12.07.2015 Views

PDF-file - Magnetic Resonance in Solids. Electronic journal.

PDF-file - Magnetic Resonance in Solids. Electronic journal.

PDF-file - Magnetic Resonance in Solids. Electronic journal.

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Jahn-Teller Effect of Cu2+ ions <strong>in</strong> a Z<strong>in</strong>c Selenate Hexahydrate S<strong>in</strong>gleCrystalV.M. V<strong>in</strong>okurov 1 , A.R. Al-Sufi 1 , A.E. Usachev 21Kazan State University, Kazan, Russian Federation2Каzan State Power-Eng<strong>in</strong>eer<strong>in</strong>g University, Kazan, Russian FederationE-mail: Aleksandr_Usachev@rambler.ruReceived April 8, 2004Revised May 1, 2004Accepted May 21, 2004Volume 6, No. 2,pages 1-5, 2004http://mrsej.ksu.ru


Jahn-Teller Effect of Cu 2+ ions <strong>in</strong> a Z<strong>in</strong>c Selenate Hexahydrate S<strong>in</strong>gle CrystalJahn-Teller Effect of Cu 2+ ions <strong>in</strong> a Z<strong>in</strong>c Selenate Hexahydrate S<strong>in</strong>gle CrystalV.M. V<strong>in</strong>okurov 1 , A.R. Al-Sufi 1 , A.E. Usachev 21 Kazan State University, Kazan, Russian Federation2 Каzan State Power-Eng<strong>in</strong>eer<strong>in</strong>g University, Kazan, Russian FederationE-mail: Aleksandr_Usachev@rambler.ruX- and Q-band studies of Cu 2+ and Mn 2+ doped ZnSeO 4·6H 2 O s<strong>in</strong>gle crystals <strong>in</strong> the temperature range of 4.2 ÷ 300 Kare carried out. Experimental data on EPR, sp<strong>in</strong>-lattice relaxation time and optical absorption spectra are expla<strong>in</strong>ed <strong>in</strong>the frame of the Jahn-Teller Effect of the Cu 2+ ion under the low- symmetry deformation of the nearest environment ofthe Cu 2+ ion.2<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>Solids</strong>. <strong>Electronic</strong> Journal. Vol.6, No 2 (2004)


V.M. V<strong>in</strong>okurov, A.R. Al-Sufi, A.E. Usachev1. IntroductionThe problem of dynamics of multicomponent systems at a molecular level and the use of its properties <strong>in</strong> moderndevices rema<strong>in</strong>s traditionally actual dur<strong>in</strong>g last decades. The Jahn-Teller Effect (JTE) is a vivid example of the<strong>in</strong>tramolecular dynamics <strong>in</strong> solid state and is due to the local deformations of the crystal lattice close to theparamagnetic center with degenerate or quasidegenerate ground orbital state. In this paper the properties ofZnSeO 4·6H 2 O: Cu 2+ s<strong>in</strong>gle crystals studied by EPR, sp<strong>in</strong>-lattice relaxation and optical spectroscopy are reported.The Z<strong>in</strong>c Selenate Hexahydrate (ZnSeO 4·6H 2 O) is crystallized <strong>in</strong> monocl<strong>in</strong>ic syngony with the space group ofР4 1 2 1 2 symmetry. Parameters of the unit cell are а = 0.6947(1) nm, с = 1.8592(1) nm, Z = 4 [1]. ZnSeO 4·6H 2 O s<strong>in</strong>glecrystals were grown by slow evaporation of 35 % aqueous solution of the correspond<strong>in</strong>g component at 273 K. Qualitycontrol of samples was carried out by X-ray of powders on a diffractometer DRON-3 and by measur<strong>in</strong>g s<strong>in</strong>gle crystalrefraction parameters on a refractometer IRF-23 at room temperature. EPR spectra were <strong>in</strong>vestigated on aradiospectrometer RE-1301, "Thomson" at X-band <strong>in</strong> the temperature range of 4.2÷300 K and on a home-maderadiospectrometer at Q-band at T = 300 K. Optical absorption spectra were registered on a spectrofotometer NIR-61 atТ = 300 К <strong>in</strong> non-polarized and polarized light. Sp<strong>in</strong>-lattice relaxation times of Cu 2+ ions <strong>in</strong> the temperature range of4.2 ÷ 25 К were measured at frequency 9.3 GHz by pulse saturation method on a relaxometer IRES-1003.2.ResultsEPR spectra of Mn 2+ ionsEPR spectrum of ZnSeO 4·6H 2 O s<strong>in</strong>gle crystals doped with Mn 2+ ions <strong>in</strong> the temperature range 4.2 ÷ 300 К [2,3] isdescribed by the sp<strong>in</strong>-Hamiltonian:1 0 0 1 2 2 1 0 0 1 2 2 1 4 4H = gβHS+ AIS + b2O2 + b2O2 + b4O4 + b4O4 + b4O4, (1)3 3 60 60 600where g = 2.006±0.001; b2= 553.8·10 -4 см -1 ;4b4= - 1.8·10 -4 см -1 ; A = 88.4·10 -4 см -1 .2b2= 52.4·10 -4 см -1 ;0b4= 4.3·10 -4 см -1 ;2b4= 1.3·10 -4 см -1 ;Angular dependences of the Mn 2+ EPR spectrum reveal 4 types of centers hav<strong>in</strong>g the same pr<strong>in</strong>cipal values of themsp<strong>in</strong> Hamiltonian (1) parameters but differ<strong>in</strong>g <strong>in</strong> the orientation of f<strong>in</strong>e structure tensors bn. The pr<strong>in</strong>cipal direction (zmaxis) of the bnco<strong>in</strong>cides with the direction of the Zn(Mn) – O3 bond and makes an angle of 41.7° with the L 4 axis. Thex axis of the Mn 2+ EPR spectrum co<strong>in</strong>cides with the crystallographic direction [110], and the Y axis lie <strong>in</strong> the ( 110 )plane and makes an angle of 48.3° with the L 4 axis. The value of the covalency parameter С = 8.5 % was estimatedfrom the value of the Mn 2+ ion hyperf<strong>in</strong>e structure parameters accord<strong>in</strong>g to [2].Optical spectrum of ZnSeO 4·6H 2 O:Cu 2+Two bands with the centers at v 1 = 9880 сm -1 and v 2 = 11920 сm -1 with relative <strong>in</strong>tensities 4:3 and widths 800 сm -1 and880 сm -1 , respectively, are observed <strong>in</strong> the optical absorption spectrum.Sp<strong>in</strong>-lattice relaxation of Cu 2+ ionsIn the temperature range of 4.2 ÷ 300 К the sp<strong>in</strong>-lattice relaxation time of Cu 2+ ion is described well by the follow<strong>in</strong>gexpression [3]:−1 ⎛δ1 ⎞ ⎛δ2⎞ ⎛δ3 ⎞T1 = AT0+ A1exp⎜ A2exp A3expT⎟+ ⎜ +T⎟ ⎜T⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠ , (2)where A 0 = 0.27 K -1 s -1 ; A 1 = 3.3⋅10 5 s -1 , δ 1 = 69.5 К; A 2 = 2.6⋅10 7 s -1 , δ 2 = 140 К; A 3 = 1.36·10 10 s -1 , δ 3 = 735.6 К.EPR spectra of Cu 2+ ionsThe EPR spectrum of ZnSeO 4·6H 2 O s<strong>in</strong>gle crystals doped with Cu 2+ions (Fig.1) as well as the EPR spectrum of Mn 2+ ions is described by thesp<strong>in</strong>-Hamiltonian of rhombic symmetryH = β ( g H S + g H S + g H S ) + A I S + A I S + A I S (3)Fig. 1. The EPR spectrum of ZnSeO 4·6H 2 O:Cu 2+s<strong>in</strong>gle crystals. a) B || L 4 ; b) B || z.x x x y y y z z z x x x y y y z z zwhere A z = (129 ± 0.5)10-4 сm -1 ; A x = (22.3 ± 0.5)10 -4 сm -1 ;A z = (11.3 ± 0.5)10 -4 сm -1 ; g = 2.427 ± 0.001; g z = 2.097 ± 0.003;xg z= 2.095 ± 0.003.Angular dependences of the Cu 2+ EPR spectrum reveal 4 centerswith identical magnetic parameters but nonco<strong>in</strong>cident pr<strong>in</strong>cipal axes ofthe g and A tensors (Fig.2). The z axis makes the angle 43.3° with L 4axis, <strong>in</strong>stead of 41.7° as it was observed <strong>in</strong> the case of EPR of Mn 2+ ions.In the (110) plane the x axis deviates from the [110] direction by theangle 3°. In the Cu 2+ EPR spectrum the additional l<strong>in</strong>es due to 63 Cu<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>Solids</strong>. <strong>Electronic</strong> Journal. Vol.6, No 2 (2004) 3


V.M. V<strong>in</strong>okurov, A.R. Al-Sufi, A.E. Usachev<strong>in</strong>tervals at 69 and 140 cm -1 should be attributed to the <strong>in</strong>tervals between vibronic levels of the ground m<strong>in</strong>imum withϕ = 0°.The values of the energy <strong>in</strong>terval between the bottom surface of the adiabatic potential (Fig.3) and the top surfacecharacteristic for the hydrate crystal lie <strong>in</strong> the range of 6000÷10000 cm -1 . The experimental optical band at 9880 cm -1can be probably attributed to transitions between these two surfaces of the adiabatic potential. As at ϕ = 0° almost pure|x 2 – y 2 > orbital function corresponds to the bottom surface and the |z 2 > orbital function corresponds to the top surfacethis band corresponds to the transitions between the levels of the orbital doublet 2 Е split by the tetragonal component ofthe crystal field enhanced by JTE accord<strong>in</strong>g to (4). Then the second optical band at 11920 cm -1 can be attributed <strong>in</strong> theseterms to transitions between |x 2 – y 2 > orbital doublet function and one of the |xy> functions of the orbital triplet state.An additional evidence of the molecular motion of the complexes Cu(H 2 O) 6 is the l<strong>in</strong>ewidth dependence on m I(projections of the nuclear magnetic quantum number). At room temperature the l<strong>in</strong>e widths (∆B) decrease as themagnetic field <strong>in</strong>creases (1:0.97:0.947:0.92), and the peak-to-peak <strong>in</strong>tensity (85:90:95:100) accord<strong>in</strong>gly grows.Depend<strong>in</strong>g on type of the <strong>in</strong>tramolecular movement the l<strong>in</strong>e width is described by the expression [6]:∆B = A + В·m I + C·(m I ) 2 . The l<strong>in</strong>ear term with factor B results <strong>in</strong> the asymmetric EPR spectrum as observedexperimentally. The sign of factor B depends on the sign of the product ∆g·∆A, where ∆g and ∆A are the anisotropy ofthe g and A tensors, respectively, of different states participat<strong>in</strong>g <strong>in</strong> averag<strong>in</strong>g. The experimental field dependence of thel<strong>in</strong>e width can be expla<strong>in</strong>ed with the factor В > 0. This sign of the product ∆g·∆A corresponds to the case when thecopper octahedral complex moves between the ground-state and the excited m<strong>in</strong>ima of the adiabatic potential.Thus, our result confirm that the Jahn-Teller Effect considerably contributes to the EPR spectra and sp<strong>in</strong>-latticerelaxation times of Cu 2+ ions <strong>in</strong> ZnSeO 4·6H 2 O.AcknowledgementWe thank B. Z. Malk<strong>in</strong> for his <strong>in</strong>terest to our work and valuable discussions.References1. K. Stadnicka, A.M. Glaser, M. Koralewski // Acta Cryst. – 1988 – B44 – 3562. V.M. V<strong>in</strong>okurov, A.R. Al-Soufi, A.A. Galeev, N. M. Khasanova, G. R. Bulka, N. M. Nizamutd<strong>in</strong>ov. // Apll. Magn.<strong>Resonance</strong> – 1994 – 7 – 2333. A.R. Al-Soufi, G.R. Bulka, V.M. V<strong>in</strong>okurov, I.N. Kurk<strong>in</strong>, N.M. Nizamutd<strong>in</strong>ov, I.Kh. Salikhov // Izv.VUZov.:Fizika – 1993 – 6 – 55 (<strong>in</strong> Russian)4. A. Abragam, B. Bleaney Electron Paramagnetic <strong>Resonance</strong> of Transition Ions, M.:Mir – 1973 – Vol.2 (<strong>in</strong> Russian)5. J.V. Jablokov, A.E. Usachev, T. A. Ivanova. Formation cooperative Jahn-Teller <strong>in</strong>teractions <strong>in</strong> crystals.Radiospectroscopy of the condensed matter. M.:Nauka – 1990 – 147-180 (<strong>in</strong> Russian)6. A. Kerr<strong>in</strong>gton, E. McLeachlan. <strong>Magnetic</strong> resonance and its application <strong>in</strong> chemistry. M.:Mir – 1970 (<strong>in</strong> Russian).<strong>Magnetic</strong> <strong>Resonance</strong> <strong>in</strong> <strong>Solids</strong>. <strong>Electronic</strong> Journal. Vol.6, No 2 (2004) 5

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!