13.07.2015 Views

Lectures on the Algebraic Theory of Fields - Tata Institute of ...

Lectures on the Algebraic Theory of Fields - Tata Institute of ...

Lectures on the Algebraic Theory of Fields - Tata Institute of ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<str<strong>on</strong>g>Lectures</str<strong>on</strong>g> <strong>on</strong> <strong>the</strong><strong>Algebraic</strong> <strong>Theory</strong> <strong>of</strong> <strong>Fields</strong>ByK.G. Ramanathan<strong>Tata</strong> <strong>Institute</strong> <strong>of</strong> Fundamental Research, Bombay1954


Introducti<strong>on</strong>There are notes <strong>of</strong> course <strong>of</strong> lectures <strong>on</strong> Field <strong>the</strong>ory aimed at providing<strong>the</strong> beginner with an introducti<strong>on</strong> to algebraic extensi<strong>on</strong>s, algebraicfuncti<strong>on</strong> fields, formally real fields and valuated fields. These lectureswere preceded by an elementary course <strong>on</strong> group <strong>the</strong>ory, vectorspaces and ideal <strong>the</strong>ory <strong>of</strong> rings—especially <strong>of</strong> Noe<strong>the</strong>rian rings. Aknowledge <strong>of</strong> <strong>the</strong>se is presupposed in <strong>the</strong>se notes. In additi<strong>on</strong>, we assumea familiarity with <strong>the</strong> elementary topology <strong>of</strong> topological groupsand <strong>of</strong> <strong>the</strong> real and complex number fields.Most <strong>of</strong> <strong>the</strong> material <strong>of</strong> <strong>the</strong>se notes is to be found in <strong>the</strong> notes <strong>of</strong>Artin and <strong>the</strong> books <strong>of</strong> Artin, Bourbaki, Pickert and Van-der-Waerden.My thanks are due to Mr. S. Raghavan for his help in <strong>the</strong> writing <strong>of</strong><strong>the</strong>se notes.K.G. Ramanathan


C<strong>on</strong>tents1 General extensi<strong>on</strong> fields 11 Extensi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . . 12 Adjuncti<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 33 <strong>Algebraic</strong> extensi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . 54 <strong>Algebraic</strong> Closure . . . . . . . . . . . . . . . . . . . . . 95 Transcendental extensi<strong>on</strong>s . . . . . . . . . . . . . . . . 122 <strong>Algebraic</strong> extensi<strong>on</strong> fields 171 C<strong>on</strong>jugate elements . . . . . . . . . . . . . . . . . . . . 172 Normal extensi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . 183 Isomorphisms <strong>of</strong> fields . . . . . . . . . . . . . . . . . . 214 Separability . . . . . . . . . . . . . . . . . . . . . . . . 245 Perfect fields . . . . . . . . . . . . . . . . . . . . . . . 316 Simple extensi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 357 Galois extensi<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . 388 Finite fields . . . . . . . . . . . . . . . . . . . . . . . . 463 <strong>Algebraic</strong> functi<strong>on</strong> fields 491 F.K. Schmidt’s <strong>the</strong>orem . . . . . . . . . . . . . . . . . . 492 Derivati<strong>on</strong>s . . . . . . . . . . . . . . . . . . . . . . . . 543 Rati<strong>on</strong>al functi<strong>on</strong> fields . . . . . . . . . . . . . . . . . . 674 Norm and Trace 751 Norm and trace . . . . . . . . . . . . . . . . . . . . . . 752 Discriminant . . . . . . . . . . . . . . . . . . . . . . . 82v


8 1. General extensi<strong>on</strong> fields9every irreducible polynomial f (x) in k[x] <strong>the</strong>re exists an extensi<strong>on</strong> fieldin which f (x) has a root.Let now g(x) be any polynomial in k[x] and f (x) an irreducible factor<strong>of</strong> g(x) in k[x]. Let K be an extensi<strong>on</strong> <strong>of</strong> k in which f (x) has a rootξ. Let in Kg(x)=(x−ξ) λ ψ(x).Thenψ(x)∈k[x]. We again take an irreducible factor <strong>of</strong>ψ(x) andc<strong>on</strong>struct K ′ in whichψ(x) has a root. After finite number <strong>of</strong> steps wearrive at a field L which is an extensi<strong>on</strong> <strong>of</strong> k and in which g(x) splitscompletely into linear factors. Letα 1 ,...,α n be <strong>the</strong> distinct roots <strong>of</strong>g(x) in L. We call k(α 1 ,...,α n ) <strong>the</strong> splitting field <strong>of</strong> g(x) in L.Obviously (k(α 1 ,...,α n ) : k)≤n!We have <strong>the</strong>refore <strong>the</strong> importantTheorem 3. If k is a field and f (x)∈k[x] <strong>the</strong>n f (x) has a splitting fieldK and (K : k)≤n!, n being degree <strong>of</strong> f (x).It must be noted however that a polynomial might have several splittingfields. For instance if D is <strong>the</strong> quaterni<strong>on</strong> algebra over <strong>the</strong> rati<strong>on</strong>alnumber fieldΓ, generated by 1, i, j, k <strong>the</strong>nΓ(i),Γ( j),Γ( f ),Γ(k) are allsplitting fields <strong>of</strong> x 2 + 1 inΓ[x]. These splitting fields are all distinct.Suppose k and k ′ are two fields which are isomorphic by means <strong>of</strong>an isomorphismσ. Thenσcan be extended into an isomorphism ¯σ <strong>of</strong>k[x] <strong>on</strong> k ′ [x] by <strong>the</strong> following prescripti<strong>on</strong>∑ ∑¯σ( a i x i )= (σa i )x i a i ∈ k σa i ∈ k ′Let now f (x) be a polynomial in k[x] which is irreducible. Denoteby f ¯σ (x), its image in k ′ [x] by means <strong>of</strong> <strong>the</strong> isomorphism ¯σ. Then f ¯σ (x)is again irreducible in k ′ [x]; for if not <strong>on</strong>e can by means <strong>of</strong> ¯σ −1 obtain an<strong>on</strong>trivial factorizati<strong>on</strong> <strong>of</strong> f (x) in k[x].Let nowαbe a root <strong>of</strong> f (x) over k andβaroot <strong>of</strong> f ¯σ (x) over k ′ .Thenk(α)≃k[x]/( f (x)), k ′ (β)≃k ′ [x]/( f ¯σ (x))Letτbe <strong>the</strong> natural homomorphism <strong>of</strong> k ′ [x] <strong>on</strong> k ′ [x]/( f σ (x)). C<strong>on</strong>sider<strong>the</strong> mappingτ·σ <strong>on</strong> k[x]. Sinceσis an isomorphism, it follows


4. <strong>Algebraic</strong> Closure 9thatτ·σ is a homomorphism <strong>of</strong> k[x] <strong>on</strong> k ′ [x]/(F σ (x)). The kernel <strong>of</strong> <strong>the</strong>homomorphism is <strong>the</strong> set <strong>of</strong>ϕ(x) in k[x] such that( )ϕ σ (x)∈ f σ (x).This set is precisely ( f (x)). Thus10k[x]/( f (x))≃k ′ [x]/( f ¯σ (x))By our identificati<strong>on</strong>, <strong>the</strong> above fields c<strong>on</strong>tain k and k ′ respectivelyas subfields so that <strong>the</strong>re is an isomorphismµ<strong>of</strong> k(α) <strong>on</strong> k ′ (β) and <strong>the</strong>restricti<strong>on</strong> <strong>of</strong>µto k isσ.In particular if k=k ′ , <strong>the</strong>n k(α) and k(β) are k− isomorphic i.e., <strong>the</strong>yare isomorphic by means <strong>of</strong> an isomorphism which is identity <strong>on</strong> k. Wehave <strong>the</strong>reforeTheorem 4. If f (x)∈k[x] is irreducible andαandβare two roots <strong>of</strong>it (ei<strong>the</strong>r in <strong>the</strong> same extensi<strong>on</strong> field <strong>of</strong> k or in different extensi<strong>on</strong> fields),k(α) and k(β) are k− isomorphic.Note that <strong>the</strong> above <strong>the</strong>orem is false if f (x) is not irreducible in k[x].4 <strong>Algebraic</strong> ClosureWe have proved that every polynomial over k has a splitting field. For agiven polynomial this field might very well coincide with k itself. Supposek has <strong>the</strong> property that every polynomial in k has a root in k. Thenit follows that <strong>the</strong> <strong>on</strong>ly irreducible polynomials over k are linear polynomials.We make now <strong>the</strong>Definiti<strong>on</strong>. A fieldΩis algebraically closed if <strong>the</strong> <strong>on</strong>ly irreducible polynomialsinΩ[x] are linear polynomials.We had already defined <strong>the</strong> algebraic closure <strong>of</strong> a field k c<strong>on</strong>tainedin a field K. Let us now make <strong>the</strong>Definiti<strong>on</strong>. A fieldΩ/k is said to be an algebraic closure <strong>of</strong> k if


10 1. General extensi<strong>on</strong> fields1) Ω is algebraically closed2) Ω/k is algebraic. 11We now prove <strong>the</strong> importantTheorem 5. Every field k admits, upto k-isomorphism, <strong>on</strong>e and <strong>on</strong>ly<strong>on</strong>e algebraic closure.Pro<strong>of</strong>. 1) Existence. Let M be <strong>the</strong> family <strong>of</strong> algebraic extensi<strong>on</strong>s K α<strong>of</strong> k. Partially order M by inclusi<strong>on</strong>. Let{K α } be a totally orderedsubfamily <strong>of</strong> M. Put K= ⋃ K α for K α in this totally ordered family.αNow K is a field; forβ 1 ∈ K,β 2 ∈ K meansβ 1 ∈ K α for someαandβ 2 ∈ K β for someβ. Thereforeβ 1 ,β 2 in K α or K β whichever is largerso thatβ 1 +β 2 ∈ K. Similarlyβ 1 β −12∈ K. Now K/k is algebraicsince everyλ ∈ K is in some K α and so algebraic over k. ThusK∈M and so we can apply Zorn’s lemma. This proves that M has amaximal elementΩ.Ω is algebraically closed; for if not let f (x) be anirreducible polynomial inΩ[x] andρaroot <strong>of</strong> f (x) in an extensi<strong>on</strong>Ω(ρ) <strong>of</strong>Ω. Then sinceΩ/k is algebraic. Ω(ρ) is an element <strong>of</strong> M.This c<strong>on</strong>tradicts maximality <strong>of</strong>Ω. ThusΩis an algebraic closure <strong>of</strong>k.2) Uniqueness. Let k and k ′ be two fields which are isomorphic bymeans <strong>of</strong> an isomorphismσ. C<strong>on</strong>sider <strong>the</strong> family M <strong>of</strong> triplets{(K, K ′ ,σ) α } with <strong>the</strong> property 1) K α is an algebraic extensi<strong>on</strong> <strong>of</strong>k, K α ′ <strong>of</strong> k ′ , 2)σ α is an isomorphism <strong>of</strong> K α <strong>on</strong> K α ′ extendingσ. By<strong>the</strong>orem 4, M is not empty. We partially order M in <strong>the</strong> followingmanner□12(K, K ′ ,σ) α < (K, K ′ ,σ) βIf 1) K α ⊂ K β , K α ′ ⊂ K′ β , 2)σ β is an extensi<strong>on</strong> <strong>of</strong>σ α . Let{K, K ′ ,σ) α }be a simply ordered subfamily. Put K= ⋃ K α , K ′ = ⋃ K α ′ ,α αThese are <strong>the</strong>n algebraic over k and k ′ respectively.Define ¯σ <strong>on</strong> K by


4. <strong>Algebraic</strong> Closure 11¯σx=σ α xwhere x∈K α . (Note that every x∈K is in some K α in <strong>the</strong> simplyordered subfamily). It is easy to see that ¯σ is well - defined. Supposex∈K β and K β ⊂ K α <strong>the</strong>nσ α is an extensi<strong>on</strong> <strong>of</strong>σ ρ and soσ α x=σ β x.This proves that ¯σ is an isomorphism <strong>of</strong> K <strong>on</strong> K ′ and extendsσ. Thus<strong>the</strong> triplet (K, K ′ , ¯σ) is in M and is an upper bound <strong>of</strong> <strong>the</strong> subfamily.By Zorn’s lemma <strong>the</strong>re exists a maximal triplet (Ω,Ω ′ ,τ). We assertthatΩis algebraically closed; for if not letρbe a root <strong>of</strong> an irreduciblepolynomial f (x)∈Ω[x]. Then f ζ (x)∈Ω ′ [x] is also irreducible. Letρ ′be a root <strong>of</strong> f τ (x). Thenτcan be extended to an isomorphism ¯τ <strong>of</strong>Ω(ρ)<strong>on</strong>Ω ′ (ρ). Now (Ω(ρ), ¯τ is in M and hence leads to a c<strong>on</strong>tradicti<strong>on</strong>. ThusΩ is an algebraic closure <strong>of</strong> k,Ω ′ <strong>of</strong> k ′ andτan isomorphism <strong>of</strong>Ω<strong>on</strong>Ω ′ extendingσ.In particular if k=k ′ andσ<strong>the</strong> identity isomorphism, <strong>the</strong>nΩandΩ ′ are two algebraic closures <strong>of</strong> k andτis <strong>the</strong>n a k-isomorphism.Out <strong>the</strong>orem is completely dem<strong>on</strong>strated.Let f (X) be a polynomial in k[x] and K= k(α 1 ,...,α n , a splittingfield <strong>of</strong> f (x), so thatα 1 ,...,α n are <strong>the</strong> distinct roots <strong>of</strong> f (x) in K. Let K ′be any o<strong>the</strong>r splitting field andβ 1 ,...β m <strong>the</strong> distinct roots <strong>of</strong> f (x) in K ′ .LetΩbe an algebraic closure <strong>of</strong> K andΩ ′ <strong>of</strong> K ′ . ThenΩandΩ ′ are twoalgebraic closures <strong>of</strong> k. There exists <strong>the</strong>refore an isomorphismσ<strong>of</strong>Ω<strong>on</strong>Ω ′ which is identity <strong>on</strong> k. LetσK= K 1 . Then K 1 = k(σ α1 ,...,σ αn ).Sinceα 1 ,...α n are distinctσα 1 ...,σα n are distinct and are roots <strong>of</strong>f (x). Thus K 1 is a splitting field <strong>of</strong> f (x) inΩ ′ . This proves that 13K ′ = K 1 .β 1 ,...,β m are distinct and are roots <strong>of</strong> f (x) inΩ ′ . We have m=nandβ i =σα 2 in some order. Therefore <strong>the</strong> restricti<strong>on</strong> <strong>of</strong>σto K is anisomorphism <strong>of</strong> K <strong>on</strong> K ′ . We haveTheorem 6. Any two splitting fields K, K ′ <strong>of</strong> a polynomial f (x) in k[x]are k− isomorphic.Let K be a finite field <strong>of</strong> q elements. Then q=P n where n is aninteger≥ 1 and p is <strong>the</strong> characteristic <strong>of</strong> K. Also n=(K :Γ),Γbeing


12 1. General extensi<strong>on</strong> fields<strong>the</strong> prime field. Let K ∗ denote <strong>the</strong> abelian group <strong>of</strong> n<strong>on</strong>-zero elements<strong>of</strong> K. Then K ∗ being a finite group <strong>of</strong> order q−1,α q−1 = 1for allα∈K ∗ . Thus K is <strong>the</strong> splitting field <strong>of</strong> <strong>the</strong> polynomialinΓ[x]. It <strong>the</strong>refore followsx q − xTheorem 7. Any two finite fields with <strong>the</strong> same number <strong>of</strong> elements areisomorphic.A finite field cannot be algebraically closed; for if K is a finite field<strong>of</strong> q elements and a∈ K ∗ <strong>the</strong> polynomial∏f (x)= x (X− b)+ab∈K ∗is in K[x] and has no root in K.5 Transcendental extensi<strong>on</strong>s14We had already defined a transcendental extensi<strong>on</strong> as <strong>on</strong>e which c<strong>on</strong>tainsat least <strong>on</strong> transcendental element.Let K/k be a transcendental extensi<strong>on</strong> and Z 1 ,...,Z n any n elements<strong>of</strong> K. C<strong>on</strong>sider <strong>the</strong> ring R=k[x 1 ,... x n ] <strong>of</strong> polynomials over k in nvariables. Let Y be <strong>the</strong> subset <strong>of</strong> R c<strong>on</strong>sisting <strong>of</strong> those polynomialsf (x 1 ,... x n ) for whichf (Z 1 ,...Z n )=0.Y is obviously an ideal <strong>of</strong> R. If Y = (o) we say that Z 1 ,...Z n arealgebraically independent over k. If Y (o), <strong>the</strong>y are said to bealgebraically dependent. Any element <strong>of</strong> K which is algebraic overk(Z 1 ,...,Z n ) is <strong>the</strong>refore algebraically dependent <strong>on</strong> Z 1 ,...Z n .We now define a subset S <strong>of</strong> K to be algebraically independent overk if every finite subset <strong>of</strong> S is algebraically independent over k. If K/kis transcendental <strong>the</strong>re is at least <strong>on</strong>e such n<strong>on</strong> empty set S .


5. Transcendental extensi<strong>on</strong>s 13Let K/k be a transcendental extensi<strong>on</strong> and let S , S ′ be two subset <strong>of</strong>K with <strong>the</strong> propertiesi) S algebraically independent over kii) S ′ algebraically independent over k(s)Then S and S ′ are disjoint subsets <strong>of</strong> K and S US ′ are algebraicallyindependent over k. That S and S ′ are disjoint is trivially seen. Let nowZ 1 ,...Z m ∈ S and Z ′ 1 ,...Z′ n ∈ S′ be algebraically dependent. This willmean that <strong>the</strong>re is a polynomial f ,f=f (x 1 ,..., x m+n )in m+n variables with coefficients in k, such thatf (Z 1 ,...,Z m , Z ′ 1 ,...Z′ n )=0.Now f can be regarded as a polynomial in x m+1 ,..., x m+n with coefficientsin k(x 1 ,..., x m ). If all <strong>the</strong>se coefficients are zero <strong>the</strong>n Z 1 ,...Z m ,Z1 ′,...Z′ n are algebraically independent over k. If some coefficient is 0, <strong>the</strong>n f (Z 1 ,...Z m , x m+1 ,..., x m+n ) is a n<strong>on</strong> zero polynomial overk(S ) which vanishes for x m+1 = Z1 ′,... x m+n= Z n ′ which c<strong>on</strong>tradicts <strong>the</strong>fact that S ′ is algebraically independent over k(S ). Thus f = o identicallyand our c<strong>on</strong>tenti<strong>on</strong> is proved. 15The c<strong>on</strong>verse <strong>of</strong> <strong>the</strong> above statement is easily proved.An extensi<strong>on</strong> field K/k is said to be generated by a subset M <strong>of</strong> K ifK/k(M) is algebraic. Obviously K itself is a set <strong>of</strong> generators. A subsetB <strong>of</strong> K is said to be a transcendence base <strong>of</strong> K if1) B is a set <strong>of</strong> generators <strong>of</strong> K/k2) B algebraically independent over k.If K/k is transcendental, <strong>the</strong>n, it c<strong>on</strong>tains algebraically independentelements. We shall prove that K has a transcendence base. Actuallymuch more can be proved as in


14 1. General extensi<strong>on</strong> fieldsTheorem 8. Let K/k be a transcendental extensi<strong>on</strong> generated by S andA a set <strong>of</strong> algebraically independent elements c<strong>on</strong>tained in S . Then<strong>the</strong>re is a transcendence base B <strong>of</strong> K withA⊂ B⊂SPro<strong>of</strong>. Since S is a set <strong>of</strong> generators <strong>of</strong> K, K/k(S ) is algebraic. Let Mbe <strong>the</strong> family <strong>of</strong> subsets A α <strong>of</strong> K with1) A⊂A α ⊂ S2) A α algebraically independent over k.□16The set M is not empty since A is in M. Partially order M by inclusi<strong>on</strong>.Let{A α } be a totally ordered subfamily. Put B 0 = ⋃ αA α . ThenB o ⊂ S . Any finite subset <strong>of</strong> B o will be in some A α for largeαand soB o satisfies 2) also. Thus using Zorn’s lemma <strong>the</strong>re exists a maximalelement B in M. Every element x <strong>of</strong> S depends algebraically <strong>on</strong> B foro<strong>the</strong>rwise BU x will be in M and will be larger than B. Thus k(S )/k(B)is algebraic. Since K/k(S ) is algebraic, it follows that B satisfies <strong>the</strong>c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> <strong>the</strong> <strong>the</strong>orem.The importance <strong>of</strong> <strong>the</strong> <strong>the</strong>orem is two fold; firstly that every set <strong>of</strong>elements algebraically independent can be completed into a transcendencebase <strong>of</strong> K and fur<strong>the</strong>r more every set <strong>of</strong> generators c<strong>on</strong>tains abase.We make <strong>the</strong> following simple observati<strong>on</strong>. Let K/k be an extensi<strong>on</strong>,Z 1 ,...Z m , m elements <strong>of</strong> K which have <strong>the</strong> property that K/k(Z 1 ,...Z m )is algebraic, i.e., that Z 1 ,...,Z m is a set <strong>of</strong> generators. If Z∈K<strong>the</strong>n Zdepends algebraically <strong>on</strong> Z 1 ,...,Z m i.e., k(Z, Z 1 ,...,Z m )/k(Z 1 ,...,Z m )is algebraic. We may also remark that if in <strong>the</strong> algebraic relati<strong>on</strong> c<strong>on</strong>nectingZ, Z 1 ,...Z m , Z 1 occurs <strong>the</strong>n we can say thatk(Z, Z 1 ,...Z m )/k(Z, Z 2 ,...,Z m )is algebraic which means that Z, Z 2 ,...Z m is again a set <strong>of</strong> generators.We now prove <strong>the</strong>


5. Transcendental extensi<strong>on</strong>s 15Theorem 9. If K/k has a transcendence base c<strong>on</strong>sisting <strong>of</strong> a finite numbern <strong>of</strong> elements, every transcendence base has n elements.Pro<strong>of</strong>. Let Z 1 ,...,Z n and Z1 ′,...,Z′ m be two transcendence bases c<strong>on</strong>sisting<strong>of</strong> n and m elements respectively. If nm let n


16 1. General extensi<strong>on</strong> fields18A transcendental extensi<strong>on</strong> K/k is said to be purely transcendentalif <strong>the</strong>re exists a base B with K= k(B). Note that this does not mean thatevery base has this property. For instance if k(x) is <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>alfuncti<strong>on</strong>s <strong>of</strong> x <strong>the</strong>n x 2 is also transcendental over x but k(x 2 ) is a propersubfield <strong>of</strong> k(x).Let K= k(x 1 ,... x n ) and K ′ = k(x ′ 1 ,... x′ n ) be two purely transcendentalextensi<strong>on</strong>s <strong>of</strong> dimensi<strong>on</strong> n. C<strong>on</strong>sider <strong>the</strong> homomorphismσ definedbyσ f (x 1 ,... x n )= f (x ′ 1 ,..., x′ n)Where f (x 1 ,..., x n )∈k[x 1 ,..., x n ]. It is <strong>the</strong>n easy to see that this isan isomorphism <strong>of</strong> K <strong>on</strong> K ′ . This provesTheorem 11. Two purely transcendental extensi<strong>on</strong>s <strong>of</strong> <strong>the</strong> same dimensi<strong>on</strong>n over k k-isomorphic.This <strong>the</strong>orem is true even if <strong>the</strong> dimensi<strong>on</strong> is infinite.


Chapter 2<strong>Algebraic</strong> extensi<strong>on</strong> fields1 C<strong>on</strong>jugate elementsLetΩbe an algebraic closure <strong>of</strong> k and K an intermediary field. LetΩ ′ 19be an algebraic closure <strong>of</strong> K and so <strong>of</strong> k. Then <strong>the</strong>re is an isomorphismτ <strong>of</strong>Ω ′ <strong>on</strong>Ωwhich is trivial <strong>on</strong> k. The restricti<strong>on</strong> <strong>of</strong> this isomorphism toK gives a fieldτK inΩwhich is k-isomorphic to K. C<strong>on</strong>versely supposeK and K ′ are two subfields <strong>of</strong>Ωwhich are k-isomorphic. SinceΩis acomm<strong>on</strong> algebraic closure <strong>of</strong> K and K ′ , <strong>the</strong>re exists an automorphism<strong>of</strong>Ωwhich extends <strong>the</strong> k-isomorphism <strong>of</strong> K and K ′ . Thus1) Two subfields K, K ′ <strong>of</strong>Ω/k are k-isomorphic if and <strong>on</strong>ly if <strong>the</strong>re existsa k-automorphismσ <strong>of</strong>Ωsuch thatσK=K ′ .We call two such fields K and K ′ c<strong>on</strong>jugate fields over k.We define two elementsω,ω ′ <strong>of</strong>Ω/k, to be c<strong>on</strong>jugate over k if <strong>the</strong>reexists a k-automorphismσ <strong>of</strong>Ωsuch thatσω=ω ′The automorphisms <strong>of</strong>Ωwhich are trivial <strong>on</strong> k form a group and so<strong>the</strong> above relati<strong>on</strong> <strong>of</strong> c<strong>on</strong>jugacy is an equivalence relati<strong>on</strong>. We can<strong>the</strong>refore put elements <strong>of</strong>Ωinto classes <strong>of</strong> c<strong>on</strong>jugate elements overk. We <strong>the</strong>n have17


18 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields2) Each class <strong>of</strong> c<strong>on</strong>jugate elements over k c<strong>on</strong>tains <strong>on</strong>ly a finite number<strong>of</strong> elements.20Pro<strong>of</strong>. Let C be a class <strong>of</strong> c<strong>on</strong>jugate elements andω∈C. Let f (x)be <strong>the</strong> minimum polynomial <strong>of</strong>ωin k[x]. Letσbe an automorphism<strong>of</strong>Ω/k. Thenσω∈C. Butσω is a root <strong>of</strong> f σ (x)= f (x). Also ifω ′ ∈ C <strong>the</strong>nω ′ =σω for some automorphismσ<strong>of</strong>Ω/k. In that caseσω=ω ′ is again a root <strong>of</strong> f (x). Thus <strong>the</strong> elements in C are all roots <strong>of</strong><strong>the</strong> irreducible polynomial f (x). Our c<strong>on</strong>tenti<strong>on</strong> follows. □Notice that ifα,βare any two roots, lying inΩ, <strong>of</strong> <strong>the</strong> irreduciblepolynomial f (x), <strong>the</strong>n k(α) and k(β) are k-isomorphic. This isomorphismcan be extended into an automorphism <strong>of</strong>Ω. ThusTheorem 1. To each class <strong>of</strong> c<strong>on</strong>jugate elements <strong>of</strong>Ω<strong>the</strong>re is associatedan irreducible polynomial in k[x] whose distinct roots are all <strong>the</strong>elements <strong>of</strong> this class.Ifα∈Ω we shall denote by C α <strong>the</strong> class <strong>of</strong>α. C α is a finite set.2 Normal extensi<strong>on</strong>sSuppose K is a subfield <strong>of</strong>Ω/k andσan automorphism <strong>of</strong>Ω/k. LetσK⊂K. We assert thatσK=K. For letα∈ K and denote by ¯C α <strong>the</strong>setC α ∩ KSinceσK⊂ K we haveσα∈ K soσα∈ ¯C α . Thusσ ¯C α ⊂ α21¯C α is a finite set andσis an isomorphism <strong>of</strong> K into itself.Thusσ ¯C α = ¯C αwhich meansα∈σK. Thus K=σK.We shall now study a class <strong>of</strong> fields K⊂Ω/k which have <strong>the</strong> propertyσK⊂K,


2. Normal extensi<strong>on</strong>s 19for all automorphismsσ <strong>of</strong>Ω/k. We shall call such fields, normal extensi<strong>on</strong>s<strong>of</strong> k inΩ.Let K/k be a normal extensi<strong>on</strong> <strong>of</strong> k andΩalgebraic closure <strong>of</strong> kc<strong>on</strong>taining K. Letα∈Kand C α <strong>the</strong> class <strong>of</strong>α. We assert that C α ⊂ K.For ifβis an element <strong>of</strong> C α , <strong>the</strong>re is an automorphismσ <strong>of</strong>Ω/k forwhichβ=σα. SinceσK⊂K, it follows thatβ∈K. Now any elementαin K is a root <strong>of</strong> an irreducible polynomial in k[x]. Since all <strong>the</strong> elements<strong>of</strong> C α are roots <strong>of</strong> this polynomial, it follows that if f (x) is an irreduciblepolynomial with <strong>on</strong>e root in K, <strong>the</strong>n all roots <strong>of</strong> f (x) lie in K.C<strong>on</strong>versely let K be a subfield <strong>of</strong>Ω/k with this property. Letσbean automorphism <strong>of</strong>Ω/k andα/K. Letσbe an automorphism <strong>of</strong>Ω/kandα∈K. Let C α be <strong>the</strong> class <strong>of</strong>α. Since C α ⊂ K,σα∈K. Butαisarbitrary in K. ThereforeσK⊂ Kand K is normal. Thus <strong>the</strong>Theorem 2. Let k⊂K⊂Ω. ThenσK= K for all automorphismsσ<strong>of</strong>Ω/k⇐⇒ every irreducible polynomial f (x)∈k[x] which has <strong>on</strong>e rootin K has all roots in K.Let f (x) be a polynomial in k[x] and K its splitting field. LetΩbean algebraic closure <strong>of</strong> K. Letα 1 ,...,α n be <strong>the</strong> distinct roots <strong>of</strong> f (x) in 22Ω. ThenK= k(α 1 ,...,α n )Letσbe an automorphism <strong>of</strong>Ω/k.σα j =α j for some j. Thusσtakes <strong>the</strong> setα 1 ,...,α n <strong>on</strong>to itself. Since every element <strong>of</strong> K is a rati<strong>on</strong>alfuncti<strong>on</strong> <strong>of</strong>α 1 ,...,α n , it follows thatσK⊂ K. Thusi) The splitting field <strong>of</strong> a polynomial in k[x] is a normal extensi<strong>on</strong> <strong>of</strong>k.Let{K α } be a family <strong>of</strong> normal subfields <strong>of</strong>Ω/k. Then ⋂ K α isαtrivially normal. C<strong>on</strong>sider k( ⋃ K α ). This again is normal since forαany automorphismσ <strong>of</strong>Ω/k.⎛⋃ ⋃ ⋃σk⎜⎝K α⎞⎟⎠⎛⎜⎝ ⊂ k σK α⎞⎟⎠⎛⎜⎝ ⊂ k K α⎞⎟⎠ααα


20 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsLet now{ f α (x)} be a set <strong>of</strong> polynomials in k[x] and K α <strong>the</strong>ir splittingfields, <strong>the</strong>n K( ⋃ K α ) is normal. Also it is easy to see thatα⎛⋃L=k⎜⎝K α⎞⎟⎠is <strong>the</strong> intersecti<strong>on</strong> <strong>of</strong> all subfields <strong>of</strong>Ω/k in which every <strong>on</strong>e <strong>of</strong> <strong>the</strong>polynomials f α (x) splits completely. Thusii) if{ f α (x)} is a set <strong>of</strong> polynomials in k[x], <strong>the</strong> subfield <strong>of</strong>Ωgeneratedby all <strong>the</strong> roots <strong>of</strong>{ f α (x)} is normal.We also haveα23iii) If K/k is normal and k⊂L⊂K<strong>the</strong>n K/L is also normal.For ifσis an L- automorphism <strong>of</strong>Ω, <strong>the</strong>nσis also a k-automorphism<strong>of</strong>Ωand soσK⊂ K.The k−automorphisms <strong>of</strong>Ωform a group G(Ω/k). From what wehave seen above, it follows that a subfield K <strong>of</strong>Ω/k is normal if and<strong>on</strong>ly ifσK=Kfor everyσ∈G(Ω/k). Now a k− automorphism<strong>of</strong> K can be be extended into an automorphism <strong>of</strong>Ω/k, becauseevery such automorphism is an isomorphism <strong>of</strong> K inΩ. It <strong>the</strong>reforefollowsiv) K/k is normal if and <strong>on</strong>ly if every isomorphism <strong>of</strong> K inΩ/k is anautomorphism <strong>of</strong> K over k.As an example, letΓbe <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers and f (x)=x 3 − 2. Then f (x) is irreducible inΓ[x]. Letα= 3√ 2 be <strong>on</strong>e <strong>of</strong> its roots.Γ(α) is <strong>of</strong> degree 3 overΓand is not normal since it does not c<strong>on</strong>tainρ whereρ= −1+√ −32. However <strong>the</strong> fieldΓ(α,ρ) <strong>of</strong> degree 6 overΓisnormal and is <strong>the</strong> splitting field <strong>of</strong> x 3 − 2.If K is <strong>the</strong> field <strong>of</strong> complex numbers, c<strong>on</strong>sider K(z) <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>alfuncti<strong>on</strong> <strong>of</strong> 2 over K. C<strong>on</strong>sider <strong>the</strong> polynomial x 3 −z in K(z)[x]. Thisis irreducible. Letω=z 3 1 be a root <strong>of</strong> this polynomial. Then K(z)(ω) is<strong>of</strong> degree 3 K(z) and is <strong>the</strong> splitting field <strong>of</strong> <strong>the</strong> polynomial x 3 − z.


3. Isomorphisms <strong>of</strong> fields 213 Isomorphisms <strong>of</strong> fieldsLet K/k be an algebraic extensi<strong>on</strong> <strong>of</strong> k and W any extensi<strong>on</strong> <strong>of</strong> K and so<strong>of</strong> k. A mappingσ<strong>of</strong> K into W is said to be k− linear if forα,β∈K 24σ(α+β)=σα+σβσα∈Wand ifλ∈k,σ(λα)=λσα. Ifσis a k−linear map <strong>of</strong> K intoW we defineασ forαin W by(ασ)β=ασβforβ∈ K. This again is a k−linear map and so <strong>the</strong> k−linear maps <strong>of</strong> Kinto W form a vector space V over W.A k−isomorphismσ <strong>of</strong> K into W is obviously a k−linear map andsoσ∈V. We shall say, two isomorphismsσ,τ <strong>of</strong> K into W (trivial <strong>on</strong>k) are distinct if <strong>the</strong>re exists at least <strong>on</strong>eω∈K,ω0 such thatσωτωLet S be <strong>the</strong> set <strong>of</strong> mutually distinct isomorphisms <strong>of</strong> K into W. We<strong>the</strong>n haveTheorem 3. S is a set <strong>of</strong> linearly independent elements <strong>of</strong> V over W.Pro<strong>of</strong>. We have naturally to show that every finite subset <strong>of</strong> S is linearlyindependent over W. Let <strong>on</strong> <strong>the</strong> c<strong>on</strong>traryσ 1 ,...,σ n be a finite subset <strong>of</strong>S satisfying a n<strong>on</strong> trivial linear relati<strong>on</strong>∑α i σ i = 0iα i ∈ W. We may clearly assume that no proper subset <strong>of</strong>σ 1 ,...,σ nis linearly dependent. Then in <strong>the</strong> above expressi<strong>on</strong> allα i are differentfrom zero. Letωbe any element <strong>of</strong> K. Then∑α i σ i ω=0i□


22 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsIf we replaceωbyωω ′ we get, sinceσ ′ i s are isomorphisms, 25∑α i σ i ω ′ .σ i ω=oifor everyω∈ K. This means thatσ i ,...,σ n satisfy ano<strong>the</strong>r linear relati<strong>on</strong>∑α i σ i ω ′ .σ i ω=oiSince <strong>the</strong> isomorphisms are mutually distinct, we can chooseω ′ inK in such a way thatσ 1 ω ′ σ n ω ′We <strong>the</strong>n get from <strong>the</strong> two linear relati<strong>on</strong>s, <strong>the</strong> expressi<strong>on</strong>∑n−1( αiαn −σ iω ′ α)iσ n ω ′ σ i = o.α ii=1This relati<strong>on</strong> is n<strong>on</strong> trivial since <strong>the</strong> coefficient <strong>of</strong>σ 1 is differentfrom zero. This leads to a c<strong>on</strong>tradicti<strong>on</strong> and our <strong>the</strong>orem is proved.Suppose dim V


3. Isomorphisms <strong>of</strong> fields 23mapping. It is uniquely determined by its effects <strong>on</strong>ω 1 ,...,ω n . Putα i =σω i and letτbe given by∑τ=σ− α i σ iThenτ(ω j )=σω j∑iα i σ i (ω j )=oso thatτ=o. Our c<strong>on</strong>tenti<strong>on</strong> isestablished.From this we obtain <strong>the</strong> very importantCorollary . If (K : k)


24 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields28Let nowσbe any automorphism <strong>of</strong>Ω/k. LetσK=K (i) . Then ittakesα (1) into a rootα (i j) <strong>of</strong> f σ (x)= f σ i(x) whereσ i is <strong>the</strong> isomorphismwhich coincides withσ<strong>on</strong> K. Thus since every isomorphism<strong>of</strong> K(α) over k comes from an automorphism <strong>of</strong>Ω/k, our c<strong>on</strong>tenti<strong>on</strong> isestablished.Let now K= k(ω 1 ,...,ω n ) and K i = k(ω 1 ,...,ω i ) so that K o = kand K n = K. Let K i have over K i−1 exactly P i distinct K i−1 -isomorphisms.Then K/k has exactly p 1··· p n distinct k-isomorphisms inΩ.Hence2) If K⊃ L⊃k be a tower <strong>of</strong> finite extensi<strong>on</strong>s and K has ever L,n distinct L-isomorphisms inΩand L has over k, m distinct k-isomorphisms<strong>the</strong>n K has over k precisely mn distinct k-isomorphisms.In particular let (K : k)


4. Separability 25For, <strong>the</strong> minimum polynomial <strong>of</strong>ωover L divides that over k.2) ω∈Ω separable over k⇔k(ω)/k has inΩ(k(ω) : k) distinct k- 29isomorphisms.Let now K= k(ω 1 ,...,ω n ) and letω 1 ,...ω n be all separable over k.Put K i = k(ω 1 ,...,ω) so that K o = k and K n = K. Now K i−1 (ω i ) andω i is separable over K i−1 so that K i over K i−1 has exactly (K i : K i−1 )distinct K i−1 - isomorphisms. This proves that K has over k(K n : K n−1 )...(K 1 : K o )=(K n : K o )=(K : k)distinct k-isomorphisms. If <strong>the</strong>reforeω∈K, Then by previous articlek(ω) has exactly (k(ω) : k) distinct isomorphisms and henceωis separable over k. C<strong>on</strong>versely if K/k is finite and every element<strong>of</strong> K is separable over k, <strong>the</strong>n K/k has exactly (K : k) distinct k-isomorphisms. Hence3) (K : k) < ∞, K/k has (K : k) distinct k-isomorphisms⇔everyelement <strong>of</strong> K is separable over k.Let us now make <strong>the</strong>Definiti<strong>on</strong>. A subfield K <strong>of</strong>Ω/k is said to be separable over k if everyelement <strong>of</strong> K is separable over k.From 3) and <strong>the</strong> definiti<strong>on</strong>, it follows that4) K/k is separable⇔ for every subfield L <strong>of</strong> K with (L : K)


26 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields6) If{K α } is a family <strong>of</strong> separable subfields <strong>of</strong>Ω<strong>the</strong>n2) ⋂ K α and b)k( ⋃ K α ) are separable.α αa) follows easily because every element <strong>of</strong> K α is separable over k.b) follows since every element <strong>of</strong> k( ⋃ K α ) is a rati<strong>on</strong>al functi<strong>on</strong> <strong>of</strong> aαfinite number <strong>of</strong> elements and as each <strong>of</strong> <strong>the</strong>se is separable <strong>the</strong> resultfollows from 3).7) Let K/k be any extensi<strong>on</strong>-not necessarily algebraic. The set L <strong>of</strong>elements <strong>of</strong> k separably algebraic over K is a field.This is evident. We call L <strong>the</strong> separable closure <strong>of</strong> k in K.We had already defined an algebraic elementωto be inseparable ifits minimum polynomial has repeated roots. Let us study <strong>the</strong> nature<strong>of</strong> irreducible polynomials.Let f (x)=a o + a 1 x+···+a n x n be an irreducible polynomial in k[x].If it has a rootω∈Ω which is repeated, <strong>the</strong>nωis a root <strong>of</strong>f 1 (x)=a 1 + 2a 2 x+···+na n x n−1 .Thus f (x)| f 1 (x) which can happen <strong>on</strong>ly ifia i = o, i=1,...,n.31Let k have characteristic zero. Then ia i = o⇒a i = 0 that is f (x) isa c<strong>on</strong>stant polynomial. Thus8) Over a field <strong>of</strong> characteristic zero, every n<strong>on</strong> c<strong>on</strong>stant irreduciblepolynomial has all roots distinct.Let now k have characteristic po. if pχi <strong>the</strong>n ia i = o⇒a i = o.Thus for f 1 (x) to be identically zero we must have a i = o for pχi. Inthis casef (x)=a o + a p x p +···or that f (x)∈k[x p ]. Let e be <strong>the</strong> largest integer such that f (x)∈k[x p ] but not in k[x pe+1 ]. C<strong>on</strong>sider <strong>the</strong> polynomialφ(y) withφ(x pe )=


4. Separability 27f (x). Thenφ(y) is irreducible in k[y] andφ(y) has no repeated roots.Letβ 1 ,...,β t be <strong>the</strong> roots <strong>of</strong>φ(y) inΩ. Thenf (x)=(x pe −β 1 )···(x pe −β t ).Thus n=t· p e . The polynomial x Pe −β i has inΩall roots identicalto <strong>on</strong>e <strong>of</strong> <strong>the</strong>m sayα i . Thenx Pe −β i = x Pe −∆α pei= (x−α i ) peThusf (x)={(x−α 1 )···(x−α t )} peMoreover sinceβ 1 ...β t are distinct, α 1 ,...,α t are also distinct.Hence9) Over a field <strong>of</strong> characteristic po, <strong>the</strong> roots <strong>of</strong> an irreducible polynomialare repeated equally <strong>of</strong>ten, <strong>the</strong> multiplicity <strong>of</strong> a root being p e ,e≥o.It is important to note that (x−α 1 )...(x−α t ) is not a polynomial in 32k[x] and t is not necessarily prime to p.We call t <strong>the</strong> reduced degree <strong>of</strong> f (x) (or <strong>of</strong> any <strong>of</strong> its roots ) and p e ,its degree <strong>of</strong> inseparability. ThusDegree <strong>of</strong>: Reduced degree X-degree <strong>of</strong> inseparabilityIfω∈Ω <strong>the</strong>n we had seen earlier that k(ω)/k has as many distinctisomorphisms inΩas <strong>the</strong>re are distinct roots inΩ<strong>of</strong> <strong>the</strong> minimumpolynomial <strong>of</strong>ωover k. If we call <strong>the</strong> reduced degree <strong>of</strong> k(ω) as <strong>the</strong>kreduced degree <strong>of</strong>ω we have10) Reduced degree <strong>of</strong>ω = Number <strong>of</strong> distinct roots <strong>of</strong> <strong>the</strong> minimumpolynomial <strong>of</strong>ωover k.We may now call a polynomial separable if and <strong>on</strong>ly if every root <strong>of</strong>it inΩis separable. In particular if f (x)∈k[x] is irreducible <strong>the</strong>nf (x) is separable if <strong>on</strong>e root <strong>of</strong> it is separable.


28 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsLetω∈Ω and f (x) <strong>the</strong> minimum polynomial <strong>of</strong>ωin k[x]. If t=reduced degree <strong>of</strong>ω, <strong>the</strong>nf (x)={(x−ω 1 )...(x−ω t )} pen=t− p e . Letω 1 =ω. C<strong>on</strong>siderω pe1 =β 1. Thenf (x)=(x pe −β 1 )···(x pe −β t )andβ 1 ,...β t are separable over k. C<strong>on</strong>sider <strong>the</strong> field k(β 1 ) which isa subfield <strong>of</strong> k(ω).β being <strong>of</strong> degree t over k, (k(β 1 ) : k)=t. Thismeans that(k(ω) : k(β))= p e .33But <strong>the</strong> interesting fact to note is that k(ω) has over k(β) <strong>on</strong>ly <strong>the</strong>identity isomorphism or that k(ω) is fixed by every k(β)-automorphism<strong>of</strong>Ω/k(β).Also since every element <strong>of</strong> k(ω) is a rati<strong>on</strong>al functi<strong>on</strong> <strong>of</strong>ωover k(β),it follows thatλ pe ∈ k(β)for everyλ∈k(ω). Thus <strong>the</strong> integer e has <strong>the</strong> property that for everyλ∈k(ω),λ pe ∈ k(β) and <strong>the</strong>re is at least <strong>on</strong>eλ(for instanceω) forwhichλ pe k(β). e is called <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong>ω, equivalently <strong>of</strong> k(ω).We define <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> an algebraic elementαover k to be <strong>the</strong>integer e≥o such thatα pe is separable but notα pe−1 . Hence11) Exp<strong>on</strong>ent <strong>of</strong>α is zero⇔αis separable over k.We shall now extend this noti<strong>on</strong> <strong>of</strong> exp<strong>on</strong>ent and reduced degree toany finite extensi<strong>on</strong>.Let K/k be finite so that K= k(ω 1 ,...,ω n ). Put as before K o = k,K i = k(ω 1 ,...,ω i ) so that K n = K. Letω i have reduced degree d i andexp<strong>on</strong>ent e i over K i−1 . Then(K i : K i−1 )=d i p e i


4. Separability 29From <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> d i , it follows that <strong>the</strong> number <strong>of</strong> distinct k-isomorphisms <strong>of</strong> K/k is d 1 ...d n . We putd=d 1···d nand call it <strong>the</strong> reduced degree <strong>of</strong> K/k. Then(K : k)=d.... p fwhere f= e 1 +···+e n . We call p f <strong>the</strong> degree <strong>of</strong> inseparability <strong>of</strong> K/k.In order to be able to give ano<strong>the</strong>r interpretati<strong>on</strong> to <strong>the</strong> integer d we 34make <strong>the</strong> following c<strong>on</strong>siderati<strong>on</strong>s.LetΩ⊃K⊃ k and let K/k have <strong>the</strong> property that every k automorphism<strong>of</strong>Ω/k acts like identity <strong>on</strong> K. Thus ifσ∈G(Ω/k) andω∈K,<strong>the</strong>nσω=ωAll elements <strong>of</strong> k have this property. Letω∈K,ωk. Then bydefiniti<strong>on</strong>,ω has inΩ<strong>on</strong>ly <strong>on</strong>e c<strong>on</strong>jugate. The irreducible polynomial<strong>of</strong>ωhas all roots equal. Thus <strong>the</strong> minimum polynomial <strong>of</strong>ωisx pm − awhere a∈k. i.e.,ω pm ∈ k. On <strong>the</strong> o<strong>the</strong>r hand let K be an extensi<strong>on</strong> <strong>of</strong> kinΩwith <strong>the</strong> property that for everyω∈Kω pm ∈ kfor some integer m ≥ o. Letσbe an automorphism <strong>of</strong>Ω/k. Thenσω pm =ω pm . Buto=σω pm −ω pm = (σω−ω) pmwhich shows thatσω=ω. ω being arbitrary in K, it follows that everyelement <strong>of</strong> G(Ω/k) is identity <strong>on</strong> K.Hence forω∈Ω<strong>the</strong> following three statements are equivalent1) σω=ω for allσ∈G(Ω/k)


30 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields2) ω pm ∈ k for some m≥o depending <strong>on</strong>ω3) The irreducible polynomial <strong>of</strong>ωover k is <strong>of</strong> <strong>the</strong> form x pm − a, a∈k.We call an elementω ∈ Ω which satisfies any <strong>on</strong>e <strong>of</strong> <strong>the</strong> above 35c<strong>on</strong>diti<strong>on</strong>s, a purely inseparable algebraic element over k.Let us make <strong>the</strong>Definiti<strong>on</strong> . A subfield K/k <strong>of</strong>Ω/k is said to be purely inseparable ifelementω <strong>of</strong> K is purely inseparable.From what we have seen above, it follows that K/k is purely inseparableis equivalent to <strong>the</strong> fact that every k-automorphism <strong>of</strong>Ωis identity<strong>on</strong> K.Let K/k be an algebraic extensi<strong>on</strong> and L <strong>the</strong> maximal separable subfield<strong>of</strong> K/k. For everyω∈K,ω pe is separable for some e≥o whichmeans thatω pe ∈ L. Thus K/L is a purely inseparable extensi<strong>on</strong> field.This means that every k-isomorphism <strong>of</strong> L/k can be extended uniquelyto a k-isomorphism <strong>of</strong> K/k.Let, in particular, K/k be a finite extensi<strong>on</strong> and L <strong>the</strong> maximal separablesubfield <strong>of</strong> K. Then K/L is purely inseparable and K/L has noL-isomorphism o<strong>the</strong>r than <strong>the</strong> identity. Thus <strong>the</strong> number <strong>of</strong> distinct isomorphismo<strong>the</strong>r than <strong>the</strong> identity. Thus <strong>the</strong> number <strong>of</strong> distinct isomorphisms<strong>of</strong> K/k equals (L : k). But from what has g<strong>on</strong>e before(K : L)= p f , (L : k)=d.For this reas<strong>on</strong> we shall call d also <strong>the</strong> degree <strong>of</strong> separability <strong>of</strong> K/kand denote it by [K : k]. We shall denote <strong>the</strong> degree <strong>of</strong> inseparability,p f , by { K : k } . Then(K : k)=[K : k] { K : k } .Note. In case k has characteristic zero, every algebraic element over k isseparable.36IfΩis <strong>the</strong> algebraic closure <strong>of</strong> k and L <strong>the</strong> maximal separable subfield<strong>of</strong>Ω<strong>the</strong>nΩ/L is purely inseparable.Ω coincides with L in case k


5. Perfect fields 31has characteristic zero. But it can happen that L is a proper subfield <strong>of</strong>Ω.Let K/k be an algebraic extensi<strong>on</strong> and L <strong>the</strong> maximal separable subfield.C<strong>on</strong>sider <strong>the</strong> exp<strong>on</strong>ents <strong>of</strong> all elements in K. Let e be <strong>the</strong> maximum<strong>of</strong> <strong>the</strong>se if it exists. we call e <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> <strong>the</strong> extensi<strong>on</strong> K/k. Itcan happen that e is finite but K/L is infinite.If K/k is a finite extensi<strong>on</strong> <strong>the</strong>n K/L has degree p f so that <strong>the</strong> maximume <strong>of</strong> <strong>the</strong> exp<strong>on</strong>ents <strong>of</strong> elements <strong>of</strong> K exists. If e is <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong>K/k <strong>the</strong>ne≤ fIt can happen that e< f . For instance let k have characteristic p0and letα∈k be not a p th power in k. Then k(α 1/p ) is <strong>of</strong> degree p overk. Letβin k be not a p th power in k. Then k(α 1/p ,β 1/p ) is <strong>of</strong> degree p 2over k,βk(α 1/p ) and for everyλ∈k(α 1/p ,β 1/p ),λ p ∈ k.We may for instance take k(x, y) to be <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al functi<strong>on</strong>s<strong>of</strong> two variables and K = k(x 1/p , y 1/p ). Then (K : k(x, y))= p 2 andλ p ∈ k(x, y) for everyλ∈K.5 Perfect fieldsLet k be a field <strong>of</strong> characteristic p>0. LetΩbe its algebraic closure.Letω∈k. Then <strong>the</strong>re is <strong>on</strong>ly <strong>on</strong>e elementω ′ ∈Ω such thatω ′p =ω.We can <strong>the</strong>refore writeω 1/p without any ambiguity. Let k p−1 be <strong>the</strong> fieldgenerated inΩ/k by <strong>the</strong> p th roots <strong>of</strong> all elements <strong>of</strong> k. Similarly from 37k p−2 ,... Let ⋃K= k p−nn≥0Obviously K is a field; for ifα,β∈K,α,β∈k p−n for some large n.We denote K by k p−∞We shall study k p−∞ in relati<strong>on</strong> to k andΩ. k p−∞ is called <strong>the</strong> rootfield <strong>of</strong> k.Letω∈k p−∞ . Thenω∈k p−∞ for some n so thatω p∞ ∈ k orωispurely inseparable. On <strong>the</strong> o<strong>the</strong>r hand letω∈Ω be purely inseparable.Thenω pn ∈ k for some n i.e.,ω∈k p−∞ ⊂ k p−∞ . Thus


32 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields1) k p−∞ is <strong>the</strong> largest purely inseparable subfield <strong>of</strong> Ω/k.Therefore every automorphism <strong>of</strong>Ω/k is identity <strong>on</strong> k p−∞ . The set<strong>of</strong> elements <strong>of</strong>Ωwhich are fixed under all <strong>the</strong> k− automorphisms <strong>of</strong>Ω/k form a field called <strong>the</strong> fixed <strong>of</strong> G(Ω/k). Since every such elementω,fixed under G(Ω/k) is purely inseparable,Ω∈k p−∞ . Hence2) k p−∞ is <strong>the</strong> fixed field <strong>of</strong> <strong>the</strong> group <strong>of</strong> k− automorphism <strong>of</strong>Ω/k.Let f (x) be an irreducible polynomial in k p−∞ [x]. We assert that thisis separable. For if not f (x)∈k p−∞ [x p ]. Thus f (x)=a o + a 1 x p +···+a n x np . Since a i ∈ k p−∞ [X p ], it is in some k p−t and so a i = b p iforb i ∈ k p−∞ . Hencef (x)=(b o + b 1 x+···+b n x n ) pwhich is c<strong>on</strong>tradicts <strong>the</strong> fact that f (x) is irreducible. Hence383) Ω/k p−∞ is a separable extensi<strong>on</strong>.We now make <strong>the</strong>Definiti<strong>on</strong>. A field k is said to be perfect if every algebraic extensi<strong>on</strong><strong>of</strong> k is separable.It follows from <strong>the</strong> definiti<strong>on</strong> that1) An algebraically closed field is perfect2) A field <strong>of</strong> characteristic zero is perfect.We shall now prove3) A field k <strong>of</strong> characteristic p>0 is perfect if and <strong>on</strong>ly if k=k p−∞ .Let k have no inseparable extensi<strong>on</strong>. Then for a∈k, a 1/p ∈ kalso; for, o<strong>the</strong>rwise k(a 1/p ) is inseparable over k. Thus k=k p−1 =···=k p−∞ . The c<strong>on</strong>verse has already been proved.We deduce immediately4) A finite field is perfect.For if k is a finite field <strong>of</strong> characteristic p>r<strong>the</strong>n a→a p is anautomorphism <strong>of</strong> k.


5. Perfect fields 335) Any algebraic extensi<strong>on</strong> <strong>of</strong> a perfect field is perfect.For let K/k be algebraic and k be perfect. Ifαis inseparable overK, <strong>the</strong>n it is already so over k.An example <strong>of</strong> an imperfect field is <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al functi<strong>on</strong>s<strong>of</strong> <strong>on</strong>e variable x over a finite field k. For if k has characteristicp, <strong>the</strong>n x 1/p k(x) and k(x 1/p ) is a purely inseparable extensi<strong>on</strong>over k(x).Note 1. Ifα∈Ω is inseparable over k, it is not true that it is inseparableover every intermediary field, whereas this is true ifαis separable. 39Note 2. If K/k is algebraic and K∩k p−∞ c<strong>on</strong>tains k properly <strong>the</strong>n K is aninseparable extensi<strong>on</strong>. But <strong>the</strong> c<strong>on</strong>verse <strong>of</strong> this is not true, that is, if K/kis an inseparable extensi<strong>on</strong>, it can happen that <strong>the</strong>re are no elements inK which are purely inseparable over k. We give to this end <strong>the</strong> followingexample due to Bourbaki.Let k be a field <strong>of</strong> characteristic p>2 and let f (x) by in irreduciblepolynomialf (x)= x n + a 1 x n−1 +···+a nin k[x]. Ifα 1 ,...,α t are <strong>the</strong> distinct roots <strong>of</strong> f (x) inΩ<strong>the</strong>nf (x)= { (x−α 1 )...(x−α t ) } p e e≥1.where n=t.· p e . Putφ(x)= f (x p ). ThenIfβ i =α 1/pi<strong>the</strong>nφ(x)= { (x p −α 1 )...(x p −α t )} peφ(x)= { (x−β 1 )...(x−β t ) } p e+1andβ,...,β t are distinct sinceα 1 ...α t are distinct. Supposeφ(x) isreducible in k[x] and letψ(x) be an irreducible factor <strong>of</strong>φ(x) in k[x].Thenψ(x)= { (x−β 1 )···(x−β t ) } p µ


34 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsforµ≥0 andl≤t. (This is because roots <strong>of</strong>ψ(x) occur with <strong>the</strong> samemultiplicity). We can writeψ(x)= { (x p −α 1 )...(x p −α l ) } p µ−1(µ has to be≥ 1) since o<strong>the</strong>rwise, it will mean that (x−α 1 )···(x−α t )∈k[x]). Now this will mean thatφ(x)=ψ(x). W(x) in k[x p ] so thatl=t.Henceψ(x)={(x−β 1 )···(x−β t )} pµ ,µ≥1.40Sinceψ(x) is irreducible andψ(x)={(x p −α 1 )...(x p −α t )} pµ−1we see thatµ−1=eorµ=e+1. Thusφ(x)= f (x p )={ψ(x)} pThus if f (x p ) is reducible, it is <strong>the</strong> p th power <strong>of</strong> an irreducible polynomial.In this case a i = b p i , b i∈ k, i=1,...n.C<strong>on</strong>versely if a i = b p i , b i∈ k, i=1,...n. <strong>the</strong>n f (x p ) is reducible.Hence f (x p ) is reducible f (x)∈k p [x].Let k now be a field <strong>of</strong> characteristic p>2given by k=Γ(x, y), <strong>the</strong>field <strong>of</strong> rati<strong>on</strong>al functi<strong>on</strong>s in two variables x, y over <strong>the</strong> prime fieldΓifp elements. C<strong>on</strong>sider <strong>the</strong> polynomialf (z)=z 2p + xz p + y,in k[z]. Since x 1/p , y 1/p do not lie in k, f (z) is irreducible in k. Letϑbea root <strong>of</strong> f (z). Then (k(ϑ) : k)=2p. Letβbe in k(ϑ) and not in k suchthatβ p ∈ k. Then k(ϑ)⊃k(β)⊃k. Also (k(β) : k)= p. In k(β)[x]<strong>the</strong> polynomial f (z) cannot be irreducible, since ( k(ϑ) : k(β) ) = 2. It isreducible and so k(β) will c<strong>on</strong>tain x 1/p and y 1/p . But <strong>the</strong>n k(x 1/p , y 1/p )⊃k(β).Thusp 2 = ( k(x 1/p , y 1/p ) : k ) ≤ ( k(β) : k ) ≤ ( ϑ) : k ) = 2pbut this is impossible. Thus <strong>the</strong>re is no elementβin k(ϑ) withβ p ∈ k.All <strong>the</strong> same k(ϑ) is inseparable.


6. Simple extensi<strong>on</strong>s 356) If k is not perfect <strong>the</strong>n k p−∞ is an infinite extensi<strong>on</strong> <strong>of</strong> k.For, if k p−∞ /k is finite <strong>the</strong>n, since k p−∞ = ⋃ k p−n we have k p−n =nk p−(n+1) for some n,Applying <strong>the</strong> mapping a→a apn we find k=k p−1 . But this is false. 41Thus (k p−(n+1) : k p−n) > 1which proves our c<strong>on</strong>tenti<strong>on</strong>.6 Simple extensi<strong>on</strong>sAn algebraic extensi<strong>on</strong> K/k is said to be simple if <strong>the</strong>re is anω∈Ksuchthat K= k(ω). Obviously (K : k) is finite. We callωaprimitive element<strong>of</strong> K. The primitive element is not unique for,ω+λ,λ ∈ k also isprimitive. We now wish to find c<strong>on</strong>diti<strong>on</strong>s when an algebraic extensi<strong>on</strong>would be simple. We first proveLemma. Let k be an infinite field andα,β elements in an algebraic closureΩ<strong>of</strong>k such thatαis separable over k. Then k(α,β) is a simpleextensi<strong>on</strong> <strong>of</strong> k.Pro<strong>of</strong>. Let f (x) andφ(x) be <strong>the</strong> irreducible polynomials <strong>of</strong>αandβrespectivelyin k[x], so thatf (x)=(x−α 1 )···(x−α n )φ(x)=(x−β 1 )···(x−β m ).Sinceαis separable,α 1 ,...α n are all distinct. We shall putα=α 1 ,andβ=β 1 . C<strong>on</strong>struct <strong>the</strong> linear polynomialsβ i + Xα j (i=1,...,m; j=1,...,n)These mn polynomials are inΩ, <strong>the</strong> algebraic closure <strong>of</strong> k and sincek is infinite, <strong>the</strong>re exists an elementλ∈ksuch thatβ i +λα j β i ,+λα j ,α J ′□


36 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields42Putγ=β 1 +λα 1 =β+λαObviouslyλcan be chosen so thatγ0Now k(γ)⊂k(α,β). We shall will now show thatα∈k(γ). Fromdefiniti<strong>on</strong> <strong>of</strong>γ,βalso will be in k(γ) and that will meank(γ)⊂k(α,β)⊂k(γ).In order to do this c<strong>on</strong>sider <strong>the</strong> polynomialφ(γ−λ.x)in k(γ)[x]. Alsoit vanishes for x=α. Fur<strong>the</strong>rmore by our choice <strong>of</strong>λ,φ(γ−λα i )0for i>1. In <strong>the</strong> algebraic closureΩ, <strong>the</strong>refore, f (x) andφ(γ−λx) havejust x−α as a factor. But f (x) andφ(γ−λx) are both polynomials ink(γ)[x]. So x−αis <strong>the</strong> greatest comm<strong>on</strong> divisor <strong>of</strong>φ(γ−λx) and f (x)in k(γ)[x]. Thusα∈k(γ). Our lemma is dem<strong>on</strong>strated.We have <strong>the</strong>reforeCorollary . Ifα 1 ,...,α n are separably algebraic and β ∈ Ω <strong>the</strong>nk(β,α,...α n ) is a simple extensi<strong>on</strong>.We deduce immediatelyCorollary. A finite separable extensi<strong>on</strong> is simple.LetΓbe <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers andΓ(ω,ρ) <strong>the</strong> splitting field<strong>of</strong> <strong>the</strong> polynomial x 3 − 2 inΓ[x]. ThenΓ(ω,ρ) is simple. A primitiveelementγis given byω+ρ=γ. ThenΓ(γ) is <strong>of</strong> degree 6 overΓ. It iseasy to see thatγhas overΓ<strong>the</strong> minimum polynomial(x 3 − 3x−3) 2 + 3x(x+1)(x 3 − 3x−3)+9x 2 (x+1) 2Let now K/k be a finite extensi<strong>on</strong> and L <strong>the</strong> maximal separablesubfield <strong>of</strong> K/k. Then (K : L)= p f <strong>the</strong> degree <strong>of</strong> inseparability and(L : k)=d <strong>the</strong> reduced degree. If we c<strong>on</strong>sider <strong>the</strong> exp<strong>on</strong>ents <strong>of</strong> elements<strong>of</strong> K, <strong>the</strong>se have a maximum e ande≤ f.43We had given an example <strong>of</strong> e< f . We shall now prove <strong>the</strong>


6. Simple extensi<strong>on</strong>s 37Theorem 5. If e is <strong>the</strong> exp<strong>on</strong>ent and p f <strong>the</strong> degree <strong>of</strong> inseparability <strong>of</strong>finite extensi<strong>on</strong> K <strong>of</strong> k, <strong>the</strong>n e= f⇐⇒ K/k is simple.Pro<strong>of</strong>. Let K= k(ω). Let K o be <strong>the</strong> maximal separable subfield <strong>of</strong> K/k.Now (K : K o )= p f . But p f is degree <strong>of</strong>ω. Thus e= f □Let now K/k be a finite extensi<strong>on</strong> and e= f . There exists <strong>the</strong>n aωin K such thatω pe is separable and in K o but for no, t


38 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsThereforek(α,β)⊂k(γ)⊂k(α,β).Hence every subfield <strong>of</strong> K, generated by 2 and hence by a finite number<strong>of</strong> elements is simple. Let K be a maximal subfield <strong>of</strong> K/k whichis simple. (This exists since K/k has <strong>on</strong>ly finitely many intermediaryfields). Let K 0 = k(ω). Letβ∈KandβK 0 . Then k(γ)=k(ω,β)⊂Kand K 0 ⊂ k(γ) c<strong>on</strong>tradicting maximality <strong>of</strong> K 0 . Thusβ(γ)=K. We haveprovedTheorem 6. K/k is simple⇐⇒ K/k has <strong>on</strong>ly finitely many intermediaryfields.We deduceCorollary. If K/k is simple, <strong>the</strong>n every intermediary field is simple.Note 1. We have <strong>the</strong> fact that if K/k is infinite <strong>the</strong>re exist infinitely manyintermediary fields.45Note 2. Theorem 6 has been proved <strong>on</strong> <strong>the</strong> assumpti<strong>on</strong> that k is an infinitefield. If k is finite <strong>the</strong> <strong>the</strong>orem is still true and we give a pro<strong>of</strong>later.7 Galois extensi<strong>on</strong>sLet K/k be an algebraic extensi<strong>on</strong> and G <strong>the</strong> group <strong>of</strong> automorphism <strong>of</strong>K which are trivial <strong>on</strong> k. Let L be <strong>the</strong> subset <strong>of</strong> all elements <strong>of</strong> K whichare fixed by G. L is <strong>the</strong>n a subfield <strong>of</strong> K and is called <strong>the</strong> fixed field <strong>of</strong>G. We shall now c<strong>on</strong>sider <strong>the</strong> class <strong>of</strong> algebraic extensi<strong>on</strong>s K/k whichare such that <strong>the</strong> group G(K/k) <strong>of</strong> automorphisms <strong>of</strong> K which are trivial<strong>on</strong> k, has k as <strong>the</strong> fixed field. We call such extensi<strong>on</strong>s galois extensi<strong>on</strong>s,<strong>the</strong> group G(K/k) itself being called <strong>the</strong> galois group <strong>of</strong> K/k.We now prove <strong>the</strong>Theorem 7. k is <strong>the</strong> fixed field <strong>of</strong> <strong>the</strong> group <strong>of</strong> k automorphisms <strong>of</strong>K⇐⇒ K/k is a normal and separable extensi<strong>on</strong>.


7. Galois extensi<strong>on</strong>s 39Pro<strong>of</strong>. Let k be <strong>the</strong> fixed field <strong>of</strong> <strong>the</strong> group G(K/k) <strong>of</strong> k-automorphisms<strong>of</strong> K. Letω∈K. Letω 1 (=ω),...ω n be all <strong>the</strong> distinct c<strong>on</strong>jugates <strong>of</strong>ωthat lie in K. C<strong>on</strong>sider <strong>the</strong> polynomialf (x)=(x−ω 1 )···(x−ω n )Ifσis an element <strong>of</strong> G(K/k),σ permutesω 1 ,...,ω n so thatσleaves<strong>the</strong> polynomial f (x) unaltered. The coefficients <strong>of</strong> this polynomial arefixed under all elements <strong>of</strong> G and hence since k is <strong>the</strong> fixed field G, f (x)∈k[x]. Hence <strong>the</strong> minimum polynomial roots <strong>of</strong> <strong>the</strong> minimum polynomial<strong>of</strong>ω, sinceω 1 ,...ω n are c<strong>on</strong>jugates. Thus f (x)/φ(x). ThereforeK splitting field <strong>of</strong>φ(x),φ(x) has all roots distinct. Thus K/k is normaland separable.□Suppose now K/k is normal and separable. C<strong>on</strong>sider <strong>the</strong> group 46G(K/k) <strong>of</strong> k-automorphisms <strong>of</strong> K. Letα∈K. Since K/k is separable,all c<strong>on</strong>jugates <strong>of</strong>αare distinct. Also since K/k is normal K c<strong>on</strong>tains all<strong>the</strong> c<strong>on</strong>jugates. Ifαis fixed under allσ∈G(K/k), <strong>the</strong>nαis a purelyinseparable element <strong>of</strong> K and hence is in k.Our <strong>the</strong>orem is thus proved.We thus see that galois extensi<strong>on</strong>s are identical with extensi<strong>on</strong> fieldswhich are both normal and separable.Examples <strong>of</strong> Galois extensi<strong>on</strong>s are <strong>the</strong> splitting fields <strong>of</strong> polynomialsover perfect fields.Let k be a field <strong>of</strong> characteristic 2 and let K= k( √ α) forα∈kand √ αk.( √ α) 2 =α∈k. Every element <strong>of</strong> K is uniquely <strong>of</strong> <strong>the</strong> forma+ √ α·b, a, b∈k. Ifσis an automorphism <strong>of</strong> K which is trivial <strong>on</strong> k,<strong>the</strong>n its effect <strong>on</strong> K is determined by its effect <strong>on</strong> √ α. Nowα=σ { ( √ α) 2} =σ( √ α).σ( √ α)or thatσ( √ α)/ √ α=λ is such thatλ 2 = 1. Sinceλ∈K,λ=±1. Thusσ is ei<strong>the</strong>r th identity or <strong>the</strong> automorphismσ( √ α)=− √ αThus G(K/k) is a group <strong>of</strong> order 2. K/k is normal and separable.We shall obtain some important properties <strong>of</strong> galois extensi<strong>on</strong>s.


40 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields471) If K/k is a galois extensi<strong>on</strong> and k⊂L⊂K, <strong>the</strong>n K/L is a galoisextensi<strong>on</strong> also.For, K/L is clearly separable. We had already seen that it is normal.If we denote by G(K/L) <strong>the</strong> galois group <strong>of</strong> K over L, than G(K/L)is a subgroup <strong>of</strong> G(K/k).2) If k⊂L 1 ⊂ L 2 ⊂ K <strong>the</strong>n G(K/L 2 ) is a subgroup <strong>of</strong> G(K/L 1 ). Thisis trivial.3) If{K α } is a family <strong>of</strong> galois extensi<strong>on</strong>s <strong>of</strong> k c<strong>on</strong>tained inΩ<strong>the</strong>n ⋂ αand k( ⋃ K α ) are galois.αK αThis follows from <strong>the</strong> fact that this is already true for normal andalso for separable extensi<strong>on</strong>s.4) If K/k is galois and L and L ′ are two intermediary fields <strong>of</strong> K/kwhich are c<strong>on</strong>jugate over k, <strong>the</strong>n G(G/L) and G(K/L ′ ) are c<strong>on</strong>jugatesubgroups <strong>of</strong> G(K/k) and c<strong>on</strong>versely.Pro<strong>of</strong>. Since L and L ′ are c<strong>on</strong>jugate over k letσbe an automorphism <strong>of</strong>K/k so thatσL= L ′ . Letτ∈G(K/σL). Then for everyω∈σLButω=σω ′ forω ′ ∈ L. Thusτω=ωσ −1 τσω ′ =ω ′Since this is true for everyω ′ ∈ L, it follows thatσ −1 G(K/σL)σ⊂G(K/L)In a similar manner <strong>on</strong>e proves thatσG(K/L)σ −1 ⊂ G(K/σL) whichproves our c<strong>on</strong>tenti<strong>on</strong>. □48C<strong>on</strong>versely suppose that L and L ′ are two subfields such that G(K/L)and G(K/L ′ ) are c<strong>on</strong>jugate subgroups <strong>of</strong> G(K/k). Let G(K/L ′ )=σ −1G(K/L)σ. Letω∈L ′ andτ∈G(K/L). Thenσ −1 τσ∈G(K/L ′ ) and so


7. Galois extensi<strong>on</strong>s 41σ −1 τσω=ωorτ(σω)=σω. This being true for allτ, it follows thatσω∈L for allω in L ′ . ThusσL ′ ⊂ L ′ . We can similarly prove thatσ −1 L⊂L ′ whichproves our statement.In particular let L/k be a normal extensi<strong>on</strong> <strong>of</strong> k which is c<strong>on</strong>tainedin K. ThenσL=L for allσ∈G(K/k). This means that G(K/L) is anormal subgroup <strong>of</strong> G(K/k). On <strong>the</strong> o<strong>the</strong>r hand if L is any subfield suchthat G(K/L) is a normal subgroup <strong>of</strong> G(K/k) <strong>the</strong>n by aboveσL=L forallσ∈G(K/k) which proves that L/k is normal. Thus5) Let k⊂L⊂K. Then L/k is normal⇐⇒ G(K/L) is a normalsubgroup <strong>of</strong> G(K/k)6) If L/k is normal, <strong>the</strong>n G(K/k)≃G(L/k)/G(K/L).Letσ∈G(K/k) and ¯σ <strong>the</strong> restricti<strong>on</strong> <strong>of</strong>σto L. Then ¯σ is an automorphism<strong>of</strong> L/k so that ¯σ∈G(L/k). Nowσ→ ¯σ is a homomorphismfo G(K/k) into G(L/k). Forστω=στω=σ(τω)= ¯σ¯τω for allω∈L. Thus ¯σ¯τ=στThe homomorphism is <strong>on</strong>to since every automorphism <strong>of</strong> L/k can be 49extended into an automorphism <strong>of</strong> K/k. Now ¯σ is identity if and <strong>on</strong>ly if¯σω=ωfor allω∈L. Thusσ∈G(K/L). Also everyσ∈G(K/L) has thisproperty so that <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> homomorphism is G(K/L).Let K/k be a finite galois extensi<strong>on</strong>. Every isomorphism <strong>of</strong> K/k inΩ is an an automorphism. Also K/k being separable, K/k has exactly(K : k) district isomorphisms. This shows that(K : k)=order <strong>of</strong> G.We shall now prove <strong>the</strong> c<strong>on</strong>verse7) If G is a finite group <strong>of</strong> automorphisms <strong>of</strong> K/k having k as <strong>the</strong>fixed field <strong>the</strong>n (K : k)=order <strong>of</strong> G.


42 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsPro<strong>of</strong>. Letσ 1 ,...,σ n be <strong>the</strong> n elements <strong>of</strong> G andω 1 ,...ω n+1 any n+1elements <strong>of</strong> K. Denote by V K <strong>the</strong> vector space over K <strong>of</strong> n dimensi<strong>on</strong>sformed by n- tuples (α 1 ,...,α n ). Define n+1 vectorsΩ 1 ,...,Ω n+1 byΩ i = (σ i (ω i ),...,σ n (ω i ))i=1,...,n+1Am<strong>on</strong>g <strong>the</strong>se vectors <strong>the</strong>re exists m≤n vectors linearly independentover K. LetΩ 1 ,...,Ω m be independent. Thenm∑Ω m+1 = a i Ω in=1a i ∈ KThis equati<strong>on</strong> gives, for <strong>the</strong> comp<strong>on</strong>ents <strong>of</strong> <strong>the</strong>Ω ′ s,σ l (ω m+1 )=m∑a i σ l (ω i )α=1,...,n.1=i□50Sinceσ 1 ,...,σ n form a group <strong>the</strong>nσ n σ 1 ,...,σ n σ n are again <strong>the</strong>elementsσ 1 ,...,σ n in some order. Thusσ h σ l (ω m+1 )=m∑σ h (a i |σ h σ l (ω i )i=1which meansσ l (ω m+1 )=m∑σ h (a i )σ l (ω i )i=1i=1,...,nsubtracting we havem∑(σ h (a i )−a i σ l (ω i )=0i=1which means thatm∑ ( )σh (a i )−a i Ωi = 0i=1


7. Galois extensi<strong>on</strong>s 43From linear independence, it follows thatσ h (a i )=a i for all i. Buth is arbitrary. Thus a i ∈ k. We <strong>the</strong>refore have by takingσ 1 to be <strong>the</strong>identity element <strong>of</strong> Gm∑ω m+1 = a i ω ia i are in k, not all zero. Hencei=1(K : k)≤n.But every element <strong>of</strong> G is an isomorphism <strong>of</strong> K/k. Thus(K : k)≥ order <strong>of</strong> G=n.Our asserti<strong>on</strong> is established.Suppose K/k is a galois extensi<strong>on</strong>. For every subfield L <strong>of</strong> K/k, <strong>the</strong>extensi<strong>on</strong> K/L is galois. We denote its galois group by G(L) and thisis a subgroup <strong>of</strong> G(K/k). Suppose g is any subgroup <strong>of</strong> G(K/k) and letF(g) be its fixed field. Then F(g) is a subfield <strong>of</strong> K. The galois groupG(F(g)) <strong>of</strong> K/F(g) c<strong>on</strong>tains g. In general <strong>on</strong>e has <strong>on</strong>ly 51g⊂G(F(g))Let now K/k be a finite galois extensi<strong>on</strong>. Let g be a subgroup <strong>of</strong>G(K/k)=Gand F(g), <strong>the</strong> fixed field <strong>of</strong> g. Then by above( )K : F(g) = order <strong>of</strong> g.and sog=G ( K/F(g) )If g 1 and g 2 are two subgroups <strong>of</strong> G with g 1 ⊂ g 2 <strong>the</strong>n F(g 1 ) andF(g 2 ) are distinct. For if F(g 1 ) and F(g 2 ) are identical, <strong>the</strong>n by aboveg 1 = G(K/F(g 2 ))=g 2 . We thus have <strong>the</strong>Main Theorem(<strong>of</strong> finite galois <strong>the</strong>ory). Let K/k be a finite galois extensi<strong>on</strong>with galois group G. Let M denote <strong>the</strong> class <strong>of</strong> all subgroups<strong>of</strong> G and N <strong>the</strong> class all subfield <strong>of</strong> K/k. Letφbe <strong>the</strong> mapping which


44 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields52assigns to every subgroup g∈ M, <strong>the</strong> fixed field F(g) <strong>of</strong> g in N. Thenφis a mapping <strong>of</strong> M <strong>on</strong>to N which is biunivocal.In order to restore this property even for infinite extensi<strong>on</strong>s, we developa method due originally to Krull.Let K/k be a galois extensi<strong>on</strong> with galois group G(K/k). For everyω ∈ K, we denote by G ω <strong>the</strong> galois group G(K/k(ω)). This <strong>the</strong>n isa subgroup <strong>of</strong> G(K/k). We make G(K/k) into a topological group byprescribing <strong>the</strong>{G ω } as a fundamental system <strong>of</strong> neighbourhoods <strong>of</strong> <strong>the</strong>identity element e∈G(K/k). Obviously ⋂ αG α = (e). Forσ∈ ⋂ α G α ⇒σα=αfor allα∈ K so thatσ=e. It is easy to verify that{G α } satisfy<strong>the</strong> axioms for a fundamental system <strong>of</strong> open sets c<strong>on</strong>taining <strong>the</strong> identityelements e.Any open set in G is <strong>the</strong>refore a uni<strong>on</strong> <strong>of</strong> sets <strong>of</strong> type{σG α } or afinite intersecti<strong>on</strong> <strong>of</strong> such. Also since G α are open subgroups <strong>the</strong>y areclosed; for,σG α is open for allσand hence⋃σG ασeis also open. Therefore G α is closed. This proves that <strong>the</strong> topology <strong>on</strong>G makes it totally disc<strong>on</strong>nected. We call <strong>the</strong> topology <strong>on</strong> G <strong>the</strong> Krulltopology.If g is a subgroup <strong>of</strong> G, ḡ <strong>the</strong> closure <strong>of</strong> g is also a subgroup. Wenow prove <strong>the</strong>Lemma. Let g be a subgroup <strong>of</strong> G a and L its fixed field. ThenG(K/L)=ḡ(<strong>the</strong> closure <strong>of</strong> g).Pro<strong>of</strong>. Letωbe an element in K and f (x) its minimum polynomial ink. C<strong>on</strong>sider f (x) as a polynomial over L and let L ′ be its splitting fieldover L. Then L ′ /L is a galois extensi<strong>on</strong>. The restricti<strong>on</strong> <strong>of</strong> elements <strong>of</strong>g to L ′ are automorphisms <strong>of</strong> L ′ with L as fixed field (by definiti<strong>on</strong> <strong>of</strong>L). By finite galois <strong>the</strong>ory <strong>the</strong>se are all <strong>the</strong> elements <strong>of</strong> <strong>the</strong> galois group<strong>of</strong> L ′ /L. This means that every automorphism <strong>of</strong> L ′ /L comes from anelements <strong>of</strong> g.□


7. Galois extensi<strong>on</strong>s 45Letσ ∈ G(K/L). Letωbe any element in K and G <strong>the</strong> groupG(K/k(ω)). The restricti<strong>on</strong> <strong>of</strong>σto L ′ is an automorphism <strong>of</strong> L ′ withL as fixed field. There is thus an elementτ∈g, which has <strong>on</strong> L ′ <strong>the</strong>same effect asσ. Henceτ −1 σ is identity <strong>on</strong> L ′ and sinceω∈L ′ we getτ −1 σω=ωThis means thatτ −1 σ∈G ω by definiti<strong>on</strong> <strong>of</strong> G ω . Henceσ −1 τ∈G ω 53orτ∈σG ω . ButσG ω is an open set c<strong>on</strong>tainingσ. Therefore since{σG ω } for all G ω form a fundamental system <strong>of</strong> neighbourhoods <strong>of</strong>σwe c<strong>on</strong>clude thatσ∈ḡ.Thus G(K/L)⊂ḡLet nowσ∈ḡ. ThenσG ω is a neighbourhood <strong>of</strong>σand so intersectsg in a n<strong>on</strong> empty set. Letω∈L. Letτ∈σG ω ∩ g. Letσ ′ in G ω suchthatσσ ′ =τBy definiti<strong>on</strong> <strong>of</strong>τ,τω=ω. Butτω=σσ ′ ω=ω. Thereforeσσ ′ ∈ G ω .Butσ ′ is already is in G ω . Thereforeσω=ω. Alsoωbeing arbitraryσL=Lwhich means thatσ∈G(K/L). Thusḡ⊂G(K/L)and our c<strong>on</strong>tenti<strong>on</strong> is established.From <strong>the</strong> lemma, it follows that if L is an intermediary field, <strong>the</strong>galois group G(K/L) is a closed subgroup <strong>of</strong> G(K/k). On <strong>the</strong> o<strong>the</strong>r handif g is a closed subgroup <strong>of</strong> G and F(g) its fixed field <strong>the</strong>nwe have hence <strong>the</strong> fundamentalG ( K/F(g) ) = ḡ=g.Theorem 8. Let K/k be a galois extensi<strong>on</strong> and G(K/k) <strong>the</strong> galois groupwith <strong>the</strong> Krull - topology. Let M denote <strong>the</strong> set <strong>of</strong> closed subgroups <strong>of</strong>G and N <strong>the</strong> set <strong>of</strong> intermediary fields <strong>of</strong> K/k. Letφbe <strong>the</strong> mappingwhich assigns to every g∈ M, <strong>the</strong> fixed field F(g) <strong>of</strong> g in N. Thenφis a 54biunivocal mapping <strong>of</strong> M <strong>on</strong> N.


46 2. <strong>Algebraic</strong> extensi<strong>on</strong> fields55Suppose now that K/k is a galois extensi<strong>on</strong> and L is an intermediaryfield. Let G(K/k) and G(K/L) be <strong>the</strong> galois groups. On G(K/L) <strong>the</strong>reare two topologies, <strong>on</strong>e that is induced by <strong>the</strong> topology <strong>on</strong> G(K/k) and<strong>the</strong> o<strong>the</strong>r <strong>the</strong> topology that G(K/L) possesses as a galois extensi<strong>on</strong>. IfL ′ is a subfield <strong>of</strong> K/L so that L ′ /L is finite, <strong>the</strong>n G(K/L ′ ) is an open setin <strong>the</strong> inherent topology <strong>on</strong> G(K/L). On <strong>the</strong> o<strong>the</strong>r hand L ′ = L(ω) sinceL ′ /L is a separable extensi<strong>on</strong>.ThusG(K/L ′ )⊂G ω ∩ G(K/L)which proves that <strong>the</strong> two topologies are equivalent. Here we have used<strong>the</strong> fact that a finite separable extensi<strong>on</strong> <strong>of</strong> L is simple. We gave alreadyseen <strong>the</strong> truth <strong>of</strong> this statement if L is infinite. In case L is finite it isproved in <strong>the</strong> next secti<strong>on</strong>. ‘ In a similar manner if K/k is galois and L isa normal extensi<strong>on</strong> <strong>of</strong> k in K, <strong>the</strong>n <strong>on</strong> G(L/k) <strong>the</strong>re are two topologies,<strong>on</strong>e <strong>the</strong> inherent <strong>on</strong>e and <strong>the</strong> o<strong>the</strong>r <strong>the</strong> topology <strong>of</strong> <strong>the</strong> quotient groupG(K/k)/G(K/L). One can prove that <strong>the</strong> two topologies are equivalent.We call an extensi<strong>on</strong> K/k abelian or solvable according as G(K/k)is abelian or a solvable group. If K/k is a galois extensi<strong>on</strong> and G(K/k)its galois group with <strong>the</strong> Krull topology let H denote <strong>the</strong> closure <strong>of</strong> <strong>the</strong>algebraic commutator subgroup <strong>of</strong> G(K/k). H is called <strong>the</strong> topologicalcommutator subgroup. If L is its fixed field, <strong>the</strong>n since H is normal, L/kis a galois extensi<strong>on</strong>. Its galois group is isomorphic to G/H which isabelian. From <strong>the</strong> property <strong>of</strong> <strong>the</strong> commutator subgroup, it follows thatL is <strong>the</strong> maximal abelian subfield <strong>of</strong> K/k.8 Finite fieldsLet K be a finite field <strong>of</strong> q elements, q= p n where p is <strong>the</strong> characteristic<strong>of</strong> K. LetΓbe <strong>the</strong> prime field <strong>of</strong> p elements. Then(K :Γ)=nK ∗ <strong>the</strong> group <strong>of</strong> n<strong>on</strong>-zero elements <strong>of</strong> K is an abelian group <strong>of</strong> orderq−1. Forα∈K ∗ we haveα q−1 = 1


8. Finite fields 471 being <strong>the</strong> unit element <strong>of</strong> K. The q−1 elements <strong>of</strong> K ∗ are roots <strong>of</strong>x q−1 − 1. Also ∏x q−1 − 1= (x−α).α∈K ∗Letα∈K ∗ . Let d be its order as an element <strong>of</strong> <strong>the</strong> finite group K ∗ .Thenα d = 1. C<strong>on</strong>sider <strong>the</strong> polynomial x d − 1. It has in K ∗ at most droots. Also d/q−1. Butx q−1 − 1=(x d − 1)(x q−1−d +···)Since x d − 1 and x q−1−d +··· both have respectively at most d andq−1−d roots in K ∗ and <strong>the</strong>y toge<strong>the</strong>r q−1 roots in K ∗ it follows thatfor every divisor d <strong>of</strong> q−1, x d − 1 has exactly d roots in K ∗ . These rootsfrom a group <strong>of</strong> order d. If it is cyclic <strong>the</strong>n <strong>the</strong>re is an element <strong>of</strong> orderd and <strong>the</strong>re are exactlyφ(d) elements <strong>of</strong> order d. Also∑φ(d)=q−1d/q−1which proves that for every divisor d <strong>of</strong> q−1 <strong>the</strong>re areφ(d)≥1 elements 56<strong>of</strong> order d. Thus1) The multiplicative group <strong>of</strong> a finite field is cyclic.Let k be a finite <strong>of</strong> q elements and K a finite extensi<strong>on</strong> <strong>of</strong> k <strong>of</strong> degreen. Then K has q n elements. Since K ∗ is cyclic, letρbe a generator<strong>of</strong> K ∗ . ThenK= k(ρ)which proves2) Every finite extensi<strong>on</strong> <strong>of</strong> a finite field is simple.For a finite field <strong>of</strong> characteristic p, a→a pe is an automorphism <strong>of</strong>K. Since k has q elements we havefor every a∈k.a q = a


48 2. <strong>Algebraic</strong> extensi<strong>on</strong> fieldsNow a→a q is an automorphism <strong>of</strong> K/k which fixes elements <strong>of</strong> k.Call this automorphismσ.σ is determined uniquely by its effect <strong>on</strong>a generatorρ <strong>of</strong> K ∗ . C<strong>on</strong>sider <strong>the</strong> automorphismsThese are distinct. For,1,σ,σ 2 ,...,σ n−1σ i ρ=σ i−1 (σρ)=σ i−1 (ρ q )=ρ qiHenceρ q = 1⇐⇒ q i ≡ o( mod q n ) or i=o (Since i


Chapter 3<strong>Algebraic</strong> functi<strong>on</strong> fields1 F.K. Schmidt’s <strong>the</strong>oremLet K/k be an extensi<strong>on</strong> field and x 1 ,..., x n+1 any n+1 elements <strong>of</strong> 58K. Let R=k[z 1 ,...,z n+1 ] be <strong>the</strong> ring <strong>of</strong> polynomials in n+1 variablesover k. Let Y be <strong>the</strong> ideal in R <strong>of</strong> polynomials f (z 1 ,...,z n+1 ) with <strong>the</strong>propertyf (x 1 ,..., x n+1 )=0.Then clearly Y is a prime ideal <strong>of</strong> R. Also since R is a Noe<strong>the</strong>eianring, Y is finitely generated. Note that Y = (o) if and <strong>on</strong>ly if x 1 ,...,x n+1 are algebraically independent over k. Y is called <strong>the</strong> ideal <strong>of</strong> <strong>the</strong>set x 1 ,..., x n+1 .We shall c<strong>on</strong>sider <strong>the</strong> case where <strong>the</strong> set x 1 ,..., x n+1 has dimensi<strong>on</strong>n over k, that is that k(x 1 ,..., x n+1 ) is <strong>of</strong> transcendence degree n over k.We proveTheorem 1. Y is a principal ideal generated by an irreducible polynomial.Pro<strong>of</strong>. Without loss in generality we may assume that x 1 ,..., x n are algebraicallyindependent over k and that x n+1 is algebraic overk(x 1 ,..., x n ), so that Y (o). □49


50 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsC<strong>on</strong>sider <strong>the</strong> degrees <strong>of</strong> <strong>the</strong> polynomials f (z 1 ,...,z n+1 ) (in Y ) in<strong>the</strong> variable z n+1 . These degrees have a minimum greater than zero sinceY (o), and x 1 ,..., x n are algebraically independent over k. Letϕbea polynomial in Y <strong>of</strong> smallest degree in z n+1 . Putϕ=A o z λ n+1 + A 1z λ−1n+...+A λ59where A 0 , A 1 ,..., A λ are polynomials in z 1 ,...z n with coefficients ink. We may assume that A 0 , A 1 ,..., A λ have no comm<strong>on</strong> factor ink[z 1 ,...,z n ]. For if A(z 1 ,...,z n ) is a comm<strong>on</strong> factor <strong>of</strong> A 0 ,..., A λ <strong>the</strong>nϕ(z 1 ,...,z n+1 )=A(z 1 ,...,z n )ϕ 1 (z 1 ,...,z n+1 )and so, since x 1 ,..., x n are algebraically independent,ϕ 1 (x 1 ,..., x n+1 )=oandϕ 1 will serve our purpose. So we can takeϕto be a primitive polynomialin z n+1 over R ′ = k[z 1 ,...,z n ].Clearlyϕis irreducible in R ′ . For, ifϕ=g 1 (z 1 ,...,z n+1 ) g 2 (z 1 ,...,z n+1 )<strong>the</strong>n g i (x 1 ,..., x n+1 )=0 for i=1 or 2, so that ei<strong>the</strong>r g 1 or g 2 is in Y .Both cannot have a term in z n+1 with n<strong>on</strong> zero coefficient. For <strong>the</strong>n <strong>the</strong>degrees in z n+1 <strong>of</strong> g 1 <strong>of</strong> g 2 will both be less that <strong>of</strong>ϕin z n+1 c<strong>on</strong>tradicting<strong>the</strong> definiti<strong>on</strong> <strong>of</strong>φ. So <strong>on</strong>e g 1 , g 2 say g 1 is independent <strong>of</strong> z n+1 . But thismeans thatϕis not a primitive polynomial.Thus we have chosen in Y a polynomialϕwhich os irreducible, <strong>of</strong><strong>the</strong> smallest degree in z n+1 and primitive in R ′ [z n+1 ].Letψ(z 1 ,...,z n+1 ) be any o<strong>the</strong>r polynomial in Y .Since F= k(z 1 ,...,z n ) is a field, F[z n+1 ] is a Euclidean ring so thatin F[z n+1 ] we haveψ(z 1 ,...,z n+1 )=A(z 1 ,...,z n+1 )ϕ(z 1 ,...,z n+1 )+ L(z 1 ,...,z n+1 )60where A and L are polynomials in z n+1 over F. Here ei<strong>the</strong>r L=o ordegree <strong>of</strong> L in z n+1 is less than that <strong>of</strong>ϕ. If Lo, <strong>the</strong>n we may multiply


1. F.K. Schmidt’s <strong>the</strong>orem 51both sides <strong>of</strong> <strong>the</strong> above equati<strong>on</strong> by a suitable polynomial in z 1 ,...,z nover k so thatB(z 1 ,...,z n )ψ= C(z 1 ,...,z n+1 )ϕ(z 1 ,...,z n+1 )+ L 1 (z 1 ,...,z n+1 )L 1 having in z n+1 <strong>the</strong> same degree as L. Sinceϕandψare in Y , itfollows that L 1 ∈ Y . Because <strong>of</strong> degree <strong>of</strong> L 1 , it follows thatThusL 1 = L=0.B(z 1 ,...,z n )ψ=A(z 1 ,...,z n+1 )ϕ(z 1 ,...,z n+1 )Sinceϕis a primitive polynomial, it follows thatϕdividesψand our<strong>the</strong>orem is proved.We callϕ<strong>the</strong> irreducible polynomial <strong>of</strong> x 1 ,... x n+1 over k.Note that since x 1 ,... x n are algebraically independent over k, <strong>the</strong>polynomialϕ 1 (z n+1 )=ϕ(x 1 ,..., x n , z n+1 )over k(x 1 ,..., x n ) is irreducible in z n+1 .Let x 1 ,..., x n+1 be <strong>of</strong> dimensi<strong>on</strong> n over k andϕ<strong>the</strong> irreducible polynomial<strong>of</strong> x 1 ,..., x n+1 over k. Letϕbe a polynomial in z 1 ,...,z i+1 butnot in z i+2 ,...,z n+1 , that is it does not involve z i+2 ,...,z n+1 in its expressi<strong>on</strong>.C<strong>on</strong>sider <strong>the</strong> field L=k(x 1 ,..., x i+1 ). because x 1 ,..., x i+1 arealgebraically dependent (ϕ(x 1 ,..., x i+1 )=0), 61dim k L≤i.But k(x 1 ,..., x n+1 )=L(x i+2 ,..., x n+1 ) so thatdim L k(x 1 ,..., x n+1 )≤n−i.Since dimensi<strong>on</strong>s are additive, we haven=dim k L+dim L k(x 1 ,..., x n+1 )≤i+n−i=n.Thus L has over k <strong>the</strong> dimensi<strong>on</strong> i. Sinceϕis a polynomial inz 1 ,...,z i+1 every <strong>on</strong>e <strong>of</strong> <strong>the</strong>se variables occurring, with n<strong>on</strong> zero coefficients,we get <strong>the</strong>


52 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsCorollary. If x 1 ,..., x n+1 be n+1 elements <strong>of</strong> K/k and have dimensi<strong>on</strong>n, <strong>the</strong>re exist am<strong>on</strong>g <strong>the</strong>m i+1 elements, i≤n, say x 1 ,..., x i+1 (in someorder) such that k(x 1 ,... x i+1 ) has dimensi<strong>on</strong> i over k and every i <strong>of</strong> <strong>the</strong>mare algebraically independent.Let K/k be a transcendental extensi<strong>on</strong> with a transcendence base Bover k. Then K/k(B) is algebraic. We call K/k an algebraic functi<strong>on</strong>field if(1) B is a finite set(2) K/k(B) is finite algebraic.62Let dim k K = n. There exist x 1 ,..., x n in K which form a transcendencebase <strong>of</strong> K/k. If K is an algebraic functi<strong>on</strong> field <strong>the</strong>n K/k(x 1 ,..., x n ) is finite algebraic. Hence K= k(x 1 ,..., x m ), m≥n, is finitelygenerated. This shows that algebraic functi<strong>on</strong> fields are identical withfinitely generated extensi<strong>on</strong>s.An algebraic functi<strong>on</strong> field K/k is said to be separably generatedif <strong>the</strong>re exists a transcendence base x 1 ,..., x n <strong>of</strong> K/k such thatK/k(x 1 ,..., x n ) is a separable algebraic extensi<strong>on</strong> <strong>of</strong> finite degree.x 1 ,..., x n is <strong>the</strong>n said to be a separating base. Clearly every purely transcendentalextensi<strong>on</strong> is separably generated. Also, if k has characteristiczero and K is an algebraic functi<strong>on</strong> field, it is separably generated. Inthis case every transcendence base is a separating base. This is no l<strong>on</strong>gertrue if k has characteristic po.For example, let K = k(x, y) be a functi<strong>on</strong> field <strong>of</strong> transcendencedegree <strong>on</strong>e and letx 2 − y p = o.Let k have characteristic p2. Obviously x and y are both transcendentalover k. But K/k(x) is a simple extensi<strong>on</strong> generated by y which isa root <strong>of</strong>z p − x 2over k(x)[z] and since k has characteristic p, K/k(x) is purely inseparable.On <strong>the</strong> o<strong>the</strong>r hand K/k(y) is separable since x satisfies over k(y) <strong>the</strong>polynomialx 2 − y p .


1. F.K. Schmidt’s <strong>the</strong>orem 53Thus y is separating but not x.An algebraic functi<strong>on</strong> field which is not separably generated is saidto be inseparably generated. This means that for every base B <strong>of</strong> K/k.K/k(B) is inseparably algebraic.In algebraic geometry and in algebraic functi<strong>on</strong> <strong>the</strong>ory, it is <strong>of</strong> im- 63portance to know when an algebraic functi<strong>on</strong> field is separably generated.An important <strong>the</strong>orem in this regard is <strong>the</strong>orem 2 due to F.K.Schmidt. We shall first prove aLemma . Let k be a perfect field <strong>of</strong> characteristic p o and K =k(x 1 ,..., x n+1 ) an extensi<strong>on</strong> field <strong>of</strong> dimensi<strong>on</strong> n. Then K is separablygenerated.Pro<strong>of</strong>. Letϕbe <strong>the</strong> irreducible polynomial <strong>of</strong> x 1 ,..., x n+1 and let it bea polynomial in z 1 ,...,z i+1 but in z i+2 ,...,z n+1 . Thenϕ(x 1 ,...,z t ,..., x i+1 )is irreducible over k(x 1 ,..., x t−1 , x t+1 ,..., x i+1 ) for every t, 1≤t≤i+1.At least for <strong>on</strong>e t,ϕ(z 1 ,...,z t ,...,z i+1 ) is a separable polynomial in z tover k(z 1 ,...,z t−1 ,...,z i+1 ). For, if it is inseparable in every z t , <strong>the</strong>nϕ(z 1 ,...,z i+1 )∈k[z p 1 ,...,zp i+1 ]and since k is perfect, this will mean thatϕ(z 1 ,...,z i+1 ) is <strong>the</strong> pth power<strong>of</strong> a polynomial in k[z 1 ,...,z i+1 ] which c<strong>on</strong>tradicts irreducibility <strong>of</strong>ϕ.So, for some z t , say z 1 , we haveϕ(z 1 , x 2 ,..., x i+1 ) is a separable polynomial.Hence x 1 is separable over k(x 2 ,..., x i+1 ) and so over k(x 2 ,..., x n+1 ). But x 2 ,..., x n+1 has dimensi<strong>on</strong> n and our lemma is proved.□Corollary. Under <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> <strong>the</strong> lemma, a separating base <strong>of</strong> nelements may be chosen from am<strong>on</strong>g x 1 ,..., x n+1 .We are now ready to prove <strong>the</strong> <strong>the</strong>orem <strong>of</strong> F.K.Schmidt. 64Theorem 2. Every algebraic functi<strong>on</strong> field K over a perfect field k isseparably generated.


54 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsPro<strong>of</strong>. Obviously, <strong>the</strong> <strong>the</strong>orem is true if k has characteristic zero. Solet k have characteristic po. Let K= k(x 1 ,..., x m ) and let n be <strong>the</strong>dimensi<strong>on</strong> <strong>of</strong> K/k. Then m≥n. If m=n <strong>the</strong>re is nothing to prove.Let m=n+q. If q=1 <strong>the</strong>n lemma 1 proves <strong>the</strong> <strong>the</strong>orem. So let usassume <strong>the</strong>orem proved for q−1 instead <strong>of</strong> q>1. We may assume,without loss in generality that x 1 ,..., x n is a transcendence base <strong>of</strong> K/k.C<strong>on</strong>sider <strong>the</strong> fields L=k(x 1 ,..., x n , x n+1 ). It satisfies <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s<strong>of</strong> <strong>the</strong> lemma. Hence <strong>the</strong>re exist n elements am<strong>on</strong>g x 1 ,..., x n+1 sayx 1 ,..., x t−1 , x t+1 ,... x n+1 which from a separating base <strong>of</strong> L/k. Thus x tis separable over k(x 1 ,..., x t−1 ,..., x n+1 ) and hence overM= k(x 1 ,..., x t−1 , x t+1 , x t+2 ,..., x m )M/k now satisfies <strong>the</strong> inducti<strong>on</strong> hypo<strong>the</strong>sis and so is separably generated.Since K/M is separable, it follows that K is separably generated.□We could prove even more if we assume as inducti<strong>on</strong> hypo<strong>the</strong>sis <strong>the</strong>fact that am<strong>on</strong>g x 1 ,..., x m <strong>the</strong>re exists a separating base.2 Derivati<strong>on</strong>sLet R be a commutative ring with unit element e. A mapping D <strong>of</strong> Rinto itself is said to be a derivati<strong>on</strong> <strong>of</strong> R if65(1) D(a+b)=Da+Db(2) D(ab)=aDb+bDafor a, b∈R. It is said to be a derivati<strong>on</strong> over a subring R ′ if for everya∈R ′ , Da=o. It <strong>the</strong>n follows that for a∈R ′ and x∈RDax=aDxThe set R o <strong>of</strong> a∈R with Da=o is a subring <strong>of</strong> R and c<strong>on</strong>tains e.For,De=De 2 = De. e+e. De=2De ;


2. Derivati<strong>on</strong>s 55so De=o. If Da=o, Db=o, <strong>the</strong>nD(a+b)=Da+Db=oD(ab)=aDb+bDa=oThus R o is a subring. We call R o <strong>the</strong> ring <strong>of</strong> c<strong>on</strong>stants <strong>of</strong> <strong>the</strong> derivati<strong>on</strong>D.If R is a field, <strong>the</strong>n R o also is a field. For, if x∈R o and xo, <strong>the</strong>no= De=Dx.x −1 = Dx.x −1 + x.Dx −1ThusDx −1 = oso that x −1 ∈ R o .D is said to be a n<strong>on</strong>-trivial derivati<strong>on</strong> <strong>of</strong> R if <strong>the</strong>re is an x∈R withDxo. It follows from above thatTheorem 3. A prime field has no n<strong>on</strong>-trivial derivati<strong>on</strong>s.A Derivati<strong>on</strong> ¯D <strong>of</strong> R is said to be an extensi<strong>on</strong> <strong>of</strong> a derivati<strong>on</strong> D <strong>of</strong> asubring R ′ <strong>of</strong> R if ¯Da=Da for a∈R ′ . We now prove <strong>the</strong> 66Theorem 4. If K is <strong>the</strong> quotient field <strong>of</strong> an integrity domain R, <strong>the</strong>n aderivati<strong>on</strong> D <strong>of</strong> R can be uniquely extended to K.Pro<strong>of</strong>. Every element c in K can be expressed in <strong>the</strong> form c= a b , a,b∈R. If an extensi<strong>on</strong> ¯D <strong>of</strong> D exists, <strong>the</strong>nBut a=bc so that¯Da=DaDa= ¯Da= ¯Dbc=b¯Dc+cDbTherefore¯Dc= Da−cDbb= bDa−aDbb 2


56 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsor thatIf c is expressed in <strong>the</strong> form a′b ′ , a′ , b ′ ∈ R <strong>the</strong>n ab ′ = ba ′ and soDa.b ′ + a.Db ′ = Db.a ′ + bDa ′Da ′ − cDb ′b ′= Da−cDbbwhich proves that ¯Dc does not depend <strong>on</strong> <strong>the</strong> way c is expressed as<strong>the</strong> ratio <strong>of</strong> two elements from R. We have <strong>the</strong>refore <strong>on</strong>ly to prove <strong>the</strong>existence <strong>of</strong> ¯D. In order to prove this, put for c= a b¯Dc= bDa−aDbb 2 ;we should verify that it is a derivati<strong>on</strong>, is independent <strong>of</strong> <strong>the</strong> way c isexpressed as ratio <strong>of</strong> elements in R and that it coincides with D <strong>on</strong> R.These are very simple. □67Let D 1 , D 2 be two deviati<strong>on</strong>s <strong>of</strong> R. Define D=D 1 + D 2 by Da=D 1 a+D 2 a for a∈R. Then it is easy to verify that D is a derivati<strong>on</strong> <strong>of</strong>R. Fur<strong>the</strong>rmore if a∈R define aD by(aD)x=a.DxBy this means, <strong>the</strong> derivati<strong>on</strong>s <strong>of</strong> R from an R module, SupposeD 1 ,..., D r from a basis <strong>of</strong> <strong>the</strong> module <strong>of</strong> derivati<strong>on</strong>s <strong>of</strong> R.Then every derivati<strong>on</strong> D <strong>of</strong> R is <strong>of</strong> <strong>the</strong> form∑D= a i D i , a i ∈ R.iLet R be an integrity domain and ¯D 1 ,..., ¯D r <strong>the</strong> unique extensi<strong>on</strong>s<strong>of</strong> D 1 ,..., D r respectively to K, <strong>the</strong> quotient, field <strong>of</strong> R. Then ¯D 1 ,..., ¯D rare linearly independent over K. For, if∑1 i ¯D i = o, 1 i ∈ Ki


2. Derivati<strong>on</strong>s 57<strong>the</strong>n write 1 i = a ib i, a i , b i ∈ R. We get∑iaibi ¯D i = o.Multiplying throughout by b 1 ,...,b r which is not zero, we get( ∑ λ ¯D i )t = o for every t ∈ R. Therefore ∑ λ i D i = o which impliesiithatλ i = o or a i = o.Also, since every derivati<strong>on</strong> D <strong>of</strong> K is an extensi<strong>on</strong> <strong>of</strong> a derivati<strong>on</strong><strong>of</strong> R, it follows that <strong>the</strong> derivati<strong>on</strong>s <strong>of</strong> K from an r-dimensi<strong>on</strong>al vectorspace over K.Let us now c<strong>on</strong>sider <strong>the</strong> case where R=k[x 1 ,..., x n ] is <strong>the</strong> ring <strong>of</strong>polynomials in n variables x 1 ,..., x n . The n mappingsD i :a→ ∂a∂x i, i=1,...,nare clearly derivati<strong>on</strong>s <strong>of</strong> R over k. They form a base <strong>of</strong> derivati<strong>on</strong>s <strong>of</strong> 68R which are trivial <strong>on</strong> k. For, if∑a i D i = o, a i ∈ R<strong>the</strong>n, since D i (x j )=δ i j , we geti∑o=( a i D i )x j = a j , j=1,...,n.iAlso, if D is any derivati<strong>on</strong> <strong>of</strong> R which is trivial <strong>on</strong> k, <strong>the</strong>n let Dx i =a i . Put ∑¯D= D− a i D i .Then∑¯Dx j = Dx j − ( a i D i )x j = owhich shows that since x 1 ,..., x n generate R, ¯D=o.ii


58 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsSuppose D is any derivati<strong>on</strong> <strong>of</strong> k and let ¯D be an extensi<strong>on</strong> <strong>of</strong> D to R.Let ¯Dx i = a i . Let D o be ano<strong>the</strong>r extensi<strong>on</strong> <strong>of</strong> D which has <strong>the</strong> propertyD o x i = a i , i=1,...,n.Then D−D o is a derivati<strong>on</strong> <strong>of</strong> R which is trivial <strong>on</strong> k. But since(D−D o )x i = o, i=1,...,nit follows that D=D o . This gives us <strong>the</strong>Theorem 5. The derivati<strong>on</strong>s <strong>of</strong> K= k(x 1 ,..., x n ), <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>alfuncti<strong>on</strong>s <strong>of</strong> n variables over k which are trivial <strong>on</strong> k from a vector space<strong>of</strong> dimensi<strong>on</strong> n over K. A basis <strong>of</strong> this space <strong>of</strong> derivati<strong>on</strong>s is given by<strong>the</strong> n partial derivati<strong>on</strong>sD i = ∂∂x i, i=1,...,n.69Fur<strong>the</strong>rmore if D is any derivati<strong>on</strong> <strong>of</strong> k, <strong>the</strong>re exists <strong>on</strong>ly <strong>on</strong>e extensi<strong>on</strong>¯D <strong>of</strong> D to K for which¯Dx i = a i , i=1,...,nwhere a 1 ,...,a n are any n quantities <strong>of</strong> K arbitrarily given.We now c<strong>on</strong>sider derivati<strong>on</strong>s <strong>of</strong> algebraic functi<strong>on</strong> fields.Let K = k(x 1 ,..., x m ) be a finitely generated extensi<strong>on</strong> <strong>of</strong> k. PutT = k[x 1 ,..., x m ]. In order to determine all <strong>the</strong> derivati<strong>on</strong>s <strong>of</strong> K, it isenough to determine <strong>the</strong> derivati<strong>on</strong>s <strong>of</strong> T since K is <strong>the</strong> quotient field <strong>of</strong>T. Let D be a derivati<strong>on</strong> <strong>of</strong> k; we wish to find extensi<strong>on</strong>s ¯D <strong>of</strong> D to K.Let R denote <strong>the</strong> ring <strong>of</strong> polynomials k[z 1 ,...,z m ] in m independentvariables. For any polynomial f (x 1 ,..., x m ) in T, denote by ∂ f <strong>the</strong>∂x ipolynomial obtained by substituting z i = x i , i=1,...,m in ∂ f¯where∂z if=f ¯ (z 1 ,...,z m ) is in R.If ∑f= a λ1 ,...,λ m x λ 11 ··· xλ m mλ


2. Derivati<strong>on</strong>s 59aλ 1 ,...,λ m ∈ k, put∑f D = (Da λ1 ,...,λ m )x λ 11 · xλ m m .λObviously f D is a polynomial in T. If ¯D is an extensi<strong>on</strong> <strong>of</strong> <strong>the</strong>derivati<strong>on</strong> D, <strong>the</strong>n clearly¯D f=f D +m∑i=1∂ f∂x i¯Dx ifor any f∈ T. Also ¯D is determined uniquely by its values <strong>on</strong> x 1 ,..., x m 70which generate T. Now ¯Dx i cannot be arbitrary elements <strong>of</strong> T. For, letY be <strong>the</strong> ideal in R <strong>of</strong> <strong>the</strong> set x 1 ,..., x m .Then for f (z 1 ,...,z m ) in Y ,f (x 1 ,..., x m )=o.Therefore, since ¯Do=0, <strong>the</strong> ¯Dx i would have to satisfy <strong>the</strong> infinity<strong>of</strong> equati<strong>on</strong>sm∑0= f D ∂ f+ ¯Dx i∂x ifor every f in Y .C<strong>on</strong>versely, suppose u 1 ,...u m are m elements in T satisfyingf D +m∑i=1i=1∂ f∂x iu i = 0for every f in Y . For anyϕin T define ¯D by¯Dϕ=ϕ D + f D +m∑i=1∂ϕ∂x i¯Dx iwhere ¯Dx i = u i . Then clearly ¯D is a derivati<strong>on</strong> <strong>of</strong> T and it coincideswith D <strong>on</strong> k. Fur<strong>the</strong>rmore ¯D does not depend <strong>on</strong> <strong>the</strong> wayϕis expressed


60 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsas a polynomial in x 1 ,..., x m . For, ifϕ=a(x 1 ,..., x m )=b(x 1 ,..., x m )<strong>the</strong>n, since a−b∈Y have∑a D − b D (∂a+ u i − ∂b )u i = o∂x i ∂x iwhich proves our c<strong>on</strong>tenti<strong>on</strong>. Hencei71Theorem 6. Let K = k(x 1 ,..., x m ) and D a derivati<strong>on</strong> <strong>of</strong> k. Let Ybe ideal in k[z 1 ,...,z m ] <strong>of</strong> <strong>the</strong> set x 1 ,..., x m . Let u 1 ,...,u m be anyelements <strong>of</strong> K. There exists a derivati<strong>on</strong> ¯D and <strong>on</strong>ly <strong>on</strong>e satisfying¯Dx i = u i , i=1,...,mand extending <strong>the</strong> derivati<strong>on</strong> D in k, if and <strong>on</strong>ly if, for every f∈ Yf D +m∑i=1∂ f∂x iu i = o.and <strong>the</strong>n for everyϕin K,¯Dϕ=ϕ D +m∑i=1∂ϕ∂x iu i .The infinite number <strong>of</strong> c<strong>on</strong>diti<strong>on</strong>s above can be reduced to a finitenumber in <strong>the</strong> following manner. Since R=k[z 1 ,...,z m ] is a noe<strong>the</strong>rianring, <strong>the</strong> ideal Y has a finite set f 1 ,..., f s <strong>of</strong> generators so that f∈ Ymay be writtens∑f= A i f i , A i ∈ Ri=1Suppose f 1 ,..., f s satisfy <strong>the</strong> above c<strong>on</strong>diti<strong>on</strong>s, <strong>the</strong>n since∑ ∑f D (x)= Ai D f i + fiD A i∂ f∂x i=i∑jA j∂ f j∂x i+i∑jf j∂A j∂x i,


2. Derivati<strong>on</strong>s 61we getf D (x)+m∑i=1∂ f∂x iu i = o.We may <strong>the</strong>refore replace <strong>the</strong> above by <strong>the</strong> finitely many c<strong>on</strong>diti<strong>on</strong>sf Di+m∑j=1∂ f∂x ju j = o, i=1,..., s.We now c<strong>on</strong>sider a few special cases. 72Let K= k(x) be a simple extensi<strong>on</strong> <strong>of</strong> k. Let D be a derivati<strong>on</strong> <strong>of</strong> k.We will study extensi<strong>on</strong>s ¯D <strong>of</strong> D into K.(1) First let x be transcendental over k. The ideal <strong>of</strong> x in k[z] is zero.This means that we can prescribe ¯Dx arbitrarily. Thus for everyu∈K<strong>the</strong>re exists <strong>on</strong>e and <strong>on</strong>ly extensi<strong>on</strong> ¯D with¯Dx=u(2) Let now x be algebraic over k. Suppose x is inseparable overk. Let f (z) be <strong>the</strong> minimum polynomial <strong>of</strong> x in k[z]. Then f (z)generates <strong>the</strong> ideal <strong>of</strong> x in k[z]. But x being inseparable, f ′ (x)=o.This means that D has to satisfyf D = o.Also, ¯D is uniquely fixed as so<strong>on</strong> as we assign a value u to ¯Dx.This can be d<strong>on</strong>e arbitrarily as can be easily seen. Thus <strong>the</strong>re existan infinity <strong>of</strong> extensi<strong>on</strong>s ¯D.(3) Finally, let X be separable. Then f (z), <strong>the</strong> irreducible polynomial<strong>of</strong> x over k is such thatf ′ (x)o.Since f (z) generates Y we must havef D (x)+ f ′ (x) ¯Dx=o,


62 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsor that ¯Dx is uniquely fixed by D.− ¯Dx= f D (x)f ′ (x)(*)73There is thus <strong>on</strong>ly <strong>on</strong>e extensi<strong>on</strong> <strong>of</strong> D to K and it is given by (∗).In particular, K has no derivati<strong>on</strong>s, except <strong>the</strong> trivial <strong>on</strong>e, over k.We shall now proveTheorem 7. In order that a finitely generated extensi<strong>on</strong> K = k(x 1 ,..., x n ) be separably algebraic over k, it is necessary and sufficient thatK have no n<strong>on</strong>-trivial derivati<strong>on</strong>s over k.Pro<strong>of</strong>. If K/k is algebraically separable, <strong>the</strong>n since K is finitely generatedover k, it follows that K= k(x) for some x and <strong>the</strong> last <strong>of</strong> <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong>sabove shows that K has no n<strong>on</strong>trivial derivati<strong>on</strong>s over k. □74Suppose now K/k has no-trivial derivati<strong>on</strong>s. In case n = 1, ourc<strong>on</strong>siderati<strong>on</strong>s above show that K/k is separable. Let now n>1 andassume that <strong>the</strong>orem is proved for n−1 instead <strong>of</strong> n.PutK= K 1 (x n ) K 1 = k(x 1 ,..., x n−1 ).Then x n is separably algebraic over K 1 . For, if not, let x 1 be inseparableover K 1 or transcendental over K 1 . In both cases <strong>the</strong> zeroderivati<strong>on</strong> in K 1 can be extended into a n<strong>on</strong>-trivial deri-vati<strong>on</strong> <strong>of</strong> K c<strong>on</strong>tradicti<strong>on</strong>shypo<strong>the</strong>sis over K.Thus x n is separable over K 1 . This implies, since K has no derivati<strong>on</strong>sover k that K 1 and our <strong>the</strong>orem is proved.Note that in <strong>the</strong> <strong>the</strong>orem above, <strong>the</strong> fact that K/k is finitely generatedis essential. For instance, if k is an imperfect field and K= k p−∞ <strong>the</strong>nK/k is infinite. Also if a∈k <strong>the</strong>n a=b p for some b∈K. If D is aderivati<strong>on</strong> <strong>of</strong> K, <strong>the</strong>nDa=Db p = pb p−1 Db=oThis proves, in particular, that a perfect field <strong>of</strong> characteristic po,has <strong>on</strong>ly <strong>the</strong> trivial derivati<strong>on</strong>.


2. Derivati<strong>on</strong>s 63If we take K to be <strong>the</strong> algebraic closure <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al number filed<strong>the</strong>n K has <strong>on</strong>ly <strong>the</strong> trivial derivati<strong>on</strong>.Let K= k(x, y) be an algebraic functi<strong>on</strong> field <strong>of</strong> <strong>on</strong>e variable. Let usassume that x is a separating variable andϕ(X, Y) <strong>the</strong> irreducible polynomial<strong>of</strong> x, y over k. Then if D is a derivati<strong>on</strong> <strong>of</strong> K over k,∂ϕ∂x Dx+∂ϕ ∂y Dy=oso that if we assume that y is separable over k(x), <strong>the</strong>n ∂ϕ∂yDy= −∂ϕ ∂xDx∂ϕ∂yThis shows that <strong>the</strong> ratio Dy/Dx is independent <strong>of</strong> D.Also, for any rati<strong>on</strong>al functi<strong>on</strong>ψ(x, y) <strong>of</strong> x, ywhich gives,if DxoDψ= ∂ψ∂x Dx+∂ψ ∂y Dy( ∂ϕ )DψDx =∂ψ ∂x −∂ψ ∂x∂y ∂ϕ∂y o and hencewhich is a well known formula in elementary calculus.We shall now obtain a generalisati<strong>on</strong> <strong>of</strong> <strong>the</strong>orem 7 to algebraic functi<strong>on</strong>fields.Let K= k(x 1 ,..., x m ) be an algebraic functi<strong>on</strong> field <strong>of</strong> dimensi<strong>on</strong>n, so that o≤n≤m. Let f 1 ,..., f s be a system <strong>of</strong> generators <strong>of</strong> <strong>the</strong> 75ideal Y <strong>of</strong> polynomials f (z 1 ,...,z m ) in k[x 1 ,..., x m ] which vanish for∂ fx 1 ,..., x m . Let for f in k[z 1 ,...,z m ] have <strong>the</strong> same meaning as∂x ibefore.Denote by M <strong>the</strong> matrixM=( ∂ f∂x i)i=1,...,m


64 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsj=1,..., swhere i is <strong>the</strong> row index and j <strong>the</strong> column index. We denote by t <strong>the</strong>rank <strong>of</strong> <strong>the</strong> matrix M which is a matrix over K.Let V K (D) denote <strong>the</strong> vector space <strong>of</strong> derivati<strong>on</strong>s <strong>of</strong> K which aretrivial <strong>on</strong> k. This is a vector space over K. Denote by l <strong>the</strong> dimensi<strong>on</strong> <strong>of</strong>V K (D) over K. We <strong>the</strong>n haveTheorem 8.l+ t=m.Pro<strong>of</strong>. For any integer p, denote by W p <strong>the</strong> vector space over K <strong>of</strong> dimensi<strong>on</strong>p, generated by p-tuples (β 1 ,...,β p ),β i ∈ K. □Letσdenote <strong>the</strong> mappingσD=(Dx 1 ,..., Dx m )<strong>of</strong> V k (D) into W m . This is clearly a homomorphism <strong>of</strong> V k (D) into W m .The kernel <strong>of</strong> <strong>the</strong> homomorphism is <strong>the</strong> set <strong>of</strong> D for which Dx i = o; i=1,...,m. But since K is generated by x 1 ,..., x m , this implies that D=o.Thus V k (D) is isomorphic to <strong>the</strong> subspace <strong>of</strong> W m formed <strong>the</strong> vectors(Dx 1 ,..., Dx m ).76C<strong>on</strong>sider now <strong>the</strong> vector space W s and let τ be <strong>the</strong> mapping(τ(α 1 ,...,α m )=(α 1 ,...,α m )M <strong>of</strong> W m into W s . Putβ j =m∑j=1α j∂ f i∂x j; i=1,..., sso that(β 1 ,...,β s )=(α 1 ,...,α m )M.The rank <strong>of</strong> <strong>the</strong> mappingτis clearly y equal to <strong>the</strong> rank t <strong>of</strong> <strong>the</strong>matrix M. It is <strong>the</strong> dimensi<strong>on</strong> <strong>of</strong> <strong>the</strong> image byτ<strong>of</strong> W m into W s . Thekernel <strong>of</strong> <strong>the</strong> mappingτis <strong>the</strong> set <strong>of</strong> (α 1 ,...,α m )withβ i = o; i=1,..., s.


2. Derivati<strong>on</strong>s 65which, by <strong>the</strong>orem 6 is clearly isomorphic to <strong>the</strong> subspace <strong>of</strong> W m formedby vectors (Dx 1 ,..., Dx m ), D∈V K (D). This, by previous c<strong>on</strong>siderati<strong>on</strong>s,proves <strong>the</strong> <strong>the</strong>orem.We shall now prove <strong>the</strong>Theorem 9. With <strong>the</strong> same notati<strong>on</strong>s as before, <strong>the</strong>re existlelements,say x 1 ,..., x 1 <strong>of</strong> dimensi<strong>on</strong> n over k such that K/k(x 1 ,..., x 1 ) is a separablyalgebraic extensi<strong>on</strong>.Pro<strong>of</strong>. Since <strong>the</strong> matrix M has rank t, <strong>the</strong>re exists a submatrix <strong>of</strong> M <strong>of</strong>t rows and which is n<strong>on</strong>-singular. Choose notati<strong>on</strong> in such a way, thatthis matrix is( ) ∂ f j i=m−t+1,...,mP= ,∂x i j= s−t+1,..., sNote that t≤ Min (s, m). Let L=k(x 1 ,..., x 1 ). ThenK=L(x 1+p ,..., x m ). Let D be a derivati<strong>on</strong> <strong>of</strong> K over L. Then sincef j (x 1 ,..., x m )=o, we must have, by <strong>the</strong>orem 6m∑i=1∂ f j∂x iDx i = o.But since D is zero <strong>on</strong> L, 77ThusThis means thatDx i = o, i=1,...,l.m∑i=l+1⎛∂ f j∂x iDx i = o.Dx l+1P . ⎜⎝⎞⎟⎠ = .⎛⎜⎝ ⎟⎠Dx m oBut since|P|o, it follows that Dx l+1 = o...,Dx m = o whichshows that D=o⎞o


66 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsBut K=L(x l+1 ,..., x m ) is finitely generated over L. Using <strong>the</strong>orem7, it follows that K/L is algebraic and separable. We get incidentallyn≤1.We now prove <strong>the</strong> important□Theorem 10. Let K = k(x 1 ,..., x m ) be <strong>of</strong> dimensi<strong>on</strong> n. Then K isseparably generated over k, if and <strong>on</strong>ly if dim V K (D)=n. In that case<strong>the</strong>re exists, am<strong>on</strong>g x 1 ,..., x m , a separating base <strong>of</strong> n elements.Pro<strong>of</strong>. If V K (D) has dimensi<strong>on</strong> n <strong>the</strong>n <strong>the</strong>orem 9 shows that <strong>the</strong>re exist nelements x 1 ,..., x n am<strong>on</strong>g x 1 ,..., x m such K/k(x 1 ,..., x n ) is separablyalgebraic.□78Suppose now that K/k is separably generated. Let y 1 ,...,y n bea separating base so that K/k(y 1 ,...,y n ) is separably algebraic. k(y 1 ,...,y n ) has n linearly independent derivati<strong>on</strong>s D 1 ,..., D n over k definedby⎧⎪⎨ o, if i jD i y j = ⎪⎩ 1, if i= jSince K/k(y 1 ,...,y n ) is separably algebraic and finite, it followsthat each <strong>of</strong> D 1 ,..., D n has a unique extensi<strong>on</strong> ¯D 1 ,..., ¯D n to K. Now¯D 1 ,..., ¯D n are linearly independent over K. For, if∑a i ¯D i = o, a i ∈ K,i<strong>the</strong>n ∑a i ¯D i (y j )=o for all j.iHence a j = o for j=1,...,n. Let now D be a derivati<strong>on</strong> <strong>of</strong> K/k andlet Dy i = a i . Put ∑¯D=D− a i ¯D i .i


3. Rati<strong>on</strong>al functi<strong>on</strong> fields 67Then ¯Dy i = o for all i. Therefore since K/k(y 1 ,...,y n ) is separable,¯D=o.This proves thatdim V K (D)=n.and our <strong>the</strong>orem is completely established.Let K= k(x 1 ,..., x n , y) where k is <strong>of</strong> characteristic po and k isan imperfect field. Let y be algebraic over k and be a root <strong>of</strong>z p − tt∈k. Then K/k is an inseparably generated extensi<strong>on</strong> andwhere n is <strong>the</strong> dimensi<strong>on</strong> <strong>of</strong> K/k.dim V K (D)=n+13 Rati<strong>on</strong>al functi<strong>on</strong> fieldsLet us now c<strong>on</strong>sider <strong>the</strong> field K = k(x) <strong>of</strong> rati<strong>on</strong>al functi<strong>on</strong>s <strong>of</strong> <strong>on</strong>evariable. Let y be any element <strong>of</strong> K. Hence y= f (x) where f and g areg(x)polynomials in x over k. Also K is <strong>the</strong> quotient field <strong>of</strong> <strong>the</strong> ring L=k[x]<strong>of</strong> polynomials in x.Assume that ( f (x), g(x)) = 1, that is that <strong>the</strong>y have no factor incomm<strong>on</strong>. Let n be defined by79n=max(deg f (x), deg g(x)).If n=o, <strong>the</strong>n clearly f∈ k, g∈kand so y∈k. Let us assume thatno so that at least at least <strong>on</strong>e <strong>of</strong> f and g is a n<strong>on</strong>-c<strong>on</strong>stant polynomial.n is called <strong>the</strong> degree <strong>of</strong> y.Let F= k(y) be <strong>the</strong> field generated over k by y.Then x satisfies over F <strong>the</strong> polynomialϕ(z)= f (z)−yg(z).


68 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsϕ(z) is not a c<strong>on</strong>stant polynomial over k(y). For, letf (z)=g(z)=1∑a i z ii=oam∑ i , b i ∈ k.b i z⎫⎪⎬⎪⎭ii=oThen n=max(1, m). The coefficient <strong>of</strong> z n inϕ(z) is⎧a 1 if 1>m⎪⎨a 1 − yb 1 if 1=m⎪⎩ −yb m if 1


3. Rati<strong>on</strong>al functi<strong>on</strong> fields 69Let z in K be algebraic over k. Then z ∈ K = K 1 (x n ), K 1 =k(x 1 ,..., x n−1 ). Therefore by <strong>the</strong>orem 11 since z is algebraic over K 1 ,z∈ K 1 . By inducti<strong>on</strong> hypo<strong>the</strong>sis, z∈k.ThusCorollary. If K= k(x 1 ,..., x n ) has dimensi<strong>on</strong> n over k, <strong>the</strong>n k is algebraicallyclosed in KIt is easy to extend this to <strong>the</strong> case where K is a purely transcendentalextensi<strong>on</strong> <strong>of</strong> any transcendence degree.Since K= k(x), we call x a generator <strong>of</strong> K over k. Let y also be a 81generator so that K= k(y). Then(k(x) : k(y))=1which shows by our c<strong>on</strong>siderati<strong>on</strong>s leading to <strong>the</strong>orem 11 thaty= a(x)b(x)where a(x) and b(x) are coprime and have at most <strong>the</strong> degree 1 in x.Thusy= λx+µνx+ρwhereλ,µ,ν,ρare in k and since y is transcendental over k,λρ−µν0.An automorphism <strong>of</strong> K which is identity <strong>on</strong> k, is uniquely fixed byits effect <strong>on</strong> x. If it takes x into y <strong>the</strong>n x and y are related as above. Ifx and y are related as above, <strong>the</strong>n <strong>the</strong> mapping which assigns to x <strong>the</strong>element y is an automorphism.If we c<strong>on</strong>sider <strong>the</strong> group <strong>of</strong> two rowed n<strong>on</strong>-singular matrices, wi<strong>the</strong>lements in k, <strong>the</strong>n each matrix gives rise to an automorphism <strong>of</strong> K/k.Obviously two matricesσandτgive rise to <strong>the</strong> same automorphism ifand <strong>on</strong>ly ifσ=λτ for someλo in k. HenceTheorem 12. The group <strong>of</strong> automorphisms <strong>of</strong> K= k(x) over k is isomorphicto <strong>the</strong> factor group <strong>of</strong> <strong>the</strong> group <strong>of</strong> two rowed matrices over kmodulo <strong>the</strong> group <strong>of</strong> matricesλE,λ0∈kand E is <strong>the</strong> unit matrix <strong>of</strong>order 2.


70 3. <strong>Algebraic</strong> functi<strong>on</strong> fields82We shall call this group P 2 .From <strong>the</strong>orem 11, it follows that if L is an intermediary field betweenK and k <strong>the</strong>n L is transcendental over k. But much more is true asin shown by <strong>the</strong> following <strong>the</strong>orem <strong>of</strong> Luroth.Theorem 13. If K= k(x) is a simple transcendental extensi<strong>on</strong> <strong>of</strong> k andk⊂L⊂K, L=K(ω) for someω∈K.Pro<strong>of</strong>. We shall assume that Lk so that L is transcendental over kand c<strong>on</strong>tains an element t, transcendental over k andy by c<strong>on</strong>siderati<strong>on</strong>sleading to <strong>the</strong>orem 11, we have K/k(t) is finite algebraic. Since L⊃k(t),it follows that(K : L)


3. Rati<strong>on</strong>al functi<strong>on</strong> fields 71so that since f (z) is irreducible, it follows that f (z) divides h(z)− wg(z),which is a polynomial <strong>of</strong> degree≤m in z. Let us <strong>the</strong>refore writeh(z)−wg(z)=f (x, z) ϕ(x, z)c 1 (x)b o (x) c o (x)whereϕ(x, z) is a primitive polynomial in z over k[x]. We <strong>the</strong>refore get<strong>on</strong> substituting <strong>the</strong> w= h(x)g(x) ,h(z)g(x)− g(z)h(x)= g(x)c 1(x). f (x, z)ϕ(x, z).b o (x)c o (x)The left hand side being a polynomial in x and z, f andϕbeingprimitive polynomials in z over k[x], it follows thath(z)g(x)− g(z)h(x)= f (x, z)ϕ 1 (x, z)whereϕ 1 (x, z)∈k[x, z]. We now compare degrees in x and z <strong>on</strong> bothsides <strong>of</strong> <strong>the</strong> above identity. On <strong>the</strong> right hand side <strong>the</strong> degree in x is≥ msince <strong>on</strong>e <strong>of</strong> b o (x),...,b n (x) has degree m. Therefore <strong>the</strong> left side hasdegree in x≥m. But <strong>the</strong> degree in x equals degree <strong>of</strong> w≤m. Thusdegree <strong>of</strong> w=m. Since <strong>the</strong> left side is symmetrical in z and x,it followsthat it has degree m in z. Thereforeϕ 1 has to be independent <strong>of</strong> x.Hence h(z)−wg(z)= f (z)ϕ(z),ϕ(z) being independent <strong>of</strong> x. Thiscan happen <strong>on</strong>ly ifϕ(z) is a c<strong>on</strong>stant. This proves thatn=m.Now (K : k(w))=m=(K : L) and L⊃k(w). Thus 84L=k(w)and our <strong>the</strong>orem is proved.The analogue <strong>of</strong> Luroth’s <strong>the</strong>orem for K= k(x 1 ,..., x n ) is not knownfor n>1.Let K= k(x) and let G be a finite granite group <strong>of</strong> automorphism <strong>of</strong>K/k. If L is <strong>the</strong> fixed field <strong>of</strong> G, <strong>the</strong>n K/L is a finite extensi<strong>on</strong> <strong>of</strong> degreeequal to order <strong>of</strong> G. By Luroth’s <strong>the</strong>orem L=k(y) for some y. Thusdegree y= order <strong>of</strong> G.


72 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsFor instance, let G be <strong>the</strong> finite group <strong>of</strong> automorphisms <strong>of</strong> K= k(x)defined byx→ x, x→1− x, x→ 1 x , x→1− 1 x , x→ 11− x , x→ xx−1This is a group <strong>of</strong> order 6 and <strong>the</strong> fixed field will be k(y) where k(y)c<strong>on</strong>sists <strong>of</strong> all rati<strong>on</strong>al functi<strong>on</strong>s f (x) <strong>of</strong> x withf (x)= f (1− x)= f ( 1 x )= f (1− 1 x )= f ( 11− x )= f ( x1− x ).We have <strong>on</strong>ly to find a rati<strong>on</strong>al functi<strong>on</strong> <strong>of</strong> degree 6 which satisfies<strong>the</strong> above c<strong>on</strong>diti<strong>on</strong>s. The functi<strong>on</strong>f (x)= (x2 − x+1) 3x 2 (x−1) 2satisfies <strong>the</strong> above c<strong>on</strong>diti<strong>on</strong>s and so y= f (x).Theorem 14. If G is any finite subgroup <strong>of</strong> P 2 <strong>of</strong> linear transformati<strong>on</strong>s85x→ ax+bcx+da, b, c, d∈k, ad− bc0 <strong>the</strong>n <strong>the</strong>re exists a rati<strong>on</strong>al functi<strong>on</strong> f (x) suchthat every functi<strong>on</strong>ϕ(x) which is invariant under G is a rati<strong>on</strong>al functi<strong>on</strong><strong>of</strong> f (x). f (x) is uniquely determined up to a linear transformati<strong>on</strong>λ f (x)+µV f (x)+ρλ,µ,νρ∈k, λρ−µν0.We now c<strong>on</strong>sider <strong>the</strong> case <strong>of</strong> a rati<strong>on</strong>al functi<strong>on</strong> field K = k(x 1 ,... x n ) <strong>of</strong> n variables. Let G be a finite group <strong>of</strong> automorphisms <strong>of</strong> Kwhich are trivial <strong>on</strong> k and let L be <strong>the</strong> fixed field <strong>of</strong> G. Clearly L hastranscendence degree n over k. It is not known, except in simple cases,whe<strong>the</strong>r L is a purely transcendental extensi<strong>on</strong> <strong>of</strong> k or not. We shall,however, c<strong>on</strong>sider <strong>the</strong> <strong>the</strong> case where G is <strong>the</strong> symmetric group <strong>on</strong> n


3. Rati<strong>on</strong>al functi<strong>on</strong> fields 73symbols. So G≃S n . Let G operate <strong>on</strong> K in <strong>the</strong> following manner. Ifσis an element <strong>of</strong> S n , <strong>the</strong>nσis a permutati<strong>on</strong>( )1, 2, 3,...,nσ= .σ 1 ,σ 2 ,σ 3 ,...,σ nWe defineσ<strong>on</strong> K byσx i = x σi ; 1,...,n.We <strong>the</strong>n obtain a faithful representati<strong>on</strong> <strong>of</strong> S n <strong>on</strong> K and we denotethis group again by S n . An element <strong>of</strong> k which is fixed under S n andwhich <strong>the</strong>refore is in L is called a symmetric functi<strong>on</strong> <strong>of</strong> x 1 ,..., x n . Obviously(K : L)=n!and <strong>the</strong> galois group <strong>of</strong> K/L is S n . 86C<strong>on</strong>sider <strong>the</strong> polynomialf (z)=(z− x 1 )...(z− x n ).Since every permutati<strong>on</strong> in S n leaves f (z) fixed, it follows that f (z)∈L[z]. Let us writewheref (z)=z n − s 1 z n−1 + s 2 z n−2 −···+(1) n s ns i =∑1≤t 1


74 3. <strong>Algebraic</strong> functi<strong>on</strong> fieldsTheorem 15. Every rati<strong>on</strong>al symmetric functi<strong>on</strong> <strong>of</strong> x 1 ,..., x n is a rati<strong>on</strong>alfuncti<strong>on</strong> over k <strong>of</strong> <strong>the</strong> elementary symmetric functi<strong>on</strong>s s 1 ,..., s n .Incidentally since L/k has dimensi<strong>on</strong> n, <strong>the</strong> elementary symmetricfuncti<strong>on</strong>s s 1 ,..., s n are algebraically independent over k.


Chapter 4Norm and Trace1 Norm and traceLet K/k be a finite extensi<strong>on</strong> and letω 1 ,...,ω n be a base <strong>of</strong> K/k so thateveryω∈Kmay be written∑ω= a i ω ia i ∈ k. By means <strong>of</strong> <strong>the</strong> regular representati<strong>on</strong>i87ω→A ωwhere A ω = (a i j ) is an n− rowed square matrix with∑ωω i = a i j ω j i=1,...,nj<strong>the</strong> field K becomes isomorphic to <strong>the</strong> subalgebra formed by A ω in <strong>the</strong>algebram n (k) <strong>of</strong> n rowed matrices over k. We denote by N K/k ω, S K/K ω<strong>the</strong> norm and trace respectively <strong>of</strong>ω∈Kover k and <strong>the</strong>y are defined byN K/k ω=|A ω |S K/k ω=trace A ω .75


76 4. Norm and TraceDefined as such, it follows thatN K/k ωω ′ = N K/k ω.N K/k ω ′S K/k (ω+ω ′ )=S K/k ω+S K/k ω ′forω,ω ′ ∈ K. Obviouslyω→N K/k ω is a homomorphism <strong>of</strong> K ∗ intoK ∗ and similarlyω→S K/k ω is a homomorphism <strong>of</strong> K + , <strong>the</strong> additivegroup, into k + .Letω ′ 1 ,...,ω′ n be any o<strong>the</strong>r basis <strong>of</strong> K/k. Then⎛⎜⎝ω ′ 1.ω ′ n⎞ω 1⎟⎠⎛⎜⎝= P .⎞⎟⎠ω n88where P is a n<strong>on</strong>-singular matrix inm n (k). Since⎛ω 1⎛ω 1ω . ⎜⎝⎞⎟⎠ = A ω . ⎜⎝⎞⎟⎠ω n ω nit follows that⎛ω ′ 1ω ′ n⎞ω ′ 1ω . ⎜⎝ ⎟⎠ = PA′ ω⎛⎜⎝P−1 . ⎟⎠which shows that by means <strong>of</strong> <strong>the</strong> new basis <strong>the</strong> matrix associated toωis B ω whereB ω = PA ω P−1and <strong>the</strong>n we haveω ′ n| B ω |=|A ω |Trace B ω = Trace A ω .This shows that N K/k ω and S K/k ω are invariantly defined and do notdepend <strong>on</strong> a basis <strong>of</strong> K/k.⎞


1. Norm and trace 77We writef K/k (x)=| xE− A ω |and call it <strong>the</strong> characteristic polynomial <strong>of</strong>ω. Obviously f K/k (0) =(−1) n | A ω | so thatwhereWe also see easily thatN K/k ω=(−1) n f K/k (0)=(−1) n a n . (1)S K/k ω=−a 1 (2)f K/k (x)= x n + a 1 x n−1 +···+a na 1 ,...,a n ∈ k.Let k⊂L⊂K be a tower <strong>of</strong> finite extensi<strong>on</strong>s. Let (K : L)=mand letΩ 1 ,...,Ω m be a basis <strong>of</strong> K/L. Similarly let (L : k)=n and let 89ω 1 ,...,ω n be a base <strong>of</strong> L/k. Then (ω 1 Ω 1 ,...,ω n Ω m ) is a base <strong>of</strong> K/k.Letω∈L and c<strong>on</strong>sider <strong>the</strong> matrix <strong>of</strong>ωby <strong>the</strong> regular representati<strong>on</strong> <strong>of</strong>K/k in terms <strong>of</strong> <strong>the</strong> base (ω 1 Ω 1 ,...,ω n Ω m ). Call it Ā ω .Then it is trivial to see that⎛A ω 0·········Ā ω =········· ⎜⎝⎞⎟⎠0 A ωa matrix <strong>of</strong> mn rows and columns. ThereforeN K/k ω=| Ā ω | (N K/k ω) (K:L)S K/k ω=(K : L)S K/k ωAlso <strong>the</strong> characteristic polynomials <strong>of</strong>ωas bel<strong>on</strong>ging to L and to Krespectively are f L/k (x) and f K/k (x) and <strong>the</strong>y are related byf K/k (x)=( f L/k (x)) (K:L) , (3)In particular let L=k(ω). Then f L/k (x) is <strong>the</strong> minimum polynomial<strong>of</strong>ω. We, <strong>the</strong>refore, have <strong>the</strong>


78 4. Norm and TraceTheorem 1. If K/k is a finite extensi<strong>on</strong> andω∈K,ϕ(x) its minimumpolynomial over k and f (x) its characteristic polynomial, <strong>the</strong>nwhere r=(K : k(ω)).f (x)=(ϕ(x)) r90From our formulae above, it follows that we can compute <strong>the</strong> normand trace <strong>of</strong>ωin K from a knowledge <strong>of</strong> its minimum polynomial.Let now K/k be a finite extensi<strong>on</strong> andωan element <strong>of</strong> K. Let[K : k(ω)] = m ′ , [k(ω) : k] = n ′ be <strong>the</strong> degrees <strong>of</strong> separability <strong>of</strong>K over k(ω) and k(ω) over k respectively. Then K/k has m ′ n ′ distinctk-isomorphisms in an algebraic closureΩ<strong>of</strong> k. Let { }σ i j ,i=1,...,n ′j=1,...,m ′ , be<strong>the</strong>se isomorphisms and let notati<strong>on</strong> be so chosen thatσ i1 ,...,σ im , have<strong>the</strong> same <strong>the</strong> same effect <strong>on</strong> k(ω). Then we may takeσ 11 ,σ 12 ,...,σ n ′ 1as a complete system <strong>of</strong> distinct isomorphisms <strong>of</strong> k(ω)/k inΩ.By our c<strong>on</strong>siderati<strong>on</strong>s above f k(ω)/k (x) is <strong>the</strong> polynomial <strong>of</strong>ωaswell as <strong>the</strong> characteristic polynomial <strong>of</strong>ωin k(ω)/k. If f K/k (x) is <strong>the</strong>characteristic polynomial <strong>of</strong>ωin k, <strong>the</strong>nf K/k (x)=( f k(ω)/k (x)) (K:k(ω)) (4)Now, because <strong>of</strong> <strong>the</strong> properties <strong>of</strong> <strong>the</strong> isomorphismsσ i j∏n ′ m ′i=1∏ ∏n ′(x−σ i j ω)= (x−σ i1 ω) m′ . (5)j=1But since f k(ω)/k (x) is <strong>the</strong> minimum polynomial <strong>of</strong>ω, we have⎧ ⎫n⎪⎨′ {k(ω):k}∏ ⎪⎬f k(ω)/k (x)= (x−σ ⎪⎩i1 ω) ⎪⎭i=1where{k(ω) : k}, as usual, denotes <strong>the</strong> degree <strong>of</strong> inseparability <strong>of</strong> k(ω)over k. Using (5) we get⎧ ⎫{k:k}⎧ ⎫⎪⎨∏n⎪⎬ ⎪⎨′ m∏′ {K:k}⎪⎬(x−σ i j (ω) = (x−σ⎪⎩ ⎪⎭⎪⎩i1 ω) . ⎪⎭i, ji=1i=1


1. Norm and trace 79But{K : k}={K : k(ω)}·{k(ω) : k} so that⎧ ⎫{K:k}⎪⎨∏ ⎪⎬(x−σ i j ω) = { f k(ω)/k (x) } m ′ {K:k(ω)}⎪⎩ ⎪⎭i, jwhich proves that 91{ ∏ {K:k}f K/k (x)= ((x−σω)}(6)σwhereσruns through all <strong>the</strong> distinct isomorphisms <strong>of</strong> k(ω) inΩ. Using(1) and (2) we get⎧ ⎫{K:k}⎪⎨∏ ⎪N K/k ω= ω ⎪⎩σ ⎬⎪ (7)⎭ω σ is a c<strong>on</strong>jugate <strong>of</strong>ω. Similarly∑S K/k ω={K : k} ω σ . (8)σIf K/k is inseparable, <strong>the</strong>n{K : k}= p t , t≥1 so that for everyω∈KS K/k ω=o.On <strong>the</strong> o<strong>the</strong>r hand, suppose K/k is finite and separable. Letσ 1 ,...,σ n be all <strong>the</strong> distinct isomorphisms <strong>of</strong> K/k inΩ, an algebraic closure<strong>of</strong> K. Then n=(K : k) and sinceσ 1 ,...,σ n are independent k-linearfuncti<strong>on</strong>s <strong>of</strong> K/k inΩ, it follows thatσσ=σ 1 +···+σ nis a n<strong>on</strong> - trivial k−linear functi<strong>on</strong> <strong>of</strong> K/k inΩ. Therefore <strong>the</strong>re exists aω∈Ksuch thatσω0. But by formula (8),so that we have <strong>the</strong>σω=ω σ 1+...+ω σ n= S K/k ω


80 4. Norm and TraceTheorem 2. A finite extensi<strong>on</strong> K/k is separable, if and <strong>on</strong>ly if <strong>the</strong>re existin K an element whose trace over k in not zero.In case k has characteristic zero, or k has characteristic p∤n=(K : 92k), <strong>the</strong> unit element 1 in k has trace o. In order to obtain an elementωin K with S K/k ω0, in every case we proceed thus:Let K/k be separable and K= k(α) for an elementα. Letϕ(x) be itsirreducible polynomial over k andIt follows <strong>the</strong>n thatϕ(x)=(x−α 1 )···(x−α n ).x n−1 ∑ϕ(x) =iα n−1iϕ ′ (α i )1x−α i.Comparing coefficients <strong>of</strong> x n−1 <strong>on</strong> both sides we get∑iα n−1iϕ ′ (α i ) = 1.If we putω= αn−1ϕ ′ (α) and observe thatϕ′ (α)∈K, we getS K/K ω=1.Using formula (6), it follows that if k⊂L⊂K is a tower <strong>of</strong> finiteextensi<strong>on</strong>s andω∈K, <strong>the</strong>nN K/k ω=N L/k (N K/L ω)S K/k ω=S L/k (S K/L ω)We now give a simple applicati<strong>on</strong> <strong>of</strong> formula (7) to finite fields.Let k be a finite field <strong>of</strong> q= p a elements so that p is <strong>the</strong> characteristic<strong>of</strong> k. Let K be a finite extensi<strong>on</strong> <strong>of</strong> k so that (K : k)=n. Then K has


2. Discriminant 81q n elements. The galois group <strong>of</strong> K/k is cyclic <strong>of</strong> order n. Letσbe <strong>the</strong>Frobenius automorphism. Then forω∈K,ω σ =ω q .93The norm <strong>of</strong>ωisSince K ∗ has q n − 1 elements,σn−1N K/k ω=ω·ωσ·ωσ2···ωq n − 1=ω q−1 .α qn −1 = 1for allα∈K ∗ . Since K ∗ is a cyclic group, <strong>the</strong> number <strong>of</strong> elements in K ∗withq n − 1α q−1 = 1is precisely q n − 1/q−1, since q−1 divides q n − 1.Nowω→ N K/k ω is a homomorphism <strong>of</strong> K ∗ into k ∗ and <strong>the</strong> kernel<strong>of</strong> <strong>the</strong> homomorphism is <strong>the</strong> set <strong>of</strong>ωin K ∗ with1=N K/k ω=ωq n − 1q−1 .By <strong>the</strong> first homomorphism <strong>the</strong>orem we have, since k ∗ has <strong>on</strong>ly q−1elements, <strong>the</strong>Theorem 3. If K/k is finite and k is a finite field, <strong>the</strong>n every n<strong>on</strong>-zeroelement <strong>of</strong> k is <strong>the</strong> norm <strong>of</strong> exactly (K ∗ : k ∗ ) elements <strong>of</strong> K.It is clear that this <strong>the</strong>orem is not in general true if k is an infinitefield.


82 4. Norm and Trace2 DiscriminantLet K/k be a finite extensi<strong>on</strong> andω 1 ,...,ω n a basis <strong>of</strong> K/k. Supposeσ 94is a k-linear map <strong>of</strong> K into k, that isσ(ω)∈kσ(ω+ω ′ )=σω+σω ′σ(λ)=λσ(ω)whereω,ω ′ ∈ K,λ∈K. Let M σ denote <strong>the</strong> matrixM σ = (σ(ω i ω j))<strong>of</strong> n rows and columns. We denote by D K/k σ(ω 1 ,...,ω n ) its determinantand call it <strong>the</strong>σ- discriminant <strong>of</strong> <strong>the</strong> basisω 1 ,...,ω n <strong>of</strong> K/k. Ifω ′ 1 ,...,ω′ n is ano<strong>the</strong>r basis, <strong>the</strong>n⎛⎜⎝ω ′ 1.ω ′ n⎞ω 1⎟⎠⎛⎜⎝= P .⎞⎟⎠ω nwhere P is an n rowed n<strong>on</strong>-singular matrix with elements in k.If P=(p i j ) <strong>the</strong>n∑ω ′ i = p i j ω jjso that∑σ(ω ′ a ω′ b )= p ai p b j σ(ω i ω j )i, jwhich proves thatD σ K/k (ω′ 1 ,...,ω′ n)=|P| 2 D σ K/k (ω 1,...,ω n ).Therefore D σ K/k= 0 if it is zero for some basis.We now prove


2. Discriminant 8395Theorem 4. Ifω 1 ,...,ω n is a basis <strong>of</strong> K/k andσak-linear map <strong>of</strong> Kinto k, <strong>the</strong>nD σ K/k (ω 1,...,ω n )=0if and <strong>on</strong>ly ifσis <strong>the</strong> zero linear mapping.Pro<strong>of</strong>. Ifσis <strong>the</strong> zero linear map, that is, <strong>on</strong>e that assigns to everyelementωin K, <strong>the</strong> zero element, <strong>the</strong>n D σ K/K = 0. Now let Dσ K/k = 0.This means that <strong>the</strong> matrix M σ with elements in k has determinant zero.Therefore <strong>the</strong>re exist a 1 ,...,a n in k, not all zero, such that⎞a 1 0M⎛⎜⎝σ .⎞⎟⎠⎛⎜⎝= . ⎟⎠ .a n 0This means thatn∑σ(ω i ω j )a j = 0; 1=1,...,n.If we put z= ∑ jj=1a j ω j . <strong>the</strong>n we haveσ(ω i z)=0, i=1,...,n.Letωbe any element in K. Since a 1 ,...,a n are not all zero, z0and so putωz = b 1ω 1 +···+b n ω n , b i ∈ k.( ω)Thenσ(ω)=σz· z = ∑ b i σ(ω i z)=o. This proves thatσis <strong>the</strong>itrivial map.The mappingω→S K/K ω is also a k-linear map <strong>of</strong> K into k. For abasisω 1 ,...,ω n <strong>of</strong> K/k we callD K/k (ω 1 ,...ω n )=|(S k/K (ω i ω j ))|<strong>the</strong> discriminant <strong>of</strong> <strong>the</strong> basisω 1 ,...ω n . Using <strong>the</strong>orem 2 and <strong>the</strong>orem 4,we get□


84 4. Norm and TraceTheorem 5. Discriminant <strong>of</strong> a base <strong>of</strong> K/k is not zero if and <strong>on</strong>ly if K/kis separable.96Let K/k be finite separable. Letσ 1 ,...,σ n be <strong>the</strong> distinct k-isomorphisms<strong>of</strong> K over k inΩ. Then∑S K/k ω= ω σ i.ThereforeD K/k (ω 1 ,...,ω n )=∣i1 , ..., ωσ n21.. (9)1 , ... ..., ωσ n∣1ω σ 11 , ωσ 2ω σ 1Since K/k is finite separable, K= k(ω) for someω. Also 1,ω,ω 2 ,...,ω n−1 form a base <strong>of</strong> K/k and we have1, ..., 1D(1,ω,...,ω n−1 )=ω σ 1, ..., ω σ 1..........................∣(ω n−1 ) σ 1, ..., (ω n−1 ) σ n∣Also, D(1,ω,...,ω n−1 ) / D(ω 1 ,...,ω n ) is <strong>the</strong> square <strong>of</strong> an element<strong>of</strong> k. The determinant1, ..., 1ω σ 1, ..., ω σ n.........................∣(ω n−1 ) σ n, ..., (ω n−1 ) σ n∣is <strong>the</strong> called Van-der-M<strong>on</strong>de determinant. We call D(1,ω,...,ω n−1 ) is<strong>the</strong> discriminant <strong>of</strong>ωand denote it by D K/k (ω).Let f (x) be <strong>the</strong> minimum polynomial <strong>of</strong>ω. Then f (x) = (x−ω σ 1)...(x−ω σ n). Since f ′ (ω)0 , we havef ′ (ω)=(ω σ 1−ω σ 2)(ω σ 1−ω σ 3).....(ω σ 1−ω σ n)and is an element <strong>of</strong> K. We call it <strong>the</strong> different <strong>of</strong>ωand denote it d K/k (ω).Also <strong>the</strong> Vander - m<strong>on</strong>de determinant shows that


2. Discriminant 85D K/k (ω)=(−1) n(n−1)2 N K/k (d K/k ω)97Suppose K/k is a finite galois extensi<strong>on</strong>. Letσ 1 ,...,σ n be <strong>the</strong> distinctautomorphisms <strong>of</strong> K/k. We shall now proveTheorem 6. If k c<strong>on</strong>tains sufficiently many elements, <strong>the</strong>n <strong>the</strong>re existsin K an elementω such thatω σ 1,...,ω σ nform a basis <strong>of</strong> K over k.Pro<strong>of</strong>. Itω∈Ksuch thatD(ω σ 1,...,ω σ n)o<strong>the</strong>nω σ 1,...,ω σ nform a base <strong>of</strong> K/k. For,if∑a i ω σ i= o, a 1 ,...,a n ∈ kinot all zero, <strong>the</strong>n sinceσ 1 ,...,σ n form a group∑a i ω σ jσ i= o, j=1,...,n.iTherefore from <strong>the</strong> expressi<strong>on</strong> (9) for D K/k (ω σ 1,...,ω σ n), it followsthat ⎞( S K/k (ω σ iω σ j)⎛⎜⎝) a 1 o.⎞⎟⎠⎛⎜⎝= . ⎟⎠a n oor that D(ω σ 1,...,ω σ n)=o which is a c<strong>on</strong>tradicti<strong>on</strong>. We have <strong>the</strong>reforeto find anωwith this property. Putω σ i=x 1 ω σ i1 +···+ x nω σ in, i=1, 2,...where x 1 ,..., x n are indeterminates andω 1 ,...,ω n is a basis <strong>of</strong> K/k□ThenS K/k (ω σ iω σ j)=ω σ 1σ iω σ 1σ j,+···+ω σ nσ iω σ nσ j∑= S K/k (ω σ iaω σ jb )x ax b .a,b


86 4. Norm and TraceThen D K/k (ω σ 1,...,ω σ n) defined as <strong>the</strong> determinant <strong>of</strong> <strong>the</strong> matrix 98(S K/k (ω σ iω σ j)) is a polynomial in x 1 ,..., x n with coefficients in k.In order to prove that D K/k (ω σ 1,...,ω σ n) is n<strong>on</strong>-zero polynomial,notice that by definiti<strong>on</strong>,⎛ω σ ⎞1ω. ⎜⎝ ⎟⎠⎛⎜⎝σ 1=1 , ωσ 12 , ..., ⎞⎛ωσ 1 xn 1......................ω σ n ω σ n1 , ωσ n2 , ..., ωσ n⎟⎠ . ⎜⎝⎞⎟⎠n x nso that ifω σ 1= 1 andω σ i= o for i>1, <strong>the</strong>n x 1 ,..., x n are not allzero and for this set <strong>of</strong> values <strong>of</strong> x 1 ,..., x n , <strong>the</strong> polynomial D K/k (ω σ 1,...,ω σ n) has a valueo, as can be see from <strong>the</strong> fact that∣ ω σ 1, ..., ω σ n ∣∣∣∣∣∣∣∣ 2D K/k (ω σ 1,...,ω σ n)=....................∣ω σ nσ i, ..., ω σ nσ nTherefore if k has sufficiently many elements, <strong>the</strong>re exist values in k<strong>of</strong> x 1 ,..., x n , not all zero, such that D K/k (ω σ 1,...,ω σ n)o.This proves <strong>the</strong> <strong>the</strong>oremIn particular, if k is an infinite field, <strong>the</strong>re exists a base <strong>of</strong> K/k c<strong>on</strong>sisting<strong>of</strong> an element and its c<strong>on</strong>jugates. Such a base is said to be anormal base.The <strong>the</strong>orem is also true if k is a finite field.


Chapter 5Composite extensi<strong>on</strong>s1 Kr<strong>on</strong>ecker product <strong>of</strong> Vector spacesLet V 1 and V 2 be two vector spaces over a field k and V 1 × V 2 <strong>the</strong>ircartesian product. If W is any vector space over k, a bilinear functi<strong>on</strong>f (x, y) <strong>on</strong> V 1 × V 2 is, by definiti<strong>on</strong>, a functi<strong>on</strong> <strong>on</strong> V 1 × V 2 into W suchthat for every x∈V 1 <strong>the</strong> mappingλ x : y→ f (x, y) is a linear functi<strong>on</strong><strong>on</strong> V 2 into W and for every y∈V 2 <strong>the</strong> functi<strong>on</strong>µ y : x→ f (x, y) is alinear functi<strong>on</strong> <strong>on</strong> V 1 to W.A Vector space T over k is said to be a Kr<strong>on</strong>ecker product or tensorproduct <strong>of</strong> V 1 and V 2 over k, if <strong>the</strong>re exists a bilinear functi<strong>on</strong>θ<strong>on</strong> V 1 ×V 2into T such that1) T is generated byθ(V 1 × V 2 )992) if V 3 is any vector space over k, <strong>the</strong>n for every bilinear functi<strong>on</strong>ϕ <strong>on</strong>V 1 × V 2 into V 3 <strong>the</strong>re exists a linear functi<strong>on</strong>σ <strong>on</strong> T into V 3 such thatσθ=ϕ.This is shown by <strong>the</strong> commutative diagramWe shall now prove <strong>the</strong>ϕV 1 × V 2 θ T87 σV 3


88 5. Composite extensi<strong>on</strong>sTheorem 1. For any two vector spaces V 1 and V 2 over k <strong>the</strong>re exists<strong>on</strong>e and upto k-isomorphism <strong>on</strong>ly <strong>on</strong>e Kr<strong>on</strong>ecker product T <strong>of</strong> V 1 andV 2 over k.100Pro<strong>of</strong>. The uniqueness is easy to establish. For, let T 1 and T 2 be twovector spaces satisfying <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s 1) and 2). Let T 1 be generatedbyθ 1 (V 1 × V 2 ) and T 2 byθ 2 (V 1 × V 2 ). Letσbe <strong>the</strong> linear map <strong>of</strong> T 1into T 2 such thatσ·θ 1 =θ 2 andτ<strong>the</strong> linear map <strong>of</strong> T 2 into T 1 such thatτ·θ 2 =θ 1 . Sinceθ 1 (V 1 × V 2 ) generates T 1 we see thatτ·σ is identity<strong>on</strong> T 1 . Similarlyσ·τ is identity <strong>on</strong> T 2 . Thusσandτare isomorphisms<strong>on</strong>to.□We now prove <strong>the</strong> existence <strong>of</strong> <strong>the</strong> space T.Let V be <strong>the</strong> vector space formed by finite linear combinati<strong>on</strong>s∑a xy (x, y)a xy ∈ k and (x, y)∈V 1 ×V 2 . Every bilinear functi<strong>on</strong> f <strong>on</strong> V 1 ×V 2 into V 3can be extended into a linear functi<strong>on</strong> f¯<strong>of</strong> V into V 3 by <strong>the</strong> prescripti<strong>on</strong>f ¯( ∑a xy (x, y) ) ∑= a x,y f (x, y)Let W be <strong>the</strong> subspace <strong>of</strong> V generated by elements <strong>of</strong> <strong>the</strong> type(x+ x 1 , y)−(x, y)−(x 1 , y)(x, y+y 1 )−(x, y)−(x, y 1 )(ax, y)−a(x, y)(x, by)−b(x, y)101where x, x 1 ∈ V 1 ; y, y 1 ∈ V 2 and a, b∈k. W is independent <strong>of</strong> V 3 .Also if f is a bilinear functi<strong>on</strong> <strong>on</strong> V 1 × V 2 , its extensi<strong>on</strong> f¯<strong>on</strong> V vanishes<strong>on</strong> W. Fur<strong>the</strong>rmore if f is any linear functi<strong>on</strong> <strong>on</strong> V vanishing <strong>on</strong> W,its restricti<strong>on</strong> to V 1 × V 2 is a bilinear functi<strong>on</strong>. It is <strong>the</strong>n clear that <strong>the</strong>space <strong>of</strong> bilinear functi<strong>on</strong>s <strong>on</strong> V 1 ×V 2 is isomorphic to <strong>the</strong> space <strong>of</strong> linearfuncti<strong>on</strong>s <strong>on</strong> V which vanish <strong>on</strong> W. Ifσis any linear functi<strong>on</strong> <strong>on</strong> V/Winto V 3 andθ<strong>the</strong> natural homomorphism <strong>of</strong> V <strong>on</strong> V/W <strong>the</strong>nσ·θ is alinear functi<strong>on</strong> <strong>on</strong> V vanishing <strong>on</strong> W. Alsoσ→σ·θ is an isomorphism


1. Kr<strong>on</strong>ecker product <strong>of</strong> Vector spaces 89<strong>of</strong> <strong>the</strong> space <strong>of</strong> linear functi<strong>on</strong>s <strong>on</strong> V/W into V 3 <strong>on</strong> <strong>the</strong> space <strong>of</strong> linearfuncti<strong>on</strong>s <strong>on</strong> V vanishing <strong>on</strong> W.θ is clearly a bilinear functi<strong>on</strong> <strong>on</strong> V 1 ×V 2into T= V/W and fur<strong>the</strong>rmore, by definiti<strong>on</strong> <strong>of</strong> V, V/W is generated byθ(V 1 × V 2 ). Thus T is <strong>the</strong> required space.By taking k itself as a vector space over k, we haveTheorem 2. The space <strong>of</strong> bilinear functi<strong>on</strong>s <strong>on</strong> V 1 ×V 2 into k is isomorphicto <strong>the</strong> dual <strong>of</strong> <strong>the</strong> Kr<strong>on</strong>ecker product T.We denote by V 1 x○ k V 2 <strong>the</strong> kr<strong>on</strong>ecker product space. When <strong>the</strong>re isno doubt about <strong>the</strong> field over which <strong>the</strong> kr<strong>on</strong>ecker product is taken wewill simply write V 1 x○V 2 .If T = V 1 x○V 2 we denote by x x○y <strong>the</strong> element in T which corresp<strong>on</strong>dsto (x, y) by <strong>the</strong> bilinear functi<strong>on</strong>θ<strong>on</strong> V 1 × V 2 into T. Sinceθ(V 1 × V 2 ) generates T, every element <strong>of</strong> T is <strong>of</strong> <strong>the</strong> form∑a x,y (x x○y) a xy ∈ k.Clearlyx x○o=o x○y=o x○o(x+ x⎧⎪⎨⎪⎩1 ) x○y= x x○y+ x 1 x○yx x○(y+y 1 )= x x○y+ x x○y 1ax x○y=a(x x○y)x x○ by = b(x x○y)with obvious notati<strong>on</strong>s. 102From our c<strong>on</strong>siderati<strong>on</strong>s it follows that in order to define a linearfuncti<strong>on</strong> <strong>on</strong> V 1 x○V 2 it is enough to define it <strong>on</strong> elements <strong>of</strong> <strong>the</strong> typex x○y. Also for every such linear functi<strong>on</strong>, <strong>the</strong>re is a bilinear functi<strong>on</strong> <strong>on</strong>V 1 × V 2 .It is easy to see that <strong>the</strong> mapping x x○y→y x○x <strong>of</strong> V 1 x○V 2 to V 2 x○V 1is an isomorphism <strong>on</strong>to.Suppose now that V ∗ 1 and V∗ 2 are duals <strong>of</strong> V 1 and V 2 respectively overk. Ifσ∈V ∗ 1 andτ∈V∗ 2 and we define for (x, y)∈V 1× V 2 <strong>the</strong> functi<strong>on</strong>σ.τ(x, y)=σx.τy,<strong>the</strong>nσ.τ is a bilinear functi<strong>on</strong> <strong>on</strong> V 1 × V 2 into k. We shall now prove <strong>the</strong>


90 5. Composite extensi<strong>on</strong>sTheorem 3. If{x α } is a base <strong>of</strong> V 1 over k and{y β } a base <strong>of</strong> V 2 over k,<strong>the</strong>n{x α x○y β } is a base <strong>of</strong> V 1 x○V 2 over k.Pro<strong>of</strong>. We first prove that{x α x○y β } are linearly independent over k. Forall ∑ a αβ (x α x○y β )=<strong>of</strong>or a αβ ∈ k, a αβ = o for all but a finite number <strong>of</strong>α,β. By <strong>the</strong> method <strong>of</strong> c<strong>on</strong>structing <strong>the</strong> tensor product, it follows that∑aαβ (x α , y β ) is an element <strong>of</strong> W. Letσandτbe elements <strong>of</strong> V ∗ 1 and V∗ 2defined respectively byσ(x α )=1ifα=γ= o o<strong>the</strong>rwiseτ(y β )=1 if β=δ= o o<strong>the</strong>rwise103□Thenσ·τ is a bilinear functi<strong>on</strong> <strong>on</strong> V 1 × V 2 and hence vanishes <strong>on</strong>W. Thusσ.τ (∑ a αβ (x α x○y β ) ) = o.But <strong>the</strong> left side equals a γδ . Thus all <strong>the</strong> coefficients a αβ vanish.Next any element <strong>of</strong> V 1 x○V 2 is a linear combinati<strong>on</strong> <strong>of</strong> elements <strong>of</strong><strong>the</strong> type x x○y, x∈V 1 , y∈V 2 . But <strong>the</strong>n x= ∑ a α x α and y= ∑ b β y β sothatx x○y= ( ∑ ) (∑ )a α x α x○ b β y βwhich equals ∑ a α b β (x α x○y β ). Our <strong>the</strong>orem is proved.We have incidentally <strong>the</strong>Corollary. If V 1 and V 2 are finite dimensi<strong>on</strong>al over k <strong>the</strong>ndim V 1 x○V 2 = dim V 1· dim V 2 .Also since <strong>the</strong> dual <strong>of</strong> V ∗ 1 is isomorphic in a natural manner with V 1when dim·V 1 is finite, we get


1. Kr<strong>on</strong>ecker product <strong>of</strong> Vector spaces 91Corollary . If V 1 and V 2 are finite dimensi<strong>on</strong>al over k <strong>the</strong>n V 1 x○ k V 2 isisomorphic to <strong>the</strong> dual <strong>of</strong> <strong>the</strong> space <strong>of</strong> bilinear functi<strong>on</strong>s <strong>on</strong> V 1 × V 2 intok.Let now A 1 and A 2 be two associative algebras over a field k. Wecan form <strong>the</strong> Kr<strong>on</strong>ecker product A=A 1 x○ k A 2 <strong>of</strong> <strong>the</strong> vector spaces A 1and A 2 over k. We shall now introduce a multiplicati<strong>on</strong> into A so as tomake it into an associative algebra.In order to do this, observe that <strong>the</strong> multiplicati<strong>on</strong> defined has to be 104a bilinear functi<strong>on</strong> <strong>on</strong> A× A into A. Since A is generated by elements <strong>of</strong><strong>the</strong> type x x○y, it is enough to define this bilinear functi<strong>on</strong> <strong>on</strong> elements <strong>of</strong><strong>the</strong> type (z, z 1 ) in A×Awhere z= x x○y and z 1 = x 1 x○y 1 . Putf (z, z 1 )=z·z 1 = x· x 1 x○y·y 1 .Now since (x, y)→ xx 1 x○yy 1 is a bilinear functi<strong>on</strong> <strong>on</strong> A 1 × A 2 intoA, by our previous c<strong>on</strong>siderati<strong>on</strong>s z→z·z 1 is a linear functi<strong>on</strong> <strong>on</strong> A intoA. Similarly z 1 → z·z 1 is a linear functi<strong>on</strong> <strong>on</strong> A. This proves that f isbilinear and that <strong>the</strong> multiplicati<strong>on</strong> so defined distributes additi<strong>on</strong>. That<strong>the</strong> multiplicati<strong>on</strong> is associative is trivial to see.A is called <strong>the</strong> Kr<strong>on</strong>ecker product algebra.We obtain some very simple c<strong>on</strong>sequences from <strong>the</strong> definiti<strong>on</strong>.α) If e 1 and e 2 are respectively <strong>the</strong> unit elements <strong>of</strong> <strong>the</strong> algebras A 1and A 2 <strong>the</strong>n e 1 x○e 2 is <strong>the</strong> unit element <strong>of</strong> A 1 x○A 2 .For, since A=A 1 x○A 2 is generated by elements x x○y, it is enoughto verify (x x○y)(e 1 x○e 2 )=(e 1 x○e 2 )(x x○y). But this is trivial.β) If A 1 has x 1 ,..., x m as a base over k and A 2 has y 2 ,...,y n as abase over k <strong>the</strong>n (x i x○y j ) is a base <strong>of</strong> A 1 x○A 2 over k. Fur<strong>the</strong>rmore if <strong>the</strong>multiplicati<strong>on</strong> tables for <strong>the</strong> bases are∑x i x j =ta (t)i j x t∑y i y j = b (t′ )i jy t ′t ′<strong>the</strong>n ∑105(x p x○y q )(x r x○y s )= a (λ)pr b qs (µ) (x λ x○y µ )λ,µ


92 5. Composite extensi<strong>on</strong>sγ) If A 1 and A 2 have unit elements e 1 and e 2 respectively <strong>the</strong>n <strong>the</strong>mappingsx→ x x○e 2y→e 1 x○yare isomorphisms <strong>of</strong> A 1 and A 2 into A. Thus A c<strong>on</strong>tains subalgebrasisomorphic to A 1 and A 2 .An important special case is <strong>the</strong> <strong>on</strong>e where <strong>on</strong>e <strong>of</strong> <strong>the</strong> algebras is afield. Let A be an algebra over k and K an extensi<strong>on</strong> field <strong>of</strong> k. Let A haveunit element e 1 and K <strong>the</strong> unit element e 2 . Form <strong>the</strong> Kr<strong>on</strong>ecker productA x○K over k. Then A x○K c<strong>on</strong>tains subalgebras A 1 and K 1 isomorphic toA and K respectively. For any x x○t in A x○K we havex x○t=x x○e 2 .e 1 x○t=e 1 x○t.x x○e 2so that A 1 and K 1 commute. Also every element <strong>of</strong> A x○K is <strong>of</strong> <strong>the</strong> form∑aαβ (x α x○t β ) where{x α } is a base <strong>of</strong> A over k and{t β } a base <strong>of</strong> K overk. But this expressi<strong>on</strong> can be written∑(∑a αβ (e 1 x○t β ) ) (x α x○e 2 ).αβ106This shows that A x○K is an algebra over K 1 with <strong>the</strong> base{x α x○e 2 }.If we identify A 1 with A and K 1 with K <strong>the</strong>n A x○K can be c<strong>on</strong>sidered asan algebra over K, a basis <strong>of</strong> A over k serving as a base <strong>of</strong> A x○K overK. A x○K is <strong>the</strong>n called <strong>the</strong> algebra got from A by extending <strong>the</strong> groundfield k to K. We shall denote it by A K .It is clear that A K is commutative if and <strong>on</strong>ly if A is a commutativealgebra.Note. Even if A is a field over k, A K need not be a field over K.LetΓbe <strong>the</strong> rati<strong>on</strong>al number field andΓo=Γ( √ d) <strong>the</strong> quadraticfield overΓ. LetΓbe <strong>the</strong> real number field and c<strong>on</strong>sider <strong>the</strong> Kr<strong>on</strong>eckerproduct A=Γ o x○¯Γ overΓ. Let e 1 , e 2 be a basis <strong>of</strong>Γ o overΓwith <strong>the</strong>multiplicati<strong>on</strong> table,e 2 1 = e 1, e 1 e 2 = e 2 e 1 = e 2 , e 2 2 = de 1.


2. Composite fields 93The elements <strong>of</strong>Γ o are <strong>of</strong> <strong>the</strong> form ae 1 +be 2 , a, b inΓ. The elements<strong>of</strong> A are <strong>of</strong> <strong>the</strong> form ae 1 + be 2 with a, b∈ ¯Γ.Let first d>o. ThenΓ o x○¯Γ is not an integrity domain. For,( √ de 1 + e 2 )( √ de 1 − e 2 )=o.It can however be seen that A is <strong>the</strong>n <strong>the</strong> direct sum <strong>of</strong> <strong>the</strong> two fieldsλ¯Γ andµ¯Γ whereλ= 1 2 (e 1+ e 2√d), µ= 1 2 (e 1− e 2√d).Let d


94 5. Composite extensi<strong>on</strong>sObviously this is an equivalence relati<strong>on</strong> and we can talk <strong>of</strong> a class<strong>of</strong> composite extensi<strong>on</strong>s.If k(K1 σ∪ Kτ 2 ) is a composite extensi<strong>on</strong> we denote by R(Kσ 1 ∪ Kτ 2 )<strong>the</strong> ring generated over k by K1 σ and Kτ 2inΩ. This ring is, in general,different from k(K1 σ∪ Kτ 2 ).Let now ¯K=K 1 x○K 2 be <strong>the</strong> Kr<strong>on</strong>ecker product <strong>of</strong> K 1 and K 2 . ¯Kc<strong>on</strong>tains subfields isomorphic to K 1 and K 2 . We shall identify <strong>the</strong>sesubfields with K 1 and K 2 respectively. Let now k(K1 σ∪ Kτ 2) be a compositeextensi<strong>on</strong> and R(K1 σ∪ Kτ 2108 ) <strong>the</strong> ring <strong>of</strong> <strong>the</strong> composite extensi<strong>on</strong>.Define <strong>the</strong> mappingϕ<strong>of</strong> ¯K into R(K1 σ∪ Kτ 2 ) byϕ ( ∑a xy (x x○y) ) =∑a xy x σ y τ ,where a xy ∈ k. Thenϕcoincides withσ<strong>on</strong> K 1 and withτ<strong>on</strong> K 2 .Sinceσandτare isomorphisms, it follows thatϕis a k-homomorphism<strong>of</strong> ¯K <strong>on</strong> R(K1 σ∪ Kτ 2). SinceΩis a field, it follows that kernel <strong>of</strong> <strong>the</strong>homomorphism is a prime ideal Y <strong>of</strong> ¯K. Thus¯K/G≃ R(K σ 1 ∪ Kτ 2 ).If k(K1 σ′ ∪ Kτ′ 2) is ano<strong>the</strong>r composite extensi<strong>on</strong>, <strong>the</strong>nµdefined earlier,is an isomorphism <strong>of</strong> R(K1 σ∪ Kτ 2) <strong>on</strong> R(Kσ′1∪ K2 τ′ ). C<strong>on</strong>sider <strong>the</strong>homomorphismϕ defined above. Define ¯ϕ <strong>on</strong> ¯K by ¯ϕ=µ·ϕ. We have∑ ( ) (∑¯ϕ( a xy x x○y) =µ a xy x σ y τ) ∑= a xy x σ′ y τ′ .Then ¯ϕ is a homomorphism <strong>of</strong> ¯K <strong>on</strong> R(K1 σ′ ∪ Kτ′ 2). But, sinceµis anisomorphism, it follows that ¯ϕ has G as <strong>the</strong> kernel. Thus <strong>the</strong> prime idealG is <strong>the</strong> same for a class <strong>of</strong> composite extensi<strong>on</strong>s.C<strong>on</strong>versely, if two composite extensi<strong>on</strong>s corresp<strong>on</strong>d to <strong>the</strong> sameprime ideal <strong>of</strong> ¯K, it can be seen that <strong>the</strong>y are equivalent.We have, now, <strong>on</strong>ly to prove <strong>the</strong> existence <strong>of</strong> a composite extensi<strong>on</strong>associated with a prime ideal <strong>of</strong> ¯K. Let G be a prime ideal <strong>of</strong> ¯K andG ¯K. Since ¯K has a unit element, a prime ideal G ¯K always exists.Let A be <strong>the</strong> integrity domainA= ¯K/G


2. Composite fields 95109Letϕbe <strong>the</strong> natural homomorphism <strong>of</strong> ¯K <strong>on</strong> A. Then K ϕ 1 and Kϕ 2are subfields <strong>of</strong> A. Since ¯K is generated by elements <strong>of</strong> <strong>the</strong> type x x○y,K ϕ 1 and Kϕ 2 , are different from zero. Clearly A=R(Kϕ 1 ∪ Kϕ 2). Hence<strong>the</strong> quotient field <strong>of</strong> A is a composite extensi<strong>on</strong>. Hence for every primeideal G ¯K, <strong>the</strong>re exists a composite extensi<strong>on</strong>. We have hence proved<strong>the</strong>Theorem 4. The classes <strong>of</strong> composite extensi<strong>on</strong>s <strong>of</strong> K 1 and K 2 standin (1,1) corresp<strong>on</strong>dence with <strong>the</strong> prime ideal G ¯K <strong>of</strong> <strong>the</strong> Kr<strong>on</strong>eckerproduct ¯K <strong>of</strong> K 1 and K 2 over k.K τ 2C<strong>on</strong>sider now <strong>the</strong> special case where K 2 /k is algebraic. Let k(K1 σ∪) be a composite extensi<strong>on</strong>. Thenk(K σ 1 ∪ Kτ 2 )⊃R(Kσ 1 ∪ Kτ 2 )⊃Kσ 1 .Since every element <strong>of</strong> K 2 is algebraic over k, k(K1 σ∪Kτ 2) is algebraicover K1 σ. This means that R(Kσ 1 ∪ Kτ 2) is a field and so coincides withk(K1 σ∪ Kτ 2). ThusTheorem 5. If K/k is algebraic, <strong>the</strong>n every prime ideal G ¯K <strong>of</strong> K isa maximal ideal.Let K/k be an algebraic extensi<strong>on</strong> and L/k any extensi<strong>on</strong>. The Kr<strong>on</strong>eckerproduct ¯K= K x○ k L is <strong>the</strong> extended algebra (K) L <strong>of</strong> K by extendingk to L. ¯K is thus an algebra (commutative) over L. If G is a prime<strong>of</strong> ¯K, <strong>the</strong>n by above, it is a maximal ideal and ¯K/G gives a compositeextensi<strong>on</strong>. Since ¯K is an algebra over L we may regard ¯K/G as anextensi<strong>on</strong> field <strong>of</strong> L.Let now G 1 ,...,G m be m distinct maximal ideals <strong>of</strong> ¯K, n<strong>on</strong>e <strong>of</strong> <strong>the</strong>m 110equal to ¯K. Let L i = ¯K/G i be a composite extensi<strong>on</strong>. Form <strong>the</strong> directsum algebra ∑as a commutative algebra over L. We shall now proveiL i


96 5. Composite extensi<strong>on</strong>sTheorem 6.∑i¯K/G i ≃ ¯K/ ⋂ iG iPro<strong>of</strong>. We shall c<strong>on</strong>struct a homomorphismϕ <strong>of</strong> ¯K <strong>on</strong> ∑ i L i and showthat <strong>the</strong> kernel is ⋂ G i . □iIn order to do this let us denote byσ i <strong>the</strong> natural homomorphism <strong>of</strong>¯K <strong>on</strong> L i (this is identity <strong>on</strong> L), i=1,...,m. If x∈ ¯K, <strong>the</strong>nσ i x∈L i .Defineϕ<strong>on</strong> ¯K by ∑ϕ(x)= σ i x.That this is a homomorphism <strong>on</strong> ¯K is easily seen; for, if x, y∈ ¯K∑ ∑ ∑ϕ(x+y)= σ i (x+y)= σ i x+ σ i y=ϕx+ϕy.i∑ ∑ ∑ ∑ϕ(xy)= σ i (xy)= (σ i x)(σ i y)=( σ i x)( σ i y)=ϕxϕy.iiiiiii111The kernel <strong>of</strong> <strong>the</strong> homomorphism is set <strong>of</strong> x such thatϕx=o. Thusσ i x=oso that x∈G i for all i. Hence x∈∩ i G i . But every y∈∩ i G i has<strong>the</strong> propertyϕy=o. Thus <strong>the</strong> kernel is precisely ⋂ G i .iWe have <strong>on</strong>ly to prove that <strong>the</strong> homomorphism is <strong>on</strong>to.To this end, notice that for each i, i=1,...,m, <strong>the</strong>re is a b i ∈ ¯K with⎧⎪ ⎨∈ G j , jib i⎪ ⎩ G iFor, since G i and G j , ji are distinct, <strong>the</strong>re is a j ∈ G j which isnot in G i . Put b i = ∏ a j . Then b i satisfies above c<strong>on</strong>diti<strong>on</strong>s since G i isi jmaximal.Let now ∑ c i be an element in <strong>the</strong> direct sum, c i ∈ L i . By definiti<strong>on</strong>i<strong>of</strong> b i⎧⎪ ⎨= o if jiσ j b i⎪ ⎩ o if j=i


3. Applicati<strong>on</strong>s 97Since L i is a field, <strong>the</strong>re exists x i o in L i such thatx i σ i b i = o i .σ i being a homomorphism <strong>of</strong> ¯K <strong>on</strong> L i , let y i ∈ ¯K withσ i y i = x i . Put∑c= b i y iThen∑∑∑ϕ(c)= σ j (b i y i )=ijiwhich proves <strong>the</strong> <strong>the</strong>orem completely.Suppose in particular K/k is finite. Then K L has over L <strong>the</strong> degree(K : k). Since, for a maximal ideal, G ¯K, ¯K/G has over L at most <strong>the</strong>degree (K : k), we getic i1≤(¯K/G i : L)≤(K : k)i=1,...,m.This means that ¯K has <strong>on</strong>ly finitely many maximal ideals and∑¯K/ ⋂ G≃ ¯K/GGG<strong>the</strong> summati<strong>on</strong>s running through all maximal ideals <strong>of</strong> ¯K. 112Thus K and L have over k <strong>on</strong>ly finitely many inequivalent compositeextensi<strong>on</strong>s.3 Applicati<strong>on</strong>sThroughout this secti<strong>on</strong>Ω will denote an algebraically closed extensi<strong>on</strong><strong>of</strong> k and K and L will be two intermediary fields betweenΩ and k. Acomposite <strong>of</strong> K and L inΩwill be <strong>the</strong> field generated over k by K andL. It will be denoted by KL.Let ¯K be <strong>the</strong> Kr<strong>on</strong>ecker product over k <strong>of</strong> K and L. There is, <strong>the</strong>n, ahomomorphismϕ<strong>of</strong> ¯K <strong>on</strong> R(K∪ L) given byϕ ( ∑a xy (x x○y) ) ∑= a xy x·y.


98 5. Composite extensi<strong>on</strong>sSuppose that this homomorphism is an isomorphism <strong>of</strong> ¯K <strong>on</strong>to R(K∪L). This means that∑ ∑a xy (x x○y)=o⇐⇒ a xy x·y=oor that every set <strong>of</strong> elements <strong>of</strong> K which are linearly independent over kare also so over L. Incidentally, this givesK∩ L=k.C<strong>on</strong>versely, suppose K and L have <strong>the</strong> property that every set <strong>of</strong>elements <strong>of</strong> K which are linearly independent over k are also so overL. Then <strong>the</strong> mappingϕis an isomorphism <strong>of</strong> ¯K <strong>on</strong> R(K∪L). For, if∑axy xy=owe express x and y in terms <strong>of</strong> a base <strong>of</strong> L/k and a base <strong>of</strong>113K/k giving∑b αβ x α y β = oBut this means all b αβ are zero. Thereforeϕis an isomorphism.It shows that every set <strong>of</strong> elements <strong>of</strong> L which are linearly independentover k are also so over K.We call two such fields L and K linearly disjoint over k. Note thatL∩ K= k. We deduce immediately1) If L and K are are linearly disjoint over k <strong>the</strong>n any intermediaryfield <strong>of</strong> K/k and any intermediary field <strong>of</strong> L/k are also linearly disjoint.Suppose now that K/k is algebraic. Then every prime ideals <strong>of</strong> ¯K ismaximal. Let, in additi<strong>on</strong>, K and L be linearly disjoint over k. Since ¯Kis isomorphic to R(K∪ L), it follows that (o) is a maximal ideal. Hence¯K is a field. Thus2) If K/k is algebraic and K and L are linearly disjoint over k, <strong>the</strong>reexists but <strong>on</strong>e class <strong>of</strong> composite extensi<strong>on</strong>s <strong>of</strong> K and L over k.Let K/k be a finite extensi<strong>on</strong>. Then, for some maximal ideal G , ¯K/Gis isomorphic to KL. Since ¯K/G may be c<strong>on</strong>sidered as an extensi<strong>on</strong> field<strong>of</strong> L, we get ( ¯K/G : L)≤(K : k), that is(KL : L)≤(K : k)Clearly if G = (o), equality exists, and <strong>the</strong>n K and L are linearlydisjoint over k. The c<strong>on</strong>verse is true, by above c<strong>on</strong>siderati<strong>on</strong>s. Hence,in particular,


3. Applicati<strong>on</strong>s 993) If (K : k)=m and (L : k)=n, <strong>the</strong>n(KL : k)≤mn;equality occurs if and <strong>on</strong>ly if K and L are linearly disjoint over k. 114We now c<strong>on</strong>sider <strong>the</strong> important case, K/k galois. By <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong>sabove, it follows that KL/k is algebraic over L. SinceΩis aalgebraically closed, it c<strong>on</strong>tains <strong>the</strong> algebraic closure <strong>of</strong> KL. Letσbean isomorphism <strong>of</strong> KL inΩ, which is identity <strong>on</strong> L. Its restricti<strong>on</strong> to Kis an isomorphism <strong>of</strong> K inΩ. ButΩc<strong>on</strong>tains <strong>the</strong> algebraic closure <strong>of</strong>K and henceσK=K. Since KL is generated by K and L, it followsthatσKL⊂KL. Hence KL/L is a galois extensi<strong>on</strong>. (KL/L is alreadyseparable since elements <strong>of</strong> K are separable over k).We now prove <strong>the</strong>ΩKL K L K∩ LkTheorem 7. If K/k is a galois extensi<strong>on</strong> and L, any extensi<strong>on</strong> <strong>of</strong> k <strong>the</strong>nG(KL/L)≃G(K/K∩ L)Pro<strong>of</strong>. In <strong>the</strong> first place, we shall prove that K and L are linearly disjointover K∩ L. For this, it is <strong>the</strong>refore enough to prove that every finite sety 1 ,...,y m <strong>of</strong> elements <strong>of</strong> L which are linearly independent over K∩ L,are also so over K.□x iIf possible, let y 1 ,...,y m be dependent over K so that ∑ x i y i = o,∈ K. Let us assume that y 1 ,...,y m are dependent over K but no


100 5. Composite extensi<strong>on</strong>sproper subset <strong>of</strong> <strong>the</strong>m is linearly dependent over K. Therefore, all <strong>the</strong> x iare different from zero.We may assume x 1 = 1. Letσbe an element <strong>of</strong> G(KL/L). Then 115∑ ∑0=σ( x i y i )= σx i·σy iBy subtracti<strong>on</strong> we get, sinceσ1=1,∑0= (x i −σx i )y iii1This means that x i =σx i , i=2,...,m. But, sinceσis arbitrary inG(KL/L), it follows that x i ∈ L. But x i ∈ K. Thus y 1 ,...,y m are linearlydependent <strong>on</strong> K∩L which is a c<strong>on</strong>tradicti<strong>on</strong>. Hence K and L are linearlydisjoint over K∩ L.Therefore, KL is isomorphic to <strong>the</strong> Kr<strong>on</strong>ecker product <strong>of</strong> K and Lover K∩ L.Supposeσis any L-automorphism <strong>of</strong> KL. Its restricti<strong>on</strong> to K isan automorphism <strong>of</strong> K and leaves K∩ L fixed. C<strong>on</strong>sider <strong>the</strong> mappingσ→ ¯σ <strong>of</strong> G(KL/L) into G(K/K∩ L). This is clearly a homomorphism.If ¯σ is identity element <strong>of</strong> G(K/K∩L), <strong>the</strong>nσis identity <strong>on</strong> K. Since it isalready identity <strong>on</strong> L, it is identity <strong>on</strong> KL. Thus, G(KL/L) is isomorphicto a subgroup <strong>of</strong> G(K/K∩ L). To see that this isomorphism is <strong>on</strong>toG(K/K∩ L), letτεG(K/K∩ L). Any element <strong>of</strong> KL may be written(since K and L are linearly disjoint) in <strong>the</strong> from,∑x α y ααwhere x α are linearly independent elements <strong>of</strong> K over K∩ L and y α ∈ L.This expressi<strong>on</strong> is unique. Extendτto ¯τ in G(KL/L) by defining⎛∑ ∑¯τ ⎜⎝ x α y α⎞⎟⎠ = y α τ(x α ).ααi116This is well defined; for, if ∑ α y α τ(x α ) = 0, <strong>the</strong>n, since{x α } arelinearly independent over K∩ L,{τ(x α )} are also linearly independent


3. Applicati<strong>on</strong>s 101over K∩ L and since K and L are linearly disjoint over K∩ L, all y α arezero. Thus ¯τ is an automorphism <strong>of</strong> KL/L.Our <strong>the</strong>orem is thus proved.In particular, if K and L are both galois extensi<strong>on</strong>s <strong>of</strong> k and K∩L=k<strong>the</strong>n, by above,G(KL/L)≃G(K/k)G(KL/K)≃G(L/k)Also, since KL/k is algebraic, letσbe an isomorphism (trivial <strong>on</strong>k) <strong>of</strong> KL inΩ. Since its restricti<strong>on</strong>s <strong>on</strong> K and L are auto morphisms, itfollows that KL/k is a galois extensi<strong>on</strong>. We now proveTheorem 8. G(KL/k) is isomorphic to <strong>the</strong> direct product <strong>of</strong> G(K/k) andG(L/k).Pro<strong>of</strong>. G(K/k) and G(KL/L) are isomorphic and for every elementσ inG(K/k), by <strong>the</strong> previous <strong>the</strong>orem, we have <strong>the</strong> extensi<strong>on</strong> ¯σ, an element<strong>of</strong> G(KL/L) determined uniquely byσ. Similarly, ifτ ∈ G(L/k), ¯τdenotes its unique extensi<strong>on</strong> into an element <strong>of</strong> G(KL/k). KKLLk□We now c<strong>on</strong>sider <strong>the</strong> mapping(σ,τ)→ ¯σ¯τ<strong>of</strong> <strong>the</strong> direct product G(K/k)·G(L/k) into G(KL/k).Supposeλis an element <strong>of</strong> G(KL/k). Its restricti<strong>on</strong>λto K is an 117element <strong>of</strong> G(K/k). C<strong>on</strong>siderλ¯1 . Now ¯λ −1 λ is identity <strong>on</strong> K. By <strong>the</strong>1


102 5. Composite extensi<strong>on</strong>sisomorphism <strong>of</strong> G(KL/k) and G(L/k), this defines a unique elementµ 1<strong>of</strong> G(L/k). Henceλ= ¯λ 1 ¯µ 1 .Thus <strong>the</strong> mapping above is a mapping <strong>of</strong> <strong>the</strong> direct product G(K/k)·G(L/k) <strong>on</strong>to G(KL/k). We have <strong>on</strong>ly to prove that is a homomorphismto obtain <strong>the</strong> <strong>the</strong>orem. It is clearly seen thatλis identity if and <strong>on</strong>ly ifλ 1 andµ 1 are identity.Letσ,σ ′ be two elements <strong>of</strong> G(K/k) andτ,τ ′ in G(L/k). Letλandµ be <strong>the</strong> unique elements in G(KL/k) defined byλ= ¯σ¯τ, µ= ¯σ ′ , ¯τ ′ .C<strong>on</strong>sider to elementλµ. Its restricti<strong>on</strong> to K isσσ ′ and its restricti<strong>on</strong>to L isττ ′ . Thusλµ=σσ ′·ττ ′which proves that <strong>the</strong> mapping is a homomorphism.The <strong>the</strong>orem is now completely proved.


Chapter 6Special algebraic extensi<strong>on</strong>s1 Roots <strong>of</strong> unity118C<strong>on</strong>sider <strong>the</strong> polynomial x m − 1 in k[k], where k is a field. Let k havecharacteristic p. If p=o, <strong>the</strong>n x m − 1 is a separable polynomial overk, whereas if po, <strong>the</strong> derivative <strong>of</strong> x m − 1 is mx m−1 which is zero,if p divides m. If p∤m, <strong>the</strong>n x m − 1 is a separable polynomial overk. Therefore, let m>o be an arbitrary positive integer, if k has characteristiczero and m, an integer prime to p, if k has characteristic p0.Then x m − 1 is a separable polynomial over k and it has m roots inΩ, analgebraic closure <strong>of</strong> k. We call <strong>the</strong>se m roots, <strong>the</strong> mth roots <strong>of</strong> unity.Ifρandτare mth roots <strong>of</strong> unity <strong>the</strong>nρ m = 1 = τ m . Therefore(ρτ) m =ρ m τ m = 1, (ρ −1 ) m = (ρ m ) −1 = 1 which shows that <strong>the</strong> mth roots<strong>of</strong> unity from a group. This group G m is abelian and <strong>of</strong> order m.Let now d/m. Any root <strong>of</strong> x d − 1 inΩis also a root <strong>of</strong> x m − 1.Ifρisan mth root <strong>of</strong> unity such thatρ d = 1, <strong>the</strong>nρis a root <strong>of</strong> x d − 1. Sincex d − 1 has exactly d roots inΩ, it follows that G m has <strong>the</strong> property thatfor every divisor d <strong>of</strong> m, <strong>the</strong> order <strong>of</strong> G m , <strong>the</strong>re exist exactly d elements<strong>of</strong> G m whose orders divide d. Such a group G m is clearly a cyclic group.HenceThe mth roots <strong>of</strong> unity form a cyclic group G m <strong>of</strong> order m. 119There exists, <strong>the</strong>refore, a generatorρ <strong>of</strong> G m .ρ is called a primitivemth root <strong>of</strong> unity. Clearly, <strong>the</strong> number <strong>of</strong> primitive mth roots <strong>of</strong> unity is103


104 6. Special algebraic extensi<strong>on</strong>sϕ(m). All <strong>the</strong> primitive mth roots <strong>of</strong> unity are given byρ a with 1≤a


2. Cyclotomic extensi<strong>on</strong>s 105Any x in R may be written as a µ nwhere a is an integer. Define <strong>the</strong>mappingσas followsσx=ρ a n ,so thatσis a functi<strong>on</strong> <strong>on</strong> R with values in H. The mapping is welldefined: for if x= bµ m, <strong>the</strong>nµ m a=µ n b. Suppose m>n; <strong>the</strong>nb=aν n+1···ν mso thatρ b m =ρaν n+1···ν mm =ρ a n by choice <strong>of</strong>ρ n. We now verify thatσis ahomomorphism <strong>of</strong> R <strong>on</strong> H. If x a , y= b are in R and m≥n, <strong>the</strong>nµ n µ mσ(x+y)=σ( aν n+1···ν m + b)=ρ aν n+1···ν m +bmµ mwhich equalsρ a n·ρ b m=σx·σy. Also, since any root <strong>of</strong> unity is in someH n , it is <strong>of</strong> <strong>the</strong> formρ a n so that, for x= a µ n,σx=ρ a n. We have, <strong>the</strong>refore,to determine <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> homomorphism. It is <strong>the</strong> set <strong>of</strong> x in R suchthatσx=1.If x= a µ n, <strong>the</strong>n 1=σx=ρ a n so that|µ n |a and so x is an integer. The 121c<strong>on</strong>verse being trivial, it follows that <strong>the</strong> kernel is precisely <strong>the</strong> additivegroup <strong>of</strong> integers and our <strong>the</strong>orem is established.2 Cyclotomic extensi<strong>on</strong>sLet k be a field and x m − 1 a separable polynomial in k[x]. This implies,in case k has characteristic p o, that p does not divide m. Letρbe a primitive mth root <strong>of</strong> unity inΩ, an algebraic closure <strong>of</strong> k. ThenK = k(ρ) is <strong>the</strong> splitting field <strong>of</strong> x m − 1 inΩ. Therefore, K/k is aseparable, normal extensi<strong>on</strong>. Let G be its galois group. Ifσ∈G,σisdetermined by its effect <strong>on</strong>ρ. Sinceρis a primitive mth root <strong>of</strong> unity, soisσρ. For,(σρ) m =σ(ρ m )=1;


106 6. Special algebraic extensi<strong>on</strong>ssoσρ is a root <strong>of</strong> unity. Also, if (σρ) t = 1, <strong>the</strong>nσ(ρ t )=1. Sinceσisan automorphism, it follows thatρ t = 1 or m/t. Thusσρ=ρ ν , (ν, m)=1.Ifσ,τare in G, letσρ=ρ ν , (ν, m)=1 andτρ=ρ µ (µ, m)=1.Thenστ(ρ)=σ(τρ)=σ(ρ µ )=ρ µνwhich shows thatστ=τσ or that G is abelian.C<strong>on</strong>sider now <strong>the</strong> mappingg :σ→ν122whereσρ=ρ ν , (ν, m)=1. This is clearly a homomorphism <strong>of</strong> G into<strong>the</strong> multiplicative group prime residue classes mod m. The kernel <strong>of</strong><strong>the</strong> mapping g is set <strong>of</strong>σwithσρ=ρ.But <strong>the</strong>nσt=t for all t ∈ K, so that by, galois <strong>the</strong>ory,σ is <strong>the</strong>identity.Let us call extensi<strong>on</strong> K= k(ρ) a cyclotomic extensi<strong>on</strong> <strong>of</strong> k. We <strong>the</strong>nhave proved <strong>the</strong>Theorem 2. The Cyclotomic extensi<strong>on</strong> k(ρ)/k is an abelian extensi<strong>on</strong>whose galois is isomorphic to a subgroup <strong>of</strong> <strong>the</strong> group <strong>of</strong> prime residueclasses mod m whereρ m = 1 andρis a primitive mth root <strong>of</strong> unity.LetΓbe <strong>the</strong> prime field c<strong>on</strong>tained in k. ThenΓ(ρ) is a subfield <strong>of</strong>k(ρ)=K. Let G be <strong>the</strong> galois group K/k.K= k(ρ)kΓ(ρ)ΓLetσbe in G and ¯σ <strong>the</strong> restricti<strong>on</strong> <strong>of</strong>σtoΓ(ρ). Sinceσis identity<strong>on</strong> k andσρ is again a primitive root <strong>of</strong> unity, it follows that ¯σ is an


2. Cyclotomic extensi<strong>on</strong>s 107automorphism <strong>of</strong>Γ(ρ)/Γ. It is easy to see that <strong>the</strong> mappingσ→ ¯σ is anisomorphism <strong>of</strong> G into <strong>the</strong> galois group <strong>of</strong>Γ(ρ)/Γ.We shall <strong>the</strong>refore c<strong>on</strong>fine ourselves to studying <strong>the</strong> galois group <strong>of</strong>Γ(ρ)/Γ.First, letΓbe <strong>the</strong> rati<strong>on</strong>al number field andρaprimitive mth root <strong>of</strong>unity. LetΓ(ρ) be <strong>the</strong> cyclotomic extensi<strong>on</strong>. Let f (x) be <strong>the</strong> primitiveintegral polynomial which is irreducible inΓ[x] an whichρsatisfies.Then f (x) is a m<strong>on</strong>ic polynomial. For, since f (x) divides x m−1 ,x m − 1= f (x)ψ(x).ψ(x) has rati<strong>on</strong>al coefficients and soψ(x)= a b ψ 1(x) whereψ 1 (x) is a 123primitive integral polynomial and a and b are integers. From <strong>the</strong> <strong>the</strong><strong>the</strong>orem <strong>of</strong> Gauss <strong>on</strong> primitive polynomials it follows that f (x) is m<strong>on</strong>ic.Let p be a prime not dividing m. Letϕ(x) be <strong>the</strong> minimum polynomial(which is m<strong>on</strong>ic and integral) <strong>of</strong>ρ p . We assert that f (x)=ϕ(x).For, if not, f (x) andϕ(x) are coprime and sox m − 1= f (x)·ϕ(x)·h(x).for some m<strong>on</strong>ic integral polynomials h(x).C<strong>on</strong>sider <strong>the</strong> polynomialϕ(x p ). It hasϕas a root and so f (x) dividesϕ(x p ). Henceϕ(x p )= f (x)g(x),g(x), again, a m<strong>on</strong>ic and integral polynomial. C<strong>on</strong>sidering <strong>the</strong> abovemod p we getf (x)g(x)≡ϕ(x p )≡(ϕ(x)) p (mod p)so that f (x) divides (ϕ(x)) p ( mod p). If t(x) is a comm<strong>on</strong> factor <strong>of</strong>f (x) and (ϕ(p)( mod p) <strong>the</strong>n (t(x)) 2 divides x m − 1 mod p, which isimpossible, since p∤m and x m − 1 does not have x as a factor. Thus ourassumpti<strong>on</strong> f (x)ϕ(x) is false.This means that, for every prime p ∤ m,ρ p is a root <strong>of</strong> f (x). If(ν, m)=1, <strong>the</strong>nν= p 1 p 2··· p 1 where p 1 ,..., p 1 are primes not dividing


108 6. Special algebraic extensi<strong>on</strong>s124m. By using <strong>the</strong> above fact successively, we see that, for everyν, (ν, m)=1,ρ ν is a root <strong>of</strong> f (x). Therefore∏ρ m (x)= (x−ρ ν ) (1)(ν,m)=1divides f (x). Butϕ m (x) is fixed under all automorphisms <strong>of</strong>Γ(ρ)/ Γ sothat f (x)=ϕ m (x). We have proved <strong>the</strong>Theorem 3. IfΓis <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers andρis a primitive mthroot <strong>of</strong> unity, <strong>the</strong>n <strong>the</strong> galois group <strong>of</strong> <strong>the</strong> cyclotomic extensi<strong>on</strong>Γ(ρ)/Γis isomorphic to <strong>the</strong> group <strong>of</strong> prime residue classes mod m. The irreduciblepolynomialϕ m (x) <strong>of</strong>ρis given by (1).ϕ m (x) is called <strong>the</strong> cyclotomic polynomial <strong>of</strong> order m. Its degree isϕ(m). In order to be able to obtain an expressi<strong>on</strong> forϕ m (x) in terms <strong>of</strong>polynomials overΓ, we proceed thus.We introduce <strong>the</strong> Mobius functi<strong>on</strong> defined as follows:It is a functi<strong>on</strong>µ(n) defined for all positive integers n such that1) µ(1)=12) µ(p 1··· p t )=(−1) t where p 1 ,..., p t are distinct primes.3) µ(m)=oif p 2 /m, p being a prime.From this, <strong>on</strong>e deduces easily4) µ(m)·µ(n)=µ(mn) for (m, n)=1.For, <strong>on</strong>e has to verify it <strong>on</strong>ly for m= p 1··· p t , n=q 1···q 1 wherep ′ s and q ′ s are all distinct primes. Thenµ(m)=(−1) t ,µ(n)=(−1) 1andµ(mn)=(−1) t+1 .We now prove <strong>the</strong> following simple formula5)∑µ(d)=oif m>1d|m= 1 if m=1125<strong>the</strong> summati<strong>on</strong> running through all divisors d <strong>of</strong> m.


2. Cyclotomic extensi<strong>on</strong>s 109If m = 1, <strong>the</strong> formula reduces to (1). So, let m > 1. Let m =p a 11 ··· pa tt be <strong>the</strong> prime factor decompositi<strong>on</strong> <strong>of</strong> m. Any divisor d <strong>of</strong> mis <strong>of</strong> <strong>the</strong> form p b 11 ··· pb tt where o≤b i ≤ a i , i=1,...,t. In view <strong>of</strong> (3),it is enough to c<strong>on</strong>sider divisors d <strong>of</strong> m for which o≤b i ≤ 1. In thatcase,∑ t∑µ(d)= ( t i )(−1)i = o.d|mi=oLet now f (n) be a functi<strong>on</strong> defined <strong>on</strong> positive integers, with valuesin a multiplicative abelian group. Let g(n) also be such a functi<strong>on</strong>. We<strong>the</strong>n have <strong>the</strong> Möbius inversi<strong>on</strong> formula,∏f (d)=g(n)⇐⇒ f (n)= ∏ d|n(g(d)) µ( n d )d|nSuppose ∏ f (d)=g(n). Thend|n∏ ∏(∏µ(d).(g(d)) µ( n g ) = f (d 1 ))d|nd|nd i | n dChanging <strong>the</strong> order products, we get∏( f (d1 ) )∑ µ(d);d 1 |n d| d n1using formula (5), we obtain <strong>the</strong> inversi<strong>on</strong> formula. The c<strong>on</strong>verse followsin <strong>the</strong> same way.C<strong>on</strong>sider now <strong>the</strong> integers mod m. Divide <strong>the</strong>m into classes in <strong>the</strong>following manner. Two integers a, b are in <strong>the</strong> same class if and <strong>on</strong>ly if(a, m)=(b, m).Let d/m and C d , <strong>the</strong> class <strong>of</strong> integers a ( mod m) with (a, m)=d. 126Then a is <strong>of</strong> <strong>the</strong> form dλ where (λ, m d )=1. Thus C d hasϕ( m d ) elements.The classes C d , for d|m, exhaust <strong>the</strong> set <strong>of</strong> integersprimitive mth root <strong>of</strong> unity, <strong>the</strong>nm∏x m − 1= (x−ρ t ).t=1mod m. Ifρis a


110 6. Special algebraic extensi<strong>on</strong>sIn view <strong>of</strong> <strong>the</strong> above remarks, we can write∏(∏)x m − 1= (x−ρ t ).t∈C dd|mBut if t∈C d ,ρ t =ρ dλ , (λ, m d )=1 and soρt is a primitive m d<strong>of</strong> unity. Using <strong>the</strong> definiti<strong>on</strong> <strong>of</strong>ϕ m (x), if follows that∏x m − 1= ϕ d (x)d|mth rootBy <strong>the</strong> inversi<strong>on</strong> formula we getϕ m (x)= ∏ d|m(x d − 1) µ( m d )Comparis<strong>on</strong> <strong>of</strong> degrees <strong>on</strong> both sides gives <strong>the</strong> formula∑ϕ(m)= dµ( m ∑d )=md|md|mµ(d)d .We may computeϕ m (x) for a few special values <strong>of</strong> m. Let m= p, aprime number. Thenϕ p (x) xp − 1x−1 = xp − 1+···+ x+1.If m= pq, <strong>the</strong> product <strong>of</strong> two distinct primes, <strong>the</strong>nϕ pq (x)= (xpq − 1)(x−1)(x p − 1)(x q − 1) .127Let us now c<strong>on</strong>sider <strong>the</strong> case whenΓis <strong>the</strong> prime filed <strong>of</strong> p elements.Obviously,Γ(ρ)/Γ is a cyclic extensi<strong>on</strong>. If we define <strong>the</strong> cyclotomicpolynomial as before, it is no l<strong>on</strong>ger irreducible overΓ[x]. For instance,let p=5and m=12. Thenϕ 12 (x)= (x12 − 1)(x 2 − 1)(x 6 − 1)(x 4 − 1) = x4 − x 2 + 1.


2. Cyclotomic extensi<strong>on</strong>s 111Alsox 4 − x 2 + 1=(x 2 − 2x−1)(x 2 + 2x−1) (mod 5).Therefore,Γ(ρ)/Γ has degree


112 6. Special algebraic extensi<strong>on</strong>sTheorem 5. A divisi<strong>on</strong> ring with a finite number <strong>of</strong> elements is a filed.Pro<strong>of</strong>. Let D be <strong>the</strong> divisi<strong>on</strong> ring and k its centre. Then k is a field. Dbeing finite, let k have q elements. If D is <strong>of</strong> rank n over k, <strong>the</strong>n D hasq n elements. We shall prove that n=1. □Let D 1 be a subalgebra <strong>of</strong> D over k. Let D 1 have rank m over k.Then D 1 has q m elements. But D ∗ 1 is a sub group <strong>of</strong> D∗ so that q m − 1divides q n − 1. This means that m|n. For, if n=tm+µ, o≤µ(q−1) ϕ(n)dx


3. Cohomology 1133 CohomologyLet G be a finite group and A an abelian group <strong>on</strong> which G acts as agroup <strong>of</strong> left operators. Let A be a multiplicative group. We denote elements<strong>of</strong> G byσ,τ,ρ,..., and elements <strong>of</strong> A by a, b, c,.... We denotesby a σ <strong>the</strong> effect <strong>of</strong>σ<strong>on</strong> a. Then(ab) σ = a σ b σ(a τ ) σ = a στ 130Let 1 be <strong>the</strong> unit element <strong>of</strong> A. Denote by G n , n≥1 <strong>the</strong> Cartesianproduct <strong>of</strong> G with itself n times.A functi<strong>on</strong> <strong>on</strong> G n with values in A is said to be an n dimensi<strong>on</strong>alCochain or, simply, an n cochain. This functi<strong>on</strong> f (x 1 ,..., x n ) has valuesin A. We denote by aσ 1 ,...,σ n <strong>the</strong> element in A which is <strong>the</strong> valuetaken by <strong>the</strong> n cochain for valuesσ 1 ,...,σ n <strong>of</strong> its variables. We denote<strong>the</strong> functi<strong>on</strong> also, by aσ 1 ,...,σ n . If aσ 1 ,...,σ n and bσ 1 ,...,σ n aretwo functi<strong>on</strong>s, we define <strong>the</strong>ir product bySimilarlyo σ1 ,...,σ n= a σ1 ,...,σ n· b σ1 ,...,σ n.o σ1 ,...,σ n= (a σ1 ,...,σ n) −1is called <strong>the</strong> inverse <strong>of</strong> a σ1 ,...,σ n. With <strong>the</strong>se definiti<strong>on</strong>s, <strong>the</strong> n cochainsform a group C n (G, A) or simply C n .We define C o (G, A), <strong>the</strong> zero dimensi<strong>on</strong>al cochains, to be <strong>the</strong> group<strong>of</strong> functi<strong>on</strong>s with c<strong>on</strong>stant values, that is functi<strong>on</strong>s a σ <strong>on</strong> G such thata σ = ais <strong>the</strong> same for allσ∈G. It is <strong>the</strong>n clear that C o is isomorphic to A.We now introduce a coboundary operator∂ in <strong>the</strong> following manner.∂(=∂ n ) is a homomorphism <strong>of</strong> C n into C n+1 defined bya σ1 ,...,σ n+1=∂a σ1 ,...,σ n


114 6. Special algebraic extensi<strong>on</strong>s= a σ 1σ 2 ,...,σ n+1n∏(a σ1 ,...,σ i−1 ,σ i σ i+1 ,...,σ n+1) (−1)i (a σ1 ,...,σ n) (−1)n+1 .n=1For n ≥ o, we define <strong>the</strong> groups Z n (G, A) and B n+1 (G, A) in<strong>the</strong> following manner. Z n (G, A) is <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> homomorphismC n ∂n−→ C n+1 and B n+1 (G, A) is <strong>the</strong> homomorphic image. The elements<strong>of</strong> Z n (G, A) are called n dimensi<strong>on</strong>al cocycles or n-cocycles and <strong>the</strong>elements <strong>of</strong> B n+1 (G, A) are n+1-dimensi<strong>on</strong>al coboundaries or n+1coboundaries. The homomorphism∂has <strong>the</strong> property131∂∂= identity (2)which proves that B n+1 (G, A) is a subgroup <strong>of</strong> Z n+1 (G, A) and we canform for every n>o <strong>the</strong> factor group H n (G, A) <strong>the</strong> n-dimensi<strong>on</strong>al cohomologygroup. We verify (2) <strong>on</strong>ly in case n=o and 1 which are <strong>the</strong><strong>on</strong>es <strong>of</strong> use in our work.The coboundary <strong>of</strong> a zero cochain is a <strong>on</strong>e cochain given byIts coboundary, by definiti<strong>on</strong> is∂a=a σ = aσ a . (3)132∂∂a=a σ,τ = a σ· a σ τa στ.Substituting from (3), we get a σ,τ = 1 which verifies (2) for n=o.We define <strong>the</strong> zero coboundary, that is <strong>the</strong> elements in B o (G, A), tobe <strong>the</strong> functi<strong>on</strong> with value 1 <strong>on</strong> allσ∈G. Thus B o (G, A) c<strong>on</strong>sists <strong>on</strong>ly<strong>of</strong> <strong>the</strong> identity. An element in Z o (G, A) will be <strong>the</strong> c<strong>on</strong>stant functi<strong>on</strong> awitha σ = afor allσ. HenceH o (G, A) is isomorphic with <strong>the</strong> set <strong>of</strong> a∈A with <strong>the</strong> property a σ =a for allσ∈G.A <strong>on</strong>e dimensi<strong>on</strong>al cocycle is a functi<strong>on</strong> a σ for which∂a σ = 1. But∂a σ = a σ· a σ τa στ.


3. Cohomology 115Therefore, <strong>the</strong> elements in Z ′ (G, A) are functi<strong>on</strong>s a σ witha σ a σ τ = a στ.A <strong>on</strong>e coboundary is, already, a functi<strong>on</strong> a σ <strong>of</strong> <strong>the</strong> form a σ /a. It is,certainly, a <strong>on</strong>e cocycle.For our purposes, we shall need also <strong>the</strong> additive cohomology, instead<strong>of</strong> <strong>the</strong> multiplicative cohomology above. We regard now A + asan additive, instead <strong>of</strong> a multiplicative, group. Then C n (G, A + ) is anadditive abelian group. We define <strong>the</strong> coboundary operator asa σ1 ,...,σ n+1=∂a σ1 ,...,σ n= a σ 1σ 2 ,...,σ n+1+n∑(−1) i a σi ,...,σ i−1 ,σ i ,τσ i+1 ,...,σ n+1+ (−1) n+1 a σi ,...,σ n.i=1As before, a zero cochain is a c<strong>on</strong>stant functi<strong>on</strong> <strong>on</strong> G and its coboundarya σ is∂a=a σ = a σ − a.A <strong>on</strong>e cochain a σ is a cocycle ifwhich is <strong>the</strong> same thing as∂a σ = 0a σ + a σ τ = a στ.Exactly as before, we see that H o (G, A), <strong>the</strong> zero dimensi<strong>on</strong>al additivecohomology group is isomorphic to <strong>the</strong> set <strong>of</strong> elements a in A + with 133a σ = a for allσ.We now c<strong>on</strong>sider <strong>the</strong> case when G is a cyclic group. Letσbe a generator<strong>of</strong> G so that 1,σ,σ 2 ,...,σ n−1 are all <strong>the</strong> elements <strong>of</strong> G. Takingmultiplicative cohomology, if a σ is a <strong>on</strong>e cocycle, <strong>the</strong>na τµ = a τ a τ µor a τ µ= a τµ /a τ . Substituting forτsuccessively 1,σ,...,σ n−1 we geta 1+σ+···+σn−1µ = 1.


116 6. Special algebraic extensi<strong>on</strong>sWe denote a 1+σ+···+σn−1µ by Na µ and call it <strong>the</strong> norm <strong>of</strong> a µ . Thus, ifa µ is a cocycle, <strong>the</strong>n,Na µ = 1.C<strong>on</strong>versely, suppose a is an element in A withNa=a 1+σ+..+σn−1 =1 = 1.We can define a cocycle a µ such that a σ = a. For letµ=σ ν , forsomeν. Puta µ = a 1+σ+···+σν−1 .Obviously, a σ = a. Also, a σ is a cocycle. For, ifτ=σ ν′ .a µ a µ τ= a 1+σ+···+σν−1 (a 1+σ+···+σν′ −1) σν= a 1+σ+···+σν−1 +σ ν +···+σ ν+ν′ −1= a µτ .134In a similar manner, for additive cohomology, we have a τµ = a τ +a τ µwhere a µ is a cocycle. If G is cyclic, <strong>on</strong> substituting 1,σ,...,σ n−1 forτ, we getS a µ = a µ + a σ µ+···+a σn−1µ = o.We call S a µ <strong>the</strong> spur or trace <strong>of</strong> a µ . If a is any element <strong>of</strong> A, withtrace S a=a+a σ +···+a σn−1 = o, <strong>the</strong>n <strong>the</strong> cocyclewhereµ=σ ν , has <strong>the</strong> propertya µ = a+a σ +···+a σν−1a σ = a.We now apply <strong>the</strong> c<strong>on</strong>siderati<strong>on</strong>s above, in <strong>the</strong> following situati<strong>on</strong>.K/k is a finite galois extensi<strong>on</strong> with galois group G. Then G acts <strong>on</strong>K ∗ and also <strong>the</strong> additive group K + as a group <strong>of</strong> operators. We might,<strong>the</strong>refore, c<strong>on</strong>sider <strong>the</strong> cohomology groups H o (G, K ∗ ), H 1 (G, K ∗ ),...and H o (G, K + ), H 1 (G, K + )... etc. As before, H o (G, K ∗ ) and H o (G, K + )are isomorphic to subgroups <strong>of</strong> K ∗ and K + with a σ = a for allσ. This,by galois <strong>the</strong>ory, shows


3. Cohomology 117Theorem 6. H o (G, K ∗ ) is isomorphic to k ∗ and H o (G, K + ) is isomorphicto k + .But what we are interested in, is <strong>the</strong> following important <strong>the</strong>oremdue to Artin.Theorem 7. The group H 1 (G, K ∗ ) and H 1 (G, K + ) are trivial.Pro<strong>of</strong>. Let us first c<strong>on</strong>sider multiplicative cohomology. If a σ is a cocycle,we have to prove that it is a coboundary. The elementsσ,τ,... <strong>of</strong>G are independent k-linear mappings <strong>of</strong> K intoΩ, <strong>the</strong> algebraic closure.Hence, if (a σ ) are elements <strong>of</strong> K ∗ ,∑a σ·σσis a n<strong>on</strong>-trivial k-linear map <strong>of</strong> K intoΩ. Therefore, <strong>the</strong>re exists aθo 135in K such that ∑a σ θ σ o.σ□Put b −1 = ∑ a σ θ σ = ∑σ τa τ θ τ . ThenTherefore∑(b −1 ) σ = a σ τ θστ .a σ∑b σ= a σ a σ τθ στ .Since (a σ ) is a cocycle, we geta σ∑ ∑b σ= a στ θ στ = a τ θ τ = b −1 .ττττThusa σ = bσ b = bσ−1which is a coboundary.


118 6. Special algebraic extensi<strong>on</strong>s136C<strong>on</strong>sider now <strong>the</strong> additive cohomology. K/k being finite and separable,<strong>the</strong>re exists aθ∈Ksuch that∑θ σ = S K/k θ=1.Put nowσ∑−b= a σ θ σa σ being an additive cocycle. Then∑−b σ = a σ τθ στ .But a σ = a σ· 1= ∑ τ a σ·θ τ so that∑ ∑a σ − b σ = (a σ + a σ τ )θ στ = a στ θ στ =−bτστwhich proves that a σ = b σ − b is a coboundary.Our <strong>the</strong>orem is completely proved.We apply <strong>the</strong> <strong>the</strong>orem in <strong>the</strong> special case where G is cyclic. Letσbe a generator <strong>of</strong> G. If a σ is a cocycle <strong>the</strong>n, in multiplicative <strong>the</strong>oryτa 1+σ+···+σn−1σ = 1or N K/k a σ = 1. Similarly in additive cohomology,a σ + a σ σ +···+aσn−1 σ = oor S K/k a σ = o.Using <strong>the</strong>orem 7, we obtain ’<strong>the</strong>orem 90’ <strong>of</strong> Hilbert.Theorem 8. If K/k is a finite cyclic extensi<strong>on</strong>,σ, a generator <strong>of</strong> <strong>the</strong>galois group <strong>of</strong> K/k and a and b two elements <strong>of</strong> K with N K/k a=1 andS K/k b=0 respectively, <strong>the</strong>nfor two elements c, d in K.a=c 1−σb=d σ − d


4. Cyclic extensi<strong>on</strong>s 1194 Cyclic extensi<strong>on</strong>sLet K/k be a cyclic extensi<strong>on</strong> <strong>of</strong> degree m. Put m=np a , (n, p)=1 if pis <strong>the</strong> characteristic <strong>of</strong> k; o<strong>the</strong>rwise, let m=n.Let G be <strong>the</strong> galois group <strong>of</strong> K/k. It has <strong>on</strong>ly <strong>on</strong>e sub-group <strong>of</strong> orderp a . Let L be its fixed field. Then K/L is cyclic <strong>of</strong> degree p a and L/k iscyclic <strong>of</strong> degree n prime to p. Letρbe a primitive nth root <strong>of</strong> unity andk(ρ) <strong>the</strong> cyclotomic extensi<strong>on</strong>. The composite F=Lk(ρ) is cyclic overk(ρ) and <strong>of</strong> degree prime to p. We shall see that K over L and F overk(ρ) can be described in a simple manner.We shall, <strong>the</strong>refore, c<strong>on</strong>sider <strong>the</strong> following case, first.K/k is a cyclic extensi<strong>on</strong> <strong>of</strong> degree m and p∤m, if k has character- 137istic po; o<strong>the</strong>rwise, m is an arbitrary integer. Also, k c<strong>on</strong>tains all <strong>the</strong>mth roots <strong>of</strong> unity. We <strong>the</strong>n have <strong>the</strong> <strong>the</strong>orem <strong>of</strong> Lagrange.Theorem 9. K= k(w) where w m ∈ k.Pro<strong>of</strong>. Letρbe a primitive mth root <strong>of</strong> unity.ρ is in k.□Hence, since K/k has degree m,N K/k ρ=ρ m = 1.By Hilbert’s <strong>the</strong>orem, <strong>the</strong>refore, ifσis a generator <strong>of</strong> <strong>the</strong> galoisgroup <strong>of</strong> K/k, <strong>the</strong>n <strong>the</strong>re is anω∈Ksuch thatω 1−σ =ρ.Sinceρis a primitive mth root <strong>of</strong> unity,ω,ω σ ,ω σ2 ,... are all distinctand are c<strong>on</strong>jugates <strong>of</strong>ω. Hence our <strong>the</strong>orem.ω satisfies a polynomial x m − a, a∈k. If K= k(ω ′ ), whereω ′ alsosatisfies a polynomial x m − b, b∈k,<strong>the</strong>nω ′σ =ω ′·ρ + ,whereρ t is a primitive mth root <strong>of</strong> unity and so (t, m)=1.Now ( ω′) σω t = ω′·ρtω t·ρt = ω′ω t


120 6. Special algebraic extensi<strong>on</strong>swhich shows thatω ′ =ω t· c, c∈k.We shall call x m − a a normed polynomial. We have, <strong>the</strong>n, <strong>the</strong>138Corollary. If k(ω)=K= k(ω ′ ), whereωandω ′ are roots <strong>of</strong> normedpolynomials, <strong>the</strong>nω ′ =ω t· c,where (t, m)=1 and c∈k.We c<strong>on</strong>sider <strong>the</strong> special case, m=q, a prime number. Let K/k be acyclic extensi<strong>on</strong> <strong>of</strong> degree q. Let K= k(α) and letα 1 = (α),α 2 ,...,α qbe <strong>the</strong> irreducible polynomial <strong>of</strong>αover k. Supposeσis a generator <strong>of</strong><strong>the</strong> galois group <strong>of</strong> K/k.Let notati<strong>on</strong> be so chosen thatα σ 1 =α 2,α σ 2 =α 3,...,α σ q−1 =α q,α σ q=α 1 .Since k c<strong>on</strong>tains <strong>the</strong> qth roots <strong>of</strong> unity and every qth root <strong>of</strong> unityρ1 is primitive, we c<strong>on</strong>struct <strong>the</strong> Lagrange Resolvent.Thenω=ω(α,ρ)=α 1 +ρα 2 +···+ρ q−1 α q .ω σ =α 2 +ρα 3 +···+ρ q−2 α q +ρ q−1 α 1which shows thatω σ =ρ −1 ω. Hence K= k(ω). Also,(ω q ) σ =ω qwhich proves thatω q ∈ k andωsatisfies a normed polynomial.In particular, if k has characteristic2, and K/k has degree 2, <strong>the</strong>nK= k( √ d)for d∈k.The polynomial x q − a for a∈k is, thus, ei<strong>the</strong>r irreducible and, <strong>the</strong>n,a root <strong>of</strong> it generates a cyclic extensi<strong>on</strong>, or else, x q − a is a product <strong>of</strong>linear factors in k.


4. Cyclic extensi<strong>on</strong>s 121139We study <strong>the</strong> corresp<strong>on</strong>ding situati<strong>on</strong> when K has characteristic po and K/k is a cyclic extensi<strong>on</strong> <strong>of</strong> degree p t , t≥1.We first c<strong>on</strong>sider cyclic extensi<strong>on</strong>s <strong>of</strong> degree p.Let K/k be a cyclic extensi<strong>on</strong> <strong>of</strong> degree p andσ, a generator <strong>of</strong> <strong>the</strong>galois group <strong>of</strong> K/k. Letµbe a generic element <strong>of</strong> <strong>the</strong> prime fieldΓc<strong>on</strong>tained in k.Introduce <strong>the</strong> operator P x= x p − x. ThenP(x+µ)=P x.Also, <strong>the</strong> <strong>on</strong>lyαin k satisfying Pα=o are <strong>the</strong> elements <strong>of</strong>Γand<strong>the</strong>se are all <strong>the</strong> roots <strong>of</strong> P x=o.The element 1 in k has <strong>the</strong> propertyS K/k 1=o,so that by Hilbert’s <strong>the</strong>orem, <strong>the</strong>re is anω∈Ksuch that1=ω σ −ω.Therefore, since K/k has degree p,K= k(ω).In order to determine <strong>the</strong> polynomial <strong>of</strong> whichωis a root, c<strong>on</strong>siderPω.(Pω) σ = Pω σ = P(ω+1)=Pωwhich shows that Pω∈k. If we put Pω=α, <strong>the</strong>nωis a root <strong>the</strong>irreducible polynomialx p − x−αin k[x]. ω is a root <strong>of</strong> <strong>the</strong> polynomial andω σ =ω+1. Sinceσis agenerator <strong>of</strong> <strong>the</strong> galois group <strong>of</strong> K/k, <strong>the</strong> roots <strong>of</strong> x p − x−α areω,ω+1,...,ω+ p−1.A polynomial <strong>of</strong> <strong>the</strong> type x p − x−α,α ∈ k is called a normedpolynomial.Suppose K=k(ω ′ ) whereω ′ also satisfies a normed polynomial. 140


122 6. Special algebraic extensi<strong>on</strong>sThenω ′ ,ω ′ + 1,...,ω ′ + p− 1 are <strong>the</strong> roots <strong>of</strong> this normed polynomial.Soω ′σ =ω ′ + h, o


4. Cyclic extensi<strong>on</strong>s 123elements <strong>of</strong>Γserve <strong>the</strong> same purpose as <strong>the</strong> roots <strong>of</strong> unity in <strong>the</strong> firstcase.If k has characteristic 2 and K/k is a separable extensi<strong>on</strong> <strong>of</strong> degree2, <strong>the</strong>nK= k(ω)whereω 2 −ω∈k.Observe, also, that any polynomial x p − x−α, forα∈k, is ei<strong>the</strong>rirreducible over k and so generates a cyclic extensi<strong>on</strong> over k, or splitscompletely into linear factors in k. For, ifωis a root <strong>of</strong> x p − x−α <strong>the</strong>n,forµ∈Γ,ω+µ is also a root.Just as we denote a root <strong>of</strong> x m −α by m√ α, we shall denote, forα∈k,by α P , a root <strong>of</strong> xp − x−α. It is obvious that<strong>on</strong>e value <strong>of</strong> α , all <strong>the</strong> values arePαPω,ω+1,...,ω+ p−1.is p valued and ifωisWe now study <strong>the</strong> case <strong>of</strong> cyclic extensi<strong>on</strong> <strong>of</strong> degree p n , n≥1.Let K/k be a cyclic extensi<strong>on</strong> <strong>of</strong> degree p n andσ, a generator <strong>of</strong><strong>the</strong> galois group G <strong>of</strong> K/k. Since G is cyclic <strong>of</strong> order p n , it has <strong>on</strong>ly<strong>on</strong>e subgroup <strong>of</strong> order p and hence, <strong>the</strong>re exists a unique subfield L <strong>of</strong> Ksuch that K/L is cyclic <strong>of</strong> degree p and L/k is cyclic <strong>of</strong> degree p n−1 = m.Let us assume that n≥2.σ m is <strong>of</strong> order p and hence is a generator <strong>of</strong> <strong>the</strong> galois group <strong>of</strong> K/L. 142Thus K= L(ω) whereσ m ω=ω+1andωsatisfies Pω=α∈L.Putσω−ω=β. Thenσ m β=σ(σ m ω)−σ m ω=β which shows thatβ∈L. Also,S L/k β=β+β σ +···+β σm−1 .Substituting <strong>the</strong> value <strong>of</strong>β, we getS L/k β=(σω−ω)+(σ 2 ω−σω)+···+(σ m ω−σ m−1 ω)=σ m ω−ω=1.


124 6. Special algebraic extensi<strong>on</strong>sHenceβhas <strong>the</strong> propertyS L/k β=1.It is easy to see thatα is not k. For,Pβ=σ(Pω)−Pω=σα−αandαin k would mean Pβ=o orβ∈Γ. This means that S L/k β=o.We now proceed in <strong>the</strong> opposite directi<strong>on</strong>. Let L be cyclic <strong>of</strong> degreep n−1 > 1 over k. We shall c<strong>on</strong>struct an extensi<strong>on</strong> K which is cyclic overk and c<strong>on</strong>tains L as a proper subfield. Letσbe a generator <strong>of</strong> <strong>the</strong> galoisgroup <strong>of</strong> L/k.Let us chooseβ∈L, such thatS L/k β=1.Now S L/k (Pβ)=P(S L/k β)=o which shows thatPβ=σα−α143for someαin L. Also,αis not in k. We claim that forλ∈k,x p − x−α−λ (4)is irreducible over L[x]. For, if it is not irreducible, it is completelyreducible in L. Letωbe a root <strong>of</strong> x p − x−α−λ in L. ThenThis means thatThusω p −ω=α+λ.P(σω−ω)=σ(Pω)−Pω=σα−α=Pβ.P(σω−ω−β)=oorσω−ω−β=µ. Since S L/k (σω−ω)=o and S L/k µ=o, it follows thatS L/k β=o, which is a c<strong>on</strong>tradicti<strong>on</strong>. Thus forλ∈k, (4) is irreducible


4. Cyclic extensi<strong>on</strong>s 125in L[x]. Letωbe a root <strong>of</strong> this irreducible polynomial for someλ. ThenK= L(ω)/L is cyclic <strong>of</strong> degree p.Let ¯σ denote an extensi<strong>on</strong> <strong>of</strong>σto an isomorphism <strong>of</strong> K/k inΩ, <strong>the</strong>algebraic closure <strong>of</strong> k. Then ¯σ is not identity <strong>on</strong> L. Since Pω=α+λandλ∈k, we getNow¯σ(Pω)=σα+λ.P( ¯σω−ω)= ¯σ(Pω)−Pω=σα−α=Pβand, again, we haveP( ¯σω−ω−β)=oor that ¯σω=ω+β+µ which shows that ¯σ is an automorphism <strong>of</strong> K/k.If t is any integer,¯σ t ω=ω+β+β σ +···+β σt−1 + tµ.This shows that 1, ¯σ, ¯σ 2 ,..., ¯σ pn−1 have all different effects <strong>on</strong>ω,so that <strong>the</strong>y are distinct automorphisms <strong>of</strong> K/k. But, since K/k hasdegree p n , it follows that K/k is cyclic <strong>of</strong> degree p n . We have, hence,<strong>the</strong> important144Theorem 11. If k is a field <strong>of</strong> characteristic p and admits a cyclic extensi<strong>on</strong>K <strong>of</strong> k c<strong>on</strong>taining L and <strong>of</strong> degree p m , m>n, for every m.In fact, if k is an infinite field, we may veryλover k and obtainan infinity <strong>of</strong> extensi<strong>on</strong>s K over k with <strong>the</strong> said property. It follows<strong>the</strong>orem 10.Corollary. If k is a field <strong>of</strong> characteristic p and admits a cyclic extensi<strong>on</strong><strong>of</strong> degree p n for some n ≥ 1, <strong>the</strong>n its algebraic closure is <strong>of</strong> infinitedegree over it.


126 6. Special algebraic extensi<strong>on</strong>s5 Artin-Schreier <strong>the</strong>orem145We had obtained, in <strong>the</strong> previous secti<strong>on</strong>, a sufficient c<strong>on</strong>diti<strong>on</strong> <strong>on</strong> a fieldso that its algebraic closure may be <strong>of</strong> infinite degree over it. We wouldlike to know if <strong>the</strong>re are fields K which are such that <strong>the</strong>ir algebraicclosures are finite over <strong>the</strong>m. The complete answer to this questi<strong>on</strong> isgiven by <strong>the</strong> following beautiful <strong>the</strong>orem due to Artin and Schreier.Theorem 12. IfΩit an algebraically closed field and K is a subfieldsuch that1


5. Artin-Schreier <strong>the</strong>orem 127whereω q 1 =ω∈L.4) Any irreducible polynomial over L is ei<strong>the</strong>r linear or <strong>of</strong> degree q. 146For, if t is its degree andα, a root <strong>of</strong> it <strong>the</strong>n t=(L(α) : L) dividesq. Thus, every polynomial in L[x] splits in L into product <strong>of</strong> linearfactors and <strong>of</strong> factors <strong>of</strong> degree q.C<strong>on</strong>sider, in particular, <strong>the</strong> polynomial x q2 −ω. InΩ, we can writex q2 −ω=π µ (x−µ q2√ ω) (5)whereµruns through all q 2 th roots <strong>of</strong> unity. Since (Ω : L)>1, <strong>the</strong>polynomial x q2 −ω has, in L[x], an irreducible factor <strong>of</strong> degree q.Since this factor is formed by q <strong>of</strong> <strong>the</strong> linear factors <strong>on</strong> <strong>the</strong> right <strong>of</strong>(5), this factor is <strong>of</strong> <strong>the</strong> formx q +···+ε ε√ ω,ε being a q 2 th root <strong>of</strong> unity. We assert that this is a primitive q 2 throot <strong>of</strong> unity. For if not, it is ei<strong>the</strong>r 1 or a primitive qth root <strong>of</strong> unity.Sinceε q√ ω∈L, it would <strong>the</strong>n follow thatq√ ω∈L. Therefore we getΩ=L(ε).5) LetΓbe <strong>the</strong> prime field c<strong>on</strong>tained in L. C<strong>on</strong>sider <strong>the</strong> fieldΓ(ε).LetΓ(ε) c<strong>on</strong>tain <strong>the</strong> q ν th but not q ν+1 roots <strong>of</strong> unity. This integercertainly exists. For, if L has characteristic zeroν=2. If L hascharacteristic p (and this is different from q, from (2)), <strong>the</strong>nΓ(ε)c<strong>on</strong>tains p f elements where f is <strong>the</strong> smallest positive integer withp f ≡ 1( mod q 2 ). If q ν is <strong>the</strong> largest power <strong>of</strong> q dividing p f − 1 <strong>the</strong>nΓ(ε) c<strong>on</strong>tains <strong>the</strong> q ν th, but not <strong>the</strong> q ν+1 <strong>the</strong> roots <strong>of</strong> unity. 147Letρbe a primitive q v+1 th root <strong>of</strong> unity. Thenρsatisfies a polynomial<strong>of</strong> degree q(irreducible) over L. ThusΓ(ρ) is <strong>of</strong> degree q overΓ(ρ)∩ L. Now,ρbeing a primitive q ν+1 th root <strong>of</strong> unityρ q is a q ν throot <strong>of</strong> unity and so is c<strong>on</strong>tained inΓ(ε). But all <strong>the</strong> roots <strong>of</strong> x q −ρ qare q v+1 th roots <strong>of</strong> unity. Thus x q −ρ q is <strong>the</strong> irreducible polynomial


128 6. Special algebraic extensi<strong>on</strong>s<strong>of</strong>ρoverΓ(ε). HenceΓ(ρ)Γ(ε)Γ(ρ)∩ LΓand (Γ(ρ) :Γ(ε))=q=(Γ(ρ) : (Γ(ρ)∩L).IfΓis a finite field, <strong>the</strong>n (Γ(ρ)/Γ is cyclic and it cannot have twodistinct subfieldsΓ(ε) andΓ(ρ)∩L over which it has <strong>the</strong> same degree.SinceεL, it follows thatΓ(ε) andΓ(ρ)∩L are distinct and so,Γhas characteristic zero. In this case, if q is odd,Γ(ρ)/Γ is cyclic and<strong>the</strong> same thing holds. Thus q=2. We know, <strong>the</strong>n thatν=2. If idenotes a fourth root <strong>of</strong> unity, <strong>the</strong>nΩ=L(i).6) Form above, it follows that n=2 t for some t and K does not c<strong>on</strong>tain<strong>the</strong> 4th root <strong>of</strong> unity. Now t=1, for if not, let t>1. Let M be asubfield <strong>of</strong> L such that (L : M)=2. Then (Ω : M(i))=2 and, byabove c<strong>on</strong>siderati<strong>on</strong>s, M(i) cannot c<strong>on</strong>tain 1 which is a c<strong>on</strong>tradicti<strong>on</strong>.SoK(i)=Ω.148We shall make use <strong>of</strong> this <strong>the</strong>orem in <strong>the</strong> next chapter.□6 Kummer extensi<strong>on</strong>sWe now study <strong>the</strong> structure <strong>of</strong> finite abelian extensi<strong>on</strong>s <strong>of</strong> a field k. Weuse <strong>the</strong> following notati<strong>on</strong>:-k is a field <strong>of</strong> characteristic p, not necessarily>o.n is a positive integer not divisible by p if po, o<strong>the</strong>rwise arbitrary.α, <strong>the</strong> group <strong>of</strong> n<strong>on</strong>-zero elements <strong>of</strong> k. A generic element <strong>of</strong>αwillalso be denoted, following Hasse and Witt, byα.


6. Kummer extensi<strong>on</strong>s 129α n is <strong>the</strong> group <strong>of</strong> nth powers <strong>of</strong> elements <strong>of</strong>α.ω, a subgroup <strong>of</strong>αc<strong>on</strong>tainingα n and such that(ω :α n )


130 6. Special algebraic extensi<strong>on</strong>s3) Λ /α ≃ω /α n. (These are isomorphic groups).C<strong>on</strong>sider <strong>the</strong> homomorphismΛ→Λ n <strong>of</strong>Λinto itself. It takesαintoα n . The kernels inΛandαare both <strong>the</strong> same. SinceΛis taken toω by this homomorphism, it follows thatΛ/α≃ω/α n . Incidentally,<strong>the</strong>refore,Λ/α is a finite group.We shall now prove <strong>the</strong> important property,4) G is isomorphic toω/α n .(This proves that K/k is a finite abelian extensi<strong>on</strong>.)In order to prove this, c<strong>on</strong>sider <strong>the</strong> ’pairing’, (τ,Λ) <strong>of</strong> G andΛ, givenby(σ,Λ)=Λ 1−σ , (7)150σ∈G,Λ∈Λ. Because <strong>of</strong> definiti<strong>on</strong> <strong>of</strong>Λ,(σ,Λ) n = Λn(Λ n ) σ= 1.Thus (σ,Λ) is an nth root <strong>of</strong> unity. Also,(στ,Λ)= Λ Λ ( ) σ ΛΛ στ= Λ σ= Λ τ = Λ Λ σ· ΛΛτ= (σ,Λ)·(τ,Λ).Fur<strong>the</strong>rmore,(σ,ΛΛ ′ )= Λ′ Λ ′(Λ ′ Λ) σ= Λ Λ σ,Λ′ Λ σ= (σ,Λ)(σ,Λ′ ).Thus (σ,Λ) defined by (7) is a pairing.Let G o be <strong>the</strong> subgroup <strong>of</strong> G c<strong>on</strong>sisting <strong>of</strong> allσwith (σ,Λ)=1, forallΛ. SinceΛis generated byΛ 1 ,Λ 2 ,...,Λ t ,α we getΛ i =Λ σ i .ButΛ 1 ,...,Λ t generate K. Therefore,β=β σ for allβ∈K.By galois <strong>the</strong>ory,σ=1. Thus G o = (1).LetΛ o be <strong>the</strong> subgroup <strong>of</strong> allΛwith (σ,Λ)=1, for allσ. For<strong>the</strong> same reas<strong>on</strong> as before,Λ o =α. Thus, by <strong>the</strong>orem <strong>on</strong> pairing, G isisomorphic toΛ/ α . (4) is thus proved.


6. Kummer extensi<strong>on</strong>s 131Observe, now, that sinceΛ n ⊂α, it follows <strong>the</strong> G is an abelian groupwhose exp<strong>on</strong>ent divides n.We will denote K symbolically by K= k( τ√ ω).We shall now proveTheorem 13. Let K/k be a finite extensi<strong>on</strong> with abelian galois group G<strong>of</strong> exp<strong>on</strong>ent dividing n, <strong>the</strong>n K= k( n√ ω) for a sub groupω⊂α withω /α n finite.Pro<strong>of</strong>. Let ¯Λ denote <strong>the</strong> group <strong>of</strong> n<strong>on</strong>-zero elements <strong>of</strong> K with <strong>the</strong> prop- 151ertyΛ n ∈ α forΛ ∈ ¯Λ. Then, by c<strong>on</strong>sidering <strong>the</strong> homomorphismΛ→Λ n , it follows thatΛ ¯ /α ≃ω /α n,whereω= ¯Λ n . We shall prove that K= k( n√ ¯ω). In order to prove this,it suffices to prove thatG≃ω /α n. (8)For, in that case, c<strong>on</strong>struct <strong>the</strong> field k( n√ ω). Because <strong>of</strong> <strong>the</strong> properties<strong>of</strong> K, it follows that K⊃ k( n√ ¯ω). But, by <strong>the</strong> previous results, (k( n√ ω) :k)=order <strong>of</strong>ω /α n=order <strong>of</strong> G.HenceK= k( n√ ω).We shall, <strong>the</strong>refore, prove (8).Let G∗ denote <strong>the</strong> dual <strong>of</strong> G. For everyΛin ¯Λ, define <strong>the</strong> functi<strong>on</strong>χ Λ (σ)=Λ 1−σ<strong>on</strong> G into ¯Λ. SinceΛ n ∈α, it follows thatχ Λ (σ) is an nth root <strong>of</strong> unity.Also,χ Λ (στ)= Λ Λ ( ) σ ΛΛ στ= Λ σ Λ τ = Λ Λ σ· ΛΛ τ=χ Λ(σ)·χ Λ (τ)so thatχ Λ is a character <strong>of</strong> G.□


132 6. Special algebraic extensi<strong>on</strong>sLetχbe any character <strong>of</strong> G. Since <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> G divides n,χ n (σ)=1 for allσ. Therefore,χ(σ) is an nth root <strong>of</strong> unity and hence isan element <strong>of</strong> k. Also, sinceχis a character <strong>of</strong> G,χ(στ)=χ(σ)χ(τ)152which equalsχ(σ)·(χ(τ)) σ . Thusχ(σ) is a <strong>on</strong>e cocycle and, by <strong>the</strong>orem7,χ(σ)=β 1−σforβ∈K. But (χ(σ)) n = 1 so thatβ n = (β n ) σfor allσorβ n ∈α. This means, by definiti<strong>on</strong> <strong>of</strong> ¯Λ thatβ∈ ¯Λ.C<strong>on</strong>sider <strong>the</strong> mappingω→χ Λ <strong>of</strong> ¯Λ into G ∗ . This is, trivially ahomomorphism. By above, it is a homomorphism <strong>on</strong>to. The kernel <strong>of</strong><strong>the</strong> homomorphism is set <strong>of</strong>Λfor whichχ Λ (σ)=1 for allσ. That isΛ=Λ σfor allσ. By galois <strong>the</strong>oryΛ∈α. But every element inαsatisfies thisc<strong>on</strong>diti<strong>on</strong>. Thusαis precisely <strong>the</strong> kernel, and¯Λ /α ≃ G ∗ .Since G is a finite abelian group, G≃ G ∗ and our <strong>the</strong>orem is completelyproved.We call a finite abelian extensi<strong>on</strong> K/k, a Kummer extensi<strong>on</strong> if1) k c<strong>on</strong>tains <strong>the</strong> nth roots <strong>of</strong> unity, p∤n, if p( o) is characteristic <strong>of</strong>k,2) K/k has a galois Galois group <strong>of</strong> exp<strong>on</strong>ent dividing n.What we have<strong>the</strong>n proved isTheorem 14. The Kummer extensi<strong>on</strong>s <strong>of</strong> k stand in (1, 1) corresp<strong>on</strong>dencewith subgroupsω <strong>of</strong>αwithω /α n finite.


7. Abelian extensi<strong>on</strong>s <strong>of</strong> exp<strong>on</strong>ent p 1331537 Abelian extensi<strong>on</strong>s <strong>of</strong> exp<strong>on</strong>ent pWe had introduced earlier <strong>the</strong> operator P which is defined byP x= x p − x.Let k be a field <strong>of</strong> characteristic p and denote by k + <strong>the</strong> additivegroup <strong>of</strong> k. Thenα→Pα is a homomorphism <strong>of</strong> k + into itself. Thekernel <strong>of</strong> <strong>the</strong> homomorphism is precisely <strong>the</strong> set <strong>of</strong> elements inΛ, <strong>the</strong>prime field <strong>of</strong> characteristic p, c<strong>on</strong>tained in k.Ifα∈k, we denote by α P , a root <strong>of</strong> <strong>the</strong> polynomial xp − x−α.Obviously α Pis p valued. Also,α+βP = α P + β P . (9)Let us denote by Pk + , <strong>the</strong> subgroup <strong>of</strong> k + formed by elements Pα,α∈k + . Letωbe a subgroup <strong>of</strong> k + with <strong>the</strong> properties,k + ⊃ω⊃Pk +ω/ Pk + is finite.Let K be <strong>the</strong> extensi<strong>on</strong> field <strong>of</strong> k, formed by adjoining to k all <strong>the</strong>elements α , froα∈ω. We denotePK= k( ω P ).We <strong>the</strong>n obtain in exactly <strong>the</strong> same way as before1) K/k is a finite abelian extensi<strong>on</strong>.2) The galois group G <strong>of</strong> K/k is isomorphic withω/ Pk +.3) G is an abelian group <strong>of</strong> exp<strong>on</strong>ent p. For <strong>the</strong> pro<strong>of</strong>s, we have to useadditive, instead <strong>of</strong> multiplicative, pairing and <strong>the</strong> property (9).


134 6. Special algebraic extensi<strong>on</strong>sSuppose, now, <strong>on</strong> <strong>the</strong> o<strong>the</strong>r hand, K/k is a finite abelian extensi<strong>on</strong> <strong>of</strong> 154exp<strong>on</strong>ent p, where p is <strong>the</strong> characteristic <strong>of</strong> k.ThenK= k( ω P ),whereωis a subgroup <strong>of</strong> k + withω/Pk + finite. For <strong>the</strong> pro<strong>of</strong> <strong>of</strong> this,we have to use additive instead <strong>of</strong> multiplicative, cohomology. For, letG be <strong>the</strong> galois group <strong>of</strong> K/k and G ∗ its character group. Denote, by¯Λ, <strong>the</strong> additive subgroup <strong>of</strong> K + formed by elementsΛwith PΛ∈k + .Denote, byω, <strong>the</strong> group P ¯Λ. ThenDefineχ Λ (σ) byThen¯Λ /k +≃ω /Pk +χ Λ (σ)=Λ−Λ σ .P(χ Λ (σ))=PΛ−(PΛ) σ ).But, PΛ∈k + by definiti<strong>on</strong>. Hence, P(χ Λ (σ))=o.Therefore,χ Λ (σ) is an element <strong>of</strong>Γ. The rest <strong>of</strong> <strong>the</strong> pro<strong>of</strong> goesthrough in <strong>the</strong> same way and we have <strong>the</strong>Theorem 15. If k has characteristic po, <strong>the</strong> finite abelian extensi<strong>on</strong>sK/k <strong>of</strong> exp<strong>on</strong>ent p stand in a(1, 1) corresp<strong>on</strong>dence with subgroupsω<strong>of</strong>k + such thatω/Pk + is finite, and <strong>the</strong>n K= k( ω P ).8 Solvable extensi<strong>on</strong>s155We propose to study now <strong>the</strong> main problem <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> algebraicequati<strong>on</strong>s, namely <strong>the</strong> ‘soluti<strong>on</strong>’ <strong>of</strong> algebraic equati<strong>on</strong>s by radicalsk will denote a field <strong>of</strong> characteristic p,(p=o or po),Ωwill be itsalgebraic closure and n, n 1 , n 2 ,... integers> o which are prime to p, if khas characteristic po, o<strong>the</strong>rwise arbitrary. An elementω∈Ω will besaid to be a simple radical over k ifω n ∈ k, for some integer n. k(ω)/kis <strong>the</strong>n said to be a simple radical extensi<strong>on</strong>. k(ω)/k is clearly separable.Ifωis a root <strong>of</strong> x p − x−a, for a∈ k,ω is called a simple pseudo radical


8. Solvable extensi<strong>on</strong>s 135over k.k(ω)/k is a pseudo radical extensi<strong>on</strong> and is separable. In fact, itis a cyclic extensi<strong>on</strong> over k. This situati<strong>on</strong> occurs, <strong>on</strong>ly if po.An extensi<strong>on</strong> field K/k is said to be a generalized radical extensi<strong>on</strong>if it is a finite towerk=K o ⊂ K 1 ⊂ K 2 ⊂···⊂K m = Kwhere K i /K i−1 is ei<strong>the</strong>r a simple radical or a simple pseudo radical extensi<strong>on</strong>.Every element it K is called a generalized radical. A typicalelement would be√n√a11 + n 2a 2 + a 3P +..Clearly, K/k is a separable extensi<strong>on</strong>. A generalized radical extensi<strong>on</strong>is called a radical extensi<strong>on</strong> if K i /K i−1 is a simple radical extensi<strong>on</strong>for every i. A typical element <strong>of</strong> K would, <strong>the</strong>n ben 1√a 1 + n 2 √ a 2 +···.Let f (x) be a polynomial in k[x] and let it be separable. Let K beits splitting field. Then K/k is a galois extensi<strong>on</strong>. The galois groupG <strong>of</strong> K/k is called <strong>the</strong> group <strong>of</strong> <strong>the</strong> polynomial f (x). The polynomialf (x) is said to be solvable by generalized radicals, if K is a subfield 156<strong>of</strong> a generalized radical extensi<strong>on</strong>. It is, <strong>the</strong>n, clear that <strong>the</strong> roots <strong>of</strong>f (x) are generalized radicals. In order to prove <strong>the</strong> main <strong>the</strong>orem aboutsolvability <strong>of</strong> a polynomial by generalized radicals, we first prove somelemmas.Lemma 1. Every generalized radical extensi<strong>on</strong> is a subfield <strong>of</strong> a generalizedradical extensi<strong>on</strong> which is galois, with a solvable galois group.Pro<strong>of</strong>. Let K/k be a generalized radical extensi<strong>on</strong> so thatk=K o ⊂ K 1 ⊂···⊂ K m = K,where K i /K i−1 is a simple radical or simple pseudo radical extensi<strong>on</strong>.Let K i = K i−1 (ω i ). Then ei<strong>the</strong>rω n i∈ K i−1 for some n i or Pω i ∈ K i−1 .Let (K : k)=n. Put N= n, if k has characteristic zero; o<strong>the</strong>rwise, letn=N·p a ,


136 6. Special algebraic extensi<strong>on</strong>sa≥o, (p, N)=1. Letρbe a primitive Nth root <strong>of</strong> unity.□Let L 1 = K o (ρ). The L 1 /K o is a simple radical extensi<strong>on</strong>. SinceK 1 = K o (ω 1 ), put L 2 = K o (ρ,ω 1 ). Then L 2 is <strong>the</strong> splitting field <strong>of</strong> <strong>the</strong>polynomial (x N −1)(x n1 −a 1 ) or (x N −1)(P x−a 1 ) depending <strong>on</strong> whe<strong>the</strong>rω 1 is a simple radical or a simple pseudo radical. In any case, L 2 /K o isa galois extensi<strong>on</strong>. Fur<strong>the</strong>rmoreL 2 = L 1 (ω 1 )157so that L 2 /L 1 is cyclic, since, whenω 1 is a simple radical, L 1 c<strong>on</strong>tains<strong>the</strong> requisite roots <strong>of</strong> unity. Letσ 1 ,...,σ l be <strong>the</strong> distinct automorphisms<strong>of</strong> L 2 /K o . Putl∏f (x)= (x n2 − a σi2 ),i=1ifω 2 is a simple radical withω n 22 = a 2, andf (x)=l∏(P x−a σ i2 ),i=1ifω 2 is a simple pseudo radical with Pω 2 = a 2 .Then f (x) is a polynomial in k[x]. Let L 3 be its splitting field. ThenL 3 is galois over k. Also, L 3 is splitting field <strong>of</strong> f (x) over L 3 so thatL 3 /L 2 is ei<strong>the</strong>r a Kummer extensi<strong>on</strong> or else, an abelian extensi<strong>on</strong> <strong>of</strong>exp<strong>on</strong>ent p. In this way, <strong>on</strong>e c<strong>on</strong>structs a galois extensi<strong>on</strong> T <strong>of</strong> k suchthatL o = k⊂L 1 ⊂ L 2 ⊂ L 3 ⊂···⊂L m−1 ⊂ T= L m ,where L i /L i−1 is ei<strong>the</strong>r a kummer extensi<strong>on</strong> or an abelian extensi<strong>on</strong> <strong>of</strong>exp<strong>on</strong>ent p. Clearly, L i /L i−1 and, hence, T/k is a generalized radicalextensi<strong>on</strong>. Let G i , i=o, 1, 2,...,m be <strong>the</strong> galois group <strong>of</strong> T/L i . ThenG= G o ⊃ G 1 ⊃......⊃G m = (e)is a normal series. Fur<strong>the</strong>r, by our c<strong>on</strong>structi<strong>on</strong>, G i−1 /G i is <strong>the</strong> galoisgroup <strong>of</strong> L i /L i−1 and hence, abelian. Thus, G is a solvable group. Thelemma is thus proved.


8. Solvable extensi<strong>on</strong>s 137Lemma 2. If K/k is a finite solvable extensi<strong>on</strong>, <strong>the</strong>n K is a subfield <strong>of</strong> ageneralized extensi<strong>on</strong> over k.Pro<strong>of</strong>. Let G be <strong>the</strong> galois group <strong>of</strong> K/k and G solvable. Let n be <strong>the</strong>order <strong>of</strong> G and putn= p a Nwith <strong>the</strong> same c<strong>on</strong>notati<strong>on</strong>, as before. Letρbe a primitive Nth root <strong>of</strong> 158unity and L=k(ρ). Then L/k is a simple radical extensi<strong>on</strong>. Let M bea composite <strong>of</strong> K and L. Then M/L is a galois extensi<strong>on</strong> with a galoisgroup which is isomorphic to a subgroup <strong>of</strong> G and hence, solvable. LetG o be <strong>the</strong> galois group <strong>of</strong> M/L and let it have a compositi<strong>on</strong> seriesG o ⊃ G 1 ⊃···⊃G m = (e).Then G i /G i+1 is a cyclic group <strong>of</strong> prime degree. Let L o = L,L 1 ,...L m = M be <strong>the</strong> fixed fields <strong>of</strong> G o , G 1 ,..., G m respectively. ThenL i /L i−1 is a cyclic extensi<strong>on</strong> <strong>of</strong> prime degree. Since L i−1 c<strong>on</strong>tains <strong>the</strong>requisite roots <strong>of</strong> unity, L i is a simple radical or a simple pseudo radicalextensi<strong>on</strong> <strong>of</strong> L i−1 . Then M/k is a generalized radical extensi<strong>on</strong> and ourlemma is proved.We are, now, ready to proveTheorem 16. A separable polynomial f (x)∈k[x] is solvable by generalizedradicals if and <strong>on</strong>ly if its group is solvable.Pro<strong>of</strong>. Let K be <strong>the</strong> splitting field <strong>of</strong> f (x) and G <strong>the</strong> galois group <strong>of</strong>K/k. Suppose f (x) is solvable by generalized radicals. Then K ⊂ Lwhere L/k is galois and by lemma 1, has solvable galois group H. LetG o be <strong>the</strong> galois group <strong>of</strong> L/K Then H/G o is isomorphic to G and so Gis solvable.□Let, c<strong>on</strong>versely, G be solvable. Then, by lemma 2, K is c<strong>on</strong>tainedin a generalized radical extensi<strong>on</strong> and so f (x) is solvable by generalizedradicals.We can easily prove 159□


138 6. Special algebraic extensi<strong>on</strong>sCorollary. A separable polynomial f (x)∈k[x] is solvable by radicalsif and <strong>on</strong>ly if its splitting field has a solvable galois group <strong>of</strong> order primeto <strong>the</strong> characteristic <strong>of</strong> k, if different from zero.Let k be a field. The polynomialf (x)= x m − x 1 x m−1 + x 2 x m−2···+(−1) m x m ,where x 1 ,..., x m are algebraically independent over k, is said to be <strong>the</strong>general polynomial <strong>of</strong> <strong>the</strong> mth degree over k. It is so called, becauseevery m<strong>on</strong>ic polynomial <strong>of</strong> degree m over k is obtained by specializing<strong>the</strong> values <strong>of</strong> x 1 ,..., x m to be in k. Let L=k(x 1 ,..., x m ). Let y 1 ,...,y mbe roots <strong>of</strong> f (x) over L. Thenf (x)=(x−y 1 )···(x−y m )and y 1 ,...,y m are distinct. The splitting field k(y 1 ,...,y m ) <strong>of</strong> f (x) overL is a galois extensi<strong>on</strong> whose galois group is isomorphic to S m . Hence,<strong>the</strong> general polynomial <strong>of</strong> <strong>the</strong> mth degree over k has a group isomorphicto <strong>the</strong> symmetric group <strong>on</strong> m symbols.But,S m is not solvable, if m>4, so that in virtue <strong>of</strong> <strong>the</strong>orem 16, wehave <strong>the</strong> <strong>the</strong>orem <strong>of</strong> Abel.Theorem 17. The group <strong>of</strong> <strong>the</strong> general polynomial f (x) <strong>of</strong> <strong>the</strong> mth degreeis isomorphic to <strong>the</strong> symmetric group S m <strong>on</strong> m symbols and hence,for m>4, f (x) is not solvable by generalized radicals.160We shall now explicitly show how to obtain <strong>the</strong> roots <strong>of</strong> a polynomial<strong>of</strong> degree≤4 in terms <strong>of</strong> generalized radicals.Let f (x) be a general polynomial <strong>of</strong> degree m over k and let K be<strong>the</strong> splitting field. K/k has <strong>the</strong> group S m . Let y 1 ,...,y m be <strong>the</strong> roots <strong>of</strong>f (x). Put ∏D= (y i − y j ) 2 .i< jThen D is fixed under all permutati<strong>on</strong>s in S m and, hence, D∈k.If we assume that <strong>the</strong> characteristic <strong>of</strong> k is 2, <strong>the</strong>n k( √ D) is a galoisextensi<strong>on</strong> <strong>of</strong> k and K/k( √ D) has <strong>the</strong> galois group isomorphic to


8. Solvable extensi<strong>on</strong>s 139<strong>the</strong> alternating group <strong>on</strong> m symbols. D called <strong>the</strong> discriminant <strong>of</strong> <strong>the</strong>polynomial f (x).Let us, first, c<strong>on</strong>sider <strong>the</strong> general polynomial <strong>of</strong> <strong>the</strong> sec<strong>on</strong>d degreeThenf (x)=(x−y 1 )(x−y 2 )= x 2 − x 1 x+ x 2 .y 1 + y 2 = x 1 , y 1 y 2 = x 2 .Suppose, now, that k has characteristic2. ThenD=(y 1 − y 2 ) 2 = (y 1 + y 2 ) 2 − 4y 1 y 2 = x 2 1 − 4x 2.Also, y 1 + y 2 = x 1 , y 1 − y 2 =± √ D so thaty 1 = x 1+ √ D, y 2 = x 1− √ D22and K= k( √ D) is <strong>the</strong> splitting field <strong>of</strong> f (x) and is a radical extensi<strong>on</strong>.Let, now, k have characteristic 2. Then x 1 o, since f (x) is separable.Put x 1 x instead <strong>of</strong> x. Then <strong>the</strong> polynomial x 2 − x+ x 2x 2 has roots y 1x11and y 2. But this is a normal polynomial so that ifλ= x 2, <strong>the</strong>n 161x 1 x 1 2y 1 = x 1λP , y 2=x 1λP + x 1and thus k( λ ) is a pseudo radical extensi<strong>on</strong> and is splitting field <strong>of</strong>Pf (x).We shall now study cubic and biquadratic polynomials.Let, first, k have characteristic2or 3. Let m=3 or 4 andf (x)= x m − x 1 x m−1 +···+(−1) m x mbe <strong>the</strong> polynomial <strong>of</strong> <strong>the</strong> mth degree whose roots are y 1 ,...,y m .If we put x+ x 1instead <strong>of</strong> x, we get a polynomial whose roots aremy 1 − x 1m ,...,y m− x 1m and which lacks <strong>the</strong> terms in xm−1 .


140 6. Special algebraic extensi<strong>on</strong>sWe shall, <strong>the</strong>refore, take <strong>the</strong> polynomial f (x) in <strong>the</strong> formf (x)= x m + x 2 x m−2 +...+(−1) m x m .If y 1 ,...,y m are <strong>the</strong> roots, <strong>the</strong>ny 1 + y 2 +...+y m = o.Also , D m = ∏ i − y j )i< j(y 2 . A simple computati<strong>on</strong> shown thatandD 3 =−4x 3 2 − 27x2 3D 4 = 16x 4 2 x 4− 4x 3 2 x2 3 − 128x2 2 x2 4 + 144x 2x 2 3 x 4−27x 4 3 + 256x3 4 .If K is <strong>the</strong> splitting field <strong>of</strong> f (x) over L=k(x 1 ,..., x m ) <strong>the</strong>n L( √ D)is <strong>the</strong> fixed field <strong>of</strong> <strong>the</strong> alternating group A m and L( √ D)/L is a radicalextensi<strong>on</strong>. In order to study <strong>the</strong> extensi<strong>on</strong> K/L( √ D), let us, first,take <strong>the</strong> case m=3. The symmetric group <strong>on</strong> 3 symbols, S 3 , has <strong>the</strong>compositi<strong>on</strong> seriesS 3 ⊃ A 3 ⊃ (e).162K/L( √ D) is thus a cyclic extensi<strong>on</strong> <strong>of</strong> degree 3. Letρbe a primitivecube root <strong>of</strong> unity and let M=L( √ D,ρ). Let N=KM be a composite<strong>of</strong> K and M. Then KM/M has degree 1 or 3, according asρis in K ornot. In <strong>the</strong> first case, M=K. In <strong>the</strong> sec<strong>on</strong>d case, KM/M is a cyclicextensi<strong>on</strong> <strong>of</strong> degree 3 over K and M c<strong>on</strong>tains <strong>the</strong> cube roots <strong>of</strong> unity.Thus KM=M( 3√ ω), for someω∈ M. In order <strong>of</strong> determine thisω, weuse Lagrange’s method.KM is <strong>the</strong> splitting field over M <strong>of</strong> <strong>the</strong> polynomial x 3 + x 2 x− x 3 . Lety 1 , y 2 , y 3 be roots <strong>of</strong> this polynomial. Putω=y 1 +ρy 2 +ρ 2 y 3ω ′ = y 1 +ρ 2 y 2 +ρy 3 .


8. Solvable extensi<strong>on</strong>s 141Thenω 3 = 27 2 x 3+ 3 √ D(ρ− 1 2 ). Changingρintoρ2 we getω ′3 .Henceω=ρ a 3 √272 x 3+ 3 √ D(ρ− 1 2 )and we have a similar expressi<strong>on</strong> forω ′ . Here a≥o. In order to determinea, we use <strong>the</strong> fact thatωω ′ =−3x 2 and so, choosing <strong>the</strong> root<strong>of</strong> unityρ a forωarbitrarily, <strong>the</strong> root <strong>of</strong> unity in <strong>the</strong> expressi<strong>on</strong> forω ′ isuniquely determine. Nowy 1 + y 2 + y 3 = oy 1 +ρy 2 +ρ 2 y 3 =ωy 1 +ρ 2 y 2 +ρy 3 =ω ′and since <strong>the</strong> matrix⎞1 1 11 ρ ρ⎛⎜⎝2⎟⎠1 ρ 2 ρis n<strong>on</strong>-singular, <strong>the</strong> values <strong>of</strong> y 1 , y 2 , y 3 are uniquely determined K·M is 163a radical <strong>of</strong> L and c<strong>on</strong>tains K.C<strong>on</strong>sider, now, <strong>the</strong> polynomial <strong>of</strong> <strong>the</strong> fourth degreef (x)= x 4 + x 2 x 2 − x 3 x+ x 4whose roots are y 1 , y 2 , y 3 , y 4 with y 1 + y 2 + y 3 + y 4 = o. The galois group<strong>of</strong> <strong>the</strong> splitting field K/k is S 4 . This has <strong>the</strong> compositi<strong>on</strong> seriesS 4 ⊃ A 4 ⊃ B 4 ⊃ C 4 ⊃ (e).Let K 1 , K b , K c be <strong>the</strong> fixed fields <strong>of</strong> A 4 , B 4 and C 4 respectively. NowA 4 is <strong>the</strong> alternating group, B 4 <strong>the</strong> group c<strong>on</strong>sisting <strong>of</strong> <strong>the</strong> permutati<strong>on</strong>s(1), (12)(34), (13)(24), (14)(23)and C 4 is <strong>the</strong> group <strong>of</strong> order 2 formed by(1), (12)(34).


142 6. Special algebraic extensi<strong>on</strong>sK a = k( √ D) and is <strong>of</strong> degree 2 over k. Now K b /K a is <strong>of</strong> degree 3and is cyclic. Hence K b = K a (θ) whereθ∈Kis an element fixed by B 4but not by A 4 . Such as elements, for instance, isθ 1 = (y 1 + y 2 )(y 3 + y 4 ).θ 1 has 3 c<strong>on</strong>jugatesθ 1 ,θ 2 ,θ 3 obtained fromθ 1 by operating <strong>on</strong>θ 1 , byrepresentatives <strong>of</strong> cosets <strong>of</strong> A 4 /B 4 . Thusθ 2 = (y 1 + y 3 )(y 2 + y 4 )θ 3 = (y 1 + y 4 )(y 2 + y 3 ).164C<strong>on</strong>sider <strong>the</strong> polynomialϕ(x)=(x−θ 1 )(x−θ 2 )(x−θ 3 ).It is fixed under A 4 and so, its coefficients are in K a . A simple computati<strong>on</strong>shows thatϕ(x)= x 3 − 2x 2 x 2 + (x 2 2 − 4x 4)x+ x 2 3 .ϕ(x) is called <strong>the</strong> reducing cubic or <strong>the</strong> cubic resolvent. By <strong>the</strong>method adopted for <strong>the</strong> soluti<strong>on</strong> <strong>of</strong> <strong>the</strong> cubic, ifρis a primitive cuberoot <strong>of</strong> unity and M = K a (ρ), <strong>the</strong>n K b M, <strong>the</strong> composite, is a radicalextensi<strong>on</strong> <strong>of</strong> k in whichθ 1 ,θ 2 ,θ 3 lie.K c /K b is <strong>of</strong> degree 2 and so K c = K b (α) whereαis fixed under B 4 ,but not by C 4 . such as element isα=y 1 + y 2 .Nowα 2 = (y 1 + y 2 ) 2 =−(y 1 + y 2 )(y 3 + y 4 )=−θ 1 . Thus K c =K b ( √ −θ 1 ). Hence, if K b M=K d , <strong>the</strong>n K d (α) is a radical extensi<strong>on</strong> <strong>of</strong> kc<strong>on</strong>tainingα. Put nowT= K d (α,β)whereβ=y 1 +y 3 = √ −θ 3 . Then T is a radical extensi<strong>on</strong> <strong>of</strong> k c<strong>on</strong>tainingK. The indeterminacy signs in taking <strong>the</strong> square roots <strong>of</strong>−θ 1 and−θ 3can be fixed by observing that(y 1 + y 2 )(y 1 + y 3 )(y 1 + y 4 )= x 3 .


8. Solvable extensi<strong>on</strong>s 143we now havey 1 + y 2 = √ −θ 1 , y 3 + y 4 =− √ −θ 1y 1 + y 3 = √ −θ 2 , y 2 + y 4 =− √ −θ 2y 1 + y 4 = √ −θ 3 , y 2 + y 3 =− √ −θ 3 .for which y 1 , y 2 , y 3 , y 4 can be obtained. We have, hence, proved 165Theorem 18. If K has characteristic 2 or 3, <strong>the</strong>n <strong>the</strong> cubic and biquadraticpolynomials over k can be radicals.Let us, now, assume that k has characteristic 3. Let x 3 + x 1 x 2 + x 2 x+x 3 be a cubic polynomial and K, its splitting field. K/k has <strong>the</strong> galoisgroup S 3 . Let L be <strong>the</strong> fixed field. K/k has <strong>the</strong> galois group S 3 . Let Lbe <strong>the</strong> fixed field <strong>of</strong> A 3 . ThenwhereL=k( √ D)D=(y 1 − y 2 ) 2 (y 2 − y 3 ) 2 (y 3 − y 1 ) 2 .K/L is now a cyclic extensi<strong>on</strong> <strong>of</strong> degree 3 and since k has characteristic3, K= L(ω), whereω 3 −ω−α=<strong>of</strong>or someα∈L. Thus K is a generalized radical extensi<strong>on</strong>. We shallnow determineωandαand <strong>the</strong>refrom, y 1 , y 2 and y 3 .In order to do this, we have to c<strong>on</strong>sider two cases, x 1 = o, andx 1 o.Let, first, x 1 = o. Then y 1 + y 2 + y 3 = o. Letσbe a generator <strong>of</strong> <strong>the</strong>galois group fo K/L and let notati<strong>on</strong> be so chosen thaty σ 1 = y 2, y σ 2 = y 3, y σ 3 = y 1.Since S K/L y 1 = y 1 + y σ 1 + yσ2 1= o, by Hilbert’s <strong>the</strong>orem, <strong>the</strong>re is aλin K such thaty 1 =λ σ −λ.


144 6. Special algebraic extensi<strong>on</strong>sAlso 166∑x 2 = y 1 y 2 + y 2 y 3 + y 3 y 1 = (λ σ −λ)(λ σ2 −λ σ )=−(λ+λ σ +λ σ2 ) 2 .σSince x 2 o (o<strong>the</strong>rwise, polynomials is not separable), we see thatx 2 =−t 2 , for some t∈L. The polynomial, <strong>the</strong>refore, has <strong>the</strong> formx 3 − t 2 x+ x 3 .Put now tx for x. Then <strong>the</strong> polynomial x 3 − x+ x 3 /t 3 has roots y 1t ,y 2t , y 3t . Letω= x 3/t 3 . Theny 1 = t ω P , y 2= t ω P + t, y 3= t ω P + 2tand thus <strong>the</strong> roots are all obtained.The indeterminacy in <strong>the</strong> sign <strong>of</strong> t does not cause any difficulty; for,if we use (−t) instead <strong>of</strong> t, <strong>the</strong>n, observing that− ω P =−ω , we see thatPy 1 =−t −ωP , y 3=−t −ωP − t, y 2=−t −ωP + tso that y 2 and y 3 get interchanged.We now c<strong>on</strong>sider <strong>the</strong> case x 1 o.Put x+a instead <strong>of</strong> x. Then <strong>the</strong> new polynomial isx 3 + x 1 x 2 + x(x 2 + 2x 1 a)+ x 3 + x 2 a+a 2 + a 3 .167Choose a so that x 2 + 2x 1 a=o. For this value <strong>of</strong> a,µ= x 3 + x 2 a+a 2 + a 3 o; for, o<strong>the</strong>rwise, <strong>the</strong> polynomial will be reducible and <strong>the</strong>roots are o, o,−x 1 . The roots <strong>of</strong> this new polynomial are y 1 − a, y 2 − a,y 3 − a.Let now 1 x be written for x, <strong>the</strong>n <strong>the</strong> polynomial is reduced to x3 +x 1µ x+ 1 µ . We are in <strong>the</strong> previous case. The roots, now, are 1y 1 − a , 1y 2 − a ,1y 3 − a . If−t2 = x 11, t∈L andν=µ µt 3 , <strong>the</strong>n K=L(ν ) and <strong>the</strong> rootsP


8. Solvable extensi<strong>on</strong>s 145y 1 , y 2 , y 3 are given byy 1 = a+ 1t ν , y 2 = a+P11t+t ν , y 3 = a+P2t+ t ν PSince <strong>the</strong> characteristic is 3, <strong>the</strong> biquadratic polynomial can be takenin <strong>the</strong> formx 4 + x 2 x 2 + x 3 x+ x 4 .The pro<strong>of</strong> is similar to <strong>the</strong> old <strong>on</strong>e( except that K b /K a is a cyclicω)extensi<strong>on</strong> <strong>of</strong> degree 3 and so K b = K a for a suitableωin K a . ToPfindω, we use <strong>the</strong> foregoing method. One finds that K is a generalizedradical extensi<strong>on</strong>.We now c<strong>on</strong>sider <strong>the</strong> case where k has characteristic 2. In this case,<strong>the</strong> cubic polynomial cab be taken in <strong>the</strong> form, x 3 + x 2 x+ x 3 . Let y 1 , y 2 ,y 3 be <strong>the</strong> roots. Theny 1 + y 2 + y 3 = oand <strong>the</strong>refore y 2 1 + y2 2 = y2 3and so <strong>on</strong>. PutThenω= y 1y 2+ y 2y 3+ y 3y 1,ω ′ = y 2y 1+ y 3y 2+ y 1y 3.ω+ω ′ = y 1(y 2 2 + y2 3 )+y 2(y 2 3 + y2 1 )+y 2(y 2 1 + y2 2 )y 1 y 2 y 3= 1,which shows thatωk, because ,<strong>the</strong>n, it will be symmetric and equaltoω ′ . Thus k(ω) is a quadratic subfield <strong>of</strong> K. A simple computati<strong>on</strong>shows thatωandω ′ =ω+1 are roots <strong>of</strong>x 2 − x+ x 3 2 .K/k(ω) is cyclic <strong>of</strong> degree 3 and <strong>on</strong>e uses <strong>the</strong> method <strong>of</strong> Lagrange 168to obtain a generalized radical extensi<strong>on</strong>.


146 6. Special algebraic extensi<strong>on</strong>sSuppose now that f (x) is a polynomial <strong>of</strong> degree 4. Let f (x) =x 4 + x 1 x 3 + x 2 x 2 + x 3 x+ x 4 . We have to c<strong>on</strong>sider two cases. Let, first,x 1 = o. Then <strong>the</strong> roots y 1 , y 2 , y 3 , y 4 satisfyAs before, puty 1 + y 2 + y 3 + y 4 = o.θ 1 = (y 1 + y 2 )(y 3 + y 4 ), θ 2 =...,θ 3 =···The reducing cubic is <strong>the</strong>nϕ(x)= x 3 + x 2 2 x+ x 3.Fur<strong>the</strong>rmoreθ 1 +θ 2 +θ 3 = o. Put nowω= θ 1θ 2+ θ 2θ 3+ θ 3θ 1.Thenωis fixed under A 4 but not under S 4 . Also K a = k(ω) is asimple pseudo radical extensi<strong>on</strong>.Now K b /K a is a cyclic extensi<strong>on</strong> <strong>of</strong> degree 3 and has to be solvedby Lagrange’s methods. Fur<strong>the</strong>r, K c /K b is <strong>of</strong> degree 2. Put nowThenω 1 = y 3y 1 y 2 y 4, ω ′ 1 = y 4y 1 y 2 y 3.ω 1 +ω ′ 1 = y2 3 + y2 4y 1 y 2 y 3 y 4= (y 1+ y 2 )(y 3 + y 4 )y 1 y 2 y 3 y 4= θ 1x 4.We assume x 3 o. Thenθ 1 o. If we putω 2 = x 4ω 1θ 1, ω ′ 1 = x 4ω ′ 1θ 1,169<strong>the</strong>nω 2 +ω ′ 2 = 1 and K c=K b (ω 2 ).In similar manner, K= K c (ω 3 ) whereω 3 = x 4θ 2,y 1y 2 y 3 y 4.


8. Solvable extensi<strong>on</strong>s 147Suppose, now, that x 1 o. Then, as before, we c<strong>on</strong>struct <strong>the</strong> fieldK b . In order to exhibit K c as a pseudo radical extensi<strong>on</strong> <strong>of</strong> K b , observethat y 1 + y 2 is fixed under C 4 but not under B 4 . Also(y 1 + y 2 ) 2 = (y 1 + y 2 )(y 3 + y 4 + x 1 )=θ 1 + x 1 (y 1 + y 2 )which shows that ( )y1 + y 2K c = K b .x 1( )y1 + y 3Similarly, K= K c .x 1Our c<strong>on</strong>tenti<strong>on</strong>s are completely established.


Chapter 7Formally real fields1 Ordered ringsA commutative ring R is said to be ordered if <strong>the</strong>re is an ordering relati<strong>on</strong>> (greater than) such that170(1) for every a∈R, a>o, a=o or−a>o.(1) a, b∈R, a>o, b>o⇒a+b>o, ab>o.We may <strong>the</strong>n define a>b by a−b>o. If a>b, <strong>the</strong>n, for any c inR, a+c>b+c and if c>o, ac>bc.If−a > o, we shall say a is negative and if a > o, a said to bepositive. We denote “a is negative” by a


150 7. Formally real fields171n<strong>on</strong>-negative elements <strong>of</strong> R. The <strong>on</strong>ly element which is both positiveand negative is zero. Clearly, if R is a any subset P <strong>of</strong> R satisfying <strong>the</strong>four c<strong>on</strong>diti<strong>on</strong>s above again determine an order <strong>on</strong> R.Two elements a, b∈R, aob are said to have <strong>the</strong> same oropposite signs according as ab>oor ab o for ao in R. Moregenerally, every finite sum <strong>of</strong> squares <strong>of</strong> elements <strong>of</strong> R is positive. Theseelements will be c<strong>on</strong>tained in <strong>the</strong> set <strong>of</strong> n<strong>on</strong>-negative elements in everyorder <strong>of</strong> R.Since R has a unit element 1 and 1 2 = 1, we have 1>o. Also,n·1=1+1···+1, n times so n>o. This proves1) An ordered ring with unit element has characteristic o.Let ao, bo be elements <strong>of</strong> R. Then a or−a is positive.Similarly b or−b is positive. Hence ab or−ab is positive whichproves that abo. Therefore2) An order ring is an integrity domain.We define an ordered field to be an ordered ring whose n<strong>on</strong>-zeroelements form a multiplicative commutative group. We have3) If k is an ordered field, its positive elements form a multiplicativegroup.For, if x∈k, x>o; <strong>the</strong>n xx −1 > o. If−x −1 > o, <strong>the</strong>n−xx −1 > owhich c<strong>on</strong>tradicts x −1 x>o. Thus x −1 > o and (3) is proved.Suppose R and R ′ are two rings, R⊂R ′ . If R ′ is ordered, clearlyR is ordered by means <strong>of</strong> <strong>the</strong> induced order. If however, R isordered, it may not be possible, in all cases, to extend this orderto R ′ . However, in case, it is always possible, namely4) If K is <strong>the</strong> quotient field <strong>of</strong> an ordered ring R <strong>the</strong>n <strong>the</strong> order in Rcan be uniquely extended to K.172Pro<strong>of</strong>. Let R have an order. It is an integrity domain. Any elementsx∈Kis <strong>of</strong> <strong>the</strong> form x= a , a, b∈R, bo. Let xo. Then ao.b


1. Ordered rings 151define x>o by ab>o. Then this defines an order in K. In <strong>the</strong> firstplace, <strong>the</strong> definiti<strong>on</strong> does not depend <strong>on</strong> <strong>the</strong> way x is expressed in <strong>the</strong>form a a′. Suppose x=b b ′ . Then ab′ = a ′ b. Since b ′ o, multiplyingboth sides <strong>of</strong> this equality by bb ′ , we haveab·b ′2 = a ′ b ′· b 2 .Since ab>o, b ′2 > o, b 2 > o, it follows that a ′ b ′ > o, that is a′b ′> o.In order to prove that A 1 ,..., A 4 are satisfies, let x= a b > o andy= a′b ′> o. Then ab>oand a′ b ′ > o.x+y= ab′ + a ′ bbb ′Now (ab ′ + a ′ b)bb ′ = ab·b ′2 + a ′ b ′· b 2 . Since ab>o, a ′ b ′ > o,b 2 > o, b ′2 > o, it follows that (ab ′ + a ′ b)bb ′ > o or x+y>o. In similarmanner, xy>o.Suppose x≥o and y≥o and x+y=o; <strong>the</strong>n x=o, y=o. For, ifx= a b , y= c ad+ bc, <strong>the</strong>n ab≥o, cd≥o and x+y=d bd□= o, so thatad+ bc=o. Thus abd 2 + cdb 2 = o, which means that since all elementsare in R, ab=o, cd=o, i.e. a=o=c.If x∈R, than x= ab a . If x=o, <strong>the</strong>n ba2 = o or b=o, so that <strong>the</strong>order coincides <strong>on</strong> R with <strong>the</strong> given order in R.That <strong>the</strong> extensi<strong>on</strong> is unique can be, trivially, seen.Since every ordered field has characteristic zero, it c<strong>on</strong>tains a sub- 173field isomorphic toΓ, <strong>the</strong> rati<strong>on</strong>al number fieldΓhas thus induced order.We shall now prove(5) Γ can be ordered in <strong>on</strong>e way <strong>on</strong>ly.For, if Z denotes <strong>the</strong> set <strong>of</strong> integers, <strong>the</strong>nΓis <strong>the</strong> quotient field <strong>of</strong> Z.On Z, <strong>the</strong>re is <strong>on</strong>ly <strong>on</strong>e order since 1>o and hence n=1+1+···+1>o.Thus, all natural integers have to be positive.


152 7. Formally real fields2 Extensi<strong>on</strong>s <strong>of</strong> orders174Hereafter, we c<strong>on</strong>sider ordered fields k. Our main task will be <strong>the</strong> study<strong>of</strong> extensi<strong>on</strong>s <strong>of</strong> orders in k to extensi<strong>on</strong> fields K <strong>of</strong> k. For this purpose,we introduce <strong>the</strong> noti<strong>on</strong> <strong>of</strong> a positive form <strong>on</strong> k.∑Let k be an ordered field. A polynomial m a i x 2 i , a i∈ k, is said to bean m-ary form over k. It is said to be positive if a i > o, i=1,...m. Anm-ary form is said to represent a∈k, if <strong>the</strong>re existα 1 ,...,α m in k suchthat ∑a i α 2 i= a.iClearly a positive form represents zero, <strong>on</strong>ly ifα 1 ,...,α m = o. Letk be an ordered field and K/k, an extensi<strong>on</strong> field. We shall proveTheorem 1. K has an order extending <strong>the</strong> order in k, if and <strong>on</strong>ly if,every positive form over k is still positive in K.Pro<strong>of</strong>. We have <strong>on</strong>ly to prove <strong>the</strong> sufficient. To this end, c<strong>on</strong>sider <strong>the</strong>family M <strong>of</strong> subsets{M α } <strong>of</strong> K having <strong>the</strong> following properties. Denote,by S , <strong>the</strong> set <strong>of</strong> elements in K <strong>of</strong> <strong>the</strong> form∑a i α 2 i ,a i ∈ k and a i > o andα i ∈ K. (α i can be all zero also).ii=1□Then1) M α ⊃ S 2) M α + M α ⊂ M α3) M α M α ⊂ M α 4) M α ∩ (−M α )=(o).This family is not empty, since S satisfies this c<strong>on</strong>diti<strong>on</strong>. In <strong>the</strong> usualway, we make M a partially ordered set and obtain a maximal set P. Wehave now to show thatP∪(−P)= Kand <strong>the</strong>n P will determine an order. Let xo be an elements <strong>of</strong> K whichis not in P. DefineQ=P− xP


2. Extensi<strong>on</strong>s <strong>of</strong> orders 153as <strong>the</strong> set <strong>of</strong> elements <strong>of</strong> <strong>the</strong> form a− xb, a, b∈P. Obviously Q satisfies(1). To see that Q satisfies (2), observe that if a− xb, c− xd are in Q<strong>the</strong>n(a− xb)+(c− xd)=(a+c)− x(b+d);but a, b, c, d being in P which is an element <strong>of</strong> M, a+c, b+d arein P. In a similar way Q satisfies (3). That Q satisfies (4) can be seenas follows: Let a− xb and c− xd be in Q with a, b, c, d, in P. Let(a+c)− x(b+d)=o. Then b+d=o. For, if b+do, <strong>the</strong>nx= a+cb+d = (a+c)(b+d) 1(b+d) 2and so is an element <strong>of</strong> P, which is a c<strong>on</strong>tradicti<strong>on</strong>. Hence b+d=0 175and, <strong>the</strong>refore, a+c=0. Since a, b, c, d are all in P, it follows thata=b=c=d=0. Thus Q∈ M. But Q⊃P so that, by maximality <strong>of</strong>P, Q=P. This means that−x∈P or x∈−P. The <strong>the</strong>orem is <strong>the</strong>reforeproved.IfΓis <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers and n is a positive integer, <strong>the</strong>nn=1+1+···+1. If r= a is a positive rati<strong>on</strong>al number, <strong>the</strong>nbab = ab 1+1···+1b2= b 2 ,so that every positive rati<strong>on</strong>al number is a sum <strong>of</strong> squares. This showsthat every positive form overΓcan be put in <strong>the</strong> form x 2 1 +···+ x2 n .If k is an ordered field <strong>the</strong>n ∑ α 2 i= 0,α i ∈ k implies thatα i = 0,ii=1,.... On <strong>the</strong> o<strong>the</strong>r hand, if k has <strong>the</strong> property that ∑ α 2 i= 0,α i ∈ kimpliesα i = 0, <strong>the</strong>n n=1+1+···+10 so that k has characteristic zero.Since every positive form overΓis essentially <strong>of</strong> <strong>the</strong> type x 2 1 +···+ x2 n,we have <strong>the</strong>Theorem 2. k is ordered if and <strong>on</strong>ly if ∑ ii=1, 2,....α 2 iα 2 i= 0,α i = k impliesα i = 0,It is obvious that, if, in a field k, ∑ = 0, withα 1 ,α 2 ,... not allizero, <strong>the</strong>n ∑−1= β i 2,i


154 7. Formally real fields176β i ∈ k. A field in which−1 is not a sum <strong>of</strong> squares is called a formallyreal field. From <strong>the</strong>orem 2, it follows that formally real fields areidentical with ordered fields.We shall, now, prove <strong>the</strong> following applicati<strong>on</strong> <strong>of</strong> <strong>the</strong>orem 1.Theorem 3. Let k be a formally real field with a given order and f (x),an irreducible polynomial in k[x]. Let a, b be two elements in k such thatf (a) f (b) 0 in k. This means that, in k[x],∑1+ a i {ϕ i (x)} 2 = f (x)ψ(x).iiSince f (x) has degree n and left side has degree≤ 2n−2,ψ(x) has,at most, <strong>the</strong> degree n−2. □We now use inducti<strong>on</strong> <strong>on</strong> n. If n=1, <strong>the</strong>se is nothing to prove.Assume <strong>the</strong>orem proved for n−1 instead <strong>of</strong> n. Let g(x) be in irreduciblefactor <strong>of</strong>ψ(x). Then g(x) has degree≤n−2. Now∑0


2. Extensi<strong>on</strong>s <strong>of</strong> orders 155Ifβis a root <strong>of</strong> g(x) inΩ, <strong>the</strong>n g(β) = f (β) = 0. But by inducti<strong>on</strong>hypo<strong>the</strong>sis, k(β) has an order extending <strong>the</strong> given order in k. Hence∑0=1+ a i {ϕ i (β)} 2 > 0,iwhich is a c<strong>on</strong>tradicti<strong>on</strong>. Thus our <strong>the</strong>orem is completely proved.Suppose k is an ordered field, let us denote, by|a|, <strong>the</strong> absolute value<strong>of</strong> a∈kby⎧0 if a=0⎪⎨|a|= a if a>0⎪⎩ −a if a M, <strong>the</strong>nt −n f (t)=1+a 1 t −1 +···+a n t −n > 0which shows that t n and f (t) have <strong>the</strong> same sign.Suppose now f (x) is irreducible and <strong>of</strong> odd degree. Then, if M isdefined as above,f (M) f (−M)0, <strong>the</strong>n <strong>the</strong> polynomial x 2 − a changes sign in k. 178For, (a+1) 2 > a and−a


156 7. Formally real fields3 Real closed fieldsWe had seen above that, under certain circumstances, an order in a fieldk can be extended to a finite algebraic extensi<strong>on</strong> <strong>of</strong> k. We shall c<strong>on</strong>sider,now, a class <strong>of</strong> fields called real closed fields defined as follows: k issaid to be real closed, if1) k is ordered2) k has no proper algebraic extensi<strong>on</strong> K with an order extending thatin k.Before we establish <strong>the</strong> existence <strong>of</strong> such fields, we shall obtainsome <strong>of</strong> <strong>the</strong>ir properties. We first proveTheorem 4. For a formally real field k, <strong>the</strong> following properties areequivalent:1) k(i) is algebraically closed, i being a root <strong>of</strong> x 2 + 1.2) k is real closed.3) Every polynomial <strong>of</strong> odd degree over k has a root in k and everypositive element <strong>of</strong> k is a square in k.179Pro<strong>of</strong>. 1⇒2. k(i) being <strong>of</strong> degree 2 over k, <strong>the</strong>re are no intermediaryfields, so that, k being ordered, and k(i) being algebraically closed, k hasno ordered algebraic extensi<strong>on</strong>.2 ⇒ 3. Suppose f (x) is a polynomial <strong>of</strong> odd degree. Then itchanges sign in k. Hence an irreducible factor <strong>of</strong> f (x), also <strong>of</strong> odd degree,changes sign in k. Ifαis a root <strong>of</strong> this irreducible factor, <strong>the</strong>n k(α)is ordered with an order extending that in k. Henceα∈k. If a>0 in k,<strong>the</strong>n x 2 − a changes sign in k. Thus √ a∈k.3⇒1. The po<strong>of</strong> <strong>of</strong> this part c<strong>on</strong>sists <strong>of</strong> three steps. Firstly, everyelement <strong>of</strong> K= k(i) is a square. For, let a+bi be an element <strong>of</strong> K, a,b∈k. Puta+ib=(c+id) 2


3. Real closed fields 157where c and d have to be determined in k. Since 1, i form a base <strong>of</strong> K/kwe getc 2 − d 2 = a, 2cd= b.Therefore, (c 2 + d 2 ) 2 = a 2 + b 2 . But a 2 + b 2 > 0 in k and, since everypositive element is a square, <strong>the</strong>re is aλ>0 in k such thatSolving for c 2 and d 2 , we havec 2 + d 2 =λ.c 2 = λ+a2 , d2 = λ−a2 .But, sinceλ 2 = a 2 + b 2 , it follows thatλ≥|a|,λ ≥|b|. Thereforeλ+a≥ 0, λ−a ≥ 0. Therefore2 2√ √λ+a λ−ac=±2 , d=± 2exist in k. The arbitrariness in <strong>the</strong> signs <strong>of</strong> c and d can be fixed from <strong>the</strong>fact that 2 cd= b.□This proves that every quadratic polynomial over k has a root in 180K. For, if ax 2 + bx+c ∈ k[x], <strong>the</strong>n, in an algebraic closure <strong>of</strong> K,−b± √ b 2 − 4acare its roots (a0). But √ b2a2 − 4ac∈K.The sec<strong>on</strong>d step c<strong>on</strong>sists in showing that every polynomial in k[x]has a root in K. Let f (x) be in k[x] and let N be its degree N= 2 n· q, qodd. We shall use inducti<strong>on</strong> <strong>on</strong> n. If n=0, <strong>the</strong>n N= q, and so whateverodd number q be, f (x) has a root already in k. Let us, <strong>the</strong>refore, assumeproved that every polynomial <strong>of</strong> degree 2 n−1 q ′ , where q ′ is odd, withcoefficients in k has a root in K. Let f (x) be <strong>of</strong> degree N= 2 n· q, q odd.Letα 1 ,...,α t be <strong>the</strong> distinct roots <strong>of</strong> f (x) in an algebraic closure <strong>of</strong> K.Letµ∈kbe an element to be suitably chosen later. Putλ i j (µ)=λ i j =α i +α j +µα i α j i, j=1,...,t, i j.


158 7. Formally real fieldsC<strong>on</strong>sider now <strong>the</strong> polynomial∏ϕ µ (x)= (x−λ i j ).i j181N(N− 1)This has degree = 2 n−1· q ′ , q ′ odd. Also, by every permutati<strong>on</strong><strong>of</strong> <strong>the</strong> symbols 1,...,t, <strong>the</strong> polynomial goes over into itself.2Thusϕ µ (x)∈k[x]. Since its degree satisfies <strong>the</strong> inducti<strong>on</strong> hypo<strong>the</strong>sis,for everyµ∈k, <strong>the</strong>re is an i and a j such thatλ i j (µ)∈K. Since k isan infinite field, <strong>the</strong>re existµ,µ ′ ,µµ ′ and both in k such thatλ i j (µ)andλ i j (µ ′ ) for two integers i and j are in K. This means thatα i α j and,hence,α i +α j are in K. The polynomial x 2 − x(α i +α j )+α i α j is apolynomial in K[x]. By what we proved above, both its roots are in K.Thus our c<strong>on</strong>tenti<strong>on</strong> is proved.The third step c<strong>on</strong>sists in proving that every polynomial in K[x],has a root in K. For, let f (x) be a polynomial in K[x]. Letσbe <strong>the</strong>generating automorphism <strong>of</strong> K/k. It is <strong>of</strong> order 2. Denote by f σ (x)<strong>the</strong> polynomial obtained from f by applyingσ <strong>on</strong> <strong>the</strong> coefficients <strong>of</strong> f .Thenϕ= f (x) f σ (x) is a polynomial in k[x]. The sec<strong>on</strong>d step shows thatϕ has a rootαin K. Fur<strong>the</strong>rmore ifαis a root <strong>of</strong>ϕ,α σ is also a root <strong>of</strong>ϕ, so that ei<strong>the</strong>rα is a root <strong>of</strong> f (x) orα σ is a root <strong>of</strong> f (x).We have thus proved <strong>the</strong>orem 4 completely.We deduce from this an important corollary due to Artin andSchreier.Corollary 1. IfΩis an algebraically closed field and K a subfield suchthat 1


3. Real closed fields 159Hence every sum <strong>of</strong> two squares and, hence, <strong>of</strong> any number <strong>of</strong>squares is a square. Therefore∑−1=iis impossible in K. By <strong>the</strong>orem 2, <strong>the</strong>refore, K is formally real. □ 182This proves that <strong>the</strong> real closed fields are those and <strong>on</strong>ly those whichare such that <strong>the</strong>ir algebraic closures are finite over <strong>the</strong>m.We have againCorollary 2. A real closed field has <strong>on</strong>ly <strong>on</strong>e order.For, <strong>the</strong> set <strong>of</strong> positive elements coincides with <strong>the</strong> set <strong>of</strong> squares <strong>of</strong><strong>the</strong> elements <strong>of</strong> <strong>the</strong> field.This shows that, if <strong>on</strong> ordered field has two distinct orders, it hasalgebraic extensi<strong>on</strong>s which are ordered. It must be remembered that ifa field has <strong>on</strong>ly <strong>on</strong>e order, it is not necessarily real closed. The rati<strong>on</strong>alnumber field, for example, has <strong>on</strong>ly <strong>on</strong>e order.Suppose k is a real closed field. Then every irreducible polynomialin k[x] is <strong>of</strong> degree <strong>on</strong>e or two. Suppose f (x) is a polynomial in k[x] anda, b in k such thatf (a) f (b)


160 7. Formally real fieldsAll <strong>the</strong> roots <strong>of</strong> f (x) that lie in k lie between±M.Let k be a real closed field and f (x) a polynomial in k[x]. Let f ′ (x)be its derivative. Putϕ 0 = f ,ϕ 1 = f ′ . Since k[x] is a Euclidean ring,define, by <strong>the</strong> Euclidean algorithm, <strong>the</strong> polynomialsϕ 0 = A 1 ϕ 1 −−ϕ 2ϕ 1 = A 2 ϕ 2 −−ϕ 3... ...ϕ r−1 = A r ϕ r .It is <strong>the</strong>n well-known thatϕ r (x) is <strong>the</strong> greatest comm<strong>on</strong> divisor <strong>of</strong>ϕ 0andϕ 1 . The sequenceϕ 0 ,ϕ 1 ,...,ϕ r <strong>of</strong> polynomials in k[x], is known as<strong>the</strong> Sturmian polynomial sequence.Let a∈k be such thatϕ 0 (a)0. Thenφ r (a)0. C<strong>on</strong>sider <strong>the</strong>set <strong>of</strong> elementsϕ 0 (a),ϕ 1 (a),...,ϕ r (a) in k. The n<strong>on</strong>-zero <strong>on</strong>es am<strong>on</strong>g<strong>the</strong>m have a sign. Denote, byω(a), <strong>the</strong> number <strong>of</strong> changes <strong>of</strong> sign in <strong>the</strong>sequence <strong>of</strong> elements,ϕ 0 (a),ϕ 1 (a),...,ϕ r (a),in this order, taking <strong>on</strong>ly <strong>the</strong> n<strong>on</strong>-zero elements. A very important <strong>the</strong>oremdue to Sturm is184Theorem 6. Let b and c be two elements <strong>of</strong> k, b


3. Real closed fields 161so that (x−α) t−1 is <strong>the</strong> highest power <strong>of</strong> <strong>of</strong> x−α, that dividesϕ 1 (x).Hence¯ϕ 0 (x)=(x−α)ψ 2 (x)¯ϕ 1 (x)=tψ 2 (x)+(x−α)ψ 3 (x),ψ 2 (x) andψ 3 (x) being polynomials over k. Note thatϕ¯1 (x) is not <strong>the</strong>derivative <strong>of</strong> ¯ϕ 0 (x). We shall drop <strong>the</strong> ‘bars’ <strong>on</strong> <strong>the</strong>ϕ ′ s and write <strong>the</strong>masϕ 0 ,ϕ 1 ,...,ϕ r−1 ,ϕ r = 1 andϕ 0 having no multiple roots. Note thatω(b) orω(c) is not altered by doing <strong>the</strong> above. □The finite number <strong>of</strong> polynomialsϕ 0 ,ϕ 1 ,...,ϕ r−1 have <strong>on</strong>ly finitelymany roots between b and c. By means <strong>of</strong> <strong>the</strong>se roots, we shall split <strong>the</strong>interval (b, c) into finitely many subintervals, <strong>the</strong> end points <strong>of</strong> whichare <strong>the</strong>se roots. We shall study how <strong>the</strong> functi<strong>on</strong>ω(a) changes as a runsfrom b to c.1) No two c<strong>on</strong>secutive functi<strong>on</strong>s <strong>of</strong> <strong>the</strong> Sturmian series ϕ 0 (x), 185ϕ 1 (x),...,ϕ r−1 (x) can vanish at <strong>on</strong>e and <strong>the</strong> same point, inside <strong>the</strong>interval (b, c). For, suppose b


162 7. Formally real fieldsis true <strong>of</strong>ϕ l+1 . Thus, whatever signϕ l might have in L and R, <strong>the</strong>functi<strong>on</strong>ω(a) remains c<strong>on</strong>stant when a goes from L to R crossing azero <strong>of</strong>ϕ l , 0


3. Real closed fields 163187Pro<strong>of</strong>. 1) Let f (x) be a polynomial in k[x] andα 1 ,...,α t <strong>the</strong> distinctroots <strong>of</strong> f (x) in K. Letα ∗ 1 ,...,α∗ t be <strong>the</strong> distinct roots <strong>of</strong> f (x) inK ∗ . Put L = k(α 1 ,...,α t ) and L ∗ = k(α ∗ 1 ,...,α∗ t ). Since L/k isfinite, L = k(ξ) for someξin K. Supposeϕ(x) is <strong>the</strong> minimumpolynomial <strong>of</strong>ξ in k[x]. Letξ ∗ be a root <strong>of</strong>ϕ(x) in K ∗ . Then k(ξ) andk(ξ ∗ ) are k-isomorphic. Ifρis this isomorphism, <strong>the</strong>nρξ=ξ ∗ . Butk(ξ)= L=k(α 1 ,...,α t ). Henceρα 1 ,...,ρα t will be distinct roots<strong>of</strong> f (x) in K ∗ . Thus L ∗ = k(ξ ∗ ). HenceL≃ L ∗ .2) Supposeϕ(x) is any polynomial in k[x],β 1 ,...,β s its distinct rootsin K. Letβ ∗ 1 ,...,β∗ s be <strong>the</strong> corresp<strong>on</strong>ding roots in K∗ . C<strong>on</strong>sider all<strong>the</strong> positive quantities am<strong>on</strong>gβ i −β j , i j. Their square roots existin K. Letψ(x) be a polynomial in k[x], am<strong>on</strong>g whose roots are <strong>the</strong>sesquare roots and letδ 1 ,...,δ g be <strong>the</strong> roots <strong>of</strong>ψ(x) in K,δ ∗ 1 ,...,δ∗ g<strong>the</strong> corresp<strong>on</strong>ding roots in K ∗ . Then, from above,F= k(β 1 ,...,β s , δ 1 ,...,δ g )≃≃ k(β ∗ 1 ,...,β∗ s , δ∗ 1 ,...,δ∗ g )=F∗ .Letτbe this isomorphism. Let notati<strong>on</strong> be such thatτ(β i )=β ∗ iτ(δ i )=δ ∗ i .Supposeβ i >β j . Thenβ i −β j > 0 so thatβ i −β j =δ 2 t , for some t.Also,τ(β i −β j )=β ∗ i−β ∗ j . Butτ(β i −β j )=τ(δ 2 t )=δ ∗2t .Henceβ ∗ i−β ∗ j =δ∗2 t> 0, which proves thatβ ∗ i>β ∗ j .The isomorphismτ between F and F ∗ preserves order between <strong>the</strong> 188roots <strong>of</strong>ϕ(x) in K.


164 7. Formally real fields3) In order, now, to c<strong>on</strong>struct <strong>the</strong> isomorphism between K and K ∗ , weremark that any such isomorphism has to preserve order. For, ifσisthis isomorphism andα>βin K, <strong>the</strong>nα−β=δ 2 so thatσ(α−β)=σ(δ 2 )=(σ(δ)) 2 > 0so thatσα>σβ. We shall, <strong>the</strong>refore, c<strong>on</strong>struct an order preservingmap which we shall show to be an isomorphism.4) Letαbe an element in K, h(x) its minimum polynomial over k. Letα 1 ,...,α t be <strong>the</strong> distinct roots <strong>of</strong> h(x) in K and let notati<strong>on</strong> be sochosen thatα,


3. Real closed fields 165Theorem 8. If k is an ordered field with a given order andΩ, its algebraicclosure, <strong>the</strong>re exists inΩ, upto k-isomorphism, <strong>on</strong>ly <strong>on</strong>e realclosed field K with an order extending <strong>the</strong> given order in k.Pro<strong>of</strong>. Let V be <strong>the</strong> family <strong>of</strong> formally real subfields <strong>of</strong>Ω/k which havean order extending that in k. V is not empty, since k∈V. We partiallyorder V by inclusi<strong>on</strong>. Let{k α } be a totally ordered subfamily <strong>of</strong> V. LetK 0 = ⋃ k α . Then K 0 is a field which is c<strong>on</strong>tained in V. This can beαeasily seen. By Zorn’s lemma, <strong>the</strong>re exists a maximal element K in V.K has an order extending <strong>the</strong> order in k. To prove that K is real closed, letf (x) be a polynomial <strong>of</strong> odd degree over K. It changes sign. Therefore<strong>the</strong>re is an irreducible factor, also <strong>of</strong> odd degree, which changes signin K. This factor must have a root in K. Else, by <strong>the</strong>orem 3 <strong>the</strong>reexists an algebraic extensi<strong>on</strong> with an order extending that in k. This willc<strong>on</strong>tradict maximality <strong>of</strong> K. In a similar way, every positive element <strong>of</strong>K is a square. By <strong>the</strong>orem 4, K is real closed. If K and K ∗ are two realclosed subfields with orders extending that in k, <strong>the</strong>n, by <strong>the</strong>orem 7, <strong>the</strong>y 190are k-isomorphic.□Suppose now that k is a perfect field andΩ, its algebraic closure.Let G be <strong>the</strong> galois group <strong>of</strong>Ω/K. If G has elements <strong>of</strong> finite order (notequal to identity), let K be <strong>the</strong> fixed field <strong>of</strong> <strong>the</strong> cyclic group generatedby <strong>on</strong>e <strong>of</strong> <strong>the</strong>m. Then (Ω : K) is finite and by Artin-Schreier <strong>the</strong>oremthis order has to be two. Thus any element <strong>of</strong> finite order in G has tohave <strong>the</strong> order two. Fur<strong>the</strong>rmore, in this case, k is an ordered field.On <strong>the</strong> o<strong>the</strong>r hand, if k is an ordered field andΩ, its algebraic closure,<strong>the</strong>re exists, <strong>the</strong>n by <strong>the</strong>orem 8, a real closed subfield <strong>of</strong>Ω/k, sayK. This means that G has an element <strong>of</strong> order 2. Moreover no two elements<strong>of</strong> order 2 commute. For ifα,βare <strong>of</strong> order 2 and commute, <strong>the</strong>n1,α,β,αβ is a group order 4 which must have a fixed field L such that(Ω : L)=4. This is impossible, by Artin-Schreier <strong>the</strong>orem. Hence <strong>the</strong>Theorem 9. If k is a perfect field,Ω its algebraic closure and G <strong>the</strong>galois group <strong>of</strong>Ω/k <strong>the</strong>n G has elements <strong>of</strong> finite order if and <strong>on</strong>ly if kis formally real. Also, <strong>the</strong>n, all <strong>the</strong>se elements have order 2 and no two<strong>of</strong> <strong>the</strong>m commute.


166 7. Formally real fields4 Completi<strong>on</strong> under an orderLet k be a formally real field with a given order.functi<strong>on</strong>|| <strong>on</strong> k with values in k such thatWe had defined a|ab|=|a|·|b|,|a+b|≤|a|+|b|.191This implies that|a|−|b|≤|a−b|.Also a→|a| is a homomorphism <strong>of</strong> k ∗ into <strong>the</strong> set <strong>of</strong> positive elements<strong>of</strong> k. The functi<strong>on</strong>|| defines a metric <strong>on</strong> <strong>the</strong> field k. We definea Cauchy sequence in k to be a sequence (a 1 ,...,a n ,.) <strong>of</strong> elements <strong>of</strong> ksuch that for everyε>0 in k, <strong>the</strong>re exists n 0 , an integer such thatObviously, if m>n 0 + 1,| a n − a m |n 0 .|a m |=|a m − a no − a no |0in k, <strong>the</strong>re is an integer n 0 = n 0 (ε) such that| a n |n 0 .The sum and product <strong>of</strong> two Cauchy sequence is defined as follows:-(a 1 , a 2 ,...)+(b 1 , b 2 ,...)=(a 1 + b 1 , a 2 + b 2 ,...)(a 1 , a 2 ,...)−(b 1 , b 2 ,...)=(a 1 + b 1 , a 2 + b 2 ,...)and it is easy to verify that <strong>the</strong> Cauchy sequences in k form a ring R and<strong>the</strong> null sequences, an ideal Y <strong>of</strong> R. We assert that Y is a maximal


4. Completi<strong>on</strong> under an order 167ideal. For, let (a 1 ,...) be a Cauchy sequence in k which is not a nullsequence. Then <strong>the</strong>re exists aλ>0 in k and an integer n such that| a m |>λ, m>n. (1)For, if not, for everyε>0 and integer n, <strong>the</strong>re exist an infinity <strong>of</strong> 192m>n for which| a m | n 0 such that|a m0 |m 0 ,|a m |≤|a m − a m0 |+|a m0 < 2εwhich proves that (a 1 ,...) is a null sequence, c<strong>on</strong>tradicting our assumpti<strong>on</strong>.Let 1 be <strong>the</strong> unit element <strong>of</strong> k. Then <strong>the</strong> sequence (1, 1,...) is aCauchy sequence and is <strong>the</strong> unit element in R. Let c=(a 1 ,...) be inR but not in Y . Let m be defined as in (1). Then c 1 = (0, 0,...0, a −1m,a −1m+1,...) is also a Cauchy sequence. For, letε>0and n, an integer sothat| a n1 − a n2 | n 0 .Then ∣ ∣∣∣∣∣1a n1− 1a n2∣ ∣∣∣∣∣=1|a n1 ||a n2 |∣∣a n2 − a n2∣ ∣∣< ελ 2,if n 1 , n 2 > max(m, n 0 ). Also cc 1 = (0, 0, 0,...,1, 1,...) which provesthat cc 1 ≡ (1, 1, 1,... (modY ). This proves that Y is a maximal idealand, <strong>the</strong>refore,1) R/Y is a field ¯k.¯k is called <strong>the</strong> completi<strong>on</strong> <strong>of</strong> k under <strong>the</strong> given order. For everya∈k, c<strong>on</strong>sider <strong>the</strong> Cauchy sequence ā=(a, a,...). Then a→ā is an<strong>on</strong>-trivial homomorphism <strong>of</strong> k into ¯k.Since ¯k is a field, this is an isomorphism. ¯k thus c<strong>on</strong>tains a subfield 193isomorphic to k. We shall identify it with k itself.


168 7. Formally real fields(2) ¯k is an extensi<strong>on</strong> field <strong>of</strong> k.We shall now make ¯k an ordered field with an order which is <strong>the</strong>extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> order in k. To this end, define a sequence c=(a 1 ,...,)<strong>of</strong> R to be positive if <strong>the</strong>re is anε>0 and an n 0 = n 0 (ε) such thata n >ε, n>n 0 .If b=(b 1 ,...) is a null sequence, <strong>the</strong>nIf p>max(m, n 0 ), <strong>the</strong>n|b n |m=m(ε).a p + b p >ε/2which shows that a+b is also a positive sequence. The definiti<strong>on</strong> <strong>of</strong>positive sequence, <strong>the</strong>refore, depends <strong>on</strong>ly <strong>on</strong> <strong>the</strong> residue class mod Y .Let P denote <strong>the</strong> set <strong>of</strong> residue classes c<strong>on</strong>taining <strong>the</strong> positive sequencesand <strong>the</strong> null sequence. We shall show that P determines anorder in ¯kFirst, let c 1 and c 2 be two positive sequences. There existε 1 > 0,ε 2 > 0 and two integers n 1 and n 2 such thata p > E 1 , p>n 1 ,b p > E 2 , p>n 2 ;if p>max(n 1 , n 2 ), <strong>the</strong>na p + b p >ε 1 +ε 2 ,194so that c 1 + c 2 is a positive sequence or P+ P⊂P. In a similar manner,PP⊂P.Let now c=(a 1 ,...) be not a null sequence. Then c and−c cannotboth be positive. For <strong>the</strong>n, <strong>the</strong>re existε,ε ′ both positive and integers n,n ′ such that ⎧⎪ ⎨a p >ε, p>n⎪ ⎩−a p >ε ′ , p>n.


4. Completi<strong>on</strong> under an order 169If p>max(n, n 1 ), <strong>the</strong>n0=a p − a p >ε+ε ′ > 0,which is absurd. Thus P∩(−P)=(0).Suppose now that c=(a 1 ,...) is not a null sequence. Suppose itis not positive. Then−c=(−a 1 ,−a 2 ,...) is a positive sequence. For,o<strong>the</strong>rwise, for everyεand every n,−a p n.But, c being not positive, we havea p n 1 .c being a Cauchy sequence, <strong>the</strong>re exists n 0 withHence, if p>max(n 0 , n 1 ),|a p − a q |n 0 .|a p |≤|a p − a q |+|a q |0, <strong>the</strong>re exists n 0 such that <strong>the</strong> elementā−(a n0 ) in k has all its elements, from some index <strong>on</strong>, less thanεinabsolute value. This justifies our notati<strong>on</strong>. One clearly haslim a n + lim b n = lim a n + b n .


170 7. Formally real fieldslim a n . lim b n = lim a n + b n .lim a n= lim a n,lim b n b nif (b 1 , b 2 ,...) is not a null sequence.IfΓis <strong>the</strong> rati<strong>on</strong>al number field, it is ordered and <strong>the</strong> completi<strong>on</strong> ¯Γunder this unique order is called <strong>the</strong> real number field.This method <strong>of</strong> c<strong>on</strong>structi<strong>on</strong> <strong>of</strong> <strong>the</strong> real number field goes back toCantor.5 Archimedian ordered fieldsOrdered fields can be put into two classes.A field k is said to be archimedian ordered if, for every two elementsa, b in k, a>0, b>0 <strong>the</strong>re exists an integer n such thatnb>a196and, similarly, <strong>the</strong>re is an integer m with ma>b.We may state equivalently that, for every a>0, <strong>the</strong>re is an integer nwithn>a.A field k is said to be n<strong>on</strong>-archimedian ordered if <strong>the</strong>re exists a>0such thata>nfor every integer n.Γ, <strong>the</strong> rati<strong>on</strong>al number field is archimedian ordered. C<strong>on</strong>sider, now,<strong>the</strong> ringΓ[x] <strong>of</strong> polynomials. Forf (x)=a 0 x n + a 1 x n−1 +···+a n , a 0 0define f (x)>0, if a 0 > 0 as a rati<strong>on</strong>al number. That this is an order canbe verified easily. Also <strong>the</strong> order is n<strong>on</strong>-archimedian becausex 2 + 1>n,


5. Archimedian ordered fields 171for every integer n. This order can be extended toΓ(x).This examples shows that an archimedian order in k can be extendedinto a n<strong>on</strong>-archimedian order in an extensi<strong>on</strong> field which is transcendentalover k. That this is not possible in algebraic extensi<strong>on</strong>s is shown byTheorem 10. If k is archimedian ordered and K/k is algebraic withan order extending <strong>the</strong> order in k, <strong>the</strong> extended order in K is againarchimedian.Pro<strong>of</strong>. Letαbe> 0 in <strong>the</strong> extended order in K. Let f (x)= x n +a 1 x n−1 +···a n be <strong>the</strong> minimum polynomial <strong>of</strong>αin k[x]. C<strong>on</strong>sider <strong>the</strong> quantities 1971−a i , i=1,...,n. They are in k and since k and is archimedian ordered,<strong>the</strong>re exists an integer t>0 such thatt>1−a i , i=1,...,n.We now assert thatα


172 7. Formally real fields198In order to prove <strong>the</strong> inequality <strong>the</strong> o<strong>the</strong>r way round, let R be <strong>the</strong>ring <strong>of</strong> Cauchy sequences in k and Y , <strong>the</strong> maximal ideal formed bynull sequences. We shall show that every residue class <strong>of</strong> R/Y can berepresented by a Cauchy sequence <strong>of</strong> rati<strong>on</strong>al numbers. Therefore, letc=(a 1 , a 2 ,...) be a positive Cauchy sequence in k. Since k is archimedianordered, <strong>the</strong>re exists, for every n greater than a certain m, an integerλ n such thatλ n < na n < 1+λ nwhich means that∣ ∣∣∣∣a n − λ nn∣ < 1 n .Let d=(0, 0, 0,... λ mm ,λ m+1,...) be a sequence <strong>of</strong> rati<strong>on</strong>al numbers.Letε>0 be any positive quantity in k. There exists, <strong>the</strong>n, anm+1integer t such thatεt>1, since k is archimedian ordered. Then, forn>tand m,∣∣a n − λ n∣∣


5. Archimedian ordered fields 173That such a sequence can be found is easily seen. Put now199c n = b n + c−b2 n .Then c 0 , c 1 ,... is a decreasing sequenceb≤b n ≤ b n+1 ≤ c n+1 ≤ c n ≤ c.Also (b n ) and (c n ) are Cauchy sequences; for,| b n+1 − b n |< c−b2 n+1.Fur<strong>the</strong>rmore, <strong>the</strong> sequence (c n − b n ) is a null sequence. For,c n = b n = c−b2 nThere is, <strong>the</strong>refore, anαbetween b and c such thatα=lim b n = lim c n .By definiti<strong>on</strong> <strong>of</strong>λ n , f (c n )


Chapter 8Valuated fields1 Valuati<strong>on</strong>sLet k be a field. A valuati<strong>on</strong> <strong>on</strong> k is a functi<strong>on</strong>|| <strong>on</strong> k with valuesin <strong>the</strong> real number field satisfying200(1) | 0|= 0(2) | a|> 0, if a0(3) | ab|=| a|·|b|(4) | a+b|≤| a|+|b|where a and b are elements in k. It follows that a→| a| is a homomorphisms<strong>of</strong> k ∗ into <strong>the</strong> multiplicative group <strong>of</strong> positive real numbers. Ifwe denote by 1 <strong>the</strong> unit element <strong>of</strong> k, <strong>the</strong>n| 1|=| 1 2 |=| 1| 2 =| 1|·|1|so that| 1|= 1. Ifζ is a root <strong>of</strong> unity, say an n say an n th root <strong>of</strong> unity,<strong>the</strong>n1=|ρ n |=|ρ| nand so|ρ|= 1. Thus means that|−1|= 1 and so, for a∈k,|−a|=| a|.175


176 8. Valuated fieldsAlso, since a=a−b+b, we get| a|−|b|≤ a−b|.A valuati<strong>on</strong> is said to be trivial if|a|= 1 for all a0.Two valuati<strong>on</strong>s|| 1 and|| 2 are said to be equivalent if for every a0in k,| a| 1 < 1⇒| a| 2 < 1,| a| 1 = 1⇒| a| 2 = 1.201It is obvious that <strong>the</strong> above relati<strong>on</strong> between valuati<strong>on</strong>s is an equivalencerelati<strong>on</strong>. All valuati<strong>on</strong>s equivalent to a given valuati<strong>on</strong> form anequivalence class <strong>of</strong> valuati<strong>on</strong>s.If|| is a valuati<strong>on</strong> <strong>the</strong>n, for 0≤c≤1,| 1| c is also a valuati<strong>on</strong>. Weshall now proveTheorem 1. If|| 1 and|| 2 are equivalent valuati<strong>on</strong>s, <strong>the</strong>re exists a realnumber c>0 such that| a| 1 =| a| c 2for all a∈k.Pro<strong>of</strong>. Let us assume that|| 1 is n<strong>on</strong>-trivial. Then|| 2 is also n<strong>on</strong>-trivial.Also, <strong>the</strong>re exists a b∈ksuch that| b| 1 > 1,| b| 2 > 1. Let a∈k, a0.Then|a| 1 and|b| 1 being positive real numbers.| a| 1 =| b| λ 1whereλ= log|a| 1log|b| 1.□We approximate to <strong>the</strong> real numberλfrom below and from aboveby means <strong>of</strong> rati<strong>on</strong>al numbers. Let m | b| m/n1


2. Classificati<strong>on</strong> <strong>of</strong> valuati<strong>on</strong>s 177which means that|thata nb m| 1> 1. Since|| 1 and|| 2 are equivalent, this means| a| 2 >| b| m/n2.In a similar manner, if p/q>λ, <strong>the</strong>n| a| 2 0, our <strong>the</strong>orem follows.2 Classificati<strong>on</strong> <strong>of</strong> valuati<strong>on</strong>sA valuati<strong>on</strong> is said to be archimedian if for every a∈k, <strong>the</strong>re exists aninteger n=n(a) (that is ne, if e is <strong>the</strong> unit element <strong>of</strong> k) such that| a| 1.Pro<strong>of</strong>. If|| is archimedian, <strong>the</strong>re exists a∈k with| a|> 1 and aninteger n with| n|>| a|. This means that| n|> 1.□


178 8. Valuated fieldsLet|| be a valuati<strong>on</strong> and n, a rati<strong>on</strong>al integer so that| n|> 1. Let a anyelement <strong>of</strong> k. If| a|≤ 1, <strong>the</strong>n clearly| a| 1. Sincearchimedian axiom holds in real number fields, we have an integerm with| a|1. Then m=| n| λ(λ= log m > 0). Letµbe a positive integer greater thanλ. Thenlog|n|m


2. Classificati<strong>on</strong> <strong>of</strong> valuati<strong>on</strong>s 179Taking m th roots and making m→∞we get| a+b|≤ Max(| a|,| b|).The c<strong>on</strong>verse is trivial, since|n|=| 1+···+1|≤ 1.□We deduce easily 2045) If|| is n<strong>on</strong>-archimedian and|a|| b|, <strong>the</strong>n| a+b|= Max(| a|,| b|).Pro<strong>of</strong>. Let, for instance,|a|>| b|. ThenAlso a=a+b−b, so that| a+b|≤ Max(| a|,| b|)=| a|| a|≤ Max(| a+b|,| b|).But, since| a|>| b|,| a+b|≥| b|. Thus| a|≤| a+b| and ourc<strong>on</strong>tenti<strong>on</strong> is proved. □More generally, we have, if| a 1 |>| a j |, j1, <strong>the</strong>n| a 1 + a 2 +...a n |=| a 1 |.In <strong>the</strong> case <strong>of</strong> n<strong>on</strong>-archimedian valuati<strong>on</strong>s, many times, <strong>the</strong> so-calledexp<strong>on</strong>ential valuati<strong>on</strong> is used. It is defined thus: If|| 0 is an n<strong>on</strong>-archimedianvaluati<strong>on</strong>, define <strong>the</strong> functi<strong>on</strong>|| by| a|=− log|a| 0 , a0.This has a meaning since| a| 0 > 0 for a0. We introduce a quantity∞ which has <strong>the</strong> property∞+∞=∞∞+a=∞


180 8. Valuated fieldsfor any real number a anda∞ = 0for any real number a. Then|| satisfies1’) | 0|=∞2’) | a| is a real number3’) | ab|=| a|+|b|4’) | a+b|≥ Min (| a|,| b|).205Then|1|=0,|ρ|=0for a root <strong>of</strong> unityρand <strong>the</strong> valuati<strong>on</strong> is trivialif|a|=0 for a0. For two valuati<strong>on</strong>s|| 1 and|| 2 which are equivalent|a| 1 = c|a| 2 ,c〉0 being a real number.3 ExamplesFirst, letΓbe <strong>the</strong> finite field <strong>of</strong> q elements. Every element <strong>of</strong>Γ ∗ satisfies<strong>the</strong> polynomial x q−1 − 1. Therefore, any valuati<strong>on</strong>|| <strong>on</strong>Γis trivial.Let nowΓbe <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers.Let|| be an archimedian valuati<strong>on</strong> <strong>on</strong>Γ. It is enough to determine itseffect <strong>on</strong> <strong>the</strong> set <strong>of</strong> integers inΓ. There is an integer n such that|n|>1.Let m be any positive integer. Thenn=a 0 + a 1 m+···+a t m t ,[ ] log nwhere t≤ , 0≤a i < m. Therefore|a i |≤a i < m so thatlog m|n|≤m(t+1) max(1,|m| t ).


3. Examples 181Replace n by n r , where r is a positive integer. Then again, we haveMaking r→∞, we get1|n|≤m r (r log n 1log m + 1) r max(1,|m| t ).This proves that, since|n|>1,|n|≤max(1,|m| log nlog m).log n|n|≤|m| log mand|m|>1. 206Now we can repeat <strong>the</strong> argument with m and n interchanged andthus obtainlog n|m|≤|n| log mCombining <strong>the</strong> two inequalities we getlog|n|log n = log|m|log m .Since m is arbitrary, it follows that|m|=m Cwhere c>0 is a c<strong>on</strong>stant. Obviously, <strong>the</strong> valuati<strong>on</strong> is determined byits effect <strong>on</strong> positive integers. From <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> equivalence,|| isequivalent to <strong>the</strong> ordinary absolute value induced by <strong>the</strong> unique order inΓ.Let now|| be a n<strong>on</strong>-trivial n<strong>on</strong>-archimedian valuati<strong>on</strong>. It is enoughto determine its effect <strong>on</strong> Z, <strong>the</strong> ring <strong>of</strong> integers.Since|| is n<strong>on</strong>-trivial, c<strong>on</strong>sider <strong>the</strong> set Y <strong>of</strong> a∈Zwith|a|


182 8. Valuated fieldsAlso, if|a|


3. Examples 183208We shall denote <strong>the</strong> ordinary absolute valuati<strong>on</strong> by|| ∞ .Let us c<strong>on</strong>sider <strong>the</strong> case <strong>of</strong> a functi<strong>on</strong> field K over a ground fieldk and let L be <strong>the</strong> algebraic closure <strong>of</strong> k in K. L is called <strong>the</strong> field <strong>of</strong>c<strong>on</strong>stants <strong>of</strong> <strong>the</strong> functi<strong>on</strong> field K. The valuati<strong>on</strong>s <strong>on</strong> K that we shallc<strong>on</strong>sider shall always be such that|a|=<strong>of</strong>or a∈k. (We c<strong>on</strong>sider exp<strong>on</strong>ential valuati<strong>on</strong>). Hence valuati<strong>on</strong>s <strong>of</strong>functi<strong>on</strong> fields are always n<strong>on</strong>-archimedian, since <strong>the</strong> prime field is c<strong>on</strong>tainedin k.Let, now,αbe in L. Thenαsatisfies <strong>the</strong> equati<strong>on</strong>α n + a 1 α n−1 +···+a n = owhere a 1 ,...,a n ∈ k. If|| is a valuati<strong>on</strong> <strong>of</strong> K <strong>the</strong>n|α| n ≥ min(|α| n−1 ,...,|1|).From this, it follows that|α| ≥ 0. Also, since 1/α is algebraic,|α|≤0. Hence for allα∈L|α|=0.Thus <strong>the</strong> valuati<strong>on</strong> is trivial <strong>on</strong> <strong>the</strong> field <strong>of</strong> c<strong>on</strong>stants.We shall c<strong>on</strong>sider <strong>the</strong> simple case where K= k(x), x transcendentalover k. Here L=k. Let|| be a valuati<strong>on</strong> and let|x|


184 8. Valuated fieldsSuppose now that|x|≥0. As in <strong>the</strong> case <strong>of</strong> rati<strong>on</strong>al integers, c<strong>on</strong>sider<strong>the</strong> subset Y <strong>of</strong> k[x] c<strong>on</strong>sisting <strong>of</strong> polynomials f (x) with| f (x)|>0. Then, since for everyφ(x) in k[x],|ϕ(x)|≥0, it follows that Y is amaximal ideal generated by an irreducible polynomial p(x). As in <strong>the</strong> 209case <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al number field|R(x)|=λ|p(x)|where R(x)={p(x)} λ A(x) where A(x) and B(x) are prime to p(x) andB(x)λ is a rati<strong>on</strong>al integer. If we denote, by|| p(x) , this valuati<strong>on</strong> and putλ=ord p(x) R(x), <strong>the</strong>n|R(x)|=c ord p(x) R(x)where c=|p(x)| p(x) > 0. Every irreducible polynomial also gives rise toa valuati<strong>on</strong> <strong>of</strong> this type. HenceTheorem 3. A complete system <strong>of</strong> inequivalent valuati<strong>on</strong>s <strong>of</strong> k(x) isgiven by <strong>the</strong> valuati<strong>on</strong>s induced by irreducible polynomials in k[x] and<strong>the</strong> valuati<strong>on</strong> given by <strong>the</strong> difference <strong>of</strong> degrees <strong>of</strong> numerator and denominator<strong>of</strong> f (x) in k(x).4 Complete fieldsLet k be a field and|| a valuati<strong>on</strong> <strong>of</strong> it. The valuati<strong>on</strong> functi<strong>on</strong> defines<strong>on</strong> k a metric and <strong>on</strong>e can complete k under this metric. The method is<strong>the</strong> same as in <strong>the</strong> previous chapter and we give here <strong>the</strong> results withoutpro<strong>of</strong>s.A sequence (a 1 , a 2 ,...) <strong>of</strong> elements <strong>of</strong> k is said to be a Cauchy sequenceif for everyε>0, <strong>the</strong>re exists an integer n=n(ε) such that|a n1 − a n2 | n.It is a null sequence if for everyε>0, <strong>the</strong>re is an integer n such that|a m |n.


4. Complete fields 185210The Cauchy sequences form a commutative ring R and <strong>the</strong> null sequencesa maximal ideal Y , <strong>the</strong>rein. The quotient ¯k=R/Y is called<strong>the</strong> completi<strong>on</strong> <strong>of</strong> k under||. The mapping a→(a, a, a,...) is an isomorphism<strong>of</strong> k in ¯k and we identify this isomorphic image with k itself.We extend to ¯k <strong>the</strong> valuati<strong>on</strong>|| in k, in <strong>the</strong> following manner. The realnumber field ¯Γ is complete under <strong>the</strong> valuati<strong>on</strong> induced by <strong>the</strong> uniqueorder <strong>on</strong> it. So, if a∈ ¯k, <strong>the</strong>n a=(a 1 , a 2 ,...), a Cauchy sequence <strong>of</strong>elements <strong>of</strong> k. Put|a|= limn→∞|a n |That this is a valuati<strong>on</strong> follows from <strong>the</strong> properties <strong>of</strong> limits in ¯Γ.Also, <strong>the</strong> extend valuati<strong>on</strong> is archimedian or n<strong>on</strong>-archimedian, accordingas <strong>the</strong> valuati<strong>on</strong> in k is archimedian or n<strong>on</strong>-archimedian.For instance, if|| <strong>on</strong> k is n<strong>on</strong>-archimedian anda=(a 1 , a 2 ,...)b=(b 1 , b 2 ,...)are two elements <strong>of</strong> ¯k, <strong>the</strong>nanda+b=(a 1 + b 1 , a 2 ,+b 2 ,...)|a+b|−Max(|a|,|b|)= limn→∞(|a n + b n |−Max(|a n |,|b n |))which is certainly≤0,¯k is thus a complete valuated field.It may also be seen that <strong>the</strong> elements <strong>of</strong> k are dense in ¯k in <strong>the</strong> topol- 211ogy induced by <strong>the</strong> metric.Let c 1 + c 2 + c 3 +··· be a series in ¯k. We denote by S n <strong>the</strong> partialsumS n = c 1 + c 2 +···+c n .We say that c 1 + c 2 +···+c n +··· is c<strong>on</strong>vergent if and <strong>on</strong>ly if <strong>the</strong>sequence <strong>of</strong> partial sums S 1 , S 2 ,...,S n ,... c<strong>on</strong>verges. This means that,for everyε>0, <strong>the</strong>re exists an integer n=n(ε) such that|S m ′− S m |=|c m+1 +···+c m ′| n.


186 8. Valuated fieldsObviously c 1 , c 2 ,... is a null sequence in ¯k.In case <strong>the</strong> valuati<strong>on</strong> is n<strong>on</strong>-archimedian, we have <strong>the</strong> followingproperty:-1) The series c 1 + c 2 +···+c n +··· is c<strong>on</strong>vergent if and <strong>on</strong>ly ifc 1 , c 2 ,... is a null sequence.Pro<strong>of</strong>. We have <strong>on</strong>ly to prove <strong>the</strong> sufficiency <strong>of</strong> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>. Supposethat c n → 0; <strong>the</strong>n, for large n and m,|S n − S m |=|c m+1 + c m+2 +···+c n |≤ max(|c m+1 |,...,|c n |)and so tends to zero. This proves <strong>the</strong> c<strong>on</strong>tenti<strong>on</strong>.□212Note that this <strong>the</strong>orem is false, in case <strong>the</strong> valuati<strong>on</strong> is archimedian.Let k be a field and|| a valuati<strong>on</strong> <strong>on</strong> it. a→|a| is a homomorphism<strong>of</strong> k ∗ into multiplicative group <strong>of</strong> positive real numbers. Let G(k) denotethis homomorphic image. This is a group which we call <strong>the</strong> value group<strong>of</strong> k for <strong>the</strong> valuati<strong>on</strong>. If ¯k is <strong>the</strong> completi<strong>on</strong> <strong>of</strong> k by <strong>the</strong> valuati<strong>on</strong> in k,<strong>the</strong>n G(¯k) is value group <strong>of</strong> ¯k.Suppose|| is an archimedian valuati<strong>on</strong>. Then k has characteristiczero and c<strong>on</strong>tainsΓ, <strong>the</strong> rati<strong>on</strong>al number field as a subfield. OnΓ,|| is<strong>the</strong> ordinary absolute value. Since ¯k c<strong>on</strong>tains ¯Γ, <strong>the</strong> field <strong>of</strong> real numbers,it follows that1) G(¯k) is <strong>the</strong> multiplicative group <strong>of</strong> all positive real numbers.Also, because <strong>of</strong> <strong>the</strong> definiti<strong>on</strong> <strong>of</strong> <strong>the</strong> extended valuati<strong>on</strong>, it followsthat G(k) is dense in <strong>the</strong> group G(¯k).We shall now assume that|| is a n<strong>on</strong>-archimedian valuati<strong>on</strong>. We c<strong>on</strong>sider<strong>the</strong> exp<strong>on</strong>ential valuati<strong>on</strong>. Then G(k) is a subgroup <strong>of</strong> <strong>the</strong> additivegroup <strong>of</strong> all real numbers. We shall now prove2) G(¯k)=G(k).Pro<strong>of</strong>. For, let 0a∈ ¯k. Then a=(a 1 ,...) is a Cauchy sequence,not a null sequence in k. By definiti<strong>on</strong>,|a|=limn|a n |


4. Complete fields 187Now a n = a n − a+a so that|a n |≥min(|a n − a|,|a|).But, for n large,|a n − a|>|a| so that|a n |=|a| and our c<strong>on</strong>tenti<strong>on</strong> isestablished.□G(k) being an additive subgroup <strong>of</strong> <strong>the</strong> real number field is ei<strong>the</strong>rdense or discrete. The valuati<strong>on</strong> is <strong>the</strong>n called dense or discrete accordingly.In <strong>the</strong> sec<strong>on</strong>d case, <strong>the</strong>re existsπin k with smallest pos- 213itive value|π|·|π| is <strong>the</strong>n <strong>the</strong> generator <strong>of</strong> <strong>the</strong> infinite cyclic groupG(k)·π is called a uniformising parameter. It is clear thatπis notunique. For, if u∈k with|u|=0, <strong>the</strong>n|uπ|=|π| and uπ is also auniformising parameter.C<strong>on</strong>sider in k <strong>the</strong> set O <strong>of</strong> elements a with|a| ≥ o.O is <strong>the</strong>n anintegrity domain. For,|a|≥0,|b|≥0⇒|a+b|≥Min(|a|,|b|)≥0.Also|ab| = |a|+|b| ≥ 0. We call O <strong>the</strong> ring <strong>of</strong> integers <strong>of</strong> <strong>the</strong>valuati<strong>on</strong>. C<strong>on</strong>sider <strong>the</strong> set Y <strong>of</strong> elements a∈k with|a|>0. ThenY is a subset <strong>of</strong> O and is a maximal ideal in O. For, if a∈r andb∈Y , <strong>the</strong>n|ab|=|a|+|b|>0. Also, if a∈r but not in Y , <strong>the</strong>n|a|=0 and|a −1 |=0 so that if U is an ideal in O c<strong>on</strong>taining Y , <strong>the</strong>nU = Y or U = r. We call Y , <strong>the</strong> prime divisor <strong>of</strong> <strong>the</strong> valuati<strong>on</strong>.Since Y is maximal, r/Y is a field. We callπ/Y <strong>the</strong> residue classfield.Exactly <strong>the</strong> same noti<strong>on</strong>s can be defined for ¯k. We denote by O¯<strong>the</strong>ring <strong>of</strong> integers <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> so that O ¯ is <strong>the</strong> set <strong>of</strong> a∈ ¯k with|a|≥0. Y¯is <strong>the</strong> maximal ideal in O, ¯ hence <strong>the</strong> set <strong>of</strong> a∈ ¯k with|a|>0. Also O/ ¯ Y ¯ is <strong>the</strong> residue class field. ClearlyY = ¯ Y ∩ rWe now have


188 8. Valuated fields2) Every a∈k(¯k) has <strong>the</strong> property; a∈r(¯r) or a −1 ∈ Y ( ¯ Y ).This is evident since if aO( O),|a|0 and hence 214a −1 ∈ Y ( Y ¯ ).3) O( ¯ O) is integrally closed in k(¯k).Pro<strong>of</strong>. We should prove that everyαin k(¯k) which is a root <strong>of</strong> apolynomial <strong>of</strong> <strong>the</strong> type x n + a 1 x n−1 +···+a n , a 1 ,...,a n ∈ O( O), ¯ isalready in O( O). ¯ For, supposeα n + a 1 α n−1 +···+a n = oandαO( ¯ O). Thenα −1 ∈ Y ( ¯ Y ). Therefore1=−(a 1 α −1 + a 2 α −2 +···+a n α −n )and soo=|1|≥min(|a 1 α −1 |,...|a n α −n )>owhich is absurd□4) Every element in ¯ O is <strong>the</strong> limit <strong>of</strong> a sequence <strong>of</strong> elements in O andc<strong>on</strong>versely.Pro<strong>of</strong>. Let a=(a 1 ,...,a n ,...) be in ¯ O, a 1 ,...,a n ,... in k. Then, aswe saw earlier, for sufficiently large n|a n |=|a|.But|a|≥0 so that|a n |≥0. Thus, for sufficiently large n, all a ′ n s arein O. C<strong>on</strong>verse is trivial.We now prove5) There is a natural isomorphism <strong>of</strong> O/Y <strong>on</strong> ¯ O/ ¯ Y .□


4. Complete fields 189215Pro<strong>of</strong>. The elements <strong>of</strong> O/Y are residue classes a+Y , a∈r. Wenow make corresp<strong>on</strong>d to a+Y <strong>the</strong> residue class a+ Y ¯ . Then a+ Y ¯is an element <strong>of</strong> O/ ¯ Y ¯. The mapping a+Y → a+ Y¯is a homomorphism(n<strong>on</strong>-trivial) <strong>of</strong> O/Y into ¯℧/ Y ¯. Since both are fields, thisis an isomorphism into. In order to see that it is an isomorphism <strong>of</strong>O/Y <strong>on</strong>to O/ ¯ Y ¯ , let ā+ Y ¯ be any residue class in O/ ¯ Y ¯ . By (4)<strong>the</strong>refore, given any N> 0, <strong>the</strong>re exists a∈℧with|ā−a|>N> 0or ā−a∈ Y ¯. If we <strong>the</strong>n take a+Y, <strong>the</strong>n ā+ Y¯is <strong>the</strong> image <strong>of</strong>a+Y . This proves that <strong>the</strong> mapping is an isomorphism <strong>on</strong>to. □(5) enables us to choose, in k itself, a set <strong>of</strong> representatives <strong>of</strong> ¯℧/ ¯ Y ,<strong>the</strong> residue class field. We shall denote this set by R and assume thatit c<strong>on</strong>tains <strong>the</strong> zero element <strong>of</strong> O. Also it has to be observed that, ingeneral, R is not a field. It is not even an additive group.We now assume that|| is a discrete valuati<strong>on</strong>. Letπin O be a uniformisingparameter. Then clearly¯ Y = (π)is a principal ideal. Let a∈ ¯k. Then|a|/|π| is a rati<strong>on</strong>al integer, sinceG(k) is an infinite cyclic group. Put|a|/|π|=t. Then|aπ −t |=0. Ifwe call elements u in ¯k with|u|=0, units, <strong>the</strong>nwhere u is a unit.a=π t uLet R be <strong>the</strong> set defined above and a∈ ¯℧. Thena≡a 0 ( mod ¯ Y )with a 0 ∈ R. This means that (a−a 0 )π −1 is an integer (in ¯Ω). 216(a−a 0 )π −1 ≡ a 1 (mod ¯ Y ),


190 8. Valuated fieldswhere a 1 ∈ R. Thena≡a 0 + a 1 π(mod ¯ Y 2 )In this way, <strong>on</strong>e proves by inducti<strong>on</strong> thata≡a 0 + a 1 π+···+a m π m (mod) ¯ Y m+1 )where a 0 , a 1 ,...,a m ∈ R. Put b m = a 0 + a 1 π+···+a m π m .Then a≡b m (modY ¯m+1) which means thatC<strong>on</strong>sider <strong>the</strong> series|a−b m |≥m+1b 0 + (b 1 − b 0 )+(b 2 − b 1 )+···Then, since b m+1 − b m = a m+1 π m+1 , we see that|b m+1 − b m | increasesindefinitely. Hence <strong>the</strong> above series c<strong>on</strong>verges. Also, since its elementsare integers,is an element <strong>of</strong> ¯ O.b=b 0 + (b 1 − b 0 )+(b 2 − b 1 )+···Since b 0 + (b 1 − b 0 )+···+(b m − b m−1 )=b m , it follows thatb=limmb m .Thus we havea= limm→∞ b m= a 0 + a 1 π+a 2 π 2 +···217By <strong>the</strong> very method <strong>of</strong> c<strong>on</strong>structi<strong>on</strong> this expressi<strong>on</strong> for a is unique,<strong>on</strong>ce we have chosen R andπ.If a∈ ¯k, aπ t ∈ O ¯ for some rati<strong>on</strong>al integer t. Hence we have


4. Complete fields 1916) Every element a in ¯k has <strong>the</strong> unique expressi<strong>on</strong>a=∞∑a n π nn=−ta n ∈ R andπin ¯ O is a generator <strong>of</strong> Y . t is a rati<strong>on</strong>al integer.If t>0, we shall callh(a)=∑−1n=−ta n π n<strong>the</strong> principal part <strong>of</strong> a. If t≤0 we put h(a)=0. Clearly, h(a) is anelement in k. Also a−h(a)∈ O. ¯We now study <strong>the</strong> two important examples <strong>of</strong> <strong>the</strong> rati<strong>on</strong>al numberfield and <strong>the</strong> rati<strong>on</strong>al functi<strong>on</strong> field <strong>of</strong> <strong>on</strong>e variable.LetΓbe <strong>the</strong> field <strong>of</strong> rati<strong>on</strong>al numbers. We shall denote by|| ∞ <strong>the</strong>ordinary absolute value and by|| p <strong>the</strong> p-adic value for p, a prime. Ifa is an integer, a= p λ n 1 , (p, n 1 )=1.We put|a| p =λ log pand|a| ∞ = absolute value <strong>of</strong> a.It is <strong>the</strong>n clear that each <strong>of</strong> <strong>the</strong> n<strong>on</strong>-archimedian valuati<strong>on</strong>s <strong>of</strong>Γisdiscrete. Let us denote byΓ ∞ <strong>the</strong> completi<strong>on</strong> <strong>of</strong>Γby <strong>the</strong> archimedianvaluati<strong>on</strong> and byΓ p <strong>the</strong> completi<strong>on</strong> <strong>of</strong>Γby <strong>the</strong> p-adic valuati<strong>on</strong>.Γ ∞is clearly <strong>the</strong> real number field.If O p denotes <strong>the</strong> set <strong>of</strong> integers <strong>of</strong>Γ p and Y <strong>the</strong> prime ideal <strong>of</strong> <strong>the</strong>valuati<strong>on</strong> <strong>the</strong>nY = (p)A set <strong>of</strong> representatives <strong>of</strong> O p mod Y is given by <strong>the</strong> integers 0, 1, 2, 218..., p−1 as can be easily seen. Hence, by (6),


192 8. Valuated fields7) Every a∈Γ p is expressed uniquely in <strong>the</strong> formwhere a i = 0, 1, 2,..., p−1.a=∞∑a n p nn=−tThe elements <strong>of</strong>Γ p are called <strong>the</strong> p-adic numbers <strong>of</strong> Hensel.As before, we denote, by h p (a), <strong>the</strong> principal part <strong>of</strong> a at p. Clearlya−h p (a) is a p-adic integer.Let a be a rati<strong>on</strong>al number, a ∈ ℧ p ⇔ |a| p ≥ 0, that is a = b c ,(b, c)=1 and c is prime to p. Since <strong>on</strong>ly finitely many primes divideb and c, it follows that a∈℧ p for almost all p, that is except for afinite number <strong>of</strong> p. Hence h p (a)=0 for all except a finite number <strong>of</strong>primes. Hence for any a∑h p (a)phas a meaning. Also, a−h p (a) is a rati<strong>on</strong>al number whose denominatoris prime to p. Hence a− ∑ h p (a) is a rati<strong>on</strong>al number whosepdenominator is prime to every rati<strong>on</strong>al integer. Hence8) For every rati<strong>on</strong>al number a∑a− h p (a)≡0(mod1).p219This is <strong>the</strong> so-called partial fracti<strong>on</strong> decompositi<strong>on</strong> <strong>of</strong> a rati<strong>on</strong>alnumber.Let now k be an algebraically closed field and K = k(x) <strong>the</strong> field<strong>of</strong> rati<strong>on</strong>al functi<strong>on</strong>s <strong>of</strong> <strong>on</strong>e variable x. All <strong>the</strong> valuati<strong>on</strong>s are n<strong>on</strong>archimedian.Every irreducible polynomial <strong>of</strong> k[x] is linear and <strong>of</strong><strong>the</strong> form x−a. With every a∈k<strong>the</strong>re is <strong>the</strong> valuati<strong>on</strong>|| a associated,which is defined by| f (x)| a =λ,


4. Complete fields 193where f (x)∈k[x], f (x)=(x−a) λ ϕ(x),ϕ(a)0. If we denote by|| ∞ <strong>the</strong> valuati<strong>on</strong> by degree <strong>of</strong> f (x), <strong>the</strong>n, for f (x)∈k[x],| f (x)| ∞ =− deg f (x)Let K a and K ∞ denote <strong>the</strong> completi<strong>on</strong>s, respectively, <strong>of</strong> K at|| a and|| ∞ . If O a and O ∞ are <strong>the</strong> set <strong>of</strong> integers <strong>of</strong> K a and K ∞ , Y a and Y ∞<strong>the</strong> respective prime divisors, <strong>the</strong>nY a ={x−a}, Y ∞ ={ 1 x }.It is clear, <strong>the</strong>n, that℧ a /Y a and℧ ∞ /Y ∞ are both isomorphic to k andsince K c<strong>on</strong>tains k, we may take k itself as a set <strong>of</strong> representatives <strong>of</strong><strong>the</strong> residue class field. Any element f in K a is uniquely <strong>of</strong> <strong>the</strong> formf=a n ∈ k. Similarly, ifϕ∈K ∞ ,ϕ=∞∑a n (x−a) n ,n=−t∞∑b n x −n .n=−tAs before, if we denote by h a ( f ) and h ∞ ( f ) <strong>the</strong> principal parts <strong>of</strong>f∈ K for <strong>the</strong> two valuati<strong>on</strong>s, <strong>the</strong>n∑h a ( f )+h ∞ ( f )ahas a meaning since h a ( f )=0 for all but a finite number <strong>of</strong> aIf we defineϕ∈K to be regular ar a(∞) ifϕ∈℧ a (℧ ∞ ), <strong>the</strong>n for 220f∈ K, ∑f− h a ( f )awhere a may be infinity also, is regular at all, a∈kand also for <strong>the</strong>valuati<strong>on</strong>|| ∞ . Such an element, clearly, is a c<strong>on</strong>stant. Hence


194 8. Valuated fields9) If f∈ K <strong>the</strong>n∑f− h a ( f )= c<strong>on</strong>stantaC<strong>on</strong>versely, it is easy to see that <strong>the</strong>re exists, up to an additive c<strong>on</strong>stant,<strong>on</strong>ly <strong>on</strong>e f∈ K which is regular for all a∈kexcept a 1 ,...,a n(<strong>on</strong>e <strong>of</strong> which may be∞also) and with prescribed principal parts at<strong>the</strong>se a i . 9) gives <strong>the</strong> partial fracti<strong>on</strong> decompositi<strong>on</strong> <strong>of</strong> <strong>the</strong> rati<strong>on</strong>alfuncti<strong>on</strong> f .5 Extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> <strong>of</strong> a completen<strong>on</strong>-archimedian valuated field221We shall study <strong>the</strong> following problem. Suppose k is compute under avaluati<strong>on</strong>||. Can this valuati<strong>on</strong> be extended, and if so in how manyways, to a finite algebraic extensi<strong>on</strong> K <strong>of</strong> k ?We prove, firstLemma 1. Let k be a field complete under a valuati<strong>on</strong>||, and K a finitealgebraic extensi<strong>on</strong> <strong>of</strong> k. Letω 1 ,...,ω n be a basis <strong>of</strong> K/k. Let|| havean extensi<strong>on</strong> to K andn∑α ν = a iv ω i , a iv ∈ k,i=1v=1, 2, 3,... be a Cauchy sequence in K. Then a iv i=1, 2,...,nare Cauchy sequence in K.Pro<strong>of</strong>. We c<strong>on</strong>sider <strong>the</strong> Cauchy sequence{α v },m∑α v = a iv ω i , a iv ∈, ki=11≤m≤n and we shall prove that <strong>the</strong>{a iv } are Cauchy sequences in k.We use inducti<strong>on</strong> <strong>on</strong> m. Clearly, if m=1,α v = a iv ω 1and{α v } is a Cauchy sequence in K if and <strong>on</strong>ly if{a iv } is a sequence ink. □


5. Extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> <strong>of</strong> a complete. . . 195Suppose we have proved our statement for m−1≥1, instead <strong>of</strong> m.Writem−1 ∑α v = a iv ω i + a mv ω m .i=1If{a mv } is a Cauchy in k, <strong>the</strong>n{α v − a mv ω m } is a Cauchy sequencesin K and inducti<strong>on</strong> hypo<strong>the</strong>sis works. Let us assume that a mv is not aCauchy sequence in k. This means that <strong>the</strong>re exists aλ>0 and for everyv, an integerµ v such thatµ ν > vandK.|a m µ v − a mv |>λ.C<strong>on</strong>sider now <strong>the</strong> sequence{β v } in K withβ v = α µ v−α va mµv − a mv.Because <strong>of</strong> <strong>the</strong> above property, we see that{β v } is a null sequence inNowm−1 ∑( )ai µ v − a ivβ v −ω m = ω ia m µ v − a mvi=1and{β v −ω m } is a Cauchy sequence in K. Inducti<strong>on</strong> hypo<strong>the</strong>sis now 222works and so, if ( )aiµv − a ivlim = b i ,v→∞ a mµv − a mv<strong>the</strong>n∑−ω m = b i ω i , b i ∈ k.i=1This is impossible becauseω 1 ,...,ω m are linearly independent overk. Therefore{a mv } is a Cauchy sequence and our Lemma is <strong>the</strong>rebyproved.We shall now prove <strong>the</strong> following <strong>the</strong>orem c<strong>on</strong>cerning extensi<strong>on</strong> <strong>of</strong> 223valuati<strong>on</strong>.


196 8. Valuated fieldsTheorem 4. If <strong>the</strong> valuati<strong>on</strong>|| <strong>of</strong> a complete field k can be extended to afinite extensi<strong>on</strong> K, <strong>the</strong>n this extensi<strong>on</strong> is unique and K is complete under<strong>the</strong> extended valuati<strong>on</strong>.Pro<strong>of</strong>. That K is complete under <strong>the</strong> extended valuati<strong>on</strong> is easy to see.For, if{α v } is a Cauchy sequence in K and∑α v = a iv ω i , a iv ∈ k.,by <strong>the</strong> lemma, <strong>the</strong>{a iv }’s are Cauchy sequences. So, ifilim a iv= b i ∈ k,v→∞<strong>the</strong>nwhich is again in K.lim α γ=v→∞∑iω 1 limv→∞a iv =∑b i ω ii□We shall now prove that <strong>the</strong> extended valuati<strong>on</strong> is unique.From <strong>the</strong> lemma, it follows that if{α v } is a null sequence in K andα v = ∑ a iv ω i , a iv ∈ k, <strong>the</strong>n <strong>the</strong> a iv ’s are null sequences in k.iIn particular, ifα∈Kand|α|


5. Extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> <strong>of</strong> a complete. . . 197In a similar manner, if|α|>1, <strong>the</strong>n|Nα|>1. Thus we get|Nα|=1⇒|α|=1.Let nowβbe in K and writeβ= αnwhere n=(K : k)NαThen Nβ= (Nα)n(Nα) n . Thus|Nβ|=1.By <strong>the</strong> above, it means that|β|=1in <strong>the</strong> valuati<strong>on</strong>. Hence|α|= n√ |Nα|showing that <strong>the</strong> value <strong>of</strong>αin <strong>the</strong> extended valuati<strong>on</strong> is unique fixed. 224Our <strong>the</strong>orem is thus completely proved.In order to prove that an extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> is possible, weshall c<strong>on</strong>sider <strong>the</strong> case where k is complete under a discreten<strong>on</strong>-archimedian valuati<strong>on</strong>. Let O be <strong>the</strong> ring <strong>of</strong> integers Y , <strong>the</strong> primedivisor <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> and O/Y , <strong>the</strong> residue class field. We shall nowprove <strong>the</strong> celebrated lemma due HenselLemma 2. Let f (x) be a polynomial <strong>of</strong> degree m in O[x], g 0 (x), a m<strong>on</strong>icpolynomial <strong>of</strong> degree r≥1 and h 0 (x), a polynomial <strong>of</strong> degree≤m−rboth with coefficients in O such that1) f (x)≡g o (x)h o (x) (modY )2) g o (x) and h o (x) are coprime mod YThen <strong>the</strong>re exists polynomials g(x) and h(x) in O[x] such that⎫g(x)≡g o (x) ⎪⎬(mod Y ),h(x)≡h o (x)⎪⎭g(x) has <strong>the</strong> same degree as g o (x) and f (x)=g(x)· h(x).Pro<strong>of</strong>. We shall now c<strong>on</strong>struct two sequencesg o (x), g 1 , (x),... and h o (x), h 1 , (x),... satisfying<strong>of</strong> polynomialsg n (x)≡g n−1 (x)( mod Y n )


198 8. Valuated fieldsh n (x)≡h n−1 (x)( mod Y n )f n (x)≡g n (x)h n (x)( mod Y n+1 )g n (x) is a m<strong>on</strong>ic polynomial <strong>of</strong> degree r and h n (x) <strong>of</strong> degree≤ m−r. All<strong>the</strong> polynomials have coefficients in O. □225The polynomials are c<strong>on</strong>structed inductively. For n=0, g o (x) andh o (x) are already given and satisfy <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s. Assume now thatg o (x),...,g n−1 (x) and h o (x),...,h n−1 (x) have been c<strong>on</strong>structed so assatisfy <strong>the</strong> requisite c<strong>on</strong>diti<strong>on</strong>s.Since g n−1 (x) ≡ g o (x)(mod Y ) and h n−1 (x) ≡ h o (x)(mod Y ) andg 0 (x) and h o (x) are coprime mod Y , <strong>the</strong>re exists, for any polynomialf n (x) in O[x], two polynomials L(x) and M(x) withf n (x)≡L(x)g n−1 (x)+ M(x)h n−1 (x) (mod Y ).L(x) and M(x) are clearly not uniquely determined. We can replace L(x)by L(x)+λ(x)h n−1 (x) and M(x) by M(x)+λ(x)g n−1 (x).Letπbe a generator <strong>of</strong> <strong>the</strong> principal ideal Y . By inducti<strong>on</strong> hypo<strong>the</strong>sis,f n (x)=π −n ( f (x)−g n−1 (x)h n−1 (x))is an integral polynomial, so in O[x]. Since g n−1 (x) has degree r and ism<strong>on</strong>ic and h n−1 (x) degree≤ m−r, it is possible to choose M(x) and L(x)so that M(x) has degree


5. Extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> <strong>of</strong> a complete. . . 199g(x)=g o (x)+(g 1 (x)−g o (x))+···+(g n (x)−g n−1 (x))+···h(x)=h o (x)+(h 1 (x)−h o (x))+···+(h n (x)−h n−1 (x))+···Since g n (x)−g n−1 (x)=0(modπ n ), it follows that <strong>the</strong> corresp<strong>on</strong>dingcoefficients <strong>of</strong> <strong>the</strong> sequence <strong>of</strong> polynomials g 0 (x), g 1 (x),... formCauchy sequences in O. Since k is complete andg(x)= limn→∞g n (x),it follows that g(x)∈℧[x]. It is m<strong>on</strong>ic and is <strong>of</strong> degree r. In a similarway, b(x)∈℧[x] and has degree≤m−r.Also since f (x)−g n (x)h n (x)≡0(mody n+1 ), it follows that <strong>the</strong> coefficients<strong>of</strong> ( f (x)−g n (x)h n (x)) form null sequences. Hencef (x)=limng n (x)h n (x)=h n (x)=g(x)h(x)and our lemma is proved.We now deduce <strong>the</strong> following important .Lemma 3. Let f (x)= x n +a 1 x n−1 +···+a n be an irreducible polynomialk[x] , k satisfying hypo<strong>the</strong>sis <strong>of</strong> lemma 2. Then f (x)∈O[x] if and <strong>on</strong>lyif a n ∈ O.Pro<strong>of</strong>. It is clearly enough to prove <strong>the</strong> sufficiency <strong>of</strong> <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>. Leta n ∈℧, and if a 1 ,...,a n−1 (some or all <strong>of</strong> <strong>the</strong>m) are not in℧, <strong>the</strong>n <strong>the</strong>reis a smallest powerπ a , a>0, <strong>of</strong>πsuch thatπ a f (x)=b o x n + b 1 x n−1 +···+b nis a primitive polynomial in O[x]. Also, now b n ≡ 0( mod Y ). and 227at least <strong>on</strong>e <strong>of</strong> b 0 ,...,b n−1 is not divisible by Y . Let b r be <strong>the</strong> firstcoefficient from <strong>the</strong> right not divisible by Y . Thenπ a ≡ (b 0 x r +···b r )x n−r (mod Y )Since b r 0( mod Y ), Hensel’s lemma can be applied and we seethatπ a f (x) is reducible in O[x]. Thus f (x) is reducible in k[x] whichc<strong>on</strong>tradicts <strong>the</strong> hypo<strong>the</strong>sis. The lemma is <strong>the</strong>refore established. □


200 8. Valuated fieldsWe are now ready to prove <strong>the</strong> important <strong>the</strong>orem c<strong>on</strong>cerning extensi<strong>on</strong><strong>of</strong> discrete n<strong>on</strong>-archimedian valuati<strong>on</strong>s, namelyTheorem 5. Let k be complete under a discrete n<strong>on</strong>-archimedian valuati<strong>on</strong>||and K a finite algebraic extensi<strong>on</strong> over k. Then|| can be extendeduniquely to K and <strong>the</strong>n for anyαin K,|α|=1(K : k) |N K/kα|.Pro<strong>of</strong>. Because <strong>of</strong> Theorem 4, it is enough to prove that <strong>the</strong> functi<strong>on</strong>defined <strong>on</strong> K by1|α|=(K : k) |N K/kα|is a valuati<strong>on</strong> functi<strong>on</strong>. Clearly ,|0|=∞;|α| is a real number forα0.Also,We shall now prove that|αβ|=|α|+|β|.|α+β|≥min(|α|,|β|).228 ∣ Ifαorβis zero, <strong>the</strong>n <strong>the</strong> above is trivial. So letα0,β0. Since∣∣∣∣ α∣ ∣∣∣∣ β∣ or βα∣ is≥ 0, it is enough to prove that if|λ|≥0,|1+λ|≥0. □Let f (x)= x m + a 1 x m−1 +···+a m be <strong>the</strong> minimum polynomial <strong>of</strong>λin K over k, ThenNλ=((−1) m a m ) (K:k(λ)) .Also, N(1+λ) = (−1) n (1±a 1 ±···+a m ) (K:k(λ)) . If|Nλ ≥ 0|,<strong>the</strong>n|a m | ≥ 0 which , by lemma 3, means that|a 1 |,...,|a m |. Hence|N(1+λ)|≥0. Our <strong>the</strong>orem is proved.Incidentally it shows that <strong>the</strong> extended valuati<strong>on</strong> is discrete also.


6. <strong>Fields</strong> complete under archimedian valuati<strong>on</strong>s 2016 <strong>Fields</strong> complete under archimedian valuati<strong>on</strong>sSuppose k is complete under an archimedian valuati<strong>on</strong>. Then k has characteristiczero and c<strong>on</strong>tains, as a subfield, <strong>the</strong> completi<strong>on</strong> ¯Γ <strong>of</strong> <strong>the</strong> rati<strong>on</strong>alnumber field. barΓ(i) is, <strong>the</strong>n, <strong>the</strong> complex number field. Everycomplex number is to <strong>the</strong> form a+ib, a, b∈ ¯Γ. On ¯Γ, we have <strong>the</strong>ordinary absolute value. Define in ¯Γ(i) <strong>the</strong> functi<strong>on</strong>|z|=(a 2 + b 2 ) 1 2where z=a+ib. It is, <strong>the</strong>n, easy to verify that|| is a valuati<strong>on</strong> <strong>on</strong> ¯Γ(i)which extends <strong>the</strong> valuati<strong>on</strong> in ¯Γ. Also, by <strong>the</strong>orem 4, this is <strong>the</strong> <strong>on</strong>lyextensi<strong>on</strong> <strong>of</strong> <strong>the</strong> ordinary absolute value. We c<strong>on</strong>sider <strong>the</strong> case k⊃ ¯Γ(i)and prove <strong>the</strong> <strong>the</strong>orem <strong>of</strong> A. Ostrowski.Theorem 6. Let k⊃ ¯Γ(i) be <strong>the</strong> complex number field and let k be afield with archimedian valuati<strong>on</strong> and c<strong>on</strong>taining ¯Γ(i). If <strong>the</strong> valuati<strong>on</strong> ink is an extensi<strong>on</strong> <strong>of</strong> <strong>the</strong> valuati<strong>on</strong> in ¯Γ(i), <strong>the</strong>n k= ¯Γ(i).Pro<strong>of</strong>. If k ¯Γ(i), let a∈kbut not in ¯Γ(i). Denote by|| <strong>the</strong> valuati<strong>on</strong> in 229k. C<strong>on</strong>sider|a−z| for all k= ¯Γ(i). Since|a−z|1≥0, we haveρ=g· 12· b|a−z|≤0.There exists, <strong>the</strong>refore, a sequences z 1 ,...,z n ,.. <strong>of</strong> complex numberssuch thatlimn→∞ |a−z n|=ρ.But z n = z n − a+a and so|z n |≤|z n − a|+|a| which shows that <strong>the</strong>|z n |, for large n, are bounded. We may <strong>the</strong>refore, choose a subsequencez i1 , z i2 ,... c<strong>on</strong>verging to a limit point z o such thatρ= limn→∞|a−z in |=|a−z o |We have thus proved <strong>the</strong> existence <strong>of</strong> a z 0 in ¯Γ(i) such that b=a−z 0has|b|=ρ. Since, by assumpti<strong>on</strong>, a ¯Γ(i) we have|b|=ρ>0.□


202 8. Valuated fieldsρ, by definiti<strong>on</strong>, being g.l.b., it follows that|b−z|≥ρfor z∈ ¯Γ(i).C<strong>on</strong>sider <strong>the</strong> set <strong>of</strong> complex numbers z with|z|0 be anarbitrary rati<strong>on</strong>al integer andε, a primitive nth root <strong>of</strong> unity. Thenb n − z n = (b−z)(b−εz)...(b−ε n−1 z).230ThereforeHence|b−z|ρ n−1 ≤|b−z||b−εz|...|b−ε n−1 z|=|b n − z n |≤|b| n +|z| n =ρ n (1+( |z|ρ )n ).)|b−z|≤ρ(1+ |z|nρ n .But|z|


6. <strong>Fields</strong> complete under archimedian valuati<strong>on</strong>s 203which shows that all complex numbers are bounded in absolute value.This is a c<strong>on</strong>tradicti<strong>on</strong>. Hence our assumpti<strong>on</strong> that a ¯Γ(i) is false .The <strong>the</strong>orem is <strong>the</strong>reby proved,Before proving <strong>the</strong>orem 7 which gives a complete characterizati<strong>on</strong><strong>of</strong> all complete fields with archimedian valuati<strong>on</strong>, we shall prove a couple<strong>of</strong> lemmas.Lemma 4. Let k be complete under an archimedian valuati<strong>on</strong>|| andλ 231in k such that x 2 +λ is irreducible in k[x]. Then|1+λ|≥1.Pro<strong>of</strong>. If possible, let|1+λ| < 1. We c<strong>on</strong>struct, by recurrence, <strong>the</strong>sequence c 0 , c 1 , c 2 ,..., in k, defined as follows: -c 0 = 1c n+1 =−2− 1+λc nn=0, 1, 2,...It, <strong>the</strong>n, follows that|c n |≥1. For, if we have proved it upto c n−1 ,<strong>the</strong>n|c n |≥2− |1+λ| ≥ 1.|c n−1 |Thus c n does not vanish for any n. Also,|c n+1 − c n |= |1+λ||c n− c n−1 ||c n ||c n−1 |≤ρ|c n − c n−1 |whereρ=|1+λ|


204 8. Valuated fieldsLemma 5. If k is complete under an archimedian valuati<strong>on</strong>,||, <strong>the</strong>n thisvaluati<strong>on</strong> can be extended to k(i).232Pro<strong>of</strong>. If i∈k, <strong>the</strong>re is nothing to prove. Let ik. Then every element<strong>of</strong> k(i) is <strong>of</strong> <strong>the</strong> form a+ib, a, b∈k.The norm from k(i) to k <strong>of</strong>α=a+ib isNα=a 2 + b 2 .By <strong>the</strong>orem 4, <strong>the</strong>refore, it is enough to prove that|α|=|(a 2 + b 2 ) 2 1 |is a valuati<strong>on</strong> <strong>on</strong> k(i). By puttingλ= b2in <strong>the</strong> lemma 4, we see thata2 |a 2 + b 2 |≥a 2 . Therefore|(1+a) 2 + b 2 |≤1+|a 2 + b 2 |+2|a|≤ 1+|a 2 + b 2 |+2 √ |a 2 + b 2 |= (1+ √ |a 2 + b 2 |) 2 .This shows thatand our lemma is proved.|1+α|≤1+|α|□We now obtain a complete characterizati<strong>on</strong> <strong>of</strong> complete archimedianfields, namely,Theorem 7. The <strong>on</strong>ly fields complete under an archimedian valuati<strong>on</strong>are <strong>the</strong> real and complex numbers fields.Pro<strong>of</strong>. k has characteristic zero and since it is complete, it c<strong>on</strong>tains <strong>the</strong>field ¯Γ <strong>of</strong> real numbers. If k c<strong>on</strong>tains ¯Γ properly, <strong>the</strong>n we assert that kc<strong>on</strong>tains i. For, k(i), by lemma 5, is complete and k(i) c<strong>on</strong>tains ¯Γ(i) and,by <strong>the</strong>orem 6,k(i)= ¯Γ(i).□


7. Extensi<strong>on</strong> <strong>of</strong> valuati<strong>on</strong> <strong>of</strong> an incomplete field 205Therefore¯Γ(i)=k(i)⊃k⊃ ¯Γ.But (¯Γ(i) : ¯Γ)=2so that k=k(i)= ¯Γ(i).We have thus found all complete fields with archimedian valuati<strong>on</strong>.7 Extensi<strong>on</strong> <strong>of</strong> valuati<strong>on</strong> <strong>of</strong> an incomplete fieldSuppose k is a complete field under a valuati<strong>on</strong>|| and letΩbe its alge- 233braic closure. Then|| can be extended toΩby <strong>the</strong> prescripti<strong>on</strong>|α|=|Nα| 1 n ,where Norm is takes form k(α) over k and n=(k(α) : k). It is clear thatit defines a valuati<strong>on</strong> functi<strong>on</strong>. For, <strong>of</strong> K is a subfields <strong>of</strong>Ωand K/k isfinite and K c<strong>on</strong>tainsα <strong>the</strong>n, by properties <strong>of</strong> norms,|α|=|N K/k α| 1 m ,where m=(K : k). So, ifαandβare inΩ, we may take for K a fieldc<strong>on</strong>tainingαandβand with (K : k) finite.Fur<strong>the</strong>rmore, defined as such, <strong>the</strong> valuati<strong>on</strong> <strong>on</strong>Ωis dense because,if|α|>1, <strong>the</strong>n|α| 1/n has value as near 1 as <strong>on</strong>e wishes, by increasing nsufficiently. Also, for every n,α 1/n is inΩ.Also, letσbe an automorphism <strong>of</strong>Ω/k, andαinΩ. Then, by definiti<strong>on</strong><strong>of</strong> norm,Nα=N(σα)so that|α|=|σα|. Thus all c<strong>on</strong>jugates <strong>of</strong> an element have <strong>the</strong> samevalue.We shall now study how <strong>on</strong>e can extend a valuati<strong>on</strong> <strong>of</strong> an incompletefield to an algebraic extensi<strong>on</strong>.Let k be a field and K a finite algebraic extensi<strong>on</strong> <strong>of</strong> it. Let|| be avaluati<strong>on</strong> <strong>of</strong> k and ¯k <strong>the</strong> completi<strong>on</strong> <strong>of</strong> k under this valuati<strong>on</strong>. Let k ¯k. 234


206 8. Valuated fields KkSuppose it is possible to extend|| to K. Let ¯K be <strong>the</strong> completi<strong>on</strong> <strong>of</strong>K under this extended valuati<strong>on</strong>. Since ¯K⊃K⊃ k, it follows that ¯Kc<strong>on</strong>tains K and ¯k and <strong>the</strong>refore <strong>the</strong> composite K¯k. Thus¯K⊃ K¯k.On <strong>the</strong> o<strong>the</strong>r hand, K ¯k/¯k is a finite extensi<strong>on</strong>, since K/k is finite.Since ¯k is complete, K¯k is complete also. K¯k c<strong>on</strong>tains K and hence itscompleti<strong>on</strong> ¯K under this extended valuati<strong>on</strong>. Thus¯K= K¯k.Thus if <strong>the</strong> valuati<strong>on</strong> can be extended, <strong>the</strong>n <strong>the</strong> completi<strong>on</strong> <strong>of</strong> K bythis extended valuati<strong>on</strong> is a composite extensi<strong>on</strong> <strong>of</strong> K and ¯k.Suppose now thatΩis an algebraic closure <strong>of</strong> ¯k.Ω, <strong>the</strong>n, c<strong>on</strong>tainsan algebraic closure <strong>of</strong> k. We have seen above that <strong>the</strong> given valuati<strong>on</strong><strong>of</strong> k can be extended toΩ. Letσbe an isomorphism <strong>of</strong> K/k intoΩ.The valuati<strong>on</strong> in ¯k can be extended toσK·¯k which is a subfield <strong>of</strong>Ω.Therefore, <strong>the</strong>re is a valuati<strong>on</strong> <strong>on</strong>σK. Define now, forαin K,K ¯k¯k|α| o =|σα|235where|| is <strong>the</strong> extensi<strong>on</strong> <strong>of</strong>|| <strong>on</strong> k toσK·¯k, which extensi<strong>on</strong> is unique.It is now trivial to see that|| o is a valuati<strong>on</strong> <strong>on</strong> K and extends|| <strong>on</strong> k.Hence every isomorphism <strong>of</strong> K intoΩwhich is trivial <strong>on</strong> k, givesrise to a valuati<strong>on</strong> <strong>of</strong> K.We now inverstigate when two isomorphisms give rise to <strong>the</strong> samevaluati<strong>on</strong> <strong>on</strong> K. Letσandτbe two isomorphisms <strong>of</strong> K/k intoΩgiving<strong>the</strong> same valuati<strong>on</strong> <strong>on</strong> K.σK andτK are subfields <strong>of</strong>Ωand <strong>the</strong>y have


7. Extensi<strong>on</strong> <strong>of</strong> valuati<strong>on</strong> <strong>of</strong> an incomplete field 207<strong>the</strong> same valuati<strong>on</strong>. Thusµ=στ −1 is an isomorphism <strong>of</strong>τK <strong>on</strong>toσKwhich preserves <strong>the</strong> valuati<strong>on</strong> <strong>on</strong>τK. Nowµis identity <strong>on</strong> k and so <strong>on</strong> ¯k.SinceσK·¯k is <strong>the</strong> completi<strong>on</strong> <strong>of</strong>σK, it follows thatµis an isomorphism<strong>of</strong> <strong>the</strong> composite extensi<strong>on</strong>sσK¯k andτK¯k. Hence, ifσandτgive riseto <strong>the</strong> same valuati<strong>on</strong> <strong>on</strong> K, <strong>the</strong> corresp<strong>on</strong>ding composite extensi<strong>on</strong>s areequivalent.Suppose now thatσandτare isomorphisms <strong>of</strong> K intoΩsuch that<strong>the</strong> composite extensi<strong>on</strong>sσK¯k andτK¯k are equivalent. There exists <strong>the</strong>na mappingµ<strong>of</strong>τK¯k <strong>on</strong>σK¯k which is identity <strong>on</strong> ¯k and such thatµτ=σσ induces a valuati<strong>on</strong>|| 1 <strong>on</strong> K such that|α| 1 =|σα| andτinduces avaluati<strong>on</strong>|| 2 <strong>on</strong> K such that|α| 2 =|τα|. Butµis such thatµτα=σα orσα andτα are c<strong>on</strong>jugates over ¯k inΩ. Hence|σα|=|τα|or|| 1 =|| 2 which shows thatσ,τgive <strong>the</strong> same valuati<strong>on</strong> <strong>on</strong> K.We have hence <strong>the</strong>Theorem 8. A valuati<strong>on</strong>|| <strong>of</strong> k can be extended to a finite extensi<strong>on</strong> K<strong>of</strong> k <strong>on</strong>ly in a finite number <strong>of</strong> ways. The number <strong>of</strong> <strong>the</strong>se extensi<strong>on</strong>s <strong>of</strong> 236|| to K stand in a (1, 1) corresp<strong>on</strong>dence with <strong>the</strong> classes <strong>of</strong> compositeextensi<strong>on</strong>s <strong>of</strong> K and ¯kFrom what we have already seen, <strong>the</strong> number <strong>of</strong> distinct compositeextensi<strong>on</strong>s <strong>of</strong> K and ¯k is at most (K : k).We apply <strong>the</strong>se to <strong>the</strong> case where k=Γ, rati<strong>on</strong>al number field andK/Γ finite so that K is an algebraic number filed. From <strong>the</strong>orem 2,it <strong>the</strong>refore follows that K has at most (K : Γ) distinct archimedianvaluati<strong>on</strong>s and that all <strong>the</strong> n<strong>on</strong>-archimedian valuati<strong>on</strong>s <strong>of</strong> K, which arecountable in number, are discrete.In a similar manner, if K is an algebraic functi<strong>on</strong> field <strong>of</strong> <strong>on</strong>e variableover a c<strong>on</strong>stant filed k, <strong>the</strong>n all <strong>the</strong> valuati<strong>on</strong>s <strong>of</strong> K are n<strong>on</strong>-archimedianand discrete. This can be seen from <strong>the</strong> fact that if x∈ K is transcendentalover k, <strong>the</strong>n K/k(x) is algebraic and <strong>on</strong>e has <strong>on</strong>ly to apply <strong>the</strong>orems3 and 8.


AppendixAbelian groups1 Decompositi<strong>on</strong> <strong>the</strong>oremAll <strong>the</strong> groups that we deal with here are abelian. Before proving <strong>the</strong>main decompositi<strong>on</strong> <strong>the</strong>orem for finite abelian groups we shall provesome lemmas.Lemma 1. If a, b are elements in G and have orders m and n respectivelyand (m, n)=1, <strong>the</strong>n ab has order mn.Pro<strong>of</strong>. Clearly if t is <strong>the</strong> order <strong>of</strong> ab, t|mn, since237(ab) mn = (a m ) n (b n ) m = e,e being unit element <strong>of</strong> G. Also a t = b −t . Thuse=a tm = b −tmso that n/t. Similarly m|t. Hence t=mn.□Lemma 2. Let p be a prime number dividing <strong>the</strong> order n <strong>of</strong> <strong>the</strong> groupG. Then <strong>the</strong>re is, in G, an element <strong>of</strong> order p.Pro<strong>of</strong>. We use inducti<strong>on</strong> <strong>on</strong> n. Let a be an element in G <strong>of</strong> order m. Ifp|m, <strong>the</strong>n a m/p has order p and we are through. Suppose p∤m. Let Hbe <strong>the</strong> cyclic group generated by a· G/H has <strong>the</strong>n order n/m which isdivisible by p. Since n |n, inducti<strong>on</strong> hypo<strong>the</strong>sis applies, so that <strong>the</strong>re isma coset Hb <strong>of</strong> order p. If b has order t <strong>the</strong>n b t = e and so (Hb) t = Hwhich means that p|t and so b t/p has order p. □209


210 8. AppendixLemma 3. Let G be a finite group andλ<strong>the</strong> maximum <strong>of</strong> <strong>the</strong> orders <strong>of</strong>elements <strong>of</strong> G. Thena λ = e238for all a∈G.Pro<strong>of</strong>. Let b be an element <strong>of</strong> orderλ. Let a be any element in G andletµbe its order. To prove <strong>the</strong> lemma, it is enough to prove thatµ|λ. Ifnot, <strong>the</strong>re is a prime p which dividesµto a higher power than it doesλ. Let p r be <strong>the</strong> highest power <strong>of</strong> p dividingµand p s <strong>the</strong> highest powerdividingλ. Then r>s. We will see that this leads to a c<strong>on</strong>tradicti<strong>on</strong>. □Since µ p r and pr are coprime, a µ p rhas <strong>the</strong> order p r . Similarly b ps hasorder λ p s . By lemma 1, c=a µ p r· b ps239has order p r λ.ps>λ, which c<strong>on</strong>tradicts <strong>the</strong> definiti<strong>on</strong> <strong>of</strong>λ. Henceµ|λ.Lemmas 2 and 3 show thatλ|n where n is <strong>the</strong> order <strong>of</strong> <strong>the</strong> group andthatλand n have <strong>the</strong> same prime factors.λ is called <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> <strong>the</strong>finite group G.A set a 1 ,...,a n <strong>of</strong> elements <strong>of</strong> a finite group G are said to be independentifa x 11 ···ax nn = eimplies a x ii= e, i=1,...,n.If G is a finite group and is a direct product <strong>of</strong> cyclic groups G 1 ,..., G n and if a i , i=1,...,n is a generator <strong>of</strong> G i , <strong>the</strong>n a 1 ,...,a n areindependent elements <strong>of</strong> G. They are said to form a base <strong>of</strong> G.We shall now proveTheorem 1. Let G be a finite group <strong>of</strong> order n. Then G is <strong>the</strong> directproduct <strong>of</strong> cyclic groups G 1 ,...,G l <strong>of</strong> ordersλ 1 ,...,λ l such thatλ i |λ i−1 , i=2,...,l,λ l > 1.Pro<strong>of</strong>. We prove <strong>the</strong> <strong>the</strong>orem by inducti<strong>on</strong> <strong>on</strong> <strong>the</strong> order n <strong>of</strong> <strong>the</strong> groupG. Let us <strong>the</strong>refore assume <strong>the</strong>orem proved for groups <strong>of</strong> order< n. Let


1. Decompositi<strong>on</strong> <strong>the</strong>orem 211G have order n. Supposeλ 1 is <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> G. Ifλ 1 = n, <strong>the</strong>n Gis cyclic and <strong>the</strong>re and <strong>the</strong>re is nothing to prove. Let <strong>the</strong>reforeλ 1 < n.There is an element a 1 <strong>of</strong> orderλ 1 . Let G 1 be <strong>the</strong> cyclic group generatedby a 1 . G/G 1 has order n λ 1< n. Hence inducti<strong>on</strong> hypo<strong>the</strong>sis works <strong>on</strong>G/G 1 .G/G 1 is thus <strong>the</strong> direct product <strong>of</strong> cyclic groups W 2 ,...,W l <strong>of</strong> orderλ 2 ,...,λ l respectively andλ l |λ l−1 |...|λ 2 . Let H i be a generator <strong>of</strong> W i .Then H i = G l b i for some b i in <strong>the</strong> coset H i . Let <strong>the</strong> element b i in G haveorder t i . Then t i |λ 1 by lemma 3. ButH t ii= b t ii Gt i1 = G 1which proves thatλ i |λ 1 . Thusλ l |λ l−1 |...|λ 1 .Let now b λ ii= a x i1 . Put x i= y i· z i where (y i ,λ 1 )=1 and all <strong>the</strong> primefactors <strong>of</strong> z i divideλ 1 . Choose u i prime toλ 1 such thatu i y i ≡ 1(modλ 1 ).□Then b u iλ ii= a z i1 . Sinceλ 1 is <strong>the</strong> exp<strong>on</strong>ent <strong>of</strong> G, 240e=b u iλ 1i= (a z 11 )λ 1/λ i.Since a 1 has orderλ 1 this means thatλ i |z i , i=2, 3,...,l.Put nowa i = b u iia −z i/λ i1.Since u i is prime toλ 1 and so toλ i , <strong>the</strong> coset F i = G l a i is also agenerator <strong>of</strong> W i . Thus G 1 a 2 ,...,G 1 a l is a base <strong>of</strong> G/G 1 .Let a i have order f i . Thene=a f ii= b u i f iia − f iz i /λ ii.This means thatb u i f ii= a f iz i /λ ii.Therefore by definiti<strong>on</strong> <strong>of</strong> b i ,λ i |u i f i . But (u i λ i )=1. Henceλ i | f i .


212 8. Appendix241242On <strong>the</strong> o<strong>the</strong>r handa λ ii= b u iλ iia −z ii= e.Hence f i =λ i . We have thus elements a 1 ,...,a l in G which haveordersλ 1 ,...,λ l satisfyingλ l |λ l−1 |...|λ 1 .We maintain that a 1 ,...,a 1 are independent elements <strong>of</strong> G. For, ifa v 11 ...av ll= e,<strong>the</strong>n a v 22 ·····av ll= a −v 11which means that F v 22 ...Fv ll= G 1 . But sinceF 2 ,..., F l are independent,λ i |v i , i=2,...,l. But this will mean thata v 11 = e orλ 1|v 1 .Sinceλ 1 ...λ l = n, if follows that a 1 ,...,a l form a base <strong>of</strong> G and<strong>the</strong> <strong>the</strong>orem is proved.Let G be a group <strong>of</strong> group <strong>of</strong> order n and let G be direct product <strong>of</strong>cyclic groups G 1 , G 2 ,...,G l <strong>of</strong> ordersλ 1 ,...,λ l . We now proveLemma 4. Letµbe a divisor <strong>of</strong> n. The number N(µ) <strong>of</strong> elements a∈Gwitha µ = eis given byN(µ)=l∏(µ,λ i ).i=1Pro<strong>of</strong>. Let a 1 ,...,a l be a base <strong>of</strong> G so that a i is <strong>of</strong> orderλ i . Any a∈Ghas <strong>the</strong> forma=a x 11 ···ax ll .If a µ = e, <strong>the</strong>n e=a x 1µ. Since a 1 ,...,a l is a base, this means that1···a x lµlx i µ≡0(modλ i ), i=1,λ, l. Hence x i has precisely (µ,λ i ) possibilitiesand our lemma is proved.We can now prove <strong>the</strong> □Theorem 2. If G is <strong>the</strong> direct product <strong>of</strong> cyclic groups G 1 ,... G l , <strong>of</strong>ordersλ 1 ,...,λ l respectively withλ l |λ l−1 |···|λ 1 and G is also <strong>the</strong> directproduct <strong>of</strong> cyclic groups H 1 ,..., H m <strong>of</strong> ordersµ 1 ,...,µ m respectivelywithµ m |µ m−1 |···|µ 1 , <strong>the</strong>n m=1andλ i =µ i , i=1,...,l.


2. Characters and duality 213Pro<strong>of</strong>. Without loss in generality let l≥m. Let a 1 ,...,a l be a base <strong>of</strong> Gin <strong>the</strong> decompositi<strong>on</strong> G 1 × G 2 ×···×G 1 . Since <strong>the</strong> number <strong>of</strong> elementsa with a µ = e is independent <strong>of</strong> <strong>the</strong> decompositi<strong>on</strong>l∏N(µ)= (µ,λ i )=1=1m∏(µ,µ j )j=1Put nowµ=λ 1 . Then N(µ)=λ 1 1 . But since (µ,µ j)≤µ, it followsthatλ l l ≤λm l, so that l≤m. This provesl=m.Also it follows that each factor (λ 1 ,µ j )=λ l orλ l |µ l . Inverting <strong>the</strong>roles <strong>of</strong>λandµwe getλ l =µ l .Suppose now it is proved thatλ q+1 =µ q+1 ,...,λ 1 =µ 1 . Then byputtingµ=λ q , we have□N(µ)=λ q q.λ q+1···λ 1 =q∏(λ q ,µ j )λ q+1···λ l .j=1By <strong>the</strong> same reas<strong>on</strong>ing as before, it follows thatλ q =µ q and we are,<strong>the</strong>refore, through.For this reas<strong>on</strong>, <strong>the</strong> integersλ 1 ,...,λ l are called <strong>the</strong> can<strong>on</strong>ical invariants<strong>of</strong> G. From <strong>the</strong>orems 1 and 2 we have <strong>the</strong> Corollary Two finitegroups G and G ′ are isomorphic if and <strong>on</strong>ly if <strong>the</strong>y have <strong>the</strong> same can<strong>on</strong>icalinvariants.2 Characters and dualityLet G be a group, not necessarily abelian and Z a cyclic group. A homomorphismχ<strong>of</strong>G into Z is called a character <strong>of</strong> G. Thus243χ(a)χ(b)=χ(ab).


214 8. AppendixIf we denote <strong>the</strong> unit element <strong>of</strong> G by e and that <strong>of</strong> Z by 1, <strong>the</strong>nχ(e)=1.The characterχ o defined byχ o (a)=1 for all a∈G is called <strong>the</strong>Principal character.Ifχ 1 andχ 2 are two characters, we define <strong>the</strong>ir productχ=χ 1 χ 2 byand <strong>the</strong> inverse <strong>of</strong>χ 1 byχ(a)=χ 1 (a)χ 2 (a)χ −11 (a)=(χ 1(a)) −1 .Under this definiti<strong>on</strong>, <strong>the</strong> characters form a multiplicative abeliangroup G ∗ called <strong>the</strong> character group <strong>of</strong> G.Sinceχis a homomorphism, denote by G χ <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> homomorphismχ<strong>of</strong> G into Z. Then G/G χ is abelian. Denote by H <strong>the</strong>subgroup <strong>of</strong> G given by⋂H= G χ , χ∈G ∗ .χ244Then clearly G/H is abelian.We call Z an admissible group for G if H c<strong>on</strong>sists <strong>on</strong>ly <strong>of</strong> <strong>the</strong> identityelement. This means first that G is abelian and fur<strong>the</strong>rmore that givenany two elements a, b in G <strong>the</strong>re exists a characterχ <strong>of</strong> G such that, ifab,χ(a)χ(b).Ifχis a character <strong>of</strong> G, <strong>the</strong>nχcan be c<strong>on</strong>sidered as a character <strong>of</strong>G/G o whereχis trivial <strong>on</strong> G o , by definingχ(G o a)=χ(a), G o a being acoset <strong>of</strong> G modulo G o . In particular, <strong>the</strong> elements <strong>of</strong> G ∗ can be c<strong>on</strong>sideredas characters <strong>of</strong> G/H. Moreover Z is now an admissible group forG/H.We now prove <strong>the</strong>Theorem 3. If G is a finite abelian group and Z is an admissible groupfor G, <strong>the</strong>n G ∗ is finite and G is isomorphic to G ∗ .


2. Characters and duality 215Pro<strong>of</strong>. In <strong>the</strong> first place Z is a finite group. For, if a∈G, ae, <strong>the</strong>re isa characterχ such thatχ(a)1.If G is <strong>of</strong> order n, <strong>the</strong>nχ(a n )=(χ(a)) n = 1 so thatχ(a) in an element<strong>of</strong> Z <strong>of</strong> finite order. Since Z is cyclic it follows that Z is finite. □From this it follows that G ∗ is finite.Since (χ(a)) n = 1 for everyχand every a, <strong>the</strong>re is no loss in generalityif we assume that Z is a cyclic group <strong>of</strong> order n.In order to prove <strong>the</strong> <strong>the</strong>orem let us first assume that G is a cyclicgroup <strong>of</strong> order n. Let a be a generator <strong>of</strong> G and b a generator <strong>of</strong> <strong>the</strong>cyclic group Z <strong>of</strong> order n. Define <strong>the</strong> characterχ 1 <strong>of</strong> G by 245χ 1 (a)=b.Since a generates G any character is determined uniquely by its effect<strong>on</strong> a.χ 1 is an element <strong>of</strong> order n in G ∗ . Letχbe any character <strong>of</strong> G.Letχ(a)=b µfor some integerµ. C<strong>on</strong>sider <strong>the</strong> character ˜χ=χ·χ −µ1 .˜χ(a)=(χ 1 (a)) −µ χ(a)=b −µ b µ = 1which shows that ˜χ=χ o is <strong>the</strong> principal character. Hence G ∗ is a cyclicgroup <strong>of</strong> order n and <strong>the</strong> mappinga→χ 1establishes an isomorphism <strong>of</strong> G <strong>on</strong> G ∗ .Let now G be finite n<strong>on</strong>-cyclic abelian <strong>of</strong> order n. G is <strong>the</strong>n a directproduct <strong>of</strong> cyclic groups G 1 ,..., G l <strong>of</strong> ordersλ 1 ,...,λ l respectively. Leta i be a generator <strong>of</strong> G i so that a 1 ,...,a l is a base <strong>of</strong> G. Sinceλ 1 ,...,λ ldivide n, we define l charactersχ 1 ,χ 2 ,...,χ l <strong>of</strong> G byχ i (a j )=1χ i (a i )=b ijii=1,...,l,


216 8. Appendix246247where b i is an element in Z <strong>of</strong> orderλ i . These characters are <strong>the</strong>n independentelements <strong>of</strong> <strong>the</strong> abelian group G ∗ . For, ifχ t 11···χ t ll=χ 0 , <strong>the</strong>n,for any a∈G,χ t 11(a)...χ t ll (a)=1.Taking for a successively a 1 ,...,a l we see thatλ i |t i and soχ 1 ,...,χ lare independent.Letχbe any character <strong>of</strong> G. Thenχis determined by its effect <strong>on</strong>a 1 ,...,a l . Letχ(a i )= s i . Since a λ ii= e, (χ(a i )) λ i= 1. But (χ(a i )) λ i=s λ ii. Thus s λ ii= 1. Z being cyclic, <strong>the</strong>re exists <strong>on</strong>ly <strong>on</strong>e subgroup <strong>of</strong>orderλ i . Thusχ(a i )= s i = b µ ii,for some integerµ i (modλ i ). C<strong>on</strong>sider <strong>the</strong> character ˜χ=χχ −µ 11···χ. Itus clear that ˜χ(a i )=1 for all i so that ˜χ=χ o orµ µ1χ=χ 1···χ lThus G ∗ is <strong>the</strong> product <strong>of</strong> cyclic group generated byχ 1 ,...,χ 1 . ByCorollary to <strong>the</strong>orem 2, it follows that G and G ∗ are isomorphic.Corollary. If G is a finite group and G ∗ its character group, <strong>the</strong>n whatevermay be Z,OrderG ∗ ≤ OrderG.Pro<strong>of</strong>. For, if H is <strong>the</strong> subgroup <strong>of</strong> G defined earlier, <strong>the</strong>n G/H is abelianand finite, since G is finite. Also Z is admissible for G/H. Fur<strong>the</strong>rmoreevery character <strong>of</strong> G can be c<strong>on</strong>sidered as a character <strong>of</strong> G/H, by definiti<strong>on</strong><strong>of</strong> H. Hence by <strong>the</strong>orem 3 □Order G ∗ ≤ Order G/H≤ Order G.Let us now go back to <strong>the</strong> situati<strong>on</strong> where G is finite abelian and Zia admissible for G. Then G≃ G ∗ . Let us define <strong>on</strong> G× G ∗ <strong>the</strong> functi<strong>on</strong>l .(a,χ)=χ(a).For a fixedχ, <strong>the</strong> mapping a→(a,χ) is a character <strong>of</strong> G and so anelement <strong>of</strong> G ∗ . By definiti<strong>on</strong> <strong>of</strong> product <strong>of</strong> character, it follows that, forfixed a, <strong>the</strong> mappingā :χ→(a,χ)


3. Pairing <strong>of</strong> two groups 217is a homomorphism <strong>of</strong> G ∗ into Z and hence a character <strong>of</strong> G ∗ , Let G ∗∗denote <strong>the</strong> character group <strong>of</strong> G ∗ . By Corollary above,C<strong>on</strong>sider now <strong>the</strong> mappingOrderG ∗∗ ≤ OrderG ∗ = OrderG.σ : a→ā<strong>of</strong> G into G ∗∗ . This is clearly a homomorphism. If ā is identity, <strong>the</strong>n(a,χ)=1 for allχ. But since Z is admissible for G, it follows that a=e.Henceσis an isomorphism <strong>of</strong> G into G ∗∗ . Therefore we haveTheorem 4. The mapping a→ā is a natural isomorphism <strong>of</strong> G ∗ <strong>on</strong> G ∗∗Note that <strong>the</strong> isomorphism <strong>of</strong> G <strong>on</strong> G ∗ is not natural.Under <strong>the</strong> c<strong>on</strong>diti<strong>on</strong>s <strong>of</strong> <strong>the</strong>orem 3, we call G ∗ <strong>the</strong> dual <strong>of</strong> G. ThenG ∗∗ is <strong>the</strong> dual <strong>of</strong> G ∗ and <strong>the</strong>orem 4 shows that <strong>the</strong> dual <strong>of</strong> G ∗ is naturallyisomorphic to G. Theorem 4 is called <strong>the</strong> duality <strong>the</strong>orem for finiteabelian groups.3 Pairing <strong>of</strong> two groupsLet G and G ′ be two groups,σ,σ ′ ,..., elements <strong>of</strong> G ′ andτ,τ ′ ,...,elements <strong>of</strong> G ′ . Let Z be a cyclic group. Suppose <strong>the</strong>re is a functi<strong>on</strong> 248(σ,τ) <strong>on</strong> G× G ′ into Z such that for everyσ, <strong>the</strong> mappingλ σ :τ→(σ,τ)is a homomorphism <strong>of</strong> G ′ into Z and for everyτ, <strong>the</strong> mappingµ τ :σ→(σ,τ)is a homomorphism <strong>of</strong> G into Z, Thusλ σ andµ τ are characters <strong>of</strong> G ′and G respectively. We <strong>the</strong>n say that G and G ′ are paired to Z and that(σ,τ) is a pairing.For everyσ, let G ′ σ denote <strong>the</strong> kernel in G′ <strong>of</strong> <strong>the</strong> homomorphismλ σ . Put ⋂H ′ =G ′ σσ


218 8. Appendixfor allσ∈G. Then G ′ /H ′ is abelian. Also, H ′ is <strong>the</strong> set <strong>of</strong>τin G ′ suchthat(σ,τ)=1for allσ∈G. Define in a similar way <strong>the</strong> subgroup H <strong>of</strong> G.We are going to proveTheorem 5. If G/H is finite, <strong>the</strong>n so is G ′ /H ′ and both are <strong>the</strong>n isomorphicto each o<strong>the</strong>r.Pro<strong>of</strong>. From fixedσ, c<strong>on</strong>sider <strong>the</strong> functi<strong>on</strong>χ σ (τ)=(σ,τ).This is clearly a character <strong>of</strong> G ′ . By definiti<strong>on</strong> <strong>of</strong> H ′ , it follows thatfor eachσ,χ σ is a character <strong>of</strong> G ′ /H ′ .C<strong>on</strong>sider now <strong>the</strong> mappingσ→χ σ<strong>of</strong> G into (G ′ /H ′ ) ∗ . This is again a homomorphism <strong>of</strong> G into (G ′ /H ′ ) ∗ .The kernel <strong>of</strong> <strong>the</strong> homomorphism is <strong>the</strong> set <strong>of</strong>σfor whichχ σ is <strong>the</strong>principal character <strong>of</strong> G ′ /H ′ . By definiti<strong>on</strong> <strong>of</strong> H, it follows that H is <strong>the</strong>kernel. HenceG/H≃ a subgroup <strong>of</strong> (G ′ /H ′ ) ∗ . (1)□249In a similar way(G ′ /H ′ )≃ a subgroup <strong>of</strong> (G/H) ∗ . (2)Let now G/H be finite. Then by Corollary to <strong>the</strong>orem 3,By (2), this means thatord(G/H) ∗ ≤ ordG/H.order(G ′ /H ′ )≤ order G/H.Reversing <strong>the</strong> roles <strong>of</strong> G and G ′ we see that G/H and G ′ /H ′ have<strong>the</strong> same order. (1) and (2) toge<strong>the</strong>r with <strong>the</strong>orem 3 prove <strong>the</strong> <strong>the</strong>orem.If, in particular, we take G ∗ for G ′ , <strong>the</strong>n H ′ = (χ o ) and so we have


3. Pairing <strong>of</strong> two groups 219Corollary. If G is any group, G ∗ its character group and if G/H is finite<strong>the</strong>nG/H≃ G ∗ .


Bibliography[1] A. A Albert Modern Higher Algebra, Chicago, (1937) 250[2] E.Artin Galois <strong>Theory</strong>, Notre Dame, (1944)[3] E.Artin <strong>Algebraic</strong> numbers and <strong>Algebraic</strong> functi<strong>on</strong>s, Princet<strong>on</strong>(1951)[4] E. Artin and 0.Schreier Eine Kennzeichnung der reellabgeschlossene Korper Hamb, Abhand, Bd 5 (1927) p. 225-231[5] N. Bourbaki Algebra, Chapters 3-6, paris, 1949[6] C. Chevalley Introducti<strong>on</strong> to <strong>the</strong> <strong>the</strong>ory <strong>of</strong> <strong>Algebraic</strong> functi<strong>on</strong>s,New York, 1951[7] C. Chevalley Sur la <strong>the</strong>orie du corps de classes dans les corps finiset les corps locaux Jour. Faculty <strong>of</strong> Science, Tokyo, Vol, 2, 1933,P.365-476[8] M. Deuring Algebren, Ergebn der Math, Vol.4, 1935[9] S. Eilenberg and S. Maclane Cohomology <strong>the</strong>ory in abstractgroups, Annals <strong>of</strong> Ma<strong>the</strong>matics, Vol.48 (1947), P. 51-78[10] H. Hasse Zahlen<strong>the</strong>orie, Berlin, 1949[11] W. Krull Galoissche <strong>the</strong>orie der unendlicher erweiterungen Math.Annalen Bd 100 (1928), P.678-698221


222 BIBLIOGRAPHY[12] N. H McCoy Rings and ideals,Carus Ma<strong>the</strong>matical M<strong>on</strong>ographs,No.8 (1948)251[13] A. Ostrowski Untersuchugen zur arithmetischen Theorie der KorperMath. Zeit, Bd 39 (1935), P.269-404[14] G. Pickert Einfuhrung in die Hohere Algebra,Gottingen 1951[15] B.Steinite Algebraische Theorie der Korper Crelles Jour. Bd 137(1910), P. 167-309[16] B.L Van-der-Waerden ModerneAlgebra, Leipzing, 1931[17] A. Weil Foundati<strong>on</strong>s <strong>of</strong> <strong>Algebraic</strong> gemetry New York, 1946[18] E.Witt Uber die commutativitat endlicher Schiefkorper Hamb. Abhand,Vol 8, (1931), P.413[19] E. Witt Der existenzsatz fur Abelsche Funkti<strong>on</strong>ekorper Crellesjour. Bd 173 (1935), P 43-51

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!