12.07.2015 Views

Relevance of dietary iron intake and bioavailability in the ...

Relevance of dietary iron intake and bioavailability in the ...

Relevance of dietary iron intake and bioavailability in the ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

AJCN. First published ahead <strong>of</strong> pr<strong>in</strong>t June 26, 2013 as doi: 10.3945/ajcn.112.048264.<strong>Relevance</strong> <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>bioavailability</strong> <strong>in</strong> <strong>the</strong> management<strong>of</strong> HFE hemochromatosis: a systematic review 1–3Diego Moretti, Gerrigje M van Doorn, Dor<strong>in</strong>e W Sw<strong>in</strong>kels, <strong>and</strong> Alida Melse-BoonstraABSTRACTBackground: Hereditary hemochromatosis (HH) leads to <strong>iron</strong> load<strong>in</strong>gbecause <strong>of</strong> a disturbance <strong>in</strong> <strong>the</strong> negative-feedback mechanismbetween <strong>dietary</strong> <strong>iron</strong> absorption <strong>and</strong> <strong>iron</strong> status. The management <strong>of</strong>HH is achieved by repeated phlebotomies.Objective: We <strong>in</strong>vestigated whe<strong>the</strong>r HH patients would benefitfrom a diet with low <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>bioavailability</strong>.Design: We performed a systematic review <strong>of</strong> studies that l<strong>in</strong>ked<strong>iron</strong> <strong>bioavailability</strong> <strong>and</strong> status with <strong>dietary</strong> factors <strong>in</strong> subjects withdiagnosed HH. Studies on heterozygotes for <strong>the</strong> HFE mutation wereexcluded.Results: No prospective, r<strong>and</strong>omized study was reported. N<strong>in</strong>estudies that directly measured <strong>iron</strong> <strong>bioavailability</strong> from test meals<strong>in</strong> HH patients have been described as well as 3 small, prospective,longitud<strong>in</strong>al studies <strong>in</strong> HH patients. Eight cross-sectional studieswere identified that <strong>in</strong>vestigated <strong>the</strong> effect <strong>of</strong> <strong>dietary</strong> compositionon <strong>iron</strong> status. Calculations <strong>of</strong> <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong> HH were madeby extrapolat<strong>in</strong>g data on hepcid<strong>in</strong> concentrations <strong>and</strong> <strong>the</strong>ir associationwith <strong>iron</strong> <strong>bioavailability</strong>. The potential reduction <strong>in</strong> <strong>the</strong> yearlyamount <strong>of</strong> blood to be phlebotomized when restrict<strong>in</strong>g <strong>dietary</strong> <strong>iron</strong>absorbed was estimated <strong>in</strong> <strong>the</strong> 3 longitud<strong>in</strong>al studies <strong>and</strong> rangedbetween 0.5 <strong>and</strong> 1.5 L. This amount would be dependent on <strong>in</strong>dividualdisease penetrance as well as <strong>the</strong> <strong>dietary</strong> <strong>in</strong>tervention.Conclusions: Despite <strong>the</strong> limited quantitative evidence <strong>and</strong> <strong>the</strong> lack<strong>of</strong> r<strong>and</strong>omized, prospective trials, <strong>dietary</strong> <strong>in</strong>terventions that modify<strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>bioavailability</strong> may affect <strong>iron</strong> accumulation <strong>in</strong>HH patients. Although this measure may be welcome <strong>in</strong> patientswill<strong>in</strong>g to contribute to <strong>the</strong>ir disease management, limited dataexist on <strong>the</strong> cl<strong>in</strong>ical <strong>and</strong> quality <strong>of</strong> life benefit. Am J Cl<strong>in</strong> Nutrdoi: 10.3945/ajcn.112.048264.INTRODUCTIONHereditary hemochromatosis (HH) is a heterogeneous group <strong>of</strong>disorders that is characterized by excessive <strong>iron</strong> <strong>bioavailability</strong><strong>and</strong> deposition <strong>in</strong> <strong>the</strong> body. It is caused by a limited ability todownregulate <strong>iron</strong> absorption <strong>in</strong> <strong>the</strong> presence <strong>of</strong> sufficient <strong>iron</strong>stores (1–4). The most prevalent form by far is HFE-related HH<strong>and</strong> can be ascribed to homozygosity for <strong>the</strong> p.Cys282Tyr mutation<strong>in</strong> <strong>the</strong> HFE gene (5). The mutation is estimated to affect1:200–1:300 subjects <strong>of</strong> Nor<strong>the</strong>rn European descent (6). Thecl<strong>in</strong>ical penetrance is lower <strong>and</strong> ranges between 2% <strong>and</strong> 38% <strong>in</strong>men <strong>and</strong> 1% <strong>and</strong> 10% <strong>in</strong> women (5, 7, 8). The low penetrance<strong>in</strong>dicates that o<strong>the</strong>r genetic, epigenetic, <strong>and</strong> env<strong>iron</strong>mental factorsplay a role <strong>in</strong> <strong>the</strong> development <strong>of</strong> <strong>the</strong> disease (5). Althoughcross-sectional studies have <strong>in</strong>dicated that male sex, age, <strong>and</strong>alcohol consumption are predictors <strong>of</strong> phenotypic expression,o<strong>the</strong>r factors, such as diet, may also be <strong>in</strong>volved (9).Dietary heme <strong>and</strong> nonheme <strong>iron</strong> are absorbed by dist<strong>in</strong>ctpathways (10–12); nonheme <strong>iron</strong> has to be reduced by <strong>dietary</strong>components or by duodenal cytochrome b before it can be takenup by dimetal transporter 1. In contrast, heme <strong>iron</strong> is absorbed<strong>in</strong>tact (13) <strong>and</strong> is more <strong>in</strong>dependent from effects <strong>of</strong> <strong>the</strong> foodmatrix (10). Enterocyte <strong>iron</strong> is released to <strong>the</strong> blood via <strong>the</strong> cellular<strong>iron</strong> exporter ferroport<strong>in</strong> on <strong>the</strong> basolateral membrane. Theregulation <strong>of</strong> this transport is reduced by <strong>the</strong> hepatocyte-derivedpeptide hormone hepcid<strong>in</strong>, which b<strong>in</strong>ds to ferroport<strong>in</strong>, leads to its<strong>in</strong>ternalization <strong>and</strong> degradation (11, 14, 15). In patients with HFEhemochromatosis, <strong>the</strong> duodenal expression <strong>of</strong> dimetal transporter1, duodenal cytochrome b (16), <strong>and</strong> ferroport<strong>in</strong> (17, 18) is <strong>in</strong>creased<strong>and</strong> consistent with <strong>the</strong> gene-expression pr<strong>of</strong>ile encountered<strong>in</strong> <strong>iron</strong>-deficient duodenal enterocytes (19). Fur<strong>the</strong>rmore,lower serum hepcid<strong>in</strong> concentrations relative to ferrit<strong>in</strong> concentrationshave been reported <strong>in</strong> HH patients compared with those<strong>of</strong> control subjects (20) .Dietary <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>bioavailability</strong> are determ<strong>in</strong>ants <strong>of</strong> <strong>iron</strong>status <strong>in</strong> <strong>the</strong> general population (21, 22). However, little is knownabout potential diet-related effects on <strong>iron</strong> accumulation <strong>in</strong> HH.Dietary recommendations for subjects with HFE HH are typicallylimited to general recommendations to follow a healthydiversified diet (see Supplemental Table 1 under “Supplementaldata” <strong>in</strong> <strong>the</strong> onl<strong>in</strong>e issue). An expert consensus is that patientsshould avoid <strong>iron</strong>-conta<strong>in</strong><strong>in</strong>g food supplements <strong>and</strong> alcohol.Patients diagnosed with HH are treated with a schedule <strong>of</strong>phlebotomies, which is an approach that has been shown to besafe <strong>and</strong> effective (23, 24). It is a commonly encountered attitudethat patients wish active <strong>in</strong>volvement <strong>in</strong> <strong>the</strong>ir own treatment, <strong>and</strong>a significant number <strong>of</strong> HH patients request more-detailed <strong>dietary</strong>1 From <strong>the</strong> Division <strong>of</strong> Human Nutrition (DM, GMvD, <strong>and</strong> AM-B) <strong>and</strong>Science Shop (GMvD), Wagen<strong>in</strong>gen University, Wagen<strong>in</strong>gen, Ne<strong>the</strong>rl<strong>and</strong>s;<strong>the</strong> Laboratory <strong>of</strong> Human Nutrition, Institute <strong>of</strong> Food Nutrition <strong>and</strong> Health,Department <strong>of</strong> Health Sciences <strong>and</strong> Technology, Swiss Federal Institute <strong>of</strong>Technology, Zürich, Switzerl<strong>and</strong> (DM); <strong>and</strong> <strong>the</strong> Laboratory <strong>of</strong> Genetic, Endocr<strong>in</strong>e<strong>and</strong> Metabolic Diseases, Department <strong>of</strong> Laboratory Medic<strong>in</strong>e, RadboudUniversity Nijmegen Medical Centre, Nijmegen, Ne<strong>the</strong>rl<strong>and</strong>s (DWS).2 Supported by <strong>the</strong> Division <strong>of</strong> Human Nutrition, Wagen<strong>in</strong>gen University<strong>and</strong> Research Centre.3 Address correspondence to A Melse-Boonstra, Division <strong>of</strong> HumanNutrition, Wagen<strong>in</strong>gen University, PO Box 8129, 6700 EV Wagen<strong>in</strong>gen,Ne<strong>the</strong>rl<strong>and</strong>s. E-mail: alida.melse@wur.nl.Received July 26, 2012. Accepted for publication May 1, 2013.doi: 10.3945/ajcn.112.048264.Am J Cl<strong>in</strong> Nutr doi: 10.3945/ajcn.112.048264. Pr<strong>in</strong>ted <strong>in</strong> USA. Ó 2013 American Society for Nutrition1<strong>of</strong>12Copyright (C) 2013 by <strong>the</strong> American Society for Nutrition


2<strong>of</strong>12MORETTI ET ALadvice (Dutch Hemochromatosis Society, personal communication,May 2011).We aimed to review <strong>the</strong> literature on <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong>subjects with HFE-related p.Cys282Tyr HH as well as idiopathicHH <strong>and</strong> to estimate whe<strong>the</strong>r <strong>and</strong> to which extent <strong>dietary</strong> <strong>iron</strong>restriction <strong>and</strong> modulation <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong>bioavailability</strong> couldsupport treatment <strong>in</strong> <strong>the</strong> management <strong>and</strong> prevention <strong>of</strong> HH.METHODSLiterature searchOnl<strong>in</strong>e literature databases <strong>the</strong> Web <strong>of</strong> Science (ThomsonReuters; http://thomsonreuters.com/web-<strong>of</strong>-science/) <strong>and</strong> PubMed(National Centre for Biotechnology Information, US NationalLibrary <strong>of</strong> Medic<strong>in</strong>e; www.pubmed.gov) were searched for articlesthat <strong>in</strong>vestigated <strong>iron</strong> <strong>bioavailability</strong> <strong>and</strong> <strong>iron</strong> status <strong>in</strong>subjects with HH. Studies were reviewed that <strong>in</strong>cluded HFEhomozygous p.Cys282Tyr subjects. Earlier studies on subjectswith idiopathic HH conducted before <strong>the</strong> discovery <strong>of</strong> <strong>the</strong> HFEgene (25) were <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> review because homozygosity for<strong>the</strong> p.Cys282Tyr mutation <strong>in</strong> <strong>the</strong> HFE gene expla<strong>in</strong>s <strong>the</strong> greatmajority <strong>of</strong> <strong>the</strong>se cases (25). Orig<strong>in</strong>al research, <strong>in</strong>clud<strong>in</strong>g bothobservational <strong>and</strong> prospective studies, was <strong>in</strong>cluded. Relevantoutcomemeasures were direct measurements <strong>of</strong> <strong>iron</strong> <strong>bioavailability</strong>,hepcid<strong>in</strong> concentrations, <strong>iron</strong> status markers, <strong>and</strong><strong>the</strong> quantity <strong>of</strong> <strong>iron</strong> removed by phlebotomy under vary<strong>in</strong>g<strong>dietary</strong> regimens. The primary search was conducted betweenJanuary <strong>and</strong> July 2011. An update search was conducted fromMay to July 2012. Relevant articles published <strong>the</strong>reafter butbefore <strong>the</strong> end <strong>of</strong> 2012 were also <strong>in</strong>cluded. The literature searchwas conducted by 2 persons separately. The follow<strong>in</strong>g searchterms were used: <strong>iron</strong> status, hereditary hemochromatosis, <strong>iron</strong>overload, idiopathic, <strong>iron</strong> <strong>bioavailability</strong>, <strong>iron</strong> absorption, <strong>iron</strong>status, ferrit<strong>in</strong>, hepcid<strong>in</strong>, diet, <strong>in</strong>hibitors, enhancers, homozygotes,<strong>and</strong> HFE gene. All orig<strong>in</strong>al studies that reported <strong>the</strong> effect<strong>of</strong> <strong>dietary</strong> <strong>and</strong> lifestyle factors on <strong>iron</strong> status <strong>in</strong> human hemochromatosispatients were <strong>in</strong>cluded. Studies <strong>and</strong> outcomes thatfocused exclusively on heterozygotes for <strong>the</strong> HFE gene wereexcluded. Articles that <strong>in</strong>vestigated <strong>the</strong> fecal excretion <strong>of</strong> radioisotopictracers were not <strong>in</strong>cluded <strong>in</strong> <strong>the</strong> review. Studies <strong>and</strong>data were not pooled <strong>in</strong>to a meta-analysis but analyzed qualitatively<strong>and</strong> summarized <strong>in</strong> tables. No formal assessment <strong>of</strong>publication or report<strong>in</strong>g bias was performed. The study <strong>and</strong>protocol are also available under PROSPERO (Internationalprospective registry <strong>of</strong> systematic reviews; http://www.crd.york.ac.uk/prospero/; registration no. CRD42012003501).Calculation <strong>of</strong> <strong>iron</strong> absorption <strong>and</strong> <strong>iron</strong> balance <strong>in</strong> HHZimmermann et al (26) previously established <strong>the</strong> regressioncurve between hepcid<strong>in</strong> concentrations <strong>and</strong> <strong>iron</strong> absorption froma st<strong>and</strong>ard test meal <strong>in</strong> healthy <strong>in</strong>dividuals as follows:Iron absorption ð%Þ ¼2 3:9656 ln½hepcid<strong>in</strong> ðnmol=LÞŠþ 13:238This regression curve was obta<strong>in</strong>ed by concomitantly assess<strong>in</strong>ghepcid<strong>in</strong> concentration <strong>and</strong> <strong>iron</strong> <strong>bioavailability</strong> from an isotopicallylabeled test meal <strong>in</strong> 89 subjects with ei<strong>the</strong>r a serumð1Þferrit<strong>in</strong> (SF) concentration ,25 mg/L or who were <strong>iron</strong> sufficient(SF concentration .40 mg/L). These <strong>in</strong>clusion criteriawere chosen to cover a wide range <strong>of</strong> <strong>iron</strong> statuses. With <strong>the</strong>assumptions that hepcid<strong>in</strong> is <strong>the</strong> primary determ<strong>in</strong>ant <strong>of</strong> <strong>iron</strong>absorption both <strong>in</strong> subjects with <strong>and</strong> without HH, we used thisequation to estimate <strong>iron</strong> absorption <strong>in</strong> p.Cys282Tyr homozygotesby imput<strong>in</strong>g average serum <strong>and</strong> plasma hepcid<strong>in</strong> concentrationsat different stages <strong>of</strong> phlebotomy (20). In both <strong>of</strong><strong>the</strong>se studies (20, 26), <strong>the</strong> hepcid<strong>in</strong> concentration was measuredat <strong>the</strong> Department <strong>of</strong> Laboratory Medic<strong>in</strong>e, RadboudUniversity Nijmegen Medical Centre, Nijmegen, Ne<strong>the</strong>rl<strong>and</strong>s(Hepcid<strong>in</strong>analysis.com) by us<strong>in</strong>g weak cation exchange time<strong>of</strong>-flightmass spectrometry. The syn<strong>the</strong>tic analog hepcid<strong>in</strong>-24<strong>of</strong> hepcid<strong>in</strong>-25 was used as an <strong>in</strong>ternal st<strong>and</strong>ard for quantification(27, 28).The effect <strong>of</strong> diet-related factors on <strong>iron</strong> balance was calculatedfor some <strong>of</strong> <strong>the</strong> studies under <strong>the</strong> follow<strong>in</strong>g assumptions:1) <strong>the</strong> hemoglob<strong>in</strong> concentration was 150 g/L, 2) <strong>the</strong><strong>iron</strong> content <strong>in</strong> hemoglob<strong>in</strong> was 3.47 mg Fe/g hemoglob<strong>in</strong>,<strong>and</strong> 3) <strong>the</strong> phlebotomy session (one unit <strong>of</strong> blood) was equal to450 mL blood.RESULTSA total <strong>of</strong> 64 full-text articles were assessed for eligibility (seeSupplemental Figure 1 under “Supplemental data” <strong>in</strong> <strong>the</strong> onl<strong>in</strong>eissue). Of <strong>the</strong>se articles, 20 studies were excluded because <strong>the</strong>ywere dedicated to heterozygotes for <strong>the</strong> p.Cys282Tyr mutation,13 studies were cl<strong>in</strong>ical observations without a <strong>dietary</strong> component,<strong>and</strong> 7 studies <strong>in</strong>vestigated o<strong>the</strong>r conditions nonrelated todiet <strong>in</strong> HH. Fur<strong>the</strong>rmore, 3 studies <strong>in</strong>vestigated <strong>the</strong> fecal excretion<strong>of</strong> isotopic labels. A total <strong>of</strong> 21 studies were <strong>in</strong>cluded <strong>in</strong><strong>the</strong> f<strong>in</strong>al qualitative assessment. N<strong>in</strong>e studies that directly measured<strong>iron</strong> <strong>bioavailability</strong> from test meals (Table 1), 3 small,nonr<strong>and</strong>omized longitud<strong>in</strong>al, prospective studies (Table 2), <strong>and</strong>8 cross-sectional studies, which were cited <strong>in</strong> 9 publications(Table 3), were found. No r<strong>and</strong>omized prospective study hasbeen reported to date.Iron absorption studies <strong>in</strong> HH patientsOf <strong>the</strong> 9 radio or stable isotope studies shown <strong>in</strong> <strong>the</strong> literature,only <strong>the</strong> most-recent studies <strong>in</strong>cluded an explicit characterization<strong>of</strong> <strong>the</strong> HFE gene <strong>in</strong> participat<strong>in</strong>g subjects (34, 35). Iron absorptionfrom isotopically labeled <strong>iron</strong> dosages <strong>and</strong> test mealswas repeatedly reported to be higher <strong>in</strong> subjects with idiopathicHH than <strong>in</strong> healthy control <strong>in</strong>dividuals (2, 3, 29, 31, 32, 35).S<strong>in</strong>ce body <strong>iron</strong> stores are <strong>the</strong> most important determ<strong>in</strong>ant <strong>of</strong><strong>iron</strong> absorption <strong>in</strong> <strong>the</strong> general population (10), it may confounddata from absorption studies if not taken <strong>in</strong>to account. Walterset al (2) showed that <strong>iron</strong> absorption from a chicken soup mealwas 21.9% <strong>in</strong> patients with HH compared with 12.6% <strong>in</strong> <strong>the</strong>control group, regardless <strong>of</strong> <strong>iron</strong> status. In addition, <strong>the</strong> authorscompared regression l<strong>in</strong>es that l<strong>in</strong>ked <strong>iron</strong> absorption to serumferrit<strong>in</strong> concentrations <strong>and</strong> showed a smaller decrease <strong>in</strong> <strong>iron</strong>absorption with <strong>in</strong>creas<strong>in</strong>g <strong>iron</strong> stores <strong>in</strong> <strong>the</strong> HH group. In asecondary regression analysis, a nearly similar <strong>iron</strong> absorption<strong>of</strong> 27% <strong>and</strong> 26% <strong>in</strong> HH patients at SF values <strong>of</strong> 20 <strong>and</strong> 200 mg/Lwas estimated, respectively, whereas <strong>in</strong> healthy control subjects,absorption was decreased from 26% to 2.5%, which corresponded


DIETARY IRON AND HFE HEMOCHROMATOSIS3<strong>of</strong>12TABLE 1Iron-absorption studies <strong>in</strong> idiopathic HH patients or carriers <strong>of</strong> one or more HFE gene mutations 1First author, year<strong>of</strong> publication (reference) Study population Methods <strong>and</strong> outcome measures Results 2 Conclusions <strong>and</strong> commentsSmith, 1969 (29) Subjects with idiopathic HH Radio-isotope absorption study;subjects with liver cirrhosis1) Before start <strong>of</strong> venisection: n = 13 Test meal composed <strong>of</strong> potatosalad, corned beef, <strong>and</strong> fruitwith ferric citrate tracer1) Iron absorption: 13.4% Increase <strong>in</strong> <strong>iron</strong> absorption after <strong>in</strong>itiation<strong>of</strong> phlebotomy <strong>the</strong>rapy2) Iron absorption 1–3 y later: 63%;3–5 y later: 52%; 5–10 y later: 44%2) After venisection: n =25 3) Iron absorption: 14.1%3) Healthy control subjects: n =15Williams, 1965 (30) Patients with idiopathic HH Radio-isotope absorption study(%) with ferric chloride1) Iron absorption: 6.7% (1–15%);percentage <strong>of</strong> TS: 85%1) Before phlebotomy 2) Dur<strong>in</strong>g phlebotomy given with a corned beef <strong>and</strong> potato salad meal with fruit; <strong>iron</strong> status assessed as <strong>the</strong> percentage <strong>of</strong> TS2) 31% (15–66%); percentage <strong>of</strong> TS:78%3) 65% (41–100%); percentage <strong>of</strong> TS:52%3) After phlebotomyWalters, 1975 (2) 1) Idiopathic HH: n = 52 Radio-isotope absorption study(%) with ferric citrate <strong>in</strong> achicken soup test meala) SF,250 mg/L 1a) 30.0% (2 compared with 1a,P , 0.05%)Increase <strong>in</strong> <strong>iron</strong> absorption with decreas<strong>in</strong>gpercentage <strong>of</strong> TS1) Iron absorption: 21.9%; 2) 12.6% Higher <strong>iron</strong> absorption <strong>in</strong> idiopathic HHpatients, especially at low SFb) SF.250 mg/L 1b) 16.9% (2 compared with 1b, NS)2) Control subjects: n = 21 Secondary regression analysisSF: 20 mg/L: 1) compared with 2): 27.1%compared with 17.2%SF: 200 mg/L: 1) compared with 2): 26.0%compared with 2.5%Bezwoda, 1976 (31) 1) Iron-deficient patients; SF , 25 mg/L;n =18Radio-isotope absorption study(%) withA) nonheme <strong>iron</strong> added towhole-wheat flour2) Idiopathic HH; SF ,25 mg/L; n =8 B) Labeled heme <strong>iron</strong> addedto lamb with hemolyzedblood cells3) Anemic women; SF , 25 mg/L; n =12 C) Ascorbic acid (60 mg) B) Heme <strong>iron</strong> absorption 1) 29.8%compared with 2) 37.1% comparedwith 3) 31.6% (NS)C) 1) 46.8% compared with 2) 74.2%compared with 3) 53.7% (P , 0.05)Valberg, 1979 (32) 1) Subjects with idiopathic HH; SF:441.5 mg/L; n =42) Healthy control subjects; SF:64.5 mg/L; n =33Radio-isotope absorptionstudy (%)Reference dose <strong>of</strong> ferricascorbate given withoutfood matrix1) compared with 2) compared with 3) High nonheme-<strong>iron</strong> absorption <strong>in</strong> idiopathicHH patients at low SF; at low SFconcentrations heme <strong>iron</strong> is highlyabsorbed <strong>in</strong> all subjects; <strong>iron</strong> givenA) Nonheme <strong>iron</strong> absorption: 1) 18.9% with ascorbate without food is morecompared with 2) 36.4% compared bioavailable <strong>in</strong> HH patients than <strong>in</strong>with 3) 5.8% (P , 0.05)control subjects1) Iron absorption 74% compared with2) 46%Absorption <strong>of</strong> ferric ascorbate without foodis higher <strong>in</strong> HH than <strong>in</strong> control subjects(Cont<strong>in</strong>ued)


4<strong>of</strong>12MORETTI ET ALTABLE 1 (Cont<strong>in</strong>ued)First author, year<strong>of</strong> publication (reference) Study population Methods <strong>and</strong> outcome measures Results 2 Conclusions <strong>and</strong> commentsBezwoda, 1981 (33) Idiopathic HH; mean SF: 25 mg/L; n = 7 Radio-isotope absorption study (%) A) Iron absorption: 25% Absorption <strong>of</strong> <strong>iron</strong> is decreased <strong>in</strong> a maizemealMaizemeal porridge B) 20%A) 5 mg Fe-chloride +C) 72%60 mg AAB) 10 mg Fe chloride +60 mg AAC) 3 mg Fe sulfate +30 mg AA <strong>in</strong> water (n<strong>of</strong>ood matrix)Lynch, 1989 (3) 1) Control subjects: n = 75 Radio-isotope absorption study (%) A) Heme-<strong>iron</strong> absorption lower <strong>in</strong>1) than <strong>in</strong> 2) but comparable at2) Idiopathic HH: n =15 A) Labeled heme <strong>and</strong> nonheme <strong>iron</strong>3) Heterozygotesadded to a st<strong>and</strong>ard mealB) Labeled nonheme <strong>iron</strong> added tost<strong>and</strong>ard meal (A) + 20 mgFe sulfate + 100 mg vitam<strong>in</strong> Cfrom orange juiceTest meal (B) was tested only <strong>in</strong>groups 1) <strong>and</strong> 3)Kaltwasser, 1998 (34) p.Cys282Tyr HH: n = 18 Radio-isotope absorption study (%)<strong>of</strong> meal with A) black tea <strong>and</strong>B) no teaSubjects acted as <strong>the</strong>ir own controlsubjectsHutch<strong>in</strong>son, 2008 (35) 1) Control subjects: n = 14 3) Heterozygotes for p.Cys282Tyr: n =7 Serum <strong>iron</strong>–appearance study,adm<strong>in</strong>istration <strong>of</strong> 13.1 mgnonheme <strong>iron</strong> <strong>in</strong> <strong>the</strong> form <strong>of</strong>FeCl 3 (10 mg) vegetables <strong>in</strong>tomato sauce, potato mash, fruit,<strong>and</strong> orange juice (3.1 mg)SF , 50 mg/LNonheme-<strong>iron</strong> absorption <strong>in</strong> 1) lowerthan <strong>in</strong> 2) but similar to 3)Substudy <strong>in</strong> ID subjectsA) Heme-<strong>iron</strong> absorption <strong>in</strong> IDcontrol subjects: 21%, <strong>in</strong>ID HH subjects: 41%B) 1) 3.4% compared with 3) 9.2%Iron absorption: A) 6.9%; B) 22.1%;P , 0.05Mean (6SEM) SF <strong>in</strong> <strong>the</strong> study group:191 6 18 mg/L2) p.Cys282Tyr HH: n =12 1) SF: 115 mg/L; 2) SF: 94.3 mg/L;3) SF: 64 mg/L; 4) SF: 9.9 mg/L4) Iron-deficient anemic: n =10porridge with AA compared with ferricascorbate without a food matrix <strong>in</strong> subjectswith HHHigher heme- <strong>and</strong> nonheme-<strong>iron</strong> absorption<strong>in</strong> idiopathic HH <strong>and</strong> heterozygous HHcompared with control subjects; differences<strong>in</strong> slopes relat<strong>in</strong>g SF <strong>and</strong> <strong>bioavailability</strong> <strong>in</strong>HH <strong>and</strong> control patients for both heme<strong>and</strong> nonheme <strong>iron</strong>Tea consumption with <strong>the</strong> meal reduced <strong>iron</strong>absorption significantlyTest meal conta<strong>in</strong>ed 260 mg vitam<strong>in</strong> C Higher serum <strong>iron</strong> appearance <strong>in</strong> IDA <strong>and</strong>p.Cys282Tyr HH compared with controlSerum <strong>iron</strong> <strong>in</strong>crease <strong>in</strong> 1) highest for1) <strong>and</strong> 2) significantly different to3) (P , 0.0001); no differencebetween 1) compared with 2) <strong>and</strong>3) compared with 4)subjects1 AA, ascorbic acid; HH, hereditary hemochromatosis; ID, <strong>iron</strong> deficient; IDA, <strong>iron</strong> deficiency anemia; SF, serum ferrit<strong>in</strong>; TS, transferr<strong>in</strong> saturation.2 All values are means (ranges <strong>in</strong> paren<strong>the</strong>ses) unless o<strong>the</strong>rwise <strong>in</strong>dicated,


DIETARY IRON AND HFE HEMOCHROMATOSIS5<strong>of</strong>12TABLE 2Longitud<strong>in</strong>al <strong>iron</strong> <strong>in</strong>tervention studies <strong>in</strong> subjects with hereditary hemochromatosis 1First author, year <strong>of</strong>publication (reference) Study population Methods Outcome Results 2 Conclusions <strong>and</strong> commentsOlsson, 1997 (36) Idiopathic HH; M; SF:14–16 mg/L; n =16Longitud<strong>in</strong>al cohort study compar<strong>in</strong>g2 periods <strong>of</strong> 1 yA) Study period 1: <strong>iron</strong>-fortifiedwheat flour (65 mg/kg) availableB) Study period 2: no <strong>iron</strong>-fortifiedflour availableKaltwasser, 1998 (34) p.Cys282Tyr HH: n = 18 Nonr<strong>and</strong>omized <strong>in</strong>tervention study<strong>of</strong> 1 yHutch<strong>in</strong>son, 2007 (37) Patients with p.Cys282Tyrmutation <strong>in</strong> venesection<strong>the</strong>rapy with <strong>the</strong> use <strong>of</strong>PPI drugs (lanzoprazole,omeprazole) to decreasegastric acid secretion(n =7)Treatments: with ma<strong>in</strong> mealsA) Black tea: n =9B) No tea: n =9Longitud<strong>in</strong>al cohort study compar<strong>in</strong>gannual phlebotomy requirementsto ma<strong>in</strong>ta<strong>in</strong> SF at 50 mg/L.1) Before PPIs (6.1 y)2) After <strong>in</strong>itiation <strong>of</strong> PPIs (3.8 y)OutcomesA) Quantification <strong>of</strong> amount <strong>of</strong> bloodremoved with phlebotomy/yB) Serum <strong>iron</strong> response to an <strong>iron</strong>test meal conta<strong>in</strong><strong>in</strong>g 14.5 mg FeSF; absorbed <strong>iron</strong>(calculated); <strong>in</strong>terval (d)between phlebotomySF; quantity <strong>of</strong> <strong>iron</strong> removedwith phlebotomyA) compared with B) Iron-fortified wheat flour led tohigher SF <strong>and</strong> a shorter periodAbsorbed <strong>iron</strong>: 4.27 comparedwith 3.36 mgInterval between phlebotomies:59 compared with 69 dDifference <strong>in</strong> SF between 2 studyperiods despite <strong>in</strong>creased <strong>in</strong>terval<strong>of</strong> phlebotomy: 21.2 comparedwith 14.2 mg/L.to <strong>the</strong> next phlebotomy <strong>and</strong>higher <strong>iron</strong> absorbedA) compared with B) Significant <strong>in</strong>crease <strong>in</strong> SF <strong>in</strong>DSF: 2.78 mg/L (r = 0.95,P , 0.05) compared with4.26 mg/L (r = 0.98, P , 0.05)Iron-load<strong>in</strong>g: 1436 comparedwith 1085 mg (NS)both groups but a smallernonsignificant <strong>in</strong>crease whentea was consumed with mealsPhlebotomy <strong>in</strong>terval: 14 comparedwith 13 wkA) 2.5 compared with 0.5 L PPIs reduce <strong>iron</strong> <strong>bioavailability</strong>B) 50% reduction (P , 0.05) <strong>in</strong>serum <strong>iron</strong> AUC when atest meal was adm<strong>in</strong>isteredbefore or after PPIs<strong>and</strong> decreases phlebotomyrequirements <strong>in</strong> patientswith HH1 HH, hereditary hemochromatosis; PPI, proton pump <strong>in</strong>hibitor; SF, serum ferrit<strong>in</strong>.2 All values are means.


6<strong>of</strong>12MORETTI ET ALTABLE 3Cross-sectional studies <strong>in</strong>vestigat<strong>in</strong>g associations between <strong>dietary</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>iron</strong> status <strong>in</strong>dicators <strong>in</strong> hereditary hemochromatosis 1First author, year <strong>of</strong>publication (reference) Study populationStudy designs <strong>and</strong>outcome measures Results 2 ConclusionsScotet, 2003 (38) p.Cys282Tyr/p.Cys282Tyr: n = 378 Cross-sectional comparison <strong>of</strong> <strong>iron</strong>Greenwood, 2005(39); Cade,2005 (40)van der A, 2006(41)McCune, 2006(42)1) Moderate alcohol <strong><strong>in</strong>take</strong>(,60 g/d): n = 3452) High alcohol <strong><strong>in</strong>take</strong>($60 g/d): n =33status (SF, SFe, <strong>and</strong> percentage<strong>of</strong> TS) between 1) <strong>and</strong> 2)1) wt/wt (p.Cys282Tyr): n = 5815 Multivariate l<strong>in</strong>ear regression2) wt/wt (p.His63Asp): n = 4850analysis for associations between3) p.Cys282Tyr/wt: n w 901heme <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> Fe status4) p.His63Asp/wt: n w 1750(SF); assessment <strong>of</strong> long-term5) p.Cys282Tyr/p.Cys282Tyr: n =31 diet by us<strong>in</strong>g a food-frequencya) Premenopausal + perimenopausal: questionnairen =8b) Postmenopausal: n =216) p.Cys282Tyr/p.His63Asp: n w 1707) p.His63Asp/p.His63Asp: n w 170F: n = 1611 Cross-sectional association between1) wt/wt, SF: 72 mg/L; n = 1035heme <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>iron</strong> status2) p.Cys282Tyr/wt, p.His63Asp/wt, (SF)p.His63Asp/p.His63Asp: SF: 83;1) compared with 2) High alcohol <strong><strong>in</strong>take</strong> is associated withSF 2 : 969 mg/L compared withhigher SF <strong>in</strong> p.Cys282Tyr/p.Cys282Tyr1745 mg/L (P , 0.05)SFe 3 :36mmol/liter comparedwith 40 mmol/liter (P , 0.05)Percentage <strong>of</strong> TS: 80%compared with 87%(P , 0.05)Significant diet-gene <strong>in</strong>teraction(P , 0.05) for heme <strong>iron</strong> <strong><strong>in</strong>take</strong><strong>and</strong> p.Cys282Tyr homozygosity;extra 1- mg heme Fe/d <strong>in</strong>creasesSF by 41% (95% CI: 32–51%) <strong>in</strong>p.Cys282Tyr homozygotes; no higher<strong>iron</strong> status or diet-gene <strong>in</strong>teraction forp.His63Asp homozygotesPositive association between SF <strong>and</strong>heme <strong><strong>in</strong>take</strong> <strong>in</strong> all study groupsNo significant <strong>in</strong>teraction <strong>of</strong> genotype 3heme <strong>iron</strong> <strong><strong>in</strong>take</strong>n = 550 Higher SF <strong>in</strong> group 3)3) p.Cys282Tyr/p.Cys282Tyr,p.Cys282Tyr/ p.His63Asp, SF:288: n =26First-degree relatives <strong>of</strong> p.Cys282Tyr/p.Cys282Tyr with differentgenotypes or phenotypes identifiedcl<strong>in</strong>ically or via screen<strong>in</strong>g: n = 165Cross-sectional risk association study.Estimation <strong>of</strong> relative contribution<strong>of</strong> HFE gene to risk <strong>of</strong> <strong>iron</strong>overload phenotype def<strong>in</strong>ed as<strong>the</strong> percentage <strong>of</strong> TS .50% +SF: M .300 mg/L, premenoposalF .200 mg/LFruit consumption: #7 compared with.7 portions/wk; alcohol <strong><strong>in</strong>take</strong>:.5 compared with #5 U/wkAllen, 2007 (8) p.Cys282Tyr/p.Cys282Tyr,:n = 46 Cross sectional <strong>in</strong>vestigation on <strong>the</strong>1) Normal SF (M ,300 mg/L,F ,200 mg/L): n =232) High SF (n = 23)association between alcohol(,20 compared with .20 g/d)<strong>and</strong> meat consumption with <strong>iron</strong>overloadORs (95% CIs) for low compared withhigh fruit consumption <strong>of</strong> 3.28 (1.05,11.42; P , 0.05) <strong>and</strong> for highcompared with low alcohol <strong><strong>in</strong>take</strong><strong>of</strong> 2.30 (1.01, 5.31; P , 0.05)Alcohol <strong><strong>in</strong>take</strong> ,20g/d Alcohol<strong><strong>in</strong>take</strong> .20g/dStrong association between heme <strong>iron</strong><strong><strong>in</strong>take</strong> <strong>and</strong> <strong>iron</strong> status <strong>in</strong> p.Cys282Tyr/p.Cys282Tyr; no additional associationswith <strong>dietary</strong> factors; treatment <strong>of</strong>diagnosed patients unknown; low heme<strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>in</strong> population; SF may beconfounded by <strong>in</strong>fection or <strong>in</strong>flammationHeme <strong>iron</strong> <strong><strong>in</strong>take</strong> is associated with<strong>in</strong>creased SF <strong>in</strong> women withp.Cys282Tyr/p.Cys282Tyr<strong>and</strong> p.Cys282Tyr/p.His63AspNote: no quantitative <strong>in</strong>teraction effectmeasures reported; higher SF with<strong>in</strong>creased heme <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>in</strong> all groupsHigher risk <strong>of</strong> <strong>iron</strong> overload with low fruitconsumption <strong>and</strong> with high alcoholconsumption.Observed higher alcohol <strong><strong>in</strong>take</strong> <strong>in</strong> highcomparedwith low-SF group; highermeat consumption <strong>in</strong> women with highSF; relation was nonsignificant(Cont<strong>in</strong>ued)


DIETARY IRON AND HFE HEMOCHROMATOSIS7<strong>of</strong>12TABLE 3 (Cont<strong>in</strong>ued)First author, year <strong>of</strong>publication (reference) Study populationStudy designs <strong>and</strong>outcome measures Results 2 ConclusionsMilward, 2008(43)Jacobs, 2009(44)Gordeuk, 2012(45)1) wt/wt: n = 1303 Multivariate l<strong>in</strong>ear regressionfor association between2) p.Cys282Tyr/p.Cys282Tyr +p.Cys282Tyr/p.His63Asp:n =573) p.Cys282Tyr/wt/ p.His63Asp/wt: n = 873First-degree relatives <strong>of</strong> HFEp.Cys282Tyr/p.Cys282Tyrsubjects with genotypes: <strong>of</strong>p.Cys282Tyr/p.Cys282Tyr,p.Cys282Tyr/p.His63Asp,p.Cys282Tyr/wt <strong>and</strong> wt/wt:n = 735p.Cys282Tyr/p.Cys282Tyr:n = 213M: n = 133 (mean 6 SD age:50 6 13 y)F: n = 80 (mean 6 SD age:52 6 14 y)<strong>dietary</strong> <strong><strong>in</strong>take</strong> on <strong>iron</strong> status<strong>in</strong> presence <strong>of</strong> HFE genemutations; <strong>dietary</strong> <strong><strong>in</strong>take</strong>assessed qualitatively(frequency <strong>of</strong> consumptionfrom food groups)Multivariate logistic regression<strong>of</strong> genotype, <strong>and</strong> lifestylefactors on percentage <strong>of</strong>TS <strong>and</strong> SF <strong>in</strong> first-degreerelativesEstimation <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong>and</strong>alcohol consumption via aquantitative food-frequencyquestionnaire; multivariatel<strong>in</strong>ear regression <strong>of</strong> ln SFconcentration, with nonheme<strong>iron</strong>, heme <strong>iron</strong>, supplemental<strong>iron</strong>, age, race, C-reactiveprote<strong>in</strong>, <strong>and</strong> ALTconcentrations as predictorsFrequency <strong>of</strong> red meat <strong>and</strong> alcohol<strong><strong>in</strong>take</strong> associated with higher SF<strong>in</strong> men <strong>and</strong> women. Frequency<strong>of</strong> fresh fruit <strong><strong>in</strong>take</strong> associatedwith lower SF <strong>in</strong> men. Cookedvegetable <strong><strong>in</strong>take</strong> associated withhigher SF <strong>in</strong> women. Significant<strong>in</strong>teraction between HFE genotype<strong>and</strong> alcohol consumption <strong>in</strong> women.Familiar <strong>iron</strong> severity OR (95% CI):1.04 (1.10, 1.08) <strong>and</strong> age-<strong>of</strong>-test<strong>in</strong>gOR (95% CI): 1.02 (1.003, 1.05)related to elevated SF concentrations;high meat consumption (.200 g/d)related to elevated SF OR (95% CI)<strong>of</strong> 1.61 (1.01, 2.56)No association <strong>of</strong> nonheme- orheme-<strong>iron</strong> <strong><strong>in</strong>take</strong> with serum ferrit<strong>in</strong>concentrationsAge, sex, ALT, <strong>and</strong> alcohol consumptionsignificantly correlated with SFAlcohol consumption <strong>in</strong>teracts withgenotype on SF <strong>in</strong> women; no diet 3genotype <strong>in</strong>teraction reported ono<strong>the</strong>r <strong>dietary</strong> factorsHeme <strong>iron</strong> <strong><strong>in</strong>take</strong> affects SF concentrations<strong>in</strong> first-degree relatives <strong>of</strong> subjects with<strong>the</strong> HFE p.Cys282Tyr/p.Cys282TyrgenotypeNo detected effect <strong>of</strong> supplemental <strong>iron</strong>,heme <strong>iron</strong>, <strong>and</strong> nonheme <strong>iron</strong> <strong><strong>in</strong>take</strong>son serum ferrit<strong>in</strong> concentrations <strong>in</strong>this population1 ALT, alan<strong>in</strong>e am<strong>in</strong>otransferase; SF, serum ferrit<strong>in</strong>; SFe: serum <strong>iron</strong>; TS, transferr<strong>in</strong> saturation.2 All values are means unless o<strong>the</strong>rwise <strong>in</strong>dicated.


DIETARY IRON AND HFE HEMOCHROMATOSIS9<strong>of</strong>12food (48), <strong>and</strong> a smaller amount <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> would beavailable for uptake. In a study <strong>in</strong> patients homozygous for <strong>the</strong> p.Cys282Tyr mutation, <strong>the</strong> use <strong>of</strong> proton pump <strong>in</strong>hibitors reducedgastric acid secretion <strong>and</strong> decreased <strong>the</strong> need for ma<strong>in</strong>tenancephlebotomy from 2.5 to 0.5 L/y (37). This effect would correspondto a decrease <strong>in</strong> <strong>iron</strong> removal <strong>of</strong> 1000 mg/y. However, <strong>the</strong>magnitude <strong>of</strong> <strong>the</strong> effect is difficult to generalize because <strong>of</strong> <strong>the</strong>small sample size <strong>in</strong>cluded <strong>in</strong> this study (n = 7) <strong>and</strong> requiresconfirmation.Stochastic model<strong>in</strong>g (Monte Carlo) was used <strong>in</strong> a longitud<strong>in</strong>alstudy to estimate <strong>iron</strong> accumulation <strong>in</strong> patients with HH (55). Toconstruct <strong>the</strong> model, demographic <strong>and</strong> <strong>dietary</strong> <strong><strong>in</strong>take</strong> data weretaken from NHANES III, whereas estimates <strong>of</strong> <strong>iron</strong> <strong>bioavailability</strong>were taken from <strong>the</strong> studies by Lynch et al (3) <strong>and</strong>Bezwoda et al (31). For this analysis, 3 <strong>dietary</strong> modificationswere tested by <strong>the</strong> model by sett<strong>in</strong>g <strong>iron</strong> <strong><strong>in</strong>take</strong> to 200% <strong>and</strong> 100%<strong>of</strong> <strong>the</strong> Recommended Dietary Allowance, respectively, <strong>and</strong>defortification <strong>of</strong> <strong>iron</strong>-fortified flour. Estimated reductions <strong>in</strong> <strong>iron</strong>accumulation were more evident <strong>in</strong> men <strong>and</strong> were more pronouncedwith a stricter <strong>dietary</strong> change (such as capp<strong>in</strong>g <strong>iron</strong><strong><strong>in</strong>take</strong> to 100% <strong>of</strong> <strong>the</strong> Recommended Dietary Allowance).However, <strong>the</strong> constructed model was strongly sensitive to estimatesfrom <strong>the</strong> regression l<strong>in</strong>e that related <strong>iron</strong> <strong>bioavailability</strong> <strong>and</strong><strong>iron</strong> stores. The authors concluded that lifelong <strong>dietary</strong> habitsmay affect <strong>the</strong> rate <strong>of</strong> <strong>iron</strong> accumulation <strong>in</strong> HH <strong>and</strong> that <strong>the</strong> modelassumed that all HH patients would have similar degrees <strong>of</strong>impairment <strong>in</strong> absorption control (55).Cross-sectional studies that <strong>in</strong>vestigated associationsIn a cross-sectional study <strong>in</strong> <strong>the</strong> United K<strong>in</strong>gdom, heme <strong>iron</strong><strong><strong>in</strong>take</strong> <strong>and</strong> p.Cys282Tyr homozygosity <strong>in</strong>teracted significantly <strong>in</strong><strong>in</strong>creas<strong>in</strong>g SF concentrations (39). The study <strong>in</strong>dicated that heme<strong>iron</strong> <strong><strong>in</strong>take</strong> had a 2 times greater effect on SF <strong>in</strong> p.Cys282Tyrhomozygotes than <strong>in</strong> o<strong>the</strong>r groups studied (heterozygotes <strong>and</strong>wild-type <strong>in</strong>dividuals), whereas for nonheme <strong>iron</strong>, no differencewas reported (Table 3). Similar results were reported <strong>in</strong> a studydone <strong>in</strong> <strong>the</strong> Ne<strong>the</strong>rl<strong>and</strong>s, where a significant association betweenheme <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> SF was shown <strong>in</strong> all study groups, as well asa higher SF <strong>in</strong> <strong>the</strong> comb<strong>in</strong>ed group <strong>of</strong> p.Cys282Tyr homozygotes<strong>and</strong> compound heterozygotes (p.Cys282Tyr/His63Asp). However,despite higher SF with <strong>in</strong>creas<strong>in</strong>g heme <strong>iron</strong> <strong><strong>in</strong>take</strong>, nosignificant <strong><strong>in</strong>take</strong>-genotype <strong>in</strong>teraction on SF was reported <strong>in</strong> <strong>the</strong>study (41). Both <strong>of</strong> <strong>the</strong>se studies used a validated food-frequencyquestionnaire to assess <strong>dietary</strong> <strong><strong>in</strong>take</strong>s <strong>in</strong> <strong>the</strong> study population.O<strong>the</strong>r cross-sectional studies that assessed <strong>the</strong> <strong><strong>in</strong>take</strong> <strong>of</strong> animalsourcefoods did not identify an association between <strong>iron</strong> status<strong>and</strong> heme <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>in</strong> p.Cys282Tyr homozygotes (42, 43, 45).In a study on first-degree relatives <strong>of</strong> p.Cys282Tyr homozygotes,<strong>the</strong> relative contribution <strong>of</strong> lifestyle <strong>and</strong> genetic factors to <strong>the</strong>presence <strong>of</strong> <strong>iron</strong> overload (def<strong>in</strong>ed as <strong>the</strong> percentage <strong>of</strong> transferr<strong>in</strong>saturation .50% <strong>and</strong> SF concentrations .300 mg/L <strong>in</strong> men <strong>and</strong>.200 mg/L <strong>in</strong> women) was <strong>in</strong>vestigated with logistic regression(42). Genotype expla<strong>in</strong>ed 42% <strong>of</strong> <strong>the</strong> variation <strong>in</strong> <strong>the</strong> model,whereas sex expla<strong>in</strong>ed 6% <strong>of</strong> <strong>the</strong> variation <strong>in</strong> <strong>the</strong> model. Lifestylefactors were used to compute a propensity score <strong>and</strong> expla<strong>in</strong>edan additional 6% <strong>of</strong> <strong>the</strong> variation. These factors werebe<strong>in</strong>g a carrier <strong>of</strong> p.His63Asp, a history <strong>of</strong> liver disease, currentor past blood donorship, fresh-fruit consumption, alcohol consumption,<strong>and</strong> regular aspir<strong>in</strong> <strong><strong>in</strong>take</strong>. Low fruit consumption(,7 portions/wk) was identified as a significant factor thatcontributed to an <strong>iron</strong> overload, toge<strong>the</strong>r with a high <strong><strong>in</strong>take</strong> <strong>of</strong>alcohol (.5 units/wk) (42). Similarly, high noncitrus fruit <strong><strong>in</strong>take</strong>,low meat <strong><strong>in</strong>take</strong>, <strong>and</strong> low alcohol <strong><strong>in</strong>take</strong> were associatedwith lower concentrations <strong>of</strong> SF <strong>in</strong> a population not restricted top.Cys282Tyr homozygotes only (43). In <strong>the</strong> same study, a significant<strong>in</strong>teraction between alcohol <strong><strong>in</strong>take</strong> <strong>and</strong> genotype <strong>in</strong>women was reported (43).This f<strong>in</strong>d<strong>in</strong>g was also <strong>in</strong>dicated <strong>in</strong> a study by Scotet et al (38) <strong>in</strong>p.Cys282Tyr homozygotes, <strong>in</strong> which significant associationsbetween higher <strong>iron</strong> <strong>in</strong>dexes with <strong>in</strong>creased alcohol <strong><strong>in</strong>take</strong> werereported (38). In an additional study, first-degree relatives <strong>of</strong> p.Cys282Tyr homozygotes had a significant higher ferrit<strong>in</strong> OR(95% CI) <strong>of</strong> 1.61 (1.01, 2.56) if <strong>the</strong>y were identified as high meatconsumers (.200 g/d) (44). In contrast to this f<strong>in</strong>d<strong>in</strong>g, Gordeuket al (45) did not f<strong>in</strong>d an association between nonheme <strong>and</strong> heme<strong>iron</strong> <strong><strong>in</strong>take</strong>s <strong>and</strong> serum ferrit<strong>in</strong> concentrations <strong>in</strong> a population <strong>of</strong>newly identified middle-aged p.Cys282Tyr homozygotes <strong>in</strong>whom <strong>iron</strong> <strong><strong>in</strong>take</strong> was estimated by us<strong>in</strong>g a food-frequencyquestionnaire (45).Calculation <strong>of</strong> <strong>iron</strong> absorption <strong>in</strong> HHIn <strong>the</strong> past, <strong>the</strong> relation between SF <strong>and</strong> <strong>iron</strong> <strong>bioavailability</strong> hasbeen considered a potential diagnostic tool for early diseasediagnosis (32). Because serum hepcid<strong>in</strong> concentrations relative t<strong>of</strong>errit<strong>in</strong> concentrations are significantly lower <strong>in</strong> HH subjects(20), <strong>the</strong> serum hepcid<strong>in</strong>:ferrit<strong>in</strong> ratio has also been suggested asa useful diagnostic tool for <strong>the</strong> early detection <strong>of</strong> p.Cys282Tyrhomozygotes at risk <strong>of</strong> develop<strong>in</strong>g <strong>iron</strong> overload as well as formonitor<strong>in</strong>g phlebotomy treatment (14, 56). The relation between<strong>iron</strong> <strong>bioavailability</strong> <strong>and</strong> hepcid<strong>in</strong> concentrations has beenassessed <strong>in</strong> normal subjects (26, 57). With <strong>the</strong> assumption tha<strong>the</strong>pcid<strong>in</strong> regulates <strong>iron</strong> <strong>bioavailability</strong> similarly <strong>in</strong> HFE p.Cys282Tyr HH subjects <strong>and</strong> healthy control subjects, it can beestimated that <strong>iron</strong> absorption from a st<strong>and</strong>ardized meal (ricewith vegetable sauce) ranges between 12.2% <strong>and</strong> 15.3% <strong>and</strong>from 6.6% to 12.4% <strong>in</strong> HH subjects <strong>and</strong> healthy control subjects,respectively, at normal SF concentrations (32–162 mg/L). Incontrast, <strong>in</strong> HH subjects with elevated ferrit<strong>in</strong> concentrations(330–1045 mg/L), food <strong>iron</strong> absorption would range between8.6% <strong>and</strong> 11.3% (Figure 1).DISCUSSIONStudies that have measured <strong>iron</strong> absorption <strong>in</strong> HH subjects<strong>in</strong>dicated that <strong>the</strong> <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong> cl<strong>in</strong>ically penetrant HHpatients 1) is generally 2–10-folds higher than <strong>in</strong> wild-type <strong>in</strong>dividualsdepend<strong>in</strong>g on <strong>the</strong> st<strong>and</strong>ardized <strong>iron</strong> status at which <strong>the</strong>groups were compared; 2) is high for <strong>iron</strong> stores, particularly forheme <strong>iron</strong>, 3) is <strong>in</strong>fluenced by <strong>the</strong> food matrix, <strong>and</strong> 4) maystabilize at a range <strong>of</strong> 15–35% <strong>dietary</strong> <strong>iron</strong> <strong>bioavailability</strong> athigh <strong>iron</strong> stores (.300 mg SF/L) <strong>and</strong>, <strong>the</strong>refore, is similar to <strong>iron</strong>absorption <strong>in</strong> non-HH <strong>iron</strong>-deficient subjects.It has been shown that duodenal enterocytes <strong>in</strong> HH patientshave an expression <strong>of</strong> <strong>iron</strong> transport prote<strong>in</strong>s elevated for <strong>the</strong>ir<strong>iron</strong>-store concentration (18), <strong>and</strong> repeated phlebotomies <strong>in</strong>ducean <strong>in</strong>creased expression, which is likely responsible for <strong>in</strong>creasedmucosal transfer (18). The absorption studies reviewed (3, 31)suggested that <strong>the</strong> choice <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> source (heme or nonheme


10 <strong>of</strong> 12 MORETTI ET ALFIGURE 1. IQRs (l<strong>in</strong>es) <strong>and</strong> medians (dots) <strong>of</strong> serum ferrit<strong>in</strong>, hepcid<strong>in</strong>,<strong>and</strong> estimated <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong> HH patients with high or normal ferrit<strong>in</strong>values compared with those <strong>of</strong> <strong>the</strong>ir WT counterparts. The estimated <strong>iron</strong><strong>bioavailability</strong> was based on <strong>the</strong> extrapolation <strong>of</strong> hepcid<strong>in</strong> concentrations <strong>in</strong>HH patients as published by van Dijk et al (20) with <strong>the</strong> follow<strong>in</strong>g regressionformula: <strong>iron</strong> absorption (%) = 23.9656 ln[hepcid<strong>in</strong> (nmol/L)] + 13.238(26), relat<strong>in</strong>g hepcid<strong>in</strong> concentrations with <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong> healthysubjects. HH, hereditary hemochromatosis; WT, wild-type.<strong>iron</strong>) can affect <strong>the</strong> <strong>iron</strong> absorption <strong>and</strong> balance <strong>in</strong> HH patients.In addition, <strong>the</strong> modulation <strong>of</strong> <strong>the</strong> amount <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong><strong>in</strong>take</strong>(36) or <strong>iron</strong> <strong>bioavailability</strong> (34) may decrease <strong>the</strong> rate <strong>of</strong> <strong>iron</strong>accumulation <strong>in</strong> patients with HH. It has also been shown that<strong>the</strong> presence <strong>of</strong> a food matrix per se (31) <strong>in</strong>fluences <strong>iron</strong> <strong>bioavailability</strong><strong>in</strong> HH patients. The factors that would elicit an effecton <strong>iron</strong> <strong>bioavailability</strong> are similar to enhancers <strong>and</strong> <strong>in</strong>hibitors <strong>of</strong><strong>iron</strong> absorption for non-HH subjects (58). The prospective,longitud<strong>in</strong>al studies discussed <strong>in</strong> this review also suggested aneffect by <strong>dietary</strong> modulation on <strong>iron</strong> balance <strong>in</strong> HH patients (34,36). However, <strong>the</strong> overall (nonsignificant) effect reported <strong>in</strong> <strong>the</strong>study that <strong>in</strong>vestigated <strong>the</strong> effect <strong>of</strong> tea on long-term body <strong>iron</strong>status may have been a result <strong>of</strong> o<strong>the</strong>r <strong>dietary</strong> <strong>and</strong> lifestylefactors associated with frequent tea dr<strong>in</strong>k<strong>in</strong>g because subjectswere not r<strong>and</strong>omly assigned to treatment. Fur<strong>the</strong>rmore, <strong>the</strong> latterstudy had a small sample size (n = 19) (34). Although <strong>the</strong> resultsseen may not have been solely because <strong>of</strong> tea dr<strong>in</strong>k<strong>in</strong>g, <strong>the</strong>effect size suggested a decrease <strong>in</strong> absorbed <strong>iron</strong> over <strong>the</strong>course <strong>of</strong> 1 y <strong>of</strong> w400 mg, one-third <strong>in</strong> <strong>iron</strong> accumulation (34),<strong>and</strong> would correspond to a yearly decrease <strong>in</strong> phlebotomy need<strong>of</strong> 0.7 L blood.Despite this suggestive evidence, limited direct evidence wasshown to support <strong>the</strong> hypo<strong>the</strong>sis that <strong>dietary</strong> modulation can<strong>in</strong>fluence <strong>iron</strong> accumulation <strong>in</strong> HH patients <strong>in</strong> a cl<strong>in</strong>ically relevantmanner. This was a result <strong>of</strong> several important limitations.First, <strong>the</strong> evidence from cross-sectional studies was difficult to<strong>in</strong>terpret because <strong>of</strong> <strong>the</strong> potential confound<strong>in</strong>g effect <strong>of</strong> chronicsubcl<strong>in</strong>ical <strong>in</strong>flammation (ie, diabetes, <strong>the</strong> metabolic syndrome,<strong>and</strong> cardiovascular disease), which <strong>in</strong>fluences <strong>iron</strong>-statusmarkers, which was likely to confound <strong>the</strong> relation between<strong>dietary</strong> <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> <strong>iron</strong> status. In one <strong>of</strong> <strong>the</strong> cross-sectionalstudies (42), low fruit <strong><strong>in</strong>take</strong> was associated with higher risk <strong>of</strong>hav<strong>in</strong>g an <strong>iron</strong>-overload phenotype <strong>in</strong> first-degree relatives <strong>of</strong> HHpatients. This result was somewhat surpris<strong>in</strong>g because an oppositeeffect may be expected because <strong>of</strong> <strong>the</strong> vitam<strong>in</strong> C content <strong>of</strong>fruit. However, it is possible that fruit <strong><strong>in</strong>take</strong> was a proxy for <strong>the</strong><strong>dietary</strong> quality <strong>and</strong> a healthier lifestyle. This limitation may alsoapply to studies that <strong>in</strong>vestigate <strong>the</strong> <strong>bioavailability</strong> <strong>of</strong> <strong>iron</strong> <strong>in</strong>relation with SF, <strong>in</strong> which SF may not always reflect <strong>iron</strong> stores<strong>in</strong> <strong>the</strong> presence <strong>of</strong> subcl<strong>in</strong>ical <strong>in</strong>flammation.A second limitation was that fully penetrant HH is a raredisease, which makes it difficult to conduct large prospectivestudies with <strong>iron</strong> status as <strong>the</strong> primary outcome. Therefore,studies have thus far been mostly conducted <strong>in</strong> small groups <strong>of</strong>subjects (n = 16–18), which has limited <strong>the</strong> statistical power<strong>of</strong> <strong>in</strong>ference (59, 60). New approaches to study design such as<strong>the</strong> use <strong>of</strong> population pharmacok<strong>in</strong>etics to describe changes <strong>in</strong><strong>iron</strong> status <strong>in</strong> longitud<strong>in</strong>al studies may allow studies to beconducted with smaller populations <strong>of</strong> HH patients <strong>and</strong> moreclosely describe <strong>the</strong> development <strong>of</strong> <strong>iron</strong> status over time follow<strong>in</strong>gspecific <strong>dietary</strong> or lifestyle patterns (61). With <strong>the</strong> use <strong>of</strong><strong>the</strong> quantity <strong>of</strong> <strong>iron</strong> removed by a phlebotomy as an outcomemeasure may be promis<strong>in</strong>g because it would be less affected byshort-term changes <strong>in</strong> <strong>iron</strong>-status markers because <strong>of</strong> subcl<strong>in</strong>ical<strong>in</strong>flammation.Third, as noted by Tao et al (55), <strong>the</strong> calculation <strong>of</strong> <strong>the</strong> SF to<strong>iron</strong> <strong>bioavailability</strong> regression equation assumes that all subjectswith cl<strong>in</strong>ically penetrant HH have a similar impairment <strong>of</strong> <strong>iron</strong>absorption regulation, which may not be <strong>the</strong> case (51) becausea small proportion <strong>of</strong> homozygotes develop <strong>iron</strong> overload, <strong>and</strong><strong>iron</strong> stores may plateau before reach<strong>in</strong>g <strong>the</strong> critical level (52). Arange <strong>of</strong> genetic <strong>and</strong> env<strong>iron</strong>mental factors, <strong>in</strong>clud<strong>in</strong>g <strong>dietary</strong>factors (15), may <strong>in</strong>fluence <strong>iron</strong> <strong><strong>in</strong>take</strong> <strong>and</strong> bodily <strong>iron</strong> distribution<strong>and</strong>, thus, may <strong>in</strong>fluence disease penetrance. The prediction<strong>of</strong> <strong>the</strong> <strong>bioavailability</strong> <strong>in</strong> HH patients by us<strong>in</strong>g <strong>the</strong> serumhepcid<strong>in</strong> concentration may provide <strong>in</strong>dications about <strong>the</strong> rate <strong>of</strong><strong>iron</strong> load<strong>in</strong>g <strong>in</strong> <strong>in</strong>dividual subjects at any given time but wouldrequire reference data that l<strong>in</strong>k <strong>the</strong> hepcid<strong>in</strong> concentration to <strong>iron</strong><strong>bioavailability</strong> <strong>in</strong> cl<strong>in</strong>ically confirmed HH subjects. Studies thatexplicitly l<strong>in</strong>k genetic mutations <strong>and</strong> env<strong>iron</strong>mental <strong>and</strong> epigeneticfactors to <strong>iron</strong> <strong>bioavailability</strong> <strong>in</strong> cl<strong>in</strong>ically confirmed HHsubjects may provide additional leads.Fourth, <strong>in</strong> only one <strong>of</strong> <strong>the</strong> studies that directly assessed <strong>iron</strong><strong>bioavailability</strong>, <strong>the</strong> HFE genotype was assessed. The rema<strong>in</strong><strong>in</strong>gstudies <strong>in</strong> idiopathic HH patients, although conducted <strong>in</strong> cl<strong>in</strong>icallyconfirmed HH patients, may not have been entirely representative<strong>of</strong> <strong>the</strong> population <strong>of</strong> HFE-related HH patients <strong>and</strong>because isotopic studies have typically been conducted <strong>in</strong> a limitednumber <strong>of</strong> subjects. However, <strong>the</strong> likelihood <strong>of</strong> <strong>in</strong>clud<strong>in</strong>g


DIETARY IRON AND HFE HEMOCHROMATOSIS 11 <strong>of</strong> 12a subject with a rare genotype o<strong>the</strong>r than homozygosity for <strong>the</strong> p.Cys282Tyr mutation <strong>in</strong> <strong>the</strong> HFE gene or <strong>in</strong> o<strong>the</strong>r HH-relatedgenes is low because <strong>of</strong> <strong>the</strong> high prevalence <strong>of</strong> p.Cys282Tyrhomozygosity <strong>in</strong> cl<strong>in</strong>ically affected HH patients (25).In HH patients with low to normal <strong>iron</strong> status who consumea typical Western diet that conta<strong>in</strong>s 16–18 mg/d Fe (62), a <strong>dietary</strong><strong>iron</strong> absorption <strong>of</strong> 20–40% for heme <strong>and</strong> nonheme <strong>iron</strong> comb<strong>in</strong>edas shown <strong>in</strong> <strong>the</strong> studied literature would imply a long-termpositive <strong>iron</strong> balance <strong>of</strong> w3–7 mg/d. It is very unlikely that sucha positive balance could be reduced to zero with an exclusive<strong>dietary</strong> <strong>in</strong>tervention. However, a <strong>dietary</strong> modulation may bea useful accessory measure to reduce <strong>the</strong> rapid reaccumulation<strong>of</strong> <strong>iron</strong> <strong>in</strong> cl<strong>in</strong>ically diagnosed HH patients who are undergo<strong>in</strong>ga phlebotomy, especially <strong>in</strong> <strong>the</strong> ma<strong>in</strong>tenance phase. Depletionthrough a phlebotomy <strong>of</strong> HH patients until a very low SF concentration(50 mg/L) is reached (63) will upregulate <strong>the</strong> <strong>iron</strong>absorption <strong>in</strong> HH patients. Therefore, <strong>the</strong> <strong>in</strong>hibition or reduction<strong>of</strong> absorbed <strong>iron</strong> by <strong>dietary</strong> modulation could help to avoidexacerbat<strong>in</strong>g <strong>the</strong> excess release <strong>of</strong> <strong>iron</strong> <strong>in</strong>to <strong>the</strong> circulation,which results <strong>in</strong> a vicious circle <strong>of</strong> more-frequent ma<strong>in</strong>tenancephlebotomies <strong>in</strong> HH patients (20, 64)In conclusion, <strong>dietary</strong> modification may provide an auxiliarymeasure to <strong>in</strong>hibit <strong>iron</strong> accumulation <strong>and</strong> reduce <strong>the</strong> number <strong>of</strong>required phlebotomies <strong>in</strong> cl<strong>in</strong>ically confirmed HH patients. Thisresult could <strong>in</strong>crease <strong>the</strong> patient’s active <strong>in</strong>volvement <strong>in</strong> treatment<strong>and</strong>, as such, may be beneficial for prospective diseaseoutcomes (65). However, additional longitud<strong>in</strong>al research wouldbe required to formulate <strong>and</strong> test an effective <strong>dietary</strong> strategy forthis patient group <strong>and</strong> quantify <strong>the</strong> cl<strong>in</strong>ical benefit <strong>in</strong> <strong>the</strong> number<strong>of</strong> phlebotomies avoided as well as patient wellbe<strong>in</strong>g. Sucha <strong>dietary</strong> strategy would comprise lower<strong>in</strong>g <strong>dietary</strong> <strong>iron</strong> <strong><strong>in</strong>take</strong><strong>and</strong> reduc<strong>in</strong>g <strong>iron</strong> <strong>bioavailability</strong> while ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g adequate<strong><strong>in</strong>take</strong>s <strong>of</strong> o<strong>the</strong>r essential nutrients that are typically consumed aspart <strong>of</strong> an <strong>iron</strong>-rich diet (ie, z<strong>in</strong>c, vitam<strong>in</strong> C, <strong>and</strong> vitam<strong>in</strong> B-12).We thank Hans Verhoef, Cell Biology <strong>and</strong> Immunology, Wagen<strong>in</strong>gen University,Ne<strong>the</strong>rl<strong>and</strong>s, for <strong>in</strong>-depth advice <strong>and</strong> Irene Gossel<strong>in</strong>k, Science Shop,Wagen<strong>in</strong>gen University, Ne<strong>the</strong>rl<strong>and</strong>s, for logistical support. We are grateful to<strong>the</strong> Dutch Hemochromatosis Society (Nederl<strong>and</strong>se Hemochromatose Vere<strong>in</strong>ig<strong>in</strong>g)for <strong>the</strong> <strong>in</strong>terest <strong>in</strong> <strong>dietary</strong> factors that affect patients with HH.The authors’ responsibilities were as follows—GMvD, DM, <strong>and</strong> AM-B:conducted <strong>the</strong> literature research; DM: wrote <strong>the</strong> first draft <strong>of</strong> <strong>the</strong> manuscript;GMvD, AM-B, <strong>and</strong> DWS: edited <strong>the</strong> manuscript; DM <strong>and</strong> AM-B: hadprimary responsibility for <strong>the</strong> f<strong>in</strong>al content <strong>of</strong> <strong>the</strong> manuscript; <strong>and</strong> all authors:designed <strong>the</strong> study <strong>and</strong> read <strong>and</strong> approved <strong>the</strong> f<strong>in</strong>al manuscript. None <strong>of</strong> <strong>the</strong>authors declared a conflict <strong>of</strong> <strong>in</strong>terest.REFERENCES1. Janssen MC, Sw<strong>in</strong>kels DW. Hereditary haemochromatosis. Best PractRes Cl<strong>in</strong> Gastroenterol 2009;23:171–83.2. Walters GO, Jacobs A, Worwood M, Trevett D, Thomson W. Ironabsorption<strong>in</strong> normal subjects <strong>and</strong> patients with idiopathic hemochromatosis- relationship with serum ferrit<strong>in</strong> concentration. Gut 1975;16:188–92.3. Lynch SR, Skikne BS, Cook JD. Food <strong>iron</strong>-absorption <strong>in</strong> idiopathichemochromatosis. Blood 1989;74:2187–93.4. Sw<strong>in</strong>kels DW, Janssen MCH, Bergmans J, Marx JJM. Hereditary hemochromatosis:genetic complexity <strong>and</strong> new diagnostic approaches.Cl<strong>in</strong> Chem 2006;52:950–68.5. van Bokhoven MA, van Deursen CT, Sw<strong>in</strong>kels DW. Diagnosis <strong>and</strong>management <strong>of</strong> hereditary haemochromatosis. BMJ 2011;342:c7251.6. Merrywea<strong>the</strong>r-Clarke AT, Po<strong>in</strong>ton JJ, Shearman JD, Robson KJ. Globalprevalence <strong>of</strong> putative haemochromatosis mutations. J Med Genet1997;34:275–8.7. Beutler E, Felitti VJ, Koziol JA, Ho NJ, Gelbart T. Penetrance <strong>of</strong>845g/ a (c282y) hfe hereditary haemochromatosis mutation <strong>in</strong> <strong>the</strong>USA. Lancet 2002;359:211–8.8. Allen KJ, Gurr<strong>in</strong> LC, Constant<strong>in</strong>e CC, Osborne NJ, Delatycki MB,Nicoll AJ, McLaren CE, Bahlo M, Nisselle AE, Vulpe CD, et al. Ironoverload-relateddisease <strong>in</strong> HFE hereditary hemochromatosis. N Engl JMed 2008;358:221–30.9. McCune CA. Sex, drugs, <strong>and</strong> “heavy metal”: does diet also matter <strong>in</strong><strong>the</strong> cl<strong>in</strong>ical expression <strong>of</strong> hereditary hemochromatosis? Mayo Cl<strong>in</strong>Proc 2008;83:526–8 .10. Hallberg L, Hulten L, Gramatkovski E. Iron absorption from <strong>the</strong> wholediet <strong>in</strong> men: how effective is <strong>the</strong> regulation <strong>of</strong> <strong>iron</strong> absorption? Am JCl<strong>in</strong> Nutr 1997;66:347–56.11. Sharp PA. Intest<strong>in</strong>al <strong>iron</strong> absorption: regulation by <strong>dietary</strong> & systemicfactors. Int J Vitam Nutr Res 2010;80:231–42.12. Anderson GJ, Frazer DM, McKie AT, Vulpe CD, Smith A. Mechanisms<strong>of</strong> haem <strong>and</strong> non-haem <strong>iron</strong> absorption: lessons from <strong>in</strong>herited disorders<strong>of</strong> <strong>iron</strong> metabolism. Biometals 2005;18:339–48.13. Le Blanc S, Garrick MD, Arredondo M. Heme carrier prote<strong>in</strong> 1transports heme <strong>and</strong> is <strong>in</strong>volved <strong>in</strong> heme-Fe metabolism. Am J PhysiolCell Physiol 2012;302:C1780–5.14. Kroot JJ, Tjalsma H, Flem<strong>in</strong>g RE, Sw<strong>in</strong>kels DW. Hepcid<strong>in</strong> <strong>in</strong> human<strong>iron</strong> disorders: diagnostic implications. Cl<strong>in</strong> Chem 2011;57:1650–69.15. Weiss G. Genetic mechanisms <strong>and</strong> modify<strong>in</strong>g factors <strong>in</strong> hereditaryhemochromatosis. Nat Rev Gastroenterol Hepatol 2010;7:50–8.16. Zoller H, Pietrangelo A, Vogel W, Weiss G. Duodenal metaltransporter(DMT-1, NRAMP-2) expression <strong>in</strong> patients with hereditaryhaemochromatosis. Lancet 1999;353:2120–3.17. Zoller H, Koch RO, Theurl I, Obrist P, Pietrangelo A, Montosi G, HaileDJ, Vogel W, Weiss G. Expression <strong>of</strong> <strong>the</strong> duodenal <strong>iron</strong> transportersdivalent-metal transporter 1 <strong>and</strong> ferroport<strong>in</strong> 1 <strong>in</strong> <strong>iron</strong> deficiency <strong>and</strong><strong>iron</strong> overload. Gastroenterology 2001;120:1412–9.18. Stuart KA, Anderson GJ, Frazer DM, Powell LW, McCullen M,Fletcher LM, Crawford DH. Duodenal expression <strong>of</strong> <strong>iron</strong> transportmolecules <strong>in</strong> untreated haemochromatosis subjects. Gut 2003;52:953–9.19. Zoller H, Theurl I, Koch RO, McKie AT, Vogel W, Weiss G. Duodenalcytochrome b <strong>and</strong> hephaest<strong>in</strong> expression <strong>in</strong> patients with <strong>iron</strong> deficiency<strong>and</strong> hemochromatosis. Gastroenterology 2003;125:746–54.20. van Dijk BA, Laarakkers CM, Klaver SM, Jacobs EM, van Tits LJ,Janssen MC, Sw<strong>in</strong>kels DW. Serum hepcid<strong>in</strong> levels are <strong>in</strong>nately low <strong>in</strong>HFE-related haemochromatosis but differ between C282Y-homozygoteswith elevated <strong>and</strong> normal ferrit<strong>in</strong> levels. Br J Haematol 2008;142:979–85.21. Zimmermann MB, Chaouki N, Hurrell RF. Iron deficiency due toconsumption <strong>of</strong> a habitual diet low <strong>in</strong> bioavailable <strong>iron</strong>: a longitud<strong>in</strong>alcohort study <strong>in</strong> Moroccan children. Am J Cl<strong>in</strong> Nutr 2005;81:115–21.22. Zimmermann MB, Hurrell RF. Nutritional <strong>iron</strong> deficiency. Lancet2007;370:511–20.23. Brissot P, Troadec MB, Bardou-Jacquet E, Le Lan C, Jouanolle AM,Deugnier Y, Loreal O. Current approach to hemochromatosis. BloodRev 2008;22:195–210.24. Adams PC, Barton JC. How I treat hemochromatosis. Blood 2010;116:317–25.25. Feder JN, Gnirke A, Thomas W, Tsuchihashi Z, Ruddy DA, Basava A,Dormishian F, Dom<strong>in</strong>go R Jr, Ellis MC, Fullan A, et al. A novel MHCclass I-like gene is mutated <strong>in</strong> patients with hereditary haemochromatosis.Nat Genet 1996;13:399–408.26. Zimmermann MB, Troesch B, Bieb<strong>in</strong>ger R, Egli I, Zeder C, HurrellRF. Plasma hepcid<strong>in</strong> is a modest predictor <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong>bioavailability</strong><strong>in</strong> humans, whereas oral <strong>iron</strong> load<strong>in</strong>g, measured by stableisotopeappearance curves, <strong>in</strong>creases plasma hepcid<strong>in</strong>. Am J Cl<strong>in</strong> Nutr2009;90:1280–7.27. Sw<strong>in</strong>kels DW, Girelli D, Laarakkers C, Kroot J, Campostr<strong>in</strong>i N, KemnaEH, Tjalsma H. Advances <strong>in</strong> quantitative hepcid<strong>in</strong> measurements bytime-<strong>of</strong>-flight mass spectrometry. PLoS ONE 2008;3:e2706.28. Kroot JJ, Laarakkers CM, Geurts-Moespot AJ, Grebenchtchikov N,Pickkers P, van Ede AE, Peters HP, van Dongen-Lases E, Wetzels JF,Sweep FC, et al. Immunochemical <strong>and</strong> mass-spectrometry-based serumhepcid<strong>in</strong> assays for <strong>iron</strong> metabolism disorders. Cl<strong>in</strong> Chem 2010;56:1570–9.29. Smith PM, Godfrey BE, Williams R. Iron absorption <strong>in</strong> idiopathichaemochromatosis <strong>and</strong> its measurement us<strong>in</strong>g a whole-body counter.Cl<strong>in</strong> Sci 1969;37:519–31.30. Williams R, Manenti F, Williams HS, Pitcher CS. Iron absorption <strong>in</strong>idiopathic haemochromatosis before, dur<strong>in</strong>g, <strong>and</strong> after venesection<strong>the</strong>rapy. BMJ 1966;2:78–81.


12 <strong>of</strong> 12 MORETTI ET AL31. Bezwoda WR, Disler PB, Lynch SR, Charlton RW, Torrance JD,Derman D, Bothwell TH, Walker RB, Mayet F. Patterns <strong>of</strong> food <strong>iron</strong>absorption <strong>in</strong> <strong>iron</strong>-deficient white <strong>and</strong> Indian subjects <strong>and</strong> <strong>in</strong> venesectedhaemochromatotic patients. Br J Haematol 1976;33:425–36.32. Valberg LS, Ghent CN, Lloyd DA, Frei JV, Chamberla<strong>in</strong> MJ. Ironabsorption<strong>in</strong> idiopathic hemochromatosis - relationship to serum ferrit<strong>in</strong>concentration <strong>in</strong> asymptomatic relatives. Cl<strong>in</strong> Invest Med 1979;2:17–22.33. Bezwoda WR, Bothwell TH, Derman DP, MacPhail AP, Torrance JD,Charlton RW. Effect <strong>of</strong> diet on <strong>the</strong> rate <strong>of</strong> <strong>iron</strong> accumulation <strong>in</strong> idiopathichaemochromatosis. S Afr Med J 1981;59:219–22.34. Kaltwasser JP, Werner E, Schalk K, Hansen C, Gottschalk R, Seidl C.Cl<strong>in</strong>ical trial on <strong>the</strong> effect <strong>of</strong> regular tea dr<strong>in</strong>k<strong>in</strong>g on <strong>iron</strong> accumulation<strong>in</strong> genetic haemochromatosis. Gut 1998;43:699–704.35. Hutch<strong>in</strong>son C, Conway RE, Bomford A, Hider RC, Powell JJ, GeisslerCA. Post-pr<strong>and</strong>ial <strong>iron</strong> absorption <strong>in</strong> humans: comparison betweenHFE genotypes <strong>and</strong> <strong>iron</strong> deficiency anaemia. Cl<strong>in</strong> Nutr 2008;27:258–63.36. Olsson KS, Vaisanen M, Konar J, Bruce A. The effect <strong>of</strong> withdrawal <strong>of</strong>food <strong>iron</strong> fortification <strong>in</strong> Sweden as studied with phlebotomy <strong>in</strong> subjectswith genetic hemochromatosis. Eur J Cl<strong>in</strong> Nutr 1997;51:782–6.37. Hutch<strong>in</strong>son C, Geissler CA, Powell JJ, Bomford A. Proton pump <strong>in</strong>hibitorssuppress absorption <strong>of</strong> <strong>dietary</strong> non-haem <strong>iron</strong> <strong>in</strong> hereditaryhaemochromatosis. Gut 2007;56:1291–5.38. Scotet V, Merour MC, Mercier AY, Chanu B, Le Faou T, Raguenes O,Le Gac G, Mura C, Nousbaum JB, Ferec C. Hereditary hemochromatosis:effect <strong>of</strong> excessive alcohol consumption on disease expression<strong>in</strong> patients homozygous for <strong>the</strong> c282y mutation. Am J Epidemiol 2003;158:129–34.39. Greenwood DC, Cade JE, Moreton JA, O’Hara B, Burley VJ,R<strong>and</strong>erson-Moor JA, Kukalizch K, Thompson D, Worwood M, BishopDT. HFE genotype modifies <strong>the</strong> <strong>in</strong>fluence <strong>of</strong> heme <strong>iron</strong> <strong><strong>in</strong>take</strong> on <strong>iron</strong>status. Epidemiology 2005;16:802–5.40. Cade JE, Moreton JA, O’Hara B, Greenwood DC, Moor J, Burley VJ,Kukalizch K, Bishop DT, Worwood M. Diet <strong>and</strong> genetic factors associatedwith <strong>iron</strong> status <strong>in</strong> middle-aged women. Am J Cl<strong>in</strong> Nutr 2005;82:813–20.41. van der A DL, Peeters PH, Grobbee DE, Roest M, Voorbij HA, van derSchouw YT. HFE genotypes <strong>and</strong> <strong>dietary</strong> heme <strong>iron</strong>: no evidence <strong>of</strong>strong gene-nutrient <strong>in</strong>teraction on serum ferrit<strong>in</strong> concentrations <strong>in</strong>middle-aged women. Nutr Metab Cardiovasc Dis 2006;16:60–8.42. McCune CA, Rav<strong>in</strong>e D, Carter K, Jackson HA, Hutton D, Hedderich J,Krawczak M, Worwood M. Iron load<strong>in</strong>g <strong>and</strong> morbidity among relatives<strong>of</strong> HFE c282y homozygotes identified ei<strong>the</strong>r by population genetictest<strong>in</strong>g or present<strong>in</strong>g as patients. Gut 2006;55:554–62.43. Milward EA, Ba<strong>in</strong>es SK, Knuiman MW, Bartholomew HC, Divit<strong>in</strong>iML, Rav<strong>in</strong>e DG, Bruce DG, Olynyk JK. Noncitrus fruits as novel <strong>dietary</strong>env<strong>iron</strong>mental modifiers <strong>of</strong> <strong>iron</strong> stores <strong>in</strong> people with or withoutHFE gene mutations. Mayo Cl<strong>in</strong> Proc 2008;83:543–9.44. Jacobs EM, Hendriks JC, van Deursen CT, Kreeftenberg HG, de VriesRA, Marx JJ, Stalenhoef AF, Verbeek AL, Sw<strong>in</strong>kels DW. Severity <strong>of</strong><strong>iron</strong> overload <strong>of</strong> prob<strong>and</strong> determ<strong>in</strong>es serum ferrit<strong>in</strong> levels <strong>in</strong> familieswith HFE-related hemochromatosis: <strong>the</strong> hemochromatosis familystudy. J Hepatol 2009;50:174–83.45. Gordeuk VR, Lovato L, Barton J, Vitol<strong>in</strong>s M, McLaren G, Acton R,McLaren C, Harris E, Speechley M, Eckfeldt JH, et al. Dietary <strong>iron</strong><strong><strong>in</strong>take</strong> <strong>and</strong> serum ferrit<strong>in</strong> concentration <strong>in</strong> 213 patients homozygous for<strong>the</strong> hfec282y hemochromatosis mutation. Can J Gastroenterol 2012;26:345–9.46. Hallberg L, Brune M, Ross<strong>and</strong>er L. Iron absorption <strong>in</strong> man: ascorbicacid <strong>and</strong> dose-dependent <strong>in</strong>hibition by phytate. Am J Cl<strong>in</strong> Nutr 1989;49:140–4.47. Moretti D, Zimmermann MB, Wegmuller R, Walczyk T, Zeder C,Hurrell RF. Iron status <strong>and</strong> food matrix strongly affect <strong>the</strong> relative<strong>bioavailability</strong> <strong>of</strong> ferric pyrophosphate <strong>in</strong> humans. Am J Cl<strong>in</strong> Nutr2006;83:632–8.48. Hurrell RF, Reddy M, Cook JD. Inhibition <strong>of</strong> non-haem <strong>iron</strong> absorption<strong>in</strong> man by polyphenolic-conta<strong>in</strong><strong>in</strong>g beverages. Br J Nutr 1999;81:289–95.49. Thankachan P, Walczyk T, Muthayya S, Kurpad AV, Hurrell RF. Ironabsorption <strong>in</strong> young <strong>in</strong>dian women: <strong>the</strong> <strong>in</strong>teraction <strong>of</strong> <strong>iron</strong> status with<strong>the</strong> <strong>in</strong>fluence <strong>of</strong> tea <strong>and</strong> ascorbic acid. Am J Cl<strong>in</strong> Nutr 2008;87:881–6.50. Adams PC, Kertesz AE, Valberg LS. Rate <strong>of</strong> <strong>iron</strong> reaccumulationfollow<strong>in</strong>g <strong>iron</strong> depletion <strong>in</strong> hereditary hemochromatosis - implicationsfor venesection <strong>the</strong>rapy. J Cl<strong>in</strong> Gastroenterol 1993;16:207–10.51. Gurr<strong>in</strong> LC, Osborne NJ, Constant<strong>in</strong>e CC, McLaren CE, English DR,Gertig DM, Delatycki MB, Sou<strong>the</strong>y MC, Hopper JL, Giles GG, et al.The natural history <strong>of</strong> serum <strong>iron</strong> <strong>in</strong>dices for hfe c282y homozygosityassociated with hereditary hemochromatosis. Gastroenterology 2008;135:1945–52.52. Adams PC. The natural history <strong>of</strong> untreated hfe-related hemochromatosis.Acta Haematol 2009;122:134–9.53. Cook JD. Diagnosis <strong>and</strong> management <strong>of</strong> <strong>iron</strong>-deficiency anaemia. BestPract Res Cl<strong>in</strong> Haematol 2005;18:319–32.54. F<strong>in</strong>ch CA, Bellotti V, Stray S, Lipschitz DA, Cook JD, Pippard MJ,Huebers HA. Plasma ferrit<strong>in</strong> determ<strong>in</strong>ation as a diagnostic tool. West JMed 1986;145:657–63.55. Tao M, Pelletier DL. The effect <strong>of</strong> <strong>dietary</strong> <strong>iron</strong> <strong><strong>in</strong>take</strong> on <strong>the</strong> development<strong>of</strong> <strong>iron</strong> overload among homozygotes for haemochromatosis.Public Health Nutr 2009;12:1823–9.56. Sw<strong>in</strong>kels DW, Drenth JP. Hepcid<strong>in</strong> <strong>in</strong> <strong>the</strong> management <strong>of</strong> patients withmild non-hemochromatotic <strong>iron</strong> overload: fact or fiction? J Hepatol2008;49:680–5.57. Roe MA, Coll<strong>in</strong>gs R, Da<strong>in</strong>ty JR, Sw<strong>in</strong>kels DW, Fairwea<strong>the</strong>r-Tait SJ.Plasma hepcid<strong>in</strong> concentrations significantly predict <strong>in</strong>ter<strong>in</strong>dividualvariation <strong>in</strong> <strong>iron</strong> absorption <strong>in</strong> healthy men. Am J Cl<strong>in</strong> Nutr 2009;89:1088–91 .58. Hultén L, Gramatkovski E, Gleerup A, Hallberg L. Iron absorptionfrom <strong>the</strong> whole diet. Relation to meal composition, <strong>iron</strong> requirements<strong>and</strong> <strong>iron</strong> stores. Eur J Cl<strong>in</strong> Nutr 1995;49:794–808.59. Zimmermann MB, Wegmueller R, Zeder C, Chaouki N, Rohner F,Saissi M, Torresani T, Hurrell RF. Dual fortification <strong>of</strong> salt with iod<strong>in</strong>e<strong>and</strong> micronized ferric pyrophosphate: a r<strong>and</strong>omized, double-bl<strong>in</strong>d,controlled trial. Am J Cl<strong>in</strong> Nutr 2004;80:952–9.60. Zimmermann MB, Zeder C, Chaouki N, Saad A, Torresani T, HurrellRF. Dual fortification <strong>of</strong> salt with iod<strong>in</strong>e <strong>and</strong> microencapsulated <strong>iron</strong>:a r<strong>and</strong>omized, double-bl<strong>in</strong>d, controlled trial <strong>in</strong> Moroccan schoolchildren.Am J Cl<strong>in</strong> Nutr 2003;77:425–32.61. Andersson M, Theis W, Zimmermann MB, Foman JT, Jakel M,Duchateau GS, Frenken LG, Hurrell RF. R<strong>and</strong>om serial sampl<strong>in</strong>g toevaluate efficacy <strong>of</strong> <strong>iron</strong> fortification: a r<strong>and</strong>omized controlled trial <strong>of</strong>margar<strong>in</strong>e fortification with ferric pyrophosphate or sodium <strong>iron</strong> edetate.Am J Cl<strong>in</strong> Nutr 2010;92:1094–104.62. Panel on Micronutrients. Iron. In: Institute <strong>of</strong> Medic<strong>in</strong>e, ed. Dietaryreference <strong><strong>in</strong>take</strong>s for vitam<strong>in</strong> A, vitam<strong>in</strong> K, arsenic, boron, chromium,copper, iod<strong>in</strong>e, <strong>iron</strong>, manganese, molybdenum, nickel, silicon, vanadium,<strong>and</strong> z<strong>in</strong>c. Wash<strong>in</strong>gton, DC: The National Academies Press, 2001.63. Bacon BR, Adams PC, Kowdley KV, Powell LW, Tavill AS. Diagnosis<strong>and</strong> management <strong>of</strong> hemochromatosis: 2011 practice guidel<strong>in</strong>e by <strong>the</strong>American Association for <strong>the</strong> Study <strong>of</strong> Liver Diseases. Hepatology2011;54:328–43.64. Piperno A, Girelli D, Nemeth E, Tromb<strong>in</strong>i P, Bozz<strong>in</strong>i C, Poggiali E,Phung Y, Ganz T, Camaschella C. Blunted hepcid<strong>in</strong> response to oral<strong>iron</strong> challenge <strong>in</strong> hfe-related hemochromatosis. Blood 2007;110:4096–100.65. Greenfield S, Kaplan SH, Ware JE Jr, Yano EM, Frank HJ. Patients’participation <strong>in</strong> medical care: effects on blood sugar control <strong>and</strong> quality<strong>of</strong> life <strong>in</strong> diabetes. J Gen Intern Med 1988;3:448–57.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!