13.07.2015 Views

Solar Semidiurnal Tide in the Dusty Atmosphere of Mars

Solar Semidiurnal Tide in the Dusty Atmosphere of Mars

Solar Semidiurnal Tide in the Dusty Atmosphere of Mars

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

JULY 2006 FORBES AND MIYAHARA 1799lower altitudes (0–50 km) occurs because <strong>of</strong> enhancedsolar radiation absorption by globally elevated dust.This problem is <strong>of</strong> <strong>in</strong>terest for several reasons. First,because <strong>of</strong> its relatively long wavelength, <strong>the</strong> semidiurnaltide has <strong>the</strong> potential to propagate <strong>in</strong>to <strong>the</strong> <strong>the</strong>rmosphereand produce significant density variations ataerobrak<strong>in</strong>g altitudes (ca. 100–170 km). Estimates <strong>of</strong>such effects are <strong>of</strong> <strong>in</strong>terest, as exist<strong>in</strong>g measurementshave <strong>in</strong>adequate local time coverage to del<strong>in</strong>eate semidiurnalvariations <strong>in</strong> <strong>Mars</strong>’s <strong>the</strong>rmosphere. In addition,molecular dissipation <strong>of</strong> <strong>the</strong> tide above 100 km will <strong>in</strong>ducemomentum and heat flux divergences that accelerateand heat <strong>the</strong> <strong>the</strong>rmosphere, but <strong>the</strong> magnitude <strong>of</strong><strong>the</strong>se effects rema<strong>in</strong> unknown. Break<strong>in</strong>g (convective <strong>in</strong>stability)<strong>of</strong> <strong>the</strong> semidiurnal tide may, however, be acritical factor <strong>in</strong> determ<strong>in</strong><strong>in</strong>g how efficiently <strong>the</strong> tidecouples <strong>the</strong> lower and upper atmospheres <strong>of</strong> <strong>Mars</strong>. Earlierwork (Hamilton 1982; Zurek 1986; Zurek and Haberle1988) suggests that <strong>the</strong> semidiurnal tide achievesconvective <strong>in</strong>stability by about 40 km and significantlymodifies <strong>the</strong> zonal mean state <strong>of</strong> <strong>Mars</strong>’s atmosphere.However, <strong>the</strong> implications <strong>of</strong> convective <strong>in</strong>stability on<strong>the</strong> cont<strong>in</strong>ued upward propagation <strong>of</strong> <strong>the</strong> semidiurnaltide, and on <strong>the</strong> zonal mean circulation and <strong>the</strong>rmalstructure <strong>of</strong> <strong>the</strong> atmosphere at higher altitudes, rema<strong>in</strong>sunexplored. Eddy mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> atmosphere that accompaniestidal break<strong>in</strong>g is relevant to m<strong>in</strong>or constituenttransport, establishment <strong>of</strong> <strong>the</strong> homopause (Leovy1982), and <strong>the</strong>refore <strong>the</strong> planetary escape rate <strong>of</strong> lightgases (Hunten 1973, 1974). It is <strong>the</strong> purpose <strong>of</strong> <strong>the</strong>present work to address <strong>the</strong> above issues perta<strong>in</strong><strong>in</strong>g to<strong>the</strong> semidiurnal tide <strong>in</strong> <strong>Mars</strong>’s dusty atmosphere. In <strong>the</strong>rema<strong>in</strong>der <strong>of</strong> this section, we <strong>in</strong>troduce <strong>the</strong> tidal nomenclatureused throughout <strong>the</strong> paper, and <strong>the</strong>n set <strong>the</strong>problem <strong>in</strong>to <strong>the</strong> broader context <strong>of</strong> solar <strong>the</strong>rmal tides<strong>in</strong> planetary atmospheres, and <strong>of</strong> previous work relat<strong>in</strong>gto <strong>Mars</strong>.<strong>Solar</strong> <strong>the</strong>rmal tides are oscillations <strong>in</strong> temperature,density, pressure, and w<strong>in</strong>ds <strong>in</strong>duced by <strong>the</strong> daily cyclicabsorption <strong>of</strong> solar energy <strong>in</strong> an atmosphere or planetarysurface. Assum<strong>in</strong>g cont<strong>in</strong>uity <strong>in</strong> space and timearound a latitude circle, solar <strong>the</strong>rmal tidal fields arerepresented <strong>in</strong> <strong>the</strong> formA n,s cosnt s n,s ,where t time (sols for <strong>Mars</strong>, where 1 sol 24.6 h),rotation rate <strong>of</strong> <strong>the</strong> planetary atmosphere ( 2sol 1 for <strong>Mars</strong>), longitude, n ( 1, 2, . . .) denotesa subharmonic <strong>of</strong> a sol, s ( .... 3, 2, . . . 0, 1,2, ....) is <strong>the</strong> zonal wavenumber, and <strong>the</strong> amplitudeA n,s and phase n,s are functions <strong>of</strong> height and latitude.In this context, n 1 and 2 represent oscillations withperiods correspond<strong>in</strong>g to 1.0 and 0.5 sols, and hence are1referred to as diurnal and semidiurnal tides, respectively.Eastward (westward) propagation correspondsto s 0(s 0). At any height and latitude <strong>the</strong> totaltidal response is obta<strong>in</strong>ed as a sum over n and s.Rewrit<strong>in</strong>g (1) <strong>in</strong> terms <strong>of</strong> local time t LT t /,wehaveA n,s cosnt LT s n n,s .Tidal components with s n yield local time variationsthat are <strong>in</strong>dependent <strong>of</strong> longitude, and thus correspondto solar radiation absorption by a zonally symmetricatmosphere or surface. From (1) such components correspondto a zonal phase speed C ph d/dt n/s , <strong>in</strong> o<strong>the</strong>r words westward-propagat<strong>in</strong>g at <strong>the</strong> samespeed as <strong>the</strong> apparent motion or migration <strong>of</strong> <strong>the</strong> sun toa ground-based observer. These sun-synchronous tidalcomponents are referred to as migrat<strong>in</strong>g tides. In responseto <strong>the</strong> zonally asymmetric (longitude dependent)absorption <strong>of</strong> solar energy by a planetary atmosphereor surface, <strong>the</strong> local time structure <strong>of</strong> <strong>the</strong> atmosphere(at a given height and latitude) is dependent onlongitude. In this case, Fourier representation must <strong>in</strong>volvea range <strong>of</strong> zonal wavenumbers <strong>of</strong> both signs, correspond<strong>in</strong>gto waves propagat<strong>in</strong>g to <strong>the</strong> east (s 0) orwest (s 0) (Chapman and L<strong>in</strong>dzen 1970); <strong>the</strong>se tidalcomponents are commonly referred to as nonmigrat<strong>in</strong>gtides. From (2) it is evident that from sun-synchronousorbit (t LT constant) a tide characterized by a given sand n appears as a variation <strong>in</strong> longitude with wavenumber|s n|. Conversely, a longitude variation observedfrom sun-synchronous orbit with wavenumber|s n| can be produced by multiple comb<strong>in</strong>ations <strong>of</strong> sand n.Diurnal and semidiurnal solar <strong>the</strong>rmal tides play animportant role <strong>in</strong> determ<strong>in</strong><strong>in</strong>g <strong>the</strong> mean circulation and<strong>the</strong>rmal structure <strong>of</strong> terrestrial planetary atmospheres(Venus, Earth, and <strong>Mars</strong>), <strong>in</strong> addition to <strong>the</strong>ir moreobvious contributions to variability about <strong>the</strong> zonalmean state (see review by Forbes 2002). In Earth’s atmosphere,solar tides beg<strong>in</strong> to dom<strong>in</strong>ate flow patternsabove about 80 km. At 95 km, migrat<strong>in</strong>g tides are <strong>the</strong>largest components, but nonmigrat<strong>in</strong>g tides are nearlyas important and <strong>in</strong>troduce significant longitude variability<strong>in</strong>to <strong>the</strong> tidal structures (Forbes et al. 2003). In<strong>the</strong> region between about 100 and 150 km, moleculardissipation <strong>of</strong> solar tides <strong>in</strong>duces zonal mean accelerationsthat strongly <strong>in</strong>fluence <strong>the</strong> mean circulation <strong>of</strong>that height region (i.e., Miyahara and Wu 1989; Angelatsi Coll and Forbes 2002). On Venus, tides play a keyrole <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g superrotation <strong>of</strong> <strong>the</strong> atmospherenear <strong>the</strong> cloud tops around 65 km (i.e., Newman andLeovy 1992). However, although <strong>the</strong> solar semidiurnaltide is observed to propagate to <strong>the</strong> lower <strong>the</strong>rmo-2

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!