02.12.2012 Views

IODP-ICDP Kolloquium 2008 in Hannover. Abstractband

IODP-ICDP Kolloquium 2008 in Hannover. Abstractband

IODP-ICDP Kolloquium 2008 in Hannover. Abstractband

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>IODP</strong>-<strong>ICDP</strong><br />

<strong>Kolloquium</strong> <strong>2008</strong><br />

<strong>in</strong> <strong>Hannover</strong><br />

12. - 14. März <strong>2008</strong>


Umschlagphoto: Dünnschliff-Photographie e<strong>in</strong>es Troktoliths vom mittelatlantischen Rücken 1193,2 m<br />

unter dem Meeresboden, erbohrt durch <strong>IODP</strong> Expedition 305.<br />

(Fotos: <strong>IODP</strong> und <strong>ICDP</strong>)


Tagungsort: Leibniz – Universität <strong>Hannover</strong>, Welfengarten 1<br />

Mensa<br />

Tagungsort<br />

U-Bahn<br />

Toiletten (0. Stock)<br />

Institut für M<strong>in</strong>eralogie<br />

Imbiss (0. Stock)<br />

Bankomat<br />

Alex<br />

E 001 Audimax<br />

Lichthof: Poster + Kaffee C 109: Tagungsbüro


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Programm<br />

Mittwoch, 12. März <strong>2008</strong><br />

10:00 12:00 Registrierung<br />

12:00 13:00 Eröffnung<br />

Prof. Dr.-Ing. Erich Barke, Präsident der Leibniz Universität <strong>Hannover</strong><br />

Prof. Dr. Hans-Joachim Kümpel, Präsident der BGR<br />

Dr. Sören Dürr, DFG Programmdirektor<br />

Koord<strong>in</strong>atoren - Gastgeber<br />

Berichte / Entwicklungen<br />

13:00 13:10 A. Kopf, NanTroSEIZE Project Management Team, <strong>IODP</strong> Expedition 314 Scientific Party<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition 314 (NanTroSEIZE Logg<strong>in</strong>g-While-<br />

Drill<strong>in</strong>g Transect)<br />

13:10 13:20 J. Behrmann, B. Böckel, A. Kopf, F. Schmidt-Schierhorn, <strong>IODP</strong> Expedition 315 Science<br />

Party<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition 315 (NanTroSEIZE Megasplay Riser<br />

Pilot)<br />

13:20 13:30 M. Strasser, N. Ried<strong>in</strong>ger, Y. Kitamura & Expedition 316 Scientists<br />

<strong>IODP</strong> NanTroSEIZE Expedition 316 (Shallow Mega Splay and frontal thrust) – <strong>in</strong>itial<br />

results<br />

13:30 13:40 G. Wefer<br />

Bericht über SASEC-Sitzung 15.-16. Januar <strong>2008</strong><br />

13:40 13:50 S. W<strong>in</strong>kler-Nees<br />

ECORD und die Deep-Sea Frontier Initiative<br />

Seismogene Zone / Impaktstrukturen<br />

13:50 14:10 O. Ritter, M. Becken, U. Weckmann, P.A. Bedrosian, T. Ryberg, C. Haberland<br />

The electrical conductivity structure between the transitional (near SAFOD) and<br />

locked (SE of Cholame) segments of the San Andreas Fault, <strong>in</strong>clud<strong>in</strong>g the source<br />

region of the non-volcanic tremors<br />

14:10 14:30 A.M. Schleicher, L.N. Warr, B.A. van der Pluijm<br />

Mixed-layered clay m<strong>in</strong>erals and their geological significance <strong>in</strong> the San Andreas<br />

Fault Observatory at depth drillhole (SAFOD) <strong>in</strong> Parkfield, California<br />

14:30 14:50 T. Wiersberg & J. Erz<strong>in</strong>ger<br />

Characterization of gas from seismogenic depths of the San Andreas Fault at SAFOD<br />

14:50 17:15 Posterpräsentation der Themen: Berichte und Entwicklungen, Seismogene Zone,<br />

Impaktstrukturen, Gashydrate, Gase, Fluide,<br />

Kaffeepause<br />

Gashydrate / Gase / Fluide<br />

17:15 17:35 K. Bräuer, H. Kämpf, K. Hahne, G. Strauch<br />

The different degass<strong>in</strong>g behaviour of upper mantle-derived fluids <strong>in</strong> the western Eger<br />

rift area – a detailed characterization of a hidden presently active magmatic process<br />

17:35 17:55 M. Marquardt, T. Henke, R. Gehrmann, C. Hensen, C. Müller, K. Wallmann<br />

A simplified transfer function to estimate 2D mar<strong>in</strong>e gas hydrate <strong>in</strong>ventories<br />

ab 19:00 Icebreaker im ALEX <strong>Hannover</strong>, Am Klagesmarkt 38<br />

1


2<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Programm<br />

Donnerstag, 13. März <strong>2008</strong><br />

Tiefe Biosphäre<br />

09:00 09:20 A. Blazejak & A. Schippers<br />

Novel real-time PCR assays for the quantification of genes from Bacteria of the deep<br />

biosphere<br />

09:20 09:40 V. Heuer, J. Pohlman, M. Torres, M. Elvert, K.-U. H<strong>in</strong>richs<br />

Biogeochemistry of acetate <strong>in</strong> the deep mar<strong>in</strong>e biosphere – new <strong>in</strong>sights from stable<br />

carbon isotopic <strong>in</strong>vestigations<br />

Magmatische Petrologie / Metamorphismus<br />

09:40 10:00 J.C. Grimmer, X. Qi, Z. Xu<br />

Magnetofabrics of eclogites and ultramafic rocks from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental<br />

Scientific Drill<strong>in</strong>g (CCSD) project: evidence for ultrahigh-pressure (UHP) texture<br />

<strong>in</strong>heritance throughout retrogression<br />

10:00 11:00 Posterpräsentation der Themen: Tiefe Biosphäre, Magmatische Petrologie,<br />

Metamorphismus<br />

Kaffeepause<br />

11:00 11:20 B. Cordonnier, K.U. Hess, Y. Lavallée, D.B. D<strong>in</strong>gwell<br />

From a fluid like to a brittle behavior: Shear th<strong>in</strong>n<strong>in</strong>g effect of crystals on Mt Unzen<br />

rheology<br />

11:20 11:40 A. Kontny & B. Oliva Urcia<br />

Effects on magnetization <strong>in</strong> basalts from fluid-rock <strong>in</strong>teractions <strong>in</strong> volcanic<br />

geothermal systems<br />

11:40 12:00 S. Luetke, A. Deutsch, F. Langenhorst, R. Skala<br />

Formation and characteristics of impact glasses - the Lake Bosumtwi and Chesapeake<br />

cases<br />

12:00 12:20 A. Riemann & R. Oberhänsli<br />

Retrograde zircons <strong>in</strong> fluid zones<br />

12:20 14:00 Mittagspause<br />

Paläozeanographie / Paläoklima<br />

14:00 14:20 H. Strauss, M. Reuschel, V. Melezhik<br />

FAR-DEEP: Successful completion of the first phase<br />

14:20 14:40 S. Weyer, C. Montoya-P<strong>in</strong>o, J. Pross, W. Oschmann<br />

Mo- and U-isotope variations <strong>in</strong> black shales: Potential tracers for the quantification<br />

of oceanic anoxia<br />

14:40 15:00 C. März, S.W. Poulton, B. Beckmann, K. Küster, T. Wagner, S. Kasten<br />

Redox sensitivity of P and Fe cycl<strong>in</strong>g dur<strong>in</strong>g Late Cretaceous black shale formation<br />

15:00 17:00 Posterpräsentation der Themen: Paläozeanographie, Paläoklima<br />

Kaffeepause<br />

17:00 17:20 J. Etourneau, R. Schneider, P. Mart<strong>in</strong>ez, T. Blanz<br />

Nitrogen fixation dur<strong>in</strong>g Pliocene cool<strong>in</strong>g with<strong>in</strong> the Benguela Upwell<strong>in</strong>g System and<br />

the Eastern Equatorial Pacific, ODP Sites 1082 and 1239<br />

17:20 17:40 N. Khelifi, M. Sarnthe<strong>in</strong>, M. Frank, M. We<strong>in</strong>elt, N. Andersen, D. Garbe-Schönberg<br />

Pliocene Changes <strong>in</strong> the Composition of Mediterranean Outflow Water at DSDP Site<br />

548 and ODP Site 978<br />

17:40 18:00 M. Frank, B.A. Haley, R.F. Spielhagen, A. Eisenhauer, J. Backman, K. Moran<br />

Arctic Ocean circulation and weather<strong>in</strong>g <strong>in</strong>puts over the past 15 million years<br />

18:00 19:30 Pause mit belegten Brötchen<br />

19:30 21:00 Öffentlicher Abendvortrag:<br />

"Science meets Fiction"<br />

Frank Schätz<strong>in</strong>g & Prof. Dr. Gerhard Bohrmann<br />

Audimax der Leibniz Universität <strong>Hannover</strong>


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Programm<br />

Freitag, 14. März <strong>2008</strong><br />

Neue Projekte / Projektvorschläge<br />

08:30 08:50 T. Wilke, C. Albrecht, B. Wagner, S. Krastel, K. Reicherter, G. Daut, M. Wessels<br />

Molecular clock approaches: bridg<strong>in</strong>g the gap between cont<strong>in</strong>ental deep drill<strong>in</strong>g and<br />

evolutionary biology <strong>in</strong> ancient Lake Ohrid<br />

08:50 09:10 W. Bach, A. Schippers<br />

Microbiology of a Sediment Pond and the Underly<strong>in</strong>g Young, Cold, Hydrologically<br />

Active Ridge Flank (<strong>IODP</strong> Proposal 677)<br />

Paläozeanographie / Paläoklima<br />

09:10 09:30 M. Wille<br />

Aerial extent of palaeoenvironmental reconstructions <strong>in</strong> southern Patagonia<br />

09:30 09:50 B. Zolitschka, F.S. Anselmetti, D. Ariztegui, H. Corbella, T. Haberzettl, A. Lücke, C.<br />

Mayr, C. Ohlendorf, F. Schäbitz, M. Wille<br />

Climate and environmental variability dur<strong>in</strong>g the past 56 ka at Laguna Potrok Aike<br />

(southern Patagonia, Argent<strong>in</strong>a), the site of the <strong>ICDP</strong> lake drill<strong>in</strong>g project<br />

“PASADO”<br />

09:50 10:10 O. Juschus, M. Melles and Lake El´gygytgyn Scientific Party<br />

The warm stages with<strong>in</strong> the 340 ka sediment record of Lake El´gygytgyn/NE Siberia–<br />

a comparison<br />

10:10 11:30 Posterpräsentation der Themen: Neue Projekte, Projektvorschläge, Paläozeanographie,<br />

Paläoklima<br />

Kaffeepause<br />

11:30 11:50 T. Felis, R. Asami, E. Bard, S.Y. Cahyar<strong>in</strong>i, P. Deschamps, N. Durand, E. Hathorne, M.<br />

Köll<strong>in</strong>g, M. Pfeiffer<br />

Pronounced <strong>in</strong>terannual variability <strong>in</strong> South Pacific temperatures 15.0 kyr ago –<br />

Coral-based results from <strong>IODP</strong> Expedition 310<br />

11:50 12:10 Y. Fu, T. von Dobeneck, Ch. Franke, D. Heslop, S. Kasten<br />

Rock magnetic identification and geochemical process models of greigite formation <strong>in</strong><br />

Quaternary mar<strong>in</strong>e sediments from the Gulf of Mexico (<strong>IODP</strong> Hole U1319A)<br />

12:10 13:00 Posterprämierung und Schlussworte<br />

13:00 Tagungsende<br />

3


4<br />

Teilnehmerliste<br />

Name Vorname Institution und Ort<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Teilnehmer<br />

Abratis Michael Institut für Geowissenschaften, Universität Jena<br />

Almeev Renat Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Anders Erik Technische Universität Berl<strong>in</strong><br />

Bach Wolfgang Universität Bremen<br />

Bahr André IFM-GEOMAR, Kiel<br />

Beckmann Britta Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Beermann Oliver Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Behrens Harald Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Behrmann Jan IFM-GEOMAR, Kiel<br />

Berthold Susann DGFZ Dresdner Grundwasserforschungszentrum e.V.<br />

Betzler Christian Geologisch-Paläontologisches Institut, Hamburg<br />

Bickert Torsten MARUM, Bremen<br />

Blanchet Cecile Universität Bremen<br />

Blazejak Anna Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Bleil Ulrich Fachbereich Geowissenschaften, Universität Bremen<br />

Blum Norbert Forschungszentrum Jülich, Projektträger Jülich (PTJ-MGS), Rostock-Warnemünde<br />

Bock Barbara Universität Potsdam<br />

Boeckel Babette FB 5 Geowissenschaften, Universität Bremen<br />

Böhm Florian IFM-GEOMAR, Kiel<br />

Bönnemann Christian GGA-Institut, <strong>Hannover</strong><br />

Bohrmann Gerhard Universität Bremen<br />

Bornemann André Institut für Geophysik und Gelogie, Universität Leipzig<br />

Bosch Frank Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen University<br />

Botcharnikov Roman Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Boucse<strong>in</strong> Bett<strong>in</strong>a Alfred-Wegener-Institut für Polar und Meeresforschung, Forschungsstelle Potsdam<br />

Bräuer Kar<strong>in</strong> Helmholtz-Zentrum für Umweltforschung - UFZ, Halle<br />

Breitzke Monika Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven<br />

Brey Gerhard JWG Universität, Geowissenschaften, Inst. für M<strong>in</strong>eralogie, Frankfurt<br />

Brückmann Warner Leibniz Institut für Meereswissenschaften, IFM-GEOMAR, Kiel<br />

Buske Stefan FU Berl<strong>in</strong><br />

Christl Marcus ETH-Zürich<br />

Cichy Sarah B. Institut fuer M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Conze Ronald GFZ Potsdam<br />

Cordonnier Benoît Earth and Environmental Sciences, LMU München<br />

Cypionka Heribert ICBM Oldenburg<br />

De Schepper Stijn Universität Bremen, Fachbereich Geowissenschaften<br />

Dehghani Ali Institut für Geophysik, Universität Hamburg<br />

Dersch-Hansmann Michaela Hessisches Landesamt für Umwelt und Geologie, Wiesbaden<br />

Desbois Guillaume Geologie - Endogene Dynamik, RWTH, Aachen University<br />

Diester-Haass Liselotte Universität des Saarlandes, Saarbrücken<br />

D<strong>in</strong>gwell Donald B. Earth and Environmental Sciences, LMU München<br />

Dobeneck, von Tilo Fachbereich Geowissenschaften, Universität Bremen<br />

Doose Heidi Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Drath Gabriela Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Duggen Svend IFM-GEOMAR, Leibniz-Institut für Meereswissenschaften, Kiel<br />

Dullo Wolf-Christian IFM-GEOMAR, Kiel<br />

Dultz Stefan Institut für Bodenkunde, Leibniz Universität <strong>Hannover</strong><br />

Dümmong Stefan Institute for Geophysics, University of Hamburg<br />

Dupont Lydie Marum, Universität Bremen<br />

Dürbaum H. Isernhagen<br />

Dürr Sören DFG, Bonn<br />

Dziony Wanja Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Eckhardt Jörg-Detlef Geologisches Institut, Universität Karlsruhe<br />

Eisenhauer Anton IFM-GEOMAR, Kiel<br />

Emeis Kay-Christian IfBM, Hamburg<br />

Engelen Bert ICBM Oldenburg<br />

Erbacher Jochen Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Etourneau Johan Christian-ALbrecht-Universität zu Kiel<br />

Fabian Marcus Universität Bremen<br />

Fehr Annick Applied Geophysics and Geothermal Energy, E.ON Energy Research Center, RWTH Aachen University<br />

Felis Thomas DFG-Forschungszentrum Ozeanränder, Universität Bremen<br />

Fenner Juliane M. Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Flechsig Christ<strong>in</strong>a Universität Leipzig, Institut für Geophysik und Geologie<br />

Forster Astrid L<strong>in</strong>gen (vormalig Royal Netherlands Institute for Sea Research, NIOZ, Niederlande)<br />

Frank Mart<strong>in</strong> IFM-GEOMAR, Kiel<br />

Fretzdorff Susanne Projektträger Jülich, FZ Jülich, Aussenstelle Warnemünde<br />

Friedrich Oliver National Oceanography Centre Southampton<br />

Gajewski Dirk Universität Hamburg, Institut für Geophysik<br />

Gebhardt Catal<strong>in</strong>a AWI Bremerhaven<br />

Gerdes Axel Institut für Geowissenschaften, FE M<strong>in</strong>eralogie, Frankfurt<br />

Geyh Mebus Universität Marburg<br />

Grimmer Jens C. Universität Karlsruhe (TH)<br />

Groeneveld Jeroen Research Center Ocean Marg<strong>in</strong>s, Universität Bremen<br />

Grützner Jens MARUM, Universität Bremen<br />

Gussone Nikolaus Institut für M<strong>in</strong>eralogie, Universität Münster<br />

Gutjahr St<strong>in</strong>e Freie Universität Berl<strong>in</strong><br />

Hanisch Sab<strong>in</strong>e Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven<br />

Harjes Hans-Peter Ruhr-Universität Bochum<br />

Harms Ulrich GFZ Potsdam<br />

Hathorne Ed DFG-Research Center Ocean Marg<strong>in</strong>s, Bremen<br />

Hecht Lutz Museum für Naturkunde, HU Berl<strong>in</strong><br />

Hefter Jens Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven<br />

Heid<strong>in</strong>ger Philipp Geophysikalisches Institut der Universität Karlsruhe


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Teilnehmer 5<br />

Henke Thomas Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Henrich Rüdiger Fachgebiet Sedimentologie/Paläozeanographie, Universität Bremen<br />

Hepp Daniel A. Universität Bremen<br />

Herfurth Robert Technische Universität Berl<strong>in</strong><br />

Hess Kaï-Uwe Earth and Environmental Sciences, LMU München<br />

Hesse Re<strong>in</strong>hard Ludwig Maximilians Universitaet München<br />

Heßler Ines Marum-Universität Bremen<br />

Heuer Verena RCOM & Fachbereich Geowisseschaften, Universität Bremen<br />

H<strong>in</strong>richs Kai-Uwe Universität Bremen, Fachbereich Geowissenschaften<br />

Hofmann Peter Universität zu Köln<br />

Holbourn Ann Institute of Geosciences, Christian-Albrechts-University, Kiel<br />

Holtz Francois Institut für M<strong>in</strong>eralogie, Universität <strong>Hannover</strong><br />

Huepers Andre DFG-Research Center Ocean Marg<strong>in</strong>s, University of Bremen<br />

Hunze Sab<strong>in</strong>e GGA-Institut <strong>Hannover</strong><br />

Jöns Niels Fachbereich Geowissenschaften, Universität Bremen<br />

Juschus Olaf Universität zu Köln, Institut für Geologie und M<strong>in</strong>eralogie<br />

Kämpf Horst GeoForschungsZentrum Potsdam<br />

Karas Cyrus IFM-GEOMAR, Kiel<br />

Kasten Sab<strong>in</strong>e Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven<br />

Kastner Stephanie AG Geopolar, Institut für Geographie, Universität Bremen<br />

Khelifi Nabil IfG - Kiel University<br />

Kitamura Yuj<strong>in</strong> IFM GEOMAR, Kiel<br />

Kle<strong>in</strong> Torsten Institut für Geophysik und extraterrestrische Physik, Technische Universität Braunschweig<br />

Kle<strong>in</strong> Björn Institut für Chemie und Biologie des Meeres (ICBM), Oldenburg<br />

Koepke Jürgen Universität <strong>Hannover</strong><br />

Kontny Agnes Geologisches Institut, Universität Karlsruhe<br />

Kopf Achim RCOM - Universität Bremen<br />

Köweker Gerrit Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Krastel Sebastian Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Kiel<br />

Krüger Mart<strong>in</strong> Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Kück Jochem GFZ Potsdam<br />

Kudraß Hermann-Rudolf Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Kuhnert Henn<strong>in</strong>g Universität Bremen<br />

Kuhnt Wolfgang Institute of Geosciences, Christian-Albrechts-University, Kiel<br />

Kümpel Hans-Joachim Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Kunze Sab<strong>in</strong>e Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Kuschel Lars Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

Lamy Frank AWI-Bremerhaven<br />

Landwehrkamp Lucas MPI Bremen<br />

Langenhorst Falko Bayerisches Geo<strong>in</strong>stitut, Bayreuth<br />

Lazarus David Museum für Naturkunde, Berl<strong>in</strong><br />

Leuschner Dirk C. Institut für Geophysik und Geologie, Leipzig<br />

Leythaeuser Detlev Institut für Geologie und M<strong>in</strong>eralogie,Universität Köln (i.R.)<br />

Lipp Julius Universität Bremen/RCOM MARUM<br />

Lippmann-Pipke Johanna Institut für Interdiszipl<strong>in</strong>äre Isotopenforschung (IIF) e.V. Leipzig<br />

Lippold Joerg Heidelberger Akademie der Wissenschaften<br />

Litt Thomas Universität Bonn, Paläontologie<br />

Lückge Andreas Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Lüniger Guido DFG, Bonn<br />

Luetke Sab<strong>in</strong>e Universität Münster<br />

Mangelsdorf Kai GeoForschungsZentrum (GFZ) Potsdam<br />

Markl Gregor Universität Tüb<strong>in</strong>gen<br />

Maronde Dietrich Bonn<br />

Marquardt Mathias IFM-GEOMAR, Kiel<br />

März Christian ICBM, Universität Oldenburg<br />

Matthiessen Jens Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Bremerhaven<br />

Mayr Sibylle Technische Universität Berl<strong>in</strong>, Sekr. ACK2, Angew. Geophysik<br />

Meschede Mart<strong>in</strong> Institut für Geographie und Geologie Univ. Greifswald<br />

Möbius Jürgen Universität Hamburg, IfBM<br />

Mohr Barbara Museum für Naturkunde, Berl<strong>in</strong><br />

Montoya-P<strong>in</strong>o Stefan Universität Frankfurt, Institut für Geowissenschaften<br />

Müller Wolfgang F. Geomaterialwissenschaft, Fachbereich 11, TU Darmstadt<br />

Naafs David Alfred-Wegener-Institut for Polar and Mar<strong>in</strong>e Research, Bremerhaven<br />

Neben Sönke Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Niedermann Samuel GeoForschungsZentrum Potsdam<br />

Nowak Marcus Institut für Geowissenschaften - Universität Tüb<strong>in</strong>gen<br />

Numberger Lea Universität Tüb<strong>in</strong>gen, Mikropaläontologie<br />

Nürnberg Dirk IFM-GEOMAR, Kiel<br />

Oberhänsli Roland Institut für Geowissenschaften, Potsdam<br />

Ohlendorf Christian Geopolar, Universität Bremen<br />

Oliva Urcia Bélen Geologisches Institut, Universität Karlsruhe<br />

Pfeiffer Miriam Institut für Geologie und M<strong>in</strong>eralogie, Universität zu Köln<br />

Polster André Universität Bremen, FB 5, Meerestechnik/Sensorik<br />

Preiß-Daimler Inga Universität Bremen<br />

Prevedel Bernhard GFZ Potsdam<br />

Rausch Svenja Universität Bremen<br />

Reischmann Thomas Universität Ma<strong>in</strong>z<br />

Rettenmaier Detlev Universität Karlsruhe; Geologisches Institut; Abteilung Hydrogeologie<br />

Ried<strong>in</strong>ger Natascha MPI Bremen<br />

Riemann Astrid Universität Potsdam<br />

Ritter Oliver GeoForschungsZentrum, Potsdam<br />

Röhl Ursula MARUM - Zentrum für Mar<strong>in</strong>e Umweltwissenschaften, Bremen<br />

Rosner Mart<strong>in</strong> Bundesanstalt für Materialforschung und -prüfung Bioanalytik, Berl<strong>in</strong><br />

Roters Bastian Research Center Ocean Marg<strong>in</strong> - Universität Bremen<br />

Sanders Diethard Institute of Geology and Palaeontology, University of Innsbruck<br />

Sarnthe<strong>in</strong> Michael Institut für Geowissenschaften, Universität Kiel


6<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Teilnehmer<br />

Saukel Cornelia Alfred-Wegener-Institut für Polar- und Meeresforschung, Bremerhaven<br />

Schippers Axel Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Schleicher Anja Universität Erlangen-Nürnberg<br />

Schm<strong>in</strong>cke Hans-Ulrich Leibniz-Institute of Mar<strong>in</strong>escience, IFM-GEOMAR, Kiel<br />

Schramm Andreas University of Aarhus, Dept. Biological Sciences, Microbiology<br />

Schreck Michael Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research (AWI), Bremerhaven<br />

Schulte Peter Institut für Geologie-M<strong>in</strong>eralogie, Universität Erlangen<br />

Schulz Hartmut Institut für Geowissenschaften, Tüb<strong>in</strong>gen<br />

Schulz Michael Universität Bremen, MARUM<br />

Schütze Claudia Universität Leipzig, Institut für Geophysik und Geologie<br />

Schwalb Antje Institut für Umweltgeologie, Braunschweig<br />

Schwamborn Georg Alfred-Wegener-Institut für Polar- und Meeresforschung, Potsdam<br />

Schwarz W<strong>in</strong>fried Universität Heidelberg - M<strong>in</strong>eralogisches Institut<br />

Schwarz-Schampera Ulrich Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Simonyan Anna Universität <strong>Hannover</strong>, Institut für Bodenkunde<br />

Smolka Peter P. Universität Münster<br />

Stegmann Sylvia RCOM / Universität Bremen<br />

Ste<strong>in</strong> Rüdiger Alfred-Wegener-Institut, Bremerhaven<br />

Ste<strong>in</strong>ke Stephan DFG-Forschungszentrum Ozeanränder der Universität Bremen<br />

Stell<strong>in</strong>g Jan Universität <strong>Hannover</strong>, Institut für M<strong>in</strong>eralogie<br />

Stipp Michael Leibniz-Institut für Meereswissenschaften IFM-GEOMAR, Kiel<br />

Stosch He<strong>in</strong>z-Günter Universität Karlsruhe<br />

Strack Dieter International Oil & Gas Consultant, Rat<strong>in</strong>gen<br />

Strasser Michael Universität Bremen MARUM<br />

Strauch Gerhard Helmholtzzentrum für Umweltforschung UFZ Leipzig-Halle<br />

Strauss Harald Geologisch-Paläontologisches Institut, WWU Münster<br />

Stroncik Nicole A. GeoForschungsZentrum Potsdam<br />

Sturm Arne AWI, Bremerhaven<br />

Sumita Mari Leibniz-Institute of Mar<strong>in</strong>escience, IFM-GEOMAR, Kiel<br />

Teichert Barbara Bundesanstalt für Geowissenschaften und Rohstoffe (BGR), <strong>Hannover</strong><br />

Titschack Jürgen GeoZentrum Nordbayern, Erlangen<br />

Tougiannidis Nikolaos Institut für Geologie und M<strong>in</strong>eralogie der Universität zu Köln<br />

Trampe Anna F. Universität Bremen<br />

Uenzelmann-Neben Gabriele Alfred-Wegener-Institut, Bremerhaven<br />

Viereck-Götte Lothar Friedrich-Schiller-Universität Jena<br />

Vill<strong>in</strong>ger He<strong>in</strong>rich FB Geowissenschaften Universität Bremen<br />

Virgil Christopher Institut für Geophysik und Extraterrestrische Physik, TU-Braunschweig<br />

Vogt Christoph Kristallographie, Geowissenschaften, Universität Bremen<br />

Wagner Dirk Alfred-Wegener-Institut für Polar- und Meeresforschung, Potsdam<br />

Wagner Thomas Newcastle University<br />

Wallrabe-Adams Hans-Joachim Marum - Zentrum für Mar<strong>in</strong>e Umweltwissenschaften, Universität Bremen<br />

Weber Michael E. Institute of Geology and M<strong>in</strong>eralogy, Köln<br />

Wefer Gerold MARUM Zentrum für Mar<strong>in</strong>e Umweltwissenschaften, Bremen<br />

Weigelt Estella Alfred Wegener Institut, Bremerhaven<br />

Weller Petra Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Bremerhaven<br />

Westerhold Thomas MARUM, Zentrum für Mar<strong>in</strong>e Umweltwissenschaften, Universität Bremen<br />

Weyer Stefan Universität Frankfurt, Institut für Geowissenschaften<br />

Wiersberg Thomas GeoForschungsZentrum Potsdam<br />

Wilhelm Helmut Geophysikalisches Institut der Universität Karlsruhe<br />

Wilke Thomas Justus-Liebig-Universität Giessen<br />

Wille Michael Universität zu Köln<br />

W<strong>in</strong>kler-Nees Stefan Deutsche Forschungsgeme<strong>in</strong>schaft, Bonn<br />

Wipf Mart<strong>in</strong> Geologisch und Paläontologisches Museum, Heidelberg<br />

Wohlgemuth Lothar GFZ Potsdam<br />

Wöhrl Thomas GFZ Potsdam<br />

Ziegelmüller Katja ICBM Oldenburg<br />

Zimmermann Katja DFG-Research Center Ocean Marg<strong>in</strong>s, Bremen<br />

Zolitschka Bernd GEOPOLAR, Institut für Geographie, Universität Bremen


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Abstractliste 7<br />

Autor Titel SPP Seite<br />

Almeev, R., Kuschel, L., Holtz, F.,<br />

Cathey, H., Nash, B., Koepke, J.,<br />

Shervais, J., Christiansen, E.<br />

Crystallization conditions of the basaltic and rhyolitic melts of the<br />

Snake River Pla<strong>in</strong> - Yellowstone hotspot track: First experimental<br />

results and implications (Project Ho 1337/17)<br />

Anders, E., Müller, W.H. Compact Multipurpose Sub-Sampl<strong>in</strong>g and Process<strong>in</strong>g of In-Situ<br />

Cores (COMPOSE)<br />

Bach, W., Kle<strong>in</strong>, F., Hentscher, M.,<br />

Jöns, N.<br />

Beckmann, B., Flögel, S., Hofmann,<br />

P., März, C., Wagner, T.<br />

Behrmann, J., Boeckel, B., Kopf, A.,<br />

Schmidt-Schierhorn, F., <strong>IODP</strong><br />

Expedition 315 scientific party<br />

Hydrogen generation <strong>in</strong> seawater-rock <strong>in</strong>teractions (ODP Leg 209):<br />

Insights from petrography and thermodynamic model<strong>in</strong>g<br />

Land-ocean <strong>in</strong>teraction and oceanic response <strong>in</strong> the Mid-<br />

Cretaceous western tropical Atlantic at ODP Site 1261<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition 315<br />

(NanTroSEIZE Megasplay Riser Pilot)<br />

<strong>ICDP</strong> 19<br />

<strong>IODP</strong> 20<br />

<strong>IODP</strong> 21<br />

<strong>IODP</strong> 22<br />

<strong>IODP</strong> 12<br />

Berthold, S., Börner, F. Identification and analysis of vertical convection <strong>in</strong> boreholes <strong>ICDP</strong> 23<br />

Betzler, C., Hübscher, C., Lüdmann, A new view of the Neogene to Quaternary evolution of the<br />

<strong>IODP</strong> 150<br />

T., Reijmer, J., Droxler, A., L<strong>in</strong>dhorst,<br />

S., Römer, M., M 74/4 Shipboard<br />

Scientific party<br />

Maldives carbonate platform (Indian Ocean)<br />

Bickert, T., Butz<strong>in</strong>, M., Lohmann, G. Indian and Southern Ocean dynamics dur<strong>in</strong>g the Miocene <strong>IODP</strong> 24<br />

Blanchet, C. L., Thouveny, N., Magnetic M<strong>in</strong>eral Inputs <strong>in</strong> Sediments Off Baja California. Inference <strong>IODP</strong> 24<br />

Vidal, L.<br />

on Climate Variability of the Last Glacial-Interglacial Cycle<br />

Blazejak, A., Schippers, A. Novel real-time PCR assays for the quantification of genes from<br />

Bacteria of the deep biosphere<br />

<strong>IODP</strong> 25<br />

Boeckel, B., Baumann, K.-H. Evolutionary trends of selected coccolithophore species <strong>in</strong> the<br />

North Atlantic dur<strong>in</strong>g the Pliocene to Pleistocene<br />

<strong>IODP</strong> 153<br />

Böhm, F., Rausch, S., Eisenhauer, Low Temperature Alteration Carbonates <strong>in</strong> the Ocean Crust and <strong>IODP</strong> 26<br />

A., Bach, W., Klügel, A.<br />

their Importance for CO2 Uptake and the Global Calcium Cycle<br />

Bornemann, A. A prelim<strong>in</strong>ary calcareous plankton biostratigraphy of the<br />

Paleocene-Eocene <strong>in</strong>terval at DSDP Site 401 (Bay of Biscay)<br />

<strong>IODP</strong> 26<br />

Botcharnikov, R.E., Koepke, J., The late-stage evolution of oceanic gabbros – Comb<strong>in</strong>ed<br />

<strong>IODP</strong> 27<br />

Horn, I., Stichnothe, J., Putlitz, B. experimental and <strong>in</strong>-situ isotope study on gabbros of the ODP Legs<br />

118/176 drilled at the Southwest Indian Ridge<br />

Boucse<strong>in</strong>, B., Knies, J., Ste<strong>in</strong>, R. How is black shale formation <strong>in</strong> the Early Eocene Arctic Ocean<br />

<strong>in</strong>fluenced by export of terrestrial organic matter? Details from an<br />

organic petrological approach on mar<strong>in</strong>e sediments from <strong>IODP</strong><br />

Hole 302 (Lomonosov Ridge)<br />

<strong>IODP</strong> 29<br />

Bräuer, K., Kämpf, H., Hahne, K., The different degass<strong>in</strong>g behaviour of upper mantle-derived fluids <strong>in</strong> <strong>ICDP</strong> 32<br />

Strauch, G.<br />

the western Eger rift area - A detailed characterisation of a hidden<br />

presently active magmatic process<br />

Buske, S., Gutjahr, S., Rentsch, S., Active and passive seismic images of the San-Andreas-Fault at <strong>ICDP</strong> 34<br />

Reshetnikov, A., Shapiro, S.<br />

SAFOD<br />

Cichy, S. B., Botcharnikov, R. E., Experimental Constra<strong>in</strong>ts on Magma Ascent at Unzen Volcano, <strong>ICDP</strong> 37<br />

Holtz, F., Behrens, H., Sato, H. Japan<br />

Cordonnier, B., Hess, K. U.,<br />

From a fluid like to a brittle behaviour: Shear th<strong>in</strong>n<strong>in</strong>g effect of <strong>ICDP</strong> 37<br />

Lavallée, Y., D<strong>in</strong>gwell, D. B.<br />

crystals on Mt Unzen rheology<br />

De Schepper, S., Head, M. J., Evidence for rapid on/off switch<strong>in</strong>g of the North Atlantic Current <strong>IODP</strong> 41<br />

Groeneveld, J.<br />

dur<strong>in</strong>g the warm Middle Pliocene<br />

Desbois, G., Urai, J. L. Application of the FIB-Cryo-SEM technology for quantitative study<br />

of fault gouge porosity <strong>in</strong> SAFOD drill core from the San Andreas<br />

Fault zone<br />

<strong>ICDP</strong> 40<br />

Diester-Haass, L., Billups, K.,<br />

Mid-Miocene Paleoproductivity and Implications for the Global <strong>IODP</strong> 41<br />

Groecke, D., Francois, L., Lefebre,<br />

V., Emeis, K.-C.<br />

Carbon Cycle<br />

Duggen, S., Hoernle, K., Hauff, F., Trace element and isotope geochemistry of ~15 Ma oceanic crust <strong>IODP</strong> 43<br />

Geldmacher, J.<br />

formed at a superfast spread<strong>in</strong>g ridge (Exp. 309/312, <strong>IODP</strong> Site<br />

1256D, Eastern Central Pacific): Constra<strong>in</strong>ts on sub-ridge<br />

processes at the East Pacific Rise, the style and tim<strong>in</strong>g of alteration<br />

and the orig<strong>in</strong> of ocean island basalts<br />

Dümmong, S., Meier, K., Beitz, M., Depth migration results from the Eastern Mediterranean /<br />

<strong>IODP</strong> 43<br />

Hübscher, C.<br />

Levant<strong>in</strong>e Bas<strong>in</strong><br />

Dupont, L. M. Holocene vegetation development <strong>in</strong> Angola -Palynology of ODP<br />

Site 1078<br />

<strong>IODP</strong> 45<br />

Dziony, W., Koepke, J., Holtz, F., The down-hole magmatic-metamorphic evolution <strong>in</strong> basalts and <strong>IODP</strong> 46<br />

Horn, I.<br />

gabbros monitored by Fe-Ti oxides: A complete section of<br />

Superfast Spread<strong>in</strong>g Crust at <strong>IODP</strong> Site 1256 (Project Ho 1337/14;<br />

SPP 527)


8<br />

Etourneau, J., Schneider, R.,<br />

Mart<strong>in</strong>ez, P., Blanz, T.<br />

Felis, T., Asami, R., Bard, E.,<br />

Cahyar<strong>in</strong>i, S. Y., Deschamps, P.,<br />

Durand, N., Hathorne, E., Köll<strong>in</strong>g, M.,<br />

Pfeiffer, M.<br />

Flechsig, C., Schütze, C.<br />

Forster, A., Schouten, S., Baas, M.,<br />

S<strong>in</strong>n<strong>in</strong>ghe Damsté, J. S.<br />

Forster, A., Kuypers, M. M. M,<br />

Turgeon, S. C., Brumsack, H.-J.,<br />

Petrizzo, M. R., S<strong>in</strong>n<strong>in</strong>ghe Damsté,<br />

J. S<br />

Frank, M., Haley, B. A., Spielhagen,<br />

R. F., Eisenhauer, A., Backman, J.,<br />

Moran, K.<br />

Friedrich, O., Norris, R. D., Erbacher,<br />

J.<br />

Fu, Y., von Dobeneck, T., Franke,<br />

C., Heslop, D., Kasten, S.<br />

Gajewski, D., Anikiev, D., Tessmer,<br />

E., Vanelle, C., Kashtan, B.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Abstractliste<br />

Nitrogen fixation dur<strong>in</strong>g Pliocene cool<strong>in</strong>g with<strong>in</strong> the Benguela<br />

Upwell<strong>in</strong>g System and the Eastern Equatorial Pacific, ODP Sites<br />

1082 and 1239<br />

Pronounced <strong>in</strong>terannual variability <strong>in</strong> South Pacific temperatures<br />

15.0 kyr ago - Coral-based results from <strong>IODP</strong> Expedition 310<br />

Research study for a geoelectrical pre-site survey of the drill<strong>in</strong>g<br />

location with<strong>in</strong> the Eger Rift - Investigation of the subsurface<br />

electrical conductivity distribution<br />

A paleo sea surface temperature record throughout the Cretaceous<br />

thermal maximum from an Albian-Santonian black shale sequence<br />

<strong>in</strong> the tropical Atlantic<br />

The Cenomanian/Turonian oceanic anoxic event <strong>in</strong> the South<br />

Atlantic: New <strong>in</strong>sights from a geochemical study of DSDP Site<br />

530A<br />

Arctic Ocean circulation and weather<strong>in</strong>g <strong>in</strong>puts over the past 15<br />

million years<br />

<strong>IODP</strong> 48<br />

<strong>IODP</strong> 48<br />

<strong>ICDP</strong> 50<br />

<strong>IODP</strong> 50<br />

<strong>IODP</strong> 51<br />

<strong>IODP</strong> 52<br />

A Cretaceous Benthic Foram<strong>in</strong>iferal Stable Isotope Compilation <strong>IODP</strong> 52<br />

Rock magnetic identification and geochemical process models of<br />

greigite formation <strong>in</strong> Quaternary mar<strong>in</strong>e sediments from the Gulf of<br />

Mexico (<strong>IODP</strong> Hole U1319A)<br />

Lokalisierung <strong>in</strong>duzierter Seismizität ohne Picken - E<strong>in</strong>e<br />

Stapelmethode<br />

<strong>IODP</strong> 147<br />

<strong>ICDP</strong> 53<br />

Gebhardt, A. C. Geometry of maar lake Laguna Potrok Aike, Patagonia <strong>ICDP</strong> 54<br />

Gerdes, A., Liu, F. L., Weyer, S., Chronological history of UHP rocks from the Dabie-Sulu terrane, <strong>ICDP</strong> 54<br />

Brey, G.<br />

Eastern Ch<strong>in</strong>a<br />

Grimmer, J. C., Qi, X., Xu, Z. Magnetofabrics of eclogites and ultramafic rocks from the Ch<strong>in</strong>ese<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g (CCSD) project: Evidence for<br />

ultrahigh-pressure (UHP) texture <strong>in</strong>heritance throughout<br />

retrogression<br />

<strong>ICDP</strong> 58<br />

Grützner, J., Higg<strong>in</strong>s, S. M., Ste<strong>in</strong>, Rapid changes <strong>in</strong> biogenic and siliciclastic sedimentation dur<strong>in</strong>g <strong>IODP</strong> 60<br />

R., Acton, G., Wefer, G.<br />

the last 1 Ma: Results from North Atlantic <strong>IODP</strong> Sites U1313 and<br />

U1314<br />

Hanisch, S., Gebhardt, C., Juschus, From land plants to anoxia - A pilot study of organic biomarkers <strong>ICDP</strong> 62<br />

O., Nowaczyk, N.<br />

gives <strong>in</strong>sight <strong>in</strong>to paleoclimate record of Lake El’gygytgyn<br />

Hathorne, E. C., Felis, T.<br />

Laser ablation ICP-MS as a tool for assess<strong>in</strong>g the preservation of<br />

fossil corals: Examples from deglacial Tahiti corals recovered by<br />

<strong>IODP</strong> Expedition 310<br />

<strong>IODP</strong> 62<br />

Hefter, J., Ste<strong>in</strong>, R., S<strong>in</strong>n<strong>in</strong>ghe The Biomarker Inventory, Trace, and Source of He<strong>in</strong>rich Events <strong>IODP</strong> 63<br />

Damsté, J. S.<br />

and He<strong>in</strong>rich-type Layers (MIS 8-16) <strong>in</strong> the North Atlantic<br />

Heid<strong>in</strong>ger, P., Wilhelm, H., Safanda, Geothermal <strong>in</strong>vestigations from well data of the Chesapeake <strong>ICDP</strong> 63<br />

J., Burkhardt, H., Mayr, S., Popov, Y. Pen<strong>in</strong>sula, USA<br />

Hepp, D. A., Mörz, T. A late Miocene-early Pliocene deepwater record of cyclic iron<br />

reduction events (Antarctic Pen<strong>in</strong>sula Pacific marg<strong>in</strong>, ODP Site<br />

1095)<br />

<strong>IODP</strong> 66<br />

Heuer, V., Pohlman, J., Torres, M., Biogeochemistry of acetate <strong>in</strong> the deep mar<strong>in</strong>e biosphere: New <strong>IODP</strong> 151<br />

Elvert, M., H<strong>in</strong>richs, K.-U.<br />

<strong>in</strong>sights from stable carbon isotopic <strong>in</strong>vestigations<br />

Hofmann, P., Wagner, T.<br />

Geochemical evolution of the Early Aptian Oceanic Anoxic Event<br />

1a <strong>in</strong> the tropical Atlantic, ODP Site 641C Galicia Marg<strong>in</strong>.<br />

<strong>IODP</strong> 66<br />

Holbourn, A., Kuhnt, W., Haley, B., Pacific circulation dur<strong>in</strong>g the middle Miocene climate transition: <strong>IODP</strong> 67<br />

Regenberg, M., Mix, A., Andersen, Monitor<strong>in</strong>g ocean overturn<strong>in</strong>g and the east-west hydrographic<br />

N.<br />

gradient<br />

Huepers, A., Kopf, A. On the role of temperature on the stress state of underthrust<br />

sediments at the Nankai marg<strong>in</strong><br />

<strong>IODP</strong> 70<br />

Jöns, N., Bach, W., Schroeder, T., Ve<strong>in</strong><strong>in</strong>g history of abyssal peridotites from a detachment fault <strong>IODP</strong> 71<br />

Rosner, M.<br />

sett<strong>in</strong>g (ODP Leg 209): From melt impregnations to lowtemperature<br />

alteration<br />

Juschus, O., Melles, M., and the The warm stages with<strong>in</strong> the 340 ka sediment record of Lake <strong>ICDP</strong> 72<br />

Lake El’gygytgyn Scientific Party El’gygytgyn/NE Siberia: A comparison<br />

Karas, C., Nürnberg, D., Gupta, A., The rapid constriction of the Indonesian Gateway across 3.4-3 Ma <strong>IODP</strong> 72<br />

Mohan, K., Tiedemann, R.<br />

as a ma<strong>in</strong> contribut<strong>in</strong>g factor for global climate change<br />

Kastner, S., Ohlendorf, C.,<br />

Lake <strong>in</strong>ternal depositional dynamics as revealed by the areal <strong>ICDP</strong> 73<br />

Haberzettl, T., Lücke, A., Maidana, distribution of surface sediments <strong>in</strong> Laguna Potrok Aike (Southern<br />

N. I., Mayr, C., Schäbitz, F.,<br />

Patagonia, Argent<strong>in</strong>a) - A prelim<strong>in</strong>ary study <strong>in</strong> the framework of the<br />

Zolitschka, B.<br />

<strong>ICDP</strong> project PASADO


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Abstractliste 9<br />

Khelifi, N., Sarnthe<strong>in</strong>, M., Frank, M.,<br />

We<strong>in</strong>elt, M., Andersen, N., Garbe-<br />

Schönberg, D.<br />

Kle<strong>in</strong>, B., Brassell, S. C., Rullkötter,<br />

J.<br />

Pliocene Changes <strong>in</strong> the Composition of Mediterranean Outflow<br />

Water at DSDP Site 548 and ODP Site 978<br />

Kerogen-bound organic matter <strong>in</strong> sediments represent<strong>in</strong>g the<br />

Oceanic Anoxic Event 1a<br />

Kontny, A., Oliva Urcia, B. Effects on magnetization <strong>in</strong> basalts from fluid-rock <strong>in</strong>teractions <strong>in</strong><br />

volcanic geothermal systems<br />

Kopf, A., NanTroSEIZE Project<br />

Management Team, <strong>IODP</strong><br />

Expedition 314 scientific party<br />

Köweker, G., Blazejak, A.,<br />

Schippers, A.<br />

Krastel, S., Wagner, B., Reicherter,<br />

K., Daut, G., Wessels, M., Wilke, T.<br />

Krüsmann, T., Niedermann, S.,<br />

Stroncik, N. A., Erz<strong>in</strong>ger, J.<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition 314<br />

(NanTroSEIZE Logg<strong>in</strong>g-While-Drill<strong>in</strong>g Transect)<br />

Deep Biosphere Quantification <strong>in</strong> Chesapeake Bay Impact<br />

Structure Sediments<br />

Evolutionary, Geological, and Environmental History of Lake Ohrid<br />

(EGEL): A new <strong>ICDP</strong> <strong>in</strong>itiative<br />

Helium, neon and argon isotope systematics of the Hawaiian<br />

hotspot<br />

Kuhnert, H., Bickert, T. Middle Miocene changes <strong>in</strong> the Southern Ocean deep-water<br />

carbonate chemistry<br />

Lazarus, D., Kotrc, B., Wulf, G.,<br />

Schmidt, D. N.<br />

Cenozoic trends <strong>in</strong> size and silica use <strong>in</strong> low and high latitude<br />

radiolarian faunas - evidence for co-evolution between diatoms and<br />

radiolarians, and <strong>in</strong>creas<strong>in</strong>g competition for dissolved biogenic<br />

silicia<br />

<strong>IODP</strong><br />

74<br />

<strong>IODP</strong> 74<br />

<strong>ICDP</strong> 76<br />

<strong>IODP</strong> 12<br />

<strong>ICDP</strong> 79<br />

<strong>ICDP</strong> 79<br />

<strong>ICDP</strong> 80<br />

<strong>IODP</strong> 80<br />

<strong>IODP</strong> 81<br />

Leuschner, D. C. Early Paleogene deep-water overturn<strong>in</strong>g <strong>in</strong> the South Atlantic<br />

(EPASA) – A progress report<br />

<strong>IODP</strong> 81<br />

Lipp, J. S., Morono, Y., Inagaki, F.,<br />

H<strong>in</strong>richs, K.-U.<br />

Distribution of Prokaryotic Biomass <strong>in</strong> the Deep Biosphere <strong>IODP</strong> 85<br />

Lippmann-Pipke, J., Erz<strong>in</strong>ger, J.,<br />

Zimmer, M., Kujawa, C., van<br />

Heerden, E., Bester, A., Moller, H.,<br />

Boettcher, M., Reches, Z.<br />

Lippold, J., Christl, M., Hofmann, A.,<br />

Bernsdorff, F., Lahaye, Y., Grützner,<br />

J., Mollenhauer, G., Mang<strong>in</strong>i, A.<br />

Litt, T., Heumann, G., Schm<strong>in</strong>cke,<br />

H.-U., Sumita, M.<br />

Luetke, S., Deutsch, A.,<br />

Langenhorst, F., Skala, R.<br />

Mangelsdorf, K., di Primio, R.,<br />

Cragg, B., Horsfield, B. and <strong>IODP</strong><br />

Expedition 307 Scientific Party<br />

Marquardt, M., Henke, T.,<br />

Gehrmann, R., Hensen, C., Müller,<br />

C., Wallmann, K.<br />

März, C., Poulton, S. W., Beckmann,<br />

B., Küster, K., Wagner, T., Kasten,<br />

S.<br />

Mayr, S. I., Popov, Y., Burkhardt, H.,<br />

Gorobtsov, D. N., Romushkevich, R.<br />

A., Wilhelm, H., Heid<strong>in</strong>ger, P.<br />

Direct observation of blast<strong>in</strong>g triggered geogas transport through<br />

an <strong>in</strong>active fault system at 3.6km depth, Tautona gold m<strong>in</strong>e, SA<br />

231 Pa/ 230 Th from Atlantic Ocean sediments - a proxy for deep water<br />

circulation over the past 30,000 years<br />

Environmental response to volcanic and climatic events <strong>in</strong> NE<br />

Anatolia dur<strong>in</strong>g the last 20,000 years based on annually lam<strong>in</strong>ated<br />

sediments from Lake Van<br />

Formation and characteristics of impact glasses - the Lake<br />

Bosumtwi and Chesapeake cases<br />

Investigation of microbial <strong>in</strong>dicators at the mound base of<br />

Challenger mound <strong>in</strong> the Belgica carbonate mound prov<strong>in</strong>ce<br />

(Porcup<strong>in</strong>e bas<strong>in</strong>, offshore Ireland)<br />

A simplified transfer function to estimate 2D mar<strong>in</strong>e gas hydrate<br />

<strong>in</strong>ventories<br />

Redox sensitivity of P and Fe cycl<strong>in</strong>g dur<strong>in</strong>g Late Cretaceous black<br />

shale formation<br />

<strong>ICDP</strong> 85<br />

<strong>IODP</strong> 87<br />

<strong>ICDP</strong> 88<br />

<strong>ICDP</strong> 88<br />

<strong>IODP</strong> 92<br />

<strong>IODP</strong> 93<br />

<strong>IODP</strong> 95<br />

Physical Rock Properties of the Chesapeake Bay Impact Structure <strong>ICDP</strong> 95<br />

Meissl, S., Behrmann, J. H. Geotechnical behaviour and magnetic fabrics of rapidly deposited<br />

Quaternary sediments, Ursa Bas<strong>in</strong>, Gulf of Mexico – First results<br />

Mohr, B. A. R. & ANDRILL<br />

Community<br />

Naafs, B. D. A., Hefter, J., Ste<strong>in</strong>, R.,<br />

Haug, G. H.<br />

Numberger, L., Hemleben, C.,<br />

Hoffmann, R., Mackensen, A.,<br />

Schulz, H., Kucera, M.<br />

Ohlendorf, C., Fey, M., Haberzettl,<br />

T., Janssen, S., Lücke, A., Mayr, C.,<br />

Oliva, G., Schäbitz, F., Wille, M.,<br />

Zolitschka, B.<br />

Perez, L., Scharf, B., von Geldern,<br />

R., Steeb, P., Samol, D., Lorenschat,<br />

J., Schwalb, A.<br />

Pfeiffer, M., Cahyar<strong>in</strong>i, S. Y., Dullo,<br />

W.-C., Weber, M., Felis, T., Ricken,<br />

W.<br />

Vegetation and climate development dur<strong>in</strong>g the Cenozoic <strong>in</strong><br />

Antarctica. Future drill<strong>in</strong>g of cont<strong>in</strong>ental marg<strong>in</strong> sections -<br />

ANDRILL, <strong>IODP</strong> and <strong>ICDP</strong>?<br />

Short-term variability of surface-water characteristics <strong>in</strong> the Late<br />

Neogene North Atlantic Ocean: Prelim<strong>in</strong>ary results of a biomarker<br />

record from <strong>IODP</strong> Site U1313<br />

Habitats of Globiger<strong>in</strong>oides ruber (d’Orbigny) <strong>in</strong> the eastern<br />

Mediterranean Sea s<strong>in</strong>ce the Mar<strong>in</strong>e Isotopic Stage 12<br />

Characterization of a pre-Holocene lake level high stand <strong>in</strong> Laguna<br />

Potrok Aike (Argent<strong>in</strong>a): Project POTROK<br />

Modern ostracodes from Lago Petén Itzá and lakes of the<br />

Península Yucatán as <strong>in</strong>dicators of environmental and climate<br />

change<br />

Assess<strong>in</strong>g the accuracy of SST and δ 18 Osw/sal<strong>in</strong>ity estimates from<br />

Tahiti corals us<strong>in</strong>g Monte Carlo simulations: Implications for the<br />

<strong>in</strong>terpretation of fossil corals<br />

<strong>IODP</strong> 148<br />

<strong>IODP</strong> 98<br />

<strong>IODP</strong> 99<br />

<strong>IODP</strong> 99<br />

<strong>ICDP</strong> 100<br />

<strong>ICDP</strong> 100<br />

<strong>ICDP</strong> 103


10<br />

Polster, A., Vill<strong>in</strong>ger, H., Fabian, M.,<br />

Gennerich, H.-H.<br />

Preiß-Daimler, I., Henrich, R.<br />

Rettenmaier, D., Förster, A., Hötzl,<br />

H.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Abstractliste<br />

Drift-Analysis of ocean bottom pressure measurements <strong>IODP</strong> 103<br />

Middle to late Miocene (12-9 MA) carbonate preservation and<br />

accumulation changes <strong>in</strong> the Atlantic (Céara Rise Sites) and<br />

Pacific (Site 1237)<br />

Thermo-hydraulic conditions <strong>in</strong> a seismically active zone<br />

(Gulf of Cor<strong>in</strong>th, Greece)<br />

<strong>IODP</strong> 103<br />

<strong>ICDP</strong> 104<br />

Riemann, A., Oberhänsli, R. Retrograde zircons <strong>in</strong> fluid zones <strong>ICDP</strong> 105<br />

R<strong>in</strong>con Mart<strong>in</strong>ez, D., Saukel, C., Pleistocene changes <strong>in</strong> terrigenous sediment <strong>in</strong>put to the eastern <strong>IODP</strong> 107<br />

Lamy, F., Steph, S., Sturm, A.,<br />

Tiedemann, R.<br />

tropical Pacific based on ODP Sites 1237 and 1239<br />

Ritter, O., Becken, M., Weckmann, The electrical conductivity structure between the transitional (near <strong>ICDP</strong> 108<br />

U., Bedrosian, P. A., Ryberg, T., SAFOD) and locked (SE of Cholame) segments of the San<br />

Haberland, C.<br />

Andreas Fault, <strong>in</strong>clud<strong>in</strong>g the source region of the non-volcanic<br />

tremors.<br />

Rosner, M., Peucker-Ehrenbr<strong>in</strong>k, B., The plat<strong>in</strong>um group element and osmium isotope <strong>in</strong>ventory of <strong>IODP</strong> 110<br />

Bach, W.<br />

Atlantis Massif<br />

Roters, B., Henrich, R. The Miocene climatic record of Southwest Africa: Results from a<br />

50-kyr resolution silt gra<strong>in</strong>-size record of DSDP Site 530A<br />

(Project: RCOM TP A5/A6)<br />

<strong>IODP</strong> 110<br />

Rüggeberg, A., Dullo, C. and <strong>IODP</strong> Cold-water coral mound <strong>in</strong>itiation and early development - Results <strong>IODP</strong> 111<br />

Exp. 307 Scientific Party<br />

of benthic foram<strong>in</strong>iferal assemblages and gra<strong>in</strong>-size analysis<br />

Sanders, D., Kra<strong>in</strong>er, K., Lucas, S. Different records of Late Palaeozoic sea-level driven cyclothems:<br />

One clue for better understand<strong>in</strong>g controls over cycle development<br />

<strong>ICDP</strong> 112<br />

Saukel, C., R<strong>in</strong>con Mart<strong>in</strong>ez, D., Pliocene changes <strong>in</strong> terrigenous sediment <strong>in</strong>put to the eastern <strong>IODP</strong> 112<br />

Lamy, F., Steph, S., Sturm, A., tropical and subtropical Pacific based on ODP sites 1237 and 1239<br />

Tiedemann, R.<br />

- First results from XRF core scann<strong>in</strong>g and gra<strong>in</strong> size analysis<br />

Schleicher, A. M., Warr, L. N., van Mixed-layered clay m<strong>in</strong>erals and their geological significance <strong>in</strong> the <strong>ICDP</strong> 113<br />

der Pluijm, B. A.<br />

San Andreas Fault Observatory at depth drillhole (SAFOD) <strong>in</strong><br />

Parkfield, California<br />

Schreck, M., Matthiessen, J. A Neogene Stratigraphic and Paleoenvironmental Transect across<br />

the Fram Strait (Arctic Ocean)<br />

<strong>IODP</strong> 88<br />

Schulte, P., Deutsch, A., Tobias, S., The Cretaceous-Paleogene (K-Pg) transition <strong>in</strong> ODP Leg 207, <strong>IODP</strong> 116<br />

Kontny, A., MacLeod, K. G., Krumm, Western Atlantic: From the Chicxulub impact to the first Paleocene<br />

S.<br />

hyperthermal events<br />

Schwamborn, G. Trac<strong>in</strong>g Siberian permafrost history <strong>ICDP</strong> 117<br />

Schwarz, W. H., Trieloff, M., Altherr, Noble gases and phengite 40Ar/39Ar ages <strong>in</strong> ultra-high-pressure <strong>ICDP</strong> 117<br />

R.<br />

eclogites of the CCSD core<br />

Schwarz-Schampera, U., Botz, R., Shallow submar<strong>in</strong>e hydrothermal systems along the Tonga-<br />

<strong>IODP</strong> 118<br />

Hann<strong>in</strong>gton, M. and Shipboard Kermadec island arc: First results from R/V SONNE Cruise<br />

Scientific Party<br />

SO192/2<br />

Simonyan, A. V., Dultz, S., Behrens, Porosity <strong>in</strong> different alteration types of the oceanic crust as a <strong>IODP</strong> 119<br />

H., Pastrana, J., Schwarz-<br />

control of element mobilization - Determ<strong>in</strong>ation of diffusion<br />

Schampera, U.<br />

transport by <strong>in</strong>-situ FTIR-spectroscopy<br />

Ste<strong>in</strong>ke, S., Groeneveld, J.,<br />

Late Miocene surface water history <strong>in</strong> the northern South Ch<strong>in</strong>a <strong>IODP</strong> 122<br />

Johnstone, H.<br />

Sea: Relationship to East Asian summer monsoon evolution and<br />

variability<br />

Strasser, M., Ried<strong>in</strong>ger, N.,<br />

<strong>IODP</strong> NantroSEIZE Expedition 316 (Shallow Mega Splay and <strong>IODP</strong> 15<br />

Kitamura, Y. & <strong>IODP</strong> Expedition 316<br />

scientists.<br />

Frontal Thrust) - Initial Results<br />

Strauss, H., Reuschel, M., Melezhik,<br />

V.<br />

FAR-DEEP: Successful completion of the first phase<br />

<strong>ICDP</strong> 150<br />

Sturm, A., Tiedemann, R., Steph, S. Atlantic-Pacific <strong>in</strong>termediate- and deep-water δ13C gradients<br />

dur<strong>in</strong>g the late Neogene (Leg 202)<br />

<strong>IODP</strong> 122<br />

Sumita, M., Schm<strong>in</strong>cke, H. U. Tephra <strong>in</strong>put <strong>in</strong>to Lake Van <strong>ICDP</strong> 123<br />

Titschak, J., Thierens, M., Dorschel, Cold-Water Coral Mound Growth: Implications from Challenger <strong>IODP</strong> 123<br />

B., Schulbert, C., Freiwald, A., Kano, Mound (<strong>IODP</strong> Exp. 307 - Modern carbonate mounds: Porcup<strong>in</strong>e<br />

A., Takashima, C., Kawagoe, N., Li,<br />

X. and the <strong>IODP</strong> expedition 307<br />

scientific party<br />

Drill<strong>in</strong>g)<br />

Tougiannidis, N., Seidler, T., Rolf, C., Cyclostratigraphy and Time Series Analysis From Borehole<br />

<strong>ICDP</strong> 127<br />

Weber, M., Antoniadis, P., Ricken,<br />

W.<br />

KAP/107 (Amynteon Bas<strong>in</strong>, northwestern Greece)<br />

Trampe, A. F., Krastel, S., Spiess, High resolution seismic <strong>in</strong>vestigations of Anholt Loch, Kattegat: <strong>IODP</strong> 127<br />

V., Andrèn, T., Harff, J.<br />

Reconstruction of the Quaternary depositional history<br />

Viereck-Goette, L., Niessen, F., ANDRILL: Drill<strong>in</strong>g for Geology <strong>in</strong> Antarctica: Aims, Concept, <strong>ICDP</strong> 131<br />

Kuhn, G. and the D-ANDRILL<br />

members<br />

Results and Future Perspectives of a Successful Program<br />

Vogt, C., Matthiessen, J., Brumsack, Climate Cycles and Events <strong>in</strong> the Plio-/Pleistocene of the Yermak <strong>IODP</strong> 131<br />

H.-J., Fischer, R. X.<br />

Plateau, Arctic Ocean: Causes and Consequences based on X-ray<br />

Fluorescence Scanner Data of ODP Sites 910 and 911


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong> - Abstractliste 11<br />

Wagner, D., Mangelsdorf, K.<br />

Wagner, T., Baumann, K.-H.,<br />

Holtvoeth, J., Meggers, H., Stuut, J.-<br />

B., Vogt, C., Egl<strong>in</strong>ton, T. I.<br />

Wallrabe-Adams, H.-J.,<br />

Diepenbroek, M., Huber, R.,<br />

Sch<strong>in</strong>dler, U., Grobe, H., Collier, J.<br />

Weber, M. E., Ricken, W., Kuhn, G.,<br />

Reichelt, L., Pfeiffer, M., Gersonde,<br />

R.<br />

Evolution of the Methane Cycle <strong>in</strong> the Siberian Arctic: Insights from<br />

Microbiological and Biogeochemical Studies<br />

Holocene millennial scale variability <strong>in</strong> surface and deepwater<br />

records <strong>in</strong> the North Atlantic (ODP Site 980, Feni Drift)<br />

New <strong>IODP</strong> data access: Scientific Earth Drill<strong>in</strong>g Information Service<br />

(SEDIS)<br />

New tools to determ<strong>in</strong>e paleoceanographic proxies at ultrahigh<br />

(sub-mm) resolution: Gray-scale generation and lam<strong>in</strong>ae count<strong>in</strong>g<br />

<strong>in</strong> sediments from the Antarctic Cont<strong>in</strong>ental Marg<strong>in</strong><br />

<strong>ICDP</strong> 132<br />

<strong>IODP</strong> 133<br />

<strong>IODP</strong> 135<br />

<strong>IODP</strong> 135<br />

Wefer, G. Bericht über SASEC-Sitzung 15./16.01.08 (Santa Cruz) <strong>IODP</strong> 17<br />

Weigelt, E., Uenzelmann-Neben, G. Late Miocene Mega Slump<strong>in</strong>g along the southwest African Coast <strong>IODP</strong> 135<br />

Weller, P., Ste<strong>in</strong>, R.<br />

Organic-carbon sources, anoxia, and sea-surface temperature <strong>in</strong><br />

the Paleocene central Arctic Ocean (<strong>IODP</strong> Expedition 302):<br />

Evidence from biomarkers<br />

<strong>IODP</strong> 136<br />

Westerhold, T., Röhl, U.<br />

A high-resolution chronostratigraphy from ODP Site 1258<br />

(Demerara Rise) - New <strong>in</strong>sights <strong>in</strong>to the early Eocene<br />

Geomagnetic Polarity Time Scale<br />

<strong>IODP</strong> 138<br />

Weyher, S., Montoya-P<strong>in</strong>o, C.,<br />

Pross, J., Oschmann, W.<br />

Mo- and U-isotope variations <strong>in</strong> black shales: Potential tracers for<br />

the quantification of oceanic anoxia<br />

Wiersberg, T., Erz<strong>in</strong>ger, J. Characterization of gas from seismogenic depths of the San<br />

Andreas Fault at SAFOD<br />

Wilke, T., Albrecht, C., Wagner, B.,<br />

Krastel, S., Reicherter, K., Daut, G.,<br />

Wessels, M.<br />

Molecular clock approaches: Bridg<strong>in</strong>g the gap between cont<strong>in</strong>ental<br />

deep drill<strong>in</strong>g and evolutionary biology <strong>in</strong> ancient Lake Ohrid<br />

<strong>IODP</strong> 139<br />

<strong>ICDP</strong> 139<br />

<strong>ICDP</strong> 140<br />

Wille, M. Aerial extent of paleoenvironmental reconstructions <strong>in</strong> southern<br />

Patagonia<br />

<strong>ICDP</strong> 141<br />

W<strong>in</strong>kler-Nees, S. ECORD und die Deep-Sea Frontier Initiative <strong>IODP</strong> 17<br />

Wittmann, A., Hecht, L., Reimold, W.<br />

U., Schmitt, R. T., Kenkmann, T.,<br />

Hansen, B., Fernandes, V. A.<br />

Xu, Z. Q., Müller, W. F., Brenker, F.<br />

E.<br />

Ziegelmüller, K., Könneke, M.,<br />

Cypionka, H., Engelen, B.<br />

Zimmermann, K., Hüpers, A., Kopf,<br />

A.<br />

Zolitschka, B., Anselmetti, F. S.,<br />

Ariztegui, D., Corbella, H.,<br />

Haberzettl, T., Lücke, A., Mayr, C.,<br />

Ohlendorf, C., Schäbitz, F., Wille, M.<br />

Petrology of melt bear<strong>in</strong>g lithologies <strong>in</strong> drill core Eyreville-B,<br />

Chesapeake Bay impact structure<br />

TEM of eclogite from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g<br />

project at Donghai<br />

Cultivation of Sulfate-Reduc<strong>in</strong>g Bacteria from Deep Sediment<br />

Layers that are Influenced by Crustal Fluids (<strong>IODP</strong> Leg 301)<br />

Physical Properties of Mar<strong>in</strong>e Sediments Undergo<strong>in</strong>g Subduction -<br />

Results from Heated Shear Experiments at the Nankai Covergent<br />

Marg<strong>in</strong><br />

Climate and environmental variability dur<strong>in</strong>g the past 56 ka at<br />

Laguna Potrok Aike (Southern Patagonia, Argent<strong>in</strong>a), the site of<br />

the <strong>ICDP</strong> lake drill<strong>in</strong>g project „PASADO“<br />

<strong>ICDP</strong> 141<br />

<strong>ICDP</strong> 142<br />

<strong>IODP</strong> 143<br />

<strong>IODP</strong> 146<br />

<strong>ICDP</strong> 146


12<br />

Fahrtberichte<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition<br />

314 (NanTroSEIZE Logg<strong>in</strong>g-While-Drill<strong>in</strong>g<br />

Transect)<br />

ACHIM KOPF (UNIV. BREMEN), NANTROSEIZE PROJECT<br />

MANAGEMENT TEAM, <strong>IODP</strong> EXPEDITION 314 SCIENTIFIC PARTY<br />

Subduction zones account for 90% of global seismic<br />

moment release, generat<strong>in</strong>g damag<strong>in</strong>g earthquakes and<br />

tsunamis, with potentially disastrous effects on heavily<br />

populated coastal areas. Understand<strong>in</strong>g the processes that<br />

govern the strength of earthquakes, and nature and<br />

distribution of slip along these plate boundary fault<br />

systems, are crucial steps toward evaluat<strong>in</strong>g and mitigat<strong>in</strong>g<br />

geohazards, <strong>in</strong>clud<strong>in</strong>g tsunamis. As a consequence, the<br />

foremost goal of the <strong>IODP</strong> project NanTroSEIZE is to<br />

understand the mechanics and dynamics of seismogenesis<br />

and rupture propagation along the active plate boundary<br />

faults of a subduction zone, <strong>in</strong> terms of direct <strong>in</strong> situ<br />

sampl<strong>in</strong>g and <strong>in</strong>strumentation at depth.<br />

NanTroSEIZE is a multi-expedition, multi-platform<br />

complex drill<strong>in</strong>g project which eventually will complete a<br />

transect of holes the deepest of which will penetrate the<br />

seismogenic zone off the Kii Pen<strong>in</strong>sula, Japan, <strong>in</strong> ca. 6 km<br />

depth. Stage 1 drill<strong>in</strong>g <strong>in</strong>cluded three coord<strong>in</strong>ated riserless<br />

expeditions with RV Chikyu to drill several sites across the<br />

cont<strong>in</strong>ental slope and rise <strong>in</strong> fall 2007 through early <strong>2008</strong>.<br />

The first of these was a logg<strong>in</strong>g while drill<strong>in</strong>g (LWD)<br />

expedition that is serv<strong>in</strong>g as a geophysical basel<strong>in</strong>e for all<br />

of the Stage 1A drill<strong>in</strong>g sites (Expedition 314: LWD<br />

Transect). This was followed by a cor<strong>in</strong>g expedition<br />

(Expedition 315: Megasplay Riser Pilot) aimed at sampl<strong>in</strong>g<br />

the materials and characteris<strong>in</strong>g <strong>in</strong> situ conditions with<strong>in</strong><br />

the accretionary wedge to 1 km below seafloor at Site<br />

C0001, the location of the 3.5 km-deep Stage 2 drill hole<br />

across the deep “mega-splay” out-of-sequence thrust.<br />

Expedition 316 (Shallow Megasplay and Frontal Thrusts)<br />

targeted another shallow fault zone of the “mega-splay”<br />

system <strong>in</strong> the older accretionary prism (Site C0004) as well<br />

as the frontal thrust at the toe of the young accretionary<br />

prism (Sites C0006 and C0007).<br />

Initial results from the first Stage 1A drill<strong>in</strong>g<br />

expedition reveal new <strong>in</strong>sights <strong>in</strong>to the stress history and<br />

temporal evolution of the Nankai forearc. A total of 5 drill<br />

sites were studied us<strong>in</strong>g state-of-the-art logg<strong>in</strong>g-whiledrill<strong>in</strong>g<br />

(LWD) techniques and drill<strong>in</strong>g to depths of 400 to<br />

1400 m. In the Kumano region, the Nankai Trough forearc<br />

can be divided <strong>in</strong>to (i) an <strong>in</strong>ner wedge, comprised of a<br />

relatively older accretionary complex and overly<strong>in</strong>g forearc<br />

bas<strong>in</strong> that are hypothesized to lie over the up-dip end of the<br />

locked seismogenic megathrust; and (ii) an “outer wedge”<br />

that may represent the active critical state accretionary<br />

wedge with essentially aseismic mechanics. Seismically<br />

imaged structural style and attributes vary markedly across<br />

this boundary. Resistivity image logs show borehole<br />

breakouts at all sites along the transect (i.e. C0001, -2, -3, -<br />

4 and –6), with variable development <strong>in</strong> different<br />

structural/lithologic doma<strong>in</strong>s. The orientation of the<br />

maximum horizontal stress axis (SHmax) from breakouts<br />

across the outer wedge is consistently perpendicular to the<br />

local strike of major structures and somewhat oblique to<br />

plate convergence direction. At the <strong>in</strong>ner wedge/forearc<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

bas<strong>in</strong> drill site (C0001), the SHmax orientation is subparallel<br />

to strike, even <strong>in</strong> the upper part of the accretionary<br />

wedge doma<strong>in</strong> beneath the bas<strong>in</strong>. These results are<br />

consistent with a compressional to transpressional stress<br />

state <strong>in</strong> the outer wedge, transition<strong>in</strong>g over a few<br />

kilometers maximum distance to an extensional stress state<br />

<strong>in</strong> the <strong>in</strong>ner wedge. As an <strong>in</strong>itial hypothesis, this stress<br />

transition is controlled by the position of the up-dip limit of<br />

the locked portion of the megathrust <strong>in</strong> the <strong>in</strong>terseismic<br />

period, and may be temporally variable.<br />

Prelim<strong>in</strong>ary results from <strong>IODP</strong> Expedition<br />

315 (NanTroSEIZE Megasplay Riser Pilot)<br />

JAN BEHRMANN (IFM-GEOMAR KIEL), BABETTE BÖCKEL,<br />

ACHIM KOPF, FRIEDERIKE SCHMIDT-SCHIERHORN (UNIVERSITY<br />

OF BREMEN), <strong>IODP</strong> EXPEDITION 315 SCIENCE PARTY<br />

Integrated Ocean Drill<strong>in</strong>g Program Expedition 315 is<br />

one of three Nankai Trough Seismogenic Zone Experiment<br />

(NanTroSEIZE) Stage 1 expeditions. The NanTroSEIZE<br />

project is a multistage, multiplatform drill<strong>in</strong>g project<br />

designed to <strong>in</strong>vestigate fault mechanics and seismogenesis<br />

along subduction, décollement, and megathrusts through<br />

direct sampl<strong>in</strong>g, <strong>in</strong> situ measurements, and long-term<br />

monitor<strong>in</strong>g <strong>in</strong> conjunction with allied seafloor laboratory<br />

and numerical model<strong>in</strong>g studies. Expedition 315 was<br />

assigned to the Chikyu operat<strong>in</strong>g under contract with the<br />

Center for Deep Earth Exploration (CDEX) from 16<br />

November to 19 December 2007. Four German scientists<br />

were able to participate <strong>in</strong> the expedition.<br />

The ma<strong>in</strong> aim of the expedition was to drill and core a<br />

>1000m long section through the active branch of an outof-sequence<br />

thrust, be<strong>in</strong>g part of the so called “megasplay”<br />

fault system <strong>in</strong>tersect<strong>in</strong>g the Nankai Trough accretionary<br />

complex. The hole was supposed to be cased thereafter to<br />

set the stage for a 3.5 km-deep Riser drillhole <strong>in</strong> the future.<br />

None of these goals were achieved ow<strong>in</strong>g to a comb<strong>in</strong>ation<br />

of strong Kuroshio Current, lack of experience by the<br />

drill<strong>in</strong>g eng<strong>in</strong>eers and extremely unstable hole conditions.<br />

As a result of the difficulties mentioned above, cor<strong>in</strong>g<br />

at two planned riser drill<strong>in</strong>g sites (C0001 and C0002), was<br />

conducted (Figs. 1-2). Geological and geothermal<br />

<strong>in</strong>formation <strong>in</strong> the shallow part of the accretionary prism<br />

and the overly<strong>in</strong>g slope/forearc bas<strong>in</strong> sequences was<br />

aquired. These sites will add significantly to our<br />

understand<strong>in</strong>g of the relationships between the growth of<br />

the accretionary prism and the evolution of the splay fault<br />

system.<br />

For NanTroSEIZE Project Stage 2, 3.5 km riser drill<strong>in</strong>g<br />

is planned at Site C0001. We cored at this site to 457 m<br />

logg<strong>in</strong>g-while-drill<strong>in</strong>g (LWD) depth below seafloor (LSF)<br />

and cut 59 cores (31 with the hydraulic piston cor<strong>in</strong>g<br />

system [HPCS], 2 with the extended shoe cor<strong>in</strong>g system<br />

[ESCS], and 26 with the rotary core barrel [RCB]) from<br />

five holes cover<strong>in</strong>g the slope apron (Unit I) and the top 250<br />

m of the underly<strong>in</strong>g accretionary prism (Unit II). The slope<br />

cover is composed ma<strong>in</strong>ly of Quaternary to late Pliocene<br />

silty clay and clayey silt with <strong>in</strong>tercalations of volcanic ash.<br />

The boundary between Units I and II, identified at 207.17<br />

m LSF, is an unconformity characterized by a thick sand<br />

layer.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Figure 1. Location of Sites C0001 and C0002<strong>in</strong> the Kumano Bas<strong>in</strong> off Japan. Other sites drilled dur<strong>in</strong>g Expedition 314 (Sites C0003,<br />

C0004, and C0006) are also shown.<br />

Fig. 2: Reflection seismic profiles show<strong>in</strong>g location of sites C0004 and C0008 (Fig. 2A), and C0006 and C0007 (Fig. 2B)<br />

13


14<br />

Unit II is composed of more consolidated mud-dom<strong>in</strong>ated<br />

sediments of late Pliocene to late Miocene age. Structural<br />

style and stress state vary widely across a highly deformed<br />

zone at 220 m LSF. A normal fault <strong>in</strong>dicat<strong>in</strong>g northeast–<br />

southeast extension is dom<strong>in</strong>ant above this zone; however,<br />

a few thrust faults dipp<strong>in</strong>g at 50° were encountered just<br />

above the deformed zone. These thrust faults are consistent<br />

with the northwest–southeast shorten<strong>in</strong>g subparallel to the<br />

direction of plate convergence. On the other hand, many<br />

thrust and strike-slip faults as well as a normal fault are<br />

found below the 220 m LSF deformed zone. The geometry<br />

and k<strong>in</strong>ematics of planar structures display great variation.<br />

Fault plane solutions computed from normal and thrust<br />

faults are consistent with northeast–southwest extension<br />

and southeast–northwest shorten<strong>in</strong>g, respectively.<br />

Figure 3. Stratigraphic summaries, Site C0001 (left hand side) and Site C0002 (right hand side).<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

A total of 48 whole-round samples were taken for<br />

<strong>in</strong>terstitial geochemistry. Obta<strong>in</strong>ed data show mean<strong>in</strong>gful<br />

trends for most elements, and potential contam<strong>in</strong>ation of<br />

drill<strong>in</strong>g fluid is taken <strong>in</strong>to consideration; however,<br />

chang<strong>in</strong>g trends do not necessarily correspond to unit<br />

boundaries. Methane and ethane concentrations and their<br />

ratio (C1/C2) decrease with depth to 100 m LSF and<br />

rema<strong>in</strong> constant to the base of Unit I. The <strong>in</strong>crease of<br />

methane concentrations and C1/C2 ratios <strong>in</strong> Unit II <strong>in</strong>dicate<br />

the contribution of biogenic methane. Total organic carbon<br />

and calcium carbonate decrease monotonously to the base<br />

of Unit I and rema<strong>in</strong> low throughout Unit II. Physical<br />

properties also show a clear break at the boundary between<br />

Units I and II. Porosity decreases downhole with<strong>in</strong> each<br />

unit; however, there is a gap across the unit boundary. Wet<br />

bulk density negatively correlates with porosity. Thermal<br />

conductivity is almost constant throughout Unit I and<br />

decreases with depth <strong>in</strong> Unit II. Downhole temperature was<br />

measured with the advanced piston corer temperature tool<br />

(APCT3) at seven depths to 170.98 m LSF and yielded a<br />

generally l<strong>in</strong>ear downhole temperature <strong>in</strong>crease, with a<br />

gradient of 0.042°C/m.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

For NanTroSEIZE Stage 3, 6 km riser drill<strong>in</strong>g is<br />

planned at Site C0002. This site is located at the southern<br />

marg<strong>in</strong> of Kumano bas<strong>in</strong>. We cored to 1057 m LSF and cut<br />

86 cores (18 with the HPCS, 2 with the ESCS, and 66 with<br />

the RCB) from three holes. We penetrated the basal<br />

unconformity of the Kumano forearc bas<strong>in</strong> at ~936 m LSF<br />

and cored another 120 m <strong>in</strong>to the accretionary prism. The<br />

forearc bas<strong>in</strong> sequence was divided <strong>in</strong>to two units based on<br />

lithofacies; these units corresponded to Units II and III<br />

def<strong>in</strong>ed by LWD, respectively. Both units are dom<strong>in</strong>ated<br />

by mud and mudstone; however, the Unit I conta<strong>in</strong>s more<br />

sand and silt <strong>in</strong>tercalation and has a much faster<br />

sedimentation rate.<br />

The age ranges from Quaternary to late Miocene.<br />

Depositional ages were considerably well determ<strong>in</strong>ed by<br />

micropaleontological and paleomagnetic <strong>in</strong>vestigations.<br />

Facies analysis revealed rapid sedimentation <strong>in</strong> the forearc<br />

bas<strong>in</strong> dur<strong>in</strong>g the Quaternary and sediment-starved<br />

conditions <strong>in</strong> the basal slope bas<strong>in</strong> dur<strong>in</strong>g the Pliocene.<br />

Further details of evolution of the forearc bas<strong>in</strong> and<br />

accretionary prism will be clarified by <strong>in</strong>tegration of<br />

shipboard and shore-based studies. Underly<strong>in</strong>g<br />

accretionary prism materials conta<strong>in</strong> <strong>in</strong>durated, deformed<br />

sediments. Only one nannofossil event, of late Miocene<br />

age, was determ<strong>in</strong>ed for Unit IV; hence, no gap was<br />

detected across the unconformity.<br />

Faults and shear zones are clustered at certa<strong>in</strong> depths<br />

around 700, 920–950, and 1000–1050 m LSF. Three<br />

deformation phases were recognized by fault analyses. The<br />

earliest phase is a thrust fault (and possibly a strike-slip<br />

fault) and exhibits northwest–southeast shorten<strong>in</strong>g. Two<br />

phases of normal fault<strong>in</strong>g occurred subsequent to thrust<strong>in</strong>g.<br />

The first is recorded <strong>in</strong> shear zones and <strong>in</strong>dicates northeast–<br />

southwest extension. The second is recorded <strong>in</strong> normal<br />

faults and <strong>in</strong>dicates north–south extension, consistent with<br />

the present stress direction acquired from LWD results. A<br />

total of 31 whole-round samples were taken for <strong>in</strong>terstitial<br />

water analyses. Changes <strong>in</strong> concentration for most<br />

elements seem to be controlled by unit boundaries. A<br />

downward <strong>in</strong>crease of ethane and concomitant decrease of<br />

C1/C2 ratios <strong>in</strong> Unit IV suggest some contribution of<br />

thermogenic hydrocarbons. Physical properties show<br />

complex trends with depth. Downhole temperature was<br />

measured at eight depths to 159.0 m LSF and showed an<br />

almost l<strong>in</strong>ear downhole <strong>in</strong>crease with a gradient of<br />

0.043°C/m, identical to that found at Site C0001.<br />

Reference<br />

Moore, G.F., Bangs, N.L., Taira, A., Kuramoto, S., Pangborn, E., and Tob<strong>in</strong>,<br />

H.J., 2007. Three-dimensional splay fault geometry and implications<br />

for tsunami generation. Science, 318(5853):1128–1131.<br />

doi:10.1126/science.1147195<br />

<strong>IODP</strong> NanTroSEIZE Expedition 316<br />

(Shallow Maga Splay and frontal thrust) –<br />

<strong>in</strong>itial results<br />

M. STRASSER 1 , N. RIEDINGER 2 , Y.KITAMURA 3 & EXPEDITION 316<br />

SCIENTISTS<br />

1<br />

Research Centre Ocean Marg<strong>in</strong>s, University of Bremen;<br />

mstrasser@uni-bremen.de<br />

2<br />

Max Planck Institute for Mar<strong>in</strong>e Micorbiology, Bremen;<br />

nried<strong>in</strong>g@mpi-bremen.de<br />

3<br />

Leibniz-Institut für Meereswissenschaften, Kiel; ykitamura@ifmgeomar.de<br />

Integrated Ocean Drill<strong>in</strong>g Program (<strong>IODP</strong>) Expedition<br />

316 is part of the Nankai Trough Seismogenic Zone<br />

Experiment (NanTroSEIZE) complex drill<strong>in</strong>g project. This<br />

coord<strong>in</strong>ated, multiplatform, and multi-expedition drill<strong>in</strong>g<br />

project is designed to <strong>in</strong>vestigate fault mechanics and<br />

seismogenesis along subduction megathrusts through direct<br />

sampl<strong>in</strong>g, <strong>in</strong> situ measurements, and long-term monitor<strong>in</strong>g<br />

<strong>in</strong> conjunction with allied laboratory and numerical<br />

model<strong>in</strong>g studies (Tob<strong>in</strong> & K<strong>in</strong>oshita, 2006).<br />

Expedition 316 was designed to evaluate the<br />

deformation, the <strong>in</strong>ferred depth of detachment, the<br />

structural partition<strong>in</strong>g, the fault zone physical<br />

characteristics and fluid flow at the frontal thrust and at the<br />

shallow portion of the megasplay system (proposed<br />

NanTroSEIZE Sites NT1-03 and NT2-01, respectively;<br />

Fig.1). To accomplish these objectives, drill<strong>in</strong>g was<br />

conducted from late December 2007 to early February<br />

<strong>2008</strong> at two sites <strong>in</strong> the megasplay region, one with<strong>in</strong> the<br />

fault zone and one <strong>in</strong> the slope bas<strong>in</strong> seaward of the<br />

megasplay (Sites C0004 and C0008; Fig. 2A). Two sites<br />

were also drilled with<strong>in</strong> the frontal thrust region (Sites<br />

C0006 and C0007; Fig. 2B).<br />

Fig. 1: 3D perspective of NanTroSEIZE study area show<strong>in</strong>g proposed<br />

drill sites. (Figure taken from G.Kimura)<br />

15


16<br />

Site C0004 is located along the slope of the<br />

accretionary prism landward of the <strong>in</strong>ferred <strong>in</strong>tersection of<br />

the megasplay fault zone with the seafloor (Fig. 2A).<br />

Drill<strong>in</strong>g at this site recovered young hemipelagic slope<br />

deposits that unconformaly overly Pliocene sedimentary<br />

breccias and hemipelagic sediments of the accretionary<br />

prism. At ~ 270 to 300 (mbsf), the megasplay fault zone<br />

was successfully drilled and sampled. The cores from the<br />

fault zone record a complex history of deformation based<br />

on structural observations and two age reversals suggested<br />

by nannofossil evidence. In the footwall of the megasplay<br />

fault zone, Pleistocene underthrust slope bas<strong>in</strong> sediments<br />

were recovered and sampled to understand their<br />

deformation, consolidation, and fluid flow history. Drill<strong>in</strong>g<br />

at Site C0008 targeted the slope bas<strong>in</strong> seaward of the<br />

megasplay fault and provides a reference for the<br />

underthrust sucession at Site C0004 (Fig. 2A). The<br />

recovered sedimentary sucession documents the Late<br />

Pliocene to Pleistocene hemipelagic sedimentation history<br />

<strong>in</strong> the slope bas<strong>in</strong>, that was puctuated by episodic sediment<br />

remobilization events as <strong>in</strong>dicated by the occurrence of<br />

discrete layers of remobilzed hemipelagic material. The<br />

drilled succession at site C0008 hence records the history<br />

of fault movement along the adjacent megasplay.<br />

Additionally, the sediments are characterized by frequent<br />

occurrence of ash layers and the presence of gas hydrates.<br />

Drill<strong>in</strong>g at Sites C0006 and C0007 exam<strong>in</strong>ed the<br />

frontal thrust region (Fig. 2B). Site C0006 captured several<br />

fault zones with<strong>in</strong> the accreted and uplifted Pliocene-to-<br />

Pleistocene bas<strong>in</strong>-to-trench sediment succession before<br />

be<strong>in</strong>g halted by drill<strong>in</strong>g conditions. Drill<strong>in</strong>g at Site C0007<br />

recovered the correlative accreted and uplifted trench<br />

wedge deposits <strong>in</strong> the hang<strong>in</strong>gwall and successfully drilled<br />

through the frontal thrust <strong>in</strong>to younger underthrust trench<br />

wedge deposits. Drill<strong>in</strong>g successfully recovered thrust fault<br />

material rang<strong>in</strong>g from breccia to fault gouge. The highly<br />

dynamic processes along the observed fault zones are also<br />

reflected <strong>in</strong> the geochmistry data.<br />

References:<br />

Tob<strong>in</strong>, Y., and M., K<strong>in</strong>oshita (2006), Investigations of seismogenesis at the<br />

Nankai Trough, Japan. <strong>IODP</strong> Scientific Prospectus, NanTroSEIZE<br />

Stage 1. doi:10.2204/iodp.sd.2.06.2006<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong>


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Berichte<br />

Bericht über SASEC-Sitzung 15.-16. Januar<br />

<strong>2008</strong><br />

G. WEFER<br />

MARUM<br />

Zentrum für Mar<strong>in</strong>e Umweltwissenschaften<br />

Universität Bremen<br />

Leobener Straße<br />

28359 Bremen<br />

gwefer@marum.de<br />

Das Science Advisory Structure Excecutive Committee<br />

(SASEC) ist das höchste Beratungs- und<br />

Entscheidungsgremium im <strong>IODP</strong>. Neben Mike Bickel aus<br />

Cambridge b<strong>in</strong> ich der zweite europäische Vertreter <strong>in</strong><br />

diesem Gremium. Japan und die USA s<strong>in</strong>d mit je vier<br />

Mitgliedern vertreten, Europa hat zwei Vertreter.<br />

Beratenden Status haben Südkorea und Australien. E<strong>in</strong><br />

weiteres Mitglied stellt das Science Plann<strong>in</strong>g Committee.<br />

Als Gäste anwesend s<strong>in</strong>d Vertreter der Lead Agencies und<br />

Fund<strong>in</strong>g Agencies. Die letzte Sitzung fand am 15. und 16.<br />

Januar <strong>2008</strong> <strong>in</strong> Santa Cruz, Kalifornien, statt. Wesentliche<br />

Themen waren:<br />

Mögliche Schwerpunktsetzungen der Bohrungen<br />

aufgrund der reduzierten Verfügbarkeit der Bohrschiffe<br />

(sowohl Nachfolge „JOIDES Resolution“ als auch<br />

„CHIKYU“ werden aus f<strong>in</strong>anziellen Gründen nur sieben<br />

Monate im Jahr e<strong>in</strong>zusetzen se<strong>in</strong>, und es kann nur alle zwei<br />

Jahre e<strong>in</strong>e „Mission specific platform operation“<br />

durchgeführt werden).<br />

Kosten für die Aufrechterhaltung und den Service des<br />

Programms.<br />

Planung der nächsten Phase von <strong>IODP</strong> nach 2013. Zur<br />

Def<strong>in</strong>ition der Zielsetzung ist e<strong>in</strong> Workshop <strong>in</strong> September<br />

2009 geplant. Mögliche Austragungsorte s<strong>in</strong>d Tokyo, La<br />

Jolla, Corvallis und Bremen.<br />

Die nächste SASEC-Sitzung f<strong>in</strong>det <strong>in</strong> der Woche vom<br />

21.-28. Juni <strong>in</strong> Pek<strong>in</strong>g statt, zusammen mit <strong>IODP</strong>-MI<br />

Sitzungen<br />

ECORD und die Deep-Sea Frontier Initiative<br />

S. WINKLER-NEES 1<br />

1 Deutsche Forschungsgeme<strong>in</strong>schaft (DFG)<br />

-Physik, Mathematik, Geowissenschaften-<br />

-ERA-Net ECORD-<br />

D-53170 Bonn<br />

Seit 2003 wird das unabhängig von der Europäischen<br />

Kommission agierende European Consortium for Ocean<br />

Research Drill<strong>in</strong>g (ECORD) durch das ERA-NET<br />

ECORDnet unterstützt. Das Instrument ERA-NET wurde<br />

seitens der EC e<strong>in</strong>gerichtet, um die Vernetzung der<br />

nationalen Förderorganisationen im H<strong>in</strong>blick auf die<br />

Bildung e<strong>in</strong>es Europäischen Forschungsraums zu<br />

unterstützen.<br />

E<strong>in</strong>e Teilaufgabe <strong>in</strong> ECORDnet ist es, die<br />

verschiedenen existierenden Tiefseeforschungsprogramme<br />

zusammen zu br<strong>in</strong>gen und Möglichkeiten zu erarbeiten,<br />

deren Aktivitäten zu koord<strong>in</strong>ieren. Im Rahmen der aus<br />

ECORDnet entstandenen Deep-Sea Frontier Initiative<br />

haben Vertreter der Programme ESOnet/EMSO<br />

(Tiefseeobservatorien), HERMES (Tiefseeökosysteme)<br />

und IMAGES (Past Global Changes) mit ECORD<br />

(Tiefseebohrungen) geme<strong>in</strong>sam e<strong>in</strong>en “Science Plan”<br />

veröffentlicht(1). Unter Berücksichtigung dieser<br />

wissenschaftlichen Fragestellungen, sowie neuer<br />

politischer Optionen seitens der EC soll nun unter dem<br />

Dach der Deep-Sea Frontier Initiative e<strong>in</strong> Netzwerk der<br />

europäischen Tiefseeforschungsprogramme entstehen. Ziel<br />

ist es neben e<strong>in</strong>er besseren wissenschaftlichen<br />

Koord<strong>in</strong>ierung, langfristig und nachhaltig diesen<br />

Teilbereich der Meeresforschung auf europäischer Ebene<br />

zu verankern und somit z.B. auch effizient kooperative<br />

Infrastrukturvorhaben zu adressieren.<br />

Die Deep-Sea Frontier Initiative ist hierbei als e<strong>in</strong><br />

Rahmen zu verstehen, der (1) strukturelle Bed<strong>in</strong>gungen<br />

bietet, mit europäischen Partnern geme<strong>in</strong>sam<br />

wissenschaftliche Kooperationen e<strong>in</strong>zugehen, und der,<br />

möglicherweise unterstützt durch e<strong>in</strong> weiteres ERA-NET,<br />

(2) im Rahmen von Ausschreibungen weitere<br />

Förderchancen eröffnet. Diese Chancen müssen jedoch<br />

seitens der “scientific community” ergriffen und mit<br />

Inhalten gefüllt werden. Zudem ermöglicht die Initiative<br />

die Sichtbarkeit und damit die gesellschaftliche Akzeptanz<br />

dieses zu wenig beachteten Teils der Meeresforschung zu<br />

erhöhen und auf politischer Ebene Unterstützung zu f<strong>in</strong>den.<br />

In Anbetracht der steigenden Kosten, <strong>in</strong>sbesondere der<br />

benötigten Forschungs<strong>in</strong>frastruktur, ersche<strong>in</strong>t es als<br />

unverzichtbar, dass vorallem diesem Aspekt im<br />

europäischen Kontext mehr Bedeutung als <strong>in</strong> der<br />

Vergangenheit beigemessen wird.<br />

E<strong>in</strong>e weitere Teilaufgabe <strong>in</strong> ECORDnet besteht somit<br />

dar<strong>in</strong>, ECORD politisch im europäischen Gesamtkontext<br />

zu verankern, um die Interessen der wissenschaftlichen<br />

“Community” nachhaltig zu sichern. Zum Beispiel hatte<br />

die Europäische Kommission 2006 im Rahmen e<strong>in</strong>es<br />

„Green-Book“ Prozesses die europäischen „Mar<strong>in</strong>e<br />

Stakeholder“ dazu aufgerufen, ihre Wünsche und<br />

Vorstellungen zu e<strong>in</strong>er zukünftigen europäischen<br />

Meerespolitik zu formulieren. Kurz vor Abschluss dieses<br />

Prozesses wurde mit Beteiligung von ECORD <strong>in</strong> Aberdeen<br />

am 22. Juni 2007 die gebündelte Antwort europäischer<br />

Meereswissenschaftler vorgestellt und <strong>in</strong> der sog.<br />

„Aberdeen Declaration“(2) zusammengefasst. Unter<br />

Berücksichtigung von <strong>in</strong>sgesamt knapp 500 E<strong>in</strong>gaben<br />

formulierte schließlich die EC das sog. „Blue Book: An<br />

<strong>in</strong>tegrated Maritime Policy for the Union”(3), das am 10.<br />

Oktober 2007 veröffentlich wurde. In diesem Dokument<br />

präsentiert die EC ihre Sicht im H<strong>in</strong>blick auf e<strong>in</strong>e<br />

<strong>in</strong>tegrierten Meerespolitik für die Europäische Union.<br />

Die hier angerissenen Aspekte zeigen, dass ECORD<br />

nicht nur wissenschaftlich Europa im weltweit<br />

renommiertesten geowissenschaftlichen Programm<br />

erfolgreich vertritt, sondern dass es gelungen ist sechzehn<br />

europäische Förderorganisationen (plus Kanada) zur<br />

Bündelung geme<strong>in</strong>samer Interessen zusammen zu br<strong>in</strong>gen.<br />

ECORD als EINE Stimme Europas <strong>in</strong> <strong>IODP</strong> ermöglicht e<strong>in</strong><br />

hohes Maß an Gestaltungsmöglichkeiten des globalen<br />

Programms, was sich u.a. am Anteil der erfolgreichen<br />

Bohrvorschläge zeigt. Zudem ist es gelungen, die Anzahl<br />

der für europäische Wissenschaftler verfügbaren<br />

Schiffsplätze überproportional zu erhöhen. Der nicht<br />

unerhebliche Mitgliedsbeitrag (<strong>in</strong> Zukunft 22 M US $ / a)<br />

an <strong>IODP</strong> wird durch ECORD “gepoolt” und durch die<br />

EMA (ECORD Management Agency) verwaltet. Der<br />

ECORD-<strong>in</strong>terne Auswahlprozess von Wissenschaftlern<br />

17


18<br />

sichert die hohe wissenschaftliche Qualität des Beitrags zu<br />

<strong>IODP</strong>. Dies <strong>in</strong>sbesondere ist 2006 <strong>in</strong> e<strong>in</strong>em unabhängigen<br />

Review bestätigt worden.<br />

Bis zur Gründung von ECORD beteiligte sich Europa<br />

(maßgeblich Deutschland, Frankreich und UK, sowie e<strong>in</strong><br />

Zusammenschluss verschiedener Länder mit ger<strong>in</strong>gerem<br />

Beitrag) auf nationaler Ebene an ODP, bzw. den<br />

Vorläuferprogrammen. Dies ermöglichte die Beteiligung<br />

von europäischen Wissenschaftlern an Bohrexpeditionen<br />

auf dem e<strong>in</strong>zigen, damals verfügbaren wissenschaftlichen<br />

US Bohrschiff Joides Resolution. E<strong>in</strong>e maßgebliche<br />

Gestaltung des Bohrprogramms war u.a. durch die<br />

Fragmentierung der "europäischen Beteiligung" nicht<br />

gegeben. Ende der 90er Jahre nun beschloss Japan das neue<br />

Bohrschiff Chikyu zu bauen, um <strong>in</strong>sbesondere die<br />

geodynamischen Besonderheiten rund um Japan erforschen<br />

zu können, was mit der bis dah<strong>in</strong> verfügbaren Technologie<br />

nicht möglich war. Dadurch erlangte Japan e<strong>in</strong>e tragende<br />

Rolle <strong>in</strong>nerhalb der <strong>IODP</strong> Struktur.<br />

Um sich am Gestaltungsprozess von <strong>IODP</strong> aktiv<br />

beteiligen zu können, sowie die europäische Rolle <strong>in</strong> der<br />

<strong>in</strong>ternationalen Tiefseeforschung zu stärken, haben sich<br />

2003 Förderorganisationen aus 16 europäischen Ländern<br />

plus Kanada zu ECORD zusammengeschlossen. Als<br />

Infrastrukturbeitrag entwickelte ECORD das Konzept der<br />

"mission-specific platforms" - Bohrschiffe bzw. -<br />

plattformen, die explizit für e<strong>in</strong>e Expedition mit<br />

technischen Sonderanforderungen ausgerüstet werden. So<br />

wurde z.B. für die ACEX Expedition e<strong>in</strong> Eisbrecher mit<br />

e<strong>in</strong>em Bohrturm ausgestattet und konnte nahe dem Nordpol<br />

Proben erbohren, die wissenschaftlich bisher e<strong>in</strong>malig s<strong>in</strong>d.<br />

E<strong>in</strong>e weitere Expedition erbohrte Kerne aus durch<br />

Meerespiegelanstieg versunkenen Korallenriffen bei Tahiti<br />

(Tahiti Sea Level). Im Jahr <strong>2008</strong> wird e<strong>in</strong>e ECORD<br />

Expedition geowissenschaftliche Fragestellungen <strong>in</strong> enger<br />

Zusammenarbeit mit dem kont<strong>in</strong>entalen Tiefbohrprogramm<br />

(<strong>ICDP</strong>) vor New Jersey bearbeiten (New Jersey Shallow<br />

Shelf; Verknüpfung von on und off shore<br />

Bohrkampagnen).<br />

References:<br />

(1) PDF Version “The deep-sea frontier - Science challenges for a<br />

susta<strong>in</strong>able future” erhältlich unter http://bookshop.europa.eu/<br />

(2) EUROCEAN 2007; The Aberdeen Declaration:<br />

http://ec.europa.eu/maritimeaffairs/eurocean2007.html<br />

(3) The EC Blue Book: „A Maritime Policy of the EU“:<br />

http://ec.europa.eu/maritimeaffairs/<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong>


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Crystallization conditions of the basaltic and<br />

rhyolitic melts of the Snake River Pla<strong>in</strong>-<br />

Yellowstone hotspot track: first experimental<br />

results and implications (Project Ho 1337/17)<br />

R. ALMEEV 1 , L. KUSCHEL 1 , F. HOLTZ 1 , H. CATHEY 2 , B. NASH 2 , J.<br />

KOEPKE 1 , J. SHERVAIS 3 , E. CHRISTIANSEN 4<br />

1 Institute of M<strong>in</strong>eralogy, Leibniz University of <strong>Hannover</strong><br />

2 Department of Geology and Geophysics, University of Utah<br />

3 Department of Geology, Utah State University<br />

4 Department of Geological Sciences, Brigham Young University<br />

The central scientific issue for the <strong>ICDP</strong> drill<strong>in</strong>g <strong>in</strong> the<br />

Snake River Pla<strong>in</strong> - Yellowstone (SRPY) volcanic prov<strong>in</strong>ce<br />

is to trace the mantle plume and its <strong>in</strong>teraction with the<br />

cont<strong>in</strong>ental lithosphere. This requires <strong>in</strong>formation on the<br />

orig<strong>in</strong> and peculiarity of the contrast<strong>in</strong>g magmatism, the<br />

evolution of chemistry, sources, differentiation and storage<br />

conditions of both the rhyolitic and basaltic magmas with<br />

time and space. The most important miss<strong>in</strong>g (or<br />

controversial) <strong>in</strong>formation is the range of <strong>in</strong>tensive<br />

parameters of crystallization prevail<strong>in</strong>g <strong>in</strong> the silicic and<br />

mafic magma chambers dur<strong>in</strong>g fractionation and prior to<br />

eruption (P-T-fO2-aH 2O of magmas). The ma<strong>in</strong> goal of our<br />

started project is to provide this <strong>in</strong>formation us<strong>in</strong>g<br />

experimental approach (rhyolites) and thermodynamic<br />

model<strong>in</strong>g (basalts). In this paper we present our first<br />

experimental results obta<strong>in</strong>ed for one typical rhyolite<br />

composition and prelim<strong>in</strong>ary results of the phase equilibria<br />

model<strong>in</strong>g conducted for the McK<strong>in</strong>ney basaltic suite.<br />

Rhyolites.<br />

Phase relations were determ<strong>in</strong>ed <strong>in</strong> the rhyolite BJR<br />

(Unit 9j) from the Cougar Po<strong>in</strong>t Tuff, Bruno-Jarbidge<br />

eruptive center (Cathey and Nash, 2004). The start<strong>in</strong>g glass<br />

was prepared from the powder of whole-rock rhyolitic<br />

ignimbrite by two-times fusion at 1600 °C and 1 atm <strong>in</strong> air.<br />

Crystallization experiments with BJR were performed at<br />

200 MPa <strong>in</strong> cold seal pressure vessel (CSPV) at<br />

temperatures 800 and 850°C, and <strong>in</strong> <strong>in</strong>ternally heated<br />

pressure vessel (IHPV) at temperatures 950 and 1000°C.<br />

The water activity aH2O of the experimental charges was<br />

varied by add<strong>in</strong>g a fluid composed of a mixture of H2O and<br />

CO 2. Experimental charges at dry conditions (XH 2O <strong>in</strong>itial =0)<br />

were prepared without add<strong>in</strong>g H2O and CO 2. In CSPV the<br />

oxygen fugacity was monitored by add<strong>in</strong>g a solid Ni-NiO<br />

buffer. In IHPV all experiments were conducted at <strong>in</strong>tr<strong>in</strong>sic<br />

oxygen conditions, correspond<strong>in</strong>g to the NNO+3 oxygen<br />

buffer under H2O-saturated conditions and ~NNO at<br />

(nom<strong>in</strong>ally) dry conditions (Botcharnikov et al., 2005). The<br />

run duration varied with temperature: 14 days for runs at<br />

800 and 850°C, and 7 days for runs at 950 and 1000°C.<br />

Results of these first crystallization experiments are<br />

summarized <strong>in</strong> the Fig. 1, where phase relations for<br />

composition BJR are shown as a function of temperature<br />

and XH2O <strong>in</strong>itial .<br />

At the <strong>in</strong>vestigated conditions we were not able to<br />

atta<strong>in</strong> the liquidus for the studied rhyolite. At 1000°C<br />

rhyolitic melt was coexist<strong>in</strong>g with magnetite <strong>in</strong> the range of<br />

all studied XH2O. With decreas<strong>in</strong>g temperature magnetite<br />

was followed by pigeonite and sanid<strong>in</strong>e up to XH2O=0.5 <strong>in</strong><br />

the system. At XH 2O>0.5 and T>800°C sanid<strong>in</strong>e was not<br />

stable, and pigeonite was followed by cl<strong>in</strong>opyroxene. In<br />

H2O-rich charge (XH 2O=0.9) only cl<strong>in</strong>opyroxene and<br />

magnetite were identified to be <strong>in</strong> equilibrium with melt.<br />

The stability curve of cl<strong>in</strong>opyroxene at low XH2O is not<br />

clear, it should probably crystallizes at T


20<br />

Fig. 1. Phase relations for composition BJR (Cougar Po<strong>in</strong>t Tuff,<br />

Unit 9j [Cathey and Nash, 2004]) as a function of temperature and<br />

XH2O <strong>in</strong>itial . Symbols represent experimental charges and stable<br />

m<strong>in</strong>eral phases at given run conditions. Stability curves are labeled<br />

with m<strong>in</strong>eral names; the fields of stability are always to the left of<br />

the curves. M<strong>in</strong>eral abbreviations: Gl – glass, Mt – magnetite, Pig<br />

– pigeonite, Cpx – cl<strong>in</strong>opyroxene, Fsp – sanid<strong>in</strong>e, Pl – plagioclase,<br />

Qtz – quartz, Fa – fayalite.<br />

18<br />

16<br />

14<br />

Al 2O3 McK<strong>in</strong>ney basalt<br />

10 kbar<br />

1 atm<br />

MgO<br />

MgO<br />

12<br />

2<br />

4 5 6 7 8 9 4 5 6 7 8 9<br />

18<br />

16<br />

14<br />

FeO<br />

12<br />

8<br />

10<br />

MgO<br />

7<br />

10 kbar<br />

MgO<br />

4 5 6 7 8 9 4 5 6 7 8 9<br />

Fig. 2. Compositions of the basaltic lavas of the McK<strong>in</strong>ney basalt<br />

suite and dry isobaric liquid l<strong>in</strong>es of descent calculated for the<br />

primitive sample s72-3B (Leeman and Vitaliano, 1976). The<br />

calculated fractionation trends are shown for six pressures (1 atm,<br />

2kbar to 10 kbar, with 2 kbar <strong>in</strong>crement).<br />

References:<br />

Almeev, R. R., Holtz, F., Koepke, J. & Parat, F. (2006). Effect of small<br />

amount of H2O on the liquidus of oliv<strong>in</strong>e, plagioclase and<br />

cl<strong>in</strong>opyroxene: an experimental study at 200 and 500 MPa. EMPG-XI.<br />

11th - 13th September, University of Bristol UK.<br />

Arisk<strong>in</strong>, A. A. & Barm<strong>in</strong>a, G. S. (2004). COMAGMAT: development of a<br />

magma crystallization model and its petrological applications.<br />

Geochemistry International 42, S1–S157.<br />

Botcharnikov, R. E., Koepke, J., Holtz, F., McCammon, C. & Wilke, M.<br />

(2005). The effect of water activity on the oxidation and structural state<br />

of Fe <strong>in</strong> a ferro-basaltic melt. Geochimica et Cosmochimica Acta 69,<br />

5071-5085.<br />

Cathey, H. E. & Nash, B. P. (2004). The Cougar Po<strong>in</strong>t Tuff: Implications for<br />

thermochemical zonation and longevity of high-temperature, largevolume<br />

silicic magmas of the Miocene Yellowstone Hotspot. Journal<br />

of Petrology 45, 27-58.<br />

Leeman, W. P. & Vitaliano, C. J. (1976). Petrology of Mck<strong>in</strong>ney-Basalt,<br />

Snake-River-Pla<strong>in</strong>, Idaho. Geological Society of America Bullet<strong>in</strong> 87,<br />

1777-1792.<br />

Whitaker, M. L., Nekvasil, H., L<strong>in</strong>dsley, D. H. & Difrancesco, N. J. (2007).<br />

The Role of Pressure <strong>in</strong> Produc<strong>in</strong>g Compositional Diversity <strong>in</strong><br />

Intraplate Basaltic Magmas. Journal of Petrology 48, 365-393.<br />

<strong>IODP</strong><br />

Compact Multipurpose Sub-Sampl<strong>in</strong>g and<br />

Process<strong>in</strong>g of In-Situ Cores (COMPOSE)<br />

E. ANDERS 1 , W. H. MÜLLER 1<br />

1 Technische U niversität Berl<strong>in</strong>, Institut für Mechanik, Lehrstuhl<br />

Kont<strong>in</strong>uumsmechanik und Materialtheorie, E<strong>in</strong>ste<strong>in</strong>ufer 5,<br />

10587 Berl<strong>in</strong><br />

5<br />

4<br />

3<br />

11<br />

10<br />

9<br />

TiO2<br />

CaO<br />

1 atm<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Precondition to understand the deep-biosphere and to<br />

achieve genu<strong>in</strong>e f<strong>in</strong>d<strong>in</strong>gs is research <strong>in</strong> prist<strong>in</strong>e habitat as<br />

close as possible to those <strong>in</strong>-situ, if environmentally<br />

relevant results are to be obta<strong>in</strong>ed. Thus, pressure cor<strong>in</strong>g<br />

became an <strong>in</strong>dispensable part of offshore gas hydrate<br />

expeditions dur<strong>in</strong>g the last few years, e.g. <strong>in</strong> the US,<br />

Canada, India, Ch<strong>in</strong>a and South Korea.<br />

A suite of research technologies to ma<strong>in</strong>ta<strong>in</strong> benthic<br />

conditions of sediment structure and gas hydrates,<br />

temperature, pressure and bio-geochemistry dur<strong>in</strong>g the<br />

sequences of sampl<strong>in</strong>g, retrieval, transfer, storage and<br />

downstream analysis have been developed by Technische<br />

Universität Berl<strong>in</strong> (TUB) and European partners <strong>in</strong> the EU<br />

Projects HYACE and HYACINTH; cont<strong>in</strong>uous<br />

improvements on the prototypes lead to great successes and<br />

made the tools more and more reliable.<br />

The <strong>in</strong>vestigation of the pressurized cores with various<br />

measurements like X-ray, gamma ray, and p-wave,<br />

revealed numerous details of gas hydrates which have been<br />

unknown before and can not be obta<strong>in</strong>ed with<br />

unpressurized cores. The PRESS (Pressurized Core Subsampl<strong>in</strong>g<br />

and Extrusion System) furthermore enables well<br />

def<strong>in</strong>ed section<strong>in</strong>g and transfer of drilled pressure-cores<br />

[obta<strong>in</strong>ed by HYACE Rotary Corer (HRC) and Fugro<br />

Percussion Corer (FPC)] <strong>in</strong>to transportation and<br />

<strong>in</strong>vestigation chambers. Coupled with DeepIsoBUG<br />

(University Cardiff, John Parkes) it allows sub-sampl<strong>in</strong>g<br />

and <strong>in</strong>cubation of coaxial core-sections to exam<strong>in</strong>e highpressure<br />

adapted bacteria or remote biogeochemical<br />

processes <strong>in</strong> def<strong>in</strong>ed research conditions of the laboratory;<br />

all sterile, anaerobic and without depressurisation. The<br />

PRESS Sub-sampl<strong>in</strong>g is conducted <strong>in</strong> temperature<br />

controlled conta<strong>in</strong>ers to ma<strong>in</strong>ta<strong>in</strong> temperatures close to<br />

those <strong>in</strong> situ. Liquid medium <strong>in</strong> the DeepIsoBUG pressure<br />

vessels enables samples to be slurred and then transferred<br />

via a transition adapter <strong>in</strong>to a number of high-pressure<br />

vessels (max 1000 bar). These can be <strong>in</strong>cubated under a<br />

range of conditions (different media, pressures,<br />

temperatures etc) to enrich for a range of different highpressure<br />

adapted bacteria (piezophiles) or study<br />

biogeochemical processes at high pressure, such as rates of<br />

activity us<strong>in</strong>g radiotracers. F<strong>in</strong>ally, pure cultures can be<br />

obta<strong>in</strong>ed from positive enrichments with<strong>in</strong> a high-pressure<br />

isolation chamber for further study and characterisation.<br />

Initial results are promis<strong>in</strong>g with consistently higher cell<br />

numbers obta<strong>in</strong>ed under elevated pressure (up to 780 bar)<br />

with a number of different enrichment media compared to<br />

1 bar <strong>in</strong>cubation.<br />

Numrous successful PRESS deployments substantiated<br />

the usability of the system and could successfully<br />

accommodate the demand for prist<strong>in</strong>e deep biosphere<br />

samples by us<strong>in</strong>g reliable <strong>in</strong>vestigation methods. Moreover<br />

it showed the desperate need for systems that are easy to<br />

handle, eco-nomically and broadly applicable and have the<br />

potential to become standard devices.<br />

Aided by Deutsche Forschungsgeme<strong>in</strong>schaft (DFG:<br />

Mu 1752/11-1; COMPOSE) TUB currently works on<br />

concepts to scale down the systems immense proportion<br />

(8m length, 1t weight) to reduce logistical and f<strong>in</strong>ancial<br />

expenses, to enhance the handl<strong>in</strong>g and likewise to enlarge<br />

its implementation. Redesign<strong>in</strong>g the cutt<strong>in</strong>g mechanism<br />

shall simultaneously adjust the system to harder cores (e.g.,<br />

<strong>ICDP</strong>). Novel transportation chambers for processed subsamples<br />

<strong>in</strong>tend to make the system more attractive for a


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

broad spectrum of users and reduce their <strong>in</strong>terdependence.<br />

Advanced design, improved function<strong>in</strong>g, high performance<br />

materials and safety eng<strong>in</strong>eer<strong>in</strong>g cont<strong>in</strong>ue to guide further<br />

technology developments.<br />

<strong>IODP</strong><br />

Hydrogen generation <strong>in</strong> seawater-rock<br />

<strong>in</strong>teractions (ODP Leg 209): <strong>in</strong>sights from<br />

petrography and thermodynamic model<strong>in</strong>g<br />

W. BACH 1 , F. KLEIN 1 , M. HENTSCHER 1 , N. JÖNS 1<br />

1 Geoscience Department, University of Bremen, Klagenfurter Str.<br />

2, 28359 Bremen, Germany, wbach@uni-bremen.de<br />

Dihydrogen dissolved <strong>in</strong> water (H 2,aq) is one of the<br />

pr<strong>in</strong>cipal electron donors <strong>in</strong> chemolithoautotrophy-based<br />

ecosystems associated with hydrothermal vents. Vent fluids<br />

from peridotite-hosted systems show particularly high<br />

hydrogen concentrations on the order of 10-20 mmol/kg<br />

(mM). The same fluids have much higher methane<br />

concentrations (2-3 mM) but lower H2S contents of 1-2<br />

mM, when compared to fluids from basalt-hosted systems.<br />

The reasons for those systematic differences are <strong>in</strong> the<br />

composition of the substrates (i.e, mafic versus ultramafic<br />

rock), but the specifics of fluid-<strong>in</strong>teractions responsible for<br />

the development of the differences rema<strong>in</strong> unclear.<br />

We have used a thermodynamic approach to exam<strong>in</strong>e<br />

the processes that set vent fluid chemistry of peridotitehosted<br />

hydrothermal systems and the impact hydrogen may<br />

have <strong>in</strong> terms of the bioenergetics of the associated<br />

ecosystems. (i) Drill core samples from ODP Leg 209 were<br />

<strong>in</strong>vestigated petrographically to determ<strong>in</strong>e m<strong>in</strong>eral<br />

assemblages develop<strong>in</strong>g <strong>in</strong> ma<strong>in</strong>-stage serpent<strong>in</strong>ization, at<br />

metasomatic fronts, and dur<strong>in</strong>g fluid migration <strong>in</strong><br />

detachment faults. (ii) Calculations of m<strong>in</strong>eral-fluid<br />

equilibria were conducted to assign activities of critical<br />

aqueous species (e.g., SiO2, Ca 2+ , H 2, and H 2S) to the stable<br />

and metastable assemblages identified. (iii) Geochemical<br />

reaction path models were used to exam<strong>in</strong>e how changes <strong>in</strong><br />

bulk rock composition, temperature and water/rock ratios<br />

will affect the composition of <strong>in</strong>teract<strong>in</strong>g fluids. (iv) The<br />

predicted hydrogen concentrations are then used to<br />

calculate both the thermodynamic driv<strong>in</strong>g force of abiotic<br />

organic synthesis reactions and the amount of H2metabolic<br />

energy released upon vent<strong>in</strong>g at the seafloor. A<br />

subset of our prelim<strong>in</strong>ary results and conclusions will be<br />

presented at the meet<strong>in</strong>g.<br />

(i) One of the first-order observations we were able to<br />

make perta<strong>in</strong>s to the critical role the activity of aqueous<br />

silica appears to play. Magnetite forms most readily when<br />

peridotite alters to low-aSiO2 serpent<strong>in</strong>e-brucite<br />

assemblages. Higher aSiO 2 chlorite-act<strong>in</strong>olite-oligoclase<br />

assemblages develop<strong>in</strong>g <strong>in</strong> basalt are associated with fluids<br />

that have much less dissolved dihydrogen, because Fe is<br />

predom<strong>in</strong>antly <strong>in</strong>corporated <strong>in</strong>to the secondary silicates and<br />

not <strong>in</strong>to magnetite. The petrographic relations provide<br />

additional <strong>in</strong>sights: magnetite does not appear to form<br />

directly dur<strong>in</strong>g oliv<strong>in</strong>e breakdown but from breakdown of<br />

ferroan brucite, which forms as an <strong>in</strong>termediate phase<br />

(Bach et al., 2006).<br />

(ii) Iron and nickel oxides and sulfides are sensitive<br />

<strong>in</strong>dicators of oxygen and sulfur fugacities dur<strong>in</strong>g waterperidotite<br />

<strong>in</strong>teractions (Frost 1985). Our observations<br />

suggest that early awaruite- or heazlewoodite-bear<strong>in</strong>g<br />

assemblages, both with pentlandite and magnetite, are<br />

subsequently replaced with millerite and pyrite, and,<br />

f<strong>in</strong>ally, polydymite and hematite. These changes reflect<br />

concomitant changes <strong>in</strong> oxygen and sulfur fugacities that<br />

can be related to concentrations of H2S on the order of 1<br />

mM. We hence propose that the H 2S concentrations <strong>in</strong><br />

peridotite-hosted systems are buffered by reactions<br />

between the fluid and Fe-Ni-O-S phases (Kle<strong>in</strong> et al.,<br />

2007).<br />

(iii) Reaction path models <strong>in</strong>dicate that magnetite and<br />

hydrogen formation peak at temperatures around 300°C<br />

where roughly 300 mmoles of H2 may form <strong>in</strong> a system<br />

<strong>in</strong>tially composed of 1 kg of fluid and 1 kg of rock<br />

(McCollom and Bach, <strong>2008</strong>). These hydrogen yields are<br />

similar to the amounts of hydrogen estimated from<br />

petrographic observations and mass balance calculations<br />

(250 mmoles per kg oliv<strong>in</strong>e; Bach et al., 2006). Reaction<br />

path models can also help elucidate the development of<br />

metasomatic rocks, such as soapstone, chlorite fels, and<br />

rod<strong>in</strong>gite. The latter form from diffusive mass transfers<br />

driven by large gradients <strong>in</strong> the chemical potential of silica<br />

(Bach and Kle<strong>in</strong>, submitted).<br />

(iv) Hydrogen concentrations <strong>in</strong> excess of roughly 5-10<br />

mM are high enough to generate aff<strong>in</strong>ity for the<br />

methanogenesis reaction at 350-400°C. At lower<br />

temperatures, even less hydrogen is needed so that the<br />

driv<strong>in</strong>g force for methanogenesis is extremely high <strong>in</strong> the<br />

Lost City fluids (100°C, 15 mM H2; Kelley et al., 2005).<br />

Because there is no methanogenesis equilibrium <strong>in</strong> any of<br />

the serpent<strong>in</strong>ite-hosted systems, there is potential for the<br />

metastable formation of organics. Thermodynamic<br />

predictions of the levels of metastable formate at Lost City<br />

are basically identical to the concentrations measured <strong>in</strong> the<br />

fluids (Lang et al., 2007). The predicted and observed<br />

levels of abiotic formate are three times higher than the<br />

total dissolved organic contents of deep-sea waters,<br />

<strong>in</strong>dicat<strong>in</strong>g that abiotic carbon compounds may be important<br />

carbon and energy sources <strong>in</strong> serpent<strong>in</strong>ite-hosted<br />

hydrothermal systems.<br />

References:<br />

Bach W. and Kle<strong>in</strong> F. (<strong>2008</strong>) The petrology of seafloor rod<strong>in</strong>gites: <strong>in</strong>sights<br />

from geochemical reaction path model<strong>in</strong>g. Lithos, submitted.<br />

Bach W., Paulick H., Garrido C. J., Ildefonse B., Meurer W. P., and<br />

Humphris S. E. (2006) Unravel<strong>in</strong>g the sequence of serpent<strong>in</strong>itzation<br />

reactions: petrography, m<strong>in</strong>eral chemistry, and petrophyscis of<br />

serpent<strong>in</strong>ites from MAR 15ºN (ODP Leg 209, Site 1274). Geophys.<br />

Res. Lett. 33, L13306, doi:10.1029/2006GL025681.<br />

Frost B. R. (1985) On the stability of sulfides, oxides and native metals <strong>in</strong><br />

serpent<strong>in</strong>ite. J. Petrol. 26, 31-63.<br />

Kelley D. S., et al. (2005) A serpent<strong>in</strong>ite-hosted ecosystem: The Lost City<br />

Hydrothermal Field. Science 307, 1428-1434.<br />

Kle<strong>in</strong> F., Bach W., and Garrido C. J. (2007) Fe-Ni-O-S phase relations<br />

dur<strong>in</strong>g serpent<strong>in</strong>ization (MAR 15°N). Goldschmidt conference.<br />

Lang S., Lilley M. D., and Butterfield D. A. (2007) Organic geochemistry of<br />

the Lost City hydrothermal system. Abstract, InterRidge Workshop,<br />

Woods Hole.<br />

McCollom T. M. and Bach W. (<strong>2008</strong>) Thermodynamic and K<strong>in</strong>etic<br />

Constra<strong>in</strong>ts on Hydrogen Generation Dur<strong>in</strong>g Serpent<strong>in</strong>ization of<br />

Ultramafic Rocks: Implications for Fluid Chemistry, Magnetization of<br />

the Ocean Crust, Abiotic Synthesis of Hydrocarbons, and Microbial<br />

Processes. Geochim Cosmochim Acta, submitted.<br />

21


22<br />

<strong>IODP</strong><br />

Land-ocean <strong>in</strong>teraction and oceanic response<br />

<strong>in</strong> the Mid-Cretaceous western tropical<br />

Atlantic at ODP Site 1261<br />

B. BECKMANN 1, 2 , S. FLÖGEL 3 , P. HOFMANN 1 , C. MÄRZ 4 , T.<br />

WAGNER 5<br />

1 University of Cologne, Institute for Geology and M<strong>in</strong>eralogy,<br />

Zülpicher Str. 49a, 50674 Köln, Germany<br />

2 Federal Institute for Geosciences and Natural Resources,<br />

Stilleweg 2, 30655 <strong>Hannover</strong>, Germany<br />

(Britta.Beckmann@bgr.de)<br />

3 IFM-GEOMAR Leibniz-Institute of Mar<strong>in</strong>e Sciences,<br />

Wischhofstr. 1-3, 24148 Kiel, Germany<br />

4 University of Oldenburg, ICBM, Carl-von-Ossietzky-Strasse 9-<br />

11, 26129 Oldenburg, Germany<br />

5 School of Civil Eng<strong>in</strong>eer<strong>in</strong>g and Geosciences, University of<br />

Newcastle, Newcastle upon Tyne, NE1 7RU, United K<strong>in</strong>gdom<br />

Upper Cretaceous oceanic anoxic events (OAEs)<br />

represent significant and rapid perturbations of the global<br />

carbon cycle (e.g. Jenkyns, 2003) and provide natural<br />

examples of the processes lead<strong>in</strong>g to large variations <strong>in</strong> sea<br />

surface temperatures, ocean chemistry, and ecosystem<br />

response. To obta<strong>in</strong> detailed <strong>in</strong>formation on<br />

biogeochemical cycles and their feedbacks, organic carbon<br />

(OC)-rich black shale deposited dur<strong>in</strong>g the OAEs <strong>in</strong> the<br />

western tropical Atlantic at Demerara Rise has become one<br />

focal po<strong>in</strong>t of recent research. This project anticipates<br />

develop<strong>in</strong>g <strong>in</strong>tegrated, orbital-scale climate records of the<br />

last Cretaceous, the Coniacian-Santonian OAE 3 by<br />

<strong>in</strong>vestigation of sediments from ODP Site 1261 deposited<br />

<strong>in</strong> the transition from the Turonian OAE 2 to the early<br />

Santonian (biozones CC13 – CC15). In a f<strong>in</strong>al step, we<br />

anticipate to compare results from the western tropical<br />

Atlantic with f<strong>in</strong>d<strong>in</strong>gs from the time-equivalent eastern<br />

tropical Atlantic off Ivory Coast and Ghana at ODP Site<br />

959 with regard to a l<strong>in</strong>k between climate variability and<br />

oceanic response across the Equatorial Atlantic Gateway.<br />

An approximately 28 m long section (592 – 564 mcd)<br />

of ODP Holes 1261 A and B consist<strong>in</strong>g of cyclic<br />

alternat<strong>in</strong>g lam<strong>in</strong>ated marlstone with organic matter and<br />

limestone beds was sampled at 5 cm resolution. Based on<br />

the revised biostratigraphy, this depth record is equivalent<br />

to 8 – 10 kyr time resolution for the respective biozones.<br />

We exam<strong>in</strong>ed terrigenous matter supply, organic matter<br />

production and burial, sea-surface temperature (SST) and<br />

the development of photic zone and bottom water anoxia,<br />

therefore apply<strong>in</strong>g a comb<strong>in</strong>ation of elemental (LECO,<br />

XRF), pyrolytic (Rock Eval pyrolysis), and biomarker<br />

analyses (photic zone eux<strong>in</strong>ia markers, TEX86-derived<br />

SSTs).<br />

A prom<strong>in</strong>ent cycle pattern which is best documented <strong>in</strong><br />

the carbonate record is locally disrupted by <strong>in</strong>tervals<br />

display<strong>in</strong>g unusually high carbonate contents (> 90%<br />

CaCO3), low OC values (< 2% OC), and a high density.<br />

Most of these limestone beds vary significantly from the<br />

surround<strong>in</strong>g sediment by display<strong>in</strong>g <strong>in</strong>ternal structures such<br />

as variable lam<strong>in</strong>ation, graded, and rarely convolute<br />

bedd<strong>in</strong>g. The upper boundaries of the limestone beds are<br />

often gradual, some lower boundaries display a sharp basal<br />

contact. Thus the limestone beds are tentatively considered<br />

to represent <strong>in</strong>terruptions of the normal mar<strong>in</strong>e<br />

sedimentation cover<strong>in</strong>g hardly any geological time.<br />

Frequency analyses and wavelet power spectra of the<br />

limestone-free record reveal strong spectral peaks at<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Milankovitch related frequencies when the ma<strong>in</strong> periods<br />

are calculated accord<strong>in</strong>g to the respective sedimentation<br />

rates. Apart from a dom<strong>in</strong>ance of long and short<br />

eccentricity cycles, some contributions of obliquity bands<br />

are present. As our average sample spac<strong>in</strong>g is not ideal to<br />

detect precessional cycles, we resampled a 120 cm long<br />

<strong>in</strong>terval between 571.4 to 570.2 mcd <strong>in</strong> 1 cm <strong>in</strong>crements<br />

(equivalent to approx. 2 kyr per sample). Spectral analysis<br />

of this section did provide some additional <strong>in</strong>dication for<br />

precessional forc<strong>in</strong>g for the OC and carbonate records.<br />

The widespread occurrence of lam<strong>in</strong>ated sediments on<br />

both sides of the open<strong>in</strong>g Equatorial Atlantic (e.g. Wagner<br />

& Pletsch, 1999; Erbacher et al., 2004) testifies to the<br />

importance of low bottom water oxygenation for enhanced<br />

OC burial <strong>in</strong> that area. A comb<strong>in</strong>ation of bulk organic,<br />

molecular and <strong>in</strong>organic geochemical techniques was used<br />

to reconstruct the development of sea floor anoxia/eux<strong>in</strong>ia.<br />

Our bulk organic geochemical analyses focus ma<strong>in</strong>ly on<br />

biozones CC14 and CC15, display<strong>in</strong>g the best-developed<br />

cycle pattern. Results from Rock Eval pyrolysis suggest the<br />

dom<strong>in</strong>ance of lipid-rich, thermally immature mar<strong>in</strong>e<br />

organic matter dur<strong>in</strong>g the upper Cretaceous. Long-term<br />

trends <strong>in</strong> molecular and trace metal markers provide<br />

evidence for persistent, but nevertheless variable deep<br />

ocean anoxia throughout the Coniacian-early Santonian<br />

<strong>in</strong>terval. Bottom water redox conditions were repeatedly<br />

<strong>in</strong>terrupted by fluctuations of the oxygen m<strong>in</strong>imum zone,<br />

which at times may have expanded down to the sea floor at<br />

Site 1261 support<strong>in</strong>g sulfidic conditions.The observed<br />

changes <strong>in</strong> deep water redox conditions seem to have<br />

occurred on the order of few kyrs as can be deduced from<br />

millennial-scale biomarker and trace metal analysis from<br />

the resampled 120 cm <strong>in</strong>terval (see also contribution by<br />

März et al.). Sulfidic conditions <strong>in</strong> the photic zone, as<br />

<strong>in</strong>dicated by the preservation of traces of isorenieratane<br />

derivates, was restricted to the early Coniacian <strong>in</strong>terval.<br />

The conf<strong>in</strong>ement of photic zone eux<strong>in</strong>ia markers to this<br />

<strong>in</strong>terval probably reflects a more vigorous exchange of<br />

more oxygenated shallow waters across the open<strong>in</strong>g<br />

Equatorial Atlantic compared to deep waters from the mid-<br />

Coniacian onwards.<br />

F<strong>in</strong>ally, we compare our conclusions from Site 1261<br />

with data from the conjugate equatorial Atlantic marg<strong>in</strong> at<br />

ODP Site 959 and relate them to results from global<br />

climate model<strong>in</strong>g, thus putt<strong>in</strong>g our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>to greater<br />

perspective. A comb<strong>in</strong>ation of geochemical data from<br />

mar<strong>in</strong>e sections and results from numeric climate<br />

simulations respond<strong>in</strong>g to variations <strong>in</strong> the orbital<br />

precession from the Late Cretaceous provides new views<br />

<strong>in</strong>to the regional dynamics of the tropical climate system,<br />

both <strong>in</strong> atmosphere and the ocean along the Equatorial<br />

Atlantic Gateway. The simulated numeric runoff volumes<br />

from tropical South American and African tropical<br />

catchment areas reveal that both sides of the equatorial<br />

Atlantic experienced pronounced Late Cretaceous<br />

precessional-driven fluctuations <strong>in</strong> river discharge. Both<br />

catchments reveal a strong seasonal pattern with highest<br />

runoff dur<strong>in</strong>g the wet season <strong>in</strong> northern hemisphere<br />

spr<strong>in</strong>g. Runoff from tropical Africa reveals exceptionally<br />

high values dur<strong>in</strong>g maximum seasonality exceed<strong>in</strong>g a<br />

proposed local threshold on the order of 2.5 mm/day that<br />

forced the Deep Ivory Bas<strong>in</strong> <strong>in</strong>to anoxic conditions<br />

(Beckmann et al., 2005). Simulated peak runoff was allover<br />

higher from S-America compared to tropical Africa, as wet


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

season runoff from South America exceeds the proposed<br />

threshold for Africa <strong>in</strong> 3 out of 4 orbital configurations.<br />

Maximum discharge off South America not only shifted<br />

between months of the wet season but also developed a<br />

bimodal peak with two similar runoff maxima dur<strong>in</strong>g one<br />

orbital configuration.<br />

To expla<strong>in</strong> the miss<strong>in</strong>g strong precessional footpr<strong>in</strong>t <strong>in</strong><br />

the South American geochemical records, as evident from<br />

frequency analysis, we argue that the oceanographic<br />

conditions and depositional sett<strong>in</strong>g differed markedly from<br />

those off tropical Africa at Site 959. The oceanographic<br />

sett<strong>in</strong>g at Site 959 was a semi-enclosed bas<strong>in</strong> l<strong>in</strong>ked to the<br />

cont<strong>in</strong>ental marg<strong>in</strong> with rather limited circulation and<br />

exchange to the central part of the open<strong>in</strong>g of the South<br />

Atlantic (Wagner & Pletsch, 1999). Different from that,<br />

Site 1261 was probably under much more open<br />

oceanographic <strong>in</strong>fluence and directly exposed to the<br />

circum-equatorial circulation of the Late Cretaceous (Otto-<br />

Bliesner et al., 2002). Be<strong>in</strong>g directly l<strong>in</strong>ked to the Tethys-<br />

North Atlantic gyre circulation which was driven by a<br />

Trade-W<strong>in</strong>d system similar to that of today (Bush, 1997),<br />

Site 1261 certa<strong>in</strong>ly experienced different atmospheric and<br />

oceanic forc<strong>in</strong>gs than Site 959. Due to the miss<strong>in</strong>g<br />

connection to any ‘large-scale’ ocean circulation, Site 959<br />

was much stronger <strong>in</strong>fluenced by the regional climate<br />

conditions <strong>in</strong> tropical Africa. As a result, a more direct<br />

impact of changes <strong>in</strong> river discharge on mar<strong>in</strong>e<br />

sedimentation was possible off Africa whereas the<br />

Demerara site 1261 was ma<strong>in</strong>ly <strong>in</strong>fluenced by open-ocean<br />

circulation and longer response times to orbital forc<strong>in</strong>g.<br />

References:<br />

Beckmann, B., Flögel, S., Hofmann, P., Schulz, M., Wagner, T., 2005.<br />

Orbital forc<strong>in</strong>g of Cretaceous river discharge <strong>in</strong> tropical Africa and<br />

ocean response. Nature 437, 241-244.<br />

Bush, A. B. G., 1997. Numerical Simulation of the Cretaceous Tethys<br />

Circumglobal Current. Science, 275, 807-810.<br />

Erbacher, J., Mosher, D.C., Malone, M.J., et al., 2004. Proceed<strong>in</strong>gs of the<br />

Ocean Drill<strong>in</strong>g Program, Initial Reports 207, Ocean Drill<strong>in</strong>g Program,<br />

College Station, doi:10.2973/odp.proc.ir.207.2004.<br />

Jenkyns, H.C., 2003. Evidence for rapid climate change <strong>in</strong> the Mesozoic-<br />

Paleogene greenhouse world. Philosophical Transactions of the Royal<br />

Society, Series A, 361, 1885-1916.<br />

Otto-Bliesner, B., Brady, E. C., Shields, C., 2002. Late Cretaceous ocean:<br />

Coupled simulations with the National Center for Atmospheric<br />

Research Climate System Model. Journal of Geophysical Research,<br />

107, D2, ACL 11 1-14.<br />

Wagner, T., Pletsch, T., 1999. Tectono-sedimentary controls on Cretaceous<br />

black shale depostion along the open<strong>in</strong>g Equatorial Atlantic Gateway<br />

(ODP Leg 159). In: Cameron, N.R., Bate, R.H., Clure, V.S. (Eds.), The<br />

Oil and Gas Habitats of the South Atlantic. Geological Society Special<br />

Publication 153, London, 241-265.<br />

<strong>ICDP</strong><br />

Identification and analysis of vertical<br />

convection <strong>in</strong> boreholes<br />

S. BERTHOLD, F. BÖRNER<br />

DGFZ Dresdner Grundwasserforschungszentrum e.V., Meraner<br />

Str. 10, 01217 Dresden, Germany<br />

It is known, that <strong>in</strong> water and mud filled boreholes<br />

vertical convections can occur which lead to transport of<br />

mass and heat. As temperatures <strong>in</strong> thermally unstable water<br />

columns may depart significantly from the ones <strong>in</strong><br />

surround<strong>in</strong>g rock, understand<strong>in</strong>g convective flow with<strong>in</strong><br />

the borehole is crucial for geothermics and subsurface<br />

water movement (e.g. determ<strong>in</strong><strong>in</strong>g reliable heat-flow<br />

density and rock thermal properties us<strong>in</strong>g temperature<br />

profiles). Know<strong>in</strong>g about the presence of vertical flows <strong>in</strong><br />

water columns is also important for hydrological<br />

<strong>in</strong>vestigations (e.g. determ<strong>in</strong><strong>in</strong>g po<strong>in</strong>ts of <strong>in</strong>- and outflow),<br />

and for borehole geophysics (e.g. f<strong>in</strong>d<strong>in</strong>g leakages <strong>in</strong><br />

cas<strong>in</strong>gs).<br />

Strong convective flow with<strong>in</strong> the water column may<br />

further on affect water samples. Gases, as well as other<br />

substances are possibly transported <strong>in</strong>to new depths, where<br />

vary<strong>in</strong>g chemical processes may arise.<br />

The general objective of this research project is the<br />

adaptation and further development of an <strong>in</strong>terpretation<br />

method for temperature and mudresistivity logs for the<br />

detection, differentiation and quantification of vertical<br />

flows <strong>in</strong> deep boreholes. Besides the well-known forced<br />

convection, especially the detection of free convection with<br />

its various density-driven transport processes and their<br />

differentiation will be the focal po<strong>in</strong>t of the project.<br />

The foundations were laid <strong>in</strong> a project which dealt with<br />

the <strong>in</strong>vestigation of free vertical convections <strong>in</strong><br />

groundwater monitor<strong>in</strong>g wells and its quantification<br />

accord<strong>in</strong>g to its data adulterat<strong>in</strong>g effect (Berthold and<br />

Börner 2007). These <strong>in</strong>vestigations of convective processes<br />

<strong>in</strong>cluded numerical simulations, medium scale<br />

experiments, and field tests (borehole measurements).<br />

Fundamental elements of two computational algorithms for<br />

detect<strong>in</strong>g and quantify<strong>in</strong>g vertical flows <strong>in</strong> the water<br />

column have been already tested <strong>in</strong> numerous shallow<br />

boreholes (< 400 m) under the prevail<strong>in</strong>g measur<strong>in</strong>g<br />

conditions. With one algorithm the causes (driv<strong>in</strong>g forces)<br />

and with the other one the effects (forced, free convection<br />

or double diffusion) of vertical transport processes can be<br />

detected based on geophysical borehole measurements<br />

(temperature and fluid conductivity) <strong>in</strong> the water column.<br />

The comb<strong>in</strong>ation of both algorithms improves the<br />

reliability of the <strong>in</strong>terpretation.<br />

Us<strong>in</strong>g these algorithms, the occurrence of densitydriven<br />

convective transport processes could be proven <strong>in</strong><br />

many groundwater monitor<strong>in</strong>g wells and shallow boreholes<br />

under normal conditions, as the critical threshold for the<br />

onset of a density-driven flow is considerably low<br />

(depend<strong>in</strong>g on the borehole radius down to some<br />

hundredths of Kelv<strong>in</strong>). It was found that several sections<br />

with different types of density-driven vertical flows may<br />

exist <strong>in</strong> the water column at the same time. Results from<br />

medium-scale experimental <strong>in</strong>vestigations and from<br />

numerical model<strong>in</strong>g agreed well with parameters of <strong>in</strong>-situ<br />

detected convection cells.<br />

As the effects of vertical free convective and doublediffusive<br />

transport play an important role when <strong>in</strong>terpret<strong>in</strong>g<br />

borehole logs or other measurements, the water column<br />

should be exam<strong>in</strong>ed accord<strong>in</strong>g the occurrence of vertical<br />

transport processes <strong>in</strong> case of geothermal <strong>in</strong>vestigations,<br />

hydrological <strong>in</strong>vestigations, water sampl<strong>in</strong>g, and technical<br />

borehole control.<br />

With<strong>in</strong> the scope of this project, the borehole log<br />

<strong>in</strong>terpretation method shall be adapted to deep boreholes.<br />

The difficulty is now to obta<strong>in</strong> a similar good result of<br />

<strong>in</strong>terpretation us<strong>in</strong>g available data from deep boreholes.<br />

The characteristic properties of the borehole logs expected<br />

from deep boreholes <strong>in</strong>clude e.g. higher speed while<br />

lower<strong>in</strong>g the probe, larger sampl<strong>in</strong>g <strong>in</strong>terval, and higher<br />

viscosity of the fluid (mud). Additionally to the differences<br />

related to the measurement technique, deep boreholes can<br />

be characterized by very dist<strong>in</strong>ct temperature gradients and<br />

temporal water <strong>in</strong>- and outflows.<br />

23


24<br />

References:<br />

Berthold S., Börner F. (2007): Detection of free vertical convection and<br />

double-diffusion <strong>in</strong> groundwater monitor<strong>in</strong>g wells with geophysical<br />

borehole measurements, Environmental Geology (Onl<strong>in</strong>e First), DOI:<br />

10.1007/s00254-007-0936-y.<br />

<strong>IODP</strong><br />

Indian and Southern Ocean dynamics dur<strong>in</strong>g<br />

the Miocene<br />

T. BICKERT 1 , M. BUTZIN 2 , G. LOHMANN 3<br />

1 MARUM, Universitaet Bremen, 28334 Bremen, Germany<br />

2 Alfred-Wegener-Institut, 27580 Bremerhaven, Germany<br />

The middle to late Miocene glaciation of Antarctica is<br />

characterized by several cool<strong>in</strong>g steps, which might be<br />

attributed to changes <strong>in</strong> ocean circulation. Here, we report<br />

results of a model<strong>in</strong>g study <strong>in</strong> which we aimed to identify<br />

the driv<strong>in</strong>g mechanisms for the development and the<br />

dynamics of the Southern Ocean frontal system dur<strong>in</strong>g this<br />

cool<strong>in</strong>g phase. Special emphasis is put on the potential<br />

climatic effects of ocean gateway changes, such as the<br />

constriction of the eastern Tethys. We employ a global<br />

ocean circulation and carbon cycle model (MPI-OM) with<br />

a curvil<strong>in</strong>ear grid focuss<strong>in</strong>g on the Southern hemisphere,<br />

which means that the Southern Ocean is <strong>in</strong>vestigated at<br />

higher resolution than the rest of the world. This model<strong>in</strong>g<br />

approach circumvents some typical problems of common<br />

models <strong>in</strong> regional model<strong>in</strong>g studies, such as the<br />

specification of proper boundary conditions if us<strong>in</strong>g standalone<br />

regional models, or the rather coarse resolution of<br />

global circulation models.<br />

Us<strong>in</strong>g a new and more realistic forc<strong>in</strong>g for the middle<br />

Miocene ocean conditions, we arrive at significant<br />

hydrographic changes compared to present day. In the<br />

Southern Ocean, circumpolar SST decrease by about 3°C,<br />

whereas subantarctic SST <strong>in</strong>crease. Subtropical SST are<br />

also elevated <strong>in</strong> the Southern Indian Ocean while <strong>in</strong> the<br />

South Atlantic the sea surface temeprature cools by about<br />

2°C. At the thermocl<strong>in</strong>e level, most parts <strong>in</strong> the<br />

subantarctic and circumpolar realm are about 3°C colder<br />

than at present day while <strong>in</strong> the subtropics, water<br />

temperatures <strong>in</strong>crease by about 3°-5°C with the Indian<br />

Ocean be<strong>in</strong>g warmer than the South Atlantic. In the<br />

<strong>in</strong>termediate water layer, the simulation for the middle<br />

Miocene yields cool<strong>in</strong>g almost everywhere <strong>in</strong> the Southern<br />

Ocean, but significant warm<strong>in</strong>g of more than 5°C <strong>in</strong> the<br />

Indian Ocean. Mid-Miocene sal<strong>in</strong>ities are generally<br />

elevated above modern values <strong>in</strong> all subsurface water<br />

layers. Similar to temperature, the sal<strong>in</strong>ity anomalies are<br />

most pronounced (more than 2 psu) <strong>in</strong> the <strong>in</strong>termediate<br />

water layer of the Indian Ocean. The Miocene ocean<br />

circulation is characterized by absence of deep water <strong>in</strong> the<br />

North Atlantic. Moreover, at all levels <strong>in</strong> the Southern<br />

Ocean we f<strong>in</strong>d a strengthen<strong>in</strong>g of the South Atlantic<br />

Current while the leakage of the Agulhas Current <strong>in</strong>to the<br />

South Atlantic and the subantarctic circumpolar flow are<br />

reduced. Regard<strong>in</strong>g the role of the Tethys, we f<strong>in</strong>d that<br />

surface and subsurface water flows from the Indian Ocean<br />

<strong>in</strong>to the eastern Tethys. Below 400 m, this flow reverses,<br />

and warm and sal<strong>in</strong>e water is exported from the Tethys to<br />

the Indian. These results are confirmed by observations of<br />

former studies (e.g., Woodruff and Sav<strong>in</strong>, 1989; Wright et<br />

al., 1992; Flower and Kenneth, 1994) and own results.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Magnetic M<strong>in</strong>eral Inputs <strong>in</strong> Sediments Off<br />

Baja California. Inference on Climate<br />

Variability of the Last Glacial-Interglacial<br />

Cycle<br />

C.L. BLANCHET 1 , N. THOUVENY 2 , L. VIDAL 2<br />

1 Mar<strong>in</strong>e Geophysics, Fachbereich Geowissenschaften, Postfach<br />

330440, 28334 Bremen, Deutschland<br />

2 CEREGE-CNRS, University Paul Cezanne, Europole de l’Arbois,<br />

13545 Aix en Provence, Frankreich<br />

The sediments of the western marg<strong>in</strong> of the Baja<br />

California pen<strong>in</strong>sula have demonstrated their ability to<br />

record climate changes at millennial time scale. Both the<br />

sedimentary dynamics (van Geen et al., 2003) and the<br />

export of biogenic compounds (Ortiz et al., 2004) respond<br />

to a northern latitude climatic forc<strong>in</strong>g dur<strong>in</strong>g the last 52 ka<br />

BP. The core MD02-2508 has been collected dur<strong>in</strong>g the<br />

scientific cruise IMAGESVIII-MONA at the latitude of<br />

Tropic of Cancer (23°N). The present sedimentation is<br />

characterized by high terrigenous <strong>in</strong>puts, deposited under<br />

the <strong>in</strong>fluence of a strong seasonal and spatial climatic<br />

variability and with high accumulation rates (35 cm/ka),<br />

allow<strong>in</strong>g to monitor the rhythms of the terrigenous <strong>in</strong>put at<br />

a centennial resolution.<br />

The magnetic parameters (magnetic susceptibility,<br />

anhysteretic and isothermal remanent magnetizations and<br />

hysteresis properties) here trace variations <strong>in</strong> concentration<br />

and nature of magnetic m<strong>in</strong>erals orig<strong>in</strong>at<strong>in</strong>g from the<br />

cont<strong>in</strong>ent and carried follow<strong>in</strong>g different ways (aeolian or<br />

fluvial), provid<strong>in</strong>g reliable <strong>in</strong>sights on climate variability<br />

on-land. The relative contents of major and trace elements<br />

(measured by X-ray fluorescence scanner) and<br />

concentrations of carbonates and organic carbon on key<br />

<strong>in</strong>terval of the cores, helped to improve the <strong>in</strong>terpretations.<br />

The sedimentary sequence was dated us<strong>in</strong>g 12<br />

calibrated 14 C ages and identification of paleomagnetic<br />

excursions and covers the last glacial-<strong>in</strong>terglacial cycle (0-<br />

120 ka).<br />

The magnetic m<strong>in</strong>erals are more concentrated dur<strong>in</strong>g<br />

the bioturbated <strong>in</strong>tervals, correspond<strong>in</strong>g to glacial and<br />

stadial periods of North Atlantic whilst low concentrations<br />

are recorded <strong>in</strong> <strong>in</strong>tervals present<strong>in</strong>g millimetric to<br />

centimetric lam<strong>in</strong>ations, correspond<strong>in</strong>g to <strong>in</strong>terglacial and<br />

<strong>in</strong>terstadial periods. High (low) magnetic m<strong>in</strong>eral<br />

concentrations are also associated to high (low) total<br />

reflectance, high (low) carbonate contents and low (high)<br />

organic carbon contents. The relative concentrations of<br />

titanium and iron, vary<strong>in</strong>g similarly to the magnetic<br />

parameters <strong>in</strong>dicate that the concentration of magnetic<br />

m<strong>in</strong>erals is ma<strong>in</strong>ly modulated by variations of the<br />

terrigenous <strong>in</strong>put, rather than dissolution of the iron oxides.<br />

The magnetic susceptibility signal trac<strong>in</strong>g variations of<br />

coarse magnetite concentration is supposed to be l<strong>in</strong>ked<br />

with fluvial transport; it closely matches the Greenland<br />

oxygen isotope record. The Hard IRM (HIRM) signal,<br />

carried by high coercivity m<strong>in</strong>eral (hematite and/or<br />

goethite) classically <strong>in</strong>terpreted as tracers of aeolian<br />

transport, conta<strong>in</strong>s its major power <strong>in</strong> the precessional<br />

frequency band. Strong (resp. weak) hematite or goethite<br />

concentrations matches low (resp. high) <strong>in</strong>solation. The<br />

residual magnetic terrigenous <strong>in</strong>put off Baja California<br />

recorded two types of climatic variability dur<strong>in</strong>g the last<br />

Glacial/Interglacial cycle: fluvial (Ti)magnetite <strong>in</strong>put was


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

governed by the Northern hemisphere variability and<br />

aeolian hematite/goethite <strong>in</strong>put was governed by the low<br />

latitudes variability.<br />

<strong>IODP</strong><br />

Novel real-time PCR assays for the<br />

quantification of genes from Bacteria of the<br />

deep biosphere<br />

ANNA BLAZEJAK AND AXEL SCHIPPERS<br />

Bundesanstalt für Geowissenschaften und Rohstoffe<br />

(BGR),Referat Geomikrobiologie, Stilleweg 2, 30655<br />

<strong>Hannover</strong><br />

The deep biosphere of mar<strong>in</strong>e sediments shall harbour<br />

over half of all prokaryotic cells on earth. Despite this huge<br />

numbers of subsurface microorganisms and their likely<br />

significant <strong>in</strong>fluence on the global biogeochemical cycles,<br />

only little is known about the microbial diversity and<br />

abundance. To <strong>in</strong>vestigate these two aspects we applied<br />

molecular techniques such as quantitative, real-time<br />

polymerase cha<strong>in</strong> reaction (PCR) for quantification of<br />

microbial genes and denatur<strong>in</strong>g gradient gel electrophoresis<br />

(DGGE) to analyse their diversity. In particular two<br />

different groups of microorganisms relevant to the deep<br />

biosphere attend our focus: Bacteria belong<strong>in</strong>g to the “JS1<br />

candidate group” and the Chloroflexi subphylum I which<br />

appear to be abundant <strong>in</strong> the subsurface sediments, and<br />

bacteria <strong>in</strong>volved <strong>in</strong> the sulfur cycle. We have developed<br />

novel real-time PCR assays for the quantification of genes<br />

of these bacteria and applied them to mar<strong>in</strong>e sediments.<br />

Bacteria belong<strong>in</strong>g to the “JS1 candidate group” and the<br />

Chloroflexi subphylum I have shown to be a mayor part of<br />

the bacterial community <strong>in</strong> different mar<strong>in</strong>e sediments.<br />

Results for bacteria <strong>in</strong>volved <strong>in</strong> the sulfur cycle are present<br />

<strong>in</strong> more detail below.<br />

Sulfur-oxidiz<strong>in</strong>g and sulfate-reduc<strong>in</strong>g bacteria are<br />

ma<strong>in</strong>ly responsible for biogeochemical sulfur-cycl<strong>in</strong>g <strong>in</strong><br />

mar<strong>in</strong>e sediments. To specifically quantify these organisms<br />

we developed a new real-time PCR assay target<strong>in</strong>g the<br />

adenos<strong>in</strong>e 5´-phosphosulfate reductase (aprA) gene cod<strong>in</strong>g<br />

for the α-subunit of the enzyme APS reductase. In sulfatereducers,<br />

APS reductase catalyzes the two-electron<br />

reduction of APS to sulfite and AMP, and <strong>in</strong> sulfuroxidizers<br />

the reverse reaction. The aprA gene was<br />

amplified with the specific primers APS1F and APS4R and<br />

has a length of ca 350 bp (Blazejak et al. 2006). The new<br />

real-time PCR assay could be successfully applied to<br />

mar<strong>in</strong>e sediment samples taken off the cost of Peru (SO147<br />

Station 2MC) and from the Black Sea (M72/5 Station 20).<br />

Results are shown <strong>in</strong> Figure 1.<br />

Figure 1. DNA copy numbers of the 16S rRNA gene of Bacteria<br />

and the functional genes, dsrA and aprA, <strong>in</strong> near-surface sediment<br />

(0-0.34 mbsf) from the Peru marg<strong>in</strong> (Station 2MC; SO147) and<br />

deeper sediment (0-6 mbsf) from the Black Sea (Station 20; M72-<br />

5).<br />

25


26<br />

The graphs show depth profiles of DNA copy numbers<br />

of the aprA gene, the 16S rRNA gene orig<strong>in</strong>at<strong>in</strong>g from<br />

Bacteria <strong>in</strong> total, and the dsrA gene occurr<strong>in</strong>g only <strong>in</strong><br />

sulfate-reducers. The dsrA and the 16S rRNA gene copy<br />

numbers <strong>in</strong> the Peru marg<strong>in</strong> sediments were almost<br />

identical to the values produced three years before<br />

(Schippers et al. 2005, Schippers and Neret<strong>in</strong> 2006),<br />

show<strong>in</strong>g the reproducibility of the real-time PCR analysis.<br />

The depth profiles of the aprA and dsrA gene copy<br />

numbers <strong>in</strong> Figure 1 are almost identical for both sediment<br />

sites. This result shows that ma<strong>in</strong>ly sulfate-reducers but not<br />

sulfur-oxidizers were detected s<strong>in</strong>ce aprA occurs <strong>in</strong> sulfuroxidizers<br />

and sulfate-reducers, and dsrA only <strong>in</strong> sulfatereducers.<br />

The number of both functional genes decrease<br />

with sediment depth together with the bacterial 16S rRNA<br />

gene copy numbers, however s<strong>in</strong>ce both functional genes<br />

occur <strong>in</strong> much smaller numbers than the bacterial 16S<br />

rRNA gene, sulfate-reducers are obviously only a m<strong>in</strong>or<br />

part of the bacterial community <strong>in</strong> agreement with previous<br />

dsrA data for the Peru marg<strong>in</strong> sediments (Schippers and<br />

Neret<strong>in</strong> 2006), Black Sea sediments and water column<br />

(Leloup et al. 2007, Neret<strong>in</strong> et al. 2007).<br />

In addition to the aprA gene quantification also its<br />

diversity was <strong>in</strong>vestigated us<strong>in</strong>g DGGE under the same<br />

PCR conditions as performed for the real-time PCR assay<br />

to the sediments samples from the Black Sea. The DGGE<br />

band patterns show a clear difference between surface and<br />

deeper sediment layers. The phylogenetic characterization<br />

of the dom<strong>in</strong>ant DNA bands from particular depths is<br />

currently conducted for the analysis.<br />

The novel aprA real-time PCR assay has also been<br />

applied to sediments (12 m depth) off the coast of Sumatra<br />

(FS Sonne SO189-2) and deep sediments (120 m depth)<br />

from the Peru marg<strong>in</strong> (ODP Leg 201 Station 1227). First<br />

data confirmed the above described results.<br />

References:<br />

A. Schippers, L. N. Neret<strong>in</strong>, J. Kallmeyer, T. G. Ferdelman, B. A. Cragg, R.<br />

J. Parkes and B. B. Jørgensen. 2005. Prokaryotic cells of the deep subseafloor<br />

biosphere identified as liv<strong>in</strong>g bacteria. Nature 433: 861-864.<br />

A. Blazejak, J. Kuever, C. Erséus, R. Amann, and N. Dubilier. 2006.<br />

Phylogeny of 16S rRNA, RubisCO, and APS reductase genes from<br />

gamma- and alphaproteobacterial symbionts <strong>in</strong> gutless mar<strong>in</strong>e worms<br />

(Oligochaeta) from Bermuda and Bahamas. Applied and<br />

Environmental Microbiology 72: 5527-5536.<br />

A. Schippers and L. N. Neret<strong>in</strong>. 2006. Quantification of microbial<br />

communities <strong>in</strong> near-surface and deeply buried mar<strong>in</strong>e sediments on<br />

the Peru cont<strong>in</strong>ental marg<strong>in</strong> us<strong>in</strong>g real-time PCR. Environmental<br />

Microbiology 8: 1251-1260.<br />

J. Leloup, A. Loy, N. J. Knab, C. Borowski, M. Wagner, and B. B.<br />

Jørgensen. 2007. Diversity and abundance of sulfate-reduc<strong>in</strong>g<br />

microorganisms <strong>in</strong> the sulfate and methane zones of a mar<strong>in</strong>e sediment,<br />

Black Sea. Environmental Microbiology 9: 131-142.<br />

L. N. Neret<strong>in</strong>, R. M. M. Abed, A. Schippers, C. J. Schubert, K. Kohl, and<br />

M. M. M. Kuypers. 2007. Inorganic carbon fixation by sulfate-reduc<strong>in</strong>g<br />

bacteria <strong>in</strong> the Black Sea water column. Environmental Microbiology<br />

9: 3019–3024.<br />

<strong>IODP</strong><br />

Low Temperature Alteration Carbonates <strong>in</strong><br />

the Ocean Crust and their Importance for<br />

CO2 Uptake and the Global Calcium Cycle<br />

FLORIAN BÖHM 1 , SVENJA RAUSCH 2 , ANTON EISENHAUER 1 ,<br />

WOLFGANG BACH 2 , ANDREAS KLÜGEL 2<br />

1<br />

IFM-GEOMAR, Kiel<br />

2<br />

Universität Bremen, Fachbereich Geowissenschaften<br />

Calcium carbonate precipitated <strong>in</strong> vugs, ve<strong>in</strong>s and<br />

vesicles of basaltic rocks of the ocean crust are an<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

important s<strong>in</strong>k for carbonate and calcium ions dissolved <strong>in</strong><br />

seawater and hydrothermal fluids. Nevertheless only rough<br />

estimates exist of the rates of uptake, which are based on a<br />

limited set of data derived from only a few ocean drill sites.<br />

DSDP, ODP and <strong>IODP</strong> sites have penetrated ocean crust<br />

sections of a wide range of ages and of crust formed at<br />

slow and fast spread<strong>in</strong>g ridges. A systematic evaluation of<br />

the available cores should help to better constra<strong>in</strong> CaCO3<br />

uptake rates and their temporal evolution. We have<br />

therefore recently started to log and sample CaCO3 filled<br />

vugs, ve<strong>in</strong>s and vesicles <strong>in</strong> cores from a range of ocean<br />

crust drill sites. First results po<strong>in</strong>t to variations of the<br />

carbonate ve<strong>in</strong> abundances related to sett<strong>in</strong>g and crustal<br />

age.<br />

The total calcium flux <strong>in</strong>to ocean crust basalt has been<br />

estimated previously as represent<strong>in</strong>g about 10 % of the<br />

total calcium output flux from the oceans (Alt & Teagle<br />

1999). First results from a study of the calcium isotopic<br />

composition of carbonate precipitates <strong>in</strong> the ocean crust<br />

(Am<strong>in</strong>i 2007) po<strong>in</strong>t to a significant fractionation dur<strong>in</strong>g<br />

precipitation. Therefore, these low temperature alteration<br />

(LTA) carbonates probably represent a significant factor <strong>in</strong><br />

the global ocean calcium isotope budget. They may help to<br />

expla<strong>in</strong> discrepancies <strong>in</strong> the Neogene calcium isotope<br />

budget that have recently been po<strong>in</strong>ted out by Fantle &<br />

DePaolo (2005). LTA carbonates may further be used as<br />

recorders of the ocean water calcium isotope composition<br />

and its variations dur<strong>in</strong>g the last 100 to 150 million years,<br />

complement<strong>in</strong>g and test<strong>in</strong>g exisit<strong>in</strong>g records based on<br />

biogenic carbonates and phosphates (e.g. Farkas et al.<br />

2007; Soudry et al. 2006).<br />

References:<br />

Alt, J.C., Teagle, D.A.H. (1999) The uptake of carbon dur<strong>in</strong>g alteration of<br />

ocean crust. Geochim. Cosmochim. Acta., 63, 1527-1535.<br />

Am<strong>in</strong>i, M. (2007) The Role of High- and Low-Temperature Ocean Crust<br />

Alteration for the Mar<strong>in</strong>e Calcium Budget. Ph.D. thesis, University of<br />

Kiel, 93pp.<br />

Fantle, M.S., DePaolo, D.J. (2005): Variations <strong>in</strong> the mar<strong>in</strong>e Ca cycle over<br />

the past 20 million years. Earth Planet. Sci. Lett., 237, 102-117.<br />

Farkaš J., Böhm F., Wallmann K., Blenk<strong>in</strong>sop J., Eisenhauer A., van<br />

Geldern R., Munnecke A., Voigt S., Veizer J. (2007): Calcium isotope<br />

record of Phanerozoic oceans: Implications for chemical evolution of<br />

seawater and its causative mechanisms. Geochim. Cosmochim. Acta,<br />

71, 5117-5134.<br />

Soudry, D., Glenn C.R., Nathan Y., Segal I., Vonderhaar D. (2006):<br />

Evolution of Tethyan phosphogenesis along the northern edges of the<br />

Arabian-African shield dur<strong>in</strong>g the Cretaceous-Eocene as deduced from<br />

temporal variations of Ca and Nd isotopes and rates of P accumulation.<br />

Earth Sci. Rev., 78, 27-57.<br />

<strong>IODP</strong><br />

A prelim<strong>in</strong>ary calcareous plankton<br />

biostratigraphy of the Paleocene-Eocene<br />

<strong>in</strong>terval at DSDP Site 401 (Bay of Biscay)<br />

A. BORNEMANN 1<br />

1 Institut für Geophysik und Geologie, Universität Leipzig,<br />

Talstrasse 35, D-04103 Leipzig<br />

The Paleogene period represents one of the most<br />

prom<strong>in</strong>ent long-term climate transitions <strong>in</strong> Earth history.<br />

The view of a Paleocene/early Eocene “greenhouse” is<br />

supported by numerous paleontological, isotopical and<br />

sedimentological f<strong>in</strong>d<strong>in</strong>gs suggest<strong>in</strong>g warm temperatures<br />

also <strong>in</strong> subpolar regions. Polar ice-sheets were either small<br />

or did not exist. Bottom water temperatures <strong>in</strong>ferred from<br />

benthic foram<strong>in</strong>iferal δ 18 O were substantially higher than <strong>in</strong><br />

modern oceans. The Paleocene/Eocene warmth culm<strong>in</strong>ated


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>in</strong> the Early Eocene Climatic Optimum (EECO; 55-51 Ma),<br />

and is subsequently followed by a long-term cool<strong>in</strong>g,<br />

which f<strong>in</strong>ally led to the Oligocene “icehouse”.<br />

As a first step towards a paleoceanographic study of<br />

this long-term climate change by employ<strong>in</strong>g calcareous<br />

nannofossils and planktic foram<strong>in</strong>ifera I present a<br />

calcareous plankton biostratigraphy for the late Paleocene<br />

to the Middle Eocene at DSDP Site 401. This site is<br />

situated <strong>in</strong> the Bay of Biscay and represents one of the<br />

most northern sites which provide Paleogene carbonates.<br />

Other DSDP/ODP sites which have previously been<br />

studied for this <strong>in</strong>terval are either from the equatorial<br />

oceans (Shatsky Rise, Allison Guyot, Demerara Rise) or<br />

the southern hemisphere (Maud Rise, Walvis Ridge).<br />

Therefore DSDP Site 401, which consists of a nearly<br />

cont<strong>in</strong>uous sedimentary record through the study <strong>in</strong>terval<br />

and provides well preserved calcareous nannofossils and<br />

planktic foram<strong>in</strong>ifera, will give us a more complete picture<br />

by consider<strong>in</strong>g also the northern hemisphere.<br />

<strong>IODP</strong><br />

The late-stage evolution of oceanic gabbros -<br />

Comb<strong>in</strong>ed experimental and <strong>in</strong>-situ isotope<br />

study on gabbros of the ODP Legs 118/176<br />

drilled at the Southwest Indian Ridge<br />

R.E. BOTCHARNIKOV 1 , J. KOEPKE 1 , I. HORN 1 , J. STICHNOTHE 1 , B.<br />

PUTLITZ 2<br />

1 Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong>, Call<strong>in</strong>str.<br />

3, 30167 <strong>Hannover</strong><br />

2 Institute of M<strong>in</strong>eralogy and Geochemistry, University of<br />

Lausanne, Anthropole, CH-1015 Lausanne,Switzerland<br />

R.Botcharnikov@m<strong>in</strong>eralogie.uni-hannover.de<br />

Gabbroic rocks from Hole 735B at the Southwest<br />

Indian Ridge (SWIR; Legs 118 and 176) represent the<br />

longest cont<strong>in</strong>uous section of oceanic lower crust ever<br />

drilled by ODP (Ocean Drill<strong>in</strong>g Program).<br />

The drill<strong>in</strong>g provides an <strong>in</strong>sight <strong>in</strong>to <strong>in</strong>teractive<br />

processes of crustal accretion, igneous differentiation,<br />

high-temperature crystal-plastic deformation, and cooler<br />

static hydrothermal alteration of the lower ocean crust at a<br />

very slowly spread<strong>in</strong>g ridge (Natland et al., 2002). About<br />

25% of the core is strongly <strong>in</strong>fluenced by late-stage<br />

magmatic processes lead<strong>in</strong>g to Fe-rich (ferrogabbros) and<br />

Si-rich (plagiogranites) compositions as end-members.<br />

Presumably two different major processes <strong>in</strong> the little<strong>in</strong>vestigated<br />

<strong>in</strong>terface between igneous and hydrothermal<br />

conditions were active dur<strong>in</strong>g the late-stage evolution of<br />

the deep SWIR crust: crystallization from a percolat<strong>in</strong>g Fe-<br />

Ti-rich late-stage melts and hydrous partial melt<strong>in</strong>g of<br />

solidified gabbro. For a comprehensive understand<strong>in</strong>g of<br />

the late magmatic processes, occurr<strong>in</strong>g <strong>in</strong> the deep oceanic<br />

crust, we present here an approach comb<strong>in</strong><strong>in</strong>g three<br />

experimental subprojects and one subproject focus<strong>in</strong>g on<br />

natural gabbros from the ~ 1500 m long section drilled at<br />

SWIR.<br />

For evaluat<strong>in</strong>g a typical late-stage composition as start<strong>in</strong>g<br />

material for our experiments, we follow an approach by<br />

consider<strong>in</strong>g fresh Fe-Ti-rich glasses from mid-ocean ridges<br />

(MOR) which can be regarded as frozen liquids generated<br />

by late-stage MORB differentiation occurr<strong>in</strong>g <strong>in</strong> the<br />

eruptive sequence of the oceanic crust. For this purpose we<br />

used analyses of MORB-type, fresh glasses from the<br />

"PETDB" database (Lehnert et al., 2000) from oceanic<br />

ridges all over the world, <strong>in</strong>clud<strong>in</strong>g all glasses from<br />

"normal" spread<strong>in</strong>g centers but exclud<strong>in</strong>g all data from<br />

back-arc spread<strong>in</strong>g centers which resulted <strong>in</strong> more than 14<br />

000 datasets. The late-stage composition (LS) of <strong>in</strong>terest<br />

which can be regarded as representative for a MORB latestage<br />

system for our experimental study, lies "at the end" of<br />

the ferrobasaltic trends, show<strong>in</strong>g high amounts of FeO,<br />

TiO2, and P 2O 5 (Table 1). In additon, the Si-rich<br />

composition (plagiogranite) for immiscibility experiments<br />

was evaluated as an average of 25 compositions analyzed<br />

<strong>in</strong> felsic ve<strong>in</strong>s from SWIR gabbro (Table 1).<br />

1) Phase relations and phase compositions <strong>in</strong> a typical<br />

late-stage system<br />

The understand<strong>in</strong>g of the late-stage processes with<strong>in</strong><br />

the deep oceanic crust requires the experimental data on the<br />

phase relations <strong>in</strong> a late-stage silicate system under<br />

conditions prevail<strong>in</strong>g at depth. Therefore, we have<br />

performed a phase-equilibria study <strong>in</strong> a typical late-stage<br />

system at 200 MPa with a special focus on the role of<br />

water, oxygen fugacity, and sulphur. The crystallization<br />

experiments were done <strong>in</strong> a range of temperatures from 850<br />

to 1050°C and water activities (aH2O) from 0.1 to 1 at two<br />

different fixed fH2 (correspond<strong>in</strong>g to the nom<strong>in</strong>al oxygen<br />

buffers QFM+4 and QFM+1, at aH2O=1). The ma<strong>in</strong><br />

phases are magnetite (MT), ilmenite (ILM), cl<strong>in</strong>opyroxene<br />

(CPX), plagioclase (PL), apatite (AP) and amphibole<br />

(AMPH) as illustrated <strong>in</strong> Fig.1.<br />

The results show that <strong>in</strong> this Fe- and Ti-rich late-stage<br />

system, Fe-Ti-oxides are the liquidus phases at both<br />

<strong>in</strong>vestigated redox conditions. However, due to<br />

experimental difficulties with Fe-rich system (Fe loss to the<br />

capsule material), the crystallization liquidus temperatures<br />

for oxide phases have not been exactly determ<strong>in</strong>ed. The<br />

oxides are followed by CPX, AP and PL, which is more<br />

stable at low water activity <strong>in</strong> the system. The AP<br />

crystallizes at temperature 2 wt.%<br />

P2O5, AP is stable also at 1050°C; see subproject 2). At<br />

reduced conditions, ILM appears at lower temperatures<br />

than CPX, whereas MT rema<strong>in</strong>s the liquidus phase (Fig. 1).<br />

Amphibole is stable at high aH2O and at temperatures<br />

lower than 900°C, which is surpris<strong>in</strong>gly low compared with<br />

the temperatures of AMPH crystallization <strong>in</strong> Fe-rich<br />

basaltic systems (i.e.,


28<br />

compositions (Toplis&Carroll, 1995; Thy et al., 2006;<br />

Botcharnikov et al, <strong>in</strong> revision). It must be noted that<br />

orthopyroxene is not stable <strong>in</strong> all <strong>in</strong>vestigated Fe-rich<br />

systems at studied experimental conditions. Experiments <strong>in</strong><br />

S-bear<strong>in</strong>g system (1 wt.% bulk S) show formation of<br />

additional S-bear<strong>in</strong>g phase: anhydrite (ANH) at oxidiz<strong>in</strong>g<br />

conditions and pyrhotite (PYR) at reduced conditions.<br />

Remarkable is that the phase stability and composition of<br />

the ma<strong>in</strong> m<strong>in</strong>eral assemblage (MT, ILM, CPX, AP,<br />

AMPH) is not significantly affected by added S.<br />

Temperature, °C<br />

Temperature, °C<br />

1200<br />

1150<br />

1100<br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

800<br />

1200<br />

1150<br />

1100<br />

1050<br />

1000<br />

950<br />

900<br />

850<br />

800<br />

CPX<br />

Ap<br />

MT+IL<br />

QFM+4 Amph<br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

ILM <strong>in</strong><br />

QFM+1<br />

Ap <strong>in</strong><br />

a H2O<br />

MT+CPX <strong>in</strong><br />

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0<br />

a H2O<br />

Fig.1. Phase relations <strong>in</strong> the late stage magmas as a<br />

function of temperature and water activity at QFM+4 (a)<br />

and QFM+1 (b).<br />

(2) Experimental liquid immiscibility<br />

In the experiemntal approach aimed to understand<br />

whether liquid immiscibility does occur <strong>in</strong> natural hydrous<br />

tholeiitic systems under crustal pressure or not we used<br />

synthetic start<strong>in</strong>g materials with compositions similar to<br />

natural compositions from SWIR gabbros, where<br />

ferrogabbroic and felsic sections are associated. Two series<br />

of experiments have been conducted at 1050°C, 200 MPa<br />

and QFM+4 to <strong>in</strong>vestigate the mix<strong>in</strong>g ability of<br />

ferrobasaltic and plagiogranitic liquids. Three mixures of<br />

LS and felsic compositions were prepared <strong>in</strong> mass<br />

proportion of 80/20, 60/40 and 40/60, respectively, and<br />

were placed <strong>in</strong> Au capsules. Water was added <strong>in</strong> the<br />

amounts to simulate H2O-saturated and undersaturated<br />

conditions <strong>in</strong> melt mixtures. Another experimental<br />

approach was focused on the possible role of phosphorous<br />

PL<br />

PL <strong>in</strong><br />

Amph <strong>in</strong><br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>in</strong> the processes of immiscibility <strong>in</strong> LS system: a series of<br />

experiments with up to 10 wt.% bulk P2O5 added to the LS<br />

composition was run at the same T, P, fO2 conditions. The<br />

electron microprobe analyses of the experimental products<br />

from all runs do not reveal any traces of immiscible liquids,<br />

at least at the detection limit of electron microprobe. It<br />

must be noted, however, that recent experimental work of<br />

Veksler et al. (2007) showed that the separation of Fe-rich<br />

and Si-rich liquids might be controlled by k<strong>in</strong>etic<br />

nucleation barriers at the time-scale of laboratory<br />

experiments and coexistence of two liquids can be visible<br />

<strong>in</strong> some cases as f<strong>in</strong>e emulsions at nanoscale only. We plan<br />

one additional experimental series with Fe-enriched<br />

compositions, however, it will probably also result <strong>in</strong><br />

k<strong>in</strong>etic hamper<strong>in</strong>g of liquid unmix<strong>in</strong>g. Thus, although our<br />

experiments are probably unable to reproduce unmix<strong>in</strong>g <strong>in</strong><br />

natural systems, we can not exclude liquid separation<br />

occur<strong>in</strong>g at the time-scale on natural geological processes<br />

<strong>in</strong> deep oceanic crust.<br />

(3) Experimental percolation of late-stage melts<br />

through normal gabbro<br />

It is believed that a considerable part of the deep<br />

oceanic crust at SWIR was modified by a permeable flow<br />

of late Fe-rich melts through the just solidified gabbro pile,<br />

caus<strong>in</strong>g both dissolution-precipitation reactions and<br />

diffusion-controlled processes <strong>in</strong> the primary m<strong>in</strong>eral<br />

assemblages. We started an experimental simulation of<br />

these processes, by perform<strong>in</strong>g percolation experiments<br />

us<strong>in</strong>g a synthetic late-stage melt and a natural "pure"<br />

cumulate gabbro from Hole 735B.<br />

In the first run, the LS melt was pre-saturated with H2O<br />

at 1200°C and 200 MPa <strong>in</strong> Au 80Pd 20 capsule. The capsule<br />

was cut <strong>in</strong> several pieces (cyl<strong>in</strong>ders). The H2O-saturated<br />

cyl<strong>in</strong>der of LS composition was placed under the drilled<br />

cyl<strong>in</strong>der of natural gabbro and the result<strong>in</strong>g pair was closed<br />

shut <strong>in</strong> Au capsule, simulat<strong>in</strong>g scenario where hot gabbro<br />

<strong>in</strong>teracts with H2O-rich late-stage melt. In the second<br />

approach, the dry powder of LS was placed <strong>in</strong> the capsule,<br />

followed by ~5 wt.% bulk H2O and f<strong>in</strong>ally the cyl<strong>in</strong>der of<br />

natural gabbro. Such an assembladge simulated an<br />

<strong>in</strong>eraction between partly crystallized LS magma, gabbro<br />

and free fluid phase present at the <strong>in</strong>terface between LS<br />

melt and gabbro. Both capsules were run at 200 MPa,<br />

1050°C and fO2~QFM+1 for 48 hours.<br />

Fig 2. CT image of a product from percolation experiments.<br />

Shown are one length section (a) and two cross sections at<br />

different heights (b, c). Three different zones are visible: (1) an<br />

<strong>in</strong>ner core of unreacted gabbro; (2) a diffuse reaction zone<br />

surround<strong>in</strong>g the gabbroic core; (3) the frozen late-stage melt, now<br />

glass. Different phases can be recognized by their different gray<br />

levels. See text for details.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

In the first run, the LS melt was pre-saturated with H 2O<br />

at 1200°C and 200 MPa <strong>in</strong> Au80Pd 20 capsule. The capsule<br />

was cut <strong>in</strong> several pieces (cyl<strong>in</strong>ders). The H 2O-saturated<br />

cyl<strong>in</strong>der of LS composition was placed under the drilled<br />

cyl<strong>in</strong>der of natural gabbro and the result<strong>in</strong>g pair was closed<br />

shut <strong>in</strong> Au capsule, simulat<strong>in</strong>g scenario where hot gabbro<br />

<strong>in</strong>teracts with H2O-rich late-stage melt. In the second<br />

approach, the dry powder of LS was placed <strong>in</strong> the capsule,<br />

followed by ~5 wt.% bulk H 2O and f<strong>in</strong>ally the cyl<strong>in</strong>der of<br />

natural gabbro. Such an assembladge simulated an<br />

<strong>in</strong>eraction between partly crystallized LS magma, gabbro<br />

and free fluid phase present at the <strong>in</strong>terface between LS<br />

melt and gabbro. Both capsules were run at 200 MPa,<br />

1050°C and fO2~QFM+1 for 48 hours.<br />

For study<strong>in</strong>g the three-dimensional distribution of the<br />

percolat<strong>in</strong>g melt with<strong>in</strong> <strong>in</strong> the host gabbro, we applied an<br />

<strong>in</strong>novative new tool: High-resolution X-ray computed<br />

tomography (CT; collaboration with L. Baumgartner <strong>in</strong><br />

Lausanne, Switzerland). First rough CT analyses are shown<br />

<strong>in</strong> Fig. 2, further analysis with higher resolution is <strong>in</strong><br />

progress. S<strong>in</strong>ce this method must be used before destroy<strong>in</strong>g<br />

the experimental product for microprobe preparation, and<br />

s<strong>in</strong>ce the long-last<strong>in</strong>g measurements are still <strong>in</strong> progress,<br />

we do not have microanalytical results of the <strong>in</strong>volved<br />

phases, yet. The CT images show one length section and<br />

two cross sections <strong>in</strong> different heights of the cyl<strong>in</strong>der; the<br />

process<strong>in</strong>g of the composite 3-D computer model of the<br />

whole cyl<strong>in</strong>der is <strong>in</strong> progress. Our results show three<br />

different zones: (1) an <strong>in</strong>ner core of unreacted gabbro; (2) a<br />

diffuse, some hundred microns broad reaction zone<br />

surround<strong>in</strong>g the gabbroic core; (3) the frozen late-stage<br />

melt which was <strong>in</strong>itially placed only at one side of the<br />

capsule and which is now surround<strong>in</strong>g the whole <strong>in</strong>ner,<br />

gabbroic part of the cyl<strong>in</strong>der. In the reaction zone at least<br />

four different phases can be recognized by their different<br />

gray levels. We assume that <strong>in</strong> addition to the three phases<br />

of the primary gabbro (plagioclase, cl<strong>in</strong>opyroxene, oliv<strong>in</strong>e)<br />

one or more new phases, produced by melt reaction were<br />

generated. Detailed microprobe work which will be carried<br />

out after f<strong>in</strong>ish<strong>in</strong>g the CT <strong>in</strong>vestigations will shed light on<br />

the mechanism of the reaction, e.g., the quantitative<br />

treatment of precipitated (<strong>in</strong>terstitial) m<strong>in</strong>erals, or the<br />

record of diffusional processes. The comb<strong>in</strong>ed techniques<br />

of CT and microanalytical analyses will lead to the<br />

determ<strong>in</strong>ation of realistic rates of reaction and/or diffusion,<br />

enabl<strong>in</strong>g, for the first time, the quantification of the time<br />

scales on late-stage melt percolation ongo<strong>in</strong>g <strong>in</strong> the deep<br />

oceanic crust.<br />

(4) In-situ isotope analyses on late-stage parageneses <strong>in</strong><br />

natural rocks.<br />

S<strong>in</strong>ce it has been recently discussed whether late-stage<br />

magmatic processes can also be the result of hydrothermal<br />

circulation <strong>in</strong> the deep oceanic crust at very high<br />

(magmatic) temperatures, we applied <strong>in</strong>-situ isotope<br />

analyses on late-stage parageneses <strong>in</strong> natural rocks <strong>in</strong> order<br />

to discrim<strong>in</strong>ate between hydrous primary magmatic, and<br />

seawater-<strong>in</strong>duced late-stage processes. We used the LA-<br />

MC-ICPMS system, recently developed <strong>in</strong> <strong>Hannover</strong>,<br />

consist<strong>in</strong>g of a femtosecond laser and a multiple collector<br />

<strong>in</strong>ductively coupled plasma mass spectrometer on selected<br />

late-stage phases <strong>in</strong> the 735B gabbros <strong>in</strong> order to clarify the<br />

nature of these fluids, i.e., whether they are pure magmatic<br />

or seawater-<strong>in</strong>fluenced. Provided that the fluids show a<br />

general impr<strong>in</strong>t of seawater, these results may help to<br />

establish new cool<strong>in</strong>g models of the deep oceanic crust<br />

consider<strong>in</strong>g the additional cool<strong>in</strong>g effect of hydrothermal<br />

circulation at very high temperatures.<br />

First <strong>in</strong>-situ Sr isotope analyses are done. In spite of<br />

severe analytical difficulties (e.g. extreme low Sr<br />

concentration <strong>in</strong> the correspond<strong>in</strong>g An-enriched<br />

plagioclases, irregularities due to variable concentrations<br />

of N2 <strong>in</strong> the Ar used so far based on a bottle supply), first<br />

reliable <strong>in</strong>-situ Sr measurements on An-enriched<br />

plagioclases from a 735B gabbro from SWIR reveal<br />

enriched<br />

29<br />

87 Sr/ 86 Sr-ratios, imply<strong>in</strong>g an <strong>in</strong>fluence of<br />

seawater-derived fluids dur<strong>in</strong>g formation.<br />

The <strong>in</strong>-situ iron isotope measurements on a late-stage<br />

oxide paragenesis <strong>in</strong> a 735B gabbro from SWIR, consist<strong>in</strong>g<br />

of ilmenite-magnetite-pyrrhotite, reveal that the pyrrhotite<br />

cannot be <strong>in</strong> isotopic equilibrium with magnetite and<br />

ilmenite which is suggested by the texture. Most probably,<br />

the pyrrhotite was formed by sulfidic precursor material<br />

which was previously altered by seawater, or the pyrrhotite<br />

was re-equilibrated <strong>in</strong> the presence of seawater at high<br />

temperature after the formation of this paragenesis.<br />

References:<br />

Botcharnikov R.E. et al. (<strong>in</strong> revision) Experimental phase relations, m<strong>in</strong>eralmelt<br />

equilibria and liquid l<strong>in</strong>es of descent <strong>in</strong> a hydrous ferrobasalt -<br />

Implications for the Skaergaard <strong>in</strong>trusion and Columbia River flood<br />

basalts. J.Petrol.<br />

Natland J.H., Dick H..J.B., Miller D.J., Von Herzen R.P., (Eds.), 2002. Proc.<br />

ODP, Sci. Results, 176 [CD-ROM]. Available: Ocean Drill<strong>in</strong>g<br />

Program, Texas A&M University, College Station TX 77845-9547,<br />

USA.<br />

Lehnert K., Su Y., Langmuir C.H., Sarbas B., Nohl U. (2000) A global<br />

geochemical database structure for rocks. Geochem Geophys Geosyst<br />

1: 1999GC000026.<br />

Thy P. et al. (2006) Experimental constra<strong>in</strong>ts on the Skaergaard liquid l<strong>in</strong>e<br />

of descent. Lithos 92(1-2), 154-180.<br />

Toplis M. J. & Carroll M. R. (1995) An experimental study of the <strong>in</strong>fluence<br />

of oxygen fugacity on Fe-Ti oxide stability, phase relations, and<br />

m<strong>in</strong>eral-melt equilibra <strong>in</strong> ferro-basaltic systems. J. Petrol. 36(5), 1137-<br />

1170.<br />

Veksler IV, Dorfman AM, Borisov AA, et al. (2007) Liquid immiscibility<br />

and the evolution of basaltic magma. J. Petrol. 48, 2187-2210.<br />

<strong>IODP</strong><br />

How is black shale formation <strong>in</strong> the Early<br />

Eocene Arctic Ocean <strong>in</strong>fluenced by export of<br />

terrestrial organic matter? Details from an<br />

organic petrological approach on mar<strong>in</strong>e<br />

sediments from <strong>IODP</strong> Hole 302 (Lomonosov<br />

Ridge)<br />

B.BOUCSEIN 1 , J.KNIES 2 , R.STEIN 3<br />

1 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research,<br />

Research Unit Potsdam, D-14473 Potsdam, Germany<br />

2 Geological Survey of Norway, NO-7491 Trondheim, Norway<br />

3 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, D-27568<br />

Bremerhaven, Germany<br />

In 2004 the <strong>IODP</strong> Expedition 302 (ACEX) recovered a<br />

430m thick sequence of upper Cretaceous to Quaternary<br />

sediments on the Lomonosov Ridge <strong>in</strong> the central Arctic<br />

Ocean (Backman et al. 2006). For the first time <strong>in</strong>sights <strong>in</strong><br />

the environmental Pre-Pleistocene history of the Arctic<br />

Ocean are possible (see e.g. Br<strong>in</strong>khuis et al. 2006, Moran et<br />

al. 2006). Our results of the organic geochemical basis<br />

parameters (total organic carbon (TOC), stable carbon<br />

isotopes (δ13C), total organic carbon/total nitrogen (C/N)<br />

ratios, total organic carbon/total sulphur (C/S) ratios,<br />

Hydrogen <strong>in</strong>dices) and first maceral data on the entire ca.


30<br />

200m thick Paleogene organic carbon (OC) rich section<br />

have been published recently (Ste<strong>in</strong> et al. 2006).<br />

Here, we will focus on the black shales formed dur<strong>in</strong>g<br />

the global δ 13 C-events Paleocene/Eocene Thermal<br />

Maximum (PETM) and Elmo. New detailed organic<br />

petrographical data (maceral analysis) are compared with<br />

the results of organic geochemistry (basis parameter,<br />

organic and <strong>in</strong>organic nitrogen fraction). Such comb<strong>in</strong>ed<br />

petrographical and organic geochemical approaches were<br />

established dur<strong>in</strong>g the last decades, especially to solve<br />

questions concern<strong>in</strong>g the paleoenvironmental conditions of<br />

recent and ancient mar<strong>in</strong>e deposits.<br />

Dur<strong>in</strong>g the Paleocene/Eocene the Early Arctic Ocean<br />

was an enclosed bas<strong>in</strong> <strong>in</strong>fluenced by warm surface-water<br />

temperatures as <strong>in</strong>dicated by TEX86’ data (Sluijs et al.<br />

2006). Data on e.g. radiolarians, terrestrial palynomorphs<br />

(Backman et al. 2006) and maceral data (Boucse<strong>in</strong> and<br />

Ste<strong>in</strong>, subm.) give evidence for river run-off caus<strong>in</strong>g lowsurface<br />

sal<strong>in</strong>ity. Therefore, fluvial nutrient supply may<br />

have <strong>in</strong>duced primary productivity as it is also suggested<br />

from the abundances of mar<strong>in</strong>e diatoms and diatom rest<strong>in</strong>g<br />

spores (Backman et al. 2006). The isolated position of the<br />

Arctic Ocean dur<strong>in</strong>g that time comb<strong>in</strong>ed with freshwater<br />

discharge support the idea of OC accumulation <strong>in</strong> an<br />

anoxic bas<strong>in</strong> with a stratified water column. We found<br />

abundances of f<strong>in</strong>ely dispersed and small sized pyrite<br />

framboids (20%) are found and correlate with <strong>in</strong>creased OI values<br />

(200-400mg CO2/gC). Moreover, we found pyrofus<strong>in</strong>ite <strong>in</strong><br />

the <strong>in</strong>ert<strong>in</strong>ite fraction which is <strong>in</strong>terpreted as an <strong>in</strong>dicator<br />

for vegetation fires <strong>in</strong> the h<strong>in</strong>terland.<br />

Drastic environmental changes are supposed for the<br />

depostion of the ACEX black-shales dur<strong>in</strong>g the Early<br />

Eocene. Especially dur<strong>in</strong>g the PETM and Elmo event a<br />

significant <strong>in</strong>crease <strong>in</strong> the 'aquatic/mar<strong>in</strong>e group' is found.<br />

High amounts of alg<strong>in</strong>itic material (40-45%) and bitum<strong>in</strong>ite<br />

(up to 50%) together with <strong>in</strong>creased HI values (250-300<br />

mgHC/gC) are found. Characteristically are the f<strong>in</strong>ely<br />

lam<strong>in</strong>ated sediments of bitum<strong>in</strong>itic layers, <strong>in</strong>clud<strong>in</strong>g well<br />

preserved alg<strong>in</strong>ite bodies of freshwater and mar<strong>in</strong>e orig<strong>in</strong>.<br />

Here, the major aquatic macerals are lamalg<strong>in</strong>ite and<br />

liptodetr<strong>in</strong>ite (fragmented lipt<strong>in</strong>itic particles


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Littke, R. (1993): Deposition, diagenesis, and weather<strong>in</strong>g of organic matterrich<br />

sediments: Lect. Earth Sci. 47, Berl<strong>in</strong>, Spr<strong>in</strong>ger Verlag, 217 p.<br />

Moran, K., Backman, J., Br<strong>in</strong>khuis, H., Clemens, S.C., Cron<strong>in</strong>, T., Dickens,<br />

G.R., Eynaud, F., Gattacceca, J., Jakobsson, M., Jordan, R.W.,<br />

Kam<strong>in</strong>ski, M., K<strong>in</strong>g, J., Koc, N., Krylov, A., Mart<strong>in</strong>ez, N.,<br />

Matthiessen, J., McInroy, D., Moore, T.C., Onodera, J., O’Regan,<br />

A.M., Pälike, H., Rea, B. Rio, D., Sakamoto, T. Smith, D.C., Ste<strong>in</strong>, R.,<br />

John, K., Suto, I., Suzuki, N., Takahashi, K., Watanabe, M.,<br />

Yamamoto, M., Frank, M., Jokat, W., Kristoffersen, Y. (2006): The<br />

Cenozoic paleoenvironment of the Arctic Ocean. Nature 441, 601-605.<br />

Sluijs, A., Schouten, S., Pagani, M., Wolter<strong>in</strong>g, M., Br<strong>in</strong>khuis, H.,<br />

S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., Dickens, G.R., Huber, M., Reichart, G.J, Ste<strong>in</strong>,<br />

R., Matthiessen, J., Lourens, L.J., Pedentchouk, N., Backman, J.,<br />

Moran, K. , the Expedition 302 Scientists, 2006. Subtropical Arctic<br />

Ocean temperatures dur<strong>in</strong>g the Paleocene Eocene thermal maximum,<br />

Nature, 441, 610-613.<br />

Ste<strong>in</strong>, R., Boucse<strong>in</strong>, B. and Meyer, H. (2006): Anoxia and high primary<br />

production <strong>in</strong> the Paleogene central Arctic Ocean: First detailed records<br />

from Lomonosov Ridge, Geophys. Res. Lett., 33, L18606. doi:<br />

10.1029/2006GL026776<br />

31


32<br />

<strong>ICDP</strong><br />

The different degass<strong>in</strong>g behaviour of upper<br />

mantle-derived fluids <strong>in</strong> the western Eger rift<br />

area – a detailed characterization of a hidden<br />

presently active magmatic process<br />

K. BRÄUER 1 , H. KÄMPF 2 , K. HAHNE 3 , G. STRAUCH 1<br />

1 Helmholtz Centre for Environmental Research -UFZ<br />

2 GeoForschungsZentrum Potsdam a Helmholtz Centre<br />

3 Bundesanstalt für Geowissenschaften und Rohstoffe, <strong>Hannover</strong><br />

The figure 1 rem<strong>in</strong>ds at the situation with<strong>in</strong> the shallow<br />

Neogene Cheb bas<strong>in</strong>. The position of our monitor<strong>in</strong>g<br />

locations is shown <strong>in</strong> relation to the major fault zones as<br />

well as to the epicentral areas of two micro-swarms which<br />

have taken place dur<strong>in</strong>g our <strong>in</strong>vestigation period. As a<br />

result of the detailed fluid monitor<strong>in</strong>g studies before,<br />

dur<strong>in</strong>g and after the seismically active period 2000 could<br />

be shown that the sensitivity of the locations due to<br />

seismically <strong>in</strong>duced changes of the fluid characteristics<br />

depends on the distance to the hypocenter and to active<br />

fault (Bräuer et al. submitted).<br />

The cont<strong>in</strong>ued monthly monitor<strong>in</strong>g of the gas and<br />

isotope composition have been focused to locations closed<br />

to the faults. Two micro-swarms have been established <strong>in</strong><br />

June 2005 and February 2007 and seismically <strong>in</strong>duced<br />

release of crustal-derived helium has been observed aga<strong>in</strong>.<br />

The spr<strong>in</strong>gs Kopan<strong>in</strong>a and U Mostku are characterized by<br />

greater variations of the gas and isotope composition than<br />

the Bublák mofette. At both locations the gas flux is clearly<br />

lower than at the Bublák mofette although at all three<br />

locations the gas percolates only through low m<strong>in</strong>eralised<br />

water and with low pH values. The production of HCO3 -<br />

may be negligibly and therefore not responsibly for the<br />

observed variations of the δ 13 C values<br />

But more <strong>in</strong>terest<strong>in</strong>gly there is a clear contemporaneous<br />

<strong>in</strong>crease of the 3 He/ 4 He ratios at locations U Mostku and<br />

Bublák along the Počatky Plesná fault zone (Fig. 2) for<br />

about three months. This <strong>in</strong>crease of mantle-derived helium<br />

from March to May 2006 may be an <strong>in</strong>dication of a small<br />

magmatic (dyke) <strong>in</strong>trusion at the PPZ from uppermost<br />

mantle <strong>in</strong>to the lower crust. An <strong>in</strong>crease of upper mantlederived<br />

helium is <strong>in</strong>dicated at Kopan<strong>in</strong>a, too. The reason<br />

for the smaller <strong>in</strong>crease of mantle helium may be that the<br />

helium content of the Kopan<strong>in</strong>a gas is considerably higher<br />

than at the other locations and so a small addition of mantle<br />

helium can not be observed so clearly. On the other hand,<br />

the supply with mantle-helium could take place<br />

preferentially along the PPZ. However the helium transport<br />

can not be separated from the CO2 the major component of<br />

the magmatic fluids which act as carrier for the helium.<br />

Several clear δ 13 C shifts were found before and dur<strong>in</strong>g the<br />

period of <strong>in</strong>creased 3He/4He ratios at all monitor<strong>in</strong>g<br />

<strong>ICDP</strong><br />

The different degass<strong>in</strong>g behaviour of upper<br />

mantle-derived fluids <strong>in</strong> the western Eger rift<br />

area – a detailed characterization of a hidden<br />

presently active magmatic process<br />

K. BRÄUER 1 , H. KÄMPF 2 , K. HAHNE 3 , G. STRAUCH 1<br />

1 Helmholtz Centre for Environmental Research -UFZ<br />

2 GeoForschungsZentrum Potsdam a Helmholtz Centre<br />

3 Bundesanstalt für Geowissenschaften und Rohstoffe, <strong>Hannover</strong><br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

The figure 1 rem<strong>in</strong>ds at the situation with<strong>in</strong> the shallow<br />

Neogene Cheb bas<strong>in</strong>. The position of our monitor<strong>in</strong>g<br />

locations is shown <strong>in</strong> relation to the major fault zones as<br />

well as to the epicentral areas of two micro-swarms which<br />

have taken place dur<strong>in</strong>g our <strong>in</strong>vestigation period. As a<br />

result of the detailed fluid monitor<strong>in</strong>g studies before,<br />

dur<strong>in</strong>g and after the seismically active period 2000 could<br />

be shown that the sensitivity of the locations due to<br />

seismically <strong>in</strong>duced changes of the fluid characteristics<br />

depends on the distance to the hypocenter and to active<br />

fault (Bräuer et al. submitted).<br />

The cont<strong>in</strong>ued monthly monitor<strong>in</strong>g of the gas and<br />

isotope composition have been focused to locations closed<br />

to the faults. Two micro-swarms have been established <strong>in</strong><br />

June 2005 and February 2007 and seismically <strong>in</strong>duced<br />

release of crustal-derived helium has been observed aga<strong>in</strong>.<br />

The spr<strong>in</strong>gs Kopan<strong>in</strong>a and U Mostku are characterized by<br />

greater variations of the gas and isotope composition than<br />

the Bublák mofette. At both locations the gas flux is clearly<br />

lower than at the Bublák mofette although at all three<br />

locations the gas percolates only through low m<strong>in</strong>eralised<br />

water and with low pH values. The production of HCO3 -<br />

may be negligibly and therefore not responsibly for the<br />

observed variations of the δ 13 C values<br />

But more <strong>in</strong>terest<strong>in</strong>gly there is a clear contemporaneous<br />

<strong>in</strong>crease of the 3 He/ 4 He ratios at locations U Mostku and<br />

Bublák along the Počatky Plesná fault zone (Fig. 2) for<br />

about three months. This <strong>in</strong>crease of mantle-derived helium<br />

from March to May 2006 may be an <strong>in</strong>dication of a small<br />

magmatic (dyke) <strong>in</strong>trusion at the PPZ from uppermost<br />

mantle <strong>in</strong>to the lower crust. An <strong>in</strong>crease of upper mantlederived<br />

helium is <strong>in</strong>dicated at Kopan<strong>in</strong>a, too. The reason<br />

for the smaller <strong>in</strong>crease of mantle helium may be that the<br />

helium content of the Kopan<strong>in</strong>a gas is considerably higher<br />

than at the other locations and so a small addition of mantle<br />

helium can not be observed so clearly. On the other hand,<br />

the supply with mantle-helium could take place<br />

preferentially along the PPZ. However the helium transport<br />

can not be separated from the CO2 the major component of<br />

the magmatic fluids which act as carrier for the helium.<br />

Several clear δ 13 C shifts were found before and dur<strong>in</strong>g the<br />

period of <strong>in</strong>creased 3 He/ 4 He ratios at all monitor<strong>in</strong>g<br />

locations.Dur<strong>in</strong>g the period of exam<strong>in</strong>ation<br />

superimposition of both effects - seismically <strong>in</strong>duced<br />

release of crustal components and the <strong>in</strong>crease of mantlederived<br />

components - have to be taken <strong>in</strong>to account. This<br />

fact makes the <strong>in</strong>terpretation of the distribution pattern<br />

more difficult. Up to now no isotope data are available<br />

accompany<strong>in</strong>g such hidden actual non-volcanic magmatic<br />

process at depth range of uppermost mantle/lower crust.<br />

Based on the isotope signature (He, CO2) it is assumed<br />

that the Mt. Etna volcano is supplied by upper mantlederived<br />

fluids. The δ 13 C values of this prist<strong>in</strong>e magmatic<br />

gas range between -2 and -1‰. Here, the monthly sampl<strong>in</strong>g<br />

at CO2 rich natural gas emissions resulted <strong>in</strong> the<br />

observation of variations of the gas composition, δ 13 C<br />

variations as well as of the 3 He/ 4 He ratios <strong>in</strong> terms of<br />

progressive gas release from separate batches of magma<br />

ascend<strong>in</strong>g <strong>in</strong> a step-wise manner. The observed anomalies<br />

have been <strong>in</strong>terpreted as <strong>in</strong>dications of <strong>in</strong>creased magmatic<br />

degass<strong>in</strong>g from an up-ris<strong>in</strong>g body of fresh magma<br />

(Pecora<strong>in</strong>o and Giammanco, 2005).<br />

In spr<strong>in</strong>g 2007 we repeated the annual sampl<strong>in</strong>g at<br />

several locations of the Cheb bas<strong>in</strong> and of the Mariánské


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig.1 Sampl<strong>in</strong>g locations <strong>in</strong> relation to major faults (MLF =<br />

Mariánské Lázně fault zone; PPZ = Počatky-Plesná fault zone) and<br />

to the Nový Kostel focal zone. The stars mark the June 2005 and<br />

February 2007 micro-swarms. Dashed are the CO2-mapped areas.<br />

The po<strong>in</strong>ted area marks a mofette field that has been characterised<br />

by measurements of CO2-soil gas, gas flux, 13C and 3 He/ 4 He<br />

ratios.<br />

Lázně degass<strong>in</strong>g centre, too. The level of upper mantlederived<br />

helium <strong>in</strong> the eastern part of the Cheb bas<strong>in</strong> is on<br />

the same level as 2005 and consequently still clearly higher<br />

than 1994 whereas the 3 He/ 4 He ratios at the degass<strong>in</strong>g<br />

locations of Mariánské Lázně are nearly the same like 1994<br />

and show only small variations. Further could be confirmed<br />

that the highest values were found at the mofettes along the<br />

PPZ between Hartoušov and Milhostov. At the previous<br />

sampl<strong>in</strong>g 2006 we had found still higher 3 He/ 4 He ratios at<br />

the mofettes Dolni Častkov and Hartoušov. The regional<br />

sampl<strong>in</strong>g has been taken place <strong>in</strong> April 2006 and these high<br />

values are <strong>in</strong> consistence with period of <strong>in</strong>creased 3 He/ 4 He<br />

ratios at the monitor<strong>in</strong>g locations (Fig. 2) and support these<br />

f<strong>in</strong>d<strong>in</strong>gs. That means <strong>in</strong>dications for magma ascent <strong>in</strong> 2006<br />

have been found at all degass<strong>in</strong>g locations along the PPZ as<br />

well as at the Mariánské Lázně fault zone (MLF) (Fig. 1),<br />

however the highest values are measured along the PPZ.<br />

The situation seems to be different <strong>in</strong> the western part of<br />

the Cheb bas<strong>in</strong>. The long-time trend at the Kaiserquelle<br />

(Soos) - unfortunately the sole location, where we have<br />

taken samples several times - shows no <strong>in</strong>crease of mantle<br />

helium. There are high CO2 fluxes with clear upper mantlederived<br />

helium <strong>in</strong> the nature reserve Soos and Františkový<br />

Lázně but apparently no <strong>in</strong>crease of the mantle helium<br />

level.<br />

In 2006 a detailed mapp<strong>in</strong>g of <strong>in</strong>dications for CO2<br />

degass<strong>in</strong>g have been carried out between Hartoušov and<br />

Oldřišska. Based on this mapp<strong>in</strong>g soil CO2 measurements<br />

have been <strong>in</strong>volved consequently <strong>in</strong> the <strong>in</strong>vestigation<br />

program. In the spr<strong>in</strong>gtime 2007 we have started a soil gas<br />

mapp<strong>in</strong>g <strong>in</strong> the ma<strong>in</strong> degass<strong>in</strong>g area of the PPZ between<br />

Milhostov and Hartoušov south (Fig. 1). More than 400<br />

soil gas measurements were carried out from mid of April<br />

to end of May, 2007. The soil gas measurements have been<br />

carried out at soil depths between 0.6 and 0.8 m us<strong>in</strong>g with<br />

a mobile NDIR-Photometer system. The distance between<br />

measur<strong>in</strong>g po<strong>in</strong>ts varied from 5 to 10 m. Twelve sub-areas<br />

have been selected based on the mapp<strong>in</strong>g results of 2006<br />

and <strong>in</strong>vestigated from north to south between Milhostov<br />

and Hartoušov south. As a result l<strong>in</strong>ear strik<strong>in</strong>g Diffuse<br />

Degass<strong>in</strong>g Structure (DDS) have been found <strong>in</strong> the subfield<br />

Hartoušov whereas the data of sub-field Bublák north<br />

tend to oval-shaped DDS. The term Diffuse Degass<strong>in</strong>g<br />

Structures (DDS) was <strong>in</strong>troduced by Chiod<strong>in</strong>i et al. (2001).<br />

The soil gas measurements <strong>in</strong> the surround<strong>in</strong>g of Bublák let<br />

us assume a large highly permeable degass<strong>in</strong>g zone<br />

(dimension: ca. 1 km <strong>in</strong> length and 0.5 km <strong>in</strong> width, signed<br />

as grey area <strong>in</strong> Fig. 3). The strike direction of the Bublák<br />

degass<strong>in</strong>g zone is 340°, which corresponds to the ma<strong>in</strong><br />

strike direction of the PPZ. The distribution pattern of<br />

Hartoušov and surround<strong>in</strong>g, po<strong>in</strong>t to more isolated<br />

structures. The soil gas measurements aimed to trace the<br />

PPZ <strong>in</strong> more detail to get <strong>in</strong>dications for CO2 migration<br />

paths and the <strong>in</strong>ternal structures of the fault zone. Us<strong>in</strong>g<br />

results of Bankwitz et al. (2003) and Schunk et al. (2005)<br />

the PPZ is to specify as active bl<strong>in</strong>d fault zone. We have<br />

used the carbon dioxide concentration <strong>in</strong> soil gas for<br />

trac<strong>in</strong>g bl<strong>in</strong>d fault segments <strong>in</strong> accord<strong>in</strong>g to Ch<strong>in</strong>g-Chou Fu<br />

et al. (2005).<br />

33


34<br />

The understand<strong>in</strong>g of fault zone weaken<strong>in</strong>g connected<br />

with fluid- and seismically active processes along the<br />

<strong>in</strong>tersection of the PPZ zone and the MLF zone has to be<br />

supported by quantify<strong>in</strong>g the gas flux. Therefore beneath<br />

the soil gas mapp<strong>in</strong>g gas flow measurement at water-filled<br />

mofettes have been started. Funnels with diameters up to<br />

0.70 m we used to cover the mofettes. The gas flow was<br />

measured us<strong>in</strong>g gas flow meters (Ritter/TG05/5, TG5/5,<br />

TG25-5) with different sensibility due to different strong<br />

gas flow. The summarized gas flow rate of 15 measur<strong>in</strong>g<br />

po<strong>in</strong>ts of the mofette field Bublák was about 28,000 L/h<br />

measured 1995/96 (We<strong>in</strong>lich et al. (1998). In 2007 we have<br />

measured about 34,000 L/h for the same area. This f<strong>in</strong>d<strong>in</strong>g<br />

corresponds to an <strong>in</strong>creased gas flow rate of approximately<br />

20% s<strong>in</strong>ce 1996.<br />

Figure 3 shows the position of gas rich vents <strong>in</strong>clud<strong>in</strong>g<br />

their isotope signatures and po<strong>in</strong>ts to the great<br />

importance of Bublák mofette field (grey marked).<br />

Our latest results suppose that the detected degass<strong>in</strong>g<br />

area <strong>in</strong> the surround<strong>in</strong>g of Bublák which is characterized by<br />

a extreme high level of gas flow comb<strong>in</strong>ed with a subcont<strong>in</strong>ental<br />

isotopic signature of the free gas phase is the<br />

structure segment <strong>in</strong>side of the Počatky-Plesná fault act<strong>in</strong>g<br />

as deep-reach<strong>in</strong>g mantle-fluid <strong>in</strong>jection zone.<br />

The ris<strong>in</strong>g upper mantle-derived helium portions<br />

between 1993 and 2007, the <strong>in</strong>crease of the gas flux rate of<br />

the Bublák mofette field between 1995 and 2007, and the<br />

three months last<strong>in</strong>g contemporaneous <strong>in</strong>crease of the<br />

3 He/ 4 He ratios at U Mostku and Bublák <strong>in</strong> 2006 po<strong>in</strong>t to a<br />

long last<strong>in</strong>g active magmatic processes beneath the area<br />

comparable to the magmatic unrest beneath Mammoth<br />

Mounta<strong>in</strong>, California (Hill and Prejean, 2005).<br />

In Europe, it is the first time that such hidden, presently<br />

active magmatic process has been discovered and<br />

successfully acompanied by detailed isotope-geochemical<br />

monitor<strong>in</strong>g studies.<br />

Fig. 2 Time-series of the 3 He/ 4 He ratios of the monitor<strong>in</strong>g locations<br />

with<strong>in</strong> the Cheb bas<strong>in</strong> between April 2005 and August 2007.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 3 The po<strong>in</strong>ted area marks the characterised mofette field. The<br />

dimension of the stars correspond to the gas flux, the numbers<br />

present the 13C values (above) and the 3 He/ 4 He ratios as R/Ra<br />

values (below) of s<strong>in</strong>gle vents, respectively.<br />

References:<br />

Bräuer K., H. Kämpf, S. Niedermann, G. Strauch and J. Tesař, The natural<br />

laboratory NW Bohemia – Comprehensive fluid studies between 1992<br />

and 2005 to trace geodynamic processes. Submitted to Geochemistry,<br />

Geophysics, Geosystems<br />

Chiod<strong>in</strong>i G., F. Frond<strong>in</strong>i, C. Cardell<strong>in</strong>i, D. Granieri, L. Mar<strong>in</strong>i and G.<br />

Ventura, CO2 degass<strong>in</strong>g and energy release at Solfatara volcano,<br />

Campi Flegrei, Italy, J. Geophys. Res. 106, B8, 16,213-16,221, 2001.<br />

Fu C.-C, T. F. Yang, V. Walita and C.-H. Chen, Reconnaissance of soil gas<br />

composition over the buried fault and fracture zone <strong>in</strong> southern Taiwan,<br />

Geochem. J. 39, 427-439, 2005.<br />

Hill D.P. and S. Prejean.: Magmatic unrest beneath Mammoth Mounta<strong>in</strong>,<br />

California, J. Volcanol. Geotherm. Res. 146, 257-283, 2005.<br />

Pecora<strong>in</strong>o G,, Giammanco S., Geochemical characterization and temporal<br />

changes <strong>in</strong> parietal gas emissions at Mt. Etna (Italy) dur<strong>in</strong>g the period<br />

July 2000 – July 2003, TAO 16, 805-841, 2005.<br />

Schunk R., A. Peterek and C.-D. Reuther, Stop 6a-c.- In: Kämpf H., A.<br />

Peterek, J. Rohrmüller, H.-J. Kümpel and W.H. Geissler (Eds.), The<br />

KTB Deep Crustal Laboratory and the western Eger Graben,<br />

Schriftenreihe der Deutschen Gesellschft für Geowissenschaften, H.<br />

40, 65-71, 2005.<br />

We<strong>in</strong>lich, F.H., J. Tesar, S.M. Weise, K. Bräuer and H. Kämpf, Gas flux<br />

distribution <strong>in</strong> m<strong>in</strong>eral spr<strong>in</strong>gs and tectonic structure <strong>in</strong> the western<br />

Eger Rift, J. Czech Geol. Soc. 43/1-2, 91-110, 1998.<br />

<strong>ICDP</strong><br />

Active and passive seismic images of the San-<br />

Andreas-Fault at SAFOD<br />

S. BUSKE 1 , S. GUTJAHR 1 , S. RENTSCH 1 , A., RESHETNIKOV 1 , S.<br />

SHAPIRO 1<br />

1 Freie Universität Berl<strong>in</strong>, Institute for Geological Sciences,<br />

Malteserstrasse 74-100, 12249 Berl<strong>in</strong>, Germany,<br />

buske@geophysik.fu-berl<strong>in</strong>.de<br />

High-quality active and passive seismic data have been<br />

acquired <strong>in</strong> the vic<strong>in</strong>ity of the San-Andreas-Fault (SAF)<br />

system with<strong>in</strong> EarthScope project SAFOD (San-Andreas-<br />

Fault Observatory at Depth). We have processed parts of<br />

the available data sets us<strong>in</strong>g newly developed techniques <strong>in</strong><br />

order to derive a high-resolution image of the subsurface <strong>in</strong><br />

the vic<strong>in</strong>ity of the fault system.<br />

On one hand we applied Fresnel-Volume-Migration to<br />

the SAFOD2003 reflection seismic data set. This imag<strong>in</strong>g<br />

approach delivers high-quality images with many steeply<br />

dipp<strong>in</strong>g structures related to the SAF system. On the other<br />

hand we applied a novel migration-type location algorithm<br />

to passive seismic data recorded <strong>in</strong> the SAFOD ma<strong>in</strong> hole.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

We have located a number of local events <strong>in</strong> the vic<strong>in</strong>ity of<br />

the fault system. Most of the located events show a clear<br />

correlation to the obta<strong>in</strong>ed structural fault image. A<br />

modification of the location algorithm also allowed the<br />

precise location of a so called ‘target event’, which was the<br />

subject of the planned drill<strong>in</strong>g activities <strong>in</strong> SAFOD Phase<br />

3.<br />

We have comb<strong>in</strong>ed our results (target events, structural<br />

image) with additional available <strong>in</strong>formation (seismicity,<br />

borehole logs, shallow seismic images, etc.). Altogether<br />

this comb<strong>in</strong>ed image provides a basis for a comb<strong>in</strong>ed<br />

<strong>in</strong>terpretation of the structure and the earthquake dynamics<br />

of this mega-shear zone on different scales and <strong>in</strong> particular<br />

<strong>in</strong> the vic<strong>in</strong>ity of the SAFOD borehole.<br />

Active seismic imag<strong>in</strong>g<br />

In the year 2003 an approximately 50 km long<br />

comb<strong>in</strong>ed reflection/refraction profile has been acquired<br />

perpendicular to the strike of the San-Andreas-Fault-<br />

System at Parkfield (California, USA) (Hole et al. 2006,<br />

Bleib<strong>in</strong>haus et al. 2006). The survey layout consisted of<br />

912 three-component receivers for each shot along the<br />

whole profile. We used the vertical component of 42 shot<br />

gathers of this data set. The preprocess<strong>in</strong>g consisted of<br />

bandpass filter<strong>in</strong>g, AGC and trace normalization. In<br />

particular we avoided any k<strong>in</strong>d of wavenumber filter<strong>in</strong>g <strong>in</strong><br />

order not to suppress deeply stipp<strong>in</strong>g reflections. We<br />

applied Fresnel-Volume-Migration (FVM) (Lüth et al.,<br />

2005, Buske et al., 2006) to each shot gather separately and<br />

stacked the absolute values of these s<strong>in</strong>gle migrated shot<br />

gathers. The velocity model used for the computation of<br />

the Green’s functions was derived from first-arrival<br />

tomography (Bleib<strong>in</strong>haus et al. 2006). Fig 1a shows the<br />

FVM result. The green, red and blue ticks along the upper<br />

boundary of the image mark the surface trace position of<br />

the Buzzard-Canyon-Fault (BCF), the San-Andreas-Fault<br />

(SAF) and the Waltham-Canyon-Fault (WCF),<br />

respectively. In order to verify the result<strong>in</strong>g structural<br />

features we also constructed ‘one-sided’ images by<br />

stack<strong>in</strong>g only those migrated shot gathers for which the<br />

shot location was ‘left’ or ‘right’ of the SAF. These ‘leftlateral’<br />

(LL) and ‘right-lateral’ (RL) images illum<strong>in</strong>ate the<br />

SAF system from only one side and allow for a verification<br />

of the dip and lateral position of the observed reflector<br />

elements. The LL-image (Fig. 1b) conta<strong>in</strong>s 23 migrated<br />

shot gathers and the RL-image (Fig. 1c) 19 migrated shot<br />

gathers, respectively. The SAF appears <strong>in</strong> Fig. 1a as well as<br />

<strong>in</strong> the LL-image (Fig. 1b) as a strong subvertical reflector<br />

which can be followed from its surface trace down to about<br />

4 km depth. At that depth it converges to a second even<br />

stronger subvertical reflector (Fig. 1a and RL-image <strong>in</strong> Fig.<br />

1c) which correlates with the BCF approximately 2 km left<br />

of the SAF. Also the WCF about 9 km right of the SAF<br />

shows up down to a depth of 5 km (especially <strong>in</strong> the RLimage<br />

<strong>in</strong> Fig. 1c). Furthermore a bunch of subvertical<br />

reflectors appears at shallow depths over a distance of 10<br />

km left of the SAF. Another slightly diffuse reflector is<br />

visible <strong>in</strong> the RL-image approximately 15 km left of the<br />

SAF down to a depth of 10 km (Fig. 1c). Both latter<br />

features have no yet known surface expression and do not<br />

show any k<strong>in</strong>d of tectonic activity (seismicity), however a<br />

comparison with geodynamic model<strong>in</strong>g results shows that<br />

the existence of such faults is realistic.<br />

Passive seismic imag<strong>in</strong>g<br />

We have applied a novel migration-type location<br />

algorithm (Rentsch et al., 2007a, b) to passive seismic data<br />

recorded with an 80-level-3C-receiver array <strong>in</strong> the SAFOD<br />

ma<strong>in</strong> hole. A modification of the location algorithm<br />

allowed the precise location of the ‘target event’ of May 5,<br />

2005. Fig. 2 shows vertical and horizontal depth slices<br />

through the image volume. The high amplitudes of stacked<br />

energy mark the hypocenter of the event. It is located<br />

approximately 150 m above the borehole trajectory which<br />

has meanwhile passed this area. Estimated (maximum)<br />

errors of our location are on the order of 50-75 meters.<br />

This target event of May 5, 2005 belongs to the San-<br />

Francisco target event cluster, which was the orig<strong>in</strong>ally<br />

planned subject of the drill<strong>in</strong>g activities <strong>in</strong> SAFOD Phase<br />

3. Unfortunately the orig<strong>in</strong>al plans have been changed and<br />

the currently ongo<strong>in</strong>g SAFOD drill<strong>in</strong>g phase 3 is<br />

concentrated on the Hawaii cluster target events below the<br />

orig<strong>in</strong>al borehole trajectory.<br />

Beside the mentioned target event we have located a<br />

number of local events <strong>in</strong> the vic<strong>in</strong>ity of the fault system.<br />

Most of these local events show a clear correlation to<br />

certa<strong>in</strong> reflect<strong>in</strong>g elements of the SAF system (Fig. 3).<br />

Outlook<br />

Our current work is concentrated towards the usage of<br />

reflections from nearby branches of the SAF system<br />

conta<strong>in</strong>ed with<strong>in</strong> the passive seismic borehole data. We<br />

therefore process the recorded earthquakes as ‘pseudoactive’<br />

shots with known (located) source coord<strong>in</strong>ates.<br />

Then we try to image these reflections <strong>in</strong> order to obta<strong>in</strong> a<br />

high-resolution image of the fault structure <strong>in</strong> the direct<br />

vic<strong>in</strong>ity of the SAFOD borehole. This will allow a<br />

calibration of the active surface image (Fig. 1) as well as<br />

direct comparison with other imag<strong>in</strong>g approaches, e.g.<br />

<strong>in</strong>terferometric techniques, which are currently undertaken<br />

by various work<strong>in</strong>g groups.<br />

References<br />

Bleib<strong>in</strong>haus, F., Hole, J.A., Ryberg, T. and Fuis, G.S., Structure of the<br />

California coast ranges and San Andreas Fault at SAFOD from seismic<br />

wavef<strong>in</strong>version and reflection imag<strong>in</strong>g. Journal of Geophysical<br />

Research, 2007.<br />

Buske, S., Heigel, M. and Lüth, S., Fresnel-Volume-Migration of s<strong>in</strong>glecomponent<br />

seismic data. EAGE 68th annual meet<strong>in</strong>g and technical<br />

exhibition, Vienna, Expanded Abstracts, G044, 2006.<br />

Hole, J.A., Ryberg, T., Fuis, G.S., Bleib<strong>in</strong>haus, F. and Sharma, A.K.,<br />

Structure of the San Andreas fault zone at SAFOD from a seismic<br />

refraction survey. Geophysical Research Letters 33(7), 1-4, 2006.<br />

Lüth, S., Buske, S., Görtz, A. and Giese, R., Fresnel-Volume-Migration of<br />

multicomponent data. Geophysics 70(6), S121-S129, 2005.<br />

Rentsch, S., Buske, S.., Lüth, S. and Shapiro, S., Fast location of seismicity:<br />

a migration-type approach with application to hydraulic fractur<strong>in</strong>g data.<br />

Geophysics, vol. 72, No. 1, S33-S40, 2007a.<br />

Rentsch, S., Buske, S., Gutjahr, S., Kummerow, J. and Shapiro, S.A.,<br />

Migration-based location of SAFOD target earthquakes. EAGE 69th<br />

annual meet<strong>in</strong>g and technical exhibition, London, Expanded Abstracts,<br />

H003, 2007b.<br />

35


36<br />

Fig. 1 SAFOD2003 - FVM results. (a) Stack of 42 migrated shot<br />

gathers along the whole profile. (b) ‘left-lateral’ (LL) image<br />

obta<strong>in</strong>ed by stack<strong>in</strong>g 23 migrated shot gathers left of the SAF. (c)<br />

‘right-lateral’ (RL) image obta<strong>in</strong>ed by stack<strong>in</strong>g 19 migrated shot<br />

gathers right of the SAF. All images are two times vertically<br />

exaggerated.<br />

Fig. 2 Vertical and horizontal slices through the location<br />

image volume. The target event location is marked by the high<br />

amplitude values.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 3 Zoomed and mirrored part of the reflection image <strong>in</strong> the<br />

vic<strong>in</strong>ity of the SAFOD borehole. Most of the located events (black<br />

dots) are related to certa<strong>in</strong> branches of the SAF system.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Experimental Constra<strong>in</strong>ts on Magma Ascent<br />

at Unzen Volcano, Japan<br />

CICHY, S.B. 1 , BOTCHARNIKOV, R.E. 1 , HOLTZ, F. 1 , BEHRENS, H. 1 ,<br />

SATO, H. 2<br />

1 Institut fuer M<strong>in</strong>eralogie, Leibniz Universitaet <strong>Hannover</strong>,<br />

Call<strong>in</strong>str.3, 30167 <strong>Hannover</strong>, Germany<br />

(s.cichy@m<strong>in</strong>eralogie.uni-hannover.de)<br />

2 Dept. of Earth and Planetary Science, Kobe University, Japan<br />

The project is aimed to model physical and chemical<br />

processes occurr<strong>in</strong>g <strong>in</strong> the conduit of Unzen volcano on<br />

magma ascent dur<strong>in</strong>g recent (1991-1995) eruption. The<br />

ma<strong>in</strong> objective of this experimental approach is to<br />

reproduce experimentally the vesicularity, texture, m<strong>in</strong>eral<br />

assemblage and m<strong>in</strong>eral composition analyzed <strong>in</strong><br />

groundmass of Unzen volcanic rocks sampled at the<br />

surface and at depth (core samples from <strong>ICDP</strong>-drill<strong>in</strong>g).<br />

Isothermal decompression experiments, performed at<br />

different decompression rates (us<strong>in</strong>g rhyodacite or Unzen<br />

groundmass composition as start<strong>in</strong>g material), will simulate<br />

magma ascent from ca. 10 to 1.5 km depth (below the<br />

<strong>ICDP</strong> target) and from ~1.5 km to shallow depths (above<br />

the <strong>ICDP</strong> target) parts of the Unzen magmatic conduit.<br />

Here we report first results on magma ascent <strong>in</strong> the deeper<br />

conduit obta<strong>in</strong>ed from experiments on decompression from<br />

300 to 50 MPa at 850°C. The multi-step decompression<br />

experiments have been conducted with decompression<br />

rates vary<strong>in</strong>g from 0.0005 to 20 MPa/s. Two experimental<br />

series were carried out <strong>in</strong> parallel: one us<strong>in</strong>g only water as<br />

a fluid component (H2O-saturated) and the other us<strong>in</strong>g<br />

water and carbon dioxide fluid (H 2O+CO 2-bear<strong>in</strong>g; with<br />

mole fraction of H2O <strong>in</strong> the fluid ~0.6).<br />

The experimental products consist of pyroxenes,<br />

amphiboles (Amph), plagioclases (Pl), oxides and glass. At<br />

isobaric conditions at 300 MPa Pl microlites are not<br />

observed <strong>in</strong> the water-saturated system and crystallize as a<br />

result of decompression only at the very slow<br />

decompression rate of 0.0005 MPa/s. Chemical analysis of<br />

the experimental products showed that the width of Amph<br />

reaction rims <strong>in</strong> water-saturated samples <strong>in</strong>creases with<br />

decreas<strong>in</strong>g decompression rate and reach up to 4 µm at<br />

decompression of 0.0005 MPa/s. On the other hand, the<br />

Mg numbers of Amph cores (Mg#=0.64-0.69) and reaction<br />

rims (Mg#=0.60-0.66) do not show systematic dependence<br />

on decompression rate and are slightly lower than the<br />

values of 0.65-0.75 <strong>in</strong> natural Amph <strong>in</strong> the Unzen<br />

groundmass. The anorthite (An) contents of the<br />

experimentally grown Pl microlites (An ~45-65 mol%) are<br />

consistent with An values of natural Pl microlites. The<br />

SiO2-content of the residual melt <strong>in</strong>creases with decreas<strong>in</strong>g<br />

decompression rate po<strong>in</strong>t<strong>in</strong>g out that melts produced at<br />

slow decompression rate (H2O+CO2-bear<strong>in</strong>g sample ~79<br />

wt%; H2O-saturated sample ~74.5 wt%) are close to the<br />

natural matrix glasses with SiO2-content of 78-80 wt%.<br />

Our determ<strong>in</strong>ed bubble number density (BND) values<br />

range from 1014 m-3 to 1016 m-3 at slow and fast<br />

decompression, respectively, except at 0.0005 MPa/s where<br />

the BND value of the water-saturated system <strong>in</strong>creases 1-2<br />

orders of magnitude with the crystallization of Pl. Those Pl<br />

microlites <strong>in</strong> the H2O-saturated sample might provide<br />

additional nucleation sites for bubbles and therefore have<br />

an <strong>in</strong>fluence on the BND. The length of those<br />

experimentally grown Pl reaches up to 200-250 μm which<br />

is consistent with Pl sizes <strong>in</strong> natural samples (Noguchi et<br />

al., <strong>in</strong> press). Our microlite number density (MND) values<br />

range from 1016 m-3 to 1018 m-3 at slow and fast<br />

decompression, respectively. The experimental BND<br />

values obta<strong>in</strong>ed at slow decompression are close to the<br />

values of natural samples (BND=1010-1015 m-3) while the<br />

experimental MNDs are at least one order of magnitude<br />

higher than that from natural samples (MND=1014-1015<br />

m-3).<br />

The water exsolution rates, calculated from MND<br />

values us<strong>in</strong>g the model of Toramaru et al. (<strong>in</strong> press),<br />

decrease with decreas<strong>in</strong>g decompression rate vary<strong>in</strong>g from<br />

1.9x10-4 wt%/s at slow to 1.3x10-3 wt%/s at fast<br />

decompression whereas the water exsolution rates<br />

calculated for natural samples are lower, rang<strong>in</strong>g from<br />

3.7x10-6 to 1.7x10-5 wt%/s. Thus, the experimental results<br />

<strong>in</strong>dicate that the ascent rates of Unzen magmas were close<br />

to or lower than ~ 6 m/hour. These values are <strong>in</strong> the same<br />

order of magnitude as the estimated rate of 12-30 m/hour<br />

(Nakada and Motomura, 1999). However, it has to be noted<br />

that ascent rates are probably not constant over the whole<br />

conduit and that the experimental dataset needs to be<br />

completed to better bracket the possible range of natural<br />

conditions.<br />

Further decompression experiments for lower pressures<br />

(from <strong>in</strong>itial 50 MPa to f<strong>in</strong>al 10 and to 5 Mpa) are planed to<br />

reproduce the conditions at shallower depths. In addition,<br />

we will perform similar decompression experiments at a<br />

temperature higher than 850°C (e.g. 930°C which is close<br />

to the pre-eruptive temperature). Those experiments shall<br />

be conducted <strong>in</strong> <strong>in</strong>ternal heated pressure vessels (IHPV),<br />

which is requir<strong>in</strong>g the <strong>in</strong>stallation of specific<br />

decompression-compatible devices. We have also started<br />

an experimental series to study the phase stabilities of the<br />

1991-1995 Unzen groundmass, ma<strong>in</strong>ly Amph and Pl. We<br />

will conduct isobaric experiments at 300, 200, 100 and 50<br />

MPa, and at different temperatures (800-950°C) and mole<br />

fraction of H2O <strong>in</strong> the fluid. This will provide better<br />

understand<strong>in</strong>g and background <strong>in</strong>formation necessary to<br />

<strong>in</strong>terpret our decompression experiments.<br />

References: Nakada, S. & Motomura,Y.: JVGR 89 (1999) 173-196;<br />

Noguchi, S. et al. (<strong>2008</strong>) JVGR, <strong>in</strong> press; Toramaru, A. et al. (<strong>2008</strong>)<br />

JVGR, <strong>in</strong> press<br />

<strong>ICDP</strong><br />

From a fluid like to a brittle behavior: Shear<br />

th<strong>in</strong>n<strong>in</strong>g effect of crystals on Mt Unzen<br />

rheology.<br />

B. CORDONNIER 1 , K.U. HESS 1 , Y. LAVALLÉE 1 , D.B. DINGWELL 1<br />

1 Department of Earth and Environmental Sciences, LMU Munich<br />

Mt Unzen is a back arc volcano located <strong>in</strong> Kyushu<br />

Island (Japan). Its last eruption between 1990 and 1995 can<br />

be described by two major eruptive phases, approximately<br />

20 months <strong>in</strong> duration, and marked by the growth and<br />

destruction of 13 domes. Such behavior generates debris<br />

and pyroclastic flows and is a source of hazard for the<br />

population surround<strong>in</strong>g this volcanic system.<br />

Two common goals of scientific drill<strong>in</strong>g - 1)<br />

understand<strong>in</strong>g the geological structure of the area drilled<br />

and 2) reach<strong>in</strong>g a given target and characteriz<strong>in</strong>g it - have<br />

been achieved by the Unzen Scientific Drill<strong>in</strong>g Program at<br />

Unzen volcano. The project has been divided <strong>in</strong> four<br />

37


38<br />

drill<strong>in</strong>g sites. The first two characterize the global geology<br />

of Beppu-Shimabara graben, the last two have achieved the<br />

first penetration of a recently active volcanic conduit.<br />

Those last two drillholes have facilitated a significant<br />

improvement <strong>in</strong> our understand<strong>in</strong>g of magma evolution<br />

dur<strong>in</strong>g ascent. They do so by provid<strong>in</strong>g a w<strong>in</strong>dow on the<br />

state of the magma at a given depth and permit, by<br />

comparison with erupted lavas, a better understand<strong>in</strong>g of<br />

magma evolution dur<strong>in</strong>g its critical and complex f<strong>in</strong>al<br />

ascent towards the surface.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Here, we review the rheological analysis of Unzen<br />

rocks through experimentation us<strong>in</strong>g a high-load and hightemperature<br />

uniaxial press (Hess, Cordonnier et al. 2007).<br />

Initially, we constra<strong>in</strong>ed the rheology of rocks from Mt<br />

Unzen dome and compared them to the observations made<br />

<strong>in</strong> the conduit. The apparent viscosity of Unzen dome rocks<br />

has been analyzed for stresses rang<strong>in</strong>g from 1 to 70MPa<br />

and temperatures from 940 to 1010 °C. Our results to date<br />

suggest that crystal-bear<strong>in</strong>g magmas are affected by two<br />

types of shear-th<strong>in</strong>n<strong>in</strong>g, render<strong>in</strong>g the assumption of<br />

Newtonian fluids for such degassed, crystallized volcanic<br />

systems <strong>in</strong>valid.<br />

A petrophysacally based model for the Unzen eruption of 1990-1995. Also represented, the USDP4 which penetrate the magmatic<br />

conduit.<br />

On the left hand side: The large volume uniaxial press us<strong>in</strong>g <strong>in</strong> Non-Newtonian rheological <strong>in</strong>vestigations of lavas of Unzen. On the<br />

right hand side, the onset of viscous heat<strong>in</strong>g dur<strong>in</strong>g the deformation of natural lavas.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Before constra<strong>in</strong><strong>in</strong>g the effect of crystal on melts, we<br />

needed to approach the non-Newtonian behavior of pure<br />

glass. Therefore a study on viscous heat<strong>in</strong>g has been<br />

performed. Dur<strong>in</strong>g magmatic flow, viscous heat<strong>in</strong>g effect<br />

may play a major role <strong>in</strong> eruption dynamics. In order to<br />

systematically document viscous heat<strong>in</strong>g dur<strong>in</strong>g<br />

deformation of magma, we have conducted a series of<br />

deformation experiments where viscous dissipation is<br />

directly monitored via thermocouples <strong>in</strong> high-viscosity<br />

silicate melts (without crystal and bubbles). We thus<br />

experimentally measure the stra<strong>in</strong>-rate dependence of<br />

viscous heat<strong>in</strong>g. Viscous heat<strong>in</strong>g becomes rheologically<br />

significant <strong>in</strong> the highly viscous silicate melts <strong>in</strong>vestigated<br />

at stra<strong>in</strong> rates above ca. 10-3 s-1. A simple analysis shows<br />

that the temperature <strong>in</strong>crease generated through viscous<br />

dissipation dur<strong>in</strong>g deformation of melts with viscosities<br />

rang<strong>in</strong>g from 108 and 1012 Pa*s can account for their<br />

apparent non-Newtonian rheology <strong>in</strong> these experiments.<br />

This thermal correction transforms apparent non-<br />

Newtonian, stra<strong>in</strong>-rate dependent rheology of magma to a<br />

Newtonian behavior over the range of conditions accessed<br />

<strong>in</strong> this work. (Hess, Cordonnier et al. <strong>2008</strong>)<br />

IAVD: General relations of this non-Newtonian rheology of domes lavas <strong>in</strong>clud<strong>in</strong>g Unzen.<br />

Concern<strong>in</strong>g crystal bear<strong>in</strong>g lavas from Mt Unzen, the<br />

apparent viscosity measured <strong>in</strong> our experiments is<br />

composed of an elastic, viscous and brittle mixture. Act<strong>in</strong>g<br />

together the apparent viscosity decreases <strong>in</strong> two ways: an<br />

<strong>in</strong>stantaneous decrease (IAVD) and a time dependent<br />

decrease (DAVD). The IAVD is a characteristic of crystalbear<strong>in</strong>g<br />

melts (be<strong>in</strong>g negligible for pure glass systems).<br />

The DAVD sees the viscosity decrease with time as a<br />

function of the applied stresses. Above a critical stress<br />

complete failure of the sample is observed.<br />

The IAVD conta<strong>in</strong>s a brittle and/or an elastic<br />

contribution. The brittle one is l<strong>in</strong>ked with a stress <strong>in</strong>crease,<br />

possibly activat<strong>in</strong>g cracks <strong>in</strong>side the samples. The high<br />

crystal fraction of the system may act as an elastic body<br />

that <strong>in</strong>troduces at least one more relaxation time to the<br />

system. There is a clear need to differentiate brittle and<br />

elastic part <strong>in</strong> the IAVD. We <strong>in</strong>tend to obta<strong>in</strong> this <strong>in</strong>sight<br />

through neutron tomographic analysis of stra<strong>in</strong> <strong>in</strong> our<br />

deformed samples. The IAVD is l<strong>in</strong>ear and can be easily<br />

modeled (Lavallee, Hess et al. 2007).<br />

On the left hand side: L<strong>in</strong>k between the non-Newtonian rheology of Unzen dome lava (here DAVD); and the acoustic emmission data<br />

obta<strong>in</strong>ed <strong>in</strong> situ. On the right hand side: neutron tomographic analysis of Mt Unzen. This method will be performed systematically <strong>in</strong><br />

future <strong>in</strong>vestigations. It will allow to carachetisize phenocrystal crack<strong>in</strong>g.<br />

39


40<br />

The DAVD relates to a decrease of the viscosity and<br />

becomes <strong>in</strong>creas<strong>in</strong>gly important with applied stress. For<br />

stresses below 3 MPa, we observed that the melt behaves<br />

as a Newtonian fluid over a timescale of several days.<br />

Between 3 and 10 MPa, the DAVD rate is small and<br />

believed to be the result of crystals rotation and<br />

alignement. At higher stresses, the viscosity decrease<br />

accentuates, show<strong>in</strong>g a non-Newtonian behavior until<br />

deformation crosses the ductile-brittle transition<br />

(Cordonnier, Hess & al submitted) .<br />

We recently added acoustic systems to our device to<br />

<strong>in</strong>vestigate the evolution of the DAVD and the process of<br />

complete lava failure (Lavallée, Meredith et al. submitted).<br />

Cracks can be identified through the acoustic wave that<br />

they produced and which travel through the pistons to the<br />

acoustic sensors. Prelim<strong>in</strong>ary tests made with this new<br />

configuration confirm the important localization of<br />

crack<strong>in</strong>g <strong>in</strong> the DAVD and therefore give a new<br />

opportunity to understand the ductile-brittle transition.<br />

Mt Unzen dome evolution occurred heavily brittlely<br />

due to the high crystal content of the lava. Yet, sampl<strong>in</strong>g of<br />

the conduit at a depth of 1 km below the dome (from<br />

USDP4 drill<strong>in</strong>g site), revealed a less crystallized lava.<br />

Here, the lava conta<strong>in</strong>s less microlites than the dome:<br />

moreover the crystals are less cracked. Accord<strong>in</strong>g to<br />

E<strong>in</strong>ste<strong>in</strong>-Roscoe rheological law, this difference would lead<br />

to a highly reduced viscosity <strong>in</strong> the conduit. Unfortunately<br />

the samples recovered from USDP4 are hydrothermally<br />

altered, mak<strong>in</strong>g them <strong>in</strong>adequate for subsequent<br />

experimental test<strong>in</strong>g with the press. Now, this material is<br />

guid<strong>in</strong>g us to reproduce analogous synthetic samples to<br />

study how magma with such crystal content would flow.<br />

This comb<strong>in</strong>ed effort will lead to the development of a<br />

visco-elastic model where viscous and elastic moduli are<br />

dependant of the crystal content.<br />

To conclude, the crystall<strong>in</strong>e phase is believed to<br />

<strong>in</strong>crease the viscosity accord<strong>in</strong>g to the E<strong>in</strong>ste<strong>in</strong>-Roscoe<br />

equations. Indeed, those equations are viable for low<br />

stresses and stra<strong>in</strong> rates. However, more importantly, these<br />

crystal-bear<strong>in</strong>g lavas have apparent viscosities that become<br />

strongly stress and stra<strong>in</strong>-rate dependent above the onset of<br />

the non-Newtonian doma<strong>in</strong>. E<strong>in</strong>ste<strong>in</strong>-Roscoe overestimates<br />

this apparent viscosity by several orders of magnitude. This<br />

study demonstrates the dom<strong>in</strong>ance of non-Newtonian<br />

rheology <strong>in</strong> understand<strong>in</strong>g the extrusion of dome lavas at<br />

Mt Unzen. Dur<strong>in</strong>g the eruption, the ascent dynamics <strong>in</strong> the<br />

conduit may have been <strong>in</strong>itially affected by viscous<br />

heat<strong>in</strong>g, and as cool<strong>in</strong>g and crystallization occurred near<br />

the surface, it formed a brittle lava dome, which<br />

occasionally fractured and generated large explosions.<br />

Next, we wish to experimentally characterize the<br />

different ratios between the elastic/brittle behavior for the<br />

IAVD and viscous/brittle for the DAVD. Also we plan<br />

further acoustic emission measurements and plan to test the<br />

importance of fractur<strong>in</strong>g with <strong>in</strong>creas<strong>in</strong>g conf<strong>in</strong><strong>in</strong>g<br />

pressure. Lastly, numerical simulations of visco- elastic<br />

fluids are on go<strong>in</strong>g and aim to generate a viable physical<br />

model, expla<strong>in</strong><strong>in</strong>g the experiments and thus, valid to ref<strong>in</strong>e<br />

current eruption forecast models.<br />

References:<br />

Cordonnier, B., K. U. Hess, Y. Lavallee and D. B. D<strong>in</strong>gwell (Submitted).<br />

"Rheology of Unzen dome lava." Earth and Planetary Science Letters.<br />

Hess, K. U., B. Cordonnier, Y. Lavallee and D. B. D<strong>in</strong>gwell (2007). "Highload,<br />

high-temperature deformation apparatus for synthetic and natural<br />

silicate melts." Review of Scientific Instruments 78(7)<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Hess, K. U., B. Cordonnier, Y. Lavallée and D. B. D<strong>in</strong>gwell (submitted).<br />

"Viscous heat<strong>in</strong>g <strong>in</strong> rhyolite: an <strong>in</strong> situ determ<strong>in</strong>ation." Earth and<br />

Planetary Science Letters.<br />

Lavallee, Y., K. U. Hess, B. Cordonnier and D. B. D<strong>in</strong>gwell (2007). "Non-<br />

Newtonian rheological law for highly crystall<strong>in</strong>e dome lavas." Geology<br />

35(9): 843-846.<br />

Lavallée, Y., P. Meredith, D. B. D<strong>in</strong>gwell, K. U. Hess, J. Wasserman, B.<br />

Cordonnier, J. Kruhl and A. Gerik (submitted). "Seismogenic lavas:<br />

acoustic emission and volcanic eruption forecasts." Nature.<br />

<strong>ICDP</strong><br />

Application of the FIB-Cryo-SEM technology<br />

for quantitative study of fault gouge porosity<br />

<strong>in</strong> SAFOD drill core from the San Andreas<br />

Fault zone<br />

G. DESBOIS & J.L. URAI<br />

Geologie - Endogene Dynamik, RWTH, Aachen University,<br />

Lochnerstr. 4-20, 52056 Aachen, Germany<br />

Porosity, pore fluids and pore pressure play an<br />

important role <strong>in</strong> the evolution of the active fault zones but<br />

they are difficult to study doe to the f<strong>in</strong>e pore size and<br />

difficult sample preparation.<br />

Classical studies of porosity <strong>in</strong>clude metal <strong>in</strong>jection<br />

methods (Hildenbrandt, 2003; Esteban et al., 2006),<br />

magnetic susceptibility measurement (Esteban et al., 2007)<br />

and SEM observations on dry samples (Hildenbrandt,<br />

2005). However, observations and <strong>in</strong>terpretations rema<strong>in</strong><br />

difficult because none of these approaches is able to<br />

directly describe the <strong>in</strong>-situ porosity at the pore scale.<br />

Recently, we have developed the FIB-cryo-SEM<br />

technique (Desbois et al., <strong>in</strong> press) for the <strong>in</strong>-situ<br />

<strong>in</strong>vestigation of the pore space microstructures <strong>in</strong> clay<br />

materials. This approach comb<strong>in</strong>es the vitrification of the<br />

pore fluids by very rapid cool<strong>in</strong>g and the excavation of the<br />

sample by FIB (Focussed Ion Beam) to prepare smooth<br />

surfaces for high resolution imag<strong>in</strong>g of the pore<br />

microstructures and the <strong>in</strong>-situ fluids. Our first results show<br />

that we are able to <strong>in</strong>vestigate pores down to the resolution<br />

of 10 nm and reconstruct the pore network <strong>in</strong> 3D without<br />

any artifacts and modification of the <strong>in</strong>-situ pore<br />

morphology.<br />

We would like to apply the FIB-cryo-SEM approach to<br />

study the evolution of the distribution and the<br />

microstructures of the porosity along the San Andreas Fault<br />

gauge (SAFOD drill<strong>in</strong>g project) with the aim to make the<br />

role of the porosity <strong>in</strong> the mechanical behavior of this<br />

active fault zone clearer.<br />

We are <strong>in</strong>terested <strong>in</strong> two k<strong>in</strong>ds of samples: (1) sampls<br />

conta<strong>in</strong><strong>in</strong>g strong transitions like boundaries of shear zones<br />

and cataclasites where we can see the evolution of the<br />

porosity, and (2) samples collected from the ma<strong>in</strong> fault<br />

gouges with slickensides to characterize porosity <strong>in</strong> several<br />

places <strong>in</strong> one sample.<br />

Our FIB-cryo-SEM approach would be very suitable<br />

for analyz<strong>in</strong>g the fault gouge, especially if we can <strong>in</strong>tegrate<br />

the results with other microstructural studies.<br />

Key words: clay material, <strong>in</strong>-situ porosity, cryo-SEM,<br />

FIB, SAFOD, Sam Andreas Fault zone<br />

References:<br />

Desbois G., Urai J.L., Burkhardt C., Drury M., Hayles M. and Humbel B.<br />

(In press). Cryogenic vitrification and 3D serial section<strong>in</strong>g us<strong>in</strong>g high<br />

resolution cryo-FIB-SEM technology for br<strong>in</strong>e-filled gra<strong>in</strong> boundaries<br />

<strong>in</strong> halite: first results. Geofluids.<br />

Esteban L., Géraud Y. And Bouchez J.L. (2006). Pore network geometry <strong>in</strong><br />

low permeability argillites from magnetic fabric data and oriented


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

mercury <strong>in</strong>jections. Geophysical Research Letters, vol. 33, L18311,<br />

doi : 10.1029/2006GL026908.<br />

Esteban L., Géraud Y. And Bouchez J.L. (2007). Pore network connectivity<br />

anisotropy <strong>in</strong> Jurassic argillite specimens from eastern Paris Bas<strong>in</strong><br />

(France). Physics and Chemistry of the Earth, 32(1) :161-169.<br />

Hildenbrand A., Krooss B. M. and Urai J. L. (2005). Relationship between<br />

pore structure and fluid transport <strong>in</strong> argillaceous rocks. Solid<br />

Mechanics and Its Applications, IUTAM Symposium on<br />

Physicochemical and Electromechanical Interactions <strong>in</strong> Porous Media,<br />

125 : 231-237, doi : 10.1007/1-4020-3865-8_26.<br />

Hildenbrand A. (2003a). Fluid transport processes <strong>in</strong> mudstones. PhD thesis<br />

at RWTH Aachen, 137pp.<br />

Key words: clay material, <strong>in</strong>-situ porosity, cryo-SEM, FIB, SAFOD, Sam<br />

Andreas Fault zone<br />

Fig. 1: FIB polished cross-section perpendiculat to the bedd<strong>in</strong>g of<br />

Boom-clay material (Belgium). Fluids fill<strong>in</strong>g pores are vitrified<br />

and stabilized <strong>in</strong> <strong>in</strong>-situ conditions.<br />

<strong>IODP</strong><br />

Evidence for rapid on/off switch<strong>in</strong>g of the<br />

North Atlantic Current dur<strong>in</strong>g the warm<br />

Middle Pliocene<br />

S. DE SCHEPPER 1 , M. J. HEAD 2 , J. GROENEVELD 3<br />

1 Fachbereich-5, Geowissenschaften, Universität Bremen, Postfach<br />

330 440, D-28334, Germany <br />

2 Department of Earth Sciences, Brock University, 500 Glenridge<br />

Avenue, St. Cathar<strong>in</strong>es, Ontario L2S 3A1, Canada<br />

<br />

3 Research Centre Ocean Marg<strong>in</strong>s, Universität Bremen, Leobener<br />

Strasse, D-28359 Bremen, Germany <br />

D<strong>in</strong>oflagellate cyst assemblages have been compared to<br />

<strong>in</strong>dependent proxies for sea surface temperature (SST) and<br />

sea surface sal<strong>in</strong>ity (SSS) based on 18O and Mg/Ca ratios<br />

of the planktonic foram<strong>in</strong>ifer Globiger<strong>in</strong>a bulloides for the<br />

Pliocene glacial–<strong>in</strong>terglacial cycle spann<strong>in</strong>g Mar<strong>in</strong>e Isotope<br />

Stage (MIS) M2 (c. 3.30 Ma), which represents the first<br />

episode of <strong>in</strong>tense cool<strong>in</strong>g <strong>in</strong> the Pliocene. A same-sample<br />

d<strong>in</strong>oflagellate cyst and geochemical study has documented<br />

changes <strong>in</strong> surface water masses across this <strong>in</strong>terval from<br />

DSDP Hole 610A (53˚13.297’N, 18˚53.213’W), at the SW<br />

edge of the Rockall Trough <strong>in</strong> the subpolar environment of<br />

the eastern North Atlantic. Its location is ideal to monitor<br />

changes <strong>in</strong> the pathway and/or <strong>in</strong>tensity of the North<br />

Atlantic Current.<br />

Measurements of 18O and Mg/Ca on the planktonic<br />

foram<strong>in</strong>ifera Globiger<strong>in</strong>a bulloides suggest a temperature<br />

variation of c. 4˚C between MIS M2 and its bound<strong>in</strong>g<br />

<strong>in</strong>terglacials, with MIS M2 similar <strong>in</strong> temperature to today.<br />

The d<strong>in</strong>oflagellate cyst assemblages are dom<strong>in</strong>ated by<br />

Bitectatod<strong>in</strong>ium tepikiense and other cool-water species<br />

dur<strong>in</strong>g MIS M2, and by Operculod<strong>in</strong>ium centrocarpum<br />

sensu Wall and Dale dur<strong>in</strong>g the <strong>in</strong>terglacials. This overturn<br />

is relatively rapid (less than 4–6 kyrs), signall<strong>in</strong>g an abrupt<br />

disturbance of the North Atlantic Current, which is<br />

corroborated by a lowered sal<strong>in</strong>ity ( 18Oseawater)<br />

dur<strong>in</strong>g MIS M2. Mg/Ca analyses, <strong>in</strong> contrast, reveal more<br />

gradual temperature changes, suggest<strong>in</strong>g an on/off control<br />

of the NAC <strong>in</strong> the Pliocene by threshold/feedback<br />

mechanisms perhaps similar to those <strong>in</strong> Quaternary. These<br />

results <strong>in</strong>dicate that Operculod<strong>in</strong>ium centrocarpum,<br />

accompanied with 18O and Mg/Ca measurements, are<br />

precise <strong>in</strong>dicators for on and off switches of the North<br />

Atlantic Current, even dur<strong>in</strong>g the warm, relatively stable<br />

climates of the Middle Pliocene.<br />

<strong>IODP</strong><br />

Mid-Miocene Paleoproductivity and<br />

Implications for the Global Carbon Cycle<br />

L DIESTER-HAASS, K.BILLUPS, D.GROECKE, L.FRANCOIS,<br />

V.LEFEBRE, K.-C. EMEIS<br />

l.haass@mx.uni-saarland.de1 kbillups@udel.edu;<br />

d.r.grocke@durham.ac.uk; francois@astro.ulg.ac.be;<br />

v<strong>in</strong>cent.lefebvre@ed.univ-lille1.fr; emeis@geowiss.unihamburg.de<br />

The mid-Miocene time <strong>in</strong>terval from 17-14 Ma is<br />

characterized by a period of relative warmth and the<br />

highest benthic and planktic foram<strong>in</strong>iferal δ 13 C values<br />

s<strong>in</strong>ce the Paleocene. The mid-Miocene period of relative<br />

warmth is followed by a major step <strong>in</strong> Antarctic ice sheet<br />

expansion at 14 Ma and a shift towards lower foram<strong>in</strong>iferal<br />

δ 13 C values.<br />

We aim at f<strong>in</strong>d<strong>in</strong>g an answer to the question whether<br />

the climatic evolution is related to organic carbon<br />

sequestration <strong>in</strong> mar<strong>in</strong>e sediments of the circum-Pacific<br />

marg<strong>in</strong>s that reduced the 12 C content <strong>in</strong> the global carbon<br />

pool and that caused cool<strong>in</strong>g and related Antarctic ice sheet<br />

expansion (the “Monterey Hypothesis” of V<strong>in</strong>cent and<br />

Berger, 1985), or whether productivity changes <strong>in</strong> openocean<br />

areas are <strong>in</strong>volved <strong>in</strong> this major climatic change.<br />

Recent calculations show that the amount of organic<br />

carbon buried <strong>in</strong> the Monterey Formation may not be<br />

sufficient to expla<strong>in</strong> the carbon isotope shift and climate<br />

change (Isaacs et al., 2001; Föllmi et al., 2005). We also<br />

want to see whether the mid-Miocene atmospheric CO2<br />

concentration as reconstructed by Pagani et al. (1999) is<br />

related to variations <strong>in</strong> mar<strong>in</strong>e biological productivity.<br />

Our study is based on six DSDP/ODP/<strong>IODP</strong> Sites from<br />

the Atlantic (608, 925 and 1265) and Indo-Pacific Oceans<br />

(Site 747, 1171, 588). Paleoproductivity as established by<br />

means of benthic foram<strong>in</strong>iferal accumulation rates (BFAR)<br />

does not show a change that would parallel the overall,<br />

long-term maximum <strong>in</strong> the mid-Miocene benthic<br />

foram<strong>in</strong>iferal δ 13 C records (Fig.1). An <strong>in</strong>trigu<strong>in</strong>g f<strong>in</strong>d<strong>in</strong>g is<br />

that productivity <strong>in</strong>creases at all sites at the onset of the<br />

negative shift at about 13.5 Ma, the time of the return to<br />

nearly pre-Monterey δ 13 C values, dur<strong>in</strong>g the period of<br />

cool<strong>in</strong>g and Antarctic ice extension (Fig.1). This f<strong>in</strong>d<strong>in</strong>g<br />

can be attributed to the expansion of grass land and C4<br />

plants that have enriched δ 13 C values (Sage, 2004;<br />

Retallak, 2001) and to the destruction of terrestrial<br />

vegetation and erosion of cont<strong>in</strong>ental soil material, thus a<br />

redistribution of terrestrial light carbon <strong>in</strong>to the global<br />

carbon reservoir. Enhanced erosion and related nutrient<br />

transfer – similar to processes dur<strong>in</strong>g the late Miocene<br />

“Biogenic Bloom” period ( Diester-Haass et al., 2005;<br />

2006) – fostered mar<strong>in</strong>e biological productivity, as seen <strong>in</strong><br />

41


42<br />

our export productivity values that are 2-3 times higher<br />

than modern ones.<br />

Because the data from mar<strong>in</strong>e open ocean sediments do<br />

not <strong>in</strong>dicate enhanced oceanic carbon sequestration <strong>in</strong> the<br />

Mid-Miocene δ 13 C maximum, we exam<strong>in</strong>e the amount of<br />

extra carbon stored and explore possible reasons for the<br />

shift with a numerical model (Francois and Lefebre).<br />

Sequestration of 1.5x10 18 mol C over the period of 3 Myr<br />

leads to a 0.9‰ δ 13 C positive excursion <strong>in</strong> the deep ocean,<br />

which is the observed magnitude <strong>in</strong> our records. An<br />

<strong>in</strong>crease <strong>in</strong> cont<strong>in</strong>ental organic carbon sequestration is the<br />

easiest way to enrich the ocean’s carbon pool with 13 C, and<br />

is consistent with coeval lignite deposits world wide<br />

(Utescher,2000).<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

The δ 13 C records (foram<strong>in</strong>iferal and bulk sedimentary<br />

organic matter) (D.Groecke) over the mid-Miocene show<br />

broadly similar changes, thus imply<strong>in</strong>g that the positive<br />

δ 13 C excursions dur<strong>in</strong>g the mid-Miocene affected the total<br />

oceanic carbon reservoir. This is particularly evident <strong>in</strong> the<br />

delta-delta (Δ 13 C = δ 13 C carb – δ 13 C org) curves which<br />

show no major shift <strong>in</strong> the isotopic fractionation between<br />

the carbonate and organic reservoirs. Therefore, this would<br />

suggest that there is no evidence for chang<strong>in</strong>g atmospheric<br />

CO2 levels over the <strong>in</strong>vestigated <strong>in</strong>terval of time: which<br />

concur with other <strong>in</strong>dependent proxies [Pagani et al., 1999,<br />

2005] which po<strong>in</strong>t to very low pCO2 of


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Depth migration results from the Eastern<br />

Mediterranean / Levant<strong>in</strong>e Bas<strong>in</strong><br />

S. DÜMMONG 1 , K.MEIER 1 , M.BEITZ 1 AND C. HÜBSCHER 1<br />

1 Institue for Geophysics, University of Hamburg, Bundestr. 55<br />

20146 Hamburg, Germany<br />

In this paper depth migration results from the Eastern<br />

Mediterranean / Levant<strong>in</strong>e Bas<strong>in</strong> are presented. The<br />

seismic sections will serve as pre-site survey data for a<br />

future <strong>IODP</strong>-proposal. High-resolution <strong>in</strong>dustry data sets<br />

were used to obta<strong>in</strong> depth migration results which reveal <strong>in</strong><br />

detail the <strong>in</strong>ternal structure of the Mobile Unit of the<br />

Mess<strong>in</strong>ian Evaporites. The data sets covers the bas<strong>in</strong>al<br />

succession or mobile (MU) of the Mess<strong>in</strong>ian Evaporites,<br />

the Pliocene-Quaternary overburden, and the upper pre-<br />

Mess<strong>in</strong>ian succession. 2D-l<strong>in</strong>es were acquired with 25m<br />

shot, 12.5 receiver spac<strong>in</strong>g, and with maximum offsets of<br />

7325m. The depth-migrated sections allow the<br />

quantification of layer thicknesses and deformation due to<br />

salt tectonics <strong>in</strong> the Levant<strong>in</strong>e Bas<strong>in</strong> for the first time.<br />

Accord<strong>in</strong>g to the chronostratigraphic scheme of<br />

Clauzon et al. (1996) or Krijgsman et al. (1999) the<br />

precipitation of the MU started around 5.6Ma dur<strong>in</strong>g the<br />

Mess<strong>in</strong>ian Sal<strong>in</strong>ity Crisis (MSC). The duration of the MU<br />

formation and the rapidity with which the Mediterranean<br />

bas<strong>in</strong> was refilled at the end of the MSC are still a matter of<br />

debate.<br />

Recent publications showed a complex seismic<br />

stratigraphy of the MU <strong>in</strong> the Levant<strong>in</strong>e Bas<strong>in</strong> (Gradmann<br />

et al., 2005; Netzeband et al., 2006a; Bertoni and<br />

Cartwright, 2006), which can be divided <strong>in</strong>to six sequences<br />

(Hübscher et al., 2007; Hübscher and Netzeband, 2007).<br />

Sequences ME-I, II, IV are seismically transparent and<br />

sequences ME-III and ME-V reveal several <strong>in</strong>ternal and<br />

subparallel reflections (Hübscher and Netzeband, 2007).<br />

The <strong>in</strong>ternal reflections have been <strong>in</strong>terpreted as<br />

<strong>in</strong>tercalated (and presumably overpressurized) clastics by<br />

Garfunkel et al. (1979) and Gradmann et al. (2005).<br />

However, 3D-seismic data analysis proved a high lateral<br />

cont<strong>in</strong>uity of seismic reflection characters and identified<br />

polarity changes which are more <strong>in</strong>dicative of chemical<br />

sedimentation processes (Bertoni and Cartwright, 2007).<br />

The deformation pattern of the <strong>in</strong>tra-evaporitic<br />

sequences <strong>in</strong>clude folds and thrust fault<strong>in</strong>g, which gives<br />

evidence for extensive salt tectonics and shorten<strong>in</strong>g,<br />

respectively, dur<strong>in</strong>g the depositional phase. Both, the<br />

identified evaporitic facies of the <strong>in</strong>dividual <strong>in</strong>tra-evaporitic<br />

sequences and the driv<strong>in</strong>g forces for the syn-depositional<br />

shorten<strong>in</strong>g rema<strong>in</strong> unclear.<br />

Velocity model build<strong>in</strong>g and depth-migration <strong>in</strong> salt<br />

bear<strong>in</strong>g bas<strong>in</strong>s is a challeng<strong>in</strong>g task for several reasons.<br />

High lateral and vertical velocity constrats occur and the<br />

data process<strong>in</strong>g is quite challeng<strong>in</strong>g. For the generation of<br />

the migration results, presented here, different approaches<br />

of tomographic methods were applied and exam<strong>in</strong>ed <strong>in</strong><br />

detail on two characteristic parts of the profiles. Two of<br />

these tomographic methods also use seismic attribute<br />

<strong>in</strong>formation additional to traveltime, so the results can be<br />

considered as better constra<strong>in</strong>ed. Common Image Gathers<br />

were evaluated to verify the velocity distributions. The<br />

depth migrations were performed with special emphasize<br />

on detailed imag<strong>in</strong>g of the <strong>in</strong>ternal structures of the MU of<br />

the Mess<strong>in</strong>ian Evaporites. Therefore up to six fazies were<br />

traced over the whole profiles <strong>in</strong> the depth doma<strong>in</strong>.<br />

Secondary the description of the <strong>in</strong>ternal structure of the<br />

MU by seismic velocities was possible for the first time.<br />

The derived velocity distribution of the distal part of the<br />

evaporites supports the previously published <strong>in</strong>terpretation<br />

of a vertical succession of alternat<strong>in</strong>g evaporitic facies<br />

with <strong>in</strong>tercalated clastics. Additionally velocities of<br />

refracted waves were processed. The velocities show that<br />

the term<strong>in</strong>ation of s<strong>in</strong>gle fazies of the evaporites<br />

corresponds with leaps <strong>in</strong> the refracted waves velocity<br />

distribution, which also gives a further h<strong>in</strong>t that the <strong>in</strong>ternal<br />

structure of the MU consists of layers of different<br />

composition.<br />

Hence form the evaluation of the depth migrated<br />

images, the velocity models, and the velocity distribution<br />

of the refracted waves new implication for the tectonic and<br />

structural <strong>in</strong>terpretation of the Mess<strong>in</strong>ian Evaporites <strong>in</strong> the<br />

Eastern Mediterranean / Levant<strong>in</strong>e Bas<strong>in</strong> are possible. The<br />

depth migrated images allow for the first time the<br />

quantification of fault displacement and, consequently, the<br />

dist<strong>in</strong>ction between plate- or salt tectonic events.<br />

References:<br />

Bertoni, C. and J. Cartwright, 2006, Controls on the bas<strong>in</strong>wide architecture<br />

of late Miocene (Mess<strong>in</strong>ian) Evaporites on the Levant marg<strong>in</strong> (Eastern<br />

Mediterranean): Sedimentary Geology, 188-189, 93–114.<br />

Bertoni, C. and J. Cartwright, 2007, Ma jor erosion a the end of the<br />

Mess<strong>in</strong>ian Sal<strong>in</strong>ity crisis: evidence from the Levant Bas<strong>in</strong>/ Eastern<br />

Mediterrranean: Bas<strong>in</strong> Research, 19, 1–18.<br />

Clauzon, G., J. Suc, F. Gautier, A. Berger, and M. Loutre, 1996, Alternate<br />

<strong>in</strong>terpretation of the mess<strong>in</strong>ian sal<strong>in</strong>ity crisis: controversy resolved?:<br />

Geology, 24, 363–366.<br />

Garfunkel, Z., A. Arad, and A. Almagor, 1979, The Palmahim Disturbance<br />

and its regional sett<strong>in</strong>g: Geological Survey of Israel Bullet<strong>in</strong>, 72, 56.<br />

Gradmann, S., C. Hübscher, Z. Ben-Avraham, D. Ga jewski, and G.<br />

Netzeband, 2005, Salt tectonics off northern israel: Mar<strong>in</strong>e and<br />

Petroleum Geology, 22, 597–611.<br />

Hübscher, C., J. Cartwright, H. Cypionka, G. De Lange, A. Robertson, J.<br />

Suc, and J. Urai, 2007, Global look at dalt giants: EOS, 88, 177–179.<br />

Hübscher, C. and G. Netzeband, 2007, Evolution of a young salt giant: The<br />

example of the Mess<strong>in</strong>ian evaporites <strong>in</strong> the Levante bas<strong>in</strong>: In: Wallner,<br />

M.; Lux, K.-H.; M<strong>in</strong>kley, W.; Hardy, Jr., H.R. (Eds.) The Mechanical<br />

behavior of Salt - Understand<strong>in</strong>g of THMC Processes of Salt, Taylor<br />

and Francis Group, London, 175–184.<br />

Krijgsman, W., F. Hilgen, I. Raffi, F. Sierro, and D. Wilson, 1999,<br />

Chronology, causes and progression of the mess<strong>in</strong>ian sal<strong>in</strong>ity crisis:<br />

Nature, 400, 652–655.<br />

Netzeband, G., K. Gohl, H. C., Z. Ben-Avraham, A. Dehghani, D. Ga<br />

jewski, and P. Liersch, 2006a, The Levant<strong>in</strong>e Bas<strong>in</strong> - crustal structure<br />

and orig<strong>in</strong>: Tectonophysics, 418, 178–188.<br />

<strong>IODP</strong><br />

Trace element and isotope geochemistry of<br />

~15 Ma oceanic crust formed at a superfast<br />

spread<strong>in</strong>g ridge (Exp. 309/312, <strong>IODP</strong> Site<br />

1256D, Eastern Central Pacific): Constra<strong>in</strong>ts<br />

on sub-ridge processes at the East Pacific<br />

Rise, the style and tim<strong>in</strong>g of alteration and<br />

the orig<strong>in</strong> of ocean island basalts<br />

S. DUGGEN 1 , K. HOERNLE 1 , F. HAUFF 1 AND J. GELDMACHER 2<br />

1 IFM-GEOMAR, Leibniz-Institute of Mar<strong>in</strong>e Sciences, Research<br />

Division 4: Dynamics of the Ocean Floor, Wischhofstrasse 1-<br />

3, 24148 Kiel<br />

2 Integrated Ocean Drill<strong>in</strong>g Program, Texas A&M University, 1000<br />

Discovery Drive, College Station, TX 77845-9547<br />

The geochemical composition of drilled oceanic crust<br />

can provide important <strong>in</strong>sights <strong>in</strong>to processes occurr<strong>in</strong>g at<br />

mid-ocean ridges, the subsequent alteration of oceanic<br />

crust and the chemical evolution of seawater. Moreover, as<br />

oceanic crust is recycled <strong>in</strong>to the Earth´s mantle at<br />

43


44<br />

subduction zones, a better knowledge of small-scale<br />

compositional variations <strong>in</strong> the oceanic crust will also<br />

improve our understand<strong>in</strong>g of the chemical evolution of the<br />

Earth´s mantle, <strong>in</strong>clud<strong>in</strong>g subduction zone processes<br />

caus<strong>in</strong>g arc volcanism and the orig<strong>in</strong> of ocean island<br />

basalts.<br />

The ongo<strong>in</strong>g project was designed to characterise the<br />

downhole trace element and radiogenic isotopic variation<br />

of the lower section of oceanic crust drilled at Site 1256<br />

(Exp. 309/312) <strong>in</strong> the Guatemala Bas<strong>in</strong> on the Cocos Plate<br />

<strong>in</strong> the Eastern Central Pacific. The oceanic crust of Site<br />

1256 was formed ~15 Ma ago dur<strong>in</strong>g a phase (~11-20 Ma)<br />

of superfast spread<strong>in</strong>g at a full rate of ~200-220 mm/y.<br />

The drill hole, reach<strong>in</strong>g the <strong>in</strong> situ lower gabbroic crust for<br />

the first time, is considered to be one of the most important<br />

drill holes <strong>in</strong>to igneous oceanic crust <strong>in</strong> the history of<br />

scientific ocean drill<strong>in</strong>g (Wilson, et al. 2006). In the course<br />

of three expeditions, drill<strong>in</strong>g penetrated mar<strong>in</strong>e sediments<br />

to ~250 meters below sea floor (mbsf), followed by a<br />

volcanic zone with sheet and massive flows to ~1004 mbsf,<br />

a lava-sheeted dike transition zone as previously found at<br />

the nearby Hole 504 (Eastern Central Pacific), a sheeted<br />

dike complex to ~1407 mbsf and for the first time the<br />

sheeted dike-gabbro transition zone at 1400 mbsf (Teagle,<br />

et al. 2006). This project, funded by the German Science<br />

Foundation with<strong>in</strong> the priority program “Integrated Ocean<br />

Drill<strong>in</strong>g Program/Ocean Drill<strong>in</strong>g Program (<strong>IODP</strong>/ODP)<br />

(SPP 527), focuses on material drilled at Expeditions 309<br />

and 312 from 750-1500 mbsf.<br />

Below we briefly summarise the results currently<br />

available from the ongo<strong>in</strong>g project. An <strong>in</strong>troduction to the<br />

project was presented at the <strong>IODP</strong> <strong>Kolloquium</strong> <strong>in</strong> Potsdam<br />

2007 and results were presented at the Exp. 309/312 Post-<br />

Cruise Meet<strong>in</strong>g <strong>in</strong> Japan 2007 and the AGU Fall Meet<strong>in</strong>g<br />

<strong>in</strong> San Francisco 2007 or are scheduled for presentation <strong>in</strong><br />

a Site 1256 Special Session at the EGU meet<strong>in</strong>g <strong>in</strong> Vienna<br />

spr<strong>in</strong>g <strong>2008</strong>. The first new geochemical data from the<br />

project are reported <strong>in</strong> a manuscript that has been written<br />

up and is currently subject to <strong>in</strong>ternal revision (Duggen, et<br />

al. <strong>in</strong> prep.). Our new data for Exp. 309/312 material are<br />

<strong>in</strong>tegrated with some data available for Leg 206 at Site<br />

1256 (the upper part of the volcanic zone, ~250-750 mbsf)<br />

that are reported by our work<strong>in</strong>g group <strong>in</strong> a paper <strong>in</strong> press<br />

(Sadofsky, et al. <strong>2008</strong>, <strong>in</strong> press) and with published<br />

geochemical data for ~6.6 Ma old oceanic crust from Hole<br />

504 formed at the Galápagos Spread<strong>in</strong>g Centre (Bach, et al.<br />

2003; Pedersen and Furnes 2001).<br />

Analytical requirements –high-precision Pb isotope<br />

analysis<br />

In order to be able to detect even very small down-hole<br />

Pb-isotopic variations, an important part of the project was<br />

to establish the high-precision Pb-isotope technique by<br />

means of a double spike and to apply it to Site 1256<br />

samples. The technique comprises a major advancement <strong>in</strong><br />

terms of precision and accuracy compared to conventional<br />

Pb-isotope analysis and was established for Thermal<br />

Ionisation Mass Spectrometry (TIMS) at IFM-GEOMAR.<br />

R<strong>in</strong>s<strong>in</strong>g experiments performed dur<strong>in</strong>g this study reveals<br />

that proper treatment of the altered oceanic crust material<br />

(the use of matrix chips that are briefly surface r<strong>in</strong>sed with<br />

dilute acid and ultrapure water prior to digestion) is crucial<br />

for achiev<strong>in</strong>g high-quality Pb-isotope data of altered<br />

oceanic crust. For Pb double spik<strong>in</strong>g we used an isotopic<br />

tracer artificially enriched <strong>in</strong> 207Pb and 204Pb. Prior to<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

use, the spike had to be calibrated which <strong>in</strong>volved analysis<br />

of the pure SBL74 spike composition (n = 37<br />

measurements), 2) the composition of Pb-standard<br />

SRM982 (n = 28) and 3) adequate mixtures of SBL74 and<br />

SRM982 (n = 30) followed by a complex data reduction.<br />

The calibrated SBL74 spike was then tested based on<br />

unspiked (n = 16) and spiked (n = 16) determ<strong>in</strong>ations of<br />

another Pb-standard (SRM981). The technique now<br />

established for the ongo<strong>in</strong>g <strong>IODP</strong> project yield values for<br />

SRM 981 that are identical with<strong>in</strong> error to those provided<br />

by other laboratories us<strong>in</strong>g different double and triple<br />

spikes and both TIMS and Multi-Collector-Inductively<br />

Coupled Plasma-Mass Spectrometry (MC-ICP-MS).<br />

Magma formation - processes at the East Pacific Rise<br />

Immobile trace elements and radiogenic isotope ratios<br />

po<strong>in</strong>t to a temporal change <strong>in</strong> the composition of the<br />

equatorial EPR magma source between 15 Ma and Present.<br />

This is found by compar<strong>in</strong>g Nd-Pb- and partly Sr-isotope<br />

ratios of ~15 Ma old Site 1256 basalts with data of Recent<br />

equatorial EPR lavas, suggest<strong>in</strong>g that the Site 1256 EPR<br />

magma source was more heterogenous ~15 Ma ago.<br />

Geochemical similarities of Site 1256 basalts with ocean<br />

island basalts from the Galápagos hotspot <strong>in</strong>dicate that an<br />

enriched component <strong>in</strong> the EPR 15 Ma ago may stem from<br />

the Galápagos mantle plume or an enriched component<br />

with<strong>in</strong> the ambient upper mantle. A period of <strong>in</strong>creased<br />

ridge suction dur<strong>in</strong>g a phase of superfast spread<strong>in</strong>g rates at<br />

the EPR at ~11-20 Ma ago may have <strong>in</strong>troduced enriched<br />

material <strong>in</strong>to the EPR sub-ridge mantle.<br />

Alteration processes <strong>in</strong> the lava-sheeted dike transition<br />

zone<br />

The lava-sheeted dike transition zone was so far only<br />

drilled twice <strong>in</strong> the history of the scientific ocean drill<strong>in</strong>g:<br />

The first time at Hole 504 and more recently at Site 1256<br />

(Leg 309). The transition zones were penetrated at different<br />

depths (~581-790 m and ~754-810 m below the top of the<br />

basaltic crust basement, respectively) and have different<br />

thicknesses (~209 m at Hole 504 versus ~57 m at Site<br />

1256) (Alt, et al. 1986; Teagle, et al. 2006). Trace element<br />

and Sr-Nd-Pb-isotope data across the lava-dike transition<br />

zone of ~15 Ma old oceanic crust at Site 1256 show some<br />

similarities and differences to the geochemical variations of<br />

the transition zone <strong>in</strong> ~6.6 Ma old oceanic crust at Hole<br />

504. Similar to Hole 504, the formation of the Site 1256<br />

transition zone obviously arises from mix<strong>in</strong>g of upwell<strong>in</strong>g<br />

hydrothermal fluids from deeper levels <strong>in</strong> the oceanic crust<br />

(at (sub-)greenschist facies conditions) with cooler<br />

seawater from above. The key difference between the Site<br />

1256 and Hole 504 transition zones appears to be the<br />

<strong>in</strong>tensity of alteration, probably as a function of the<br />

duration of fluid movement and/or the amount of fluids<br />

penetrat<strong>in</strong>g the transition zone. Alteration is less <strong>in</strong>tense at<br />

Site 1256, which may ultimately be l<strong>in</strong>ked to the higher<br />

spread<strong>in</strong>g rates at the East Pacific Rise ~11-20 Ma ago<br />

(superfast) compared to the Galápagos Spread<strong>in</strong>g Centre<br />

(<strong>in</strong>termediate) as these may govern the duration of<br />

exposure of oceanic crust to vigorous near-axis upwell<strong>in</strong>g<br />

of hydrothermal fluids and seawater circulation. We<br />

<strong>in</strong>terpret the pyrite-rich brecciated 2.8 m layer <strong>in</strong> the Site<br />

1256 lava-sheeted dike transition zone to represent a<br />

juvenile stage of the metal sulphide-rich stockwork zone of<br />

the Hole 504 transition zone.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Tim<strong>in</strong>g of alteration of Site 1256 oceanic crust<br />

Two different backward modell<strong>in</strong>g approaches were<br />

advanced to provide constra<strong>in</strong>ts on the tim<strong>in</strong>g of alteration<br />

of Site 1256 oceanic crust. It can be <strong>in</strong>ferred from<br />

radiogenic isotope and relevant trace element ratios that<br />

alteration at Site 1256 term<strong>in</strong>ated ~6-9 Ma after the<br />

formation at the East Pacific Rise. Silica-rich layers (chert<br />

bed and diatom mat) that formed ~2.8 Ma and ~4.2 Ma<br />

after the igneous basement and eventually act<strong>in</strong>g as lowdiffusivity<br />

barriers (Teagle, et al. 2006) may have played a<br />

vital role <strong>in</strong> significantly decreas<strong>in</strong>g the seawater flux <strong>in</strong>to<br />

the upper oceanic crust. However, igneous activity at<br />

seamounts occurr<strong>in</strong>g 15-20 km northeast of Site 1256 may<br />

locally have ma<strong>in</strong>ta<strong>in</strong>ed seawater-rich fluid communication<br />

between the ocean and the upper oceanic crust for millions<br />

of years after formation of the low-diffusivity sedimentary<br />

barriers (Fisher, et al. 2003).<br />

Recycl<strong>in</strong>g <strong>in</strong> the Earth´s mantle<br />

Altered oceanic crust is recycled <strong>in</strong>to the Earth´s<br />

mantle through subduction and is thought to be <strong>in</strong>volved <strong>in</strong><br />

mantle plumes and <strong>in</strong> the magma source of ocean island<br />

basalts. Based on our new geochemical data of Site 1256<br />

oceanic crust and backward and forward geochemical<br />

modell<strong>in</strong>g <strong>in</strong>volv<strong>in</strong>g radiogenic <strong>in</strong>growth and subduction<br />

zone modification, we exam<strong>in</strong>e the significance of altered<br />

oceanic crust for the orig<strong>in</strong> of ocean island basalts. Our<br />

study shows that low- to high-temperature alteration<br />

processes <strong>in</strong> oceanic crust may produce Rb/Sr, Sm/Nd and<br />

(U, Th)/Pb more variable than <strong>in</strong> the precursor basaltic<br />

material. Secondary m<strong>in</strong>erals (e.g. sulphides) precipitated<br />

from fluids percolat<strong>in</strong>g <strong>in</strong> oceanic crust appear to play a<br />

major role <strong>in</strong> the distribution of some trace elements (e.g.<br />

Pb), <strong>in</strong> controll<strong>in</strong>g ratios conta<strong>in</strong><strong>in</strong>g these elements (e.g.<br />

(U, Th)/Pb) and <strong>in</strong> the evolution of isotope ratios over<br />

geological time-scales. Modell<strong>in</strong>g <strong>in</strong> the Sr-Nd-Pb-isotope<br />

space and comparison with present day radiogenic isotope<br />

ratios of ocean island basalts suggests that only altered<br />

oceanic crust is required to expla<strong>in</strong> the radiogenic isotope<br />

composition of ocean island basalts with Pb-isotopic ratios<br />

along or below the Northern Hemisphere Reference L<strong>in</strong>e<br />

and relatively high Nd-isotope ratios (e.g. Canaries,<br />

Galápagos, Iceland, Madeira). The results further <strong>in</strong>dicate<br />

that additional enriched mantle (EM) components, most<br />

likely associated with subducted sediments or cont<strong>in</strong>ental<br />

lithospheric material, are only <strong>in</strong>volved <strong>in</strong> the source of<br />

ocean island basalts with relatively low Nd-isotopic<br />

composition (e.g. Pitcairn, Tristan, Samoa).<br />

References:<br />

Alt JC, Honnorez J, Laverne C, Emmermann R (1986) Hydrothermal<br />

alteration of a 1 km section through the upper oceanic crust. DSDP<br />

Hole 504B: M<strong>in</strong>eralogy, chemistry and evolution of seawater-basalt<br />

<strong>in</strong>teractions. Journal of Geophysical Research 91:309–335<br />

Bach W, Peucker-Ehrenbr<strong>in</strong>k B, Hart SR, Blusztaijn JS (2003)<br />

Geochemistry of hydrothermally altered oceanic crust: DSDP/ODP<br />

Hole 504B – Implications for seawater-crust exchange budgets and Sr-<br />

and Pb-isotopic evolution of the mantle. Geochemistry Geophysics<br />

Geosystems 4(3)<br />

Duggen S, Hoernle K, Hauff F, Geldmacher J (<strong>in</strong> prep.) Geochemistry of the<br />

lava-dike transition zone <strong>in</strong> young oceanic crust formed at a superfast<br />

spread<strong>in</strong>g ridge (Site 1256, Cocos Plate, Eastern Pacific): Constra<strong>in</strong>ts<br />

on alteration processes and temporal changes of mantle heterogeneity<br />

at the East Pacific Rise. Geochemistry Geophysics Geosystems<br />

Fisher AT, Davis EE, Hutnak M, Spiess V, Zühlsdorff L, Charkaoul A,<br />

Christiansen L, Edwards K, Macdonald R, Vill<strong>in</strong>ger H, Mottl MJ,<br />

Wheat CG, Becker K (2003) Hydrothermal recharge and discharge<br />

across 50 km guided by seamounts on a young ridge flank. Nature<br />

421:618-621<br />

Pedersen RB, Furnes H (2001) Nd- and Pb-isotopic variations through the<br />

upper oceanic crust <strong>in</strong> DSDP/ODP Hole 504B, Costa Rica Rift. Earth<br />

and Planetary Science Letters 189:221-235<br />

Sadofsky S, Hoernle K, Duggen S, Hauff F, Werner R, Garbe-Schönberg D<br />

(<strong>2008</strong>, <strong>in</strong> press) Trace element and Sr-Nd-Pb isotope geochemistry of<br />

the sedimentary and upper igneous section of the subduct<strong>in</strong>g Cocos<br />

Plate offshore of Central America International Journal of Earth<br />

Sciences<br />

Teagle DAH, Alt JC, Um<strong>in</strong>o S, Miyashita S, Banerjee NR, Wilson DS,<br />

Scientists atE (2006) Proceed<strong>in</strong>gs of the Integrated Ocean Drill<strong>in</strong>g<br />

Program, 309/312, vol. Integrated Ocean Drill<strong>in</strong>g Program,<br />

Wash<strong>in</strong>gton D.C.<br />

Wilson DS, Teagle DAH, Alt JC, Banerjee NR, Um<strong>in</strong>o S, Miyashita S,<br />

Acton GD, Anma R, Barr SR, Belghoul A, Carlut J, Christie DM,<br />

Coggon RM, Cooper KM, Cordier C, Crisp<strong>in</strong>i L, Rodriguez Durand S,<br />

E<strong>in</strong>audi F, Galli L, Gao Y, Geldmacher J, Gilbert LA, Hayman NW,<br />

Herrero-Bervera E, Hirano N, Holter S, Ingle S, Jiang S, Kalberkamp<br />

U, Kerneklian M, Koepke J, Laverne C, Lledo Vasquez HL,<br />

Maclennan J, Morgan S, Neo N, Nichols HJ, Park S-H, Reichow MK,<br />

Sakuyama T, Sano T, Sandwell R, Scheibner B, Smith-Duque CE,<br />

Swift SA, Tartarotti P, Tikku AA, Tom<strong>in</strong>aga M, Veloso EA, Yamasaki<br />

T, Yamazaki S, Ziegler C (2006) Drill<strong>in</strong>g to Gabbro <strong>in</strong> Intact Ocean<br />

Crust. Science 312(5776):1016-1020<br />

<strong>IODP</strong><br />

Holocene vegetation development <strong>in</strong> Angola –<br />

Palynology of ODP Site 1078<br />

L.M. DUPONT 1<br />

1 Marum / Uni-Bremen, Leobener Str., 28359 Bremen.<br />

dupont@uni-bremen.de<br />

Record<strong>in</strong>g and understand<strong>in</strong>g vegetation change <strong>in</strong><br />

southern Africa is important because it opens a w<strong>in</strong>dow to<br />

study the variability of both tropical and subtropical<br />

systems <strong>in</strong> the Southern Hemisphere. ODP Site 1078<br />

situated under the coast of Angola provides a unique record<br />

of vegetation history of tropical SW Africa. The upper 16<br />

meters of the core covers the past 50 thousand years.<br />

Previously we reported on glacial and deglacial parts of the<br />

record. Here, we focus on the vegetation changes of the<br />

Holocene. Our results <strong>in</strong>dicate that the rich forests cover<strong>in</strong>g<br />

Angola dur<strong>in</strong>g deglaciation changed <strong>in</strong> composition at the<br />

beg<strong>in</strong>n<strong>in</strong>g of the Holocene; dry forest and Miombo<br />

woodlands became <strong>in</strong>creas<strong>in</strong>gly important, while ra<strong>in</strong><br />

forest elements retreated. After a disturbance around 8 ka,<br />

Podocarpus dom<strong>in</strong>ated between 7.8 and 3.7 ka. Dur<strong>in</strong>g this<br />

period, either Miombo woodland or wetter types of ra<strong>in</strong><br />

forest expanded and replaced open savannah vegetation.<br />

After 3.7 ka savannahs spreaded aga<strong>in</strong> and even more so<br />

after 2 ka. Forests might have become patchy grow<strong>in</strong>g<br />

light-lov<strong>in</strong>g and fire hardy trees. The thus reconstructed<br />

vegetation changes are compared to other African<br />

environmental records.<br />

45


46<br />

Pollen (%)<br />

Grass<br />

Dry forest<br />

Savannah<br />

Miombo<br />

Ra<strong>in</strong> forest<br />

Podocarpus<br />

40<br />

20<br />

0<br />

16<br />

8<br />

0<br />

8<br />

0<br />

8<br />

4<br />

0<br />

40<br />

20<br />

0<br />

0 4 8<br />

Age (ka)<br />

12<br />

Flux<br />

2<br />

(N/cm /ka)<br />

100<br />

10<br />

1<br />

100<br />

1000<br />

FIig.1: Selection of pollen curves of ODP Site 1078. Percentages<br />

of total pollen and spores (l<strong>in</strong>es, left Y-axes). Pollen flux values <strong>in</strong><br />

numbers/cm2/ka (shaded, right Y-axes).<br />

<strong>IODP</strong><br />

The down-hole magmatic-metamorphic<br />

evolution <strong>in</strong> basalts and gabbros monitored<br />

by Fe-Ti oxides: A complete section of<br />

Superfast Spread<strong>in</strong>g Crust at <strong>IODP</strong> Site<br />

1256(Project HO 1337/14; SPP 527)<br />

W. DZIONY 1 , J. KOEPKE 1 , F. HOLTZ 1 , I. HORN 1<br />

1 Institut für M<strong>in</strong>eralogie, Leibniz Universität <strong>Hannover</strong><br />

General research Objectives. The <strong>IODP</strong> multi-cruise<br />

mission "Superfast Spread<strong>in</strong>g Crust" drilled successfully a<br />

complete section of the upper oceanic crust <strong>in</strong>to the<br />

underly<strong>in</strong>g gabbros (Site 1256; eastern equatorial Pacific;<br />

15 Ma crust formed at the East Pacific Rise). The<br />

recovered rocks, now represent<strong>in</strong>g the first reference<br />

profile through fast-spread<strong>in</strong>g upper oceanic crust, reveal a<br />

complex <strong>in</strong>teraction between magmatic and metamorphic<br />

processes:<br />

Primary crystallization; low- and high-temperature<br />

alteration; contact-metamorphism; partial<br />

melt<strong>in</strong>g/assimilation; magma mix<strong>in</strong>g. The petrographic<br />

record of the whole section reveals that all processes<br />

<strong>in</strong>volve the formation of, or the reaction with, Fe-Ti oxides,<br />

which can consequently be used as suitable proxies for<br />

monitor<strong>in</strong>g the different stages <strong>in</strong> the magmaticmetamorphic<br />

evolution of fast-spread<strong>in</strong>g oceanic crust. In<br />

100<br />

10<br />

1<br />

100<br />

10<br />

10<br />

1<br />

100<br />

10<br />

1<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

this project, it is to (1) evaluate the temperature-oxygen<br />

fugacity evolution of gabbros/basalts dur<strong>in</strong>g late and post<br />

magmatic processes, (2) to improve our understand<strong>in</strong>g of<br />

the <strong>in</strong>terplay between hydrothermal circulation and primary<br />

magmatic processes us<strong>in</strong>g <strong>in</strong>-situ analysis of iron isotopes,<br />

(3) to constra<strong>in</strong> the conditions prevail<strong>in</strong>g <strong>in</strong> the axial<br />

magma chamber us<strong>in</strong>g an experimental approach. This<br />

report will focus on the presentation of first results<br />

obta<strong>in</strong>ed <strong>in</strong> tasks (1) and (2).<br />

First results<br />

(1) Temperatures and redox conditions for dist<strong>in</strong>ct<br />

stages of the metamorphic-magmatic evolution, with<br />

particular attention to the granoblastic dikes and gabbros.<br />

The downhole evolution of the primary magmatic<br />

phases <strong>in</strong> the lavas and dikes were evaluated by<br />

petrographic <strong>in</strong>vestigation of ~ 100 th<strong>in</strong> sections and based<br />

on several thousands of microprobe analyses (Dziony et al.,<br />

<strong>2008</strong>). In addition to direct implications for the research<br />

project, the systematic petrographic descriptions and the<br />

analytical data can be used as a comprehensive data basis<br />

for the magmatic/metamorphic evolution <strong>in</strong> the volcanic<br />

part of the Hole 1256D drill<strong>in</strong>g section which is of<br />

importance for other <strong>IODP</strong> 1256D work<strong>in</strong>g groups.<br />

One key observation was the detection and analysis of<br />

low-Ca pyroxene as relics <strong>in</strong> the cl<strong>in</strong>opyroxenes, which<br />

shed light on the “orthopyroxene paradoxon” mean<strong>in</strong>g that<br />

orthopyroxene is present <strong>in</strong> many oceanic gabbros, but<br />

practically absent as phenocrysts <strong>in</strong> the correspond<strong>in</strong>g<br />

extrusives (Dziony et al., 2007a, b).<br />

The results of this work is the basis for the a further<br />

study (Koepke et al., 2007a) focuss<strong>in</strong>g on the metamorphic<br />

evolution of the lowermost dikes, the “granoblastic dikes”<br />

(Fig. 1; dotted area with<strong>in</strong> the sheeted dike complex),<br />

which have been collected <strong>in</strong> the vic<strong>in</strong>ity of gabbroic<br />

samples. The “granoblastic dikes” were identified to be the<br />

conduct<strong>in</strong>g boundary layer (CBL, Coogan et al., 2003)<br />

between the magmatic system of the melt lens and the<br />

hydrothermal system convect<strong>in</strong>g at much lower<br />

temperatures <strong>in</strong> the sheeted dikes. The downhole evolution<br />

of the granoblastic overpr<strong>in</strong>t is expressed by systematical<br />

changes of textures, phase compositions and calculated<br />

equilibrium temperatures, which are <strong>in</strong> agreement with a<br />

model of contact metamorphism caused by a heat source<br />

below the sheeted dikes. Us<strong>in</strong>g the analysis of diffusion<br />

profiles <strong>in</strong> former phenocrysts which survived the<br />

granoblastic metamorphic overpr<strong>in</strong>t and thermal model<strong>in</strong>g,<br />

we calculated that a heat source must have been active over<br />

several thousands of years. This long last<strong>in</strong>g heat source is<br />

most probably related to a steady-state high-level axial<br />

magma chamber (AMC) located at the base of the sheeted<br />

dikes. These are the first quantitative results based on<br />

direct observation of such a horizon.<br />

The analytical data were also applied to reconstruct the<br />

redox condition dur<strong>in</strong>g the primary magmatic stage and the<br />

granoblastic overpr<strong>in</strong>t. We applied successfully the<br />

improved two-oxide geo-oxybarometer (Sauerzapf et al.,<br />

2007 submitted) to the granoblastic dikes, which <strong>in</strong>dicates<br />

that magmatic processes occur at reduc<strong>in</strong>g conditions (as<br />

expected for MOR basalts) and that the granoblastic<br />

overpr<strong>in</strong>t is accompanied by a dramatic shift of the f(O2)<br />

(nearly 4 orders of magnitude) towards more oxidiz<strong>in</strong>g<br />

conditions (Koepke et al., 2007a submitted). This opens<br />

<strong>in</strong>terest<strong>in</strong>g perspectives to monitor the<br />

magmatic/metamorphic evolution of the whole profile from


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

the lava flows to the gabbros with the help of the oxide<br />

m<strong>in</strong>erals.<br />

Us<strong>in</strong>g a femtoLA-MC-ICPMS system recently<br />

developed at <strong>Hannover</strong>, we analyzed iron isotopes <strong>in</strong><br />

different Fe-bear<strong>in</strong>g phases (magnetite, ilmenite,<br />

sulphides), <strong>in</strong> the Fe-Ti phases and sulphides of<br />

gabbros/basalts <strong>in</strong> order to unravel the complex <strong>in</strong>terplay<br />

between alteration/metamorphism and magmatic cycle at<br />

fast-spread<strong>in</strong>g mid-ocean ridges. Fe isotopes were<br />

measured <strong>in</strong> oxides and sulfides of a ferrogabbro from the<br />

Southwest Indian Ridge (dill hole 735B) and a fresh basalt<br />

from our 1256D superfast EPR crust. The analytical and<br />

methodical techniques are given by Horn et al. (2006) and<br />

prelim<strong>in</strong>ary results were reported by (Koepke et al., 2007b)<br />

Δ 5 6/5 4 Fe magnetite - X<br />

1.2<br />

0.8<br />

0.4<br />

0.0<br />

-0.4<br />

Fe O -FeS<br />

3 4<br />

Fe O -Fe O<br />

3 4 2 3<br />

gabbro assembl. 1<br />

gabbro assembl. 2<br />

fresh basalt<br />

Fe O -FeS<br />

3 4 2<br />

Gabbro<br />

MT-PYR<br />

Gabbro<br />

MT-ILM<br />

300 400 500 600 700 800 900 1000 1100<br />

temperature (°C)<br />

Δ 56 Fe (Ti-)m agn etite-ilm enite<br />

Consider<strong>in</strong>g that the primary goal of this study is to use<br />

the Fe isotopes as a monitor for seawater overpr<strong>in</strong>t (drastic<br />

fractionation effects are expected), the knowledge of the<br />

equilibrium fractionation between the <strong>in</strong>volved phases is<br />

essential, and a part of our efforts are focused on<br />

establish<strong>in</strong>g the rationale beh<strong>in</strong>d this topic. Therefore we<br />

compared the fractionation coefficients of δ 56 Fe obta<strong>in</strong>ed<br />

from the analyses of different natural Fe-bear<strong>in</strong>g phases<br />

(magnetite, ilmenite, sulphides) <strong>in</strong> gabbros and basalt with<br />

the fractionation coefficients derived from Mössbauer data<br />

( Polyakov et al., 2007). First results are presented <strong>in</strong> Fig.<br />

2. In order to quantify the fractionation behaviour under<br />

equilibrium conditions, we measured also δ56Fe values <strong>in</strong><br />

magnetite and ilmenite from experimental samples<br />

provided by D. Lattard (Heidelberg) synthesized at<br />

different temperature/redox conditions (Fig. 2). Most<br />

measured values are <strong>in</strong> the range predicted from the<br />

literature ( Polyakov et al., 2007), imply<strong>in</strong>g that there is a<br />

high probability that those fractionation values derived<br />

from natural samples, which are outside of the predicted<br />

range can be used for trac<strong>in</strong>g the <strong>in</strong>fluence of hydrothermal<br />

fluids. This result opens very <strong>in</strong>terest<strong>in</strong>g perspectives for<br />

our future survey on the 1256D rocks.<br />

0,6<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

0,0<br />

-0,1<br />

-0,2<br />

-0,3<br />

-0,4<br />

magnetite-ilmenite equlibrium fractionation predicted by<br />

Polyakov and M<strong>in</strong>eev, 2000; Polyakov et al. 2007<br />

1F92Qc (ox)<br />

1P63IW (red)<br />

6F92x0 (ox)<br />

6F57x34 (red)<br />

maximum/m<strong>in</strong>imum values<br />

connected by vertical l<strong>in</strong>es<br />

600 700 800 900 1000 1100 1200 1300 1400<br />

Fig. 2: Results of LA-ICP-MS measurements of δ56Fe. Left: Results from natural rocks and predicted ranges after Polyakov and M<strong>in</strong>eev, 2000;<br />

Polyakov et al., 2007. Right: Results from experimental magnetite / ilmenite pairs.<br />

T (°C)<br />

47


48<br />

Dziony, W., Koepke, J., Holtz.F., 2007 submitted. Data report: Petrography<br />

and phase analyses <strong>in</strong> lavas and dikes from the hole 1256D (ODP Leg<br />

206 and <strong>IODP</strong> Expedition 309, East Pacific Rise). In: Teagle, D.A.H.<br />

et al. (Eds.), Proc. <strong>IODP</strong>, Sci. Results, 309/312. College Station, TX,<br />

Ocean Drill<strong>in</strong>g Program.<br />

Dziony, W., Koepke, J., Holtz, F., 2007. Low-Ca pyroxene relics <strong>in</strong> drilled<br />

basalts from EPR crust (<strong>IODP</strong> Site 1256D). Geochim. Cosmochim.<br />

Acta Suppl. 71, A248-A248.<br />

Dziony, W., Koepke, J., Holtz, F., <strong>2008</strong> <strong>in</strong> press. Downhole evolution of<br />

m<strong>in</strong>eral phases <strong>in</strong> drilled lavas and dikes from EPR crust (<strong>IODP</strong> Site<br />

1256, Equatorial Pacific). Geophys. Res. Abstr.<br />

Koepke, J., Christie, D.M., Dziony, W., Holtz, F., Lattard, D., Maclennan,<br />

J., Park, S., Scheibner, B., Yamasaki, T., Yamasaki, S., 2007<br />

submitted. Petrography of the Dike/Gabbro Transition at <strong>IODP</strong> Site<br />

1256D (Equatorial Pacific): The evolution of the Granoblastic Dikes.<br />

Geochem. Geophys. Geosyst.<br />

Koepke, J., Ste<strong>in</strong>höfel, G., Schuessler, J.A., Horn, I., Dziony, W.,<br />

Botcharnikov, R., 2007. In-situ Fe isotope measurements <strong>in</strong> gabbros<br />

and basalts from the ocean crust. Geochim. Cosmochim. Acta Suppl.<br />

71, A502-A502.<br />

Coogan, L.A., Mitchell, N.C., O'Hara, M.J., 2003. Roof assimilation at fast<br />

spread<strong>in</strong>g ridges: An <strong>in</strong>vestigation comb<strong>in</strong><strong>in</strong>g geophysical,<br />

geochemical, and field evidence. J. Geophys. Res. 108,<br />

doi:10.1029/2001JB001171.<br />

Horn, I., von Blanckenburg, F., Schoenberg, R., Ste<strong>in</strong>hoefel, G., Markl, G.,<br />

2006. In situ iron isotope ratio determ<strong>in</strong>ation us<strong>in</strong>g UV-femtosecond<br />

laser ablation with application to hydrothermal ore formation<br />

processes. Geochim. Cosmochim. Acta 70, 3677–3688.<br />

Polyakov, V.B., M<strong>in</strong>eev, S.D., 2000. The use of Mossbauer spectroscopy <strong>in</strong><br />

stable isotope geochemistry. Geochim.Cosmochim. Acta 64, 849-865.<br />

Polyakov, V.B.,Clayton, R.N., Horita, J., and M<strong>in</strong>eev, S.D.,2007.<br />

Equilibrium iron isotope fractionation factors of m<strong>in</strong>erals: Reevaluation<br />

from the data of nuclear <strong>in</strong>elastic resonant X-ray scatter<strong>in</strong>g and<br />

Mossbauer spectroscopy. Geochimica et Cosmochimica Acta, 71(15),<br />

3833-3846.<br />

Sauerzapf, U., Lattard, D., Burchard, M., Engelmann, R., 2007 submitted.<br />

New experimental data and a simple version of the titanomagnetiteilmenite<br />

thermo-oxybarometer for high temperature and reduced to<br />

moderatly oxidised conditions. J. Petrol.<br />

<strong>IODP</strong><br />

Nitrogen fixation dur<strong>in</strong>g Pliocene cool<strong>in</strong>g<br />

with<strong>in</strong> the Benguela Upwell<strong>in</strong>g System and<br />

the Eastern Equatorial Pacific, ODP Sites<br />

1082 and 1239<br />

J. ETOURNEAU 1 , R. SCHNEIDER 1 , P. MARTINEZ 2 , T. BLANZ 1<br />

1 Institut für Geowissenschaften, Christian Albrecht Universität,<br />

24118 Kiel, Germany.<br />

2 Département de Géologie et Océanographie, UMR CNRS 5805<br />

EPOC, Université de Bordeaux I, 33405 Talence, France.<br />

The Pliocene cool<strong>in</strong>g (2.7-2.1 Ma) is ma<strong>in</strong>ly attributed<br />

to the f<strong>in</strong>ale closure of the Panama Gateway after 2.73 Ma,<br />

a major tectonic event which led to a profound<br />

reorganization of the global thermohal<strong>in</strong>e circulation, an<br />

extension of the cont<strong>in</strong>ental ice sheet especially <strong>in</strong> the<br />

Northern Hemisphere as well as a more vigorous<br />

atmospheric circulation. Pronounced stratification of the<br />

Southern and the Northern Pacific Oceans and <strong>in</strong>itiation of<br />

the modern Gulf Stream <strong>in</strong> the Caribbean Sea are<br />

considered as supplementary causes of this climatic<br />

change. With<strong>in</strong> low-latitudes highly productive coastal<br />

upwell<strong>in</strong>g regions, however a change <strong>in</strong> redistribution of<br />

nutrient supply probably modified the nature of the<br />

productivity and therefore may have been <strong>in</strong>fluential on the<br />

atmospheric CO2 level dur<strong>in</strong>g the Pliocene.<br />

In this study, we provide a comparison over the past<br />

3.5 Ma between the ODP Sites 1082 and 1239 located<br />

with<strong>in</strong> the Benguela Upwell<strong>in</strong>g system and <strong>in</strong> the Eastern<br />

Equatorial Pacific, respectively. We used alkenonesderived<br />

sea surface temperature (SST) and sedimentary<br />

nitrogen isotopes ratios (δ 15 N) <strong>in</strong> order to determ<strong>in</strong>e the<br />

impacts of the Pliocene cool<strong>in</strong>g on the changes of the<br />

oceanic conditions and of the phytoplanktonic productivity<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

with<strong>in</strong> both bas<strong>in</strong>s. At these two sites, the two proxy<br />

records revealed similar trends with a two-step SSTs<br />

decrease correspond<strong>in</strong>g to a two-step bulk-sediment δ 15 N<br />

<strong>in</strong>crease, progressively show<strong>in</strong>g values closer to the<br />

modern conditions and those from the Pleistocene (~ 1.5<br />

Ma). The Eastern Equatorial Pacific site exhibited warmer<br />

SST (> 22°C) than the Benguela upwell<strong>in</strong>g (>14°C). This<br />

is consistent with the fact that the site 1082 is located<br />

nearer to an active upwell<strong>in</strong>g cell while the site 1239 is<br />

only <strong>in</strong>fluenced by the rim of the Peruvian upwell<strong>in</strong>g. The<br />

most <strong>in</strong>terest<strong>in</strong>g feature observed at these sites corresponds<br />

to the negative shift of the bulk-sediment δ 15 N just after 2.7<br />

Ma. At this period very low δ 15 N values (


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Gu<strong>in</strong>ea). These coral records suggest that glacial ENSO<br />

variability was weaker than today’s (Tudhope et al., 2001).<br />

This f<strong>in</strong>d<strong>in</strong>g is not necessarily <strong>in</strong>consistent with climate<br />

model simulations that <strong>in</strong>dicate an amplification of ENSO<br />

variance dur<strong>in</strong>g the LGM, but weakened ENSO<br />

teleconnections (An et al., 2004; Otto-Bliesner et al., 2003;<br />

Peltier and Solheim, 2004). Other proxy-based<br />

reconstructions of <strong>in</strong>terannual climate variability dur<strong>in</strong>g<br />

glacial boundary conditions do not exist <strong>in</strong> the Pacific<br />

Ocean, and reefs of this age are usually difficult to access.<br />

With respect to mar<strong>in</strong>e sediment records Trenberth and<br />

Otto-Bliesner (2003) have emphasized that conclusions<br />

about changes <strong>in</strong> ENSO from proxy records that do not<br />

resolve <strong>in</strong>terannual variability are especially fraught with<br />

difficulty.<br />

<strong>IODP</strong> Expedition 310 “Tahiti Sea Level” aimed to<br />

recover the coral reef record of the last deglacial sea-level<br />

rise <strong>in</strong> the South Pacific Ocean (Camo<strong>in</strong> et al., 2005).<br />

Dur<strong>in</strong>g this Mission-Specific Platform (MSP) Expedition<br />

conducted by the European Consortium for Ocean<br />

Research Drill<strong>in</strong>g (ECORD), more than 600 m of cores<br />

with an exceptional recovery were retrieved from 37 holes<br />

drilled <strong>in</strong>to the drowned reefs around the island of Tahiti<br />

(French Polynesia), <strong>in</strong> water depths between 41 and 117 m<br />

(Expedition 310 Scientists, 2006). A total of 30 m of the<br />

reef cores consist of massive coral colonies, mostly of the<br />

genus Porites. The aragonitic skeletons of such annuallybanded<br />

corals provide an opportunity to study changes <strong>in</strong><br />

seasonality and <strong>in</strong>terannual climate variability dur<strong>in</strong>g the<br />

last deglaciation <strong>in</strong> the South Pacific Ocean. Subseasonally<br />

resolved records of Sr/Ca and oxygen isotopes<br />

derived from well-preserved and well-dated (U-series<br />

dat<strong>in</strong>g) coral skeletons can provide reconstructions of<br />

variations <strong>in</strong> temperature and hydrologic balance at the sea<br />

surface.<br />

Here we present results of sub-seasonally resolved coral<br />

records from Tahiti for time w<strong>in</strong>dows around 14 to 15 kyr<br />

BP, a time <strong>in</strong>terval that is characterized by abrupt climatic<br />

changes <strong>in</strong> the North Atlantic region, such as He<strong>in</strong>rich<br />

event 1, the Bøll<strong>in</strong>g warm<strong>in</strong>g and the Older Dryas cool<strong>in</strong>g.<br />

In particular, we have generated a 22-year record of<br />

monthly resolved Sr/Ca and oxygen isotope variations from<br />

an <strong>in</strong>dividual 60-cm-high Porites colony that was drilled <strong>in</strong><br />

growth position. The coral was recovered at a depth of<br />

about 111 m below present sea level, 21 m below sea floor.<br />

X-ray powder diffraction analyses, th<strong>in</strong> sections and<br />

scann<strong>in</strong>g electron microscope imag<strong>in</strong>g along the<br />

microsampl<strong>in</strong>g transect <strong>in</strong>dicate that the coral’s aragonitic<br />

skeleton is well-preserved. U-series dat<strong>in</strong>g <strong>in</strong>dicates that<br />

this coral grew 15.0 kyr BP, prior to the Bøll<strong>in</strong>g warm<strong>in</strong>g<br />

at the time of He<strong>in</strong>rich event 1. This period was<br />

characterized by a near or complete shut-down of the<br />

Atlantic Meriodional Overturn<strong>in</strong>g Circulation (AMOC)<br />

(McManus et al., 2004).<br />

Our new coral record from Tahiti shows clear annual<br />

cycles and <strong>in</strong>dicates a pronounced <strong>in</strong>terannual variability.<br />

Spectral analysis of the coral Sr/Ca paleothermometer<br />

record identifies significant peaks at periods of 5 and 2<br />

years, suggest<strong>in</strong>g a pronounced <strong>in</strong>terannual variability <strong>in</strong><br />

the ENSO frequency band <strong>in</strong> South Pacific sea surface<br />

temperatures at 15.0 kyr BP. This f<strong>in</strong>d<strong>in</strong>g is somewhat<br />

surpris<strong>in</strong>g, because today the ENSO <strong>in</strong>fluence on sea<br />

surface temperatures and coral Sr/Ca at Tahiti is weak and<br />

non-stationary (Cahyar<strong>in</strong>i, 2006). Our fossil coral drilled<br />

on <strong>IODP</strong> Expedition 310 provides the first record of<br />

<strong>in</strong>terannual variability <strong>in</strong> Pacific sea surface temperatures<br />

dur<strong>in</strong>g He<strong>in</strong>rich event 1. Our result of pronounced<br />

<strong>in</strong>terannual variability <strong>in</strong> South Pacific temperatures<br />

around 15.0 kyr ago is consistent with recent climate model<br />

simulations that suggest that a weaken<strong>in</strong>g of the AMOC<br />

can lead, via atmospheric teleconnections, to an<br />

<strong>in</strong>tensification of ENSO variability (Timmermann et al.,<br />

2007).<br />

Figure 1. Top: X-radiograph positive pr<strong>in</strong>t of a fossil Porites sp. coral from Tahiti drilled dur<strong>in</strong>g <strong>IODP</strong> Expedition 310 at a depth of about<br />

111 m below present sea level, 21 m below sea floor. The coral grew cont<strong>in</strong>uously for a time <strong>in</strong>terval of more than 22 years around 15.0<br />

kyr BP, a period that corresponds to He<strong>in</strong>rich event 1 <strong>in</strong> the North Atlantic. Bottom: Monthly-resolved coral δ 18 O (red) and Sr/Ca (blue)<br />

records. The records show clear annual cycles and a pronounced <strong>in</strong>terannual variability.<br />

49


50<br />

References:<br />

An, S.-I. et al., 2004. Model<strong>in</strong>g evidence for enhanced El Niño-Southern<br />

Oscillation amplitude dur<strong>in</strong>g the Last Glacial Maximum.<br />

Paleoceanography, 19: PA4009, doi:10.1029/2004PA001020.<br />

Cahyar<strong>in</strong>i, S.Y., 2006. Paired δ 18 O and Sr/Ca records of Porites corals from<br />

Tahiti (French Polynesia) and Timor (Indonesia), University of Kiel,<br />

Kiel, Germany, PhD Thesis, 180 pp.<br />

Camo<strong>in</strong>, G.F., Iryu, Y., McInroy, D. and Expedition 310 Project Team,<br />

2005. The last deglacial sea level rise <strong>in</strong> the South Pacific: offshore<br />

drill<strong>in</strong>g <strong>in</strong> Tahiti (French Polynesia). <strong>IODP</strong> Sci. Prosp., 310,<br />

doi:10.2204/iodp.sp.310.2005.<br />

Expedition 310 Scientists, 2006. Tahiti Sea Level: the last deglacial sea<br />

level rise <strong>in</strong> the South Pacific: offshore drill<strong>in</strong>g <strong>in</strong> Tahiti (French<br />

Polynesia). <strong>IODP</strong> Prel. Rept., 310, doi:10.2204/iodp.pr.310.2006.<br />

McManus, J.F., Francois, R., Gherardi, J.M., Keigw<strong>in</strong>, L.D. and Brown-<br />

Leger, S., 2004. Collapse and rapid resumption of Atlantic meridional<br />

circulation l<strong>in</strong>ked to deglacial climate changes. Nature, 428: 834-837.<br />

Otto-Bliesner, B.L., Brady, E.C., Sh<strong>in</strong>, S.-I., Liu, Z. and Shields, C., 2003.<br />

Model<strong>in</strong>g El Niño and its tropical teleconnections dur<strong>in</strong>g the last<br />

glacial-<strong>in</strong>terglacial cycle. Geophysical Research Letters, 30: 2198,<br />

doi:10.1029/2003GL018553.<br />

Peltier, W.R. and Solheim, L.P., 2004. The climate of the Earth at Last<br />

Glacial Maximum: statistical equilibrium state and a mode of <strong>in</strong>ternal<br />

variability. Quaternary Science Reviews, 23: 335-357.<br />

Timmermann, A. et al., 2007. The <strong>in</strong>fluence of a weaken<strong>in</strong>g of the Atlantic<br />

Meridional Overturn<strong>in</strong>g Circulation on ENSO. Journal of Climate, 20:<br />

4899-4919.<br />

Trenberth, K.E. and Otto-Bliesner, B.L., 2003. Toward <strong>in</strong>tegrated<br />

reconstruction of past climates. Science, 300: 589-591.<br />

Tudhope, A.W. et al., 2001. Variability <strong>in</strong> the El Niño-Southern Oscillation<br />

through a glacial-<strong>in</strong>terglacial cycle. Science, 291: 1511-1517.<br />

Acknowledgements:<br />

We acknowledge the support of the Deutsche<br />

Forschungsgeme<strong>in</strong>schaft (DFG) through a grant to G.<br />

Wefer (We 992/51-1), University of Bremen.<br />

<strong>ICDP</strong><br />

Research study for a geoelectrical pre-site<br />

survey of the drill<strong>in</strong>g location with<strong>in</strong> the<br />

Eger Rift - Investigation of the subsurface<br />

electrical conductivity distribution<br />

CH. FLECHSIG 1 , C. SCHÜTZE 1<br />

1<br />

Universität Leipzig, Institut für Geophysik und Geologie,<br />

Talstrasse 35, 04103 Leipzig<br />

The epicentral area around Nový Kostel/NW-Bohemia<br />

is favourised as location for a deep borehole. The target<br />

area of the proposed drill<strong>in</strong>g project is situated <strong>in</strong> the Eger<br />

Rift, a geodynamically active part of the Variscan orogenic<br />

belt <strong>in</strong> Europe. Western part of the Eger Rift is<br />

characterised by repeated occurrence of <strong>in</strong>traplate<br />

earthquake swarms, by numerous m<strong>in</strong>eral spr<strong>in</strong>gs, and CO2<br />

emissions. Such phenomena are usually related to volcanic<br />

activity.<br />

The comprehensive geoelectrical study <strong>in</strong> the context<br />

of a pre-site survey could greatly benefit the<br />

establishment/characterization of an <strong>ICDP</strong> drill<strong>in</strong>g site<br />

location <strong>in</strong> the western part of the Eger Rift and recent<br />

research projects (for <strong>in</strong>stance project <strong>ICDP</strong> Eger Rift<br />

Fluids, GFZ Potsdam).<br />

Related questions are:<br />

Is there any evidence <strong>in</strong> the upper crust for the different<br />

degass<strong>in</strong>g behaviour with<strong>in</strong> the area near Novy Kostel (low<br />

degass<strong>in</strong>g rates) and the south of Novy Kostel situated<br />

mofettes area Bublak with permanent high degass<strong>in</strong>g rates?<br />

Do the gas ascent paths and the descent paths for<br />

meteoric water respectively are detectable with the<br />

geoelectrical methods?<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

What k<strong>in</strong>d of tectonical <strong>in</strong>formation are deducible from<br />

the electrical conductivity distribution <strong>in</strong> the subsurface of<br />

the western Eger Rift?<br />

We propose to carry out an electrical pre-site survey for<br />

the submitted <strong>ICDP</strong> drill<strong>in</strong>g project <strong>in</strong> the western part of<br />

the Eger Rift. In the context of ongo<strong>in</strong>g research to f<strong>in</strong>d an<br />

optimal location the <strong>in</strong>tent of this study is to exam<strong>in</strong>e the<br />

structure of the Earth’s crust up to a depth of 4 to 5 km.<br />

The distribution of the electrical conductivity reproduces a<br />

model of geological structural units with its different<br />

electrical characterisation <strong>in</strong>clud<strong>in</strong>g the fault zones with<br />

fluid pathways <strong>in</strong> the subsurface. The survey area is the<br />

potential drill<strong>in</strong>g location <strong>in</strong> the vic<strong>in</strong>ity of the most active<br />

swarm earthquake zone Novy Kostel.<br />

Prior to the field measurements our proposal conta<strong>in</strong>s a<br />

one year preparatory study, which on the one hand aims the<br />

theoretical model<strong>in</strong>g of expected electrical measur<strong>in</strong>g<br />

effects of a deep geoelectrical exploration (necessary array<br />

size up to 25 km). A priori <strong>in</strong>formation of previous and<br />

recent research activities (results from seismology,<br />

seismics, magnetotellurics, gas-geochemistry) <strong>in</strong> the target<br />

area should be <strong>in</strong>cluded. On the other hand, test<strong>in</strong>g<br />

measurements to check e.g. the signal quality and the<br />

logistic efforts are planned with<strong>in</strong> the preparatory study to<br />

optimize the further field work.<br />

<strong>IODP</strong><br />

A paleo sea surface temperature record<br />

throughout the Cretaceous thermal<br />

maximum from an Albian-Santonian black<br />

shale sequence <strong>in</strong> the tropical Atlantic<br />

A. FORSTER 1,2 , S. SCHOUTEN 1 , M. BAAS 1 , J.S. SINNINGHE DAMSTÉ 1<br />

1 Royal Netherlands Institute for Sea Research, Department of<br />

Mar<strong>in</strong>e Biogeochemistry and Toxicology, P.O. Box 59, 1790<br />

AB Den Burg, Texel, The Netherlands<br />

2 Present address: Rommelstr. 34, 49809 L<strong>in</strong>gen (Ems), Germany<br />

(astrid.forster@gmx.net)<br />

Paleoclimate records of geologic time periods<br />

characterized by extreme global warmth like the mid-<br />

Cretaceous are important for a better understand<strong>in</strong>g of the<br />

Earth’s climate system operat<strong>in</strong>g <strong>in</strong> an exceptionally warm<br />

mode. Here we applied an organic geochemical proxy, the<br />

TetraEther <strong>in</strong>deX of 86 carbon atoms (TEX86), on organic<br />

matter-rich Albian to Santonian sediments to reconstruct<br />

sea surface temperatures (SSTs) <strong>in</strong> the western equatorial<br />

Atlantic (Fig. 1). This sequence of Cretaceous mar<strong>in</strong>e black<br />

shales was recovered by Ocean Drill<strong>in</strong>g Program Leg 207<br />

sites 1258 and 1259 on Demerara Rise that is located<br />

offshore Sur<strong>in</strong>ame/French Guiana. Preceded by a stepwise<br />

Cenomanian warm<strong>in</strong>g trend (~31–35°C), the onset of the<br />

Cretaceous thermal maximum co<strong>in</strong>cided here with the<br />

Cenomanian/Turonian boundary event. Once established,<br />

this extreme warm climate regime, characterized by<br />

averaged tropical SSTs close to 35°C, lasted up to the<br />

Turonian/Coniacian transition. Two pronounced cooler<br />

<strong>in</strong>tervals (~2–3°C) <strong>in</strong>terrupt this otherwise remarkably<br />

stable record, provid<strong>in</strong>g the first δ18O <strong>in</strong>dependent<br />

evidence for middle Turonian cool<strong>in</strong>g that previously has<br />

been attributed to glacioeustatic sea level lower<strong>in</strong>g.<br />

Coniacian SSTs decl<strong>in</strong>e stepwise, reach<strong>in</strong>g a m<strong>in</strong>imum <strong>in</strong><br />

the Santonian (~32–33°C), where cool<strong>in</strong>g is most<br />

pronounced, presumably concomitant with the first,


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

progressive open<strong>in</strong>g of a deep water passage through the<br />

Equatorial Atlantic Gateway. These observations from<br />

Demerara Rise show that rapid tropical SST-changes<br />

occurred also dur<strong>in</strong>g the Cretaceous thermal maximum,<br />

and imply that even the mid-Cretaceous ''supergreenhouse''<br />

climate may have been less stable than<br />

previously thought.<br />

References:<br />

Forster, A., Schouten, S., Baas, M., and S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S. (2007):<br />

Mid-Cretaceous (Albian-Santonian) sea surface temperature record of<br />

the tropical Atlantic Ocean. Geology, 35, 919-922,<br />

doi:910.1130/G23874A.<br />

Albian Cenomanian<br />

Time<br />

<strong>in</strong>tervals<br />

12<br />

11<br />

δ<br />

-30 -25 -20<br />

13 Corg (‰)<br />

490<br />

Ca.<br />

San.<br />

500<br />

δ<br />

-30 -25 -20<br />

31 32 33 34 35 36<br />

Paleo-SST (°C)<br />

13 Site 1258 Corg (‰)<br />

8<br />

7<br />

530<br />

Ca.<br />

415<br />

Tur.<br />

420<br />

Unit III<br />

6<br />

6<br />

CTBE<br />

540<br />

Ce.<br />

425<br />

430<br />

CTBE<br />

5<br />

Unit V<br />

550 ?<br />

Depth Age<br />

435<br />

440<br />

4<br />

31 32 33 34 35 36 (mcd)<br />

Paleo-SST (°C)<br />

Site 1259<br />

445<br />

450<br />

455<br />

460<br />

MCE<br />

3<br />

465<br />

470<br />

475<br />

2<br />

Unit IV<br />

480<br />

485<br />

490<br />

Unit V<br />

495<br />

500<br />

505<br />

510<br />

515<br />

520<br />

1<br />

Age Depth<br />

(mcd)<br />

10<br />

9<br />

Unit III<br />

Unit IV<br />

Fig. 1. ODP Leg 207 sites 1258 and 1259 (Demerara Rise):<br />

Stratigraphy, stable carbon isotopic composition of organic matter<br />

(δ13Corg, black dots), and paleo-sea surface temperatures (SSTs,<br />

solid crosses) reconstructed by TEX86 (time-<strong>in</strong>tervals T1-T12<br />

differentiated accord<strong>in</strong>g to the paleo-SST record; mcd: meters<br />

composite depth; CTBE: Cenomanian-Turonian boundary event;<br />

MCE: mid-Cenomanian event).<br />

<strong>IODP</strong><br />

The Cenomanian/Turonian oceanic anoxic<br />

event <strong>in</strong> the South Atlantic:new <strong>in</strong>sights from<br />

a geochemical study of DSDP Site 530A<br />

A. FORSTER 1,2 , M.M.M. KUYPERS 1,3 , S.C. TURGEON 4,5 ,H.-J.<br />

BRUMSACK 4 , M.R. PETRIZZO 6 , J.S. SINNINGHE DAMSTÉ 1<br />

1 Royal Netherlands Institute for Sea Research, Department of<br />

Mar<strong>in</strong>e Biogeochemistry and Toxicology, P.O. Box 59, 1790<br />

AB Den Burg, Texel, The Netherlands<br />

2 Present address: Rommelstr. 34, 49809 L<strong>in</strong>gen (Ems), Germany<br />

(astrid.forster@gmx.net)<br />

3 Present address: Max Planck Institute (MPI) for Mar<strong>in</strong>e<br />

Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany<br />

4 Institut für Chemie und Biologie des Meeres (ICBM), Carl von<br />

Ossietzky Univers. Oldenburg, P.O. Box 2503, 26111<br />

Oldenburg, Germany<br />

5 Present address: Department of Earth & Atmospheric Sciences,<br />

University of Alberta, Edmonton AB T6G 2E3, Canada<br />

6 Ardito Desio Department of Earth Sciences, University of Milan,<br />

Via Mangiagalli 34, 20133 Milano, Italy<br />

510<br />

520<br />

Turonian Coniac.<br />

One of the key objectives of Deep Sea Drill<strong>in</strong>g Project<br />

(DSDP) Leg 75 was to shed light on the underly<strong>in</strong>g causes<br />

of Cretaceous oceanic anoxia <strong>in</strong> the South Atlantic by<br />

address<strong>in</strong>g two major hypotheses: productivity driven<br />

anoxia vs. enhanced ocean stratification lead<strong>in</strong>g to<br />

preservation of organic matter and black shale deposition.<br />

Here we present a detailed geochemical dataset from<br />

sediments deposited dur<strong>in</strong>g the Cenomanian/Turonian<br />

(C/T) transition and the global oceanic anoxic event 2<br />

(OAE 2) at DSDP Site 530A, located offshore Namibia<br />

(southeast Angola Bas<strong>in</strong>, north of Walvis Ridge). To<br />

characterize the succession of alternat<strong>in</strong>g black and green<br />

shales at this site and to reconstruct the evolution of their<br />

paleoenvironmental sett<strong>in</strong>g, we have comb<strong>in</strong>ed data<br />

derived from <strong>in</strong>vestigations on bulk organic matter,<br />

biomarkers and the <strong>in</strong>organic fraction. The location of the<br />

C/T boundary itself is biostratigraphically not well<br />

constra<strong>in</strong>ed due to the carbonate-poor (but organic matterrich)<br />

facies of these sediments. The bulk δ 13 C org record and<br />

compound-specific δ 13 C data, <strong>in</strong> comb<strong>in</strong>ation with<br />

published as well as new biostratigraphic data, enabled to<br />

more precisely locate the C/T boundary at DSDP Site<br />

530A. The compound specific δ 13 C record is the first of<br />

this k<strong>in</strong>d reported from C/T black shales <strong>in</strong> the South<br />

Atlantic. It is employed for paleoenvironmental<br />

reconstructions and chemostratigraphic correlation to other<br />

C/T sections <strong>in</strong> order to discuss the paleoceanographic<br />

aspects and implications of the observations at DSDP Site<br />

530A <strong>in</strong> a broader context, e.g., with regard to the potential<br />

trigger mechanisms of OAE 2, global changes <strong>in</strong> black<br />

shale deposition and climate. On a stratigraphic level, an<br />

approximation and monitor<strong>in</strong>g of the syndepositional<br />

degree of oxygen depletion with<strong>in</strong> the sediments/bottom<br />

waters <strong>in</strong> comparison to the upper water column is<br />

achieved by compar<strong>in</strong>g normalized concentrations of<br />

redox-sensitive trace elements with the abundance of<br />

highly source specific molecular compounds. These<br />

biomarkers are derived from photoautotrophic and<br />

simultaneously anoxygenic green sulphur bacteria<br />

(Chlorobiacea) and are <strong>in</strong>terpreted as paleo<strong>in</strong>dicators for<br />

events of photic zone eux<strong>in</strong>ia. In contrast to a number of<br />

other OAE 2 sections that are characterized by cont<strong>in</strong>uous<br />

black shale sequences, DSDP Site 530 represents a highly<br />

dynamic sett<strong>in</strong>g where newly deposited black shales were<br />

repeatedly exposed to conditions of subtle bottom water reoxidation,<br />

presumably lead<strong>in</strong>g to their progressive<br />

alteration <strong>in</strong>to green shales. The frequent alternation<br />

between both facies and the related anoxic to slight<br />

oxygenated conditions can be best expla<strong>in</strong>ed by variations<br />

<strong>in</strong> vertical extent of an oxygen m<strong>in</strong>imum zone <strong>in</strong> response<br />

to changes <strong>in</strong> a highly productive western cont<strong>in</strong>ental<br />

marg<strong>in</strong> sett<strong>in</strong>g driven by upwell<strong>in</strong>g.<br />

51


52<br />

<strong>IODP</strong><br />

Arctic Ocean circulation and weather<strong>in</strong>g<br />

<strong>in</strong>puts over the past 15 million years<br />

M. FRANK 1 , B.A. HALEY 1 , ROBERT F. SPIELHAGEN 1,2 , A.<br />

EISENHAUER 1 , J. BACKMAN 3 , K. MORAN 4<br />

1<br />

Leibniz Institute of Mar<strong>in</strong>e Sciences, IFM-GEOMAR,<br />

Wischhofstrasse 1-3, 24148 Kiel, Germany<br />

2<br />

Academy of Sciences, Humanities and Literature, 55131 Ma<strong>in</strong>z,<br />

Germany<br />

3<br />

Dept. of Geology and Geochemistry, Stockholm University,<br />

Stockholm, SE-106 91, Sweden<br />

4<br />

Graduate School of Oceanography and Department of Ocean<br />

Eng<strong>in</strong>eer<strong>in</strong>g, University of Rhode Island, Narragansett, RI<br />

02882, U.S.A.<br />

We present cosmogenic (10Be) and radiogenic (Nd,<br />

Pb) isotope records from the central Arctic Ocean for the<br />

late Cenozoic (past 15 Ma) obta<strong>in</strong>ed from the ACEX cores<br />

drilled at 1250 m water depth dur<strong>in</strong>g <strong>IODP</strong> Leg 302 on the<br />

Lomonosov Ridge. These cores for the first time enable<br />

paleoceanographic and paleoclimatic research <strong>in</strong> the Arctic<br />

Ocean which had previously been unaccesssible by long<br />

sediment cores.<br />

A profile of cosmogenic 10Be contributed to the<br />

establishment of an age model for the upper 150 m of the<br />

ACEX sediments result<strong>in</strong>g <strong>in</strong> a total age of 12.3 million<br />

years at this depth (Frank et al., <strong>2008</strong>). These sediments are<br />

almost completely barren of biogenic material and<br />

therefore difficult to date by common paleoceanographic<br />

techniques. The 10Be-based results showed that the<br />

average sedimentation rate <strong>in</strong> this section is 14.5 m/Ma,<br />

which is <strong>in</strong> very good agreement with the few other<br />

available biostratigraphic results <strong>in</strong> the upper 190 m of the<br />

ACEX drill cores (Backman et al., <strong>2008</strong>). In addition, the<br />

data po<strong>in</strong>t to the existence of an almost cont<strong>in</strong>uous Arctic<br />

sea ice cover over the past 12 million years.<br />

The radiogenic isotope records of authigenic metal<br />

oxide phases <strong>in</strong> the sediments reflect the bottom water<br />

isotope composition at the time of deposition of the<br />

sediments, whereas bulk sediment analyses provide<br />

<strong>in</strong>formation about the sources of the sediments. In<br />

comb<strong>in</strong>ation with late Quaternary radiogenic isotope<br />

signatures obta<strong>in</strong>ed from sediment leaches of a wellcharacterized<br />

piston core from a position near the ACEX<br />

sites (PS2185), the obta<strong>in</strong>ed seawater Nd isotope data<br />

document that <strong>in</strong>termediate water circulation has changed<br />

dramatically as a consequence of tectonic and climatic<br />

forc<strong>in</strong>g on million year, as well as millennial time scales.<br />

Significantly more mantle-like Nd isotope compositions of<br />

past <strong>in</strong>termediate waters were found dur<strong>in</strong>g most of the<br />

past 15 million years with the exception of the <strong>in</strong>terglacial<br />

periods of the Late Quaternary. These systematic mantlelike<br />

signatures can only orig<strong>in</strong>ate from the Putorana Flood<br />

Basalts and their weather<strong>in</strong>g products on the Kara Sea<br />

shelves. The transfer to <strong>in</strong>termediate depths is ascribed to a<br />

strong <strong>in</strong>fluence of salty br<strong>in</strong>es that were produced and<br />

sank dur<strong>in</strong>g periods of pronounced sea ice formation north<br />

of the Kara Sea shelves, which were largely covered by ice<br />

sheets dur<strong>in</strong>g these periods of time (Haley et al., <strong>2008</strong>a).<br />

Compared with the present day situation, a strongly<br />

dim<strong>in</strong>ished exchange with the Atlantic Ocean through the<br />

newly opened Fram Strait must have co<strong>in</strong>cided with the<br />

periods of enhanced br<strong>in</strong>e <strong>in</strong>fluence.<br />

The isotope composition of Pb <strong>in</strong> past Arctic<br />

<strong>in</strong>termediate water only shows small variations (Haley et<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

al., <strong>2008</strong>b). In view of the short oceanic residence time of<br />

Pb this <strong>in</strong>dicates relatively constant weather<strong>in</strong>g <strong>in</strong>puts over<br />

the past 15 Million years, which is <strong>in</strong> agreement with the<br />

relatively constant radiogenic isotope composition of the<br />

bulk sediments over this period of time. The bulk sediment<br />

isotope composition also <strong>in</strong>dicates that the supply areas for<br />

sediments at the core site on the Lomonosov Ridge have<br />

been ma<strong>in</strong>ly located on the Eurasian marg<strong>in</strong> of the Arctic<br />

Ocean rather than on cont<strong>in</strong>ental North America and<br />

Greenland. The constancy of the detrital <strong>in</strong>put signatures<br />

supports the early existence of an Arctic sea ice cover,<br />

whereas the major <strong>in</strong>itiation of Northern Hemisphere<br />

glaciation at 2.7 Ma appears to have had little impact on<br />

the weather<strong>in</strong>g regime of the Eurasian cont<strong>in</strong>ental marg<strong>in</strong>.<br />

References:<br />

Backman, J., Jakobsson, M., Frank, M., Sangiorgi, F., Br<strong>in</strong>khuis, H.,<br />

Stickley, C., O’Regan, M., Løvlie, R., Pälicke, H. Spofforth, D.,<br />

Gattacecca, J., Moran, K., K<strong>in</strong>g, J. and Heil, C. (<strong>2008</strong>): Age model and<br />

core-seismic <strong>in</strong>tegration for the Cenozoic ACEX sediments from the<br />

Lomonosov Ridge.- Paleoceanography, doi:10.1029/2007PA001476, <strong>in</strong><br />

press.<br />

Frank, M., Backman, J., Jakobsson, M., Moran, K., O’Regan, M., K<strong>in</strong>g, J.,<br />

Haley, B.A., Kubik, P.W. and Garbe-Schönberg, D. (<strong>2008</strong>): Beryllium<br />

isotopes <strong>in</strong> central Arctic Ocean sediments over the past 12.3 million<br />

years: Stratigraphic and paleoclimatic implications.- Paleoceanography,<br />

<strong>in</strong> press, doi:10.1029/2007PA001478.<br />

Haley, B.A., Frank, M., Spielhagen, R.F. and Eisenhauer, A. (<strong>2008</strong>a):<br />

Influence of br<strong>in</strong>e formation on Arctic Ocean circulation over the past<br />

15 million years.- Nature Geoscience 1, 68-72.<br />

Haley, B.A., Frank, M., Spielhagen, R.F., and Fietzke, J. (<strong>2008</strong>b): The<br />

radiogenic isotope record of Arctic Ocean circulation and weather<strong>in</strong>g<br />

<strong>in</strong>puts of the past 15 million years.- Paleoceanography,<br />

doi:10.1029/2007PA001486, <strong>in</strong> press.<br />

<strong>IODP</strong><br />

A Cretaceous benthic foram<strong>in</strong>iferal stable<br />

isotope compilation<br />

O. FRIEDRICH 1,2 , R.D. NORRIS 2 , J. ERBACHER 3<br />

1 National Oceanography Centre, School of Ocean and Earth<br />

Sciences, European Way, Southampton, SO14 3ZH, UK<br />

2 Scripps Institution of Oceanography, 9500 Gilman Drive, La<br />

Jolla, CA 92093, USA<br />

3 Bundesanstalt fuer Geowissenschaften und Rohstoffe, Stilleweg<br />

2, 30655 <strong>Hannover</strong>, Germany<br />

We produced new stable isotope data sets of<br />

Cenomanian to Santonian benthic foram<strong>in</strong>ifera from the<br />

western equatorial Atlantic (ODP Leg 207) and from the<br />

tropical Pacific Ocean (DSDP Sites 305 and 463). Together<br />

with literature data our results are compiled <strong>in</strong>to a global<br />

isotope compilation, result<strong>in</strong>g <strong>in</strong> a cont<strong>in</strong>uous benthic δ 18 O<br />

record from 115-65 Ma. This compilation shows four ma<strong>in</strong><br />

<strong>in</strong>tervals: (1) <strong>in</strong>creas<strong>in</strong>g temperatures before 97 Ma and (2)<br />

a subsequent super-greenhouse which are both paralleled<br />

by <strong>in</strong>creas<strong>in</strong>g δ 13 C values, (3) a long-last<strong>in</strong>g cool<strong>in</strong>g and<br />

decrease <strong>in</strong> carbon isotopes (90-78 Ma), and (4) globally<br />

similar δ 13 C and δ 18 O values after 78 Ma. Increas<strong>in</strong>g seasurface<br />

temperatures sometimes exceed<strong>in</strong>g 35°C are wellknown<br />

for Intervals 1 and 2. But our compilation shows,<br />

that deep-ocean temperatures were significantly warmer<br />

than today, especially <strong>in</strong> the proto- North Atlantic (20-<br />

28°C). These high temperatures are expla<strong>in</strong>ed by a lack of<br />

cold bottom-water formation, the restricted nature of the<br />

North Atlantic, and the formation of warm sal<strong>in</strong>e bottom<br />

waters that sporadically were formed with<strong>in</strong> epicont<strong>in</strong>ental<br />

seas. The parallel positive trend <strong>in</strong> δ 13 C is believed to<br />

reflect massive storage of Corg dur<strong>in</strong>g Cretaceous black<br />

shale formation. Interest<strong>in</strong>gly, however, δ 13 C values of the


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

tropical Atlantic show a similar trend but more negative<br />

values. We propose that this reflects a comb<strong>in</strong>ation of<br />

extensive rem<strong>in</strong>eralization of 12C and a long residence<br />

time due to the sporadic formation of warm and sal<strong>in</strong>e<br />

waters. Dur<strong>in</strong>g the follow<strong>in</strong>g <strong>in</strong>terval 3, benthic δ 18 O<br />

values of all ocean bas<strong>in</strong>s show similar values. This trend is<br />

<strong>in</strong>terpreted to be the result of the beg<strong>in</strong>n<strong>in</strong>g open<strong>in</strong>g of the<br />

Equatorial Atlantic Gateway. This deepen<strong>in</strong>g and a parallel<br />

reorganization of the oceanic circulation with longitud<strong>in</strong>al<br />

water-mass and heat exchange may have favoured the<br />

observed cool<strong>in</strong>g trend of <strong>in</strong>terval 3. This explanation is<br />

supported by the global decrease <strong>in</strong> δ 13 C, proposed to<br />

reflect a better connection of the former restricted North<br />

Atlantic that allows the oxidization of the organic-rich<br />

sediments formed <strong>in</strong> this bas<strong>in</strong>. In contrast to the former<br />

<strong>in</strong>tervals, the last 13 Ma of the Cretaceous are, on a global<br />

scale, characterized by similar values for both, oxygen and<br />

carbon isotopes. This is proposed to <strong>in</strong>dicate a full<br />

connection between all ocean bas<strong>in</strong>s.<br />

<strong>ICDP</strong><br />

Lokalisierung <strong>in</strong>duzierter Seismizität ohne<br />

Picken – E<strong>in</strong>e Stapelmethode<br />

D. GAJEWSKI 1 , D. ANIKIEV 2 , E. TESSMER 1 , C. VANELLE 1 , B.<br />

KASHTAN 2<br />

1 Universität Hamburg, Institut für Geophysik, Bundesstr. 55,<br />

20146 Hamburg<br />

2 St. Petersburg State University<br />

Für die Interpretation von <strong>in</strong>duzierter Seismizität, z.B.<br />

bei Injektionsexperimenten, ist die Lokalisierung der<br />

erzeugten akustischen Ereignisse und ihre raum-zeitliche<br />

Variation e<strong>in</strong>e notwendige E<strong>in</strong>gangsgröße. Hierzu müssen<br />

teilweise mehrere tausend Events ausgewertet werden, was<br />

e<strong>in</strong>en großen Aufwand an Datenbearbeitung erfordert, da<br />

diese Events <strong>in</strong> jeder seismischen Spur des Monitor<strong>in</strong>g-<br />

Netzwerkes identifiziert werden müssen. Dies wird<br />

üblicherweise mit automatischen Pick<strong>in</strong>g-Verfahren<br />

realisiert, die im Anschluss e<strong>in</strong>er manuellen<br />

Qualitätskontrolle unterzogen werden. Für die Detektion<br />

der Ereignisse werden also E<strong>in</strong>spurverfahren benutzt, da<br />

jeweils nur e<strong>in</strong> e<strong>in</strong>zelnes Seismogramm betrachtet wird. Ist<br />

die Energie des Ereignisses zu kle<strong>in</strong> und das Signal-Stör-<br />

Verhältnis deswegen nicht h<strong>in</strong>reichend, versagen die<br />

Verfahren.<br />

In der letzten Zeit wurden neue Methoden entwickelt,<br />

die ke<strong>in</strong> Picken von Events mehr erfordern und bei der<br />

Lokalisierung simultan alle Spuren des beobachtenden<br />

Netzwerks benutzen <strong>in</strong>dem e<strong>in</strong>e Feldfortsetzung <strong>in</strong> die<br />

Tiefe vorgenommen wird. Die Feldfortsetzung kann über<br />

reverse modell<strong>in</strong>g (Gajewski und Tessmer, 2005) oder über<br />

e<strong>in</strong>e Diffraktionsstapelung realisiert werden (Gajewski et<br />

al., 2007). Diese Methoden bieten nicht nur den Vorteil,<br />

dass ke<strong>in</strong> picken der Events mehr erforderlich ist, sondern<br />

sie erhöhen auch den Detektionslevel des beobachtenden<br />

Netwerkes um den Faktor N, wobei N die Anzahl der<br />

Empfänger im Netzwerk ist. Dadurch können<br />

kostengünstige Oberflächennetzwerke e<strong>in</strong>gesetzt werden,<br />

die durch Beobachtungen aus Bohrlöchern ergänzt werden<br />

können. In diesem Beitrag wird die Lokalisierung mittels<br />

Feldfortsetzung durch e<strong>in</strong>e Diffraktionsstapelung<br />

präsenteirt. Das Ergebnis dieses Prozesses ist e<strong>in</strong>e<br />

sogenannte Image Function, deren Maximum den Ort der<br />

Quelle repräsentiert. E<strong>in</strong>e Anwendung auf verrauschte<br />

Oberflächendaten ist <strong>in</strong> Abb. 1 dargestellt. Die räumliche<br />

Ausdehnung des Maximums ist dabei e<strong>in</strong> Maß für die<br />

Lokalisierungsunschärfe und hängt von der Genauigkeit<br />

des Geschw<strong>in</strong>digkeitsmodells, der Apertur des Netzwerks<br />

und der Bandbreite des Signals ab. Numerische Studien<br />

zeigen, dass durch die Diffraktionsstapelung auch dann<br />

noch Events lokalisiert werden können, wenn diese im<br />

e<strong>in</strong>zelnen Seismogramm des Netzwerks nicht erkannt<br />

werden können (Abb. 1). Studien zum E<strong>in</strong>fluss von<br />

Heterogenitäten an der Oberfläche (z.B.<br />

Verwitterungsschicht) zeigen, dass dieser E<strong>in</strong>fluss<br />

vernachlässigt werden kann, wenn die räumliche<br />

Ausdehnung deutlich unterhalb der vorherrschenden<br />

Wellenlänge liegt. Größere Anomalien lassen sich im<br />

Geschw<strong>in</strong>digkeitmodell erfassen, da sie determ<strong>in</strong>istischen<br />

Charakter haben. Weitere numerische Studien zeigen, dass<br />

e<strong>in</strong>e Lokalisierung auch mit ungenauen Geschw<strong>in</strong>digkeiten<br />

möglich ist. Der Ort des Maximums der Image Function<br />

fällt dabei mit dem Ort der Quelle zusammen, allerd<strong>in</strong>gs ist<br />

die räumliche Ausdehnung des Maximums nun größer und<br />

damit auch die Lokalisierungsunschärfe.<br />

References:<br />

Gajewski, D., Tessmer, E., 2005, Reverse modell<strong>in</strong>g for seismic event<br />

characterization, Geophys. J. Int., 164, 276-284.<br />

Gajewski, D., Anikiev, D., Kashtan, B., Tessmer, E., Vanelle, C., 2007,<br />

Source Location by Diffraction Stack<strong>in</strong>g,69th EAGE Conference &<br />

Exhibition, London.<br />

Abbildung 1: Verrauschte Daten (l<strong>in</strong>ks, S/N=0.5) registriert an der<br />

Oberfläche e<strong>in</strong>es homogenen Modells <strong>in</strong> denen e<strong>in</strong> seismisches<br />

Ereignis <strong>in</strong> 2 km Tiefe bei x=1.2 km enthalten ist sowie<br />

zugehörige Image Function (rechts) nach der<br />

Diffraktionsstapelung. Das Maximum der Image Function liegt <strong>in</strong><br />

der Nähe der tatsächlichen Quelle, die durch e<strong>in</strong>en weißen Punkt<br />

gekennzeichnet ist. Die Breite des Maximums ist e<strong>in</strong> Maß für die<br />

Lokalisierungsunschärfe, die wegen der Asymmetrie der Aperture<br />

<strong>in</strong> Bezug auf die Quellposition leicht geneigt ist. Lateral ist die<br />

Unschärfe wesentlich kle<strong>in</strong>er als vertikal. Zusätzliche<br />

Beobachtungen des Events im Bohrloch verkle<strong>in</strong>ern die vertikale<br />

Lokalisierungsunschärfe.<br />

53


54<br />

<strong>ICDP</strong><br />

Geometry of maar lake Laguna Potrok Aike,<br />

Patagonia<br />

A. C. GEBHARDT<br />

AWI Bremerhaven, Am Alten Hafen 26, 27568 Bremerhaven<br />

Laguna Potrok Aike is a maar lake located <strong>in</strong> Southern<br />

Patagonia, Argent<strong>in</strong>a, at 52°S and 70°W. The lake with a<br />

diameter of 3.5 km is almost circular and bowl-shaped.<br />

Steep flanks separate the lake shoulders at 15 to 35 m water<br />

depth from the central pla<strong>in</strong> at approximately 100 m water<br />

depth. The lake is situated <strong>in</strong> the Pali Aike Volcanic Field<br />

at the present boundary between the Southern Hemispheric<br />

Westerlies and the Antarctic Polar Front. Its lake level is<br />

highly susceptible to changes <strong>in</strong> the Antarctic Circumpolar<br />

Current that controls the regional precipitation patterns.<br />

Changes <strong>in</strong> precipitation lead to lake level fluctuations of<br />

up to several tens of meters. The lake’s sedimentary <strong>in</strong>fill<br />

possibly conta<strong>in</strong>s a long and cont<strong>in</strong>uous record of several<br />

glacial and <strong>in</strong>terglacial cycles, which is unique <strong>in</strong> the<br />

southern South American realm. Laguna Potrok Aike has<br />

thus become one of the major present goals of <strong>ICDP</strong>. Three<br />

drill sites have been identified and will be drilled <strong>in</strong> the<br />

near future<br />

Four seismic surveys were carried out as an <strong>ICDP</strong> presite<br />

survey. S<strong>in</strong>gle- and multi-channel seismic reflection<br />

data as well as refraction data (sonobuoys and land station)<br />

were used to <strong>in</strong>vestigate the maar geometry and the <strong>in</strong>ternal<br />

structures of its lacustr<strong>in</strong>e sedimentary <strong>in</strong>fill.<br />

Maar craters are generally caused by the contact of<br />

ris<strong>in</strong>g magma with groundwater result<strong>in</strong>g <strong>in</strong> explosive,<br />

phreatomagmatic eruptions. The <strong>in</strong>itial diatreme is formed<br />

by viscous lava that gets stuck <strong>in</strong> the vent. Collapse of the<br />

surround<strong>in</strong>g, destructed rock fills the root zone with<br />

breccias. The collapse structure propagates to the surface<br />

and results <strong>in</strong> the <strong>in</strong>itial maar crater that will conta<strong>in</strong> a lake<br />

as long as groundwater or meteoritic water is available.<br />

Steep diatreme flanks are clearly visible <strong>in</strong> the seismic data<br />

(seismic refraction data, sparker and multi-channel<br />

reflection data) and are also pronounced <strong>in</strong> the bathymetry.<br />

Seismic sections from Laguna Potrok Aike are well<br />

comparable to other maar profiles (e.g. the Maar Pit near<br />

Darmstadt, Germany) and thus confirm its<br />

phreatomagmatic orig<strong>in</strong>.<br />

Two major stratigraphic units (I and II) were<br />

dist<strong>in</strong>guished <strong>in</strong> the seismic sections. Unit I consists of the<br />

lacustr<strong>in</strong>e <strong>in</strong>fill and was further subdivided <strong>in</strong>to Sub-units<br />

I-a and I-b on the lake shoulders and I-ab, I-c, I-d and I-e <strong>in</strong><br />

the central bas<strong>in</strong>. Sub-units I-a and I-b on the lake<br />

shoulders are separated by a major unconformity and<br />

conta<strong>in</strong> several paleoshorel<strong>in</strong>e structures formed dur<strong>in</strong>g a<br />

step-wise transgression after a lake level lowstand of<br />

approx. 35 m below the present lake level. In the central<br />

bas<strong>in</strong>, Sub-units I-a and I-b are merged <strong>in</strong>to Sub-unit I-ab,<br />

not be<strong>in</strong>g separated by any unconformity. Mass movement<br />

deposits were found <strong>in</strong> the southern, western and eastern<br />

parts close to the steep diatreme flanks, and pelagic<br />

sedimentation dom<strong>in</strong>ates <strong>in</strong> the northern and central parts.<br />

The boundary between I-ab and I-c is non-erosive with I-ab<br />

form<strong>in</strong>g downlaps onto I-c from the eastern and western<br />

parts of the lake, po<strong>in</strong>t<strong>in</strong>g at a significantly lower lake level<br />

dur<strong>in</strong>g its accumulation. Sub-unit I-d shows similar<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

characteristics as I-ab and forms downlaps onto Sub-unit Ie.<br />

The bedrock (Unit II) that forms the steep diatreme<br />

flanks consists of the well-layered sandstones of the Santa<br />

Cruz formation found <strong>in</strong> outcrops <strong>in</strong> the lake surround<strong>in</strong>gs.<br />

<strong>ICDP</strong><br />

Chronological history of UHP rocks from the<br />

Dabie-Sulu terrane, Eastern Ch<strong>in</strong>a<br />

A. GERDES 1 , F.L. LIU 2 , S. WEYER 1 , G. BREY 1<br />

1<br />

Institut für Geowissenschaften, Altenhöferallee 1, 60438<br />

Frankfurt/Ma<strong>in</strong><br />

2<br />

Institute of Geology, Ch<strong>in</strong>ese Academy of Geological Science,<br />

Beij<strong>in</strong>g 100037<br />

Ultrahigh pressure (UHP) rocks from the Ch<strong>in</strong>ese<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g (CCSD) program were<br />

chosen for detailed studies to ga<strong>in</strong> a better understand<strong>in</strong>g of<br />

(1) the complex metamorphic evolution of the Sulu-Dabie<br />

terrane, and (2) the limitations and robustness of the<br />

different chronological method for dat<strong>in</strong>g high-grade<br />

metamorphism<br />

Multistage zircon growth can be observed <strong>in</strong> most<br />

Sulu-Dabie UHP rocks. Inherited and metamorphic zircons<br />

were dist<strong>in</strong>guished on the basis of transmitted light<br />

microscopy, cathodolum<strong>in</strong>escence (CL) imag<strong>in</strong>g, trace<br />

element contents, Hf isotope composition, U-Pb ages and<br />

their m<strong>in</strong>eral <strong>in</strong>clusion assemblages (Fig. 1-3).<br />

Inherited zircon of middle Neoproterozoic age have<br />

variable trace element pattern that are considerably<br />

different from that of metamorphic zircon doma<strong>in</strong>s (Fig. 3).<br />

Based on CL, m<strong>in</strong>eral <strong>in</strong>clusion and U-Pb ages up to three<br />

phases of zircon growth or re-crystallisation can be<br />

identified <strong>in</strong> a s<strong>in</strong>gle sample (Fig. 2). The ages are<br />

<strong>in</strong>terpreted to date the time of (1) prograde and (2) UHP<br />

metamorphism dur<strong>in</strong>g subduction, and (3) later retrograde<br />

metamorphism dur<strong>in</strong>g exhumation.<br />

Metamorphic doma<strong>in</strong>s from a s<strong>in</strong>gle sample have often<br />

a uniform Hf isotope composition (and low 176 Lu/ 177 Hf -><br />

grt growth) <strong>in</strong>dicat<strong>in</strong>g isotope equilibration <strong>in</strong> the<br />

decimetre-scale dur<strong>in</strong>g the Middle Triassic UHP event<br />

(Fig. 3). This composition varies between different samples<br />

and is generally significantly more radiogenic than that of<br />

the <strong>in</strong>herited cores and thus the bulk rock. Its respective<br />

value is controlled by the percentage of dissolved or recrystallized<br />

<strong>in</strong>herited zircon, with low Lu/Hf and relatively<br />

unradiogenic 176 Hf/ 177 Hf, and the bulk rock composition.<br />

However, few samples have UHP zircon doma<strong>in</strong>s with<br />

scattered isotope composition (Fig. 3a), suggest<strong>in</strong>g no<br />

complete equilibration of the Lu-Hf system.<br />

Prelim<strong>in</strong>ary results show that there is a surpris<strong>in</strong>gly<br />

good correlation between the U-Pb and the Lu-Hf system<br />

and the Th/U for zircon of some samples (Fig. 4). Most<br />

analyses fall on mix<strong>in</strong>g l<strong>in</strong>es between magmatic cores and<br />

the homogeneous UHP doma<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g that most<br />

<strong>in</strong>herited zircon were affected by <strong>in</strong>complete recrystallization<br />

dur<strong>in</strong>g UHP metamorphism.<br />

Our new LA-ICP-MS ages together with the results from<br />

previous studies <strong>in</strong>dicate that metamorphic zircon doma<strong>in</strong>s<br />

formed or recrystallized dur<strong>in</strong>g Middle Triassic HP to UHP<br />

metamorphism at around 240-246 Ma and 233-225 Ma,<br />

respectively (Figs 5). Accord<strong>in</strong>g to Zheng et al. (2005) and<br />

Wu et al. (2006) these two events of zircon growth are


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

related to phases of fluid-availability dur<strong>in</strong>g UHP<br />

metamorphism; the first related to subduction and the<br />

second to <strong>in</strong>itial exhumation from the diamond to the<br />

coesite stability field.<br />

Recrystallized zircon rims, tips, and complete gra<strong>in</strong>s<br />

with ages of ~220-206 Ma (Fig. 5) are probably related to<br />

Late Triassic retrograde HP- and amphibolite-facies<br />

retrogression, respectively.<br />

206 Pb/ 238 U<br />

206 Pb/ 238 U<br />

206 Pb/ 238 U<br />

206 Pb/ 238 U<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

150<br />

0.02<br />

0.1<br />

0.13<br />

0.11<br />

0.09<br />

0.07<br />

0.05<br />

0.03<br />

0.039<br />

0.035<br />

DS1, orthogneiss<br />

CCSD<br />

250<br />

350<br />

450<br />

550<br />

lower <strong>in</strong>tercept age<br />

230 ±10 Ma<br />

650<br />

750<br />

U.I. age<br />

787 ±17 Ma<br />

MSWD = 0.55<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

0.02<br />

0.3 0.5 0.7 0.9 1.1 1.3<br />

0.18 0.22 0.26 0.30 0.34 0.38<br />

0.16<br />

0.14<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

Concordia age<br />

227.6 ±1.8 Ma<br />

MSWD C+E = 1.3<br />

7 spots<br />

P3c, Ph-Rt-eclogite<br />

CCSD: 326 m<br />

Concordia age<br />

226.6 ±3.5 Ma<br />

MSWD C+E = 0.87<br />

3 spots<br />

300<br />

UM-1, eclogite<br />

210<br />

220<br />

230<br />

240<br />

500<br />

250<br />

207 Pb/ 235 U<br />

700<br />

0.2 0.4 0.6 0.8 1.0 1.2<br />

350<br />

SG1, eclogite<br />

CCSD: m<br />

Concordia age<br />

796.9 ±4.8 Ma<br />

MSWD C+E = 1.9<br />

12 spots<br />

450<br />

550<br />

Intercepts at<br />

221 +13/-14 & 803 +23/-24 Ma<br />

MSWD = 0.97<br />

650<br />

data-po<strong>in</strong>t error ellipses are 2σ<br />

Concordia age<br />

231.9 ±1.8 Ma<br />

MSWD C+E = 1.6<br />

12 spots<br />

750<br />

850<br />

Intercepts at<br />

226 ± 30 & 799 ± 8 Ma<br />

MSWD = 0.86<br />

0.04<br />

0.3 0.5 0.7 0.9 1.1 1.3<br />

0.13<br />

0.11<br />

0.09<br />

0.07<br />

0.05<br />

0.03<br />

0.036<br />

0.034<br />

0.032<br />

0.030<br />

P6W, orthogneiss<br />

CCSD: 2873 m<br />

Concordia age<br />

228.9 ±3.2 Ma<br />

MSWD C+E = 1.1<br />

4 spots<br />

450<br />

250<br />

180<br />

350<br />

200<br />

550<br />

650<br />

0.028<br />

0.18 0.20 0.22 0.24 0.26<br />

0.12<br />

0.10<br />

0.08<br />

0.06<br />

0.04<br />

220<br />

750<br />

0.3 0.5 0.7 0.9 1.1<br />

PJ6, orthogneiss<br />

CCSD: 2625 m<br />

Concordia age<br />

228.5 ±2.1 Ma<br />

MSWD C+E = 1.5<br />

13 spots<br />

500<br />

300<br />

AG2a-1, Py-Rt-eclogite<br />

CCSD 452m<br />

Concordia age<br />

230.7 ±2.2 Ma<br />

MSWD C+E = 0.90<br />

12 spots<br />

450<br />

Fig. 1. U-Pb LA-ICP-MS dat<strong>in</strong>g of complex zircon from CCSD UHP rocks.<br />

250<br />

Thus the U-Pb zircon data imply that the metamorphic<br />

evolution of the Sulu-Dabie terrane lasted for at least 40<br />

Myr, with more than 25 Myr of HP to UHP metamorphism<br />

(Fig. 5).<br />

350<br />

lower <strong>in</strong>tercept age<br />

225 +12/-13 Ma<br />

550<br />

data-po<strong>in</strong>t error ellipses are 2σ<br />

Concordia age<br />

208.1 ±3.2 Ma<br />

MSWD C+E = 1.6<br />

5 spots<br />

650<br />

700<br />

Intercepts at<br />

226.1 ± 5.6 & 798 ± 13 Ma<br />

MSWD= 1.11<br />

0.2 0.4 0.6 0.8 1.0 1.2<br />

PJ6, orthogneiss<br />

late overgrowths<br />

CCSD: 2625 m<br />

750<br />

Intercepts at<br />

230 ±14 & 773 +29/-28 Ma<br />

MSWD = 0.83<br />

0.1 0.3 0.5 0.7 0.9 1.1<br />

207 Pb/ 235 U<br />

U.I. age<br />

779 +31/-33 Ma<br />

MSWD = 1.05<br />

55


56<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Sample/Chondrite 10000<br />

0.01<br />

0.001<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Sample/Chondrite 10000<br />

0.01<br />

0.001<br />

1000<br />

100<br />

10<br />

1<br />

0.1<br />

Sample/Chondrite 10000<br />

0.01<br />

0.001<br />

H3 Inherited (detrital) zircon<br />

Prograde zircon doma<strong>in</strong><br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

H3<br />

UHP zircon doma<strong>in</strong><br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

H3<br />

Retrograde zircon doma<strong>in</strong><br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

a<br />

c<br />

e<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

H4 Inherited (detrital) zircon<br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

H4<br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

H4<br />

Prograde zircon doma<strong>in</strong><br />

UHP zircon doma<strong>in</strong><br />

Retrograde zircon doma<strong>in</strong><br />

La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb Lu<br />

Fig. 2. Chondrite-normalized REE pattern of <strong>in</strong>herited magmatic zircon and that of three dist<strong>in</strong>ct metamorphic zircon<br />

doma<strong>in</strong>s, Dabie-Sulu terrane (Liu et al., 2006).<br />

Hf/ Hf (t)<br />

176 177<br />

176 177<br />

Hf/ Hf (t)<br />

.28295<br />

.28285<br />

.28275<br />

.28265<br />

.28255<br />

.28245<br />

.28235<br />

.28285<br />

.28280<br />

.28275<br />

.28270<br />

.28265<br />

.28260<br />

.28255<br />

.28250<br />

.28245<br />

.28240<br />

a<br />

176 177<br />

Lu/ Hf<br />

mix<strong>in</strong>g<br />

SH1, eclogite<br />

±2σ<br />

.28275<br />

.28270<br />

.28265<br />

.28260<br />

d<br />

Db3, orthogneiss<br />

retrograde rims<br />

.28215<br />

UHP overgrowths<br />

UHP overgrowths<br />

Inherited zircon cores<br />

magmatic variation<br />

.28210<br />

.28205<br />

partially recrystallized doma<strong>in</strong>s<br />

zircon cores (concordant U-Pb)<br />

1.E-05 1.E-04 1.E-03 1.E-02 1.E-05 1.E-04 1.E-03 1.E-02<br />

176 177<br />

Lu/ Hf<br />

c G13, amphibolite<br />

Inherited core<br />

UHP overgrowths<br />

Retrograde gra<strong>in</strong>s<br />

magmatic variation<br />

2σ<br />

1.E-05 1.E-04 1.E-03 1.E-02<br />

.28240<br />

.28235<br />

.28230<br />

.28225<br />

.28220<br />

b<br />

±2σ<br />

176 177<br />

Lu/ Hf<br />

G12, amphibolite<br />

mix<strong>in</strong>g<br />

.28255<br />

.28250<br />

Inherited cores<br />

UHP overgrowths<br />

Retrograde gra<strong>in</strong>s<br />

.28245<br />

Inherited zircon<br />

.28240<br />

(Zheng et al. 2006)<br />

magmatic variation<br />

1.E-05 1.E-04 1.E-03 1.E-02<br />

176 177<br />

Lu/ Hf<br />

Fig. 3. Initial 176 Hf/ 177 Hf vs 176 Lu/ 177 Hf of zircon from different UHP rocks from the CCSD, Sulu terrane. The data<br />

suggest that usually both, the <strong>in</strong>herited zircon and the UHP overgrowth doma<strong>in</strong>s, were homogenized dur<strong>in</strong>g formation.<br />

Scatter <strong>in</strong> the <strong>in</strong>herited zircon is due to partial recrystallization related to UHP metamorphism.<br />

b<br />

d<br />

f<br />


176 177<br />

Hf/ Hf (t)<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Th/U<br />

1.00<br />

0.10<br />

0.01<br />

.28245<br />

.28240<br />

.28235<br />

.28230<br />

.28225<br />

.28220<br />

.28215<br />

.28210<br />

.28205<br />

206 238<br />

apparent Pb/ U age<br />

200 300 400 500 600 700 800<br />

retrograde rims<br />

UHP overgrowths<br />

partially recrystallized doma<strong>in</strong>s<br />

zircon cores (concordant U-Pb)<br />

PJ6, orthogneiss<br />

250 350 450 550 650 750 850<br />

206 238<br />

apparent Pb/ U age<br />

Fig. 4. Plots of Th/U (log) and <strong>in</strong>itial 176 Hf/ 177 Hf vs apparent U-Pb age.<br />

Relative probability<br />

retrograde HP- &<br />

amphibolite-facies<br />

retrogression<br />

UHP zircon<br />

0<br />

200 210<br />

220 230 240 250<br />

U-Pb age<br />

HP/UHP<br />

zircon<br />

Fig. 5. B<strong>in</strong>ned frequency and probability density distribution plot of U-Pb ages of metamorphic zircon from Dabie-Sulu UHP rocks. The<br />

data show a bimodal distribution for HP-UHP zircon doma<strong>in</strong>s and a wide peak def<strong>in</strong>ed by late recrystallized zircon (rims, tips and whole<br />

gra<strong>in</strong>s) due to retrograde HP- to amphibolite-facies retrogression. (data source: this study; Liu F.L. et al. 2006a,b, 2007, <strong>in</strong> revision. Ayers<br />

et al. 2002; Hacker et al., 2000, 2006; Li et al. 2004, 2006; Li X.P. et al. 2004; Liu et al. 2004, 2006; Liu & Jian 2004; Liu D. et al. 2006;<br />

Okay et al. 1993,Wan et al. 2005; Webb et al., 1999; Wu et al. 2006; Xie et al. 2004; Xu Z.Q. et al. 2006; Zhao et al. 2006; Zheng et al.<br />

2005).<br />

11<br />

10<br />

9<br />

8<br />

7<br />

6<br />

5<br />

4<br />

3<br />

2<br />

1<br />

Number<br />

57


58<br />

<strong>ICDP</strong><br />

Magnetofabrics of eclogites and ultramafic<br />

rocks from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific<br />

Drill<strong>in</strong>g (CCSD) project: evidence for<br />

ultrahigh-pressure (UHP) texture <strong>in</strong>heritance<br />

throughout retrogression<br />

J.C. GRIMMER 1 , X. QI 2 , Z. XU 2<br />

1 Geologisches Institut, Universität Karlsruhe, Hertzstrasse 16,<br />

76187 Karlsruhe, Germany<br />

2 Institute of Geology, Ch<strong>in</strong>ese Academy of Geological Sciences,<br />

Baiwanzhuang Road 26, 10037 Beij<strong>in</strong>g, Ch<strong>in</strong>a<br />

Introduction<br />

In this study, we present data of the anisotropy of<br />

magnetic susceptibility (AMS) from variably retrogressed<br />

eclogites and ultramafic rocks from the uppermost 1000 m<br />

of the 5138 m deep drill hole of the Ch<strong>in</strong>ese Cont<strong>in</strong>ental<br />

Scientific Drill<strong>in</strong>g (CCSD) project (Fig. 1). In particular,<br />

Fe-rich mafic-ultramafic rocks provide a good control on<br />

retrograde reactions due to the <strong>in</strong>volvement of Fe- and Fe-<br />

Ti-oxides dur<strong>in</strong>g the retrograde eclogite to amphibolite and<br />

amphibolite to greenschist grade reactions. As<br />

magnetofabrics depend on both the magnetic m<strong>in</strong>eralogy<br />

and lattice- or shape-preferred orientations of m<strong>in</strong>erals the<br />

AMS-method is a promis<strong>in</strong>g tool to study exhumation<br />

related processes <strong>in</strong> terms of retrograde fluid-rock<br />

<strong>in</strong>teractions and ductile deformation. The CCSD ma<strong>in</strong>hole<br />

(MH) <strong>in</strong>tersected the steeply east-dipp<strong>in</strong>g Maobei eclogite<br />

body (Fig. 1). Based on geochemistry and petrography four<br />

units are dist<strong>in</strong>guished for the uppermost 1.2 km (Zhang et<br />

al. 2006a): unit 1 (100–530 m): quartz-rich eclogites,<br />

rutile-rich eclogites and th<strong>in</strong> gneiss layers; unit 2 (530–600<br />

m): rutile- and ilmenite-rich eclogites; unit 3 (600–680 m)<br />

serpent<strong>in</strong>ized ultramafic rocks with m<strong>in</strong>or <strong>in</strong>tercalations of<br />

eclogite and garnet pyroxenites layers and lenses; unit 4<br />

(680–1160 m) <strong>in</strong>terlayered paragneisses, eclogites, and<br />

retrograde eclogite (amphibolites) with a th<strong>in</strong> layer of<br />

ultramafic rocks at ca. 850 m.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Petrography and texture<br />

Eclogites consist of garnet and omphacite with variable<br />

contents of Fe-Ti-oxides, Fe-sulphides, and phengite<br />

represent<strong>in</strong>g peak UHP rock composition. The eclogites of<br />

all units show variable degrees of retrograde amphibolite to<br />

greenschist facies metamorphic overpr<strong>in</strong>t focused <strong>in</strong><br />

irregular ve<strong>in</strong>s. The retrograde m<strong>in</strong>eral phases comprise<br />

bluish-greenish amphiboles of pargasitic composition<br />

(Riemann & Oberhänsli 2007; Yang 2004), f<strong>in</strong>e-gra<strong>in</strong>ed<br />

amphibole-plagioclase-symplectites, titanite, epidote,<br />

biotite, and albitic feldspar. Retrograde pargasitic<br />

amphibole coronas with newly grown magnetite occur as<br />

<strong>in</strong>tergra<strong>in</strong> phases of non-isometric garnets. Magnetite<br />

seems to be limited to the pargasitic amphiboles and<br />

probably traces the former gra<strong>in</strong> boundaries of garnet. The<br />

ultramafic rocks are serpent<strong>in</strong>ized to various degrees.<br />

Serpent<strong>in</strong>ite ve<strong>in</strong>s and cracks separate relict oliv<strong>in</strong>e cores,<br />

which causes a typical mesh texture. Magnetite is enriched<br />

along former gra<strong>in</strong> boundaries of oliv<strong>in</strong>e, <strong>in</strong> serpent<strong>in</strong>ite<br />

cracks and ve<strong>in</strong>s and on th<strong>in</strong> rims around garnet.<br />

Magnetic m<strong>in</strong>eralogy<br />

The mean susceptibilities (Kmean) of the eclogites vary<br />

from 0.6x10-3 to 14.3x10-3 SI (Fig. 2). Low (Kmean < 10-<br />

3), <strong>in</strong>termediate (1 < Kmean < 5x10-3) and high (Kmean ><br />

5x10-3) susceptibilities <strong>in</strong>dicate variable contributions of<br />

ferrimagnetic m<strong>in</strong>erals with<strong>in</strong> the different eclogite<br />

samples and superposed para- and ferromagnetic fabrics.<br />

Except for one sample, which exceeded the measurement<br />

range (max. 250x10-3 SI) of the Kappabridge, Kmean of<br />

the ultramafic rocks varies from 17.5x10-3 to 232.7x10-3<br />

SI (Fig. 2).<br />

Magnetic susceptibility as a function of temperature<br />

was measured from representative lithologies from all<br />

sampled units for the temperature range of -192°C to<br />

700°C <strong>in</strong> order to identify the m<strong>in</strong>erals carry<strong>in</strong>g bulk<br />

susceptibility. K(T)-measurements are also helpful to<br />

calculate the relative proportion of the respective para- and<br />

ferrimagnetic m<strong>in</strong>erals.<br />

Figure 1: Overview map (<strong>in</strong>set upper left) of the Sulu UHP-metamorphic belt with border<strong>in</strong>g faults (XF: Xiangshui Fault; SJF: Shuyang-<br />

J<strong>in</strong>p<strong>in</strong>g fault;WYF: Wulian-Yantai-Fault). Geologic overview map displays major mafic-ultramafic bodies <strong>in</strong> the UHP-metamorphic<br />

nappes (`slices´), which are separated by ductile shear zones with top to NW k<strong>in</strong>ematics (e.g. Xu et al. 2006b) with barbs on hang<strong>in</strong>g wall<br />

(modified after Xu Z et al. 2006a). B) Cross section of the Maobei eclogite body (modified after Liu et al. <strong>2008</strong>) with sampl<strong>in</strong>g depths as<br />

<strong>in</strong>dicated by white squaeres.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Figure 2: Kmean-distribution diagram of eclogites and ultramafic rocks (modified from Qi et al. (submitted)).<br />

The calculated contribution of paramagnetic m<strong>in</strong>erals<br />

to the bulk susceptibility varies from 24 to 89%. However,<br />

the contribution of the ferromagnetic subfabric to the bulk<br />

susceptibility of eclogites with Kmean > 5x10-3 may<br />

approach 100%. The K(T)-curves of ultramafic rocks<br />

outl<strong>in</strong>e Ti-free and stoichiometric magnetite.<br />

Magnetic fabric<br />

The corrected degrees of anisotropy (P´) vary from 1 to<br />

1.53. The shape factors T vary from -0.83 to 0.68. T<br />

<strong>in</strong>creases strongly with decreas<strong>in</strong>g densities and thus seems<br />

to be very sensitive to retrogression. P´ correlates<br />

positively with Kmean and thus with <strong>in</strong>creas<strong>in</strong>g magnetite<br />

content. In the ultramafic rocks P´ varies from 1.34 to 1.98.<br />

The shape factors T vary from -0.68 to 0.78. Kmean<br />

<strong>in</strong>creases with <strong>in</strong>creas<strong>in</strong>g retrogression, but P´ decreases<br />

with <strong>in</strong>creas<strong>in</strong>g densities. This implies that more modal<br />

magnetite reduces the degree of anisotropy, which is<br />

caused by the serpent<strong>in</strong>ization process and related meshtexture<br />

formation.<br />

The low-field AMS measures the bulk fabric whereas<br />

the high-field AMS isolates the paramagnetic from the bulk<br />

fabric. Eclogites from all units outl<strong>in</strong>e paramagnetic or<br />

superposed para- and ferromagnetic fabrics. Therefore all<br />

oriented eclogite samples were measured <strong>in</strong> both a lowfield<br />

and a high-field with a torque magnetometer. The<br />

low-field AMS of all eclogites shows consistent N-Strend<strong>in</strong>g<br />

Kmax-axes with K <strong>in</strong>t- and K m<strong>in</strong>-axes distributed on<br />

an E-W-girdle (Fig. 3). The orientation of the N-S-trend<strong>in</strong>g<br />

Kmax-axis is <strong>in</strong>dependent of the primary eclogite<br />

composition, the degree of retrogression, and the highly<br />

variable P´-, K mean-, and T-values.<br />

The serpent<strong>in</strong>ized ultramafic rocks outl<strong>in</strong>e almost<br />

identical prolate ellipsoids with essentially N-S-trend<strong>in</strong>g<br />

subhorizontal Kmax-axes and a girdle distribution for the<br />

K<strong>in</strong>t- and K m<strong>in</strong>-axes (Fig. 3). An isolation of the<br />

paramagnetic subfabric was not possible due to the high<br />

susceptibilities, which produced torques that exceeded the<br />

sensitivity of the measurement device.<br />

Figure 3: Stereodiagrams (equal area, lower hemisphere) of the<br />

pr<strong>in</strong>cipal susceptibility axes (Km<strong>in</strong>, K<strong>in</strong>t, Kmax) of oriented eclogite<br />

and ultramafic rock samples show N-S-trend<strong>in</strong>g maximum<br />

susceptibility axes (Kmax) for both the eclogites and the ultramafic<br />

rocks and an E-W-girdle distribution for K<strong>in</strong>t and Km<strong>in</strong> axes<br />

imply<strong>in</strong>g a generally prolate fabric for both eclogites and<br />

ultramafic rocks (modified from Qi et al. (submitted)).<br />

Discussion and conclusions<br />

The eclogites of all units show different degrees and<br />

responses on retrograde metamorphic overpr<strong>in</strong>t, which is<br />

related to different primary modal and chemical<br />

composition, and variable degrees of fluid-rock <strong>in</strong>teraction.<br />

Superposed para- and ferromagnetic fabrics characterize<br />

the magnetofabrics of CCSD-eclogites from the uppermost<br />

1000m of the CCSD-MH. The eclogite texture, primary<br />

eclogite composition and the retrograde formation of<br />

pargasitic amphibole-magnetite coronas around garnet are<br />

the major parameters that control the magnetofabrics of the<br />

CCSD-eclogites. The magnetofabrics mimic the eclogite<br />

texture via retrograde magnetite growth around shapepreferred<br />

garnet. The consistently N-S-trend<strong>in</strong>g Kmax-axes -<br />

<strong>in</strong>dependent of variable primary eclogite composition, the<br />

different degrees of retrogression, and the highly variable<br />

P´-, T-, and Kmean-values also display texture <strong>in</strong>heritance.<br />

The serpent<strong>in</strong>ized ultramafic rocks are characterized by<br />

very high susceptibilities with magnetite as carrier of the<br />

susceptibility. Shape-preferred orientation of relict oliv<strong>in</strong>e<br />

and garnet and the formation of th<strong>in</strong> magnetite rim around<br />

garnet and of syn-serpent<strong>in</strong>ization magnetite growth with<strong>in</strong><br />

a mesh texture control the distribution of magnetite and<br />

thus the magnetofabrics of the ultramafic rocks <strong>in</strong>dicat<strong>in</strong>g<br />

texture <strong>in</strong>heritance as well.<br />

59


60<br />

At the th<strong>in</strong> section scale evidence for ductile shear<strong>in</strong>g is<br />

lack<strong>in</strong>g <strong>in</strong> the studied ve<strong>in</strong>s with a retrograde m<strong>in</strong>eral<br />

assemblage. Evidence for ductile shear<strong>in</strong>g <strong>in</strong> the ve<strong>in</strong>s is<br />

miss<strong>in</strong>g <strong>in</strong> both the CCSD. Irregular ve<strong>in</strong> geometries and<br />

boundaries at both th<strong>in</strong>-section and at the mesoscale also<br />

corroborate that the ve<strong>in</strong>s were not exploited as shear zones<br />

or – vice versa – exploited former shear zones. These ve<strong>in</strong>s<br />

thus may represent preserved primary retrograde features,<br />

which orig<strong>in</strong>ated from channelized fluid flow and<br />

synchronous m<strong>in</strong>eral decomposition. The retrograde<br />

coronas around garnet <strong>in</strong>dicate <strong>in</strong>itial fluid flow along<br />

former gra<strong>in</strong> boundaries and trace the former UHP texture.<br />

It is suggested that the mafic-ultramafic Maobei body<br />

behaved as a rigid body with<strong>in</strong> a ductilely deform<strong>in</strong>g<br />

quartzo-feldspathic matrix dur<strong>in</strong>g exhumation related<br />

retrogression. Internal stra<strong>in</strong> is restricted to brittle<br />

fractur<strong>in</strong>g, associated fluid circulation and ve<strong>in</strong> formation,<br />

which facilitated retrograde reactions <strong>in</strong> the maficultramafic<br />

rocks.<br />

Acknowledgements<br />

F<strong>in</strong>ancial support by the Deutsche<br />

Forschungsgeme<strong>in</strong>schaft (Project GR3193-1) and the<br />

Major State Basic Research Program of P.R. Ch<strong>in</strong>a (973;<br />

Grant No. 2003CB716504) is greatly acknowledged.<br />

References<br />

Qi X, Grimmer JC, Xu Z (submitted) Magnetofabrics of eclogites and<br />

ultramafic rocks from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g<br />

(CCSD) project: evidence for ultrahigh-pressure (UHP) texture<br />

<strong>in</strong>heritance throughout retrogression. Tectonophysics.<br />

Riemann A, Oberhänsli R (2007) Fluid <strong>in</strong>fluence on retrograde assemblage<br />

<strong>in</strong> UHP eclogites. Geochimica et Cosmochimica Acta 71/15, A843.<br />

Yang T (2004) Retrograded textures and associated mass transfer: evidence<br />

for aqueous fluid action dur<strong>in</strong>g exhumation of the Q<strong>in</strong>glongshan<br />

eclogite, Southern Sulu ultrahigh-pressure metamorphic terrane,<br />

eastern Ch<strong>in</strong>a. Journal of Metamorphic Geology 22: 653-669.<br />

Zhang Z, Xiao Y, Hoefs J, Liou J, Simon K (2006) Ultrahigh pressure<br />

metamorphic rocks from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g<br />

Project: I. Petrology and geochemistry of the ma<strong>in</strong> hole (0-2,050 m).<br />

Contributions to M<strong>in</strong>eralogy and Petrology 152/4: 421-441.<br />

<strong>IODP</strong><br />

Rapid changes <strong>in</strong> biogenic and siliciclastic<br />

sedimentation dur<strong>in</strong>g the last 1 Ma: results<br />

from North Atlantic <strong>IODP</strong> Sites U1313 and<br />

U1314<br />

J. GRÜTZNER 1 , S.M. HIGGINS 2 , R. STEIN 3 , G. ACTON 4 , G. WEFER 1<br />

1 MARUM, Bremen University, Bremen, Germany<br />

2 Jo<strong>in</strong>t Oceanographic Institutions, Wash<strong>in</strong>gton DC, U.S.A.<br />

3 Alfred-Wegener-Institute for Polar and Mar<strong>in</strong>e Research,<br />

Bremerhaven, Germany<br />

4 Department of Geology, University of California, Davis, U.S.A<br />

<strong>IODP</strong> Sites of the North Atlantic paleoceanography<br />

study (<strong>IODP</strong> Expeditions 303 and 306) provide new<br />

sedimentary archives that allow to determ<strong>in</strong>e the long-term<br />

evolution of millennial-scale variability <strong>in</strong> ice sheet<br />

stability and thermohal<strong>in</strong>e circulation over the last few<br />

million years. A major objective of our research project is<br />

to measure element <strong>in</strong>tensities (e.g. Al, Si, K, Ca, Ti, Fe,<br />

Sr, Ba) on Sites U1313 (41.0°N, 32.9°W) and U1314<br />

(56.4°N, 27.9°W) to derive cm-resolution records of<br />

terrigenous and biogenic sediment composition. Comb<strong>in</strong>ed<br />

with detailed age models these records characterize<br />

prom<strong>in</strong>ent millennial scale climate cycles of the last glacial<br />

period known as Dansgaard/Oeschger and He<strong>in</strong>rich events<br />

and help to study their possible occurrence <strong>in</strong> time <strong>in</strong>tervals<br />

prior to 100 ka BP.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Site U1313 constitutes a reoccupation of Deep Sea<br />

Drill<strong>in</strong>g Project (DSDP) Site 607 located at the base of the<br />

upper western flank of the Mid-Atlantic Ridge <strong>in</strong> a water<br />

depth of 3426 m, northwest of the Azores (Fig. 1). The<br />

carbonate rich sediment is composed of nannofossil ooze<br />

with vary<strong>in</strong>g amounts of foram<strong>in</strong>ifers and clay- to silt-sized<br />

terrigenous material. Based on evident orbital cyclicity <strong>in</strong><br />

sediment colour reflectance and other physical properties at<br />

Site U1313 it was possible to ref<strong>in</strong>e the shipboard bio- and<br />

magnetostratigraphic age models for the last 3.4 Ma<br />

already dur<strong>in</strong>g the cruise (Ste<strong>in</strong> et al., 2006). A prelim<strong>in</strong>ary<br />

age model was constructed by match<strong>in</strong>g sharp variations <strong>in</strong><br />

the L* lightness record with glacial and <strong>in</strong>terglacial<br />

term<strong>in</strong>ations <strong>in</strong> the global benthic oxygen isotope stack of<br />

Lisiecki and Raymo (2005).<br />

Site U1314 was drilled ~300 meters (complete splice<br />

down to 281 mcd) <strong>in</strong>to the southern Gardar Drift at a water<br />

depth of 2800 m (Fig. 1). The sediments consist of<br />

carbonate-rich (nannofossil oozes) and carbonate-poor<br />

(silty clay) <strong>in</strong>tervals that alternate on decimeter to meter<br />

scale. Sediment physical property records of Site U1314<br />

reveal a high similarity with the orbitally dated ODP Site<br />

983 (northern Gardar Drift). Thus a detailed correlation of<br />

colour reflectance and magnetic susceptibility data from<br />

both sites allowed deriv<strong>in</strong>g a new age model of orbital<br />

resolution for the last 1.8 Ma at Site U1314 (Grützner and<br />

Higg<strong>in</strong>s, submitted).<br />

Figure 1. General bathymetric map of the northern North Atlantic<br />

show<strong>in</strong>g the position of ODP/<strong>IODP</strong> Sites 980, 983, U1313 and<br />

U1314 (modified after Raymo et al., 2004). Arrows <strong>in</strong>dicate paths<br />

of major deep water flows (DSOW: Denmark Strait Overflow<br />

Water, ISOW: Iceland-Scotland Overflow Water, WTRO:<br />

Wyville-Thomson Ridge Overflow, LDW: Lower Deep Water,<br />

NWADW: North West Atlantic Deep Water, NEADW: North East<br />

Atlantic Deep Water).<br />

Both <strong>in</strong>vestigated sites exhibit pronounced sub-orbital<br />

scale variations <strong>in</strong> %CaCO3 and terrigenous provenance<br />

(<strong>in</strong>dicated by elemental ratios such as K/Ti or Si/Al)<br />

throughout the last 1.1 Ma. The amplitude of these<br />

millennial-scale changes is often ~40 to 70% of the<br />

maximum glacial/<strong>in</strong>terglacial range. These provenance<br />

changes are ma<strong>in</strong>ly controlled by the variability of deep<br />

circulation <strong>in</strong> the North Atlantic which is corroborated by<br />

the similarity between K/Ti and the deep sea δ 13 C record<br />

from ODP Site 607 (Raymo et al., 1990) on orbital time


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

scales. Low K/Ti ratios are typical for warmer <strong>in</strong>tervals<br />

with sediment delivery ma<strong>in</strong>ly through the ISOW from the<br />

Icelandic basaltic prov<strong>in</strong>ce. On the other hand glacials and<br />

stadials are characterized by higher K/Ti <strong>in</strong>dicat<strong>in</strong>g a<br />

dom<strong>in</strong>ance of acidic sediment sources which were likely<br />

transported by iceberg discharge or enhanced<br />

NEADW/LDW flow. Enhanced millennial scale variability<br />

<strong>in</strong> siliciclastic supply and deep hydrography at Site U1314<br />

occured dur<strong>in</strong>g ice growth phases when global benthic δ 18 O<br />

is with<strong>in</strong> a threshold range of 4.1 to 4.6 ‰. On the other<br />

hand peak glacial and <strong>in</strong>terglacial <strong>in</strong>tervals reveal very low<br />

variance <strong>in</strong> the sub-Milankovitch frequency band. An ice<br />

volume threshold for enhanced millennial scale variability<br />

was postulated by McManus et al. (1999) and Helmke et al.<br />

(2002) for the last 500 kyr and is now confirmed by our<br />

study (Fig. 2) for the last 1.1 Ma (Grützner and Higg<strong>in</strong>s,<br />

submitted).<br />

At Site U1313 sedimentation rates are lower (~4.7<br />

cm/kyr) then at Site U1314 but the sedimentation is very<br />

uniform such that spectral analyses are less biased by<br />

chang<strong>in</strong>g sedimentation rates. Prelim<strong>in</strong>ary spectral analyses<br />

reveal that significant suborbital variance with periods<br />

typical for the last 100 kyr can be detected with confidence<br />

for older <strong>in</strong>tervals also at this location. Suborbital variabilty<br />

<strong>in</strong> %CaCO3 at this location confirms the threshold level<br />

found at Site U1314 (Fig. 2). Furthermore our XRF core<br />

scann<strong>in</strong>g data from Site U1313 were used to identify<br />

He<strong>in</strong>rich events (enhanced Fe and Ti values) of the last 100<br />

kyr (Rashid et al., 2007), to constra<strong>in</strong> the age model for a 5<br />

Ma Record of extraterrestrial 3He flux (Higg<strong>in</strong>s et al.,<br />

2007) and to track times of Southern Ocean Water <strong>in</strong>flow<br />

(high Si/Al ratio) dur<strong>in</strong>g mar<strong>in</strong>e isotope stages 11 – 15<br />

(Voelker et al., <strong>in</strong> prep.)<br />

References:<br />

Grützner, J.and S.M. Higg<strong>in</strong>s (submitted). A 1.1 Ma long record of sediment<br />

provenance at the southern Gardar Drift reflects millennial-scale<br />

changes <strong>in</strong> deep water sources. Paleoceanography.<br />

Helmke, J. P., M. Schulz, and H. A. Bauch (2002), Sediment-Color Record<br />

from the Northeast Atlantic Reveals Patterns of Millennial-Scale<br />

Climate Variability dur<strong>in</strong>g the Past 500,000 Years, Quaternary<br />

Research, 57, 49-57.<br />

Higg<strong>in</strong>s, S.M., S.Mukhopadhyay, R. Ackert, and J. Grützner (2007). 5 Ma<br />

Record of extraterrestrial 3He flux, sediment provenance, and detrital<br />

fluxes at <strong>IODP</strong> Site 1313 <strong>in</strong> western North Atlantic. Fall Meet<strong>in</strong>g 2007,<br />

American Geophysical Union, San Francisco (Poster) Eos Trans. AGU,<br />

88(52), Fall Meet. Suppl., Abstract PP41C-0693.<br />

Lisiecki, L. E. and M. E. Raymo (2005), A Pliocene-Pleistocene stack of 57<br />

globally distributed benthic δ 18 Ο records, Paleoceanography, 20,<br />

doi:10.1029/2004PA001071.<br />

McManus, J. F., D. W. Oppo, and J. L. Cullen (1999), A 0.5-million-year<br />

reocrd of millenial-scale climate variability <strong>in</strong> the North Atlantic,<br />

Science, 283, 971-975.<br />

Rashid, H., J. Grützner, S. Lodestro, A. Voelker, B.P: Flower, and T.M.<br />

Qu<strong>in</strong>n (2007). Millennial-scale deep ocean ventilation and sea-surface<br />

variability dur<strong>in</strong>g the last four glacial cycles: a new assessment for the<br />

Northern Hemisphere ice-sheet growth. Fall Meet<strong>in</strong>g 2007, American<br />

Geophysical Union, San Francisco (Talk) Eos Trans. AGU, 88(52),<br />

Fall Meet. Suppl., Abstract PP44B-07.<br />

Raymo, M. E., W. F. Ruddiman, N. J. Shackleton, and D. W. Oppo (1990),<br />

Evolution of Atlantic Pacific Delta-C-13 Gradients Over the Last 2.5<br />

My, Earth Planet. Sci. Lett., 97, 353-368.<br />

Ste<strong>in</strong>, R., T. Kanamatsu, C.A. Alvarez Zarikian, S. Higg<strong>in</strong>s, J.E.T. Channell,<br />

E. Aboud, M. Ohno, G.D. Acton, K. Akimoto, I. Bailey, K.R.<br />

Bjørklund, H. Evans, S.H.H. Nielsen, N. Fang, P. Ferretti, J. Grützner,<br />

Y.J.B. Guyodo, K. Hag<strong>in</strong>o, R. Harris, K. Hatakeda, J. Hefter, S.A.<br />

Judge, D.K. Kulhanek, F. Nanayama, H. Rashid, F.J. Sierro Sanchez,<br />

A. Voelker, and Q. Zhai (2006). North Atlantic paleoceanography: the<br />

last 5 Million years. Eos 87 (13), p. 129, 133<br />

Voelker A.H.L., J. Grützner, and D. Hodell (<strong>in</strong> prep). Surface and Deep<br />

water hydrography <strong>in</strong> the mid-latitude North Atlantic dur<strong>in</strong>g Mar<strong>in</strong>e<br />

Isotope Stages 11 – 15: Insights from <strong>IODP</strong> sites U1313 and U1308.<br />

Mar<strong>in</strong>e Geology.<br />

Figure 2. A. Benthic oxygen isotope stack of Lisiecki and Raymo (2005) for the last 1 Ma.. The dashed horizontal l<strong>in</strong>e <strong>in</strong>dicates the<br />

threshold value of McManus et al. (1999) and Grützner and Higg<strong>in</strong>s (submitted) , above which larger amplitude millennial-scale climate<br />

variations are observed. B. High-pass-filtered (1/12 ka-1 cutoff frequency) %CaCO3 time series for Site U1313. C. High-pass-filtered<br />

time series of the Potassium to Titanium ratio for Site U1314. D. Time series of ice rafted detritus (IRD) from Site 980 (McManus eta l.<br />

1999). IRD is plotted as the number of detrital sediment gra<strong>in</strong>s (lithics), larger than 150 mm, per bulk sample weight. Maximum<br />

variability of all records shown <strong>in</strong> B-D occurs dur<strong>in</strong>g ice growth phases when δ18Ob is > 4.1 per mil.<br />

61


62<br />

<strong>ICDP</strong><br />

From land plants to anoxia - a pilot study of<br />

organic biomarkers gives <strong>in</strong>sight <strong>in</strong>to<br />

paleoclimate record of Lake El`gygytgyn<br />

S. HANISCH 1 , C. GEBHARDT 1 , O. JUSCHUS 2 , N. NOWACZYK 3<br />

1<br />

Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Am<br />

Alten Hafen 26, D-27568 Bremerhaven;<br />

sab<strong>in</strong>e.hanisch@awi.de<br />

2<br />

University of Cologne, Institute for Geology and M<strong>in</strong>eralogy;<br />

Zuelpicher Str. 49a, D-50674 Cologne<br />

3<br />

GFZ-Geoforschungszentrum Potsdam, Telegrafenberg C321, D-<br />

14473 Potsdam<br />

With<strong>in</strong> the framework of <strong>ICDP</strong>, deep drill<strong>in</strong>g <strong>in</strong><br />

Siberian Lake El'gygytgyn is funded for the year 2009. The<br />

biomarker pilot study presented here was carried out on<br />

El'gygytgyn sediment core LZ1024, which was retrieved <strong>in</strong><br />

a previous cor<strong>in</strong>g campa<strong>in</strong> <strong>in</strong> 2003. The organic matter <strong>in</strong><br />

the lake sediments conta<strong>in</strong> a variety of organic molecules<br />

(biomarkers), which are here used to trace land plant <strong>in</strong>put<br />

and changes <strong>in</strong> lake bottom anoxia dur<strong>in</strong>g the last 345,000<br />

years of lake history.<br />

Previous studies have demonstrated that Lake<br />

El'gygytgyn sediments provide an excellent record of<br />

paleoclimatic conditions <strong>in</strong> the east Siberian Arctic. Melles<br />

et al. (2007) def<strong>in</strong>ed different climate modes for the past<br />

three glacial-<strong>in</strong>terglacial cycles based on geochemical<br />

analysis ((i) peak warm, (ii) warm, (iii) cold and dry, (iiii)<br />

cold and wet). Further key parameters for trac<strong>in</strong>g<br />

paleoclimatic or paleolimnological states are magnetic<br />

susceptibility (Nowaczyk et al., 2007) and pollen (Lozhk<strong>in</strong><br />

et al., 2007).<br />

For this biomarker study, sediment samples were<br />

scratched from the surface of the freshly split sediment<br />

core compris<strong>in</strong>g 10-20 cm depth <strong>in</strong>terval each (ca. 4 g dry<br />

sediment). To avoid mix<strong>in</strong>g of different climate modes,<br />

samples were taken based on the magnetic susceptibility<br />

record of LZ1024, which traces climate modes. Sediments<br />

were extracted with organic solvents and splitted <strong>in</strong>to 3<br />

fractions (hydrocarbon fraction, fatty acid fraction and<br />

polar fraction) and analysed with gas chromatography and<br />

mass spectrometry.<br />

All glacial modes are characterized by a suppression of<br />

terrestrial long-cha<strong>in</strong> alkanes (C27-C 31) compared to aquatic<br />

short-cha<strong>in</strong> alkanes (C 17 and C 19), <strong>in</strong>dicat<strong>in</strong>g a low <strong>in</strong>put of<br />

terrigenous matter as a consequence of perennial ice<br />

coverage of the lake. Aquatic short-cha<strong>in</strong> alkanes show<br />

highest concentrations (per g TOC) dur<strong>in</strong>g frozen periods<br />

<strong>in</strong>dicat<strong>in</strong>g a higher preservation rate for sensible<br />

compounds of the organic matter due to bottom water<br />

anoxia. Further <strong>in</strong>dicators for anoxia are the distribution<br />

patterns of hop-12(17)-ene (ma<strong>in</strong>ly derived from moss,<br />

lichen, microorganisms) and 17 (H), 21 (H)homohopane<br />

(bacteria), which also show high<br />

concentrations dur<strong>in</strong>g ice coverage and lower values dur<strong>in</strong>g<br />

warmer periods with seasonally open water.<br />

Peak warm and warm periods of the Eemian (MIS 5.5)<br />

and Holocene (MIS 1) are <strong>in</strong>dicated by significantly higher<br />

concentrations of olean-12-ene, a specific biomarker for<br />

dicotyle angiosperms (Sukh Dev, 1989). The biomarker<br />

data correlate with pollen data from Lozhk<strong>in</strong> et al. (2007)<br />

<strong>in</strong>dicat<strong>in</strong>g tree and shrub-dom<strong>in</strong>ated periods dur<strong>in</strong>g<br />

Holocene and Eemian. Due to the different transport<br />

mechanisms of pollen and biomarkers, a more detailed<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

biomarker record (<strong>in</strong>clud<strong>in</strong>g compound specific isotopes)<br />

could provide a valuable addition for the reconstruction of<br />

the local paleoenvironment. Biomarkers as <strong>in</strong>dicators of<br />

different algae (e.g. sterols) can provide a better <strong>in</strong>sight<br />

<strong>in</strong>to Lake El'gygytgyn paleoecology equilibrated to climate<br />

conditions <strong>in</strong> the terrestrial Arctic.<br />

References:<br />

Lozhk<strong>in</strong> A.V., Anderson P.M., Matrosova T.V., M<strong>in</strong>yuk P.S. (2007) The<br />

pollen record from El'gygytgyn Lake: implications from vegetation and<br />

climate histories of northern Chukotka s<strong>in</strong>ce the late middle<br />

Pleistocene. Journal of Paleolimnology 37, 135-153.<br />

Melles M., Brigham-Grette J., Glushkova O.Yu., M<strong>in</strong>yuk P.S., Nowaczyk<br />

N.R., Hubberten H.-W. (2007) Sedimentary geochemistry of core<br />

PG1351 from Lake El'gygytgyn - a sensitive record of climate<br />

variability <strong>in</strong> the East Siberian Arctic dur<strong>in</strong>g the past three glacial<strong>in</strong>terglacial<br />

cycles. Journal of Paleolimnology 37, 89-104.<br />

Nowaczyk N.R., Melles M., M<strong>in</strong>yuk P.S. (2007) A revised age model for<br />

core PG1351 from Lake El'gygytgyn, northeast Siberia, Russia:<br />

constra<strong>in</strong><strong>in</strong>g the tim<strong>in</strong>g of paleoenvironmental events for the past 200<br />

ka. Journal of Paleolimnology 37, 65-76.<br />

Sukh Dev (1989) Terpenoids. In: Rowe, J.W. (ed.): Natural products of<br />

woody plants I. Spr<strong>in</strong>ger, Berl<strong>in</strong>.<br />

<strong>IODP</strong><br />

Laser ablation ICP-MS as a tool for assess<strong>in</strong>g<br />

the preservation of fossil corals: Examples<br />

from deglacial Tahiti corals recovered by<br />

<strong>IODP</strong> Expedition 310<br />

ED C. HATHORNE 1 AND THOMAS FELIS 1<br />

1<br />

DFG-Research Center for Ocean Marg<strong>in</strong>s (RCOM), University of<br />

Bremen<br />

The chemistry of fossil coral skeletons, usually of the<br />

genus Porites, provide the unique opportunity to<br />

reconstruct environmental conditions at a sub-seasonal<br />

resolution (e.g. Felis et al. 2004). However, good<br />

preservation of fossil corals is essential to obta<strong>in</strong> reliable<br />

proxy records (e.g. Allison et al., 2005; Qu<strong>in</strong>n and Taylor,<br />

2006; Hendy et al., 2007). Diagenetic alteration is usually<br />

assessed rigorously us<strong>in</strong>g XRD analyses to scan for calcite<br />

and X-radiograph, SEM and petrography images to screen<br />

for dissolution and secondary aragonite (e.g. Qu<strong>in</strong>n and<br />

Taylor, 2006). This process is very time consum<strong>in</strong>g and as<br />

such can only be conducted on descrete regions of a fossil<br />

coral.<br />

Hier we present new high resolution Laser abalation<br />

ICP-MS analyses of degalcial Porites corals from Tahiti,<br />

recovered by <strong>IODP</strong> Expedition 310. These data reveal high<br />

fequency trace element variations similar to those found <strong>in</strong><br />

modern corals. Such high frequency trace element<br />

variations are likely to result from biom<strong>in</strong>eralization<br />

processes (e.g. S<strong>in</strong>clair 2005; Meibom et al., 2007) and<br />

their presence <strong>in</strong> these fossil corals <strong>in</strong>dicates the<br />

preservation of the origional trace element signal. Such<br />

analyses can be preformed relatively quickly and represent<br />

a powerful additional tool for assess<strong>in</strong>g the preservation of<br />

fossil corals.<br />

High resolution spot analyses (~15 microns diameter)<br />

on polished sections of fossil coral can target skeletal<br />

structures such as centres of calcification (COCs) which<br />

are often the focus of diagentic alteration and bias <strong>in</strong> proxy<br />

records (Allison et al., 2005). Such spatial resolution is<br />

comparable to that of Ion Microprobe techniques and can<br />

be used to analyse only prist<strong>in</strong>e skeleton <strong>in</strong> samples which<br />

are diagenetically altered (e.g. Cohen and Hart, 2004). LA-<br />

ICP-MS has the potential to produce long reliable proxy


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

records from fossil corals which would not be possible with<br />

other techniques.<br />

References:<br />

Allison et al. (2005). Geophyical Reearch Letters 32, L17609.<br />

Cohen and Hart (2004). Paleoceanography 19, PA4031.<br />

Felis et al. (2004). Nature 429, 164-168.<br />

Hendy et al. (2007). Paleoceanography 22, PA4101.<br />

Meibom et al. (2007). Geophyical Reearch Letters 34, L02601.<br />

S<strong>in</strong>clair (2005). Geochimica et Cosmochimica Acta 69, 3265-3284.<br />

Qu<strong>in</strong>n and Taylor (2006). Geophyical Reearch Letters 33, L04601.<br />

<strong>IODP</strong><br />

The Biomarker Inventory, Trace, and Source<br />

of He<strong>in</strong>rich Events and He<strong>in</strong>rich-type Layers<br />

(MIS 8-16) <strong>in</strong> the North Atlantic<br />

J. HEFTER 1 , R.. STEIN 1 , J. S. SINNINGHE DAMSTÉ 2<br />

1 Alfred-Wegener-Institute for Polar- and Mar<strong>in</strong>e Research, Am<br />

Alten Hafen 26, D-27568 Bremerhaven, Germany<br />

2 Royal Netherlands Institute for Sea Research (NIOZ), 1790 AB<br />

Den Burg, The Netherlands<br />

Multiple cores from different locations <strong>in</strong> the North<br />

Atlantic were recovered dur<strong>in</strong>g <strong>IODP</strong> Expeditions 303/306<br />

(Channell et al., 2006). We have <strong>in</strong>vestigated the biomarker<br />

distributions of identified/presumed He<strong>in</strong>rich layers (HL)<br />

and ambient glacial/<strong>in</strong>terglacial samples <strong>in</strong> proximity (Site<br />

U1305) to the former major iceberg discharge pathway<br />

derived via the Hudson Strait from the Laurentide-Ice-<br />

Shield (LIS) <strong>in</strong> order to:<br />

extend, <strong>in</strong> space and time, previous knowledge of<br />

biomarker <strong>in</strong>ventories from He<strong>in</strong>rich layers <strong>in</strong> the Labrador<br />

Sea (Rashid & Grosjean, 2006),<br />

narrow down or even identify the source(s) of organic<br />

matter deposited dur<strong>in</strong>g He<strong>in</strong>rich events, and<br />

explore and use the potential of biomarker f<strong>in</strong>gerpr<strong>in</strong>ts<br />

as chemical tracers for the occurrence and first appearance<br />

of He<strong>in</strong>rich event-like episodes even <strong>in</strong> the distal North<br />

Atlantic (Sites U1308, U1313).<br />

All He<strong>in</strong>rich layers present at Site U1305 (HL1, 2, 4)<br />

exclusively conta<strong>in</strong>ed a unique association of a multitude<br />

of “petrogenic” compounds such as benzohopanes, D-r<strong>in</strong>g<br />

monoaromatic 8,14-secohopanes, rearranged diasterenes,<br />

mono- and triaromatic steranes, isorenieratene-derivatives<br />

as well as characteristic pristane/n-C17 and<br />

pristane/phytane ratios.<br />

The occurrence of these compounds <strong>in</strong> samples<br />

deposited dur<strong>in</strong>g He<strong>in</strong>rich events is, from a chemical<br />

viewpo<strong>in</strong>t, unique because their structures clearly po<strong>in</strong>t<br />

towards an orig<strong>in</strong> either not compatible with the mar<strong>in</strong>e<br />

environmental conditions dur<strong>in</strong>g depositional times, or<br />

with the diagenetic state and age of the sediments under<br />

<strong>in</strong>vestigation. For example, the presence of C40isorenieratene<br />

derivatives suggests contributions from<br />

phototrophic green and purple sulfur bacteria <strong>in</strong>dicative of<br />

a highly stratified water column with photic-zone anoxia<br />

(e.g. Brocks & Summons, 2003), but such conditions are<br />

rather unlikely to have developed at the cor<strong>in</strong>g site. In<br />

addition, the presence of palaerenieratane po<strong>in</strong>ts towards a<br />

Paleozoic age of the organic matter from HL´s, because the<br />

known occurrence of this compound seems to be limited to<br />

the Paleozoic sedimentary rocks and oils spann<strong>in</strong>g today a<br />

geographically extensive portion of the North American<br />

cont<strong>in</strong>ent (Brown & Kenig, 2004).<br />

From the overall distribution of biomarker compounds<br />

<strong>in</strong> HL´s, a relatively immature, mar<strong>in</strong>e carbonate rock, that<br />

has been deposited <strong>in</strong> the Paleozoic under occasional<br />

photic zone anoxic conditions can be <strong>in</strong>ferred as potential<br />

source. Actually, upon re<strong>in</strong>vestigation of available geologic<br />

and organic-geochemical data (Macauley et al., 1990), it<br />

was even possible to narrow down this proposed source to<br />

an Ordovician oil shale, that is today outcropp<strong>in</strong>g close to<br />

Hudson Strait. Indeed, a strik<strong>in</strong>g concordance between<br />

biomarker distributions <strong>in</strong> a particular sample of that shale<br />

and the specific association of compounds from samples of<br />

He<strong>in</strong>rich Events is observed.<br />

As clearly <strong>in</strong>dicated by the downcore profile of Site<br />

U1305, the characteristic compound association ideally<br />

allows to dist<strong>in</strong>guish organic matter from HL compared to<br />

adjacent samples. Therefore, the above mentioned<br />

compounds can be regarded and be used as organicgeochemical<br />

tracers not only for the occurrence of He<strong>in</strong>rich<br />

Events of the last glacial cycle, but also for older He<strong>in</strong>richlike<br />

events. These geochemical tracers are highly selective<br />

because they <strong>in</strong>dicate the presence of Ordovician organic<br />

matter from rocks of the Hudson Bay area.<br />

The explored biomarker trace of last glacial He<strong>in</strong>rich<br />

events from the LIS-proximal Site U1305 could be<br />

followed up <strong>in</strong> the downcore sedimentary records of the<br />

distal Sites (U1308, U1313) <strong>in</strong> the central North Atlantic.<br />

We present a biomarker based high resolution record of<br />

such events dur<strong>in</strong>g a time <strong>in</strong>terval from about 320-460 kyr<br />

at Site U1313 (MIS 10-12) and an extended record (MIS 8-<br />

16) of He<strong>in</strong>rich-type events from Site U1308, i.e. from<br />

positions near the Mid-Atlantic Ridge and distal to the LIS.<br />

Brocks, J.J., Summons, R.E., (2003) Sedimentary hydrocarbons, biomarkers<br />

for early life, Treatise on Geochemistry, 8, pp. 63-115. Elsevier, New<br />

York.<br />

Brown, T.C., Kenig, F., (2004) Water column structure dur<strong>in</strong>g deposition of<br />

Middle Devonian-Lower Mississippian black and green/ gray shales of<br />

the Ill<strong>in</strong>ois and Michigan Bas<strong>in</strong>s; a biomarker approach.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology, 215(1-2), 59-85.<br />

Channell, J.E.T., Sato, T., Kanamatsu, T., Ste<strong>in</strong>, R., Malone, M., Alvarez-<br />

Zarikian, C., and the <strong>IODP</strong> Expeditions 303 and 306 Scientists, (2006)<br />

<strong>IODP</strong> Expeditions 303 and 306 Monitor Miocene-Quaternary Climate<br />

<strong>in</strong> the North Atlantic. Scientific Drill<strong>in</strong>g, 2, 4-10.<br />

Macauley, G., Fowler, M.G., Goodarzi, F., Snowdon, L.R., and Stasiuk,<br />

L.D., (1990) Ordovician oil shale-source rock sediments <strong>in</strong> the central<br />

and eastern Arctic areas, and their significance for frontier exploration.<br />

Geological Survey of Canada, Paper 90-14.<br />

Rashid, H., Grosjean, E., (2006) Detect<strong>in</strong>g the source of He<strong>in</strong>rich layers: An<br />

organic geochemical study. Paleoceanography, PA3041,<br />

doi:10.1029/2005PA001240, 2006.<br />

<strong>ICDP</strong><br />

Geothermal <strong>in</strong>vestigations from well data of<br />

the Chesapeake Pen<strong>in</strong>sula, USA<br />

PHILIPP HEIDINGER 1 , HELMUT WILHELM 1 , JAN SAFANDA 2 , HANS<br />

BURKHARDT 3 , SIBYLLE MAYR 3 , YURI POPOV 4<br />

1<br />

Geophysical Institute of Karlsruhe, Germany<br />

2<br />

Geophysical Institute of Prague, Czech Republic<br />

3<br />

Institute of Applied Geosciences, Technical University of Berl<strong>in</strong>,<br />

Germany<br />

4<br />

Russian State Geological Prospect<strong>in</strong>g University, Moscow<br />

The Chesapeake Bay impact structure is a late Eocene<br />

complex crater which was excavated ~35 Ma ago by a<br />

comet or asteroid <strong>in</strong> a cont<strong>in</strong>ental shelf environment on the<br />

Atlantic marg<strong>in</strong> of Virg<strong>in</strong>ia. It is the largest impact crater <strong>in</strong><br />

the USA and the seventh largest on Earth. It has an average<br />

diameter of ~85 km around its centre near Cape Charles.<br />

The <strong>ICDP</strong> drill hole is situated on the central uplift of the<br />

crater.<br />

63


64<br />

Drill<strong>in</strong>g of the hole Eyreville-B started on September<br />

12, 2005 and ended on December 4, 2005 at 1766.3 m<br />

depth. After the mud circulation had stopped, first<br />

temperature measurements were recorded from the bottom<br />

of the hole upwards by the USGS logg<strong>in</strong>g tool. Then the<br />

Karlsruhe University logg<strong>in</strong>g tool, which had been shipped<br />

to Norfolk harbour <strong>in</strong> November 2005 and started high<br />

resolution temperature (HRT) measurements from the top<br />

downwards. The logg<strong>in</strong>g was <strong>in</strong>terrupted when the tool<br />

crashed at 780 m depth. After repair, a complete<br />

temperature profile was measured to 1400 m depth on<br />

December 6. In order to stop the artesian flow which had<br />

started immediately after the stop of circulation the well<br />

head was closed afterwards. On December 9 the well head<br />

pressure amounted to ~1.9 bar. After reopen<strong>in</strong>g of the well<br />

head, another temperature profile was recorded down to the<br />

end of the cas<strong>in</strong>g at 1130 m depth, because the lower open<br />

part was no longer accessible. After clos<strong>in</strong>g the well head<br />

the pressure raised to 2.13 bar. The temperature values of<br />

this campaign were heavily disturbed by outflow of<br />

artesian water and could only be used for an estimation of<br />

the depth where the fluid orig<strong>in</strong>ated.<br />

About 8.5 km away from the hole Eyre-B a test well<br />

STP2 has been drilled by USGS. The general lithology of<br />

this 823 m deep well and the resistivity and water sal<strong>in</strong>ity<br />

logs recorded <strong>in</strong> a 700 m deep groundwater observation<br />

well <strong>in</strong>stalled with<strong>in</strong> the test hole has been published <strong>in</strong><br />

EOS 85, no.39, 28 September 2004. Fortunately this hole<br />

was still accessible and not artesian. In this well the<br />

temperature could be recorded yield<strong>in</strong>g an undisturbed<br />

profile with an <strong>in</strong>terest<strong>in</strong>g feature near the surface, see<br />

figure 1 and 2. Below the depth of the annual perturbation<br />

an unusual rise of the temperature profile could be<br />

observed. This effect could be identified as a signature of<br />

anthropogenic structures <strong>in</strong> the subsurface temperature<br />

field <strong>in</strong> borehole surround<strong>in</strong>gs. The m<strong>in</strong>imum temperature<br />

was observed <strong>in</strong> 35 m, where the house and asphalt areas<br />

were built only seven years before the logg<strong>in</strong>g. Simulat<strong>in</strong>g<br />

these effects by solv<strong>in</strong>g numerically the heat conduction<br />

equation yielded a 3.3 °C temperature jump caused by the<br />

constructions and a diffusivity value of the upper<br />

subsurface of 0.64*10-6 m2/s.<br />

In order to measure an undisturbed temperature profile<br />

<strong>in</strong> the hole Eyre-B, a riser construction was created and a<br />

second logg<strong>in</strong>g campaign was set for 1.5.2006 – 8.5.2006.<br />

At the beg<strong>in</strong>n<strong>in</strong>g of the campaign the borehole still had an<br />

overpressure of 1.2 bars. The riser was connected to the<br />

wellhead of the borehole Eyre-B and was work<strong>in</strong>g f<strong>in</strong>e,<br />

prevent<strong>in</strong>g the outflow of the artesian water but still<br />

enabled the wire of the logg<strong>in</strong>g tool to pass through and we<br />

did the first successful measurement down to the end of the<br />

rema<strong>in</strong><strong>in</strong>g HQ-rods at 1100.3 m.<br />

After completion of the measurement Ward Sanford<br />

from USGS <strong>in</strong> Reston opened the well to let the artesian<br />

water flow out. His aim was to get as clear as possible<br />

water samples from the host rock not mixed with remnants<br />

of drill<strong>in</strong>g mud. Realiz<strong>in</strong>g that this several hours outflow of<br />

artesian water would be a heat pulse to the rocks above the<br />

pressurized layer, we decided to do more measurements<br />

after re-closure of the well <strong>in</strong> order to measure the<br />

relaxation process of the well. It was very surpris<strong>in</strong>g that at<br />

the next day, when Ward Sanford f<strong>in</strong>ished his work, the<br />

borehole Eyreville-B was not anymore artesian at all. The<br />

pressurised layer must have been limited. Dur<strong>in</strong>g the rest of<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

our stay on the Chesapeake Pen<strong>in</strong>sula we were able to do<br />

four more temperature measurements without the need of<br />

us<strong>in</strong>g the riser construction. The times of the measurements<br />

were 2 h, 20 h, 44 h and 98.5 h respectively after end of<br />

artesian water outflow. The riser construction yielded a<br />

measurement of the undisturbed temperature profile,<br />

afterwards we were able to measure the relaxation process<br />

of the borehole temperature towards the equilibrium.<br />

Boreholes drilled <strong>in</strong> impact structures are especially<br />

suited for <strong>in</strong>vestigations of the <strong>in</strong>fluence of heterogeneities<br />

on petrophysical properties and the thermal field. In the<br />

scientific well Eyreville-B drilled with<strong>in</strong> the frame of the<br />

International Cont<strong>in</strong>ental Deep Drill<strong>in</strong>g Program (<strong>ICDP</strong>)<br />

two high resolution temperature measurement campaigns<br />

were recorded. Additionaly a dense petrophysical profile<br />

measured on core samples at ~10 m depth <strong>in</strong>tervals was<br />

generated and offers a rare opportunity for geothermal<br />

<strong>in</strong>vestigations on the terrestrial heat flow densitiy (HFD).<br />

The registration of the relaxation process after some<br />

outflow of artesian water which heated the surround<strong>in</strong>g<br />

rock gave <strong>in</strong>sight to the <strong>in</strong>-situ values of the geothermal<br />

parameters. The results of these calculations could be<br />

compared with the parameters yielded on core samples <strong>in</strong><br />

the laboratory.<br />

To jo<strong>in</strong> this <strong>ICDP</strong> project all science team members<br />

and their associates had to agree to a moratorium on<br />

publication. At the end of the moratorium period, a jo<strong>in</strong>t<br />

publication will be the forum for all <strong>in</strong>itial publications and<br />

only afterwards papers, talks or posters conta<strong>in</strong><strong>in</strong>g<br />

scientific results can be presented by the members. This<br />

directive was confirmed on the 2007 GSA Denver Annual<br />

Meet<strong>in</strong>g 28 - 31 October, 2007 and the moratorium will be<br />

valid until this jo<strong>in</strong>t publication has the status <strong>in</strong>-press,<br />

which should be around fall <strong>2008</strong>. Therefore and <strong>in</strong><br />

concordiance with the moratorium no data and results of<br />

the Eyreville-B borehole are presented here. Only a general<br />

description of what have been performed to the data is<br />

written here, an exception is the temperature profile of the<br />

STP2 borehole and the results of these <strong>in</strong>vestigations<br />

because this well does not belong to the <strong>ICDP</strong> project.<br />

Comb<strong>in</strong><strong>in</strong>g the gradient of a temperature profile with<br />

the thermal conductivity yields the heat flow densitiy.<br />

Repeated determ<strong>in</strong>ations at all depths, where the thermal<br />

conductivity was determ<strong>in</strong>ed, produced a depth profile of<br />

the HFD. Because <strong>in</strong> a borehole only the vertical gradient<br />

of temperature is measured the results only represent the<br />

vertical component of the HFD as well. An averaged<br />

vertical HFD was calculated from 43 values and is<br />

identified as the terrestrial HFD on the well Eyreville-B.<br />

Significant variations of the vertical heat flow density can<br />

be expla<strong>in</strong>ed by:<br />

Additional convective heat transport caused by<br />

migrat<strong>in</strong>g fluids<br />

System is not <strong>in</strong> a steady-state geothermal condition,<br />

but transient due to i.e. paleoclimatic effects<br />

Potential depth error, because depths of samples are<br />

determ<strong>in</strong>ed with the drill<strong>in</strong>g rods (drill<strong>in</strong>g depth), whereas<br />

the temperature values are measured with a cable<br />

(measurement depth). The difference can be <strong>in</strong> range of ~<br />

decimeter up to a meter.<br />

Different scales, thermal conductivity measured with<br />

the non-contact optical scann<strong>in</strong>g method is done for<br />

centimeters only and heterogeneity can be high. The<br />

temperature profile, representative as the rock temperature


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

profile can be determ<strong>in</strong>ed only <strong>in</strong> range of at least ~ 20 cm<br />

due to averag<strong>in</strong>g effects of the fluid filled borehole.<br />

Incl<strong>in</strong>ed structures are diffract<strong>in</strong>g the terrestrial heat<br />

flow but only the vertical component can be determ<strong>in</strong>ed.<br />

Model calculations of this effect were performed by<br />

Wilhelm H. et al., 2005.<br />

The characteristics of the result<strong>in</strong>g profile could be<br />

simulated with a 2D f<strong>in</strong>ite element model us<strong>in</strong>g the<br />

FEMLAB code.<br />

The relaxation process measured after artesian water<br />

outflow depends on the thermal properties of the<br />

surround<strong>in</strong>g rocks. With the l<strong>in</strong>e source model the<br />

relaxation process is simulated by a superposition of<br />

analytical solutions for the heat<strong>in</strong>g/cool<strong>in</strong>g process<br />

(Bullard E. C., 1947). The correspond<strong>in</strong>g equation was<br />

fitted to the measured data us<strong>in</strong>g the Levenberg-Marquardt<br />

algorithm (Press W. H. et al., 1992). As a result of these<br />

calculations the undisturbed (equilibrated) temperature and<br />

a second <strong>in</strong>-situ parameter, the term qL/4/π/λ, i.e. the ratio<br />

of the heat<strong>in</strong>g power and the <strong>in</strong>-situ thermal conductivity,<br />

is determ<strong>in</strong>ed. If the heat<strong>in</strong>g power is known, the <strong>in</strong>-situ<br />

value of the thermal conductivity can be determ<strong>in</strong>ed. The<br />

heat<strong>in</strong>g power depends on the amount and temperature of<br />

the artesian water flown out of the well. We simulated the<br />

transient disturbance of the subsurface temperature field by<br />

solv<strong>in</strong>g numerically the heat convection-conduction<br />

equation <strong>in</strong> an axisymmetric geothermal model of the<br />

borehole and its surround<strong>in</strong>gs by the f<strong>in</strong>ite difference (FD)<br />

method. A simple two-layer model with thermal<br />

conductivities of the surround<strong>in</strong>g rocks was considered.<br />

The heat<strong>in</strong>g power of the artesian outflow was calculated<br />

as the horizontal conductive heat flow <strong>in</strong>to the surround<strong>in</strong>g<br />

rock at a distance of 1 cm from the borehole wall at each<br />

depth node at each time step. The average heat<strong>in</strong>g power<br />

was obta<strong>in</strong>ed by <strong>in</strong>tegration over the period of the outflow.<br />

Comb<strong>in</strong><strong>in</strong>g the results, the ratio qL/4/π/λ and the depth<br />

dependent heat<strong>in</strong>g power obta<strong>in</strong>ed by FD modell<strong>in</strong>g, the <strong>in</strong>situ<br />

thermal conductivity was calculated and compared<br />

with the thermal conductivity measured on saturated<br />

samples <strong>in</strong> the laboratory.<br />

Fig.1: Temperature profile of borehole STP-2<br />

Fig.2: Temperature profile of borehole STP-2, upper part and<br />

model results<br />

References<br />

Bullard E. C., 1947, The time necessary for a bore hole to atta<strong>in</strong> temperature<br />

equilibrium, Monthly Notices Roy. Astron. Soc. Geophys. Suppl. 5,<br />

127-130, 1947<br />

Press W. H. et al., 1992, Numerical Recipes, Second Edition 1992,<br />

Cambridge University Press, Chapter 15.5 Nonl<strong>in</strong>ear models<br />

Wilhelm H. et al., 2005, Heterogeneity effects <strong>in</strong> thermal borehole<br />

measurements <strong>in</strong> the Chicxulub impact crater, J. Geophys. Eng. 2<br />

(2005) 357-363<br />

65


66<br />

<strong>IODP</strong><br />

A late Miocene-early Pliocene deepwater<br />

record of cyclic iron reduction events<br />

(Antarctic Pen<strong>in</strong>sula Pacific marg<strong>in</strong>, ODP<br />

Site 1095)<br />

D.A. HEPP 1 , T. MÖRZ 2<br />

1<br />

Fachbereich Geowissenschaften, Universität Bremen<br />

2<br />

DFG-Forschungszentrum Ozeanränder (RCOM), Universität<br />

Bremen<br />

The Antarctic ice sheet is the largest ice sheet on Earth<br />

today. It acts as key component <strong>in</strong> the global climate<br />

regime s<strong>in</strong>ce the late Eocene. Ice volume variations<br />

<strong>in</strong>fluence the ocean thermohal<strong>in</strong>e circulation and control<br />

the eustatic sea level.<br />

The Pacific marg<strong>in</strong> off the Antarctic Pen<strong>in</strong>sula is very<br />

sensitive to climate and ice-sheet volume changes. Climatic<br />

variations on the Antarctic Pen<strong>in</strong>sula cont<strong>in</strong>ental shelf<br />

control regional sedimentary processes and foster the buildup<br />

of giant deep-sea sediment drifts. These drifts represent<br />

the most proximal cont<strong>in</strong>uous sedimentary recorders for<br />

West Antarctic ice evolution and glacial-<strong>in</strong>terglacial<br />

cyclicity.<br />

Sediment physical, geochemical records and X-ray<br />

images derived from Drift 7 (ODP Site 1095, 3840 m water<br />

depth) were used to identify pattern <strong>in</strong> glacial-<strong>in</strong>terglacial<br />

cyclicity and associated sedimentary and diagenetic<br />

processes dur<strong>in</strong>g late Miocene and early Pliocene. Two<br />

boundary types divid<strong>in</strong>g half-cycles have been recognized:<br />

(1) <strong>in</strong>terglacial-to-glacial transitions are characterized by a<br />

sharp boundary and abrupt change <strong>in</strong> lithology; (2) glacialto-<strong>in</strong>terglacial<br />

transitions can described as a gradual change<br />

from a full glacial to a full <strong>in</strong>terglacial stage. A prom<strong>in</strong>ent<br />

feature of the glacial-to-<strong>in</strong>terglacial transition is the loss of<br />

the magnetic susceptibility signal.<br />

Late Miocene to early Pliocene was a period of global<br />

evidence for enhanced primary productivity and<br />

accumulation of biogenetic components <strong>in</strong> the sediment<br />

(‘Biogenic bloom’ hypothesis). At that time warm climate<br />

conditions were characterized by reduced sea ice cover and<br />

overall reduced ice volume. ODP Site 1095 was with<strong>in</strong> a<br />

southward-shifted or generally enhanced opal depocentre.<br />

It experienced exceptional opal and organic carbon fluxes<br />

comparable to those at the modern opal belt.<br />

Late Miocene to early Pliocene ice sheet dynamics<br />

<strong>in</strong>volved frequent advances and retreats of the <strong>in</strong>land ice<br />

sheet and led to more pronounced ice sheet collapses and<br />

meltwater pulses dur<strong>in</strong>g deglaciations. The discharge of<br />

large amounts of meltwater to the Antarctic surface waters<br />

caused stratification of the water column and shoal<strong>in</strong>g of<br />

the pycno- and nutricl<strong>in</strong>e <strong>in</strong>to the photic zone, promot<strong>in</strong>g<br />

high export productivity from the lower photic zone. Water<br />

column stratification weakened the Aantarctic bottom<br />

water formation and convection. Export productivity pulses<br />

(Short lived diatom blooms) <strong>in</strong> nearly stagnant deep water<br />

conditions led to reduc<strong>in</strong>g conditions <strong>in</strong> the sediment with<br />

sulfate reduction close to the sediment water <strong>in</strong>terface. This<br />

temporary suboxic to anoxic sediment conditions caused<br />

diagenetic alteration and demagnetization of magnetic iron<br />

m<strong>in</strong>erals (Loss of the magnetic susceptibility signal).<br />

Similar redox processes are described for organic carbon<br />

rich Madeira abyssal pla<strong>in</strong> turbidites and Mediterranean<br />

sapropels, but are uncommon for vented Circum-Antarctic<br />

deep-sea sediments<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Follow<strong>in</strong>g the meltwater pulses the reduction of the<br />

supply of nutrients that had been bound <strong>in</strong> the ice led to a<br />

rapid decl<strong>in</strong>e of export productivity. The break-up of water<br />

stratification allowed the re-establishment of bottom water<br />

formation, circulation and ventilation, affect<strong>in</strong>g of the<br />

upper sediment column.<br />

On long time-scales the <strong>in</strong>tensity and duration of<br />

diagenesis reflect major trends <strong>in</strong> global paleoceanographic<br />

and climatic change and consequently the variability <strong>in</strong><br />

primary export production. After Antarctic ice sheet<br />

stabilization, between 3.3 to 2.3 Ma, the flux of organic<br />

matter and sedimentation rates fell below a threshold level<br />

prevent<strong>in</strong>g development of reduc<strong>in</strong>g conditions <strong>in</strong> the<br />

surface sediments.<br />

The mapp<strong>in</strong>g and documentation of losses of magnetic<br />

susceptibility <strong>in</strong> sixty-four zones (late Miocene to early<br />

Pliocene period) of sediment cores from ODP Site 1095<br />

provide the first long term record of cyclic meltwater<br />

pulses and high export productivity events result<strong>in</strong>g <strong>in</strong><br />

reduc<strong>in</strong>g conditions <strong>in</strong> the near surface sediments <strong>in</strong> the<br />

high latitud<strong>in</strong>al Southern Ocean.<br />

Meltwater events orig<strong>in</strong>ate<strong>in</strong>g <strong>in</strong> the Antarctic may<br />

have had a major impact on the global thermohal<strong>in</strong>e<br />

overturn<strong>in</strong>g strength. Further, <strong>in</strong>creased carbon burial <strong>in</strong> the<br />

high latitudes dur<strong>in</strong>g extensive green-house conditions may<br />

have been a negative feed-back to atmospheric CO2<br />

concentrations.<br />

The processes of early diagenesis described here are a<br />

function of the environmental factors of the local regime<br />

and reflect changes along the West Antarctic Pen<strong>in</strong>sula;<br />

they may be more widespread <strong>in</strong> the Antarctic region.<br />

Although early diagenesis may obliterate primary proxies<br />

and processes, it can also serve as evidence of unusual<br />

oceanic conditions that otherwise might be obscured and<br />

overlooked <strong>in</strong> geological records.<br />

References:<br />

Hepp, D.A., Mörz, T. and Grützner, J., 2006. Pliocene glacial cyclicity <strong>in</strong> a<br />

deep-sea sediment drift (Antarctic Pen<strong>in</strong>sula Pacific Marg<strong>in</strong>).<br />

Palaeogeography, Palaeoclimatology, Palaeoecology, 231(1-2): 181-<br />

198.<br />

Hepp, D.A. et al., submitted. A late Miocene-Pliocene Antarctic deepwater<br />

record of cyclic iron reduction events. Paleoceanography.<br />

<strong>IODP</strong><br />

Geochemical evolution of the Early Aptian<br />

Oceanic Anoxic Event 1a <strong>in</strong> the tropical<br />

Atlantic, ODP Site 641C Galicia Marg<strong>in</strong>.<br />

P. HOFMANN 1 , T. WAGNER 2<br />

1 Universität zu Köln, Institut für Geologie und M<strong>in</strong>eralogie,<br />

Zülpicher Str. 49a, 50674 Köln<br />

2 Newcastle University, Civil Engeneer<strong>in</strong>g and Geoscience,<br />

Newcastle Upon Tyne NE 1 7RU, UK<br />

A key mechanism which controls rapid climate change<br />

dur<strong>in</strong>g greenhouse periods of the Mesozoic climate system<br />

appears to be the catastrophic release of methane from gas<br />

hydrates to the oceanic and atmospheric carbon reservoirs.<br />

Excess CO2 liberated from gas hydrate desiccation is<br />

expected to result <strong>in</strong> the <strong>in</strong>tensification of greenhouse<br />

conditions lead<strong>in</strong>g to an acceleration of the hydrological<br />

cycle, <strong>in</strong>tensified weather<strong>in</strong>g conditions, an elevated supply<br />

of nutrients to the ocean and extensive black shale<br />

deposition.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

The most prom<strong>in</strong>ent example for rapid climate change<br />

related to the release of CO2 from gas hydrates <strong>in</strong> the<br />

Cretaceous is thought to be represented by an abrupt and<br />

stepped negative carbon-isotope excursion at the base of<br />

the Early Aptian Oceanic Anoxic Event 1a (OAE 1a, Selli-<br />

or Niveau Goguel-Event). Aim of this project is to<br />

reconstruct the cha<strong>in</strong> of processes affect<strong>in</strong>g the Early<br />

Aptian land-ocean-atmosphere system <strong>in</strong> tropical regions<br />

of the Atlantic <strong>in</strong>duced by the release of CO2 exemplified<br />

by ODP Site 641C Galicia Marg<strong>in</strong>, based on high<br />

resolution proxy data e.g., for the development of sea<br />

surface temperatures (Tex 86), carbon burial and<br />

preservation and the isotopic evolution of the ocean and<br />

atmosphere (δ 13 C values from long cha<strong>in</strong> n-alkanes and<br />

steranes).<br />

Here we present data of the first phase of <strong>in</strong>vestigation<br />

which focused on the identification of the OAE 1a and its<br />

characteristics at Site 641C. Bulk carbon isotope data from<br />

carbonates and organic matter allow identify<strong>in</strong>g the onset<br />

of OAE 1a at Site 641C at the bottom of core 9R. The base<br />

of the event is marked by a negative δ 13 C shift of 1.25 per<br />

mil recorded bulk carbonates associated with an <strong>in</strong>crease <strong>in</strong><br />

TOC values from 0.5 to more than 2%. The <strong>in</strong>itial negative<br />

carbon isotope excursion is followed by sudden drop <strong>in</strong><br />

carbonate content to 0-10% CaCO3 from more than 40%.<br />

Carbonate values rema<strong>in</strong> low throughout core 9R, while<br />

TOC values fluctuate between 0.5 and 3.5%. A drop to<br />

TOC values below 1% <strong>in</strong> core 8R is associated with a 3 per<br />

mil <strong>in</strong>crease <strong>in</strong> δ 13 C car values and a gradual return to<br />

carbonate values between 20 and 40%.<br />

The comparison of our data with records from the<br />

Vocontian Bas<strong>in</strong> (France) and Northern and Central Italy<br />

shows, that key feature of OAE 1a which can be<br />

recognized worldwide were recovered at ODP Site 641C,<br />

despite considerable core losses. The <strong>in</strong>itial negative<br />

carbon isotope excursion which has been <strong>in</strong>terpreted as the<br />

result of CO2 liberated from gas hydrate desiccation is<br />

present <strong>in</strong> an approximately 1m thick <strong>in</strong>terval and will be<br />

the focus of our further <strong>in</strong>vestigations.<br />

<strong>IODP</strong><br />

Pacific circulation dur<strong>in</strong>g the middle Miocene<br />

climate transition:Monitor<strong>in</strong>g ocean<br />

overturn<strong>in</strong>g and the east-west hydrographic<br />

gradient<br />

A. HOLBOURN 1 , W. KUHNT 1 , B. HALEY 2 , M. REGENBERG 1 , A.<br />

MIX 3 , N. ANDERSEN 4<br />

1 Institute of Geosciences, Christian-Albrechts-University,<br />

Olshausenstr, 40, D-24118 Kiel, Germany<br />

2 Leibniz Institute of Mar<strong>in</strong>e Sciences IFM-GEOMAR,<br />

Wischhofstr. 13, D-24148 Kiel, Germany<br />

3 College of Oceanic and Atmospheric Sciences, Oregon State<br />

University, 104 COAS Adm<strong>in</strong> Bldg, Corvallis, OR 97331-<br />

5503, USA<br />

4 Leibniz Laboratory for Radiometric Dat<strong>in</strong>g and Stable Isotope<br />

Research, Christian-Albrechts-University, Max-Eyth-Str. 11-<br />

13, D-24118, Kiel, Germany<br />

MOTIVATION<br />

About 13.9 million years ago, the Earth’s climate<br />

cooled dramatically after an extended period of relative<br />

warmth. This key transition <strong>in</strong> Earth’s climatic and biotic<br />

evolution, which marked the f<strong>in</strong>al stage of stepwise<br />

Cenozoic cool<strong>in</strong>g, rema<strong>in</strong>s one of the most enigmatic<br />

episodes <strong>in</strong> Earth’s Cenozoic climate history. While there<br />

is evidence that <strong>in</strong>solation forc<strong>in</strong>g and CO2 variations<br />

<strong>in</strong>fluenced climate evolution, the role of the ocean’s<br />

circulation as enhancer or driver of climate change rema<strong>in</strong>s<br />

unclear. The Pacific Ocean represents a key region to<br />

decipher middle Miocene climatic evolution: today, this<br />

huge ocean plays a crucial role <strong>in</strong> the transmission of<br />

global climate change and <strong>in</strong> the middle Miocene it must<br />

have exerted an enormous <strong>in</strong>fluence on global climate, as it<br />

was even larger then. Our primary goals with<strong>in</strong> this project<br />

are to <strong>in</strong>vestigate water mass distribution patterns and<br />

circulation changes <strong>in</strong> the Pacific dur<strong>in</strong>g the middle<br />

Miocene climate optimum and through the major climatic<br />

transition culm<strong>in</strong>at<strong>in</strong>g with global cool<strong>in</strong>g at ~ 13.9 Ma.<br />

Our project focuses on the evolution of the upper water<br />

column, ocean-atmosphere <strong>in</strong>teractions and rates of ocean<br />

overturn<strong>in</strong>g to test the hypothesis that global cool<strong>in</strong>g and<br />

ice-sheet expansion co<strong>in</strong>cided with an <strong>in</strong>tensification of<br />

hydrographic gradients, the <strong>in</strong>itiation of a West Pacific<br />

Warm Pool (and SE Asian Monsoon) system and a<br />

fundamental re-organization <strong>in</strong> Pacific <strong>in</strong>termediate and<br />

deep water circulation.<br />

METHODS<br />

Our study is based on high resolution (3-5 kyr) samples<br />

from NW Pacific Sites 806 (Ontong Java Plateau, 2531 m<br />

water depth) and 1146 (South Ch<strong>in</strong>a Sea, 2092 m water<br />

depth) and SE Pacific Sites 1236 and 1237 (1323 m and<br />

3212 m water depth, respectively) cover<strong>in</strong>g the <strong>in</strong>terval<br />

16.5 to 12.5 Ma, which were previously analysed for<br />

benthic isotopes at Kiel University (Project Ku649/18).<br />

New paleoclimate proxy records generated with<strong>in</strong> the<br />

current project are also <strong>in</strong>tegrated with high resolution data<br />

available from SW Pacific Sites 588 and 1171 (Flower and<br />

Kennett, 1993; Shevenell and Kennett, 2004; Shevenell et<br />

al., 2004, <strong>2008</strong>) <strong>in</strong> order to broaden latitud<strong>in</strong>al coverage.<br />

Orbitally-tuned chronologies, developed dur<strong>in</strong>g Project<br />

Ku649/18 for Sites 588, 806, 1146, 1236, 1237 and 1171<br />

provide a high resolution, consistent chronological<br />

framework that allows highly detailed correlations of<br />

multiproxy data across the Pacific.<br />

Stable isotope analysis:<br />

Approximately 12-20 specimens of the surface<br />

dwell<strong>in</strong>g planktonic foram<strong>in</strong>ifer Globiger<strong>in</strong>oides ruber or<br />

its immediate precursor Globiger<strong>in</strong>oides subquadratus<br />

(250-350 µm) are used for stable carbon and oxygen<br />

isotope analysis. Tests are broken <strong>in</strong>to large fragments,<br />

then cleaned <strong>in</strong> alcohol <strong>in</strong> an ultrasonic bath and dried at<br />

40°C. Measurements are made with the F<strong>in</strong>nigan MAT 251<br />

mass spectrometer at the Leibniz Laboratory, Kiel<br />

University. The <strong>in</strong>strument is coupled on-l<strong>in</strong>e to a Carbo-<br />

Kiel Device (Type I). Replicate measurements <strong>in</strong> samples<br />

conta<strong>in</strong><strong>in</strong>g sufficient numbers of <strong>in</strong>dividuals <strong>in</strong>dicate mean<br />

reproducibility of ±0.1 ‰ for δ18O and δ13C. The highresolution<br />

planktonic record (3-4 kyr) generated <strong>in</strong> South<br />

Ch<strong>in</strong>a Sea Site 1146 allows us to capture precessional<br />

variability <strong>in</strong> surface water δ18O.<br />

Mg/Ca analysis:<br />

Approximately 40 tests of the surface dweller Gs. ruber<br />

or subquadratus (250-350 µm), weigh<strong>in</strong>g ~ 0.3-0.5 mg per<br />

sample, are measured for Mg/Ca. Tests are gently crushed<br />

and cleaned follow<strong>in</strong>g the standard procedure with<br />

reductive step detailed <strong>in</strong> Mart<strong>in</strong> and Lea (2002). Samples<br />

are analyzed with the ICP-OES (Spectro Ciros SOP) with<br />

cooled cyclonic spraychamber and microconcentric<br />

67


68<br />

nebulization (200 µl m<strong>in</strong> -1 ) at the Institute of Geosciences,<br />

Kiel University. Intensity ratio calibration follows the<br />

method of de Villiers et al. (2002). Mg/Ca values are then<br />

converted to temperatures us<strong>in</strong>g equations developed by<br />

Anand et al. (2003). High resolution planktonic Mg/Ca <strong>in</strong><br />

South Ch<strong>in</strong>a Sea Site 1146 allows us to reconstruct<br />

temperature <strong>in</strong>dependent δ18Oseawater variations, which<br />

may be related to changes <strong>in</strong> monsoonal <strong>in</strong>tensity.<br />

Nd isotope analysis:<br />

Our method is based on the technique of Gutjahr et al.<br />

(2007), which was shown to be successful for the leach<strong>in</strong>g<br />

of Fe-Mn oxyhydroxide coat<strong>in</strong>gs <strong>in</strong> bulk mar<strong>in</strong>e sediments<br />

(<strong>in</strong>clud<strong>in</strong>g coarse fraction residues over 63 µm) through<br />

use of a a reduc<strong>in</strong>g reagent (hydroxylam<strong>in</strong>e). The fractions<br />

of this leach<strong>in</strong>g procedure are collected and analysed, and<br />

the Nd is separated from elemental <strong>in</strong>terferences dur<strong>in</strong>g<br />

mass spectrometry us<strong>in</strong>g established chromatographic<br />

techniques. Measurements of Pb, Nd and Sr isotopes are<br />

made with the Multicollector ICPMS at the Leibniz<br />

Institute of Mar<strong>in</strong>e Sciences IFM-GEOMAR. This method<br />

allows for the first time to study Miocene changes <strong>in</strong> water<br />

masses with a temporal resolution resolv<strong>in</strong>g orbital-scale<br />

variability.<br />

INITIAL RESULTS<br />

We used benthic and planktonic foram<strong>in</strong>iferal δ 13 C and<br />

δ 18 O, planktonic Mg/Ca together with Nd isotopes and<br />

deep-water ventilation proxies (benthic foram<strong>in</strong>iferal<br />

accumulation rates, proportion of coarse fraction > 63 μm<br />

and XRF Fe) <strong>in</strong> four ODP cores from the northwestern,<br />

central and southeastern Pacific to monitor sea surface<br />

temperature and sal<strong>in</strong>ity gradients and to track circulation<br />

changes across the Pacific dur<strong>in</strong>g the middle Miocene<br />

climate transition (16.5-12.5 Ma).<br />

Pacific surface hydrography and monsoon evolution<br />

dur<strong>in</strong>g the middle Miocene:<br />

Stable isotope and Mg/Ca measurements <strong>in</strong> surface<br />

dwell<strong>in</strong>g planktonic foram<strong>in</strong>ifers from Site 1146 (South<br />

Ch<strong>in</strong>a Sea) provide new <strong>in</strong>sights <strong>in</strong>to tropical sea surface<br />

variability and the evolution of Pacific hydrographic<br />

gradients dur<strong>in</strong>g the middle Miocene climate transition.<br />

Our high resolution (3-4 kyr) planktonic record from Site<br />

1146 exhibits high amplitude variability as well as<br />

significant power <strong>in</strong> the 21 and 19 kyr precessional bands<br />

(Fig. 1), suggest<strong>in</strong>g that a monsoonal regime already<br />

became established <strong>in</strong> the South Ch<strong>in</strong>a Sea <strong>in</strong> the middle<br />

Miocene. When benthic δ 18 O values <strong>in</strong>creased sharply after<br />

14.6 and 13.9 Ma dur<strong>in</strong>g two successive episodes of ice<br />

expansion, planktonic δ 18 O values strik<strong>in</strong>gly decreased,<br />

amplitude variations <strong>in</strong> planktonic δ 18 O <strong>in</strong>creased and the<br />

Δδ 18 O benthic-planktonic <strong>in</strong>tensified markedly (Fig. 1). Sea<br />

surface temperature (SST) estimates derived from Mg/Ca<br />

measurements also <strong>in</strong>dicate that these decreases <strong>in</strong> surface<br />

δ 18 O co<strong>in</strong>cided with a rise <strong>in</strong> tropical SST and freshen<strong>in</strong>g<br />

of surface waters. In contrast, Mg/Ca temperature estimates<br />

from the high southern latitudes (Tasman Rise Site 1171)<br />

reveal that surface cool<strong>in</strong>g occurred after the major ice<br />

expansion at ~ 13.9 Ma. Thus, our <strong>in</strong>itial results suggest<br />

that Middle Miocene ice expansion overall concurred with<br />

the (1) onset of steeper latitud<strong>in</strong>al temperature gradients,<br />

(2) expansion of a proto West Pacific Warm Pool and (3)<br />

<strong>in</strong>tensification of the SE Asian Summer monsoon.<br />

Nd and δ 13 C as tracers of water masses evolution and<br />

ocean overturn<strong>in</strong>g:<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Results from our Nd isotopes pilot study <strong>in</strong> Sites 1236<br />

and 1237 (1323 m and 3212 m water depths, respectively)<br />

<strong>in</strong>dicate that the composition of Pacific subtropical<br />

<strong>in</strong>termediate waters altered substantially on relatively short<br />

timescales dur<strong>in</strong>g the major re-organization <strong>in</strong> the climateocean<br />

system. Three ma<strong>in</strong> phases of evolution can be<br />

dist<strong>in</strong>guished (Fig. 2): (1) Nd values rema<strong>in</strong> quite negative<br />

until the major ice volume <strong>in</strong>crease at ~ 13.9 Ma; (2) Nd<br />

values became markedly more radiogenic dur<strong>in</strong>g CM6<br />

(13.9-13.5 Ma), represent<strong>in</strong>g the last and most pronounced<br />

δ13C maxima with<strong>in</strong> the „Monterey Excursion“; (3) Nd<br />

values reached slightly more negative values after 13.5 Ma.<br />

In parallel to Nd changes, the δ 13 C gradient between<br />

<strong>in</strong>termediate and deep waters showed <strong>in</strong>creas<strong>in</strong>g<br />

divergence with time (Fig. 2), suggest<strong>in</strong>g that the<br />

stratification of the upper ocean <strong>in</strong>tensified and<br />

<strong>in</strong>termediate waters became better ventilated, especially<br />

after 13.5 Ma. Deep-water ventilation proxies (benthic<br />

foram<strong>in</strong>iferal accumulation rates, proportion of coarse<br />

fraction > 63 μm and XRF Fe) also <strong>in</strong>dicate that ice<br />

expansion after 13.9 Ma was assiocated with a major<br />

deepen<strong>in</strong>g of the Calcite Compensation Depth and the<br />

establishment of a more vigorous deep water ventilation<br />

(Holbourn et al., 2005; 2007). Therefore, our results<br />

<strong>in</strong>dicate that middle Miocene climate change was<br />

associated with a major reorganization of both deep and<br />

<strong>in</strong>termediate water circulation <strong>in</strong> the Pacific.<br />

OUTLOOK<br />

In the last phase of our project, our aim will be to<br />

complement our prelim<strong>in</strong>ary Mg/Ca and Nd <strong>in</strong>vestigation.<br />

We will seek <strong>in</strong> particular to deconvolve the temperature<br />

and/or sal<strong>in</strong>ity (precipitation) components <strong>in</strong> planktonic<br />

δ18O variations <strong>in</strong> West Pacific Site 1146 by us<strong>in</strong>g an<br />

<strong>in</strong>dependent high resolution temperature record that<br />

captures orbital frequencies. To this effect, we will <strong>in</strong>crease<br />

the resolution of the 1146 Mg/Ca record to 4-12 kyr,<br />

focus<strong>in</strong>g over the <strong>in</strong>terval ~ 15-13 Ma, which marked the<br />

most fundamental re-organization <strong>in</strong> the climate-ocean<br />

system. To constra<strong>in</strong> the amplitude and tempo of Pacific<br />

circulation changes, we plan to generate a cont<strong>in</strong>uous, high<br />

resolution (10-20 kyr) Nd isotope record <strong>in</strong> Site 1236 (SE<br />

Pacific, 1323 mwd), which is ideally located to monitor the<br />

variability of subtropical <strong>in</strong>termediate water, <strong>in</strong> particular<br />

the mix<strong>in</strong>g history of northern and southern component<br />

water masses over the <strong>in</strong>terval ~ 15-13 Ma. We will<br />

additionally analyse Nd isotopes <strong>in</strong> NW Pacific Site 806,<br />

SE Pacific Site 1237 and SW Pacific Site 1171 <strong>in</strong> order to<br />

characterize Pacific deep water masses and to track the<br />

long-term mix<strong>in</strong>g history of northern, Equatorial and<br />

southern deep water masses <strong>in</strong> the Pacific. Our<br />

<strong>in</strong>vestigation will ultimately provide a synthesis of ocean<br />

chemistry proxies that will allow detailed correlation of<br />

paleoceanographic and climatic events <strong>in</strong> different regions<br />

of the Pacific and will help constra<strong>in</strong> model<strong>in</strong>g studies of<br />

past and future climate.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

References:<br />

Anand, P., Elderfield, H., Conte, M.H. Calibration of Mg/Ca thermometry <strong>in</strong><br />

planktonic foram<strong>in</strong>ifera from a sediment trap time series.<br />

Paleoceanography 18 (2), 1050, doi: 10.1029/2002PA000846 (2003).<br />

de Villiers, S., Greaves, M., Elderfield, H. An <strong>in</strong>tensity ratio calibration<br />

method for the accurate determ<strong>in</strong>ation of Mg/Ca and Sr/Ca of mar<strong>in</strong>e<br />

carbonates by ICP-AES. Geochemistry Geophysics Geosystems (G3) 3<br />

(1), 1001, doi:10.1029/2001GC000169 (2002).<br />

Flower, B.P. and Kennett, J.P. Middle Miocene ocean-climate transition:<br />

high resolution oxygen and carbon isotopic records from DSDP Site<br />

588A, southwest Pacific. Paleoceanography, 8, 811-843 (1993).<br />

Gutjahr, M., Frank, M., Stirl<strong>in</strong>g, C.H., Klemm, V., van de Flierdt, T. and<br />

Halliday, A.N. Reliable extraction of a deepwater trace metal isotope<br />

signal from Fe-Mn oxyhydroxide coat<strong>in</strong>gs of mar<strong>in</strong>e sediments.<br />

Chemical Geology, 242, 351-370 (2007).<br />

Holbourn, A.E., Kuhnt, W. and Schulz, M. and Erlenkeuser, H. Impacts of<br />

orbital forc<strong>in</strong>g and atmospheric CO2 on Miocene ice-sheet expansion.<br />

Nature, 438(7067), 483-487, doi:10.1038/nature04123 (2005).<br />

Holbourn, A.E., Kuhnt, W., Schulz, M., Flores, J.-A. and Andersen, N.<br />

Orbitally-paced climate evolution dur<strong>in</strong>g the middle Miocene<br />

“Monterey” carbon-isotope excursion. Earth Planetary Science Letters,<br />

261, 534-550. http://dx.doi.org/10.1016/j.epsl.2007.07.026 (2007).<br />

Mart<strong>in</strong>, P.A., Lea, D.W. A simple evaluation of clean<strong>in</strong>g procedures on<br />

fossil benthic foram<strong>in</strong>iferal Mg/Ca, Geochemistry Geophysics<br />

Geosystems (G3) 3 (10), 8401, doi: 10.1029/2001GC000280 (2002).<br />

Shevenell, A. E. and Kennett, J. P. Paleoceanographic change dur<strong>in</strong>g the<br />

middle Miocene climate revolution: An Antarctic stable isotope<br />

perspective. In The Cenozoic Southern Ocean: Tectonics,<br />

Sedimentation and Climate Change between Australia and Antarctica,<br />

edited by Exon, N., Kennett, J.P. Malone, M., 235-252 (Geophys.<br />

Monog. Ser., 151, AGU, Wash<strong>in</strong>gton, DC, 2004).<br />

Shevenell, A. E., Kennett, J. P. and Lea, D. W. Middle Miocene ice sheet<br />

dynamics, deep-sea temperatures, and carbon cycl<strong>in</strong>g: A Southern<br />

Ocean perspective. Geochemistry Geophysics Geosystems (G3) (<strong>in</strong><br />

press).<br />

Shevenell, A. E., Kennett, J. P. and Lea, D. W. Middle Miocene Southern<br />

Ocean Cool<strong>in</strong>g and Antarctic Cryosphere expansion. Science, 305,<br />

1766-1770 (2004).<br />

Figure 1. Comparison of high resolution benthic and planktonic δ 18 O records <strong>in</strong> Site 1146. Planktonic δ18O overall exhibits high<br />

amplitude precessional variability and significant power <strong>in</strong> the 21 and 19 kyr precessional bands (along with other Milankovitch<br />

periodicities), suggest<strong>in</strong>g that a monsoonal regime already became established <strong>in</strong> the South Ch<strong>in</strong>a Sea <strong>in</strong> the middle Miocene. In<br />

contrast, benthic δ 18 O only shows pronounced variability <strong>in</strong> the 41, 100 and 400 kyr bands (Holbourn et al., 2007). Planktonic δ18O<br />

values strik<strong>in</strong>gly decreased and the Δδ 18 Obenthic-planktonic <strong>in</strong>tensified markedly after 14.6 and 13.9 Ma dur<strong>in</strong>g phases of ice<br />

expansion and high latitudes cool<strong>in</strong>g.<br />

69


70<br />

<strong>IODP</strong><br />

On the role of temperature on the stress state<br />

of underthrust sediments at the Nankai<br />

marg<strong>in</strong><br />

A. HÜPERS 1 , A. KOPF 1<br />

1 DFG-Research Center Ocean Marg<strong>in</strong>s, University of Bremen,<br />

P.O. Box 330440, 28334 Bremen, Germany. E-mail:<br />

ahuepers@uni-bremen.de, Fax: +4942121865810<br />

Along the Nankai convergent marg<strong>in</strong> (Japan), a wide<br />

accretionary prism is built up by offscrap<strong>in</strong>g of <strong>in</strong>com<strong>in</strong>g<br />

sediments from the downgo<strong>in</strong>g Phillip<strong>in</strong>e Sea plate. While<br />

these sediments undergo fault<strong>in</strong>g and accretion, subduct<strong>in</strong>g<br />

sediments beneath the plate boundary largely suffer<br />

compaction. The stress state of these underthrust sediments<br />

is important for the location of the ma<strong>in</strong> plate boundary<br />

(i.e. decollement) and the onset of unstable slid<strong>in</strong>g<br />

behaviour at the updip limit of the seismogenic zone.<br />

Based on several DSDP, ODP and <strong>IODP</strong> deep-sea drill<strong>in</strong>g<br />

expeditions, a number of studies focused therefore on the<br />

stress state of the underthrust sediments. Although it is<br />

generally assumed that underthrust sediments are<br />

overpressured as function of rapid load<strong>in</strong>g by the overly<strong>in</strong>g<br />

prism and poor dra<strong>in</strong>age, documented physical properties<br />

and mechanical strength for underthrust sediments at the<br />

Nankai marg<strong>in</strong> are not fully understood.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Figure 2. Initial Nd results from our pilot study <strong>in</strong> Sites 1236 and 1237 (1323 m and 3212 m water depths, respectively) <strong>in</strong>dicate that SE<br />

Pacific <strong>in</strong>termediate waters changed significantly <strong>in</strong> composition follow<strong>in</strong>g ice growth at ~ 13.9 Ma. Three ma<strong>in</strong> phases of Nd<br />

evolution can be identified <strong>in</strong> parallel with changes <strong>in</strong> the δ 13 C gradient between <strong>in</strong>termediate and deep waters. These changes suggest<br />

that the stratification of the upper ocean <strong>in</strong>tensified and <strong>in</strong>termediate waters became better ventilated, especially after 13.5 Ma.<br />

Even though <strong>in</strong>-situ temperatures have been discovered<br />

to be up to ~110°C, thermal effects on the consolidation<br />

state of these sediments have been neglected <strong>in</strong> the<br />

abovementioned studies. To overcome this shortcom<strong>in</strong>g,<br />

we carried out isothermal uniaxial tests to characterize the<br />

<strong>in</strong>fluence of temperature effects on the mechanical<br />

properties of subduct<strong>in</strong>g sediments. Disaggregated samples<br />

of the ma<strong>in</strong> lithologies <strong>in</strong> the Nankai Trough (smectite-,<br />

illite- and quartz/tephra-rich) were loaded up to 70MPa at<br />

20°C, 100°C and 150°C. Compar<strong>in</strong>g consolidation states at<br />

similar loads and different temperatures, we found that the<br />

pore space is be<strong>in</strong>g reduced with <strong>in</strong>creas<strong>in</strong>g temperature.<br />

This thermally <strong>in</strong>duced consolidation is more pronounced<br />

for the clay-rich samples than for coarser-gra<strong>in</strong>ed<br />

lithologies. On this basis we exam<strong>in</strong>ed <strong>in</strong>-situ physical<br />

properties curves at different drill sites along the Nankai<br />

marg<strong>in</strong>. The thermal states serve to expla<strong>in</strong> unsolved key<br />

features such as high compression <strong>in</strong>dices of <strong>in</strong>-situ<br />

consolidation curves as well as observed offsets between<br />

consolidation curves of the drill sites. We conclude from<br />

our data that consolidation states are a comb<strong>in</strong>ation of<br />

mechanical load, thermal state and excess fluid pressure.<br />

We further estimated temperature corrected excess pore<br />

pressures for drill sites 1174 and 808 at the deformation<br />

front of the Nankai accretionary prism. Maximum excess<br />

pressures are found to be 1.8 – 3.3MPa at site 1174 and<br />

3.4-4.5MPa for site 808, suggest<strong>in</strong>g underconsolidated<br />

stress states for both holes. Although maximum


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

overpressures are ~0.7-1.3MPa smaller than previously<br />

believed, our data are <strong>in</strong> agreement with the assumption<br />

that pore pressure <strong>in</strong>creases with depth along the<br />

subduction thrust. Together with low basal friction, the<br />

pore pressures estimated from our data may responsible for<br />

the small taper angle along parts of the Nankai marg<strong>in</strong>.<br />

Further down-dip, it may be speculated that the<br />

observed temperature-dependent consolidation behaviour<br />

has implications for the onset of the seismogenic zone.<br />

Temperature-dependent test<strong>in</strong>g may therefore become<br />

important to understand physical property data from deep<br />

drill<strong>in</strong>g of the riser-vessel Chikyu to the seismogenic zone<br />

with<strong>in</strong> the <strong>IODP</strong>.<br />

<strong>IODP</strong><br />

Ve<strong>in</strong><strong>in</strong>g history of abyssal peridotites from a<br />

detachment fault sett<strong>in</strong>g (ODP Leg 209):<br />

from melt impregnations to low-temperature<br />

alteration<br />

N. JÖNS 1 , W. BACH 1 , T. SCHROEDER 2 , M. ROSNER 1,3<br />

1 Department of Geosciences, University of Bremen, 28359<br />

Bremen, Germany<br />

2 Environmental Earth Science Department, Eastern Connecticut<br />

State University, Willimantic CT06226, U.S.A.<br />

3 present address: Bundesanstalt für Materialforschung und –<br />

prüfung, 12205 Berl<strong>in</strong>, Germany<br />

Serpent<strong>in</strong>ization of abyssal peridotites result<strong>in</strong>g from<br />

<strong>in</strong>teraction with seawater is an important process<br />

<strong>in</strong>fluenc<strong>in</strong>g the properties of the oceanic lithosphere (e. g.<br />

composition, rheology, gravity, seismic structure).<br />

Furthermore, hydrogen and methane are released, which<br />

feed microbial communities at ultramafic-hosted<br />

hydrothermal systems. However, alteration of peridotites is<br />

a complex multistage process, rang<strong>in</strong>g from <strong>in</strong>teraction<br />

with gabbroic/plagiogranitic melts at high temperatures to<br />

low-temperature alteration at seafloor pressure-temperature<br />

conditions. The key to an understand<strong>in</strong>g of these processes<br />

is the ve<strong>in</strong><strong>in</strong>g history of abyssal peridotites.<br />

Abyssal peridotites are found at oceanic core<br />

complexes, the occurrence of which is generally bound to<br />

low-angle detachment faults at mid-ocean ridges. Our work<br />

focuses on samples from ODP Leg 209, which is located at<br />

the Mid-Atlantic Ridge, <strong>in</strong> the vic<strong>in</strong>ity of the 15°20’N<br />

fracture zone.<br />

All studied samples are strongly serpent<strong>in</strong>ized<br />

harzburgites. Relics of oliv<strong>in</strong>e (XMg= 0.87–0.91), Crbear<strong>in</strong>g<br />

sp<strong>in</strong>el (XCr= 0.47–0.55) and, <strong>in</strong> rare cases,<br />

orthopyroxene (XEn= 0.83–0.91) are locally preserved. To<br />

a large extent, these primary m<strong>in</strong>erals have been replaced<br />

by late-stage serpent<strong>in</strong>e and magnetite form<strong>in</strong>g mesh (after<br />

oliv<strong>in</strong>e) and bastite textures (after orthopyroxene). Samples<br />

are furthermore crosscut by several generations of ve<strong>in</strong>s:<br />

The oldest ve<strong>in</strong>s are bound to small-scale semi-brittle<br />

shear zones and show dist<strong>in</strong>ct m<strong>in</strong>eralogy. They conta<strong>in</strong><br />

brownish magnesiohornblende (XMg= 0.86–0.96) that is<br />

surrounded by coronas of act<strong>in</strong>olite/tremolite. The<br />

amphibole is situated <strong>in</strong> a matrix of chlorite (cl<strong>in</strong>ochlore).<br />

Accessory m<strong>in</strong>eral phases are apatite (XOH= 0.55–0.57,<br />

XCl= 0.35–0.39, XF= 0.05–0.08) and zircon. Ti-<strong>in</strong>-zircon<br />

thermometry applied to magmatically-zoned zircon gives<br />

temperatures of 720–830 °C, <strong>in</strong>terpreted as crystallization<br />

temperature of magmatic melt impregnations. These<br />

temperatures are too low to be expla<strong>in</strong>ed by crystallization<br />

from a gabbroic magma and we propose that the ve<strong>in</strong>s<br />

represent strongly altered plagiogranitic melts. This<br />

<strong>in</strong>terpretation is supported by Fe-rich orthopyroxene<br />

(XEn= 0.73) that is found as t<strong>in</strong>y <strong>in</strong>clusion <strong>in</strong> zircon.<br />

Chlorite thermometry po<strong>in</strong>ts to alteration of these melt<br />

impregnations at temperatures of ca. 200 °C.<br />

Ve<strong>in</strong>s consist<strong>in</strong>g of isotropic serpent<strong>in</strong>e (picrolite)<br />

crosscut the altered melt portions. There is textural<br />

evidence that growth of these ve<strong>in</strong>s <strong>in</strong>volved multiple<br />

open<strong>in</strong>g and fluid transport; however, from major and trace<br />

elements no clear dist<strong>in</strong>ction can be made between these<br />

different growth stages.<br />

Carbonate-bear<strong>in</strong>g ve<strong>in</strong>s generally formed later or<br />

coeval with picrolite ve<strong>in</strong>s. There are at least three different<br />

types: Some ve<strong>in</strong>s consist of euhedral dolomite crystals<br />

(XMgCO3= 0.87–0.91) <strong>in</strong> a matrix of calcite (XMgCO3=<br />

0.04–0.09). Other ve<strong>in</strong>s are pure dolomite ve<strong>in</strong>s<br />

(XMgCO3= 0.84–0.93); pure calcite ve<strong>in</strong>s are also present.<br />

The Sr and Li isotope compositions of the calcite ve<strong>in</strong>s are<br />

similar to those of 350 °C hot vent fluids from the nearby<br />

Logatchev hydrothermal area, suggest<strong>in</strong>g that the<br />

detachment faults have been migration pathways for fluids<br />

of similar nature. The O isotopes of the calcite ve<strong>in</strong>s,<br />

however, <strong>in</strong>dicate lower temperatures (90–185 °C,<br />

assum<strong>in</strong>g a fluid d18 of 1.5). One possible <strong>in</strong>terpretation of<br />

these data is that the fluids underwent significant amounts<br />

of conductive cool<strong>in</strong>g upon upward migration with<strong>in</strong> the<br />

detachment fault. U-Th and radiocarbon dat<strong>in</strong>g of lowtemperature<br />

(


72<br />

geochemical data of syn- to postk<strong>in</strong>ematic calcite ve<strong>in</strong>s<br />

may suggest large amounts of conductive cool<strong>in</strong>g,<br />

<strong>in</strong>dicat<strong>in</strong>g that fluid flow was likely not vigorous enough<br />

for convective heat transport to dom<strong>in</strong>ate.<br />

<strong>ICDP</strong><br />

The warm stages with<strong>in</strong> the 340 ka sediment<br />

record of Lake El´gygytgyn/NE Siberia– a<br />

comparison<br />

O. JUSCHUS 1 , M. MELLES 1 AND LAKE EL´GYGYTGYN SCIENTIFIC<br />

PARTY<br />

1 Universität zu Köln, Institut für Geologie und M<strong>in</strong>eralogie,<br />

Zülpicher 49a, 50674 Köln, E-Mail: olaf.juschus@unikoeln.de<br />

Lake El´gygytgyn, located on Chukchi pen<strong>in</strong>sula/NE<br />

Siberia, is a nearly circular lake with a diameter of 12 km<br />

and a water depth of 170 m. It was formed by an impact<br />

about 3.6 million years ago. Despite the fact that the lake is<br />

situated north of the Arctic Circle, geomorphological<br />

evidence suggests that the crater was never glaciated<br />

dur<strong>in</strong>g the entire Late Cenozoic. Thus, a full-length<br />

sediment core from Lake El´gygytgyn would yield a<br />

complete record of Arctic climate evolution, back one<br />

million years prior to the first major glaciation of the<br />

Northern Hemisphere.<br />

Dur<strong>in</strong>g the last decade the sedimentary record of the<br />

lake has become a major focus of multi-discipl<strong>in</strong>ary mult<strong>in</strong>ational<br />

paleoclimatic research. The International<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g Program (<strong>ICDP</strong>) has<br />

provided fund<strong>in</strong>g for drill<strong>in</strong>g operations on the lake and <strong>in</strong><br />

its permafrost catchment <strong>in</strong> <strong>2008</strong>/2009. Additionally, the<br />

project became <strong>in</strong>volved <strong>in</strong> the IPY under the umbrella of<br />

APEX and BIPOMAC. Pre-site surveys carried out <strong>in</strong> 1998<br />

and 2003 recovered two 12.9 m and 16.6 m long sediment<br />

cores from the deepest part of the lake. They revealed a<br />

basal age of approximately 250 ka and 340 ka respectively<br />

and confirmed the lack of glacial erosion.<br />

Presented here is a comparison of the ma<strong>in</strong> warm<br />

stages with<strong>in</strong> the 16.6 m long sediment record of core<br />

Lz1024 which was recovered <strong>in</strong> 2003. To establish an age<br />

model for core Lz1024, selected sedimentological<br />

parameters (mag. susceptibility, total organic carbon, TiO2,<br />

and biogenic silica) were systematically tuned to the<br />

northern hemisphere <strong>in</strong>solation. The tun<strong>in</strong>g yielded an age<br />

of 343 ka for the base of the composite core. Down to 200<br />

ka sediment age the tun<strong>in</strong>g is confirmed by the results of<br />

IRSL dat<strong>in</strong>g.<br />

Sediment successions correlated with the mar<strong>in</strong>e<br />

isotope stages (MIS) 1, 3, 5.5, 7.1, 7.5, and 9.3 represent<br />

the ma<strong>in</strong> warm phases with<strong>in</strong> the sediment record of core<br />

Lz1024. Compare to the sediments settled dur<strong>in</strong>g cold<br />

phases, the warm stage sediments are usually massive with<br />

comparably high susceptibility values. This <strong>in</strong>dicates an<br />

ice-free season dur<strong>in</strong>g the summer with complete mix<strong>in</strong>g of<br />

the water body. The lake bottom and the uppermost<br />

sediments were oxygenated which allowed bioturbation<br />

and oxygenation.<br />

The warm stage sediment units are subdivided <strong>in</strong>to<br />

three different types.<br />

Type 1: The sediments of the first type are<br />

characterised by biogeochemical parameters which <strong>in</strong>dicate<br />

comparably low bioproductivity with<strong>in</strong> the lake and a<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

strong decomposition of organic matter at the watersediment<br />

transition. Low shrub and arboreal pollen values<br />

provide evidence of at least relatively cold summer<br />

conditions. High susceptibility values and TiO2 contents<br />

give <strong>in</strong>dications for a complete meltout of the ice cover<br />

dur<strong>in</strong>g the summer and mix<strong>in</strong>g of the water body. This<br />

pattern is valid for the sediments settled dur<strong>in</strong>g MIS 3 and<br />

7.5.<br />

Type 2: Both the organic and <strong>in</strong>organic geochemical<br />

data of this sediment type are comparable to those from<br />

Type 1 with a low bioproductivity. The susceptibility<br />

values seem to be a little bit higher. The remarkably higher<br />

contents of arboreal pollen are the ma<strong>in</strong> difference and<br />

<strong>in</strong>dicate better grow<strong>in</strong>g conditions dur<strong>in</strong>g this time. These<br />

conditions prevailed dur<strong>in</strong>g MIS 1 and 7.1.<br />

Type 3: Especially the organic geochemistry data differ<br />

from the first two types by remarkable higher contents of<br />

organic carbon and biogenic silica, reflect<strong>in</strong>g much higher<br />

bioproductivity with<strong>in</strong> the water column. Due to<br />

postdepositional dissolution processes the susceptibility<br />

values decreased to lower levels. The high amount of<br />

arboreal and shrub <strong>in</strong>dicates relatively warm summers. The<br />

occurrence of these peak warm sediment successions is<br />

restricted to MIS 5.5 and especially 9.3. The latter one<br />

represents the time period dur<strong>in</strong>g the last 340 ka with the<br />

highest bioproductivity with<strong>in</strong> the lake.<br />

<strong>IODP</strong><br />

The rapid constriction of the Indonesian<br />

Gateway across 3.4-3 Ma as a ma<strong>in</strong><br />

contribut<strong>in</strong>g factor for global climate change<br />

C. KARAS 1 , D. NÜRNBERG 2 , A. GUPTA 3 , K. MOHAN 2 , R.<br />

TIEDEMANN 3<br />

1 IFM-GEOMAR, Kiel, Deutschland<br />

2 Indian Institute of Technology, Kharagpur, Indien<br />

3 Alfred-Wegener-Institut für Polar- und Meeresforschung,<br />

Bremerhaven, Deutschland<br />

The mid-Pliocene climate transition across 4-3 Ma<br />

marks a global cool<strong>in</strong>g <strong>in</strong> l<strong>in</strong>e with the onset of the<br />

Northern Hemisphere Glaciation and most dist<strong>in</strong>ctly, with<br />

the shoal<strong>in</strong>g of the global thermocl<strong>in</strong>e. It is still a major<br />

scientific issue whether these changes are related to<br />

variations <strong>in</strong> the North Atlantic thermohal<strong>in</strong>e circulation<br />

connected with the constriction of the Central American<br />

Seaway, or are rather amplified by the narrow<strong>in</strong>g of the<br />

Indonesian Gateway. Here, we present sea-(sub)surface<br />

foram<strong>in</strong>iferal Mg/Ca-temperature and sal<strong>in</strong>ity data from the<br />

tropical eastern Indian Ocean (DSDP Site 214) for the time<br />

period from 6.8 to 2.4 Ma to reconstruct changes <strong>in</strong> the<br />

Indonesian Throughflow (ITF). Accord<strong>in</strong>g to the strik<strong>in</strong>g<br />

hypothesis of Cane and Molnar (2001), the chang<strong>in</strong>g plate<br />

tectonic constellation across 4-3 Ma caused a switch <strong>in</strong> the<br />

source of the ITF waters from warm/sal<strong>in</strong>e S-Pacific<br />

towards cool/fresh N-Pacific waters enter<strong>in</strong>g the Indian<br />

Ocean. In response, cool<strong>in</strong>g of the tropical Indian Ocean<br />

caused droughts <strong>in</strong> Africa, and Northern Hemisphere<br />

Glaciation (NHG) <strong>in</strong>tensified. For the critical time period<br />

of 3.4-3 Ma, we observe a pronounced freshen<strong>in</strong>g and<br />

cool<strong>in</strong>g (ca. 4°C) of subsurface waters and hence, a<br />

shoal<strong>in</strong>g of the thermocl<strong>in</strong>e. We regard these changes to<br />

reflect an <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>fluence of N-Pacific subsurface<br />

waters <strong>in</strong> the throughflow area, imply<strong>in</strong>g that the plate


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

tectonic reorganization <strong>in</strong> the ITF region rather affected<br />

subsurface than surface water masses. Hence, the<br />

constriction of the Indonesian Gateway significantly<br />

contributed to the global cool<strong>in</strong>g of the thermocl<strong>in</strong>e, which<br />

presumably term<strong>in</strong>ated permanent El Niño conditions at<br />

that time.<br />

<strong>ICDP</strong><br />

Lake <strong>in</strong>ternal depositional dynamics as<br />

revealed by the areal distribution of surface<br />

sediments <strong>in</strong> Laguna Potrok Aike (Southern<br />

Patagonia, Argent<strong>in</strong>a) – a prelim<strong>in</strong>ary study<br />

<strong>in</strong> the framework of the <strong>ICDP</strong> project<br />

PASADO<br />

STEPHANIE KASTNER 1 , CHRISTIAN OHLENDORF 1 , TORSTEN<br />

HABERZETTL 2 , ANDREAS LÜCKE 3 , NORA I. MAIDANA 4 , CHRISTOPH<br />

MAYR 5 , FRANK SCHÄBITZ 6 , BERND ZOLITSCHKA 1<br />

1 University of Bremen, Institute of Geography (Geopolar), 28359<br />

Bremen, Germany (steka@uni-bremen.de)<br />

2 Sedimentology and Environmental Geology, Geoscience Center,<br />

University of Gött<strong>in</strong>gen, 37077 Gött<strong>in</strong>gen, Germany<br />

3 Institute for Chemistry and Dynamics of the Geosphere (ICG) V:<br />

Sedimentary Systems, Research Center Jülich, 52425 Jülich,<br />

Germany<br />

4 Departement of Biodiversity and Experimental Biology,<br />

University of Buenos Aires, C1428EHA Buenos Aires,<br />

Argent<strong>in</strong>a<br />

5 GeoBio-CenterLMU and Dept. of Earth & Environmental<br />

Sciences, University of Munich, 80333 Munich, Germany<br />

6 Sem<strong>in</strong>ar for Geography and Education, University of Cologne,<br />

50931 Cologne, Germany<br />

In an area sensitive to variations <strong>in</strong> southern<br />

hemispheric w<strong>in</strong>d and pressure systems, a high potential as<br />

a paleolimnological key site for the reconstruction of<br />

terrestrial paleoclimate conditions has been ascribed to<br />

Laguna Portok Aike (51°58’S, 70°23’W). This lake is a<br />

100 m deep and ca. 770 ka old maar <strong>in</strong> the dry steppe<br />

environment of south-eastern Patagonia. Interdiscipl<strong>in</strong>ary<br />

multi-proxy studies as well as a climate modell<strong>in</strong>g<br />

approach document a unique lacustr<strong>in</strong>e record of<br />

paleoclimatic and paleoecological variability. For this<br />

reason the lake was chosen as an <strong>ICDP</strong> drill<strong>in</strong>g site <strong>in</strong> <strong>2008</strong><br />

with<strong>in</strong> the “Potrok Aike maar lake sediment archive<br />

drill<strong>in</strong>g project” (PASADO). Geochemical, palynological,<br />

diatomological and isotopic <strong>in</strong>vestigations were carried out<br />

with high temporal resolution on long sediment records<br />

cover<strong>in</strong>g the last 16 ka (Haberzettl et al., 2007; Mayr et al.,<br />

subm.; Wille et al., 2007). Changes <strong>in</strong> the lake´s<br />

hydrological budget related to the variability of the<br />

Southern Hemispheric Westerlies are expressed by several<br />

sediment proxies as well as by subaerial and subaquatic<br />

lake level terraces (Mayr et al., 2007). To improve the<br />

<strong>in</strong>terpretation of the long sediment record to be recovered<br />

with<strong>in</strong> the project PASADO, it is vital to develop an<br />

understand<strong>in</strong>g of modern processes and hence the<br />

dynamics that control the spatial distribution and the<br />

characteristics of the sediments <strong>in</strong> Laguna Potrok Aike.<br />

Therefore, a survey of the sediment distribution was carried<br />

out <strong>in</strong> 2005 by us<strong>in</strong>g 46 gravity cores of up to 49 cm <strong>in</strong><br />

length. This dense grid of cores covers a water depth range<br />

from 9 to 100 m.<br />

The age model established <strong>in</strong> Haberzettl et al. (2005) is<br />

transferred from a sediment short core of the deep central<br />

lake bas<strong>in</strong> and is based on four AMS radiocarbon ages.<br />

New cores were correlated to this record us<strong>in</strong>g Ca and Ti<br />

data obta<strong>in</strong>ed by XRF and magnetic susceptibility scans <strong>in</strong><br />

1 and 4 mm spatial resolution, respectively. A successful<br />

core correlation prior to the 2005 sediment surface was<br />

achieved for cores from water depths exceed<strong>in</strong>g 45 m.<br />

Thus surface samples were taken from all 46 cores while<br />

subsampl<strong>in</strong>g of selected past time w<strong>in</strong>dows (AD 1960,<br />

1800, 1610, 1500, 1380) was only possible for 25 well<br />

correlated cores. These time slices were chosen to cover<br />

paleoenvironmentally dist<strong>in</strong>ctive <strong>in</strong>tervals with known<br />

hydrological (i.e., lake level) variations. First results of<br />

XRF and magnetic susceptibility scann<strong>in</strong>g as well as<br />

element concentrations (C, N, S), pollen, stable isotope<br />

(δ 13 C, δ 15 N) and diatom analyses are presented by<br />

distribution maps which reproduce modern dynamics at the<br />

sediment surface, i.e., at a sediment depth of 0-1 cm<br />

(represent<strong>in</strong>g the last approx. 20 years). These maps reveal<br />

pronounced differences between the littoral cores down to<br />

45 m water depth and the lake´s profundal cores separated<br />

from each other by steep slopes. In general, sediments from<br />

the deep bas<strong>in</strong> represent lowest values for all analysed<br />

parameters but with discernable variations throughout the<br />

deep central pla<strong>in</strong>. A conspicuous m<strong>in</strong>imum of C/N-ratios<br />

and total <strong>in</strong>organic carbon values is apparent near the<br />

south-eastern slope of the lake and <strong>in</strong> the deep bas<strong>in</strong>. This<br />

pattern seems to be l<strong>in</strong>ked to a canyon-like structure which<br />

is deeply <strong>in</strong>cised <strong>in</strong> the south-eastern subaerial lake level<br />

terraces and which most probably cont<strong>in</strong>ues subaquatically.<br />

After all, sedimentation with<strong>in</strong> this term<strong>in</strong>al lake seems to<br />

be sensitive not only to changes <strong>in</strong> the hydrological regime.<br />

Probably lake <strong>in</strong>ternal currents, differences <strong>in</strong> basement<br />

geology or ephemeral surface and groundwater <strong>in</strong>flows can<br />

affect the sediment distribution as well. Hence, exist<strong>in</strong>g<br />

analyses of representative s<strong>in</strong>gle sediment cores from the<br />

deepest part of the lake should be complemented by<br />

<strong>in</strong>formation obta<strong>in</strong>ed from the areal sediment distribution<br />

study.<br />

Prelim<strong>in</strong>ary results of the short core survey presented<br />

here visualise a spatial variation of sediment parameters<br />

that have been analysed with high resolution on s<strong>in</strong>gle long<br />

cores. Comb<strong>in</strong>ed with high resolution seismic data the<br />

evaluation of this spatial <strong>in</strong>formation (1) improves the preconditions<br />

to make a decision about the best possible<br />

drill<strong>in</strong>g location with an undisturbed and representative<br />

sediment succession, (2) fosters the understand<strong>in</strong>g of recent<br />

processes concern<strong>in</strong>g sediment distribution and (3)<br />

improves the capabilities for a better <strong>in</strong>terpretation of the<br />

anticipated long sediment record. The two dist<strong>in</strong>guishable<br />

areas of deposition - the central bas<strong>in</strong> and the slopes<br />

<strong>in</strong>clud<strong>in</strong>g submerged terrace levels - will both be the target<br />

of the scheduled <strong>ICDP</strong> deep drill<strong>in</strong>g project PASADO.<br />

References:<br />

Haberzettl, T. et al., (2005) Climatically <strong>in</strong>duced lake level changes dur<strong>in</strong>g<br />

the last two millennia as reflected <strong>in</strong> sediments of Laguna Potrok Aike,<br />

southern Patagonia (Santa Cruz, Argent<strong>in</strong>a). Journal of Paleolimnology<br />

33: 283-302.<br />

Haberzettl, T. et al. (2007) Lateglacial and Holocene wet-dry cycles <strong>in</strong><br />

southern Patagonia: chronology, sedimentology and geochemistry of a<br />

lacustr<strong>in</strong>e record from Laguna Potrok Aike, Argent<strong>in</strong>a. The Holocene,<br />

17: 297-310.<br />

Mayr, C. et al. (2007) Holocene variability of the Southern Hemisphere<br />

westerlies <strong>in</strong> Argent<strong>in</strong>ean Patagonia (52°S). Quaternary Science<br />

Reviews, 26: 579-584.<br />

Mayr, C. et al. (subm.) Isotopic and geochemical f<strong>in</strong>gerpr<strong>in</strong>ts of<br />

environmental changes dur<strong>in</strong>g the last 16,000 years on lacustr<strong>in</strong>e<br />

organic matter from Laguna Potrok Aike (southern Patagonia,<br />

Argent<strong>in</strong>a). Chemical Geology.<br />

Wille, M. et al. (2007) Vegetation and climate dynamics <strong>in</strong> southern South<br />

America: The microfossil record of Laguna Potrok Aike, Santa Cruz,<br />

Argent<strong>in</strong>a. Review of Palaeobotany and Palynology 146: 234-246.<br />

73


74<br />

<strong>IODP</strong><br />

Pliocene Changes <strong>in</strong> the Composition of<br />

Mediterranean Outflow Water at DSDP Site<br />

548 and ODP Site 978<br />

N. KHELIFI 1 , M. SARNTHEIN 1 , M. FRANK 2 , M. WEINELT 1 , N.<br />

ANDERSEN 3 , D. GARBE-SCHÖNBERG 1<br />

1 Institut für Geowissenschaften, Christian-Albrechts-Universität zu<br />

Kiel, Deutschland (nk@gpi.uni-kiel.de)<br />

2 Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR),<br />

Christian-Albrechts-Universität zu Kiel, Deutschland<br />

3 Leibniz-Labor für Altersbestimmung und Isotopenforschung,<br />

Christian-Albrechts-Universität zu Kiel, Deutschland<br />

Pliocene changes <strong>in</strong> the Mediterranean Outflow (3.6 –<br />

2.5 Ma) were studied at East Atlantic DSDP Site 548<br />

which lies today with<strong>in</strong> the depth range of modern<br />

Mediterranean Outflow Water (MOW; 1251 m w.d.). This<br />

site provided a largely cont<strong>in</strong>uous benthic record of bottom<br />

water variability with millennial-scale resolution from 3.68<br />

Ma (MIS Gi01) to 2.56 Ma (MIS 101; tuned to age scale<br />

LR04). We assume that MOW spilled this Site 548 almost<br />

cont<strong>in</strong>uously over the whole <strong>in</strong>terval studied, s<strong>in</strong>ce Nd<br />

isotopes rema<strong>in</strong>ed constant at e = -10.3±0.3 to -9.5±0.3, a<br />

range characteristic of Mediterranean waters. Mg/Ca-based<br />

bottom water temperatures show a major <strong>in</strong>crease near 3.46<br />

to 3.38 Ma – for reasons yet unknown – from an average of<br />

6°–8°C up to a plateau of 8°–11.5°C, which lasted until<br />

2.95 Ma (MIS G17). Subsequently, bottom water<br />

temperatures displayed a unique short-last<strong>in</strong>g drop down to<br />

3°C at MIS G10 (2.82 Ma), a drop coeval with the f<strong>in</strong>al<br />

closure of Central American Seaways and the onset of<br />

major Northern Hemisphere Glaciation (NHG; Bartoli et<br />

al., 2005). After MIS G10 bottom water temperatures<br />

returned to 6°–8°C, a level characteristic of modern MOW<br />

and be<strong>in</strong>g traced until 2.56 Ma (MIS 101). S<strong>in</strong>ce icevolume<br />

corrected benthic δ18O values do not reflect any of<br />

these immense changes, the long-term temperature rise of<br />

3°–4° C also implies a major <strong>in</strong>crease of bottom water<br />

sal<strong>in</strong>ity by 1.5 to 2.0 p.s.u. Accord<strong>in</strong>gly, the plateau reflects<br />

<strong>in</strong>tensified advection of MOW and salt discharge to the<br />

northern North Atlantic, that may have strengthened North<br />

Atlantic THC and thus preconditioned the onset of NHG.<br />

Only after 2.95 Ma, dur<strong>in</strong>g the f<strong>in</strong>al closure of the Central<br />

American Seaways, the high Mediterranean salt <strong>in</strong>put was<br />

replaced by salt discharge from the Caribbean. S<strong>in</strong>ce this<br />

time epibenthic δ13C values <strong>in</strong>dicate slightly improved<br />

ventilation of MOW, that came close to the modern-to-Late<br />

Pleistocene level. In contrast to the outl<strong>in</strong>ed high level of<br />

temperature and sal<strong>in</strong>ity MOW ventilation was somewhat<br />

reduced prior to 3 Ma, suggest<strong>in</strong>g mid-Pliocene<br />

Mediterranean climates and <strong>in</strong> particular, a regime of<br />

cont<strong>in</strong>ental wetness that was significantly different from<br />

today. – The multiproxy records DSDP Site 548 need to be<br />

supplemented by Pliocene paleoceanographic records from<br />

the Mediterranean source region to study Pliocene<br />

variations <strong>in</strong> the composition of Mediterranean<br />

Intermediate Water prior to its mix<strong>in</strong>g with North Atlantic<br />

<strong>in</strong>termediate water masses. To reach this goal, we started<br />

analyz<strong>in</strong>g ODP Site 978 from the Alboran Sea.<br />

References:<br />

Bartoli, G., Sarnthe<strong>in</strong>, M., We<strong>in</strong>elt, M., Erlenkeuser, H., Garbe-Schönberg,<br />

D., Lea, D.W., 2005. F<strong>in</strong>al closure of Panama and the onset of northern<br />

hemisphere glaciation. Earth and Planetary Science Letters 237, 33-44.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Kerogen-bound organic matter <strong>in</strong> sediments<br />

represent<strong>in</strong>g the Oceanic Anoxic Event 1a<br />

B. KLEIN 1 , S.C. BRASSELL 2 , J. RULLKÖTTER 1<br />

1 Institute of Chemistry and Biology of the Mar<strong>in</strong>e Environment<br />

(ICBM), Carl von Ossietzky University of Oldenburg, PO<br />

Box 2503, D-26111 Oldenburg<br />

2 Biogeochemical Laboratories, Department of Geological<br />

Sciences, Indiana University, Bloom<strong>in</strong>gton, IN 47405-1403,<br />

USA<br />

Organic matter <strong>in</strong> sediments occurs both as free lowmolecular-weight<br />

molecules and bound by functional<br />

groups <strong>in</strong>to the <strong>in</strong>soluble kerogen. The proportion of free<br />

organic molecules which are amenable via solvent<br />

extraction depends on the maturity of the organic matter.<br />

The analysis of the kerogen-bound fraction requires<br />

treatment to liberate the low-molecular-weight compounds<br />

from the more complex matrix. This is possible by either<br />

chemical degradation or pyrolytical methods.<br />

Hopanoids - both methylated at C-2 and demethylated -<br />

are a class of molecules which can be <strong>in</strong>corporated <strong>in</strong>to the<br />

kerogen via their side-cha<strong>in</strong> conta<strong>in</strong><strong>in</strong>g diverse functional<br />

groups. They serve as a biomarkers for bacteria and<br />

cyanobacteria, of which the latter are known to be the only<br />

producer of significant amounts of 2-methylhopanoids<br />

(Summons et al., 1999). The ratio of hopanoids to 2methylhopanoids<br />

(2-methylhopanoid <strong>in</strong>dex, 2-MeH <strong>in</strong>dex)<br />

allows an estimation of cyanobacterial <strong>in</strong>fluence on<br />

bioproductivity <strong>in</strong> certa<strong>in</strong> time <strong>in</strong>tervals of the geological<br />

past.<br />

In this study we focus on a sediment succession<br />

recovered dur<strong>in</strong>g ODP Leg 198 <strong>in</strong> the Pacific Ocean. The<br />

sediment samples drilled on Shatsky Rise cover an age<br />

range of the Cretaceous through the Paleogene. With<strong>in</strong> this<br />

sediment succession, together with several other abrupt<br />

climatic change events, the Oceanic Anoxic Event 1a <strong>in</strong> the<br />

early Aptian (120 Ma) is represented (Bralower et al.,<br />

2006). Organic matter is enriched and organic carbon<br />

content may exceed 30 %. Previous geochemical analyses<br />

suggest that a high phytoplanktonic productivity<br />

significantly contributed to this high amount of organic<br />

matter (Dumitrescu & Brassell, 2005).<br />

As mentioned above the 2-MeH-<strong>in</strong>dex is used to<br />

<strong>in</strong>vestigate the cyanobacterial contribution to the<br />

sedimentary organic matter. Beside this <strong>in</strong>dex, nitrogen<br />

isotopic data of the sediments are another important tool<br />

for the evaluation of microbial activity because nitrogen<br />

fixation – which is an important function of some<br />

cyanobacteria – leads to a change <strong>in</strong> the isotopic values.<br />

The mechanism of nitrogen fixation allows some<br />

microorganisms to thrive if nitrate as major nutrient is<br />

limited. Due to sluggish ocean circulation conditions<br />

dur<strong>in</strong>g the OAE 1a or high microbial activity a lack of<br />

nitrogen supply may have occurred. The ratio of<br />

methylated to demethylated hopanoids with<strong>in</strong> the<br />

succession – obta<strong>in</strong>ed from total lipid extracts – shows a<br />

good correlation with the nitrogen isotopic data (Fig. 1).


565,6<br />

565,7<br />

565,8<br />

565,9<br />

566,0<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

0<br />

10<br />

30<br />

20<br />

C org (%)<br />

60<br />

50<br />

40<br />

30<br />

20<br />

10<br />

0<br />

50<br />

40<br />

2-MeH-Index (C 27 + C 31 + C 33 )<br />

-2,2<br />

-2,4<br />

-2,6<br />

-2,8<br />

-3,0<br />

-3,2<br />

-3,4<br />

-3,6<br />

δ15 δ N (‰) 15N (‰)<br />

Fig. 1. Depth profiles of total organic carboncontent, 2-MeH-<strong>in</strong>dex<br />

(derived from total lipid extracts) and nitrogen isotopic data (from<br />

left to right).<br />

The higher the 2-MeH-<strong>in</strong>dex is, the lower are the δ 15 N<br />

values. This strengthens the assumption that nitrogen fix<strong>in</strong>g<br />

cyanobacteria significantly contributed to the sedimentary<br />

organic matter.<br />

Due to these results offl<strong>in</strong>e-pyrolysis at 500 °C for one<br />

hour under an <strong>in</strong>ert atmosphere was performed with the<br />

samples to set free the kerogen-bound proportion of the<br />

hopanoids. Figure 2 shows mass chromatograms<br />

representative of hopanoids (a and c) and 2methylhopanoids<br />

(b and d) (m/z 191 and m/z 205,<br />

respectively).<br />

All chromatograms were obta<strong>in</strong>ed for a sediment<br />

sample taken at Site 1207B and comprise both kerogen and<br />

the correspond<strong>in</strong>g total lipid extract. The mass<br />

chromatograms labelled a and b represent the portion of<br />

molecules amenable via solvent extraction and hence are<br />

only a small part compared to the total amount.<br />

Pyrolysis of the untreated sediment releases a greater<br />

variety (Fig. 2 c and d) of compounds and hence allows the<br />

analysis of the overall composition of hopanes and 2methylhopanes<br />

regardless of any maturity effects and thus<br />

a new calculation of the 2-MeH <strong>in</strong>dex. Furthermore, gaps<br />

<strong>in</strong> the 2-MeH <strong>in</strong>dex for samples where neither hopanoids<br />

nor 2-methylhopanoids were detectable <strong>in</strong> the extracts may<br />

be closed due to the availability of the comprehensive<br />

pyrolysis data.<br />

Relative Abundance<br />

100<br />

0<br />

100<br />

a)<br />

b)<br />

m/z 191<br />

m/z 205<br />

0<br />

56 58 60 62 64 66 68 70 72 74 76 78 80 82 84<br />

Time (m<strong>in</strong>)<br />

*<br />

Relative Abundance<br />

100<br />

0<br />

100<br />

0<br />

c)<br />

d)<br />

References<br />

Bralower, T.J., Premoli Silva, I., and Malone, M.J., 2006. Leg 198<br />

synthesis: a remarkable 120-m.y. record of climate and oceanography<br />

from Shatsky Rise, northwest Pacific Ocean. In Bralower, T.J., Premoli<br />

Silva, I., and Malone, M.J. (Eds.), Proc. ODP, Sci. Res., 198: College<br />

Station, TX (Ocean Drill<strong>in</strong>g Program), 1–47.<br />

doi:10.2973/odp.proc.sr.198.101.2006<br />

Dumitrescu, M., Brassell, S.C., 2005. Biogeochemical assessment of<br />

sources of organic matter and paleoproductivity dur<strong>in</strong>g the early Aptian<br />

Oceanic Anoxic Event at Shatsky Rise, ODP Leg 198. Organic<br />

Geochemistry, 36, 1002-1022.<br />

Summons, R.E., Jahnke, L.L., Hope, J.M., Logan, G.A., 1999. 2-<br />

Methylhopanoids as biomarkers for cyanobacterial oxygenic<br />

photosynthesis. Nature, 400, 554-557.<br />

m/z 191<br />

m/z 205<br />

56 58 60 62 64 66 68 70 72 74 76 78 80 82 84<br />

Time (m<strong>in</strong>)<br />

Fig. 2. Comparison of mass chromatograms from total lipid extracts (a and b) and pyrolysates (c and d).<br />

Asterisks mark signals of m/z 205 result<strong>in</strong>g from the C31 hopane.<br />

*<br />

*<br />

*<br />

75


76<br />

<strong>ICDP</strong><br />

Effects on magnetization <strong>in</strong> basalts from<br />

fluid-rock <strong>in</strong>teractions <strong>in</strong> volcanic geothermal<br />

systems<br />

A. KONTNY, B. OLIVA URCIA<br />

Geologisches Institut, Strukturgeologie und Tektonophysik,<br />

Universität Karlsruhe, Hertzstrasse 16, 76187 Karlsruhe<br />

Aeromagnetic surveys from geothermal areas <strong>in</strong> hotspot<br />

related volcanic regions <strong>in</strong>dicate a significant decrease<br />

or variation <strong>in</strong> magnetic field strength. One example is the<br />

high-temperature Krafla geothermal field <strong>in</strong> NE Iceland,<br />

situated with<strong>in</strong> the caldera of the Krafla central volcano.<br />

The study of the magnetic properties of volcanic rocks<br />

affected by hydrothermal alteration <strong>in</strong> active geothermal<br />

systems is significant to understand magnetic anomalies<br />

related to MORB and its tectonic implications. Furtheron it<br />

may contribute to our understand<strong>in</strong>g of the complex<br />

dynamic processes act<strong>in</strong>g <strong>in</strong> geothermal systems. Our study<br />

focuses <strong>in</strong> an area where the fluid-rock <strong>in</strong>teractions <strong>in</strong><br />

fissure-related subaerial lavas dim<strong>in</strong>ishes the magnetization<br />

and <strong>in</strong>creases the magnetic susceptibility. The samples that<br />

are shown here were taken from KH-1 (200 m depth) and<br />

KH-3 (400 m depth) drill cores, from the rim of the Krafla<br />

caldera. The magnetic high <strong>in</strong> the area, which was<br />

measured dur<strong>in</strong>g an aeromagnetic survey, (Leo<br />

Kristjánsson, pers.com.) corresponds to the Mt. Krafla, and<br />

the magnetic low co<strong>in</strong>cides with the caldera bottom (where<br />

the Krafla geothermal field is). The standard samples show<br />

low values of NRM (< 5 A/m) but a wide range of<br />

magnetic susceptibility (0.2-140x10-3 SI). The high values<br />

<strong>in</strong> susceptibility suggest a high content <strong>in</strong> ferromagnetic<br />

m<strong>in</strong>erals, while the low values <strong>in</strong> NRM <strong>in</strong>dicate gra<strong>in</strong> sizes<br />

<strong>in</strong> the multidoma<strong>in</strong> range. However, to better understand<br />

this behavior, low temperature magnetic maesurements at<br />

the Institute of Rock Magnetism, M<strong>in</strong>neapolis, USA (Oliva<br />

& Kontny, 2007) and textural observations from the<br />

magnetic phases were done. The magnetic properties allow<br />

to dist<strong>in</strong>guish different degrees of hydrothermal alteration<br />

between the samples. Our f<strong>in</strong>d<strong>in</strong>gs show how effective low<br />

temperature measurements are for prob<strong>in</strong>g the orig<strong>in</strong>s of<br />

differently magnetized basaltic crust.<br />

Due to different processes, the orig<strong>in</strong>al tmt60<br />

(titanomagnetite with an ulvösp<strong>in</strong>el component of 60%;<br />

e.g. Bleil and Petersen, 1982) can oxidize at high and low<br />

temperatures (deuteric oxidation and maghemitization)<br />

produc<strong>in</strong>g a Ti-poor titanomagnetite/maghemite. The<br />

oxidation leads to texture modifications of the primary tmt<br />

gra<strong>in</strong>s (see e.g. Fig. 11 <strong>in</strong> Vahle et al., 2007) and an<br />

<strong>in</strong>crease <strong>in</strong> Curie temperature is expected with <strong>in</strong>creas<strong>in</strong>g<br />

degree of oxidation. However, this Ti-maghemite is not<br />

stable and forms, especially <strong>in</strong> older basalts, an <strong>in</strong>tergrowth<br />

of Ti-poor titanomagnetite and ilmenite (Readman and<br />

O´Reilly, 1972; Moskowitz, 1987). In the very young<br />

basalts from the Icelandic rift zones, different stages of<br />

these reactions can be seen. In most cases the reactions are<br />

not yet completed, but they affect the rock magnetic<br />

properties significantly. For the reactions <strong>in</strong>volv<strong>in</strong>g the<br />

magnetic m<strong>in</strong>erals, fluid composition seems to be critical.<br />

Sulfuric magmatic fluids are able to dissolve the<br />

titanomagnetite/maghemite on expense of pyrite formation,<br />

while more oxidiz<strong>in</strong>g meteoric fluids seem to be more<br />

responsible for the maghemitization. Therefore, the<br />

textures can show different stages but when the alteration is<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

extreme, only relicts of the primary titanomagnetite gra<strong>in</strong><br />

rema<strong>in</strong> (we call it “ghost-textures”) and the magnetization<br />

decreases significantly compared to the orig<strong>in</strong>ally high<br />

values of 10-20 A/m for the young fissure-related basaltic<br />

lava flows from the surface. We were able to dist<strong>in</strong>guish<br />

different degrees of alteration us<strong>in</strong>g -T curves (Fig. 1)<br />

and we further <strong>in</strong>vestigated some samples us<strong>in</strong>g the <strong>in</strong> and<br />

out-of-phase magnetic susceptibility, zero field and field<br />

cooled SIRM and cool<strong>in</strong>g–heat<strong>in</strong>g cycles of room<br />

temperature SIRM <strong>in</strong> the temperature range 10-300 K (Fig.<br />

2).<br />

The <strong>in</strong>vestigated drill cores consist of altered f<strong>in</strong>egra<strong>in</strong>ed<br />

basalts. Plagioclase phenocrysts occur <strong>in</strong> prismatic<br />

shapes with a range of gra<strong>in</strong> sizes vary<strong>in</strong>g from 100-300<br />

m (exceptionally up to 3 mm) and laths of 20-100 m <strong>in</strong><br />

the matrix. Altered pyroxenes can be identified <strong>in</strong> polarized<br />

light. From X-ray diffraction chlorite/smectite, albite,<br />

quartz and zeolite are identified, <strong>in</strong>dicat<strong>in</strong>g a pervasive<br />

alteration for the KH-1 and KH-3 drill cores <strong>in</strong> the chlorite<br />

zone. Chlorite, quartz and calcite have been observed<br />

microscopically <strong>in</strong> vesicules and voids but also <strong>in</strong> the<br />

matrix, where chlorite is associated with sphene and pyrite,<br />

which both form on the expense of the magnetic Fe-Ti<br />

m<strong>in</strong>erals. The total abundance of opaque m<strong>in</strong>erals was<br />

estimated from th<strong>in</strong>-section observations and it varies from<br />

5 to 20% vol. As opaque m<strong>in</strong>erals titanomagnetite,<br />

sulphides, sphene, ilmeno-hematite and rutile were<br />

identified. The textures observed <strong>in</strong> the drill cores <strong>in</strong>dicate<br />

both, slow and quick orig<strong>in</strong>al cool<strong>in</strong>g of the lava with<br />

large, idiomorphic titanomagnetite gra<strong>in</strong>s and small<br />

cruciform and skeletal shapes, respectively (Fig. 2a and d).<br />

Exsolution lamellae due to high-temperature oxidation<br />

occur <strong>in</strong> both cores at different depths. Accord<strong>in</strong>g to<br />

Haggerty (1991) they <strong>in</strong>dicate C3 state of oxidation.<br />

Further oxidation steps can take place <strong>in</strong> a discont<strong>in</strong>uous<br />

manner and at lower temperatures (250-350 °C) dur<strong>in</strong>g the<br />

hydrothermal alteration. The most altered samples are the<br />

ones show<strong>in</strong>g “ghost textures”, very low<br />

NRM/susceptibility and irreversible -T curves (Fig. 1b).<br />

Intermediate stages of alteration are seen <strong>in</strong> gra<strong>in</strong>s with<br />

patchy textures due to the reaction of the titanomagnetite to<br />

other non-magnetic phases (sphene), but titanomaghemite<br />

is still present (Fig. 2a). The oxide gra<strong>in</strong>s often show<br />

cracks due to low-temperature oxidation (maghemitization;<br />

Fig. 2a and d). The cracks form as a result of the decrease<br />

<strong>in</strong> lattice parameters (Petersen and Vali, 1987).<br />

The temperature dependent magnetic susceptibility<br />

curves are used to identify magnetic phases. The Curie<br />

temperature is sensitive to composition and is the<br />

temperature that def<strong>in</strong>es the transition from ferromagnetic<br />

to paramagnetic order<strong>in</strong>g. The degree of reversibility of the<br />

heat<strong>in</strong>g and cool<strong>in</strong>g runs <strong>in</strong> air and <strong>in</strong> argon atmosphere<br />

<strong>in</strong>dicate the stability of the orig<strong>in</strong>al magnetic phases (Vahle<br />

et al., 2007). Surface samples from Krafla show reversible<br />

� � , which <strong>in</strong>dicate very little (if any) lowtemperature<br />

oxidation. On the contrary, all samples but one<br />

from the Krafla drill cores show non-reversible<br />

� � <strong>in</strong>dicat<strong>in</strong>g different degrees of<br />

maghemitization (Fig. 1).<br />

At the Verwey transition (TV) magnetite transforms<br />

from monocl<strong>in</strong>ic to cubic sp<strong>in</strong>el structure. Any deviat<strong>in</strong><br />

from stoichiometry <strong>in</strong> magnetite <strong>in</strong>fluences TV (e.g.<br />

Özdemir and Dunlop, 1993) and only m<strong>in</strong>or Ti-substitution<br />

also supresses TV (Moskowitz et al., 1998). While high-


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

temperature oxidation mostly causes low degrees of<br />

nonstoichiometry (oxidation parameter z less than 0.1),<br />

larger degrees of oxidation can be achieved at low<br />

temperatures, ultimately result<strong>in</strong>g <strong>in</strong> the formation of<br />

maghemite (z=1). For maghemite, TV is supressed. In our<br />

study, we found that the degree of oxidation is higher <strong>in</strong><br />

small (titano)magnetite gra<strong>in</strong>s without previous hightemperature<br />

oxidation (Fig. 2d, e, f) compared to larger<br />

gra<strong>in</strong>s with previous high-temperature oxidation (Fig. 2a,<br />

b, c). Our study shows that the irreversibility of -T curves<br />

<strong>in</strong> the temperature range 77 – 970 K comb<strong>in</strong>ed with TV<br />

observations is a sensitive probe for detect<strong>in</strong>g lowtemperature<br />

oxidation of titanomagnetite/magnetite.<br />

The rock magnetic analyses and texture observations<br />

allows to differentiate a higher degree of alteration <strong>in</strong> KH-1<br />

with respect to KH-3:<br />

Cation-deficient magnetite with Verwey transition and<br />

oxidized titanomagnetite dom<strong>in</strong>ate <strong>in</strong> KH-3 Oxidized<br />

titanomagnetite without Verwey transition dom<strong>in</strong>ates <strong>in</strong><br />

KH-1<br />

Magnetic m<strong>in</strong>eral textures are similar <strong>in</strong> both cores, but<br />

<strong>in</strong> KH-1 the “ghost texture” occurs more often<br />

The higher degree of alteration is seen <strong>in</strong> -T curves <strong>in</strong><br />

the temperature range 77 –970 K and can even better be<br />

characterized by low-temperature experiments<br />

Despite strong alteration, the orientation of NRM<br />

vector follows the expected <strong>in</strong>cl<strong>in</strong>ation (as seen <strong>in</strong> other<br />

studies from basalts).<br />

References:<br />

Bleil, U., and N. Petersen (1982): Magnetic properties of natural m<strong>in</strong>erals,<br />

<strong>in</strong>: Numerical Data and Functional Relationships <strong>in</strong> Science and<br />

Technology, Group V: Geophysics and Space Research, edited by G.<br />

Angenheister. 308– 365, Spr<strong>in</strong>ger, New York.<br />

Haggerty, 1991. Oxide textures- a m<strong>in</strong>i-atlas, <strong>in</strong>: Oxide M<strong>in</strong>erals: Petrologic<br />

and magnetic significance. Ed: D. H. L<strong>in</strong>dsley. M<strong>in</strong>eralogical Society<br />

of America, Reviews <strong>in</strong> m<strong>in</strong>eralogy vol 25: 129-219. Michigan, USA.<br />

Moskowich, B. (1987): Towards resolv<strong>in</strong>g the <strong>in</strong>consistencies <strong>in</strong><br />

characteristic physical properties of synthetic titanomagliemitesLowtemperature<br />

magnetic behavior titanomagnetites. Earth and Planetary<br />

Science Letters, 46: 173-183.<br />

Özdemir, Ö., D.J. Dunlop (1993): The effect of oxidation on the Verwey<br />

transition im magnetite. Geophysical Research Letters, 20, 16, 1671-<br />

1674.<br />

Oliva, B., A. Kontny, (2007): Crustal magnetization and magnetic petrology<br />

from hot-spot related basalts – an approach from low-T magnetic<br />

measurements and magnetic force microscopy. The IRM Quarterly,<br />

117, 13,3-4.<br />

Petersen, N. and Vali, H. (1987): Observation of shr<strong>in</strong>kage cracks <strong>in</strong> ocean<br />

floor titanomagnetite. Physics of Earth and Planetary Interiors, 46, 197-<br />

205.<br />

Readman, P.W. and O´Really, W. (1972): Magnetic properties of oxidized<br />

(cation-deficient) titanomagnetites (Fe, Ti,)3O4. Journal of<br />

Geomagnetism and Geoelectricity, 69-90.<br />

Vahle et al., Kontny, A., Gunnlaugsson, H.P. and Kristjansson, L. (2007):<br />

The Stardalur magnetic anomaly revisited—New <strong>in</strong>sights <strong>in</strong>to a<br />

complex cool<strong>in</strong>g and alteration history. Physics of the Earth and<br />

Planetary Interiors, 164: 119-141.<br />

Acknowledgements:<br />

Fund<strong>in</strong>g for this project comes from DFG grant number: KO 1514/3. V.<br />

Zibat is acknowledged for his support <strong>in</strong> the laboratory for electron<br />

microscopy <strong>in</strong> Karlsruhe. Many thanks to Anja Schleicher for XRD<br />

analyses.<br />

Fig. 1. Characteristic -T curves measured <strong>in</strong> an argon atmosphere for the KH-1 drill cores from the Krafla geothermal field. (a) A weak<br />

expression of the Verwey transition at 110 K, a Curie temperature between 450 and 550°C and a strong irreversibility of the heat<strong>in</strong>g and<br />

cool<strong>in</strong>g curve are <strong>in</strong>dicative of Ti-maghemite. This type or similar types of curves are the most abundant ones. Fig. 2 shows low temperature<br />

measurements for two examples with the same -T curve, but different textures. (b) Paramagnetic behavior at low temperature, a Curie<br />

temperature at about 580 °C and the formation of pyrrhotite from pyrite (py) <strong>in</strong> the cool<strong>in</strong>g curve is typical for samples with ghost-textures<br />

(see <strong>in</strong>lay).<br />

77


78<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 2. Low temperature measurements of two samples with -T curves as it is shown <strong>in</strong> Fig. 1a. (a) and (d) BSE images show<strong>in</strong>g the<br />

different textures of titanomaghemites. NRM and for sample KH-3-380.4 is 2.1 A/m and 135x 10-3 SI and for sample KH-1-68.9 it<br />

is 0.1 A/m and 0.85 x 10-3 SI. For Fig. 2a textures, (b) frequency-dependent out of phase susceptibility measured between10 and 300 K<br />

show a Verwey transition at 110 K. The decrease by 10 K is due to Ti substitution and cation-deficiency. For Fig. 2b textures, the<br />

Verwey transition is not clear but a decrease of susceptibility between 150 and 50 K is observed, due to a higher degree of vacancies.<br />

Field cooled (FZ) and zero field cooled (ZFC) SIRM shows a complex behavior with two phases, an ilmeohematite and<br />

titanomaghemite phase. The irreversible behavior of the heat<strong>in</strong>g and cool<strong>in</strong>g run for room temperature SIRM <strong>in</strong>dicates multidoma<strong>in</strong><br />

behavior of the magnetic gra<strong>in</strong>s, which is <strong>in</strong> accordance with microscopic observations.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Deep Biosphere Quantification <strong>in</strong><br />

Chesapeake Bay Impact Structure Sediments<br />

GERRIT KÖWEKER, ANNA BLAZEJAK AND AXEL SCHIPPERS<br />

Bundesanstalt für Geowissenschaften und Rohstoffe (BGR),<br />

Referat Geomikrobiologie, Stilleweg 2, 30655 <strong>Hannover</strong><br />

The Chesapeake Bay Impact Structure (CBIS) is one of<br />

the world’s largest crater formation caused by a meteor<br />

crash<strong>in</strong>g to the late Eocene ocean shelf on today’s Virg<strong>in</strong>ia<br />

(VA) coastal l<strong>in</strong>e. One objective of the CBIS project is to<br />

study the abundance and vitality of microorganisms with<br />

the aim to understand the <strong>in</strong>fluence of the impact scenario<br />

and its consequences on the biosphere. The BGR subproject<br />

studies exclusively the deep biosphere of the postimpact<br />

sediments while all other microbiologists of the<br />

CBIS deep biosphere team focus on the impact sediment<br />

and breccia layers. In May/June 2006, biological samples<br />

were taken from the <strong>in</strong>ner crater zone <strong>in</strong> Eyreville (VA)<br />

from the upper 140 m of the 444 m thick post-impact<br />

sediment zone. For contam<strong>in</strong>ation control fluorescent beads<br />

of bacterial size were used. Samples were checked for the<br />

abundance and vitality of microorganisms by SybrGreen<br />

direct count<strong>in</strong>g and catalyzed reporter deposition –<br />

fluorescence <strong>in</strong> situ hybridization (CARD-FISH). In<br />

addition, DNA was extracted from deep-frozen material for<br />

quantification analysis of microbial genes us<strong>in</strong>g real-time<br />

PCR (Q-PCR) target<strong>in</strong>g 16S or 18S rDNA gene as<br />

phylogenetic marker and functional genes (mcrA, dsrA) as<br />

physiological markers. Microorganisms could be found<br />

throughout all depths. Total cell numbers decreased from<br />

109 to 106 cells per g dry weight (dw) with<strong>in</strong> the first five<br />

meters of depth. Up to 100 meters depth, cell numbers<br />

slowly decreased to about 105 cells per g dw. Below that<br />

po<strong>in</strong>t, cell numbers slightly <strong>in</strong>creased aga<strong>in</strong>. Due to the<br />

relative low cell numbers different cell detachment<br />

protocols were tested for better statistics and compared to<br />

the standard protocol for total cell numbers. The general<br />

depth trend of total cell numbers could be confirmed<br />

although overall lower cell numbers were obta<strong>in</strong>ed by<br />

us<strong>in</strong>g detachment protocols. CARD-FISH data suggested<br />

that only a very small fraction of the cells, both Bacteria<br />

and Archaea, were active. Bacterial cell numbers calculated<br />

from the Q-PCR data mostly ranged <strong>in</strong> the same order of<br />

magnitude than the total cell numbers. Archaea were<br />

equally abundant <strong>in</strong> the top 5 m but scarcely detectable <strong>in</strong><br />

deeper layers us<strong>in</strong>g Q-PCR. Eukaryotic 18 rDNA was<br />

detected up to 50 m depth. So far, there was no evidence<br />

for sulfate-reducers <strong>in</strong> the samples as there couldn´t be<br />

found any copies of the dsrA gene. The copy number for<br />

mcrA, a key gene <strong>in</strong>volved <strong>in</strong> methanogenesis, was also<br />

under the detection limit. In the uppermost section,<br />

Geobacteriacae were found. This bacterial family is known<br />

for Fe(III)-and Mn(IV)-reduction. Geochemical data also<br />

revealed a potential for microbial Fe(III)-reduction <strong>in</strong> these<br />

layers as reactive iron species could be detected. Overall,<br />

the post-impact sediments of Chesapeake Bay are more<br />

densely colonized by microorganisms than the impact<br />

sediment and breccia layers <strong>in</strong> greater depth.<br />

<strong>ICDP</strong><br />

Evolutionary, Geological, and Environmental<br />

History of Lake Ohrid (EGEL):<br />

A new <strong>ICDP</strong> <strong>in</strong>itiative<br />

S. KRASTEL 1 , B. WAGNER 2 , K. REICHERTER 3 , G. DAUT 4 , M.<br />

WESSELS 5 , T. WILKE 6<br />

1<br />

Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR),<br />

Kiel, skrastel@ifm-geomar.de<br />

2<br />

Institut für Geologie und M<strong>in</strong>eralogie, Universität zu Köln<br />

3<br />

Neotektonik und Georisiken, RWTH Aachen<br />

4<br />

Institut für Geographie der Friedrich Schiller Universität Jena<br />

5<br />

Institut für Seenforschung; Langenargen<br />

6<br />

Tierökologie und Spezielle Zoologie, Justus-Liebig-Universität<br />

Giessen<br />

The Balkan Lake Ohrid at the Macedonian/Albanian<br />

border is likely the oldest cont<strong>in</strong>uously exist<strong>in</strong>g lake <strong>in</strong><br />

Europe and was tectonically formed probably dur<strong>in</strong>g the<br />

Tertiary. The exact age of the formation of the lake, total<br />

accumulated sediment thickness, and the structural context<br />

are not known. The proposed cont<strong>in</strong>uous existence s<strong>in</strong>ce<br />

the Tertiary, however, makes Lake Ohrid an excellent<br />

archive of environmental changes <strong>in</strong> the central northern<br />

Mediterranean region. Because of its geographic position<br />

and its presumed old age, Lake Ohrid represents an<br />

important l<strong>in</strong>k between climatic and environmental records<br />

from the Mediterranean Sea and the adjacent cont<strong>in</strong>ents.<br />

Moreover, with more than 200 endemic species, the lake is<br />

a unique aquatic ecosystem of worldwide importance. This<br />

importance was emphasized, when the lake was declared<br />

UNESCO World Heritage Site <strong>in</strong> 1979, and <strong>in</strong>cluded as a<br />

target area of the International Cont<strong>in</strong>ental Scientific<br />

Drill<strong>in</strong>g Program (<strong>ICDP</strong>) already <strong>in</strong> 1993. Based on<br />

numerous sedimentological, biological, and first<br />

geophysical <strong>in</strong>vestigations an <strong>in</strong>ternational group of<br />

scientists submitted an <strong>ICDP</strong>-workshop proposal <strong>in</strong><br />

January <strong>2008</strong>.<br />

Prelim<strong>in</strong>ary DNA work and molecular clock analyses<br />

of endemic faunal elements <strong>in</strong>dicate that the vast majority<br />

of biodiversity <strong>in</strong> Lake Ohrid evolved <strong>in</strong>tralacustr<strong>in</strong>e and<br />

that the evolutionary effective age of most taxa (i.e., the<br />

age s<strong>in</strong>ce when these groups cont<strong>in</strong>uously existed <strong>in</strong> Lake<br />

Ohrid) lies between 2 and 3 Ma. This suggested age would<br />

also set the temporal framework for the proposed <strong>ICDP</strong><br />

campaign (also see the contribution of Wilke et al. dur<strong>in</strong>g<br />

this colloquium).<br />

Extant sedimentary records from Lake Ohrid were<br />

recovered dur<strong>in</strong>g field campaigns <strong>in</strong> 1973 and, more<br />

recently, between 2001 and 2007. These records cover,<br />

except for some short hiatuses, the past glacial/<strong>in</strong>terglacial<br />

cycle and reveal that Lake Ohrid is a valuable archive of<br />

volcanic ash dispersal and climate change <strong>in</strong> the central<br />

northern Mediterranean region. However, with respect to<br />

the extraord<strong>in</strong>ary high endemism <strong>in</strong> the lake, these records<br />

are too short to provide <strong>in</strong>formation about the age and<br />

orig<strong>in</strong> of the lake and to unravel the mechanisms<br />

controll<strong>in</strong>g the evolutionary development.<br />

A first shallow seismic survey was carried out <strong>in</strong> spr<strong>in</strong>g<br />

2004 us<strong>in</strong>g a high-resolution parametric sediment<br />

echosounder. Penetration was strongly dependent on<br />

lithological and physical properties and reaches up to 50 m.<br />

The high-resolution hydroacoustic profiles of Lake Ohrid<br />

demonstrate well the <strong>in</strong>terplay between sedimentation and<br />

active tectonics. Due to relatively constant sedimentation<br />

rates the tectonic block movements can be reconstructed<br />

79


80<br />

ma<strong>in</strong>ly along normal faults on the E and W coast of the<br />

lake. Multiple sets of normal faults have their impr<strong>in</strong>t on<br />

the structural style of the lake borders, partly with roll over<br />

anticl<strong>in</strong>es or back-tilted halfgrabens.<br />

A multichannel seismic pilot study was carried out <strong>in</strong><br />

September 2007. Four days were used for survey<strong>in</strong>g the<br />

Macedonian part of the lake with a M<strong>in</strong>i-GI-Gun (0.25l) as<br />

source and a 100 m 16- channel streamer for receiv<strong>in</strong>g the<br />

acoustic energy. In total we shot 17 profiles with a total<br />

length of ~150 km, which impressively prove the potential<br />

of Lake Ohrid for an <strong>ICDP</strong> drill<strong>in</strong>g. The lacustr<strong>in</strong>e slope<br />

areas show very complex structures <strong>in</strong>clud<strong>in</strong>g heavily<br />

faulted areas, numerous slides, and foresets. In contrast,<br />

undisturbed sedimentary sequences are imaged <strong>in</strong> the<br />

central bas<strong>in</strong>. The basement - though partly overla<strong>in</strong> by<br />

multiples - is clearly visible on the seismic profile. The<br />

maximal sediment thickness reaches ~720 ms TWT<br />

correspond<strong>in</strong>g to ~570 m us<strong>in</strong>g an average sound velocity<br />

of 1600 m/s. No unconformities or erosional features are<br />

found <strong>in</strong> this part of the lake <strong>in</strong>dicat<strong>in</strong>g that this sequence is<br />

complete. Fund<strong>in</strong>g by the Deutsche<br />

Forschungsgeme<strong>in</strong>schaft for a systematic seismic pre-site<br />

survey of and structural work around Lake Ohrid just<br />

started. Field work is scheduled for summers <strong>2008</strong> and<br />

2009.<br />

<strong>IODP</strong><br />

Helium, neon and argon isotope systematics<br />

of the Hawaiian hotspot<br />

T. KRÜSMANN, S. NIEDERMANN, N.A. STRONCIK, J. ERZINGER<br />

GeoForschungsZentrum Potsdam, Telegrafenberg, D-14473<br />

Potsdam, Germany<br />

Noble gases, especially helium, are used as tracers for<br />

mantle reservoirs, based on the assumption that high<br />

3 He/ 4 He ratios (>8 RA, where R A is the atmospheric<br />

3 He/ 4 He ratio of 1.39×10 –6 ) represent material from the<br />

deep, supposedly less degassed mantle whereas lower<br />

ratios with<strong>in</strong> the MORB range (~ 8 RA) are thought to<br />

represent the upper mantle. In this study we determ<strong>in</strong>ed the<br />

noble gas systematics of samples from several Hawaiian<br />

volcanoes. The studied volcanoes <strong>in</strong>clude Mauna Kea,<br />

from which we ma<strong>in</strong>ly <strong>in</strong>vestigated drill core samples from<br />

the Hawaii Scientific Drill<strong>in</strong>g Project (HSDP), Mauna Loa,<br />

Kilauea and Kohala (all located on the Island of Hawaii) as<br />

well as Haleakala, Maui. He ratios from this study show a<br />

variation from 7-18 RA. It is known that OIBs show a wide<br />

range of He ratios, from MORB-like values up to as much<br />

as 35 R A. A few samples of this study show elevated<br />

20 Ne/ 22 Ne and 21 Ne/ 22 Ne ratios with respect to the<br />

atmospheric value, up to 11.14±0.49 and 0.0365±0.0062,<br />

respectively, thereby support<strong>in</strong>g the theory of a partly less<br />

degassed source region for the Hawaiian hotspot with<br />

solar-like He and Ne isotopic compositions deep <strong>in</strong> the<br />

mantle. When us<strong>in</strong>g Ne as a tracer for a less degassed<br />

source of the Hawaiian mantle plume, one has to be aware<br />

that atmospheric contam<strong>in</strong>ation is a severe problem. By the<br />

technique of stepwise heat<strong>in</strong>g however, this problem can<br />

partly be circumvented. 40 Ar/ 36 Ar ratios are predom<strong>in</strong>antly<br />

close to the atmospheric value of 296, but a few samples<br />

show higher values up to 3790.<br />

Follow<strong>in</strong>g the approach of Honda et al. (1993), the<br />

expected He isotopic composition can be calculated from a<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

given Ne isotopic composition. Calculated He ratios for<br />

samples of this study, however, do not correlate well with<br />

the measured He ratios. This feature can be expla<strong>in</strong>ed by a<br />

preferential loss of He from the magma source. Calculated<br />

4 He/ 40 Ar * , 3 He/ 22 Nes and 4 He/ 21 Ne * ratios for the sample<br />

suite (where * denotes radiogenic and nucleogenic<br />

components and S means the primordial “solar”<br />

component) are lower than the respective production and<br />

primordial ratios, support<strong>in</strong>g a preferential loss of He.<br />

20 Ne/ 22 Ne<br />

13.0<br />

12.0<br />

11.0<br />

10.0<br />

Air<br />

Solar<br />

Loihi-Kilauea l<strong>in</strong>e<br />

0.03 0.04 0.05 0.06<br />

21Ne/ 22Ne The figure shows a neon three-isotope plot for oliv<strong>in</strong>e<br />

phenocrysts from Mauna Loa, Mauna Kea, and Kilauea<br />

volcanoes studied <strong>in</strong> this work. The MORB and Loihi-<br />

Kilauea correlation l<strong>in</strong>es, respectively, are mix<strong>in</strong>g l<strong>in</strong>es<br />

between atmospheric Ne and Ne components typical for<br />

the MORB and Hawaiian plume source, respectively.<br />

Despite large uncerta<strong>in</strong>ties (2σ), it is evident that Ne data<br />

plot along the Loihi-Kilauea l<strong>in</strong>e despite He isotope ratios<br />

partly with<strong>in</strong> the MORB range. The solar Ne composition<br />

is shown for reference.<br />

References:<br />

M. Honda, I. McDougall, D. Patterson (1993) Solar noble gases <strong>in</strong> the Earth;<br />

the systematics of helium-neon isotopes <strong>in</strong> mantle derived samples,<br />

Lithos 30, 257–265.<br />

<strong>IODP</strong><br />

Middle Miocene changes <strong>in</strong> the Southern<br />

Ocean deep-water carbonate chemistry<br />

H. KUHNERT 1 , T. BICKERT1, 2<br />

MORB<br />

l<strong>in</strong>e<br />

Mauna Loa<br />

Mauna Kea<br />

Kilauea<br />

1<br />

Universität Bremen, Forschungszentrum Ozeanränder, 28359<br />

Bremen<br />

2<br />

Universität Bremen, MARUM, 28359 Bremen<br />

hkuhnert@uni-bremen.de<br />

The middle Miocene cool<strong>in</strong>g was one of the most<br />

prom<strong>in</strong>ent climate shifts dur<strong>in</strong>g the Neogene, expressed <strong>in</strong><br />

the drastic decrease of global temperatures and the<br />

expansion of the East Antarctic Ice Sheet. While the<br />

general picture of the cool<strong>in</strong>g is well-known, the role of the<br />

mar<strong>in</strong>e carbonate system and atmospheric CO2 are not fully<br />

understood. Global anomalies <strong>in</strong> mar<strong>in</strong>e stable carbon<br />

isotopes ("Monterey carbon isotope excursion") precede<br />

and partially accompany the cool<strong>in</strong>g. These anomalies have<br />

been <strong>in</strong>terpreted to reflect periods of massive organic<br />

carbon burial (V<strong>in</strong>cent and Berger, 1985) and/or <strong>in</strong>creased<br />

cont<strong>in</strong>ental weather<strong>in</strong>g (Raymo, 1994), where both


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

mechanisms draw down atmospheric CO 2, <strong>in</strong> l<strong>in</strong>e with<br />

pCO2 reconstructions (Pagani et al., 1999, 2005). The<br />

<strong>in</strong>creas<strong>in</strong>g ventilation of <strong>in</strong>termediate water masses <strong>in</strong> the<br />

Southern Ocean has been proposed as an additional factor<br />

<strong>in</strong> chang<strong>in</strong>g the state of the global carbon cycle dur<strong>in</strong>g the<br />

middle Miocene (Shevenell et al., 2004). We want to<br />

<strong>in</strong>vestigate the mutual <strong>in</strong>fluences of pCO2, hydrographic<br />

changes, and the state of the oceanic carbonate system by<br />

reconstruct<strong>in</strong>g the carbonate ion saturation (Δ[CO32-]) and<br />

alkal<strong>in</strong>ity of the Southern Ocean deep-water.<br />

We use Ba/Ca and B/Ca from benthic foram<strong>in</strong>ifera<br />

from ODP site 1092 (46.4°S, 7.1°E, Atlantic sector of the<br />

Southern Ocean) to <strong>in</strong>fer past ocean alkal<strong>in</strong>ity and Δ[CO3 2-<br />

], respectively. Initial data cover<strong>in</strong>g the time from 14.2 to<br />

13 Ma (<strong>in</strong>clud<strong>in</strong>g the Mi 3 and CM 6 events) show a<br />

general correlation between alkal<strong>in</strong>ity and δ 13 C. Alkal<strong>in</strong>ity<br />

<strong>in</strong>creases dur<strong>in</strong>g Mi 3 (~13.9 Ma), the most prom<strong>in</strong>ent<br />

<strong>in</strong>terval of cool<strong>in</strong>g and/or ice sheet expansion. A<br />

cont<strong>in</strong>uous decrease commences at 13.6 Ma. The<br />

magnitude of change (up to 100 µEq/kg) cannot be<br />

expla<strong>in</strong>ed by the exchange of the local water mass. Dur<strong>in</strong>g<br />

the middle Miocene cool<strong>in</strong>g NADW was largely absent<br />

(Wright and Miller, 1996) reduc<strong>in</strong>g the potential alkal<strong>in</strong>ity<br />

contrast. Furthermore, chang<strong>in</strong>g water masses would lead<br />

to a negative correlation between Δ[CO3 2- ] and alkal<strong>in</strong>ity,<br />

which is not present <strong>in</strong> our data. This suggests that<br />

alkal<strong>in</strong>ity at Site 1092 reflects global changes <strong>in</strong> the carbon<br />

cycle and is potentially causal <strong>in</strong> driv<strong>in</strong>g atmospheric pCO2<br />

variations.<br />

Future work will <strong>in</strong>clude the extension of the proxy<br />

record back <strong>in</strong> time to cover the transition to the Miocene<br />

climatic optimum, and the analysis of Pacific sites.<br />

References:<br />

Pagani, M., Arthur, M. A., and Freeman, K. H., 1999. Miocene evolution of<br />

atmospheric carbon dioxide. Paleoceanography 14, 273-292.<br />

Pagani, M., Zachos, J. C., Freeman, K. H., Tipple, B., and Bohaty, S., 2005.<br />

Marked decl<strong>in</strong>e <strong>in</strong> atmospheric carbon dioxide concentrations dur<strong>in</strong>g<br />

the Paleogene. Science 309, 600-603.<br />

Raymo, M. E., 1994. The Himalayas, organic carbon burial, and climate <strong>in</strong><br />

the Miocene. Paleoceanography 9, 399-404.<br />

Shevenell, A. E., Kennett, J. P., and Lea, D. W., 2004. Middle Miocene<br />

Southern Ocean cool<strong>in</strong>g and Antarctic cryosphere expansion. Science<br />

305, 1766-1770.<br />

V<strong>in</strong>cent, E. and Berger, W. H., 1985. Carbon dioxide and polar cool<strong>in</strong>g <strong>in</strong><br />

the Miocene: The Monterey hypothesis. In: Sundquist, E. T. and<br />

Broecker, W. S. Eds.), The carbon cycle and atmospheric CO2: Natural<br />

variations Archean to present. AGU, Wash<strong>in</strong>gton, pp. 455-468.<br />

Wright, J. D. and Miller, K. G., 1996. Control of North Atlantic Deep Water<br />

circulation by the Greenland-Scotland Ridge. Paleoceanography 11,<br />

157-170.<br />

<strong>IODP</strong><br />

Cenozoic trends <strong>in</strong> size and silica use <strong>in</strong> low<br />

and high latitude radiolarian faunas:<br />

evidence for co-evolution between diatoms<br />

and radiolarians and <strong>in</strong>creas<strong>in</strong>g competition<br />

for dissolved biogenic silicia<br />

DAVID LAZARUS (1), BEN KOTRC (2), GERWIN WULF (3) AND<br />

DANIELA N. SCHMIDT (4)<br />

1-Museum f. Naturkunde, Invalidenstrasse 43, 10115 Berl<strong>in</strong>,<br />

Germany<br />

2-Botanical Museum, Harvard University, 26 Oxford street,<br />

Cambridge, MA 02138 USA<br />

3-Bauernreihe 62b, 21709 Burweg, Germany<br />

4-Department of Earth Sciences, University of Bristol, Queens<br />

Road, Bristol, BS8 1RJ UK<br />

Harper and Knoll (1975) proposed that a Cenozoic<br />

trend towards lower shell weights <strong>in</strong> radiolaria documented<br />

by Moore (1969) reflected selective pressure to use less<br />

silica, due to <strong>in</strong>creas<strong>in</strong>g removal of dissolved silica <strong>in</strong><br />

ocean water <strong>in</strong> the Cenozoic caused by the evolutionary<br />

rise of mar<strong>in</strong>e diatoms. More recently, Schmidt (2004) and<br />

F<strong>in</strong>kel et al. (2005, 2007) have documented Cenozoic<br />

changes <strong>in</strong> mean size <strong>in</strong> planktonic foram<strong>in</strong>ifera, diatoms<br />

and d<strong>in</strong>oflagellates. These authors attribute size change <strong>in</strong><br />

these groups <strong>in</strong>stead to other factors, such as <strong>in</strong>creas<strong>in</strong>g<br />

water column stratification. Moore’s data for radiolarians<br />

could thus reflect (water stratification driven) size change,<br />

diatom evolution driven change <strong>in</strong> silica efficiency, or<br />

both.<br />

To <strong>in</strong>vestigate which mechanism(s) are most likely<br />

responsible for Cenozoic trends <strong>in</strong> radiolarian shell weight,<br />

we have measured both size and silica use/unit cell volume<br />

<strong>in</strong> series of Ceonozic radiolarian populations from both low<br />

and high latitudes. Modern low latitude surface waters<br />

often have extremely low concentrations of dissolved silica<br />

due to efficient removal by planktonic diatoms. In high<br />

latitude oceans by contrast, deep mix<strong>in</strong>g renews nutrients<br />

and surface water silica is often not fully removed by<br />

plankton growth, suggest<strong>in</strong>g that <strong>in</strong> high latitudes, silica<br />

availability driven changes <strong>in</strong> radiolarian faunas should<br />

also be reduced. Our results are based on >5000<br />

specimens, taken from 26 low latitude samples rang<strong>in</strong>g<br />

from 61 to 0 Ma from the Indian, Pacific and Atlantic<br />

Oceans, and 9 samples rang<strong>in</strong>g from 60 to 1 Ma from the<br />

Southern Ocean. The Berl<strong>in</strong> radiolarian MRC provided<br />

many of the slides used <strong>in</strong> our study. All samples were<br />

controlled for dissolution of shells which can bias results.<br />

Length, width; shell porosity and thickness were measured<br />

for each specimen when possible. Simple geometric<br />

models were used to calculate cell volume and silica<br />

use/unit volume for the two ma<strong>in</strong> groups of fossil<br />

radiolarians (Spumellaria -spheres, Nassellaria-cones).<br />

Our results show a clear unidirectional trend towards<br />

greater silica efficiency <strong>in</strong> low latitude radiolarian faunas<br />

over the Cenozoic, with however a significant shift<br />

occurr<strong>in</strong>g near the Eocene-Oligocene boundary. High<br />

latitude radiolarian faunas by contrast show only a m<strong>in</strong>imal<br />

trend towards greater silica efficiency. Size shows no net<br />

change <strong>in</strong> radiolarian faunas over the Cenozoic and the one<br />

major feature ( a peak <strong>in</strong> the Early-Mid Eocene) is not<br />

correlated to size change records of other groups. These<br />

results support the hypothesis of Harper and Knoll that<br />

removal (by diatoms) of silica from Cenozoic oceans has<br />

<strong>in</strong>fluenced the evolution of radiolarians, driv<strong>in</strong>g a trend<br />

towards <strong>in</strong>creased efficiency <strong>in</strong> the use of silica <strong>in</strong><br />

radiolarian shells.<br />

<strong>IODP</strong><br />

Early Paleogene deep-water overturn<strong>in</strong>g <strong>in</strong><br />

the South Atlantic (EPASA) - A progress<br />

report -<br />

D.C. LEUSCHNER 1<br />

1 Universität Leipzig, Institut für Geophysik und Geologie,<br />

Talstraße 35, 04103 Leipzig<br />

The aim of the EPASA project is to reconstruct the<br />

circulation of deep- and bottom-water masses <strong>in</strong> the eastern<br />

South Atlantic dur<strong>in</strong>g the Cenozoic us<strong>in</strong>g gra<strong>in</strong> size and<br />

81


82<br />

clay m<strong>in</strong>eralogical studies of sediments from the Walvis<br />

Ridge (Leg 208). Particular attention is laid on the nature<br />

and behavior of the deep-water masses dur<strong>in</strong>g extreme<br />

climatic situations and on their response to abrupt<br />

environmental and climatic changes <strong>in</strong> the late Paleocene<br />

to early Eocene. This time <strong>in</strong>terval is characterized by short<br />

climatic excursions overrid<strong>in</strong>g a long-term warm<strong>in</strong>g trend.<br />

These short last<strong>in</strong>g climatic extremes had a significant<br />

impact on the oceans, e.g. a rapid acidification of the ocean<br />

dur<strong>in</strong>g the Paleocene/Eocene Thermal Maximum (PETM;<br />

Zachos et al., 2005). This change <strong>in</strong> the ocean waters<br />

chemistry is associated with a massive shoal<strong>in</strong>g of the<br />

calcite compensation depth (CCD) of more than 2000 m <strong>in</strong><br />

the Walvis Ridge region (Kroon et al., 2007). A<br />

comparable but less pronounced perturbation is accociated<br />

with the Early Eocene Thermal Maximum 2 (ETM2; also<br />

known as ELMO event; Lourens et al., 2005; Sluijs et al.,<br />

2007), which was first described dur<strong>in</strong>g Leg 208. The<br />

Paleogene sediments recovered dur<strong>in</strong>g ODP Leg 208 at<br />

Walvis Ridge allow detailed reconstructions of the tim<strong>in</strong>g<br />

and <strong>in</strong>tensity of such perturbations and the result<strong>in</strong>g<br />

reorganization of the deep- and bottom water masses over a<br />

paleodepth range of more than 2000 m.<br />

In our study we comb<strong>in</strong>e sedimentological and clay<br />

m<strong>in</strong>eralogical data and is carried out <strong>in</strong> two phases. First, a<br />

lower resolution study performed on sediments tfrom the<br />

Sites 1265 and 1267 <strong>in</strong> order to reconstruct the long-term<br />

trend <strong>in</strong> the development <strong>in</strong> the oceanic circulation. This<br />

provides the background <strong>in</strong>formation on the changes<br />

associated with the transition from an <strong>in</strong>termediate<br />

Paleogene climate to the Eocene greenhouse, the<br />

subsequent cool<strong>in</strong>g <strong>in</strong>to the Oligocene ice-house and<br />

Miocene cool<strong>in</strong>g events. The knowledge of the long-term<br />

processes is crucial to evaluate the significance of the<br />

extreme climatic events <strong>in</strong> the early Paleogene. For this<br />

purpose a total number of 415 samples were taken and<br />

processed (separation of gra<strong>in</strong> size fractions, sample<br />

preparation of the clay fraction and XRD analysis). Some<br />

results from Site 1265 are shown <strong>in</strong> Fig. 2.<br />

In the second Phase, higher resolution studies of the<br />

late Paleocene to the early Eocene <strong>in</strong>terval were performed<br />

at five Sites (1262, 1267, 1266, 1265 and 1263) spann<strong>in</strong>g<br />

the whole depth range of the Leg 208 transect. Standard<br />

sampl<strong>in</strong>g resolution was one sample per 50 cm. The<br />

sampl<strong>in</strong>g resolution was <strong>in</strong>creased across critical <strong>in</strong>tervals<br />

(PETM, ETM2) <strong>in</strong> order to resolve these events. The total<br />

amount of samples processed <strong>in</strong> this <strong>in</strong>vestigation is about<br />

880. So far the sampl<strong>in</strong>g for this part of the project has<br />

been carried out on four sites. All of these sample sets<br />

already passed the laboratory preparation process and XRD<br />

measurements were completely performed on the entire<br />

sample sets from sites 1265, 1266 and 1267 cover<strong>in</strong>g a<br />

water depth range of almost 1300m <strong>in</strong> the central part of<br />

the depth transect.<br />

Both, Site 1265 and 1266 (Fig. 3) clay m<strong>in</strong>eral records<br />

show that illite and smectite are the major components of<br />

the terrigenous clay fraction, form<strong>in</strong>g almost a twocomponent<br />

system dur<strong>in</strong>g the entire Cenozoic record at site<br />

1265. Therefore, the records of the two m<strong>in</strong>erals show an<br />

oppos<strong>in</strong>g trend. Kaol<strong>in</strong>ite and chlorite are almost absent <strong>in</strong><br />

the late Paleocene to early Eocene. These m<strong>in</strong>erals start to<br />

become abundant at the end of the early Eocene to the<br />

middle Eocene, with an <strong>in</strong>creas<strong>in</strong>g and persistent trend<br />

throughout the younger Paleogene and Neogene.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Associated with the <strong>in</strong>crease <strong>in</strong> kaol<strong>in</strong>ite and chlorite a<br />

m<strong>in</strong>imum abundance of illite and a maximum abundance of<br />

smectite can be observed. These changes <strong>in</strong> sediment<br />

composition at the end of the early Eocene likely reflect the<br />

most severe changes <strong>in</strong> oceanic circulation at the northern<br />

Walvis Ridge dur<strong>in</strong>g the studied period. A change <strong>in</strong><br />

oceanic currents is probably associated with the <strong>in</strong>cise of a<br />

channel structure <strong>in</strong> he study area across the Walvis Ridge<br />

start<strong>in</strong>g to develop between 50 and 40 mio. years ago<br />

(Bartels et al., 2007). Surpris<strong>in</strong>gly, the warm period at the<br />

end of the Paleocene <strong>in</strong>to the Early Eocene Climatic<br />

Optimum (EECO) is characterized by a broad maximum <strong>in</strong><br />

illite abundance and low smectite values. The abundance of<br />

smectite than beg<strong>in</strong>s to rise with the transition <strong>in</strong>to cooler<br />

climates of the late Paleogene. The nature of such<br />

developments and detailed <strong>in</strong>vestigations on the short and<br />

abrupt events that are overrid<strong>in</strong>g these long-term trends are<br />

subject to the ongo<strong>in</strong>g <strong>in</strong>vestigation.<br />

References:<br />

Bartels, T., Krastel, S., and Spiess, V., 2007. Correlation of High-Resolution<br />

Seismic Data with ODP Leg 208 Borehole Measurements. In Kroon,<br />

D., Zachos, J.C., and Richter, C. (Eds.), Proc.ODP, Sci. Results, 208:<br />

College Station, TX.<br />

Kroon, D., Zachos, J.C., and Leg 208 Scientific Party, 2007. Leg 208<br />

Synthesis: Cenozoic Climate Cycles and Excursions. In Kroon, D.,<br />

Zachos, J.C., and Richter, C. (Eds.), Proc.ODP, Sci. Results, 208:<br />

College Station, TX.<br />

Lourens, L.J., Sluijs, A., Kroon, D., Zachos, J.C., Thomas, E., Röhl, U.,<br />

Bowles, J., and Raffi, I., 2005. Astronomical pac<strong>in</strong>g of the late<br />

Palaeocene to early Eocene global warm<strong>in</strong>g events, Nature, 435: 1083-<br />

1087.<br />

Sluijs, A., Br<strong>in</strong>khuis, H., Schouten, S., Bohaty, S.M., John, C.M., Zachos,<br />

J.C., S<strong>in</strong>n<strong>in</strong>ghe Damsté, J.S., Crouch, E.M., and Dickens, G.R., 2007.<br />

Environmental precursors to rapid light carbon <strong>in</strong>jection at the<br />

Paleocene/Eocene boundary, Nature, 450: 1218-1221.<br />

Zachos, J.C., Röhl, U., Schellenberg, S.A., Sluijs, A., Hodell, D.A., Kelly,<br />

D.C., Thomas, E., Nicolo, M., Raffi, I., Lourens, L.J., McCarren, H.,<br />

and Kroon, D., 2005. Rapid Acidification of the Ocean dur<strong>in</strong>g the<br />

Paleocene-Eocene Thermal Maximum, Science, 308: 1611-1615.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1: Core sites and sampl<strong>in</strong>g strategy carried out <strong>in</strong> the EPASA project<br />

83


84<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 2: Clay m<strong>in</strong>eralogy of core 1265 (3060 m water depth, 28°50.10’S, 2.38.35’E). Core recovery at Site 1265, relative<br />

abundance of illite, smectite, kaol<strong>in</strong>ite and chlorite <strong>in</strong> the terrigenous clay size fraction, lithostratigraphic units,<br />

chronostratigraphic units.<br />

Fig. 3: Clay m<strong>in</strong>eralogy of core 1266 (3798 m water depth, 28°32.55’S, 2.20.61’E). Core recovery at Site 1266, relative abundance<br />

of illite, smectite, kaol<strong>in</strong>ite and chlorite <strong>in</strong> the terrigenous clay size fraction, lithostratigraphic units, chronostratigraphic units.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Distribution of Prokaryotic Biomass <strong>in</strong> the<br />

Deep Biosphere<br />

JULIUS S. LIPP 1 , YUKI MORONO 2 , FUMIO INAGAKI 2 & KAI-UWE<br />

HINRICHS 1<br />

1 Organic Geochemistry Group, Department of Geosciences and<br />

Research Center Ocean Marg<strong>in</strong>s (RCOM), University of<br />

Bremen, PO Box 330 440, 28334 Bremen, Germany<br />

2 Geomicrobiology Group, Kochi Institute for Core Sample<br />

Research, Japan Agency for Mar<strong>in</strong>e-Earth Science and<br />

Technology (JAMSTEC), Monobe B200, Nankoku, Kochi<br />

783-8502, Japan<br />

The deep biosphere conta<strong>in</strong>s up to one third of the total<br />

carbon <strong>in</strong> live cells of our planet (Parkes et al., 2000;<br />

Whitman et al., 1998). This vast ecosystem has become<br />

the research focus of microbiologists and geochemists to<br />

address key questions like: What types of microbes thrive<br />

<strong>in</strong> deeply buried sediments? And, what are the processes<br />

they are mediat<strong>in</strong>g? Recent studies have provided<br />

<strong>in</strong>formation on metabolic activities and quantities of deeply<br />

buried prokaryotic cells (e.g. Biddle et al., 2006; Inagaki et<br />

al., 2006), while fundamental questions regard<strong>in</strong>g the<br />

taxonomic composition rema<strong>in</strong> unresolved. For example,<br />

various techniques appear to disagree already at the doma<strong>in</strong><br />

level on who actually dom<strong>in</strong>ates this ecosystem. Molecular<br />

biological methods like catalyzed reporter deposition -<br />

fluorescent <strong>in</strong> situ hybridization (CARD-FISH) and<br />

quantitative polymerase cha<strong>in</strong> reaction (Q-PCR) suggest a<br />

predom<strong>in</strong>ance of bacterial over archaeal cells (Schippers et<br />

al., 2005; Inagaki et al., 2006). On the other hand FISH<br />

and <strong>in</strong>tact polar lipids (IPL) suggest a predom<strong>in</strong>ance of<br />

archaea among live prokaryotes (Biddle et al., 2006).<br />

We analyzed IPLs, a marker for live prokaryotic cells<br />

<strong>in</strong> a set of sediment samples from a depth range of 0.01 to<br />

367 mbsf from sites <strong>in</strong> the Black Sea, Nankai Trough, Peru<br />

marg<strong>in</strong>, Cascadia Marg<strong>in</strong>, Demerara Rise, and Equatorial<br />

Pacific (RV Logatchev TTR15, RV Kairei KY04-11, RV<br />

Sonne SO147, ODP Legs 201, 204, 207, and <strong>IODP</strong><br />

Expeditions 301 and 311). The observed IPL<br />

concentrations cover more than three orders of magnitude<br />

from 4 to 16,000 ng mL-1 sediment and display a similar<br />

concentration-depth relationship as observed <strong>in</strong> a global<br />

compilation of direct counts of active cells (cf. Parkes et<br />

al., 2000). Surface sediments are clearly dom<strong>in</strong>ated by<br />

bacterial IPLs with possible admixtures of eukaryotic<br />

lipids. The major bacterial IPLs identified comprise<br />

phosphatidylglycerol (PG), phosphatidylethanolam<strong>in</strong>e<br />

(PE), and phosphatidylchol<strong>in</strong>e (PC) diacylglycerides with<br />

C16 and C18 acyl groups. The major archaeal lipids are<br />

mono- and diglycosidic derivatives of archaeol and<br />

glyceroldibiphytanylglyceroltetraether (GDGT) lipids.<br />

Concentrations of bacterial lipids decl<strong>in</strong>e rapidly with<strong>in</strong> the<br />

first 10 cmbsf to levels significantly lower than those of<br />

their archaeal counterparts. In deeply buried horizons,<br />

diglycosyl GDGTs are dom<strong>in</strong>ant and lipid distributions are<br />

less diverse than <strong>in</strong> surface sediments.<br />

The sedimentary IPLs can be used as a proxy for the<br />

quantity of live microbial biomass <strong>in</strong> subsurface<br />

environments. We observed a double logarithmic<br />

relationship between concentrations of IPLs and total<br />

organic carbon (TOC), extend<strong>in</strong>g over more than two and<br />

four orders of magnitude <strong>in</strong> TOC and IPL concentration,<br />

respectively, and testify<strong>in</strong>g to the heterotrophic nature of<br />

the subsurface ecosystem. The relationship further<br />

<strong>in</strong>dicates that the quantity of fossil organic matter is an<br />

important controll<strong>in</strong>g factor for the amount of prokaryotic<br />

biomass and can be used to derive an estimate of the global<br />

<strong>in</strong>ventory of biomass <strong>in</strong> mar<strong>in</strong>e subsurface sediments from<br />

well constra<strong>in</strong>ed concentrations of TOC. We estimate an<br />

amount of 8 Pg IPL <strong>in</strong> habitable subsurface sediments,<br />

which can be converted <strong>in</strong>to 95 to 114 Pg carbon units <strong>in</strong><br />

prokaryotic biomass.<br />

Improved protocols of DNA extraction and<br />

purification, and modified quantification protocols of slotblot<br />

hybridization and quantitative polymerase cha<strong>in</strong><br />

reaction (Q-PCR) of samples from the Peru Marg<strong>in</strong> (ODP<br />

Leg 201) and the Juan de Fuca Ridge Flank (<strong>IODP</strong><br />

Expedition 301) support the lipid-based results and <strong>in</strong>dicate<br />

that previous molecular biology-based analyses of similar<br />

and identical samples largely underestimated archaeal<br />

biomass.<br />

Our comb<strong>in</strong>ed evidence suggests a vast ecosystem, <strong>in</strong><br />

which Archaea contribute a major fraction to the stand<strong>in</strong>g<br />

stock of biomass. In comb<strong>in</strong>ation with estimates of the<br />

relative contributions of the two prokaryotic doma<strong>in</strong>s to<br />

water column biomass (Karner et al., 2001), our data imply<br />

that <strong>in</strong> the mar<strong>in</strong>e realm, Archaea are more abundant than<br />

Bacteria.<br />

References:<br />

Biddle J.F., Lipp J.S., Lever M.A., Lloyd K.G., Sørensen K.B., Anderson<br />

R., Fredricks H.F., Elvert M., Kelly T.J., Schrag D.P., Sog<strong>in</strong> M.L.,<br />

Brenchley J.E., Teske A., House C.H., and H<strong>in</strong>richs K.-U. (2006).<br />

Heterotrophic Archaea dom<strong>in</strong>ate sedimentary subsurface ecosystems<br />

off Peru. Proc. Natl. Acad. Sci.USA 103, 3846-3851.<br />

Inagaki F., Nunoura T., Nakagawa S., Teske A., Lever M.A., Lauer A.,<br />

Suzuki M., Takai K., Delwiche M., Colwell F.S., Nealson K.H.,<br />

Horikoshi K., D’Hondt S., and Jørgensen B.B. (2006). Biogeographical<br />

distribution and diversity of microbes <strong>in</strong> methane hydrate-bear<strong>in</strong>g deep<br />

mar<strong>in</strong>e sediments on the Pacific Ocean Marg<strong>in</strong>. Proc. Natl. Acad.<br />

Sci.USA 103, 2815-2820.<br />

Karner, M.B., DeLong, E.F., Karl, D.M. (2001). Archaeal dom<strong>in</strong>ance <strong>in</strong> the<br />

mesopelagic zone of the Pacific Ocean. Nature 409, 507-510.<br />

Parkes R.J., Cragg B.A., and Wellsbury P. (2000). Recent studies on<br />

bacterial populations and processes <strong>in</strong> subseafloor sediments: A review.<br />

Hydrogeol. J. 8, 11-28.<br />

Schippers, A., Neret<strong>in</strong>, L.N., Kallmeyer, J., Ferdelman, T.G., Cragg, B.A.,<br />

Parkes, R.J., Jørgensen, B.B., 2005. Prokaryotic cells of the deep subseafloor<br />

biosphere identified as liv<strong>in</strong>g bacteria. Nature 433, 861-864.<br />

Whitman W.B., Coleman D.C., and Wiebe W.J. (1998). Prokaryotes: The<br />

unseen majority. Proc. Natl. Acad. Sci.USA 95, 6578-6583.<br />

<strong>ICDP</strong><br />

Direct observation of blast<strong>in</strong>g triggered<br />

geogas transport through an <strong>in</strong>active fault<br />

system at 3.6km depth, Tautona gold m<strong>in</strong>e,<br />

SA<br />

J. LIPPMANN-PIPKE 1,2 , J. ERZINGER 2 , M. ZIMMER 2 , C. KUJAWA 2 , E.<br />

VAN HEERDEN 3 , A. BESTER 3 , H. MOLLER 4 , M. BOETTCHER 5 , Z.<br />

RECHES 6<br />

1 Institute of Interdiscipl<strong>in</strong>ary Isotope Research (IIF), Leipzig,<br />

Germany (lippmann@iif-leipzig.de)<br />

2 GeoForschungsZentrum Potsdam (GFZ), Germany<br />

3 University of the Free State (UFS), Bloemfonte<strong>in</strong>, South Africa<br />

4 Tautona Gold M<strong>in</strong>e, Charletonville, South Africa<br />

5 United Stated Geological Survey (USGS), Menlo Park, CA,<br />

United States of America<br />

6 Oklahoma University, United States of America<br />

A highly sensitive gas monitor<strong>in</strong>g device enables the<br />

direct observation of blast<strong>in</strong>g triggered geogas transport<br />

from fluid reservoirs <strong>in</strong>to a dry borehole that crosses<br />

85


86<br />

through the <strong>in</strong>active Pretorious Fault System at 3.6km<br />

depth, Tautona gold m<strong>in</strong>e, South Africa (DAFGAS 1 ). The<br />

sensitivity of our experimental set-up allows to observe the<br />

geogas transport through open fractures triggered by the<br />

daily blast<strong>in</strong>g operations <strong>in</strong> nearby stopes. Beside this<br />

sensitivity to gas compositional changes <strong>in</strong> the borehole,<br />

the analytical system, <strong>in</strong>clud<strong>in</strong>g a mass specetometer, is<br />

relative sophisticated and suffers under the harsh<br />

environment undergound. A series of technical problems<br />

caused long last<strong>in</strong>g data gaps <strong>in</strong> the time series and,<br />

therefore, made us miss just all of the m<strong>in</strong><strong>in</strong>g <strong>in</strong>duced<br />

seismic events dur<strong>in</strong>g the last 12 month. Still, we are<br />

encouraged to carry on with the gas monitor<strong>in</strong>g <strong>in</strong> this<br />

deepest produc<strong>in</strong>g m<strong>in</strong>e on earth <strong>in</strong> order to f<strong>in</strong>ally<br />

accomplish our orig<strong>in</strong>al goal: the monitor<strong>in</strong>g and<br />

quantification of gases released dur<strong>in</strong>g m<strong>in</strong><strong>in</strong>g <strong>in</strong>duced<br />

seismic events at magnitudes from –2 to above +2.<br />

At first, the composition of the major gas components<br />

<strong>in</strong> the borehole (N2, O2, 40Ar) is, expectedly, similar to<br />

that of the atmosphere. The trace concentrations of CH4,<br />

4He, CO2 and 222Rn cont<strong>in</strong>uously decl<strong>in</strong>ed <strong>in</strong> the course<br />

of the monitor<strong>in</strong>g experiment from <strong>in</strong>ital concentrations of<br />

about 900, 40, 3 and 18 times atmosperic levels,<br />

respectively.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Displayed is a time series for the period March 26th through April 1st, 2007. The measured concentration of H2 <strong>in</strong> the borehole gas<br />

(vol.%) (wiggled data with clear peaks, left axis) is jo<strong>in</strong>tly displayed with the cumulative moment release (Nm) from the nearest<br />

seismic station (step-function like graph, right axis,). The correlation of the tim<strong>in</strong>g of the events is strik<strong>in</strong>g and clearly identifies the<br />

blasts as the trigger for the spontaneous daily <strong>in</strong>crease of the H2 concentration <strong>in</strong> the borehole. Unfortunately, the seismic system<br />

did stop deliver<strong>in</strong>g data on Thursday, March 29th. On Sundays, no blast<strong>in</strong>g operations are performed. This is <strong>in</strong> agreement with the<br />

miss<strong>in</strong>g H2 peak on Sumday, April 1st, 2007.<br />

1<br />

DAFGAS: Drill<strong>in</strong>g Active Faults <strong>in</strong> South African M<strong>in</strong>es, DFG-<br />

<strong>ICDP</strong> funded project (Li872/3)<br />

We assume that the observed lower geogas concentrations<br />

after some weeks represent dynamic equilibrium<br />

concentrations caused by the cont<strong>in</strong>uous pump<strong>in</strong>g of gas<br />

(6 L per hour) from the borehole <strong>in</strong>to our analytical device<br />

and cont<strong>in</strong>uous recharge at the same rate (6 L per hour).<br />

This recharged gas is <strong>in</strong>terpreted to be a mixture that of air<br />

and geogas from the formation. The equilibrium<br />

concentrations of the trace gases <strong>in</strong> the borehole amount to<br />

about 640 ppm CO2, 190 ppm CH4, 60 ppm H2 and 18<br />

ppm 4He (weekly average of the week follow<strong>in</strong>g March,<br />

23rd, 2007).<br />

The particular sensitivity of our monitor<strong>in</strong>g devices to<br />

blast<strong>in</strong>g triggered geogas transport through an otherwise<br />

<strong>in</strong>active fault system is explicitely attestable by the<br />

significant correlation between CO2 and H2 peaks that<br />

show up simultaneously to the seismic signal measured at a<br />

nearby seismic station (≤ 4 m apart) <strong>in</strong>stalled and<br />

ma<strong>in</strong>ta<strong>in</strong>ed by the NELSAM 2 team. The strong correlation<br />

between the daily H2 peaks and the cumulative seismic<br />

moment release (Nm) is shown <strong>in</strong> the figure below.<br />

2 NELSAM: Natural Earthquake Laboratory <strong>in</strong> South African<br />

M<strong>in</strong>es, NSF-funded project (EAR0


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

231 Pa/ 230 Th from Atlantic Ocean sediments - a<br />

proxy for deep water circulation over the past<br />

30,000 years<br />

J. LIPPOLD 1 , M. CHRISTL 2 , A. HOFMANN 1 , F. BERNSDORFF 1 , Y.<br />

LAHAYE 3 , J. GRÜTZNER 4 , G. MOLLENHAUER 4 , A. MANGINI 1<br />

1<br />

Heidelberger Akademie der Wissenschaften, Heidelberg<br />

2<br />

Institute of Particle Physics, Laboratory of Ion Beam Physics,<br />

ETH Zurich<br />

3<br />

Institut für Geowissenschaften, Universität Frankfurt<br />

4<br />

Institut für Geowissenschaften, Universität Bremen<br />

231 Pa and 230 Th are produced at a constant activity rate<br />

of 0.093 <strong>in</strong> Ocean water. However, the 231 Pa/ 230 Th ratio<br />

recorded <strong>in</strong> Atlantic sediments is subject to temporal and<br />

spatial variations. Recently, 231 Pa/ 230 Th has been used as a<br />

proxy for the strength of the Atlantic meridional<br />

overturn<strong>in</strong>g (AMOC) and recent studies suggest that times<br />

of shifted 231 Pa/ 230 Th ratios are related with prom<strong>in</strong>ent<br />

cool<strong>in</strong>g or warm<strong>in</strong>g events support<strong>in</strong>g the conclusion that<br />

variations <strong>in</strong> the AMOC may <strong>in</strong>cite climate changes<br />

[McManus et al., 2004].<br />

However, there are still significant gaps <strong>in</strong> our<br />

understand<strong>in</strong>g of this proxy. In particular the impact of<br />

changes <strong>in</strong> particle flux and particle composition<br />

significantly alters the sedimentary 231 Pa/ 230 Th ratio<br />

limit<strong>in</strong>g the applicability of 231 Pa/ 230 Th as a proxy for the<br />

strength of the AMOC [Siddall et al., 2007] [Keigw<strong>in</strong> and<br />

Boyle, <strong>2008</strong>].<br />

For example, The relevance of the large upwell<strong>in</strong>g regions<br />

off North- and Southwest Africa as an additional s<strong>in</strong>k for<br />

231 Pa is not well understood, and the impact of boundary<br />

scaveng<strong>in</strong>g on the Atlantic 231 Pa/ 230 Th ratio is still a great<br />

matter of discussion. In response to a weaker AMOC, 231 Pa<br />

would reside longer <strong>in</strong> the ocean bas<strong>in</strong> and thus could be<br />

more efficiently trapped <strong>in</strong> the upwell<strong>in</strong>g regions. To<br />

approach this question we are measur<strong>in</strong>g sedimentary<br />

231 Pa/ 230 Th profiles from the open North- (ODP 983),<br />

West- (ODP 1063) and South-(ODP 1089) Atlantic Ocean.<br />

These records will be compared with those from three sites<br />

located at the West-African marg<strong>in</strong>s (GeoB 1711-4, GeoB<br />

3722-2 and GeoB 9508-5).<br />

Here we present first results from the ODP cores<br />

represent<strong>in</strong>g a North South transect across the open<br />

Atlantic Ocean. The 231 Pa data is obta<strong>in</strong>ed by ICP-MS and<br />

AMS, which to the first time was applied to measure 231 Pa<br />

[Christl et al., 2007].<br />

References:<br />

Christl, M., L. Wacker, J. Lippold and M. Suter (2007). "Protact<strong>in</strong>ium-231,<br />

a new radionuclide for AMS." NIM B 262.<br />

Keigw<strong>in</strong>, L. D. and E. A. Boyle (<strong>2008</strong>). "Did north Atlantic overturn<strong>in</strong>g halt<br />

17,000 years ago?" Paleoceanography <strong>in</strong> press.<br />

McManus, J. F., R. Francois, J. M. Gherardi, L. D. Keigw<strong>in</strong> and S. Brown-<br />

Leger (2004). "Collapse and rapid resumption of Atlantic meridional<br />

circulation l<strong>in</strong>ked to deglacial climate change." Nature 428.<br />

Siddall, M., T. F. Stocker, G. M. Henderson, F. Joos, M. Frank, N. R.<br />

Edwards, S. P. Ritz and S. A. Müller (2007). "Modell<strong>in</strong>g the<br />

relationship between 231Pa/230Th distribution <strong>in</strong> North Atlantic<br />

sediment and Atlantic meridional overturn<strong>in</strong>g circulation."<br />

Paleoceanography 22.<br />

231 Pa/ 230 Th at three ODP Sites 983 (Gardar Drift), 1063 (Bermuda Rise, compared to GGC5) and 1089 (Cape Bas<strong>in</strong>). ODP 1089 shows only low<br />

variability at low 231 Pa/ 230 Th levels dur<strong>in</strong>g the last 30 kyrs caused by Antarctic Pa-depleted waters prevail<strong>in</strong>g this location. In contrast ODP<br />

1063 (as do GGC5) displays <strong>in</strong>creased 231 Pa/ 230 Th dur<strong>in</strong>g He<strong>in</strong>rich-Stadials po<strong>in</strong>t<strong>in</strong>g at a weakened AMOC [McManus et al., 2004] or <strong>in</strong>creased<br />

<strong>in</strong>put of Si-rich southern waters [Keigw<strong>in</strong> and Boyle, <strong>2008</strong>]. Whereas ODP 983 <strong>in</strong>dicates high 231 Pa import dur<strong>in</strong>g the Holocene.<br />

87


88<br />

<strong>ICDP</strong><br />

Environmental response to volcanic and<br />

climatic events <strong>in</strong> NE Anatolia dur<strong>in</strong>g the last<br />

20,000 years based on annually lam<strong>in</strong>ated<br />

sediments from Lake Van<br />

T. LITT 1 , G. HEUMANN 1 , H-U. SCHMINCKE 2 , M. SUMITA 2<br />

1<br />

Paleontology, University of Bonn, Nussallee 8, 53115 Bonn<br />

2<br />

IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel<br />

Tephra layers drilled <strong>in</strong> 400 m-deep Lake Van<br />

(Anatolia) <strong>in</strong> 2004 have been studied structurally,<br />

texturally and compositionally for correlation between drill<br />

sites and with volcanic deposits on land<br />

(Schm<strong>in</strong>cke/Sumita). Analysis of equivalent deposits on<br />

the historically active caldera volcano Nemrut, the major<br />

supplier of tephra, will allow reconstruct<strong>in</strong>g larger volcanic<br />

events (Pl<strong>in</strong>ian fallout, pyroclastic flows and flank<br />

collapses), magma evolution and environmental impacts<br />

such as tsunamis. High-resolution pollen analyses based on<br />

the annually lam<strong>in</strong>ated lacustr<strong>in</strong>e sediments should reflect<br />

the impact of volcanic events on paleoenvironment<br />

(Litt/Heumann). The comparison between volcanic and<br />

climatically <strong>in</strong>duced vegetation changes will be analyzed.<br />

The goals of the paleoecological part of the project fall<br />

<strong>in</strong>to 3 major categories:<br />

Environmental impact of volcanic events <strong>in</strong> the lake<br />

Van region based on high-resolution pollen analysis;<br />

Environmental impact of climatic events especially<br />

dur<strong>in</strong>g the Weichselian Lateglacial based on highresolution<br />

pollen analysis;<br />

Comparison of both effects on vegetation with respect<br />

to rate of change, reaction and regeneration.<br />

Short-term effects of volcanic eruptions on vegetation<br />

can only be traced with a very f<strong>in</strong>e stratigraphical<br />

resolution. The lake Van records with their annually<br />

lam<strong>in</strong>ated lacustr<strong>in</strong>e sediments provide an extremely high<br />

time resolution. Thus, the sediment sequence with the<br />

<strong>in</strong>tercalated volcanic ash layers is an excellent archive for<br />

such an approach. However, episodic tephra <strong>in</strong>put from<br />

adjacent volcanoes <strong>in</strong>to Lake Van took place also dur<strong>in</strong>g<br />

the climatically <strong>in</strong>stable Lateglacial, which encompasses<br />

the time span between the Last Glacial Maximum and the<br />

Holocene (ca. 14,500 – 11,500 cal BP). Therefore,<br />

observed changes <strong>in</strong> pollen assemblages may have been<br />

also the result of Lateglacial climatic changes. The<br />

question on how cont<strong>in</strong>ental ecosystems, as reflected <strong>in</strong> the<br />

pollen record of lake Van, respond to high-amplitude and<br />

high-frequency climate changes dur<strong>in</strong>g the Lateglacial, will<br />

be answered based on event stratigraphy (biotic responses<br />

to the isotopic shifts). An additional aim of the proposed<br />

project is to extend the correlation and synchronization of<br />

Lateglacial sediment profiles from Europe towards the<br />

Near East <strong>in</strong>clud<strong>in</strong>g the varved sediments from Lake Van.<br />

Based on our ongo<strong>in</strong>g pollen analyses we have<br />

substantially <strong>in</strong>creased the sample resolution for the<br />

Lateglacial sequence and especially for the basal and top<br />

contacts of the tephra layers. Before the deposition of a<br />

tephra layer each sample conta<strong>in</strong> a known number of<br />

annual layers, usually c. 20 varves whereas after a tephra<br />

deposition each sample <strong>in</strong>cludes a known time span of c. 5-<br />

10 varves, because recent studies of the environment<br />

follow<strong>in</strong>g the Mt. St. Helens eruption on May 18, 1980,<br />

have shown that the affected vegetation outside the actual<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

blast zone recovers rapidly with<strong>in</strong> years. Additional<br />

sampl<strong>in</strong>g is required for the stable isotopes to obta<strong>in</strong> the<br />

same resolution as the pollen samples for the Lateglacial<br />

sequence.<br />

<strong>IODP</strong><br />

A Neogene Stratigraphic and<br />

Paleoenvironmental Transect across the<br />

Fram Strait (Arctic Ocean)<br />

MICHAEL SCHRECK, JENS MATTHIESSEN<br />

Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research (AWI),<br />

Am Alten Hafen 26, D-27568 Bremerhaven, Germany<br />

(Jens.Matthiessen@awi.de /Fax +49-47148311923 / Phone +49-<br />

471-4831-1568)<br />

(Michael.Schreck@awi.de /Fax +49-47148311923 /Phone +49-<br />

471-4831-1232)<br />

Despite sucessfully drill<strong>in</strong>g Neogene sediments dur<strong>in</strong>g<br />

ODP Legs 151 and 162 and <strong>IODP</strong> Expedition 302, the<br />

Neogene paleoenvironmental evolution <strong>in</strong> the cold water<br />

doma<strong>in</strong> of the Atlantic sector of the high northern latitudes<br />

is virtually unknown. This is partly due to a problematic<br />

chronostratigraphy of the largely biogenic carbonate and<br />

silica free hemipelagic sediments. Initial shipboard and<br />

shore-based studies have shown that organic-walled<br />

palynomorphs (d<strong>in</strong>oflagellate cysts, chlorophytes,<br />

acritarchs etc.) are a useful microfossil group but a<br />

consistent palynostratigraphy for high latitude sediments is<br />

still not available. To overcome this obstacle, a transect<br />

from the seasonally-ice covered Nordic Seas to the<br />

perennial ice-covered Arctic Ocean, consist<strong>in</strong>g of Sites<br />

907, 909, and M2A, is studied to calibrate<br />

palynostratigraphic datums versus magnetostratigraphy and<br />

apply this data on paleoenvironmental reconstructions for<br />

the period between ~16 and 3 Ma years. Numerous<br />

potentially valuable palynomorph datums have been<br />

identified but comparison with occurrences at other high<br />

latitude sites is presently hampered by taxonomically<br />

problematic taxa and an <strong>in</strong>consistent stratigraphic<br />

framework of ODP holes from the Atlantic sector of the<br />

high northern latitudes. A number of taxa must be restudied<br />

and age models of ODP holes must be revised and adjusted<br />

to ATNTS2004 before palynomorph datums can be<br />

calibrated and a comprehensive and consistent zonation for<br />

the polar doma<strong>in</strong>s can be established. These specific<br />

problems of high latitude palynostratigraphy are illustrated<br />

by describ<strong>in</strong>g the biogeographic and stratigraphic<br />

distribution of a number of palynomorph taxa and by<br />

discuss<strong>in</strong>g the implications of revised datums for high<br />

latitude chronostratigraphy.<br />

<strong>ICDP</strong><br />

Formation and characteristics of impact<br />

glasses - the Lake Bosumtwi and Chesapeake<br />

cases<br />

S. LUETKE 1 , A. DEUTSCH 1 , F. LANGENHORST 2 , R. SKALA 2<br />

1 Institut f. Planetologie, WWU Münster, Wilhelm-Klemm-Str. 10,<br />

D-48149 Münster; deutsca@uni-muenster.de<br />

2 Institut f. Geowissenschaften, FSU Jena, D-07749 Jena;<br />

falko.langenhorst@uni-jena.de<br />

Introduction: Various types of m<strong>in</strong>eral and rock melts<br />

orig<strong>in</strong>ate <strong>in</strong> crater<strong>in</strong>g events. Their orig<strong>in</strong> is still not


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

understood <strong>in</strong> detail despite <strong>in</strong>tense geochemical<br />

<strong>in</strong>vestigations and model<strong>in</strong>g attempts [1]. Glassy material<br />

(and their alteration products) may occur <strong>in</strong> different<br />

geological sett<strong>in</strong>gs <strong>in</strong> and around impact craters. In general,<br />

their composition reflects (i) the target composition, and<br />

(ii) the formation processes. This term <strong>in</strong>cludes orig<strong>in</strong> by<br />

melt<strong>in</strong>g or condensation after vaporization, peak<br />

temperatures, redox conditions, and variable cool<strong>in</strong>g rates.<br />

The Lake Bosumtwi crater, Ghana, W. Africa, as well<br />

as the buried Chesapeake Bay impact structure, VA,<br />

U.S.A., represent model cases for the <strong>in</strong>vestigation of the<br />

different impact-related melt lithologies: • Bosumtwi (age<br />

1.07 Ma, diameter D ~10 km) is the source crater for Ivory<br />

Coast (IVC) tektites and related microtektites, the fall-out<br />

suevites carry glass fragments, and the <strong>ICDP</strong> drill<strong>in</strong>g<br />

revealed a nearly unique cm-thick layer of glassy fall-back<br />

particles on top of the impact breccias [2-4]. • Chesapeake<br />

(late Eocene ~35 Ma, D <strong>in</strong>ner crater ~40 km, D brim ~80<br />

km [5]) is source of the North American tektite strewn<br />

field, and the Eyreville core of the <strong>ICDP</strong>-USGS drill<strong>in</strong>g<br />

project yielded <strong>in</strong> part glass-rich suevites <strong>in</strong> the depth<br />

<strong>in</strong>terval 1397 to 1474 m, and a variety of possible precursor<br />

rocks (granite, schist, pegmatite, mafics) <strong>in</strong> the lithic<br />

breccias below and above this layer [6]. Here we present<br />

results of a systematic geochemical and m<strong>in</strong>eralogical<br />

study of the different glasses.<br />

• Bosumtwi. Regard<strong>in</strong>g major and trace elements, tektites<br />

have a quite restricted, microtektites and fallback particles,<br />

and especially glass shards <strong>in</strong> the suevites a wider<br />

compositional range. These characteristics reflect <strong>in</strong> part<br />

the different precursor materials, for example Al-rich<br />

staurolith schists for some glass particles <strong>in</strong> the suevites.<br />

Other variations, e.g., <strong>in</strong> sodium content, may <strong>in</strong>dicate loss<br />

of more volatile elements related to the formation<br />

processes (Figure 1). A significant contribution of the up to<br />

25 m thick tropical soil layer to the IVC tektites – as<br />

requested by model<strong>in</strong>g - is evident from Sr-Nd systematics<br />

[7]. All glass types display similar REE patterns (Figure 2),<br />

which <strong>in</strong> turn compare well with the REE distribution <strong>in</strong><br />

phyllites-slates (the major precursor lithology [4]), while<br />

meta-graywackes, another important rock type <strong>in</strong> the target<br />

have lower REE contents. The IVC tektites are<br />

characterized by particularly high concentrations of the<br />

refractory elements Ba, Zr, and Nb.<br />

Figure 1. Alum<strong>in</strong>um and sodium vs.<br />

SiO2 <strong>in</strong> glassy materials that orig<strong>in</strong>ated<br />

<strong>in</strong> the Bosumtwi impact event.<br />

Analytical technique: JEOL JXA<br />

8900M Superprobe operat<strong>in</strong>g at 15 kV<br />

acceleration voltage, 5 nA sample<br />

current, and 5 µm defoc. beam, us<strong>in</strong>g a<br />

Moldavite tektite as <strong>in</strong>ternal standard.<br />

Figure 2. Average REE distribution patterns, normalized to the average upper cont<strong>in</strong>al crust (data by [8]), for (left) IVC tektites,<br />

microtektites, fallback particles, and target rocks (meta-graywackes and phyllites-slates) from <strong>ICDP</strong> drill core LB-08, and (right)<br />

three Bediasites (= belong to the North American tektite strewn field) specimen. The nearly complete overlap of the data reflects the<br />

high degree of homogeneity <strong>in</strong> this tektite group. Analytical technique: Element2 LA-ICP-MS (5Hz, 8-9J/cm2; Inst. f. M<strong>in</strong>eralogie,<br />

WWU Münster) us<strong>in</strong>g Si as <strong>in</strong>ternal, and NIST 612 as external standard. For tektites, 3 spots (ø 60 µm), and for microtektites and<br />

fallback particles 1 spot (ø 35 µm) per sample were measured.<br />

89


90<br />

Chesapeake. Suevite glasses show large chemical<br />

heterogeneity at the µm scale, <strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>complete<br />

mix<strong>in</strong>g dur<strong>in</strong>g melt<strong>in</strong>g of precursor rocks. In addition,<br />

totals on the order of 92-97 wt.% <strong>in</strong>dicate the onset of<br />

hydratisation although the glass is isotropic on the scale of<br />

the optical microscope. Crystallization of pyroxene and<br />

feldspar microliths occurs rather frequently <strong>in</strong> the<br />

schlieren-rich glass (Figure 3a).<br />

MgO (wt. %)<br />

5<br />

4<br />

3<br />

2<br />

1<br />

0<br />

mafic component?<br />

schist<br />

Bediasites<br />

pegmatite<br />

20 40 60 80 100 120<br />

SiO 2 (wt. %)<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Chemical variations <strong>in</strong> the glasses from suevites can be<br />

largely expla<strong>in</strong>ed by variations <strong>in</strong> the analysed target rocks<br />

(schist, granite, pegmatite), but an additional mafic<br />

component is required as precursor material (Figure 3b-d)<br />

to expla<strong>in</strong> Mg-Ti-rich and Si-poor glasses. The Bediasites<br />

(North American tektites), <strong>in</strong> contrast, are very<br />

homogeneous – <strong>in</strong>ternally as well as the whole group, as<br />

illustrated <strong>in</strong> Figure 2 for REE, and <strong>in</strong> Figures 3b-d for<br />

major elements.<br />

40<br />

30<br />

20<br />

SiO 2<br />

50<br />

50<br />

0 10 20 30 40 50<br />

a<br />

CaO + MgO<br />

Al2O3 + FeO<br />

b<br />

TiO 2 (wt. %)<br />

8<br />

6<br />

4<br />

2<br />

0<br />

10<br />

0<br />

schist<br />

100<br />

20 40 60 80 100 120<br />

SiO 2 (wt. %)<br />

c d<br />

90<br />

80<br />

70<br />

Ti-rich<br />

component<br />

Bediasites<br />

pegmatite<br />

Figure 3. Glassy material that orig<strong>in</strong>ated <strong>in</strong> the Chesapeake impact event. (a) Schlieren-rich glass particle with crystallites and<br />

partly hydrated areas, suevite ADE 38 CB depth 1428 m; // nicols. (b-d) Geochemical correlation diagrams <strong>in</strong> wt.% for Bediasites<br />

(red) and various glasses <strong>in</strong> suevites from core Eyreville B; XRF Philips PW 2400 and EMP Cameca SX50 data.<br />

60


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

The formation temperature of melts that now form the glass<br />

particles <strong>in</strong> the suevites, exceeded <strong>in</strong> some cases 1850°C<br />

(melt<strong>in</strong>g T of rutile) as examplified by the presence of<br />

m<strong>in</strong>ute titania phases that crystallized from melt (Figure 4).<br />

These high-temperature estimates for impact glasses are<br />

also <strong>in</strong> accordance with the occurrence of corroded zircons<br />

on impact melt melt breccias of the <strong>ICDP</strong> Chicxulub drill<br />

core YAX-1 [9].<br />

50 µm<br />

bubbles<br />

burst<br />

26 ppm H2O<br />

FeO<br />

#4<br />

#5<br />

#6 pseudo-<br />

#7 brookite<br />

#12<br />

ilmenite<br />

ulvösp<strong>in</strong>el<br />

860 ppm H2O<br />

TiO 2<br />

rutile<br />

magnetite<br />

Figure 4. Titanium-rich phases <strong>in</strong> suevitic glasses (left) back scatter electron image of sample FSU-CB012 depth 1407 m perlitic<br />

cracks; and (right) ternary diagram show<strong>in</strong>g the composition of titanium phases <strong>in</strong> suevitic glasses from Eyreville B.<br />

decomposition<br />

of carbonates<br />

Figure 5. Bediasite (left) H2O release at high T; suevite glass (center) H2O, and (right) CO and CO2 release. The tektite is<br />

exceptional dry, requir<strong>in</strong>g flash heat<strong>in</strong>g to extreme temperature. The glass fragment <strong>in</strong> the suevite didn’t loose all volatiles<br />

<strong>in</strong>dicat<strong>in</strong>g a lower formation temperature. Analytical technique: Direct coupled Evolved Gas Analysis System (DEGAS,<br />

FSU Jena), a comb<strong>in</strong>ation of thermogravimetry and quadrupole mass spectrometry with stepwise heat<strong>in</strong>g of samples up to<br />

1500°C, allow<strong>in</strong>g simultaneous detection of 28 masses between m/z = 1 to 200.<br />

CO 2<br />

release<br />

from<br />

glass<br />

91<br />

Fe 2 O 3


92<br />

The formation temperature of tektites is considered to be<br />

even higher. This case is strengthened by the new gas<br />

release data for Bediasites (Figure 5) and IVC tektites. The<br />

H2O and CO 2 contents <strong>in</strong> Bediasites (20-30 ppm H 2O) are<br />

dist<strong>in</strong>ctly lower than those of fresh suevitic glass (0.1 wt.%<br />

H2O); moreover, this H 2O content <strong>in</strong> Bediasites is 1 order<br />

of magnitude less than previously reported. Bediasite<br />

releases gases at much higher T than suevite glass,<br />

<strong>in</strong>dicat<strong>in</strong>g a different type of bond<strong>in</strong>g. In addition,<br />

Bediasites conta<strong>in</strong> reduced gas species (e.g., CO). These<br />

results match closely those reported by [10] for Bosumtwi<br />

related glasses, namely glass shards <strong>in</strong> suevites and IVC<br />

tektites. The glass shards are relatively rich <strong>in</strong> volatile<br />

components: The ~3 % wt.% H2O are released ma<strong>in</strong>ly <strong>in</strong><br />

the low temperature (< 300 °C) regime from clay m<strong>in</strong>erals<br />

which l<strong>in</strong>e bubbles, and which hence, can not be<br />

considered as glass alteration product. In addition, these<br />

glasses contaion CO2 (0.28 %) and SOx. The IVC tektites<br />

are like Bediasites extremely depleted <strong>in</strong> gases; they<br />

conta<strong>in</strong> only H 2O (~100 ppm), CO 2 and CO (<strong>in</strong> higher<br />

conc. than CO2) <strong>in</strong> trace amounts. The detection of CO <strong>in</strong><br />

Bediasites and IVC tektites is the first report of this gas<br />

species <strong>in</strong> tektites.<br />

The presence of CO, the total lack of ferric iron, and<br />

the extremely low volatile content underl<strong>in</strong>e the conclusion<br />

that tektites are formed at very high temperatures under<br />

highly reduc<strong>in</strong>g conditions followed by fast quench<strong>in</strong>g.<br />

Chemical homogeneity probably reflect more the<br />

melt/ejection process than homogeneity of the precursor<br />

materials. The compositional variance of glass shards <strong>in</strong> the<br />

suevites obviously is a corollary of heterogeneities <strong>in</strong> the<br />

target. Melt<strong>in</strong>g occurs also at quite high temperatures, yet<br />

<strong>in</strong>complete loss of volatiles as well as the presence of<br />

crystallites po<strong>in</strong>t to a different T-t path. The groups of<br />

fallback melt particles and microtektites show more<br />

compositional variations although <strong>in</strong>dividual spherules are<br />

composed quite homogeneously; the variations are ascribed<br />

to properties of the precursor materials. Both groups of<br />

spherules may have been formed by condensation, the<br />

presence of dendritic crystals <strong>in</strong> the microtektites <strong>in</strong>dicate a<br />

slighlty slower cool<strong>in</strong>g process <strong>in</strong> comparison to the<br />

fallback material.<br />

We appreciate support by DFG grants De 401/19-1, La<br />

830/7-1 (Bosumtwi), De 401/21-1, and La 830/12-1<br />

(Chesapeake). Skillful sample preparation was carried out<br />

by U. Heitmann (Münster); J. Berndt (Münster) is<br />

acknowledged for help with the microprobe and LA-ICP-<br />

MS analyses.<br />

References:<br />

[1] Artemieva, N. (2002) In: Impacts <strong>in</strong> Precambrian Shields (eds. J. Plado<br />

and L.J. Pesonen) Spr<strong>in</strong>ger, Berl<strong>in</strong> – Heidelberg, 257-276.<br />

[2] Deutsch, A. et al. (2007), MAPS, 42, 635-654.<br />

[3] Koeberl, C. et al. (2007) MAPS, 42, 709-729.<br />

[4] Ferrière, L. et al. (2007) MAPS, 42, 667-688.<br />

[5] Coll<strong>in</strong>s, G.S., Wünnemann K. (2005) Geology, 33, 925 - 928, ISSN:<br />

0091-7613.<br />

[6] Gohn, G. et al. (2006) EOS, 87(35), 349-360.<br />

[7] Luetke, S. et al. (2007) Abstract <strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> Potsdam 2007,<br />

Abstract vol. 88.<br />

[8] Rudnick, R.L. and Gao, S. (2004) In: Treatise on Geochemistry (ed.<br />

H.D. Holland) Elsevier, Amsterdam, 1-56.<br />

[9] Deutsch, A. and Langenhorst, F. (2007) GFF 129, 155-160.<br />

[10] Langenhorst, F. et al. (2007) Abstract <strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong><br />

Potsdam 2007, Abstract vol. 88.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Investigation of microbial <strong>in</strong>dicators at the<br />

mound base of Challenger mound <strong>in</strong> the<br />

Belgica carbonate mound prov<strong>in</strong>ce<br />

(Porcup<strong>in</strong>e bas<strong>in</strong>, offshore Ireland)<br />

K. MANGELSDORF 1 , R. DI PRIMIO 1 , B. CRAGG 2 , B. HORSFIELD 1<br />

AND <strong>IODP</strong> EXPEDITION 307 SCIENTIFIC PARTY<br />

1<br />

GeoForschungsZentrum Potsdam, Telegrafenberg B423, 14473<br />

Potsdam, e-mail: K.Mangelsdorf@gfz-potsdam.de<br />

2<br />

School of Earth, Ocean and Planetary Sciences, University of<br />

Cardiff, PO Box 914, Cardiff, CF10 3YE, UK<br />

Cold water corals occur along the north-eastern<br />

Atlantic cont<strong>in</strong>ental marg<strong>in</strong>s form<strong>in</strong>g small isolated<br />

colonies to giant mound structures. In May 2005 sediment<br />

material drilled dur<strong>in</strong>g <strong>IODP</strong> Leg 307 on and adjacent to<br />

the Challenger mound <strong>in</strong> the Belgica carbonate mound<br />

prov<strong>in</strong>ce (Porcup<strong>in</strong>e bas<strong>in</strong>) provided a rare opportunity to<br />

ga<strong>in</strong> a first <strong>in</strong>sight <strong>in</strong>to the <strong>in</strong>itiation and growth of this<br />

remarkable deep water carbonate formations.<br />

In a previous study (the Geomound project) Naeth et al.<br />

(2005) revealed <strong>in</strong> a computer simulations of the bas<strong>in</strong><br />

history, undertaken at GFZ Potsdam, that below the<br />

carbonate mounds <strong>in</strong> the Belgica mound prov<strong>in</strong>ce<br />

(Porcup<strong>in</strong>e bas<strong>in</strong>, offshore Ireland) specific sandstones<br />

from Cretaceous and Tertiary sequences represent<br />

important migration pathways for natural gases to the<br />

surface. Hydrocarbon gases migrat<strong>in</strong>g to the surface can<br />

form a food source for microbial communities stimulat<strong>in</strong>g<br />

microbial activity at the sediment water <strong>in</strong>terface. Microbes<br />

oxidiz<strong>in</strong>g methane (aerobically and anaerobically) might<br />

have formed carbonate crusts be<strong>in</strong>g potential areas for cold<br />

water coral colonisation.<br />

Prelim<strong>in</strong>ary results show that microbial populations<br />

with<strong>in</strong> the mound <strong>in</strong>terval are only below the average<br />

prediction l<strong>in</strong>e of the trend observed <strong>in</strong> other <strong>IODP</strong> or ODP<br />

sites (Parkes et al., 2000). In contrast to this, at and below<br />

the mound base the cell counts together with the number of<br />

divid<strong>in</strong>g cells are <strong>in</strong>creas<strong>in</strong>g and plot above the average<br />

prediction l<strong>in</strong>e <strong>in</strong>dicat<strong>in</strong>g population growth at this<br />

sedimentary <strong>in</strong>terval. Low numbers of liv<strong>in</strong>g microbes are<br />

also <strong>in</strong>dicated by traces of phospholipids be<strong>in</strong>g only stable<br />

<strong>in</strong> <strong>in</strong>tact cell over geological times. Concomitantly, the<br />

<strong>in</strong>crease <strong>in</strong> cells is accompanied with the significant<br />

occurrence of methane and a decrease <strong>in</strong> pore water<br />

sulphate, suggest<strong>in</strong>g methane oxidation is tak<strong>in</strong>g place at<br />

this depth. However, the overlap of these two gradients is<br />

very broad (about 30 m) <strong>in</strong>dicat<strong>in</strong>g very low metabolic<br />

rates. Gas wetness and carbon as well as hydrogen isotope<br />

<strong>in</strong>vestigations of methane po<strong>in</strong>t to a mixed gas from<br />

biogenic and thermogenic sources suggest<strong>in</strong>g that at least a<br />

part of the migrat<strong>in</strong>g gas is from a thermogenic much<br />

deeper source. Microbiological labell<strong>in</strong>g experiments<br />

<strong>in</strong>dicate that the biogenic gas was not generated <strong>in</strong> situ and,<br />

therfore, must migrate also from a deeper source. Oil<br />

hydrocarbons were not detected <strong>in</strong> the <strong>in</strong>vestigated<br />

sediments. In sediment samples from the upper few meters<br />

below the mound base an H2S smell was recognized<br />

<strong>in</strong>dicat<strong>in</strong>g the reduction of sulphate. Microbial biomarkers<br />

(hopanoids) are low <strong>in</strong> the mound section, but <strong>in</strong>crease<br />

significantly below the mound base <strong>in</strong>dicat<strong>in</strong>g at least a<br />

higher proportion of dead microbial biomass at this<br />

<strong>in</strong>terval. Very light isotopic carbon signatures of <strong>in</strong>dividual<br />

microbial compounds, <strong>in</strong>dicat<strong>in</strong>g the assimilation of


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

methane carbon dur<strong>in</strong>g methanotrophy, were not detected<br />

up to now.<br />

Seismic profiles show that the mound base consists of a<br />

plane and an slope section. Cores were only obta<strong>in</strong>ed from<br />

the slope part. The mound base identified <strong>in</strong> the drilled<br />

cores is an erosional surface above middle Miocene<br />

sediments. The base is <strong>in</strong>deed firm but not a lithified hard<br />

ground, where coral would be able to settle on. Therefore,<br />

it seems that the nucleus of the mound <strong>in</strong>itiation was not<br />

drilled dur<strong>in</strong>g Leg 307. Thus, it is still unclear what the<br />

start<strong>in</strong>g po<strong>in</strong>t of the carbonate mound is: carbonate hard<br />

crusts, drop stones, mussel beds etc. In case of challenger<br />

mound it is suggested that the nucleus is located <strong>in</strong> the<br />

plane section of the mound base.<br />

References:<br />

EN.REFLISTNaeth, J. et al., 2005. Hydrocarbon seepage and carbonate<br />

mound formation: a bas<strong>in</strong> modell<strong>in</strong>g study from the Porcup<strong>in</strong>e Bas<strong>in</strong><br />

(offshore Ireland). Journal of Petroleum Geology 28 (2), 43-62.<br />

<strong>IODP</strong><br />

A simplified transfer function to estimate 2D<br />

mar<strong>in</strong>e gas hydrate <strong>in</strong>ventories<br />

M. MARQUARDT 1 , T. HENKE 2 , R. GEHRMANN 3 , C. HENSEN 1 , C.<br />

MÜLLER 2 , K. WALLMANN 1<br />

1<br />

IFM-Geomar, Wischhofstrasse 1-3, 24148 Kiel<br />

2<br />

Federal Institute for Geosciences and Natural Resources (BGR),<br />

Stilleweg 2, 30655 <strong>Hannover</strong><br />

3<br />

University of Leipzig, Talstrasse 35, 04103 Leipzig<br />

Offshore gas hydrate (GH) <strong>in</strong>ventories have been<br />

quantified so far either by the use of available pore water<br />

data (usually restricted to ODP drill sites) or by the<br />

<strong>in</strong>terpretation of seismic records. The results derived from<br />

these two methods very often revealed <strong>in</strong>deed significant<br />

differences <strong>in</strong> terms of quantity and distribution.<br />

In the project HYDRA a complementary approach has<br />

been developed us<strong>in</strong>g geochemical reactive-transport<br />

models and geophysical rock physics modell<strong>in</strong>g to quantify<br />

regional GH <strong>in</strong>ventories. Our prelim<strong>in</strong>ary result presented<br />

here is a simplified general transfer function which can be<br />

used to calculate 2D GH volumes. Derivation of the<br />

transfer function required a thorough sensitivity analysis of<br />

the most important control parameters <strong>in</strong> a transportreaction<br />

model (Figure 1). The six most important control<br />

parameters are the sedimentation rate, water depth, sea<br />

bottom temperature, thermal gradient, depth of anaerobic<br />

methane oxidation (AOM) and the potential GH occurrence<br />

zone (GHOZ). The GHOZ limited either by the end of the<br />

sediment column or by the GH stability field.<br />

In addition, six geochemical transport-reaction models<br />

constra<strong>in</strong>ed on DSDP/ ODP drill Sites 685, 1230, 1233,<br />

1040, 1041 and 1043 (Costa Rica, Peru and Chile) have<br />

been developed to obta<strong>in</strong> the natural variance of the<br />

different parameters and respective the result<strong>in</strong>g GH<br />

concentrations (Figure 2).<br />

In order to derive the general simplified transfer<br />

function, the six control parameters and the respective<br />

result<strong>in</strong>g GH concentration from each model have been<br />

used to set up <strong>in</strong> an ord<strong>in</strong>ary differential equation system<br />

(ODE). Six coefficients (u, v, w, x, z) result from solv<strong>in</strong>g<br />

the ODE, which will be multiplied by the regional<br />

parameters to obata<strong>in</strong> gas hydrate concentrations. The<br />

transfer function is given as:<br />

GH = u * Sedimentationrate + v * Thermal-gradient +<br />

w * AOM-depth + x * Waterdepth + y * Potential-GHOZ +<br />

z * Surfacetemperature<br />

GH is the maximum potential of average GH<br />

concentration <strong>in</strong> vol.% <strong>in</strong> the GH occurrance zone.<br />

u, v, w, x, y, z are the respective determ<strong>in</strong>ed<br />

coefficients of parameters.<br />

Apply<strong>in</strong>g the general function requires <strong>in</strong>corporation of<br />

aforementioned regional parameters i.e. water depth,<br />

sediment thickness (potential GHOZ), sedimentation rate,<br />

thermal gradient, sea bottom temperature, and AOM data.<br />

AOM depth and sedimentation rate have to be obta<strong>in</strong>ed by<br />

sediments and pore water from gravity cores.<br />

Interpretations of seismic records yield waterdepth, thermal<br />

gradient and sediment thickness. Therefore a velocity<br />

analysis calculat<strong>in</strong>g the seismic velocities vp and vs from<br />

the elastic moduli and the rock density (effective medium<br />

theory), planar <strong>in</strong>formation of sediment thickness, and the<br />

thermal gradient have been applied. Sensitive parameters <strong>in</strong><br />

the geophysical model (e.g. porosity) were calibrated<br />

aga<strong>in</strong>st the geochemical model <strong>in</strong> order to ma<strong>in</strong>ta<strong>in</strong> two<br />

coherent and valid models.<br />

The project aims at the accurate estimation of marg<strong>in</strong>wide<br />

GH <strong>in</strong>ventories. First results are a 2D distribution<br />

transect of gas hydrate concentration along the seismic l<strong>in</strong>e<br />

BGR99-44 across ODP sites 1040 and 1041 on the<br />

cont<strong>in</strong>ental slope (Figure 3). Along that profile a dense data<br />

mesh exists from the cruises M-54, SO-173 and BGR-99.<br />

The appliccation of the transfer function on that profile<br />

has been done <strong>in</strong> 625m <strong>in</strong>tervals. For every s<strong>in</strong>gle <strong>in</strong>terval<br />

all control parameters had to be determ<strong>in</strong>ed. Pore water<br />

data from the gravity cores along that profile have been<br />

used to determ<strong>in</strong>e the AOM depth by <strong>in</strong>terpolation along<br />

the profile. Sedimentation rate is assumed to be constant<br />

and has been published by Kimura et al. (1997). The<br />

thermal gradient is determ<strong>in</strong>ed from Langseth and Silver<br />

(1996). The sediment thickness and the visible BSR-depth<br />

of the profile have been calculated by the aforementioned<br />

velocity analysis. The result<strong>in</strong>g GH concentrations are<br />

vary<strong>in</strong>g between 0 and 3 vol.% of porespace. Figure 4<br />

shows the distribution along the marg<strong>in</strong>.<br />

As the gas hydrate zone widens with <strong>in</strong>creas<strong>in</strong>g<br />

sediment thickness and a subsid<strong>in</strong>g BSR the potential of<br />

gas hydrate formation <strong>in</strong>creases significantly. Towards the<br />

upper slope the concentration is also <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>dicated<br />

by the shallower AOM depth (shallow AOM depth means<br />

high POC degradation rate).<br />

Integration of the GH bear<strong>in</strong>g sediments along the<br />

seismic profile and subsequent extrapolation onto 1 km of<br />

cont<strong>in</strong>ental marg<strong>in</strong> yield a potential of 31.4 10 12 g CH 4 /<br />

km.<br />

References:<br />

Kimura G., Silver E., Blum P., et al., (1997): Proc. ODP, Init. Repts., 170:<br />

College Station, TX (Ocean Drill<strong>in</strong>g Program).<br />

Langseth and Silver (1996): The Nicoya convergent marg<strong>in</strong> - a region of<br />

exceptionally low heat flow. Geophysical Research Letters, Vol 23, S.<br />

891 - 894.<br />

Marquardt, M., Henke, T., Gehrmann, R., Hensen, M., Müller, C.: Gas<br />

hydrate quantification: A general function allow<strong>in</strong>g for regional<br />

conditions to estimate 2D–gas hydrate <strong>in</strong>ventories by means of<br />

comb<strong>in</strong>ed geochemical and geophysical modell<strong>in</strong>g. In prep.<br />

93


94<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Figure 1: The effect of chang<strong>in</strong>g <strong>in</strong>dividual model parameters on GH concentration. Six parameters have been chosen to determ<strong>in</strong>e the<br />

transfer function. The AOM depth has been selected <strong>in</strong>stead of the POC degradation because AOM depth is easier to determ<strong>in</strong>e.<br />

Figure 2: Three of the six ODP Sites have been used for the derivation of the transfer function. The profiles show the measured data (red<br />

dots) and the model concentrations (black l<strong>in</strong>es). The blue l<strong>in</strong>e shows the maximum solubility of dissolved CH4 <strong>in</strong> porewater. GH starts to<br />

precipitate below the depth of saturation.<br />

ODP Sites 1040, 1041<br />

BGR 99-44<br />

Figure 3: Map of Costa Rica with the seismic profile BGR-99-44 (blue l<strong>in</strong>e) and the ODP Sites 1040 and 1041 (blue arrow). It shows the<br />

exist<strong>in</strong>g data mesh: heatflow data (black dots), seismic profiles (red l<strong>in</strong>es) and gravity cores (coloured dots).<br />

Depth [m] Depth [m]


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Redox sensitivity of P and Fe cycl<strong>in</strong>g dur<strong>in</strong>g<br />

Late Cretaceous black shale formation<br />

C. MÄRZ 1, 2 , S.W. POULTON 3 , B. BECKMANN 4, 5 , K. KÜSTER 1 , T.<br />

WAGNER 3 1, 6<br />

, S. KASTEN<br />

1<br />

Department of Geosciences,University of Bremen, Klagenfurter<br />

Str., 28359 Bremen, Germany (*correspond<strong>in</strong>g author: Email:<br />

cmaerz@uni-bremen.de, Tel.: +421 218 3927)<br />

2<br />

Microbiogeochemistry, ICBM, University of Oldenburg, Carlvon-Ossietzky-Strasse<br />

9-11, 26129 Oldenburg, Germany<br />

(cmaerz@icbm.de, Tel.: +441 798 3627)<br />

3<br />

School of Civil Eng<strong>in</strong>eer<strong>in</strong>g and Geosciences, University of<br />

Newcastle, NE1 7RU, Newcastle upon Tyne, UK<br />

4<br />

Institute for Geology and M<strong>in</strong>eralogy, University of Cologne,<br />

Zülpicher Str. 49a, 50674 Cologne, Germany<br />

5<br />

Federal Institute for Geosciences and Natural Resources,<br />

Stilleweg 2, 30655 <strong>Hannover</strong>, Germany<br />

6<br />

Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Am<br />

Handelshafen 12, 27570 Bremerhaven, Germany<br />

Widespread deposition of organic-rich, often<br />

metalliferous mar<strong>in</strong>e sediments, usually referred to as black<br />

shales, is generally believed to have occurred under very<br />

special oceanic conditions. Dur<strong>in</strong>g ODP Leg 207 to<br />

Demerara Rise, a thick Mid- to Late Cretaceous black shale<br />

succession, <strong>in</strong>clud<strong>in</strong>g the Oceanic Anoxic Events (OAEs) 2<br />

and 3, was recovered. We <strong>in</strong>vestigated OAE 3 sediments<br />

(Santonian-Coniacian) conta<strong>in</strong><strong>in</strong>g between 3-12 wt% TOC<br />

from Sites 1259 and 1261 <strong>in</strong> high resolution by means of<br />

<strong>in</strong>organic geochemical analysis (major and m<strong>in</strong>or elements,<br />

P and Fe speciation). The focus of this <strong>in</strong>vestigation is the<br />

cycl<strong>in</strong>g of the important nutrient P <strong>in</strong> the water column and<br />

sediment, especially its sensitivity to chang<strong>in</strong>g redox<br />

conditions and its coupl<strong>in</strong>g to the cycles of Fe and organic<br />

matter. From records of the redox-sensitive trace metals<br />

Cd, Mn, Mo, Ni, V and Zn, it is evident that at both studied<br />

sites the redox conditions of bottom waters and sediments<br />

were highly variable. The redox state ranged from sulfidic<br />

to anoxic, non-sulfidic, while fully oxic conditions at the<br />

sea floor were never reached dur<strong>in</strong>g the respective time<br />

period. The observed fluctuations of the redox state<br />

obviously followed an astronomically forced cyclicity,<br />

which is also visible <strong>in</strong> the bulk P record. Although P is<br />

generally depleted <strong>in</strong> the studied sediments – a well-known<br />

phenomenon <strong>in</strong> anoxic sett<strong>in</strong>gs, result<strong>in</strong>g <strong>in</strong> C/P ratios of<br />

up to 300 -, there are marked P peaks that are paralleled by<br />

lowest TOC/Al, S/Al values and lowest trace element<br />

enrichments. Thus, these P peaks were obviously formed<br />

dur<strong>in</strong>g periods of less reduc<strong>in</strong>g conditions, i.e. anoxic, nonsulfidic<br />

bottom waters. Sequential extractions of P and Fe<br />

species reveal that most of the P <strong>in</strong> these peaks is bound to<br />

authigenic apatite, but also to Fe (oxyhydr)oxides. Based<br />

on these observations, we draw a schematic model of the<br />

redox development of bottom waters and sediments dur<strong>in</strong>g<br />

deposition of the <strong>in</strong>vestigated black shale <strong>in</strong>tervals.<br />

<strong>IODP</strong><br />

Physical Rock Properties of the Chesapeake<br />

Bay Impact Structure<br />

SIBYLLE I. MAYR 1 , YURI POPOV 2 , HANS BURKHARDT 1 , DENIS N.<br />

GOROBTSOV 2 , RAISA A. ROMUSHKEVICH 2 . HELMUT WILHELM 3 ,<br />

PHILIPP HEIDINGER 3 ,<br />

1 Fachgebiet Angewandte Geophysik, Institut für Angewandte<br />

Geowissenschaften Technische Universität Berl<strong>in</strong><br />

2 Russian State Geological Prospect<strong>in</strong>g University, Russia.<br />

3 Geophysikalisches Institut Universität Karlsruhe (TH)<br />

The borehole Eyreville was drilled <strong>in</strong> 2005 <strong>in</strong>to the<br />

Chesapeake Bay Impact Structure (Gohn et al 2006). It is<br />

located <strong>in</strong> the moat of the central crater that surrounds the<br />

central uplift and is totally cored from 127 to the f<strong>in</strong>al<br />

depth (1766 m). The aim of our projects is the physical<br />

characterisation of the cored lithology and to supply basic<br />

data for geophysical field <strong>in</strong>vestigations. Furthermore the<br />

project contributes to a better understand<strong>in</strong>g of correlation<br />

between petrophysical properties and both the<br />

m<strong>in</strong>eralogical composition and the texture of the rocks, and<br />

by this the <strong>in</strong>fluence of an impact on petrophysical<br />

properties. The project is based on a previous project<br />

deal<strong>in</strong>g with the Chicxulub impact crater (Popov et<br />

al.2004, Mayr et al. 2007, Mayr et al., forthcom<strong>in</strong>g)<br />

Figure 1: Top: Thermal conductivity parallel to bedd<strong>in</strong>g<br />

(TC par) versus porosity. Bottom: P-wave velocity<br />

perpendicular to core axis (~ parallel to bedd<strong>in</strong>g) versus<br />

porosity.Porosity is measured on dry samples: (post<br />

impact clay, Exmore Sediment Breccia) and saturated<br />

samples (granite, suevite and lithic breccia, schist and<br />

pegmatite).<br />

95


96<br />

Approx. 330 samples cover<strong>in</strong>g the complete cored depth<br />

<strong>in</strong>terval with equidistant sampl<strong>in</strong>g (approximately 5 m)<br />

were chosen for the determ<strong>in</strong>ation of thermal parameters<br />

(thermal conductivity, anisotropy and <strong>in</strong>homogeneity and<br />

thermal diffusivity tensor components), density and<br />

porosity. Ultrasonic P- and S-wave velocity was measured<br />

on a subgroup of samples: all mechanically stable samples<br />

and samples that were geometrically suitable for the<br />

measurement cell without further preparation. For most<br />

granites (1096 m – 1371 m) and selected suevites, breccia<br />

(1391 m – 1557 m), schists and pegmatites (below 1557 m)<br />

the measurements were performed under dry and fully<br />

saturated conditions. Measurements on sedimentary postimpact<br />

clay (127 - 444 m) and Exmore sediment Breccia<br />

(444 m - 1096 m) were performed only on vacuum dry<br />

samples due to possible des<strong>in</strong>tegration of samples dur<strong>in</strong>g<br />

saturation.<br />

Figure 1 shows that <strong>in</strong> general the porosity is the most<br />

dom<strong>in</strong>ant factor that <strong>in</strong>fluences the physical properties. For<br />

the <strong>in</strong>dividual lithological units this trend is partly obscured<br />

by additional <strong>in</strong>fluence of m<strong>in</strong>eralogical composition and<br />

texture. In post-impact sediments the highest porosities are<br />

found, lead<strong>in</strong>g to low thermal conductivities and velocities.<br />

Rocks of the Exmore sediment-clast breccia and Exmore<br />

sediment megablocks have lower porosities.<br />

The cluster<strong>in</strong>g of data for samples from below 1096 m<br />

(granite, suevite and lithic breccia, basement rocks: schist<br />

and pegmatite) <strong>in</strong> lithological groups is h<strong>in</strong>dered by the<br />

<strong>in</strong>fluence of m<strong>in</strong>eral content and texture (e.g. micro-cracks)<br />

too, and does not allow a clear dist<strong>in</strong>ction between the<br />

s<strong>in</strong>gle groups.<br />

For the correlation between seismic velocity and<br />

thermal conductivity there is <strong>in</strong> a general positive trend<br />

(Figure 2), but due to data scatter<strong>in</strong>g no applicable<br />

correlation function is appropriate. Some peculiarities can<br />

be seen: for <strong>in</strong>stance post-impact sediments can be<br />

dist<strong>in</strong>guished from Exmore Breccia due to relatively low<br />

velocities and higher thermal conductivity.<br />

Figure 2: P-wave velocity versus thermal conductivity (TC)<br />

dry.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

In the post impact sedimentary rocks low bulk densities<br />

of dry rocks are measured (Figure 3). A dist<strong>in</strong>ct m<strong>in</strong>imum<br />

is observed <strong>in</strong> the depth range from ~250 to ~350 m (below<br />

1 g/cm 3 ). This can be expla<strong>in</strong>ed by the existence of<br />

siliceous shells, Diatoms (R. Bussert, L. Edwards pers.<br />

communication) lead<strong>in</strong>g to closed porosity. In the Exmore<br />

sediments the density of solid material ρmtx is more or less<br />

constant (approximately 2.6 g/cm 3 ). The P-wave velocities<br />

<strong>in</strong> the high porosity (27% - 67%) post-impact and Exmore<br />

sediments above 1100 m lie between 1.2 and 3 km/s (dry<br />

rocks), Figure 3 (5).<br />

The partly high <strong>in</strong>homogeneity Figure 3 (4) <strong>in</strong> sample<br />

scale (up to 60%) of thermal conductivity for post-impact<br />

clays is due to layer<strong>in</strong>g (lead<strong>in</strong>g to fractures <strong>in</strong> dry rocks!).<br />

The high <strong>in</strong>homogeneity of thermal conductivity of<br />

Exmore sediments is due to variations <strong>in</strong> m<strong>in</strong>eralogical<br />

composition (Breccia). In the measured temperature<br />

gradient, the post-impact unit can be del<strong>in</strong>eated from the<br />

Exmore sediments, see Figure 3 (6). Regions with higher<br />

temperature gradient (~650 m - ~750 m) correlate with<br />

units of oxidised clay and silt. A slightly lower temperature<br />

gradient is observed <strong>in</strong> the sandstone units.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Figure 3: Selected logs of measured data: (1) dry bulk density ρdry and density of solid material ρmtx, (2) porosity Φ bmeasured <strong>in</strong> dry<br />

sedimentary (unstable) and saturated stable samples, (3) thermal conductivity par to bedd<strong>in</strong>g (λdry and λsat), (4) Thermal<br />

<strong>in</strong>homogeneity, (5) P-wave velocity perpendicular to core axis (~par to bedd<strong>in</strong>g) dry and saturated and (5) Logs of reduced measured<br />

temperature, (Temp - 22°-0.024°/m * Depth), measured May 2006 under +/- stationary conditions. The temperature-gradient<br />

(calculated us<strong>in</strong>g Δz = 1.4m). No temperature log is available below 1100 m.<br />

97


98<br />

In the Granitic section P-wave velocities between 5.8 and<br />

6.5 km/s are found (saturated rocks), typical for low<br />

porosity granite. The thermal conductivity and the density<br />

reflect the vary<strong>in</strong>g m<strong>in</strong>eralogical content (biotite, quartz,<br />

feldspar, pers. com. R.L. Gibson, and chemical analysis by<br />

R. Bussert). Furthermore the gra<strong>in</strong> size of the granite<br />

differs. The physical properties (density, thermal<br />

conductivity, P- and S-wave velocity) are <strong>in</strong> correlation<br />

with this gra<strong>in</strong> size. The reason for this has to be further<br />

<strong>in</strong>vestigated.<br />

In the suevite-lithic breccia section and the schistpegmatite<br />

section the P-velocities are significantly lower<br />

(2.8 - 5.8 km/s) whereas density of solid material is partly<br />

higher than <strong>in</strong> the granites due to different m<strong>in</strong>eral content<br />

(amphibolite, pyrite, muscovite, pers. com W. U. Reimold,<br />

and chemical analysis by Robert Bussert). The velocity<br />

values can be expla<strong>in</strong>ed by both, higher porosity (up to 22<br />

%) and higher amount of micro-cracks <strong>in</strong> the rocks.<br />

Thermal <strong>in</strong>homogeneity is significant <strong>in</strong> most cases and<br />

reaches up to 70 %. This is an <strong>in</strong>dication for the complex<br />

structure of the rocks (breccia). In the suevite-lithic breccia<br />

section the porosities are higher than <strong>in</strong> the granites above<br />

and the schist-pegmatite section below, lead<strong>in</strong>g to lower<br />

thermal conductivity and P-wave velocity. In the schistpegmatite<br />

section the variation of velocity and thermal<br />

conductivity is high due to fractur<strong>in</strong>g of both types of<br />

rocks.<br />

The <strong>in</strong>ternal surface reflects the different type of rocks<br />

with different micro-morphology (not shown). Internal<br />

surface of clay is significantly higher than that of sandstone<br />

due to lamellar structure of clay m<strong>in</strong>erals. Internal surface<br />

of granite is <strong>in</strong> general lower than of rocks of the suevite<br />

and the schist-pegmatite section. The differences have to be<br />

further <strong>in</strong>vestigated by analysis of SEM-images.<br />

Conclusions<br />

S<strong>in</strong>ce no logs (besides gamma and temperature) are<br />

available, laboratory measurements present the only<br />

possibility of obta<strong>in</strong><strong>in</strong>g <strong>in</strong>formation about velocity, density<br />

and thermal conductivity for the <strong>in</strong>terpretation of<br />

geophysical field data.<br />

The physical properties allow a dist<strong>in</strong>ction between the<br />

lithological units.<br />

A complete analysis of all parameters (<strong>in</strong>clud<strong>in</strong>g the<br />

analysis of the microstructure) on the same samples has to<br />

be performed. Furthermore these data are necessary for the<br />

application of e. g. mix<strong>in</strong>g models, petrophysical model<strong>in</strong>g<br />

c.f. Mayr and Burkhardt, 2006.<br />

Dense sampl<strong>in</strong>g is necessary especially <strong>in</strong> the f<strong>in</strong>e<br />

layered Exmore Breccia and Cretaceous Sediment<br />

megablock as well as <strong>in</strong> the suevite and basement<br />

(thickness of units is partly below 1 m).<br />

Measurements on rocks of boreholes from the outer<br />

part of the impact structure are necessary for the<br />

comparison with rocks that are not <strong>in</strong>fluenced by the<br />

impact.<br />

References:<br />

Gohn, G.S., Koeberl, C., Miller, K.G., Reimold, W.U., Cockell, C.S.,<br />

Horton Jr., J.W., Sanford, W.E., Voytek, M.A. (2006): Chesapeake<br />

Bay Impact Structure Drilled. EOS, 87(35):349,355.<br />

Mayr, S. I., and H. Burkhardt (2006), Ultrasonic Properties of Sedimentary<br />

Rocks: Effect of Pressure, Saturation, Frequency and Microcracks.<br />

Geophys. J. Int., 164, 246-258.<br />

Mayr, S., Burkhardt, H., Popov, Y., Romushkevich, R., Bayuk, I.,<br />

Wittmann, A., Heid<strong>in</strong>ger P. and H. Wilhelm: (forthcom<strong>in</strong>g) Integrated<br />

Interpretation of Physical Properties of Rocks of the Borehole<br />

YAXCOPOIL-1 (Chicxulub impact crater). Accepted with m<strong>in</strong>or<br />

changes by JGR (Manuscript under revision)<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Mayr, S., Burkhardt, H., Popov, Y., Wittmann, A., (2007): Estimation of<br />

hydraulic permeability consider<strong>in</strong>g the micro morphology of rocks of<br />

the borehole YAXCOPOIL-1 (Impact crater Chicxulub, Mexico). Int J<br />

Earth Sci (Geol Rundsch), DOI : 10.1007/s00531-007-0227-6<br />

Popov, Y., Romushkevich, R., Bayuk, L., Korobkov, D., Mayr, S.,<br />

Burkhardt, H. & Wilhelm, H. (2004): Physical properties of rocks from<br />

the upper part of the Yaxcopoil-1 drill hole, Chicxulub crater.<br />

Meteoritics & Planetary Science 39, 700-812.<br />

<strong>IODP</strong><br />

Vegetation and climate development dur<strong>in</strong>g<br />

the Cenozoic <strong>in</strong> Antarctica. Future drill<strong>in</strong>g of<br />

cont<strong>in</strong>ental marg<strong>in</strong> sections: ANDRILL,<br />

<strong>IODP</strong> and <strong>ICDP</strong>?<br />

B.A.R. MOHR 1 & ANDRILL COMMUNITY<br />

1 Museum of Natural History, Invalidenstr. 43, 10115<br />

Berl<strong>in</strong>, Germany; e-mail: barbara.mohr@rz.hu-berl<strong>in</strong>.de<br />

Understand<strong>in</strong>g Antarctica’s palaeovegetation dur<strong>in</strong>g<br />

the last 100 Ma. is crucial for any global studies on climate<br />

change. Furthermore, vegetation studies, ma<strong>in</strong>ly based on<br />

palynological results, will also shed light on the evolution<br />

of land animals, ma<strong>in</strong>ly mammals of the southern<br />

hemisphere dur<strong>in</strong>g the Cenozoic.<br />

Earlier publications described the development of<br />

floras through the Cenozoic <strong>in</strong> West Antarctica based on<br />

data from land sections on Seymour, Snow and K<strong>in</strong>g<br />

George Islands and ODP Leg 113 (Ask<strong>in</strong>, 1988; Mohr<br />

2001). Drill holes of the Cape Roberts Project recovered<br />

Miocene through Late Eocene sections <strong>in</strong> the southwestern<br />

Ross Sea, however with large gaps (Ra<strong>in</strong>e and Ask<strong>in</strong>,<br />

2001). These miss<strong>in</strong>g time <strong>in</strong>tervals may have been now<br />

partly recovered by the ANDRILL program. Two sites MIS<br />

and SMS were drilled, the latter dur<strong>in</strong>g 2007 and is now<br />

under <strong>in</strong>vestigation. Besides the cool to cold adapted low<br />

diversity floras of angiosperm-moss-liverwort assemblages<br />

that may reflect a herb-moss tundra, warmer pulses with<br />

forest and heather vegetation (Epacridaceae) have been<br />

recovered from the Early and mid-Miocene.<br />

The temperate early Tertiary floras are dom<strong>in</strong>ated by<br />

various gymnosperms, ma<strong>in</strong>ly Araucariaceae and<br />

Podocarpaceae, a half dozen species of the southern beech<br />

Nothofagus and several fern and angiosperm taxa of<br />

Proteaceae (Lomatia; Gevu<strong>in</strong>a) plus Myricaceae,<br />

Myrtaceae, Gunneraceae, Aquifoliaceae, W<strong>in</strong>teraceae,<br />

Rubiaceae and Rosaceae and Anacardiaceae. The fern<br />

component <strong>in</strong>cludes remnants of tree ferns, and various<br />

taxa found today <strong>in</strong> South America, such as Lophosoria.<br />

Oligocene and Miocene strata have been recovered <strong>in</strong> CRP<br />

3, one of the few sections <strong>in</strong> Antarctica where Early<br />

Oligocene palynofloras have been studied, but extended<br />

Oligocene sections need still to be drilled. ANDRILL’s<br />

proposal to drill at Coulman High aims to recover sections<br />

with high high sedimentation rates reflect<strong>in</strong>g Oligocene to<br />

Miocene climate cycles and the Eocene–Oligocene<br />

transition. The planned <strong>IODP</strong> cruise Leg 323 to Wilkes<br />

Land, East Antarctica, will set out with the goal to recover<br />

pre-Eocene strata <strong>in</strong> order to understand the early<br />

development of ice on the Antarctic cont<strong>in</strong>ent and the<br />

consequences for life history <strong>in</strong> southern high latitudes.<br />

Even though our knowledge on Cenozoic vegetation on<br />

the Antarctic cont<strong>in</strong>ent has grown dur<strong>in</strong>g the last decades,<br />

it still rema<strong>in</strong>s patchy, because the recovered material<br />

comes from scattered localities along the cont<strong>in</strong>ental<br />

marg<strong>in</strong>. Thus, for the future, it must be our goal to try to


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

understand better the early part of the Palaeogene, with<br />

special emphasis on organic and palaeontological studies<br />

from West (and East) Antarctica. This goal could be<br />

potentially reached by drill<strong>in</strong>g <strong>in</strong>to one of the West<br />

Antarctic Islands, namely Seymour Island with its extended<br />

Palaeogene and Late Cretaceous sections.<br />

References:<br />

Ask<strong>in</strong>, R.A. 1988. Campanian to Paeocene palynological succession of<br />

Seymour and adjacent islands, northeastern Antarctic Pen<strong>in</strong>sula. Geol.<br />

Soc. America, Memoir 169: 131-153.<br />

Mohr, B.A.R. 2001. The development of Antarctic fern floras dur<strong>in</strong>g the<br />

Tertiary, and palaeoclimatic and palaeobiogeographic implications.<br />

Palaeontographica, B 259: 167-208.<br />

Ra<strong>in</strong>e, J.I. and Ask<strong>in</strong>, R.A. 2001 Terrestrial palynology of Cape Roberts<br />

Project Drillhole CRP-3, Victoria Land Bas<strong>in</strong>, Antarctica. Terra<br />

Antartica, 8(4): 389-400.<br />

<strong>IODP</strong><br />

Short-term variability of surface-water<br />

characteristics <strong>in</strong> the Late Neogene North<br />

Atlantic Ocean: Prelim<strong>in</strong>ary results of a<br />

biomarker record from <strong>IODP</strong> Site U1313<br />

B.D.A. NAAFS 1 , J. HEFTER 1 , R. STEIN 1 AND G.H. HAUG 2<br />

1 Alfred-Wegener-Institut for Polar and Mar<strong>in</strong>e Research,<br />

Columbusstrasse, 27568 Bremerhaven, Germany<br />

2 Geologisches Institut, ETH Zürich, Universitätstrasse 16, 8092<br />

Zürich, Switserland<br />

We use samples from North Atlantic <strong>IODP</strong> Site 1313<br />

(Leg 306), which is a re-drill of DSDP Site 607, to<br />

construct a high-resolution record of short-term variability<br />

<strong>in</strong> sea-surface temperature and productivity <strong>in</strong> the late<br />

Neogene North Atlantic Ocean us<strong>in</strong>g organic-geochemical<br />

(biomarker) proxies. Of special <strong>in</strong>terest is the relationship<br />

between sea surface temperatures (SST’s) and<br />

environmental change (e.g. ice sheet <strong>in</strong>stabilities).<br />

Determ<strong>in</strong>ation of the long-term evolution of millennialscale<br />

variability <strong>in</strong> surface characteristics can provide clues<br />

to the mechanisms responsible for abrupt climate change,<br />

which are still poorly understood <strong>in</strong> detail. Prelim<strong>in</strong>ary<br />

results show alkenone based SST’s at Site 1313 vary<strong>in</strong>g<br />

between 7 and 21 o C dur<strong>in</strong>g the time <strong>in</strong>terval between MIS<br />

9 and 16 (~0.5 kyr resolution). Dur<strong>in</strong>g MIS 10, 12, 14, 15<br />

and 16, dist<strong>in</strong>ct maxima <strong>in</strong> alkenones (<strong>in</strong>terpreted as proxy<br />

for primary production) co<strong>in</strong>cide with m<strong>in</strong>ima <strong>in</strong> SST’s.<br />

These results are the first of a high-resolution record that<br />

will span the period from 0-6 Ma. It will be the first longterm<br />

high-resolution alkenone based SST and productivity<br />

record from the North Atlantic that will extend back to the<br />

late Miocene, the period before the development of largescale<br />

Northern Hemisphere ice-sheets.<br />

<strong>IODP</strong><br />

Habitats of Globiger<strong>in</strong>oides ruber (d’Orbigny)<br />

<strong>in</strong> the eastern Mediterranean Sea s<strong>in</strong>ce the<br />

Mar<strong>in</strong>e Isotopic Stage 12<br />

L. NUMBERGER 1 , CH. HEMLEBEN 1 , R. HOFFMANN 1 , A.<br />

MACKENSEN 2 , H. SCHULZ 1 , M. KUCERA 1<br />

1<br />

Eberhard-Karls-University, Sigwartstr. 10, 72076 Tüb<strong>in</strong>gen,<br />

Germany<br />

2<br />

Alfred Wegener Institute, Columbusstrasse, 27568 Bremerhaven,<br />

Germany<br />

The chemical composition of shells of planktonic<br />

foram<strong>in</strong>ifera, e.g. Globiger<strong>in</strong>oides ruber (d’Orbigny,<br />

white), is frequently used to determ<strong>in</strong>e past sea surface<br />

conditions. Recently, it has been shown that arbitrarily<br />

def<strong>in</strong>ed morphotypes with<strong>in</strong> this species exhibit different<br />

chemical and isotopic signatures. These results imply either<br />

that the morphotypes represent cryptic species which<br />

possess different ecological preferences or that the species<br />

produces predictable morphological aberrations under<br />

different ecological conditions. At any rate, the l<strong>in</strong>k<br />

between shell chemistry and morphology <strong>in</strong> G. ruber<br />

implies an as yet poorly understood but potentially<br />

powerful factor that could be used to better <strong>in</strong>terpret<br />

paleoenvironmental data obta<strong>in</strong>ed from this species. Here<br />

we <strong>in</strong>vestigate the presence and distribution through time<br />

of morphological types of G. ruber (white) <strong>in</strong> late<br />

Quaternary and Holocene sediments of the eastern<br />

Mediterranean. In 115 samples from MIS 12-9 and MIS 2-<br />

1 at ODP Site 964 and the piston core GeoTü-SL96, we<br />

have def<strong>in</strong>ed four arbitrary morphological types with<strong>in</strong> the<br />

species, determ<strong>in</strong>ed their relative abundance and stable<br />

isotopic composition. We show that the abundance of the<br />

morphotypes changes significantly between glacials and<br />

<strong>in</strong>terglacials and that the isotopic composition of the types<br />

differs. A multivariate analysis of the abundances of the<br />

different morphotypes of G. ruber <strong>in</strong>dicates a systematic<br />

variation at both sites between warm stages, which are<br />

characterised by high abundances of the “normal”<br />

morphotype and cold stages, which show higher<br />

proportions of the type “platys”. An exception to this is<br />

observed <strong>in</strong> MIS 12, which is dist<strong>in</strong>guished by the higher<br />

abundance of the “elongate” type. The three abundant<br />

morphotypes of G. ruber show significant offsets <strong>in</strong> their<br />

stable isotopic composition. These offsets are consistent<br />

with<strong>in</strong> <strong>in</strong>dividual glacial and <strong>in</strong>terglacial stages and show<br />

predictable reversal patterns between glacials and<br />

<strong>in</strong>tergalcials, except for MIS10 which is thus characterised<br />

not only by a unique composition of G. ruber morphotypes,<br />

but also by a unique pattern of isotopic offset among them.<br />

Interest<strong>in</strong>gly, the sign of the offset <strong>in</strong> the stable isotopic<br />

composition of <strong>in</strong>dividual morphotypes is systematically<br />

reversed between the two Sites, except of MIS10,<br />

<strong>in</strong>dicat<strong>in</strong>g a more uniform upper water column structure<br />

and/or seasonal production pattern with<strong>in</strong> the central<br />

Mediterranean at that time. This <strong>in</strong>terpretation is consistent<br />

with other proxy evidence for anomalously warm surface<br />

waters <strong>in</strong> the eastern Mediterranean dur<strong>in</strong>g the MIS 10<br />

glacial. S<strong>in</strong>ce the isotopic shifts among the three G. ruber<br />

morphotypes are systematic and often exceed 1 per mill,<br />

their understand<strong>in</strong>g is essential for the <strong>in</strong>terpretation of all<br />

G. ruber – based proxy records for the paleoceanographic<br />

development of the Mediterranean dur<strong>in</strong>g the late<br />

Quaternary.<br />

99


100<br />

<strong>ICDP</strong><br />

Chacterization of a pre-Holocene lake level<br />

high stand <strong>in</strong> Laguna Potrok Aike<br />

(Argent<strong>in</strong>a) – project POTROK<br />

C. OHLENDORF 1 , M. FEY 1 , T. HABERZETTL 2 , S. JANSSEN 3 , A.<br />

LÜCKE 4 , C. MAYR 5 , G. OLIVA 6 , F. SCHÄBITZ 3 , M. WILLE 3 , B.<br />

ZOLITSCHKA 1<br />

1 GEOPOLAR, Institute of Geography, University of Bremen,<br />

Celsiusstr. FVG-M, D-28359 Bremen, Germany (ohlen@unibremen.de)<br />

2 Geoscience Center, University of Gött<strong>in</strong>gen, Goldschmidtstr. 3,<br />

D-37077 Gött<strong>in</strong>gen, Germany<br />

3 Sem<strong>in</strong>ar for Geography and Education, University of Cologne,<br />

Gronewaldstr. 2, D-50931 Cologne, Germany<br />

4 Institute of Chemistry and Dynamics of the Geosphere, ICG V:<br />

Sedimentary Systems, Research Center Jülich, D-52425<br />

Jülich, Germany<br />

5 GeoBio-CenterLMU and Dept. of Earth and Environmental<br />

Sciences, University of Munich, Richard-Wagner-Str. 10, D-<br />

80333 Munich, Germany<br />

6 Estación Experimantal Agropecuaria Santa Cruz (INTA), Chacra<br />

45, CC 332, AR-9400 Río Gallegos, Argent<strong>in</strong>a<br />

The southernmost <strong>ICDP</strong> project dedicated to terrestrial<br />

paleoclimatic reconstructions, the “Potrok Aike maar lake<br />

sediment archive drill<strong>in</strong>g project” (PASADO), is a GLAD<br />

800 deep drill<strong>in</strong>g scheduled for the second half of <strong>2008</strong> <strong>in</strong><br />

the maar lake Laguna Potrok Aike (52°S, 70°W; 113 m<br />

a.s.l.; diameter: 3.5 km) <strong>in</strong> southern Patagonia, Argent<strong>in</strong>a.<br />

The sedimentary record of this term<strong>in</strong>al lake is well suited<br />

to trace temporal changes <strong>in</strong> the hydrological cycle because<br />

evidently large lake level variations occurred <strong>in</strong> the<br />

Holocene and Late Glacial periods. In order to provide a<br />

more process related <strong>in</strong>terpretation of the sedimentary<br />

record a monitor<strong>in</strong>g program was established at Laguna<br />

Potrok Aike <strong>in</strong> 2002 which was ma<strong>in</strong>ta<strong>in</strong>ed <strong>in</strong> the<br />

framework of the DFG-<strong>ICDP</strong> project POTROK. Us<strong>in</strong>g a<br />

cont<strong>in</strong>uous collection of environmental data<br />

(meteorological parameters, lake level, water temperature,<br />

etc.) we have the opportunity to develop an understand<strong>in</strong>g<br />

of how observed lake volume changes may be translated<br />

<strong>in</strong>to synoptic scale processes. This knowledge can then be<br />

applied to past lake volume changes of known magnitude<br />

and age. Ow<strong>in</strong>g to the relatively simple, pot-shaped,<br />

bathymetry of Laguna Potrok Aike, water volume changes<br />

for lake levels lower than present day can be <strong>in</strong>ferred from<br />

terraces visible on geo-referenced seismic profiles. The<br />

occurrence of past lake levels higher than present day is<br />

witnessed by several subaerial lake level terraces. For these<br />

terraces high precision differential GPS measurements of<br />

position and altitude were carried out dur<strong>in</strong>g a field survey<br />

<strong>in</strong> 2006.<br />

A comb<strong>in</strong>ation of the levell<strong>in</strong>g and the bathymetric<br />

dataset of Laguna Potrok Aike yields a total of 10,433 data<br />

po<strong>in</strong>ts. Based on this available dataset a 3D-modell of the<br />

lake and its catchment area was created. A colour coded<br />

surface plot clearly shows that an overflow must have<br />

existed at the north-western corner of the lake at an<br />

elevation of 21 m above the present day lake level. The<br />

level<strong>in</strong>g data confirms that this is the only place around the<br />

entire lake bas<strong>in</strong> where a break through the surround<strong>in</strong>g<br />

mora<strong>in</strong>e deposits which form the aquiclud<strong>in</strong>g frame of the<br />

lake exists. Support<strong>in</strong>g evidence for the existence of such<br />

an overflow comes from a shallow open pit NNE of the<br />

Potrok Aike meteorological station where fluvial gravel has<br />

been discovered. Based on the evidence from a profundal<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

and a marg<strong>in</strong>al lacustr<strong>in</strong>e sediment record it has been<br />

proposed that this overflow might have been active dur<strong>in</strong>g<br />

pre-Holocene times potentially dur<strong>in</strong>g the Late-Glacial<br />

period (Haberzettl et al., 2007, <strong>2008</strong>). Moreover, it is<br />

conceivable that a bypass situation of the ma<strong>in</strong> <strong>in</strong>flow<strong>in</strong>g<br />

tributary might have existed <strong>in</strong> the past because the<br />

position of the ma<strong>in</strong> <strong>in</strong>flow that today enters the lake<br />

episodically via a cataract <strong>in</strong> a bay on the western shore of<br />

the lake is very close to the position of the anticipated<br />

overflow. The altitud<strong>in</strong>al difference between <strong>in</strong>- and<br />

outflow today is only less than 2 m and even decreases<br />

further to the west. Additionally, a bay like structure that is<br />

visible on the eastern side of the lake at the same elevation<br />

as the overflow might have formed. Clues to the reasons<br />

for this <strong>in</strong>ferred pre-Holocene lake level high stand can be<br />

obta<strong>in</strong>ed from the lake level and meteorological monitor<strong>in</strong>g<br />

study. These <strong>in</strong>dicate that decreas<strong>in</strong>g lake levels occur<br />

dur<strong>in</strong>g periods of persistently high w<strong>in</strong>d speed from<br />

westerly directions which are l<strong>in</strong>ked to a strengthen<strong>in</strong>g of<br />

the Southern Hemispheric Westerlies. On the other hand<br />

<strong>in</strong>creases of the lake level occur dur<strong>in</strong>g periods with a more<br />

frequent occurrence of precipitation br<strong>in</strong>g<strong>in</strong>g easterly<br />

w<strong>in</strong>ds that today prevail dur<strong>in</strong>g situations where zonal flow<br />

is temporarily blocked. The analysis of recent lake level<br />

and meteorological data <strong>in</strong>dicates that the latter situation<br />

might be l<strong>in</strong>ked to the ENSO periodicity.<br />

References:<br />

Haberzettl, T., H. Corbella, M. Fey, S. Janssen, A. Lücke, C. Mayr, C.<br />

Ohlendorf, F. Schäbitz, G. Schleser, M. Wille, S. Wulf and B.<br />

Zolitschka (2007). Lateglacial and Holocene wet-dry cycles <strong>in</strong> southern<br />

Patagonia: chronology, sedimentology and geochemistry of a lacustr<strong>in</strong>e<br />

sediment record from Laguna Potrok Aike (Argent<strong>in</strong>a).- The Holocene<br />

17, 297-311.<br />

Haberzettl, T., B. Kück, S. Wulf, F. Anselmetti, D. Ariztegui, H. Corbella,<br />

M. Fey, S. Janssen, A. Lücke, C. Mayr, C. Ohlendorf, F. Schäbitz, G.<br />

Schleser, M. Wille and B. Zolitschka (<strong>2008</strong>). Hydrological variability<br />

<strong>in</strong> southeastern Patagonia and explosive volcanic activity <strong>in</strong> the<br />

southern Andean Cordillera dur<strong>in</strong>g Oxygen Isotope Stage 3 and the<br />

Holocene <strong>in</strong>ferred from lake sediments of Laguna Potrok Aike,<br />

Argent<strong>in</strong>a. Palaeogeography, Palaeoclimatology, Palaeoecology,<br />

doi:10.1016/j.palaeo.2007.10.008.<br />

<strong>IODP</strong><br />

Modern ostracodes from Lago Petén Itzá and<br />

lakes of the Península Yucatán as <strong>in</strong>dicators<br />

of environmental and climate change<br />

L. PÉREZ 1 , B. SCHARF 1 , R. V. GELDERN 2 , P. STEEB 1 , D. SAMOL 1 , J.<br />

LORENSCHAT 1 , A. SCHWALB 1<br />

1 Institut für Umweltgeologie, Technische Universität<br />

Braunschweig, Braunschweig, Germany<br />

2 Leibniz Institut für Geowissenschaftliche<br />

Geme<strong>in</strong>schaftsaufgaben, <strong>Hannover</strong>, Germany<br />

Introduction<br />

The Yucatán Península, located <strong>in</strong> the northern lowland<br />

Neotropics, is characterized by humid tropical climate and<br />

a steep N-S precipitation gradient and is thus an ideal<br />

region to study species preferences and distribution<br />

patterns. Lago Petén Itzá is the third largest lake <strong>in</strong><br />

Guatemala, 20 km long and 3-4 km wide, and the deepest<br />

lake of the Yucatán Península with a maximum depth of<br />

165 m (Anselmetti et al. 2006, Hodell et al. 2006).<br />

Sediments conta<strong>in</strong> abundant ostracodes, one of the most<br />

useful groups of bio<strong>in</strong>dicators used for the reconstruction<br />

of past climates and environments. Our project is a<br />

contribution to the Lake Petén Itzá (Guatemala) Scientific<br />

Drill<strong>in</strong>g Project (PISDP). A total of 1327 m of sediment


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

cores from 7 sites were retrieved us<strong>in</strong>g the GLAD 800 <strong>in</strong><br />

2006 <strong>in</strong> order to study the 1) paleoclimatic history of the<br />

northern lowland Neotropics; the 2) paleoecology and<br />

biogeography of the tropical lowland forest and the 3)<br />

subsurface biogeochemistry. The sampl<strong>in</strong>g party for<br />

bio<strong>in</strong>dicators took place at the LacCore, University of<br />

M<strong>in</strong>nesota <strong>in</strong> 2007.<br />

Methods<br />

We retrieved surface and littoral samples from a total<br />

of 18 lakes across the Yucatán Península (Guatemala,<br />

Belize and Mexico) between N 15°27’ and 20°39’ and W<br />

89°06’ and 89°13’. Water samples were retrieved at the<br />

deepest part of each lake <strong>in</strong> order to characterize physicochemical<br />

properties. To better understand preferences,<br />

tolerances and habitats of modern ostracode species, we<br />

took surface sediment samples at different water depths<br />

along a N-S transect <strong>in</strong> Lago Petén-Itzá. In the northern<br />

part of the lake, surface sediment samples were retrieved<br />

every 5 m from 5 to 30 m water depth, and then every 20 m<br />

to a max depth of 160 m. Additionally two about 40 cm<br />

long short cores (PI-SC-1-10 m and PI-SC-2-40 m) were<br />

retrieved <strong>in</strong> order to reconstruct the recent environmental<br />

history of the lake. Short cores were 210 Pb and 137 Cs dated.<br />

Ostracodes were separated from the sediments by siev<strong>in</strong>g,<br />

and taxonomical identification was carried out us<strong>in</strong>g both<br />

valves characteristics and soft parts of liv<strong>in</strong>g specimen.<br />

Results<br />

Water geochemistry<br />

Analysis of ma<strong>in</strong> elements shows that sulfate,<br />

hydrogencarbonate and chloride dom<strong>in</strong>ate the waters of the<br />

Yucatán lake systems. Major cations <strong>in</strong> the lake waters are<br />

Na, Ca and Mg. Waters with high sulfate concentrations<br />

(max. 2295 mgL-1) are: Chichancanab, Milagros and<br />

Bacalar. Lakes Izabal, Perdida, Yaxhá and Belize 2 have<br />

waters dom<strong>in</strong>ated by hydrogencarbonate (max. conc. 214<br />

mgL-1). Lakes with high seawater <strong>in</strong>trusion are Cenote<br />

and Almond Hill (max. chloride concentration 1652 mgL-<br />

1).�The 18O values <strong>in</strong> the waters range from +4 and +5 ‰<br />

for 18O, and -14 and – 1 ‰ for 13CDIC, reflect<strong>in</strong>g the<br />

effects of evaporation, groundwater <strong>in</strong>put and productivity.<br />

Enrichment of 18O by evaporation is high <strong>in</strong> the “closed<br />

lakes” Petén Itzá, Yaxhá, Macanché, Chichancanab and<br />

Yalahau. Negative 18O values (-9.14 ‰) were measured<br />

<strong>in</strong> Lake Bacalar, where groundwater is be<strong>in</strong>g received at a<br />

rapid rate. Laguna Perdida is eutrophic, which is reflected<br />

by a low secchi depth, high dissolved oxygen and the<br />

presence of the highest 13CDIC values (-1.27 ‰) of the<br />

entire data set.<br />

Ostracodes from Yucatán lakes<br />

Species assemblages consist of the benthic species<br />

Cytheridella ilosvayi, Cyprideis spp., Darw<strong>in</strong>ula<br />

stevensoni, Fabaeformiscandona sp., Limnocythere sp. and<br />

Perissocytheridea cribosa, and the nektic species<br />

Cypridopsis okeechobei, Eucypris sp., Heterocypris<br />

punctata, Physocypria globula, P. pustulosa, P. xanabanica,<br />

Stenocypris malcolmsoni, Strandesia <strong>in</strong>trepida and<br />

Thalassocypria sp. Because carapaces of Cypretta sp. and<br />

Potamocypris sp. were lack<strong>in</strong>g soft parts, we have not yet<br />

been able to def<strong>in</strong>itively conclude whether they are benthic<br />

or nektic species. Some species are restricted to a specific<br />

type of environment or waters and thus present excellent<br />

bio<strong>in</strong>dicators. We identified, for example, Potamocypris sp.<br />

as typical of the lakes <strong>in</strong> the dry northwest of Yucatán,<br />

Laguna Yalahau, where the precipitation is only 450 mm<br />

101<br />

yr-1. Stenocypris malcolmsoni was found <strong>in</strong> waters with<br />

low conductivity (192-215 µScm-1) and low dissolved<br />

oxygen (5.8-7.6 mgL-1). Ostracodes characteristic of<br />

brackish waters (max. sal<strong>in</strong>ity 5960 µScm-1) are Cyprideis<br />

spp., Perissocytheridea cribosa and Thalassocypria sp., C.<br />

okeechobei. Fabaeformiscandona sp., D. stevensoni and C.<br />

ilosvayi are widely distributed and thus less suited to<br />

def<strong>in</strong>e specific preferences and environments.<br />

Ostracodes from Lago Petén Itzá<br />

Lago Petén Itzá presents 8 species <strong>in</strong>clud<strong>in</strong>g the<br />

benthic species C. ilosvayi, D. stevensoni, Limnocythere<br />

sp., Fabaeformiscandona sp., and the nektic species C.<br />

okeechobei, P. globula, H. punctata and Strandesia<br />

<strong>in</strong>trepida (Fig. 1). Species found only <strong>in</strong> littoral samples<br />

were Strandesia <strong>in</strong>trepida and H. punctata. H. punctata was<br />

found only <strong>in</strong> the southern littoral (0.1 and 0.7 m water<br />

depth) while Strandesia <strong>in</strong>trepida was found <strong>in</strong> both,<br />

northern (0.5 m water depth) and southern littoral samples.<br />

The presence of these species <strong>in</strong> long cores from the deep<br />

bas<strong>in</strong> may thus be <strong>in</strong>dicative of low lake levels dur<strong>in</strong>g drier<br />

climates. P. globula is a nektic species and seems to prefer<br />

deep waters. Their carapaces often conta<strong>in</strong>ed soft parts at a<br />

water depth of about 60 m. This suggests that these<br />

ostracodes are liv<strong>in</strong>g close to this water depth. A water<br />

column profile from the deepest part of Lago Péten Itzá<br />

shows a decrease of dissolved oxygen and a thermocl<strong>in</strong>e<br />

located between 30 and 40 m. Ostracodes are abundant and<br />

diverse between 0 and 40 m, and less abundant below 40 m<br />

water depth (Fig. 2).<br />

Recent environmental change recorded <strong>in</strong> Lago Petén<br />

Itzá sediments<br />

Short core PI-SC-1-10m has a sedimentation rate of<br />

0.96 mm yr-1 and an extrapolated total age of 550 years.<br />

The upper 10 cm consists of light olive gray silty clays and<br />

the rema<strong>in</strong>der of the core down to a depth of 40 cm<br />

consists of yellowish gray silty clays. Short core PI-SC-2-<br />

40m is characterized by olive gray silty clays and a high<br />

sedimentation rate (3.77 mm yr-1) suggest<strong>in</strong>g a maximum<br />

age of only 155 years.. Both short cores conta<strong>in</strong> 6<br />

ostracodes species: P. globula, Limnocythere sp.,<br />

Cytheridella ilosvayi, Cypridopsis okeechobei, Darw<strong>in</strong>ula<br />

stevensoni and Fabaeformiscandona sp. In PI-SC-1-10m<br />

Limnocythere sp. is the most abundant ostracode while <strong>in</strong><br />

PI-SC-2-40m the dom<strong>in</strong>ant species is P. globula. This<br />

confirms that P. globula prefers deeper water (40 m) <strong>in</strong><br />

comparison to other ostracodes species. Also, high<br />

abundances of P. globula <strong>in</strong> the upper olive gray, organicrich<br />

sediments suggest that this species can be used as<br />

<strong>in</strong>dicator of eutrophication. Species found <strong>in</strong> yellowish<br />

gray sediments (lower eutrophication level) are C. ilosvayi,<br />

C. okeechobei and Limnocythere sp. The effects of<br />

population growth lead<strong>in</strong>g to eutrophication of the lake,<br />

drastic lake level changes and heavy ra<strong>in</strong> seasons <strong>in</strong> the<br />

1940's <strong>in</strong> the area of Lago Petén Itzá.<br />

Conclusions and Outlook<br />

Our prelim<strong>in</strong>ary results present a first sweep<strong>in</strong>g<br />

overview of ostracode species assemblages, detailed<br />

taxonomy and ecological valences of species that is<br />

significantly improv<strong>in</strong>g the role of ostracodes from<br />

Yucatán aquatic systems as <strong>in</strong>dicators of environmental<br />

change. This is also confirmed by the results from the short<br />

cores that clearly show how the recent environmental<br />

change at Lago Petén Itzá has been recorded by ostracode<br />

species assemblages. This <strong>in</strong>formation will now be applied


102<br />

to species assemblages from long cores compris<strong>in</strong>g the past<br />

approximately 85,000 years (Hodell, personal<br />

communication).<br />

Acknowledgements<br />

We thank D. Hodell, M. Brenner and J. Curtis<br />

(University of Florida), M. Dix, M. Palmieri, M.<br />

Maldonado, G. Alfaro, M. Orozco, S. Ramirez and J.<br />

Blijdenste<strong>in</strong> (Universidad del Valle de Guatemala),<br />

CONAP (Guatemala), SRE, CONAPESCA and G. Islebe<br />

(ECOSUR-Chetumal, Mexico) for facilitat<strong>in</strong>g field work<br />

and their support.<br />

References<br />

Anselmetti, F. S., D. Ariztegui, D. A. Hodell, M. B. Hillesheim, M. Brenner,<br />

A. Gilli, J. A. McKenzie, and A. D. Mueller. 2006. Late Quaternary<br />

climate-<strong>in</strong>duce lake level variations <strong>in</strong> Lake Petén Itzá, Guatemala,<br />

<strong>in</strong>ferred from seismic stratigraphic analysis. Palaeogeography,<br />

palaeoclimatology, palaeoecology 230:52-69.<br />

Hodell, D., F. Anselmetti, M. Brenner, D. Ariztegui, and t. P. S. Party. 2006.<br />

The Lake Petén Itzá Scientific Drill<strong>in</strong>g Project. Scientific Drill<strong>in</strong>g.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1. Ostracode valves and carapaces from Lago Petén Itzá. Nektic species: A. Cypridopsis okeechobei, B. Heterocypris punctata,<br />

C. Physocypria globula, D. Strandesia <strong>in</strong>trepida. Benthic species: E. Cytheridella ilosvayi, F. Fabaeformiscandona sp., G. Limnocythere<br />

sp., H. Darw<strong>in</strong>ula stevensoni.<br />

Physocypria globula<br />

Cypridopsis okeechobei<br />

Limnocythere opesta<br />

Cytheridella ilosvayi<br />

Fabaeformiscandona sp.<br />

Darw<strong>in</strong>ula stevensoni<br />

Heterocypris punctata<br />

Stra ndesia itre pid a<br />

H’<br />

0 mN 40 mN 80 mN 120 mN 160 m 120 mS 80 mS 40 mS 0 mS<br />

Fig. 2. Distribution and diversity (H’) of 8 ostracode species <strong>in</strong> Lago Petén Itzá along a N-S transect from the littoral of the northern shore<br />

across the lake and maximum water depth of 160 m to the littoral of the southern shore. Ostracode species are given <strong>in</strong> percentages.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Assess<strong>in</strong>g the accuracy of SST and<br />

δ 18 Osw/sal<strong>in</strong>ity estimates from Tahiti corals<br />

us<strong>in</strong>g Monte Carlo simulations: implications<br />

for the <strong>in</strong>terpretation of fossil corals<br />

M. PFEIFFER 1 , S.Y. CAHYARINI 2 , W.-C. DULLO 3 , M. WEBER 1 , T.<br />

FELIS 4 , W. RICKEN 1<br />

1<br />

Institut für Geologie und M<strong>in</strong>eralogie, Universität zu Köln,<br />

Germany<br />

2<br />

Research Centre for Geotechnology, Indonesian Institute of<br />

Sciences (LIPI), Bandung, Indonesia<br />

3<br />

IFM-GEOMAR, Kiel, Germany<br />

4<br />

DFG-Research Center for Ocean Marg<strong>in</strong>s (RCOM) & MARUM,<br />

University of Bremen, Bremen, Germany<br />

Paired measurements of δ 18 O and Sr/Ca <strong>in</strong> coral<br />

aragonite are rout<strong>in</strong>ely used for deriv<strong>in</strong>g estimates of SST,<br />

δ 18 O sw and, by extension, sea surface sal<strong>in</strong>ity variations<br />

from fossil corals. However, <strong>in</strong> practice, the accuracy (or<br />

the error) of these estimates is often difficult to assess.<br />

Here, we use simulated proxy data and Monte-Carlo<br />

simulations to <strong>in</strong>vestigate the accuracy of SST and δ 18 O sw<br />

estimates from paired coral δ 18 O and Sr/Ca measurements.<br />

First, we estimate expected values of coral Sr/Ca and δ 18 O<br />

from <strong>in</strong>strumental or reanalysis data of sea surface<br />

temperature (SST) and sea surface sal<strong>in</strong>ity (SSS). We then<br />

add the typical analytical errors onto the expected Sr/Ca<br />

(δ 18 O) data as random numbers and compute Sr/Ca +error and<br />

δ 18 O sw+error from the noisy proxy data for a 1000 sample<br />

Monte Carlo. From this simple Monte Carlo simulation, the<br />

range of correlation coefficients between Sr/Ca+error<br />

(δ 18 O sw+error) and expected Sr/Ca (δ 18 O sw) is estimated. As<br />

expected, we f<strong>in</strong>d that this range ma<strong>in</strong>ly depends on the<br />

magnitude of the actual SST and SSS variations at a given<br />

site, as well as on the slope of the δ 18 Osw-SSS relationship.<br />

A comparison with real coral-based SST and δ 18 O sw<br />

reconstructions from Tahiti <strong>in</strong>dicates that correlations<br />

between reconstructed SST (δ 18 O sw) and <strong>in</strong>strumental SST<br />

(SSS) fall with<strong>in</strong> the range of correlation coefficients<br />

predicted based on our Monte-Carlo simulation. Thus, our<br />

simple simulation exercise may help to assess the<br />

feasibility of SST, δ 18 O sw and sal<strong>in</strong>ity reconstructions from<br />

Tahiti corals. This will provide a basel<strong>in</strong>e for the<br />

<strong>in</strong>terpretation of fossil corals from Tahiti.<br />

<strong>IODP</strong><br />

Drift-Analysis of ocean bottom pressure<br />

measurements<br />

A. POLSTER 1 , H. VILLINGER 1 , M. FABIAN 1 , H.-H. GENNERICH 1<br />

1 Universität Bremen, Fachbereich 5 Geowissenschaften,<br />

Meersetechnik/Sensorik, Klagenfurter Straße GEO, Raum<br />

4310, 28359 Bremen, Germany<br />

S<strong>in</strong>ce the 1980s, the Paroscientific Digi-Quarz sensor is<br />

deployed by deep ocean bottom pressure measurements.<br />

The NOAA (National Oceanic and Atmospheric<br />

Adm<strong>in</strong>istration) use the sensors for there DART (Deepocean<br />

Assessment and Report<strong>in</strong>g of Tsunamis) System<br />

s<strong>in</strong>ce 1986. Here the mobile sensors repeatedly deployed<br />

on the ocean bottom. The present <strong>IODP</strong> (Integrated Ocean<br />

Drill<strong>in</strong>g Program) also <strong>in</strong>stalled the sensors <strong>in</strong> there CORK<br />

(Circulation Obviation Retrofit Kit) System s<strong>in</strong>ce 1992.<br />

Here the sensors will fix <strong>in</strong> the stationary CORK-Stations<br />

103<br />

for some years on the ocean bottom. For the Paroscientific<br />

Digi-Quars sensors doesn’t exist longtime drift analysis,<br />

because mostly deployment are only s<strong>in</strong>gle measurements<br />

for one year. Now it is possible to analys<strong>in</strong>g the longtime<br />

drift of the mobile DART and stationary CORK sensors<br />

and view there contrast. The ambition <strong>in</strong> this analysis is to<br />

view the limit and range of the drift.<br />

Before the drift can be analyses, the dom<strong>in</strong>ant tidal<br />

signals should be reduce. Therefore two programs were<br />

available, the program T-Tide and ETERNA. Both<br />

programs don’t have reduce all periodic signals <strong>in</strong> the<br />

frequency range of the tides, for this reason a Notch filter<br />

was designed for filter<strong>in</strong>g the frequency range of the tides<br />

<strong>in</strong> the raw data.<br />

All <strong>in</strong> all 79 datasets of 33 mobile sensors from the<br />

NOAA DART-Stations and 46 datasets of 18 stationary<br />

sensors from the <strong>IODP</strong> CORK-Stations were available.<br />

The mobile sensors of the DART-Stations show<br />

different l<strong>in</strong>ear drift on their deployments, the stationary<br />

sensors of the CORK-Stations show different l<strong>in</strong>ear drift<br />

partly with exponential part <strong>in</strong> the beg<strong>in</strong>n<strong>in</strong>g. All sensors<br />

together don’t show <strong>in</strong> the drift a dependence on depth.<br />

For the reduction of the drift, all sensors and<br />

deployments have to be reckon<strong>in</strong>g <strong>in</strong>dividually. After the<br />

present analysis, it is not possible to give a prognosis of the<br />

drift with one ore more sensors.<br />

<strong>IODP</strong><br />

Middle to late Miocene (12-9 Ma) carbonate<br />

preservation and accumulation changes <strong>in</strong><br />

the Atlantic (Céara Rise Sites) and Pacific<br />

(Site 1237)<br />

I. PREIß-DAIMLER 1 , R. HENRICH 1<br />

1 Department of Geosciences- University of Bremen<br />

Klagenfurter Str., 28359 Bremen, Germany<br />

correspond<strong>in</strong>g author ipd@uni-bremen .<br />

To study of the causes of the Miocene Carbonate Crash<br />

events is one of the ma<strong>in</strong> goals of this work. The drop of<br />

carbonate content has been reported for several Atlantic,<br />

Caribbean and Pacific Sites <strong>in</strong> the <strong>in</strong>terval of middle to late<br />

Miocene transition (12-9Ma). Three ma<strong>in</strong> causes have been<br />

attributed to the phenomenon, that are (1) dilution of<br />

sediments by non-calcareous material, (2) dissolution and<br />

(3) changes <strong>in</strong> the productivity of the carbonate build<strong>in</strong>g<br />

organisms. In order to study the carbonate preservation and<br />

accumulation of Miocene sediments we selected time slices<br />

from different ODP sites <strong>in</strong> the Atlantic and Pacific. In<br />

these sediments short-term perturbations are common.<br />

Our data sets comprise carbonate concentration, silt<br />

gra<strong>in</strong> size distribution (e.g. calcareous silt, terrigenous silt<br />

and sortable silt), fragmentation <strong>in</strong>dices and component<br />

analysis of the coarse fraction. Based on these data we<br />

calculated accumulation rates of the ma<strong>in</strong> carbonate<br />

builders as well as for the terrigenous material.<br />

In the equatorial Atlantic records short-termed<br />

carbonate reductions are recognised that can be traced over<br />

the depth transect of drill sites (ODP Sites 926, 927, 928).<br />

The carbonate content at the three sites varies between 40%<br />

and 90 % wt., with m<strong>in</strong>ima around 60% at the shallow Site<br />

926, and around 40 % at the deep Site 928. W<strong>in</strong>now<strong>in</strong>g <strong>in</strong><br />

comb<strong>in</strong>ation with improvement of preservation is<br />

suggested to expla<strong>in</strong> the <strong>in</strong>crease of coarse fraction


104<br />

recorded at 9.9 Ma at Site 926, and 0.3 myrs later at Site<br />

928. We propose that these trends towards better<br />

preservation are related to a stronger NADW circulation.<br />

In the Pacific at all sites of Leg 202, cover<strong>in</strong>g the<br />

equatorial and southern Pacific, m<strong>in</strong>ima <strong>in</strong> carbonate<br />

accumulation rates are registered around 12 Ma to 9 Ma.<br />

This may <strong>in</strong>dicate a common cause for these carbonate<br />

reductions. Dur<strong>in</strong>g this time <strong>in</strong>terval, Site 1237 was<br />

cont<strong>in</strong>uously mov<strong>in</strong>g towards the South American<br />

Cont<strong>in</strong>ent thus approach<strong>in</strong>g the costal upwell<strong>in</strong>g zone.<br />

Consequently the <strong>in</strong>fluence of w<strong>in</strong>ds <strong>in</strong>creased recognised<br />

by <strong>in</strong>creased supply of dust and volcanic ashes to this site<br />

position. Hence, here short-term carbonate reductions are<br />

likely l<strong>in</strong>ked to a comb<strong>in</strong>ation of ash <strong>in</strong>put and dissolution.<br />

Currently sediments from the North Atlantic Site 982<br />

display<strong>in</strong>g high carbonate contents are under <strong>in</strong>vestigation.<br />

From the results we expect more <strong>in</strong>formation about the<br />

history of <strong>in</strong>termediate water circulation at this critical<br />

position of the Atlantic circulation loop.<br />

<strong>ICDP</strong><br />

Thermo-hydraulic conditions <strong>in</strong> a seismically<br />

active zone (Gulf of Cor<strong>in</strong>th, Greece)<br />

D. RETTENMAIER 1 , A. FÖRSTER 2 , H. HÖTZL 1<br />

1 University of Karlsruhe, Department of Applied Geology (AGK)<br />

2 GeoForschungsZentrum Potsdam (GFZ)<br />

In this project work the thermo-hydraulic conditions of<br />

a seismically active zone have been <strong>in</strong>vestigated by means<br />

of surface and subsurface <strong>in</strong>vestigations, borehole studies<br />

and numerical model<strong>in</strong>g. European research activities <strong>in</strong><br />

the Gulf of Cor<strong>in</strong>th have been targeted for obta<strong>in</strong><strong>in</strong>g data<br />

on earthquake sources and fault mechanics and for<br />

<strong>in</strong>vestigat<strong>in</strong>g the role of faults on fluid flow <strong>in</strong> this<br />

seismically active area. In this context, the DFG funded a<br />

project aimed at the exploration of the thermo-hydraulic<br />

conditions <strong>in</strong> the area near Aigion and the southern graben<br />

shoulder of the northern Peloponnesus <strong>in</strong>clud<strong>in</strong>g the<br />

determ<strong>in</strong>ation of surface heat flow <strong>in</strong> a 1000 m deep<br />

borehole, which is the scope of this work.<br />

First, due to a lack of geological <strong>in</strong>formation, a detailed<br />

<strong>in</strong>vestigation of the geological and tectonical situation was<br />

made. Secondly, the hydraulic parameters of the different<br />

lithological formations and of the hydraulic behavior of<br />

normal faults were determ<strong>in</strong>ed.<br />

Based on the field studies, hydraulic test<strong>in</strong>g,<br />

petrophysical well-log analysis, optical-fiber temperature<br />

sens<strong>in</strong>g, and laboratory measurement of thermal<br />

conductivity, a hydrogeological conceptual model was<br />

prepared. This conceptual model formed the basis for a<br />

numerical 2-D model of the hydraulic conditions at<br />

regional scale at the southern Cor<strong>in</strong>th graben shoulder.<br />

Different simulation scenarios were <strong>in</strong>vestigated to search<br />

for the best-fit model to known parameters.<br />

Coupled numerical model<strong>in</strong>g of groundwater flow and<br />

heat transport was then used to get <strong>in</strong>sights <strong>in</strong> the processes<br />

that may be typical for the study area. In the case of the<br />

Cor<strong>in</strong>th area, model calibration, as well as sensitivity and<br />

plausibility checks allow a prediction on how the thermohydraulic<br />

system <strong>in</strong> this seismically active zone is<br />

characterized and how the hydraulic conditions affect the<br />

heat flow. Surface heat-flow density was unknown <strong>in</strong> the<br />

northern Peloponnesus prior this study. Also unknown was<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

whether the water flow <strong>in</strong> aquifers results <strong>in</strong> strong heat<br />

advection signals <strong>in</strong> the temperature field.<br />

The coupl<strong>in</strong>g of temperature and geothermal<br />

parameters to the calibrated hydraulic flow model has<br />

shown that some of the <strong>in</strong>tervals are affected by heat<br />

advection due to fluid flow, affect<strong>in</strong>g the temperature<br />

gradient and hence the heat flow. In a pure conduction heat<br />

regime the measured temperature of 32°C from 750 m<br />

depth would be <strong>in</strong>crease to 37°C. At the lower model<br />

boundary of 1155 m depth the maxima temperature <strong>in</strong> the<br />

conductive 1-D temperature profile is 45°C which is<br />

approximately 4.5°C higher than <strong>in</strong> the coupled thermohydraulic<br />

flow model. The exam<strong>in</strong>ation of coupled<br />

model<strong>in</strong>g runs has shown that conductive heat flow of the<br />

crust is about 55 mW/m².<br />

F<strong>in</strong>ally, it is clear that the quality of <strong>in</strong>put data is<br />

play<strong>in</strong>g a major role for the best fitt<strong>in</strong>g of a numerical<br />

model. Otherwise it was also shown that sometimes<br />

generalization is necessary when general restrictions from<br />

the model<strong>in</strong>g software are required. Undoubtedly, the fault<br />

zones of the Gulf of Cor<strong>in</strong>th are represent<strong>in</strong>g one case of<br />

seismic zones and similar model approaches can be<br />

extended to other hydraulic systems with similar tectonical<br />

arrangements.<br />

References:<br />

Bauer, E., 2004. Europäische Erdbebenzone Golf von Kor<strong>in</strong>th: Geologischhydrogeologische<br />

Untersuchungen <strong>in</strong> der Region Aigion im Umfeld<br />

der Kont<strong>in</strong>entalen Tiefbohrung AIG10 (NW-Peleponnes,<br />

Griechenland). Unpubl. Diploma Thesis, Dept. of Applied Geology,<br />

University of Karlsruhe, 160 pp.<br />

Förster, A., Hötzl, H., Rettenmaier, D. & Kück, J., 2006. Petrophysical and<br />

temperature logg<strong>in</strong>g <strong>in</strong> the <strong>ICDP</strong> AIG10 borehole (Greece). Scientific<br />

Drill<strong>in</strong>g Database. doi: 10.1594 /GFZ. SDDB.1091<br />

().<br />

Giurgea, V., Rettenmaier, D., Pizz<strong>in</strong>o, L., Hötzl, H., Förster, A.,<br />

Quattrocchi, F.& Nikas, K., 2003. Hydrogeological conditions of the<br />

Aigion-Eliki seismic active region based on borehole observations and<br />

hydraulic tests. 2nd-Cor<strong>in</strong>th Rift Laboratory Workshop Aigion<br />

(Greece), Abstracts.<br />

Giurgea, V., Rettenmaier, D., Pizz<strong>in</strong>o, L., Unkel, I., Hötzl, H., Förster, A.&<br />

Quattrochi, F., 2004. Prelim<strong>in</strong>ary hydrogeological <strong>in</strong>terpretation of the<br />

Aigion area from the AIG10 borehole data. C. R. Geoscience, 336,<br />

467-475.<br />

Nikas, K., 2001a. Hydrogeological research project „Investigation-<br />

Evaluation of water resources <strong>in</strong> north Peloponnesus“. Subproject of<br />

Achaia Prefecture, maps 7, 11, 18, I.G.M.E. (Institute of Geological &<br />

M<strong>in</strong>eralogical Exploration).<br />

Nikas, K., 2001b. Hydrology of the tectonically active zone of North<br />

Achaia, Cor<strong>in</strong>th Rift. Laboratory Aigion Workshop, Greece.<br />

Rettenmaier, D., 2002. Europäische Erdbebenzone Golf von Kor<strong>in</strong>th:<br />

Geologisch-tektonische und hydrogeologische Untersuchungen <strong>in</strong> der<br />

Region Egion und Klokos (NW-Peloponnes, Griechenland). Unpubl.<br />

Diploma Thesis, Dept. of Applied Geology, University of Karlsruhe,<br />

116 pp.<br />

Rettenmaier, D., 2003. Geological conditions <strong>in</strong> the AIG10 borehole and<br />

technical aspects of drill<strong>in</strong>g through the Aigion seismic active fault<br />

zone. 2nd-Cor<strong>in</strong>th Rift Laboratory Workshop Aigion (Greece),<br />

Abstracts, Institut Physique du Globe Paris, p. 24.<br />

Rettenmaier, D., Giurgea, V. & Hötzl, H., 2002b. Darstellung und<br />

Bewertung der geologisch-tektonischen und hydrogeologischen<br />

Verhältnisse im Bereich der Egion-Tiefbohrung AIG 10 für die<br />

geplanten Bohrarbeiten. Report; Dept. of Applied Geology, University<br />

of Karlsruhe, 22 pp.<br />

Rettenmaier, D., Giurgea, V., Förster, A. & Hötzl, H., 2006. Thermohydraulic<br />

conditions <strong>in</strong> the area of the “Gulf of Cor<strong>in</strong>th Deep<br />

Geodynamic Laboratory”: Interpretation from well-logg<strong>in</strong>g and<br />

model<strong>in</strong>g. - DFG/<strong>IODP</strong>-<strong>ICDP</strong> Jo<strong>in</strong>t Colloquium Greifswald, scientific<br />

program and abstracts.<br />

Rettenmaier, D., Giurgea, V., Hötzl, H. & Förster, A., 2004. The AIG10<br />

drill<strong>in</strong>g project (Aigion, Greece): <strong>in</strong>terpretation of the litho-log <strong>in</strong> the<br />

context of regional geology and tectonics. C. R. Geoscience Vol. 336,<br />

p. 415-423.<br />

Rettenmaier, D., Giurgea, V., Hötzl, H., Förster, A. & Nikas, K., 2002a.<br />

Geological mapp<strong>in</strong>g and hydrogeological test<strong>in</strong>g of the block-faulted<br />

system <strong>in</strong> the h<strong>in</strong>terland of Egion. 27th General Assembly Europ.<br />

Geophys. Soc., Nice, (France), CD.<br />

Rettenmaier, D., Wohlgemuth, L., Kück, J., Borm, G. & Harms, U., 2003.<br />

Drill<strong>in</strong>g, cor<strong>in</strong>g, test<strong>in</strong>g and <strong>in</strong>strumentation of the AIG10 borehole,


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Aigion, Gulf of Cor<strong>in</strong>th, Greece. <strong>ICDP</strong> Newsletter, Vol. 5,<br />

GeoForschungsZentrum Potsdam, 20-23.<br />

Unkel, I., 2003. Europäische Erdbebenzone Golf von Kor<strong>in</strong>th: Geologischhydrogeologische<br />

Untersuchungen <strong>in</strong> der Region Aigion im Umfeld<br />

der kont<strong>in</strong>entalen Tiefbohrung AIG10 (NW-Peloponnes,<br />

Griechenland). Unpubl. Diploma Thesis, Dept. of Applied Geology,<br />

University of Karlsruhe, 153 pp.<br />

<strong>ICDP</strong><br />

Retrograde zircons <strong>in</strong> fluid zones<br />

A. RIEMANN, R. OBERHÄNSLI<br />

Universität Potsdam, Institut für Geowissenschaften<br />

Introduction<br />

The Dabie-Sulu region <strong>in</strong> east-central Ch<strong>in</strong>a is one of<br />

the largest and most coherent ultrahigh pressure (UHP) and<br />

high pressure (HP) metamorphic belts <strong>in</strong> the world, and has<br />

attracted a great deal of worldwide attention. A large<br />

number of contributions concern<strong>in</strong>g the petrology,<br />

geochemistry, geochronology, metamorphic P-T paths, and<br />

large-scale conceptual tectonic evolution models for the<br />

creation and exhumation of the UHP and HP metamorphic<br />

rocks <strong>in</strong> the region. Central to resolv<strong>in</strong>g the physical and<br />

chemical processes <strong>in</strong>volved <strong>in</strong> the genesis and exhumation<br />

of UHP terranes is constra<strong>in</strong><strong>in</strong>g the sequence of events.<br />

Simple questions like the follow<strong>in</strong>g rema<strong>in</strong> poorly<br />

answered: ‘‘How rapid was cont<strong>in</strong>ental subduction?’’<br />

‘‘How many metamorphic events were recorded?’’ ‘‘How<br />

long did these events last?’’ In the specific case of the giant<br />

Q<strong>in</strong>l<strong>in</strong>g-Dabie-Sulu UHP terrane, we know that it<br />

developed dur<strong>in</strong>g northward subduction of the Yangtze<br />

Craton beneath the S<strong>in</strong>o-Korean Craton <strong>in</strong> the Triassic<br />

(Hacker et al., 2000), but important controversies <strong>in</strong>clude<br />

the follow<strong>in</strong>g: Were UHP subduction and exhumation<br />

coeval everywhere along the length of the orogen, imply<strong>in</strong>g<br />

a short-lived subduction and exhumation event of regional<br />

extent, or were they diachronous? Are some of the<br />

eclogites assumed to be Triassic actually remnants of early<br />

(U)HP metamorphic events? (Hacker et al 2006)<br />

The drill site of the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific<br />

Drill<strong>in</strong>g (CCSD) is located near Maobei village (N34° 25’,<br />

E118° 40’), about 17 km southwest of Donghai <strong>in</strong> the<br />

southern segment of the Sulu UHP terrane. Major goals of<br />

the CCSD, as outl<strong>in</strong>ed by Xu et al. (1998), <strong>in</strong>clude to<br />

reveal the crustal structure of convergent plate boundaries,<br />

to provide constra<strong>in</strong>ts on crust–mantle <strong>in</strong>teractions and<br />

mantle behavior dur<strong>in</strong>g deep subduction of cont<strong>in</strong>ental<br />

crust, and to <strong>in</strong>vestigate fluid evolution dur<strong>in</strong>g UHP<br />

metamorphism (Zhang et al 2006). The drill core obta<strong>in</strong>ed<br />

from the ma<strong>in</strong> hole of CCSD consists ma<strong>in</strong>ly of eclogites,<br />

ortho- and paragneisses, ultramafics, and some schists and<br />

quartzite. A number of petrographic and isotopic studies<br />

have shown that all of the Dabie-Sulu UHP rocks<br />

underwent prograde metamorphism related to plate<br />

subduction, with subsequent decompressionrecrystallization<br />

related to exhumation of the subducted<br />

plate and consequent amphibolite-facies retrograde<br />

metamorphism (Zhang et al. 1995; Wawrzenitz et al 2006,<br />

Romer et al 2003 ).<br />

The rocks from the CCSD ma<strong>in</strong> hole conta<strong>in</strong> many<br />

zircons. There exist zircon studies of the Dabie Sulu region<br />

– age datas and <strong>in</strong>clusion studies. Three different<br />

metamorphic events were determ<strong>in</strong>ed: A 244-236 Ma<br />

“precursor” UHP event, was followed by a 230-220 Ma<br />

“ma<strong>in</strong>” UHP event, which was itself term<strong>in</strong>ated by a 220-<br />

105<br />

205 Ma amphibolite facies overpr<strong>in</strong>t (Hacker et al. 2006,).<br />

Although there are many studies about <strong>in</strong>clusions <strong>in</strong> zircon<br />

and their relevance for the PT-path, little is known about<br />

the zircon growth itself and the ma<strong>in</strong> driv<strong>in</strong>g forces.<br />

The core samples show the whole range of<br />

metamorphism from UHP to greenschist metamorphism<br />

with<strong>in</strong> few centimetres. The comb<strong>in</strong>ation of texture and <strong>in</strong>situ<br />

age <strong>in</strong>formation allows to get new <strong>in</strong>formations about<br />

the Dabie-Sulu orogen evolution<br />

This study reports a detailed microstructural analysis<br />

and <strong>in</strong>ductively coupled plasma mass spectrometry (ICP)<br />

<strong>in</strong>-situ experiments on zircon <strong>in</strong> a fluid <strong>in</strong>fluenced shear<br />

zone. This research is aimed to: (1) document the<br />

petrological evolution of dist<strong>in</strong>ct zones <strong>in</strong> eclogite, (2) l<strong>in</strong>k<br />

the appearance of fluid and zircons <strong>in</strong> the Sulu region, (3)<br />

get a better resolution of the post peak evolution.<br />

Textural observation of newly grown zircon <strong>in</strong><br />

retrograde eclogite<br />

Transition fresh to retrograde eclogite<br />

The eclogite sample (Fig.1a) conta<strong>in</strong>s zones with<br />

retrograde assemblages range from UHP to greenschist<br />

facies. These form <strong>in</strong> centimetre wide zones that can be<br />

subdivided <strong>in</strong>to a transition zone and a strongly altered<br />

<strong>in</strong>ner part. While the fluid <strong>in</strong>clusion bear<strong>in</strong>g assemblage<br />

garnet-omphacite-coesite-phengite-rutile reflects UHP<br />

conditions, albite-cl<strong>in</strong>opyroxene symplectites appear <strong>in</strong> the<br />

first stage of retrogression as a response to post peak<br />

decompression. Garnet <strong>in</strong> the transition zone is cracked and<br />

rimmed by amphibole, signaliz<strong>in</strong>g fluid <strong>in</strong>fluence <strong>in</strong> the<br />

amphibolite facies. Fluid also triggers the breakdown of<br />

garnet and omphacite to symplectite II and <strong>in</strong>tergrowth of<br />

rutile and newly formed ilmenite. Phengite adjacent to<br />

omphacite breaks down to biotite, albite and white mica.<br />

The <strong>in</strong>ner part of the retrograde zone is a epidote, aeger<strong>in</strong>e<br />

bear<strong>in</strong>g greenschist facies assemblage. We observed two<br />

different types of zircons across the zone of retrogression.<br />

Zircons <strong>in</strong> the fresh eclogite<br />

Zircon I: In the fresh UHP eclogite the amount of<br />

zircon is very low. The few zircons are small (less than 30<br />

μm ). They have a magmatic core and a th<strong>in</strong> yellow<br />

metamorphic rim. The host m<strong>in</strong>erals are garnet and<br />

omphacite. The zircon <strong>in</strong>clusions <strong>in</strong> garnet and omphacite<br />

form clusters of up to ten small zircons.<br />

Zircons <strong>in</strong> the retrograde eclogite<br />

Across the sample the zircon amount and size grow<br />

obviously where the retrogression takes place. The size of<br />

this type II zircon (Fig 1b) lies between 30 to 150 μm.<br />

Some of a them sit directly on gra<strong>in</strong> c<br />

garnet-garnet<br />

boundaries, but often they are located at the boundary<br />

between garnet- phengite and symplectite. Zircons b located<br />

<strong>in</strong> symplectites conta<strong>in</strong> many <strong>in</strong>clusions. In the <strong>in</strong>ner part<br />

of the retrogression zone the late host m<strong>in</strong>erals phengite,<br />

garnet (II), quartz have zircon <strong>in</strong>clusions. In many cases,<br />

zircons with oscillatory zon<strong>in</strong>g are altered, exhibit<strong>in</strong>g<br />

blurr<strong>in</strong>g and broaden<strong>in</strong>g of primary oscillatoy zon<strong>in</strong>g,<br />

probably related to zircon recrystallisation. Some of the<br />

metamorphic rims are irregular and complex, <strong>in</strong>dicate to an<br />

complex and multistage history. At some gra<strong>in</strong> boundaries<br />

the zircons grow parallel to the the gra<strong>in</strong> boundary but no<br />

<strong>in</strong>tergrowth are observed.


106<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1 a) Eclogite sample with <strong>in</strong>creas<strong>in</strong>g retrogression from right to left, boxes mark the th<strong>in</strong> section area, b) Concordia diagram, c) Zircon<br />

from the most retrogressive part<br />

Geochronology<br />

Based on CL images, three doma<strong>in</strong>s can be <strong>in</strong>dentified<br />

<strong>in</strong> most zircons, i.e. bright-lum<strong>in</strong>escent cores, lower<br />

lum<strong>in</strong>escent <strong>in</strong>ner-,mantle (rim I), small light rim II (not on<br />

every zircon visible). The cores preserve oscillator<strong>in</strong>g,<br />

some with irregular patterns, whereas the rims are more or<br />

less homogeneous. N<strong>in</strong>ety-two spots were analysed from<br />

35 zircons of the alterated <strong>in</strong>ner part of the eclogite sample.<br />

The core analyses give a discordia that <strong>in</strong>tersects at 784 ±<br />

20 and 207.6 ± 6.8 Ma (Fig. 1c). Data from the cores yield<br />

apparent 206Pb/238U ages from 221 to 728 with Th/U<br />

ratios of 0.04-1.12. Some of these Data po<strong>in</strong>ts lie on the<br />

boundary of rim and core, so these are mixed ages. 22<br />

analyses of the rims are concordant with<strong>in</strong> the analytical<br />

uncerta<strong>in</strong>ty. The ages ranges from 180 to 213 Ma with a<br />

weighted mean age 207 ± 2 Ma.<br />

Questions: Why does the young zircon grow <strong>in</strong> dist<strong>in</strong>ct<br />

zones? Which factors are relevant for the growth of zircon<br />

<strong>in</strong> these zones? What are the ma<strong>in</strong> factors for zircon growth<br />

and transport?<br />

The appearance of fluids is frequently reported from<br />

Dabie-Sulu samples (Xiao et al. 2000; Franz et al. 2001).<br />

The <strong>in</strong>vestigations show that fluid <strong>in</strong>clusions occur ma<strong>in</strong>ly<br />

<strong>in</strong> UHP rocks from the depth <strong>in</strong>tervals of 100 to 1250 m,<br />

and 2150 to 2720 m; whereas their abundance <strong>in</strong> the other<br />

depth <strong>in</strong>tervals are low (Zhang 2006). Previous workers<br />

have established relationships between fluid <strong>in</strong>clusions <strong>in</strong><br />

Sulu UHP rocks and successive stages of metamorphism.<br />

Several authors identified fluid <strong>in</strong>clusions <strong>in</strong> CCSD<br />

retrograde m<strong>in</strong>erals and <strong>in</strong> zircons with low grade m<strong>in</strong>eral<br />

<strong>in</strong>clusions.<br />

The evidences for fluid <strong>in</strong> this sample are given by<br />

fluid <strong>in</strong>clusions, water-bear<strong>in</strong>g m<strong>in</strong>erals and ve<strong>in</strong>s. We<br />

suggest fluid plays a significant role <strong>in</strong> the formation of<br />

zircon <strong>in</strong> this retrogressed eclogite sample. The fluid<br />

triggers zirconium host<strong>in</strong>g m<strong>in</strong>eral reactions and the<br />

solution/ precipitation of zircon. Therefore the amphibolite<br />

to greenschist facies event at 207 Ma is most likely l<strong>in</strong>ked<br />

to a fluid event.<br />

References:<br />

Hacker et al. 2000 Exhumation of ultrahigh-pressure cont<strong>in</strong>ental crust <strong>in</strong><br />

east central Ch<strong>in</strong>a: Late Triassic-Early Jurassic tectonic unroof<strong>in</strong>g,<br />

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 105, NO. B6,<br />

PAGES 13,339–13,364, 2000<br />

Hacker et al 2006 High-temperature geochronology constra<strong>in</strong>ts on the<br />

tectonic<br />

history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen,<br />

TECTONICS, VOL. 25, TC5006<br />

Zhang et al 2006 Ultrahigh pressure metamorphic rocks from the Ch<strong>in</strong>ese<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g Project: I. Petrology and geochemistry<br />

of the ma<strong>in</strong> hole (0–2,050 m), Contrib M<strong>in</strong>eral Petrol 152:421–441<br />

Zhang et al. 1995; Petrology, metamorphic process and genesis of the<br />

Dabie-Sulu eclogite belt, east-central Ch<strong>in</strong>a, Acta Geologica S<strong>in</strong>ica.<br />

Vol. 69, no. 4, pp. 306-325. Nov. 1995<br />

Wawrzenitz et al 2006 Dat<strong>in</strong>g of subduction and differential exhumation of<br />

UHP rocks from the Central Dabie Complex (E-Ch<strong>in</strong>a): Constra<strong>in</strong>ts<br />

from microfabrics, Rb–Sr and U–Pb isotope systems, Lithos, Volume<br />

89, Issues 1-2, June 2006, Pages 174-201<br />

R.L.Romer,N.Wawrzenitz,R.Oberhänsli(2003)Anomalous unradiogenic<br />

87Sr//86Sr ratios <strong>in</strong> ultrahigh-pressure crustal carbonates - evidence for<br />

fluid <strong>in</strong>filtration dur<strong>in</strong>gdeepsubduction? Terra Nova 15 (5), 330–336.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Pleistocene changes <strong>in</strong> terrigenous sediment<br />

<strong>in</strong>put to the eastern tropical Pacific based on<br />

ODP Sites 1237 and 1239<br />

D. RINCON MARTINEZ 1 , C. SAUKEL 1 , F. LAMY 1 , S. STEPH 1 , A.<br />

STURM 1 , R. TIEDEMANN 1<br />

1 Alfred-Wegener-Institute for Polar and Mar<strong>in</strong>e Research, Am<br />

Alten Hafen 26, 27568 Bremerhaven, Germany;<br />

daniel.r<strong>in</strong>con.mart<strong>in</strong>ez@awi.de; frank.lamy@awi.de<br />

One of the fundamental miss<strong>in</strong>g l<strong>in</strong>ks <strong>in</strong> understand<strong>in</strong>g<br />

Pleistocene changes <strong>in</strong> southeast Pacific oceanography,<br />

productivity and El Niño behavior as well as associated<br />

variations <strong>in</strong> thermocl<strong>in</strong>e depth, upwell<strong>in</strong>g and dust<br />

fertilisation is the knowledge of changes <strong>in</strong> southeast trade<br />

w<strong>in</strong>d strength and dust transport on millennial and orbital<br />

time scales. Our study aims to reconstruct changes <strong>in</strong> South<br />

American cont<strong>in</strong>ental aridity, dust supply and trade w<strong>in</strong>d<br />

strength at ODP Sites 1237 and 1239.<br />

Site 1237 was drilled <strong>in</strong> the easternmost flank of the<br />

Nazca Ridge, about 140 km off the coast of southern Peru<br />

west of the deep-sea trench. This site is located below the<br />

modern path of eolian sediment <strong>in</strong>put <strong>in</strong> an area of high<br />

biological productivity supplied by the divergence-driven<br />

upwell<strong>in</strong>g associated with the regional trade-w<strong>in</strong>d system<br />

(Fig. 1). Site 1239, on the other hand, was drilled on the<br />

Carnegie Ridge, about 120 km off the coast of Ecuador, <strong>in</strong><br />

an area that presently receives fluvial sediment <strong>in</strong>put from<br />

the Guayas River that is the largest river of tropical South<br />

America flow<strong>in</strong>g <strong>in</strong>to the Pacific Ocean (Fig. 1).<br />

We present high resolution geochemical records for the<br />

past 2 Ma. The records were measured with an Avaatech<br />

XRF Core Scanner at the AWI Bremerhaven <strong>in</strong> millennial<br />

to centennial-scale resolution and cover the uppermost ca.<br />

40 mcd at Site 1237 and ca. 110 mcd at Site 1239. Our<br />

geochemical measurements <strong>in</strong>clude semi-quantitative<br />

records of major and m<strong>in</strong>or elements cover<strong>in</strong>g the suite of<br />

elements between Al and Ba. For the changes <strong>in</strong><br />

terrigenous sediment <strong>in</strong>put we concentrate on primarily<br />

terrigenous element records like Fe, Ti, K, and Al. The<br />

obta<strong>in</strong>ed records show pronounced orbital-scale variability<br />

with a clear antiphas<strong>in</strong>g between Sites 1237 and 1239. At<br />

site 1237, near the arid coast of Peru, high (low)<br />

accumulation of terrigenous elements is evidenced dur<strong>in</strong>g<br />

glacial (<strong>in</strong>terglacial) times, whereas the conversed pattern<br />

is observed at Site 1239. Prelim<strong>in</strong>arily, we <strong>in</strong>terpret this<br />

antiphased pattern as enhanced supply of eolian terrigenous<br />

material to Site 1237 dur<strong>in</strong>g glacials and at the same time<br />

reduced fluvial sediment supply to Site 1239. This<br />

<strong>in</strong>terpretation would be consistent with enhanced trade<br />

w<strong>in</strong>d strength and reduced tropical ra<strong>in</strong>fall dur<strong>in</strong>g glacials<br />

as suggested by some other records. Further studies<br />

<strong>in</strong>clud<strong>in</strong>g a more detailed chronostratigraphy, gra<strong>in</strong>-size<br />

analyses, and oxygen isotope studies <strong>in</strong> order to reconstruct<br />

thermocl<strong>in</strong>e depth reconstructions are currently underway.<br />

Fig. 1. SEC=South Equatorial Current, NECC=North<br />

Equatorial Countercurrent, EUC=Equatorial<br />

Undercurrent, PCC=Peru-Chile Current, PCCC=Peru-<br />

Chile Countercurrent, CC=Coastal Current,<br />

GU=Gunther Undercurrent. Modern mean annual seasurface<br />

temperatures (<strong>in</strong>°C) after Ocean Climate<br />

Laboratory, 1999 (Tiedemann & Mix, 2007). Yellow<br />

arrows <strong>in</strong>dicate prevalent w<strong>in</strong>d direction.<br />

Fig. 2. Comparison of Fe content changes at Sites 1237 and<br />

1239 over the past 1.5 Ma show<strong>in</strong>g antiphased changes on<br />

orbital time-scales. Benthic 18O curve of Liesicki & Raymo<br />

(2005) below for reference. Gray bars mark glacials.<br />

107


108<br />

<strong>ICDP</strong><br />

The electrical conductivity structure between<br />

the transitional (near SAFOD) and locked<br />

(SE of Cholame) segments of the San<br />

Andreas Fault, <strong>in</strong>clud<strong>in</strong>g the source region of<br />

the non-volcanic tremors<br />

O. RITTER 1 , M. BECKEN 1 , U. WECKMANN 1 , P. A. BEDROSIAN1, T.<br />

RYBERG 1 , C. HABERLAND 1 .<br />

1 GeoForschungsZentrum, Telegrafenberg, 14473 Potsdam<br />

2 US Geological Survey, Denver, USA<br />

The <strong>ICDP</strong>/<strong>IODP</strong> DFG-SPP funded magnetotelluric<br />

(MT) experiment DeepRoot near the San Andreas Fault<br />

(SAF) Observatory at Depth (SAFOD) revealed a steeplydipp<strong>in</strong>g<br />

upper crustal high electrical conductivity zone<br />

flank<strong>in</strong>g the seismically def<strong>in</strong>ed SAF to the NE, widen<strong>in</strong>g<br />

<strong>in</strong>to the lower crust where it appears to be connected to a<br />

broad anomaly <strong>in</strong> the upper mantle. Becken et al. (<strong>2008</strong>)<br />

suggested that the high conductivity represents a deeprooted<br />

channel for crustal and/or mantle fluid ascent,<br />

consistent with the fluid chemistry of the SAFOD<br />

(Wiersberg & Erz<strong>in</strong>ger, 2007). Both the geochemical data<br />

and the resistivity model agree <strong>in</strong> suggest<strong>in</strong>g that a deeprooted<br />

fluid channel penetrates the entire crust. However,<br />

results from DeepRoot show that the upper crustal branch<br />

of the fluid conduit is located NE of the seismicallydef<strong>in</strong>ed<br />

SAF. This suggests that the fault does not provide a<br />

major pathway for fluids. This <strong>in</strong>terpretation is supported<br />

by the position and orientation of the high-conductivity<br />

zones <strong>in</strong> the upper crust and by recent studies with<strong>in</strong> the<br />

SAFOD ma<strong>in</strong> hole, which <strong>in</strong>dicate that (i) pore pressures<br />

with<strong>in</strong> the core of the SAF zone are not anomalously high<br />

(Zoback, 2006), (ii) mantle-derived fluids are m<strong>in</strong>or<br />

constituents <strong>in</strong> the fault-zone fluid composition, (Wiersberg<br />

& Erz<strong>in</strong>ger, 2007) and (iii) both the mantle content and the<br />

fluid pressure <strong>in</strong>crease towards the NE of the SAF<br />

(Zoback, 2006; Wiersberg & Erz<strong>in</strong>ger, 2007). All of these<br />

observations are consistent with a deep rooted (<strong>in</strong> the<br />

mantle or lower crust) source of fluids generat<strong>in</strong>g the<br />

observed high fluid pressures NE of the fault but not with<strong>in</strong><br />

the SAF.<br />

Analysis of triggered event data from the borehole<br />

High Resolution Seismic Network (HRSN) at Parkfield,<br />

California, revealed tremor-like signals orig<strong>in</strong>at<strong>in</strong>g to the<br />

south with<strong>in</strong> the Cholame Valley, approximately 40 km SE<br />

of Parkfield. Their locations <strong>in</strong>dicate that, with<strong>in</strong> the search<br />

radius, the tremors are conf<strong>in</strong>ed to a ~25-km segment of<br />

the SAF and occur at depths of between ~20 and 40 km.<br />

Nadeau & Dolenc (2005) suggested that either fluids are<br />

not important for the SAF tremors or an alternative fluid<br />

source (when compared with subduction zones) exists<br />

below the seismogenic zone <strong>in</strong> this area. Ellsworth et al.<br />

(2005) confirmed the observation of non-volcanic tremors<br />

<strong>in</strong> May 2005 dur<strong>in</strong>g the deployment of a multi-level<br />

borehole seismic array <strong>in</strong> the SAFOD ma<strong>in</strong> hole. An<br />

apparent correlation between tremor and local microearthquake<br />

rates at Cholame (Nadeau and Dolenc, 2005)<br />

suggests that deep deformation associated with the<br />

Cholame tremors may be stress<strong>in</strong>g the shallower<br />

seismogenic zone <strong>in</strong> this area. Further evidence for stresscoupl<strong>in</strong>g<br />

between the deep tremor zone and the<br />

seismogenic SAF is observed <strong>in</strong> the correlation between<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

tremor and the 2004, M6 Parkfield earthquake,<br />

approximately 10 km NW of Cholame.<br />

Near Cholame, earlier MT work found evidence for a<br />

resistive crust beneath the SAF (Park & Biasi, 1991) which<br />

could be <strong>in</strong>dicative of a dry zone capable of trapp<strong>in</strong>g fluids<br />

<strong>in</strong> the lower crust and/or the upper mantle. This hypothesis<br />

would be consistent with low mantle derived He content <strong>in</strong><br />

the Jack-Ranch Highway-46 Well (Kennedy et al., 1997)<br />

near Cholame and <strong>in</strong> support of a locally well-conf<strong>in</strong>ed<br />

source region for the non-volcanic tremors (Nadeau &<br />

Dolenc, 2005). It would mean, however, that the geological<br />

and / or rheological situation near Cholame is markedly<br />

different from Parkfield, where the resistivity model and<br />

the fluid chemistry (Kennedy et al., 1997; Wiersberg &<br />

Erz<strong>in</strong>ger, 2007) suggest a pathway for fluids <strong>in</strong>to the brittle<br />

regime of the SAF system.<br />

All of the above observations suggest that tremors (and<br />

possibly associated fluids) appear to be closely l<strong>in</strong>ked to<br />

fundamental processes govern<strong>in</strong>g both the deep roots and<br />

the seismogenic zone of large fault zones. The presence or<br />

absence of NVT could co<strong>in</strong>cide with the transition of the<br />

SAF from be<strong>in</strong>g locked (Cholame) to <strong>in</strong>termediate creep<br />

(SAFOD) and could reflect significant structural changes<br />

affect<strong>in</strong>g the deep hydraulic system along this portion of<br />

the SAF which <strong>in</strong> turn could be detectable with MT. Tests<br />

based on constra<strong>in</strong>ed <strong>in</strong>versions of the DeepRoot MT data<br />

across the SAFOD clearly show that a resistive lower crust<br />

is <strong>in</strong>consistent with the data (Becken et al., <strong>2008</strong>). This also<br />

means however, that we could resolve a resistive lower<br />

crust if it should exist beneath the Cholame segment of the<br />

SAF. Furthermore, if migration of fluids from the lower<br />

<strong>in</strong>to the upper crust is blocked by an impermeable seal, the<br />

upper crust should be more resistive. In fact, the eastern<br />

conductor (EC) which we <strong>in</strong>terpret as the upper crustal<br />

branch of the fluid channel near the SAFOD appears to be<br />

absent <strong>in</strong> prelim<strong>in</strong>ary <strong>in</strong>version models of the southernmost<br />

short profile of Unsworth et al. (unpublished), located just<br />

5 km NW of Cholame.<br />

To address these questions we have been cont<strong>in</strong>u<strong>in</strong>g<br />

our research activities with the TremorMT (GFZ-funded)<br />

and ELSAF (DFG+GFZ fund<strong>in</strong>g) projects to image an<br />

entire segment of the SAF with a network of MT stations,<br />

deployed from the Pacific Ocean <strong>in</strong>to the Great Valley,<br />

cross<strong>in</strong>g the SAFOD near Parkfield and the NVT source<br />

region beneath the SAF near Cholame. In autumn 2007, we<br />

measured MT data along a 130 km long profile across the<br />

Coast Ranges and centred above the source region of nonvolcanic<br />

tremors near Cholame (project TremorMT). We<br />

extended the exist<strong>in</strong>g DeepRoot profile to a length of 130<br />

km to better constra<strong>in</strong> lower crustal and upper mantle<br />

conductivity structure. Furthermore, four small-aperture<br />

seismic arrays (SASA) were deployed <strong>in</strong> cooperation with<br />

the USGS <strong>in</strong> the vic<strong>in</strong>ity of Cholame to test if the location<br />

accuracy of the NVT-events (<strong>in</strong> particular the depth<br />

estimate) could be improved. Prelim<strong>in</strong>ary results of the<br />

SASA work, which was carried out <strong>in</strong> cooperation with W.<br />

Ellsworth from the USGS, are very promis<strong>in</strong>g as we<br />

observed numerous tremor-type signals <strong>in</strong> a record<strong>in</strong>g time<br />

of only 6 weeks. We are currently analyz<strong>in</strong>g these data.<br />

With ELSAF we will cont<strong>in</strong>ue to collect MT data <strong>in</strong> spr<strong>in</strong>g<br />

<strong>2008</strong> with an array of MT sites connect<strong>in</strong>g the highresolution<br />

profiles across the SAFOD and the Cholame<br />

Valley. With the 3D array of MT sites we can resolve<br />

along-strike variations between the Colame and Parkfield


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

segments of the SAF (see Fig. 1 for exist<strong>in</strong>g and planned<br />

MT sites).<br />

Fig. 1: Proposed and exist<strong>in</strong>g MT sites <strong>in</strong> the Cholame-Parkfield area <strong>in</strong> Central California. Blue asterisks and red dots <strong>in</strong>dicate the<br />

proposed new comb<strong>in</strong>ed long-period(LMT)/broad-band(BB) and BB-only sites, respectively, white asterisks and green dots <strong>in</strong>dicate<br />

exist<strong>in</strong>g MT sites, acquired by the GFZ Potsdam and the UC Riverside <strong>in</strong> 2005/6 and by Unsworth et al. (1997). Additional MT data<br />

recently gathered <strong>in</strong> the NE part by S. Park (collaborator <strong>in</strong> DeepRoot) are shown as green squares. The SAFOD site near Parkfield<br />

is marked with a yellow star and the region of the non-volcanic tremors near Cholame is <strong>in</strong>dicated by a yellow rectangle. Phase I of<br />

the project (TremorMT, GFZ funded) as successfully completed <strong>in</strong> fall 2007 with data acquisition along the 130 km long profile<br />

(CHO) and extend<strong>in</strong>g the exist<strong>in</strong>g 50km long MT/seismic profile of the DeepRoot project from the Pacific coast <strong>in</strong>to the San Joaqu<strong>in</strong><br />

Valley (profile PKD). In phase II of the project (<strong>ICDP</strong>, ELSAF) profiles CHO and PKD will be connected spatially with an array of<br />

LMT/BB and BB magnetotelluric sites, as <strong>in</strong>dicated with blue asterisks and red dots. Gray triangles <strong>in</strong>dicate the locations of the<br />

seismic m<strong>in</strong>i-arrays (phase I); the solid black l<strong>in</strong>e and black asterisks <strong>in</strong>dicate the location of the exist<strong>in</strong>g seismic<br />

refraction/reflection l<strong>in</strong>e SJ-6 (Murphy & Walter, 1984).<br />

Furthermore, our research activities onshore will be<br />

extended offshore <strong>in</strong> a collaborative research effort with<br />

our colleagues from Scripps Institution of Oceanography,<br />

UCSD. Brent Wheelock, Kerry Key, and Steven Constable<br />

will be extend<strong>in</strong>g our land profiles with their Scripps<br />

funded “Deep San Andreas Fault Boundary Structure from<br />

Mar<strong>in</strong>e MT” experiment. The offshore data will be<br />

collected <strong>in</strong> autumn <strong>2008</strong>. The comb<strong>in</strong>ation of onshore and<br />

offshore data will help us to see the whole picture as<br />

modell<strong>in</strong>g shows that important parts of the San Andreas<br />

Fault structure, e.g. a deep rooted source of fluids <strong>in</strong> the<br />

upper mantle, can only be fully imaged by extend<strong>in</strong>g the<br />

MT array offshore.<br />

109<br />

References:<br />

Becken M, Ritter, O., Park, S., Bedrosian, P., Weckmann, U., and Weber,<br />

M., <strong>2008</strong>. A deep crustal fluid channel <strong>in</strong>to the San Andreas Fault<br />

system near Parkfield, . Geophys. J Int.,(submitted), Manuscript under<br />

moderate revision – <strong>in</strong>cluded as an attachment to this proposal.<br />

Ellsworth, W. L., Luetgert J. H., Oppenheimer D. H., 2005. Borehole Array<br />

Observations of Non-Volcanic Tremor at SAFOD, AGU fall meet<strong>in</strong>g,<br />

San Francisco.<br />

Kennedy, B. M., Kharaka, Y. K., Evans, W. C., Ellwood, A., DePaolo, D. J.,<br />

Thordsen, J., Ambats, G. and Mar<strong>in</strong>er, R. H., 1997. Mantle fluids <strong>in</strong> the<br />

San Andreas Fault System, California. Science, 278, 1278-1281.<br />

Nadeau, M. N., and Dolenc, D., 2005, Nonvolcanic Tremors Deep Beneath<br />

the San Andreas Fault. Science, 307, 389.<br />

Park, S.K., Biasi, G.P., Mackie, R.L., Madden, T.R., 1991. Magnetotelluric<br />

evidence for crustal suture zones bound<strong>in</strong>g the southern Great Valley,<br />

California. J. Geophys. Res., 96(B1), p. 353-376.<br />

Wiersberg, T. and Erz<strong>in</strong>ger, J. 2007. A helium isotope cross-section study<br />

through the San Andreas Fault at seismogenic depths, Geochemistry,<br />

Geophysics, Geosystems, 8, Q01002<br />

Zoback, M.; Hickman, S.; Ellsworth, W., 2006. Structure and properties of<br />

the San Andreas fault <strong>in</strong> central California: Prelim<strong>in</strong>ary results from the<br />

SAFOD experiment, Geophysical Research Abstracts, 8, EGU


110<br />

<strong>IODP</strong><br />

The plat<strong>in</strong>um group element and osmium<br />

isotope <strong>in</strong>ventory of Atlantis Massif<br />

M. ROSNER 1,3 , B. PEUCKER-EHRENBRINK 2 , W. BACH 3<br />

1 Bundesanstalt für Materialforschung und –prüfung formerly<br />

Universität Bremen, Petrologie der Ozeankruste,<br />

mart<strong>in</strong>.rosner@bam.de<br />

2 Woods Hole Oceanographic Institution, Mar<strong>in</strong>e Chemistry &<br />

Geochemistry, Woods Hole, MA 02543<br />

3 Universität Bremen, Petrologie der Ozeankruste, Klagenfurter<br />

Straße, GEO Geb., 28334 Bremen<br />

Dur<strong>in</strong>g <strong>IODP</strong> Expeditions 304/305 a 1400m thick<br />

section of ultramafic to gabbroic oceanic crust was<br />

recovered from the Atlantis Massif. The massif is an<br />

Oceanic Core Complex that formed <strong>in</strong> the past 1.5-2.0 Ma<br />

at the <strong>in</strong>tersection of the Mid-Atlantic Ridge and the<br />

Atlantis fracture zone. Hole U1309D was drilled <strong>in</strong> the<br />

central part of the Core Complex, and gabbros and<br />

troctolites are the dom<strong>in</strong>ant rock type (92%), followed by<br />

ultramafic (~5%) and basaltic (~3%) rocks. Hole U1309D<br />

is the third deepest drill hole <strong>in</strong> oceanic crust and the<br />

recovered section is believed to be a common endmember<br />

of ocean crust from at slow spread<strong>in</strong>g mid ocean ridge<br />

sett<strong>in</strong>gs. We <strong>in</strong>itiate a plat<strong>in</strong>um group element and osmium<br />

isotope project to characterize the PGE <strong>in</strong>ventory of ocean<br />

crust of this reference section and study chemical fluxes<br />

dur<strong>in</strong>g late-stage alteration processes related to the uplift of<br />

the crust.<br />

To characterize the drilled section we selected MORBs<br />

(from the top of the massif) and diabases (<strong>in</strong>trusive <strong>in</strong><br />

gabbros) as well as gabbros (gabbros to oliv<strong>in</strong>e gabbros)<br />

and ultramafics (troctolitic lherzolite).<br />

First, PGE data show a three orders of magnitude range<br />

of concentration between the gabbros and the ultramafics.<br />

Without exceptions, the gabbros are extremely depleted <strong>in</strong><br />

PGEs relative to PUM (10-4 to 10-2), whereas the<br />

ultramafics are similar to troctolites recovered from ODP<br />

Hole 735B and show only m<strong>in</strong>or depletion relative to<br />

PUM. The <strong>in</strong>vestigated basalts and diabases show a wide<br />

range of PGE concentrations reflect<strong>in</strong>g ma<strong>in</strong>ly different<br />

degrees of alteration or seafloor weather<strong>in</strong>g. The impact of<br />

alteration is illustrated by the 187Os/188Os isotope ratios<br />

that correlate positively with 1/Os. The troctolite with the<br />

highest osmium concentration shows the lowest<br />

187Os/188Os ratio of 0.1438, whereas the osmium-poor<br />

gabbros and a highly weathered basalt sample have<br />

187Os/188Os ratios between 0.1624 and 0.2288.<br />

Analyses of sulfur, carbon and water concentrations<br />

will help to dist<strong>in</strong>guish between primary mantle-derived<br />

characteristics and secondary alteration signals.<br />

<strong>IODP</strong><br />

The Miocene climatic record of Southwest<br />

Africa: results from a 50-kyr resolutionsilt<br />

gra<strong>in</strong>-size record of DSDP Site 530A (Project:<br />

RCOM TP A5/A6)<br />

B. ROTERS 1 , R. HENRICH 2<br />

1<br />

Research Center Ocean Marg<strong>in</strong>s, Universität Bremen, Postfach<br />

330 440, 28334 Bremen, bastian.roters@uni-bremen.de<br />

2<br />

Fachbereich Geowissenschaften, Universität Bremen, Postfach<br />

330 440, 28334 Bremen, henrich@uni-bremen.de<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

DSDP Site 530A is positioned <strong>in</strong> the Southeast Atlantic<br />

on the northern foot of the Walvis Ridge <strong>in</strong> a distance of<br />

280 km of the Angolan coast. Today it is bathed <strong>in</strong> Deeper<br />

Component Water well below the CCD <strong>in</strong> 4629 m water<br />

depth. Because of low mass accumulation rates (MAR) the<br />

Hole 530A covers sediments from the Holocene down to<br />

the Cretaceous (Shipboard Scientific Party, 1984). The<br />

surveyed section spans from the Burdigalian to the<br />

Tortonian (19 to 9 Myr) and has been sampled <strong>in</strong> 50 kyr<br />

<strong>in</strong>tervals. After the sampl<strong>in</strong>g the sediments were washed<br />

over a 63µm-mesh sieve to remove the sand fraction. The<br />

f<strong>in</strong>e fraction has been separated <strong>in</strong>to clay and silt by us<strong>in</strong>g<br />

the Atterberg method. F<strong>in</strong>ally the gra<strong>in</strong>-size distribution of<br />

the silt fraction was <strong>in</strong>vestigated us<strong>in</strong>g a Micromeritics<br />

Sedigraph. The silt was measured <strong>in</strong> two cycles, after the<br />

first cycle carbonate has been removed from the material<br />

with Hydrochloric Acid. With this method it is possible to<br />

dist<strong>in</strong>guish between the size distributions of the bulk silt,<br />

the terrigeneous silt and the carbonaceous silt. To get more<br />

accurate values of carbonate and organic matter (TOC)<br />

contents of the samples, bulk sediment material was<br />

<strong>in</strong>vestigated with a carbon/sulphur combustion analyser<br />

(LECO CS-200).<br />

The results show very low carbonate contents,<br />

especially <strong>in</strong> the part below 10.5 Myr where <strong>in</strong> some<br />

samples carbonate is totally absent. This is due to the depth<br />

of the site, which is today well below the CCD, as it was<br />

also dur<strong>in</strong>g the Miocene. The low carbonate contents<br />

expla<strong>in</strong> also the low MAR. The TOC values are also low <strong>in</strong><br />

the part below 11.5 Myr. They show a dist<strong>in</strong>ct seesaw<br />

pattern with values rang<strong>in</strong>g between 0.08 and generally 0.3<br />

wt-%. Only <strong>in</strong> some cases TOC contents of more than 0.4<br />

wt-% were found. After 11.5 Myr TOC contents <strong>in</strong> the<br />

sediment rise due to <strong>in</strong>creas<strong>in</strong>g productivity and vary<br />

between 0.2 and 0.8 wt-%. Dur<strong>in</strong>g the productivity rise<br />

also the carbonate contents <strong>in</strong>creased as a result of better<br />

preservation, because of an <strong>in</strong>creased carbonate ra<strong>in</strong> to the<br />

seafloor. The <strong>in</strong>ception of higher productivity <strong>in</strong> surface<br />

waters was due to the onset of coastal upwell<strong>in</strong>g along the<br />

Southwest African marg<strong>in</strong> at around 11 Myr (Diester-<br />

Haass et al., 2002). The <strong>in</strong>fluence of the upwell<strong>in</strong>g and its<br />

filaments is also recognisable <strong>in</strong> the Angolan Bas<strong>in</strong>. The<br />

Sedigraph measurements show, that most of the silt is<br />

concentrated <strong>in</strong> the size fraction between 3 and 6 µm.<br />

Because of the low carbonate contents, only the<br />

terrigeneous silt fraction is mentioned further on. The mean<br />

silt sizes vary between 8 and 12 µm dur<strong>in</strong>g the time<br />

between 19.0 and 13.5 Myr. There is one exception at 16.1<br />

Myr when the mean size is at 18 µm. Possibly here a<br />

turbidite bed has been sampled, because also the clay<br />

contents of this sample are significantly lower than usual.<br />

However, dur<strong>in</strong>g the Middle and Late Miocene the<br />

turbidite activity was generally very low (Stow, 1984)..<br />

The <strong>in</strong>terval between 13.5 and 12.5 Myr has the lowest<br />

mean size values of the whole section, vary<strong>in</strong>g between 6<br />

and 8 µm only. From 11.0 Myr on the mean size <strong>in</strong>crease<br />

and reach a maximum value of about 17 µm.<br />

To adress climatic changes from the gra<strong>in</strong> sizes, the<br />

sources and transport mechanisms for the silt have to be<br />

clarified. Two potential sources may be considered for the<br />

terrigeneous <strong>in</strong>put at the <strong>in</strong>vestigated site. The coastal dry<br />

lands and deserts or a more humid h<strong>in</strong>terland, respectively.<br />

As transport mechanisms three possibilities were taken <strong>in</strong>to<br />

account: w<strong>in</strong>d transport, fluvial supply and sediment


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

transport by bottom currents. Bottom currents as a transport<br />

medium are not taken <strong>in</strong>to account, because the gra<strong>in</strong> size<br />

plot shows cont<strong>in</strong>uous spectra. The rema<strong>in</strong><strong>in</strong>g processes<br />

are w<strong>in</strong>d transport and fluvial supply, which have to be<br />

assigned to specific gra<strong>in</strong> sizes.<br />

From various studies from the Atlantic off Northern<br />

and Southern Africa (Kastanja et al., 2006; Holz et al.,<br />

2004) is known that f<strong>in</strong>er silt is supplied by rivers while<br />

w<strong>in</strong>d is recognized by a coarser size spectrum. Therefore<br />

the gra<strong>in</strong> size distribution is split <strong>in</strong>to a f<strong>in</strong>er (2 to 10 µm)<br />

and a coarser (10 to 63 µm) fraction. The f<strong>in</strong>er fraction is<br />

addressed to fluvial transport and represents humid climate<br />

and the coarser silt represents w<strong>in</strong>d transport and dry<br />

conditions, respectively. The f<strong>in</strong>er silt mean sizes show a<br />

dist<strong>in</strong>ct seesaw pattern between 19.0 and 15.0 Myr. Here,<br />

the peak values clearly display 400 kyr frequency pattern.<br />

From 14.0 Myr to the top of the section the mean sizes<br />

show a decreas<strong>in</strong>g trend. From 11.0 Myr also the f<strong>in</strong>er silt<br />

contents decrease. This po<strong>in</strong>ts to a reduced fluvial supply,<br />

probably giv<strong>in</strong>g evidence to a climatic shift to a dryer<br />

period. The mean sizes for the coarser silt vary <strong>in</strong> a much<br />

broader range. Here the smallest sizes were found between<br />

18.0 and 19.0 Myr. Towards the section top the values are<br />

higher with peaks at 14.5, 13.7 and 9.7 Myr. From 18.0 to<br />

11.0 Myr the values vary between 15 and 18 µm mostly. At<br />

11.0 Myr mean sizes reach values coarser than 18 µm<br />

more often. This may refer to higher seaward w<strong>in</strong>d speeds.<br />

These are aga<strong>in</strong> an <strong>in</strong>dication for a dryer cont<strong>in</strong>ent, because<br />

the transport of humid air masses from the ocean to the<br />

land is prevented. Contemporaneously the seaward w<strong>in</strong>ds<br />

enhance coastal upwell<strong>in</strong>g which started at these times.<br />

References:<br />

Diester-Haass, L., Myers, P. A., Vidal, L. (2002): The late Miocene onset of<br />

high productivity <strong>in</strong> the Benguela Current upwell<strong>in</strong>g system as part of a<br />

global pattern . Mar. Geology, 180(1-4):87-103.<br />

Holz, C, Stuut, J. B.W., Henrich, R. (2004): Terrigenous sedimentation<br />

processes along the cont<strong>in</strong>ental marg<strong>in</strong> off NW Africa: implications<br />

from gra<strong>in</strong>-size analysis of seabed sediments. Sedimentology,<br />

51(5):1145-1154.<br />

Kastanja, M.-M., Diekmann, B., Henrich, R. (2006): Controls on carbonate<br />

and terrigenous deposition <strong>in</strong> the <strong>in</strong>cipient Benguela upwell<strong>in</strong>g system<br />

dur<strong>in</strong>g the middle to the late Miocene (ODP Sites 1085 and 1087).<br />

Paleogeogr.Paleoclimatol.Paleoecol,. 241(3-4):515-530.<br />

Shipboard Scientific Party (1984): Site 530: Southeastern Corner of the<br />

Angola Bas<strong>in</strong>. In: Hay, W. W., Sibuet, J.-C. et al. (eds). Initial Reports.<br />

DSDP, Leg 75. U.S. Government Pr<strong>in</strong>t<strong>in</strong>g Office, Wash<strong>in</strong>gton, pp 29-<br />

285.<br />

Stow, D. A. V. (1984): Turbidite facies, Associations and Sequences <strong>in</strong> the<br />

Southeastern Angola Bas<strong>in</strong>. In: Hay, W. W., Sibuet, J.-C. et al. (eds).<br />

Initial Reports. DSDP, Leg 75. U.S. Government Pr<strong>in</strong>t<strong>in</strong>g Office,<br />

Wash<strong>in</strong>gton, pp 785-799.<br />

<strong>IODP</strong><br />

Cold-water coral mound <strong>in</strong>itiation and early<br />

development – results of benthic<br />

foram<strong>in</strong>iferal assemblages and gra<strong>in</strong>-size<br />

analysis<br />

A. RÜGGEBER 1 , C. DULLO 1 , <strong>IODP</strong> EXP 307 SCIENTIFIC PARTY<br />

1 Leibniz Institut für Meereswissenschaften IFM-GEOMAR,<br />

Wischhofstr. 1-3, 24149 Kiel, arueggeberg@ifm-geomar.de<br />

Cold-water corals reefs and carbonate mound prov<strong>in</strong>ces<br />

<strong>in</strong> the Porcup<strong>in</strong>e Seabight and the Rockall Trough of the<br />

north Atlantic are known s<strong>in</strong>ce their first discovery 10 to<br />

15 years ago (Hovland et al., 1994; Henriet et al., 1998; De<br />

Mol et al., 2002). These cold-water coral ecosystems build<br />

up spectacular, several 100-m high mound structures. The<br />

controll<strong>in</strong>g mechanism of <strong>in</strong>itial mound growth and<br />

111<br />

development are still under debate but recent development<br />

is dependent on sedimentary, oceanographic and climatic<br />

processes (De Mol et al., 2002; Freiwald et al., 2002;<br />

Rüggeberg et al., 2005, 2007; Dorschel et al., 2005).<br />

However, explanations of the orig<strong>in</strong> and evolution of the<br />

Porcup<strong>in</strong>e mounds revolve around two scenarios that may<br />

be expressed as either compet<strong>in</strong>g or complementary<br />

hypotheses:<br />

(1) oceanographic and paleo-environmental conditions<br />

control mound <strong>in</strong>itiation and growth, and<br />

(2) hydrocarbon seepage <strong>in</strong>itiates microbial-<strong>in</strong>duced<br />

carbonate formation and <strong>in</strong>directly fuels coral growth<br />

(endogenous control) (Hovland et al., 1998; Henriet et al.,<br />

2001).<br />

Integrated Ocean Drill<strong>in</strong>g Program (<strong>IODP</strong>) Expedition<br />

307 was proposed to obta<strong>in</strong> evidence for understand<strong>in</strong>g the<br />

orig<strong>in</strong> and evolution of the deepwater carbonate mounds <strong>in</strong><br />

Porcup<strong>in</strong>e Seabight. Challenger Mound, a carbonate<br />

mound structure covered with fossil cold-water coral<br />

rubble, was the focal po<strong>in</strong>t of scientific drill<strong>in</strong>g dur<strong>in</strong>g<br />

Integrated Ocean Drill<strong>in</strong>g Program Expedition 307. Our<br />

study on benthic foram<strong>in</strong>iferal assemblages and gra<strong>in</strong>-size<br />

distribution from the first meters of mound <strong>in</strong>itiation also<br />

<strong>in</strong>dicate an environmental control of their distribution and<br />

variability. No <strong>in</strong>dication of hydrocarbon seepage or<br />

microbial-<strong>in</strong>duced carbonate formation has been found so<br />

far, which supports the first hypothesis that cold-water<br />

coral distribution and growth is controlled by<br />

oceanographic and paleo-environmental conditions. Recent<br />

f<strong>in</strong>d<strong>in</strong>gs of Dullo et al. (<strong>2008</strong>) underl<strong>in</strong>e an environmental<br />

prerequisite of cold-water coral occurrences render<strong>in</strong>g the<br />

second hypothesis unnecessary. Nevertheless, hardground<br />

formation is an essential process from which subsurface<br />

vent<strong>in</strong>g can not be excluded.<br />

References:<br />

De Mol B., Van Rensbergen P., Pillen S., Van Herreweghe K., Van Rooij<br />

D., McDonnell A., Huvenne V., Ivanov M., Swennen R., and Henriet<br />

J.-P. (2002) Large deep-water coral banks <strong>in</strong> the Porcup<strong>in</strong>e Bas<strong>in</strong>,<br />

southwest of Ireland. Mar<strong>in</strong>e Geology 188, 193-231.<br />

Dorschel B., Hebbeln D., Rüggeberg A., Dullo W.-Chr., and Freiwald A.<br />

(2005) Deglacial sweep<strong>in</strong>g of a deep-water carbonate mound. Earth<br />

and Planetary Science Letters 233, 33–44.<br />

Dullo, C., Rüggeberg, A., and Flögel, S. (<strong>2008</strong>) Cold-water coral growth <strong>in</strong><br />

relation to the hydrography of the Celtic and Nordic European<br />

Cont<strong>in</strong>ental Marg<strong>in</strong>. International Journal of Earth Sciences (accepted).<br />

Expedition Scientists, 2005. Modern carbonate mounds: Porcup<strong>in</strong>e drill<strong>in</strong>g.<br />

<strong>IODP</strong> Prel. Rept., 307. doi:10.2204/iodp.pr.307.2005<br />

Freiwald A. (2002) Reef-Form<strong>in</strong>g Cold-Water Corals. In Ocean Marg<strong>in</strong><br />

Systems (ed. G. Wefer, D. Billett, D. Hebbeln, B. B. Jørgensen, M.<br />

Schlüter, and T. v. Weer<strong>in</strong>g), pp. 365-385. Spr<strong>in</strong>ger Verlag.<br />

Henriet J.-P., De Mol B., Pillen S., Vanneste M., Van Rooij D., Versteeg<br />

W., Croker P.F., Shannon P.M., Unnithan V., Bouriak S., and<br />

Chachk<strong>in</strong>e P. (1998) Gas hydrate crystals may help build reefs. Nature<br />

391, 648-649.<br />

Henriet J.-P., De Mol B., Vanneste M., Huvenne V., Van Rooij D., and the<br />

Porcup<strong>in</strong>e-Belgica 97, 98, and 99 Shipboard Parties (2001) Carbonate<br />

mounds and slope failures <strong>in</strong> the Porcup<strong>in</strong>e Bas<strong>in</strong>: a de-velopment<br />

model <strong>in</strong>volv<strong>in</strong>g fluid vent<strong>in</strong>g. In: Shannon, P.M., Haughton, P., and<br />

Corcoran, D. (eds.) Petroleum Exploration of Ireland’s Offshore<br />

Bas<strong>in</strong>s. Geol. Soc. Spec. Publ., 188, 375–383.<br />

Hovland M., Croker P.F., and Mart<strong>in</strong> M. (1994) Fault-associated seabed<br />

mounds (carbonate knolls?) off western Ireland and north-west<br />

Australia. Mar. Pet. Geol., 11, 232–246. doi:10.1016/0264-<br />

8172(94)90099-X<br />

Hovland M., Mortensen P. B., Brattegard T., Strass P., and Rokengen K.<br />

(1998) Ahermatypic coral banks off mid-Norway: evidence for a l<strong>in</strong>k<br />

with seepage of light hydrocarbons. Palaios, 13, 189–200.<br />

Rüggeberg A., Dullo C., Dorschel B., and Hebbeln D. (2007) Environmental<br />

changes and growth history of Propeller Mound, Porcup<strong>in</strong>e Seabight:<br />

Evidence from benthic foram<strong>in</strong>iferal assemblages. International Journal<br />

of Earth Sciences, DOI: 10.1007/s00531-005-0504-1.<br />

Rüggeberg A., Dorschel B., Dullo W.-Chr., and Hebbeln D. (2005)<br />

Sedimentary patterns <strong>in</strong> the vic<strong>in</strong>ity of a carbonate mound <strong>in</strong> the<br />

Hovland Mound prov<strong>in</strong>ce, northern Porcup<strong>in</strong>e Seabight. In: A.


112<br />

Freiwald and J.M. Roberts (eds.) Cold-water Corals and Ecosystems.<br />

Spr<strong>in</strong>ger-Verlag Berl<strong>in</strong> Heidelberg, pp 87-112.<br />

<strong>ICDP</strong><br />

Different records of Late Palaeozoic sea-level<br />

driven cyclothems: one clue for better<br />

understand<strong>in</strong>g controls over cycle<br />

development.<br />

DIETHARD SANDERS 1 , KARL KRAINER 1 , SPENCER LUCAS 2<br />

1 Faculty of Geo- and Atmospheric Sciences, University of<br />

Innsbruck, A-6020 Innsbruck, Austria (EU)<br />

2 New Mexico Museum of Natural History and Science,<br />

Albuquerque, New Mexico NM 87104, USA<br />

Comparative analysis of co-eval Late Palaeozoic cyclic<br />

successions deposited under glacio-eustatic sea-level<br />

changes, but <strong>in</strong> (a) a sett<strong>in</strong>g with active local tectonism<br />

(Austria/Italy), and (b) on a stable epicont<strong>in</strong>ental platform<br />

(New Mexico) has the potential to better discrim<strong>in</strong>ate<br />

controls on cyclothem development than by study with<strong>in</strong> a<br />

s<strong>in</strong>gle area. In the Late Carboniferous to Early Permian<br />

icehouse world, glacio-eustatic sea-level changes caused by<br />

wax<strong>in</strong>g and wan<strong>in</strong>g of the Gondwanan ice shield resulted<br />

<strong>in</strong> deposition of cyclothems of very large geographic<br />

extent. The objectives of research project P20178-N10<br />

(Austrian Research Foundation) are the comparative study<br />

of architecture, composition and orig<strong>in</strong> of (a) Lower<br />

Permian cyclothems <strong>in</strong> the Southern Alps (Europe),<br />

deposited <strong>in</strong> an active tectonic sett<strong>in</strong>g related to rift<strong>in</strong>g,<br />

with (b) Lower Permian cyclothems <strong>in</strong> southwestern New<br />

Mexico (USA), accumulated on a stable epicont<strong>in</strong>ental<br />

shelf. Comparison of cyclothems accumulated <strong>in</strong> these<br />

different tectonic sett<strong>in</strong>gs should allow for a better<br />

recognition of controls over cycle development and<br />

expression of cycle boundaries. In the Southern Alps<br />

(Europe), throughout an Upper Carboniferous to Lower<br />

Permian succession of stacked cyclothems, the architecture<br />

of cyclothems changes markedly up-section, from more-orless<br />

symmetrical (upward-deepen<strong>in</strong>g/upward-shoal<strong>in</strong>g)<br />

cyclothems <strong>in</strong> the lower part to asymmetrical (upwardshoal<strong>in</strong>g)<br />

cyclothems <strong>in</strong> the upper part. Because the Upper<br />

Palaeozoic of the Southern Alps accumulated dur<strong>in</strong>g early<br />

rift<strong>in</strong>g related to the Alp<strong>in</strong>e orogenic cycle, the vertical<br />

change <strong>in</strong> cyclothem style may result from a progressive<br />

<strong>in</strong>fluence of tectonism relative to glacio-eustasy. The<br />

Pedregosa bas<strong>in</strong> of New Mexico (USA) accumulated under<br />

slow, steady subsidence <strong>in</strong> an epicont<strong>in</strong>ental sett<strong>in</strong>g. The<br />

bas<strong>in</strong> conta<strong>in</strong>s a Pennsylvanian to Lower Permian<br />

succession with cyclothems developed <strong>in</strong> the upper part.<br />

Each cyclothem is characterized by an <strong>in</strong>terval of pure,<br />

shallow neritic limestones (rich <strong>in</strong> calcareous algae and<br />

fusul<strong>in</strong>ids) that is sharply capped by a subaerial exposure<br />

surface. The persistent sharp 'capp<strong>in</strong>g' of each of the<br />

cyclothems by a cont<strong>in</strong>uous (on a lateral scale of tens of<br />

kilometers at the least) subaerial exposure surface leads us<br />

to postulate that these cyclothems accumulated under<br />

prevalent <strong>in</strong>fluence of glacio-eustatic sea-level changes,<br />

with tectonism play<strong>in</strong>g only a slightly modulat<strong>in</strong>g<br />

background role relative to glacio-eustasy.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

Pliocene changes <strong>in</strong> terrigenous sediment<br />

<strong>in</strong>put to the eastern tropical and subtropical<br />

Pacific based on ODP sites 1237 and 1239 –<br />

First results from XRF core scann<strong>in</strong>g and<br />

gra<strong>in</strong> size analysis<br />

C. SAUKEL, D. RINCON MARTINEZ, F. LAMY, S. STEPH, A. STURM,<br />

R. TIEDEMANN<br />

Alfred-Wegener-Institut für Polar- und Meeresforschung, Am<br />

Alten Hafen 26, D-27568 Bremerhaven;<br />

Cornelia.Saukel@awi.de<br />

The reconstruction of low-latitude ocean-atmosphere<br />

<strong>in</strong>teractions is one of the major issues of paleoenvironmental<br />

studies. The trade w<strong>in</strong>ds, extend<strong>in</strong>g over 20°<br />

to 30° of latitude <strong>in</strong> both hemispheres, between the<br />

subtropical highs and the <strong>in</strong>tertropical convergence zone<br />

(ITCZ), are dom<strong>in</strong>ant factors of atmospheric circulation<br />

and little is known about their long-term variability on<br />

geological time scales, <strong>in</strong> particular <strong>in</strong> the Pacific sector.<br />

Variations <strong>in</strong> SE trade w<strong>in</strong>d strength and its dust<br />

transport are considered miss<strong>in</strong>g l<strong>in</strong>ks for a comprehensive<br />

understand<strong>in</strong>g of Pliocene changes <strong>in</strong> SE Pacific<br />

oceanography, productivity, El Niño behavior and<br />

associated changes <strong>in</strong> thermocl<strong>in</strong>e depths as well as<br />

upwell<strong>in</strong>g. Our project therefore aims at the reconstruction<br />

of changes <strong>in</strong> South American climate, dust <strong>in</strong>put and SE<br />

trade w<strong>in</strong>d <strong>in</strong>tensities at ODP sites 1237 and 1239 on<br />

millennial and orbital time scales, with a special focus on<br />

periods of pronounced reorganizations <strong>in</strong> global climate<br />

and oceanography, the Pliocene <strong>in</strong>tensification of Northern<br />

Hemisphere Glaciation (NHG) from 3.3-2.4 and the<br />

Pliocene warm period from 5-4 Ma.<br />

Site 1237 is located 140 km off the coast of Peru at<br />

3212 m water depth on the eastern flank of Nazca Ridge.<br />

The area is characterized by high biological productivity,<br />

connected to upwell<strong>in</strong>g, and lies underneath the modern<br />

path of eolian dust transport from the Atacama Desert. Site<br />

1239 was drilled further north, on Carnegie Ridge at 1414<br />

m water depth, 120 km off the coast of Ecuador (Figure 1).<br />

It presumably conta<strong>in</strong>s signals of fluvial sediment<br />

discharge of the Guayas River, the largest river of tropical<br />

South America discharg<strong>in</strong>g <strong>in</strong>to the Pacific.<br />

We use the modern spatial pattern of siliciclastic gra<strong>in</strong><br />

size variability <strong>in</strong> eastern equatorial and subtropical Pacific<br />

(10°N to 25°S) surface sediments as a reference data set for<br />

currently performed down core studies on ODP sites 1237<br />

and 1239. The surface samples were analyzed for gra<strong>in</strong> size<br />

(Beckmann-Coulter laser particle sizer) and clay m<strong>in</strong>eral<br />

(XRD) distributions <strong>in</strong> order to identify sediment dispersal<br />

patterns of terrigenous <strong>in</strong>put, i.e. eolian signals and<br />

possible fluvial overpr<strong>in</strong>ts.<br />

In general, the f<strong>in</strong>e silt fraction dom<strong>in</strong>ates the<br />

siliciclastic component of surface sediments west of the<br />

South American deep-sea trench, with modes rang<strong>in</strong>g from<br />

4.5 to 8µm. First results confirm a decrease <strong>in</strong> gra<strong>in</strong>-size <strong>in</strong><br />

the prevalent w<strong>in</strong>d direction away from the source regions<br />

<strong>in</strong> the Atacama Desert. Dust <strong>in</strong>put thus is a valuable<br />

<strong>in</strong>dicator for changes <strong>in</strong> atmospheric circulation patterns <strong>in</strong><br />

the SE Pacific and for South American cont<strong>in</strong>ental aridity.<br />

Additionally, gra<strong>in</strong>-size distributions <strong>in</strong> the Panama<br />

Bas<strong>in</strong> appear to reflect the pattern of prom<strong>in</strong>ent bottom<br />

water currents.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

As a first analytical method we applied X-ray<br />

fluorescence (XRF) scann<strong>in</strong>g on the ODP cores <strong>in</strong> order to<br />

obta<strong>in</strong> geochemical records <strong>in</strong> millennial-scale resolution.<br />

The measurements of the sections cover<strong>in</strong>g the Pliocene<br />

<strong>in</strong>terval were carried out at the AWI Bremerhaven and the<br />

Marum (Bremen), with second-generation Avaatech XRF<br />

Core Scanners, compris<strong>in</strong>g elements of Al through Ba. We<br />

present semi-quantitative logg<strong>in</strong>g data of ODP sites 1237<br />

and 1239, which reveal relative variations <strong>in</strong> the elemental<br />

composition of the sediments. Changes <strong>in</strong> element<br />

<strong>in</strong>tensities and ratios <strong>in</strong>dicative of dust deposition at site<br />

1237 are of special <strong>in</strong>terest, <strong>in</strong>clud<strong>in</strong>g elements such as K,<br />

Fe, Ti, Al and Si. In order to dist<strong>in</strong>guish between<br />

cont<strong>in</strong>ental aridity and changes <strong>in</strong> w<strong>in</strong>d strength, the data<br />

sets will be compared with gra<strong>in</strong> size data of the<br />

terrigenous sediment <strong>in</strong>put over time.<br />

For site 1237 these elements are considerably lower <strong>in</strong><br />

the warm Pliocene period than <strong>in</strong> the Pleistocene,<br />

<strong>in</strong>tensities start<strong>in</strong>g to <strong>in</strong>crease not until the beg<strong>in</strong>n<strong>in</strong>g of the<br />

NHG at ∼3.3 Ma. Especially the rise <strong>in</strong> the Fe record <strong>in</strong><br />

comb<strong>in</strong>ation with magnetic susceptibility values is<br />

<strong>in</strong>terpreted as an enhancement of dust supply. A parallel<br />

<strong>in</strong>crease of opal concentrations (shipboard measurements)<br />

and relative decrease of Ca concentrations suggest changes<br />

<strong>in</strong> the productivity regime related to changes <strong>in</strong> oceanic<br />

surface circulation.<br />

In contrast, the geochemical records of site 1239 show<br />

a completely different pattern, without the pronounced<br />

<strong>in</strong>crease <strong>in</strong> elements <strong>in</strong>dicat<strong>in</strong>g (eolian) terrigenous <strong>in</strong>put<br />

but a peak <strong>in</strong> Fe <strong>in</strong>tensities around 3.1 Ma. This co<strong>in</strong>cides<br />

with a significant <strong>in</strong>crease <strong>in</strong> opal accumulation rates<br />

start<strong>in</strong>g at 3.6 Ma, which is <strong>in</strong>terpreted as an effect of<br />

enhanced upwell<strong>in</strong>g (Steph et al. <strong>in</strong> review). Shifts <strong>in</strong><br />

orbital cycles can be recognized with<strong>in</strong> the considered<br />

elements. These will be object of further <strong>in</strong>vestigation, as<br />

well as some conspicuous data variations <strong>in</strong> the earlier<br />

Pliocene, which suggest alterations due to diagenetic<br />

processes.<br />

Prelim<strong>in</strong>ary results of gra<strong>in</strong> size analyses po<strong>in</strong>t to<br />

stronger eolian transport to site 1239 than expected.<br />

Figure 1. SEC=South Equatorial Current, NECC=North Equatorial<br />

Countercurrent, EUC=Equatorial Undercurrent, PCC=Peru-Chile<br />

Current, PCCC=Peru-Chile Countercurrent, CC=Coastal Current,<br />

GU=Gunther Undercurrent. Modern mean annual sea-surface<br />

temperatures (<strong>in</strong> °C) after Ocean Climate Laboratory, 1999<br />

(Tiedemann & Mix, 2007). Yellow arrows <strong>in</strong>dicate prevalent w<strong>in</strong>d<br />

direction.<br />

113<br />

<strong>ICDP</strong><br />

Mixed-layered clay m<strong>in</strong>erals and their<br />

geological significance <strong>in</strong> the San Andreas<br />

Fault Observatory at depth drillhole<br />

(SAFOD) <strong>in</strong> Parkfield, California<br />

A.M. SCHLEICHER 1 , L.N. WARR 2 , B.A. VAN DER PLUIJM 3<br />

1<br />

Universität Erlangen-Nuernberg, Geozentrum Nordbayern,<br />

Schlossgarten 5, 91054 Erlangen, Germany<br />

2<br />

Ernst-Moritz-Arndt-Universitaet Greifswald, Institut für<br />

Geographie und Geologie, Friedrich-Ludwig-Jahn-Str. 17,<br />

17487 Greifswald, Germany<br />

3<br />

University of Michigan, Department of Geological Sciences,<br />

1100 University Ave, C.C. Little Build<strong>in</strong>g, Ann Arbor, MI<br />

48109, U.S.A<br />

The m<strong>in</strong>eralization of clays <strong>in</strong> fault zones and their<br />

<strong>in</strong>fluence <strong>in</strong> fluid-rock <strong>in</strong>teraction, rock deformation and<br />

shear strength has been suggested as a possible explanation<br />

for a weak fault behavior. As often reported along the<br />

exhumed segments of the San Andreas Fault, a number of<br />

mechanically weak m<strong>in</strong>eral phases, <strong>in</strong>clud<strong>in</strong>g illite,<br />

chlorite, smectite, as well as kaol<strong>in</strong>ite, serpent<strong>in</strong>e and talc<br />

occur <strong>in</strong> fault zones, and are typically associated with<br />

<strong>in</strong>tense brittle deformation and fluid migration under lowtemperature<br />

conditions (Wu 1974). The San Andreas Fault<br />

Observatory at Depth (SAFOD) ma<strong>in</strong>-hole, drilled <strong>in</strong><br />

Parkfield/California <strong>in</strong> 2004 and 2005 and cored <strong>in</strong> 2007<br />

(Hickman 2004) provides here a unique opportunity to<br />

characterize the natural state and the structure of clay<br />

m<strong>in</strong>erals <strong>in</strong> fault rocks at depth and to study the <strong>in</strong>terplay<br />

between clay formation, fault<strong>in</strong>g and fluid migration <strong>in</strong> an<br />

active member of the fault system (Fig. 1a, b).<br />

Previous studies of rock cutt<strong>in</strong>gs from the SAFOD pilot<br />

hole and the ma<strong>in</strong> borehole revealed diverse clay m<strong>in</strong>eral<br />

phases <strong>in</strong> various segments of the fault zone (Solum et al.<br />

2006, Tourscher et al. submitted, Bradbury et al. 2007).<br />

Several studies suggested that the occurrence of swell<strong>in</strong>g<br />

clays <strong>in</strong> fault rocks, either <strong>in</strong> discrete form or as mixedlayered<br />

clay m<strong>in</strong>erals, <strong>in</strong>fluence the shear strength of fault<br />

zones (e.g. Tempe et al. 2006). One explanation can be the<br />

occurrence of a low layer charged smectitic clay and a<br />

mixed-layered illite-smectite or chlorite-smectite phase that<br />

has been described as th<strong>in</strong>-film coat<strong>in</strong>gs on fault and<br />

fracture surfaces, as well as neo-crystallization with<strong>in</strong><br />

mudrock matrix and ve<strong>in</strong>s at ca. 3 km vertical depth along<br />

the San Andreas Fault (Schleicher et al. 2006). These<br />

m<strong>in</strong>eral phases are known to be mechanically weak due to<br />

their ability to adsorb structured water with<strong>in</strong> their charged<br />

<strong>in</strong>terlayer sites, and thus may control seismogenic vs.<br />

creep<strong>in</strong>g behavior (e.g. Wu 1975).<br />

A recent detailed m<strong>in</strong>eralogical study of f<strong>in</strong>e-gra<strong>in</strong>ed<br />

mudrocks sampled from three spot cores along the SAFOD<br />

drill hole (3066m, 3436m and 3992m measured<br />

depths/MD) reveal authigenic illite, chlorite, smectite,<br />

illite-smectite (I-S) and chlorite-smectite (C-S) mixedlayered<br />

clays, ma<strong>in</strong>ly characteristic of deep diagenetic<br />

conditions (Schleicher et al. submitted, Figure 2). The rock<br />

chips at 3066 m MD derive from a ~30 cm broad, clay rich<br />

shear zone, and appears to lie ~ 300 m above the ma<strong>in</strong><br />

fault. The rock fragments at 3436 m MD are shaly to very<br />

f<strong>in</strong>e gra<strong>in</strong>ed silty rock chips, up to 60 mm <strong>in</strong> average size.


114<br />

These samples belong probably to the ma<strong>in</strong> fault area at<br />

3300–3353 m MD, which is marked by an area of <strong>in</strong>tense<br />

fractur<strong>in</strong>g, with cas<strong>in</strong>g deformation at circa 3300 m<br />

(Zoback et al. 2005) and enhanced cataclasis comb<strong>in</strong>ed<br />

with strong alteration (Bradbury et al. 2007). The third rock<br />

chips at 3992 m MD represents the deepest part of the<br />

drillhole outside the ma<strong>in</strong> fault. One important part <strong>in</strong> this<br />

study is to l<strong>in</strong>k the m<strong>in</strong>eral-growth <strong>in</strong> these rocks with the<br />

fault behavior and the circulation of crustal fluids <strong>in</strong><br />

sedimentary rocks, to have thorough knowledge of the<br />

complete diagenetic history of the faulted rocks both <strong>in</strong><br />

space and time.<br />

The electron microscopy images (SEM, HRTEM), Xray<br />

analysis (XRD, XTG) and geo-chemical (ICP-OES)<br />

<strong>in</strong>vestigations of rock fragments and cutt<strong>in</strong>gs from this<br />

drill-site show significant differences <strong>in</strong> their m<strong>in</strong>eral<br />

characteristics, hydration behavior, and as well fabric and<br />

textural relationships. All samples show more or less strong<br />

signs of deformation, with weak flatten<strong>in</strong>g fabrics def<strong>in</strong>ed<br />

by k<strong>in</strong>ked detrital mica gra<strong>in</strong>s. However, the <strong>in</strong>tensity of<br />

fractur<strong>in</strong>g and fold<strong>in</strong>g is highest <strong>in</strong> samples from the core<br />

of the fault (3436 m MD and <strong>in</strong> lesser extent at 3066 m<br />

MD) compared to clay-rich lithologies ly<strong>in</strong>g beneath the<br />

fault (3992 m MD). XTG analyses of mica gra<strong>in</strong>s with<strong>in</strong><br />

<strong>in</strong>tact rock fragments reveal weak compaction fabrics,<br />

whereby the slightly stronger fabrics observed <strong>in</strong> the fault<br />

zones at 3066 and 3436 m MD (2.0 to 2.7 m.r.d)<br />

correspond with the most deformed mica gra<strong>in</strong>s. Such<br />

weak fabrics <strong>in</strong> fault gouge or strongly deformed fault rock<br />

has often been detected, for example <strong>in</strong> the Punchbowl<br />

fault <strong>in</strong> Southern California (Solum et al. 2003), reflect<strong>in</strong>g<br />

the limitation of effectiveness of foliation development and<br />

fluid focus<strong>in</strong>g along the fault. In spite of its deeper depth,<br />

the silty lithology at 3992 m MD appears to have a slightly<br />

weaker fabric which conforms to the less deformed state of<br />

this lithology.<br />

Authigenic clays that precipitate <strong>in</strong> the matrix and<br />

with<strong>in</strong> pores are associated with strongly dissolved quartz<br />

and feldspar gra<strong>in</strong>s (both plagioclase and K-feldspar). XRD<br />

and HR-TEM of illite and I-S m<strong>in</strong>erals show variable types<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1: a) Location map of the SAFOD Pilot Hole <strong>in</strong> Parkfield/California; b) The SAFOD borehole site at Parkfield, show<strong>in</strong>g the three<br />

phases of drill<strong>in</strong>g. Dur<strong>in</strong>g phase 3 <strong>in</strong> 2007, lateral cores were extracted, allow<strong>in</strong>g sampl<strong>in</strong>g of fault rocks from the ma<strong>in</strong> fault at ca. 3 km<br />

depth (http://www.icdp-onl<strong>in</strong>e.de/sites/sanandreas/objectives/objectives.html)<br />

of crystal-chemical features. Randomly ordered (R0,<br />

>R0-R3) I-S m<strong>in</strong>erals with ca. 20 to 25% smectite layers<br />

are the dom<strong>in</strong>ant clay species across the San Andreas fault<br />

zone (sampled at 3066 and 3301 m MD, Fig. 2a-d),<br />

whereas a highly ordered (>R3) I-S with ca. 2-5 % smectite<br />

layers is the dom<strong>in</strong>ant phase beneath the fault zone<br />

(sampled at 3992 m MD, Figure 2e-f). The most smectiterich<br />

assemblages with the highest water content are<br />

reported from the actively deform<strong>in</strong>g creep zone at ca.<br />

3300-3353 m MD, with I-S (75:25) and C-S (50:50). The<br />

clay particles <strong>in</strong> the faulted rocks (at 3066 m and 3435 m<br />

MD) are similar <strong>in</strong> their average size and shape, commonly<br />

around 20-50 nm <strong>in</strong> thickness and more than 100 nm long<br />

(Fig. 2b, d). At 3992 m MD, ma<strong>in</strong>ly illite crystals of around<br />

50-80 nm <strong>in</strong> average thickness have been determ<strong>in</strong>ed,<br />

partly together with chlorite packets of similar thickness<br />

(Fig. 2f). Random XRD powder preparations for polytype<br />

determ<strong>in</strong>ation and TEM imag<strong>in</strong>g confirm the mixture of at<br />

least two different types of illitic m<strong>in</strong>erals <strong>in</strong> all samples.<br />

At 3066 m MD, a 1M polytype occurs <strong>in</strong> the smallest gra<strong>in</strong><br />

size. A broad reflection hump and a raised background<br />

level suggest a high degree of disorder<strong>in</strong>g <strong>in</strong> the f<strong>in</strong>est<br />

gra<strong>in</strong> sizes (1Md polytype). In the larger gra<strong>in</strong> sizes (> 2<br />

μm), a 2M1 polytype occurs, reflect<strong>in</strong>g the micas of detrital<br />

orig<strong>in</strong>. However, mixtures of 2M1 and 1M illite polytypes<br />

have been <strong>in</strong>vestigated <strong>in</strong> all samples. The f<strong>in</strong>e gra<strong>in</strong>ed<br />

m<strong>in</strong>eral phases were likely formed dur<strong>in</strong>g the circulation of<br />

aqueous fluids along permeable fractures and ve<strong>in</strong>s by<br />

dissolution-precipitation reactions, partly at the expense of<br />

the detrital packets.<br />

Adopt<strong>in</strong>g available k<strong>in</strong>etic models for the<br />

crystallization of I-S <strong>in</strong> burial sedimentary environments<br />

with the current m<strong>in</strong>eralogy, borehole depths and thermal<br />

structure, the conditions and tim<strong>in</strong>g of I-S growth can be<br />

evaluated. Assum<strong>in</strong>g a typical K+ concentration of 100 –<br />

200 ppm for sedimentary br<strong>in</strong>es, a present day geothermal<br />

gradient of 35 °C/km and a borehole temperature of ca. 112<br />

°C for the sampled depths, most of the I-S m<strong>in</strong>erals can be<br />

predicted to have formed over the last 4 to 11 Ma, and are<br />

probably still <strong>in</strong> equilibrium with circulat<strong>in</strong>g fluids. The


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

exception to this simple burial pattern is the occurrence of<br />

the mixed layered phases with higher smectite content at<br />

3236 m MD than predicted by the burial model. These<br />

m<strong>in</strong>erals occur <strong>in</strong> the actively creep<strong>in</strong>g section of the fault<br />

and as local th<strong>in</strong> film clay coat<strong>in</strong>g described on polished<br />

brittle slip surfaces. The composition of the latter phases<br />

could be expla<strong>in</strong>ed either by the <strong>in</strong>fluence of cooler fluids<br />

circulat<strong>in</strong>g along this segment of the fault or the flow of Kdepleted<br />

br<strong>in</strong>es, and may be therefore <strong>in</strong>timately l<strong>in</strong>ked to a<br />

weak fault behavior of the San Andreas Fault.<br />

References:<br />

-Bradbury K.K, Barton D.C., Solum J.G., Draper S.D., Evans J.P. (2007)<br />

M<strong>in</strong>eralogic and textural analyses of drill cutt<strong>in</strong>gs from the San<br />

Andreas Fault Observatory at Depth (SAFOD) boreholes: Initial<br />

<strong>in</strong>terpetations of fault zone composition and constra<strong>in</strong>ts on geologic<br />

models, Geosphere, 3, 5, 299-318<br />

-Hickman S., Zoback M., Ellsworth W. (2004) Introduction to special<br />

section: Prepar<strong>in</strong>g for the San Andreas Fault Observatory at Depth,<br />

Geophysical Research Letters, 31, LI2SO<br />

-Schleicher A.M., Warr L.N., van der Pluijm B.A. (subm): Mixed-layered<br />

clay m<strong>in</strong>erals and their geological significance: samples from the San<br />

Andreas Fault at ~ 2.5 - 3 km depth (SAFOD at Parkfield, California),<br />

Contribution to M<strong>in</strong>eralogy and Petrology<br />

115<br />

-Schleicher A.M., van der Pluijm B.A., Solum J.G., Warr L.N. (2006): The<br />

orig<strong>in</strong> and significance of clay-coated fractures <strong>in</strong> mudrock fragments<br />

of the SAFOD borehole (Parkfield, California); Geophysical Research<br />

Letters DOI 10.1029/2006GL026505<br />

-Solum J.G., van der Pluijm B.A., Peacor D.R., Warr L.N. (2003) Influence<br />

of phyllosilicate m<strong>in</strong>eral assemblages, fabrics, and fluids on the<br />

behavior of the Punchbowl fault, southern California, Journal of<br />

Geophysical Research 108, B5:5-1, to 5-12<br />

-Solum J.G., Hickman S., Lockner D., Moore D., van der Pluijm B.,<br />

Schleicher A.M., Evans, J.P. (2006): M<strong>in</strong>eralogical characterization of<br />

protolith and fault rocks from the SAFOD ma<strong>in</strong> hole; Geophysical<br />

Research Letters 34, DOI 10.1029/2006GL027285<br />

-Tempe S.D., Lockner D.A., Solum J.G., Morrow C.A., Wong T.F., Moore<br />

D.E. (2006) Frictional strength of cutt<strong>in</strong>gs and core from SAFOD<br />

drillhole phases 1 and 2, Geophysical Research Letters, 33: L23307,<br />

doi:10.1029/2006GL027626<br />

-Tourscher S., Schleicher A.M., van der Pluijm B.A., Warr L.N. (subm)<br />

Elemental Geochemistry of samples from fault segments of the San<br />

Andreas Fault Observatory at Depth (SAFOD) drill hole; Journal of<br />

Geophysical Research<br />

-Wu F.T., Blatter L., Roberson H. (1975) Clay gouges <strong>in</strong> the San Andreas<br />

fault system and their possible implications, Pure Applied Geophysics,<br />

113: 87-96References:<br />

-Zoback M., Hickman S., Ellsworth W. (2005) Drill<strong>in</strong>g, sampl<strong>in</strong>g, and<br />

measurements <strong>in</strong> the San Andreas Fault at seismogenic depth, EOS 87<br />

(Fall Meet. Suppl.), abstr. T23E-01<br />

Fig. 2: Mixed-layered clays <strong>in</strong> the SAFOD mud-rocks. a,b) illite-smectite at 3066 m MD <strong>in</strong> pores with a relatively high degree of<br />

order<strong>in</strong>g, c, d) smectitic illite-smectite at 3436 m MD <strong>in</strong> ve<strong>in</strong>s and pores with a low degree of order<strong>in</strong>g, e, f) very small amounts of illitesmectite<br />

at 3992 m MD <strong>in</strong> pores with a very high degree of order<strong>in</strong>g


116<br />

<strong>IODP</strong><br />

The Cretaceous-Paleogene (K-Pg) transition<br />

<strong>in</strong> ODP Leg 207, Western Atlantic: From the<br />

Chicxulub impact to the first Paleocene<br />

hyperthermal events<br />

P. SCHULTE 1 , A. DEUTSCH 2 , S. TOBIAS 3 , A. KONTNY 4 , K.G.<br />

MACLEOD 5 , S. KRUMM 1<br />

1<br />

Institut für Geologie - M<strong>in</strong>eralogie, Universität Erlangen, D-<br />

91054 Erlangen, Germany (schulte@geol.uni-erlangen.de)<br />

2<br />

Institut für Planetologie, Universität Münster, D-48149 Münster,<br />

Germany<br />

3<br />

Bruker AXS Microanalysis GmbH, Schwarzschildstr. 12, D-<br />

12489 Berl<strong>in</strong>, Germany<br />

4<br />

Geologisches Institut der Universität Karlsruhe, Strukturgeologie<br />

und Tektonophysik, D-76187 Karlsruhe, Germany<br />

5<br />

Department of Geological Sciences, University of Missouri,<br />

Columbia, Missouri 65211, USA<br />

The ODP Leg 207 from the Demerara Rise, tropical<br />

western North Atlantic, has recovered an expanded and<br />

stratigraphically complete Cretaceous-Paleogene (K-Pg)<br />

sedimentary record <strong>in</strong>clud<strong>in</strong>g latest Maastrichtian and<br />

Danian clayey chalks, separated by the Chicxulub ejectabear<strong>in</strong>g<br />

event deposit at the K-Pg boundary (MacLeod et<br />

al., 2007). Our comb<strong>in</strong>ation of high-resolution<br />

m<strong>in</strong>eralogical and isotope geochemical analysis with<br />

shipboard geophysical data revealed (i) a remarkable<br />

complex Chicxulub ejecta deposit and (ii) severe<br />

paleoceanographic changes follow<strong>in</strong>g the K-Pg boundary<br />

with possible evidence for two early Danian hyperthermal<br />

events.<br />

(i) The graded, 2-3 cm thick Chicxulub ejecta deposit<br />

consists of >0.3-1 mm-sized spherules. They are generally<br />

altered to dioctahedral smectite. Some, however, show<br />

<strong>in</strong>ternal Fe-Mg-enriched globules and microkrystites<br />

<strong>in</strong>dicative of silicate-silicate “liquid immiscibility” and<br />

quench<strong>in</strong>g from a melt, suggest<strong>in</strong>g a primary orig<strong>in</strong>.<br />

Similar Fe-Mg-enrichment has been observed <strong>in</strong> Chicxulub<br />

spherules from Mexico and Texas (Schulte & Kontny,<br />

2005; Schulte et al. 2006). In the upper part of the K-Pg<br />

ejecta deposit, spherule composition becomes enriched <strong>in</strong><br />

Fe-Mg – reflect<strong>in</strong>g a more mafic progenitor– and shocked<br />

quartz and feldspars, as well as abundant calcite and<br />

dolomite clasts are present. The carbonates are texturally<br />

and compositionally divers <strong>in</strong>clud<strong>in</strong>g (i) rounded massive<br />

to porous calcite clasts, <strong>in</strong> part with a dist<strong>in</strong>ct sponge-like<br />

texture, (ii) accretionary carbonate clasts consist<strong>in</strong>g of sub-<br />

µm-sized calcite and dolomite crystallites, (iii) rounded<br />

carbonate clasts with corroded rims enveloped by radiallygrown<br />

Ca-rich clay m<strong>in</strong>eral phases, and (iv) euhedral<br />

dolomite crystals. The association with typical Chicxulub<br />

ejecta spherules and shocked silicic m<strong>in</strong>eral phases and<br />

conf<strong>in</strong>ement to the mm-thick upper part of the ejecta<br />

deposit suggests that these carbonates are mostly derived<br />

from the Yucatan carbonate platform. The sponge-like<br />

porous carbonate clasts are similar to textures observed <strong>in</strong><br />

experimantally shocked carbonates (Agr<strong>in</strong>ier et al., 2001),<br />

though a biogenic orig<strong>in</strong> is currently under scrut<strong>in</strong>y as well.<br />

However, the corroded carbonate, enveloped by silicates<br />

melts provide evidence for <strong>in</strong>tense thermal alteration<br />

dur<strong>in</strong>g the impact event, associated with beg<strong>in</strong>n<strong>in</strong>g<br />

des<strong>in</strong>tegration of carbonate phases.<br />

Generally, the graded nature, the complex composition<br />

of the ejecta, and the, <strong>in</strong> part, good preservation of delicate<br />

spherule textures suggests an orig<strong>in</strong> as primary air-fall<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

deposit. The microstratigraphy of the K-P ejecta deposit at<br />

ODP Leg 207 is unlike other distal K-Pg spherule deposits<br />

recovered <strong>in</strong> the Atlantic or Pacific realm that are mostly<br />

affected by turbidity currents and consist of silicic<br />

spherules. However, it strongly resembles the terrestrial<br />

dual-layer K-Pg deposit <strong>in</strong> the Western Interior, though the<br />

acidic swamp environments <strong>in</strong> the Western Interior may<br />

have precluded preservation of carbonates. Therefore, ODP<br />

Leg 207 provides the first evidence for dispersal of<br />

shocked calcite and dolomite by the Chicxulub impact to a<br />

distal K-Pg site. The occurrence of the Chicxulub-derived<br />

spherule layer at the base of planktic foram<strong>in</strong>ifera Biozone<br />

P0 <strong>in</strong> conjunction with the mass ext<strong>in</strong>ction of planktonic<br />

foram<strong>in</strong>ifera, an Ir anomaly, and a strong negative δ 13 C<br />

anomaly, strengthens the genetic l<strong>in</strong>k between the<br />

Chicxulub impact and the K-Pg boundary clay.<br />

(ii) The K-Pg boundary <strong>in</strong> ODP Leg 207 Site 1259C is<br />

characterized by a sharp –2.5 per mil δ 13 C anomaly,<br />

followed by an immediate positive 1 per mil shift dur<strong>in</strong>g<br />

Zone P0. Concomitantly, calcite contents drops from >80<br />

% to less than 20 % followed by rapid recovery to about 35<br />

%. Dur<strong>in</strong>g Zone Pα, however, δ 13 C values decrease aga<strong>in</strong><br />

(–0.3 per mil). At the onset of Zone P1a, about 200 ky post<br />

K-Pg, two rapid –0.5 per mil δ 13 C shifts occur that both are<br />

associated with a 1 per mille lower<strong>in</strong>g of δ 18 O values and a<br />

50 % reduction of the carbonate content. Rietveld<br />

ref<strong>in</strong>ement of XRD data revealed improved calcite<br />

crystall<strong>in</strong>ity dur<strong>in</strong>g both <strong>in</strong>tervals that may result from the<br />

preferential removal of weakly crystallized carbonate<br />

phases dur<strong>in</strong>g dissolution episodes associated with<br />

shallow<strong>in</strong>g of the lysocl<strong>in</strong>e. The onset of several dm-mthick,<br />

iron oxide and hydroxide-rich red sta<strong>in</strong>ed <strong>in</strong>tervals<br />

about 20-40 cm above the K-Pg <strong>in</strong> all early Danian ODP<br />

Leg 207 cores, is probably related to additional<br />

oceanographic changes <strong>in</strong> the Atlantic (e.g., <strong>in</strong>flux of<br />

oxygen-rich deepwater) dur<strong>in</strong>g the early Danian.<br />

Subsequently, dur<strong>in</strong>g Zone P1b/P1c, the absence of red<br />

sta<strong>in</strong><strong>in</strong>g and the significant <strong>in</strong>crease of pyrite <strong>in</strong>dicates<br />

more reduc<strong>in</strong>g depositional conditions possibly associated<br />

with the warm<strong>in</strong>g of surficial waters as <strong>in</strong>dicated by<br />

generally lighter δ 18 O values dur<strong>in</strong>g this <strong>in</strong>terval. In<br />

conclusion, our results correlate well with stable isotope<br />

data from other South Atlantic DSDP (527, 528) and North<br />

Atlantic ODP (171) Sites (Quillévéré et al., <strong>2008</strong>),<br />

suggest<strong>in</strong>g significant oceanographic changes follow<strong>in</strong>g the<br />

K-Pg boundary as well as the presence of two short periods<br />

of transient greenhouse gas-driven warm<strong>in</strong>g and carbonate<br />

dissolution <strong>in</strong> the early Paleocene (named “Dan-C2 event”)<br />

analogous to the Paleocene-Eocene Thermal Maximum<br />

(PETM).<br />

References:<br />

Agr<strong>in</strong>ier, P., Deutsch, A., Schärer, U., Mart<strong>in</strong>ez, I., 2001, Fast backreactions<br />

of shock-released CO2 from carbonates: An experimental<br />

approach. Geochimica et Cosmochimica Acta, 65(15), 2615-2632.<br />

MacLeod, K.G., Whitney, D.L., Huber, B.T., Koeberl, C., 2007, Impact and<br />

ext<strong>in</strong>ction <strong>in</strong> remarkably complete K/T boundary sections from<br />

Demerara Rise, tropical western North Atlantic. Geological Society of<br />

America Bullet<strong>in</strong>, 119(1), 101-115.<br />

Quillévéré, F., Norris, R.D., Kroon, D., Wilson, P.A., Wilson, P., <strong>2008</strong>,<br />

Transient ocean warm<strong>in</strong>g and shifts <strong>in</strong> carbon reservoirs dur<strong>in</strong>g the<br />

early Danian. Earth and Planetary Science Letters, 265(3-4), 600-615.<br />

Schulte, P., Kontny, A., 2005, Chicxulub ejecta at the Cretaceous-Paleogene<br />

(K-P) boundary <strong>in</strong> Northeastern México. In: Hörz, F., Kenkmann, T.,<br />

Deutsch, A. (Eds.): Large meteorite impacts III. Special Paper, 384,<br />

Geological Society of America, Boulder, Colorado, 191-221.<br />

Schulte, P., Speijer, R.P., Mai, H., Kontny, A., 2006, The Cretaceous-<br />

Paleogene (K-P) boundary at Brazos, Texas: Sequence stratigraphy,<br />

depositional events and the Chicxulub impact. Sedimentary Geology,<br />

184(1-2), 77-109.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Trac<strong>in</strong>g Siberian permafrost history<br />

G. SCHWAMBORN 1<br />

1 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, 14473<br />

Potsdam; Germany<br />

The El´gygytgyn Impact Crater on Chukotka Pen<strong>in</strong>sula<br />

provides the unique opportunity to identify recent to Late<br />

Pleistocene permafrost conditions <strong>in</strong> terrestrial deposits and<br />

to trace back the permafrost history when us<strong>in</strong>g suitable<br />

proxy data with the adjacent lake sediment archive. At<br />

maximum this may retrieve a palaeoenvironment history<br />

conta<strong>in</strong><strong>in</strong>g changes <strong>in</strong> permafrost conditions back to 3.6<br />

Myr BP, the time of the meteor impact. Knowledge about<br />

the Late Quaternary changes as verified <strong>in</strong> the terrestrial<br />

deposits provide an <strong>in</strong>terpretation scheme that can be<br />

applied to more ancient portions of the glacial cycles as<br />

covered by the lake sediment archive.<br />

Currently, the weather<strong>in</strong>g detritus at El´gygtgyn Crater<br />

is created under cont<strong>in</strong>uous permafrost conditions. It passes<br />

through typical mechanisms of periglacial landscape<br />

dynamics (i.e. solifluction, surface wash, thermo erosion,<br />

river erosion) <strong>in</strong>to the lake, which is placed <strong>in</strong> the central<br />

bas<strong>in</strong>. Based on field observation and laboratory analysis of<br />

frozen ground deposits several conclusions are highlighted<br />

describ<strong>in</strong>g periglacial dynamics dur<strong>in</strong>g the Late<br />

Quaternary. (1) Subaerial terrace formation result<strong>in</strong>g from<br />

slope debris deposition was <strong>in</strong>itiated dur<strong>in</strong>g the Late<br />

Pleistocene / Holocene transition. Dur<strong>in</strong>g Late Holocene<br />

the accumulation rate on the slopes decreases. (2) Icewedge<br />

architecture with<strong>in</strong> frozen ground allows identify<strong>in</strong>g<br />

two generations of Holocene ground ice formation. Nearsurface<br />

thermal change occurred at 4000 yr BP creat<strong>in</strong>g<br />

narrow-meshed ice wedge polygons on top of Early<br />

Holocene wide-meshed polygons. (3) Pore ice oxygen<br />

isotope signatures reveal that the regional Holocene<br />

Thermal Maximum happened at about 9000 yr BP. A<br />

relative 18O m<strong>in</strong>imum at about 4000 yr BP po<strong>in</strong>ts to<br />

more arid and cool conditions at this time. (4) The crater<br />

undergoes a pr<strong>in</strong>cipal lake level drop <strong>in</strong> Late Quaternary<br />

time. Age determ<strong>in</strong>ation of pebble bars that surround the<br />

lake reveal a m<strong>in</strong>imum age of 13,000 yr BP for the ancient<br />

shorel<strong>in</strong>es. Dat<strong>in</strong>g is based on the analysis of a permafrost<br />

core that was extracted beh<strong>in</strong>d the raised bars, where slope<br />

deposits have accumulated after the bar formation. (5)<br />

M<strong>in</strong>eralogical ratios (quartz to feldspar) and s<strong>in</strong>gle quartz<br />

gra<strong>in</strong> micromorphology have been tested on Holocene<br />

frozen ground deposits as proxy data reflect<strong>in</strong>g the strength<br />

of cryogenic weather<strong>in</strong>g. The selective cryogenic break-up<br />

of gra<strong>in</strong>s is particularly related to thaw-freeze dynamics <strong>in</strong><br />

the active layer. When applied to the lake sediments the<br />

m<strong>in</strong>eralogical data illustrate the persistence of cryogenic<br />

weather<strong>in</strong>g <strong>in</strong> the catchment at least back to about 300,000<br />

yr BP, the time that is covered by first lake sediment cores.<br />

Future <strong>ICDP</strong> deep drill<strong>in</strong>gs <strong>in</strong>to the permafrost and the<br />

lake will enable to extend knowledge about permafrost<br />

changes back <strong>in</strong>to time. This will cover the<br />

Pliocene/Pleistocene boundary when northern hemispheric<br />

glaciations started to <strong>in</strong>tensify and the onset of permafrost<br />

formation is assumed.<br />

References:<br />

Schwamborn, G., Fedorov, G., Schirrmeister, L., Meyer, H., Hubberten, H. -<br />

W., <strong>2008</strong>. Boreas 37, 55–65.<br />

Schwamborn, G., Meyer, H., Fedorov, G., Schirrmeister, L., Hubberten, H. -<br />

W., 2006. Quaternary Research 66 (2), 259-272..<br />

117<br />

Position of El´gygytgyn Impact Crater <strong>in</strong> Chukotka. Permafrost<br />

studies are based on surface samples, from shallow and from<br />

planned <strong>ICDP</strong> deep drill<strong>in</strong>g <strong>in</strong> <strong>2008</strong>.<br />

<strong>ICDP</strong><br />

Noble gases and phengite 40 Ar/ 39 Ar ages <strong>in</strong><br />

ultra-high-pressure eclogites of the CCSD<br />

core<br />

W.H. SCHWARZ, M. TRIELOFF, R. ALTHERR<br />

Universität Heidelberg, M<strong>in</strong>eralogisches Institut, Im Neuenheimer<br />

Feld 236, D-69120 Heidelberg<br />

Noble gases (He, Ne, Ar, Kr and Xe) can be used as<br />

tracers for the evolution and history of mantle-derived<br />

rocks, and fluid-rock <strong>in</strong>teraction with crustal or<br />

atmosphere-derived fluids. The different isotope signatures<br />

of the mantle, the crust and/or the atmosphere and the<br />

elemental fractionation of these components offer an<br />

enormous sensitivity to dist<strong>in</strong>guish a variety of processes<br />

[1-4]. The aims of this study are to obta<strong>in</strong> noble gas<br />

isotopic data <strong>in</strong> UHP eclogites, and a complete<br />

characterization of UHP rocks from the core of the Ch<strong>in</strong>ese<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g Program (Donghai).<br />

Isotopic compositions will allow to identify possible<br />

mantle (deep/shallow), crustal and atmosphere-derived<br />

components. The history of these components and their<br />

carrier phases and host rocks can be further constra<strong>in</strong>ed by<br />

fractionation processes reflected <strong>in</strong> element ratios.<br />

CCSD Ma<strong>in</strong>-Hole (MH) eclogites are probably of<br />

different orig<strong>in</strong> [5,6]. For example, the eclogites from<br />

depth of down to 530m are probably of cumulate orig<strong>in</strong><br />

similar to Bixil<strong>in</strong>g and Maowu <strong>in</strong> Dabie Shan; the protolith<br />

of the eclogite from unit 2 (530-600m) is a Fe-Ti-rich<br />

gabbroic rock-body, whereas that of the eclogite with<strong>in</strong><br />

ultramafic rocks from unit 3 (600-690m) is of mantle<br />

orig<strong>in</strong>; eclogites from unit 4 (690-1160m) and unit 6 (1600-<br />

2050m) that are <strong>in</strong>terlayered with paragneiss are<br />

metamorphic supracrustal rocks. Geochemical<br />

characteristics of orthogneiss (unit 5, 1160-1600m) and<br />

paragneiss suggest that their protoliths are probably of<br />

granitic and of supracrustal sedimentary orig<strong>in</strong>s,<br />

respectively.


118<br />

Apparent Age [Ga]<br />

0.300<br />

0.280<br />

0.260<br />

0.240<br />

0.220<br />

0.200<br />

0.180<br />

CCSD MH-14<br />

t = 241.5 ± 1.3 Ma<br />

<strong>in</strong>t<br />

0 20 40 60 80 100<br />

Fractional 39 Ar release<br />

Ar-Ar age spectra for the samples CCSD Ma<strong>in</strong>-Hole MH-14 and MH-20<br />

Oxygen isotope analysis show δ18O values rang<strong>in</strong>g<br />

form -10.41 to +9.63‰ [7]. For the first noble gas<br />

<strong>in</strong>vestigations we choose four eclogite samples CCSD MH-<br />

14, 16, 20 and 24 from different depth of 962, 1066, 1690,<br />

1855m (k<strong>in</strong>dly handed by Yil<strong>in</strong> Xiao and Joachim Hoefs) –<br />

MH-14 and 16 with negative δ18O-values (-5.2 and -<br />

4.0‰), MH-20 and 24 with positive values (+6.0 and<br />

+5.7‰) [8]. The composition of MH-14 and 16 eclogite<br />

samples is ma<strong>in</strong>ly garnet, cl<strong>in</strong>opyroxene and epidote, with<br />

high-sal<strong>in</strong>ity fluid <strong>in</strong>clusions <strong>in</strong> the last two m<strong>in</strong>erals. Some<br />

accessory m<strong>in</strong>erals are present, e.g. phengite <strong>in</strong> sample 14.<br />

MH-20 and 24 samples additionally conta<strong>in</strong> quartz with<br />

CO2 rich fluid <strong>in</strong>clusions – a small portion of phengite is<br />

present <strong>in</strong> sample MH-20.<br />

From the samples MH-14 and 20 the phengites were<br />

separated and Ar-Ar <strong>in</strong>cremental heat<strong>in</strong>g age spectra were<br />

measured (see figure below). Sample MH-14 has an age of<br />

241.5 ± 1.3 Ma consistent with U/Pb ages for a UHP event<br />

(e.g. [9]). MH-20 has an age of 1103 ± 6 Ma, which is<br />

consistent with Lu/Hf model ages and the bimodal age<br />

distribution reported by [9]. The δ18O values for MH-14 is<br />

-5.2 and for MH-20 +6.0, <strong>in</strong>dicat<strong>in</strong>g a correlation between<br />

δ18O values and the Ar-Ar age of the phengites. The<br />

eclogites with high sal<strong>in</strong>ity fluid <strong>in</strong>clusions <strong>in</strong> cpx and ep<br />

have negative δ18O values and young Ar-Ar- ages,<br />

reflect<strong>in</strong>g a UHP event with meteoric fluids present. The<br />

positive δ18O value correlates with the high Ar-Ar age.<br />

This correlation should also be reflected <strong>in</strong> noble gas<br />

compositions – the high-sal<strong>in</strong>ity fluids/young samples<br />

should show a more atmospheric noble gas isotopic and<br />

elemental compositon, because the <strong>in</strong>volved meteoric<br />

fluids should conta<strong>in</strong> dissolved atmospheric He, Ne, Ar,<br />

Kr and Xe. The old samples with positive δ18O values<br />

were not or less affected by fluidal overpr<strong>in</strong>t and thus<br />

should have reta<strong>in</strong>ed the orig<strong>in</strong>al MORB or subcont<strong>in</strong>ental<br />

lithospheric mantle (SCLM) noble gas isotopic<br />

composition.<br />

Apparent Age [Ga]<br />

1.40<br />

1.20<br />

1.00<br />

0.80<br />

0.60<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

CCSD MH-20<br />

t = 1103 ± 6 Ma<br />

<strong>in</strong>t<br />

0 20 40 60 80 100<br />

Fractional 39 Ar release<br />

References:<br />

[1] Trieloff M., Kunz J., Clague D.A., Harrison D. and Allègre C.J. (2000)<br />

Science 288, 1036-1038.<br />

[2] Trieloff M., Kunz J. (2005) Phys. Earth Planet. Int. 148, 13-38.<br />

[3] Hopp J., Trieloff M., Altherr R. (2004) Earth Planet. Sci. Lett. 219, 61-<br />

76.<br />

[4] Buik<strong>in</strong> A.I., Trieloff M., Hopp J., Althaus T., Korochantseva E.V.,<br />

Schwarz W.H., Altherr R. (2005) Earth Planet. Sci. Lett. 230, 143-162.<br />

[5] Hoefs J., Xiao Y. Zhang Z., Romer R.L. (2004) AGU abstr.<br />

[6] Zhang Z.M., Xu Z.Q., Liu F.L., You Z.D., Shen K., Yang J.S., Li T.F.,<br />

Chen C.Z. (2004) Acta Petr. S<strong>in</strong>ica 20, 27-42.<br />

[7] Chen R.-X., Zheng Y.-F., Gong B., Zhao Z.-F., Gao T.-S., Chen B., Wu<br />

Y.-B. (2007) Chem. Geol. 242, 51-75.<br />

[8] Xiao Y. Zhang Z., Romer R.L., Hoefs J., van den Kerkhof A. (2005)<br />

Mitt. Östereich. M<strong>in</strong>. Ges. 150.<br />

[9] Chen R.-X., Zheng Y.-F., Gong B., Zhao Z.-F., Tang J., Wu F.-Y. and<br />

Liu X.M. (2007) J. metamorphic Geol. 25, 873-894.<br />

<strong>IODP</strong><br />

Shallow Submar<strong>in</strong>e Hydrothermal Systems<br />

Along the Tonga-Kermadec Island Arc:<br />

First Results from R/V SONNE Cruise<br />

SO192/2<br />

ULRICH SCHWARZ-SCHAMPERA 1 , REINER BOTZ 2 , MARK<br />

HANNINGTON 3 AND SHIPBOARD SCIENTIFIC PARTY<br />

1 BGR <strong>Hannover</strong>, Stilleweg 2, 30655 <strong>Hannover</strong><br />

2 Institut für Geowissenschaften, C.-A.-U. Kiel, Ludewig-Meyn-<br />

Straße 10, 24118 Kiel<br />

3 University of Ottawa, Department of Earth Sciences, 140 Louis<br />

Pasteur, Ottawa, Ontario, K1N 6N5 Canada<br />

The German-Canadian cruise SO-192/2 MANGO<br />

aimed at the exploration of shallow submar<strong>in</strong>e volcanic<br />

centers along the Tonga-Kermadec arc. The Tonga-<br />

Kermadec arc represents a 2500 km-long cha<strong>in</strong> of active<br />

submar<strong>in</strong>e volcanoes <strong>in</strong> the western Pacific and is the<br />

s<strong>in</strong>gle largest cont<strong>in</strong>uous cha<strong>in</strong> of submar<strong>in</strong>e arc volcanoes<br />

<strong>in</strong> the Pacific and one of the most volcanically active.<br />

Cruise SO-192/2 visited volcanic complexes and associated<br />

vent sites at the southern and northernmost Kermadec and<br />

the southern Tonga volcanic arcs, and at the southern Valu<br />

Fa ridge. Key objectives of this program were to study the<br />

fluid and geochemical <strong>in</strong>put and output <strong>in</strong> the Tonga-<br />

Kermadec subduction zone <strong>in</strong> order to exam<strong>in</strong>e the<br />

relationship between tectonic, magmatic, and hydrothermal<br />

processes along this volcanic cha<strong>in</strong>. The cruise studied and<br />

sampled the Calypso vent fields offshore New Zealand, the<br />

Monowai volcanic complex at the northern tip of the<br />

Kermadec arc, the so-called Volcano 19 at the southern<br />

Tonga arc and Volcano 1 offshore Tongatapu. The H<strong>in</strong>e<br />

H<strong>in</strong>a vent field is located at the southern tip of the Valu Fa<br />

ridge <strong>in</strong> the Lau back-arc bas<strong>in</strong> and approaches the Tonga<br />

island arc with<strong>in</strong> only 25 km. All sites represent large


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

caldera systems, eruption craters, fault-controlled rift<br />

systems and large volcanic edifices <strong>in</strong> water depths<br />

between 180 and 1100m.<br />

Hydrothermal activity was known to exist at all the<br />

different sites from SO-135, SO-167, and the 2005 STKAP<br />

research cruises. Hydrothermal activity along the<br />

Kermadec island arc was <strong>in</strong>itially studied dur<strong>in</strong>g SO-135 at<br />

the Calypso vent sites, and at the Clark and Brothers<br />

Seamount. The extensive mapp<strong>in</strong>g and dredge program<br />

dur<strong>in</strong>g SO-167 encountered for the first time<br />

hydrothermally altered basalts, basaltic andesites and<br />

pumiceous rhyolites at four volcanoes along a 650 km<br />

segment of the Tonga island arc. A follow-up survey<br />

dur<strong>in</strong>g the 2005 SITKAP cruise us<strong>in</strong>g the PISCES<br />

submersibles from the Hawaiian Undersea Research Lab<br />

(HURL) discovered extensive hydrothermal activity and<br />

high-temperature vents associated with prom<strong>in</strong>ent caldera<br />

systems at Volcanoes 1 and 19. The vents showed strong<br />

evidence for phase separation processes and related base<br />

and precious metal precipitation. Initial sampl<strong>in</strong>g program<br />

focused on the characterization of the discharg<strong>in</strong>g fluids<br />

and associated precipitates. First spectacular results and<br />

limited sampl<strong>in</strong>g capacities and time dur<strong>in</strong>g the use of the<br />

PISCES submersibles made it necessary to revisit the sites<br />

dur<strong>in</strong>g SO-192/2.<br />

The Calypso site is characterized by the discharge of<br />

hydrothermal fluids at shallow water depths of 190 m at<br />

temperatures up to 200°C. The seafloor shows areas of<br />

bacterial mat, bubble streams and shimmer<strong>in</strong>g water.<br />

M<strong>in</strong>eralization consists of slabs of sulfur-cemented ash rich<br />

<strong>in</strong> hydrocarbons, and massive anhydrite. Weak acidity and<br />

high H2S contents of the fluids <strong>in</strong>dicate a mixture between<br />

seawater and hydrothermal fluids. The vents show strong<br />

evidence for phase separation processes and related base<br />

and precious metal precipitation at depth. The Monowai<br />

volcanic complex has an active volcanic cone, <strong>in</strong>dicated by<br />

audible bump<strong>in</strong>g and visible discoloration and upwell<strong>in</strong>g at<br />

the surface. The new map from SO-192/2 shows that near<br />

summit eruptions over the past three years have completely<br />

<strong>in</strong>filled a former collapse scar and buried the reconstructed<br />

summit cone. The recent summit at 98 mbsl has arisen 40<br />

m s<strong>in</strong>ce the last mapp<strong>in</strong>g <strong>in</strong> 2004. The Monowai caldera<br />

hosts low-temperature (10-42°C) vents at a l<strong>in</strong>ear ridge of<br />

basaltic dikes, flows, and volcaniclastic sediments <strong>in</strong> a<br />

water depth of about 1150 m. The ridge is heavily<br />

encrusted by mussels. Acid sulfate alteration of the<br />

volcanics is accompanied by dissem<strong>in</strong>ated marcasite<br />

m<strong>in</strong>eralization. Volcano 19 at the southern end of the<br />

Tonga arc is the location of high-temperature hydrothermal<br />

activity. Two dist<strong>in</strong>ct fields of vent<strong>in</strong>g exist at the large<br />

stratovolcano. One is associated with a caldera structure<br />

and exhibits numerous Fe-oxide chimneys, Feoxyhydroxide-<br />

and barite crusts, and vent<strong>in</strong>g of<br />

shimmer<strong>in</strong>g water up to 112°C. The high-temperature vents<br />

occur at the summit cone complex at water depths of 385 -<br />

540 mbsl and represent the shallowest high-temperature<br />

hydrothermal field known so far. This area comprises<br />

clusters of large barite and anhydrite chimneys, and is<br />

covered by extensive deposits of Fe-oxyhydroxides and<br />

hydrothermally cemented ash. The sulfate-sulfide<br />

chimneys are characterized by vigorous vent<strong>in</strong>g of clear<br />

fluids with temperatures on the seawater boil<strong>in</strong>g curve up<br />

to 270°C, pH values of 4.6-6.1, and low gas contents. The<br />

occurrence of phase separation is evident and can be seen<br />

119<br />

as flame-like jets of steam discharg<strong>in</strong>g from multiple<br />

chimney orifices. Pyrite, sphalerite-wurtzite, galena and<br />

chalcopyrite l<strong>in</strong>e the <strong>in</strong>teriors of the chimneys whereas the<br />

outer rims are enriched <strong>in</strong> arsenic sulfides. Phase separated<br />

fluids are responsible for the significant enrichment of gold<br />

<strong>in</strong> the precipitates. At Volcano 1, low- to mediumtemperature<br />

vent<strong>in</strong>g is associated with a large scoria cone.<br />

An area of Fe-oxide encrusted ash, a field of sulfur crusts<br />

covered by vent mussels, altered volcaniclastic rocks, and<br />

crusts of massive pyrite are the characteristics of the<br />

hydrothermal process. Vent<strong>in</strong>g at a maximum temperature<br />

of 70°C was found at two locations.<br />

Volcanic arcs represent a potentially extensive source<br />

of shallow hydrothermal vent fields and auriferous sulfide<br />

precipitates. The new f<strong>in</strong>d<strong>in</strong>gs contribute to a number of<br />

epithermal-style and transitional types of m<strong>in</strong>eralization<br />

now be<strong>in</strong>g recognized <strong>in</strong> the Tonga-Kermadec arc system<br />

and <strong>in</strong> other island arcs. Identification and understand<strong>in</strong>g of<br />

these systems have major genetic implications for volcanic<br />

and metallogenic processes <strong>in</strong> the geological past and are a<br />

major contribution <strong>in</strong> the understand<strong>in</strong>g of processes <strong>in</strong><br />

oceanic and cont<strong>in</strong>ental subduction zones.<br />

<strong>IODP</strong><br />

Porosity <strong>in</strong> different alteration types of the<br />

oceanic crust as a control of element<br />

mobilization – determ<strong>in</strong>ation of diffusion<br />

transport by <strong>in</strong>-situ FTIR-spectroscopy<br />

A.V. SIMONYAN 1,2 , S. DULTZ 1 , H. BEHRENS 2 , J. PASTRANA 3 , U.<br />

SCHWARZ-SCHAMPERA 4<br />

1 Institute of Soil Science, Leibniz University of <strong>Hannover</strong>,<br />

Herrenhäuser Str. 2, D-30419 <strong>Hannover</strong><br />

2 Institute of M<strong>in</strong>eralogy<br />

3 Institute of Bioproduction Systems, Biosystems and Horticultural<br />

Eng<strong>in</strong>eer<strong>in</strong>g Section, Leibniz University of <strong>Hannover</strong>,<br />

Herrenhäuser Str.2, D-30419 <strong>Hannover</strong><br />

4 Federal Institute of Geosciences and Natural Resources, Stilleweg<br />

2, D-30655 <strong>Hannover</strong><br />

Introduction<br />

The rate of seawater/rock <strong>in</strong>teraction and alteration of<br />

the oceanic crust depends on the rock permeability and on<br />

the accessible specific surfaces. Diffusion and reaction<br />

processes with<strong>in</strong> pores, most of them located <strong>in</strong>side<br />

unfractured rock fragments, have strong <strong>in</strong>fluence on<br />

mobilization and immobilization of elements <strong>in</strong><br />

hydrothermal fluids. The scope of our project is to<br />

<strong>in</strong>vestigate systematically the role of pores and rock<br />

permeability on element turnover <strong>in</strong> oceanic hydrothermal<br />

systems. Samples from ODP leg 169 at Middle Valley,<br />

Juan de Fuca Ridge and dredged basalts from the East<br />

Pacific Rise are used to capture a wide range of rock types<br />

from strongly altered sediments to nearly unchanged<br />

basement rocks. In order to correlate results of diffusion<br />

transport with material properties of the rocks, various<br />

methods were applied for the characterization of textures<br />

and porosity.<br />

Pore Volume, pore size distribution and connectivity<br />

of the pore system<br />

Pore volume of connected pores and the distribution of<br />

pore sizes were determ<strong>in</strong>ed by mercury <strong>in</strong>trusion<br />

porosimetry (MIP). The pore size distribution was<br />

calculated from the m<strong>in</strong>imum pressure required to fill pores<br />

of a certa<strong>in</strong> radius with Hg by us<strong>in</strong>g the Washburn


120<br />

equation. In a modification of MIP, Hg was replaced by<br />

Wood`s metal (50 % Bi, 25 % Pb, 12.5 % Zn and 12.5 %<br />

Cd), an alloy which solidifies below 78°C. Thus, pore<br />

structures can be visualized <strong>in</strong> polished sections us<strong>in</strong>g<br />

back-scattered electron (BSE) images and enhanced<br />

topographical (ET) images. Details of the method are<br />

described <strong>in</strong> Dultz et al. (2006).<br />

Pore volumes of basalts determ<strong>in</strong>ed by MIP vary from<br />

0.5 vol.% for a dredged basalt to 17.1 vol.% for strongly<br />

altered basalt from ODP drill<strong>in</strong>g hole 856H. Significant<br />

higher porosities from 23.9 to 51.0 vol.% were found <strong>in</strong><br />

sediments of ODP leg 169. In pore size distribution broad<br />

maxima are found <strong>in</strong> the sub-micrometer range. The most<br />

frequent pore sizes are observed <strong>in</strong> the range between 15<br />

and 200 nm. In back-scattered electron images, pores<br />

<strong>in</strong>truded with Wood`s metal are shown <strong>in</strong> white (Fig. 1a,<br />

b). Interconnected porosity is observed with<strong>in</strong> the whole<br />

fragment of porphyritic basalt, which has a porosity of 13.6<br />

vol.%. A marked tortuosity of the pore system is visible at<br />

higher magnification (Fig. 1b).<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

3D pore structure<br />

High-resolution 3D X-ray tomography with short<br />

wavelength light emitted by high-velocity electrons<br />

(synchrotron radiation) was performed on cyl<strong>in</strong>drical<br />

sections 2.1 mm <strong>in</strong> diameter. A series of projection images<br />

(typically 1024 with a pixel size of 0.7 µm) was recorded.<br />

The thickness of each “slice” represents the pixel size. The<br />

voxel size is therefore 0.7 x 0.7 x 0.7 (µm). To image and<br />

quantify the voids, the grey-scale histogram was segmented<br />

by a threshold <strong>in</strong>terval rang<strong>in</strong>g from 0 to 121. The 3D<br />

images were calculated with circular arrays hav<strong>in</strong>g a<br />

diameter of 900 pixels. Three-dimensional images were<br />

created by display<strong>in</strong>g the area pixels of the separated<br />

regions. As only voids with a volume >9.261 µm³ were<br />

visualized, some pores appear unconnected. The<br />

anisotropy of the pore orientation is given by the red l<strong>in</strong>e<br />

<strong>in</strong> Fig. 2b. In the cyl<strong>in</strong>drical arrays with a height of 70 and<br />

a diameter of 700 µm the complex structure of the pore<br />

networks can be detected (Fig. 2a, b).<br />

Fig. 1. (a) Back-scattered electron images show<strong>in</strong>g the homogeneity of pore networks <strong>in</strong> porphyritic basalt (sample ODP8, 0856 H, 065R)<br />

after <strong>in</strong>trusion with Wood`s metal. 200x magnification; (b) The presence of secondary m<strong>in</strong>erals and the tortuosity of the pores is visible at a<br />

magnification of 5000x. White: Wood`s metal.<br />

Fig. 2. Three dimensional image of voids <strong>in</strong> a cyl<strong>in</strong>drical section of (a) diabase, 0856H 055R (ODP5 ) and (b) basalt, 0856H 065R (ODP8).<br />

Red l<strong>in</strong>e shows the anisotropy of pore orientation <strong>in</strong> this sample. The scale is one pixel with a size of 0.7 µm.<br />

b


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Diffusion transport<br />

Diffusion processes of solutions with<strong>in</strong> the porous<br />

network were studied <strong>in</strong> situ, us<strong>in</strong>g a novel experimental<br />

cell attached to a FTIR-microscope. H2O→D 2O exchange<br />

was performed with three typical samples with porosity<br />

rang<strong>in</strong>g from 6.3 to 7.7 vol. % at temperatures from 5 to<br />

50°C at ambient pressure. Two samples from ODP drill<strong>in</strong>g<br />

(ODP5 and ODP8 shown <strong>in</strong> Fig. 1 and 2) are strongly and<br />

partially altered basalts, respectively. The third dredged<br />

basalt (D13) from Juan de Fuca Ridge, sampled from the<br />

core of the rock fragment, represents fresh basalt.<br />

Sample preparation is as follows: A basaltic rock<br />

sample with typical diameter of ~ 5 mm is polished on one<br />

side and fixed with m<strong>in</strong>imum amount of UV-glue <strong>in</strong> the<br />

center of a polished silica glass plate (thickness: 1 mm;<br />

size: 12 x 12 mm). After that, the sample is polished from<br />

the upper side to a thickness of about 0.1-0.15 mm. Then,<br />

the sample is covered with a second th<strong>in</strong> round silica glass<br />

plate (ca. 0.07 mm thick, typical diameter of ~5 mm),<br />

provid<strong>in</strong>g a complete seal<strong>in</strong>g of the sample by the glue and<br />

the glass plates. After that, one side of the sample plate was<br />

carefully re-opened by cutt<strong>in</strong>g the upper glass plate and the<br />

sample plate with a diamond band saw.<br />

The sample assemblage is <strong>in</strong>serted <strong>in</strong>to a brass sample<br />

holder which can be placed <strong>in</strong> a FTIR-microscope to<br />

collect <strong>in</strong>frared absorption spectra. One rubber O-r<strong>in</strong>g with<br />

a diameter of 2 mm is placed on top of the sample-cover<strong>in</strong>g<br />

glass plate, another one with 7 mm diameter was put<br />

around the sample. Both r<strong>in</strong>gs are squeezed by a Plexiglas<br />

plate with same base area as the ground plate. The<br />

Plexiglas plate is equipped with drill<strong>in</strong>gs for the <strong>in</strong>let and<br />

the outlet of the solution, enabl<strong>in</strong>g a circulation of the<br />

solution around the sample. The system is closed with a<br />

brass screw which presses on the Plexiglas plate. The<br />

solution can be cont<strong>in</strong>uously pumped through the sample<br />

holder us<strong>in</strong>g a peristaltic pump. Due to the small free<br />

volume around the sample (typically 7-9 mm 3 ), the solution<br />

with<strong>in</strong> the cell can be completely exchanged by another<br />

one with<strong>in</strong> seconds at the given flow rate (5.2 mm 3 /s).<br />

Constant temperature <strong>in</strong> the cell is adjusted by a flux of<br />

tempered water which passes through the sample holder.<br />

The temperature of the water flux was adjusted <strong>in</strong> the range<br />

from 5 to 50°C us<strong>in</strong>g a thermostat. The temperature <strong>in</strong> the<br />

cell is measured with a K-type thermocouple which is<br />

located on top of the Plexiglas plate, about 2.5 mm away<br />

from the IR spot. Temperature variations dur<strong>in</strong>g our<br />

experiments did not exceed ± 0.5 °C.<br />

Before the experiment, the sample assemblage was<br />

placed <strong>in</strong> a glass conta<strong>in</strong>er and evacuated to < 0.1 mbar to<br />

remove air from the open pores with<strong>in</strong> the m<strong>in</strong>erals. After<br />

hold<strong>in</strong>g it for about 30 m<strong>in</strong> under vacuum, water was<br />

<strong>in</strong>serted <strong>in</strong> the conta<strong>in</strong>er with a syr<strong>in</strong>ge through a rubber<br />

membrane. The samples were completely covered by water<br />

and after open<strong>in</strong>g the conta<strong>in</strong>er, the water was pressed <strong>in</strong>to<br />

the pores by the ambient air pressure.<br />

At a well-def<strong>in</strong>ed distance from the open side (typically<br />

1.5-2.1 mm), IR absorption spectra were cont<strong>in</strong>uously<br />

recorded with a small aperture aligned parallel to the open<br />

side of the sample plate. The distance between<br />

measurement po<strong>in</strong>t and the solution/sample <strong>in</strong>terface was<br />

always shorter (ca. 2-3 times) than the length of the open<br />

side of the sample. The design of the experimental cell<br />

provides simple one-dimensional diffusion conditions at<br />

least <strong>in</strong> the <strong>in</strong>itial stage of the experiment.<br />

121<br />

Total water contents and the local porosity were<br />

measured us<strong>in</strong>g the near-<strong>in</strong>frared comb<strong>in</strong>ation band at 5200<br />

cm -1 . The progress of the exchange reaction was<br />

determ<strong>in</strong>ed <strong>in</strong> situ us<strong>in</strong>g the OD stretch<strong>in</strong>g vibration band<br />

<strong>in</strong> the <strong>in</strong>frared at 2520 cm -1 . Concentrations of D 2O were<br />

calculated from basel<strong>in</strong>e-corrected peak heights by the<br />

Lambert-Beer law. Effective diffusivities of water <strong>in</strong> the<br />

porous medium Deff were derived by fitt<strong>in</strong>g timeabsorbance<br />

curves to the appropriate solution of Fick’s 2 nd<br />

law.<br />

The obta<strong>in</strong>ed diffusion data for samples from the<br />

oceanic basaltic rocks are shown <strong>in</strong> Fig. 3a. The calculated<br />

effective diffusion coefficients Deff are <strong>in</strong> the range from<br />

10-9 to 10-11 m2/s that is one-two orders of magnitude<br />

smaller than the diffusion coefficients Ds for H+ and H2O<br />

<strong>in</strong> liquid water and <strong>in</strong> aqueous solutions (Li und Gregory,<br />

1974; Mills, 1973). The diffusion data were used to<br />

estimate the activation energies (Ea) of the transport<br />

process by the Arrhenius equation Deff = D0⋅exp(-Ea/RT).<br />

The calculated Ea values for ODP5, ODP8 and D13<br />

samples are comparable with the activation energies for H+<br />

and OH- <strong>in</strong> liquid water (13.7 and 19.8 kJ/mol,<br />

respectively). Despite the high error due to the small<br />

temperature <strong>in</strong>terval, the pre-exponential factor for porous<br />

basaltic samples shows significant difference from the D0<br />

of liquid water. The sample with the largest amount of<br />

secondary m<strong>in</strong>erals (ODP5) has low value of Ea. Higher<br />

activation energy is found for the samples with welldeveloped<br />

pore network, conta<strong>in</strong><strong>in</strong>g no or relatively small<br />

amount of secondary phases (D13, ODP8).<br />

An important property of porous media is the<br />

diffusional tortuosity factor X, measur<strong>in</strong>g the <strong>in</strong>fluence of<br />

pore structure on the diffusivity of ion/molecule/particle<br />

flow <strong>in</strong> the porous medium. Diffusional tortuosity factor<br />

is identical <strong>in</strong> form to the ratio of bulk molecular<br />

diffusivity (Ds) to the effective molecular diffusivity (Deff)<br />

measured by steady-state diffusion experiments (Dullien,<br />

1992). In complex natural materials as used <strong>in</strong> this study,<br />

the tortuosity of porous structure can not be directly<br />

measured due to large variations <strong>in</strong> pore size, pore<br />

geometry, pore distribution, and connectivity of pores (see<br />

Fig.1). But comparison of the effective water diffusivity<br />

Deff with diffusion data for liquid water Ds can be used to<br />

constra<strong>in</strong> experimentally these values. At the conditions of<br />

our experiments, the diffusional tortuosity factor X is<br />

determ<strong>in</strong>ed from equation X = Ds/Deff , where the<br />

diffusion coefficients Ds is molecular diffusivity H2O <strong>in</strong><br />

liquid water from Mills (1973).<br />

The measured tortuosity factors for our samples are<br />

plotted <strong>in</strong> Fig.3b as a function of volume porosity ∅<br />

determ<strong>in</strong>ed by MIP. We are aware of the uncerta<strong>in</strong>ty of this<br />

approach because the average porosity of the basalts may<br />

differ from the porosity of the samples measured by MIP.<br />

It is known that the theoretical and empirical X values<br />

show <strong>in</strong> general a negative dependence on ∅ , lead<strong>in</strong>g to<br />

the simple conclusion that the amount of pores def<strong>in</strong>es the<br />

efficiency of diffusion. However, our results <strong>in</strong>dicate that<br />

the morphology and structure of pore network filled with<br />

secondary m<strong>in</strong>erals may have a strong <strong>in</strong>fluence on the<br />

diffusivity of aqueous solutions. For <strong>in</strong>stance, sample<br />

ODP5 with the largest amount of pores has the highest<br />

values of X up to 265. This sample exhibits<br />

<strong>in</strong>homogeneously distributed and disconnected pores with<br />

a large proportion of secondary phases. The presence of<br />

b


122<br />

precipitated m<strong>in</strong>erals <strong>in</strong>side the pore system may affect the<br />

transport ways for water molecules. The lowest tortuosity<br />

factor is found for the sample with well-developed pore<br />

network and relatively small amount of secondary phases<br />

(ODP8). These f<strong>in</strong>d<strong>in</strong>gs have important impact on<br />

understand<strong>in</strong>g of element release dur<strong>in</strong>g alteration of<br />

oceanic rocks.<br />

log Deff (m 2 /s)<br />

Tortuosity factor, X<br />

-9.9<br />

-10.1<br />

-10.3<br />

-10.5<br />

300<br />

250<br />

200<br />

150<br />

100<br />

a<br />

y = -0.07x - 8.16<br />

R 2 = 0.88<br />

ODP5<br />

ODP8<br />

D13<br />

ODP5-2<br />

ODP8-2<br />

D13-2<br />

50<br />

0.06 0.065 0.07 0.075 0.08<br />

Porosity, Φ<br />

y = -0.08x - 7.56<br />

R 2 = 0.87<br />

-10.7<br />

30 31 32 33 34 35 36<br />

10 4 / T (K)<br />

ODP5<br />

ODP8<br />

D13<br />

ODP5-2<br />

ODP8-2<br />

D13-2<br />

Figure 3. (a) Arrhenius-plot for water diffusion <strong>in</strong> porous basaltic<br />

rocks; (b) Tortuosity factor as a function of porosity.<br />

References:<br />

Dullien F.A.L.: Porous media. Fluid transport and Pore Structure, 2nd<br />

edition, Academic Press, San Diego, California, pp.574 (1992).<br />

Dultz S., Behrens H., Simonyan A., Kahr G., Rath T.: Determ<strong>in</strong>ation of<br />

porosity and pore connectivity <strong>in</strong> feldspars from soils of granite and<br />

saprolite.<br />

Soil Science 171, 675-694 (2006).<br />

Li Y.-H., Gregory S.: Diffusion of ions <strong>in</strong> sea water and <strong>in</strong> deep-sea<br />

sediments. Geochim. Cosmochim. Acta 38, 703-714 (1974).<br />

Mills R.: Self-diffusion <strong>in</strong> normal and heavy water <strong>in</strong> the range 1-45°C. J.<br />

Phys. Chem. 77, 685-689 (1973).<br />

<strong>IODP</strong><br />

Late Miocene surface water history <strong>in</strong> the<br />

northern South Ch<strong>in</strong>a Sea: Relationship to<br />

East Asian summer monsoon evolution and<br />

variability<br />

S. STEINKE, J. GROENEVELD, H. JOHNSTONE<br />

DFG - Forschungszentrum Ozeanränder der Universität Bremen,<br />

Leobener Str., D-28359 Bremen<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

The monsoon system represents one of the basic<br />

elements of global atmospheric circulation that controls the<br />

redistribution of latent and sensible heat and its evolution<br />

and variability play a significant role <strong>in</strong> our understand<strong>in</strong>g<br />

of global climate (Webster et al., 1998). We used comb<strong>in</strong>ed<br />

measurements of Mg/Ca and stable oxygen isotopes <strong>in</strong> tests<br />

of the planktonic foram<strong>in</strong>ifera G. quadrilobatus-sacculifer<br />

from Ocean Drill<strong>in</strong>g Program (ODP) Site 1146A<br />

(19°27.40’N; 116°16.37’E; water depth of 2092 m) to<br />

reconstruct the hydrographic and thermal history of the<br />

northern South Ch<strong>in</strong>a Sea (SCS), and hence changes <strong>in</strong><br />

East Asian monsoon climate dur<strong>in</strong>g the Late Miocene. The<br />

study covers the Late Miocene time <strong>in</strong>terval from 10 to 6<br />

Ma, a period of postulated profound shifts <strong>in</strong> the <strong>in</strong>tensity<br />

of the East Asian monsoon (EAM). Located offshore the<br />

Pearl River, or its predecessor, the location of Site 1146A<br />

is considered as provid<strong>in</strong>g a very sensitive record for<br />

changes <strong>in</strong> river<strong>in</strong>e <strong>in</strong>put as result of changes <strong>in</strong> cont<strong>in</strong>ental<br />

humidity/aridity.<br />

G. quadrilobatus-sacculifer Mg/Ca-SST estimates vary<br />

between 25°C and 29°C <strong>in</strong> the <strong>in</strong>vestigated time <strong>in</strong>terval.<br />

The Mg/Ca SST estimates suggest a dist<strong>in</strong>ct cool<strong>in</strong>g trend<br />

from ~10 Ma (~29°C) to 7.5 Ma (~26°C) that is followed<br />

by an abrupt <strong>in</strong>crease <strong>in</strong> SSTs around 7.5 Ma. Lower<br />

temperatures around 26°C are recorded for the time<br />

<strong>in</strong>terval 7 Ma to 6 Ma. Local δ 18 O seawater estimates imply<br />

dist<strong>in</strong>ct lighter values between ~8.5 Ma and 7.5 Ma that we<br />

attribute to an <strong>in</strong>crease <strong>in</strong> precipitation and <strong>in</strong>creased river<br />

run-off from the Pearl River system, or its predecessor, due<br />

to a period of <strong>in</strong>tensified summer EAM. An <strong>in</strong>tensified<br />

East Asian summer monsoon around 8 Ma is consistent<br />

with studies from the southern SCS (Chen et al., 2004;<br />

Wan et al., 2006), but is <strong>in</strong> marked contrast to<br />

m<strong>in</strong>eralogical and sedimentological records at the same site<br />

that imply a profound shift <strong>in</strong> the <strong>in</strong>tensity of the w<strong>in</strong>ter<br />

EAM relative to summer EAM, as well as aridity of the<br />

Asian cont<strong>in</strong>ent around 8 Ma (Wan et al., 2007). We<br />

suggest that the summer monsoon simultaneously<br />

strengthened along with the w<strong>in</strong>ter monsoon <strong>in</strong> the<br />

northern SCS region at 8 Ma as it was also postulated for<br />

the period from about 3.6 to 2.6 Ma (An et al., 2001).<br />

An, Z., Kutzbach, J.E., Prell, W.L., Porter, S.C., 2001. Evolution of Asian<br />

monsoons and phased uplift of the Himalaya-Tibetan plateau s<strong>in</strong>ce the<br />

Late Miocene times. Nature 411, 62-65.<br />

Wan, S., Li, A., Clift, P.D., Jiang, H., 2006. Development of the East Asian<br />

summer monsoon: Evidence from the sediment record <strong>in</strong> the South<br />

Ch<strong>in</strong>a Sea s<strong>in</strong>ce 8.5 Ma. Palaeogeography, Palaeoclimatology,<br />

Palaeoecology 241, 139-159.<br />

Wan, S., Li, A., Clift, P.D., Stuut, J.-B.W., 2007. Development of the East<br />

Asian monsoon: M<strong>in</strong>eralogical and sedimentologic records <strong>in</strong> the<br />

northern South Ch<strong>in</strong>a Sea s<strong>in</strong>ce 20 Ma. Palaeogeography,<br />

Palaeoclimatology, Palaeoecology 254, 561-582.<br />

Webster, P.J., Magana, V.O., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai,<br />

M., Yasunari, T., 1998. Monsoons: Processes predictability, and the<br />

prospects for prediction, <strong>in</strong> the TOGA decade. Journal of Geophysical<br />

Research 103, 14451-14510.<br />

<strong>IODP</strong><br />

Atlantic-Pacific <strong>in</strong>termediate- and deep-water<br />

δ 13 C gradients dur<strong>in</strong>g the late Neogene (Leg<br />

202)<br />

A. STURM 1 , R. TIEDEMANN 1 , S. STEPH 1<br />

1 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Am<br />

Alten Hafen 26, 27568 Bremerhaven, Germany;<br />

Arne.Sturm@awi.de


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

This study compares <strong>in</strong>termediate and deep-water δ 13 C<br />

records from the Atlantic/Caribbean (sites 704, 925/926,<br />

982, 1000) and the east Pacific (sites 846, 1236, 1237,<br />

1241) for the time <strong>in</strong>terval from 8.8 – 2.0 Ma. The<br />

comparison reflects changes <strong>in</strong> Atlantic-Pacific nutrient<br />

distributions and thus changes <strong>in</strong> thermohal<strong>in</strong>e circulation.<br />

At the <strong>in</strong>termediate water level, Pacific and Atlantic<br />

δ 13 C values were similar prior to 4.2 Ma; the difference<br />

<strong>in</strong>creased after 4.2 Ma s<strong>in</strong>ce upper Atlantic nutrient<br />

concentrations decreased, probably <strong>in</strong> response to the<br />

shoal<strong>in</strong>g of the Central American Seaway; between 3 and<br />

2.3 Ma the δ 13 C difference rema<strong>in</strong>s relatively constant.<br />

The δ 13 C gradient between the deep Atlantic and the<br />

deep Pacific rema<strong>in</strong>ed relatively constant from 7-3 Ma and<br />

decreased after 3 Ma due to reduced formation of NADW<br />

dur<strong>in</strong>g glacials along with <strong>in</strong>tensification of NHG;<br />

<strong>in</strong>creas<strong>in</strong>g δ 13 C values at SE Atlantic CDW Site 704<br />

suggest stronger <strong>in</strong>fluence of NADW after 4.5 Ma.<br />

The δ 13 C values between the shallow Atlantic and the<br />

deep eastern Pacific are very similar prior to 8.5 Ma. After<br />

8.5 Ma, the Atlantic - Pacific difference strongly <strong>in</strong>creased<br />

until 5.9 Ma. The tim<strong>in</strong>g of the observed changes <strong>in</strong><br />

Atlantic-Pacific δ 13 C gradients suggest <strong>in</strong>fluences from<br />

ocean gateway dynamics.<br />

<strong>ICDP</strong><br />

Tephra <strong>in</strong>put <strong>in</strong>to Lake Van<br />

M. SUMITA 1 , H-U. SCHMINCKE 1<br />

1 Research Division 4, Leibniz-Institute of Mar<strong>in</strong>e Science, IFM-<br />

GEOMAR, Wischhofstr.1 24148 Kiel, Germany<br />

The active Nemrut Volcano (Eastern Anatolia) has<br />

supplied Late Quaternary and Holocene tephra layers as<br />

dom<strong>in</strong>antly rhyolitic fallout and pyroclastic flows<br />

(represented as syn-ignimbrite turbidites) <strong>in</strong>to huge<br />

adjacent alkal<strong>in</strong>e Lake Van. Selected tephra layers <strong>in</strong> the<br />

cores drilled dur<strong>in</strong>g the exploratory phase (2004) <strong>in</strong><br />

preparation for a major <strong>ICDP</strong> drill<strong>in</strong>g project planned for<br />

2009 have been analyzed texturally and compositionally.<br />

The 16 tephra layers studied (T1 ~ T16) fall <strong>in</strong>to two<br />

compositionally dist<strong>in</strong>ct groups (EMP analysis): alkal<strong>in</strong>e to<br />

per-alkal<strong>in</strong>e (comenditic) (PA-type) and sub-alkal<strong>in</strong>e<br />

rhyolites (SA-type). The comenditic rhyolites differ from<br />

sub-alkal<strong>in</strong>e rhyolites by significantly higher Fe, Ti, total<br />

alkalis and halogens (F, Cl) and lower-Al, Mg, Ca, K.<br />

Among the mafic phenocrysts, green hedenbergitic cpx<br />

characterizes the comendites, bi and lesser amph subalkal<strong>in</strong>e<br />

tephra layers. Both types of rhyolites are clearly<br />

separated <strong>in</strong> time reflect<strong>in</strong>g secular changes <strong>in</strong> source<br />

magma compositions. We tentatively <strong>in</strong>terpret all tephra<br />

layers studied to have been sourced <strong>in</strong> Nemrut volcano.<br />

Comenditic rhyolites are also represented by the major<br />

Subrecent hydroclastic tephra (surge and fallout deposits)<br />

blanket<strong>in</strong>g the caldera rim and <strong>in</strong>terpreted as result<strong>in</strong>g from<br />

a subpl<strong>in</strong>ian eruption through the caldera lake. All<br />

Holocene tephra layers are comenditic rhyolites (PA-type)<br />

while tightly grouped late Pleistocene rhyolite tephras are<br />

sub-alkal<strong>in</strong>e (SA-type). The oldest tephra cored (T16),<br />

however, is compositionally identical to the Holocene<br />

comendites. This twofold clear change <strong>in</strong> composition<br />

greatly facilitates correlation between cores.<br />

Apart from six tephra layers (T1, T6, T7, T11, T12 and<br />

T13) of mixed lithology <strong>in</strong>terpreted as represent<strong>in</strong>g<br />

123<br />

rework<strong>in</strong>g follow<strong>in</strong>g an eruption, primary tephra layers<br />

represent both fallout and turbidites. The latter show clear<br />

gra<strong>in</strong> size contrast between the coarse-gra<strong>in</strong>ed basal and<br />

f<strong>in</strong>e-gra<strong>in</strong>ed top layers. Because of the abundance of f<strong>in</strong>e<br />

ash <strong>in</strong> the strongly graded layers, turbidites are <strong>in</strong>terpreted<br />

to reflect entry of pyroclastic/hydroclastic density currents<br />

<strong>in</strong>to Lake Van.<br />

Contrary to our expectation, all Holocene tephra glass<br />

shards are extremely fresh. Zeolites <strong>in</strong>side shards occur <strong>in</strong><br />

tephra layers older than T13 although glass <strong>in</strong> comenditic<br />

T16 is fresh. Whether or not glass alteration is correlated<br />

with a drastic <strong>in</strong>crease <strong>in</strong> alkal<strong>in</strong>ity of pore waters<br />

downward is unclear.<br />

The abundance of angular and non- or only slightly<br />

vesicular vitric shards <strong>in</strong> most tephra layers – and their<br />

dom<strong>in</strong>ance <strong>in</strong> some – <strong>in</strong>dicates that hydroclastic<br />

fragmentation by thermal shock result<strong>in</strong>g from magmawater<br />

<strong>in</strong>teraction was common. The textural resemblance<br />

of glass shards to those of the sub-recent base surge tephra<br />

mantl<strong>in</strong>g the caldera rim suggests that the younger tephra<br />

layers may reflect eruption of rhyolite magma through<br />

Nemrut caldera lake that may therefore have existed for<br />

some time. Magma-groundwater <strong>in</strong>teraction and/or<br />

subaqueous eruptions cannot be excluded, however.<br />

Occurrence of highly vesicular pumice <strong>in</strong> most tephra<br />

layers – and their dom<strong>in</strong>ance <strong>in</strong> a few - <strong>in</strong>dicates<br />

pl<strong>in</strong>ian/sub-pl<strong>in</strong>ian pyroclastic/hydroclastic eruption.<br />

The tephra layers represent slightly more than one<br />

major explosive eruption/1ka. As is common <strong>in</strong> volcanic<br />

systems, however, explosive eruptions were not evenly<br />

spaced <strong>in</strong> time. The last historic eruption of Nemrut (1440<br />

AD) was m<strong>in</strong>or (lava flow). Further large explosive<br />

eruptions could be expected <strong>in</strong> the foreseeable future.<br />

Future eruptions could produce fallout or pyroclastic flows<br />

or both, mak<strong>in</strong>g the town of Tatvan at the shore of Lake<br />

Van highly vulnerable. Monitor<strong>in</strong>g of Nemrut should be<br />

implemented.<br />

<strong>IODP</strong><br />

Cold-Water Coral Mound Growth –<br />

implications from Challenger Mound<br />

(<strong>IODP</strong> Exp. 307 – Modern carbonate<br />

mounds: Porcup<strong>in</strong>e Drill<strong>in</strong>g)<br />

J. TITSCHACK 1 , M. THIERENS 2 , B. DORSCHEL 2 , C. SCHULBERT 1 , A.<br />

FREIWALD 1 , A. KANO 3 , C. TAKASHIMA 3 , N. KAWAGOE 3 , X. LI 4 AND<br />

THE <strong>IODP</strong> EXPEDITION 307 SCIENTIFIC PARTY<br />

1<br />

GeoZentrum Nordbayern, Universität Erlangen-Nürnberg,<br />

Germany<br />

2<br />

Department of Geology, University College Cork, Ireland<br />

3<br />

Department of Earth and Planetary Systems Science, Hiroshima<br />

University, Japan<br />

4<br />

Earth Sciences Department, Nanj<strong>in</strong>g University, Ch<strong>in</strong>a<br />

Cold-water coral mounds, associated with Lophelia<br />

pertusa and Madrepora oculata, widely occur <strong>in</strong> the modern<br />

oceans and came <strong>in</strong>to focus of geobiological and<br />

oceanographic research dur<strong>in</strong>g the last decades. The<br />

Porcup<strong>in</strong>e Seabight, be<strong>in</strong>g the target area of more than 20<br />

scientific cruises dur<strong>in</strong>g the last few years, represents one<br />

of the most <strong>in</strong>tensely studied cold-water coral areas with<br />

over thousand mounds so far. Extensive data, e.g. highresolution<br />

seismics, multibeam, side-scan sonar and surface<br />

samples, made the Porcup<strong>in</strong>e Seabight a prime target for<br />

the <strong>IODP</strong> drill<strong>in</strong>g.


124<br />

<strong>IODP</strong> Expedition 307 ‘Modern carbonate mounds:<br />

Porcup<strong>in</strong>e Drill<strong>in</strong>g’ was designed to (1) close the data gap<br />

between large-scale seismic and detailed ecological and<br />

sedimentological studies, (2) shed light on the nucleation<br />

and growth of cold-water coral mounds, (3) constra<strong>in</strong> a<br />

stratigraphic framework for the slope/mound system, (4)<br />

identify and correlate regional erosional surfaces identified<br />

<strong>in</strong> seismics, and (5) <strong>in</strong>vestigate the hypothesized presence<br />

of hydrocarbons as the energy source for mound nucleation<br />

and susta<strong>in</strong>ed mound growth. A downslope suite of three<br />

sites centred around Challenger Mound on the east slope of<br />

the Porcup<strong>in</strong>e Seabight was drilled to address these key<br />

questions (Fig. 1).<br />

This study concentrates on the growth as well as on the<br />

carbonate budget of Challenger Mound <strong>in</strong> respect to the<br />

adjacent slope deposits through time. So far only little is<br />

known about mound <strong>in</strong>itiation, mound growth and its<br />

carbonate budget. All exist<strong>in</strong>g models are based on the<br />

analysis of short gravity cores which cover only the Late<br />

Pleistocene and Holocene time <strong>in</strong>terval. The cores of<br />

Challenger Mound provide the unique possibility to study<br />

this fasc<strong>in</strong>at<strong>in</strong>g environment back to the Late Pliocene (<<br />

~2.7 Ma) and especially to evaluate its growth and<br />

carbonate budget through time. Therefore, the coral and<br />

total carbonate content of the coral-bear<strong>in</strong>g deposits was<br />

analysed by evaluat<strong>in</strong>g the macroscopic coral content with<br />

digital core section image analysis (resolution: 10 cm)<br />

comb<strong>in</strong>ed with XRD analysis (resolution: ~75 cm) of the<br />

matrix sediement, based on the method described by<br />

Dorschel et al. (2007). In total, 1499 images and 195 XRD<br />

samples were quantified. Estimations of sedimentation<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

rates were based on the chronostratigraphic model from<br />

Kano et al. (2007).<br />

Challenger Mound is positioned <strong>in</strong> the Belgica Mound<br />

Prov<strong>in</strong>ce (BMP), which comprises 64 mounds with heights<br />

of up to 190 m of which 17 are buried mounds. They<br />

developed <strong>in</strong> two ridges <strong>in</strong> a depth range between 700 –<br />

Fig. 1. A: Location Map show<strong>in</strong>g the position of the Belgica Mound Prov<strong>in</strong>ce (red square) <strong>in</strong> the Porcup<strong>in</strong>e Seabight (PS). B: Location<br />

map of the site transect drilled dur<strong>in</strong>g <strong>IODP</strong> Expedition 307. C: 3D-visualisation of the Belgica Mound Prov<strong>in</strong>ce. Red dots <strong>in</strong>dicate<br />

<strong>IODP</strong> 307 site positions.<br />

1000 mbsl (meters below sea level). Challenger Mound<br />

itself is an asymmetrically-semiburied mound <strong>in</strong> the BMP<br />

with an elevation of about 50 m (780 – 830 mbsl) above<br />

the adjacent seafloor. Shallow seismic profiles <strong>in</strong>dicate that<br />

Challenger Mound is, as many other mounds <strong>in</strong> the<br />

Porcup<strong>in</strong>e Seabight, seated on the regional erosional C10<br />

unconformity (Fig. 2). Accord<strong>in</strong>g to the stratigraphic model<br />

of Kano et al. (2007), two major growth stages can be<br />

differentiated <strong>in</strong> Challenger Mound, unit M1 and M2<br />

(Fig.2), separated by a major hiatus.<br />

Mound sediments recovered from site U1317 were<br />

characterised by dom<strong>in</strong>antly unlithified light greyish to<br />

dark greenish coral float- to rudstones with a wacke- to<br />

packstone matrix rarely <strong>in</strong>terbedded by th<strong>in</strong> wacke- to<br />

packstone layers. The carbonate content varied between<br />

21.2 and 82.4 wt.% (mean: 58.2 wt.% <strong>in</strong> unit M1 and 61.9<br />

wt.% <strong>in</strong> unit M2) and exhibited cyclic patterns <strong>in</strong> unit M1.<br />

In unit M2 no clear cyclic variations were identified. These<br />

observations were supported by colour data from the onmound<br />

site U1317 (Fig. 3). Dropstones, only reach<strong>in</strong>g the<br />

site as ice rafted detritus dur<strong>in</strong>g glacials, generally occurred<br />

<strong>in</strong> <strong>in</strong>tervals with low carbonate contents, thus <strong>in</strong>dicat<strong>in</strong>g<br />

<strong>in</strong>creased siliciclastic import and reduced carbonate<br />

production dur<strong>in</strong>g glacial <strong>in</strong>tervals. Unconformities<br />

occurred ma<strong>in</strong>ly where the carbonate content was<br />

decreas<strong>in</strong>g or low, which suggest their formation dur<strong>in</strong>g the


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

start up-phase of glacials or dur<strong>in</strong>g full glacials (Fig. 3).<br />

The coral-bear<strong>in</strong>g deposits overlaid a glauconitic and partly<br />

sandy siltstone (P1 <strong>in</strong> Fig. 2) of Miocene age. The top of<br />

this underly<strong>in</strong>g unit was developed as firmground.<br />

Kano et al. (2007) computed mean sedimentation rates<br />

of about 15 cm/ka for the lower unit M1 (Figs. 2, 3; 155.22<br />

mbsf – 22.98 mbsf) and 5 cm/ka <strong>in</strong> the upper unit M2<br />

(22.98 mbsf – 0 mbsf). Hence, mean bulk sediment<br />

accumulation rates were 30.1 g/(cm 2 ×ka) <strong>in</strong> unit M1 and<br />

9.5 g/(cm 2 ×ka) <strong>in</strong> unit M2, and mean total carbonate<br />

accumulation rates were 17.7 and 5.9 g/(cm 2 ×ka). The<br />

carbonate accumulation rate could be further subdivided<br />

<strong>in</strong>to a mean coral accumulation rate with 7.2 and 1.9<br />

g/(cm 2 ×ka) and a matrix calcite accumulation rate with<br />

13.3 and 5.1 g/(cm 2 ×ka), for units M1 and M2,<br />

respectively. Hereby it was important to note that the given<br />

matrix calcite accumulation rates were relative to the<br />

siliciclastic sediment fraction (coral-derived carbonate is<br />

removed). This was <strong>in</strong>terpreted as the carbonate content of<br />

the plankton-derived sediment fraction <strong>in</strong> Challenger<br />

Mound.<br />

The adjacent drift deposits (P3 <strong>in</strong> Fig. 2), targeted at<br />

site U1318 and U1316, consisted of greyish brown silty<br />

clays, which were frequently <strong>in</strong>terbedded by f<strong>in</strong><strong>in</strong>g upward<br />

sand beds <strong>in</strong> the lower part. Dropstones occured <strong>in</strong> dist<strong>in</strong>ct<br />

<strong>in</strong>tervals. Unit P3 showed a mean carbonate content of 16.6<br />

wt.% and 17.3 wt.% <strong>in</strong> U 1318 ands U1316, respectively.<br />

Mean sedimentation rates were <strong>in</strong> the range of 7.1 to 7.7<br />

cm/ka. Consequently, mean bulk sediment accumulation<br />

rates were 14.2 – 14.9 g/(cm 2 ×ka) and mean total carbonate<br />

accumulation rates varied between 2.4 and 2.6 g/(cm 2 ×ka).<br />

Comparisons of Challenger Mound unit M2 with the<br />

time-equivalent off-mound drift deposits of unit P3 (Fig. 2)<br />

show that the sedimentation rate and bulk sediment<br />

accumulation rate of unit M2 are lower by a factor of about<br />

0.5 - 0.7 relative to the time-equivalent unit P3 at site<br />

U1316 and U1318. This clearly <strong>in</strong>dicates the ongo<strong>in</strong>g<br />

burial of Challenger Mound by the adjacent drift deposits<br />

s<strong>in</strong>ce ~1.24 Ma ago (Fig. 2). In contrast, the total carbonate<br />

accumulation rates is enhanced <strong>in</strong> unit M2 by a factor of<br />

about 2.4 relative to the drift deposits. This is due to the<br />

enhanced content of total carbonate <strong>in</strong> the mound (~45<br />

wt.%). The result<strong>in</strong>g carbonate accumulation rates for unit<br />

M1 are <strong>in</strong> the range of the fast grow<strong>in</strong>g cold-water coral<br />

mounds of Norwegian shelf (L<strong>in</strong>dberg and Mienert, 2005),<br />

and for unit M2 of the slow grow<strong>in</strong>g Propeller Mound,<br />

Hovland Mound Prov<strong>in</strong>ce, Porcup<strong>in</strong>e Seabight (Dorschel et<br />

al., 2007).<br />

The chronostratigraphic transect across Challenger<br />

Mound (Fig. 2) clearly shows that this mound <strong>in</strong>itiated<br />

while <strong>in</strong> the entire region erosive conditions prevailed. The<br />

ma<strong>in</strong> mound growth phase M1 of about 130 m (from<br />

155.22 mbsf, ~2.7 Ma, to 22.98 mbsf, ~1.6 Ma) happened<br />

prior to the onset of drift deposition <strong>in</strong> the Porcup<strong>in</strong>e<br />

Seabight (~1.24 Ma ago). Hence, dur<strong>in</strong>g <strong>in</strong>terval M1<br />

growth conditions must have been very favourable<br />

result<strong>in</strong>g <strong>in</strong> high accumulation rates. Unconformities have<br />

been sparse. However, the number of unconformities<br />

<strong>in</strong>creases towards the base and top of unit M1 suggest<strong>in</strong>g<br />

reoccur<strong>in</strong>g periods unfavourable for mound growth even<br />

before the major unconformity between the units M1 and<br />

M2.<br />

A dramaticall change <strong>in</strong> mound evolution occurred at<br />

about 1.64 Ma marked by the onset of the major erosional<br />

125<br />

event (unconformity at 22.98 mbsf). This ‘mound crisis’,<br />

lasted until about 0.84 Ma. After the ‘mound crisis’<br />

Challenger Mound never recovered completely. In unit M2,<br />

above the major hiatus, mound growth rates were reduced<br />

compared to unit M1 and the number of unconformities<br />

enhanced suggest<strong>in</strong>g frequently unfavourable conditions<br />

for mound growth. The onset of the deposition of drift<br />

sediments adjacent to Challenger Mound with<br />

sedimentation rates exceed<strong>in</strong>g these of Challenger Mound<br />

unit M2 clearly shows the ongo<strong>in</strong>g burial of Challenger<br />

Mound s<strong>in</strong>ce 1.24 Ma ago.<br />

References:<br />

De Mol, B., Van Rensbergen, P., Pillen, S., Van Herreweghe, K., Van Rooji,<br />

D., McDonnell, A., Huvenne, V., Ivanov, M., Swennen, R., and<br />

Henriet, J.P., 2002, Large deep-water coral banks <strong>in</strong> the Porcup<strong>in</strong>e<br />

Bas<strong>in</strong>, southwest of Ireland: Mar<strong>in</strong>e Geology, v. 188, p. 193-231.<br />

Dorschel, B., Hebbeln, D., Rüggeberg, A., and Dullo, C., 2007, Carbonate<br />

budget of a cold-water coral carbonate mound: Propeller Mound,<br />

Porcup<strong>in</strong>e Seabight: International Journal of Earth Science, v. 96, p.<br />

73-83.<br />

Kano, A., Ferdelman, T.G., Williams, T., Henriet, J.-P., Ishikawa, T.,<br />

Kawagoe, N., Takashima, C., Kakizaki, Y., Abe, K., Sakai, S.,<br />

Brown<strong>in</strong>g, E.L., Li, X., Andres, M.S., Bjerager, M., Cragg, B.A., De<br />

Mol, B., Dorschel, B., Foubert, A., Frank, T.D., Fuwa, Y., Gaillot, P.,<br />

Gharib, J., Gregg, J.M., Huvenne, V.A.I., Léonide, P., Mangelsdorf,<br />

K., Monteys, X., Novosel, I., O'Donnell, R., Rüggeberg, A., Samark<strong>in</strong>,<br />

V., Sasaki, K., Spivack, A.J., Tanaka, A., Titschack, J., van Rooij, D.,<br />

and Wheeler, A.J., 2007, Age constra<strong>in</strong>s on the orig<strong>in</strong> and growth<br />

history of a deep-water coral mound <strong>in</strong> the northeast Atlantic drilled<br />

dur<strong>in</strong>g Integrated Ocean Drill<strong>in</strong>g Program Expedition 307: Geology, v.<br />

35, p. 1051-1054.<br />

L<strong>in</strong>dberg, B., and Mienert, J., 2005, Postglacial carbonate production by<br />

cold-water corals on the Norwegian shelf and their role <strong>in</strong> the global<br />

carbonate budget: Geology, v. 33, p. 537-540.


126<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 2. General<br />

sedimentary facies<br />

of a <strong>IODP</strong> 307 site<br />

transect plotted on a<br />

seismic cross<br />

section (modified<br />

after De Mol et al.,<br />

2002). Key<br />

unconformities are<br />

shown <strong>in</strong> red with<br />

the duration (based<br />

on 87Sr/86Sr-dates<br />

of Kano et al.,<br />

2007). For all sites<br />

the total carbonate<br />

contents are plotted.<br />

Mean carbonate<br />

contents for each<br />

unit are plotted<br />

beside the columns.<br />

Fig. 3. Log of the on-mound hole U1317E show<strong>in</strong>g<br />

a core pictures stuck, 87 Sr/ 86 Sr-dates of Kano et al.<br />

(2007) with calculated sedimentation rates, the<br />

coral quantity based on the surface picture<br />

quantification, bulk sediment composition (surface<br />

picture quantification comb<strong>in</strong>ed with matrix<br />

sediment XRD analysis) and calculated<br />

accumulation rates for the bulk sediment, total<br />

carbonate. Unconformities are <strong>in</strong>dicated by red<br />

s<strong>in</strong>uous l<strong>in</strong>es. SR: Sedimentation rate.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

Cyclostratigraphy and Time Series Analysis<br />

From Borehole KAP/107 (Amynteon Bas<strong>in</strong>,<br />

northwestern Greece)<br />

N. TOUGIANNIDIS 1 , T. SEIDLER 1 , C. ROLF 2 , M. WEBER 1 , P.<br />

ANTONIADIS 3 AND W. RICKEN 1<br />

1 Institute of Geology and M<strong>in</strong>eralogy, University of Cologne,<br />

Zülpicher Str. 49a, 50674 Köln, Germany<br />

2 Leibnitz Institute for Applied Geosciences, <strong>Hannover</strong>, Germany<br />

3 Department of M<strong>in</strong><strong>in</strong>g and Mettalurgy - National Technical<br />

University of Athens, Heroon Polytechniou Str. 9, 15780<br />

Zografou-Athens, Greece<br />

We <strong>in</strong>itiated a project to study rhythmic bedd<strong>in</strong>g of<br />

Pliocene strata <strong>in</strong> the Ptolemais Bas<strong>in</strong>, northern Greece.<br />

Sediments show alteration of carbonates and lignites,<br />

reflect<strong>in</strong>g orbital-controlled humidity and temperature<br />

changes. Targeted sites <strong>in</strong>clude five outcrops and several,<br />

up to 400-m deep drill<strong>in</strong>gs. This presentation concentrates<br />

on core KAP/107, a 220-m long drill site retrieved by the<br />

Greek Public Power Cooperation <strong>in</strong> the Amynteon Sub-<br />

Bas<strong>in</strong>. Our <strong>in</strong>itial goal is to develop a robust<br />

chronostratigraphic model for the Miocene to Pleistocene<br />

for the eastern Mediterranean. For this purpose, we<br />

conducted paleomagnetic measurements on site KAP/107<br />

and correlated the result<strong>in</strong>g magnetic pattern to the<br />

Ptolemais stack of Steenbr<strong>in</strong>k et al. (2003), which, <strong>in</strong> turn,<br />

is correlated to the GTPS (Cande and Kent, 1995).<br />

As a prelim<strong>in</strong>ary result, Amynteon core KAP/107<br />

covers a time period between 6.7 and 2.8 Ma. Then we<br />

conducted photospectrometric measurements of<br />

a*,b*,L*ΔE* <strong>in</strong> order to obta<strong>in</strong> high-resolution (1-cm<br />

<strong>in</strong>crement) paleoclimate proxy data (e.g., lightness<br />

provides a very robust proxy for carbonate and lignite<br />

alterations, and the red-green component <strong>in</strong>dicates redox<br />

changes). The result<strong>in</strong>g time series were then studied us<strong>in</strong>g<br />

spectral analysis. We were able to document all orbital<br />

frequencies at 413-ka, 123-ka, 41-ka, 19/23-ka (Berger et<br />

al. 1989).<br />

Future work will <strong>in</strong>clude evolutionary spectral analyses<br />

(ESA) to study the relative importance and the temporal<br />

development of orbital and suborbital frequencies through<br />

time. These studies will also show whether or nor there<br />

were significant changes <strong>in</strong> sedimentation rate, which, <strong>in</strong><br />

turn, should <strong>in</strong>dicate major environmental changes. We<br />

will extend our studies to other sites from the Ptolemais<br />

Bas<strong>in</strong> <strong>in</strong> order to first, evaluate whether there were<br />

significant geographical differences, second, create a<br />

composite record that covers the entire time from the Late<br />

Miocene to the present day, and third, to <strong>in</strong>vestigate<br />

millennial-scale climate change <strong>in</strong> high-sedimentation<br />

sites.<br />

References:<br />

Berger, A.L., Loutre, M.-F., Dehant, V. (1989). Pre Quartenary<br />

Milankovitch Frequencies, Nature, 342, 123-133.<br />

Cande, S.C., and Kent, D.V. (1995). Revised calibration of the geomagnetic<br />

polarity time scale for the Late Cretaceous and Cenozoic, Journal of<br />

Geophysical Research, 100, 6093-6095.<br />

Steenbr<strong>in</strong>k, J., Kloosterboer-van Hoeve, M.L., Hilgen, F.J. (2003).<br />

Millennial-scale climate variations recorded <strong>in</strong> Early Pliocene colour<br />

reflectance time series from the lacustr<strong>in</strong>e Ptolemais Bas<strong>in</strong> (NW<br />

Greece), Global and Planetary Change, 36, 47-75.<br />

127<br />

<strong>IODP</strong><br />

High resolution seismic <strong>in</strong>vestigations of<br />

Anholt Loch, Kattegat: Reconstruction of the<br />

Quaternary depositional history<br />

A. F. TRAMPE 1 , S. KRASTEL 1 , V. SPIESS 1 , T. ANDRÈN 2 , J.HARFF 3<br />

1<br />

Department of Geosciences, University of Bremen, Klagenfurter<br />

Str., 28359 Bremen, Germany<br />

2<br />

Mar<strong>in</strong>e Geology Section, Baltic Sea Research Institute, Seestraße<br />

15, Warnemuende 18119 Roststock, Germany<br />

3<br />

Department of Geology and Geochemestry, Stockholm<br />

University, SE-106 91 Stockholm, Sweden<br />

The Baltic Sea Bas<strong>in</strong> (BSB) is one of the world’s<br />

largest <strong>in</strong>tra-cont<strong>in</strong>ental bas<strong>in</strong>s. BSB has served as<br />

depositional s<strong>in</strong>k throughout its geological history and<br />

accumulated sediments comprise a unique high-resolution<br />

paleoenvironmental archive where the history of the<br />

dra<strong>in</strong>age area and the bas<strong>in</strong> itself is preserved. Present<br />

knowledge of the development of BSB is based on results<br />

from short cores (up to 20 m long), but seismic data and<br />

onshore drill<strong>in</strong>gs <strong>in</strong>dicate much thicker apparently<br />

undisturbed sediment sequences (Eiriksson, 2005; Jensen,<br />

2002; Lykke-Andersen, 1993; Kristensen, 2005).<br />

In 2004 the <strong>IODP</strong> Pre-Proposal “Paleoenvironmental<br />

evolution of the Baltic Sea Bas<strong>in</strong> trough the last glacial<br />

cycle” was submitted by Andrèn et al. (Andrèn, 2004). The<br />

general aim of the proposal is to reconstruct the climatic<br />

response of Northern Europe to the forc<strong>in</strong>g of the Northern<br />

Atlantic atmospheric and oceanic circulation system dur<strong>in</strong>g<br />

the last glacial cycle (Holocene, Weichselian and Eemian)<br />

by us<strong>in</strong>g the sedimentary record of the BSB. Dur<strong>in</strong>g a<br />

seismic pre-site survey <strong>in</strong> February 2006 with the RV<br />

He<strong>in</strong>cke, high-resolution seismic data and sediment echo<br />

sounder data were collected <strong>in</strong> the south-western Baltic<br />

Sea. This pre-site survey was an important step for<br />

submitt<strong>in</strong>g a Full-Proposal <strong>in</strong> October 2007 (Andrèn,<br />

2007). In total 11 sites are proposed based on our and other<br />

seismic data (Fig. 1). Data with the Bremen high-resolution<br />

seismic system were collected around Sites BSB 1 and 2<br />

(Anholt Loch) and BSB 5 to 8 (Hanö Bay and Bornholm<br />

Bas<strong>in</strong>). This work focuses on the Anholt Loch sites. Ma<strong>in</strong><br />

objective of our <strong>in</strong>vestigations is to analyze whether Anholt<br />

Loch conta<strong>in</strong>s sediments of the complete last glacial cycle.<br />

The study area ‘Anholt Loch’ is situated <strong>in</strong> the southern<br />

Kattegat, south-easterly of the Danish island Anholt. The<br />

most important tectonically structure <strong>in</strong> the Anholt Loch<br />

area is the NW-SE trend<strong>in</strong>g Sorgenfrey-Tornquist-zone.<br />

This structure is active s<strong>in</strong>ce Early Paleozoic time (Jensen,<br />

2002). The island Anholt is located <strong>in</strong> the crestal zone of a<br />

southeast-northwest trend<strong>in</strong>g anticl<strong>in</strong>e. The anticl<strong>in</strong>e was<br />

formed dur<strong>in</strong>g the late Cretaceous/Paleogene <strong>in</strong>version<br />

episodes and was later deeply truncated by erosion. The<br />

results of a bor<strong>in</strong>g on the island of Anholt and seismic<br />

<strong>in</strong>vestigations by Lykke-Andersen et al. (1993) suggest that<br />

the Pre-Quaternary sediments below and <strong>in</strong> the vic<strong>in</strong>ity of<br />

Anholt were deposited <strong>in</strong> the Middle and Lower Jurassic.<br />

The Quaternary sediments were <strong>in</strong>terpreted as Holocene to<br />

Saalian <strong>in</strong> age by Lykke-Andersen et al. (1993), while<br />

Jensen at al. (2002) postulated Holocene to Weichselian<br />

sediments. Our new seismic data are used to dist<strong>in</strong>guish<br />

between these two contradict<strong>in</strong>g <strong>in</strong>terpretations, which is<br />

essential for assess<strong>in</strong>g the potential of Anholt Loch for<br />

drill<strong>in</strong>g.


128<br />

Two different streamer systems were used<br />

simultaneously dur<strong>in</strong>g data acquisition: a 300 m long 48<br />

channel streamer and a 50 m long 48 channel shallow<br />

water streamer. The long streamer was ma<strong>in</strong>ly used for<br />

velocity analysis, which is crucial for dist<strong>in</strong>guish<strong>in</strong>g<br />

between Quaternary and older sediments. The higher<br />

resolution data of the shallow water streamer were used for<br />

a structural and seismic attribute analysis.<br />

The valley ‘Anholt Loch’ trends NW-SE, which is the<br />

same direction as the Sorgenfrey-Tornquist zone. It has an<br />

average width of 3 km and was surveyed over a length of<br />

14.5 km. The valley is <strong>in</strong>cised <strong>in</strong> the lowermost facies A,<br />

characterized by tilted reflectors (Fig. 2) and a sharp<br />

<strong>in</strong>crease <strong>in</strong> seismic velocity. Facies A is <strong>in</strong>terpreted as Pre-<br />

Quaternary sediments. A Bor<strong>in</strong>g on the island of Anholt<br />

shows that the Pre-Quaternary sediments are Jurassic <strong>in</strong><br />

age (Lykke-Andersen, 1993). The erosional valley is filled<br />

with a more than 250 m thick sedimentary succession, <strong>in</strong><br />

which five different facies (B-F) could be identified (Fig.<br />

2).<br />

Facies B to F were <strong>in</strong>terpreted as Quaternary<br />

sediments, which were deposited dur<strong>in</strong>g Holocene to<br />

Saalian times. Facies B (Fig. 2) shows a hummocky<br />

reflection pattern and was most likely deposited under<br />

glacial conditions, probably Saalian till. We assume that<br />

facies B also conta<strong>in</strong>s Eemian sediments, which were<br />

altered dur<strong>in</strong>g the Weichsel-Glacial. This <strong>in</strong>terpretation is<br />

supported by a bor<strong>in</strong>g on Anholt, where a 8 m-thick unit of<br />

late Saalian and Eemian age was found <strong>in</strong> 76 m sub bottom<br />

depth (Lykke-Andersen, 1993). The chaotic reflection<br />

pattern of facies C (Fig. 2) refers to glacial till and is<br />

<strong>in</strong>terpreted as Weichselian sediments. Facies D and E (Fig.<br />

2) were most likely deposited under glaciomar<strong>in</strong>e condition<br />

dur<strong>in</strong>g the Weichsel-Glacial and <strong>in</strong> late Weichselian times.<br />

The youngest facies F (Fig. 2) was deposited <strong>in</strong> the<br />

Holocene.<br />

The morphology of the valley ‘Anholt Loch’ is typical<br />

for a subglacial melt water valley. In most cases melt water<br />

valleys trends <strong>in</strong> the same direction as the glacier advances.<br />

There is, however, no glacier known, which trends <strong>in</strong> the<br />

same direction as the valley dur<strong>in</strong>g the last glacial periods<br />

(Elsterian, Saalian and Weichselian). The strike direction<br />

of the valley might be expla<strong>in</strong>ed by the Sorgenfrey-<br />

Tornquist-zone, which trends <strong>in</strong> the same direction and<br />

represents a zone of weakness. Another explanation could<br />

be the distribution of the Pre-Quaternary sediments. The<br />

Jurassic sediments are exposed <strong>in</strong> a wedge-shaped NW-SE<br />

trend<strong>in</strong>g zone below Anholt. These sediments are more<br />

easily erodable than the surround<strong>in</strong>g Cretaceous white<br />

Chalk, and might therefore control the strike direction of<br />

the valley (Lykke-Andersen, 1993).<br />

To sum up, our new seismic data and the occurrence of<br />

Eemian sediments <strong>in</strong> a bor<strong>in</strong>g on Anholt strongly support<br />

that sediments of the complete last glacial cycle exist <strong>in</strong><br />

Anholt Loch, though f<strong>in</strong>al proof can only achieved by<br />

drill<strong>in</strong>g.<br />

References<br />

ANDRÈN T., BITINAS A., BJÖRK S., EMELYANOV E., HARFF J.,<br />

JAKOBSON M., JENSEN J. B., KNUDSEN K. L., KOTILAINEN A.,<br />

LEMKE W., USCINOWICZ S., VESKI S., and ZELCHS V. (2004)<br />

Paleoenvironmental evolution of the Baltic sea bas<strong>in</strong> through the Last<br />

Glacial Cycle (Pre-Proposal).<br />

ANDRÈN T., BJÖRCK S., JÖRGENSEN B. B., KNUDSEN K. L., HARFF<br />

J., BITINAS A., EMELYANOV E., JAKOBSON M., JENSEN J. B.,<br />

KOTILAINEN A., SPIEß V., USCINOWICZ S., VESKI S., and<br />

ZELCHS V. (2007) Paleoenvironmental evolution of the Baltic sea<br />

bas<strong>in</strong> through the Last Glacial Cycle (Full-Proposal).<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

EIRIKSSON J., KRISTENSEN P.-H., LYKKE-ANDERSEN H., BROOKS<br />

K., MURRAY A., KNUDSEN K. L., and GLAISTER C. (2005) A<br />

Sedimentary record from a deep Quarternary valley <strong>in</strong> the southern<br />

Lillebaelt area, Denmark: Eemian and Early Weiselian lithology and<br />

chronology at Mommark. Boreas 35, 320-331.<br />

JENSEN J. B., PETERSEN K. S., KONRADI P., KUIJPERS A., BENNIKE<br />

O., LEMKE W., and ENDLER R. (2002) Neotectonics, sea-level<br />

changes and biological evolution <strong>in</strong> the Fennoscandian Border Zone of<br />

the southern Kattegat Sea. Boreas 31, 133-150.<br />

KRISTENSEN P.-H. and KNUDSEN K. L. (2005) Palaeoenvironments of a<br />

complete Eemian sequence at Mommark, South Denmark:<br />

foram<strong>in</strong>ifera, ostracods and stable Isotopes. Boreas 35, 349-366.<br />

LYKKE-ANDERSEN H., SEIDENKRANTZ M.-S., and KNUDSEN K. L.<br />

(1993) Quarternary sequences and their relation to the pre-Quarternary<br />

<strong>in</strong> the vic<strong>in</strong>ity of Anholt, Kattegat, Skand<strong>in</strong>avia. Boreas 22, 291-298.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1: Bathymetric map of the Baltic Sea Bas<strong>in</strong> with the proposed drill sites BSB-1 to BSB-11. BSB-1 and BSB-2 are located <strong>in</strong><br />

the so called Anholt Loch <strong>in</strong> the Kattegat. The Study area of ‘Anholt Loch’ is marked as a rectangle. (modified after: Andrèn,<br />

2007).<br />

129


130<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 2: Migrated Profile GeoB06-003 (I) and Interpretation (II). Box <strong>in</strong> the bottom right corner of the seismic data (I) shows<br />

sediment echo sounder data of the area marked as black box <strong>in</strong> the seismic data. The location of the profile is shown <strong>in</strong> red <strong>in</strong> the<br />

<strong>in</strong>set map. A: Jurassic, B: Saalian and Eemian C: Weichselian till, D: Weichselian, glacio-mar<strong>in</strong>e sediments, E: late Weichselian, F:<br />

Holocene. For location of the study area see Fehler! Verweisquelle konnte nicht gefunden werden..


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

ANDRILL – Drill<strong>in</strong>g for Geology <strong>in</strong><br />

Antarctica: Aims, Concept, Results and<br />

Future Perspectives of a Successful Program<br />

VIERECK-GOETTE, LOTHAR 1 , NIESSEN, FRANK 2, 3 , KUHN, GERD 3<br />

AND THE D-ANDRILL MEMBERS<br />

(1) Chair D-ANDRILL (Work<strong>in</strong>g Group of LA-SCAR)<br />

(2) Natl. Representative ANDRILL Science Committee (ASC)<br />

(3) Natl. Representative McMurdo - Andrill Science<br />

Implementation Committee (M-ASIC)<br />

ANDRILL (ANtarctic geological DRILL<strong>in</strong>g) is a<br />

multi-national collaboration comprised of scientists,<br />

educators, students, technicians, drillers and support staff<br />

from Germany, Italy, New Zealand, and the United States.<br />

ANDRILL’s goal is to reveal the response of the Antarctic<br />

ice cover to past periods of global warm<strong>in</strong>g and cool<strong>in</strong>g<br />

and forecast its probable future. The specific concept is<br />

drill<strong>in</strong>g a series of proximal sites on the cont<strong>in</strong>ental marg<strong>in</strong><br />

by drill<strong>in</strong>g and recover<strong>in</strong>g sediment core samples from<br />

below the seafloor beneath the Antarctic ice shelf and seaice.<br />

New ANDRILL results will be <strong>in</strong>corporated <strong>in</strong>to ice<br />

sheet and climate computer generated models to better<br />

understand the history and unknown future of our dynamic<br />

planet.<br />

Fund<strong>in</strong>g support for ANDRILL comes from the U.S<br />

National Science Foundation, New Zealand Foundation of<br />

Research, Science, and Technology, Royal Society of New<br />

Zealand Marsden Fund, Antarctica New Zealand, the<br />

Italian National Program for Research <strong>in</strong> Antarctica, the<br />

German Science Foundation and the Alfred Wegener<br />

Institute for Polar and Mar<strong>in</strong>e Research Science. It has<br />

supported the development of a new dedicated drill<strong>in</strong>g<br />

system and drill<strong>in</strong>g camp for float<strong>in</strong>g-ice-based operations<br />

that utilize the ice shelf and sea-ice as drill<strong>in</strong>g platforms.<br />

The two <strong>in</strong>augural ANDRILL projects of the McMurdo<br />

Sound Portfolio <strong>in</strong> the Ross Sea, the McMurdo Ice Shelf<br />

Project (MIS) and the Southern McMurdo Sound Project<br />

(SMS), were drilled <strong>in</strong> late 2006 and late 2007,<br />

respectively. The uniform core recovery was 98%,<br />

cover<strong>in</strong>g alternat<strong>in</strong>g successions of glaciomar<strong>in</strong>e,<br />

terrigenous, volcanic and biogenic sediments of Plio-<br />

Plesitocene to Miocene age as far back as 19 Ma, with 50%<br />

of the stratigraphic time be<strong>in</strong>g preserved <strong>in</strong> the sedimentary<br />

profiles. Analysis of samples and <strong>in</strong>terpretation of the<br />

results will cont<strong>in</strong>ue throughout the International Polar<br />

Year (IPY, 2007-2009).<br />

With<strong>in</strong> the near future (< year 2012) a follow up<br />

portfolio is <strong>in</strong> preparation - and has already past an <strong>IODP</strong><br />

review process – <strong>in</strong> order to drill the Oligocene/Eocene<br />

overly<strong>in</strong>g the West Antarctic Erosional Surface (WARS) at<br />

the Coulman High with<strong>in</strong> the Ross Sea Rift. Targets aimed<br />

for drill<strong>in</strong>g sedimentary sections cover<strong>in</strong>g even older<br />

Paleogen as well as Upper Cretaceous sedimentary records<br />

with<strong>in</strong> Antarctica were proposed, the latest by the German<br />

D-ANDRILL, work<strong>in</strong>g group of the LA SCAR, be<strong>in</strong>g the<br />

extraord<strong>in</strong>ary section of Seymour Island at the eastern<br />

coast of the northern Antarctic Pen<strong>in</strong>sula (Graham Land,<br />

East of James Ross Island). We present these <strong>in</strong>formation<br />

<strong>in</strong> order to arise the <strong>in</strong>terest of geoscientists with<strong>in</strong> the<br />

German drill<strong>in</strong>g community specialized <strong>in</strong> the stratigraphic<br />

<strong>in</strong>tervalls of future ANDRILL targets.<br />

131<br />

<strong>IODP</strong><br />

Climate Cycles and Events <strong>in</strong> the Plio-<br />

/Pleistocene of the Yermak Plateau, Arctic<br />

Ocean: Causes and Consequences based on<br />

X-ray Fluorescence Scanner Data of ODP<br />

Sites 910 and 911<br />

CHRISTOPH VOGT 1 , JENS MATTHIESSEN 2 , HANS-J. BRUMSACK 3 ,<br />

REINHARD X. FISCHER 1<br />

1 Crystallography, Geosciences, University of Bremen,<br />

Klagenfurter Str. 2, 28359 Bremen, cvogt@uni-bremen.de<br />

2 Geosciences, Alfred Wegener Institute for Polar and Mar<strong>in</strong>e<br />

Research, Am Handelshafen 26, 27568 Bremerhaven<br />

3 Geochemistry, Institute for Chemistry and Biology of the Mar<strong>in</strong>e<br />

Environment (ICBM), Carl-von-Ossietzky-University, PO<br />

Box 2503, 26111 Oldenburg<br />

Prilim<strong>in</strong>ary results of ODP Sites 910 and 911 will be<br />

presented. New XRF Scann<strong>in</strong>g data and XRF discrete<br />

sample data are comb<strong>in</strong>ed with exist<strong>in</strong>g and new data on<br />

gra<strong>in</strong>-size, carbonate and organic carbon content and<br />

m<strong>in</strong>eral assemblages of the bulk and the clay fraction.<br />

Validation of XRF scann<strong>in</strong>g data is highly emphasized.<br />

Long-term climate changes on Earth and <strong>in</strong> particular<br />

the Northern Hemisphere glaciations are related to<br />

Milankovich cycles. Up to now, these cycles were studied<br />

at a high resolution <strong>in</strong> Arctic Ocean sediments only <strong>in</strong> the<br />

last 300,000 years due to low biogenic carbonate contents<br />

and restricted age control <strong>in</strong> older sediments. Additionally,<br />

the sedimentary record yields a rather high complexity due<br />

to multiple meltwater events related sedimentation<br />

changes. The Fram Strait/ Yermak Plateau gateway is a<br />

comparatively well-suited region for a study of middle to<br />

upper Pleistocene sediments because a well-constra<strong>in</strong>ed<br />

chronostratigraphy allows unequivocal recognition of<br />

glacial-<strong>in</strong>terglacial cycles (Spielhagen et al., 2004; Knies et<br />

al., 2007). The isotope record of Hole 910A <strong>in</strong> particular<br />

shows, apart from glacial-<strong>in</strong>terglacial cycles, a<br />

considerable millenial-scale variability of environmental<br />

conditions s<strong>in</strong>ce the Brunhes/ Matuyama boundary, caused<br />

partly by frequent supply of freshwater to the Arctic Ocean<br />

(Knies et al., 2007, Matthiessen et al. <strong>in</strong> prep.). This<br />

suggests a pronounced <strong>in</strong>stability of the Arctic climate<br />

system, with major consequences for the environment.<br />

This project applies a presum<strong>in</strong>gly non-destructive<br />

analytical method, the X-ray fluorescence (XRF) scanner,<br />

on a high-resolution <strong>in</strong>vestigation of ODP sites 910 and<br />

911 (Yermak Plateau, Arctic Ocean) to resolve Late<br />

Pliocene to Middle Pleistocene paleoenvironmental and<br />

paleoclimate variability. To fully understand and <strong>in</strong>terpret<br />

the XRF Scanner data a large number of discrete samples is<br />

analysed with various m<strong>in</strong>eralogical and <strong>in</strong>organic<br />

geochemical methods to calibrate the XRF scanner<br />

measurements. These data will be related to exist<strong>in</strong>g and<br />

newly collected data on gra<strong>in</strong>-size, carbonate and organic<br />

carbon content, and the m<strong>in</strong>eralogical composition of the<br />

bulk and clay fraction. The backbone of the study is a large<br />

set of exist<strong>in</strong>g data on surface sediments of the Arctic<br />

Ocean (see www.pangaea.de for all data sets). Some new<br />

surface sediment data has been analyzed dur<strong>in</strong>g the first<br />

month of this project. Our f<strong>in</strong>al goal is to better understand<br />

the sedimentary and paleoenvironmental conditions <strong>in</strong><br />

relation to climate changes on the Northern Hemisphere at<br />

Milankovich time-scales through the last 3-4 million years.


132<br />

Prelim<strong>in</strong>ary results of the first 5 project months are: 1)<br />

Archive and to a lesser extent work halves of the ODP910<br />

and 911 holes are well enough preserved to perform<br />

cont<strong>in</strong>uous scann<strong>in</strong>g. 2) Based on shipboard physical<br />

property data and supported by correlation of the new XRF<br />

scanner data a correlation of ODP holes 910A, B and D<br />

was performed for the first time. This is important as we<br />

can fill cor<strong>in</strong>g gaps and gaps due to previous massive<br />

sampl<strong>in</strong>g of ODP910A, the primary <strong>in</strong>vestigation hole for<br />

the <strong>in</strong>itial high resolution stratigraphy (Knies et al., 2007).<br />

3) The correlation of XRF scann<strong>in</strong>g data of discrete<br />

powdered samples and the full elemental XRF analysis<br />

bears good results and the semiquantitative XRF scanner<br />

data can be validated well. 4) Most dom<strong>in</strong>ant lithological<br />

and sedimentological changes are well represented <strong>in</strong> the<br />

K/Ca-ratio of the sediments <strong>in</strong> particular for the times of<br />

ice-sheet built up and deglaciation times. 5) The Si/Al-ratio<br />

is strongly related <strong>in</strong>creased quartz and ice-rafted debris<br />

contents as well as to gra<strong>in</strong> size and to bottom current<br />

changes. 6) Diagenetic overpr<strong>in</strong>t is well constra<strong>in</strong>ed by the<br />

Mn-record of the sediments.<br />

References:<br />

Knies J, Matthiessen J, Mackensen A, Ste<strong>in</strong> R, Vogt C, Frederichs T, Nam<br />

S-I (2007) Effects of Arctic freshwater forc<strong>in</strong>g on thermohal<strong>in</strong>e<br />

circulation dur<strong>in</strong>g the Pleistocene. Geology 35, 1075-1078.<br />

Matthiessen J, Knies J, Nam S, Vogt C, Frederichs T, Ste<strong>in</strong> R, Mackensen A<br />

(<strong>in</strong> prep.) Pleistocene stable isotope stratigraphy of ODP Hole 910A<br />

from the Yermak Plateau, Eastern Arctic Ocean revisited: Implications<br />

for paleoenvironmental <strong>in</strong>terpretations. Mar<strong>in</strong>e Geology <strong>in</strong> prep.<br />

Spielhagen, R.F. et al., 2004. Arctic Ocean deep-sea record of northern<br />

Eurasian ice sheet history. Quaternary Science Reviews, 23(11-13<br />

(Special Issue: Quaternary Environments of the Eurasian North<br />

(QUEEN))): 1455-1483.<br />

<strong>ICDP</strong><br />

Evolution of the Methane Cycle <strong>in</strong> the<br />

Siberian Arctic: Insights from<br />

Microbiological and Biogeochemical Studies<br />

D. WAGNER 1 , K. MANGELSDORF 2<br />

1 Alfred Wegener Institute, Research Unit Potsdam, Telegrafenberg<br />

A45, 14473 Potsdam, Germany<br />

2 GeoForschungsZentrum Potsdam, Telegrafenberg, 14473<br />

Potsdam, Germany<br />

Permafrost, which underlays around 24% of the<br />

exposed land area (Zhang et al., 1999), relates to<br />

permanently frozen ground with a shallow surface layer of<br />

several centimeters (active layer) that thaws only dur<strong>in</strong>g<br />

the short summer period. About one third of the global soil<br />

carbon is preserved <strong>in</strong> permafrost environments (Gorham,<br />

1991). Currently most strongly discussed with reference to<br />

permafrost is therefore the question: “What will happen to<br />

the carbon stored <strong>in</strong> permafrost, <strong>in</strong> the event of a climate<br />

change?” The relevance of the Arctic carbon reservoir is<br />

highlighted by currently observed climate changes <strong>in</strong> the<br />

Arctic (IPCC, 2007) and by climate models that predict<br />

significant changes <strong>in</strong> temperature and precipitation <strong>in</strong> the<br />

northern hemisphere (Smith et al., 2002). Global warm<strong>in</strong>g<br />

could result <strong>in</strong> a degradation of permafrost area up to 25%<br />

until 2100 (Anisimov et al. 1999). Thaw<strong>in</strong>g of permafrost<br />

and the associated release of climate relevant trace gases,<br />

as a consequence of an <strong>in</strong>tensified microbial turnover of<br />

organic carbon and from ancient methane reservoirs,<br />

represent a potential risk with respect to future global<br />

warm<strong>in</strong>g. For the prediction of the future development of<br />

the permafrost environment and its contribution to the<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

global atmospheric carbon budget, it is important to<br />

understand how the system reacted to environmental<br />

changes <strong>in</strong> the past.<br />

Carbon cycl<strong>in</strong>g under anoxic conditions with<strong>in</strong> the<br />

predom<strong>in</strong>antly wet permafrost environments is ma<strong>in</strong>ly<br />

performed via methane production (methanogenesis),<br />

which is the f<strong>in</strong>al process <strong>in</strong> a sequence of hydrolysis and<br />

fermentation (Sch<strong>in</strong>k and Stams, 2006). Methanogenesis is<br />

solely driven by a small group of strictly anaerobic<br />

organisms called methanogenic archaea (Garcia et al,<br />

2000).<br />

First studies on a Holocene permafrost core from the<br />

Lena Delta (Siberia) <strong>in</strong>dicated <strong>in</strong> situ activity of<br />

methanogenic archaea <strong>in</strong> the perennially frozen sediments<br />

(Wagner et al., 2007). The core showed a dist<strong>in</strong>ct<br />

temperature profile, reach<strong>in</strong>g from +10 °C near the surface<br />

to -11.5 °C at 800 cm depth. Methane was detected <strong>in</strong> all<br />

samples of the permafrost core with the highest<br />

concentrations <strong>in</strong> the upper 450 cm sediment depth. The<br />

archaeal biomarker (phospholipid ether lipids, PLEL)<br />

analyses showed highest concentration <strong>in</strong> the zones with<br />

high CH4 concentrations, while no PLELs were<br />

determ<strong>in</strong>ed <strong>in</strong> the bottom part of the core characterized by<br />

traces of methane. The study show that the evaluation of<br />

microbiological data and their correlation with climatic and<br />

geochemical results represents the basis for the<br />

understand<strong>in</strong>g of the role of permafrost <strong>in</strong> the global<br />

system, <strong>in</strong> particular feedback mechanisms related to<br />

material fluxes and greenhouse gas emissions <strong>in</strong> the scope<br />

of a warm<strong>in</strong>g Earth.<br />

In the scope of the planned project the evolution of the<br />

methane cycle <strong>in</strong> permafrost environments of Northeast<br />

Siberia will be <strong>in</strong>vestigated. Of particular <strong>in</strong>terest is the<br />

understand<strong>in</strong>g of microbial processes and the identification<br />

of the ma<strong>in</strong> microbial players <strong>in</strong>volved <strong>in</strong> the carbon<br />

decomposition under chang<strong>in</strong>g climatic conditions <strong>in</strong> the<br />

present and past. For this purpose a comb<strong>in</strong>ed highresolution<br />

stratigraphic analyses of microbial lipid markers<br />

and ribosomal RNA (quantitative and qualitative microbial<br />

biomarkers) will be applied on permafrost deposits with an<br />

age of up to 300,000 years. The permafrost core will be<br />

recovered from the El’gygytgyn Lake region <strong>in</strong> the scope<br />

of the <strong>ICDP</strong> project “Scientific Drill<strong>in</strong>g at El’gygytgyn<br />

Crater Lake” <strong>in</strong> <strong>2008</strong>. The El’gygytgyn Lake represents an<br />

ideal case study because the region was unglaciated s<strong>in</strong>ce<br />

the time of the meteorite impact. Thus, permafrost <strong>in</strong> this<br />

region went through several climatic stages dur<strong>in</strong>g its<br />

development and it is expected that climatically <strong>in</strong>duced<br />

chemical and physical changes <strong>in</strong> the sedimentary<br />

sequences results <strong>in</strong> variations of the microbial<br />

communities concomitantly affect<strong>in</strong>g the methane gas<br />

fluxes <strong>in</strong> the past. The acquired data will fill fundamental<br />

gaps <strong>in</strong> our knowledge on the paleo carbon dynamics, the<br />

development of microbial communities under chang<strong>in</strong>g<br />

environmental conditions, and will be further used for the<br />

understand<strong>in</strong>g and prediction of the future development of<br />

the methane cycle <strong>in</strong> permafrost environments.<br />

References:<br />

Anisomov OA, Nelson FE, and Pavlov AV (1999) Predictive scenarios of<br />

permafrost development under conditions of global climate change <strong>in</strong><br />

the XXI century. Earth Cryology, 3: 15-25.<br />

Garcia JL, Patel BKC and Olliver B (2000) Taxonomic, phylogenetic and<br />

ecological diversity of methanogenic archaea. Anaerobe 6:205-226<br />

Gorham, E. (1991) Northern peatlands role <strong>in</strong> the carbon cycle and probable<br />

responses to climatic warm<strong>in</strong>g. Ecological Applications 1: 182-195.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

IPCC (2007) Climate Change 2001: The Fourth Assessment Report of the<br />

Intergovernmental Panel on Climate Change. Cambridge: Cambridge<br />

University Press.<br />

Sch<strong>in</strong>k B, Stams AJM (2006) Syntrophism among Prokaryotes. In: Dwork<strong>in</strong><br />

M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.)<br />

Prokaryotes, vol 2, Spr<strong>in</strong>ger, New York, pp 309-335<br />

Smith J, Stone R and Fahrenkamp-Uppenbr<strong>in</strong>k J (2002) Trouble <strong>in</strong> polar<br />

paradise: Polar science (Introduction). Science 297: 1489.<br />

Wagner, D., Gatt<strong>in</strong>ger, A., Embacher, A., Pfeiffer, E.-M., Schloter, M., and<br />

Lipski, A. (2007) Methanogenic activity and biomass <strong>in</strong> Holocene<br />

permafrost deposits of the Lena Delta, Siberian Arctic and its<br />

implication for the global methane budget. Global Change Biology 13:<br />

1089-1099.<br />

Zhang, T., Barry, R.G., Knowles, K., Hegnibottom, J.A., and Brown, J.<br />

(1999) Statistics and characteristics of permafrost and ground-ice<br />

distribution <strong>in</strong> the Northern Hemisphere. Polar Geography 2: 132-154.<br />

<strong>IODP</strong><br />

Holocene millennial scale variability <strong>in</strong><br />

surface and deepwater records <strong>in</strong> the North<br />

Atlantic (ODP Site 980, Feni Drift)<br />

T. WAGNER 1 , K.-H. BAUMANN 2 , J. HOLTVOETH 3 , H. MEGGERS 2 , J.-<br />

B. STUUT 1 , C. VOGT 1 , T.I. EGLINTON 4<br />

1)University of Newcastle upon Tyne, United K<strong>in</strong>gdom<br />

2)DFG Research Center Ocean Marg<strong>in</strong>s, University of Bremen,<br />

Germany<br />

3)University of Liverpool, United K<strong>in</strong>gdom<br />

4)Woods Hole Oceanographic Institution, USA<br />

High quality climate records from Greenland ice cores<br />

and North Atlantic sediments reveal that Holocene climate<br />

was far less stable than previously thought. Millennialscale<br />

rapid climate oscillations that characterized the last<br />

glacial <strong>in</strong>terval cont<strong>in</strong>ued at lower amplitude <strong>in</strong>to the<br />

Holocene. Oppo et al. (2003, Nature, 422) have shown<br />

major reductions <strong>in</strong> NADW production around 9,300,<br />

8,000, 5,000, and 2,800 years before present.<br />

In this presentation we focus on a selection of new<br />

results from a multi proxy approach comb<strong>in</strong><strong>in</strong>g gra<strong>in</strong> size,<br />

clay m<strong>in</strong>eralogical, micropaleontologic and geochemical<br />

analyses applied to deglacial-Holocene Feni Drift<br />

sediments from ODP Site 980. The position of this site is<br />

characterized by a high accumulation rates that translate<br />

<strong>in</strong>to excellent time resolution. The nature of the drift<br />

sediments implies that they are <strong>in</strong>fluenced by lateral<br />

transport of re-suspended material potentially provid<strong>in</strong>g<br />

important <strong>in</strong>formation on changes <strong>in</strong> bottom water currents<br />

and pathways of particulate matter transport. To further<br />

explore deep ocean currents <strong>in</strong> relation to climate<br />

variations we explore deglacial-Holocene millennial-scale<br />

proxy records of gra<strong>in</strong> size and clay m<strong>in</strong>eral association<br />

and comb<strong>in</strong>e those with new 14C-dat<strong>in</strong>gs from different<br />

gra<strong>in</strong> fractions and carbon sources.<br />

High resolution gra<strong>in</strong>-size records from ODP Site 980<br />

show dist<strong>in</strong>ct trends <strong>in</strong> the relationship between the clay<br />

and the silt fraction with highest clay contents <strong>in</strong> the early<br />

Holocene section (Figure 1).<br />

Superimposed we observe a series of high frequency<br />

variations <strong>in</strong> both the silt gra<strong>in</strong> sizes and clay m<strong>in</strong>eralogy.<br />

These records are <strong>in</strong>terpreted to document the effects of<br />

variations <strong>in</strong> lateral advection on Holocene drift<br />

sedimentation with supply of terrestrial matter from<br />

different source areas. The approach taken here considers<br />

smectite as an <strong>in</strong>dicator for the orig<strong>in</strong> from the north<br />

(Island/Faroer) whereas illite and chlorite serve as an<br />

<strong>in</strong>dicator for the orig<strong>in</strong> from the east (England/Ireland).<br />

Follow<strong>in</strong>g this concept the records clearly dist<strong>in</strong>guish<br />

several phases of the climate history: The Holocene, the<br />

133<br />

Böll<strong>in</strong>g-Alleröd period and the pre-He<strong>in</strong>rich 1 phase are<br />

characterized by <strong>in</strong>creas<strong>in</strong>g clay <strong>in</strong>put from the east<br />

(British Islands/Ireland), while dur<strong>in</strong>g the He<strong>in</strong>rich 1 event<br />

and dur<strong>in</strong>g the Younger Dryas the clay was imported from<br />

Island. Dur<strong>in</strong>g the Holocene we also recognize high<br />

frequency changes with<strong>in</strong> an overall decreas<strong>in</strong>g trend <strong>in</strong> the<br />

smectite/illite-ratio support<strong>in</strong>g previously not recognized<br />

short term <strong>in</strong>terruptions <strong>in</strong> the deep ocean circulation. At<br />

this po<strong>in</strong>t we can only speculate on their trigger<br />

mechanisms and feedbacks, however, these fluctuations <strong>in</strong><br />

deep water circulation may have had a direct <strong>in</strong>fluence on<br />

surface waters (or vice versa) as suggested by cyclic high<br />

frequency changes <strong>in</strong> the coccolithophorid assemblages<br />

(not shown here). Notably our new records are not <strong>in</strong> phase<br />

with the “Oppo-Events”, but we can not exclude that they<br />

are somehow related.<br />

To obta<strong>in</strong> more <strong>in</strong>formation on the age distribution <strong>in</strong><br />

the different size fractions that translate to different<br />

hydrodynamic regimes of the deep ocean currents we next<br />

explore a set of 14C dat<strong>in</strong>gs (figure 2).<br />

14 C-dat<strong>in</strong>gs of the coarse fraction (planktonic<br />

foram<strong>in</strong>ifera) and the carbonate-free clay fraction (organic<br />

material) are almost equal, because both fractions are not<br />

transported by bottom water currents. The silt fraction<br />

(organic material) <strong>in</strong>stead is significantly older and<br />

herewith potentially transported (figure 2). This effect is<br />

especially documented with<strong>in</strong> the phase between 14,500<br />

and 10,500 years before present, where 14 C dat<strong>in</strong>g of the<br />

different fractions <strong>in</strong>dicates maximum differences. With<strong>in</strong><br />

the Holocene the 14 C age off-set between the different<br />

fractions is significantly smaller, most possible due to a<br />

glacial dilution of older organic components to fresh<br />

material from enhanced primary production.


134<br />

Age (kyrs)<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

E<br />

Orig<strong>in</strong> from<br />

N<br />

0.4 0.6 0.8 1 1.2 1.4<br />

Smectite/Illite-ratio<br />

(N/E-"orig<strong>in</strong>"<br />

(Island/GB + Ireland-ratio))<br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

Relative abundance<br />

of clay (%)<br />

Illite and Clay<br />

(%)<br />

20 30 40 50 60<br />

32 36 40 44 48<br />

Illite (%)<br />

(Indicator for "orig<strong>in</strong>"<br />

from the East (GB, Irlande))<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

0<br />

2<br />

4<br />

6<br />

8<br />

10<br />

12<br />

14<br />

16<br />

18<br />

20<br />

22<br />

Relative abundance<br />

of clay (%)<br />

Smectite and Clay<br />

(%)<br />

20 40 60<br />

20 30 40 50 60<br />

Smectite (%)<br />

(Indicator for "orig<strong>in</strong>"<br />

from the North (Island))<br />

Figure 1: Relative abundances of clay <strong>in</strong> comparison to the relative abundances of specific clay m<strong>in</strong>erals - smectite as an <strong>in</strong>dicator for a<br />

transport from the north (Island) (upper panel) and illite as an <strong>in</strong>dicator for a transport from the east (Great Brita<strong>in</strong> and Ireland) (middle panel).<br />

In the lower panel the smectite/illite ratio is shown. The shad<strong>in</strong>g is <strong>in</strong>dicat<strong>in</strong>g specific phases <strong>in</strong> the paleoceanographic evolution of the research<br />

area.<br />

Depth (mbsf)<br />

0<br />

1<br />

22<br />

2<br />

3<br />

4<br />

14 C Ages of the organic fraction (silt (triangles), clay(circles))<br />

14 C Ages of the planktonic foram<strong>in</strong>ifera fraction<br />

14 C Ages of the bulk organic fractio (crosses)<br />

10580<br />

10880<br />

years<br />

14030<br />

14490 years<br />

3500 years<br />

5<br />

Age (kyrs)<br />

4000 8000 12000 16000 20000<br />

Figure 2: 14 C-ages of different fractions <strong>in</strong> ODP Site 980. Maximum offsets of up to 3500 years are evident from 10,000 years and 14,500<br />

years between carbonate-free clay and silt.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>IODP</strong><br />

New <strong>IODP</strong> data access: scientific earth<br />

drill<strong>in</strong>g <strong>in</strong>formation service (SEDIS)<br />

H.-J. WALLRABE-ADAMS 1 , M. DIEPENBROEK 1 , R. HUBER 1 , U.<br />

SCHINDLER 1 , , H. GROBE 2 J. COLLIER 3<br />

1 MARUM - Center for Mar<strong>in</strong>e Environmental Sciences, Univ. of<br />

Bremen, Germany<br />

2 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research,<br />

Bremerhaven, Germany<br />

3 <strong>IODP</strong>-MI, Sapporo, Japan<br />

S<strong>in</strong>ce the beg<strong>in</strong>n<strong>in</strong>g of the <strong>IODP</strong> program a great afford<br />

has been done to implement an <strong>in</strong>formation system<br />

benefitt<strong>in</strong>g all <strong>in</strong>volved partners <strong>in</strong> <strong>IODP</strong> (USIO, CDEX;<br />

ECORD).<br />

The Integrated Ocean Drill<strong>in</strong>g Program (<strong>IODP</strong>) is<br />

develop<strong>in</strong>g a web based <strong>in</strong>formation service (Scientific<br />

Earth Drill<strong>in</strong>g Information Service, SEDIS) - to facilitate<br />

access to all data and <strong>in</strong>formation related to scientific ocean<br />

drill<strong>in</strong>g, regardless of orig<strong>in</strong> or location of data. SEDIS will<br />

be designed to <strong>in</strong>tegrate distributed scientific drill<strong>in</strong>g data<br />

via metadata.<br />

The three ma<strong>in</strong> data contributors to SEDIS currently<br />

are the <strong>IODP</strong> implement<strong>in</strong>g organizations (IOs) from the<br />

United States (USIO), Japan (CDEX) and Europe with<br />

Canada (ESO). Each IO uses its own drill<strong>in</strong>g platform and<br />

data management system. Currently SEDIS <strong>in</strong>tegrates the<br />

data search of the IO databases by harvest<strong>in</strong>g distributed<br />

metadata without the necessity to centralize the data<br />

storage. SEDIS will be expanded at a later stage to <strong>in</strong>clude<br />

other scientific drill<strong>in</strong>g data from cont<strong>in</strong>ental or lake<br />

drill<strong>in</strong>g. SEDIS will also <strong>in</strong>clude a publication search<br />

eng<strong>in</strong>e and advanced data search, visualization and<br />

mapp<strong>in</strong>g tools.<br />

SEDIS will be developed <strong>in</strong> three phases:<br />

Phase I [f<strong>in</strong>ished]: Metadata portal for data discovery<br />

and harvest<strong>in</strong>g. Metadata will be provided by the IOs<br />

(http://sedis.iodp.com)<br />

Phase II [<strong>in</strong> progress]: Search database for publications,<br />

reports, m<strong>in</strong>utes, citations and possibly post expedition<br />

research<br />

Phase III: Advanced data search, conversion,<br />

visualization and mapp<strong>in</strong>g tools<br />

The uses <strong>in</strong>ternational standards for metadata and data<br />

exchange and transfer and uses open source components.<br />

<strong>IODP</strong><br />

New tools to determ<strong>in</strong>e paleoceanographic<br />

proxies at ultrahigh (sub-mm) resolution:<br />

gray-scale generation and lam<strong>in</strong>ae count<strong>in</strong>g<br />

<strong>in</strong> sediments from the Antarctic Cont<strong>in</strong>ental<br />

Marg<strong>in</strong><br />

M.E. WEBER 1 , W. RICKEN 1 , G. KUHN 2 , L. REICHELT 1 , M.<br />

PFEIFFER 1 , AND R. GERSONDE 2<br />

1 Institute of Geology and M<strong>in</strong>eralogy, Zuelpicher Str. 49a, 50935<br />

Cologne, Germany (michael.weber@uni-koeln.de)<br />

2 Alfred-Wegener-Institute for Polar and Mar<strong>in</strong>e Research,<br />

Columbusstr., 27568 Bremerhaven, Germany<br />

As a German contribution to the International Mar<strong>in</strong>e<br />

Global Change Study (IMAGES Southern Ocean<br />

Initiative), we study cores retrieved <strong>in</strong> the 90s with RV<br />

Polarstern from the southeastern Weddell Sea, and cores<br />

135<br />

retrieved <strong>in</strong> 2007 with RV Marion Dufresne <strong>in</strong> the Scotia<br />

Sea dur<strong>in</strong>g cruise MD160 with<strong>in</strong> the DFG project<br />

SUBCLIMATE. Some of the sites from the Antarctic<br />

cont<strong>in</strong>ental marg<strong>in</strong> conta<strong>in</strong> f<strong>in</strong>e-gra<strong>in</strong>ed terrigenous<br />

sediment, represent<strong>in</strong>g the last glacial maximum (LGM).<br />

Sediments accumulated on contourite ridges at extremely<br />

high glacial sedimentation rates (up to 4 m/ka!). The most<br />

<strong>in</strong>trigu<strong>in</strong>g characteristic is the abundant mm-scale<br />

lam<strong>in</strong>ation, compris<strong>in</strong>g relatively coarse (silty) and f<strong>in</strong>e<br />

(muddy) layers of detrital composition.<br />

Naturally, we were <strong>in</strong>terested <strong>in</strong> whether the lam<strong>in</strong>ation<br />

represents <strong>in</strong>terannual stratification and could hence be<br />

used as a high-resolution chronology. Therefore, we<br />

developed two tools. First, we extracted gray values at<br />

pixel resolution (i.e., 12 measurements/mm) from scans of<br />

x-radiographs by implement<strong>in</strong>g the so-called BMPix tool.<br />

Then, we used the PEAK tool for semi-automated layer<br />

count<strong>in</strong>g from the gray curves. In 14-m long core PS1789,<br />

for <strong>in</strong>stance, we counted 2430 peaks over 2690 AMS-dated<br />

years (i.e., over 10 m core length), which adds up to 90 %<br />

of the expected years. Accord<strong>in</strong>gly, there is strong<br />

evidence that the lam<strong>in</strong>ation represents <strong>in</strong>terannual<br />

variability and therefore, the sites from the contourite<br />

ridges conta<strong>in</strong> an extremely valuable climate archive for<br />

ultrahigh-resolution studies of glacial climate variability <strong>in</strong><br />

high southern latitudes.<br />

The fact that PEAK counts less layers <strong>in</strong> all sites than<br />

should be present accord<strong>in</strong>g to atomic mass spectrometry<br />

(AMS) dat<strong>in</strong>g, is most likely due to a comb<strong>in</strong>ation of three<br />

facts: (i) m<strong>in</strong>or <strong>in</strong>tercalation of bioturbated sediment (e.g.,<br />

site PS1599 conta<strong>in</strong>s thicker bioturbated <strong>in</strong>tervals than site<br />

PS1789 and thus only 70-50 % of the expected layers), (ii)<br />

missed sediment parts at the top and bottom of each Xradiograph<br />

slice (consider<strong>in</strong>g that from a 14-m long core<br />

almost 60 X-radiograph slices are taken), and (iii)<br />

<strong>in</strong>adequate program sett<strong>in</strong>gs <strong>in</strong> PEAK so that some layers<br />

are not counted.<br />

Future work will <strong>in</strong>clude additional test<strong>in</strong>g and<br />

optimiz<strong>in</strong>g of the tools. Furthermore, we will concentrate<br />

on cores that are entirely lam<strong>in</strong>ated (i.e., show virtually no<br />

<strong>in</strong>tercalation of bioturbated sections) and that will have to<br />

be dated with AMS (e.g., PS1791). Also, we will apply<br />

spectral analysis techniques to evaluate whether there are<br />

decadal to centennial-scale frequency patterns and how<br />

they correlate to low-latitude climate records.<br />

<strong>IODP</strong><br />

Late Miocene Mega Slump<strong>in</strong>g along the<br />

southwest African Coast<br />

E. WEIGELT 1 , G. UENZELMANN-NEBEN 1<br />

1 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, PO<br />

120161, 27515 Bremerhaven, Germany<br />

Large Neogene slumps affected the sedimentary<br />

sequence on the southwest African marg<strong>in</strong>. Based on an<br />

<strong>in</strong>tegrated study of borehole and seismic data we aim to<br />

generate a spatial and chronological classification of slump<br />

scarp traces to ga<strong>in</strong> an understand<strong>in</strong>g of the orig<strong>in</strong> of these<br />

mass-movements. In our contribution, we focus on an<br />

extended slump scarp zone identifiable on all seismic l<strong>in</strong>es<br />

available to us along the eastern Cape Bas<strong>in</strong>. This large<br />

slump<strong>in</strong>g feature is located at the upper slope region of the


136<br />

cont<strong>in</strong>ental marg<strong>in</strong> and dated to orig<strong>in</strong>ate <strong>in</strong> the<br />

Middle/Late Miocene (15-10 Ma ).<br />

In the northern Cape Bas<strong>in</strong>, we def<strong>in</strong>ed a lower age of<br />

about 10 Ma for this slump<strong>in</strong>g scarp zone which is also<br />

acossiated with a sudden change <strong>in</strong> reflection pattern of<br />

seismic units above and below. In contrast, only weak<br />

traces of slump scarps can be dist<strong>in</strong>guished <strong>in</strong> the Middle<br />

Cape Bas<strong>in</strong>. Probably they are masked by a reflection free<br />

zone <strong>in</strong>dicat<strong>in</strong>g the presence of gas and hydrocarbons.<br />

Aga<strong>in</strong>, <strong>in</strong> the southern Cape Bas<strong>in</strong> we have observed<br />

slump<strong>in</strong>g scarps throughout the upper seismic units s<strong>in</strong>ce<br />

the Late Miocene.<br />

As possible preconditions for laterally extended mass<br />

movement we suggest (1) either a high <strong>in</strong>stability of<br />

deposited material result<strong>in</strong>g of an <strong>in</strong>creased sedimentation<br />

<strong>in</strong> response to enhanced upwell<strong>in</strong>g s<strong>in</strong>ce the Middle<br />

Miocene or (2) <strong>in</strong>stabilities due to gas hydrates. A strong<br />

Middle/Late Miocene sea level regression later probably<br />

triggered contemporaneously slump<strong>in</strong>g and slid<strong>in</strong>g.<br />

<strong>IODP</strong><br />

Organic-carbon sources, anoxia, and seasurface<br />

temperature <strong>in</strong> the Paleocene central<br />

Arctic Ocean (<strong>IODP</strong> Expedition 302):<br />

Evidence from biomarkers<br />

P. WELLER 1 , R. STEIN 1<br />

1 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, D-<br />

27568 Bremerhaven, Germany<br />

Dur<strong>in</strong>g <strong>IODP</strong> Expedition 302 (Arctic Cor<strong>in</strong>g<br />

Expedition – ACEX), a more than 200 m thick sequence of<br />

Paleogene organic-carbon (OC) -rich (black shale-type)<br />

sediments has been drilled on Lomonosov Ridge, central<br />

Arctic Ocean (Fig.1; Backman, Moran. McInroy et al.,<br />

2006). Here, we present new biomarker data from this OCrich<br />

Paleogene <strong>in</strong>terval. This biomarker approach allows (i)<br />

a more precise identification of OC sources, (ii) the<br />

characterization of the depositional environment, and (iii)<br />

estimates of paleotemperatures based on alkenones (Weller<br />

and Ste<strong>in</strong>, <strong>2008</strong>). Based on the biomarker data, the<br />

terrestrial OC supply was significantly enriched dur<strong>in</strong>g the<br />

late Paleocene and part of the earliest Eocene, whereas<br />

dur<strong>in</strong>g the PETM and Elmo events as well as the middle<br />

Eocene aquatic OC contributions were <strong>in</strong>creased.<br />

Isorenieratene derivatives are present <strong>in</strong> samples from the<br />

PETM event <strong>in</strong>dicat<strong>in</strong>g eux<strong>in</strong>ic conditions reach<strong>in</strong>g <strong>in</strong>to the<br />

photic zone of the water column (as already described by<br />

Sluijs et al., 2006). These biomarkers, however, could not<br />

be detected <strong>in</strong> samples from the Elmo Event. Thus, eux<strong>in</strong>ic<br />

conditions – although present <strong>in</strong> deeper water mass - did<br />

not extend <strong>in</strong>to the photic zone at that time. In the<br />

underly<strong>in</strong>g “Pre-Elmo” event, on the other hand, the<br />

presence of isorenieratane and related isorenieratene<br />

derivatives po<strong>in</strong>t to similar conditions than those of the<br />

PETM Event. Samples from the early Eocene and the<br />

middle Eocene (<strong>in</strong>clud<strong>in</strong>g the Azolla Freshwater Event) are<br />

characterized by the occurrence of high proportions of<br />

lycopane and high ratios (>0.6) of (n-C35+lycopane)/n-<br />

C31, <strong>in</strong>terpreted as <strong>in</strong>creased freshwater <strong>in</strong>put (Weller and<br />

Ste<strong>in</strong>, <strong>2008</strong>). Source-specific long-cha<strong>in</strong> C37:3-and C37:2-<br />

alkenones were absent <strong>in</strong> the late Paleocene/early Eocene<br />

(Unit 3), but first occurred <strong>in</strong> the biosilicous oozes of Unit<br />

2 at about 300 mcd, i.e., towards the end of the Azolla<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Freshwater Event (Fig.2). The occurrence of the alkenones<br />

are <strong>in</strong>terpreted as <strong>in</strong>creas<strong>in</strong>g mar<strong>in</strong>e <strong>in</strong>fluence dur<strong>in</strong>g the<br />

upper Azolla Freshwater Event, support<strong>in</strong>g Br<strong>in</strong>khuis et al.<br />

(2006).<br />

Fig. 1: Paleogeography and proposed surface-water circulation at<br />

about 50 Ma, and location of <strong>IODP</strong> Expedition 302 cor<strong>in</strong>g site<br />

(Backman, Moran. McInroy et al., 2006).<br />

Mostly, long-cha<strong>in</strong> alkenones, found <strong>in</strong> samples as old<br />

as Cretaceous (e.g., Brassell et al., 2004) and widespread <strong>in</strong><br />

all oceans, are synthesized by mar<strong>in</strong>e phytoplankton<br />

(Volkman et al., 1980; Conte et al., 1992). However, they<br />

were also recorded <strong>in</strong> freshwater environments (e.g., Li et<br />

al., 1995). For the <strong>in</strong>terpretation of the ACEX alkenone<br />

data and – especially - the use of U K´ 37 <strong>in</strong>dex for estimat<strong>in</strong>g<br />

Arctic Ocean sea-surface temperatures (SST), the mar<strong>in</strong>e<br />

orig<strong>in</strong> of the alkenones has to be proven. The distribution<br />

pattern of C37- and C 38 alkenones is an important feature<br />

for dist<strong>in</strong>guish<strong>in</strong>g between mar<strong>in</strong>e and lacustr<strong>in</strong>e alkenoneproducers.<br />

Additionally a relative high abundance of tetraunsaturated<br />

compounds is a characteristic of long cha<strong>in</strong><br />

alkenones <strong>in</strong> limnic systems. The C37:C 38 alkenone ratios of<br />

the ACEX sequence show a mean value of 1.15 still with<strong>in</strong><br />

the range of those found for E. Huxleyi (Weller and Ste<strong>in</strong>,<br />

<strong>2008</strong>). Furthermore, the ACEX sediments are generally<br />

characterized by greatest abundance of di- and triunsaturated<br />

alkenones, whereas the tetraunsaturated<br />

compounds was not found <strong>in</strong> the ACEX sediments. This<br />

suggests that the biosynthesis of alkenones and temperature<br />

dependent ratio of C37-alkenones <strong>in</strong> the middle Eocene<br />

Arctic Ocean might be comparable to modern mar<strong>in</strong>e<br />

systems. Thus, we are confident that the alkenones<br />

represent a mar<strong>in</strong>e signal and can be used for SST<br />

calculation. Us<strong>in</strong>g the U K´ 37 <strong>in</strong>dex, sea-surface temperatures<br />

(SST) have been calculated for a selected set of samples<br />

from the middle Eocene time <strong>in</strong>terval and a first<br />

prelim<strong>in</strong>ary low-resolution record (Fig. 2).


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 2: Long-cha<strong>in</strong> C37:3- and C37:2 -alkenones (µg/g TOC) and SST (°C) reconstruction based on the UK´37 <strong>in</strong>dex <strong>in</strong> sediments from<br />

the ACEX sequence between 195 and 300 mcd (Weller and Ste<strong>in</strong>, <strong>2008</strong>). In addition, TEX86’-derived SST (°C) (based on Br<strong>in</strong>khuis et<br />

al., 2006; Sluijs et al., 2006, <strong>2008</strong>), trend of global benthic δ18O stack (based on Zachos et al., 2001); and IRD data (based on St. John<br />

(<strong>2008</strong>) are shown.<br />

With<strong>in</strong> this time <strong>in</strong>terval, i.e., between about 49 and<br />

44.5 Ma, the SST record shows a dist<strong>in</strong>ct long-term<br />

decrease of about 15°C (Weller and Ste<strong>in</strong>, <strong>2008</strong>). This<br />

general temperature decrease follows very well the global<br />

cool<strong>in</strong>g trend at the end of the Early Eocene Climate<br />

Optimum as deduced from the global benthic isotope stack<br />

(Fig. 2; e.g., Zachos et al., 2001). This general cool<strong>in</strong>g<br />

trend correlates also very well with the amount and flux of<br />

ice-rafted debris (IRD) (St. John, <strong>2008</strong>). At about 46.3 Ma,<br />

IRD first appeared, contemporaneously with a drop <strong>in</strong> SST<br />

to about less than 15°C (Fig. 2). Near 44.8 Ma, co<strong>in</strong>cident<br />

with a further <strong>in</strong>crease <strong>in</strong> IRD, SST of about 10°C was<br />

reached. Based on isotopic equilibrium between terrestrial<br />

carbonate and environmental water, Jahren & Sternberg<br />

(2003) suggest a mean annual temperature of 13°C for the<br />

middle Eocene Arctic (80°N; ~ 45 Ma), which agrees very<br />

well with our estimates. Above the hiatus at about 198<br />

mbsf (Zebra Unit I/5; Miocene), SST values between 11<br />

and 15°C were calculated (Fig. 2).<br />

Our absolute values of the U K´ 37 -based SST rang<strong>in</strong>g<br />

between about 25°C and 10°C, are significantly higher than<br />

those predicted from climate models (Shellito et al., 2003).<br />

They are also dist<strong>in</strong>ctly higher than those calculated us<strong>in</strong>g<br />

the TEX86’ <strong>in</strong>dex (Fig. 2), a new SST proxy based on the<br />

temperature-dependent proportion of different isomers of<br />

glycerol dibiphytanyl glycerol tetra ethers (GDGTs),<br />

specific biomarkers produced by mar<strong>in</strong>e crenarchaeota<br />

(Schouten et al. 2002). For the early Eocene time <strong>in</strong>terval<br />

where TEX86 temperatures of about 10 to 20°C were<br />

determ<strong>in</strong>ed (Sluijs et al., <strong>2008</strong>), unfortunately no alkenone<br />

SSTs could be determ<strong>in</strong>ed due to the absence of alkenones.<br />

For the Azolla phase, the U K´ 37 -based SST vary between<br />

about 20°C and 25°C, whereas the TEX86’-derived SST<br />

137<br />

vary between 8°C and 13°C (Br<strong>in</strong>khuis et al., 2006)<br />

(Fig. 2). The maximum U K´ 37 -based SST values between<br />

49 and 47 Ma represent<strong>in</strong>g the f<strong>in</strong>al stage of the Early<br />

Eocene Climate Optimum, are <strong>in</strong> the same range as those<br />

determ<strong>in</strong>ed for the PETM us<strong>in</strong>g the TEX86’ approach<br />

(Sluijs et al., 2006).<br />

Assum<strong>in</strong>g that both SST records are correct, how these<br />

differences can be expla<strong>in</strong>ed? While U K´ 37-based SST<br />

reflects the SST <strong>in</strong> the shallower euphotic zone (upper 10<br />

m) where the temperature is highly variable, Crenarchaeota<br />

live deeper down (~ 100 m), where temperature<br />

fluctuations are less pronounced. In addition, planktonic<br />

crenarchaeota typically have their ma<strong>in</strong> phase of growth<br />

dur<strong>in</strong>g the annual cycle outside the ma<strong>in</strong> period of<br />

phytoplankton blooms (Schouten et al., 2002). Thus,<br />

UK´37 -based SST probably reflects summer SST <strong>in</strong> the<br />

central Arctic Ocean (cf., Axelrod et al., 1984) whereas the<br />

TEX86’-derived values may represent more the (annual<br />

mean) w<strong>in</strong>ter SST, i.e., the difference between both data<br />

sets may represent the seasonal temperature variability.<br />

This <strong>in</strong>terpretation is <strong>in</strong> agreement with reconstructions of<br />

a strong High Northern Latitudes seasonal temperature<br />

variability of >10°C dur<strong>in</strong>g the early-middle Eocene, as<br />

estimated from morphological features of plant fossils<br />

(e.g., Greenwood and W<strong>in</strong>g, 1995).<br />

Our alkenone SSTs of 10-17°C determ<strong>in</strong>ed for the time<br />

<strong>in</strong>terval 46.3-44.8 Ma characterized by the first occurrence<br />

of IRD (Fig. 2), seems to be not unrealistic. If they<br />

represent rather the summer SST and due to the strong<br />

seasonal variability of >10°C, favourable conditions for<br />

sea-ice formation may have occurred dur<strong>in</strong>g w<strong>in</strong>ter time.<br />

This could have been a situation similar to that observed <strong>in</strong>


138<br />

the modern Baltic Sea where summer temperatures of<br />

>15°C and w<strong>in</strong>ter temperatures


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Machlus, M., Hemm<strong>in</strong>g, S.R., Olsen, P.E., and Christie-Blick, N., 2004,<br />

Eocene calibration of geomagnetic polarity time scale reevaluated:<br />

Evidence from the Green River Formation of Wyom<strong>in</strong>g: Geology, v.<br />

32, p. 137-140.<br />

Ogg, J.G., and Smith, A.G., 2004, The geomagnetic polarity time scale, <strong>in</strong><br />

Gradste<strong>in</strong>, F., Ogg, J., and Smith, A., eds., A Geological Timescale<br />

2004, Cambridge University Press, p. 63-86.<br />

Smith, M.E., Carroll, A.R., and S<strong>in</strong>ger, B.S., <strong>2008</strong>, Synoptic reconstruction<br />

of a major ancient lake system: Eocene Green River Formation,<br />

western United States: Geological Society of America Bullet<strong>in</strong>, v.<br />

120(1): p. 54-84.<br />

<strong>IODP</strong><br />

Mo- and U-isotope variations <strong>in</strong> black shales:<br />

Potential tracers for the quantification of<br />

oceanic anoxia<br />

S. WEYER 1 , C. MONTOYA-PINO 1 , J. PROSS AND W. OSCHMANN 1<br />

1 Universität Frankfurt, Institut für Geowissenschaften, Altenhöfer<br />

Allee 1, D-60431 Frankfurt<br />

The atmosphere and the oceans have kept relatively<br />

oxic throughout the Phanerozoic. Nevertheless, remarkable<br />

variations of atmospheric oxygen (by a factor of 3-5) have<br />

been modeled for this time period by us<strong>in</strong>g different<br />

geochemical and isotopic proxies (e.g. Berner, 2006; Algeo<br />

et al., 2007). These variations appear to go along with<br />

major oceanic anoxic events (OAEs), e.g. dur<strong>in</strong>g the lower<br />

Jurassic and Mid-Cretaceous. These OAEs are<br />

characterized by significant black shale formation, partially<br />

on a global scale. Duration and causes for enhanced<br />

oceanic anoxia are variable, but they appear to be l<strong>in</strong>ked to<br />

environmental changes, such as CO2-levels, climate, ocean<br />

ventilation and primary production. Currently we have<br />

little possibilities to quantify the spatial extent of anoxic<br />

conditions <strong>in</strong> the oceans. As anoxic environment are a<br />

major s<strong>in</strong>k for redox sensitive trace metals, such as Mo and<br />

U, these metals are suitable and have been widely used to<br />

study redox conditions of oceanic environments.<br />

Burial of trace metals <strong>in</strong>to their oceanic s<strong>in</strong>ks is<br />

frequently associated with isotope fractionation. Anbar,<br />

Siebert and co-workers have shown that Mo-isotopes<br />

display significant fractionation between oxic and anoxic<br />

environments (up to 3 ‰ <strong>in</strong> δ 98 Mo/ 95 Mo). Thus, a change<br />

<strong>in</strong> the relative portion of oxic versus anoxic s<strong>in</strong>ks should be<br />

associated with a significant change of the oceanic Moisotope<br />

mass balance. Arnold et al. (2004) have used this<br />

isotope systematics to show that deep oceans have been<br />

widely eux<strong>in</strong>ic dur<strong>in</strong>g most of the proterozoic. More<br />

recently, Weyer et al. (<strong>2008</strong>) showed that the 238 U/ 235 U<br />

isotope ratio can also be significantly fractionated (on a ‰level)<br />

between oxic and anoxic environments. Both isotope<br />

systems together may thus be suitable to quantify anoxic<br />

s<strong>in</strong>ks of Mo and U and with that the expansion of oceanic<br />

environments through geological time.<br />

We have been <strong>in</strong>vestigat<strong>in</strong>g the isotopic compositions<br />

of Mo and U of black shales from mayor oceanic anoxic<br />

events, such as OAE-2 and the Toarcian OAE, which may<br />

have lasted over a period of ≈ 0.5 and ≈ 1 Ma, respectively<br />

(Erbacher et al., 2005; Suan et al., <strong>2008</strong>). Prelim<strong>in</strong>ary<br />

results <strong>in</strong>dicate that black shales from these periods <strong>in</strong>deed<br />

display isotope systematics, which are different from those<br />

displayed by modern black shales. Although <strong>in</strong>terpretation<br />

of the limited dataset is not straight forward at the current<br />

state, the observed Mo and U isotope signals may be<br />

l<strong>in</strong>ked, at least partially, to an enhanced anoxic s<strong>in</strong>k for<br />

redox sensitive trace metals dur<strong>in</strong>g these periods.<br />

139<br />

References<br />

Algeo, T.J. and Ingall, E. (2007 <strong>in</strong> press) Sedimentary Corg:P ratios,<br />

paleocean ventilation, and Phanerozoic atmospheric pO2.<br />

Palaeogeography, Palaeoclimatology, Palaeoecology.<br />

Arnold G. L., Anbar A. D., Barl<strong>in</strong>g J., and Lyons T. W. (2004)<br />

Molybdenum isotope evidence for widespread anoxia <strong>in</strong> Mid-<br />

Proterozoic oceans. Science 304, 87-90.<br />

Barl<strong>in</strong>g J., Arnold G. L., and Anbar A. D. (2001) Natural mass dependent<br />

variations <strong>in</strong> the isotope compositions of molybdenum. Earth and<br />

Planetary Science Letters 193, 447-457.<br />

Berner, R.A. (2006) GEOCARBSULF: A comb<strong>in</strong>ed model for Phanerozoic<br />

atmospheric O2 and CO2. Geochimica et Cosmochimica Acta 70,<br />

5653-5664.<br />

Erbacher J., Friedrich O., Wilson P. A., Birch H., and Mutterlose J. (2005)<br />

Stable organic carbon isotope stratigraphy across oceanic anoxic event<br />

2 of Dmerara Rise, western tropical Atlantic. Geochemistry<br />

Geophysics Geosystems 6, 2004GC000850.<br />

Siebert C., Nägler T. F., von Blanckenburg F., and Kramers J. D. (2003)<br />

Molybdenum isotope records as a potential new proxy for<br />

paleooceanography. Earth and Planetary Science Letters 211, 159-171.<br />

Suan, G., Pittet, B., Bour, I, Mattioli, E, Duarte L.V., Mailliot S. (<strong>2008</strong> <strong>in</strong><br />

press): Duration of the Early Toarcian carbon isotope excursion<br />

deduced from spectral analysis: consequence for its possible causes.<br />

Earth and Planetary Science Letters.<br />

Weyer S., Anbar A. D., Gerdes A., Gordon G., Algeo T. J., and Boyle E. A.<br />

238 235<br />

(<strong>2008</strong>) Natural fractionation of U/ U. Geochimica et<br />

Cosmochimica Acta 72, 345-359.<br />

<strong>ICDP</strong><br />

Characterization of gas from seismogenic<br />

depths of the San Andreas Fault at SAFOD<br />

T. WIERSBERG 1 AND J. ERZINGER 1<br />

1<br />

GeoForschungsZentrum Potsdam, Telegrafenberg, 14473<br />

Potsdam<br />

The on-l<strong>in</strong>e analysis of the molecular composition of<br />

gas, extracted from return<strong>in</strong>g drill-mud, followed by<br />

isotopic studies on gas samples has been proven bee<strong>in</strong>g a<br />

powerful tool to reveal <strong>in</strong>formation on the geochemistry of<br />

fluids and gases at seismogenic depths of the SAFOD (San<br />

Andreas Fault Observatory at Depth) wells (Erz<strong>in</strong>ger et al.<br />

2004, Wiersberg and Erz<strong>in</strong>ger, 2007, <strong>2008</strong>). These studies<br />

imply separation of two <strong>in</strong>dividual hydrological systems by<br />

a low-permeable fault core at SAFOD. From the pr<strong>in</strong>cipal<br />

formation gases (hydrocarbons, CO2 and H 2), the latter<br />

might be of mechanochemical orig<strong>in</strong>, wheras CO 2 and<br />

hydrocarbons clearly derive from organic sources. The<br />

contribution of mantle-derived fluids to the total fluid<br />

<strong>in</strong>ventory is only small.<br />

However, drill-mud gas analysis hardly provides<br />

<strong>in</strong>formation on absolute gas concentration of the drilled<br />

formation with high spatial resolution. In addition to drillmud<br />

gas analysis, we have therefore extracted and analysed<br />

gas from drill core samples dur<strong>in</strong>g the drill<strong>in</strong>g operations at<br />

SAFOD <strong>in</strong> 2007 by us<strong>in</strong>g a technique modified from Arai<br />

et al. (2001). After drill core recovery, core pieces (chunks<br />

from core preparation, from the core catcher, and subcore<br />

samples) were immediately placed <strong>in</strong> a gas bag, which was<br />

sealed and placed <strong>in</strong> a desiccator. For six hours, the<br />

desiccator was evacuated to few mbar, caus<strong>in</strong>g<br />

accumulation of gas extracted from the rock sample <strong>in</strong> the<br />

gas bag. Thereafter, the liberated gas was spiked with 20cc<br />

Kr and admitted to a gas chromatograph and a gas mass<br />

spectrometer for analysis.<br />

The SAFOD wells traverse 768m of Tertiary and<br />

Quaternary sediments on the Pacific Plate, underla<strong>in</strong> by<br />

Mesozoic granites. The straight SAFOD Pilot Hole was<br />

drilled down to 2168m hole depth, whereas the ma<strong>in</strong> hole<br />

(MH), drilled <strong>in</strong> two phases, was deviated northeastward to<br />

<strong>in</strong>tersect the SAF between approx. 3100–3450m bore hole<br />

depth and penetrates the North American Plate at ~3km


140<br />

vertical depth. Below approx. 1900m hole depth, the MH<br />

drilled only sedimentary strata. In a third phase (SAFOD-<br />

III) <strong>in</strong> 2007, three side tracks were drilled to obta<strong>in</strong> drill<br />

core samples from the active mov<strong>in</strong>g part of the SAF at<br />

seismogenic depths.<br />

On-l<strong>in</strong>e drill-mud gas data shows good agreement<br />

between the SAFOD-MH and the sidetracks <strong>in</strong> the<br />

distribution of hydrocarbons versus depth and their<br />

molecular composition. The absolute gas concentrations<br />

differ, as drill-mud flow rate, rate of penetration, and drillmud<br />

composition are dist<strong>in</strong>ct for each hole. The depth<br />

distribution of CH4 as well as C1/(C2+C3) values correlate<br />

well between drill-mud gas analysis and core-gas<br />

extraction, mostly even on small spatial scale. Up to<br />

64mg/g CH4 could be extracted from drill core, which is<br />

not unusual for sedimentary strata. Aquil<strong>in</strong>a et al. (1998)<br />

found maximal CH 4 concentration of approx. 1000ppmv <strong>in</strong><br />

drill-mud when drill<strong>in</strong>g sediments (Balazuc borehole,<br />

France) and ~60mg/g CH4 by leach<strong>in</strong>g of drill core samples<br />

from correspond<strong>in</strong>g depths. CH 4 concentrations from<br />

SAFOD drill-core samples are <strong>in</strong> the same range, whereas<br />

CH4 <strong>in</strong> correspond<strong>in</strong>g drill-mud gas is higher (more than<br />

3000ppmv). This discrepancy is probably caused by<br />

dist<strong>in</strong>ct bore hole parameters (see above) and different<br />

efficiency of gas extraction. Isotope studies (δ 13 C, H/D) on<br />

hydrocarbons, extracted from drill core and drill-mud, are<br />

ongo<strong>in</strong>g to obta<strong>in</strong> more detailed <strong>in</strong>formation on their<br />

genesis and orig<strong>in</strong>.<br />

References:<br />

Aquil<strong>in</strong>a L., Baubron J.-C., Defoix D., Dégranges P., Disnar J.-R., Marty B.,<br />

and Robé M.-C., 1998. Characterization of gases <strong>in</strong> sedimentary<br />

formation through monitor<strong>in</strong>g dur<strong>in</strong>g drill<strong>in</strong>g and core leach<strong>in</strong>g<br />

(Balazuc borehole, Deep Geology of France Programme), Applied<br />

Geochemistry 13 (6), 673-686.<br />

Arai T., Okusawa T. and Tsukahara H., 2001. Behaviour of gases <strong>in</strong> the<br />

Noijma Fault Zone revealed from chemical composition and carbon<br />

isotope ratio of gases extracted from DPRI 1800 m drill core, The<br />

Island Arc 10, 430-438.<br />

Erz<strong>in</strong>ger J., Wiersberg T. and Dahms E. (2004) Real-time mud gas logg<strong>in</strong>g<br />

dur<strong>in</strong>g drill<strong>in</strong>g of the SAFOD Pilot Hole <strong>in</strong> Parkfield, CA, Geophys.<br />

Res. Lett. 31, L15S18, doi:10.1029/2003GL019395<br />

Wiersberg T. and Erz<strong>in</strong>ger J. (2007) A helium isotope cross-section study<br />

through the San Andreas Fault at seismogenic depths, G-cubed 8, No.1,<br />

doi: 10.1029/2006GC001388<br />

Wiersberg T. and Erz<strong>in</strong>ger J. (<strong>2008</strong>) On the orig<strong>in</strong> and spatial distribution of<br />

gas at seismogenic depths of the San Andreas Fault from drill mud gas<br />

analysis, Applied Geochemistry (<strong>in</strong> review).<br />

<strong>ICDP</strong><br />

Molecular clock approaches: bridg<strong>in</strong>g the<br />

gap between cont<strong>in</strong>ental deep drill<strong>in</strong>g and<br />

evolutionary biology <strong>in</strong> ancient Lake Ohrid<br />

T. WILKE 1 , C. ALBRECHT 1 , B. WAGNER 2 , S. KRASTEL 3 , K.<br />

REICHERTER 4 , G. DAUT 5 , M. WESSELS 6<br />

1 Tierökologie und Spezielle Zoologie, Justus-Liebig-Universität<br />

Giessen, tom.wilke@allzool.bio.uni-giessen.de<br />

2 Institut für Geologie und M<strong>in</strong>eralogie, Universität zu Köln<br />

3 Leibniz-Institut für Meereswissenschaften (IFM-GEOMAR), Kiel<br />

4 Neotektonik und Georisiken, RWTH Aachen<br />

5 Institut für Geographie der Friedrich Schiller Universität Jena<br />

6 Institut für Seenforschung; Langenargen<br />

The Balkan Lake Ohrid is worldwide the ancient lake<br />

with the highest degree of endemism tak<strong>in</strong>g lake size <strong>in</strong>to<br />

account. Whereas its hydrology is fairly well studied, the<br />

geological history of Lake Ohrid is largely unknown. Age<br />

estimates vary, for example, from 1-10 My. Most<br />

hypotheses for the orig<strong>in</strong> of extant Lake Ohrid were<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

established almost 100 years ago and none of these<br />

hypotheses has been tested with<strong>in</strong> a modern scientific<br />

framework. Moreover, there is controversy about whether<br />

the outstand<strong>in</strong>g degree of endemism <strong>in</strong> Lake Ohrid is the<br />

result of presumed long-term environmental stability or<br />

rapid breaks of the lake’s environment due to major<br />

geological, hydrological or climatic changes.<br />

Field campaigns carried out from 2003 to 2007 aimed<br />

at study<strong>in</strong>g the biodiversity and faunal evolution of Lake<br />

Ohrid endemic taxa <strong>in</strong> space and time. Based on genetic,<br />

morphological, ecological, and biogeographical data, the<br />

follow<strong>in</strong>g questions are be<strong>in</strong>g <strong>in</strong>vestigated:<br />

(1) orig<strong>in</strong> of different <strong>in</strong>vertebrate groups <strong>in</strong> Lake<br />

Ohrid; i.e., whether Lake Ohrid acted as evolutionary<br />

reservoir or whether extant species evolved through <strong>in</strong>tralacustr<strong>in</strong>e<br />

speciation,<br />

(2) age of evolutionary l<strong>in</strong>eages,<br />

(3) orig<strong>in</strong> of extant Lake Ohrid, i.e., whether Lake<br />

Ohrid constitutes a derivate a) of the Mesohellenic trough,<br />

b) of today’s Adriatic Sea, c) of Lake Pannon, or d)<br />

whether the lake formed de novo <strong>in</strong> dry “poljes” (karstic<br />

fields) from exist<strong>in</strong>g spr<strong>in</strong>gs and/or rivers, and<br />

(4) environmental factors that drive <strong>in</strong>tra-lacustr<strong>in</strong>e<br />

diversification, i.e., whether long-term stability or rapid<br />

changes of the lake’s environment are responsible for the<br />

high biodiversity seen today.<br />

Our prelim<strong>in</strong>ary evolutionary data already suggest<br />

concurrent patterns of radiation and speciation among<br />

diverse endemic taxa <strong>in</strong> Lake Ohrid. The data also support<br />

the de novo hypothesis of lake orig<strong>in</strong> probably dur<strong>in</strong>g the<br />

Pliocene and a cont<strong>in</strong>uous existence ever s<strong>in</strong>ce. Moreover,<br />

concurrent genetic brakes <strong>in</strong> several <strong>in</strong>vertebrate groups<br />

<strong>in</strong>dicate that major geological and/or environmental events<br />

must have shaped the evolutionary history of endemic<br />

faunal elements <strong>in</strong> Lake Ohrid. Most significantly, the<br />

average age of endemic species radiations of 2 My and the<br />

average age of the split to their respective sister groups<br />

outside the lake of 3 My not only def<strong>in</strong>e the evolutionary<br />

effective age of the lake (i.e., the time s<strong>in</strong>ce when faunas<br />

have cont<strong>in</strong>uously existed) but also provide an <strong>in</strong>dication<br />

for the geological age of extant Lake Ohrid. Our results,<br />

however, can only be verified by a deep drill<strong>in</strong>g campaign.<br />

Data from a deep drill<strong>in</strong>g project <strong>in</strong> Lake Ohrid would<br />

allow for:<br />

(1) test<strong>in</strong>g the de novo hypothesis of lake orig<strong>in</strong>,<br />

(2) <strong>in</strong>vestigat<strong>in</strong>g the l<strong>in</strong>kage between major<br />

geological/environmental events and major evolutionary<br />

events,<br />

(3) a better understand<strong>in</strong>g of the controll<strong>in</strong>g forces of<br />

evolution and ext<strong>in</strong>ction of species, and<br />

(4) f<strong>in</strong>e-tun<strong>in</strong>g local molecular clocks <strong>in</strong> several groups<br />

of benthic <strong>in</strong>vertebrates.<br />

Evolutionary aspects <strong>in</strong> general and molecular clock<br />

analyses <strong>in</strong> particular will, <strong>in</strong> turn, also enrich the planned<br />

deep drill<strong>in</strong>g campaign <strong>in</strong> Lake Ohrid: endemic<br />

biodiversity and unique evolutionary patterns provide a<br />

prime motivation for a deep drill<strong>in</strong>g project <strong>in</strong> Lake Ohrid,<br />

evolutionary patterns provide the framework for a<br />

hypothesis-driven deep drill<strong>in</strong>g, andevolutionary data<br />

might help <strong>in</strong>terpret<strong>in</strong>g geological and hydrological<br />

<strong>in</strong>formation obta<strong>in</strong>ed by deep drill<strong>in</strong>g.<br />

We strongly believe that a comb<strong>in</strong>ation of molecularbased<br />

evolutionary biology and deep drill<strong>in</strong>g may not only<br />

be of great benefit for the proposed <strong>ICDP</strong> project <strong>in</strong> Lake


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Ohrid, it may also be of <strong>in</strong>terest for other <strong>IODP</strong>/<strong>ICDP</strong><br />

campaigns <strong>in</strong> the years to come, and certa<strong>in</strong>ly will help to<br />

better understand the triggers of species conservation and<br />

evolution as a matter of global significance.<br />

<strong>ICDP</strong><br />

Aerial extent of palaeoenvironmental<br />

reconstructions <strong>in</strong> southern Patagonia<br />

MICHAEL WILLE<br />

Sem<strong>in</strong>ar for Geography and Education, University of Cologne,<br />

Gronewaldstr. 2, D-50931 Cologne, Germany<br />

Dur<strong>in</strong>g the past years the multi proxy <strong>in</strong>vestigation of<br />

several sediment cores from Laguna Potrok Aike (52°S,<br />

70°W; 113 m a.s.l.) led to a paleoenvironmental and<br />

climate reconstruction for the South Patagonian ma<strong>in</strong>land<br />

cover<strong>in</strong>g the last 56 ka (Haberzettl et al. 2007, Haberzettl et<br />

al. <strong>2008</strong>, Wille et al. 2007). Lake <strong>in</strong>ternal proxies were<br />

used to reconstruct lake level fluctuations which were<br />

translated to humid and dry <strong>in</strong>tervals caused by an<br />

<strong>in</strong>teraction of precipitation, w<strong>in</strong>d speed and w<strong>in</strong>d direction<br />

as the most important factors of the recent climate.<br />

The mechanism that was suggested can be described as<br />

follows: Lake level of Laguna Potrok Aike and<br />

precipitation decrease dur<strong>in</strong>g periods of persistently high<br />

w<strong>in</strong>ds from westerly directions whereas dur<strong>in</strong>g periods of<br />

enhanced easterly w<strong>in</strong>ds lake level and precipitation<br />

<strong>in</strong>crease (Mayr et al. 2007). However, although this<br />

mechanism of easterly w<strong>in</strong>ds br<strong>in</strong>g<strong>in</strong>g ra<strong>in</strong> to Laguna<br />

Potrok Aike and the eastern parts of the steppe area was<br />

suggested, it was unclear and relatively unlikely whether<br />

this mechanism also applies for the eastern foot of the<br />

Andes and the area west of Laguna Potrok Aike.<br />

A comparison of pollen <strong>in</strong>flux and sedimentation rate<br />

from Laguna Potrok Aike and a new sediment record from<br />

Brazo Sur of Lago Argent<strong>in</strong>o (BRS 1/06, 50°34'54''S,<br />

72°54'52''W, 198 m a.s.l.) shows that between 10,200 and<br />

7300 cal BP the profiles have a parallel trend. This strongly<br />

suggests that the strong dry phase found <strong>in</strong> Laguna Potrok<br />

Aike between ca. 8600 and 7300 cal BP also occurred at<br />

the foot of the Andes and that the above described<br />

mechanism that controls humidity and drought must also<br />

be tested for sites at the foot of the Andes. Therefore,<br />

future <strong>in</strong>vestigation of sites <strong>in</strong> the vic<strong>in</strong>ity of Laguna<br />

Potrok Aike are needed to evaluate to which aerial extent<br />

paleoenvironmental and climate reconstructions can be<br />

expanded <strong>in</strong> southern Patagonia.<br />

References:<br />

Haberzettl, T. et al. (2007) Lateglacial and Holocene wet-dry cycles <strong>in</strong><br />

southern Patagonia: chronology, sedimentology and geochemistry of a<br />

lacustr<strong>in</strong>e record from Laguna Potrok Aike, Argent<strong>in</strong>a. The Holocene,<br />

17: 297-310.<br />

Haberzettl, T. et al. (<strong>2008</strong>) Hydrological variability and explosive volcanic<br />

activity <strong>in</strong> southeastern Patagonia dur<strong>in</strong>g Oxygen Isotope Stage 3 and<br />

the Holocene <strong>in</strong>ferred from lake sediments of Laguna Potrok Aike,<br />

Argent<strong>in</strong>a. Palaeogeography, Palaeoclimatology, Palaeoecology: <strong>in</strong><br />

press.<br />

Mayr, C. et al. (2007) Holocene variability of the Southern Hemisphere<br />

westerlies <strong>in</strong> Argent<strong>in</strong>ean Patagonia (52°S). Quaternary Science<br />

Reviews, 26: 579-584.<br />

Wille, M. et al. (2007) Vegetation and climate dynamics <strong>in</strong> southern South<br />

America: The microfossil record of Laguna Potrok Aike, Santa Cruz,<br />

Argent<strong>in</strong>a. Review of Palaeobotany and Palynology, 146, 234–246<br />

141<br />

<strong>ICDP</strong><br />

Petrology of melt bear<strong>in</strong>g lithologies <strong>in</strong> drill<br />

core Eyreville-B, Chesapeake Bay impact<br />

structure<br />

A. WITTMANN 1,2 , L. HECHT 2 , W. U. REIMOLD 2 , R. T. SCHMITT 2 ,<br />

T.KENKMANN 2 , B.HANSEN 2 ,V. A. FERNANDES 3<br />

1 Lunar and Planetary Institute, Houston TX 77058-1113, USA;<br />

axel.wittmann@yahoo.com<br />

2 Museum of Natural History, M<strong>in</strong>eralogy, Humboldt-University<br />

Berl<strong>in</strong>, 10115 Berl<strong>in</strong>, Germany<br />

3 Berkeley Geochronology Center, Berkeley, CA 94709, USA<br />

The Chesapeake Bay impact structure formed on the<br />

cont<strong>in</strong>ental marg<strong>in</strong> of Virg<strong>in</strong>ia, USA. The impact affected a<br />

target with a water column of 0 to 340 m on top of 400–<br />

1500 m unconsolidated siliciclastic sediments that overlaid<br />

a Neoproterozoic crystall<strong>in</strong>e basement. The result<strong>in</strong>g<br />

structure has a diameter of 80–95 km with a ~38 km<br />

diameter central crater [1]. The USGS-<strong>ICDP</strong> Eyreville<br />

drill<strong>in</strong>g is placed about 9 km NNE’ off the presumed center<br />

of the structure <strong>in</strong> the central crater’s annular moat [2]. The<br />

drill<strong>in</strong>g reached a depth of 1776.2 m and recovered ~950 m<br />

of resurge deposits that overlie a section of suevite-like<br />

impactites beween 1397 and ~1550 m. Prelim<strong>in</strong>ary<br />

petrography and geochemistry of these rocks are presented<br />

with implications for their petrogenesis.<br />

Some 50 core samples were available for study along<br />

with cont<strong>in</strong>uous core box photographs (courtesy of D.S.<br />

Powars, USGS). Except for two subunits of impact melt<br />

rocks, a particulate matrix (particle sizes below ~0.5 mm)<br />

is present throughout the sequence <strong>in</strong> variable modal<br />

proportions between 24–75 vol.%. Cataclased lithic blocks<br />

and clasts larger than ~50 cm <strong>in</strong> size are conf<strong>in</strong>ed to the<br />

basal part of the section from 1468 to ~1550 m. With one<br />

exception, clasts <strong>in</strong> the section above (1397–1468 m) are<br />

80 wt.% and around 63–64<br />

wt.% can be dist<strong>in</strong>guished. Two dist<strong>in</strong>ct shapes occur<br />

among such melt particles. Ameboid shaped, ubiquituously<br />

occurr<strong>in</strong>g melt particles with variable contents of deformed<br />

vesicles that <strong>in</strong>dicate deposition above the glass transition<br />

temperature. And, more scarcely, shard-shaped melt<br />

particles with broken vesicle rims that likely <strong>in</strong>dicate<br />

airborne transport.. Such shard-shaped melt particles occur<br />

especially <strong>in</strong> graded <strong>in</strong>tercalations, towards the top of the<br />

sequence, and <strong>in</strong> the upper part of the overly<strong>in</strong>g resurge<br />

deposit.


142<br />

Larger pods of clast-rich, unbrecciated impact melt<br />

rock occur at 1401.84–1409.37 m as holocrystall<strong>in</strong>e and at<br />

1450.2–1451.51 m as hypocrystall<strong>in</strong>e varieties. However,<br />

core box images <strong>in</strong>dicate the presence of many more<br />

impact melt pods up to 21 cm thick that are concentrated<br />

between 1397 and 1430 m. The hypocrystall<strong>in</strong>e impact<br />

melt rock reta<strong>in</strong>ed rare glassy melt of a rhyolitic<br />

composition with ~5 wt.% volatiles. Both melt rocks are<br />

currently used for radiometric dat<strong>in</strong>g of the impact event by<br />

the 40Ar/39Ar method. Until now, the event is constra<strong>in</strong>ed<br />

by analyses of ejecta material and biostratiraphy to a late<br />

Eocene age [1]. Whole rock chemical compositions of the<br />

impact melt rocks are similar to average values of the<br />

associated suevites.A prelim<strong>in</strong>ary petrologic evaluation of<br />

the section suggests that a basal part (~1468 to ~1550 m) is<br />

characterized by melt poor suevites and lithic impact<br />

breccias <strong>in</strong>tercalated with block-size clasts. Together with<br />

frequent flow-textures <strong>in</strong> the matrix and alignments of<br />

components, this could represent groundsurge deposits of<br />

the earliest excavation stage. Above this depth, a mixture<br />

of fallback and ground-surge material appears present<br />

because rapidly quenched, likely orig<strong>in</strong>ally airborne melt<br />

particles and graded sections occur. Towards the top,<br />

fallback material appears to be dom<strong>in</strong>ant with more<br />

prom<strong>in</strong>ent airborne components such as shard-like melt<br />

particles, scarce mantled particles, and dist<strong>in</strong>ct size sort<strong>in</strong>g<br />

of components.<br />

The temporal duration of the deposition of the<br />

complete suevite-like section is constra<strong>in</strong>ed by numerical<br />

models to ~6 m<strong>in</strong>utes after the impact because resurg<strong>in</strong>g<br />

water-sediment suspension <strong>in</strong>vaded the central impact<br />

structure then [3,4]. This resurge deposited ~950 m of<br />

sediments, <strong>in</strong>clud<strong>in</strong>g up to 270 m thick blocks, and<br />

reworked ejecta. Lithostatic load<strong>in</strong>g from these deposits<br />

asserted a pressure of ~20–25 MPa on the suevite-like<br />

section, which likely led to flatten<strong>in</strong>g and consolidation of<br />

the suevite-like sequence. The clast-rich impact melt rocks<br />

<strong>in</strong>dicate <strong>in</strong>-situ cool<strong>in</strong>g of melt that was emplaced <strong>in</strong> a<br />

viscous state under dry conditions because no hyaloclastitelike<br />

fragmentation occurred. The different types of melt<br />

particles were rapidly cooled below the glass transition<br />

temperature of 600–775 °C for rhyolitic melts [5] from<br />

<strong>in</strong>itial temperatures above ~1800 °C that are <strong>in</strong>dicated by<br />

the presence of clasts of decomposed zircon [6]. Although<br />

these melt particles are pervasively altered, some <strong>in</strong>dicate<br />

compositional differences that suggest retention of<br />

characteristics of precursor rocks, and thus, <strong>in</strong>complete<br />

chemical homogenization. In contrast, the unbrecciated<br />

impact melt rocks appear geochemically fairly<br />

homogeneous. This may have implications for the effect<br />

and the distribution of volatiles dur<strong>in</strong>g an oceanic impact<br />

event.<br />

Acknowledgments: K. Wünnemann, D. Stöffler, P.<br />

Czaja, H.-R. Knöfler, C. Crasselt (MfN Berl<strong>in</strong>); H.<br />

Povenmire (IT Melbourne, FL), K. Ross, T. Teague<br />

(Berkeley GC); S. Mayr (TU Berl<strong>in</strong>); G. Coll<strong>in</strong>s (IC<br />

London); G. Gohn (USGS Reston); K. Bartosova (U<br />

Vienna); R. Gibson (U Witwatersrand).<br />

References:<br />

[1] Horton J. W. jr. et al. (2005) USGS Prof. Paper # 1688, pp. 464.<br />

[2] Gohn G. S. et al. (2006) Scientific Drill<strong>in</strong>g 3, 34-37.<br />

[3] Coll<strong>in</strong>s G. S. & Wünnemann K. (2005) Geology 33, 925-928.<br />

[4] Kenkmann T. et al. (2007) GSA annual Meet<strong>in</strong>g, Abstract # 199-4.<br />

[5] Giordano D. et al (2005) J. Vol. & Geoterm. Res. 142, 105-118.<br />

[6] Wittmann A. et al. (2006) Meteor. & Planet. Sci. 41, 433-454.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

<strong>ICDP</strong><br />

TEM of eclogite from the Ch<strong>in</strong>ese<br />

Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g project at<br />

Donghai<br />

Z.Q. XU 1 , W.F. MÜLLER 2 , F.E. BRENKER 3<br />

1<br />

Institute of Geology, Ch<strong>in</strong>ese Academy of Geological Science,<br />

Bej<strong>in</strong>g 100037<br />

2<br />

Geomaterialwissenschaft, Fachbereich 11, Technische Universität<br />

Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany;<br />

wmueller@geo.tu-darmstadt.de<br />

3Geozentrum der Goethe-Universität Frankfurt, Altenhöferallee 1,<br />

60438 Frankfurt am Ma<strong>in</strong>, Germany<br />

The locality of the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific Deep<br />

Drill<strong>in</strong>g Project (CCSD) is at Donghai <strong>in</strong> the Sulu segment<br />

of the Dabie-Sulu ultrahigh pressure metamorphic belt (cf.<br />

Xu et al. 2005). We have studied the m<strong>in</strong>erals of six<br />

eclogite samples from the ma<strong>in</strong> hole by methods of<br />

transmission electron microscopy (TEM) <strong>in</strong> order to<br />

characterise their microstructures. The goal is to contribute<br />

to the knowledge of the formation and exhumation of<br />

ultrahigh pressure eclogites, with special attention to<br />

deformation features. The samples <strong>in</strong>vestigated stem from<br />

223, 318, 331, 397, 452 and 584 m depths of the drill<strong>in</strong>g<br />

hole. The first four samples belong to the lithologic unit 1<br />

of Zhang et al. (2006), the last to unit 2. In our TEM-study<br />

we found omphacite, amphibole, garnet, Na-rich<br />

plagioclase, quartz, K-feldspar, and phengite.<br />

Omphacite: The chemical composition of omphacites is<br />

variable which is <strong>in</strong> agreement with Zhang et al. (2005).<br />

Omphacites with <strong>in</strong>termediate compositions between the<br />

end-members jadeite and diopside have electron diffraction<br />

patterns with sharp and <strong>in</strong>tense superstructure reflections of<br />

the type h + k odd. TEM-images, especially <strong>in</strong> dark field,<br />

show large antiphase doma<strong>in</strong>s (APDs) on the order of 1<br />

µm. Their displacement vector is R = 1/2[110] (Champness<br />

1973; Phakey & Ghose 1973). The APDs are a<br />

consequence of the convergent order<strong>in</strong>g of Al (Fe3+) and<br />

Mg (Fe2+) which leads to the diffusion-controlled<br />

transition of the disordered omphacite with space group<br />

C2/c to ordered omphacite with space group P2/n, which<br />

takes place below about 800 °C (depend<strong>in</strong>g on<br />

composition). The presence of APDs shows that the<br />

omphacites crystallised first <strong>in</strong> the disordered structure<br />

with the C2/c-lattice and the crystallisation of most, if not<br />

all omphacites took place with<strong>in</strong> the phase regime of the Pphase<br />

accord<strong>in</strong>g to the estimated peak metamorphic<br />

temperatures (e.g. Zhang et al. 2006). Omphacites rich <strong>in</strong><br />

the jadeite component or <strong>in</strong> the diopside component display<br />

small APDs on the order of about 20 to 50 nm. The<br />

temperature history was about the same for the omphacite<br />

with the large and that with the small APDs, because they<br />

occurred <strong>in</strong> the same TEM-specimen. Therefore, the reason<br />

for the different doma<strong>in</strong> size is the different chemical<br />

composition.<br />

Indications of plastic deformation of the omphacites of<br />

our samples are not common. Dislocations are only<br />

occasionally observed. Interaction with the antiphase<br />

doma<strong>in</strong> boundaries (APBs) were observed. Deformation<br />

tw<strong>in</strong> lamellae on (100) and small-angle gra<strong>in</strong> boundaries<br />

(SAGBs) due to recovery effects were not seen, <strong>in</strong> contrast<br />

to the omphacites from the Eclogite Zone of the Tauern<br />

W<strong>in</strong>dow (Müller & Franz <strong>2008</strong>). Only one fault parallel to<br />

(010) was found. Such faults are frequent <strong>in</strong> omphacites


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

from the Lower Schist Cover and the Eclogite Zone of the<br />

Tauern W<strong>in</strong>dow (Müller et al. 2004, Müller & Franz <strong>2008</strong>).<br />

Amphibole gra<strong>in</strong>s show occasionally CMFs parallel to<br />

(010) and rarely free dislocations and SAGBs. Noteworthy<br />

is a semi-coherent <strong>in</strong>terface between an amphibole and an<br />

omphacite, which is made up by dislocations.<br />

Garnet is ma<strong>in</strong>ly free of dislocations. However, there is<br />

one case of a SAGB formed by two sets of dislocations.<br />

Quartz and K-feldspar: Quartz associated with Kfeldspar<br />

was observed <strong>in</strong> the samples from 223 m and from<br />

318 m. No coesite was seen. The quartz typically conta<strong>in</strong>s<br />

free dislocations or dislocations organised <strong>in</strong>to SAGBs.<br />

Na-rich plagioclase of a composition with<strong>in</strong> the<br />

peristerite gap (≈ An12) was observed <strong>in</strong> the sample from<br />

331 m. It shows modulated structures with a preferential<br />

orientation about 5° tilted aga<strong>in</strong>st (010). The wavelengths<br />

are around 20 to 25 nm. A fa<strong>in</strong>t tweed structure is visible <strong>in</strong><br />

some areas of the gra<strong>in</strong>.<br />

Conclusions: The general observation is that<br />

microstructures due to deformation are not frequent <strong>in</strong> the<br />

CCSD samples studied compared to the eclogites from the<br />

Tauern W<strong>in</strong>dow. This is especially evident for omphacite<br />

which usually carries the deformation of eclogites and<br />

shows a wealth of deformation-<strong>in</strong>duced crystal defects <strong>in</strong><br />

the eclogites from the Tauern W<strong>in</strong>dow (Müller et al., 2004;<br />

Müller & Franz <strong>2008</strong>). The omphacites from the ultrahigh<br />

pressure metamorphic unit of Lago di Cignana,<br />

Valtournenche, Western Alps, also did not show<br />

deformation tw<strong>in</strong>n<strong>in</strong>g, and CMFs are very rare, but they<br />

often conta<strong>in</strong>ed SAGBs as <strong>in</strong>dication of recovery of<br />

deformed omphacites (Müller & Compagnoni 2007). We<br />

see that nature and concentration of deformation-<strong>in</strong>duced<br />

microstructures <strong>in</strong> samples recovered from geologic units<br />

with complex formation, subduction and exhumation<br />

histories may be quite different.<br />

Fund<strong>in</strong>g by the Deutsche Forschungsgeme<strong>in</strong>schaft is<br />

gratefully acknowledged.<br />

1-4 References:<br />

Champness PE (1973) Speculation on an order-disorder transformation <strong>in</strong><br />

omphacite. Am. M<strong>in</strong>eral. 58, 540-542<br />

Müller WF, Compagnoni R (2007) TEM of eclogite from the ultrahigh<br />

pressure metamorphic unit at Lago di Cignana, Western Alps.<br />

International Eclogite Field Symposium. Skye and Lochalsh, Scotland,<br />

p. 40-41<br />

Müller WF, Franz G (<strong>2008</strong>) TEM-microstructures <strong>in</strong> omphacite and other<br />

m<strong>in</strong>erals from eclogite near to thrust zone; the Eclogite Zone –<br />

Venediger nappe area, Tauern W<strong>in</strong>dow, Austria. N. Jahrb. M<strong>in</strong>eral.<br />

Abh. (<strong>in</strong> press)<br />

Müller WF, Brenker FE, Barnert EB, Franz G. (2004) Cha<strong>in</strong> multiplicity<br />

faults <strong>in</strong> deformed omphacite from eclogite. Eur. J. M<strong>in</strong>eral. 16, 37-48<br />

Phakey PP, Ghose S (1973) Direct observation of anti-phase doma<strong>in</strong><br />

structure <strong>in</strong> omphacite. Contr. M<strong>in</strong>eral. Petrol. 39, 239-245<br />

Xu ZQ, Yang J, Rob<strong>in</strong>son PT (2005) Deep drill<strong>in</strong>g <strong>in</strong> the Dabie-Sulu<br />

ultrahigh pressure metamorphic belt, Ch<strong>in</strong>a. EOS 86 (8), 77-78<br />

Zhang Z, Xiao Y, Hoefs J, Liou JG, Simon K (2006) Ultrahigh pressure<br />

metamorphic rocks from the Ch<strong>in</strong>ese Cont<strong>in</strong>ental Scientific Drill<strong>in</strong>g<br />

project: I. Petrology and geochemistry of the ma<strong>in</strong> hole (0-2,050 m).<br />

Contr. M<strong>in</strong>eral. Petrol. 152, 4258<br />

143<br />

<strong>IODP</strong><br />

Cultivation of Sulfate-Reduc<strong>in</strong>g Bacteria<br />

from Deep Sediment Layers<br />

that are Influenced by Crustal Fluids (<strong>IODP</strong><br />

Leg 301)<br />

K. ZIEGELMÜLLER 1 , M. KÖNNEKE 1 , H. CYPIONKA 1 , B. ENGELEN 1<br />

1 Institut für Chemie und Biologie des Meeres, Universität<br />

Oldenburg, Carl-von-Ossietzky Straße 9-11, D-26129<br />

Oldenburg, Germany<br />

Crustal fluids may fuel the deep biosphere<br />

Microbiological studies on sediment cores collected<br />

dur<strong>in</strong>g DSDP and ODP have consistently demonstrated the<br />

presence of a mar<strong>in</strong>e ‘deep biosphere’ (e.g. D'Hondt et al.,<br />

2004). Microbial communities were found to be present <strong>in</strong><br />

sediments down to several hundreds of meters below the<br />

seafloor (Parkes et al., 2000). Furthermore, recent<br />

<strong>in</strong>vestigations <strong>in</strong>dicated that the deep biosphere extends<br />

<strong>in</strong>to the upper basaltic layers of the oceanic crust (Cowen<br />

et al., 2003; Huber et al., 2006, Nakagawa et al., 2006).<br />

These porous volcanic layers are characterized by the<br />

circulation of seawater, form<strong>in</strong>g the largest aquifer on<br />

Earth. Due to their geochemical composition, the<br />

circulat<strong>in</strong>g fluids are supposed to fuel the deep biosphere<br />

by <strong>in</strong>trusion of oxidized compounds <strong>in</strong>to overlay<strong>in</strong>g<br />

sediments (DeLong, 2004).<br />

<strong>IODP</strong> Expedition 301 offered an excellent opportunity<br />

to test this hypothesis. Drill<strong>in</strong>g was conducted at the Juan<br />

de Fuca Ridge, <strong>in</strong> the northeast Pacific Ocean. This<br />

location is one of the most <strong>in</strong>tensively studied areas <strong>in</strong><br />

terms of fluid flow hydrology and impact on<br />

sedimentological sett<strong>in</strong>gs (Fisher et al. 2005). At <strong>IODP</strong> Site<br />

U1301 (water depth: 2650 m, sediment thickness: 265 m)<br />

sulfate diffuses <strong>in</strong>to the sediment column from two sites,<br />

from bottom-seawater and the crustal aquifer, result<strong>in</strong>g <strong>in</strong><br />

two sulfate-methane <strong>in</strong>terfaces, and <strong>in</strong> an upper and a lower<br />

potential sulfate reduction zone (Fig.1a). For<br />

microbiological analyses high quality, non-contam<strong>in</strong>ated<br />

sediment samples were obta<strong>in</strong>ed by advanced piston<br />

cor<strong>in</strong>g, as <strong>in</strong>dicated by perfluorocarbon tracer (PFT)<br />

measurements (Lever et al., 2006).<br />

Sulfate diffusion from below keeps microbes alive<br />

With<strong>in</strong> the first phase of our <strong>in</strong>vestigations, we have<br />

quantified the abundance of microorganisms with various<br />

methods and determ<strong>in</strong>ed microbial activities like sulfate<br />

reduction, anaerobic oxidation of methane, and exoenzyme<br />

activity at nearby <strong>in</strong> situ temperatures throughout the<br />

sediment column (Engelen & Ziegelmüller et al., <strong>2008</strong>). In<br />

short, microbial cell densities decreased with sediment<br />

depth. Cell counts showed local peaks follow<strong>in</strong>g geological<br />

sett<strong>in</strong>gs and were enhanced <strong>in</strong> basement-near layers (data<br />

not shown). Potential metabolic rates (Fig. 1b) were<br />

elevated around the lower sulfate-methane transition zone<br />

(SMTZ). Us<strong>in</strong>g the semi-quantitative most probable<br />

number (MPN) technique, a significant fraction of the<br />

microbial community could be stimulated to grow ex situ<br />

from the lower sulfate-conta<strong>in</strong><strong>in</strong>g zone. Our f<strong>in</strong>d<strong>in</strong>gs<br />

clearly <strong>in</strong>dicated that <strong>in</strong>digenous microbial populations are<br />

present, alive and metabolically active <strong>in</strong> deeply buried<br />

layers.


144<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig.1 Depth profiles of (a) geochemical parameters and (b) metabolic activities. The phylogenetic affiliation of enriched sulfatereduc<strong>in</strong>g<br />

bacteria from surface- and basement-near layers is <strong>in</strong>dicated. SR, sulfate reduction, AOM, anaerobic oxidation of methane,<br />

SMTZ, sulfate-methane transition zone.<br />

Fig.2 DGGE-f<strong>in</strong>gerpr<strong>in</strong>ts of different subcultures. DNA bands were assigned to the closest related bacteria. A) Anoxically <strong>in</strong>cubated<br />

enrichment cultures and test for facultative growth under oxic conditions. A1+2) Anoxic subcultures, still conta<strong>in</strong><strong>in</strong>g different<br />

species. A3) Subculture of only one strict anaerobic stra<strong>in</strong>. B) DGGE profiles of subcultures that exhibited vibrio-shaped cells.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Molecular tools to monitor microbial enrichment<br />

cultures and subsequent isolations<br />

Our <strong>in</strong>vestigations now focus on the analysis of<br />

cultivated members of the deep biosphere. Initial<br />

enrichments were performed <strong>in</strong> liquid dilution series and<br />

substrate gradient tubes. These cultures were started<br />

onboard the JOIDES Resolution immediately after core<br />

recovery. In order to stimulate growth of anaerobes,<br />

especially of sulfate-reduc<strong>in</strong>g bacteria, artificial seawater<br />

conta<strong>in</strong><strong>in</strong>g sulfate as term<strong>in</strong>al electron acceptor was<br />

amended with a def<strong>in</strong>ed substrate mixture <strong>in</strong> micromolar<br />

concentrations. Enrichment cultures were <strong>in</strong>cubated at<br />

20°C <strong>in</strong> the dark and at atmospheric pressure. Molecular<br />

screen<strong>in</strong>g was used to overview the diversity of cultivated<br />

microorganisms and to guide further isolation procedures<br />

via deep agar cultures and liquid dilution series.<br />

For molecular screen<strong>in</strong>g, DNA was extracted from a)<br />

enrichment cultures that showed microbial growth<br />

determ<strong>in</strong>ed by microscopic analysis or b) transferred<br />

colonies. 16S ribosomal RNA gene fragments were<br />

amplified by PCR and separated via denatur<strong>in</strong>g gradient<br />

gel electrophoresis (DGGE). Dist<strong>in</strong>ct bands were excised,<br />

reamplified and sequenced. 16S rDNA sequences were<br />

phylogenetically identified us<strong>in</strong>g the BLASTn tool for the<br />

affiliation to their next relatives.<br />

Due to low DNA-extraction yields, nested PCR was<br />

necessary. Inspite of that a high diversity of grow<strong>in</strong>g<br />

bacteria was reflected <strong>in</strong> complex DGGE band<strong>in</strong>g patterns.<br />

The screen<strong>in</strong>g revealed 22 operational taxonomic units<br />

(OTU) from seven eubacterial phyla, commonly found <strong>in</strong><br />

natural environments: Firmicutes, Act<strong>in</strong>obacteria, Beta-,<br />

Gamma-, Delta- and Epsilonbacteria, Cytophaga-<br />

Flavobacterium-Bacteroides. Furthermore, DNA-signatures<br />

related to previously described sulfate-reduc<strong>in</strong>g bacteria<br />

(SRB) were detected <strong>in</strong> enrichments from 1.3, 31, 75 and<br />

even 260 mbsf.<br />

Two different sulfate-reduc<strong>in</strong>g communities enriched<br />

from the sediment column<br />

So far, the cont<strong>in</strong>ous use of microscopy, molecular<br />

screen<strong>in</strong>g of subcultures (Fig.2) and H2S measurements led<br />

to a culture collection that is dom<strong>in</strong>ated by different sulfate<br />

reducers orig<strong>in</strong>at<strong>in</strong>g from top and bottom sediments<br />

(Fig. 1). Desulfosporos<strong>in</strong>us- and Desulfotomaculumrelated<br />

Firmicutes were repeatedly enriched from the upper<br />

sulfate-reduction zone (1.3, 9 and 31 mbsf). These sporeform<strong>in</strong>g<br />

SRB are widespread and previously isolated from<br />

both, oceanic and terrestrial habitats (eg. Moser et al.,<br />

2005, Detmers et al., 2004). From fluid-<strong>in</strong>fluenced<br />

sediments two different sulfate-reduc<strong>in</strong>g<br />

Deltaproteobacteria were isolated. The stra<strong>in</strong>s affiliated<br />

with Desulfotignum balticum (260 mbsf) and<br />

Desulfovibrio <strong>in</strong>donensis (239, 252 and 260 mbsf),<br />

respectively. While Desulfovibrio species are commonly<br />

found <strong>in</strong> the deep biosphere (e.g. Bale et al., 1997, Sass and<br />

Cypionka, 2004) the recently described genus<br />

Desulfotignum comprizes four species, only. Two of them<br />

have been isolated from mar<strong>in</strong>e habitats (Kuever et al.,<br />

2001, Sch<strong>in</strong>k et al., 2002).<br />

More sulfate-reduc<strong>in</strong>g Deltaproteobacteria were<br />

enriched from both, seawater-<strong>in</strong>fluenced (1.3 mbsf) and<br />

crustal-fluids <strong>in</strong>fluenced sediment layers (239 and 260<br />

mbsf). DGGE-band analysis resulted <strong>in</strong> an affiliation to<br />

Desulfovibrio aespoeensis (Fig.2B), a newly described<br />

sulfate reducer, supposed to be <strong>in</strong>dicative for deep granitic<br />

145<br />

rock aquifers (Motamedi and Pedersen, 1998). Currently<br />

we are work<strong>in</strong>g on the isolation of these stra<strong>in</strong>s <strong>in</strong>to pure<br />

cultures to f<strong>in</strong>ally get access to their physiological<br />

properties.<br />

Physiological experiments with sulfate-reduc<strong>in</strong>g<br />

isolates to unravel adaptions and lifestyles<br />

In general, subsequent physiological characterization<br />

will elucidate the role of our isolates <strong>in</strong> biogeochemical<br />

cycles and their adaptations to this nutrient-limited habitat.<br />

We are especially <strong>in</strong>terested <strong>in</strong> the substrate spectrum of<br />

the sulfate-reduc<strong>in</strong>g Deltaproteobacteria thriv<strong>in</strong>g <strong>in</strong> the<br />

deepest sediment layers. These stra<strong>in</strong>s are also tested for<br />

chemolithoautotrophy, i.e. growth on H2/CO2, s<strong>in</strong>ce<br />

hydrogen may act as the key electron donor <strong>in</strong> basaltic<br />

environments (Stevens and McK<strong>in</strong>ley, 1995). The use of<br />

alternative electron acceptors like manganese(IV), iron(III),<br />

nitrate or sulfur-compounds is exam<strong>in</strong>ed as well.<br />

Furthermore, the maximum growth temperature of our<br />

Desulfovibrio stra<strong>in</strong>s was 45°C at ambient pressure.<br />

However, some of these isolates were obta<strong>in</strong>ed from<br />

basement-near layers with an <strong>in</strong> situ temperature of ~60°C<br />

(Fig.1). We suppose, that <strong>in</strong>cubation experiments under <strong>in</strong><br />

situ pressure (~300 bar) would lead to higher growth<br />

temperatures.<br />

Conclusions<br />

The enrichment of non-spore form<strong>in</strong>g sulfate reducers<br />

from the crust-near layers <strong>in</strong>dicates the presence of a viable<br />

and active deep biosphere and emphasizes the impact of<br />

crustal fluids on overly<strong>in</strong>g sediments. Regard<strong>in</strong>g the<br />

worldwide expansion of the crustal fluid aquifer, we<br />

assume that this impact is an important driv<strong>in</strong>g force for<br />

deep subsurface populations on a global scale.<br />

References:<br />

Bale, S.J., Goodman, K., Rochelle, P.A., Marchesi, J.R., Fry, J.C.,<br />

Weightman, A.J., and Parkes, R.J., 1997. Desulfovibrio profundus sp.<br />

nov., a novel barophilic sulfate-reduc<strong>in</strong>g bacterium from deep sediment<br />

layers <strong>in</strong> the Japan Sea. Int. J. Syst. Bacteriol., 47:515-521.<br />

Cowen, J.P., Giovannoni, S.J., Kenig, F., Johnson, H.P., Butterfield, D.,<br />

Rappé, M.S., Hutnak, M., and Lam, P., 2003. Fluids from ag<strong>in</strong>g ocean<br />

crust that support microbial life. Science 299:120-123.<br />

DeLong, E., 2004. Microbial life breathes deep. Science 306:2198-2200.<br />

Detmers, J., Strauss, H., Schulte, U., Bergmann, A., Knittel, K., Kuever, J.,<br />

2004. FISH shows that Desulfotomaculum spp. are the dom<strong>in</strong>at<strong>in</strong>g<br />

sulfate-reduc<strong>in</strong>g bacteria <strong>in</strong> a prist<strong>in</strong>e aquifer. Microbial Ecology,<br />

47:236-242.<br />

D'Hondt, S., Jørgensen, B.B., Miller, D.J., Batzke, A., Blake, R., Cragg,<br />

B.A., Cypionka, H., Dickens, G.R., Ferdelman, T., H<strong>in</strong>richs, K.-U.,<br />

Holm, N.G., Mitterer, R., Spivack, A., Wang, G., Bek<strong>in</strong>s, B., Engelen,<br />

B., Ford, K., Gettemy, G., Rutherford, S.D., Sass, H., Skilbeck, C.G.,<br />

Aiello, I.W., Guèr<strong>in</strong>, G., House, C.H., Inagaki, F., Meister, P., Naehr,<br />

T., Niitsuma, S., Parkes, R.J., Schippers, A., Smith, D.C., Teske, A.,<br />

Wiegel, J., Naranjo Padilla, C., Solis Acosta, J.L., 2004. Distributions<br />

of microbial activities <strong>in</strong> deep subseafloor sediments. Science<br />

306:2216-2221.<br />

Engelen, B., Ziegelmüller, K., Wolf, L., Köpke, B., Gittel, A., Treude, T.,<br />

Nakagawa, S., Inagaki, F., Lever, M.A., Ste<strong>in</strong>sbu, B.O., and Cypionka,<br />

H., <strong>2008</strong>. Fluids from the oceanic crust support microbial activities<br />

with<strong>in</strong> the deep biosphere. Geomicrobiol. J (<strong>in</strong> press)<br />

Fisher, A.T., Urabe, T., Klaus, A., and the <strong>IODP</strong> Expedition 301 Scientists,<br />

2005. <strong>IODP</strong> Expedition 301 <strong>in</strong>stalls three borehole crustal<br />

observatories, prepares for three-dimensional, cross-hole experiments<br />

<strong>in</strong> the northeastern Pacific Ocean. Sci. Drill. 1:6–11.<br />

Huber, J.A., Johnson, H.P., Butterfield, D.A., and Baross, J.A., 2006.<br />

Microbial life <strong>in</strong> ridge flank crustal fluids. Environ. Microbiol., 8:88-<br />

99.<br />

Kuever, J., Könneke, M., Galushko, A., and Drzyzga, O., 2001.<br />

Reclassification of Desulfobacterium phenolicum as Desulfobacula<br />

phenolica comb. nov. and description of stra<strong>in</strong> SaxT as Desulfotignum<br />

balticum gen. nov., sp. nov.. Int. J. Syst. Evol. Microbiol., 51:171-177.<br />

Lever, M.A., Alper<strong>in</strong>, M., Engelen, B., Inagaki, F., Nakagawa, S., Ste<strong>in</strong>sbu,<br />

B.O., and Teske, A., and <strong>IODP</strong> Expedition 301 Scientists, 2006. Trends<br />

<strong>in</strong> basalt and sediment core contam<strong>in</strong>ation dur<strong>in</strong>g <strong>IODP</strong> Expedition<br />

301. Geomicrobiol. J. 23:517-530.<br />

Moser, D.P., Gihr<strong>in</strong>g, T.M., Brockman, F.J., Fredrickson, J.K., Balkwill,<br />

D.L., Dollhopf, M.E., Sherwood Lollar, B., Pratt, L.M., Boice, E.,<br />

Southam, G., Wanger, G., and Baker, B.J., 2005. Desulfotomaculum


146<br />

and Methanobacterium spp. dom<strong>in</strong>ate a 4- to 5-kilometer-deep fault.<br />

Appl. Environ. Microbiol. 71:8773–8783.<br />

Motamedi, M., and Pedersen, K, 1998. Desulfovibrio aespoeensis sp. nov., a<br />

mesophilic sulfate-reduc<strong>in</strong>g bacterium from deep groundwater at Äspö<br />

hard rock laboratory, Sweden. Int. J. Sys. Bacteriol., 48:311-315.<br />

Nakagawa, S., Inagaki, F., Suzuki, Y., Ste<strong>in</strong>sbu, B.O., Lever, M.A., Takai,<br />

K., Engelen, B., Sako, Y., Wheat, C.G., Horikoshi, K., and Integrated<br />

Ocean Drill<strong>in</strong>g Program Expedition 301 Scientists, 2006. Microbial<br />

community <strong>in</strong> black rust exposed to hot ridge-flank crustal fluids. Appl.<br />

Environ. Microbiol.<br />

72:6789-6799.<br />

Parkes, R.J., Cragg, B.A., and Wellsbury, P., 2000. Recent studies on<br />

bacterial populations and processes <strong>in</strong> subseafloor sediments: A review.<br />

Hydrogeol J<br />

8:11-28.<br />

Sass, H., and Cypionka, H. 2004. Isolation of sulfate-reduc<strong>in</strong>g bacteria from<br />

the terrestrial deep subsurface and description of Desulfovibrio<br />

cavernae sp. nov.. Sys. App. Microbiol. 27:541-548.<br />

Sch<strong>in</strong>k, B., Thiemann, V., Laue, H., and Friedrich, M.W., 2002.<br />

Desulfotignum phosphitoxidans sp. nov., a new mar<strong>in</strong>e sulfate reducer<br />

that oxidizes phosphite to phosphate. Arch. Microbiol., 177:381-91.<br />

Stevens, T.O., and McK<strong>in</strong>ley, J.P., 1995. Lithoautotrophic microbial<br />

ecosystems <strong>in</strong> deep basalt aquifers. Science, 270:450-455.<br />

<strong>IODP</strong><br />

Physical Properties of Mar<strong>in</strong>e Sediments<br />

Undergo<strong>in</strong>g Subduction – Results from<br />

Heated Shear Experiments at the Nankai<br />

Covergent Marg<strong>in</strong><br />

K. ZIMMERMANN 1 , A. HÜPERS 1 , A. KOPF 1<br />

1 DFG-Research Center Ocean Marg<strong>in</strong>s, University of Bremen,<br />

P.O. Box 330440, 28334 Bremen, Germany. E-mail:<br />

kattiz@uni-bremen.de, Fax: +4942121865810<br />

Subduction zones produce frequently earthquakes of<br />

magnitude M8 or larger. These events occur along the<br />

subduction plate boundary thrust with<strong>in</strong> a temperature<br />

range of 100-150°C to 350-450°C, known as the<br />

seismogenic zone. The reason for the onset of coseimic<br />

behaviour of the sediments is still unknown. Diagenetic<br />

and consolidation processes are supposed to alter the<br />

mechanical properties of the <strong>in</strong>itially weak sediments,<br />

which may lead to the onset of unstable slid<strong>in</strong>g behaviour.<br />

However, effects of PT conditions equivalent to the updip<br />

limit on mechanical properties of mar<strong>in</strong>e sediments are still<br />

poorly understood. S<strong>in</strong>ce natural samples from these depths<br />

are not available, we conducted isothermal compaction test<br />

equivalent to the updip limit to overcome this shortcom<strong>in</strong>g.<br />

For this, we focused on end-member lithologies from<br />

underthrust section of the <strong>in</strong>com<strong>in</strong>g plate at the Nankai<br />

marg<strong>in</strong> (Japan), where the Phillipp<strong>in</strong>e Plate subducts under<br />

the Eurasian Plate with a velocity of ~4cm/yr.<br />

Three samples of mar<strong>in</strong>e sediments with different gra<strong>in</strong><br />

sizes (clay - silt) were compacted up to 70 Mpa at different<br />

temperatures (20°C, 100°C, 150°C) <strong>in</strong> an hydrothermal<br />

oedometer apparatus to simulate subduction down the slab.<br />

Afterwards these compacted samples were sheared <strong>in</strong> a<br />

direct shear box at a normal load of 3.8 MPa, room<br />

temperature conditions up to a displacement of 8 mm with<br />

a velocity of 3 x 10-3mm/s. Furthermore, remoulded<br />

aliquots of the same samples of compacted clay- (smectite<br />

and illite) and quartz-rich sediments were sheared at up to<br />

16 MPa normal stress to high displacement rate us<strong>in</strong>g a<br />

r<strong>in</strong>g shear device. Those tests were carried out at four shear<br />

velocities and both at room temperature under seawater<br />

saturated conditions, and were then subsequently heated to<br />

>80°C seawater saturated under dra<strong>in</strong>ed conditions.<br />

As a ma<strong>in</strong> result from the direct shear experiments, the<br />

clay-rich sediments show the most pronounced stra<strong>in</strong><br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

soften<strong>in</strong>g with high peak strength and very low residual<br />

coefficient of friction. In contrast, the silty samples show<br />

little stra<strong>in</strong> soften<strong>in</strong>g. Additionally, the discrepancy<br />

between µpeak and µresidual is largest for the smectiteclay<br />

compared to the silty specimens. This <strong>in</strong>crease <strong>in</strong> peak<br />

relative to residual strength may be expla<strong>in</strong>ed by the higher<br />

effective surface area <strong>in</strong> the samples poor <strong>in</strong> quartz content.<br />

With<strong>in</strong> all tests conducted so far, the samples compacted at<br />

20°C seem slightly stronger than those which got thermally<br />

altered. At high displacements dur<strong>in</strong>g the r<strong>in</strong>g shear<br />

experiments, the friction coefficient of clay m<strong>in</strong>erals<br />

(σn≈2 MPa) show similar values and are much smaller<br />

than the quartz rich sample (ca. µresidual of 0.13-0.23). At<br />

higher normal stresses (up to ≈16 MPa) and room<br />

temperature, the friction coefficients almost double. When<br />

the same samples are heated to >80°C, more pore water as<br />

well as clay m<strong>in</strong>eral-bound water is released so that the<br />

specimens show a stra<strong>in</strong> harden<strong>in</strong>g behaviour and approach<br />

friction coefficients of µ>0.4. The data correlate well with<br />

friction values estimated for plat boundary faults with<br />

<strong>in</strong>creas<strong>in</strong>g depth.<br />

<strong>ICDP</strong><br />

Climate and environmental variability dur<strong>in</strong>g<br />

the past 56 ka atLaguna Potrok Aike<br />

(southern Patagonia, Argent<strong>in</strong>a), the site of<br />

the <strong>ICDP</strong> lake drill<strong>in</strong>g project “PASADO”<br />

B. ZOLITSCHKA 1 , F.S. ANSELMETTI 2 , D. ARIZTEGUI 3 , H.<br />

CORBELLA 4 , T. HABERZETTL 5 , A. LÜCKE 6 , C. MAYR 7 , C.<br />

OHLENDORF 1 , F. SCHÄBITZ 8 , M. WILLE 8<br />

1 University of Bremen, Institute of Geography (Geopolar), 28359<br />

Bremen, Germany (zoli@uni-bremen.de)<br />

2 Swiss Federal Institute of Aquatic Science & Technology<br />

(Eawag), 8600 Dübendorf, Switzerland<br />

3 University of Geneva, Section of Earth Sciences, 1205 Geneva,<br />

Switzerland<br />

4 Argent<strong>in</strong>e Museum of Natural History, 1007 Buenos Aires,<br />

Argent<strong>in</strong>a<br />

5 Sedimentology and Environmental Geology, Geoscience Center,<br />

University of Gött<strong>in</strong>gen, 37077 Gött<strong>in</strong>gen, Germany<br />

6 Institute for Chemistry and Dynamics of the Geosphere (ICG) V:<br />

Sedimentary Systems, Research Center Jülich, 52425 Jülich,<br />

Germany<br />

7 GeoBio-Center LMU and Dept. of Earth & Environmental<br />

Sciences, University of Munich, 80333 Munich, Germany<br />

8 Sem<strong>in</strong>ar for Geography and Education, University of Cologne,<br />

50931 Cologne, Germany<br />

For mid to high southern latitudes climate<br />

reconstructions extend<strong>in</strong>g well beyond the Holocene and<br />

the Late-Glacial are mostly restricted to either mar<strong>in</strong>e<br />

sediments or to Antarctic ice cores. Until now, records<br />

from the cont<strong>in</strong>ental realm are rare or not existent. Here we<br />

start to close this gap for southern South America by<br />

<strong>in</strong>vestigat<strong>in</strong>g sediment records from Laguna Potrok Aike, a<br />

ca. 770 ka maar lake <strong>in</strong> the dry steppe of southern<br />

Argent<strong>in</strong>a (52°S, 70°W). This term<strong>in</strong>al lake from<br />

southernmost Patagonia is highly sensitive to hydrological<br />

changes and its lacustr<strong>in</strong>e record provides unique<br />

cont<strong>in</strong>ental data of variations <strong>in</strong> climate, hydrology and<br />

related dust deposition (Haberzettl et al., 2007; Mayr et al.,<br />

2007). Furthermore, it eventually may act as a cornerstone<br />

for paleodata-model comparison of the Southern<br />

Hemisphere. With<strong>in</strong> the <strong>ICDP</strong>-funded “Potrok Aike maar<br />

lake sediment archive drill<strong>in</strong>g project” (PASADO), more<br />

than 400 m of sediment are scheduled to be <strong>in</strong>vestigated <strong>in</strong>


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

an <strong>in</strong>ternational and <strong>in</strong>terdiscipl<strong>in</strong>ary approach possibly<br />

extend<strong>in</strong>g this terrestrial record to the Matuyama/Brunhes<br />

geomagnetic polarity reversal. This would be the transition<br />

from the lower to the middle Pleistocene co<strong>in</strong>cid<strong>in</strong>g with<br />

the mar<strong>in</strong>e oxygen isotope stage boundary 20/19. Not only<br />

for the older part of the record we therefore expect a high<br />

potential for paleomagnetic dat<strong>in</strong>g <strong>in</strong> addition to<br />

tephrochronology. This will not only <strong>in</strong>crease the<br />

comparability to Antarctic ice cores considerably but also<br />

improve the correlation with mar<strong>in</strong>e sediment records.<br />

Here we present a piston core transect from the<br />

submerged lake level terrace at 30 m water depth across a<br />

cor<strong>in</strong>g site on the relatively steep northern slope of the<br />

lacustr<strong>in</strong>e bas<strong>in</strong> at 47 m water depth down to the 100 m<br />

deep and flat central bas<strong>in</strong> of Laguna Potrok Aike.<br />

Correlation of such different records from quite diverse<br />

depositional environments was only possible through l<strong>in</strong>ks<br />

via volcanic ash layers. Additional time control of the<br />

multi-proxy sediment <strong>in</strong>vestigations was achieved by<br />

radiocarbon (AMS 14C) and optically stimulated<br />

lum<strong>in</strong>escence (OSL) dat<strong>in</strong>g. F<strong>in</strong>ally, the obta<strong>in</strong>ed<br />

chronology reaches back <strong>in</strong> time to ca. 56 ka BP. To<br />

improve our understand<strong>in</strong>g of the underly<strong>in</strong>g synoptic<br />

climate forc<strong>in</strong>g, reconstructions are merged with modern<br />

process studies.<br />

Lake level high and low stands are documented by<br />

detailed levell<strong>in</strong>g of subaerial terraces <strong>in</strong> the catchment<br />

area with a differential global position<strong>in</strong>g system and by<br />

survey<strong>in</strong>g of subaquatic terraces <strong>in</strong> the lake bas<strong>in</strong> with a 3.5<br />

kHz seismic system. One low stand (ca. 8600 to 7300 cal.<br />

yrs BP) and one certa<strong>in</strong> high stand (ca. AD 1480 to 1930)<br />

as well as an assumed lake level high stand dur<strong>in</strong>g the<br />

Late-Glacial or the last glacial (probably before ca. 13,200<br />

cal. yrs BP) have been confirmed. Process studies<br />

demonstrate that these changes <strong>in</strong> water volume <strong>in</strong>fluence<br />

the formation of endogenic calcite precipitation which is<br />

preserved <strong>in</strong> the sedimentary record. An understand<strong>in</strong>g of<br />

the underly<strong>in</strong>g climatic forc<strong>in</strong>g is achieved by a<br />

comparison of modelled lake level variations with<br />

<strong>in</strong>strumental meteorological data <strong>in</strong>dicat<strong>in</strong>g that the lake<br />

level is ma<strong>in</strong>ly driven by precipitation, related w<strong>in</strong>d<br />

strength and w<strong>in</strong>d direction. Lake levels and precipitation<br />

decrease dur<strong>in</strong>g periods of persistently high w<strong>in</strong>ds from<br />

westerly directions, whereas lake levels and precipitation<br />

<strong>in</strong>crease dur<strong>in</strong>g periods of enhanced easterly w<strong>in</strong>ds. Such a<br />

relation is expla<strong>in</strong>ed by strengthen<strong>in</strong>g of the Southern<br />

Hemispheric Westerlies and block<strong>in</strong>g of ra<strong>in</strong>-br<strong>in</strong>g<strong>in</strong>g<br />

cyclones from the east (less ra<strong>in</strong>) or more frequent<br />

occurrences of cyclones from the South Atlantic (more<br />

ra<strong>in</strong>). S<strong>in</strong>ce lake volume controls the autochthonous<br />

lacustr<strong>in</strong>e carbonate precipitation, the amount of<br />

sedimentary calcite content as well as its isotopic<br />

composition archives these recurrence patterns of weather<br />

conditions.<br />

Reconstructions for the last 1500 years document a<br />

lake level high-stand preceeded by pronounced cyclicities<br />

of calcite precipitation which are also mirrored by the<br />

oxygen isotope (δ18O) record. This high stand of 8.8 m<br />

above the present day lake level ocurred between AD 1480<br />

and 1930 – a tim<strong>in</strong>g that co<strong>in</strong>cides with the northern<br />

hemispheric Little Ice Age (Haberzettl et al., 2005). The<br />

dist<strong>in</strong>ct Holocene drought between ca. 8600 and 7300 cal.<br />

yrs BP is highlighted by a seismically and lithologically<br />

detected unconformity at around 33 m below the present<br />

147<br />

lake level at the site of a submerged lake level terrace<br />

(Haberzettl et al., <strong>2008</strong>) and <strong>in</strong>creased values for <strong>in</strong>organic<br />

carbon, higher sedimentation rates and a dist<strong>in</strong>ctly different<br />

isotopic composition of organic matter at the deep central<br />

bas<strong>in</strong> of the lake (Haberzettl et al., 2007). This po<strong>in</strong>ts to a<br />

lower lake level with <strong>in</strong>creased <strong>in</strong>wash of soil material<br />

from the former lake shore which has fallen dry dur<strong>in</strong>g this<br />

period. Before 13,200 cal. yrs BP carbonates disappear<br />

completely and we assume that this is the time of highest<br />

lake levels which is furthermore related to the formation of<br />

an outflow at ca. 21 m above the present day lake level.<br />

References:<br />

Haberzettl, T. et al. (2005) Climatically <strong>in</strong>duced lake level changes dur<strong>in</strong>g<br />

the last two millennia as reflected <strong>in</strong> sediments of Laguna Potrok Aike,<br />

southern Patagonia (Santa Cruz, Argent<strong>in</strong>a). Journal of Paleolimnology<br />

33: 283-302.<br />

Haberzettl, T. et al. (2007) Lateglacial and Holocene wet-dry cycles <strong>in</strong><br />

southern Patagonia: chronology, sedimentology and geochemistry of a<br />

lacustr<strong>in</strong>e record from Laguna Potrok Aike, Argent<strong>in</strong>a. The Holocene,<br />

17: 297-310.<br />

Haberzettl, T. et al. (<strong>2008</strong>) Hydrological variability and explosive volcanic<br />

activity <strong>in</strong> southeastern Patagonia dur<strong>in</strong>g Oxygen Isotope Stage 3 and<br />

the Holocene <strong>in</strong>ferred from lake sediments of Laguna Potrok Aike,<br />

Argent<strong>in</strong>a. Palaeogeography, Palaeoclimatology, Palaeoecology: <strong>in</strong><br />

press.<br />

Mayr, C. et al. (2007) Holocene variability of the Southern Hemisphere<br />

westerlies <strong>in</strong> Argent<strong>in</strong>ean Patagonia (52°S). Quaternary Science<br />

Reviews, 26: 579-584.<br />

<strong>IODP</strong><br />

Rock magnetic identification and<br />

geochemical process models of greigite<br />

formation <strong>in</strong> Quaternary mar<strong>in</strong>e sediments<br />

from the Gulf of Mexico (<strong>IODP</strong> Hole<br />

U1319A)<br />

Y. FU 1,2 , T. VON DOBENECK 1 , CH. FRANKE 1,3 , DAVID HESLOP 1 ,<br />

SABINE KASTEN 1,4<br />

1 Fachbereich Geowissenschaften, Universität Bremen,<br />

Klagenfurter Strasse, 28359 Bremen, Germany<br />

2 School of Eng<strong>in</strong>eer<strong>in</strong>g and Sciences, Jacobs University Bremen,<br />

Campus R<strong>in</strong>g 1, 28759 Bremen, Germany<br />

3 Laboratoire des Sciences du Climat et de l’Environnement CEA-<br />

CNRS-UVSQ, Campus du CNRS, Bât. 12, Avenue de la<br />

Terrasse, 91198 Gif-sur-Yvette Cedex, France<br />

4 Alfred Wegener Institut für Polar- and Meeresforschung, Mar<strong>in</strong>e<br />

Geochemie, Am Handelshafen 12, 27570 Bremerhaven,<br />

A 160 m long hemipelagic, ma<strong>in</strong>ly turbiditic Late<br />

Pleistocene sediment sequence from the Brazos-Tr<strong>in</strong>ity<br />

<strong>in</strong>traslope bas<strong>in</strong> IV off Texas (<strong>IODP</strong> Hole U1319A) was<br />

<strong>in</strong>vestigated with paleo- and rock magnetic methods.<br />

Numerous layers depleted <strong>in</strong> iron oxides and enriched by<br />

the ferrimagnetic iron sulfide m<strong>in</strong>eral greigite (Fe3S 4) were<br />

detected by diagnostic magnetic properties. From the<br />

distribution of these layers, their stratigraphic context and<br />

the present geochemical zonation, we developed two<br />

conceptual reaction models of greigite formation <strong>in</strong> nonsteady<br />

depositional environments. The “sulfidization<br />

model” predicts s<strong>in</strong>gle or tw<strong>in</strong> greigite layers by<br />

<strong>in</strong>complete transformation of iron monosulfides with<br />

polysulfides around the sulfate methane transition (SMT).<br />

The “oxidation model” expla<strong>in</strong>s greigite formation by<br />

partial oxidation of iron monosulfides near the iron redox<br />

boundary dur<strong>in</strong>g periods of downward shift<strong>in</strong>g oxidation<br />

fronts.<br />

The stratigraphic record provides evidence that both<br />

these greigite formation processes act here at typical depths<br />

of about 12 mbsf and 3 mbsf. Numerous “fossil” greigite


148<br />

layers most likely preserved by rapid upward shifts of the<br />

redox zonation denote past SMT and respective sea floor<br />

positions characterized by stagnant hemipelagic<br />

sedimentation conditions. Six diagenetic stages from a<br />

prist<strong>in</strong>e magnetite-dom<strong>in</strong>ated to a fully greigite-dom<strong>in</strong>ated<br />

magnetic m<strong>in</strong>eralogy were differentiated by comb<strong>in</strong>ation of<br />

hysteresis and remanence parameters.<br />

The more structured upper part (0-40 mbsf) of the<br />

record bears well-preserved greigite layers grouped around<br />

present and past, now abandoned geochemical boundaries.<br />

The lower part of the record (40-156 mbsf) shows an<br />

advanced degree of magnetite depletion and many spurious<br />

greigite and pyrite layers, but the signatures are poorly<br />

developed or conserved and cannot be easily identified<br />

with our models at this stage. Rock magnetic signatures of<br />

temporarily static and rapidly shift<strong>in</strong>g SMT positions give<br />

h<strong>in</strong>ts at the rhythm of sediment spills and their external<br />

control by sea-level change.<br />

Conceptual models of greigite layer formation and<br />

preservation <strong>in</strong> non-steady state sedimentary systems. Black<br />

curves mark hypothetical oxygen, nitrate, sulfate, methane and<br />

hydrogen sulfide profiles, arrows <strong>in</strong>dicate shifts of iron redox<br />

boundary and sulfate-methane transition by alternate<br />

hemipelagic and turbiditic sedimentation. The “sulfidization<br />

model” (a-d) predicts s<strong>in</strong>gle or tw<strong>in</strong> greigite layers by<br />

<strong>in</strong>complete sulfidization of iron monosulfide with polysulfide<br />

around the SMT. The “oxidation model” (e-h) expla<strong>in</strong>s<br />

greigite formation by partial oxidation of iron monosulfides<br />

with nitrate at the iron redox boundary dur<strong>in</strong>g periods of<br />

downward shift<strong>in</strong>g oxidation fronts. Although both greigite<br />

formation pathways may proceed simultaneously, the<br />

alternative direct pyrite formation is assumed <strong>in</strong> the lower<br />

diagrams.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Us<strong>in</strong>g a determ<strong>in</strong>istic multivariate group<strong>in</strong>g approach<br />

based on concentration-<strong>in</strong>dependent magnetic hysteresis<br />

characteristics (doma<strong>in</strong> state and coercivity) we track the<br />

iron oxide alteration pathway from a primary magnetic<br />

m<strong>in</strong>eral assemblage rich <strong>in</strong> f<strong>in</strong>e magnetite over an<br />

<strong>in</strong>creas<strong>in</strong>gly depleted relict stage consist<strong>in</strong>g predom<strong>in</strong>antly<br />

of coarser and Ti-rich particles. Dur<strong>in</strong>g further<br />

sulfidization, the secondary magnetic m<strong>in</strong>eral greigite<br />

grows from an ultra-f<strong>in</strong>e (< 50 nm), magnetically <strong>in</strong>stable<br />

SP phase to a more mature and magnetically dom<strong>in</strong>ant SD<br />

(> 50 nm) phase with magnetic carrier potential.<br />

Reaction k<strong>in</strong>etics and diffusion times are certa<strong>in</strong>ly<br />

essential, but have not been regarded <strong>in</strong> this primarily rock<br />

magnetic and stratigraphic approach. We yet lack evidence<br />

to decide, to what extent microorganisms are <strong>in</strong>volved <strong>in</strong> or<br />

responsible for the observed greigite formation, but<br />

consider this a very likely possibility.<br />

<strong>IODP</strong><br />

Geotechnical behaviour and magnetic fabrics<br />

of rapidly deposited Quaternary sediments,<br />

Ursa Bas<strong>in</strong>, Gulf of Mexico – first results<br />

S. MEISSL 1 , J.H. BEHRMANN 1<br />

1 IFM-GEOMAR, Wischhofstr. 1-3, 24148 Kiel, Germany,<br />

smeissl@ifm-geomar.de<br />

Integrated Ocean Drill<strong>in</strong>g Program (<strong>IODP</strong>) Expedition<br />

308 (Expedition 308 Scientists, 2005; Flem<strong>in</strong>gs et al, 2006,<br />

Behrmann et al., 2006) was the first part of a twocomponent<br />

program dedicated to the study of overpressure<br />

and fluid flow on the Gulf of Mexico cont<strong>in</strong>ental slope.<br />

The scientific programme exam<strong>in</strong>ed how sedimentation,<br />

overpressure, fluid flow, and deformation are coupled a<br />

passive marg<strong>in</strong> sett<strong>in</strong>g. One of the two drill<strong>in</strong>g targets was<br />

the Ursa Bas<strong>in</strong>, situated about 150 km due south of New<br />

Orleans, Louisiana (USA) <strong>in</strong> about 1000 m of water. The<br />

region is of economic <strong>in</strong>terest because of its prolific<br />

oilfields that lie at depths >4000 meters below seafloor<br />

(mbsf). Mahaffie (1994) described the geological character<br />

of the Mars oilfield, and the more recently explored Ursa<br />

field is <strong>in</strong> Mississippi Canyon Blocks 855, 897, and 899. In<br />

the Ursa Bas<strong>in</strong>, Late Quaternary sedimentation is among<br />

the most rapid on Earth (grand average: 10 mm/year). The<br />

sections of mud are underconsolidated throughout, and<br />

severe overpressure conditions were documented at all<br />

three sites drilled (U1322, U1323, U1324). In addition,<br />

sedimentation <strong>in</strong> the form of mass transport deposits<br />

(MTD) plays a major role.<br />

In the course of this project, we were so far <strong>in</strong>terested<br />

<strong>in</strong> <strong>in</strong>vestigat<strong>in</strong>g the relative strengths and mechanical<br />

behaviour of underconsolidated Late Pleistocene<br />

mudstones, and identify differences between normally<br />

sedimented material and sections affected by submar<strong>in</strong>e<br />

slump<strong>in</strong>g <strong>in</strong> the form of MTD. Furthermore we analysed<br />

magnetic fabrics <strong>in</strong> sediments from the most <strong>in</strong>tensely<br />

slumped site (Site U 1322), to identify fabric-build<strong>in</strong>g<br />

factors such as sedimentary, compactive and mass transport<br />

processes.<br />

Triaxial tests were performed at University of Freiburg.<br />

Setup and use of the apparatus are documented <strong>in</strong> Roeser<br />

(2007). To date, a total of 15 tests (13 successful, 2 failed)<br />

were performed as CU-tests (consolidated and undra<strong>in</strong>ed)<br />

to approximately simulate <strong>in</strong> situ conditions. Tests were


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

carried out <strong>in</strong> constant stra<strong>in</strong> rate mode to large (ca. 20%)<br />

axial shorten<strong>in</strong>g <strong>in</strong> order to elucidate the post-yield<br />

behaviour. Material properties, like cohesion, coefficient of<br />

friction and <strong>in</strong>ternal angles of friction were def<strong>in</strong>ed with<br />

these tests. Additionally, water content and gra<strong>in</strong> density<br />

were determ<strong>in</strong>ed with rout<strong>in</strong>es accord<strong>in</strong>g to the German<br />

Industry Norm (DIN). Fracture angles were measured on<br />

the samples after test<strong>in</strong>g, to provide an additional means of<br />

estimat<strong>in</strong>g angles of static friction. Consolidation of the<br />

samples after saturation was used to determ<strong>in</strong>e hydraulic<br />

conductivity and permeability <strong>in</strong> a rout<strong>in</strong>e ak<strong>in</strong> to<br />

oedometer test<strong>in</strong>g (see Roeser, 2007, for description). A<br />

s<strong>in</strong>gle test required about two weeks <strong>in</strong>clud<strong>in</strong>g<br />

supplementary measurements, saturation, consolidation<br />

compression, and post-test data analysis. Two or preferably<br />

three tests were perfomed at conf<strong>in</strong><strong>in</strong>g pressures rang<strong>in</strong>g<br />

from 0.5 to 1.8 MPa on a whole-round sample at different<br />

conf<strong>in</strong><strong>in</strong>g pressures. This was achieved by divid<strong>in</strong>g the<br />

whole round <strong>in</strong>to two or three aliquots. R<strong>in</strong>g shear tests<br />

were performed at the RCOM Institute, University of<br />

Bremen, us<strong>in</strong>g a Bromhead RS r<strong>in</strong>g shear apparatus (see<br />

Roeser, 2007, for description of equipment and analytical<br />

procedures). To simulate high-stra<strong>in</strong> deformation dur<strong>in</strong>g<br />

large movements on slump surfaces, water-saturated<br />

remoulded sediments were sheared to high stra<strong>in</strong>s.<br />

Measurements were performed with axial loads rang<strong>in</strong>g<br />

from 1 MPa to approximately 16 MPa at four different<br />

rates of shear (steps of 0.005, 0.014, 0.18 and 1.8 mm/m<strong>in</strong>).<br />

Because of the very high clay contents, the samples<br />

required very long consolidation periods, result<strong>in</strong>g <strong>in</strong> about<br />

ten days duration for a s<strong>in</strong>gle test s<strong>in</strong>gle. Measurements of<br />

Anisotropy of Magnetic Susceptibilty (AMS) were<br />

performed at Mar<strong>in</strong>e Geophysics, Bremen University. We<br />

used a Geofyzika Brno KLY-2 Kappa Bridge for<br />

measurements, and the ANISOFT 20 software package for<br />

data analysis (Hrouda, 1990). The directions and pr<strong>in</strong>cipal<br />

axis lengths of the AMS ellipsoid Kmax ≥ K<strong>in</strong>t ≥ Km<strong>in</strong><br />

were determ<strong>in</strong>ed from 15 directional magnetic<br />

susceptibility measurements, sufficient to constra<strong>in</strong> the<br />

AMS tensor (e.g Kopf & Behrmann, 1997). We determ<strong>in</strong>ed<br />

AMS ellipsoids <strong>in</strong> 250 samples taken from Site U1322<br />

cores. The samples come from eleven mass transport<br />

deposits and from the <strong>in</strong>terven<strong>in</strong>g layers produced by<br />

normal fallout sedimentation. The objective was to<br />

compare the magnetic fabrics from both sediment types.<br />

Reorientation of AMS pr<strong>in</strong>cipal axes was undertaken us<strong>in</strong>g<br />

the available tensor tool orientation data for the hydraulic<br />

piston cores taken at Site U1322. Our prelim<strong>in</strong>ary results<br />

are as follows.<br />

Triaxial tests: So far, four samples were analyzed from<br />

Site U1324. Sedimentological description (Flem<strong>in</strong>gs et al.,<br />

2006) <strong>in</strong>dicated slightly different sett<strong>in</strong>gs: normally<br />

deposited hemipelagic sediments, levee turbidites and<br />

distal turbidites. The samples were taken from depths<br />

between 353 and 409 meters below sea floor (mbsf). We<br />

have tried to determ<strong>in</strong>e peak deviatoric stresses, Young’s<br />

moduli, and changes <strong>in</strong> pore pressure. Stress paths were<br />

recorded to derive friction coefficients, angles of friction<br />

and cohesion. Supplementary measurements provided<br />

water content and gra<strong>in</strong> density. All measured peak<br />

deviatoric stresses are very small, and lie between 45,3 kPa<br />

and 140 kPa. Range of E modules is between about two<br />

and six kPa <strong>in</strong> the samples com<strong>in</strong>g from less than 407<br />

mbsf. The distal turbidite from 409 mbsf has a dist<strong>in</strong>ctly<br />

149<br />

higher E module (range: 13.6 to 17.4 kPa). Permeabilities<br />

are <strong>in</strong> the range of 10-16 to 10-17 m2, and hydraulic<br />

conductivities are around 10-9 to 10-10 ms-1. Gra<strong>in</strong><br />

densities of the tested samples are slightly above 2.7, and<br />

water contents range from 18.3% to 27.6%. One sample<br />

com<strong>in</strong>g from a mass transport deposit (MTD) at Site<br />

U1322 was analyzed so far.<br />

Here tests showed that the material is weaker than the<br />

normally sedimented material: peak daviatoric stresses<br />

range from about 27 kPa to 42 kPa, but E modules are<br />

similar to the weak normally sedimented samples (5.7 - 7.6<br />

kPa). Stress paths from all samples <strong>in</strong>dicate that the<br />

material is somewhat overconsolidated, but this effect is<br />

least notable <strong>in</strong> those samples that were sheared at around<br />

1.7 MPa conf<strong>in</strong><strong>in</strong>g pressure. This is an <strong>in</strong>dication that the<br />

<strong>in</strong> situ effective stress <strong>in</strong> the depth range <strong>in</strong>vestigated at<br />

Site U1324 may be close to this value. Inferences to be<br />

made about static coefficients of friction from stress paths<br />

are at a very prelim<strong>in</strong>ary stage, but show surpris<strong>in</strong>gly high<br />

values (0.8 or more) for the normally sedimented samples<br />

at the range of mean effective stresses considered (20 –100<br />

kPa). For the MTD sample the friction coefficient estimate<br />

is def<strong>in</strong>itely lower (0.44 at a mean effective stress range of<br />

20 – 40 kPa). Inferred cohesions are <strong>in</strong> the range of 10 – 20<br />

kPa, underl<strong>in</strong><strong>in</strong>g the very weak nature of the Ursa Bas<strong>in</strong><br />

sediments.<br />

R<strong>in</strong>g shear tests: Four samples, two each from Site<br />

U1322 and from Site U1324 were analyzed so far. As<br />

experiments were under dra<strong>in</strong>ed conditions, comparison<br />

with the results to those from the undra<strong>in</strong>ed triaxial tests is<br />

not straightforward, but some similarities are evident.<br />

Shear strengths recorded at about 1 MPa normal stress (8<br />

kg axial load) are very low at 100 – 300 kPa, ris<strong>in</strong>g more or<br />

less l<strong>in</strong>early to values between 3 MPa and 4.5 MPa at 15<br />

MPa normal stress (128 kg axial load).<br />

Friction coefficients from all samples are <strong>in</strong> the range<br />

of 0.13 to 0.31, with <strong>in</strong>ternal angles of friction of<br />

approximately 7.4° to 17.2°. These are values not unusual<br />

for smectite-rich clays and muds. There is no obvious<br />

difference between the frictional behaviour of the three<br />

samples from normally sedimented sections and the one<br />

from a MTD, except for the fact that the MTD material<br />

(Sample U1322B-26H) is the weakest, and shows the least<br />

sensitivity of frictional coefficients to changes <strong>in</strong> shear<strong>in</strong>g<br />

rate and axial load. As samples subjected to r<strong>in</strong>g shear<strong>in</strong>g<br />

are remoulded, with no rema<strong>in</strong><strong>in</strong>g primary microfabric, this<br />

could be related to composition and/or the mode of clay<br />

flocculation and charg<strong>in</strong>g effects. Further <strong>in</strong>vestigations<br />

will show whether this is a phenomenon <strong>in</strong>herently related<br />

to mass transport deposits. More analyses of samples from<br />

both groups of sediments are needed, however, to further<br />

explore this question.<br />

Anisotropy of Magnetic susceptibility (AMS): Down to<br />

235 mbsf at Site U1322, eleven mass transport deposits<br />

(MTD 1 – MTD 11) were sampled, and results were<br />

compared with results of samples <strong>in</strong> the overly<strong>in</strong>g and<br />

underly<strong>in</strong>g normally sedimented sections (COMP 1 –<br />

COMP 11). In the MTD samples AMS ellipsoids are<br />

mostly triaxial, with a large spread, but with a larger<br />

proportion of prolate shapes, except for the uppermost<br />

MTD 1. AMS ellipsoid shapes <strong>in</strong> the <strong>in</strong> the subjacent<br />

normally sedimented samples are dist<strong>in</strong>ctly more oblate.<br />

Our prelim<strong>in</strong>ary <strong>in</strong>terpretation is that this difference<br />

reflects a compactive history <strong>in</strong> the normally sedimented


150<br />

sections, and a comb<strong>in</strong>ation of compaction and shear<strong>in</strong>g <strong>in</strong><br />

the MTDs. Below 174 mbsf (MTD 6 – MTD 11), this<br />

dist<strong>in</strong>ction is present as well, but the support<strong>in</strong>g database is<br />

generally smaller. A common feature of almost all MTDs<br />

is the larger P-factor if compared with the subjacent<br />

normally deposited sediments. In the straightforward<br />

<strong>in</strong>terpretative approach this h<strong>in</strong>ts to more <strong>in</strong>tense<br />

deformation; a feature that was probably impr<strong>in</strong>ted onto the<br />

Ursa Bas<strong>in</strong> muds and clays dur<strong>in</strong>g downslope movement.<br />

Orientations of the pr<strong>in</strong>cipal axes of the AMS ellipsoid<br />

are different between normally sedimented muds and those<br />

com<strong>in</strong>g from MTDs. In several cases the MTD data show<br />

E-W to to ESE-WNW Kmax, orientations, and a remarkable<br />

deviation of K m<strong>in</strong> from the vertical axis, which is the<br />

orientation of Km<strong>in</strong> <strong>in</strong> the overly<strong>in</strong>g normally sedimented<br />

units. There, a dom<strong>in</strong>antly E-W oriented K max is thought to<br />

reflect the sediment transport direction over the channel<br />

levee, eastward from the Southwest Pass and Ursa Canyons<br />

to the west. Vertical Km<strong>in</strong> is <strong>in</strong>terpreted to relate to fabric<br />

build<strong>in</strong>g by uniaxial compaction. In the MTD, the<br />

orientation of Kmax is equally <strong>in</strong>terpreted to reflect the<br />

transport signal. However, the observed average 30° tilt<strong>in</strong>g<br />

from the vertical of K m<strong>in</strong> to a steep southerly dip most<br />

likely related to additional shear<strong>in</strong>g and compaction<br />

imposed by slump<strong>in</strong>g events. Complete analysis of the<br />

AMS data is hoped to reveal details <strong>in</strong> the modes of<br />

sedimentation, transport and slump<strong>in</strong>g.<br />

References:<br />

Behrmann, J.H., Flem<strong>in</strong>gs, P.B., John, C.M., and the Expedition 308<br />

Scientists, 2006. Rapid sedimentation, overpressure and focused fluid<br />

flow, Gulf of Mexico cont<strong>in</strong>ental marg<strong>in</strong>. Scientific Drill<strong>in</strong>g, 3, 12-17.<br />

doi:10.2204/iodp.sd.3.03.2006<br />

Expedition 308 Scientists, 2005. Overpressure and fluid flow processes <strong>in</strong><br />

the deepwater Gulf of Mexico: slope stability, seeps, and shallow-water<br />

flow. <strong>IODP</strong> Prel. Rept., 308. doi:10:2204/iodp.pr.308.2005<br />

Flem<strong>in</strong>gs, P.B., Behrmann, J.H., John, C.M., and the Expedition 308<br />

Scientists, 2006. Proc. <strong>IODP</strong>, 308: College Station TX (Integrated<br />

Ocean Drill<strong>in</strong>g Program Management International,<br />

Inc.).doi:10.2204/iodp.proc.308.101.2006.http://iodp.tamu.edu/publicat<br />

ions/exp308/308title.htm<br />

Hrouda, F., et al., 1990. A package of programs for statistical evaluation of<br />

magnetic data us<strong>in</strong>g IBM-PC computers. EOS, Trans. Amer. Geophys.<br />

Union, Fall Meet<strong>in</strong>g, San Francisco, p. 1289.<br />

Kopf, A. & Behrmann, J.H., 1997. Fabric evolution and mechanisms of<br />

diagenesis <strong>in</strong> f<strong>in</strong>e gra<strong>in</strong>ed sediments from the Kita-Yamato trough,<br />

Japan Sea. J. Sedimentary Research, 67, 604-614.<br />

Mahaffie, M.J., 1994. Reservoir classification for turbidite <strong>in</strong>tervals at the<br />

Mars discovery, Mississippi Canyon Block 807, Gulf of Mexico. In<br />

Bouma, A.H., and Perk<strong>in</strong>s, B.G. (Eds.), Submar<strong>in</strong>e Fans and Turbidite<br />

Roeser, G., 2007. Petrography, physical properties, and geotechnical<br />

behavior of modern sediments, Southern Chile Trench. Doctoral<br />

Thesis, Univ. Freiburg, 129 pp.<br />

<strong>IODP</strong><br />

A new view of the Neogene to Quaternary<br />

evolution of the Maldives carbonate platform<br />

(Indian Ocean)<br />

C. BETZLER 1 , C. HÜBSCHER 2 , T. LÜDMANN 3 , J. REIJMER 4 , A.<br />

DROXLER 5 , S. LINDHORST 1 , M 74/4 SHIPBOARD SCIENTIFIC PARTY<br />

1<br />

Geological and Palaeontological Institute, Hamburg University<br />

2<br />

Institute of Geophysics, Hamburg University<br />

3<br />

Institute of Biogeochemistry and mar<strong>in</strong>e Chemistry, Hamburg<br />

University<br />

4<br />

Dept. of Sedimentology and Mar<strong>in</strong>e Geology, University<br />

Amsterdam<br />

5<br />

Dept. of Earth Science MS-126, Rice University Houston<br />

The Maldives carbonate platform <strong>in</strong> the Indian Ocean<br />

is the second largest isolated carbonate platform <strong>in</strong> the<br />

world oceans. It has been the subject of several studies<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

highlight<strong>in</strong>g the role of global sea-level changes for its<br />

evolution dur<strong>in</strong>g the last 60 Mio years. New geophysical<br />

and geological data recorded dur<strong>in</strong>g the Meteor cruise M<br />

74/4 (project “NEOMA”) <strong>in</strong> December 2007 <strong>in</strong>troduce new<br />

aspects which challenge this model. The data complement<br />

an exist<strong>in</strong>g data set for <strong>IODP</strong> Proposal 514 Full 6, and new<br />

site survey data will allow to expand, to sharpen, and to<br />

revise the concepts forwarded <strong>in</strong> this proposal.<br />

The Maldives consist of two N-S oriented rows of<br />

atolls enclos<strong>in</strong>g the up to 500 m deep Inner Sea. Seismic<br />

and hydroacoustic data measured <strong>in</strong> the Inner Sea reveal<br />

that the atolls are l<strong>in</strong>ed by active giant drift bodies<br />

separated from the atolls by a current moat and covered by<br />

migrat<strong>in</strong>g submar<strong>in</strong>e dunes. Dune and moat facies can be<br />

traced back <strong>in</strong>to time, thus allow<strong>in</strong>g reconstruct<strong>in</strong>g the<br />

signatures of bottom currents <strong>in</strong> the sediments back for the<br />

last 5 or possibly even 8 Mio years. Therefore, these strong<br />

currents were a major controll<strong>in</strong>g factor of platform slope<br />

sedimentation and of platform evolution. It is proposed that<br />

currents not only shape the carbonate platform slopes, but<br />

that they are also responsible for the so-called empty<br />

bucket geometry of the atolls, because shallow water<br />

carbonate produced <strong>in</strong> the <strong>in</strong>ner platform was cont<strong>in</strong>uously<br />

exported out of the atolls and re-distributed <strong>in</strong> the drift<br />

bodies. Ultimately this implies that the Maldives are a<br />

current-controlled carbonate platform and that its peculiar<br />

geometry is directly l<strong>in</strong>ked to its oceanographic sett<strong>in</strong>g.<br />

The new data show that the Maldives carbonate platform is<br />

dissected by a series of deeply rooted faults. The most<br />

spectacular expression of these faults on the seafloor are<br />

str<strong>in</strong>gs and clusters of giant pockmarks with diameters of<br />

up to 1500 m and depths of up to 180 m. Pockmarks<br />

correlate vertically with faults and partly with p<strong>in</strong>nacles<br />

previously <strong>in</strong>terpreted as more than 25 Mio years old patch<br />

reefs. To our knowledge this is the first record of giant<br />

pockmarks <strong>in</strong> isolated carbonate platforms far away from<br />

any cont<strong>in</strong>ental marg<strong>in</strong>. Hydroacoustic surveys of the<br />

pockmarks and sediment sampl<strong>in</strong>g (box cores and piston<br />

cores) <strong>in</strong>dicate that they are possibly not active and that at<br />

least some of them serve as sediment s<strong>in</strong>ks which conta<strong>in</strong><br />

the record of past events. In one of the pockmarks, for<br />

example, the tsunamite layer generated by the 2004 Indian<br />

Ocean tsunami was recovered.<br />

<strong>ICDP</strong><br />

FAR-DEEP: Successful completion of the<br />

first phase<br />

H. STRAUSS 1 , M. REUSCHEL 1 , V. MELEZHIK 2,3<br />

1 Geologisch-Paläontologisches Institut, Westfälische Wilhelms-<br />

Universität Münster, Corrensstr. 24, 48149 Münster, Germany<br />

2 Geological Survey of Norway, Leiv Eirikssons vei 39, 7491<br />

Trondheim, Norway<br />

3 Centre for Geobiology, Bergen University, P.O.BOX 7803, N-<br />

5020 Bergen, Norway<br />

The Archaean-Palaeoproterozoic transition (2500-2000<br />

Ma) represents one of the most critical transitions <strong>in</strong><br />

Earth’s history as it reflects the emergence of an aerobic<br />

Earth System. Essential to understand<strong>in</strong>g this <strong>in</strong>terval are<br />

studies that <strong>in</strong>tegrate the various proxy datasets which<br />

document the different processes operat<strong>in</strong>g at this time.<br />

The FAR-DEEP drill<strong>in</strong>g project addresses this 500 million<br />

year <strong>in</strong>terval def<strong>in</strong><strong>in</strong>g the Archaean – Palaeoproterozoic<br />

transition that is characterised by a series of unprecedented


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

environmental upheavals out of which the nascent aerobic<br />

Earth System emerged.<br />

Three overarch<strong>in</strong>g scientific objectives will be<br />

addressed by the FAR-DEEP project: (i) to establish a well<br />

characterised, well dated, well archived section for the<br />

period 2500-2000 Ma; (ii) to document the changes <strong>in</strong> the<br />

biosphere and the geosphere associated with the rise <strong>in</strong><br />

atmospheric oxygen; and (iii) to develop a self-consistent<br />

model to expla<strong>in</strong> the genesis and tim<strong>in</strong>g of the<br />

establishment of aerobic Earth Systems.<br />

Drill<strong>in</strong>g started on May 22 th , 2007 near Shunga Village<br />

<strong>in</strong> Karelia, Russia and f<strong>in</strong>ished on October 29 th , 2007,<br />

aga<strong>in</strong> <strong>in</strong> Karelia. Locations <strong>in</strong>between <strong>in</strong>cluded several<br />

sites on the Kola Pen<strong>in</strong>sula and <strong>in</strong> northern Russia.<br />

Throughout the entire summer and early fall, a total of<br />

fifteen drillholes, totall<strong>in</strong>g 3,560 m of excellent core<br />

material was recovered and is now available at the<br />

Geological Survey of Norway for the archiv<strong>in</strong>g and<br />

follow<strong>in</strong>g research by an <strong>in</strong>ternational group of scientists<br />

from 14 countries.<br />

<strong>IODP</strong><br />

Biogeochemistry of acetate <strong>in</strong> the deep<br />

mar<strong>in</strong>e biosphere – new <strong>in</strong>sights from stable<br />

carbon isotopic <strong>in</strong>vestigations<br />

V. HEUER 1 , J. POHLMAN 2 , M. TORRES 3 , M. ELVERT 1 , AND K.-U.<br />

HINRICHS 1<br />

1 Fachbereich Geowissenschaften, Universität Bremen, 28359<br />

Bremen, Germany<br />

2 U.S. Geological Survey, Woods Hole, USA<br />

3 College of Oceanic and Atmospheric Sciences, Oregon State<br />

University, USA<br />

The Deep Biosphere and the Subseafloor Ocean is one<br />

of three major research themes of the Integrated Ocean<br />

Drill<strong>in</strong>g Program (<strong>IODP</strong>) and with<strong>in</strong> this theme, gas<br />

hydrate studies are a high priority <strong>in</strong>itiative <strong>in</strong> the <strong>in</strong>itial<br />

science plan (IPSC, 2001). A large fraction of methane <strong>in</strong><br />

mar<strong>in</strong>e gas hydrates results from biogenic sources, but the<br />

processes that generate methane <strong>in</strong> deeply buried sediments<br />

and the carbon flow <strong>in</strong> the deep biosphere rema<strong>in</strong> to be<br />

elucidated. <strong>IODP</strong> Expedition 311 drilled a transect across<br />

the Cascadia Marg<strong>in</strong>, NE Pacific, to study the distribution<br />

and evolution of gas hydrates <strong>in</strong> an active cont<strong>in</strong>ental<br />

marg<strong>in</strong>. In our post-cruise research we study<br />

biogeochemical processes <strong>in</strong> the deep subsurface by<br />

decipher<strong>in</strong>g the <strong>in</strong>formation encoded <strong>in</strong> structural and<br />

isotopic properties of sedimentary organic molecules. This<br />

paper reports our f<strong>in</strong>d<strong>in</strong>gs from compound-specific isotopic<br />

analysis of low-molecular-weight organic compounds such<br />

as acetate.<br />

Acetate is a key metabolite <strong>in</strong> anaerobic metabolism<br />

and highly relevant for the cycl<strong>in</strong>g of carbon <strong>in</strong> mar<strong>in</strong>e<br />

sediments. The water-soluble C2-compound is produced<br />

either by fermentation of organic matter or by CO2<br />

reduction (autotrophic acetogenesis) and it serves as an<br />

important substrate for a variety of microorganisms<br />

<strong>in</strong>clud<strong>in</strong>g sulfate reduc<strong>in</strong>g bacteria and methanogens.<br />

Rapid turnover typically ma<strong>in</strong>ta<strong>in</strong>s acetate concentrations<br />

at low levels around 10 µM <strong>in</strong> the pore-waters of nearsurface<br />

sediments (e.g., Wellsbury and Parkes, 1995; Wu et<br />

al., 1997). However, <strong>in</strong> deeply-buried sediments acetate<br />

concentrations can be three orders of magnitude higher<br />

151<br />

(Egeberg and Barth, 1998), which is suggestive of a<br />

globally important, but poorly understood, acetate source<br />

that may be essentical for the the presence of a deep<br />

subseafloor biosphere (e.g., Wellsbury et al., 1997; Parkes<br />

et al., 2007).<br />

Stable isotopes provide a means to constra<strong>in</strong> details of<br />

carbon cycl<strong>in</strong>g. The relative abundance of both isotopes<br />

(δ 13 C) <strong>in</strong> a compound can provide <strong>in</strong>formation about its<br />

sources, s<strong>in</strong>ks, and participation <strong>in</strong> biogeochemical<br />

processes. This concept has been broadly applied <strong>in</strong><br />

isotope paleontology as well as <strong>in</strong> biogeochemical studies.<br />

A prom<strong>in</strong>ent example is the use of stable isotopes <strong>in</strong> the<br />

identification of methane sources and s<strong>in</strong>ks (e.g., Whiticar<br />

et al., 1986; Whiticar, 1999). Similarly, the stable carbon<br />

isotope composition of acetate has been proposed to be a<br />

sensitive <strong>in</strong>dicator of early diagenetic processes and their<br />

relative rates <strong>in</strong> sediments (Blair et al., 1987; Blair and<br />

Carter, 1992). However, due to severe analytical obstacles,<br />

δ 13 C values of acetate have only seldom been reported for<br />

<strong>in</strong> situ pore-waters of natural soils and sediments (e.g.,<br />

Blair et al., 1987; Blair and Carter, 1992; Krüger et al.,<br />

2002; Mohammadzadeh et al., 2005; Heuer et al., 2006).<br />

Just with the recent development of onl<strong>in</strong>e isotope-ratiomonitor<strong>in</strong>g<br />

liquid chromatography/mass spectrometry (irm-<br />

LC/MS) (Krummen et al., 2004), rout<strong>in</strong>e carbon isotope<br />

analysis of water soluble metabolites has started to evolve<br />

<strong>in</strong>to a realistic task (e.g., Heuer et al., 2006; Penn<strong>in</strong>g et al.,<br />

2006; Penn<strong>in</strong>g and Conrad, 2006; Conrad et al., 2007).<br />

This study has yielded the first pore-water profiles for<br />

the carbon isotope compositions of acetate and lactate <strong>in</strong><br />

the context of isotopic <strong>in</strong>formation on other carbon-bear<strong>in</strong>g<br />

compounds <strong>in</strong> deep subseafloor sediments. Isotopic<br />

relationships between acetate and both dissolved organic<br />

carbon (DOC) and dissolved <strong>in</strong>organic carbon (DIC)<br />

provide previously <strong>in</strong>accessible <strong>in</strong>formation on the carbon<br />

flow and the presence and activity of specific functional<br />

prokaryotic communities <strong>in</strong> dist<strong>in</strong>ct horizons of the<br />

sediment with characteristic modes of acetate turnover.<br />

We suggest that this zonation is l<strong>in</strong>ked to sedimentary<br />

redox conditions where under highly reduc<strong>in</strong>g conditions a<br />

large fraction of acetate is produced by autotrophic<br />

reduction of CO2, while under more oxidiz<strong>in</strong>g (suboxic)<br />

conditions acetate is closely track<strong>in</strong>g isotopic compositions<br />

of its fermented precursors. An example is illustrated <strong>in</strong><br />

Figure 1. Site U1329 represents the eastward limit of gas<br />

hydrate occurrence on the northern Cascadia marg<strong>in</strong> where<br />

pore-waters are methane saturated but gas hydrates are not<br />

abundant (Riedel et al., 2006). Acetate and lactate were the<br />

two major volatile fatty acids with concentrations reach<strong>in</strong>g<br />

up to 89 µM and 25 µM, respectively. The depth profile<br />

for the carbon isotopic composition of pore-water acetate at<br />

<strong>IODP</strong> Site 1329 exemplifies that the modes of acetate<br />

production and consumption vary dist<strong>in</strong>ctly with depth.<br />

We consider δ 13 C values of acetate close to those of total<br />

organic matter (~-20‰) as characteristic for production of<br />

acetate from sedimentary organic matter comb<strong>in</strong>ed with a<br />

s<strong>in</strong>k that leads to little or no isotopic fractionation <strong>in</strong> the<br />

residual acetate pool (zone I and IV <strong>in</strong> Fig. 1). Acetoclastic<br />

methanogenesis is associated with a strong isotopic<br />

fractionation creat<strong>in</strong>g 13 C-depleted CH 4 and a 13 C-enriched<br />

pore-water acetate pool (zone III <strong>in</strong> Fig. 1). In contrast,<br />

production of acetate from H2 and CO 2 results <strong>in</strong> acetate<br />

that is dist<strong>in</strong>ctly 13 C-depleted relative to DIC and usually


152<br />

also relative to dissolved organic carbon DOC (zone II <strong>in</strong><br />

Fig. 1).<br />

Isotopic relationships between acetate and other carbon<br />

pools provide novel <strong>in</strong>sights <strong>in</strong>to the patterns of carbon<br />

flow. They reveal clear trends that correspond to sediment<br />

depth and show specific differences between <strong>in</strong>dividual<br />

sites:<br />

Isotopic compositions of acetate and lactate differ<br />

dist<strong>in</strong>ctly. δ 13 C-value Isotopic compositions of acetate and<br />

lactate differ dist<strong>in</strong>ctly. δ 13 C-values of acetate range from<br />

-46.0 to -11.0‰ while δ 13 C-values of lactate scatter around<br />

-20.9 ± 1.8‰.<br />

Carbon isotopic compositions of lactate generally track<br />

those of DOC which tend to be slightly enriched <strong>in</strong> 13C<br />

relative to TOC. This relationship is consistent with both<br />

lactate and DOC be<strong>in</strong>g generated from related pools of<br />

dissolved organic compounds.<br />

Most sensitive to variations <strong>in</strong> s<strong>in</strong>ks and sources of<br />

acetate is its isotopic relationship with DOC and lactate;<br />

e.g., δ13C-values of acetate relative to DOC range from<br />

23.7‰ lower to 9.3‰ higher. Broadly, 13C-depletions<br />

<strong>in</strong>dicate some flux of acetate from CO2 reduction <strong>in</strong>to the<br />

acetate pool (e.g, Gelwicks et al. 1989) while 13Cenrichments<br />

po<strong>in</strong>t to flux of acetate <strong>in</strong>to acetoclastic<br />

methanogenesis (e.g., Krzycki et al. 1987; Gelwicks et al.<br />

1994).<br />

Isotopic evidence <strong>in</strong>dicates a simultaneous reduction of<br />

CO2 to both acetate and methane. This f<strong>in</strong>d<strong>in</strong>g is <strong>in</strong><br />

conflict with thermodynamic constra<strong>in</strong>ts but the likely<br />

compartmentalization of the sediment <strong>in</strong>to heterogenic<br />

microenvironments provides a plausible explanation.<br />

CO2 reduction to acetate appears most important <strong>in</strong><br />

close proximity to the sulfate methane <strong>in</strong>terface (SMI).<br />

Below the SMI, the relative importance of this acetate<br />

source decreases with depth. We suggest this trend reflects<br />

the progressive alteration of substrates for fermentation<br />

with relatively hydrogen-rich compounds be<strong>in</strong>g more<br />

abundant <strong>in</strong> fresher organic matter and thus releas<strong>in</strong>g more<br />

hydrogen <strong>in</strong> shallower sediments than <strong>in</strong> deeply buried<br />

recalcitrant organic matter.<br />

The presence of acetogenic CO2-reduction po<strong>in</strong>ts to<br />

microbial loops that cycle carbon with<strong>in</strong> the sediment prior<br />

to its term<strong>in</strong>al release <strong>in</strong> the form of CO2 and methane.<br />

While thermodynamics <strong>in</strong>dicate that acetoclastic<br />

methanogenesis is equally favorable throughout the<br />

methanogenic zone, carbon isotope biogeochemistry<br />

suggests that the relative fraction of acetate which flows to<br />

acetoclastic methanogenesis <strong>in</strong>creases with depth.<br />

Our contribution highlights the potential of isotopic<br />

compositions of water-soluble metabolites as sensitive<br />

monitors of reactive networks of microbial carbon turnover<br />

<strong>in</strong> subsurface environments. Our observations also raise<br />

new questions regard<strong>in</strong>g the factors controll<strong>in</strong>g the<br />

expression of dist<strong>in</strong>ct modes of acetate turnover <strong>in</strong> certa<strong>in</strong><br />

layers of the sediments.<br />

References:<br />

Blair N. E., Martens C. S., and Des Marais D. J., 1987. Natural abundance<br />

of carbon isotopes <strong>in</strong> acetate from a coastal mar<strong>in</strong>e sediment. Science<br />

236, 66 - 68.<br />

Blair N. E. and Carter J., W. D., 1992. The carbon isotope biogeochemistry<br />

of acetate from a methanogenic mar<strong>in</strong>e sediment. Geochimica et<br />

Cosmochimica Acta 56(3), 1247-1258.<br />

Conrad R., Chan O. C., Claus P., and Casper P., 2007. Characterization of<br />

methanogenic Archaea and stable isotope fractionation dur<strong>in</strong>g methane<br />

production <strong>in</strong> the profundal sediment of an oligotrophic lake (Lake<br />

Stechl<strong>in</strong>, Germany). Limnology and Oceanography 52(4), 1393-1406.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Egeberg, P. K., and T. Barth. 1998. Contribution of dissolved organic<br />

species to the carbon and energy budgets of hydrate bear<strong>in</strong>g deep sea<br />

sediments (Ocean Drill<strong>in</strong>g Program Site 997 Blake Ridge). Chemical<br />

Geology 149: 25-35.<br />

Gelwicks J. T., Risatti J. B., and Hayes J. M. 1989. Carbon isotope effects<br />

associated with autotrophic acetogenesis. Organic Geochemistry 14(4),<br />

441 - 446.<br />

Gelwicks J. T., Risatti J. B., and Hayes J. M. 1994. Carbon-Isotope Effects<br />

Associated with Aceticlastic Methanogenesis. Applied and<br />

Environmental Microbiology 60(2), 467-472.<br />

Heuer, V., M. Elvert, S. Tille, X. Prieto Mollar, L. Hmelo, M. Krummen,<br />

and Kai-Uwe H<strong>in</strong>richs. 2006. Onl<strong>in</strong>e δ13C analysis of volatile fatty<br />

acids <strong>in</strong> sediment/porewater systems by liquid chromatography-isotope<br />

ratio-mass spectrometry. Limnology and Oceanography: Methods. 4:<br />

346-357.<br />

Heuer, V., Pohlman, J., Torres, M., Elvert, M., H<strong>in</strong>richs, K.-U. The stable<br />

carbon isotope biogeochemistry of volatile fatty acids <strong>in</strong> deep<br />

subsurface sediments at the Cascadia Marg<strong>in</strong>. <strong>in</strong> preparation.<br />

IPSC (2001): Integrated Ocean Drill<strong>in</strong>g Program Initial Science Plan, 2003-<br />

2031. available onl<strong>in</strong>e:<br />

http://www.iodp.org/pdf/<strong>IODP</strong>_Init_Sci_Plan.f<strong>in</strong>al.pdf.<br />

Krüger M., Eller G., Conrad R., and Frenzel P. 2002. Seasonal variation <strong>in</strong><br />

pathways of CH4 production and <strong>in</strong> CH4 oxidation <strong>in</strong> rice fields<br />

determ<strong>in</strong>ed by stable carbon isotopes and specific <strong>in</strong>hibitors. Global<br />

Change Biology 8(3), 265-280.<br />

Krummen M., Hilkert A. W., Juchelka D., Duhr A., Schluter H. J., and<br />

Pesch R. 2004. A new concept for isotope ratio monitor<strong>in</strong>g liquid<br />

chromatography/mass spectrometry. Rapid Communications <strong>in</strong> Mass<br />

Spectrometry 18(19), 2260-2266.<br />

Krzycki J. A., Kenealy W. R., DeNiro M. J., and Zeikus J. G. 1987. Stable<br />

carbon isotope fractionation by Methanosarc<strong>in</strong>a barkeri dur<strong>in</strong>g<br />

methanogenesis from acetate, methanol, or carbon dioxide-hydrogen.<br />

Applied and Environmental Microbiology 53(10), 2597-2599.<br />

Mohammadzadeh H., Clark I., Marschner M., and St-Jean G. 2005.<br />

Compound specific isotopic analysis (CSIA) of landfill leachate DOC<br />

components. Chemical Geology 218(1-2), 3-13.<br />

Parkes R. J., Wellsbury P., Mather I. D., Cobb S. J., Cragg B. A.,<br />

Hornibrook E. R. C., and Horsfield B. 2007. Temperature activation of<br />

organic matter and m<strong>in</strong>erals dur<strong>in</strong>g burial has the potential to susta<strong>in</strong><br />

the deep biosphere over geological timescales. Organic Geochemistry<br />

38(6), 845-852.<br />

Penn<strong>in</strong>g H., Claus P., Casper P., and Conrad R. 2006. Carbon isotope<br />

fractionation dur<strong>in</strong>g acetoclastic methanogenesis by Methanosaeta<br />

concilii <strong>in</strong> culture and a lake sediment. Applied and Environmental<br />

Microbiology 72(8), 5648-5652.<br />

Penn<strong>in</strong>g H. and Conrad R. 2006. Carbon isotope effects associated with<br />

mixed-acid fermentation of saccharides by Clostridium papyrosolvens.<br />

Geochimica et Cosmochimica Acta 70(9), 2283-2297.<br />

Riedel, M., Collett, T.S., Malone, M.J., and the Expedition 311 Scientists.<br />

2006. Proc. <strong>IODP</strong>, 311: Wash<strong>in</strong>gton, DC (Integrated Ocean Drill<strong>in</strong>g<br />

Program Management International, Inc.).<br />

doi:10.2204/iodp.proc.311.2006<br />

Wellsbury, P., K. Goodman, T. Barth, B. A. Cragg, S. P. Barnes, and R. J.<br />

Parkes. 1997. Deep mar<strong>in</strong>e biosphere fuelled by <strong>in</strong>creas<strong>in</strong>g organic<br />

matter availability dur<strong>in</strong>g burial and heat<strong>in</strong>g. Nature 388: 573-576.<br />

Wellsbury P. and Parkes R. J. 1995. Acetate Bioavailability and Turnover <strong>in</strong><br />

an Estuar<strong>in</strong>e Sediment. FEMS Microbiology Ecology 17(2), 85-94.<br />

Whiticar M. J., Faber E., and Schoell M. 1986. Biogenic methane formation<br />

<strong>in</strong> mar<strong>in</strong>e and freshwater environments: CO2 reduction vs. acetate<br />

fermentation--Isotope evidence. Geochimica et Cosmochimica Acta<br />

50(5), 693-709.<br />

Whiticar M. J. 1999. Carbon and hydrogen isotope systematics of bacterial<br />

formation and oxidation of methane. Chemical Geology 161(1-3), 291-<br />

314.<br />

Wu H. G., Green M., and Scranton M. I. 1997. Acetate cycl<strong>in</strong>g <strong>in</strong> the water<br />

column and surface sediment of Long Island Sound follow<strong>in</strong>g a bloom.<br />

Limnology and Oceanography 42(4), 705-713.


<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong><br />

Fig. 1: Depth profiles for the carbon isotope composition of water-soluble metabolites <strong>in</strong> the northern Cascadia Marg<strong>in</strong> (<strong>IODP</strong> Exp. 311, Site<br />

U1329), <strong>in</strong>clud<strong>in</strong>g acetate, lactate, and DOC <strong>in</strong> pore-water samples, CH4 and CO2 <strong>in</strong> void gas samples. Grey l<strong>in</strong>e <strong>in</strong>dicate average δ 13 C of TOC <strong>in</strong><br />

the solid phase (J.-H. Kim, personal communication). Isotopic relationships suggest the presence of four dist<strong>in</strong>ct geochemical zones at Site<br />

U1329: Zone I, 0-7 mbsf, where the carbon isotopic composition of acetate closely resembles δ 13 C-values of DOC and lactate; Zone II, 7-65 mbsf,<br />

where acetate is dist<strong>in</strong>ctly depleted <strong>in</strong> 13 C compared to lactate, DOC, and CO2; Zone III, 65-135 mbsf, where acetate is enriched <strong>in</strong> 13 C relative to<br />

lactate and DOC, and Zone IV, >134 mbsf, which co<strong>in</strong>cides with the zone of free gas below the BSR where δ 13 C of acetate tracks that of lactate<br />

and DOC. (Heuer et al., <strong>in</strong> prep.)<br />

<strong>IODP</strong><br />

Evolutionary history of selected<br />

coccolithophore species <strong>in</strong> the North Atlantic<br />

dur<strong>in</strong>g the Pliocene to Pleistocene<br />

B. BOECKEL 1 , K.-H. BAUMANN 1 , M. GEISEN 2<br />

1<br />

FB5 Geowissenschaften, Universität Bremen, Klagenfurterstr.,<br />

28359 Bremen<br />

2<br />

Alfred Wegner Institut, Am Handlesdhafen 12, 27570<br />

Bremerhaven<br />

Coccolithophorids, as one of the ma<strong>in</strong> open ocean<br />

primary producers, play key roles <strong>in</strong> the global carbon and<br />

carbonate cycles. Their coccoliths are the s<strong>in</strong>gle most<br />

important component of deep-sea oozes and chalks and<br />

provide key floral, isotopic, and biomarker signals for<br />

<strong>in</strong>terpret<strong>in</strong>g global change <strong>in</strong> the geological record. Their<br />

exceptional fossil record makes them an outstand<strong>in</strong>g<br />

biostratigraphic group and gives them unusual potential for<br />

test<strong>in</strong>g evolutionary hypotheses.<br />

153<br />

Selected keystone coccolith taxa, which are<br />

characterized by a global distribution and a cont<strong>in</strong>uous<br />

geological record, were quantified and morphologically<br />

analyzed. By means of Plio- to Holocene Atlantic time<br />

series the range of their morphological variability is<br />

assessed to elucidate their evolutionary development.<br />

Geologic <strong>in</strong>vestigations on species level diversity allow<br />

tentative concepts on speciation to be tested, evaluated and<br />

to track long-term patterns, <strong>in</strong> order to identify periods of<br />

niche differentiation. Special attention is directed to<br />

<strong>in</strong>teractions with biotic and abiotic factors.<br />

Selected coccolithophorid species from three DSDP /<br />

ODP sites <strong>in</strong> the North Atlantic cover<strong>in</strong>g the last 5 Ma<br />

were biometrically characterized and the spatial<br />

distribution patterns of dist<strong>in</strong>ct morphotypes from the<br />

tropical to northern NE-Atlantic Ocean were reconstructed.<br />

Moreover, speciation and species evolution were evaluated<br />

with respect to the decl<strong>in</strong>e and ext<strong>in</strong>ction events of other<br />

floral elements.<br />

The chosen time-<strong>in</strong>terval, encompass<strong>in</strong>g the Pliocene to<br />

Quaternary is characterised by significant geologic and<br />

climate relevant events: changes <strong>in</strong> oceanic and<br />

atmospheric circulation l<strong>in</strong>ked to the clos<strong>in</strong>g of the Isthmus<br />

of Panama (4.6 Mio years BP); the build<strong>in</strong>g up of the<br />

northern hemisphere ice shields 3.1 Mio years ago; the<br />

onset of enhanced ice growth between 3.1 and 2.6 Mio


154<br />

years BP and f<strong>in</strong>ally the development of the Quaternary<br />

glacial-/<strong>in</strong>terglacial-cyclicity.<br />

The evolution and structure of the Pliocene and<br />

Quaternary floral assemblages was strongly <strong>in</strong>fluenced by<br />

these events. Hence, dur<strong>in</strong>g this time <strong>in</strong>terval several<br />

dramatic changes <strong>in</strong> floral composition occurred, such as<br />

the extreme decl<strong>in</strong>e of the reticulofenestrids up to the<br />

ext<strong>in</strong>ction of some morpho-structures, e.g. the discoasterids<br />

and sphenoliths.<br />

A total of five species complexes was quantitatively<br />

and morphologically analysed <strong>in</strong>clud<strong>in</strong>g Calcidiscus<br />

leptoporus, Florisphaera profunda, Syracosphaera pulchra,<br />

Umbilicosphaera sibogae, and Coccolithus pelagicus.<br />

The biometric results obta<strong>in</strong>ed for the last 2Ma years<br />

display that Umbilicosphaera spp. form their own, stable<br />

morphospace. Surpris<strong>in</strong>gly the comparison of the mean of<br />

simple size measurements on the three different species<br />

showed only a low variation <strong>in</strong> time. The same applies for<br />

the shape of the s<strong>in</strong>gle coccoliths. Only U. sibogae shows a<br />

clear variation <strong>in</strong> the rim width which is due to the species<br />

U. rotula appear<strong>in</strong>g <strong>in</strong> the 4 Ma samples. This is reflected<br />

by a strong bimodal distribution that can be tracked down<br />

<strong>in</strong> the geological record for at least 2 Ma. This <strong>in</strong>dicates<br />

that the last common ancestor might be older than<br />

estimated until now.<br />

The Calcidiscus leptoporus species complex shows<br />

strong variation through space and time. Besides the three<br />

well established recent “morphotypes” and Calcidiscus<br />

mac<strong>in</strong>tyrei, a species that became ext<strong>in</strong>ct <strong>in</strong> the uppermost<br />

Pliocene, there are several <strong>in</strong>tegrades appear<strong>in</strong>g. Although<br />

coccoliths of the modern species complex are round, <strong>in</strong><br />

certa<strong>in</strong> <strong>in</strong>tervals oval forms appeared. These might prove as<br />

valuable for biostratigraphic purposes.<br />

<strong>IODP</strong>/<strong>ICDP</strong> <strong>Kolloquium</strong> <strong>Hannover</strong>, 12.-14.03.<strong>2008</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!