12.07.2015 Views

High-Rise Building Design Using Midas Gen

High-Rise Building Design Using Midas Gen

High-Rise Building Design Using Midas Gen

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

CColumn-Shortening<strong>Midas</strong> <strong>Gen</strong> – One Stop Solution for <strong>Building</strong> and <strong>Gen</strong>eral Structures19 November 2013<strong>Midas</strong> IT, HyeYeon Leeesupport@midasit.com0


CColumn-ShorteningContentsI. Introduction in Column ShorteningII. Column Shortening of Lotte World TowerIII. midas <strong>Gen</strong> Introduction1


mmidas <strong>Gen</strong>IntroductionIntroductionIntuitive User Interface• Works Tree (Input summary with powerful modeling capabilities)• Models created and changed with ease• Floor Loads defined by area and on inclined plane• Built-in Section property Calculator• Tekla Structures, Revit Structures & STAAD interfacesComprehensive <strong>Design</strong>• RC <strong>Design</strong>: ACI318, Eurocode 2 & 8, BS8110, IS:456 & 13920, CSA-A23.3, GB50010,AIJ-WSD, TWN-USD,• Steel <strong>Design</strong>: AISC-ASD & LRFD, AISI-CFSD, Eurocode 3, BS5950, IS:800, CSA-S16,GBJ17 & GB50017, AIJ-ASD, TWN-ASD & LSD,• SRC <strong>Design</strong>: SSRC, JGJ138, CECS28, AIJ-SRC, TWN-SRC• Footing <strong>Design</strong>: ACI381, BS8110• Slab & Wall <strong>Design</strong>: Eurocode 2• Capacity <strong>Design</strong>: Eurocode 8, NTC2008<strong>High</strong>-rise Specific Functionality• 3-D Column Shortening Reflecting change in Modulus, Creep and Shrinkage• Construction Stage Analysis accounting for change in geometry, supports andloadings• <strong>Building</strong> model generation wizard• Automatic mass conversion• Material stiffness changes for cracked sectionSeismic Specific Functionality• Static Seismic Loads• Response Spectrum Analysis• Time History Analysis (Linear & Non-linear)• Base Isolators and Dampers• Pushover Analysis• Fiber Analysis• Capacity <strong>Design</strong>: Eurocode 8, NTC20082


mmidas <strong>Gen</strong>IntroductionIntroductionmulti-storey reinforced concrete structure3


CColumn-ShorteningContentsI. Introduction in Column ShorteningII. Column Shortening of Lotte World TowerIII. midas <strong>Gen</strong> Introduction4


CColumn-ShorteningConstruction Stage AnalysisWhy Construction Stage Analysis?• Dead Load is Sequential Loading.• Time Dependent Material Properties (Elastic Modulus, Creep, and Shrinkage)• Compensation for Differential Column ShorteningWindDead Load + Live LoadLL,WL,EQ ActsOther Dead Loads (Partitions, Finishes)Self weight of slabEarthquakeConstruction Completed Structure Sequence5


CColumn-ShorteningConstruction Stage AnalysisComparison between with and without considering sequential loadingEnd Moment of Girder by Stories (Wall Connection)Shortenings of an 80-story column (cm)ElasticCreepShrinkageSteel19.6--Concrete6.14.66.1Total 19.6 16.86


CColumn-ShorteningEffects of Column Shortening▣ <strong>High</strong>-rise ConsiderationsStructural safety aspectsUsability aspectsWind Inducedacceleration controlOptimum StructureSystemConstruction JointmanagementLateral-Displacementcontrol<strong>High</strong> performanceConcrete SpallingConcrete PumpingTechnologyHealth MonitoringIncrease construction cost due toadditional stress in outrigger andmega columnSafety verification due tothe tilt of towerDecline of constructionquality by over or lessreinforcedrebarSafety of joint membersDeformation of members due toAdditional stressSafety verification of slab due todeferential shorteningSafety of Elevator operation due totower tiltDeformation and failure ofcurtain wall and exteriormaterialsDeformation and failureof Vertical pipingReverse Inclination ofDrainage Piping SystemServiceability problems due toslope on the slabBreakage of finishesCompensation forDifferentialShorteningAdditional Stress of OutriggerDeformation of VerticalPiping SystemElevator’s safety due totower’s tilt7


CColumn-ShorteningEffects of Column ShorteningDeformation and breakage of Facades, windows &Parapet walls…Reverse Inclination of Drainage Piping SystemDeformation of Vertical Piping SystemDeformation and breakage of internal partitions8


CColumn-ShorteningReasons of Column ShorteningColumn ShorteningTowerDeformation• Deformation of the tower is a naturally occurring depending on material,construction method• V ertica l Deformation:Vertical Shortening / Settlement / Construction Errors• Horizontal Deformation:Differential Shortening / SettlementUneven load due to construction methodAsymmetric floor plan / Construction errorsVerticalDeformationHorizontal Deformation▪ Column Shortening in Concrete Structures = Elastic Deformation △1 + Inelastic Deformation △2▪ Inelastic Shortening: 1 ~ 3 times of Elastic Shortening▪ Types of Inelastic Shortening: Shrinkage, CreepDeferential ShorteningCon’c△ 1△ 1△ 2CoreShorteningPre-slab Installation shorteningColumnShorteningVerticalMemberWith 시간Time경과Core wallColumnInitial Curing < Deferential Deformation >9


CColumn-ShorteningReasons of Column ShorteningElastic and Inelastic Column ShorteningSteel Structures- Linear elastic BehaviorStress ∞ StrainStrain is constant for a given Stressduring loading & unloadingσConcrete Structures- Nonlinear Inelastic Behavior- But in general Analysis and design behavior of concrete is treated as linearelastic materialNeither Stress ∞ StrainNor Strain is constant for a given StressDuring loading & unloadingElastic Strain + Inelastic StrainE = (σ / ε)ΔL = (PL/A E)10


CColumn-ShorteningColumn ShorteningElastic and Inelastic Column ShorteningTwo basic prerequisites for accurately and efficiently predicting these effects areReliable Data for the creep and shrinkage characteristics of the particular concrete mixAnalytical procedures for the inclusion of these time effects in the design of structure.Some of the popular predictive methods for predicting creep and shrinkage strains areEurocode ACI 209 -92 Bazant – Bewaja B3 CEB – FIP (1978, 1990)PCA Method (Mark Fintel)GL 2000 (Gardner and Lockman)11


CColumn-ShorteningColumn ShorteningElastic and Inelastic Column Shortening The total strain at any time t may be expressed as the sum of theinstantaneous, creep and shrinkage components:Where,ε e (t) = Instantaneous strain at time t,ε c (t) = Creep strain at time t,ε sh (t) = Shrinkage strain at time t.12


CColumn-ShorteningColumn ShorteningElastic and Inelastic Column Shortening The instantaneous strain in concrete at any time t is expressed byσ (t) = Stress at time t,Ec(t) = Elastic modulus of concrete at time t, given byEcm: Secant modulus of elasticity of concrete at an age of 28 daysfcm(t): Mean value of concrete cylinder compressive strength at an age of t daysfcm: Mean value of concrete cylinder compressive strength at an age of 28 daysβcc(t): Coefficient which depends on the age of the concrete ts: Coefficient which depends on the type of cement, 0,20 or 0,25 or 0,3813


CColumn-ShorteningColumn ShorteningElastic and Inelastic Column ShorteningInelastic Shortening = Creep + ShrinkageCreepShrinkageCreep is time-dependent increment of strain under sustained stress.‣Basic creep occurs under the condition of no moisture movement to and from the environment.‣Drying creep is the additional creep caused by drying.Drying creep has its effect only during the initial period of load.As per EN1992-1-1:2004, the total shrinkage strain is composed oftwo components, the drying shrinkage strain and the autogenousshrinkage strain.‣Drying Shrinkage(εcd) is due to moisture loss in concrete.‣Autogenous Shrinkage(εca) is caused by hydration of cement.As per EN1992-1-1:2004, the creep deformation of concrete is predicted as follows:Where,t 0 = Age of the concrete at first loading in daysE c = Tangent modulus, 1.05Ecmσ c = Constant compressive stress at time t=∞Where,k h = coefficient depending on the notional size h0t = age of the concrete at the moment consideredt s = age of the concrete (days) at the beginning of drying shrinkage14


CColumn-ShorteningReasons of Column ShorteningInfluence Factors of Creep and ShrinkageType Influence Factors VariablesConcrete Properties(Creep & Shrinkage)Member Geometry andEnvironment Variable(Creep & Shrinkage)Loading(Creep Only)Concrete CompositionCuringEnvironmentGeometryLoading HistoryStress ConditionsWater – Cement ratioMixture ProportionsAggregate CharacteristicsDegrees of CompactionCuring ConditionCuring TemperatureConcrete TemperatureRelative HumiditySize and ShapeConcrete age at load ApplicationDuration of loading/Stress Ratio⇒Required to monitor during construction by material test and measuring in the field.15


4.0E-043.0E-042.0E-041.0E-04Back Analysis Output (103-1F-01)Strain Gauge Output (103-1F-01)0.0E+000 50 100 150 200 250 300 350DayCColumn-ShorteningColumn Shortening Analysis ProcessPre-AnalysisPreliminary AnalysisMaterial / Section Properties<strong>Design</strong> with AdditionalForceApplied Load, ScheduleMaterial ExperimentMain analysisMainAnalysis,Construction&Re-Analysis•Compressive strength•Modulus of elasticity•Creep & ShrinkageMeasurement•Updating material properties from experiments•Construction sequence considering the fieldcondition1st, 2nd, 3rd Re-AnalysisSuggestion of compensation and details for nonconstructedpart of structureApplyingCompensation to in-situstructureMeasurement of strain for Column & WallFinal ReportStrainShortening, result from test, measurement Review16


CColumn-ShorteningColumn Shortening Analysis ProcessProcedure for predicting accurate shortening resultsMinimize errorsby material test(30~40%)Variables ofShortening(15~25%)Compensation by measurementand re-analysis▣ Material Properties▪ Elastic Modulus, Conc. Strength▪ Mix ratio(W/C, S/A …), Amount of air▪ Volume vs Surface ratio, Rebar ratio▪ Curing condition(30~40%)▣ Environment Condition▪ Temperature▪ Relative Humidity▣ Construction Scheduleand Field Condition▪ Changes in Schedule▪ <strong>Design</strong> loads vs Construction loads▪ Construction error▪ Settlement shorteningCreep 크리프변형도 Deformation (x10 3 με)181614121086420Measurement실측값Measured 실측값 편차 valuesPre-Analysis이론식 범위Pre-analysis이론식 범위 (PCA)20 30 40 50 60 70 80 90 100 110 120Compressive 28일 strength 압축강도 at 28 days▲ Error between measurement and predicted values1) Pre-analysis is performed based on the several assumption ofconstruction schedule, material properties, and environmentcondition.→ For the safety factor, conservative results will be obtained.→ Serviceability problems can occur due to the over-estimatedcompensation.2) Accurate shortening must be calculated during construction bymaterial test, measurement and re-analysis.17


CColumn-ShorteningColumn Shortening Analysis ProcessMaterial Test•Compressive strength / modulus of elasticity /drying shrinkage / creep experiments•<strong>Gen</strong>erate formulations based on the test andupdate the model• Need on-site materials testing according to theconstruction progressCREEPSpecimenscreatedCuringTestingDryingShrinkageElasticModulus Reflect Site Conditions at a given timeStrain GaugeAttachmentStrain GaugePrimary Modulustest2 years2 YearsSecondary ModulustestMeasureDeformationMeasureDeformationThird orderModulus test⇣Final Report18


CColumn-ShorteningColumn Shortening Analysis ProcessField MeasurementAnalytical MeasurementExperimental Measurement<strong>Using</strong> Software or Manual CalculationField Measurements•Shortening analysis based on the predictiveequations•Apply material test results•Consider construction schedule•Difference in field environmental condition(temperature, humidity)•Difference in initial curing condition•Difference in loading history•Difference in material composition• Installing gages in major structuralmembers• Measuring deformations in accordancewith construction field condition• Considering accurate loading time• Considering field condition and variables• Apply for the compensation5.0E-044.5E-044.0E-04Back Analysis Output(TA1-20F-02)Stain Gauge Output(TA1-20F-02)3.5E-043.0E-04Strain2.5E-042.0E-041.5E-041.0E-045.0E-050.0E+000 50 100 150 200 250 300 350 400 450 500 550DateDeferent between analysis value and measurement19


CColumn-ShorteningColumn Shortening Analysis ProcessField MeasurementDetermination of Installation location Installation of Gauge After InstallationAfter Installation of Gauge After Casting of Concrete Field data collection20


CColumn-ShorteningCompensation at Site• Pre-slab installation shortenings– Shortenings taking place up to the time of slab installation• Post-slab installation shortenings– Shortenings taking place after the time of slab installation• Reinforced Concrete Structure– Pre-slab installation shortenings has no importance– Compensation by leveling the forms– Post-slab installation shortenings due to subsequent loads and creep/shrinkage• Steel Structure– Columns are fabricated to exact length.– Attachments to support the slabs– Pre-slab installation shortenings need to be known.1 :Compensation2 : <strong>Design</strong> Level3: Pre-slab Installation shortening4: Post-slab Installation shortening– Compensation for the summation of Pre-installation and Post-installation shortenings21


CColumn-ShorteningCompensation at Site2nd correction1 st correction1st correctionColumnColumn22


CColumn-ShorteningContentsI. Introduction in Column ShorteningII. Column Shortening of Lotte World TowerIII. midas <strong>Gen</strong> Introduction23


LLotte WorldTowerOverview24


LLotte WorldTowerOverviewLotte World TowerLocationHeightJamsil, Seoul, South Korea.Roof – 554.6 m; Antenna Spire – 556 mNo. of Floors 123Floor Area 304,081 m 2Function / Usage Office, Residential, Hotel, Observation Deck (497.6 m)Structure TypeLateral load resisting systemFoundation TypeReinforced Concrete + SteelCore Wall + Outrigger Truss + Belt TrussMat FoundationConstruction Period March 2011 ~ 201525


LLotte WorldTowerOverviewLotte World TowerLocationHeightJamsil, Seoul, South Korea.Roof – 554.6 m; Antenna Spire – 556 mNo. of Floors 123Floor Area 304,081 m 2Function / Usage Office, Residential, Hotel, Observation Deck (497.6 m)Structure TypeLateral load resisting systemFoundation TypeReinforced Concrete + SteelCore Wall + Outrigger Truss + Belt TrussMat FoundationConstruction Period March 2011 ~ 201526


A BOVEF IRE SHUTTERA BOVELLotte WorldTowerPre-Analysis - DeformationsLantern & CoreHorizontal deformationVertical deformationOW4OW5OW6OW7OW4OW7OW3YY-DirOW2XX-DirOW1OW10 OW11 OW12 OW1OW8 OW9 OW10• PredictionX dir: 27.2mmY dir: 115.5mmSafety check Elevator’s rails Vertical Pipes• Top of tower⇒ Steel Frame: 368.7 mm⇒ Core wall: 314.0 mm• Top of mega column⇒ Mega Col: 297.8 mm⇒ Core wall: 232.8 mmDifferential settlementDifferential ShorteningMEGACOL.CORE WALLFOUNDATIONMEGACOL.CoreShorteningDeferentialShorteningColumnShorteningMEGACOL.MEGACOL.CORE WALLCORE WALLFOUNDATIONMEGACOL.MEGACOL.Core wallColumn⇒ Core wall settlement: 35mm⇒ Column settlement: 16mm• Deferential shortening btw Core & Column⇒ Steel column: Max 55mm⇒ Mega column: Max 65mm27


LLotte WorldTowerPre-Analysis - StressesSlab’s additional stressStress in OutriggerDifferential Deformation btw Slab-Column Slab has additional stressL87~L103Podium’s additional stress• Additional Stress without Delay Joint⇒ 1 st outrigger (L39~L43): 3,600 tonsconnection• Additional stress btwtower & podiumL72~L75⇒ 2 nd outrigger (L72~L75): 4,700 tons⇒ required a delay joint installationTowerPodium Max 100 ton.m Require SettlementJoint & Safety checkL39~L43• Additional Stress with Delay Joint⇒ 1 st outrigger (L39~L43): 1,700 tons⇒ 2 nd outrigger (L72~L75): 2,000 tonsB06~B0128


LLotte WorldTowerPre-Analysis – Compensation- Core wall: Absolute correction for securing design level- Column: Relative correction for deferential shorteningLanternTOP층Floor 코어 Core 기둥 Column 비고L120L106~L123 L106-L123 설계레벨+1mm <strong>Design</strong> level+1mm 철골기둥 보정 참조 Steel columnsL76~L105 L76-L105 설계레벨+2mm <strong>Design</strong> level+2mm 철골기둥 보정 참조 Steel columns2 nd B/TL110L100L90L80L72~L75 L72-L75 설계레벨+3mm <strong>Design</strong> level+2mm 코어레벨+25mm Core 2nd level+25mm O/R 구간L69~L71 L69-L71 설계레벨+3mm <strong>Design</strong> level+2mm 코어레벨+30mm Core level+30mmL66~L68 L66-L68 설계레벨+3mm <strong>Design</strong> level+2mm 코어레벨+35mm Core level+35mmL63~L65 L63-L65 설계레벨+2mm <strong>Design</strong> level+2mm 코어레벨+40mm Core level+40mmL60~L62 L60-L62 설계레벨+2mm <strong>Design</strong> level+2mm 코어레벨+45mm Core level+45mm2 nd O/R1 st B/TL70L57~L59 L57-L59 설계레벨+2mm <strong>Design</strong> level+2mm 코어레벨+50mm Core level+50mmL54~L56 L37-L56 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+55mm Core level+55mm▲ Relative correction between core and columnL60L37~L53 L54-L56 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+60mm Core 1st level+60mmO/R 구간 포함L50L34~L36 L34-L36 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+55mm Core level+55mmL31~L33 L31-L33 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+50mm Core level+50mmpre-Analysis1 st correction1 st O/RL40L28~L30 L28-L30 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+50mm Core level+50mmL25~L27 L25-L27 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+45mm Core level+45mmMaterialTestL30L20L10L01B06L22~L24 L22-L24 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+40mm Core level+40mmL19~L21 L19-L21 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+35mm Core level+35mmL16~L18 L16-L18 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+30mm Core level+30mmL13~L15 L13-L15 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+25mm Core level+25mmL10~L12 L10-L12 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+20mm Core level+20mmL7~L9 L7-L9 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+15mm Core level+15mmL4~L6 L4-L6 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+10mm Core level+10mmB6~L3 B6-L3 설계레벨+3mm <strong>Design</strong> level+3mm 코어레벨+5mm Core level+5mmMeasurementAnalysisRe-analysis1~6 times▲ correction due to measurement2 nd correctionAdditionalcorrection forunconstructed29


A BOVEF IRE SHUTTERA BOVELLotte WorldTowerVertical Shortening Measurement코어측: Mega Column: B006~L070: B006~L050: External CoreAA’: Internal CoreL90외곽측L76400 gaugesL70L60(30~60 per floor)▲ Gauges Location in PlanA-A’L50L38: Load cell: Level surveyingL28: Strain GaugeL18L10L01B03B06Foundation settlement▲ Gauges Location of settlement30


LLotte WorldTowerStructural Safety Verification MethodOutrigger Structural Safety issues and alternatives proposedEffect & Safety Measure• Additional stress due to differential shorteningbetween core and column• Provide outrigger delay joint▲ 2 nd Outrigger (L72~L75)Additional Stress4700 kN12Additional Stress3600 kN1 Steel Outrigger Delay Joint2 Steel Outrigger Adjustment Joint(Securing safety under construction)▲ 1 st Outrigger (L39~L43)31


LLotte WorldTowerStructural Safety Verification MethodTower Slab Structural Safety issues and alternatives proposedEffect & Countermeasure due to shortening• Additional stress due to differential shorteningbetween core and column• Additional reinforcement details are in each area▲ Slab’s additional stress checkLReinforcementSTORY26F~35F부등축소량 발생DifferentialShorteningΔConnecting member연결보 및 거더1232-HD192-HD192-HD1941-HD1953-HD1962-HD19Column 기둥코어벽체 Core Wall……▲ Additional Force induced by differential shortening▲ Example of reinforcement due to additional force32


LLotte WorldTowerStructural Safety Verification MethodLower Levels Structural Safety issues and proposed alternativesEffect & Countermeasure due to shortening• Phase difference=Diff. shortening + Foundation Dif. settlements- Diff. shortening: difference between columns & podium- Dif. settlements : difference between podium & foundation• Additional force due to phase difference• Alternative- Structural reinforcement & Control Joint- Settlement Joint조인트 폭보강철근Reinforcement for moment보 또는 슬래브보강대상부재주동측기둥The Side ofTowerJack Support 설치▲ Settlement Joint포디움기둥The Side ofPodiumControl Joint포디움기둥The Side of Podium▲ Detail of reinforcement주동부기둥The Side of Towera + b ≈ 1/5 to 1/4 tBEAM &GIRDER▲ Detail of Control JointabtMoment & Shear force due to phase difference33


LLotte WorldTowerMaterial Test ResultsMaterial test results for re-analysisElastic ModulusRe-analysis (Material Test)28 daysPre-analysis (Theoretical Eq.)Concrete Age (Day)Pre-analysisRe-analysisPre-analysisRe-analysisUltimate Shrinkage Strain (με)Specific Creep<strong>Design</strong> Strength<strong>Design</strong> Strength34


LLotte WorldTowerMain Analysis & Re-AnalysisAnalysis Condition and AssumptionAnalysis Tool: midas/GEN- 3D Structural Analysis with changes of material propertiesMaterial properties- Regression analysis results from the material test data (6 month )- Comparing to pre-analysis results, 32~33% in creep deformation, 39~42% in shrinkage deformationOutrigger Installation Condition: After completion of frame construction, 1 st & 2 nd outrigger installationLoading Condition- Dead Load & 2 nd Dead Load: 100%, Live Load: 50%Environment: Average relative humidity 61.4%- Relative humidity of average 5 yearsTarget period of shortening- Safety verification: 100years after (≒ultimate shortening)- Service verification: 3years after (95% of ultimate shortening)Foundation modeling: Apply spring stiffnessobtained from settlement analysis model results(Arup, “DD100 Foundation Geotechnical <strong>Design</strong> Report)Apply soil stiffness fromfoundation/ground analysis results35


LLotte WorldTowerRe-analysis ResultsShortening Results– 1-1. Mega Column Shortening (B06~L75)Col. MINMC7131.4(L69)MC6132.2(L69)PW1579.6(L71)PW1477.4(L71)PW1379.5(L71)PW1277.1(L71)MC8135.6(L69)PW1176.8(L71)PW179.3(L71)PW1075.0(L71)PW279.1(L71)IW175.5(L71)IW377.9(L71)PW974.1(L71)MC1137.1(L65)PW385.9(L71)IW283.0(L71)IW477.5(L71)Wall MINPW485.6(L71)PW583.4(L71)PW875.3(L71)Wall MAXPW677.4(L71)PW775.1(L71)MC2137.2(L69)MC3135.6(L69)• Target Period: 3years- 3 years was determined as the optimaltime of target serviceability application.• settlement shortening- Mega column: 21.2~25.5mm (B6)- Core wall: 23.6~29.1mm (B6)• Maximum shortening of mega column- SubTo: 131.4~137.2mm (L65, L69)(80~83% of pre-analysis)- Total: 289.1~297.8mm (L76)(71~73 % of pre-analysis)Col. MAX•Shortening of core walls- SubTo: 74.1~85.9mm (L71)(77~78% of pre-analysis)- Total: 153.0~169.8mm (L76)(67~70% of pre-analysis)MC5131.6(L69)MC4133.3(L69)• Differential shortening between column-core- 53.1~60.9mm (L65)36


LLotte WorldTowerRe-analysis ResultsShortening Results– 1-2. Steel Column Shortening(L76~L106)SC8-1130.0(L76)SC9110.4(L76)SC10124.0(L76)SC11126.5(L76)SC12115.0(L76)SC7-1128.8(L76)SC8129.4(L76)Col. MINSC13130.0(L76)PW1574.4(L76)PW1471.6(L76)PW1374.4(L76)PW1271.5(L76)SC7128.6(L76)SC6115.1(L76)PW1171.1(L76)SC14114.9(L76)PW173.9(L76)SC15126.8(L76)SC5129.6(L76)IW171.2(L76)IW373.7(L76)PW1068.9(L76)PW273.9(L76)SC16124.8(L76)SC4132.6(L76)IW278.5(L76)IW472.3(L76)PW967.8(L76)Wall MINSC3121.0(L76)Wall MAXPW381.1(L76)SC17111.9(L76)PW480.9(L76)PW578.3(L76)PW672.0(L76)PW769.3(L76)PW869.4(L76)SC18128.0(L76)SC2136.9(L76)SC19131.9(L76)SC18-1126.5(L76)SC1121.2(L76)SC22133.1(L76)SC21130.1(L76)SC20115.2(L76)SC19-1130.4(L76)Col. MAX• Target Period: 3years- 3 years was determined as theoptimal time of target serviceabilityapplication.• Maximum shortening of steelcolumn- SubTo: 110.4~136.9mm (L76)(80% of pre-analysis)- Total: 260.7~286.1mm (L76)(80% of pre-analysis)•Shortening of core walls- SubTo: 67.8~81.0mm (L76)(65~70% of pre-analysis)- Total: 162.9~213.6mm (L76)(67~70% of pre-analysis)• Differential shortening betweenColumn-core- 40.1~44.5mm (L76)37


LLotte WorldTowerRe-analysis ResultsCompensation due to core and column differential shorteningLanternTOPL120- Core wall: Absolute compensation up todesign level- Column: Absolute + Relative compensationdue to differential shortening2 nd B/T2 nd O/R1 st B/T1 st O/RL110L100L90L80L70L60L50L40L30L20L10L01B06층코어 기둥 비고L120 ~ L123 설계레벨+25mm 설계레벨+25mmL113 ~ L119 설계레벨+30mm 설계레벨+30mmL107 ~ L112 설계레벨+35mm 설계레벨+35mmL103 ~ L106 설계레벨+40mm 설계레벨+40mmL100 ~ L102 설계레벨+40mm 설계레벨+45mmL99 ~ L99 설계레벨+40mm 설계레벨+50mmL96 ~ L98 설계레벨+45mm 설계레벨+55mmL91 ~ L95 설계레벨+45mm 설계레벨+60mmL90 ~ L90 설계레벨+45mm 설계레벨+65mmL88 ~ L89 설계레벨+50mm 설계레벨+70mmL81 ~ L87 설계레벨+50mm 설계레벨+75mmL77 ~ L80 설계레벨+55mm 설계레벨+80mmL56 ~ L76 설계레벨+55mm 설계레벨+105mmL52 ~ L55 설계레벨+55mm 설계레벨+100mmL45 ~ L51 설계레벨+50mm 설계레벨+95mmL37 ~ L44 설계레벨+50mm 설계레벨+90mmL33 ~ L36 설계레벨+50mm 설계레벨+85mmL30 ~ L32 설계레벨+45mm 설계레벨+80mmL28 ~ L29 설계레벨+45mm 설계레벨+75mmL23 ~ L27 설계레벨+40mm 설계레벨+70mmL22 ~ L22 설계레벨+35mm 설계레벨+65mmL19 ~ L21 설계레벨+35mm 설계레벨+60mmL18 ~ L18 설계레벨+35mm 설계레벨+55mmL14 ~ L17 설계레벨+30mm 설계레벨+50mmL13 ~ L13 설계레벨+30mm 설계레벨+45mmL10 ~ L12 설계레벨+25mm 설계레벨+40mmL8 ~ L9 설계레벨+25mm 설계레벨+35mmL6 ~ L7 설계레벨+20mm 설계레벨+25mmL5 ~ L5 설계레벨+20mm 설계레벨+20mmB6 ~ L4 보정없음 보정없음▲ Relative correction between core and columnMaterialTestMeasurementpre-AnalysisAnalysisRe-analysis1~6 times▲ correction due to measurement1 st correction2 nd correctionAdditionalcorrection forunconstructed38


LLotte WorldTowerContentsI. Introduction in Column ShorteningII. Column Shortening of Lotte World TowerIII. midas <strong>Gen</strong> Introduction39


mmidas <strong>Gen</strong>IntroductionBIM (<strong>Building</strong> Information Modeling)Tekla StructureRevit StructureAnalysis & <strong>Design</strong>midas <strong>Gen</strong>Analysis & <strong>Design</strong>midas <strong>Gen</strong>[Tekla interface][Revit interface]• STAAD Import/Export• SAP2000 Import• AutoCAD DFX Import/Export• IFC Export• MSC.Nastran Import• Drawing Module (midas <strong>Gen</strong>) Export• Unit Member <strong>Design</strong> Module (<strong>Design</strong>+) Export[MCAD – 3D midas CAD]40


mmidas <strong>Gen</strong>IntroductionMaterial DataMaterial Data DefinitionDatabaseCode NameBS British StandardsASTM American Society for Testing MaterialsEN European CodeDIN Deutshes Institut Fur Normung e.vCSA Canadian Standards AssociationIS Indian StandardsJIS Japanese Industrial StandardsKS Korean Industrial StandardsGB Chinese National StandardJGJ Chinese Engineering StandardJTJ Chinese Transportation Department Standard*SRC and User Defined material properties can be defined[Steel & Concrete Material Database]• Creep/Shrinkage- Eurocode, ACI, CEB-FIP, PCA…• Comp. Strength- Eurocode, ACI, CEB-FIP, Ohzagi…[Time Dependent Materials]41


mmidas <strong>Gen</strong>IntroductionSection DataSection Data Definition• Section Database• AISC2K(US), AISC2K(SI), AISC,• CISC02(US), CISC02(SI), BS, DIN…• Import data file already defined• Input dimensions of typical sections• Typical steel section (I, T, Channel, Angle, Pipe…)• Steel – Concrete composite section (SRC)• Tapered section• Section Property Calculator tool[Section Database][Arbitrary Section Definition]42


mmidas <strong>Gen</strong>IntroductionLoads• midas <strong>Gen</strong> enables us to specify all types of nodal, element, point, surface, dynamic,prestressing and thermal loads encountered in practice.• Load combination based on the various design codes• Load group generation of load case from load combinations[Time History Load]Applicable Loading Types[Wind and Seismic Load <strong>Gen</strong>eration][Floor Load]• Self Weight• Nodal Load• Prescribed Displacement• Elements Beam Load• Line Beam Load• Floor Load• Prestress Beam Load• Pretension Load• Tendon Prestress Load• Hydrostatic Pressure Load• Temperature load• Pressure Load• Static Wind Load• Static Seismic Load• Construction Stage Load• Initial Forces• Time History Load• Moving Load• Pushover Loads• Response Spectrum Function• Ground Acceleration• Dynamic Nodal Loads43


mmidas <strong>Gen</strong>IntroductionBoundary ConditionsApplicable Boundary Conditions[Rigid Link][Floor Diaphragm][<strong>Gen</strong>eral Spring Supports]• Supports • Elastic Link • Linear Constraints• Point Spring Supports • Nodal Coordinate System • Rigid Link• <strong>Gen</strong>eral Spring Supports• Beam End Release(Semi-rigid connection)• Diaphragm Disconnection• Surface Spring Supports • Beam End Offset • Panel Zone Effects• Pile Spring Supports• Plate End Release44


mmidas <strong>Gen</strong>IntroductionAnalysisApplicable Analysis Types[Construction Stage Analysis][Dynamic Boundary Nonlinear][Post-tensioning girder analysis][Pushover analysis] Static Analysis Dynamic AnalysisFree Vibration AnalysisResponse Spectrum AnalysisTime History Analysis Geometric Nonlinear AnalysisP-Delta AnalysisLarge Displacement Analysis Material Nonlinear AnalysisStructural Masonry Analysis Linear Buckling AnalysisLateral Torsional Buckling Heat Transfer AnalysisTime Transient Analysis Heat of Hydration AnalysisThermo-elastic AnalysisMaturity, Creep, Shrinkage, Pipe Cooling Construction Stage AnalysisTime Dependent MaterialColumn Shortening Analysis (Elastic/Inelastic) Pushover AnalysisFEMA, Eurocode, Multi-linear hinge propertiesRC, Steel, SRC, Masonry material types Boundary Nonlinear Time History AnalysisDamper, Isolator, Gap, Hook Inelastic Time History Analysis Other AnalysisUnknown Forces by OptimizationMoving load analysisSettlement analysis45


mmidas <strong>Gen</strong>IntroductionResultsDisplacement ContourVon Mises Stresses ContourSolid Stresses (Iso-Surface)Stress Results (Diagrams & Graphics46


mmidas <strong>Gen</strong>IntroductionResultsStory related tables & Define modulesDefine modules for a twin tower to check following results:• Story Drift• Story Displacement• Story Mode Shape• Torsional Amplification Factor• Overturning Moment• Story Axial Force Sum• Stability Coefficient• Torsional Irregularity Check• Stiffness Irregularity Check (Soft Story)• Weight Irregularity Check• Capacity Irregularity Check (Weak Story)Module 1Module 2Module 347


mmidas <strong>Gen</strong>IntroductionResultsDynamic Report <strong>Gen</strong>erationDrag & Drop148


mmidas <strong>Gen</strong>Introduction<strong>Design</strong>Applicable <strong>Design</strong> CodeRC <strong>Design</strong> Steel <strong>Design</strong> SRC <strong>Design</strong>ACI318 AISC-LRFD SSRC79Eurocode 2, Eurocode 8 AISC-ASD JGJ138BS8110 AISI-CFSD CECS28IS:456 & IS:13920 Eurocode 3 AIJ-SRCCSA-A23.3 BS5950 TWN-SRCGB50010 IS:800 (1984 & 2007) AIK-SRCAIJ-WSD CSA-S16-01 KSSC-CFTTWN-USD GBJ17, GB50017 Footing <strong>Design</strong>AIK-USD, WSD AIJ-ASD ACI318KSCE-USD TWN-ASD, LSD BS8110KCI-USDSlab <strong>Design</strong>Eurocode 2AIK-ASD, LSD, CFSDKSCE-ASDKSSC-ASDACI 31849


mmidas <strong>Gen</strong>Introduction<strong>Design</strong>Eurocode Implementation StatusMaterial DBConcrete Material DB Eurocode 2:2004Steel Material DB Eurocode 3:2005Section DB Steel Section DB UNI, BS, DINStatic Wind load Eurocode 1:2005LoadStatic Seismic Load Eurocode 8:2004Response Spectrum Function Eurocode 8:2004Masonry PushoverOPCM3431Pushover AnalysisRC Pushover Eurocode 8:2004Steel Pushover Eurocode 8:2004Load Combination Eurocode 0:2002Concrete Frame <strong>Design</strong> (ULS & SLS) Eurocode 2:2004<strong>Design</strong>Concrete Capacity <strong>Design</strong>Eurocode 8:2004NTC 2008Steel Frame <strong>Design</strong> (ULS & SLS) Eurocode 3:2005Slab/Wall <strong>Design</strong> (ULS & SLS) Eurocode 2:200450


mmidas <strong>Gen</strong>Introduction<strong>Design</strong>Meshed slab and wall design Slab and wall design for meshed plate elements as per Eurocode2-1-1:2004, ACI318-11 Slab design for non-orthogonal reinforcement directions based on the Wood-Armer formula Smooth moment and shear forces Automatic generation of Static wind and seismic loads for flexible floors Detailing for local ductilitySlab flexural designSlab serviceability checkingPunching shear check resultWall designDefine reinforcement direction51


mmidas <strong>Gen</strong>IntroductionUseful Features for Construction Stage AnalysisConstruction Stage Wizard for <strong>Building</strong> Structure The wizard readily allows us to define the timing of elements created and loadings applied inthe construction stages during the erection of a building. You may find it more convenient to first click the [Automatic <strong>Gen</strong>eration] button to define thebasic construction stages and modify them as necessary.52


mmidas <strong>Gen</strong>IntroductionUseful Features for Construction Stage AnalysisConstruction Stage Analysis for Composite Members Define an analytical model for each construction stage by assigning activated or inactivated sections corresponding to each construction stage of a composite section. By using Composite Section for Construction Stage, we can consider the constructionsequence with creep and shrinkage effect.53


mmidas <strong>Gen</strong>IntroductionUseful Features for Construction Stage AnalysisMaterial Stiffness Changes for Cracked Sections Specific stiffness of specific member types may be reduced such as the case where the flexuralstiffness of lintel beams and walls may require reduction to reflect cracked sections ofconcrete. Section stiffness scale factors can be included in boundary groups for construction stageanalysis. The scale factors are also applied to composite sections for construction stages54


mmidas <strong>Gen</strong>IntroductionUseful Features for Construction Stage AnalysisSpring Supports For Soil Interaction Point Spring Support (Linear, Comp.-only, Tens.-only, and Multi-linear type) Surface Spring Support (Nodal Spring, and Distributed Spring) Springs can be activated / deactivated during construction stage analysis.[Nonlinear point spring support][Pile Spring Support][Surface Spring Support][Nodal Spring and Distributed Spring]55


mmidas <strong>Gen</strong>IntroductionUseful Features for Construction Stage AnalysisTendon Loss Pre-stress load can be considered in construction stage analysis. Tendon primary / secondary forces are provided with pre-stress loss graph56


mmidas <strong>Gen</strong>IntroductionProject ApplicationsBurj Khalifa (Dubai, UAE)CS:1CS:30overviewHeight705 mNo. of floors 160LocationDubai, United Arab EmiratesFunction / UsageOffice <strong>Building</strong> & Residential <strong>Building</strong><strong>Design</strong>erAdrian D. SmithArchitectSkidmore, Owings & Merrill<strong>Gen</strong>eral ContractorSamsung Development57


mmidas <strong>Gen</strong>IntroductionProject ApplicationsSK S-Trenue (Seoul, Korea)overviewArea 39,600 m 2No. of floors 36LocationSeoul, KoreaFunction / UsageOffice <strong>Building</strong>Structure TypeComposite StructureFoundation TypeMat FoundationLateral load resisting systemRC Core + Steel + RC Composite Frame58


mmidas <strong>Gen</strong>IntroductionProject ApplicationsKeangnam Hanoi Landmark Tower (Hanoi, Vietnam)overviewHeightNo. of floorsLocationFunction / UsageStructure TypeArchitectContractor345m70 fl., 49 fl.Hanoi, VietnamHotel, Office, and Residential buildingReinforced Concrete StructureHeerim, Samoo, Aum & Lee, Hellmuth Obata + KassabaumKeangnam59


mmidas <strong>Gen</strong>IntroductionProject Applications60


mmidas <strong>Gen</strong>IntroductionProject Applications61


mmidas <strong>Gen</strong>IntroductionProject Applications62


mmidas <strong>Gen</strong>IntroductionProject Applications63


CColumn-ShorteningOne Stop Solution for <strong>Building</strong> and <strong>Gen</strong>eral StructuresThank You!http://en.midasuser.com/esupport@midasuser.com64

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!