bárczy P.: Alumíniumhabok – BKL, Kohászat, 2003., vol.136., No.2, pp.97-101 – „A jóminőségű fémhab előállítása és a fémolvadék habosíthatóságának megértése [P79] igen összetett, azirodalomban eddig még alig tárgyalt szakterület” – 98.o.P79-c4. N.Babcsán, J.Banhart, D.Leitlmeier: Metal foams manufacture and physics <strong>of</strong> foaming - in: Proc. <strong>of</strong> Int.Conf. „Advanced Metallic Materials”, ed. by J.Jerz, P.Sebo, M.Zemankova, IMMM, Slovak Academy <strong>of</strong>Sciences, 2003, pp. 7-15 – „The first schematic stability map giving limits for the volume content andparticle size required for metal foam creation was published by I.Jin [..]. This map was interpreted by<strong>Kaptay</strong> [P79] on the basis <strong>of</strong> theoretical considerations” – p.8.P79-c5. T.Wübben: Zur Stabilitat flüssiger Metallschaume – Universitat Bremen, Germany, 2003, 128 pp. (ref.No.70) - „In diesem Zusammenhang wird das schon erwahnte Stabilisierungsmodell von G.<strong>Kaptay</strong>ausführlich erlautert und kritisch diskutiert” – p.2, „Nach einer kurzen Beschreibung der gegenwartigenDiskussion über die Wirkungsweise von Partikeln in Metallschaumen wird schlieslich ein von <strong>Kaptay</strong>entwickeltes Modell [P79]. Die im Rahmen dieser Arbeit gefundenen experimentellen Resultate habendeutliche Indizien für die prinzipielle Gültigkeit dieses Modells erbracht” – p.25, „In diesem Kontext hat<strong>Kaptay</strong> [P79] ein mechanistisches Modell entwickelt, das sowohl den Einflus der Partikelkonzentrationals auch des Kontaktwinkels auf die Stabilitat von Metallshaumen beschreibt. Diese Arbeit beschaftigtsich in groSen Teilen mit der Untersuchung der Gültigkeit deises Modells. Es soll daher folgenden imDetail erlautert werden” – p.30. „Mit Ausnahme von <strong>Kaptay</strong> in [P79] geben jedoch alle Autoren nurphanomenologische Erklarungen” – p.31.P79-c6. M.Arnold, C.Körner, R.F.Singer: PM aluminium foams: stabilizing mechanisms and optimization – in:“Cellular Metals: Manufacture, Properties, Application”, ed. by J.Banhart, N.A.Fleck, A.Mortensen, MITVerlag, 2003, pp.71-76: “Basic investigations <strong>of</strong> the mechanisms show that besides the increase <strong>of</strong> theviscosity also interfacial forces between the particles and the melt play an important role [P79]” – p.71.P79-c7. A.R.Kennedy, S.Asavavisihchai: The effect <strong>of</strong> ceramic particle addition on foam expansion and thestability in compacted Al-TiH 2 powder precursor - in: “Cellular Metals: Manufacture, Properties,Application”, ed. by J.Banhart, N.A.Fleck, A.Mortensen, MIT Verlag, 2003, pp.147-150 – “An additionalmechanism for improving foam stability is that particles can attach to the gas/liquid interface… this canonly be achieved if the particles show good wetting with the liquid metal [P79]” – p.147. “The behaviourobserved correlates well with semi-empirical models <strong>of</strong> foam stabilization based on an interfacial forcemodel [P79]” – p.149.P79-c8. A.R.Kennedy, S.Asavavisithchai: Effect <strong>of</strong> ceramic particle additions on foam expansion and stability incompacted Al-TiH2 powder precursors - Advanced Eng. Mater., 2004, vol.6, N.6, pp.1-6: “An additionalmechanism for improving foam stability is that particles can attach to the gas/liquid interface… It hasbeen remarked, however, that this can only be achieved if the particles show good wetting with the liquidmetal [P79]” – p.1P79-c9. N.Babcsán, J.Banhart, D.Leitlmeier: Metal foam – manufacture and physics <strong>of</strong> foam – Materials World,e-journal, 2005, vol.6, No.1: “The first schematic stability map giving limits for the volume content andparticle size required for metal foam creation was published by I.Jin [..]. This map was interpreted by<strong>Kaptay</strong> [P79] on the basis <strong>of</strong> theoretical considerations” – p.6.P79-c10. N.Babcsán, D.Leitlmeier, J.Banhart: Metal foams – high temperature colloids. Part I. Ex situ analysis<strong>of</strong> metal foams – Colloids and Surfaces A, 2005, vol.261, pp.123- 130 - “The first schematic stability mapgiving limits for the volume content and particle size required for metal foam creation was published byI.Jin [..]. This map was interpreted by <strong>Kaptay</strong> [P79] on the basis <strong>of</strong> theoretical considerations” – p.125.P79-c11. T.Wübben, S.Odenbach: Stabilisation <strong>of</strong> liquid metallic foams by solid particles – Colloids SurfacesA., 2005, vol.266, pp.207-213 – “Another, thermophysical, stabilizing mechanism was suggested by<strong>Kaptay</strong> [P79], relying on the adhesion properties <strong>of</strong> solid particles and liquid metals” – p.207.P79-c12. Esmaeelzadeh S, Simchi A, Lehmhus D: Effect <strong>of</strong> ceramic particle addition on the foaming behavior,cell structure and mechanical properties <strong>of</strong> P/M AlSi7 foam – Mater Sci Eng A, 2006, vol. 424, No. 1-2,pp. 290-299 – “The material is melted with conventional foundry equipment and tranferred to a tundish,where gas is introduced as the foaming agent [P79]” – p. 290P79-c13. N.Babcsán, J.Banhart: Metal Foams – towards high-temperature colloid chemistry – Chapter 11 in:„Colloidal particles at Liquid Interfaces, ed. By B.P.Binks, T.S.Horozov, Cambridge University Press,2006, pp.445-499 – „The satbility map <strong>of</strong> Jin et al was interpreted by <strong>Kaptay</strong> [P79] ont he basis <strong>of</strong>thoretical considerations. He pointed out that a wetting angle between particles and liquid has to be in acertain range for particles to be able to stabilise the gas-liquid bubbles surface.” – p.461.P79-c14. J.Banhart: Metal foams: production and stabilty – Adv. Eng Mater., 2006, vol.8, pp.781-794 – “Some<strong>of</strong> the inventors at Alcan have described a relationship between particle content and foam stability in a99


qualitative way.. <strong>Kaptay</strong> has discussed this diagramme theoretically by considering interfacial forcesbetween particles and melt [P79]” – p.787.P79-c15. J.Banhart: Metal foams: the mystery <strong>of</strong> stabilisation – in: Porous Metals and Metal FoamingTechnology, eds. H.Nakajima, N.Kanetake, the Japanese Inst. <strong>of</strong> Metals, 2006, pp.75-86 - “Some <strong>of</strong> theinventors at Alcan have described a relationship between particle content and foam stability in aqualitative way.. <strong>Kaptay</strong> has discussed this diagramme theoretically by considering interfacial forcesbetween particles and melt [P79]” – p.83.P79-c16. F.Campana, G.Santuzzi: Caratterizzazione meccanica di schiume in alluminio sottoposte a trattamentitermici – Proc. XXXIV Convegno Nazionale, Associazione Italiana per l Analisi Solecitazione,Politechnico Milano, 2005, 10 pp. (Ref. No.13).P79-c17. Babcsan N, Moreno FG, Banhart J: Metal foams - High temperature colloids - Part II: In situ analysis<strong>of</strong> metal foams – Coll Surf A, 2007, vol. 309 (1-3), pp. 254-263 – “The particles may segregate on thesurface <strong>of</strong> melts and lose their stabilizing properties or sediment if their size exceeds 50 – 100 μm [P79]”– p. 254.P79-c18. Somosvari BM, Babcsan N, Barczy P, Berthold A: PVC particles stabilized water-ethanol compoundfoams - Coll Surf A, 2007, vol. 309 (1-3), pp. 240-245 – “<strong>Kaptay</strong> [P79] postulates that the maximumparticle size that can stabilize liquid films depends on the liquid properties. For water 3 micron and forliquid metals 30 micron were calculated. He also could derive theoretically, the optimum contact angles,measured by the researchers” – p.240.P79-c19. S.Esmaeelzadeh, A.Simchi: Foamability and compressive properties <strong>of</strong> AlSi7- 3 vol% SiC – 0.5 wt %TiH 2 powder compact – Materials Letters, 2008, vol.62, pp.1561-1564 – “Direct foaming <strong>of</strong> metallicmelts [P79] ….” – p.1561.P79-c20. D.P.He, et al., A Chinese journal, 2009, vol.39, No.2, pp.97-105http://scholar.google.com/scholar?hl=en&lr=&scoring=r&q=kaptay&as_ylo=2009P79-c21. P. Fernández, L. J. Cruz, J. Coleto: Procesos de fabricación de metales celulares. Parte II: Víasólida, deposición de metales, otros procesos - Revista de Metalurgia, Vol 45, No 2, pp.124-142(2009)P79-c22. A.V.Biakova, V.P.Krasovskii, A.O.Dudnik, S.V.Gniloskurenko, A.I.Sirko: O roli smachivaemosti Iraspredeleniia tviordich chastic v stabilizacii vspenennich aliuminievich rasplavov – Adgeziia rasplavovI paika materialov, 2009, vip.42, pp.5-22. – „Provedionnimi k nastoiashemu vremeni issledovaniiamuiubeditelno pokazano, shto vspenivanie metallicheskich rasplavov okazivaietsia nevozmozhnim priotsutstvii v nich tviordich vkliuchenii [P79].P79-c23. S.Beke: Metal foaming controlled by ultrasonic waves – PhD Thesis, TU Wien, 2011, supervisors: HPDegischer and N. Babcsan. – „For liquid metal foams particles seem to be the only way <strong>of</strong> foamstabilization [P79]” – p.13.P78. Á.Borsik, K.K.Kelemen, G.<strong>Kaptay</strong>: Dynamic Simulation <strong>of</strong> the Movement <strong>of</strong> a CeramicParticle in Front <strong>of</strong> a Solidifying Interface - in: „Affordable Metal-Matrix Composites forHigh Performance Applications”, ed. by A.B.Pandey, K.L.Kendig and T.J.Watson – TMS,Warrendale, PA, 2001, pp.101-111.P77. G.<strong>Kaptay</strong>: Interfacial Aspects to Produce Particulate Reinforced Metal MatrixComposites – in: „Affordable Metal-Matrix Composites for High Performance Applications”,ed. by A.B.Pandey, K.L.Kendig and T.J.Watson – TMS, Warrendale, PA, 2001, pp.71-99.P77.-c.1. E.Báder: Contact angle and infiltration pressure relevant to fabrication <strong>of</strong> syntactic magnesium / Al 2 O 3foams, WTM, Germany, Dec. 2000 – Dec. 2001, 26 pp.: “The infiltration process for fabricatingceramic reinforced metal matrix composites has already been studied by the group <strong>of</strong> Mortensen […],Garcia- Cordovilla […] and <strong>Kaptay</strong> [P77]..” pp. 11,… “… If the ceramic particles are closely packed,like in Fig.11, the pressure required for infiltration can be calculated with the following equation [P77]:{Equation is cited}..” – p. 12.P77-c2. 3 kinai név (Google): Summarization on preparation for particle reinforces metal matrix composites –Modern Electric Power, 2002, No.6.P77-c3. E.R.Fábián, P.Boross, B.Verő, P.Fülöp: Metallographic Aspects <strong>of</strong> Surface-Treated Steels by usingLaser Technology – Materials Science Forum, 2003, vols. 414-415, pp.201-206 - “no text, justreference”P77-c4. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “Metalmatrix composite melts also behave as colloids, but until now there is no adequate explanation to the100


interactions thereby the driving force <strong>of</strong> particles distribution [P77]” – p.27. {is it an acknowledgementor a criticism ???}P77-c5. Th.Wuebben, H.Stanzick, J.Banhart. S.Odenbach: Stability <strong>of</strong> metallic foams studied under microgravity– J.Phys. C: Solid State Phys., 2003, vol.15, pp.427-433 – Ref. No.13, with no text”P77-c6.O.N.Verezub, A.I.Grabchenko, T.Matsushita: Eksperimentalno-teoreticheskoie modelirovanie dinamikiproniknoveniia legiruiushich chastic v matricu eksperimentalnogo materiala – in: „Research andEducation”, Nacionalnii Technicheskii Universitet, 2004, Harkov, pp.59-66 – „V tretiei gruppeuravnenii [P77] kriticheckii ugol kontakta raven nuliu v tom sluchaie, esli Weber kriticheskii stremitsiak nuliu. Eto polnostiu podtverzhdaiet nashi eksperimentalnie dannie” – p.64.P77-c7. J.T.Blucher, J.Dobranszky, U.Narusawa: Aluminium double composite structures reinforced withcomposite wires – Mater. Sci. Eng., 2004, vol.A387-389, pp.867-872 – „..successful infiltration <strong>of</strong>carbon fibers without special surface treatments was sporadic. … Al 2 O 3 , SiO, TiN. TiB as well as Cu anNi coatings all show promising results [P77]” – p.868.P77-c8. Baumli P.: SiO 2 és Al 2 O 3 reakciója titán tartalmú sóolvadékkal – ME Doktorandusz Fóruma, 2005, ME,47-53 – „Kerámiával erősített fémmátrixú kompozitokat csak akkor lehet előállítani megfelelőminőségben, ha a fémolvadék a kerámiát tökéletesen nedvesíti [P77]” – p.47.P77-c9. Kientzl I, Dobránszky J, Ginsztler J: Effect <strong>of</strong> Production Parameters on the Properties <strong>of</strong> CompositeWires - In: Papp É, Mácsay I, Holubetz L, (szerk.) Gépészet 2006 Proceedings <strong>of</strong> Fifth Conference onMechanical Engineering, Budapest University <strong>of</strong> Technology and Economics, National TechnicalInformation Centre and Library, Budapest, 2006, CD-ROM – „For an examination <strong>of</strong> reactions at theinterface, it is worth investigating, via an EDS-analysis, the changes in components through the crosssection<strong>of</strong> a filament [P77]” – p.3.P77-c10. I.Kientzl, J.Dobránszky: Production and examination <strong>of</strong> double composites – Mater Sci Forum, 2007,vol.537-538, pp.191-197.P77-c11. Kadoi K, Nakae H: Effect <strong>of</strong> particle addition to liquid metal on fabrication <strong>of</strong> aluminum foam - HIGHTEMPERATURE MATERIALS AND PROCESSES 26 (4): 275-283 2007 – “Some other models,similar to… were proposed… by <strong>Kaptay</strong> [P77], using an interfacial model” – p. 277.P77-c12. M.A.Taha, N.A.El-Mahallawy, A.M.El-Sabbagh: Some experimental data on workability <strong>of</strong>aluminium-particulate-reinforced metal matrix composites – J. Mater. Process. Technol., 2008, vol.202,pp.380-385 – “Powder metallurgy method … almost avoids matrix oxidation and reinforcementinterfacial reaction [P77]” – p.381, “<strong>Kaptay</strong> [P77], who also obtained improvement in the workability<strong>of</strong> PMMC, discussed the results on basis <strong>of</strong> coupling <strong>of</strong> both the positive influence <strong>of</strong> decreasing theparticulate size and the negative effect <strong>of</strong> particulate’s increased resistance to wettability” – p.382.P77-c13. Csanády Andrásné: Nanoszerkezetek határfelületei és határfelületeken kialakuló nanoszerkezetek – 2.3.fejezet in: Bevezetés a nanoszerkezetű anyagok világába (Csanády Andrásné, Kálmán Erika, KonczosGéza, szerk), MTA, ELTE Eötvös Kiadó, 2009, 60.o. – „A határfelületek szabadenergia felesleggelrendelkeznek, ezt növelik az érintkező felületeken kialakuló feszültésgek… [P77]” – p.60.P77-c14. A.E.Karantzalis, A.Lekatou, E.Georgatis, H.Mavros: Solidification behaviour <strong>of</strong> ceramic particlereinforced Al-alloy matrices – J.Mater Sci, 2010, vol.45, pp.2165-2173 – „Especially in the case <strong>of</strong> castmetal composites, however, a contact angle <strong>of</strong> less than 90 o C (sicc) is not sufficient to lead tospontaneous entry <strong>of</strong> the particles but a 0 o contact angle (total spreading condition) is required as shownby the works <strong>of</strong> Nakae et al., Wu et al. And <strong>Kaptay</strong> [P77]” – p.2165.P77-c15. Kientzl I.: Alumíniummátrixú kompozithuzalok és kettős kompozit-szerkezetek – PhD értekezés, BME(tud. vez.: dr.Dobránszky János), 2010, 112.o. – „Az infiltrált hosszt az idő és a nyomáskülönbségbőlszámolják [P77]”P77-c16. Bian Xinyu, Fan Jianzhong, Ma Zili, Zuo Tao, Wei Shaohua: Influence <strong>of</strong> Particulate InhomogeneousDistribution on Performance <strong>of</strong> Particulate-Reinforced Aluminum Matrix Composites - Chinese Journal<strong>of</strong> Rare Metals, 2010, vol. 34, No.3, pp.357-362. „Chinese text..?”P77-c17. I.N.Orbulov: Infiltration <strong>of</strong> ceramic microballons by liquid metals – research plan for SCIEX-NMS,February, 2011, 12 pp. – „There are many papers in the pr<strong>of</strong>essional literature which are dealing withthe phenomenon <strong>of</strong> infiltartion [P77]” – p.9.P77-c18. S.Beke: Metal foaming controlled by ultrasonic waves – PhD Thesis, TU Wien, 2011, supervisors: HPDegischer and N Babcsan. – „Because ceramic particles are in the melt, the foam is relatively stable[P77]” – p.22.P77-c19. Rácz A., Tóth L.F.: Eszközfejlesztés mikrogömbhéjak infiltrálásához – TDK dolgozat, 2011, BME(konzulens: Orbulov IN) – “2.8. A szemcseméret hatása az infoltrációra [P77]” – 28-29. o.P77-c20. I.N. Orbulov: Syntactic foams produced by pressure infiltration – the effect <strong>of</strong> pressure and time oninfiltration length- Periodica polytechnica Mechanical Engineering, 2011, vol.55/1, pp.21-27. – „Morerecently <strong>Kaptay</strong> derived theoretical function for infiltrated length and this one is again parabolic in natureand shows linear dependence on the square root <strong>of</strong> time [P77]. ” – p.25.101


P77-c21. Orbulov IN: Mikrogömbhéjak nyomásos infiltrációjának vizsgálati módszere – OGÉT 2011, XIX.Nemzetközi Gépész Találkozó konferencia kiadványa, Csíksonlyó, Románia, 2011. 04.28-05.01.Szerkesztő: Csibi V-J. Kiadó: Erdélyi Magyar Műszaki Tudományos Társaság, Kolozsvár, Románia,2011, pp.296-299, ISBN: 2068-1267 – „A legtöbb publikáció egyetért abban, hogy ezek a kapcsolatok afenti feltételezéseket és egyszerűsítéseket felvonultató rendszerekre, a viszonylag hosz-szabb (többperces) időtartományban érvényesek. Ugyanakkor a kis idő- és nyomástartományokban (néhány s és aküszöbnyomáshoz közeli nyomások) az L-p és L-t görbék az elméleti lineáris és gyökös görbéktőlexponenciális jellegű eltérést mutatnak [P77].” p. 2069.P77-c22. I.N.Orbulov: Infiltration and mechanical characteristics <strong>of</strong> hollow spheres reinforced metal matrixcomposites – Proc. 8th International Conference on Mechanical Engineering, 2012, pp. 403-411. – „Morerecently <strong>Kaptay</strong> derived theoretical function for infiltrated length and this one is again parabolic in natureand shows linear dependence on the square root <strong>of</strong> time [P77].” – p.406.P76. Borsik Á., K.Kelemen K., <strong>Kaptay</strong> Gy.: Fémolvadékban a kristályfront előtt levőkerámiaszemcse mozgásának számítógépes szimulációja – ME Doktoranduszok Fóruma2000, Anyag- és Kohómérnöki Kar szekciókiadványa, ME, 2001, 32-37.P75. G.<strong>Kaptay</strong>: On the Surface Tension <strong>of</strong> Pure Molten Alkali Halides – Proc. 6 th Int. Symp.on Molten Salt Chemistry and Technology, ed. by Chen Nianyi and Qiao Zhiyu, ShanghaiUniversity Press, 2001, 182-185.P74. G.<strong>Kaptay</strong>, I.Sytchev, Zs.H.Göndör: Coating Quartz Samples by Metallic Titanium inMolten Salts – Proc. 6 th Int. Symp. on Molten Salt Chemistry and Technology, ed. by ChenNianyi and Qiao Zhiyu, Shanghai University Press, 2001, 178-181.P73. G.<strong>Kaptay</strong>: Estimation <strong>of</strong> Thermodynamic Properties <strong>of</strong> Pure Liquid Titanium Dichloride– Proc. 6 th Int. Symp. on Molten Salt Chemistry and Technology, ed. by Chen Nianyi andQiao Zhiyu, Shanghai University Press, 2001, 174-177.P72. G.<strong>Kaptay</strong>, I.Sytchev, M.S.Yaghmaee, A.Kovács, E.Cserta, M.Árk: ElectrochemicalSynthesis <strong>of</strong> Refractory Borides and Carbon Nano-Micro Tubes from Molten Salts – Proc. 6 thInt. Symp. on Molten Salt Chemistry and Technology, ed. by Chen Nianyi and Qiao Zhiyu,Shanghai University Press, 2001, 168-173.P72-c.1. A.T.Dimitrov, G.Z.Chen, I.A.Kinloch, D.J.Fray: A feasibility study <strong>of</strong> scaling-up the electrolyticproduction <strong>of</strong> carbon nanotubes in molten salts – Electrochimica Acta, 2002, vol.48, pp.91-102: “…asit was initially postulated in this laboratory, the intercalation <strong>of</strong> alkali metal could lead to the extrusion<strong>of</strong> carbon… Interestingly, this prediction had not been experimentally confirmed in this and otherlaboratories […] until recently when <strong>Kaptay</strong> et al. reported their observation <strong>of</strong> carbon micro-tubes onthe surface <strong>of</strong> a graphite cathode [P72]”, p.92.102


P71. <strong>Kaptay</strong> Gy.: Határfelületi jelenségek szerepe a fémes anyag-gyártásban – EMTBányászat, Kohászat, Földtan konferencia kiadványa, Csíksomlyó, EMT, 2001., 51-56 o.P71-c1. K.Szocs, M.Vaida: Border surface changes on the edge <strong>of</strong> the castings with nodular graphite – Mater.Sci. Forum, 2005, vols 473-474, pp.153-158.P70b. S.Yaghmaee Maziar, Csicsovszki G., <strong>Kaptay</strong> Gy.: Fémek kohéziós energiájánaklehetséges definíciói – Pro Scientia Aranyérmesek Társasága, Budapest, 2000, 227-231.P70a. S.Yaghmaee Maziar, <strong>Kaptay</strong> Gy., Jánosfy Gy.: A Fe-Al-N, Fe-B-N és Fe-Al-N-Bolvadék rendszerek termodinamikai modellezése – Pro Scientia Aranyérmesek Társasága,Budapest, 2000, 95-100.P70. M.Z.Benkő, G.<strong>Kaptay</strong>: Thermal Balance <strong>of</strong> LD converters – Proc. <strong>of</strong> Microcad ‘2000,Section C.: High Temperature Devices, University <strong>of</strong> Miskolc, pp.13-18.P69. Magyar Anita, Gácsi Zoltán, <strong>Kaptay</strong> György, Szalai Ibolya: Hibridszerkezetekfejlesztése - Proc. <strong>of</strong> Microcad ’2000, Section B: Materials Technology, University <strong>of</strong>Miskolc, pp. 121-126.P69-c1. Baumli P.: Fémmátrixú kompozitok előállítása öntészeti módszerekkel – CD-Proc. <strong>of</strong> 26. Int Sci ConfmicroCAD, 29-30 March, 2012. – „Az oxidhártya csökkentésére K2ZrF6-tal vonták be a grafit felületét,mint ahogy Magyar és munkatársai is [P69]. A kezelés a küszöbnyomást kb. a felére csökkentette” – 3.o.P68. L.Zoltai, E.Bader, G.<strong>Kaptay</strong>, P.Arato: Wettability <strong>of</strong> Si 3 N 4 ceramics by liquid metals –Proc. <strong>of</strong> Microcad ’2000, Section B: Materials Technology, University <strong>of</strong> Miskolc, pp. 121-126.P67. J.Sytchev, G.<strong>Kaptay</strong>, H.Kushov: Investigation <strong>of</strong> the reduction process <strong>of</strong>tetrafloroborate ions at different electrodes in chloro-fluoride melts – Progress in Molten SaltChemistry, vol.1. (Proc. <strong>of</strong> EUCHEM 2000), 2000, Elsevier, Paris, pp. 523-528.P66. R. Román, G. <strong>Kaptay</strong>, J. Lakatos, H. Verelst, F. Rivet, A. Buekens: Development <strong>of</strong> achemical treatment method by molten salts for removing zinc from fly ash - Progress inMolten Salt Chemistry, vol.1. (Proc. <strong>of</strong> EUCHEM 2000), 2000, Elsevier, Paris, pp. 455-460.P65. G.<strong>Kaptay</strong>, I.Sytchev, J.Miklósi, P.Póczik, K.Papp, P.Nagy, E.Kálmán : Electrochemicalsynthesis <strong>of</strong> carbon nanotubes and microtubes from molten salts – Progress in Molten SaltChemistry, vol.1. (Proc. <strong>of</strong> EUCHEM 2000), 2000, Elsevier, Paris, pp. 257-262.P65-c1. G.Z.Chen, D.J.Fray: Novel Cathodic Processes in Molten Salts - Proc. 6 th Int. Symp. on Molten SaltChemistry and Technology, ed. by Chen Nianyi and Qiao Zhiyu, Shanghai University Press, 2001, 79-85– “While this research is being extended into more molten molten salt systems as demonstrated by <strong>Kaptay</strong>et al [P65], understanding <strong>of</strong> the nanotube formation mechanism has also progressed” – p.84.P65-c2. M. S.Yaghmaee, E. Cserta, A.Kovács, M. Árk: Carbon Micro-Tubes Produced by ElectrochemicalSynthesis from Molten Salts, Materials’ World (e-journal, http://materialworld.uni-miskolc.hu, July, 2001– “The second effort on synthesis <strong>of</strong> carbon nano-tubes in Hungary is in progress in the framework <strong>of</strong>cooperation between the LIMOS R&D Group at the University <strong>of</strong> Miskolc (lead by G.<strong>Kaptay</strong>), where thesynthesis was carried out from molten salts, and between the group at KKK (lead by ‘E.Kálmán), wherethe nano-characterization <strong>of</strong> the samples is being performed [P65]. During this cooperation it has beennoted, that during the electrochemical synthesis <strong>of</strong> carbon nanotubes from molten salts carbon tubes witha very wide range <strong>of</strong> diameter are actually formed, scaling from several nanometers to severalmicrometers [P65]”– p.1.P65-c3. A.T.Dimitrov, G.Z.Chen, I.A.Kinloch, D.J.Fray: A feasibility study <strong>of</strong> scaling-up the electrolyticproduction <strong>of</strong> carbon nanotubes in molten salts – Electrochimica Acta, 2002, vol.48, pp.91-102 – “In103


2000, <strong>Kaptay</strong> et al reported that, on graphite cathode, the electro-deposition <strong>of</strong> Li, Na, K, Mg and Ca fromthe respective molten chlorides all led to the formation <strong>of</strong> CNTs, but not <strong>of</strong> Sn and Ni [P65].” – p.91,“Based on the facts that CNTs were collectable from the solidified salt phase and also the CNT yielddepended strongly on electrolysis current and temperature [P65], it was further proposed …… Thecarbon based fragments may then enter the molten salt and, without the protection <strong>of</strong> the graphite lattice,undergo through an inter- and/or intra-fragment recombination process, leading to the formation <strong>of</strong>various carbon nanoparticles and nanotubes in the electrolyte [P65].” – p.92.P65-c4. Q.Xu, C.Schwandt, G.Z.Chen, D.J.Fray: Electrochemical investigation <strong>of</strong> lithium intercalation intographite from molten lithium chloride – J. <strong>of</strong> Electroanalytical Chemistry, 2002, vol. 530, pp.16-22 – “..The process has been described in several <strong>publications</strong> [P65]. There is indeed some experimental evidencethat alkali metal intercalation into graphite is an important step in the electrochemical synthesis [P65] –p.16.P65-c5. Zs.Demeter, M.S.Yaghmaee: Some Aspects <strong>of</strong> Intercalation Phenomena and Growth Mechanism <strong>of</strong>Carbon Nano-micro Tubes in Molten Salts – Proc. <strong>of</strong> microCAD 2003 Conference, Section MechanicalTechnologies and Material Science Engineering, University <strong>of</strong> Miskolc, 2003, pp. 7-12 – “The secondeffort on synthesis <strong>of</strong> carbon ano-tubes in Hungary is in progress in the framework <strong>of</strong> cooperationbetween the LIMOS R&D Group at the University <strong>of</strong> Miskolc (lead by G.<strong>Kaptay</strong>), where the synthesiswas carried out from molten salts, and between the group at KKK (lead by E.Kálmán), where the nanocharacterization<strong>of</strong> the samples is being performed [P65]. During this cooperation it has been noted thatduring the electrochemical synthesis <strong>of</strong> carbon nanotubes from molten salts carbon tubes with very widerange <strong>of</strong> diameter are actually formed, scaling from several nano-meters to several micrometers [P65]” –p.7.P65-c6. G.Z.Chen, D.J.Fray: Recent development in electrolytic formation <strong>of</strong> carbon nanotubes in molten salts –J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.309-342 “.. research in the electrolytic method isgathering forces around the world in the past few years [P65]..” – p.311, “<strong>Kaptay</strong> and co-workers inHungary reproduced the results <strong>of</strong> the authors, and reported that the electrodeposition <strong>of</strong> Li, Na, K, Mg,Ca from respective chloride salts all led to the formation <strong>of</strong> CNTs, but not Sn and Ni [P65]” – p.313,“Based on SEM and TEM estimations <strong>of</strong> different research groups [P65], the electrolytic carbon nanomaterialscontain CNTs in the range <strong>of</strong> 5 to 50 vol%…” – p.325, “This postulation had not beenexperimentally confirmed in the Cambridge laboratory and other [..], until recently when <strong>Kaptay</strong> et al.reported their observation <strong>of</strong> a carbon micro-tube on the surface <strong>of</strong> a graphite cathode [P65]” – p.331,“The Cambridge team’s CNTs formation mechanism was generally advocated by <strong>Kaptay</strong> et al [P65]…. Inaddition, they argued that once suspended in the molten salt, tube formation was driven by the attractiveinterfacial forces between the two edges <strong>of</strong> the suspended graphite planes having broken carbon bonds.” –p.332-33P65-c7. Q.Xu, C.Schwandt, D.J.Fray: Electrochemical investigation <strong>of</strong> lithium and tin reduction at a graphitecathode in molten chlorides – J. <strong>of</strong> Electroanal. Chem., 2004, vol.562, pp.15-21: “Most <strong>of</strong> the studies …focused on the preparation <strong>of</strong> carbon nanotubes [P65]. Tin reduction, as opposed to lithium reduction,does not lead to the formation <strong>of</strong> nano-sized carbon materials [P65]”, p.15.P65-c8. I.A.Kinloch, G.Z.Chen, J.Howes, C.Boothroyd, C.Singh, D.J.Fray, A.H.Windle: Electrolytic, TEM andRaman studies on the production <strong>of</strong> carbon nanotubes in molten NaCl – Carbon, 2003, vol.41, pp.1127-1141 – “Chen et al. have previously reported the formation <strong>of</strong> tambourines and it is possible that thesetambourines are the same strutcture as the nano-tori viewed by AFM by Miklosi et al [P65]” – p.1138.104


P65-c9. D.Babic, DJ Klein, J von Knop, N.Trinajstic: Combinatorial enumeration in chemistry – in: ChemicalModelling: Applications and Theory, vol.3, The Royal Society <strong>of</strong> Chemistry, 2004, pp.126-170. –„CNTs possess conducting or semiconducting properties depending ont he tube structure and may beprepared by a laser technique or by electrochemical procedures [P65] or in some other way…– p.137.P65-c10. Adamokova M.N.: Elektrovidelenie metallicheskogo volframa, molibdena i ich karbidovi znizkotemperaturnich galogenidno-oksidnich rasplavov – Diss. na kand. him. nauk, Ekaterinburg, 2005,142 pp. – „V 2000 g. nachala publikovat rezultati issledovanii po polucheniiu nanotrubokelektroliticheskim metodom tretia gruppa – <strong>Kaptay</strong> G i Sychev J.Iv Vengrii [P65] vosproizveli rezultatirabot Fray-a, takzhe pokazali, shto elektroosozhdenie litiia, natriia, kaliia, magniia, kalciia izsootvetstvuiushich rasplavlennich hloridov privodit k polucheniu uglerodnich nanotrubok. Produktielektroliza bili issledovani metodom atomno-silovoi mikroskopii”….. „G.<strong>Kaptay</strong> i J.Sichev ssotrudnikami (Vengriia) zanimaiutsia issledovaniem mechanizma obrazovaniia uglerodnich nanotrubokpri osazhedenii shelochnich metallov (litiia i natriia) i shelochnozemelnich metallov (magniia i kalciia) izrasplavlennich solei na grafitovii katod [P65]” – p.25.P65-c11. JH Lee, JB Shim, EH Kim, JH Yoo, SW Park: A feasibility study for the development <strong>of</strong> alternativemethods to treat a spent TRISO fuel – Nucelar Technol, 2008, vol.162, pp.250-258 – „Carbon also formsintercalation compounds with magnesium” – p.256.P65-c12. C.Schwandt, A.T.Dimitrov, D.J.Fray: The preparation <strong>of</strong> nano-structured carbon materials byelectrolysis <strong>of</strong> molten lithium chloride at graphite electrodes – J Electroanal Chem, 2010, vol.647, pp.150-158 – „<strong>Kaptay</strong> and co-workers also investigated the electrolytic preparation method. Carbonaceousproducts were prepared by using various molten salt electrolytes [P65]” – p.151.P65-c13. AT Dimitrov, A.Tomova, A.Grozdanov, P.Paunovic: Production, purification, characterization andapplication <strong>of</strong> CNTs - Chapter 13 <strong>of</strong> book: Nanotechnological Basis for Advanced Sensors, ed. by JPReithmaier, P.Paunovic, W.Kulisch, C.Popov, P.Petkov. Springer, Dordrecht, Netherlands, 2011, pp.121-142. – „<strong>Kaptay</strong> Mechanism. <strong>Kaptay</strong> et al. did research on the molten salt electrolysis to produce CNTs.They use the intercalation mechanism <strong>of</strong> sodium into the cathode to explain the formation <strong>of</strong> the speciesobserved [P65]. They proposed a mechanism <strong>of</strong> formation <strong>of</strong> nanotubes summarized below: … threesteps” – p.133.P65-c14. AR Kamali, C Schwandt, DJ Fray: Effect <strong>of</strong> graphite electrode material on the characteristics <strong>of</strong> moltensalt electrolitically produced carbon nanomaterials – Mater Charact, 2011, vol.623, pp.987-994 – „Thisfinding was then confirmed further in a number <strong>of</strong> subsequent studies, in which both lithium chloride andsodium chloride were found suitable molten salt electrolyte [P65]” – p.987P65-c15. Y.Ito: Formation <strong>of</strong> a carbon film by the molten salt electrochemical process and its applications –TANSO, 2011, NO.248, pp.144-151 (in Japanese).P65-c16. A.R. Kamali, C. Schwandt, D.J. Fray, On the oxidation <strong>of</strong> electrolytic carbon nanomaterials, CorrosionScience, 2012, vol.54, pp.307-313 – „The cathodic reaction leads to the erosion <strong>of</strong> the graphite and therelease <strong>of</strong> a variety <strong>of</strong> carbon nanostructures including multi-walled carbon nanotubes (MWCNTs) andcarbon nanoparticles. The method has been investigated further in a number <strong>of</strong> studies [P65]” – p. 3.P65-c17. C.Schwandt, AT Dimitrov, DJ Fray: High yield synthesis <strong>of</strong> multi-walled carbon nanotubes fromgraphite by molten salt electrolysis – Carbon, 2012, vol.50, pp. 1311-1315. „The molten salt electrolysismethod <strong>of</strong> converting graphite directly into nanoscale carbon materials is a rather unknown approachtoward preparation <strong>of</strong> CNTs [P65]” – p.1311.P65-c18. A.R. Kamali, G. Divitini, C. Schwandt, D.J. Fray, Correlation between microstructure andthermokinetic characteristics <strong>of</strong> electrolytic carbon nanomaterials, Corrosion Science (2012), doi:http://dx.doi.org/ - „bulk graphite sample is cathodically polarised in a molten alkali metal chloride salt,such that the alkali metal intercalates into the graphite and disintegrates its microstructure whereby thegraphite is continually eroded into nanometre sized carbon entities. These become detached from thegraphite surface and accumulate in the molten salt bath from where they can be harvested [P65].”105


P64. G.Jánosfy, G.Károly, G.<strong>Kaptay</strong>, M.S.Yaghmaee, V.Beszterczey: Quality AssuranceProblems in the Production <strong>of</strong> Boron Microalloyed Case-hardening Steel Grades – EOSC ’00,3 rd European Oxygen Steelmaking Conference, 30 October – 1 November 2000, ICC,Birmingham, UK. pp. 493-503.P63. G.<strong>Kaptay</strong>, K.K.Kelemen: Corrections to the Stokes Equation - Proc. <strong>of</strong> Microcad 2000,Section D: Applied Chemistry, pp. 23-28.P62. A.Borsik, K.K.Kelemen, G.<strong>Kaptay</strong>: Simulation <strong>of</strong> the movement <strong>of</strong> ceramic particles inliquid metals in front <strong>of</strong> solidification fronts – Proc. <strong>of</strong> Microcad, 2000 Section D: AppliedChemistry, pp. 9-14.P61. J.Sytchev, G.<strong>Kaptay</strong>, H.Kushkov: Voltammetric investigation <strong>of</strong> the reduction processes<strong>of</strong> nickel and iron divalent ions in chloro-fluoride melts – Proc. <strong>of</strong> Microcad 2000, Section D:Applied Chemistry, pp. 69-68.P60. R.Roman, G.<strong>Kaptay</strong>, A.Mihalik, H.Verelst, F.Rivet, A.Buekens: Removal <strong>of</strong> HeavyMetals from fly ash with molten chlorides. Part II.: Experimental verification – Proc. <strong>of</strong>Microcad 2000, Section D: Applied Chemistry, pp. 63-68.P59. R.Roman, G.<strong>Kaptay</strong>, A.Mihalik, H.Verelst, F.Rivet, A.Buekens: Removal <strong>of</strong> HeavyMetals from fly ash with molten chlorides. Part I.: Theoretical Analysis andThermogravimetry experiments – Proc. <strong>of</strong> Microcad 2000., Section D: Applied Chemistry,pp. 57-62.P58. G.<strong>Kaptay</strong>, K.K.Kelemen: On the <strong>Dr</strong>ag Force Acting on Ceramic Particles duringProcessing <strong>of</strong> Cast MMCs – in: „State <strong>of</strong> the Art in Cast MMCs”, ed. by P.K.Rohatgi, TMS,2000, pp.45-60.P58-c1. D.M.Stefanescu: Science and Engineering <strong>of</strong> Casting Solidification – Kluwer Academic / PlenumPublishers, NY, 2002, 342 pp. – „The relative viscosity can be calculated with: {equation 4.45}.Numerous expressions were proposed for the correction factor (see review by <strong>Kaptay</strong>, 2000)” – p.57.“Table 4.1. {Equation} (<strong>Kaptay</strong> 2000)” – p.57.P58-c2. D.M.Stefanescu: Science and Engineering <strong>of</strong> Casting Solidification, 2nd edition, Springer, NY, 2009,395 pp. – „The relative viscosity can be calculated with: {equation 4.45}. Numerous expressions wereproposed for the correction factor (see review by <strong>Kaptay</strong>, 2000)” – p.64.P58-c3. W.Sobieski: <strong>Dr</strong>ag coefficient in solid-fluid system modeling with the Eulerian multiphase model –<strong>Dr</strong>ying Technology, 2011, vol.29, pp.111-125 – “According to <strong>Kaptay</strong> and Kelemen [P58], thetheoretically highest possible density <strong>of</strong> a fluid medium is 0.74, but in real environment, this value usuallyapproximates 0.60-0.63. At this level <strong>of</strong> packing, the particles are unable to move, and the drag runsinfinity” – p.122.P57. E.Báder, G.<strong>Kaptay</strong>, L.Zoltai: Wettability studies for the production <strong>of</strong> Cu-Sn/WCcomposites. – Proc. <strong>of</strong> International Scientific Conference ‘Competitive Materials,Technologies and Products’ (CMTP), Miskolc, 2000, pp. 39-45.106


P56. B.Tury, G.<strong>Kaptay</strong>, G.M.Kale: Electrochemical Intercalation <strong>of</strong> Na from Al to LiMn 2 O 4 –Proc. <strong>of</strong> International Scientific Conference ‘Competitive Materials, Technologies andProducts’ (CMTP), Miskolc, 2000., pp. 147-152 (paper to be disregarded due to falsification<strong>of</strong> Fig1. by B.Tury)P55. J.Sytchev, G.<strong>Kaptay</strong>, H.Kushov: Study <strong>of</strong> the electroreduction process <strong>of</strong>tetrafluoroborate ions at different electrodes in chloro-fluoride melts – <strong>Miskolci</strong> <strong>Egyetem</strong>Doktoranduszok Fóruma, Miskolc, 1999. november 4-5. Kohómérnöki Kar szekciókiadványa,Miskolc-<strong>Egyetem</strong>város, 2000., pp.106-112.P54. Román R., <strong>Kaptay</strong> Gy., H.Verelst, F.Rivet, A.Buekens: Szállóhamu nehézfémtartalmánakeltávolítása sóolvadékos kezeléssel - <strong>Miskolci</strong> <strong>Egyetem</strong> Doktoranduszok Fóruma,Miskolc, 1999. /november 4-5. Kohómérnöki Kar szekciókiadványa, Miskolc-<strong>Egyetem</strong>város,2000., pp. 75-81.P53. Báder E., <strong>Kaptay</strong> Gy.: Volfrám karbid nedvesíthetősége Cu-Sn olvadt ötvözetek által –<strong>Miskolci</strong> <strong>Egyetem</strong> Doktoranduszok Fóruma, Miskolc, 1999. november 4-5. Kohómérnöki Karszekciókiadványa, Miskolc-<strong>Egyetem</strong>város, 2000., pp. 7-12.P52. G.<strong>Kaptay</strong>, H.B.Kushkov, A.S.Uzdenova, M.K.Vindizheva: Electrochemical SynthesisDiagrams <strong>of</strong> the La-Gd, Gd-Al, La-B, Gd-B systems – Vestnik KBSU, Seriya chem.nauk,vip.3., Nalchik, 1999, pp.56-60.P51. S.V Devyatkin, G.<strong>Kaptay</strong>, J.C.Poignet, J.Bouteillon: Chemical and electrochemicalbehaviour <strong>of</strong> titanium oxide and complexes in cryolite-alumina melts - in: „Advances inMolten Salts – From Structural Aspects to Waste Processing”, ed. by M.Gaune-Escard, begellhouse inc., New-York, 1999, pp.178-187.P50. B.Tury, J.I.Sytchev and G.<strong>Kaptay</strong>: Morphology <strong>of</strong> titanium diboride obtained byelectrochemical synthesis from molten chloro-fluoride melt - in: „Advances in Molten Salts –From Structural Aspects to Waste Processing”, ed. by M.Gaune-Escard, begell house inc.,New-York, 1999, pp.260-269.P49. G.<strong>Kaptay</strong>: Control <strong>of</strong> Phases to be Synthesised by Electrochemical Synthesis fromMolten Salts: the ternary EES diagram for the Ti-Al-B system – in: „Advances in MoltenSalts – From Structural Aspects to Waste Processing”, ed. by M.Gaune-Escard, begell houseinc., New-York, 1999, pp.249-259.P49-c1. P.Taxil, P.Chamelot, L.Massot, C.Hamel: Electrodeposition <strong>of</strong> alloys or compounds in molten salts andapplications – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.177-200 „<strong>Kaptay</strong> elaborated the EESdiagram <strong>of</strong> the ternary system Ti/Al/B at 1000 K in cryolithe melts containing alumina, and Ti andboron oxides, combining data from the respective binary systems. The goal is to optimize the potential<strong>of</strong> the carbon cathode for the electrochemical synthesis <strong>of</strong> titanium boride, used as a protective layer <strong>of</strong>the carbon as a function <strong>of</strong> the Ti/B system, the diagram delimits the area <strong>of</strong> stability in terms <strong>of</strong>equilibrium potential <strong>of</strong> each binary compound [P49]” – p.184.107


P48. G.Jánosfy, G.<strong>Kaptay</strong>, M.S.Yaghmaee: Computer Aided Determination <strong>of</strong> the PhaseBoundary <strong>of</strong> Liquid Iron and Aluminium Nitride in the Fe-Al-N Ternary System –Proceedings <strong>of</strong> MICROCAD ’99, Section B: Metallurgy, Energetics, 1999, pp.27-32P47. Török B., Tóth L.A., <strong>Kaptay</strong> Gy.: Asszociált elegymodell alkalmazása nagyolvasztóisalakrendszerre – Proceedings <strong>of</strong> MICROCAD ’99, Section B: Metallurgy, Energetics, 1999,pp.75-81.P47-c1. M.Z.Benkő: On the computer s<strong>of</strong>tware for the LD converter process at the Dunaferr Works,Materials’ World (e-journal, http://materialworld.uni-miskolc.hu, July, 2001 – “The heat dueto complex formation was estimated by the associated model for the slag [P47].” – p. 6.P46. R.Gemela, K.Kelemen, G.<strong>Kaptay</strong>: Dynamics <strong>of</strong> vapour-to-liquid transfer <strong>of</strong> SiC particlesinto Fe 40 Ni 40 Si 6 B 14 liquid matrix <strong>of</strong> amorphous metal matrix composites – Proceedings <strong>of</strong>MICROCAD ’99, Section C: Materials Science and Technology, 1999, pp. 187-192P46.-c.1. Boross Péter: Lézeres átolvasztással végzett felületmódosítások, Diplomamunka, BME, Bayati, 2001.,tud.vez.: dr. Verő Balázs és dr. Hárs György. „Ennek [P46] szerint csillapodó oszcilláló megoldásalesz” – p.23.P45. E.Báder, L.Bolyán, G.<strong>Kaptay</strong>, G.Zs.Hutkai: Measuring and Modelling <strong>of</strong> AdhesionEnergy between non-reactive Liquid Metals and Oxide Ceramics – Proceedings <strong>of</strong>MICROCAD ’99, Section C: Materials Science and Technology, 1999, pp. 175-179P44. G.<strong>Kaptay</strong>: Interfacial Theory <strong>of</strong> Producing Particle Stabilised Metallic Foams –Proceedings <strong>of</strong> MICROCAD ’99, Section C: Materials Science and Technology, 1999, pp.79-84P43. M.S.Yaghmaee, G.<strong>Kaptay</strong>: Calculation <strong>of</strong> Tie-Lines between Solid and Liquid Phasesmainly in Al-rich corner <strong>of</strong> the Ternary Al-Mg-Zn System Based on ThermodynamicProperties <strong>of</strong> Phases in Equilibrium – Proceedings <strong>of</strong> MICROCAD ’99, Section C: MaterialsScience and Technology, 1999, pp. 165-168P42. B.Tury, G.<strong>Kaptay</strong>, J.Sychev: The Calculation <strong>of</strong> Equilibrium Electrochemical SynthesisDiagrams for Ni-Ti-B system – Proceedings <strong>of</strong> MICROCAD ’99, Section C: MaterialsScience and Technology, 1999, pp. 159-164P41. G.<strong>Kaptay</strong>: Interfacial Criteria for ceramic particle stabilised metallic foams – in: MetalFoams and Porous Metal Structures, ed. by J.Banhart, M.F.Ashby, N.A.Fleck, MIT Verlag,Bremen, 1999, pp. 141-145.P41.-c.1. J.Banhart: Manufacturing Routes for Metallic Foams – JOM December 2000, pp. 22-27. “..This castsdoubts on the hypothesis that solid particles floating on the walls <strong>of</strong> films are responsible for theirstabilization in analogy to the action <strong>of</strong> surfactants in aqueous foams [P41].” – p.26, “ Metallic foams,therefore, appear to be stabilized by solid particles. The action <strong>of</strong> foam stabilization is not entirely clearyet, but some current ideas on metal foams have been published [P41]” – p.26., “ The wetting angle hasto in a certain range to ensure that the bubble/particle interfaces are stable when the bubbles risesthrough the melt (i.e., the particles are not stripped <strong>of</strong>f the bubbles), and that the particles on theinterface lower the total interface energy <strong>of</strong> a pair <strong>of</strong> bubbles with particles in between (i.e. stabilizebubble / particle / bubble interfaces). There is nostabilization effect for insufficient wetting (highcontact angle) as well as for overwetting (low contact angle). In principle, from the known wettingangles <strong>of</strong> ceramic particles with given melt, particles can be selected that have an optimum stabilizationeffect [P41]” – p.27.P41-c2. J.Banhart: Metallic foams: Challenges and opportunities – in:”Foams, Emulsions and Applications”, Eds.P.Zitha, J.Banhart, G.Verbist, Verlag MIT Publishing, Bremen, 2000, pp.13-20. – „The action <strong>of</strong>foam stabilisation is not entirely clear yet. An outline <strong>of</strong> the current ideas shall be given here using108


some <strong>of</strong> the sparse information on metal foams available in the literature [P41]” – p.18., „It has beenderived that the wetting angle has to be in a certain range to ensure that i. the bubble/particle interfacesare stable when the bubbles rise through the melt, i.e. the particles are not stripped <strong>of</strong> the bubbles, ii.that the particles on the interface lower the total energy <strong>of</strong> a pair <strong>of</strong> bubbles with particles in between,i.e. stabilise buble/particle/bubble interfcaes. For insufficient wetting (high contact angle) as well as fortoo good wetting (low contact angle) there is no stabilisation effect. In principle, from the knownwetting angle <strong>of</strong> ceramic particles with a given melt particles can be selected which have an optimumstabilisation effect [P41]” – p.19.P41-c3. E.Báder: Wettability <strong>of</strong> Alumina by Liquid Magnesium and Liquid AZ91 Alloy, Materials’ World (ejournal,http://materialworld.uni-miskolc.hu, July, 2001 – “The wettability <strong>of</strong> alumina by magnesium isa very important factor in producing metal matrix composites [ .. .] or metallic foams [P41] consisting<strong>of</strong> these two phases” – p.1P41-c4. J.Banhart: Manufacture, characterisation and application <strong>of</strong> cellular metals and metal foams – Progressin Materials Science, 2001, vol.46, pp.559-632 – „The particles help to stabilize the foam bymechanisms which are discussed in the literature [P41]. It is widely accepted that the accumulation <strong>of</strong>the particles on the cell walls plays a key role in this stabilistaion process. Firstly, the particles increasethe surface viscosity, thus retarding drainage in films [..]. Secondly, the particles are partially wetted bythe melt. It has been derived [P41] that the wetting angle has to be in a certain range to ensure that: thebubble/particle interface is stable when the bubble rises through the melt, i.e. the particles are notstripped <strong>of</strong>f the bubbles, that the particles on the interface lower the total energy <strong>of</strong> a pair <strong>of</strong> bubbleswith particles in between, i.e. stabilise bubble/particle/bubble interfaces. For insufficient wetting (highcontact angle) as well as for too good wetting (too low contact angle) there is no stabilisation effect. Inprinciple, from the known wetting angles <strong>of</strong> ceramic particles with a given melt particles can beselected which have an optimum stabilisation effect [P41].” – pp. 565-566.P41-c5. C.Körner, R.F.Singer: Foaming Process for Al – in: “Handbook <strong>of</strong> Cellular Metals, Production,Processing, Applications”, ed. by H-P.Degischer, B.Kriszt, Wiley-VCH, 2002, pp.8-14 – “Theoreticalwork <strong>of</strong> <strong>Kaptay</strong> [P41] and experimental work <strong>of</strong> Weigand [ ] indicate that a reduction <strong>of</strong>particle sizewill not lead to a higher stabilization and therefore to a smaller critical cell wall thickness” – p.13(Sajnálattal meg kell jegyeznem, hogy Körner és mtsai félreértelmezték az elméletemet…”)P41-c6. C.Körner, M.Arnold, M.Thies, R.F.Singer: The Physics <strong>of</strong> foaming: structure formation and stability -in: “Handbook <strong>of</strong> Cellular Metals, Production, Processing, Applications”, ed. by H-P.Degischer,B.Kriszt, Wiley-VCH, 2002, pp.32-43 – “Additives in the fluid like SiC or Al 2 O 3 particles influence themovement <strong>of</strong> the bubbles and are able to stabilize them [P41]. They have an effect on both theviscosity <strong>of</strong> the melt and the surface tension.” – p.35.P41-c7. Y.Q.Sun, T.Gao: The optimum wetting angle for the stabilization <strong>of</strong> liquid metal foams by ceramicparticles: experimental simulations – Metall. Mater. Trans. A., 2002, vol.33A., pp.3285-3292. –„Another explanation ascribes the improved foam stability to the appropriate wetting behaviour <strong>of</strong> theceramic particles in the liquid metal [P41]. Theoretical analysis incorporating several mechanismspredicted an ambigous wetting-angle range <strong>of</strong> 20 to 90 deg for foaming Al [P41].” – pp.3285-3286,„..The maximum foaming height occurs in a narrow wetting angular range <strong>of</strong> 75 to 85 deg. …. We notethat stable foam exist at wetting angles considerably greater than 90 deg. This is contrary to thetheoretical analysis <strong>of</strong> <strong>Kaptay</strong> [P41], who predicted no foam stability outside the 20 to 90 deg wettingangle range” – p.3288, „<strong>Kaptay</strong> [P41] proposed that, to stabilzie the foam, the solid particles mustremain attached to the liquid surface against buoyancy. From this a necessary wetting-angle range <strong>of</strong> 20to 90 deg is suggested; this is clearly at variance with the present simulation results, which have shownstable foams at much larger wetting angles” – p.3290P41-c8. Gao T, Sun YQ: Role <strong>of</strong> wetting behavior in the stabilization <strong>of</strong> liquid metal foams by ceramic particles:An experimental simulation study - PROCESSSING AND PROPERTIES OF LIGHTWEIGHTCELLULAR METALS AND STRUCTURES, 2002, pp.115-123.P41-c9. N.Babcsán, D.Leitlmeier, H.P.Degischer: Foamibility <strong>of</strong> Particle Reinforced Aluminum Melt – Mat.-wiss. u. Werkst<strong>of</strong>ftech., 2003, vol.34, pp.1-8 – „<strong>Kaptay</strong> pointed out that wetting angle has to be in acertain range and particles stabilize the gas/liquid-bubble interface. In the framework <strong>of</strong> a model,assuming single layer <strong>of</strong> particles between in the cell wall it was shown that the foam is stabilized onlyin the interval <strong>of</strong>’ the contact angles 10 – 90 degrees [P41]. However, when a presence <strong>of</strong> a double, or a’double+’ layer <strong>of</strong> particles is assumed to be in the cell wall, this interval increases to 10-129 degrees,or 10 – 170 degrees, accordingly”P41-c10. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 – “In themiddle <strong>of</strong> 90-s – thanks to H.P.Degischer, J.Banhart and G.<strong>Kaptay</strong> – science found a partnership withthis challenging material {metallic foam} and some basic questions like stability <strong>of</strong> <strong>of</strong> metal foams {hasbeen} clarified”. – p.12,“<strong>Kaptay</strong> pointed out that wetting angle has to be in a certain range and particles109


stabilize the gas bubble/liquid interface. In the framework <strong>of</strong> a model, assuming single layer <strong>of</strong> particlesin the cell wall it was shown that the foam is stabilized only in the interval <strong>of</strong> the contact angles 10-90degrees [P41]” – p.34.P41-c11. Th.Wuebben, H.Stanzick, J.Banhart. S.Odenbach: Stability <strong>of</strong> metallic foams studied undermicrogravity – J.Phys. C: Solid State Phys., 2003, vol.15, pp.S427-S433 – „We suggest that, possibly inaddition to the viscosity effect, postulated previously, the main function <strong>of</strong> stabilizing particles is toprevent coalescence. Presumably the oxide filaments float to the surface <strong>of</strong> the liquid metal films andcreate layers at the liquid/gas interface (Fig. 4). Figure 4. Non-metallic particles forming a layer at theliquid-gas interface in a metallic foam (after [P41]).” – p. 432P41-c12. T.Wübben: Zur Stabilitat flüssiger Metallschaume – Universitat Bremen, Germany, 2003, 128 pp. – „Indiesem Zusammenhang wird das schon erwahnte Stabilisierungsmodell von G.<strong>Kaptay</strong> ausführlicherlautert und kritisch diskutiert” – p.2, „Nach einer kurzen Beschreibung der gegenwartigen Diskussionüber die Wirkungsweise von Partikeln in Metallschaumen wird schlieslich ein von <strong>Kaptay</strong> entwickeltesModell [P41]. Die im Rahmen dieser Arbeit gefundenen experimentellen Resultate haben deutlicheIndizien für die prinzipielle Gültigkeit dieses Modells erbracht” – p.25, „In diesem Kontext hat <strong>Kaptay</strong>[P41] ein mechanistisches Modell entwickelt, das sowohl den Einflus der Partikelkonzentration als auchdes Kontaktwinkels auf die Stabilitat von Metallshaumen beschreibt. Diese Arbeit beschaftigt sich ingroSen Teilen mit der Untersuchung der Gültigkeit deises Modells. Es soll daher folgenden im Detailerlautert werden” – p.30. „Mit Ausnahme von <strong>Kaptay</strong> in [P41] geben jedoch alle Autoren nurphanomenologische Erklarungen. Die in [P41] erstmals angedeutete Hypothese wurde unterBerücksichtigung der im Rahmen dieser Arbeit gewonnenen experimentellen Ergebnisseweiterenwickelt, so daS es quantitative Aussagen über die Wirksamkeit von Partikeln inMetallschaumen möglich mach” – p.31. „Das von <strong>Kaptay</strong> entworfene Modell versucht eine Erklarungfür die beobachtete stabilisierende Wirkung von Partikeln auf flüssige metallische Schaume zu geben.”– p.37.P41-c13. S.V.Gnyloskurenko, T.Nakamura: Wettability effect on bubble formation at nozzles in liquidaluminum – Mater. Trans., 2003, vol.44, pp.2298-2302 – „the contact angle for SiO 2 in liquid Al.<strong>Kaptay</strong> [P41] indicated = 50 – 60 o .” – p.2299P41-c14. A.Haibel, J.Banhart: Metallschaumcharakterisierung mittels Synchrotron-Tomografie – DACHJahrestagung, 2004, Salzburg, 7 pp (Ref. No. 5). – “Dadurch nimmt die <strong>Dr</strong>ainage ab und dieOberflachenspannung im Schaum reduziert, was zu einer Verringerung des Porenplatzens führt [P41]”– p.1P41-c15. E.Baumeister: Hohlkugelkomposit – Charakterizung thermischer und mechanischer Eigenschafteneines neuen Leichtbauwerkst<strong>of</strong>fes – Dissertation, 2004, Magdeburg (Ref. 79). – „Probleme bereiten diegeringe Duktilitat und die schlechte Bearbeitbarkeit der geschaumten MMC-Werkst<strong>of</strong>fe [P41]” – p.11.P41-c16. Alex Buetow: Diploma Arbeiten, TU Berlin, 2004 (Ref.No.9). – „Dieses Verfahren wurde gleichzetigund unabhangig von den Firmen Alcan und Norsk Hydro entwickelt [P41]” – p.6.P41-c17. S.V.Gnyloskurenko, A.Byakova, T.Nakamura, O.Raychenko: Influence <strong>of</strong> wettability on bubbleformation in liquid – J.Mater.Sci., 2005, vol.40, pp.2437-2441 – „the contact angle for SiO 2 in liquidAl.. <strong>Kaptay</strong> [P41] indicated = 50 – 60 o .” – p.2438P41-c18. Th.Wübben, S.Odenbach: Stabilisation <strong>of</strong> liquid metallic foams by solid particles – Colloids SurfacesA., 2005, vol.266, pp.207-213 – “Another, thermophysical, stabilizing mechanism was suggested by<strong>Kaptay</strong> [P41], relying on the adhesion properties <strong>of</strong> solid particles and liquid metals” – p.207.P41-c19. A.J.Klinter, G. Mendoza-Suarez, R.A.L.<strong>Dr</strong>ew: Wetting <strong>of</strong> pure aluminum and selected alloys onpolycrystalline alumina and sapphire – Mater Sci Eng A, 2008, vol.495, pp.147-152. – “Recently, it hasbeen found that the wetting behavior in metal-ceramic systems seems to play an important role in theproduction <strong>of</strong> aluminum foams [P41].” – p.147. “In theoretical models <strong>of</strong> <strong>Kaptay</strong> [P41], the stabiklizingeffect <strong>of</strong> these particles on the liquid aluminum foam is credited to capillary effects between the meltand the particles, preventing the two liquid gas interfaces <strong>of</strong> a foam cell wall from touching and the twoadjacent cells from coalescence” – p.148.110


P41-c20. A.J.Klinter, R.A.L.<strong>Dr</strong>ew: Evaluation <strong>of</strong> the wetting behaviour <strong>of</strong> Al-7Cu and Al-11.5Si on SiC andsapphire in terms <strong>of</strong> Al-foam stability. In: METFOAM-2007, ed. by L.P.Lefebre, J.Banhart,D.C.Dunand, DEStech Publ. Inc, 2008, pp.23-26. – „During the early stages <strong>of</strong> Al-foam rersearch, itwas found that alumina or SiC particles are essential in order to obtain stable aluminium foams.Originally it was believed that the stabilizing effect <strong>of</strong> these ceramic particles have on Al-foams wascaused by an increase in bulk viscosity <strong>of</strong> the Al melt due to ceramic particles additions. In a verytheoreticla approach, KAPTAY [P41] later developed models suggesting that the improved foamstability was due to capillary effects between the melt and the particles, preventing the two liquid gasinterfaces <strong>of</strong> a foam cell wall from touching, and the two adjacent cells from coalescencing.” – p.23.P41-c21. P.Fernandez, LJ Cruz, Coleto J: Manufacturing processes <strong>of</strong> cellular metals. Part I. Liquid routeprocesses – Rev Metall, 2008, vol.44, pp.540-555.P41-c22. D.P.He, et al: www.scichina.com, 2009, vol.39, No.2, pp.97-105 in Chinese.P41-c23. A.V.Biakova, V.P.Krasovskii, A.O.Dudnik, S.V.Gniloskurenko, A.I.Sirko: O roli smachivaemosti Iraspredeleniia tviordich chastic v stabilizacii vspenennich aliuminievich rasplavov – Adgeziia rasplavovI paika materialov, 2009, vip.42, pp.5-22. – „Provedionnimi k nastoiashemu vremeni issledovaniiamuiubeditelno pokazano, shto vspenivanie metallicheskich rasplavov okazivaietsia nevozmozhnim priotsutstvii v nich tviordich vkliuchenii [P41].P41-c24. A.J.Klinter, C.A.Leon, R.A.L.<strong>Dr</strong>ew: The optimum contact angle range for metal foam stabilization: anexperimental comparison with the theory – J. Mater Sci., 2010, vol.45, pp.2174-2180 – „Based on theexperimental simulation <strong>of</strong> Sun et al., as well as a theory by <strong>Kaptay</strong> [P41], it is belived that thealuminium alloy melt needs to wet the added ceramic particles in a certain contact angle range” –p.2174.P41-c25. A.J.Klinter, C.A.Leon-Patino, R.A.L.<strong>Dr</strong>ew: Wetting phenomena <strong>of</strong> Al-Cu alloys on sapphire below800 C – Acta Mater, 2010, vol.58, pp.1350-1360 – „As the wetting behaviour <strong>of</strong> liquid metals onceramics strongly influences various processes like .. the quality <strong>of</strong> metal foams [P41]” – p.1350.P41-c26. S.Beke: Metal foaming controlled by ultrasonic waves – PhD Thesis, TU Wien, 2011, supervisors: HPDegischer and N.Babcsan. – „For liquid metal foams particles seem to be the only way <strong>of</strong> foamstabilization [P41]” – p.13.P41-c27. R. Montanari: Studio dei principali parametri di schiumatura per schiume di alluminio e supporto allaprogettazione di un impianto pilota di schiumatura, Report RdS/2011/201, Agenzia Nazionale per leNuove Tecnologie, l’Energia e lo Sviluppo Economico Sostenibile, Roma, Septembre, 2011. 94 pp. –„<strong>Kaptay</strong> [P41] ha sviluppato il seguente criterio per la selezione delle particelle ceramiche con cuistabilizzare schiume di Al con celle di dimensione predefinita (raggio R) separate da pareti di spessorepredefinito t: ….Eq.1….” – p.63.P40. G.<strong>Kaptay</strong>, S.V.Devyatkin: Titanium Diboride Coating Preparation in situ in the Cell byElectrochemical Synthesis – Proc. <strong>of</strong> 10 th Slovakian-Norvegian Symposium on AluminiumSmelting Technology, Stara Lesna – Ziar nad Hronom, Slovakia, 21-23 September, 1999, pp.80-84.P40-c1. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on a carboncathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372. „Since1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis <strong>of</strong>borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set a goal<strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts. Theirattempts to create wettable coatings on carbon and metallic cathodes ended at the laboratory level[P40]” – p. 1367.P39. <strong>Kaptay</strong> G., Benkő Z.M., Tóth L.: The New Educational Structure <strong>of</strong> the Branch <strong>of</strong>Metallurgical Engineering at the University <strong>of</strong> Miskolc - Int. Conf. on Engineering Education1999 (ICEE 99), August 10 - 14, 1999, Ostrava - Prague, Czech Republic. Proceedings issuedon CD-ROM (ISSN 1562-3580), paper No. 157.111


P38. Báder E., <strong>Kaptay</strong> Gy.: Acél folyamatos öntésekor fellépő határfelületi energiákvizsgálata. <strong>Miskolci</strong> <strong>Egyetem</strong> Doktoranduszok Fóruma, Kohómérnöki kar szekció kiadványa,Miskolc, 1999, 1-6.P37. S.V.Devyatkin, G.<strong>Kaptay</strong>, V.I.Shapoval, I.V.Zarutskii, V.P.Lugovoi, S.A.Kuznetsov:Deposition <strong>of</strong> Titanium, Zirconium and Hafnium Diboride Coatings by High-TemperatureElectrochemical Synthesis from Chloro-Fluoride Melts - in Refractory Metals in Molten Salts,ed. by D.H.Kerridge and E.G.Polyakov, Kluwer Academic Publishers, Netherlands, 1998, pp.73-80.P37-c1. V.V.Malyshev: High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> IV-VI metalsin ionic melts – Russian J Inorg Chem, 2003, vol.48, pp.142-148 – „.. The electrolysis conditions forthe deposition <strong>of</strong> Group IVA metal diborides from chloro-fluoride melts are listed in [P37]” – p.144.P37-c2. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallopodobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “Usloviia osozhdeniia diboridov metallov IVA gruppi iz hloridno-ftoridnich rasplavov obobsheni v[P37]” – p.189.P37-c3. V.V.Malyshev: Zashitnie pokritiia tugoplavkimi soedineniiami metallov IV-VIA grupp, nanosimie izionnich rasplavov (obzor) – Zashita metallov, 2004, vol.40, pp.584-600 - „opisanie rezultatov [P37] v38 strokach (az eredmények ismertetése 38 sorban, állásfoglalás nélkül)” – p.595P37-c4. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) – „see Table 1” – p.1141, „COnditions for deposition <strong>of</strong> GroupIVA metal diborides from chloro-fluoride melts are summarized in [P37].” – p.1141.P37-c5. V.V.Malyshev: Electrochemical Sysnthesis <strong>of</strong> Protective Coatings <strong>of</strong> Refractory Compounds <strong>of</strong> GroupIva-Via Metals from Ionic Melts – Russian Journal <strong>of</strong> Non-Ferrous Metals, 2007, vol.48, pp.177-183(Izv. Vuzov Cvetnaya Metallurgiya, 2007, No.3, pp.20-27) – “The authors <strong>of</strong> [P37] refined theconditions <strong>of</strong> electrodeposition <strong>of</strong> titanium, zirconium and hafnium diborides from chloro-fluoride KCl- NaCl (1:1) - NaF - KBF 4 - K 2 MF 6 (M = Ti, Zr, Hf) melts”. – p.178. Table 1 – a line is taken from[P37]” – p.178.P37-c6. A.I.Hab: Hig-tempearture electrochemcial synthesis <strong>of</strong> coatings <strong>of</strong> carbides, borides and silicides <strong>of</strong>metals <strong>of</strong> the IV-VI B groups from ionic melts (review) – Materials Science, 2007, vol.43, pp.383-397(Fiziko-Himichna Mechanika Materialov, 2007, vol.43, No.3, pp.76-88) – „As noted in [P37], chloridefluoridemelts are more promising as compared with fluoride and ox<strong>of</strong>luoride melts: the former are lesscorrosive, the separation <strong>of</strong> products from the electrolyte is simpler, and the current yield is higher. Inthis work, …. 11 lines <strong>of</strong> description <strong>of</strong> the results” – p.393.P37-c7. U.Fastner, T.Steck, A.Pascual, G.Fafilek, GE Nauer: Electrochemical deposition <strong>of</strong> TiB 2 in hightemperature molten salts – J Alloys Comp., 2008, vol.452, pp.32-35 – „Among all the electrolytesreported int he literature [P37] our work was focused on….. “ – p.32. “The mechanism <strong>of</strong> TiB 2 cathodicdeposition used in the calculations was proposed by Devyatkin and <strong>Kaptay</strong> [P37] as follows: 6 lines + 2equations follow” – p.33.P37-c8. W. Friedh<strong>of</strong>f, E. Milke, M. Binnewies: The Unexpected Formation <strong>of</strong> MB2 Layers (M = RefractoryMetal) on Metal Surfaces - Eur. J. Inorg. Chem., 2011, vol.2011, pp.3398-3402. – „Somewhat thickerlayers can be formed by sputtering (500 nm) and electrodeposition [P37]” – p.3398.P36. Bolyán L., <strong>Kaptay</strong> Gy.: Nedvesítési viszonyok meghatározása fémolvadék/kerámiarendszerekben a kompozitanyaggyártás optimalizálása céljából - <strong>Miskolci</strong> <strong>Egyetem</strong>Doktoranduszi Fórum (1997. nov.16). Kohómérnöki Kar szekciókiadványa, 1998. Miskolc,18 - 26 o.P35. Jánosfy Gy., <strong>Kaptay</strong> Gy.: Fémesalumínium-tartalom meghatározása aktívoxigén-mérőszondával a végtermék fémesalumínium-tartalmának beszabályozásához - XIII. OrszágosNyersvas- és Acélgyártó konferencia kiadványa, II. kötet, 235-243 o., Dunaferr, 1998.112


P34. R.Román, E.Báder, G.<strong>Kaptay</strong>: Penetration <strong>of</strong> Molten Calcium Chloride and MagnesiumChloride into Porous Oxide Ceramics and Pressed Fly-Ash Substrates - Proc. <strong>of</strong> MICROCAD‘98 Int. Computer Science Conference, Section C: Materials Science and Technologies,<strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 115-116P33. P.Barkóczy, G.<strong>Kaptay</strong>: On the Interfacial Force Acting during Liquid Phase Sintering -Proc. <strong>of</strong> MICROCAD ‘98 Int. Computer Science Conference, Section C: Materials Scienceand Technologies, <strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 113-114P32. M.S.Yaghmaee, G.<strong>Kaptay</strong>: Calculation <strong>of</strong> Mg-Cu Equilibrium Binary Phase Diagram -Proc. <strong>of</strong> MICROCAD ‘98 Int. Computer Science Conference, Section C: Materials Scienceand Technologies, <strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 111-112P31. G.<strong>Kaptay</strong>: Calculation <strong>of</strong> Equilibrium Electrochemical Synthesis Diagram fopr the Ti +4 -B +3 System on the Reactive Carbon Cathode - Proc. <strong>of</strong> MICROCAD ‘98 Int. ComputerScience Conference, Section C: Materials Science and Technologies, <strong>Miskolci</strong> <strong>Egyetem</strong>,1998, pp. 109-110P30. K.Kelemen, R.Gemela, G.<strong>Kaptay</strong>: Dinamic Study <strong>of</strong> Incorporation <strong>of</strong> MicroscopicParticles into Liquid Metals - Proc. <strong>of</strong> MICROCAD ‘98 Int. Computer Science Conference,Section C: Materials Science and Technologies, <strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 107-108P29. L.Bolyán, E.Báder, G.<strong>Kaptay</strong>: Wettability <strong>of</strong> Aluminium Oxide and Silicon OxideCeramics by Liquid Metals - Proc. <strong>of</strong> MICROCAD ‘98 Int. Computer Science Conference,Section C: Materials Science and Technologies, <strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 105-106P28. G.<strong>Kaptay</strong>: Activity <strong>of</strong> the Working Group on Liquid Metals and Molten Salts (LIMOSGroup) at the Interface <strong>of</strong> Materials and Computer Sciences in 1997 - Proc. <strong>of</strong> MICROCAD‘98 Int. Computer Science Conference, Section C: Materials Science and Technologies,<strong>Miskolci</strong> <strong>Egyetem</strong>, 1998, pp. 101-104P27. G.<strong>Kaptay</strong>: Interfacial Criteria for Producing Ceramic Reinforced Metal-MatrixComposites - Proc. <strong>of</strong> the 2 nd Int. Conf. High Temperature Capillarity HTC 97 held inCracow, 29 June - 2 July 1997, ed. by N.Eustathopoulos and N.Sobczak, published in 1998 byFoundry Research Institute, Cracow, Poland. pp. 388-393P27-c1. E.Báder: Wettability <strong>of</strong> Alumina by Liquid Magnesium and Liquid AZ91 Alloy, Materials’ World (ejournal,http://materialworld.uni-miskolc.hu, July, 2001 – “The wettability <strong>of</strong> alumina by magnesium isa very important factor in producing metal matrix composites [P27] or metallic foams […] consisting <strong>of</strong>these two phases” – p.1 --P27-c2. Gao Y.G., Yao X.R., Liu Z.J., Li F.Z., Ren S.Z.: Development and application <strong>of</strong> ferrous matrixcomposites in foreign countries – Journal <strong>of</strong> Hefei University <strong>of</strong> Technology (Natural Science), 2006,vol.29, No.4, pp.431-436 (ref. No. 33).P27-c3. C.Borgonovo: Aluminum Nano-composites for elevated temperature applications – MSc Thesis atWorcester Polytechnic Institute, UK, June 2010 (advisors: D.Apelian, R.D.Sisson). „When injected inthe spray stram, the secondary phase tends to surround the strwam boundaries, causing inhomogeneousdispersion int he final piece [P27]” – p.23.P27-c4. WJ Shaw: Medical devices, US Patent No: US 7,854,756 B2, Dec,21, 2010.P27-c5. C.Borgonovo, D.Apelian: Manufacture <strong>of</strong> aluminum nanocomposites: a critical review – Mater SciForum, 2011, vol.678, pp.1-22 – „<strong>Kaptay</strong> [P27] noted that when the partially infiltrated liquid metalreaches the equilibrium depth (the depth at which interfacial forces are zero), further infiltration willoccur by additional pressure. The threshold pressure is given by: …. Eq.(6).” – p.14.113


P26. Maziar S. Yaghmaee és <strong>Kaptay</strong> György: Ón-ólom egyensúlyi fázisdiagram számításatermodinamikai alapadatokból - Termodinamikai Közlemények 1996. Szerkesztette LámerGéza, ELFT, Budapest, 1997, 100-112.P25. <strong>Kaptay</strong> Gy.: A Young egyenlet levezetése vektorok nélkül, azaz energiajellegűmennyiségekként értelmezve a határfelületi energiákat - Termodinamikai Közlemények 1996.Szerkesztette Lámer Géza, ELFT, Budapest, 1997, 90-99.P24. Buzinkay Emil, <strong>Kaptay</strong> György: Anyagtudományi célú kémiai termodinamikai adatbankfejlesztése. Első szint: szervetlen anyagok standard termodinamikai függvényei -Termodinamikai Közlemények 1996. Szerkesztette Lámer Géza, ELFT, Budapest, 1997, 86-89.P23. Bolyán László, <strong>Kaptay</strong> Gy.: Tiszta fémolvadékok határfelületi jellemzői -Termodinamikai Közlemények 1996. Szerkesztette Lámer Géza, ELFT, Budapest, 1997, 73-85.P22. Maziar Sahba Yaghmaee, G. <strong>Kaptay</strong>: Calculation <strong>of</strong> binary phase diagrams based onthermodynamic description <strong>of</strong> phases being in equilibrium - XX. Kémiai Előadói Napok,Program és előadásvázlatok, Szeged, 1997, pp. 72- 77P21. G.<strong>Kaptay</strong>: On the Interfacial Force between Ceramic Particles and Moving Solid-LiquidInterface during Solidification <strong>of</strong> Metal Matrix Composites - Proc. <strong>of</strong> the EUROMAT 97Conference held in Maastricht, Holland, 21-23 April 1997, published in volume 1. "Metalsand Composites", pp. 435-438.P21-c1. J.Braszczinski, M.Cisowska: Proba oceny krzepniecia kompozytow hybrydovych AlMg/SiC+Gr –Krzepniecie Metali i Stopow, 1999, Nr. 40, pp. 75-87 – „Z dotychczasowych badan wynika ponadto, zenie sa sluszne rozwazania G.<strong>Kaptay</strong>’s [P21[ w zakresie wplywu frontu krystalizacji na rozklad czastekw osnowie,gdyz roznica grafitu i weglika krzemu nie odegrala widocznej roli w ich rozkladzie wosnowie” – pp.85-86.P21-c2. J.Braszczynski, A.Zyska: Analysis <strong>of</strong> the influence <strong>of</strong> ceramic particles on the solidification process <strong>of</strong>metal matrix composites – Materials Science and Engineering A278 (2000) 195-203 – “… It resultsfrom this equation that the rate <strong>of</strong> the nuclei growth depends on the crystallization kinetics and thenucleation rate, so it is also dependent on the number <strong>of</strong> particles and their size. It is in good accordancewith the previous theoretical analyses concerning the behaviour <strong>of</strong> the particles at the solidificationfront and the restriction <strong>of</strong> the crystallization growth caused by the presence <strong>of</strong> the particles [P21] “–p.202P21-c3. Á.Borsik: Dynamic Simulation <strong>of</strong> the Movement <strong>of</strong> Ceramic Particles in front <strong>of</strong> an ApproachingSolidification Front, Materials’ World (e-journal, http://materialworld.uni-miskolc.hu, July, 2001 – “the interfacial force [P21] appears due to the interaction <strong>of</strong> surface atoms/ions/molecules <strong>of</strong> the ceramicparticle and the solid metal through the thin film <strong>of</strong> the liquid metal” - p.2. –P21-c4. J.T.Blucher, J.Dobranszky, U.Narusawa: Aluminium double composite structures reinforced withcomposite wires – Mater. Sci. Eng., 2004, vol.A387-389, pp.867-872 – „..successful infiltration <strong>of</strong>carbon fibers without special surface treatments was sporadic. … Al 2 O 3 , SiO, TiN. TiB as well as Cu anNi coatings all show promising results [P21]” – p.868.P20. L.Bolyán, G.<strong>Kaptay</strong>, S.V.Devyatkin: Wettability <strong>of</strong> Graphite by Cryolite Melt withDifferent Oxide Additions - Proc. <strong>of</strong> 8 th Int. Congress <strong>of</strong> ICSOBA, Milan, Italy, 16-18 1997,published in TRAVAUX, vol. 24., 1997 (No 28) pp. 510-519P19. G.<strong>Kaptay</strong>, S.V.Devyatkin: On Possibility <strong>of</strong> Preparation <strong>of</strong> Titanium Diboride CathodeCoating in situ in the Aluminum Electrolysis Cell by Electrochemical Synthesis - Proc.<strong>of</strong> 8 th Int. Congress <strong>of</strong> ICSOBA, Milan, Italy, 16-18 1997, published in TRAVAUX(ICSOBA), vol. 24., 1997 (No 28) pp. 135-144114


P19-c1. R.P.Pawlek: Aluminium Wettable Cathodes: An Update – in: Light Metals 2000, Ed. by R.D.Peterson,TMS 2000, pp. 449-454 – „High temperature electrochemical synthesis <strong>of</strong> TiB 2 from cryolite aluminamelts containing oxides <strong>of</strong> boron and titanium was tried by Deviatkin [ ] and <strong>Kaptay</strong> [P19]… „ + 14lines describing our results – pp. 449-450 –P19-c2. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001. – „<strong>Kaptay</strong> i Devyatkin ispolzovalivisokotemperaturnii elektrochimicheskii sintez TiB 2 kriolito-glinoziomnich rasplavov [P19]. DOnachala ispitanii po osazhdeniu TiB 2 na grafitovich, molibdenovich i niobievich katodach, bili izuchenitermodinamicheskie svoistva TiB 2 v kriolito-glinoziomnich rasplavach, soderzhashich oksidi titana ibora. V sluchae ispolzovaniia ugolnich katodov adgeziia uluchalas sza chot obrazovaniia tonkogo sloiaTiC meczhdu uglerodom i diboridom titana” – c.16.P19-c3. Gorlanov ES, Nikiforov SA, Alternative technology to produce a wettable cathode surface layer in Alcells – Proc <strong>of</strong> the 12 th Int. Conf. “Aluminum <strong>of</strong> Siberia” (in Russian), Krasnoyarsk, 2006, pp.91-95. –„Naibolee perspektivnii, s popitkoi adaptacii k usloviiam elektroliza v krilito-glinoziomnich rasplavachpredstavlen v rabotach [P19]” – p.92.P19-c4. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on a carboncathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372. „Since1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis <strong>of</strong>borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set a goal<strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts. Theirattempts to create wettable coatings on carbon and metallic cathodes ended at the laboratory level[P19]” – p. 1367.P18. Gy. Jánosfy, Gy. <strong>Kaptay</strong>.: Theoretical Method to Determine the Deoxidation Constant <strong>of</strong>Al for Fe-Al-O System - in: Proceedings <strong>of</strong> microCAD '97 International Computer ScienceConference, Section B: Metallurgy, 1997. pp. 107-110.P17. Bolyán L., Buzinkay E., <strong>Kaptay</strong> Gy.: Fémolvadék/kerámia rendszerek határfelületijellemzői sz<strong>of</strong>tver és adatbank ismertetése - in: Proceedings <strong>of</strong> microCAD '97 InternationalComputer Science Conference, Section C: Materials Science, Miskolc, 1997. pp. 117-118.P16. M.S.Yaghmaee, <strong>Kaptay</strong> Gy.: Calculation <strong>of</strong> Binary Eutectic Phase Diagrams on theExample <strong>of</strong> the Pb-Sn system - in: Proceedings <strong>of</strong> microCAD '97 International ComputerScience Conference, Section C: Materials Science, Miskolc, 1997. pp. 97-98.P15. Buzinkay E., <strong>Kaptay</strong> Gy: Kémiai reakciók számítására alkalmas sz<strong>of</strong>tver és adatbank -in: Proceedings <strong>of</strong> microCAD '97 International Computer Science Conference, Section C:Materials Science, Miskolc, 1997. pp. 95-96.P14. <strong>Kaptay</strong> Gy.: Az Olvadék Munkacsoport tevékenysége az Anyagtudomány és aSzámítástechnika határterületén (avagy előszó három poszter bemutatónkhoz) - in:Proceedings <strong>of</strong> microCAD '97 International Computer Science Conference, Section C:Materials Science, Miskolc, 1997. pp. 39-42.P13. S.V.Deviatkin, K.I.Arsenin, G.<strong>Kaptay</strong>: High Temperature Interaction <strong>of</strong> Boron Oxidewith Aluminum Fluoride - in Proc <strong>of</strong> the 10 th International Symposium on Molten Salts,edited by R.T.Carlin, S.Deki, M.Matsunaga, D.S.Newman, J.R.Selman, G.R.Stafford,Electrochemical Society Proceedings, volume 96-7, 1996, pp. 312-319.P13-c1. A.S.Uzdenova: Elektrochimicseskoe vosstanovlenie i sintez soedinenii gadoliniia, bora i aluminiia vgalogenidnich rasplavach – Dissertacia na soiskanie uchionoi stepeni kandidata khimicheskich nauk,Nalchik, 2000, 313 pp.: „..V rabote [P13] IK-spektroskopiei i derivatografiei izuchenovisokotemperaturnoe vzaimodeistvie B 2 O 3 s AlF 3 . Naideno obrazovanie letuchego BF 3 i nekotorichkompleksnich Al-B-oksidov, kotorie okazivaiut stabiliziruiussee deistvie na bor pri moliarnomsootnoshenii B 2 O 3 :AlF 3 = 1:2 i nizhe.”, 31. o.115


P12. V.P.Lugovoi, S.V.Deviatkin, G.<strong>Kaptay</strong>, S.A.Kuznetsov: High TemperatureElectrochemical Synthesis <strong>of</strong> Zirconium Diboride from Chloro-Fluoride Melts - in Proc <strong>of</strong> the10 th International Symposium on Molten Salts, edited by R.T.Carlin, S.Deki, M.Matsunaga,D.S.Newman, J.R.Selman, G.R.Stafford, Electrochemical Society Proceedings, volume 96-7,1996, pp. 303-311.P12-c1. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallopodobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “Dalneishee razvitie VES diborida cirkonia iz hlordnich, ftoridnich i oksidnich rasplavov rassmotrenv [P12]. Termodinamicheskim rasschotom pokazano, shto raznost ravnovesnich potencialov cirkoniia ibora sostavliaet 0.75 V (pri 973 K), 0.53 V (pri 973 K) i 0.45 V (pri 1273 K) cootvetstvenno.Cepcialnie pokritiia ZrB2 na steklouglerode iz rasplava NaCl + KCl + k2ZrF6 + KBF4 + NaFpolucheni lish pri dobavke B2O3 (dlia snizheniia katodnoi passivacii) i plotnosti toka 0.05 – 0.5 A/cm2.Uvelichenie plotnosti toka privodit k obrazovaniu poroshkovich osadkov” – p.189.P12-c2. V.V.Malyshev: High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> group IV-VImetals in ionic melts – Russian J Inorg Chem, 2003, vol.48, pp.142-148 – „Further advances int heelectrosynthesis <strong>of</strong> zirconium diboride in chloride, fluoride and oxide melts are considered in [P12]” –p.144.P12-c3. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) - – „see Table 1” – p.1141, „Further advances in high-temperatureelectrochemical synthesis <strong>of</strong> zirconiuum diboride from chloride, fluoride and oxide malts wereconsidered in [P12]” – p.1141.P12-c4. Shumakova NI, Procenko ZM, Gudakova GO, Bugaenko VV: Fazovii, elementnii sklad tamikrostruktura elektrolitichno otrimanich poroshkopodobnich produktiv na osnovi siliciiu, titanu, boruta ich spoluk – Bisnik Sumskogo Derzhavnogo Universiteta, Seriia Fizika, matematika, mechanika,2004, No. 10 (69), 196-205.P12-c5. VV Bugaenko, ZM Procenko, NI Shumakova: Fazovii, elmentnii ta granulometrichnii skladelektrolitichno otrimanich poroshkopodobnich produktiv na osnovi boridiv titanu – Bisnuk SumDU,2006, No.6, pp.114-122 – „Odnim iz bagatoh metodiv oderzhaniia boridiv metalic svisokotemperaturnii elektrohimichnii sintez (VES) b rozplavlenich soliovich elektrolitach, iakii sperspektivnim metodom oderzhaniia poroshkopodobnich boridiv metaliv ta nemetaliv [P12]” – p.115.P11. L. Bolyán, E. Buzinkay, G. <strong>Kaptay</strong> : Sz<strong>of</strong>tver és adatbank tiszta fémolvadékok fizikaitulajdonságainak számolására a hőmérséklet függvényében. in: Proceedings <strong>of</strong> microCAD '96International Computer Science Conference, Section C: Materials Science, Miskolc, 1996. pp.53-54.P10. L. Bolyán, G. <strong>Kaptay</strong> : Tiszta fémolvadékok felületi feszültségének számolásáraalkalmas szakértői rendszer. in: Proceedings <strong>of</strong> microCAD '95 Int. Computer ScienceConference, Section C: Material Science, Miskolc, 1995., pp.147-152.P9. E. Buzinkay, G. <strong>Kaptay</strong>: Anyagtudományi célú kémiai-termodinamikai adatbankfejlesztése. in: Proceedings <strong>of</strong> microCAD '95 Int. Computer Science Conference, Section C:Material Science, Miskolc, 1995., pp.142-146.P8. <strong>Kaptay</strong> Gy.: Anyagtudományi célú kémiai-termodinamikai adatbank tervezete. in:"Termodinamikai Előadások", szerk. Lámer G., ELFT, Budapest, 1994., pp. 171-173.P7. Deviatkin Sz., <strong>Kaptay</strong> Gy., Berecz E.: Stabil sztöchiometriájú fémboridok elektrokémiaiszintézisének kémiai-termodinamikai kritériumai. in: "Termodinamikai Előadások", szerk.Lámer G., ELFT, Budapest, 1994., pp.165-170.116


P6. <strong>Kaptay</strong> Gy., Lámer G.: Alakadás mikrogravitációban. in: "Termodinamikai Előadások",szerk. Lámer G., ELFT, Budapest, 1994., pp.72-75.P5. <strong>Kaptay</strong> Gy.: Asszociált elegymodellek alkalmazása fém- és sóolvadék elegyektermodinamikai leírásához. in: "Termodinamikai Előadások", szerk. Lámer G., ELFT,Budapest, 1994., pp.48-53.P4. S.V.Deviatkin, G.<strong>Kaptay</strong>, E.Berecz : High-temperature electrochemical synthesis <strong>of</strong> TiB 2from cryolite-alumina melts containing oxides <strong>of</strong> Boron and Titanium. In Proc. <strong>of</strong> the 9 th Int.Symp. on Molten Salts, edited by C.L.Hussey, D.S.Newman, G.Mamantov, Y.Ito. Proc.volume 94-13 <strong>of</strong> the Electrochemical Society Inc, pp. 548-557.P4-c1: L.P.Polyakova, E.G.Polyakov, N.J.Bjerrum: The study <strong>of</strong> electrode processes in LiF-NaF-KF-K 2 TaF 7 -KBF 4 melt – Plasmas and Ions, 1999, 2, 117-125 – „Analysis <strong>of</strong> the literature shows that the relevant<strong>publications</strong> are mostly dedicated to the synthesis <strong>of</strong> titanium and zirconium borides [P4].” p.117 –P4-c2. S.A.Kuznetsov: Elektrokhimicheskii sintez visokotemperaturnich boridov iz solevich rasplavov –Elektrokhimiia, 1999, t.35., No.11., 1301-1317 – “Sostav elektrolitov i usloviia polucheniiatugoplavkich boridov predstavleni v tabl.2. [P4]..” p. 1311P4-c3. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte – Rev Roum de Chimie, 1999,vol.44, pp.643-650. – „The equilibrium potential needed for the synthesis to occur is given by theequation [P4]: {equation cited}” – p.648P4-c4. R.P.Pawlek: Aluminium Wettable Cathodes: An Update – in: Light Metals 2000, Ed. by R.D.Peterson,TMS 2000, pp. 449-454 – „High temperature electrochemical synthesis <strong>of</strong> TiB 2 from cryolite aluminamelts containing oxides <strong>of</strong> boron and titanium was tried by Deviatkin [P4] and <strong>Kaptay</strong> [ ]… „ + 14 linesdescribing our results – pp. 449-450 –P4-c5. Vedernikov G.F.: Inertnie katodi v elektroliziorach dlia proizvodstva aliuminia. Problemi i perspektivi.AO VAMI, Informacionnii listok, No.10, April 2001. – Devyatkin i dr. ispolzovali visokotemperaturniielektrochimicheskii sintez TiB 2 kriolito-glinoziomnich rasplavov, soderzhashich oksidi bora i titana[P4]”. – c.16.P4-c6. P.Taxil, P.Chamelot, L.Massot, C.Hamel: Electrodeposition <strong>of</strong> alloys or compounds in molten salts andapplications – J. <strong>of</strong> Mining and Metallurgy, 2003, vol.39B, pp.177-200 – „In the industry <strong>of</strong> aluminiumelectrowinning, titanium or zirconium borides are possibly used to protect the carbon cathodes from theelectrolyte insertion. Numerous works are dedicated to the preparation <strong>of</strong> these compounds by theelectrodeposition in molten salts, either in molten fluorides or in cryolithe meia [P4]” – p.178.P4-c7. V.V.Malyshev: High-temperature electrosynthesis <strong>of</strong> metal-like refractory compounds <strong>of</strong> IV-VI metals inionic melts – Russian J Inorg Chem, 2003, vol.48, pp.142-148 – „.. Devyatkin et al. [P4] carried out athermodynamic plausability analysis <strong>of</strong> the electrosynthesis <strong>of</strong> TiB 2 and found the conditions for theformation <strong>of</strong> this compound. They noted that a TiC film forms on graphite cathode early in the process,favoring a better adherence <strong>of</strong> TiB 2 layers” – p.144.P4-c8. V.V.Malishev: Visokotemperaturnii elektrochmnicheskii sintez metallopodobnich tugoplavkichsoedinenii metallov IV – VIA grupp v ionnich rasplavach – Zh. Neorg. Himii, 2004, vol.48, pp.187-194– “…VES diboridov metallov IVA gruppi vozmozhen i iz kriolito-glinoziomnich rasplavov. Primenenieetich rasplavov s prakticheskoi tochki zreniia neobhodimo dlia zashiti grafitovich elektrodov ipolucheniia aliuminievich ligatur. Termodinamicheskaia ocenka vozmozhnosti elektrosinteza TiB2 iusloviia ego eksperimentalnogo osushestvleniia pokazani v [P4]. Avtori otmechaiut, shto v nachalniimoment osazhdeniia na grafitovich katodach obrazuetsia sloi karbida titana TiC, sposobstvuiushiiuvelicheniu scepleniia dalneishich sloev TiB2 s materialom katoda” – p.189.P4-c9. V.V.Malyshev, Kh.B.Kushkhov: Advances in high-temperature electrochemical synthesis in ionic meltsby the onset <strong>of</strong> XXI century – Russ J. <strong>of</strong> General Chem., 2004., vol.74, pp.1139-1146 (Zh. ObsheiHimii, 2004, vol.74, pp.1233-1240) – – „see Table 1” – p.1141, „The possibility and experimentalconditions <strong>of</strong> electrochemical synthesis <strong>of</strong> TiB2 are evaluated thermodynamically in [P4]. It is noted,that initially a TiC layer is formed on the graphite cathode – this layer improves the adhesion <strong>of</strong> thesubsequently deposited TiB2 layers on the cathode material” – p.1141.P4-c10. Gorlanov ES, Nikiforov SA, Alternative technology to produce a wettable cathode surface layer in Alcells – Proc <strong>of</strong> the 12 th Int. Conf. “Aluminum <strong>of</strong> Siberia” (in Russian), Krasnoyarsk, 2006, pp.91-95. –„Naibolee perspektivnii, s popitkoi adaptacii k usloviiam elektroliza v krilito-glinoziomnich rasplavachpredstavlen v rabotach [P4]” – p.92.P4-c11. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on a carboncathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372. „Since117


1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis <strong>of</strong>borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set a goal<strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts [P4]” – p.1367.P3. S.V.Deviatkin, G.<strong>Kaptay</strong>, V.I.Shapoval, E.Berecz Electrochemical synthesis <strong>of</strong> transitionmetal diborides from molten salts - in : Proceedings <strong>of</strong> the International Symposium onMolten Salt Chemistry and Technology, 1993, Ed. by M-L. Saboungi and H. Kojima, Proc.vol.93-9 <strong>of</strong> the Electrochemical Society Inc., pp. 584-599.P3-c1. S.A.Kuznetsov, A.L.Glagolevskaya, A.T.Belyaevskii: Electrodeposition <strong>of</strong> Tantalum Boride Coatings inSalt Melts - Russian Journal <strong>of</strong> Applied Chemistry, vol.67, No7., Part1, 1994, pp. 967-973 – “Dannie povisokotemperaturnomu elektrohimicheskomu sintezu boridov tantala prakticheski otsutstvuiut, lish vrabotah [P3], gde izuchalis katodnie processi, imeiutsia otdelnie ukazaniia po ih polucheniiu.” p.1093 --P3-c2. L.P.Polyakova, G.A.Bukatova, E.G.Polyakov, E.Kristensen, I.Barner, N.Bjerrum: Katodnie processi provosstanovlenii bora vo ftoridnom rasplave – Elektrokhimiia, 1995, tom 31, No 12, 1348-1353 –„Bolsinstve avtorov [P3] nahodiat ego (katodnoe videlenie bora) odnostadiinim ….” p. 1348 --P3-c3. L.P.Polyakova, G.A.Bukatova, E.G.Polyakov, E.Christensen, J.H. von Barner, N.J.Bjerrum:Electrochemical Behaviour <strong>of</strong> Boron in LiF-NaF-KF Melts - J. Electrochem. Soc., vol 143, No 10.,1996, pp. 3178-3186 – „These authors as well as others [P3] suggested that the process <strong>of</strong> boron(III)reduction in chloride-fluoride and fluoride melts proceeded in one step without the particpation <strong>of</strong>intermediates…” p.3179P3-c4. E.Polyakov, O.Makarova, L.Polyakova, A.Shevyryov, E.Christensen, N.J.Bjerrum: Electrodeposition <strong>of</strong>Tantalum Boride Coatings from Oxo-fluoride Melts - Molten Salt Forum, vols 5-6, 1998, 375-378 – „Inthe 90’s electrochemical synthesis <strong>of</strong> tantalum borides attracted the attention <strong>of</strong> scientists [P3].” p.375 --P3-c5. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte, Roumanian ChemicalQuarterly Reviews, 1998, 6(4), 233-245 – „Thermodynamic estimation <strong>of</strong> the possibility <strong>of</strong>electrochemical synthesis <strong>of</strong> TiB 2 from cryolite based electrolytes has been carried out using the generalequation [P3]: {egyenelet}. This equation and the existing electrochemical and thermodynamic data[…] afforded the calculation <strong>of</strong> the following theoretical equilibrium deposition potential in cryolitebasewd electrolytes containing dissolved B 2 O 3 and TiO 2 at 1273 K (Table 1) (9 soros táblázatszámításokkal az egyenlet segítségével) – 238.o.P3-c6: L.P.Polyakova, E.G.Polyakov, G.A.Bukatova, A.A.Shevyryov, A.V.Makarova. N.J.Bjerrum: Study <strong>of</strong>Electrode Processes in FLINAK-K 2 TaF 7 -KBF 4 melt - in Refractory Metals in Molten Salts (TheirChemistry, Electrochemistry and Technology), ed. by D.H.Kerridgeand E.G.Polyakov - KluwerAcademic Publishers, vol.3/53, 1998, pp. 103-108. – „The data on electrochemical synthesis <strong>of</strong>tantalum borides are contradictory and limited by the area <strong>of</strong> chloro-fluoride melts [P3]” p. 103 --P3-c7: L.P.Polyakova, E.G.Polyakov, N.J.Bjerrum: The study <strong>of</strong> electrode processes in LiF-NaF-KF-K 2 TaF 7 -KBF 4 melt – Plasmas and Ions, 1999, 2, 117-125 – „The data on high-temperature electrochemicalsynthesis <strong>of</strong> tantalum borides are few [P3] and mostly deal with mixed chloro-fluoride electrolytes.”p.117 --P3-c8. S.A.Kuznetsov: Elektrokhimicheskii sintez visokotemperaturnich boridov iz solevich rasplavov –Elektrokhimiia, 1999, t.35., No.11., 1301-1317 – “Sostav elektrolitov i usloviia polucheniiatugoplavkich boridov predstavleni v tabl.2. [P3]..” pp. 1311P3-c9. N.Ene: Electrosynthesis and electrochemistry <strong>of</strong> TiB 2 in molten electrolyte – Rev. Roum. De Chimie,1999, vol.44, pp.643-650 (ref.No.9)P3-c10. S.A.Kuznetsov: Elektrochimicheskii sintez novich soedineniiu i perspektivnich materialov razlichnog<strong>of</strong>unkcionalnogo naznacheniia v solevich rasplavach – Otchot gos zakaz, 2004 (Ref. No.5). –„Termodinamicheskomu obosnovaniu processov elektrochimicheskogo sinteza, osnovannomu nasopostovlenii temperaturnich zavisimostei potencialov videleniia metallov i bora iz nich razlichnichsoedinenii posviashena rabota [P3]” – p.1.P3-c11. N.Rybakova, M.Souto, Y.Andriyko, W.Artner, J.Godinho, G.E.Nauer: Morphology and mechanicalproperties <strong>of</strong> TiB2 coatings deposited from chloride-fluoride melts by pulse electroplating – JElectrochem Soc, 2009, vol.156, pp.D131-D137 – „The method <strong>of</strong> electrochemical depostion <strong>of</strong> TiB2from molten salt electrolytes, which was developing over the last decades, is more flexible [P3]” – p.D131.118


P3-c12. N.Rybakova, M.Souto, H.P.Martinz, Y.Andriyko, W.Artner, J.Godinho, G.E.Nauer: Stability <strong>of</strong>electroplated titanium diboride coatings in high-temperature corrosive media – Corrosion Science,2009, vol.51, pp.1315-1321 – The electrodeposition <strong>of</strong> TiB 2 from molten salts is significantly faster,less expensive and permits to obtain well defined and smooth deposits on different substrates withcomplicated surface pr<strong>of</strong>iles and homogeneous layer thickness [P3]” – p. 1315.P3-c13. JRA Godinho: Optimization <strong>of</strong> TiB 2 coatings electrodepisted from halide melts – Master dissertation inChemistry, April 2008, 70 pp. – “From the 90-s onward some practical aspects <strong>of</strong> the deposition <strong>of</strong>different borides (e.g. TiB 2 ) were clarified, along with the basic electrochemical techniques andthermodynamic calculations [P3]” – p.10.P3-c14. G.V.Arkhipov, Y.S.Gorlanov: Development <strong>of</strong> technology for producing a wettable coating on a carboncathode by electrodeposition – Light Metals 2012, ed. by C.E. Suarez, TMS, pp.1367-1372. „Since1993, G.<strong>Kaptay</strong> and S.V.Devyatkin, under laboratory conditions, started to research on synthesis <strong>of</strong>borides <strong>of</strong> high-melting metals from molten salts. They were among the first researchers who set a goal<strong>of</strong> proving the possibility <strong>of</strong> electrodeposition <strong>of</strong> TiB 2 from Na 3 AlF 6 -Al 2 O 3 -TiO 2 -B 2 O 3 melts [P3]” – p.1367.P2. <strong>Kaptay</strong> Gy., Akhmedov S.N., Borisoglebskii Yu.V., Deviatkin S.V., Berecz E. Újanyagok az alumínium elektrolízisben - In: "A Kohómérnöki Kar kutatási eredményei",<strong>Miskolci</strong> <strong>Egyetem</strong>, Miskolc, 1992. június 25. pp. 101 - 109.P1. Borisoglebskiy Yu.V., Akhmedov S.N., <strong>Kaptay</strong> G., Vetyukov M.M. Corrosion <strong>of</strong> metallikerefractory materials in chloroaluminate melts and molten aluminum. In : "Proc. <strong>of</strong>EUROCORR'91", ed. by I.Karl and M.Bod, vol.I., pp.313-318.119


M. Selected manuscripts (with citations)M507. <strong>Kaptay</strong> Gy.: Tantárgyi kommunikációs dosszié és tantárgyleírás a Határfelületi nanojelenségekc. BSc tantárgyhoz. Javított és kiegészített verzió, 79 oldal, 2010. május 18.M507-c1. Pázmán J.: Szilíciumkarbid szemcsék kémiai nikkelezése és fémkompozitokban történő alkalmazása –PhD disszertáció (tud. vez.: Gácsi Z.), Miskolc, 2010. – „1.19. ábra. Szilárd/folyadék/gáz határfelületnedvesíthetőség és a peremszög kapcsolata [M507]” – 27.o.M507-c2. Balla S., Bán K., Bárdos A., Lovas A., Szabó A., Weltsch Z.: Járműanyagok - <strong>Egyetem</strong>i tananyag,szerkesztő: Lovas Antal, ISBN 978-963-279-628-4, Typotex Kiadó, Budapest, 2012, 269 pp. – „5.2.fejezet. Határfelületi energia termodinamikai és mechanikai értelmezése [M507]” – 148-149 o. “5.4.fejezet: Folyadékcsepp egyensúlyi alakjai más fázisokkal kontaktusban [M507]” – 150-153 o., „5.6.1.fejezet: Marangoni áramlás [M507]” – 154-155. o., „5.6.2. fejezet: Eötvös szabály [M507]” – 155-156 o.,„5.6.3. alfejezet: Gázok adszorpciója szilárd és folyadék fázisok felületére [M507]” – 156 o., „5.6.4fejezet: Felületi szegregáció [M507]” – 156-157 o., „5.6.5. fejezet: Adszorpció [M507]” – 157.o.M.343. Az Fe-Mn ausztenitben oldott karbon aktivitása, illetve a karbon diffúzió hajtóereje -Réger Mihály részére, 2008. október 11-12, 7 pp.M343-c1: M.Réger, B.Verő, I.Kardos, P.Varga: The effects <strong>of</strong> alloying elements on centerline segregation –Defect Diff Forum, 2010, vol.297-301, pp.148-153. – „Fig.4 compares the carbon activity results <strong>of</strong> threemodels [M343]…” – p.150.M.305. Az Estphad függvények alkalmazhatósága monotektikus diagramok szétválásigörbéjének leírására (Roósz András, Mende Tamás és Farkas János részére, Mende TamásTDK-ja nyomán, 2008. február 15-16., <strong>George</strong>) – 8 oldal.M.305-c1. T.Mende, A.Roosz: Calculation <strong>of</strong> the miscibility gap by Estphad method – Mater Sci Forum, 2010,vol.659, pp.423-428. – The function <strong>of</strong> concentration <strong>of</strong> separation temperature can be derived from theregular solution model [M305]: … Eq.(2)” – p.424. „The boundary condition can be fulfilled byintroducing the quantity having a character <strong>of</strong> X* mole fraction as well as by introducing the kdimensionless coefficient and they can be included int he correction factor [M305]” – p.425.M.170. <strong>Kaptay</strong> Gy.: Fémolvadék széterülésének feltétele fémolvadékon monotektikusrendszerekben - Svéda Marika és munkatársai részére, 2004. február 20., 4 oldalM170-c1. Svéda Mária: Monotektikus felületi rétegek létrehozása lézersugaras felületkezeléssel c. PhD értekezés(tudományos vezető: dr. Roósz András) – 2007 (Ref. No.44).M.163. <strong>Kaptay</strong> G: Határfelületi energiák, erők és jelenségek fizikai-kémiai modellezése ametallurgia és a fémes anyagmérnökség egyes területein – MTA doktori értekezés, 2003.szeptember, 141 ppM163-c1. N.Babcsan, D.Leitlmeier, H.P.Degischer: Foamibility <strong>of</strong> Particle Reinforced Aluminum Melt – Mat.-wiss. u. Werkst<strong>of</strong>ftech., 2003, vol.34, pp.1-8 (ref. No.31)M163-c2. N.Babcsán: Ceramic Particle Stabilized Aluminum Foams – PhD Dissertation, Miskolc, 2003 (ref.No.93)M163-c3. A.Ender, H.van den Boom, H.Kwast, H-U. Lindenberg – Metallurgical development in steel-plantinternalmulti-injection hot metal desulphurozation – Steel Research Int., 2005, vol.76, ppp.562-572M142. <strong>Kaptay</strong> Gy.: Az ESTPHAD algoritmus (történelem lecke + sztandartizálási javaslat) –dr. Roósz A., Farkas J., Kövér Zs. és Mende T. r., 2002. november 24., 11 o.M142-c1. Zs.Kövér, A.Roósz: Calculation <strong>of</strong> the equilibrium phase diagram <strong>of</strong> Fe-Ni alloy system bythe ESTPHAD method – Materials Science Forum, 2006, vol.508, pp.609-614 (No.1)M142-c2. J.Farkas, A.Roósz: Calculation <strong>of</strong> the liquidus and solidus surface <strong>of</strong> Al-rich corner <strong>of</strong> Al-Mg-Si alloy system by ESTPHAD method – Materials Science Forum, 2006, vol.508, pp.635-640 (No.1)120


M112. <strong>Kaptay</strong> Gy.: WC szemcsék kémiai kölcsönhatása Al-4Cu-1Si olvadékkal (egyszerűsítetttermodinamikai analízis) - rövid feljegyzés Roósz András és Sólyom Jenő részére, 2001. augusztus 7.,6 oldal.M112-c1. J.Sólyom, A.Roósz, I.Teleszky, B.Sólyom: Laser Alloying <strong>of</strong> the Surface Layer <strong>of</strong> Al4.5Cu1Si Alloywith TiC and WC Particles – Materials Science Forum, 2003, vols. 414-415, pp.37-44 (ref. No.8).M61. <strong>Kaptay</strong> Gy., M.Z.Yaghmaee, Jánosfy Gy., Károly Gy.: A Fe-Al-N-B olvadékrendszertermodinamikai vizsgálata. Részjelentés, mely készült a „A bórral mikroötvözött acélokgyártásbiztonságának és megfelelőségének további javítása” c., DAM-kutatási témához. Miskolc,1999 május-június. M61.-a: Maziar’s summer work, 1999 September.M61-c1. Besztercey Viktor: A bór mikroötvözés metallurgiai szempontjai. <strong>Miskolci</strong> <strong>Egyetem</strong> DoktoranduszokFóruma, Miskolc, 1999. november 4-5. Kohómérnöki Kar szekciókiadványa, Miskolc-<strong>Egyetem</strong>város,2000., pp. 28-33 (reference No. 6.).M60. <strong>Kaptay</strong> Gy., Z.Benkõ Mária: LD konverter fizikai-neurális, vagy neurális-fizikai hibridmodelljének fizikai-kémiai alapjai. Miskolc, 1999. június. 46 oldal.M60-c1. P.Berényi, J.Valyon, G.Horváth: Neural Modelling <strong>of</strong> Industrial Process with Noisy data - in:„Engineering <strong>of</strong> Intelligent Systems, IEA/AIE 2001, LNAI 2070“, edited by L.Monostori, J.Váncza,M.Ali, Springer Verlag, Berlin, 2001, pp.269-280.M50. <strong>Kaptay</strong> Gy.: Határfelületi energiák és jelenségek vizsgálata metallurgiai és anyagmérnökitechnológiákban - Habilitációs tézisfüzet, <strong>Miskolci</strong> <strong>Egyetem</strong>, 1998. augusztus 30., 60 oldal.M50-c1. P.Harmat, I.Kotsis, L.Laczkó, L.Bartha: Melting and phase transformation <strong>of</strong> hardmetal powders –Solid State Ionics, 2001, vol.141-142, pp.157-161 (ref. No.7).M50-c2. G.Králik, P.Fülöp, B.Verő, D.Zsámbok: Laser Surface Treatment <strong>of</strong> Steels – Materials Science Forum,2003, vols.414-415, pp.21-30 (ref. No.2).M.6. <strong>Kaptay</strong> G. Study <strong>of</strong> chemical interaction <strong>of</strong> high-temperature chloro-aluminate melts with liquidaluminum, some refractory materials and oxygen with the aim <strong>of</strong> developing a new aluminumelectrolysis process. (in Russian) - Ph.D. Thesis, Leningrad, 1988, 268 p.M6-c1. Akhmedov S.N.: Study <strong>of</strong> durability <strong>of</strong> refractory materials in Aluminium containing melts in order totheir usage in Aluminium electrolysis cells. (in Russian). PhD Thesis, Leningrad, 1988, 267 p. (referenceNo 124)121


h-indexIndependent citations / yearStatistics140120100growing phasex38 20Cit 10Fig.1.a80604020incubation phaseCit x 28 20independent citations25 30 35 40 45 50 55Age (years)18161412y = 0,0226x 2 - 1,1531x + 14,721R 2 = 0,9873dh/dt=1Fig.1.b1086dh/dt=1/24dh/dt=02025 30 35 40 45 50 Age 5529 3241Fig.1. The dynamics <strong>of</strong> <strong>publications</strong> and independent citations (Fig.1.a) and that <strong>of</strong> the h-index calculated from independent citations (Fig.1.b)122


Statistics for independent citations <strong>of</strong> my papers and the calculation <strong>of</strong> my h-index*Papers with the given number <strong>of</strong> independent citationsCitationsCode <strong>of</strong> papers (see the list above) amount Totalamount1 J43, J49, J56, J61, J70, J75, J83, J88, J89, J98, J105, J137, J138, JP8, JP9, JP11, 37 103–139P13, P40, P46, P47, P49, P69, P71, P72, P86, P108, M57, M6, M60, M61,M112, M170, M305, M343, M507, B5, B9,2 J10, J26, J27, J30, J35, J44, J45, J47, J64, J81, J103, J127, J135, M50, M142 15 88 – 1023 J5, J32, J36, J59, J63, J65, J66, J77, J78, J79, J86, J108, J120, J129, P58, M163 16 70 – 874 J14, J33, J71, J93, J99, J106, J110, J121, J122, P19, P21, 11 61 – 715 J15, J20, J39, J74, J85, J116, P12, P27, P103, 9 52 – 606 J29, J51, J67, J82, J92, J100, J112, B1, 8 44 – 517 J19, J31, J60, J125, 4 40 – 438 J3, P37, 2 38 – 399 J25, J37, J53, J101, 4 34 – 3710 J32a, J104, J117, P105, 4 30 – 3311 J24, J62, J115, P4, B2, 5 25 – 2912 J91, J109, 2 23-2413 J34, J80, 2 21 – 2214 J97, P3, 2 19 – 201516 J23, J28, J94, J96, P96, 5 14 – 181718 P65, J95, 2 12-131920 J57 1 112122 P77, 1 1023 P79 1 924 J90, 1 82526 J48 1 727 P41 1 6282930313233 J11 1 5343536 J87 1 437383940 J46 1 3414243444546474849123


12450515253545556 J102 1 257585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107


108109110111112 J84 1 1The h-index is the number <strong>of</strong> papers, for which at least the same number <strong>of</strong> independent citations is obtained. Asfollows from the table above, my current h-index is: h = 16 (see papers J84 – J102 – J46 – J87 - J11 – P41 – J48– J90 – P79 – P77 – J57 – P65 – J95 – J23 – J28 – J94 – J96 - P96).125


Papers with impact factors (IF, according to ISI values)No Year Journal IF SUM (IF) Authors(n)IF/n SUM(I/n)SUM(IF/n)/SUM(IF)1 J14 1991 Chemical Papers 0.150 0.150 2 0.075 0.075 0.5002 J26 1996 J. <strong>of</strong> Non-Cryst. Sol. 1.318 1.468 6 0.220 0.295 0.2013 J27 1997 Mat Sci & Eng A 0.842 2.310 5 0.168 0.463 0.2004 J30 1997 Russ. J.Appl.Chem. 0.114 2.424 5 0.023 0.486 0.2005 J31 1998 Russ. J. Appl. Chem. 0.169 2.593 4 0.042 0.528 0.2046 J35 1998 Elektrokhimiia 0.059 2.652 5 0.012 0.540 0.2047 J32 1998 High Temp.Mat.Proc. 0.233 2.885 4 0.058 0.598 0.2078 J39 1999 Metall. Mater. Trans.A 0.993 3.878 1 1.061 1.659 0.4289 J45 1999 High Temp Mater Proc 0.345 4.223 3 0.115 1.774 0.42010 J47 2000 Mater. Sci. Forum 0.597 4.820 1 0.597 2.371 0.49211 J48 2000 Mater.Sci.Forum 0.597 5.417 3 0.199 2.570 0.47412 J49 2000 Mater.Sci.Forum 0.597 6.014 3 0.199 2.769 0.46013 J51 2000 Metall. Mater. Trans.A 1.361 7.375 1 1.361 4.130 0.56014 J53 2000 J. <strong>of</strong> Solid State Chem 1.527 8.902 2 0.764 4.894 0.55015 J56 2001 ISIJ International 0.980 9.882 2 0.490 5.384 0.54516 J57 2001 Metall. Mater. Trans. A 1.273 11.155 1 1.273 6.657 0.59717 J59 2001 Metall. Mater. Trans. B 0.754 11.909 1 0.754 7.411 0.62218 J60 2001 Appl. Phys. A 1.722 13.631 7 0.330 7.741 0.56819 J68 2001 Z.Naturforsch. A 0.746 14.377 4 0.187 7.928 0.55120 J70 2002 Russ. J. Applied Chem. 0.221 14.598 2 0.111 8.039 0.55121 J71 2002 Metall.Mater.Trans.A. 1.219 15.817 1 1.219 9.258 0.58522 J74 2003 Mater Science Forum 0.602 16.419 3 0.201 9.459 0.57623 J75 2003 Mater Science Forum 0.602 17.021 1 0.602 10.061 0.59124 J76 2003 Mater Science Forum 0.602 17.623 2 0.301 10.362 0.58825 J77 2003 Mater Science Forum 0.602 18.225 2 0.301 10.663 0.58526 J78 2003 Mater Science Forum 0.602 18.827 3 0.201 10.864 0.57727 J79 2003 Mater Science Forum 0.602 19.429 3 0.301 11.165 0.57528 J80 2003 J Chem Inf Comput Sci 3.078 22.507 8 0.385 11.550 0.51329 J84 2004 Colloids and Surfaces A 1.513 24.02 1 1.513 13.063 0.54430 J85 2004 Metall. Mater. Trans. B 0.839 24.859 1 0.839 13.902 0.55931 J86 2004 Metall.Mater.Trans. B 0.839 25.698 4 0.210 14.112 0.54932 J87 2004 Calphad 2.119 27.817 1 2.119 16.231 0.58333 J88 2005 Mater. Sci. Forum 0.399 28.216 4 0.100 16.331 0.57934 J89 2005 Mater. Sci. Forum 0.399 28.615 3 0.133 16.464 0.57535 J90 2005 Mater. Sci. Forum 0.399 29.014 2 0.200 16.664 0.57436 J91 2005 Mater. Sci. Forum 0.399 29,413 3 0.133 16.797 0.57137 J92 2005 Mater. Sci. Forum 0.399 29.812 2 0.200 16.997 0.57038 J93 2005 Mater. Sci. Forum 0.399 30.211 4 0.100 17.097 0.56639 J94 2005 Mater. Sci. Forum 0.399 30.61 1 0.399 17.496 0.57240 J95 2005 Z. Metallkunde 0.842 31.452 1 0.842 18.338 0.58341 J96 2005 J. Mater. Sci. 0.901 32.353 1 0.901 19.239 0.59542 J97 2005 J. Mater. Sci. 0.901 33.254 2 0.450 19.689 0.59243 J99 2005 Calphad 1.344 34.598 1 1.344 21.033 0.60844 J100 2005 Russian J Electrochem 0.218 34.816 4 0.055 21.088 0.60645 J102 2006 Colloids Surfaces A 1.611 36.427 1 1.611 22.699 0.62346 J106 2007 Fluid Phase Equilibria 1.506 37.933 4 0.377 23.076 0.60747 J108 2007 Fluid Phase Equlibria 1.506 39.439 4 0.377 23.453 0.59248 J109 2008 Composite Sci Technol 2.533 41.972 1 2.533 25.986 0.61949 J110 2008 Int J Mater Res 0.819 42.791 1 0.819 26.805 0.62650 J111 2008 Metall Mater Trans B 0.798 43.589 1 0.798 27.603 0.63351 J112 2008 Calphad 1.530 45.119 1 1.530 29.133 0.64652 J115 2008 Mater Sci Eng A 1.806 46.925 1 1.806 30.939 0.65953 J116 2008 Mater Sci Eng A 1.806 48.731 2 0.903 31.842 0.653126


54 J117 2008 Mater Sci Eng A 1.806 50.537 2 0.903 32.745 0.64855 J120 2009 Carbon 4.504 55.041 5 0.901 33.646 0.61156 J121 2009 Metall Mater Trans A 1.564 56.605 2 0.782 34.428 0.60857 J122 2009 Surf Coat Technol 1.793 58.398 5 0.359 34.787 0.59658 J124 2011 Surface Engineering* 0.633 59.031 5 0.127 34.914 0.59359 J125 2009 Electrochimica Acta 3,325 62.345 2 1,663 36,577 0,58860 J127 2010 J Mater Sci 1,859 64,215 2 0,930 37,507 0,58561 J128 2010 Univ Polit Buchar Sci 0.253 64.468 5 0.051 37.558 0.58362 J129 2010 J Mater Sci 1,859 66.327 3 0,620 38,178 0,57863 J132 2010 J Nanosci Nanotechn 1.352 67,679 1 1,352 39,530 0,58764 J134 2011 Intermetallics 1.649 69,328 2 0,825 40,355 0,58265 J135 2011 J Mater Proc Technol 1,783 71,111 8 0,223 40,578 0,57166 J136 2011 Coll Surf A 2,236 73,347 3 0,745 41,323 0,56367 J137 2011 Metal Mater Trans A 1,545 74,892 3 0,515 41,838 0,55968 J138 2011 JMM B 1,317 76,209 1 1,317 43,155 0,56669 J140 2012 Metal Mater Trans A* 1,545 77,754 1 1,545 44,700 0,57570 J141 2012 Thermochimica Acta* 1,805 79,559 5 0,361 45,061 0,56671 J142 2012 Electrochimica Acta* 3,832 83.391 1 3,832 48,893 0,58672 J143 2012 Adv Coll Interface Sci* 8,120 91,511 1 8,120 57,013 0,62373 J144 2012 J Disp Sci Technol* 0.560 92,071 1 0.560 57,573 0.62774 J145 2012 JMM B* 1.317 93,388 1 1.317 58,890 0.63175 J146 2012 J Nanosci Nanotech* 1.563 94,951 1 1.563 60,453 0.63776 J147 2012 Mat.-wiss. Werkst<strong>of</strong>f. * 0.543 95,494 3 0.181 60,634 0.63577 J148 2012 Int J Pharma* 3.350 98,844 1 3.350 63.984 0.64778 J149 2012 Intermetallics* 1.649 100,493 3 0.550 64.534 0.64279 J150 2012 J Nanosci Nanotech* 1.563 102.056 8 0.195 64.729 0.63480 J151 2012 J Alloys Compds* 2.289 104.345 4 0.572 65,301 0.62681 J153 2012 J Mater Sci* 2.015 106.360 1 2.015 67.316 0.63382 J154 2012 Metal Mater Trans A* 1.545 107.905 4 0.386 67.702 0.62783 J155 2012 Int J Thermophysics* 0.953 108.858 1 0.953 68.655 0.63184 J156 2012 Composites A* 2.695 111.553 5 0.539 69.194 0.62085 J157 2012 Acta Mater* 3.755 115.308 1 3.755 72.949 0.633* IF <strong>of</strong> 2011127

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!