13.07.2015 Views

an experiment for the measurement of the dynamical Casimir effect

an experiment for the measurement of the dynamical Casimir effect

an experiment for the measurement of the dynamical Casimir effect

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Surface mech<strong>an</strong>ical motionStrong limitation <strong>for</strong> a moving layer: INERTIA€δxE = 1 2 ρVω 2 δx 2ω / 2 π = 10 GHzδx > 1 nmMech<strong>an</strong>ical powerP ~ kW - MWTo be tr<strong>an</strong>sferred @ 10 GHzVery inefficient technique: to move <strong>the</strong> electrons giving <strong>the</strong> reflectivityone has to move also <strong>the</strong> nuclei with large waste <strong>of</strong> energyAlso, problems with <strong>the</strong> mech<strong>an</strong>ical designInstead <strong>of</strong> moving <strong>the</strong> complete layer one c<strong>an</strong> produce oscillations on <strong>the</strong>surfaces. Maximum de<strong>for</strong>mations be<strong>for</strong>e damage δ = ω a / v s , v s sound velocityGiuseppe Ruoso - Les Houches - June 9, 2005Maximum boundary velocity ~ 50 m/s


How to produce high frequency motioni) Acoustic waves in solidsIn <strong>the</strong> 60’s Bömmel-Dr<strong>an</strong>sfeldproduced GHz acoustic waves inquartz using piezo excitation, butexciting all modes. Motion <strong>of</strong> asingle mode δx


Surface <strong>effect</strong>ive motionV<strong>an</strong> der Walls <strong>for</strong>cesmeasured at µm dist<strong>an</strong>ces onsilicon sample ch<strong>an</strong>ge underillumination <strong>of</strong> <strong>the</strong> sampleParametric excitation <strong>of</strong> e.m.waves using a dense plasma layerin a cavity; <strong>the</strong> layer is created byirradiating a semiconductor filmwith femtosecond laser pulsesUse <strong>of</strong> laser pulse onsemiconductor to ch<strong>an</strong>ge veryrapidly its index <strong>of</strong> refractionGiuseppe Ruoso - Les Houches - June 9, 2005


Surface <strong>effect</strong>ive motion IIGenerate periodic motion by placing <strong>the</strong> reflecting surface intwo distinct positions alternativelyPosition 1 - metallic platePosition 2 - microwave mirror with driven reflectivityMetalplateVariablemirrorMicrowaveUSEP1 P2Semiconductors under illumination c<strong>an</strong> ch<strong>an</strong>ge <strong>the</strong>ir dielectric properties <strong>an</strong>d becomefrom completely tr<strong>an</strong>sparent to completely reflective <strong>for</strong> microwaves.Light with photon energyhν > E b<strong>an</strong>d gap <strong>of</strong> semiconductorEnh<strong>an</strong>ces electron density in <strong>the</strong> conduction b<strong>an</strong>dLaser ON - OFFOn semiconductorTime variable mirrorGiuseppe Ruoso - Les Houches - June 9, 2005


MIR - <strong>the</strong> <strong>experiment</strong>al schemeA semiconductor layer (thickness ~ 1 mm)is placed on one end <strong>of</strong> a niobium superconductingcavity. Cavity reson<strong>an</strong>ce ν r.Using <strong>an</strong> amplitude modulated (at frequencyf) laser light <strong>the</strong> semiconductorswitches from tr<strong>an</strong>sparency to reflection,thus producing <strong>an</strong> <strong>effect</strong>ive motion.whenf = 2 ν rPhotons will be produced in <strong>the</strong> vacuum<strong>an</strong>d will be picked-up by <strong>the</strong> <strong>an</strong>tennaWith this set-up <strong>the</strong> amplitude <strong>of</strong><strong>the</strong> motion in very large, thusproviding a large <strong>effect</strong>ive velocityΔT = 100 psT = 1 µs..n = 1 , 2 , 3 , 4, ... . , 10 3P las = 10 nJ/100 psGiuseppe Ruoso - Les Houches - June 9, 2005


Experimental issuesEffective mirror• <strong>the</strong> semiconductor when illuminated behavesas a metal (in <strong>the</strong> microwave b<strong>an</strong>d)• timing <strong>of</strong> <strong>the</strong> generation <strong>an</strong>d recombinationprocesses• quality factor <strong>of</strong> <strong>the</strong> cavity with insertedsemiconductor• possible noise coming fromgeneration/recombination <strong>of</strong> carriersLaser system• possibility <strong>of</strong> high frequencyswitching• pulse energy > threshold <strong>for</strong>complete reflectivity• number <strong>of</strong> consecutive pulsesDetection system• minimum detectable signal• noise from blackbodyradiationGiuseppe Ruoso - Les Houches - June 9, 2005


Semiconductor as a reflectorReflection curves <strong>for</strong> Si <strong>an</strong>d CuLight pulseExperimental set-upResults:• Perfect reflectivity <strong>for</strong> microwave Si, GaAs: R=1;• Light energy to make a good mirror ≈ 1 µJ/cm 2Time (µs)Giuseppe Ruoso - Les Houches - June 9, 2005


Timing <strong>of</strong> <strong>the</strong> reflection processIs it feasible to make <strong>the</strong> mirror appear <strong>an</strong>d disappear at GHz frequencies?mirror appear<strong>an</strong>cerise time <strong>of</strong> <strong>the</strong> laser pulse(e¯ tr<strong>an</strong>sition time ≈ fs)mirror disappear<strong>an</strong>cerecombination time <strong>of</strong> e¯property <strong>of</strong> <strong>the</strong> semiconductorτ needed is 20-40 psLow Temperature Grown GaAsGiuseppe Ruoso - Les Houches - June 9, 2005


Cavity with semiconductor wallComputer model <strong>of</strong>a cavity with asemiconductorwafer on a wallFundamental mode TE 101: <strong>the</strong> electric field Ea = 7.2 cmb = 2.2 cml = 11.2 cm=c2⎛ 1 ⎞⎜ ⎟⎝ a ⎠2⎛1⎞+ ⎜ ⎟⎝ l ⎠2f rQ L = πντ measured ≈ 3 · 10 6≅ 2.4899 GHzGiuseppe Ruoso - Les Houches - June 9, 2005600 µm thick slab <strong>of</strong> GaAs


Detection electronicsMinimum detectable signal inside <strong>the</strong> cavity


Detection electronics 2• Per<strong>for</strong>med a sensitivity <strong>measurement</strong> feeding a test signalP in=10 -12 dBm = 10 -15 W Δt = 1.6 µsE RF pulse=10 -15 J/s × 1.6 10 -6 s = 1.6 × 10 -21 J = 10 -2 eV ⇒10 3 RF photonsOscilloscope averagingafter 100 sweeps:• Measured <strong>the</strong> cavity output when flashing <strong>the</strong> ligth on <strong>the</strong>semiconductor --> NO signal detected --> NO noise inducedby <strong>the</strong> plasmaGiuseppe Ruoso - Les Houches - June 9, 2005


Laser systemPulsed laser with rep rate 5 GHz, pulse energy ~10 µJ, train<strong>of</strong> 10 3 - 10 4 pulses, slightly frequency tunable ~ 800 nmLaser master oscillator5 GHz, low powerPulse pickerOptical amplifierTotal number <strong>of</strong> pulses limited by <strong>the</strong>energy available in <strong>the</strong> opticalamplifier: good estimate 1000-5000(Total energy 10 - 50 mJ)Each train repeated every few secondsGiuseppe Ruoso - Les Houches - June 9, 2005


Detailed set-upWorking temperature4 - 9 KComplete freeze out <strong>of</strong>carriers insemiconductorNo background noisefrom <strong>the</strong>rmal photonsCavity reson<strong>an</strong>ce in <strong>the</strong>r<strong>an</strong>ge 2 - 3 GHzSemiconductorthickness ~ 1 mmGiuseppe Ruoso - Les Houches - June 9, 2005


Giuseppe Ruoso - Les Houches - June 9, 2005The apparatus


Giuseppe Ruoso - Les Houches - June 9, 2005Inside <strong>the</strong> cryostat


Detection schemeN pulsesSteps5. Look <strong>for</strong> signal with τ ~ Q / 2πν r1. Find cavity frequency ν r2. Wait <strong>for</strong> empty cavity3. Set laser system to 2 ν r4. Send burst with > 1000 pulsest p= 1/ 2 ν rCharged cavity.Will decay with itstime const<strong>an</strong>tExpected number <strong>of</strong> photons:Niobium cavity with TE 101 ν r = 2.5 GHz (22 x 71 x 110 mm 3 )Semiconductor GaAs with thickness δx = 0.6 mmSingle run with ~ 5000 pulsesN ≥ 10 4 photonsGiuseppe Ruoso - Les Houches - June 9, 2005


Check listSeveral things c<strong>an</strong> be employed to disent<strong>an</strong>gle a real signal from aspurious oneSignal (a.u.)Ch<strong>an</strong>ge temperature <strong>of</strong> cavityEffect on black body photonsCh<strong>an</strong>ge laser pulse rep. frequency1.61.41.210.80.60.85 0.9 0.95 1 1.05 1.1Laser pulse frequency (a.u)Loading <strong>of</strong> cavity with real photons (isour system a microwave amplifier?)Power inside cavity at end <strong>of</strong> laser pulses (a.u.)14121086420Determine vacuum <strong>effect</strong> from several<strong>measurement</strong>s with pre-loaded cavity0 1 2 3 4 5 6Power inside cavity at t = t0 (a.u.)-ch<strong>an</strong>ge recombination time <strong>of</strong> semiconductor-ch<strong>an</strong>ge width <strong>of</strong> semiconductor layerGiuseppe Ruoso - Les Houches - June 9, 2005


ConclusionThe <strong>experiment</strong> MIR seems feasibleFinish R & D within 1 year• complete laser system with high power part• develop a system to characterize semiconductors (autocorrelation)Giuseppe Ruoso - Les Houches - June 9, 2005

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!