13.07.2015 Views

Modelling of hysteresis influence on mass transfer in building ...

Modelling of hysteresis influence on mass transfer in building ...

Modelling of hysteresis influence on mass transfer in building ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

GRUPO CYTED311RT0417- PPCONTROLOPTIMOInforme de la Primera reunión mantenida los días 28, 29 y 30 de Junio de 2011 en el hotelSARAY de Granada, España.1. Asistentes:Argent<strong>in</strong>a:Enrique VallésBrasil:Griselda BarreraChile:Raúl QuijadaHumberto PalzaFelipe OsorioEspaña:Rosario BenaventeJosé Manuel PereñaAnt<strong>on</strong>io BelloMaría Luisa CerradaJavier Arranz-AndrésVicente LorenzoJosé Manuel Gómez-ElviraBegoña PeñaLaura Al<strong>on</strong>so HermiraPortugal:Rosário G. RibeiroVenezuela:Arquímedes Karam1


ARTICLE IN PRESS636J. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–642Relative humidity [%]757065605550454035302506Relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Test 1121824Time [h]30RH (%) x=12,5mmRH (%) x=25mmRH (%) x=12,5mm EXP.RH (%) x=25mm EXP.Fig. 2. Calculated and measured relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> the material atdifferent depths, for test 1.364248Table 3Mean deviati<strong>on</strong> between calculated results and measured dataDepth (mm)Deviati<strong>on</strong>Sorpti<strong>on</strong> (%) Desorpti<strong>on</strong> (%)Test 112.5 6.29 6.2725 10.29 10.97Test 212.5 6.42 10.3725 10.92 17.59Test 412.5 3.65 7.3525 5.58 10.29Relative humidity [%]757065605550454035302506Relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Test 31218 24Time [h]30RH (%) x=12,5mmRH (%) x=25mmRH (%) x=12,5mm EXP.RH (%) x=25mm EXP.364248butes to higher differences. The higher error for the deeper layercan be <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>d by uncerta<strong>in</strong>ty <strong>in</strong> the material properties. It isobvious that material properties are characterised with experimentaluncerta<strong>in</strong>ty and <strong>in</strong> calculati<strong>on</strong> the impact is moresignificant for the deeper layers. The differences betweenexperimental measurements and calculati<strong>on</strong> are not so high andquite good agreement can be seen. For all cases, a good agreementwith the results from others codes has also been found [24]. Itmust be noticed that for most <str<strong>on</strong>g>of</str<strong>on</strong>g> the codes the results <str<strong>on</strong>g>of</str<strong>on</strong>g>simulati<strong>on</strong>s are almost the same but quite different from theexperimental measurements. N<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the numerical model gaveexactly the same results as the measurements. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the reas<strong>on</strong>smight be that some <str<strong>on</strong>g>of</str<strong>on</strong>g> the moisture transport phenomena <strong>in</strong> theporous material were not taken <strong>in</strong>to c<strong>on</strong>siderati<strong>on</strong>.Fig. 3. Calculated and measured relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>in</strong> material at differentdepths, for test 3.4. Sensitivity studyRelative humidity [%]656055504540353006Relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile for Test 41218 24Time [h]RH (%) x=12,5mmRH (%) x=25mmRH (%) x=12,5mm EXP.RH (%) x=25mm EXP.Fig. 4. Calculated and measured relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <strong>in</strong> material at differentdepths, for test 4.the moisture was absorbed by the material and higher <strong>in</strong> thesec<strong>on</strong>d part where moisture was desorbed out <str<strong>on</strong>g>of</str<strong>on</strong>g> the material.Also, smaller differences can be noticed for the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 mmand higher for the deeper layer. The mean values <str<strong>on</strong>g>of</str<strong>on</strong>g> relative errorfor each case and process are presented <strong>in</strong> Table 3.The higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> the error <strong>in</strong> desorpti<strong>on</strong> are c<strong>on</strong>nected withthe <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> phenomen<strong>on</strong>. At the beg<strong>in</strong>n<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong>, theRH c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> the material is uniform for simulati<strong>on</strong> andmeasurement. But when the desorpti<strong>on</strong> process starts, thedifference between the RH c<strong>on</strong>diti<strong>on</strong> <strong>in</strong> the sample <strong>in</strong> thecalculati<strong>on</strong> and the measurement already exists, which c<strong>on</strong>tri-30364248In order to check the <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the materialproperties and <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong> parameters <strong>on</strong> model results, asensitivity study was performed for two thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> sample37.5 and 150.0 mm. Two <str<strong>on</strong>g>of</str<strong>on</strong>g> the material properties (sorpti<strong>on</strong>isotherm and vapour permeability) and two <str<strong>on</strong>g>of</str<strong>on</strong>g> the calculati<strong>on</strong>parameters (time step and number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers) were taken <strong>in</strong>toc<strong>on</strong>siderati<strong>on</strong>. Each parameter has been changed to a lower and ahigher value and compared with the orig<strong>in</strong>al ‘‘reference’’ resultsfor corresp<strong>on</strong>d<strong>in</strong>g thickness. Test 1 from Table 1 was taken as thereference case for samples <str<strong>on</strong>g>of</str<strong>on</strong>g> 37.5 mm. F<strong>in</strong>ally, eight additi<strong>on</strong>alcases were simulated for each thickness. For each additi<strong>on</strong>al case<strong>on</strong>ly <strong>on</strong>e parameter/material property was changed, the otherswere kept c<strong>on</strong>stant. The comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> results between eachvariant and the reference case was made by check<strong>in</strong>g the relativehumidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles at depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 and 25.0 mm for the 37.5 mmspecimen and at depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 50.0 and 100.0 mm for the four-timesthicker material.4.1. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> layers and time stepThe reference number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers (15, see Table 1) was <strong>in</strong>creasedto 18 and decreased to 12 (for the 150-mm-thick sample 48, 60and 72 layers were tested). The time step has been changed fromthe reference value <str<strong>on</strong>g>of</str<strong>on</strong>g> 60–120 and 30 s. The calculati<strong>on</strong> showedthat n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> those changes <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>d the simulati<strong>on</strong> resultfor either the th<strong>in</strong>ner or the thicker material. The relative errorfor the highest value <str<strong>on</strong>g>of</str<strong>on</strong>g> the RH pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (after 24 h) <strong>on</strong> the depth<str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5/50.0 and 25.0/100.0 (mm) is presented <strong>in</strong> Tables 3 and 4.All calculati<strong>on</strong>s for the 12, 15 and 18 layers gave very similarresults. The difference was less than 0.1%, show<strong>in</strong>g good precisi<strong>on</strong>


ARTICLE IN PRESS638J. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–642A similar chart was obta<strong>in</strong>ed for the relative humidity pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile atdepth 25.0 mm. The changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the vapour permeability <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>also the vapour <strong>transfer</strong> and its accumulati<strong>on</strong> <strong>in</strong> the material.Hereafter, <strong>in</strong> Table 6 the relative deviati<strong>on</strong> for the highest value<str<strong>on</strong>g>of</str<strong>on</strong>g> the RH pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile (after 24 h) at depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 12.5 and 25.0 mm ispresented.The same analysis has been d<strong>on</strong>e for the thicker material, andthe deviati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> relative humidity at depths <str<strong>on</strong>g>of</str<strong>on</strong>g> 50.0 and100.0 mm are presented <strong>in</strong> Table 7.Aga<strong>in</strong>, the errors are bigger and deeper <strong>in</strong> the th<strong>in</strong>ner material,but this time, for the thicker sample the deviati<strong>on</strong>s are lower anddeeper <strong>in</strong> the material. For both thicknesses <str<strong>on</strong>g>of</str<strong>on</strong>g> the material <strong>in</strong> thesimulati<strong>on</strong> with lower values <str<strong>on</strong>g>of</str<strong>on</strong>g> water vapour permeability than<strong>in</strong> the reference case, the problem with divergence occur. It mightbe c<strong>on</strong>nected with a too l<strong>on</strong>g time step and too th<strong>in</strong> layers used <strong>in</strong>the numerical simulati<strong>on</strong>s.Some uncerta<strong>in</strong>ty is always associated with the experimentalcharacterizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials. The variati<strong>on</strong>s used <strong>in</strong> the sensitivitystudy above seem reas<strong>on</strong>able approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimentaluncerta<strong>in</strong>ty. Therefore it must be remembered that the calculatedvalues are also with<strong>in</strong> a limit <str<strong>on</strong>g>of</str<strong>on</strong>g> several percent; here about 6% asshown <strong>in</strong> the results <strong>in</strong> the table above.5. <str<strong>on</strong>g>Modell<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> isothermSorpti<strong>on</strong> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>s the water vapour transport <strong>in</strong>the material. To describe the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>, the empiricalmodel proposed by Pedersen [11] <strong>in</strong> MATCH s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware was used <strong>in</strong>Humi-mur. Eq. (4) is used for desorpti<strong>on</strong> and Eq. (5) is used <strong>in</strong> thecase <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorpti<strong>on</strong>x d;h ¼ ðu u aÞ A x d þ Bðu u d Þ A x aðu d u a Þ A (4)x a;h ¼ Bðu u aÞ A x d þðu u d Þ A x a(5)ðu d u a Þ Awhere u a and u d are moisture c<strong>on</strong>tents <strong>in</strong> kg/kg, x a and x d are themoisture capacities (kg/kg) <str<strong>on</strong>g>of</str<strong>on</strong>g>, respectively, adsorpti<strong>on</strong> anddesorpti<strong>on</strong> isotherms for a given relative humidity, and u is theactual moisture c<strong>on</strong>tent <strong>in</strong> kg/kg.Computed moisture capacity x d,h or x a,h is used <strong>in</strong> Eq. (3). Thefuncti<strong>on</strong> (4) is used for desorpti<strong>on</strong> if <strong>in</strong> the previous two timesteps the water c<strong>on</strong>tent was decreas<strong>in</strong>g, the functi<strong>on</strong> (5) is usedfor adsorpti<strong>on</strong> if <strong>in</strong> the previous two time steps the water c<strong>on</strong>tentwas <strong>in</strong>creas<strong>in</strong>g. Pedersen proposed the values <str<strong>on</strong>g>of</str<strong>on</strong>g> A and Bcoefficients as follows: A ¼ 2 and B ¼ 0.1. Although, like the otherresearchers showed [21,25], it is better to fit those coefficients foreach material. For fitt<strong>in</strong>g the experimental data, primary sorpti<strong>on</strong>and desorpti<strong>on</strong> isotherm and sec<strong>on</strong>dary sorpti<strong>on</strong> or desorpti<strong>on</strong>isotherm are needed.5.1. Sett<strong>in</strong>g A and B coefficientThe coefficients A and B from Eqs. (4) and (5) were chosenus<strong>in</strong>g experimental data <str<strong>on</strong>g>of</str<strong>on</strong>g> primary adsorpti<strong>on</strong> and desorpti<strong>on</strong>isotherm and sec<strong>on</strong>dary desorpti<strong>on</strong> isotherm, as plotted <strong>in</strong> Fig. 9.F<strong>in</strong>ally, coefficient A was found to be equal to 1.6 and B to 0.68.Those values were used <strong>in</strong> Eqs. (4) and (5), implemented <strong>in</strong> Humimur,for simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mass</strong> flow <strong>in</strong> the material with the effect <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>.Even if the values <str<strong>on</strong>g>of</str<strong>on</strong>g> A and B coefficients fit well theexperimental data, the fully empirical procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> selecti<strong>on</strong> isnot satisfactory from the theoretical po<strong>in</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> view. It is still apresent challenge to enhance understand<strong>in</strong>g and modell<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g>Water c<strong>on</strong>tent [kg/kg]0.0180desorpti<strong>on</strong> 79.5-33%0.0160adsorpti<strong>on</strong>0.0140desorpti<strong>on</strong>0.01200.01000.00800.00600.00400.00200.00000.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>. It seems <strong>in</strong>terest<strong>in</strong>g to exploit micro-structural properties,such as pore-size distributi<strong>on</strong>.5.2. Simulati<strong>on</strong>s and resultsIn this part <str<strong>on</strong>g>of</str<strong>on</strong>g> the paper the results <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mass</strong> flow calculati<strong>on</strong> forthe model with the <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect are presented. The simulati<strong>on</strong>swere d<strong>on</strong>e for gypsum board from Test 1 (Table 1), withthickness <str<strong>on</strong>g>of</str<strong>on</strong>g> the sample l ¼ 12.5 mm, number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers z ¼ 5, timestep ¼ 60 s, and period <str<strong>on</strong>g>of</str<strong>on</strong>g> calculati<strong>on</strong> ¼ 360 h. The boundaryc<strong>on</strong>diti<strong>on</strong>, ambient relative humidity, was described by as<strong>in</strong>usoidal functi<strong>on</strong> with a 24-h period, oscillat<strong>in</strong>g between 30%and 50%. The <strong>in</strong>itial relative humidity <strong>in</strong> the material was equal to40%. In Fig. 10, water c<strong>on</strong>tent <strong>in</strong> the middle layer <str<strong>on</strong>g>of</str<strong>on</strong>g> the material isplotted.The darker l<strong>in</strong>e describes the process <str<strong>on</strong>g>of</str<strong>on</strong>g> change <strong>in</strong> waterc<strong>on</strong>tent when at the beg<strong>in</strong>n<strong>in</strong>g the desorpti<strong>on</strong> process appears.The lighter l<strong>in</strong>e depicts the process start<strong>in</strong>g with adsorpti<strong>on</strong>. Alarge difference can be seen dur<strong>in</strong>g several <strong>in</strong>itial cycles betweenthe two situati<strong>on</strong>s. However, after several cycles (approximately12 here), the material water c<strong>on</strong>tent is predictably at the samelevel <strong>in</strong> both situati<strong>on</strong>s.Additi<strong>on</strong>al simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>mass</strong> flow <strong>in</strong> the material wereperformed with different levels <str<strong>on</strong>g>of</str<strong>on</strong>g> relative humidity: for the first 7days it was vary<strong>in</strong>g s<strong>in</strong>usoidaly between 55% and 45% and for thenext week between 50% and 40%. Fig. 11 shows that moisturec<strong>on</strong>tent <strong>in</strong> the material, as expected, is situated <strong>in</strong> between thecurves <str<strong>on</strong>g>of</str<strong>on</strong>g> adsorpti<strong>on</strong> and desorpti<strong>on</strong>, and the shape <str<strong>on</strong>g>of</str<strong>on</strong>g> the curve issimilar to previous results from the literature [12].6. Impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>Relative humidity [-]0.901.00Fig. 9. Curves <str<strong>on</strong>g>of</str<strong>on</strong>g> primary sorpti<strong>on</strong> and desorpti<strong>on</strong> isotherms, and sec<strong>on</strong>ddesorpti<strong>on</strong> isotherm from [24].To dem<strong>on</strong>strate the <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect <strong>on</strong>water vapour transport <strong>in</strong> build<strong>in</strong>g materials, series <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> the 12.5-mm-thick gypsum board were performed. The samematerial and same boundary c<strong>on</strong>diti<strong>on</strong>s were used with twomodels: with and without <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. The c<strong>on</strong>vecti<strong>on</strong> <strong>mass</strong><strong>transfer</strong> coefficient b and temperature were the same as thoseused <strong>in</strong> Test 1 (Tables 1 and 2), but the relative humidity <strong>in</strong> the airwas chang<strong>in</strong>g s<strong>in</strong>usoidally between 45% and 55%. The calculati<strong>on</strong>swere made for four variants (see Fig. 12): Hysteresis: The model with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. Adsorpti<strong>on</strong>: Model without the <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. The dependencybetween the relative humidity and the water c<strong>on</strong>tent isdescribed by the adsorpti<strong>on</strong> isotherm.


ARTICLE IN PRESSJ. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–642 6390.00600.0055Water c<strong>on</strong>tent [kg/kg]0.00500.00450.00400.00350.00300.0025layer 3 desorpti<strong>on</strong>layer 3 adsorpti<strong>on</strong>0.00200 24 4872 96120144 168 192Time [h]216240264288312336360Fig. 10. Moisture <strong>mass</strong> c<strong>on</strong>tent at the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.25 mm.Water c<strong>on</strong>tent [kg/kg]0.0080.0070.0060.0050.0040.0030.0020.25<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>sorpti<strong>on</strong> isothermdesorpti<strong>on</strong> isotherm0.350.45 0.55Relative humidity [-]0.65Fig. 11. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>ile <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>tent at the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.25 mm, as a functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> periodicalchanges <str<strong>on</strong>g>of</str<strong>on</strong>g> air relative humidity.Water c<strong>on</strong>tent [kg/kg]0.0080.0070.0060.0050.0040.0030.002240252264<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>adsorpti<strong>on</strong>desorpti<strong>on</strong>average276Time [h]Fig. 12. Moisture <strong>mass</strong> c<strong>on</strong>tent <strong>in</strong> the gypsum board at the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.25 mm, forfour calculati<strong>on</strong> variants.288300312 Desorpti<strong>on</strong>: Model without the <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. The dependencybetween the relative humidity and the water c<strong>on</strong>tent isdescribed by the desorpti<strong>on</strong> isotherm. Average: Model without the <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. The dependencybetween the relative humidity and the water c<strong>on</strong>tent isdescribed by the average from adsorpti<strong>on</strong> and desorpti<strong>on</strong>isotherms.In Fig. 15 the pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture c<strong>on</strong>tent <strong>in</strong> the gypsum boardafter stabilizati<strong>on</strong> are presented. A significant difference can beseen between the model with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect and the modelsus<strong>in</strong>g <strong>on</strong>ly adsorpti<strong>on</strong> or desorpti<strong>on</strong> equati<strong>on</strong>s. However, whenthe average curve between adsorpti<strong>on</strong> and desorpti<strong>on</strong> is used, theresults can approximate correctly the behaviour with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>effect.The results <str<strong>on</strong>g>of</str<strong>on</strong>g> simulati<strong>on</strong>s for the chang<strong>in</strong>g humidity c<strong>on</strong>diti<strong>on</strong>s<strong>in</strong> the air (for the first week the relative humidity was chang<strong>in</strong>g from45% to 55% and for the next week from 40% to 50%) are presented <strong>in</strong>Fig. 13. It can be seen that achiev<strong>in</strong>g the equilibrium state <strong>in</strong> thematerial takes approximately 1 week, <strong>in</strong> case <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>. Here,significant differences <strong>in</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture c<strong>on</strong>tent between themodel with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> and all other variants can be seen. The effect<str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> is more important <strong>in</strong> the case <str<strong>on</strong>g>of</str<strong>on</strong>g> str<strong>on</strong>glydynamic changes <str<strong>on</strong>g>of</str<strong>on</strong>g> the boundary relative humidity than <strong>in</strong> the case<str<strong>on</strong>g>of</str<strong>on</strong>g> steady-state c<strong>on</strong>diti<strong>on</strong>s.7. Practical use <str<strong>on</strong>g>of</str<strong>on</strong>g> the Humi-mur model7.1. Implementati<strong>on</strong> <strong>in</strong> an energy performance simulati<strong>on</strong> toolIn order to dem<strong>on</strong>strate the practical use <str<strong>on</strong>g>of</str<strong>on</strong>g> the developedmodel, the first module <str<strong>on</strong>g>of</str<strong>on</strong>g> Humi-mur was implemented <strong>in</strong>to awell-known build<strong>in</strong>g simulati<strong>on</strong> tool called TRNSYS [26]. TRNSYSwas designed to solve complex energy system problems but thevariati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>door parameters like temperature or relativehumidity can be also simulated. Thanks to the modular structure<str<strong>on</strong>g>of</str<strong>on</strong>g> the TRNSYS programme, the Humi-mur model was translated<strong>in</strong>to FORTRAN and implemented <strong>in</strong> TRNSYS Studio as a new typeresp<strong>on</strong>sible for the moisture buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the materials. Humi-murcalculates moisture flow exchanged between <strong>in</strong>door air andmoisture buffer<strong>in</strong>g materials. This moisture flow is also <strong>in</strong>cluded<strong>in</strong> the water vapour <strong>mass</strong> balance <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>door air, as shown <strong>in</strong>Fig. 14.


ARTICLE IN PRESS640J. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–6420.0080.007<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>adsorpti<strong>on</strong>desorpti<strong>on</strong>averageWater c<strong>on</strong>tent [kg/kg]0.0060.0050.0040.0030.0020 24 48 72 96 120 144 168 192 216 240 264 288 312 336Time [h]Fig. 13. Moisture <strong>mass</strong> c<strong>on</strong>tent <strong>in</strong> the gypsum board at the depth <str<strong>on</strong>g>of</str<strong>on</strong>g> 6.25 mm, for four calculati<strong>on</strong> variants, with changes <strong>in</strong> air relative humidity.Fig. 14. Scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> the Humi-mur implementati<strong>on</strong> <strong>in</strong>to the TRNSYS simulati<strong>on</strong> tool.It has been shown that the Humi-mur model implemented <strong>in</strong>toTRNSYS envir<strong>on</strong>ment allows to predict <strong>in</strong>door relative humidity <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>sidered z<strong>on</strong>e [27]. Also, the model <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture buffer<strong>in</strong>gwas used to exam<strong>in</strong>e the <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> materials water vapourstorage <strong>on</strong> moulds growth risk <strong>on</strong> the <strong>in</strong>ternal wall surfaces. It wasshown that materials that buffer water vapour can significantlydecrease the risk <str<strong>on</strong>g>of</str<strong>on</strong>g> mould growth [28].In order to check if <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>s moisturebuffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the materials at the build<strong>in</strong>g level, some additi<strong>on</strong>alcalculati<strong>on</strong>s <strong>in</strong> the TRNSYS programme have been performed.In the simulati<strong>on</strong>s two models have been used: the firstwithout <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> and with average sorpti<strong>on</strong> isotherm, and thesec<strong>on</strong>d with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> sorpti<strong>on</strong> curves. The calculati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>in</strong>door absolute humidity were made for a small room(2.5 3.5 2.6 m 3 ) with the gypsum board (30 m 2 ) as a buffer<strong>in</strong>gmaterial. The c<strong>on</strong>sidered room had two external walls and <strong>on</strong>ew<strong>in</strong>dow. It was assumed that the rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the z<strong>on</strong>e’s envelopes wereadiabatic. Additi<strong>on</strong>al ga<strong>in</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> heat and water vapour were alsoadded. The periods with heat and humidity producti<strong>on</strong> wereestablished each morn<strong>in</strong>g (from 6 to 8 a.m.), afterno<strong>on</strong> (from 12 to14 p.m.) and even<strong>in</strong>g (from 18 to 21 p.m.). Also a ventilati<strong>on</strong> rate<str<strong>on</strong>g>of</str<strong>on</strong>g> 22.75 m 3 /h was assumed. The simulati<strong>on</strong>s were performed for 1year, us<strong>in</strong>g weather file Warsaw (Poland). In order to avoid too lowtemperatures <strong>in</strong> the z<strong>on</strong>e, the heat<strong>in</strong>g seas<strong>on</strong> with a c<strong>on</strong>stanttemperature <str<strong>on</strong>g>of</str<strong>on</strong>g> 20 1C was set from the 1 October till 15 May. In thesimulati<strong>on</strong> the time step <str<strong>on</strong>g>of</str<strong>on</strong>g> 600 s was used for the model without<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect and <str<strong>on</strong>g>of</str<strong>on</strong>g> 72 s for the model with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect.Hourly results were compared.7.2. Results and discussi<strong>on</strong>In Fig. 15 the relative difference <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>doorair between the models is presented. Although most <str<strong>on</strong>g>of</str<strong>on</strong>g> the timethe difference is smaller than 5% and the mean difference equals3.1%, it can be noticed that sometimes the difference reaches highvalues. It was calculated that for 23% <str<strong>on</strong>g>of</str<strong>on</strong>g> the time, the differencepasses the limit <str<strong>on</strong>g>of</str<strong>on</strong>g> 5% and for 6% <str<strong>on</strong>g>of</str<strong>on</strong>g> the time is higher than 10%.The difference between results <str<strong>on</strong>g>of</str<strong>on</strong>g> the absolute humidity obta<strong>in</strong>edus<strong>in</strong>g the model without <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> and with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> can reachas much as 20%. The highest values <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference wereobta<strong>in</strong>ed when the absolute humidity <strong>in</strong> the z<strong>on</strong>e had the highestor the lowest values. It was also noticed that for the maximumvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> the z<strong>on</strong>e absolute humidity, the model without<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> was decreas<strong>in</strong>g water c<strong>on</strong>tent <strong>in</strong> the air moresignificantly than the model with the <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. Similarsituati<strong>on</strong>s occurred for the m<strong>in</strong>imum values <str<strong>on</strong>g>of</str<strong>on</strong>g> the z<strong>on</strong>e absolutehumidity. The model <strong>on</strong>ly with the average sorpti<strong>on</strong> curve was<strong>in</strong>creas<strong>in</strong>g the water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the air more significantly than themodel with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>. This phenomen<strong>on</strong> shows that us<strong>in</strong>g <strong>in</strong> thecalculati<strong>on</strong> model <strong>on</strong>ly with the average sorpti<strong>on</strong> curve reducesthe amplitude <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door absolute humidity more than the morerealistic model with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>. Neglect<strong>in</strong>g <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <strong>in</strong> thesorpti<strong>on</strong> curve leads to overestimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the moisture buffer<strong>in</strong>gcapacity <str<strong>on</strong>g>of</str<strong>on</strong>g> materials. For some materials those differences willnot provide significant errors but for others (such as wood) theymay lead to underestimati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> risk <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>densati<strong>on</strong> or <str<strong>on</strong>g>of</str<strong>on</strong>g> mouldgrowth.


ARTICLE IN PRESSJ. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–642 64110000Number <str<strong>on</strong>g>of</str<strong>on</strong>g> hours10001001012.512.5 7.517.522.5Relative difference <strong>in</strong> water c<strong>on</strong>tent between two models [%]Fig. 15. Relative difference <strong>in</strong> water c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the air between results obta<strong>in</strong>ed us<strong>in</strong>g the model without <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> and with <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>.Table 5Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> relative humidity calculati<strong>on</strong>s for different number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers and timestep for the 150 mm thick sampleParameter Value Deviati<strong>on</strong>(depth 50.0 mm)8. C<strong>on</strong>clusi<strong>on</strong>s and perspectivesDeviati<strong>on</strong>(depth 100.0 mm)Number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers 48 0.01% 0.00%72 Divergence DivergenceTime step (s) 30 0.01% 0.01%120 Divergence DivergenceTable 6Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> relative humidity calculati<strong>on</strong>s for changes <strong>in</strong> sorpti<strong>on</strong> isotherm andvapour permeability for the 37.5 mm thick sampleProperty Adjusted Deviati<strong>on</strong>(depth 12.5 mm)Sorpti<strong>on</strong> isotherm ( ) 3.50% 6.15%(+) 3.61% 6.19%Deviati<strong>on</strong>(depth 25.0 mm)Vapour permeability ( ) Divergence Divergence(+) 2.70% 4.94%Table 7Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> relative humidity calculati<strong>on</strong>s for changes <strong>in</strong> sorpti<strong>on</strong> isotherm andvapour permeability for the 150 mm thick sampleProperty Adjusted Deviati<strong>on</strong>(depth 50.0 mm)Sorpti<strong>on</strong> isotherm ( ) 0.48% 3.42%(+) 12.11% 10.67%Deviati<strong>on</strong>(depth 100.0 mm)Vapour permeability ( ) Divergence Divergence(+) 4.37% 3.49%A new module for the precise representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>mass</strong> <strong>transfer</strong><strong>in</strong> materials <strong>in</strong> c<strong>on</strong>tact with <strong>in</strong>door air, called Humi-mur, waselaborated and validated <strong>in</strong> this work. It was then applied toestimate the sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> the results to uncerta<strong>in</strong>ty <strong>in</strong> measuredmaterial properties and the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> effect. Humi-murwas also successfully implemented <strong>in</strong> a whole-build<strong>in</strong>g simulati<strong>on</strong>code, TRNSYS. The new model allows c<strong>on</strong>sider<strong>in</strong>g severaldifferent materials, and for precise def<strong>in</strong>iti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> properties formoisture <strong>transfer</strong>.Reas<strong>on</strong>able estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental uncerta<strong>in</strong>ty resulted <strong>in</strong>the deviati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 6% <strong>in</strong> calculated results. It isimportant to know better the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> predicti<strong>on</strong>s. The simulati<strong>on</strong>tool cannot give results more precisely than the <strong>in</strong>put data. Somek<strong>in</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> uncerta<strong>in</strong>ty or error-bar should then complement thesimulati<strong>on</strong> results. For some variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters the divergenceproblems occur (see Tables 5–7). The difficulty <strong>in</strong> obta<strong>in</strong><strong>in</strong>g resultsfrom numerical calculati<strong>on</strong> is related ma<strong>in</strong>ly with too l<strong>on</strong>g time stepor too th<strong>in</strong> layer <strong>in</strong> the material. The stability <str<strong>on</strong>g>of</str<strong>on</strong>g> numericalsimulati<strong>on</strong> will be <strong>in</strong>vestigated <strong>in</strong> the near future.C<strong>on</strong>cern<strong>in</strong>g <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <strong>in</strong> the sorpti<strong>on</strong> isotherm, we showedthat us<strong>in</strong>g <strong>on</strong>ly <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the sorpti<strong>on</strong> isotherm equati<strong>on</strong>s (adsorpti<strong>on</strong>or desorpti<strong>on</strong>) leads to significant differences. More preciseresults were achieved if the average <str<strong>on</strong>g>of</str<strong>on</strong>g> the adsorpti<strong>on</strong> anddesorpti<strong>on</strong> equati<strong>on</strong>s was used <strong>in</strong> the model. For less-precisecalculati<strong>on</strong>s it appeared to be a reas<strong>on</strong>able approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>mean behaviour. However, for str<strong>on</strong>g variati<strong>on</strong>s <strong>in</strong> boundaryc<strong>on</strong>diti<strong>on</strong>s, it is not well suited. Indeed, c<strong>on</strong>vergence to some k<strong>in</strong>d<str<strong>on</strong>g>of</str<strong>on</strong>g> quasi-permanent state is much slower if <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> isc<strong>on</strong>sidered. This effect <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g>s the dynamic behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g>materials. It was also shown that <strong>in</strong> realistic c<strong>on</strong>diti<strong>on</strong>s (a roomunder variable climate and hygrothermal loads), neglect<strong>in</strong>g<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> leads to overestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture buffer<strong>in</strong>g properties<str<strong>on</strong>g>of</str<strong>on</strong>g> materials <strong>in</strong> c<strong>on</strong>tact with the <strong>in</strong>door air. In some cases suchoverestimati<strong>on</strong> may c<strong>on</strong>duct to the underestimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> risks <str<strong>on</strong>g>of</str<strong>on</strong>g>mould growth and/or c<strong>on</strong>densati<strong>on</strong>.References[1] Padfield T. Humidity buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> the <strong>in</strong>door climate by absorbent walls [<strong>on</strong>l<strong>in</strong>e]. In: Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the fifth symposium <strong>on</strong> build<strong>in</strong>g physics <strong>in</strong>Nordic countries, vol. 2. Goteborg: Chalmers University <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology;1999. p. 637–44 Pdf available at: /http://www.padfield.org/tim/cfys/appx/pubs.phpS.[2] Osany<strong>in</strong>tola OF, Sim<strong>on</strong>s<strong>on</strong> CJ. Moisture buffer<strong>in</strong>g capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> hygroscopicbuild<strong>in</strong>g materials: experimental facilities and energy impact. Energy andBuild<strong>in</strong>gs 2006;38:1270–82.[3] Hens H. F<strong>in</strong>al report, vol. 1, Task 1: modell<strong>in</strong>g, IEA Annex 24. ACCO Leuven;1996.[4] Canada Mortgage and Hous<strong>in</strong>g Corporati<strong>on</strong> (CMHC). Review <str<strong>on</strong>g>of</str<strong>on</strong>g>hygrothermal models for build<strong>in</strong>g envelope retr<str<strong>on</strong>g>of</str<strong>on</strong>g>it analysis. Researchhighlights, technical series 03-128./http://www.cmhc-schl.gc.ca/publicati<strong>on</strong>/en/rh-pr/tech/03-128-e.htlmS.[5] Künzel HM. Simultaneous heat and moisture transport <strong>in</strong> build<strong>in</strong>g comp<strong>on</strong>ents.One- and two-dimensi<strong>on</strong>al calculati<strong>on</strong> us<strong>in</strong>g simple parameters. IRBVerlag; 1995.


ARTICLE IN PRESS642J. Kwiatkowski et al. / Build<strong>in</strong>g and Envir<strong>on</strong>ment 44 (2009) 633–642[6] WUFI. PC-program for calculat<strong>in</strong>g coupled heat and moisture <strong>transfer</strong> <strong>in</strong>build<strong>in</strong>g comp<strong>on</strong>ents. /http://www.wufi.de/<strong>in</strong>dex_e.htlmS.[7] Holm A, Künzel HM. Two-dimensi<strong>on</strong>al transient heat and moisture simulati<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> ris<strong>in</strong>g damp with WUFI 2D. 12th <strong>in</strong>ternati<strong>on</strong>al brick/block mas<strong>on</strong>ryc<strong>on</strong>ference, Madrid, 25–28 June 2000.[8] Burch DM, Chi J. MOIST. A PC program for predict<strong>in</strong>g heat and moisture<strong>transfer</strong> <strong>in</strong> build<strong>in</strong>gs envelopes. Release 3.0, 1997.[9] Hagent<str<strong>on</strong>g>of</str<strong>on</strong>g>t CE, Blomberg T. 1D-HAM. Coupled heat, air and moisture <strong>transfer</strong> <strong>in</strong>multi-layered wall structures. Manual with brief theory and an example,versi<strong>on</strong> 2.0, 2000. /http://www.build<strong>in</strong>gphysics.com/manuals/1dham.pdfS.[10] MATCH—Moisture and temperature calculati<strong>on</strong> for c<strong>on</strong>structi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hygroscopicmaterials, /http://www.match-box.dkS.[11] Pedersen CR. Comb<strong>in</strong>ed heat and moisture <strong>transfer</strong> <strong>in</strong> build<strong>in</strong>g c<strong>on</strong>structi<strong>on</strong>s.Ph.D. thesis. Report 214. Thermal Insulati<strong>on</strong> Laboratory, Technical University<str<strong>on</strong>g>of</str<strong>on</strong>g> Denmark, 1990.[12] Pedersen CR. Transient calculati<strong>on</strong> <strong>on</strong> moisture migrati<strong>on</strong> us<strong>in</strong>g a simplifieddescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <strong>in</strong> the sorpti<strong>on</strong> isotherms. The sec<strong>on</strong>d symposium <strong>on</strong>build<strong>in</strong>g physics <strong>in</strong> the Nordic Countries, Tr<strong>on</strong>dheim, 20–22 August 1990.[13] Gev<strong>in</strong>g S, Karagiozis A, Sal<strong>on</strong>vaara M. Measurements and two-dimensi<strong>on</strong>alcomputer simulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the hygrothermal performance <str<strong>on</strong>g>of</str<strong>on</strong>g> a wood frame wall.Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Thermal Insulati<strong>on</strong> and Build<strong>in</strong>g Envelopes 1997;20(April 1):301–19.[14] Gev<strong>in</strong>g S. A systematic method for hygrothermal analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> build<strong>in</strong>gc<strong>on</strong>structi<strong>on</strong>s us<strong>in</strong>g computer models. In: Proceed<strong>in</strong>gs <str<strong>on</strong>g>of</str<strong>on</strong>g> the build<strong>in</strong>gsimulati<strong>on</strong>, vol. 2; 1997. p. 355–61.[15] Mukhopadhyaya P, Goudreau P, Kumaran MK, van Reenen D. Influence <str<strong>on</strong>g>of</str<strong>on</strong>g>material properties <strong>on</strong> the moisture resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> an ideal stucco wall: resultsfrom hygrothermal simulati<strong>on</strong>. In: Sixth Nordic Build<strong>in</strong>g Physics Symposium,Tr<strong>on</strong>dheim, Norway, 17–19 June 2002.[16] Sal<strong>on</strong>vaara M, Karagiozis A, Holm A. Stochastic build<strong>in</strong>g envelope model<strong>in</strong>g—the<str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> material properties. Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> exterior envelopes<str<strong>on</strong>g>of</str<strong>on</strong>g> whole build<strong>in</strong>gs VIII: <strong>in</strong>tegrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> build<strong>in</strong>g envelopes, CD-ROM (2001),December 2–7 2001. 8pp.[17] Kumaran MK. F<strong>in</strong>al Report, vol.3. Task 3: Material properties, Acco Leuven,1996.[18] Sereda PJ, Feldman RF. CBD-130.Wett<strong>in</strong>g and dry<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> porous materials, 1970.[19] Mualem Y. A c<strong>on</strong>ceptual model <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g>. Water Resources Research1974;10(3).[20] Time B. Studies <strong>on</strong> hygroscopic moisture transport <strong>in</strong> Norway spruce (Piceaabies). Part 2: <str<strong>on</strong>g>Modell<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> transient moisture transport and <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> <strong>in</strong>wood. Holz Als Roh-und Werkst<str<strong>on</strong>g>of</str<strong>on</strong>g>f 2002;60(6).[21] Carmelit J, de Wit M, Jansen H. Hysteresis and moisture buffer<strong>in</strong>g <str<strong>on</strong>g>of</str<strong>on</strong>g> wood. In:Seventh Nordic symposium <strong>on</strong> build<strong>in</strong>g physics, Reykjavik, 12–15 June 2005.[22] Peralta PN. <str<strong>on</strong>g>Modell<strong>in</strong>g</str<strong>on</strong>g> wood moisture sorpti<strong>on</strong> <str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> us<strong>in</strong>g the<strong>in</strong>dependent-doma<strong>in</strong> theory. Wood Fiber Science 1995;27:250–7.[23] Crausse P, Laurent JP, Perr<strong>in</strong> B. Influence des phenomenes d’<str<strong>on</strong>g>hysteresis</str<strong>on</strong>g> sur lesproprietes hydriques de materiaux poreux: Comparais<strong>on</strong> de deux modeles desimulati<strong>on</strong> du comportement thermohydrique de parois de batiment. RevenuGenerale de Thermique 1996;35(410).[24] James C, Sim<strong>on</strong>s<strong>on</strong> CJ, Talukdar P. Annex 41 report for comm<strong>on</strong> exercisesubtask 2, IEA annex 41, June 2007. 89pp.[25] Frandsen HL. <str<strong>on</strong>g>Modell<strong>in</strong>g</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> moisture transport <strong>in</strong> wood. Wood science andtimber eng<strong>in</strong>eer<strong>in</strong>g, Paper no. 1, 2nd ed. Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Build<strong>in</strong>g Technologyand Structural Eng<strong>in</strong>eer<strong>in</strong>g, Aalborg University, March 2005.ISSN:1395-7953R0502.[26] Kle<strong>in</strong> SA, Beckman WA, Mitchell JW, et al. TRNSYS 16, a transient systemsimulati<strong>on</strong> program, Solar Energy Laboratory, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Wisc<strong>on</strong>s<strong>in</strong>,Madis<strong>on</strong>, USA, 2004.[27] Kwiatkowski J, Feret K, Woloszyn M, Roux J-J. Predict<strong>in</strong>g <strong>in</strong>door relativehumidity us<strong>in</strong>g build<strong>in</strong>g energy simulati<strong>on</strong> tools. In: The sixth <strong>in</strong>ternati<strong>on</strong>alc<strong>on</strong>ference <strong>on</strong> <strong>in</strong>door air quality, ventilati<strong>on</strong> & energy c<strong>on</strong>servati<strong>on</strong> <strong>in</strong>build<strong>in</strong>g, Sendai, Japan, 28–31 October 2007.[28] Kwiatkowski J, Woloszyn M, Roux J-J. The <str<strong>on</strong>g><strong>in</strong>fluence</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> material moisturebuffer<strong>in</strong>g <strong>on</strong> moulds growth risk <strong>on</strong> the <strong>in</strong>ternal wall surfaces (Wplywbuforowania wilgoci przez materialy na ryzyko rozwoju plesni na powierzchniprzegrod wewnetrznych), IX Polish c<strong>on</strong>ference ‘‘The problems <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>in</strong>door airquality <strong>in</strong> Poland’’ (IX Ogolnopolska K<strong>on</strong>ferencja ‘‘Problemy jakosci powietrzawewnetrznego w Polsce’’), Warsaw, Poland, 22–23 November 2007 [<strong>in</strong>polish].

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!