13.07.2015 Views

Studies of fractional D-branes in the gauge/gravity correspondence ...

Studies of fractional D-branes in the gauge/gravity correspondence ...

Studies of fractional D-branes in the gauge/gravity correspondence ...

SHOW MORE
SHOW LESS
  • No tags were found...

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Studies</strong> <strong>of</strong> <strong>fractional</strong> D-<strong>branes</strong><strong>in</strong> <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>&Flavored Chern-Simons quiversfor M2-<strong>branes</strong>Cyril ClossetFaculté des SciencesService de Physique Théorique et Mathématique


<strong>Studies</strong> <strong>of</strong> <strong>fractional</strong> D-<strong>branes</strong><strong>in</strong> <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>&Flavored Chern-Simons quiversfor M2-<strong>branes</strong>Cyril ClossetBoursier FRIA-FNRSThèse présentée en vue de l’obtention du grade de Docteur en SciencesFaculté des SciencesService de Physique Théorique et MathématiqueAnnée académique 2009-2010Directeur de thèse: Riccardo Argurio


This <strong>the</strong>sis consists <strong>of</strong> two different and almost <strong>in</strong>dependent parts.PART ONE is based on <strong>the</strong> follow<strong>in</strong>g two papers:[1] R. Argurio, F. Ben<strong>in</strong>i, M. Bertol<strong>in</strong>i, C. Closset, and S. Cremonesi,“Gauge/<strong>gravity</strong>duality and <strong>the</strong> <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>” Phys. Rev. D78(2008) 046008, arXiv:0804.4470 [hep-th].[2] F. Ben<strong>in</strong>i, M. Bertol<strong>in</strong>i, C. Closset, and S. Cremonesi, “The N=2 cascade revisitedand <strong>the</strong> enhancon bear<strong>in</strong>gs”Phys. Rev. D79(2009)066012,arXiv:0811.2207.[hep-th].PART TWO is based on[3] F. Ben<strong>in</strong>i, C. Closset, and S. Cremonesi,“Chiral flavors and M2-<strong>branes</strong> at toricCY4 s<strong>in</strong>gularities,” JHEP 02 (2010) 036, arXiv:0911.4127 [hep-th].The follow<strong>in</strong>g lectures notes are reproduced <strong>in</strong> <strong>the</strong> APPENDIX:[4] C. Closset,“Toric geometry and local Calabi-Yau varieties: An <strong>in</strong>troductionto toric geometry (for physicists),” arXiv:0901.3695 [hep-th].


iiRemerciements - AcknowledgmentsIl y a c<strong>in</strong>q ans, je me décidai à faire mon mémoire de licence en physique théorique.Par un heureux hasard, je me retrouvai sous la direction de Riccardo Argurio, pour monmémoireetensuitepourmathèse. Ilm’asoutenudeboutenboutdansmonapprentissagedu métier de chercheur, toujours chaleureux et disponible. J’ai appris énormément à soncontact, et je l’en remercie grandement.Je remercie également Pierre de Buyl, François Dehouck, Julie Delvax, Jon Demaeyer,Nathan Goldman, Ella Jams<strong>in</strong>, Nassiba Tabti and V<strong>in</strong>cent Wens, pour tous ces repas àla cafeteria et ces trop rares midis au soleil, qui m’ont souvent fait beaucoup de bien. Unmerci particulier à V<strong>in</strong>cent et Nass pour être toujours tellement gentils, drôles et posésà la fois, vous me manquez. Un merci particulier également à François pour m’avoirsupporté dans toutes sortes de situations et pour savoir me remettre à ma place. EncoreCargèse à se colt<strong>in</strong>er ensemble, mec!Mesplusgrandsremerciementsvontàmesprochesendehorsdumondedelaphysique,amis et famille, qui me démontrent constamment que vivre est une entreprise bien plusriche et <strong>in</strong>téressante que toutes les théories des cordes réunies. Vous savez qui vous êtes.(Et vous ne lirez pas ma thèse, du mo<strong>in</strong>s je l’espère pour vous.) Morgane, merci pourtout et bien plus.First <strong>of</strong> all, I would like to thank my collaborators: Riccardo Argurio, FrancescoBen<strong>in</strong>i, Matteo Bertol<strong>in</strong>i and Stefano Cremonesi. You are <strong>the</strong> best! This <strong>the</strong>sis wouldnot exist without you. It was truly great to collaborate with you, I learned a lot (actuallyalmost everyth<strong>in</strong>g) just by talk<strong>in</strong>g with you guys. I thank Matteo for <strong>the</strong> great physicsexchanges, for <strong>the</strong> meeeuuuhh-th<strong>in</strong>g and for always be<strong>in</strong>g patient and relaxed. I thankSte and Fra for our great projects toge<strong>the</strong>r, for all <strong>the</strong>se Skype exchanges and fruitfulideas and I hope we will keep work<strong>in</strong>g toge<strong>the</strong>r. And thanks aga<strong>in</strong> Riccardo, for lett<strong>in</strong>gme <strong>in</strong>terrupt you with questions at whichever time <strong>of</strong> <strong>the</strong> day, for be<strong>in</strong>g always ready todiscuss new th<strong>in</strong>gs, I hope this <strong>the</strong>sis conv<strong>in</strong>ces you that 3d <strong>the</strong>ories are <strong>in</strong>terest<strong>in</strong>g too.And yes I will start work<strong>in</strong>g on <strong>gauge</strong> mediation too. ;)I would like to thank <strong>the</strong> whole group <strong>of</strong> <strong>the</strong> Service de Physique théorique etmathématique <strong>of</strong> ULB, for <strong>the</strong> relaxed environment and <strong>the</strong> cont<strong>in</strong>uous stimulation itprovides. Thanks <strong>in</strong> particular to Glenn Barnich (who gave me some taste for quantumfield <strong>the</strong>ory as an undergrad), Frank Ferrari and Axel Kle<strong>in</strong>schmidt for nice discussions.Thanks to Fabienne De Neyn and Marie-France Rogge for help<strong>in</strong>g me out <strong>of</strong> parperworklimbo.Among <strong>the</strong> postdocs and students, let me thank first <strong>the</strong> “old generation” <strong>of</strong> postdocs,who adopted me as one <strong>of</strong> <strong>the</strong>ir k<strong>in</strong>d for many nights out and wild physics and


non-physics discussion, even as I started my phD: Jarah Evsl<strong>in</strong> (best landlord), CarloMaccaferri, Chethan Krishnan (my <strong>of</strong>ficemate dur<strong>in</strong>g three years and a great friend),Stanislav Kuperste<strong>in</strong> (my conifold godfa<strong>the</strong>r). I also thank Emiliano Imeroni for numerousphysics discussions, for our unf<strong>in</strong>ished work on Maldacena-Nuñez (a pity we gotstuck) and for lett<strong>in</strong>g me use his Insert Latex package. Thanks to Daniel Persson forstimulat<strong>in</strong>g physics discussions, fun times and great flat shar<strong>in</strong>g abilities, and to AliceBernamonti for all that and more.I thank <strong>the</strong> old and new generation <strong>of</strong> Italians and non-Italians at ULB and VUB,Francesco Bigazzi, Raphael Benichou, Neil Copland, Federico Galli, Josef L<strong>in</strong>dman Hörnlund(let’s go have a beer), Alberto Mariotti (a beer for you too), Sung-Soo Kim (greatflatmate), Semyon Klevtsov, Jakob Palmkvist, Wieland Staessens, Cedric Troessaert,Amitabh Virmani, for discussions and great parties. Thanks <strong>in</strong> particular my fellow organizers<strong>of</strong> <strong>the</strong> Modave Summer school 2008 and 2009, as well as to Ge<strong>of</strong>frey Compère,Sophie de Buyl, and Stéphane Detournay, and <strong>the</strong> older generation I hardly met, all <strong>of</strong>whom made that great experience possible. Special thanks also to <strong>the</strong> Barat<strong>in</strong> <strong>of</strong> Modave.I also remember with gratefulness <strong>the</strong> numerous summer schools and conferences, and<strong>the</strong> associated travel<strong>in</strong>g which make <strong>the</strong> life <strong>of</strong> a physicist quite enjoyable sometimes. Inparticular, I loved <strong>the</strong> Les Houches 2007 summer school, and I would like to warmfullyacknowledgeall <strong>the</strong>greatpeopleImet<strong>the</strong>re. The greatTriestespr<strong>in</strong>gschoolsalsodeservea special mention.F<strong>in</strong>ally, I would like to thank Riccardo Argurio (aga<strong>in</strong>), Frédéric Bourgeois, MarcHenneaux, Axel Kle<strong>in</strong>schmidt, Carlos Nuñez and Alessandro Tomasiello, for accept<strong>in</strong>g tobe part <strong>of</strong> my <strong>the</strong>sis jury.iii


Contents1 Introduction, overview and summary 11.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 The <strong>the</strong>sis: an overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21.3 Cascad<strong>in</strong>g RG flow and N = 2 <strong>fractional</strong> <strong>branes</strong> . . . . . . . . . . . . . . 51.4 Quivers for M2-<strong>branes</strong> and <strong>the</strong>ir generalizations . . . . . . . . . . . . . . . 62 Str<strong>in</strong>gs, <strong>branes</strong> and such 92.1 Elements <strong>of</strong> type II str<strong>in</strong>g <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . 92.1.1 D-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102.1.2 Super<strong>gravity</strong> limits and p-brane solutions . . . . . . . . . . . . . . 102.1.3 DBI action for <strong>the</strong> D-brane . . . . . . . . . . . . . . . . . . . . . . 122.1.4 Half-BPS extended objects <strong>in</strong> type II str<strong>in</strong>g <strong>the</strong>ory; D-<strong>branes</strong> andNS5-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.2 A few words about str<strong>in</strong>g dualities . . . . . . . . . . . . . . . . . . . . . . 132.2.1 T-duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.2.2 T-duality between geometry and NS5-<strong>branes</strong> . . . . . . . . . . . . 152.2.3 S-duality <strong>in</strong> type IIB . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.4 Type IIA and M-<strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . . 173 D3-<strong>branes</strong> at s<strong>in</strong>gularities 213.1 The D3-brane and N = 4 SYM: a first encounter . . . . . . . . . . . . . . 213.2 D-<strong>branes</strong> at s<strong>in</strong>gularities and quivers . . . . . . . . . . . . . . . . . . . . . 223.2.1 D3-<strong>branes</strong> at orbifold s<strong>in</strong>gularities . . . . . . . . . . . . . . . . . . 223.2.2 Brane fractionation at s<strong>in</strong>gularities . . . . . . . . . . . . . . . . . . 243.2.3 Closed str<strong>in</strong>g perspective for D3-<strong>branes</strong> on orbifolds. Super<strong>gravity</strong> 243.3 Branes at generic Calabi-Yau s<strong>in</strong>gularities . . . . . . . . . . . . . . . . . . 263.3.1 Homological algebra and <strong>the</strong> relation between quivers and s<strong>in</strong>gularities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273.4 Hanany-Witten setups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283.5 Toric s<strong>in</strong>gularities and dimer models . . . . . . . . . . . . . . . . . . . . . 303.5.1 Toric quiver <strong>the</strong>ories as dimer models . . . . . . . . . . . . . . . . 313.5.2 From quiver to geometry: moduli space and <strong>the</strong> forward algorithm 323.5.3 Kasteleyn matrix and fast forward algorithm . . . . . . . . . . . . 343.5.4 An example: <strong>the</strong> dP 1 quiver. . . . . . . . . . . . . . . . . . . . . . 363.5.5 From geometry to quiver: <strong>the</strong> <strong>in</strong>verse algorithm . . . . . . . . . . . 37v


viContentsI Gauge/<strong>gravity</strong> and cascades 394 Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong> 414.1 Superconformal <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> 3+1 dimensions . . . . . . . . . . . . . . 414.1.1 N = 1 superconformal algebra . . . . . . . . . . . . . . . . . . . . 424.1.2 N = 4 SYM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434.1.3 An example <strong>of</strong> an N = 2 SCFT . . . . . . . . . . . . . . . . . . . . 444.1.4 N = 1 SCFT: an example <strong>of</strong> a strongly coupled fixed po<strong>in</strong>t . . . . 444.2 Anti-de-Sitter space and near horizon limit . . . . . . . . . . . . . . . . . 454.2.1 Near horizon limit for D3-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . 454.3 The AdS 5 /CFT 4 <strong>correspondence</strong> . . . . . . . . . . . . . . . . . . . . . . . 464.3.1 Various versions <strong>of</strong> <strong>the</strong> AdS/CFT conjecture . . . . . . . . . . . . 474.3.2 The energy-radius relation . . . . . . . . . . . . . . . . . . . . . . . 484.3.3 The AdS/CFT map: general discussion . . . . . . . . . . . . . . . 484.3.4 The AdS 5 /N = 4 dictionary . . . . . . . . . . . . . . . . . . . . . . 504.4 From N = 4 to N = 1. Non-spherical horizons . . . . . . . . . . . . . . . 504.4.1 Sasaki-E<strong>in</strong>ste<strong>in</strong> manifolds . . . . . . . . . . . . . . . . . . . . . . . 514.4.2 Conformal N = 1 toric quivers . . . . . . . . . . . . . . . . . . . . 524.4.3 Chiral r<strong>in</strong>g <strong>of</strong> N = 1 SCFTs . . . . . . . . . . . . . . . . . . . . . . 534.4.4 The Klebanov-Witten <strong>the</strong>ory and remarks about <strong>the</strong> AdS/CFTmap for N = 1 quivers . . . . . . . . . . . . . . . . . . . . . . . . . 544.5 Spontaneous break<strong>in</strong>g <strong>of</strong> scale <strong>in</strong>variance . . . . . . . . . . . . . . . . . . . 555 Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong> 595.1 Overview: <strong>the</strong> <strong>gauge</strong> <strong>gravity</strong>/<strong>correspondence</strong> . . . . . . . . . . . . . . . . 595.1.1 The issue <strong>of</strong> <strong>the</strong> UV completion . . . . . . . . . . . . . . . . . . . . 605.2 Supersymmetry conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . 615.3 Fractional <strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity . . . . . . . . . . . . . . . . . 625.3.1 Backreact<strong>in</strong>g <strong>fractional</strong> <strong>branes</strong> on <strong>the</strong> conifold: <strong>the</strong> KT solution . . 625.3.2 Cascade <strong>in</strong> <strong>the</strong> N = 1 quiver . . . . . . . . . . . . . . . . . . . . . 635.3.3 The low energy <strong>the</strong>ory and <strong>the</strong> deformed conifold . . . . . . . . . . 665.4 Fractional <strong>branes</strong> on various s<strong>in</strong>gularities . . . . . . . . . . . . . . . . . . . 686 The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs 716.1 Introduction and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 716.2 D3 <strong>branes</strong> on <strong>the</strong> C 2 /Z 2 orbifold and a cascad<strong>in</strong>g solution . . . . . . . . . 736.3 The enhançon and <strong>the</strong> Seiberg-Witten curve . . . . . . . . . . . . . . . . . 776.4 The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . 836.4.1 One cascade step: N = 2 SQCD . . . . . . . . . . . . . . . . . . . 846.4.2 The cascad<strong>in</strong>g vacuum <strong>in</strong> <strong>the</strong> quiver <strong>gauge</strong> <strong>the</strong>ory . . . . . . . . . 856.4.3 The <strong>in</strong>f<strong>in</strong>ite cascade limit . . . . . . . . . . . . . . . . . . . . . . . 876.4.4 Mass deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 896.5 More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs . . . . . . . . . . . . . . . . . 926.5.1 Reconstruct<strong>in</strong>g <strong>the</strong> cascad<strong>in</strong>g vacuum at <strong>the</strong> baryonic roots . . . . 986.5.2 More bear<strong>in</strong>gs: <strong>the</strong> enhançon plasma . . . . . . . . . . . . . . . . . 996.6 Excisions, warp factors and <strong>the</strong> cure <strong>of</strong> repulson s<strong>in</strong>gularities . . . . . . . 102


Contentsvii6.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1057 Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong> 1077.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1077.2 The orbifolded conifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1097.2.1 Regular and <strong>fractional</strong> <strong>branes</strong> . . . . . . . . . . . . . . . . . . . . . 1107.2.2 Geometry, cycles and quiver ranks . . . . . . . . . . . . . . . . . . 1117.3 Super<strong>gravity</strong> background for <strong>the</strong> UV regime . . . . . . . . . . . . . . . . . 1137.3.1 The UV regime: runn<strong>in</strong>g fluxes and s<strong>in</strong>gularity l<strong>in</strong>es . . . . . . . . 1137.3.2 Checks <strong>of</strong> <strong>the</strong> duality: beta functions and Maxwell charges . . . . 1167.3.3 Page charges and <strong>the</strong> RG flow from super<strong>gravity</strong> . . . . . . . . . . 1217.4 The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . . . . 1297.4.1 Gauge <strong>the</strong>ory IR dynamics . . . . . . . . . . . . . . . . . . . . . . 1307.4.2 The Gukov-Vafa-Witten superpotential . . . . . . . . . . . . . . . 1337.4.3 IR regime and s<strong>in</strong>gularities resolution . . . . . . . . . . . . . . . . 1367.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140II Chern-Simons quivers and M-<strong>the</strong>ory 1418 AdS 4 /CFT 3 and <strong>the</strong> quest for a <strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong> 1438.1 M2-brane solution <strong>in</strong> eleven dimensional super<strong>gravity</strong> . . . . . . . . . . . . 1438.1.1 Energy/radius relation . . . . . . . . . . . . . . . . . . . . . . . . . 1458.1.2 Type IIA reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1458.2 AdS 4 /CFT 3 : <strong>the</strong> AdS side . . . . . . . . . . . . . . . . . . . . . . . . . . . 1478.3 SCFT on M2-<strong>branes</strong>? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1488.3.1 M2- from D2-brane: dual photon . . . . . . . . . . . . . . . . . . . 1488.3.2 Flavors and large N f limit . . . . . . . . . . . . . . . . . . . . . . . 1509 Superconformal <strong>the</strong>ories <strong>in</strong> three dimensions 1519.1 Sp<strong>in</strong>ors <strong>in</strong> three dimensions and supersymmetry . . . . . . . . . . . . . . . 1519.1.1 The parity symmetry <strong>in</strong> 2+1 dimensions . . . . . . . . . . . . . . 1529.1.2 Po<strong>in</strong>caré algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1539.1.3 N-extended supersymmetry . . . . . . . . . . . . . . . . . . . . . . 1549.2 N = 2 supersymmetry, superspace and superfields . . . . . . . . . . . . . 1559.2.1 Abelian <strong>gauge</strong> field, conserved current and N = 2 Lagrangian . . . 1579.2.2 Vector/scalar duality . . . . . . . . . . . . . . . . . . . . . . . . . . 1579.2.3 Non-abelian generalization . . . . . . . . . . . . . . . . . . . . . . 1589.3 Chern-Simon term and topologically massive photon . . . . . . . . . . . . 1589.3.1 The pure Chern-Simons action . . . . . . . . . . . . . . . . . . . . 1589.3.2 Topologically massive <strong>gauge</strong> field . . . . . . . . . . . . . . . . . . . 1599.4 N = 2 Chern-Simons <strong>the</strong>ories . . . . . . . . . . . . . . . . . . . . . . . . . 1609.4.1 Topologically massive vector multiplet . . . . . . . . . . . . . . . . 1619.4.2 Chern-Simons-matter superconformal <strong>the</strong>ories . . . . . . . . . . . . 1619.4.3 N = 2 SCFT with superpotential and weak non-renormalization<strong>the</strong>orem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1639.4.4 N = 3 CS-matter <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . . 164


viiiContents10 Monopole operators <strong>in</strong> three dimensions 16510.1 Monopoles <strong>in</strong> three dimensional SYM <strong>the</strong>ories . . . . . . . . . . . . . . . . 16610.1.1 The Coulomb branch . . . . . . . . . . . . . . . . . . . . . . . . . . 16710.1.2 Monopole operator <strong>in</strong> <strong>the</strong> 3d Maxwell <strong>the</strong>ory . . . . . . . . . . . . 16810.2 Monopole operators <strong>in</strong> 3d CFT . . . . . . . . . . . . . . . . . . . . . . . . 16910.2.1 N = 2 BPS monopole operators . . . . . . . . . . . . . . . . . . . 17010.2.2 Induced charges from quantum effects . . . . . . . . . . . . . . . . 17110.2.3 OPE <strong>of</strong> monopole operators . . . . . . . . . . . . . . . . . . . . . . 17211 The ABJM <strong>the</strong>ory and Chern-Simons quivers 17311.1 The ABJM <strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17411.1.1 The ABJM moduli space . . . . . . . . . . . . . . . . . . . . . . . 17611.2 Chiral r<strong>in</strong>g and monopole operators . . . . . . . . . . . . . . . . . . . . . 17711.2.1 Non-Abelian case . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17811.2.2 Enhanced SUSY . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17911.3 N = 2 Abelian quivers and <strong>the</strong>ir classical moduli space . . . . . . . . . . . 17911.3.1 Toric Chern-Simons quivers and <strong>the</strong> Kasteleyn matrix algorithm . 18211.4 A look at proposals for M2-brane <strong>the</strong>ories . . . . . . . . . . . . . . . . . . 18411.4.1 Brane til<strong>in</strong>gs with multiple bounds . . . . . . . . . . . . . . . . . . 18412 Chern-Simons quivers from str<strong>in</strong>gy dualities 18712.1 Fivebrane systems, M-<strong>the</strong>ory/type IIB duality and ABJM . . . . . . . . . 18712.1.1 N = 3 generalizations . . . . . . . . . . . . . . . . . . . . . . . . . 19012.1.2 Moduli space and hyper-toric geometry . . . . . . . . . . . . . . . 19112.2 N = 3 Flavors <strong>in</strong> ABJM: <strong>the</strong> Gaiotto-Jafferis construction . . . . . . . . . 19212.2.1 The N 0,1,0 space as an algebraic variety . . . . . . . . . . . . . . . 19312.2.2 Recover<strong>in</strong>g N 0,1,0 from <strong>the</strong> quantum chiral r<strong>in</strong>g . . . . . . . . . . . 19412.3 Str<strong>in</strong>gy derivation <strong>of</strong> N = 2 Chern-Simons quivers . . . . . . . . . . . . . 19512.3.1 CY 4 as a U(1) fibration . . . . . . . . . . . . . . . . . . . . . . . . 19612.3.2 Chern-Simons quivers from type IIA . . . . . . . . . . . . . . . . . 19813 Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers 20113.1 Motivation and overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20113.2 M-<strong>the</strong>ory reduction and D6-<strong>branes</strong> : A top-down perspective . . . . . . . 20313.2.1 IIA background as a CY 3 fibration with D6-<strong>branes</strong> . . . . . . . . . 20513.3 Flavor<strong>in</strong>g Chern-Simons-matter <strong>the</strong>ories : A bottom-up perspective . . . . 20613.3.1 Monopole operators and flavors . . . . . . . . . . . . . . . . . . . . 20813.4 Moduli space <strong>of</strong> flavored quivers . . . . . . . . . . . . . . . . . . . . . . . 21013.4.1 Unflavored quivers and monopoles . . . . . . . . . . . . . . . . . . 21013.4.2 Flavored quivers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21113.4.3 Toric flavored CS quivers . . . . . . . . . . . . . . . . . . . . . . . 21213.4.4 Moduli space <strong>of</strong> flavored quivers from <strong>the</strong> A-<strong>the</strong>ory: a pro<strong>of</strong> . . . . 21313.5 Back to geometry: real and complex masses . . . . . . . . . . . . . . . . . 21513.5.1 Real masses and partial resolutions . . . . . . . . . . . . . . . . . . 21613.5.2 Complex masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21713.6 Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories . . . . . . . . . . . . . . 218


Contentsix13.6.1 Flavor<strong>in</strong>g <strong>the</strong> C 3 quiver . . . . . . . . . . . . . . . . . . . . . . . . 21913.6.2 Flavor<strong>in</strong>g <strong>the</strong> conifold quiver . . . . . . . . . . . . . . . . . . . . . 22213.6.3 Flavor<strong>in</strong>g <strong>the</strong> modified C×C 2 /Z 2 <strong>the</strong>ory . . . . . . . . . . . . . . 22813.6.4 Flavor<strong>in</strong>g <strong>the</strong> dP 0 quiver . . . . . . . . . . . . . . . . . . . . . . . . 23313.6.5 Flavor<strong>in</strong>g <strong>the</strong> dP 1 quiver . . . . . . . . . . . . . . . . . . . . . . . . 23613.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237A Type IIB SUGRA action, charges and equations <strong>of</strong> motion 239A.1 Maxwell and Page charges for D3-<strong>branes</strong> . . . . . . . . . . . . . . . . . . . 240B Algebraic geometry and toric geometry 241B.1 Algebraic geometry: <strong>the</strong> gist <strong>of</strong> it . . . . . . . . . . . . . . . . . . . . . . . 241B.1.1 Aff<strong>in</strong>e varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242B.1.2 Projective varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . 245B.1.3 Spectrum and scheme, <strong>in</strong> two words . . . . . . . . . . . . . . . . . 247B.2 The Calabi-Yau condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 247B.2.1 Holomorphic vector bundles and l<strong>in</strong>e bundles . . . . . . . . . . . . 247B.2.2 Calabi-Yau manifolds. Kähler and complex moduli . . . . . . . . . 248B.2.3 Divisors and l<strong>in</strong>e bundles . . . . . . . . . . . . . . . . . . . . . . . 249B.3 Toric geometry 1: The algebraic story . . . . . . . . . . . . . . . . . . . . 250B.3.1 Cones and fan. Homogeneous coord<strong>in</strong>ates . . . . . . . . . . . . . . 250B.3.2 Coord<strong>in</strong>ate r<strong>in</strong>gs and dual cones . . . . . . . . . . . . . . . . . . . 253B.3.3 Calabi-Yau toric varieties . . . . . . . . . . . . . . . . . . . . . . . 256B.3.4 Toric diagrams and p-q webs . . . . . . . . . . . . . . . . . . . . . 257B.4 Deal<strong>in</strong>g with toric s<strong>in</strong>gularities . . . . . . . . . . . . . . . . . . . . . . . . 258B.4.1 Resolution <strong>of</strong> toric s<strong>in</strong>gularities and simplicial decomposition . . . 259B.4.2 Deformation <strong>of</strong> toric s<strong>in</strong>gularities: <strong>the</strong> versal space . . . . . . . . . 261B.5 Toric geometry 2: Gauged l<strong>in</strong>ear sigma-model . . . . . . . . . . . . . . . . 263B.5.1 Kähler quotient and moment maps . . . . . . . . . . . . . . . . . . 264B.5.2 The GLSM story . . . . . . . . . . . . . . . . . . . . . . . . . . . . 265B.5.3 Toric varieties as torus fibration <strong>of</strong> polytopes . . . . . . . . . . . . 265C N = 1 renormalization group and Seiberg duality 267C.1 RG equations for N = 1 <strong>gauge</strong> <strong>the</strong>ories . . . . . . . . . . . . . . . . . . . 267C.1.1 Superpotential coupl<strong>in</strong>gs . . . . . . . . . . . . . . . . . . . . . . . . 267C.1.2 Gauge coupl<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268C.2 Seiberg duality <strong>in</strong> <strong>the</strong> conformal w<strong>in</strong>dow . . . . . . . . . . . . . . . . . . . 268C.3 Seiberg duality with a quartic superpotential . . . . . . . . . . . . . . . . 269D Spherical coord<strong>in</strong>ates on R 6 271D.1 Spherical polar coord<strong>in</strong>ates on R 6 . . . . . . . . . . . . . . . . . . . . . . . 271D.2 Spherical harmonics <strong>of</strong> S 5 and Gegenbauer polynomials . . . . . . . . . . 272D.3 Solv<strong>in</strong>g for <strong>the</strong> warp factor <strong>of</strong> a 2 stacks system . . . . . . . . . . . . . . . 273


xContentsE Seiberg-Witten <strong>the</strong>ory 275E.1 N = 2 vector mutliplet and <strong>the</strong> effective action . . . . . . . . . . . . . . . 275E.1.1 R-symmetry and <strong>the</strong> perturbative prepotential . . . . . . . . . . . 277E.2 Electric-magnetic duality . . . . . . . . . . . . . . . . . . . . . . . . . . . 277E.3 S<strong>in</strong>gularities and massless monopoles . . . . . . . . . . . . . . . . . . . . . 279E.4 Solution through <strong>the</strong> Seiberg-Witten curve . . . . . . . . . . . . . . . . . . 281E.5 SW curves for N = 2 SQCD with N f flavors . . . . . . . . . . . . . . . . . 283E.6 SW curves from M-<strong>the</strong>ory . . . . . . . . . . . . . . . . . . . . . . . . . . . 284E.7 Effective field <strong>the</strong>ory approach to <strong>the</strong> cascad<strong>in</strong>g SW curve . . . . . . . . . 285F The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong> 287F.1 Generalities on <strong>the</strong> conifold geometry . . . . . . . . . . . . . . . . . . . . . 287F.2 The orbifolded conifold geometry . . . . . . . . . . . . . . . . . . . . . . . 289F.3 Poisson equation on <strong>the</strong> s<strong>in</strong>gular conifold . . . . . . . . . . . . . . . . . . 297F.4 Periods <strong>of</strong> Ω . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298


Chapter 1Introduction, overview andsummaryStr<strong>in</strong>g <strong>the</strong>ory is our best candidate for a <strong>the</strong>ory <strong>of</strong> <strong>gravity</strong> [5, 6] which is coherent withour quantum <strong>the</strong>oretical understand<strong>in</strong>g <strong>of</strong> Physics [7, 8]. To <strong>the</strong> outsider, str<strong>in</strong>g <strong>the</strong>ory <strong>in</strong>its present formulation(s) might look ra<strong>the</strong>r Baroque. Never<strong>the</strong>less, <strong>the</strong> student who hasspent some time amongst its wonders cannot help but suspect that str<strong>in</strong>g <strong>the</strong>ory conta<strong>in</strong>ssome <strong>of</strong> <strong>the</strong> deepest clues to a more comprehensive understand<strong>in</strong>g <strong>of</strong> our Universe.On a more down-to-earth tone, str<strong>in</strong>g <strong>the</strong>ory conta<strong>in</strong>s <strong>the</strong> more familiar framework <strong>of</strong>quantum field <strong>the</strong>ory, which is <strong>the</strong> ma<strong>in</strong> tool <strong>of</strong> XX th century Physics. More surpris<strong>in</strong>gly,it turns out that some quantum fields <strong>the</strong>ories are equivalent to str<strong>in</strong>g <strong>the</strong>ories. Hence,quite <strong>in</strong>dependently from <strong>the</strong> considerations about quantum <strong>gravity</strong>, str<strong>in</strong>g <strong>the</strong>ory can beseen as just ano<strong>the</strong>r tool to study <strong>in</strong>terest<strong>in</strong>g field <strong>the</strong>ories <strong>in</strong> regimes which were hi<strong>the</strong>rtoout <strong>of</strong> reach.1.1 MotivationsOur current understand<strong>in</strong>g <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory relies crucially on <strong>the</strong> concept <strong>of</strong> duality. Aduality between two <strong>the</strong>ories is an exact physical equivalence, which means that anyphysical observable is <strong>the</strong> same <strong>in</strong> both <strong>the</strong>ories. The two sides <strong>of</strong> <strong>the</strong> duality might ormight not look alike, depend<strong>in</strong>g <strong>in</strong> part on whe<strong>the</strong>r we are deal<strong>in</strong>g with perturbative ornon-perturbative dualities.The work <strong>of</strong> this <strong>the</strong>sis takes place <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong>and <strong>in</strong> <strong>the</strong> more general framework known as <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>. This<strong>correspondence</strong> is a very surpris<strong>in</strong>g non-perturbative duality, <strong>in</strong> which <strong>the</strong> two dual <strong>the</strong>oriesseem utterly different. The revolutionary idea beh<strong>in</strong>d <strong>the</strong> AdS/CFT proposal [9] isthat a quantum field <strong>the</strong>ory <strong>in</strong> 3 or 4 dimensions can be dual to a gravitational <strong>the</strong>ory <strong>in</strong>a higher dimensional space (10 or 11 dimensions for <strong>the</strong> best understood cases stemm<strong>in</strong>gfrom str<strong>in</strong>g <strong>the</strong>ory). This relationship is best understood when <strong>the</strong> quantum field <strong>the</strong>oryis a conformal field <strong>the</strong>ory (CFT). The dual <strong>gravity</strong> <strong>the</strong>ory <strong>in</strong>volves <strong>gravity</strong>, and itsultraviolet completion <strong>in</strong> <strong>the</strong> form <strong>of</strong> a str<strong>in</strong>g <strong>the</strong>ory, <strong>in</strong> Anti-de-Sitter (AdS) space-time.In perturbative str<strong>in</strong>g <strong>the</strong>ory, <strong>the</strong> basic object is <strong>the</strong> fundamental str<strong>in</strong>g. To under-1


2 Chapter 1. Introduction, overview and summarystand non-perturbative dualities <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory, it is important to study higher dimensionalobjects known as <strong>branes</strong>. Branes are <strong>the</strong> underly<strong>in</strong>g <strong>the</strong>me <strong>of</strong> this work. Theyare fasc<strong>in</strong>at<strong>in</strong>g dual objects, <strong>in</strong> <strong>the</strong> sense that <strong>the</strong>y can be <strong>in</strong>terpreted very differently <strong>in</strong>different regimes. The best understood <strong>in</strong>stance <strong>of</strong> a brane is <strong>the</strong> Dirichlet brane, or D-brane. In <strong>the</strong> weakly coupled str<strong>in</strong>g <strong>the</strong>ory, D-<strong>branes</strong> support open str<strong>in</strong>gs, whose degrees<strong>of</strong> freedom conta<strong>in</strong> a vector field. In <strong>the</strong> case <strong>of</strong> multiple co<strong>in</strong>cident D-<strong>branes</strong>, <strong>the</strong>se openstr<strong>in</strong>g excitations possess non-Abelian <strong>gauge</strong> symmetries, similarly to <strong>the</strong> ma<strong>the</strong>maticalstructure <strong>of</strong> <strong>the</strong> Standard Model. D-<strong>branes</strong> are also massive objects, which deform spacetimeaccord<strong>in</strong>g to <strong>the</strong> laws <strong>of</strong> General Relativity. In <strong>the</strong> appropriate super<strong>gravity</strong> limit<strong>of</strong> small space-time curvatures, <strong>the</strong>y correspond to some k<strong>in</strong>d <strong>of</strong> extremal black holes (orblack <strong>branes</strong>) called p-<strong>branes</strong>.The D3-brane is particularly important. Its worldvolume spans 3+1 dimensions, sothat we could live on it. Moreover, its correspond<strong>in</strong>g extremal 3-brane solution is smooth(<strong>the</strong> dilaton is constant), so that <strong>the</strong> super<strong>gravity</strong> approximation does not break down at<strong>the</strong> horizon. These two properties make D3-<strong>branes</strong> very <strong>in</strong>terest<strong>in</strong>g to study. By tak<strong>in</strong>g anear horizon limit on D3-<strong>branes</strong>, we obta<strong>in</strong> a st<strong>in</strong>g <strong>the</strong>ory “derivation” <strong>of</strong> an AdS 5 /CFT 4<strong>correspondence</strong>. This duality has given us new tools to compute <strong>in</strong> four dimensional<strong>the</strong>ories: one can “simply” do computations <strong>in</strong> <strong>the</strong> dual <strong>gravity</strong> background to extractobservables <strong>in</strong> a strongly coupled field <strong>the</strong>ory. This makes AdS/CFT an important toolon <strong>the</strong> road to an analytic understand<strong>in</strong>g <strong>of</strong> low energy QCD, which is one <strong>of</strong> <strong>the</strong> greatestproblems <strong>in</strong> <strong>the</strong>oretical physics. AdS/CFT has already been successfully used to study(at least at a qualitative level) strange properties <strong>of</strong> <strong>the</strong> quark-gluon plasma produced atRHIC. In Part One <strong>of</strong> <strong>the</strong> <strong>the</strong>sis we will study some models which have some resemblancewith zero temperature supersymmetric QCD, although we should warn <strong>the</strong> reader thatour ma<strong>in</strong> object <strong>of</strong> study will not be <strong>the</strong>se low energy <strong>the</strong>ories per se, but ra<strong>the</strong>r <strong>the</strong>irexotic embedd<strong>in</strong>g <strong>in</strong>to so-called “cascad<strong>in</strong>g field <strong>the</strong>ories”.Ano<strong>the</strong>r <strong>in</strong>stance <strong>of</strong> AdS/CFT <strong>correspondence</strong> is <strong>the</strong> duality stemm<strong>in</strong>g from consider<strong>in</strong>g<strong>the</strong> near horizon limit on M2-<strong>branes</strong>. It had been less well studied until recently, when<strong>in</strong>terest<strong>in</strong>g progress were made towards giv<strong>in</strong>g a Lagrangian description <strong>of</strong> <strong>the</strong> low energy<strong>the</strong>ory liv<strong>in</strong>g on multiple M2-<strong>branes</strong>. In that case, <strong>the</strong> field <strong>the</strong>ory is three dimensional.The AdS/CFT <strong>correspondence</strong> could <strong>the</strong>n be used as a tool to study non-perturbativeproperties <strong>of</strong> three dimensional field <strong>the</strong>ories, which arise as descriptions <strong>of</strong> many condensedmatter systems. For <strong>in</strong>stance, <strong>the</strong>re has been a lot <strong>of</strong> activity recently <strong>in</strong> try<strong>in</strong>gto mimic high temperature superconductors from such a <strong>gravity</strong> construction. In PartTwo <strong>of</strong> <strong>the</strong> <strong>the</strong>sis, we will extend <strong>the</strong> number <strong>of</strong> examples <strong>of</strong> AdS 4 /CFT 3 dualities whichhave an explicit str<strong>in</strong>g <strong>the</strong>ory “derivation”.1.2 The <strong>the</strong>sis: an overviewThe work presented <strong>in</strong> this <strong>the</strong>sis takes place <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>.My two ma<strong>in</strong> po<strong>in</strong>ts (<strong>the</strong>ses) are:1. The super<strong>gravity</strong> solution <strong>of</strong> Bertol<strong>in</strong>i et al. [10] and Polch<strong>in</strong>ski [11] describ<strong>in</strong>gbackreacted <strong>fractional</strong> D3-<strong>branes</strong> on <strong>the</strong> C 2 /Z 2 orbifold has a dual field <strong>the</strong>ory<strong>in</strong>terpretation as describ<strong>in</strong>g a particular vacuum on <strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong>SU(N + M) × SU(N) N = 2 quiver <strong>the</strong>ory. This vacuum is <strong>the</strong> analog <strong>of</strong> <strong>the</strong>


1.2. The <strong>the</strong>sis: an overview 3baryonic root on <strong>the</strong> Coulomb branch <strong>of</strong> N = 2 SQCD. One can also write acorrected super<strong>gravity</strong> solution which realizes explicitly <strong>the</strong> correct “ enhançonmechanism”.2. M2-<strong>branes</strong> on any non-compact eight dimensional toric Calabi-Yau cone with complexcodimension two s<strong>in</strong>gularity have a low energy field <strong>the</strong>ory description <strong>in</strong> term<strong>of</strong> a Chern-Simons quiver <strong>the</strong>ory coupled to flavors (fields <strong>in</strong> <strong>the</strong> fundamental representation<strong>of</strong> some <strong>gauge</strong> groups <strong>of</strong> <strong>the</strong> quiver). The field <strong>the</strong>ory description cruciallyrelies on <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> diagonal monopole operators (and related non-perturbativeeffects) <strong>in</strong> <strong>the</strong> discussion <strong>of</strong> <strong>the</strong> chiral r<strong>in</strong>g.Thesetwopo<strong>in</strong>tsarecarefullyexpla<strong>in</strong>ed<strong>in</strong>Part OneandPart Two<strong>of</strong>this<strong>the</strong>sis. Inparticular, <strong>the</strong> ma<strong>in</strong> arguments are conta<strong>in</strong>ed <strong>in</strong> Chapter 6 and Chapter 13, respectively.The rest <strong>of</strong> this long text can be considered as a detailed explanation <strong>of</strong> <strong>the</strong> concepts<strong>in</strong>volved, necessary for <strong>the</strong> full understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> above two po<strong>in</strong>ts. In <strong>the</strong> rest <strong>of</strong>this section we give a non-technical overview <strong>of</strong> <strong>the</strong> contents <strong>of</strong> this <strong>the</strong>sis. In <strong>the</strong> tw<strong>of</strong>ollow<strong>in</strong>g sections we summarize our ma<strong>in</strong> results <strong>in</strong> more details, and we po<strong>in</strong>t outpossible directions for future research.This work takes for granted some standard knowledge about four dimensional supersymmetricfield <strong>the</strong>ories, and about various non-perturbative effects such as Seibergduality. We however <strong>in</strong>troduce <strong>the</strong> tools we use <strong>the</strong> most <strong>in</strong> two Appendices: N = 1 supersymmetric<strong>the</strong>ories and Seiberg duality are reviewed <strong>in</strong> Appendix C, while AppendixE <strong>of</strong>fers a brief account <strong>of</strong> <strong>the</strong> Seiberg-Witten approach to N = 2 supersymmetric <strong>the</strong>ories<strong>in</strong> four dimensions. Three dimensional supersymmetric field <strong>the</strong>ories, which tendto be less familiar, will be <strong>in</strong>troduced thoroughly <strong>in</strong> Part Two. We have also attemptedwhenever possible to <strong>in</strong>troduce all <strong>the</strong> str<strong>in</strong>g <strong>the</strong>ory tools we use, at least at a superficiallevel.In Chapter 2, we give a first look from above at our field <strong>of</strong> study. Our usualenvironment will be type II str<strong>in</strong>g <strong>the</strong>ory, but we will make healthy walks <strong>in</strong>to elevendimensional M-<strong>the</strong>ory as well. Our ma<strong>in</strong> concern lies with supersymmetric <strong>branes</strong>, whichhide rich supersymmetric field <strong>the</strong>ories <strong>in</strong> <strong>the</strong>ir bosom. In type II str<strong>in</strong>g <strong>the</strong>ory, <strong>the</strong>seare <strong>the</strong> D-<strong>branes</strong> and <strong>the</strong> NS5-<strong>branes</strong>. Of course, <strong>in</strong> this <strong>in</strong>troductory chapter we have totake a lot for granted, but <strong>the</strong> properties we will mention are common knowledge amongstr<strong>in</strong>g <strong>the</strong>orists <strong>of</strong> all stripe.Chapter 3 is an important review chapter which is relevant for both Parts <strong>of</strong> <strong>the</strong><strong>the</strong>sis. It deals with D3-<strong>branes</strong> at Calabi-Yau (CY) threefold s<strong>in</strong>gularities, but it shouldbe clear that <strong>the</strong> properties we discuss are valid for any D-<strong>branes</strong> (<strong>in</strong> particular for D2-<strong>branes</strong> on <strong>the</strong> same threefolds). The ma<strong>in</strong> po<strong>in</strong>t <strong>of</strong> this chapter is that all <strong>the</strong> holomorphicproperties <strong>of</strong> a given CY threefold are encoded <strong>in</strong> a so-called quiver. The quiver is aparticular field <strong>the</strong>ory describ<strong>in</strong>g <strong>the</strong> dynamics <strong>of</strong> open str<strong>in</strong>gs on <strong>the</strong> D-<strong>branes</strong>, when <strong>the</strong>D-<strong>branes</strong> sit on top <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularity. Particular focus is put on <strong>the</strong> toric case. Toricgeometry is reviewed <strong>in</strong> Appendix B.After <strong>the</strong>se prelim<strong>in</strong>aries, we enter Part One, which consists <strong>of</strong> four chapters:Chapter 4 provides an <strong>in</strong>troduction to <strong>the</strong> AdS/CFT <strong>correspondence</strong>, oriented towardslater use. We <strong>in</strong>troduce <strong>the</strong> important Klebanov-Witten <strong>the</strong>ory <strong>in</strong> that chapter.The discussion focuses on <strong>the</strong> case <strong>of</strong> AdS 5 /CFT 4 , which stems from <strong>the</strong> study <strong>of</strong> D3-<strong>branes</strong>, but we also make general comments which apply to <strong>the</strong> setups discussed <strong>in</strong> Part


4 Chapter 1. Introduction, overview and summaryTwo <strong>of</strong> <strong>the</strong> <strong>the</strong>sis.Chapter 5 <strong>in</strong>troduces <strong>the</strong> general concept <strong>of</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>. Themotivation to consider such an extension <strong>of</strong> <strong>the</strong> duality conjecture are expla<strong>in</strong>ed. Wefocus on one such model, called <strong>the</strong> Klebanov-Strassler model. It gives a super<strong>gravity</strong>description to a <strong>the</strong>ory similar <strong>in</strong> many respects to N = 1 SU(N) Super-Yang-Mills <strong>in</strong>fourdimensions. Wewillnotenter<strong>in</strong>to<strong>the</strong>study<strong>of</strong><strong>the</strong>manyniceproperties<strong>of</strong>thismodel(which has become a huge field <strong>of</strong> research). Instead, we focus on a particular property<strong>of</strong> this model called a duality cascade. We will give a first non-technical def<strong>in</strong>ition <strong>of</strong> thatterm <strong>in</strong> <strong>the</strong> next section.Chapter 6 discusses duality cascades <strong>in</strong> N = 2 supersymmetric setup. We study <strong>in</strong>detail <strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong> quiver for D3-<strong>branes</strong> at <strong>the</strong> C×C 2 /Z 2 s<strong>in</strong>gularity, by acareful study <strong>of</strong> <strong>the</strong> associated Seiberg-Witten curve. In particular, we prove <strong>the</strong> Po<strong>in</strong>t 1stated earlier. That chapter is based on [2]. We also derive a whole family <strong>of</strong> super<strong>gravity</strong>solutions correspond<strong>in</strong>g to more generic Coulomb branch vacua.Chapter 7, based on [1], considers <strong>fractional</strong> <strong>branes</strong> <strong>of</strong> various k<strong>in</strong>ds on a Z 2 orbifold<strong>of</strong> <strong>the</strong> conifold. It studies from <strong>the</strong> super<strong>gravity</strong> perspective <strong>the</strong> renormalization groupflow <strong>in</strong> <strong>the</strong> dual quiver, result<strong>in</strong>g from generic brane charge assignments. This providessupport for <strong>the</strong> conjecture that <strong>the</strong> discussion <strong>of</strong> [2] also applies to generic N = 1 quiver<strong>the</strong>ories correspond<strong>in</strong>g to geometries with complex codimension one s<strong>in</strong>gularities. Wealso discuss <strong>the</strong> <strong>in</strong>frared behavior <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory, at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cascade. Thisconcludes Part One.Part Two<strong>of</strong><strong>the</strong><strong>the</strong>sisisconcernedwithM2-<strong>branes</strong>andwith<strong>the</strong>relatedAdS 4 /CFT 3<strong>correspondence</strong>. It consists <strong>of</strong> six chapters.Chapter 8 expla<strong>in</strong>s <strong>the</strong> general problem. There is a natural Maldacena limit wecan take on a stack <strong>of</strong> M2-<strong>branes</strong>, and consequently <strong>the</strong>re should exist an AdS 4 /CFT 3<strong>correspondence</strong>. However, <strong>the</strong> explicit study <strong>of</strong> this <strong>correspondence</strong> had been impededfor a long time by our ignorance about <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g CFT present at low energy on astack <strong>of</strong> co<strong>in</strong>cident M2-<strong>branes</strong>. We present a panorama <strong>of</strong> this issue prior to <strong>the</strong> recentM2-brane breakthrough.Chapter 9 <strong>in</strong>troduces supersymmetric field <strong>the</strong>ories <strong>in</strong> 2+1 dimensions. In particular,it <strong>in</strong>troduces <strong>the</strong> Chern-Simons <strong>in</strong>teraction and its supersymmetric completion. Italso discusses Chern-Simons matter <strong>the</strong>ories, which can give us explicit weakly coupledexamples <strong>of</strong> <strong>in</strong>teract<strong>in</strong>g CFTs <strong>in</strong> three dimensions.Chapter 10 <strong>in</strong>troduces monopole operators, which are <strong>of</strong> central importance to <strong>the</strong>discussion <strong>of</strong> Chapter 13. These are local operators which create magnetic flux at a po<strong>in</strong>t<strong>in</strong> Euclidian space-time. They generically play an important rôle <strong>in</strong> chiral r<strong>in</strong>g <strong>of</strong> genericN = 2 supersymmetric CFTs, and <strong>the</strong>y give rise to large non-perturbative modifications<strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> <strong>the</strong>ory.Chapter 11 <strong>in</strong>troduces <strong>the</strong> Aharony-Bergman-Jafferis-Maldacena (ABJM) <strong>the</strong>ory,which is central to <strong>the</strong> recent progress <strong>in</strong> <strong>the</strong> study <strong>of</strong> CFTs for M2-<strong>branes</strong>. We focus on<strong>the</strong> study <strong>of</strong> its moduli space and we briefly discuss <strong>the</strong> importance <strong>of</strong> monopole operators<strong>in</strong> that context. In <strong>the</strong> second part <strong>of</strong> <strong>the</strong> chapter we present recent proposals for N = 2<strong>the</strong>ories describ<strong>in</strong>g M2-<strong>branes</strong> at Calabi-Yau fourfold s<strong>in</strong>gularities, <strong>in</strong> <strong>the</strong> form <strong>of</strong> Chern-Simons quivers. We focus on <strong>the</strong> toric case, and expla<strong>in</strong> a general algorithm which allowsto f<strong>in</strong>d <strong>the</strong> classical moduli space <strong>of</strong> any N = 2 toric Chern-Simons quiver.


1.3. Cascad<strong>in</strong>g RG flow and N = 2 <strong>fractional</strong> <strong>branes</strong> 5Chapter 12 sets to expla<strong>in</strong> <strong>the</strong> <strong>correspondence</strong> between Chern-Simons quivers andM2-<strong>branes</strong> at s<strong>in</strong>gularities thanks to str<strong>in</strong>g <strong>the</strong>ory/M-<strong>the</strong>ory dualities. We first expla<strong>in</strong><strong>the</strong> ABJM setup us<strong>in</strong>g five<strong>branes</strong> <strong>in</strong> type IIB, and its generalization by Tomasiello andJafferis. This leads to <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g possibility <strong>of</strong> add<strong>in</strong>g extra “flavor” fields to <strong>the</strong>ABJM model, as we review, follow<strong>in</strong>g a paper by Gaiotto and Jafferis. In <strong>the</strong> second part<strong>of</strong> <strong>the</strong> paper we review how one can derive <strong>the</strong> Chern-Simons quiver associated to anytoric Calabi-Yau fourfold, through a simple type IIA reduction. We follow a proposal byAganagic, which we slightly clarify (as already appeared <strong>in</strong> [3]).The f<strong>in</strong>al Chapter 13 conta<strong>in</strong>s all <strong>the</strong> orig<strong>in</strong>al results <strong>of</strong> Part Two. It is based on [3].We show that Chern-Simons quivers coupled to extra fields (flavors) naturally arise fromM2-<strong>branes</strong> at non-isolated toric CY s<strong>in</strong>gularities (<strong>of</strong> complex codimension two). We usetoric geometry to understand how <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> new flavors to a Chern-Simons quivermodifies <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> <strong>the</strong>ory. We present a simple alorithm which relates<strong>the</strong> flavor<strong>in</strong>g procedure to simple manipulations on <strong>the</strong> toric diagram, and we prove <strong>the</strong>equivalence between <strong>the</strong> geometric expectation and <strong>the</strong> non-perturbative moduli space <strong>of</strong><strong>the</strong> flavored quiver. This last step uses crucially a non-perturbative chiral r<strong>in</strong>g relation<strong>in</strong>volv<strong>in</strong>g <strong>the</strong> monopole operators, which we conjecture to exist follow<strong>in</strong>g similar results<strong>in</strong> earlier literature.1.3 Cascad<strong>in</strong>g RG flow and N = 2 <strong>fractional</strong> <strong>branes</strong>The most studied generalization <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong> to <strong>the</strong> non-conformalrealm <strong>in</strong>volves <strong>fractional</strong> D3-<strong>branes</strong> (wrapped D5-<strong>branes</strong>) at s<strong>in</strong>gularities. The mostcelebrated <strong>of</strong> such setups is <strong>the</strong> Klebanov-Strassler model, which considers <strong>fractional</strong>D3-<strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity. Fractional <strong>branes</strong> allow to brane-eng<strong>in</strong>eer genericN = 1 supersymmetric field <strong>the</strong>ories, which can be somewhat similar to <strong>the</strong> m<strong>in</strong>imalsupersymmetric extension <strong>of</strong> <strong>the</strong> Standard Model (MSSM), and <strong>the</strong>ir study is <strong>the</strong>refore<strong>of</strong> obvious <strong>in</strong>terest. However, <strong>the</strong>se MSSM-like <strong>the</strong>ories always have some more exoticUV completion, <strong>in</strong> which <strong>the</strong> number <strong>of</strong> degrees <strong>of</strong> freedom grows cont<strong>in</strong>uously with <strong>the</strong>energy. In that respect <strong>the</strong>y are very different from asymptotically free <strong>the</strong>ories suchas real world QCD (where <strong>the</strong> number <strong>of</strong> degrees <strong>of</strong> freedom goes to a constant <strong>in</strong> <strong>the</strong>UV). Such complicated <strong>the</strong>ories are usually known as cascad<strong>in</strong>g quiver <strong>the</strong>ories. It ispossible <strong>in</strong> pr<strong>in</strong>ciple to decouple <strong>the</strong> exotic UV completion from <strong>the</strong> phenomenologically<strong>in</strong>terest<strong>in</strong>g IR dynamics, but not <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> approximation. This squares wellwith <strong>the</strong> expectation that QCD <strong>in</strong> <strong>the</strong> large N limit can be described as a perturbativestr<strong>in</strong>g <strong>the</strong>ory [12]. Unfortunately we would have to deal with str<strong>in</strong>gs on curved space,which is too hard. The next best th<strong>in</strong>g we can do is to consider <strong>the</strong> super<strong>gravity</strong> limit.In that limit, <strong>the</strong> dual field <strong>the</strong>ory is strongly coupled at any scale.The ma<strong>in</strong> focus <strong>of</strong> Part One <strong>of</strong> <strong>the</strong> <strong>the</strong>sis is on <strong>the</strong> study <strong>of</strong> <strong>the</strong>se “cascad<strong>in</strong>g” UVcompletions. In <strong>the</strong> <strong>gravity</strong> description, which is very well understood, <strong>the</strong> unboundedgrowth <strong>in</strong> <strong>the</strong> number <strong>of</strong> degrees <strong>of</strong> freedom is encoded <strong>in</strong> “runn<strong>in</strong>g fluxes”: <strong>the</strong> enclosedD3-brane charge <strong>in</strong>creases logarithmically with <strong>the</strong> distance (large distance means highenergy <strong>in</strong> <strong>the</strong> dual field <strong>the</strong>ory). In setups which correspond to <strong>fractional</strong> D3-<strong>branes</strong> atconifold-like s<strong>in</strong>gularities (N = 1 <strong>fractional</strong> <strong>branes</strong>), <strong>the</strong> dual field <strong>the</strong>ory <strong>in</strong>terpretation<strong>of</strong> <strong>the</strong>se runn<strong>in</strong>g fluxes is well understood too: <strong>the</strong> field <strong>the</strong>ory can be described bya succession <strong>of</strong> Seiberg-dual <strong>the</strong>ories, with <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups cont<strong>in</strong>uously


6 Chapter 1. Introduction, overview and summary<strong>in</strong>creas<strong>in</strong>g as we go towards <strong>the</strong> UV. For <strong>in</strong>stance, <strong>the</strong> UV limit <strong>of</strong> <strong>the</strong> Klebanov-Strassler<strong>the</strong>ory is formally a SU(∞)×SU(∞) <strong>the</strong>ory, quite different from <strong>the</strong> SU(M) SYM <strong>the</strong>orypresent <strong>in</strong> <strong>the</strong> IR limit.We will study a different k<strong>in</strong>d <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, known as N = 2 <strong>fractional</strong> <strong>branes</strong>.Such <strong>branes</strong>arelocalizedatcomplexcodimensionones<strong>in</strong>gularities, and<strong>the</strong>yare<strong>the</strong>reforefree to move along a complex l<strong>in</strong>e. This corresponds to an extra Coulomb branch <strong>in</strong> <strong>the</strong>dualfield<strong>the</strong>ory,associatedtoscalarfields<strong>in</strong><strong>the</strong>adjo<strong>in</strong>trepresentation. Thesuper<strong>gravity</strong>solutions for such <strong>branes</strong> are very similar to <strong>the</strong> N = 1 case, with analogous runn<strong>in</strong>gfluxes 1 . However,<strong>the</strong>dualfield<strong>the</strong>ory<strong>in</strong>terpretationwasnotclear,because<strong>the</strong>redoesnotexist an appropriate Seiberg duality with adjo<strong>in</strong>t fields. Several partial and contradictoryexplanations were present <strong>in</strong> <strong>the</strong> literature, prior to our work. In Chapter 6 we willclarify <strong>the</strong> situation by study<strong>in</strong>g <strong>the</strong> simplest N = 2 example with <strong>the</strong> Seiberg-Wittentechnology. We show that <strong>the</strong> previously known super<strong>gravity</strong> solutions with runn<strong>in</strong>gfluxes correspond to a particular vacuum on <strong>the</strong> Coulomb branch. This vacuum is verysimilarto<strong>the</strong>so-calledbaryonicroot<strong>in</strong>N = 2SQCD:itisapo<strong>in</strong>ton<strong>the</strong>Coulombbranchwherenon-perturbativeeffects(<strong>in</strong>stantons)break<strong>the</strong>non-Abelianpart<strong>of</strong><strong>the</strong><strong>gauge</strong>groupfrom SU(N) to SU(N f −N). Hence <strong>the</strong> net effect is similar to Seiberg duality, although<strong>the</strong> mechanism is different. We call “<strong>the</strong> N = 2 cascade” <strong>the</strong> RG flow described bysuccessive transitions at baryonic roots. We will provide super<strong>gravity</strong> solutions for moregeneral Coulomb branch vacua. We will also expla<strong>in</strong> how <strong>the</strong> Klebanov-Strassler N = 1cascade can be recovered upon mass deformation from N = 2 to N = 1, <strong>in</strong> <strong>the</strong> field<strong>the</strong>ory.This complete understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> cascade associated with N = 2 <strong>branes</strong> allowsto consider <strong>the</strong>ories where effects from both types <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> are important.Particularly <strong>in</strong>terest<strong>in</strong>g for physical applications is <strong>the</strong> fact that generic <strong>fractional</strong> braneassignment can lead to supersymmetry break<strong>in</strong>g <strong>in</strong> <strong>the</strong> IR <strong>the</strong>ory (an issue which we willnot adress <strong>in</strong> this work). In Chapter 7 we will analyze some generic cascade with mixedfeatures, and we will also comment on <strong>the</strong> supersymmetric vacua. It would be <strong>in</strong>terest<strong>in</strong>gto study fur<strong>the</strong>r to <strong>the</strong> issue <strong>of</strong> SUSY break<strong>in</strong>g at <strong>the</strong> bottom <strong>of</strong> generic cascades <strong>in</strong>volv<strong>in</strong>ga choice <strong>of</strong> Coulomb vacuum at some steps. Ano<strong>the</strong>r <strong>in</strong>terest<strong>in</strong>g (and related) direction<strong>of</strong> study would be to consider a flux compactification with a throat correspond<strong>in</strong>g to aN = 2 cascade. In a purely N = 2 throat, we do not expect any metastable vacuum tobe present (and hence no possibility <strong>of</strong> a de Sitter construction like <strong>in</strong> [13]) when putt<strong>in</strong>ga anti-D3 brane <strong>in</strong> <strong>the</strong> throat, because twisted flux can be transmuted <strong>in</strong>to D3-<strong>branes</strong> atno cost, which would <strong>the</strong>n annihilate <strong>the</strong> anti-D3-brane classically. However, <strong>in</strong> a cascade<strong>of</strong> mixed type <strong>the</strong> situation is less clear, and <strong>the</strong>re might be <strong>in</strong>terest<strong>in</strong>g new possibilities.1.4 Quivers for M2-<strong>branes</strong> and <strong>the</strong>ir generalizationsFifteen years after its discovery, M-<strong>the</strong>ory is still very mysterious. A fundamental object<strong>in</strong> M-<strong>the</strong>ory is <strong>the</strong> M2-brane, which is <strong>the</strong> uplift <strong>of</strong> <strong>the</strong> fundamental str<strong>in</strong>g (and also <strong>of</strong> <strong>the</strong>D2-brane) from type IIA to M-<strong>the</strong>ory. The AdS/CFT <strong>correspondence</strong> stemm<strong>in</strong>g from <strong>the</strong>1 Although strictly speak<strong>in</strong>g we cannot use <strong>the</strong> super<strong>gravity</strong> approximation because <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularityl<strong>in</strong>e, we can still consider this approximation supplemented with extra fields, correspond<strong>in</strong>g to <strong>the</strong> twistedsectors <strong>of</strong> <strong>the</strong> closed str<strong>in</strong>g <strong>the</strong>ory.


1.4. Quivers for M2-<strong>branes</strong> and <strong>the</strong>ir generalizations 7near horizon limit on M2-<strong>branes</strong> was poorly understood until recently, due to <strong>the</strong> lack <strong>of</strong>explicit control over <strong>the</strong> CFT. The ABJM <strong>the</strong>ory gave an explicit and (almost) maximallysupersymmetric Lagrangian description for <strong>the</strong> low energy <strong>the</strong>ory on M2-<strong>branes</strong>, ei<strong>the</strong>ron flat space or on some orbifold C 4 /Z k . The ABJM <strong>the</strong>ory has a weakly coupled limit atk → ∞. In that limit <strong>the</strong> <strong>the</strong>ory is dual to type IIA str<strong>in</strong>g <strong>the</strong>ory on AdS 4 ×CP 3 . This<strong>correspondence</strong> is very similar to <strong>the</strong> well studied AdS 5 ×S 5 case; many similar avenues<strong>of</strong> research have <strong>the</strong>n opened, for <strong>in</strong>stance <strong>in</strong> <strong>the</strong> very active field <strong>of</strong> <strong>in</strong>tegrability.This <strong>the</strong>sis is concerned with generalizations <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory to <strong>the</strong>ories withless supersymmetries. The overall aim is to understand <strong>the</strong> general relationship betweenM2-<strong>branes</strong> and <strong>the</strong> <strong>the</strong>ories which describe <strong>the</strong>ir low energy dynamics. In particular, wewould like to know whe<strong>the</strong>r <strong>the</strong>se new <strong>in</strong>stances <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong> canshed new light on <strong>the</strong> “<strong>in</strong>tr<strong>in</strong>sic” degrees <strong>of</strong> freedom <strong>of</strong> multiple M2-<strong>branes</strong>. By <strong>in</strong>tr<strong>in</strong>sic,we mean some formulation that might be considered proper to M-<strong>the</strong>ory itself. We willsee <strong>in</strong> Part Two <strong>of</strong> <strong>the</strong> <strong>the</strong>sis that we give an ra<strong>the</strong>r pessimistic answer to that question:all <strong>the</strong> known <strong>the</strong>ories which describe M2-<strong>branes</strong> are best understood as aris<strong>in</strong>g from adual description <strong>of</strong> M-<strong>the</strong>ory, ei<strong>the</strong>r <strong>in</strong> type IIA or type IIB str<strong>in</strong>g <strong>the</strong>ory 2 . In fact, westress that <strong>the</strong> <strong>in</strong>tr<strong>in</strong>sically eleven-dimensional properties <strong>of</strong> M-<strong>the</strong>ories are encoded <strong>in</strong> <strong>the</strong>dual CFTs through non-perturbative effects, which go beyond <strong>the</strong> <strong>in</strong>formation conta<strong>in</strong>ed<strong>in</strong> <strong>the</strong> Lagrangian. These non-perturbative effects are related to <strong>the</strong> fact that ’t Ho<strong>of</strong>toperators (monopole operators) are local <strong>in</strong> three dimensions. Fur<strong>the</strong>r <strong>in</strong>vestigation <strong>of</strong><strong>the</strong> monopole operators <strong>in</strong> <strong>the</strong>se <strong>the</strong>ories seems crucial to us. It is a complicated problemwhich goes beyond <strong>the</strong> scope <strong>of</strong> this work.In Part Two, we will give a overview <strong>of</strong> <strong>the</strong>se various issues, stress<strong>in</strong>g what seemed<strong>the</strong> most important <strong>in</strong> order to make our po<strong>in</strong>t. The ma<strong>in</strong> results will be expla<strong>in</strong>ed <strong>in</strong><strong>the</strong> last chapter <strong>of</strong> <strong>the</strong> <strong>the</strong>sis. We show how M2-<strong>branes</strong> on Calabi-Yau with non-isolateds<strong>in</strong>gularities have a natural description <strong>in</strong> term <strong>of</strong> Chern-Simons quivers with flavors.There are numerous fur<strong>the</strong>r directions one could take to extend <strong>the</strong> results presentedhere. Some <strong>of</strong> <strong>the</strong>se questions are already under <strong>in</strong>vestigation. One obvious question,which might also be <strong>the</strong> hardest, is how one can extend <strong>the</strong> models presented <strong>in</strong> Chapter13, which are purely Abelian, to non-Abelian quivers. The analysis <strong>of</strong> <strong>the</strong> non-Abeliancase would be very hard (<strong>in</strong>deed it is already tricky <strong>in</strong> <strong>the</strong> maximally supersymmetriccase). A crucial po<strong>in</strong>t, which should not be that hard to understand, is how <strong>the</strong> <strong>gauge</strong>charges <strong>of</strong> <strong>the</strong> monopole operators are modified <strong>in</strong> <strong>the</strong> non-Abelian case: <strong>in</strong>deed <strong>the</strong>presence<strong>of</strong>fundamentalfermionsshouldchange<strong>the</strong>representation <strong>of</strong><strong>the</strong>monopoleunder<strong>the</strong> <strong>gauge</strong> group, and would be very <strong>in</strong>terest<strong>in</strong>g to understand how this comes about.A fur<strong>the</strong>r po<strong>in</strong>t (which is work <strong>in</strong> progress) is to carefully study <strong>the</strong> Higgs branches <strong>of</strong>our models. In particular this is crucial to <strong>the</strong> study <strong>of</strong> N = 2 mirror symmetry betweendifferent quivers which have <strong>the</strong> same geometric branch (and <strong>the</strong> same M-<strong>the</strong>ory dual).It is also important to understand how <strong>the</strong> multiple-bound brane til<strong>in</strong>gs square with ourgeneral picture.F<strong>in</strong>ally, on a more hypo<strong>the</strong>tical note, it would be <strong>in</strong>terest<strong>in</strong>g to use some <strong>of</strong> our<strong>the</strong>ories as toy models <strong>of</strong> condensed matter systems.2 There is a class <strong>of</strong> <strong>the</strong>ories, called multiple-bound brane til<strong>in</strong>g, which we do not know how to describeus<strong>in</strong>g a str<strong>in</strong>g <strong>the</strong>ory duality. More work needs to be done to clarify <strong>the</strong> status <strong>of</strong> such <strong>the</strong>ories. We willdiscuss some <strong>of</strong> <strong>the</strong>ir problems <strong>in</strong> Part Two.


Chapter 2Str<strong>in</strong>gs, <strong>branes</strong> and suchStr<strong>in</strong>g <strong>the</strong>ory is a vast subject. In this chapter, we give an patchy overlook <strong>of</strong> <strong>the</strong>framework taken for granted <strong>in</strong> <strong>the</strong> present <strong>the</strong>sis. Our ma<strong>in</strong> objects <strong>of</strong> study are D-<strong>branes</strong> <strong>in</strong> type II str<strong>in</strong>g <strong>the</strong>ories. We work ma<strong>in</strong>ly <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> limit. We also casta first look on eleven-dimensional M-<strong>the</strong>ory.2.1 Elements <strong>of</strong> type II str<strong>in</strong>g <strong>the</strong>oryLet us consider type II superstr<strong>in</strong>g <strong>the</strong>ories. In <strong>the</strong> limit <strong>of</strong> weak str<strong>in</strong>g coupl<strong>in</strong>g, <strong>the</strong>relevant degrees <strong>of</strong> freedom are closed superstr<strong>in</strong>gs, which live <strong>in</strong> 10 dimensional spacetime.In <strong>the</strong> Ramond-Neveu-Schwarz (RNS) quantization <strong>of</strong> <strong>the</strong> superstr<strong>in</strong>g, requir<strong>in</strong>g<strong>the</strong> absence <strong>of</strong> tachyons selects some sectors (by <strong>the</strong> GSO projection). There are twopossibilities, called type IIA and type IIB:IIA : (NS + ,NS + ), (R + ,NS + ), (NS + ,R − ), (R + ,R − ),IIB : (NS + ,NS + ), (R + ,NS + ), (NS + ,R + ), (R + ,R + ).Type II <strong>the</strong>ories are called such because <strong>the</strong>re are two gravit<strong>in</strong>os <strong>in</strong> <strong>the</strong> spectrum (one <strong>in</strong>each R-NS sector). In type IIA <strong>the</strong> gravit<strong>in</strong>os have opposite chiralities while <strong>in</strong> type IIB<strong>the</strong>y have <strong>the</strong> same chirality (say positive). Hence type IIA str<strong>in</strong>g <strong>the</strong>ory is non-chiralwhile type IIB is chiral.Note also that <strong>the</strong> massless modes <strong>in</strong> <strong>the</strong> RR sector fill up a bisp<strong>in</strong>or, which decomposes<strong>in</strong>to various anti-symmetric tensors:IIA : 8 + ⊗8 − = 8 v +56 v ,IIB :8 + ⊗8 + = 1+28+35 sdIntypeIIAwehaveavectoranda3-form, while<strong>in</strong>typeIIBwehaveascalar, a2-formanda 4-form with self-dual field strength. Moreover, <strong>the</strong> space-time <strong>the</strong>ory is supersymmetric[14].9


10 Chapter 2. Str<strong>in</strong>gs, <strong>branes</strong> and such2.1.1 D-<strong>branes</strong>Inperturbativestr<strong>in</strong>g<strong>the</strong>ory, D-<strong>branes</strong>aredef<strong>in</strong>edashypersurfacesonwhichopenstr<strong>in</strong>gscan end. Instead <strong>of</strong> Neumann boundary conditions n a ∂ a X µ = 0, one can specify Dirichletboundary conditionsX µ D= cstalongsome9−pdirectionsµ D = p+1,··· ,9, at<strong>the</strong>cost<strong>of</strong>break<strong>in</strong>gtranslation<strong>in</strong>variance<strong>in</strong> space-time. The Dp-brane is <strong>the</strong> (p + 1)-dimensional hypersurface def<strong>in</strong>ed by <strong>the</strong>seboundary conditions. Moreover, one can see already at <strong>the</strong> perturbative level that Dp<strong>branes</strong>must be dynamical objects. The quantization <strong>of</strong> <strong>the</strong> open str<strong>in</strong>g on <strong>the</strong> Dp-branegives, at<strong>the</strong>masslesslevel, ap+1dimensionalvectorfield, 9−pscalars, and<strong>the</strong>additionalfermions required by sypersymmetry. The scalars correspond to <strong>the</strong> fluctuations <strong>of</strong> <strong>the</strong>D-brane <strong>in</strong> <strong>the</strong> 9 − p transverse directions. From <strong>the</strong> space-time perspective <strong>the</strong>y are<strong>in</strong>terpreted as Goldstone bosons for <strong>the</strong> translation <strong>in</strong>variance spontaneously broken by<strong>the</strong> D-brane.Indeed, <strong>the</strong> non-perturbative po<strong>in</strong>t <strong>of</strong> view is that D-<strong>branes</strong> are solitonic states <strong>of</strong><strong>the</strong> type II <strong>the</strong>ories. In that sense <strong>the</strong>y are fully dynamical objects, albeit very heavy <strong>in</strong><strong>the</strong> perturbative str<strong>in</strong>g limit. We are particularly <strong>in</strong>terested <strong>in</strong> D-<strong>branes</strong> which preservesome supersymmetries. A stack <strong>of</strong> parallel Dp-<strong>branes</strong> <strong>of</strong> a s<strong>in</strong>gle type preserve half <strong>of</strong><strong>the</strong> supersymmetries [15], namely Q + Γ p+1···9 ˜Q. Such BPS states are stable and carryconserved charges, which appear as central charges <strong>in</strong> <strong>the</strong> 10 dimensional super-Poicaréalgebra [16, 14]. For a Dp-brane it appears as{Q α , ˜¯Qβ } = −2τ p Z R µ 1···µ p(Γ µ1 ···Γ µp ) αβ(2.1)<strong>in</strong> <strong>the</strong> commutator <strong>of</strong> two supercharges <strong>of</strong> opposite chirality <strong>in</strong> 10 dimensions. S<strong>in</strong>ce <strong>the</strong>charges Zµ R 1···µ pcarry Lorentz <strong>in</strong>dices along <strong>the</strong> Dp-brane spatial directions, <strong>the</strong>y are notcentral charges <strong>in</strong> <strong>the</strong> usual sense, but <strong>in</strong>deed this is because extended objects breakrotational <strong>in</strong>variance. If we dimensionally reduce along <strong>the</strong> D-brane volume <strong>the</strong>y becomeusual central charges associated to a charged particle <strong>in</strong> 10−p dimensions. The Dp-branetension isτ p =1(2π) p α ′p+1 2 g s, (2.2)where g s is <strong>the</strong> closed str<strong>in</strong>g coupl<strong>in</strong>g constant. Usualy solitons have a tension whichscales as 1/g 2 ; D-<strong>branes</strong> are not real solitons <strong>of</strong> <strong>the</strong> closed str<strong>in</strong>g <strong>the</strong>ory <strong>in</strong> that sense,but should ra<strong>the</strong>r be seen as additional fundamental objects <strong>in</strong> type II str<strong>in</strong>g <strong>the</strong>ory.A fundamental property <strong>of</strong> D-<strong>branes</strong> is that <strong>the</strong>y carry non-Abelian <strong>gauge</strong> fields. Inperturbative str<strong>in</strong>g <strong>the</strong>ory this follows from <strong>the</strong> well-known argument us<strong>in</strong>g Chan-Patonfactors [17, 18]: oriented open str<strong>in</strong>gs on a stack <strong>of</strong> N D-<strong>branes</strong> naturally carry U(N)degrees <strong>of</strong> freedom. Many <strong>gauge</strong> field <strong>the</strong>ories can be eng<strong>in</strong>eered us<strong>in</strong>g D-<strong>branes</strong>.2.1.2 Super<strong>gravity</strong> limits and p-brane solutionsThelowenergylimit<strong>of</strong>typeIIA/Bstr<strong>in</strong>g<strong>the</strong>oryistypeIIA/Bsuper<strong>gravity</strong>. Inthis<strong>the</strong>siswe will mostly be concerned with <strong>the</strong> bosonic fields, so we write <strong>the</strong> bosonic actions only.


2.1. Elements <strong>of</strong> type II str<strong>in</strong>g <strong>the</strong>ory 11Common to both type IIA and type IIB is <strong>the</strong> low energy <strong>the</strong>ory for <strong>the</strong> NS-NS sector,namely for <strong>the</strong> metric, <strong>the</strong> B-field and <strong>the</strong> dilaton. In E<strong>in</strong>ste<strong>in</strong> frame, <strong>the</strong> action readswhereS NS = 12κ 2 ∫d 10 x √ −GR − 14κ 2 ∫ [dΦ∧∗dΦ+e −Φ H 3 ∧∗H 3](2.3)2κ 2 = (2π) 7 α ′4 g 2 s (2.4)is basically <strong>the</strong> Newton coupl<strong>in</strong>g constant. The E<strong>in</strong>ste<strong>in</strong> frame is def<strong>in</strong>ed from <strong>the</strong> str<strong>in</strong>gframe by rescal<strong>in</strong>g <strong>the</strong> metric by <strong>the</strong> fluctuat<strong>in</strong>g part <strong>of</strong> <strong>the</strong> dilaton field, while its VEVe Φ 0= g s hasbeenabsorbed<strong>in</strong>toκ. Φis<strong>the</strong>n<strong>the</strong>fluctuat<strong>in</strong>gpart<strong>of</strong><strong>the</strong>dilaton. H 3 = dB 2is <strong>the</strong> NS-NS field strength. The full IIA bosonic action also conta<strong>in</strong>s k<strong>in</strong>etic terms for<strong>the</strong> RR potentials as well as various <strong>in</strong>teractions, <strong>in</strong>clud<strong>in</strong>g a Chern-Simon term. Let usdef<strong>in</strong>e <strong>the</strong> improved field strength for a p-form potential,The bosonic IIA action isF p+1 = dC p +C p−3 ∧H 3 . (2.5)S IIA = S NS − 14κ 2 ∫ [e 3Φ 2 F2 ∧∗F 2 +e Φ 2 F4 ∧∗F 4 +B 2 ∧F 4 ∧F 4]. (2.6)The equations <strong>of</strong> motion are easily derived. We will not write <strong>the</strong>m here because we willnot really need <strong>the</strong>m <strong>in</strong> this work.The type IIB super<strong>gravity</strong> action is a bit more tricky, because we have to make surethat <strong>the</strong> field strength F 5 is self-dual. We can write <strong>the</strong> follow<strong>in</strong>g action,S IIB = S NS − 14κ 2 ∫ [e 2Φ F 1 ∧∗F 1 +e Φ F 3 ∧∗F 3 + 1 2 F 5 ∧∗F 5 −C 4 ∧H 3 ∧F 3](2.7)but we have to supplement <strong>the</strong> equations <strong>of</strong> motion with <strong>the</strong> self-duality condition F 5 =∗F 5 1 . We review <strong>the</strong> type IIB equations <strong>of</strong> motions <strong>in</strong> Appendix A.There exist an <strong>in</strong>terest<strong>in</strong>g class <strong>of</strong> solutions to type IIA/B SUGRA which where foundby Horowitz and Strom<strong>in</strong>ger [20]. They are calledblack p-<strong>branes</strong>, and areageneralization<strong>of</strong> <strong>the</strong> Reissner-Nordstrom black hole to 10 dimensions. We will only be concerned with<strong>the</strong> extremal solutions, which are half-BPS. They are most easily written <strong>in</strong> str<strong>in</strong>g frame.Consider <strong>the</strong> actionS = 12κ 2 ∫d 10 x √ −G s(e −2Φ R+e −2Φ 4∂ µ Φ∂ µ Φ− 1 2 |F p+2| 2 ), (2.8)with H 3 = 0. The extremal p-brane metric readsds 2 s = H −1 2 ηµν dx µ dx ν +H 1 2 δij dy i dy j , (2.9)with µ = 0,···p, i = p+1,··· ,9, and <strong>the</strong> H is any harmonic function <strong>in</strong> <strong>the</strong> transversedirections,∆ y H = 0. (2.10)1 Note however that a formalism to write an action for a self-dual form has been developed <strong>in</strong> [19].


12 Chapter 2. Str<strong>in</strong>gs, <strong>branes</strong> and suchThe dilaton and <strong>the</strong> RR <strong>gauge</strong> field are given bye Φ = g s H (3−p)4 , g s C p+1 = H −1 dx 0 ∧···∧dx p . (2.11)This is also a solution for p = 3, although <strong>the</strong> case <strong>of</strong> a 3-brane is more subtle s<strong>in</strong>ce it isboth an electric and a magnetic source for C 4 . A typical form for <strong>the</strong> warp<strong>in</strong>g functionH isn∑( ) 7−p LiH(y) = 1+ . (2.12)|y −y i |i=1It corresponds to a multi-centered solution. We can <strong>in</strong>terpret it as <strong>the</strong> <strong>gravity</strong> solutiondescrib<strong>in</strong>g n stacks <strong>of</strong> Dp-<strong>branes</strong>, each stack carry<strong>in</strong>g charge N i . More precisely,L 7−p 2κ 2 τ pi= N i(7−p)Vol(S 8−p ) = N (2π √ α ′ ) 7−pi(7−p)Vol(S 8−p ) g s . (2.13)This second expression is valid <strong>in</strong> E<strong>in</strong>ste<strong>in</strong> frame, <strong>in</strong> which case <strong>the</strong> brane tension τ pis <strong>the</strong> one <strong>in</strong> (2.2). As expected for a BPS solution, we can superpose solutions at nocost <strong>in</strong> energy. One can also see from a probe brane analysis that for a Dp-brane <strong>the</strong>gravitational attraction is exactly canceled by <strong>the</strong> repulsion from <strong>the</strong> RR potential.2.1.3 DBI action for <strong>the</strong> D-braneA fundamental property <strong>of</strong> D-<strong>branes</strong> <strong>in</strong> type II str<strong>in</strong>g <strong>the</strong>ory is that, as implied by <strong>the</strong>identification <strong>of</strong> <strong>the</strong> last subsection, <strong>the</strong>y are charged under <strong>the</strong> RR fields. The centralcharge appear<strong>in</strong>g <strong>in</strong> (2.1) can always be understood as related to <strong>the</strong> <strong>gauge</strong> potentialcoupl<strong>in</strong>g electrically to <strong>the</strong> extended object. In <strong>the</strong> case <strong>of</strong> a D-brane,∫Z µ1···µ p∼ d 9−p x(∗d∗dC p ) 0µ1···µ p, (2.14)where one <strong>in</strong>tegrates over <strong>the</strong> 9 − p spatial directions transverse to <strong>the</strong> D-brane. Theusual coupl<strong>in</strong>g <strong>of</strong> a vector potential to a po<strong>in</strong>t particle generalizes to∫S WZ = τ p C p . (2.15)We can also write an action describ<strong>in</strong>g <strong>the</strong> classical dynamics <strong>of</strong> a D-brane, similar to <strong>the</strong>Nambu-Goto action for <strong>the</strong> str<strong>in</strong>g. This low energy action also <strong>in</strong>volves <strong>the</strong> B-field and<strong>the</strong> U(1) vector field liv<strong>in</strong>g on <strong>the</strong> D-brane. It can be determ<strong>in</strong>ed, for <strong>in</strong>stance, by ask<strong>in</strong>gfor consistency with <strong>the</strong> various str<strong>in</strong>g dualities (to be discussed below). It is called <strong>the</strong>Dirac-Born-Infeld (DBI) action, be<strong>in</strong>g a supersymmetric generalization <strong>of</strong> <strong>the</strong> Born-Infeldaction [21]. Its bosonic part is∫S DBI = −τ p d p+1 ξ √ −det(G s +B 2 +2πα ′ F 2 ) (2.16)DpHere F 2 = dA is <strong>the</strong> worldvolume field strength, and <strong>the</strong> background metric G s and B-field B 2 are pulled-back quantities. The total bosonic action is <strong>the</strong> sum S = S WZ +S DBI .In this <strong>the</strong>sis we will ra<strong>the</strong>r work with <strong>the</strong> E<strong>in</strong>ste<strong>in</strong> frame expression, which is given <strong>in</strong>Appendix A.p+1


2.2. A few words about str<strong>in</strong>g dualities 132.1.4 Half-BPS extended objects <strong>in</strong> type II str<strong>in</strong>g <strong>the</strong>ory; D-<strong>branes</strong> andNS5-<strong>branes</strong>Let us end this section by list<strong>in</strong>g <strong>the</strong> simplest half-BPS objects exist<strong>in</strong>g <strong>in</strong> type II str<strong>in</strong>g<strong>the</strong>ory.Type IIAType IIBD-<strong>branes</strong> D0, D2, D4, D6, D8 D(-1), D1, D3, D5, D7, D9F-str<strong>in</strong>g yes yesNS5-brane yes yesWe gave a “democratic” presentation <strong>of</strong> <strong>the</strong> D-<strong>branes</strong> [16], list<strong>in</strong>g both <strong>the</strong> electric andmagnetic <strong>branes</strong>. In general, if a Dp-brane couples electrically to <strong>the</strong> RR-potential C p+1 ,<strong>the</strong>re exists also a D(6-p)-brane which couples magnetically. In o<strong>the</strong>r words, <strong>the</strong> D(6-p)-brane is an electric source for <strong>the</strong> dual field strength F 8−p = ∗F p+1 , where ∗ is <strong>the</strong> Hodgeduality operator <strong>in</strong> ten dimensions. One exception is a D9-brane, which is non-dynamical.Ano<strong>the</strong>r exception is <strong>the</strong> D8-brane, which magnetically sources a non-dynamical fieldstrength F 0 ; <strong>the</strong> D8-charge corresponds to <strong>the</strong> Romans mass <strong>of</strong> massive type IIA super<strong>gravity</strong>[22].The fundamental str<strong>in</strong>g (F-str<strong>in</strong>g) is common to both str<strong>in</strong>g <strong>the</strong>ories, <strong>of</strong> course. TheF-str<strong>in</strong>g couples electrically to <strong>the</strong> NS-NS 2-form potential,∫S ⊃ τ F1 B 2 , with τ F1 = 12πα ′ . (2.17)There exist a correspond<strong>in</strong>g extremal black str<strong>in</strong>g solution <strong>in</strong> super<strong>gravity</strong> (cfr. [23] fora pedagogical discussion).There is also a magnetic dual <strong>of</strong> <strong>the</strong> F-str<strong>in</strong>g, which is called <strong>the</strong> NS5-brane. Thecorrespond<strong>in</strong>g extremal black brane background is (<strong>in</strong> str<strong>in</strong>g frame)ds 2 = dx µ dx µ +H(y)dx i dx i , e Φ = g s H 1 2 , ∗H3 = dx 0 ∧···∧g s dx 5 ∧dH −1 , (2.18)with H an harmonic function <strong>in</strong> <strong>the</strong> 4-dimensional transverse space, such as H = 1 +(nQ 5 )/r 2 for a bunch <strong>of</strong> n localized NS5-brane. The tension <strong>of</strong> a s<strong>in</strong>gle NS5-brane is1τ NS5 =(2π) 5 α ′3 gs2 . (2.19)The 1/g 2 s dependence allows us to view this object as a more conventional soliton <strong>of</strong> <strong>the</strong>closed str<strong>in</strong>g <strong>the</strong>ory.2.2 A few words about str<strong>in</strong>g dualitiesOur modern understand<strong>in</strong>g <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory relies on a tight network <strong>of</strong> duality conjectures.Due to <strong>the</strong>ir non-perturbative nature, we cannot prove most <strong>of</strong> <strong>the</strong>se conjecturesfor <strong>the</strong> moment, but <strong>the</strong>y imply a host <strong>of</strong> non-trivial results, which we can check andwhich have been checked. See for <strong>in</strong>stance <strong>the</strong> books [14, 24] for a modern overview.At <strong>the</strong> level <strong>of</strong> pure pr<strong>in</strong>ciples, str<strong>in</strong>g <strong>the</strong>ory has no parameters at all. Never<strong>the</strong>less, ata practical level, it is <strong>of</strong>ten said that str<strong>in</strong>g <strong>the</strong>ory has two important parameters, namelyα ′ and <strong>the</strong> str<strong>in</strong>g coupl<strong>in</strong>g g s , which can both be used to def<strong>in</strong>e some useful “classicallimits”.


14 Chapter 2. Str<strong>in</strong>gs, <strong>branes</strong> and such• g s is <strong>the</strong> str<strong>in</strong>g coupl<strong>in</strong>g, which measure <strong>the</strong> tendency <strong>of</strong> str<strong>in</strong>gs to split. The g sexpansion is an expansion <strong>in</strong> str<strong>in</strong>g loops. This expansion is very similar to <strong>the</strong>perturbative expansion <strong>of</strong> quantum field <strong>the</strong>ories. It gives <strong>the</strong> S-matrix elements <strong>in</strong>term <strong>of</strong> <strong>the</strong> genus expansion <strong>of</strong> <strong>the</strong> str<strong>in</strong>g worldsheet. g s = 0 is <strong>the</strong> classical str<strong>in</strong>glimit. It is well known that g s is itself determ<strong>in</strong>ed by <strong>the</strong> background value <strong>of</strong> <strong>the</strong>dilaton field, g s = e Φ .• The α ′ expansion is an expansion around <strong>the</strong> po<strong>in</strong>t particle limit; <strong>the</strong> length scale√α ′ = l s is called <strong>the</strong> str<strong>in</strong>g length. The proper expansion parameter to consideris a dimensionless parameter such as α ′ p 2 , where p 2 is <strong>the</strong> characteristic scale <strong>of</strong><strong>in</strong>terest. l s sets <strong>the</strong> mass <strong>of</strong> <strong>the</strong> massive str<strong>in</strong>g states, which are necessary for <strong>the</strong>spectacular UV f<strong>in</strong>iteness <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory. It can be taken as a unit <strong>of</strong> length <strong>in</strong>stead <strong>of</strong> <strong>the</strong> 10 dimensional Planck length κ 1 4 (see <strong>the</strong> relation (2.4)). In <strong>the</strong> lowenergy limit p 2 ≪ 1/α ′ we obta<strong>in</strong> an effective <strong>the</strong>ory <strong>of</strong> massless particles <strong>in</strong> <strong>the</strong>guise <strong>of</strong> a non-renormalizable super<strong>gravity</strong> <strong>the</strong>ory.Let us go for a brief review <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory dualities.2.2.1 T-dualityHistorically <strong>the</strong> oldest, T-duality is a perturbative duality, which holds order by order <strong>in</strong><strong>the</strong> g s expansion. We refer to [25] for a comprehensive review. The simplest example <strong>of</strong>T-duality is for str<strong>in</strong>g <strong>the</strong>ory on R 8,1 ×S 1 , with S 1 a circle <strong>of</strong> radius R. The momentumalong <strong>the</strong> periodic direction is quantized as n/R, n ∈ Z. In <strong>the</strong> case <strong>of</strong> a str<strong>in</strong>g, <strong>the</strong>reis also a conserved w<strong>in</strong>d<strong>in</strong>g number w. T-duality states that any physical observable(spectrum and scatter<strong>in</strong>g amplitudes) is <strong>in</strong>variant under <strong>the</strong> exchangen ↔ w R ↔ α′R . (2.20)Momentum is exchanged with w<strong>in</strong>d<strong>in</strong>g number, and a circle <strong>of</strong> radius R becomes a circle<strong>of</strong> radius α ′ /R. This duality famously lead to <strong>the</strong> discovery <strong>of</strong> D-<strong>branes</strong>: suppose we haveopen str<strong>in</strong>gs <strong>in</strong> 10 dimensions. The w<strong>in</strong>d<strong>in</strong>g number <strong>of</strong> an open str<strong>in</strong>g is not conserved.In <strong>the</strong> T-dual picture, <strong>the</strong> momentum along S 1 should not be conserved ei<strong>the</strong>r: we have aD8-brane, which breaks translational <strong>in</strong>variance. One can show explicitly that T-dualityexchanges Neumann and Dirichlet boundary conditions for open str<strong>in</strong>gs [18].We can perform T-duality on much more general backgrounds. T-duality relatestwo different backgrounds (<strong>the</strong> str<strong>in</strong>g target space) which are <strong>in</strong>dist<strong>in</strong>guishable from <strong>the</strong>po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory, because <strong>the</strong> world sheet <strong>the</strong>ory (or more precisely <strong>the</strong>Polyakov path <strong>in</strong>tegral) is <strong>in</strong>variant under <strong>the</strong> background field transformation. In typeII superstr<strong>in</strong>g <strong>the</strong>ory, T-duality exchanges type IIA and type IIB. In <strong>the</strong> presence <strong>of</strong>closed str<strong>in</strong>gs only, <strong>the</strong> change <strong>in</strong> <strong>the</strong> background is encoded <strong>in</strong> <strong>the</strong> Buscher’s rules [26].T-duality mixes toge<strong>the</strong>r B-field and metric, and relates <strong>the</strong> str<strong>in</strong>g coupl<strong>in</strong>gs as√α ′g s ↔R g s. (2.21)Consistently, <strong>the</strong> Busher rules transformation for <strong>the</strong> NS-NS fields are symmetries <strong>of</strong> <strong>the</strong>super<strong>gravity</strong> equations. The RR <strong>gauge</strong> potentials change as (schematically)C p+1 ↔ C p or C p+2 , (2.22)


2.2. A few words about str<strong>in</strong>g dualities 15accord<strong>in</strong>g to whe<strong>the</strong>r C p has or does not have a leg along <strong>the</strong> direction we T-dualizealong. D-<strong>branes</strong> are T-dualized accord<strong>in</strong>gly,Dp-brane ↔ D(p−1)-brane or D(p+1)-brane. (2.23)2.2.2 T-duality between geometry and NS5-<strong>branes</strong>Forcompleteness,weshouldalsodiscusshowT-dualityactsonNS5-<strong>branes</strong>. Thatdependson <strong>the</strong> direction along which we T-dualize. If we T-dualize along <strong>the</strong> worldvolume <strong>of</strong> <strong>the</strong>NS5-brane, T-duality merely maps <strong>the</strong> type IIA NS5-brane to <strong>the</strong> type IIB NS5-brane.Th<strong>in</strong>gs become more <strong>in</strong>terest<strong>in</strong>g when we want to T-dualize along a transverse direction.Because <strong>the</strong> B-field and <strong>the</strong> metric mix under T-duality, an NS5-brane can map to puregeometry [27, 28].Let us consider <strong>the</strong> problem from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> some geometry. The idea is toT-dualise along some S 1 fiber <strong>of</strong> <strong>the</strong> geometry. At po<strong>in</strong>ts where <strong>the</strong> S 1 fiber shr<strong>in</strong>ks tozero, <strong>the</strong>re is a correspond<strong>in</strong>g s<strong>in</strong>gularity <strong>in</strong> <strong>the</strong> T-dual B-field, which is <strong>in</strong>terpreted as aNS5-brane source.Let us work out part <strong>of</strong> <strong>the</strong> story at <strong>the</strong> level <strong>of</strong> super<strong>gravity</strong>, although <strong>the</strong> full storyis more <strong>in</strong>volved [27, 28]. We consider <strong>the</strong> simple case <strong>of</strong> <strong>the</strong> ALE (asymptotically locallyeuclidian) metric on <strong>the</strong> s<strong>in</strong>gularity C 2 /Z n , with coord<strong>in</strong>atesz 1 = re i(φ 2 + ψ 2n ) cos θ 2 , z 2 = re i(φ 2 − ψ 2n ) s<strong>in</strong> θ 2 . (2.24)The range <strong>of</strong> φ and ψ is [0,2π) and [0,4π), respectively. The flat metric is simply a Hopffibration,ds 2 4 = dz 1 d¯z 1 +dz 2 d¯z 2 = dr 2 + r24(dθ 2 +s<strong>in</strong> 2 θdφ 2 + 1 )n 2(dψ +ncosθdφ)2 . (2.25)Consider<strong>in</strong>g this as a background <strong>of</strong> type IIA/B, we can T-dualize to type IIB/A <strong>in</strong> <strong>the</strong>super<strong>gravity</strong> limit, along <strong>the</strong> ψ direction, by us<strong>in</strong>g Buscher’s rules [26] 2 . The T-dualfields areˆ ds 2 4 = dr 2 + r24 (dθ2 +s<strong>in</strong> 2 θdφ 2 )+ 4n2r 2 dψ2 , (2.26)e 2(ˆΦ−Φ 0 ) = 4n2r 2 , ˆB = ncosθdφ∧dψ. (2.27)The l<strong>in</strong>ear dilaton pr<strong>of</strong>ile and <strong>the</strong> Ĥ3 = dˆB flux should correspond to n NS5-<strong>branes</strong>.Indeed we have <strong>the</strong> magnetic charge∫116π 2 Ĥ 3 = n. (2.28)S 32 In this case <strong>the</strong> Buscher rules tell us thatĜ ψψ = 1G ψψ,e 2ˆΦ = e2ΦG ψψ, Ĝ µν = G µν − G µψG νψG ψψ, ˆBµψ = G µψG ψψ,where G is <strong>the</strong> str<strong>in</strong>g frame metric, and µ,ν are any coord<strong>in</strong>ate <strong>in</strong>dex different from ψ.


16 Chapter 2. Str<strong>in</strong>gs, <strong>branes</strong> and suchHowever, we should be more precise. The way <strong>the</strong> duality was first stated [27, 28] wasnot as a duality between NS5-<strong>branes</strong> and ALE space, but between NS5-<strong>branes</strong> and <strong>the</strong>Taub-NUT space, also called ALF space (asymptotically locally flat). The Taub-NUTmetric readsds 2 TN = h(dρ 2 +ρ 2 (dθ 2 +s<strong>in</strong> 2 θdφ 2 ))+h −1 (dψ +ω) 2 , (2.29)where h is an harmonic function on R 3 and <strong>the</strong> one-form ω is such that dω = ∗ 3 dh. For<strong>the</strong> simple case <strong>of</strong> a s<strong>in</strong>gle center geometry <strong>of</strong> charge n, we haveh(ρ) = 1+ n , ω = ncosθ. (2.30)ρAt small r, we drop <strong>the</strong> factor <strong>of</strong> 1 and <strong>the</strong> metric (2.29) looks likeds 2 = n ρ dρ2 +nρ(dΩ 2 2 + 1 )n 2(dψ +ncosθdφ)2 . (2.31)Redef<strong>in</strong><strong>in</strong>g 4nρ = r 2 , we f<strong>in</strong>d <strong>the</strong> flat metric on C 2 /Z n (2.25). Hence <strong>the</strong> ALE geometryactually describes <strong>the</strong> center <strong>of</strong> a Taub-NUT geometry. On <strong>the</strong> o<strong>the</strong>r hand, consider astack <strong>of</strong> n NS5-<strong>branes</strong> transverse to R 3 ×S 1 . Its metric readsds 2 10 = dx 2 5,1 +H(ρ,ψ) ( dψ 2 +dy 2 3). (2.32)where ψ is <strong>the</strong> coord<strong>in</strong>ate on <strong>the</strong> S 1 , and ρ <strong>of</strong> <strong>the</strong> radius <strong>of</strong> <strong>the</strong> R 3 , and H an harmonicfonction on <strong>the</strong> transverse space. Smear<strong>in</strong>g <strong>the</strong> n <strong>branes</strong> along <strong>the</strong> circle, we have H =1+ n ρ. Moreover, at small ρ,ds 2 10 = dx 2 5,1 + n ρ (dψ2 +dρ 2 +ρ 2 dΩ 2 2), (2.33)where dΩ 2 2 = dθ2 +s<strong>in</strong> 2 θdφ 2 is <strong>the</strong> usual metric on S 2 . Upon <strong>the</strong> change <strong>of</strong> coord<strong>in</strong>atesr 2 = 4nρ, this is <strong>the</strong> metric (2.26) which we found from T-duality. So we have shown that<strong>the</strong> T-dual <strong>of</strong> an ALE space is <strong>the</strong> near-horizon limit on some (smeared) NS5-<strong>branes</strong>. Thesmear<strong>in</strong>g is an artifact <strong>of</strong> <strong>the</strong> super<strong>gravity</strong> approximation, <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory we really haveNS5-<strong>branes</strong> localized on a circle [28]. Moreover, <strong>the</strong> distance between <strong>the</strong> NS5-<strong>branes</strong> on<strong>the</strong> circle is T-dual to <strong>the</strong> value <strong>of</strong> a flat B-field localized at <strong>the</strong> C 2 /Z n s<strong>in</strong>gularity; see[29] for a recent discussion.2.2.3 S-duality <strong>in</strong> type IIBThe second superstr<strong>in</strong>g revolution was triggered by <strong>the</strong> discovery <strong>of</strong> non-perturbativedualties, which exchange strong and weak coupl<strong>in</strong>g. Let us first consider type IIB str<strong>in</strong>g<strong>the</strong>ory. It had been know for a long time that <strong>the</strong> type IIB super<strong>gravity</strong> equations are<strong>in</strong>variant under a cont<strong>in</strong>uous Sl(2,R) symmetry. In E<strong>in</strong>ste<strong>in</strong> frame, <strong>the</strong> metric G and <strong>the</strong>self-dual 5-form F 5 are Sl(2,R) <strong>in</strong>variant, while <strong>the</strong> vector 2-forms and <strong>the</strong> axio-dilaton,def<strong>in</strong>ed asτ ≡ C 0 +ie −Φ , (2.34)transform as( ) (B2 a b→C 2 c d)(B2), τ →C 2aτ +bcτ +d ,( ) a bwith ∈ Sl(2,R). (2.35)c d


2.2. A few words about str<strong>in</strong>g dualities 17In <strong>the</strong> quantum <strong>the</strong>ory (type IIB str<strong>in</strong>g <strong>the</strong>ory), this symmetry cannot hold, because itwould contradict <strong>the</strong> Dirac quantization <strong>of</strong> charge. Never<strong>the</strong>less, it is possible that <strong>the</strong>full type IIB str<strong>in</strong>g <strong>the</strong>ory is <strong>in</strong>variant under <strong>the</strong> S-duality group Sl(2,Z). In particular,<strong>the</strong> so-called S generator <strong>of</strong> Sl(2,Z) acts asτ → − 1 τ . (2.36)For C 0 = 0, this transformation sends <strong>the</strong> str<strong>in</strong>g coupl<strong>in</strong>g g s to 1/g s 3 . This conjecturegives us a way to deal with type IIB str<strong>in</strong>g <strong>the</strong>ory at strong coupl<strong>in</strong>g: we just have toconsider <strong>the</strong> weakly coupled S-dual version <strong>of</strong> type IIB! Under S-duality, <strong>the</strong> F1-str<strong>in</strong>g ismapped to <strong>the</strong> D1-str<strong>in</strong>g, and <strong>the</strong> NS5-brane is mapped to <strong>the</strong> D5-brane. This is possibles<strong>in</strong>ce, when C 0 = 0,τ F1 = g s τ D1 τ NS5 = 1 g sτ D5 . (2.37)We also have more general (p,q)-str<strong>in</strong>gs and (p,q)-<strong>branes</strong>, with p be<strong>in</strong>g <strong>the</strong> NS-NS chargeand q <strong>the</strong> RR charge. (p,q) objects with p and q coprime are all <strong>in</strong> <strong>the</strong> same Sl(2,Z)orbit as (1,0). Each type <strong>of</strong> str<strong>in</strong>g gives a possible start<strong>in</strong>g po<strong>in</strong>t for str<strong>in</strong>g perturbation<strong>the</strong>ory, so that type IIB str<strong>in</strong>g <strong>the</strong>ory has an <strong>in</strong>f<strong>in</strong>ite family <strong>of</strong> semi-classical limits.2.2.4 Type IIA and M-<strong>the</strong>oryA natural question to ask is whe<strong>the</strong>r <strong>the</strong>re is someth<strong>in</strong>g similar to S-duality for <strong>the</strong> typeIIA superstr<strong>in</strong>g. Type IIA super<strong>gravity</strong> has no similar S-duality, but ano<strong>the</strong>r fact aboutsupergravities turns out to be crucial.In eleven dimension one can write a unique super<strong>gravity</strong> <strong>the</strong>ory [30]. It conta<strong>in</strong>s ametric G 11 , a gravit<strong>in</strong>o and a 3-form <strong>gauge</strong> field A 3 , with field strength G 4 = dA 3 . Thebosonic part <strong>of</strong> <strong>the</strong> action is quite simple, consist<strong>in</strong>g <strong>of</strong> a k<strong>in</strong>etic term and <strong>of</strong> a Chern-Simons term,S = 12κ 2 11∫d 11 x √ (−G 11 R− 1 )2 |G 4| 2 − 1 ∫12κ 2 11It is useful to def<strong>in</strong>e an eleven dimensional Planck length l p byA 3 ∧G 4 ∧G 4 . (2.38)(2π) 8 l 9 p = 2κ 2 11. (2.39)To make contact with str<strong>in</strong>g <strong>the</strong>ory, we should make <strong>the</strong> l<strong>in</strong>k with a 10 dimensional<strong>the</strong>ory. This can be done by a Kaluza-Kle<strong>in</strong> reduction. It is well known (see for <strong>in</strong>stance[31, 32]) that <strong>the</strong> reduction <strong>of</strong> E<strong>in</strong>ste<strong>in</strong> <strong>the</strong>ory <strong>in</strong> D dimension along a circle leads to a<strong>the</strong>ory for a D −1 dimensional metric toge<strong>the</strong>r with a U(1) vector and a dilaton scalarfield, which parametrizes <strong>the</strong> size <strong>of</strong> <strong>the</strong> circle. We must also reduce <strong>the</strong> three form A 3 ,which gives both a 2-form and a 3-form <strong>in</strong> 10 dimensions. In total we have <strong>the</strong> bosoniccontent <strong>of</strong> type IIA super<strong>gravity</strong>, and <strong>the</strong> details (<strong>in</strong>clud<strong>in</strong>g <strong>the</strong> fermions) can be workedout too. At <strong>the</strong> end <strong>of</strong> <strong>the</strong> day <strong>the</strong> dimensional reduction <strong>of</strong> 11 dimensional super<strong>gravity</strong>precisely gives type IIA super<strong>gravity</strong> (2.6). The bosonic part <strong>of</strong> <strong>the</strong> story is easy to workout, and more details will be given <strong>in</strong> Chapter 8.3 We refer to <strong>the</strong> Appendix E for a discussion <strong>of</strong> a similar S-duality <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory context.


18 Chapter 2. Str<strong>in</strong>gs, <strong>branes</strong> and suchTypeIIAsuper<strong>gravity</strong>isaconsistenttruncation<strong>of</strong>11dimensionalsuper<strong>gravity</strong>, whichmeans that any solution <strong>of</strong> <strong>the</strong> type IIA equations <strong>of</strong> motion will be a solution <strong>of</strong> <strong>the</strong> 11dimensional <strong>the</strong>ory, but not <strong>the</strong> o<strong>the</strong>r way around. The full eleven-dimensional <strong>the</strong>orycan be accounted for by keep<strong>in</strong>g <strong>the</strong> towers <strong>of</strong> Kaluza-Kle<strong>in</strong> (KK) modes.Such KK modes have masses m = n/R 10 , with n ∈ Z and R 10 <strong>the</strong> radius <strong>of</strong> <strong>the</strong> circlealong which we compactify. The claim is that <strong>the</strong> KK modes correspond<strong>in</strong>g to a gravitonalong <strong>the</strong> circle (toge<strong>the</strong>r with its supersymmetric partners) precisely corresponds to<strong>the</strong> D0-brane <strong>of</strong> type IIA str<strong>in</strong>g <strong>the</strong>ory. S<strong>in</strong>ce <strong>the</strong> mass <strong>of</strong> a D0-brane is 1/ √ α ′ g s , thisidentification is possible only ifR 10 = √ α ′ g s . (2.40)Accord<strong>in</strong>g to this relation, at strong coupl<strong>in</strong>g g s → ∞ <strong>the</strong> eleventh dimension becomeslarge and essentially decompactifies. In general, <strong>the</strong> radius <strong>of</strong> <strong>the</strong> eleventh dimensionmight vary <strong>in</strong> space, <strong>in</strong> which case <strong>the</strong>re is a non-trivial dilaton pr<strong>of</strong>ile <strong>in</strong> type IIA. Wealso have <strong>the</strong> important relationl p = √ α ′ g 1 3 s . (2.41)While l p and l s = √ α ′ provide natural units <strong>of</strong> lenght <strong>in</strong> 11 and 10 dimensions, respectively,we see that <strong>the</strong> conversion factor is given by gs 1/3 .TheconjectureisthattypeIIAatstrongcoupl<strong>in</strong>gisdescribedbyaeleven-dimensionalquantum <strong>the</strong>ory called M-<strong>the</strong>ory, and that <strong>the</strong>re is a duality at any coupl<strong>in</strong>g between typeIIA and M-<strong>the</strong>ory [33, 34, 35]. We usually call <strong>the</strong> circle <strong>of</strong> <strong>the</strong> eleventh direction <strong>the</strong>M-<strong>the</strong>ory circle.We do not know much about M-<strong>the</strong>ory. What we know is that its low energy limit is11 dimensional super<strong>gravity</strong>. We also know that it conta<strong>in</strong>s half-BPS extended objects<strong>of</strong> dimension 2+1 and 5+1, called M2- and M5-<strong>branes</strong>. Their tensions are1 1τ M2 =(2π) 2 lp3 , τ M5 =(2π) 5 lp6 . (2.42)Us<strong>in</strong>g <strong>the</strong> relation (2.41), we see that <strong>the</strong> M2-brane tension is <strong>the</strong> same as <strong>the</strong> D2-branetension. We will <strong>the</strong>n identify <strong>the</strong>se two objects: if <strong>the</strong> M-<strong>the</strong>ory circle is transverse to<strong>the</strong> M2-brane, we obta<strong>in</strong> a D2-brane [36]. On <strong>the</strong> o<strong>the</strong>r hand, if <strong>the</strong> M-<strong>the</strong>ory circle liesalong <strong>the</strong> M2-brane worldvolume, <strong>the</strong> reduction will give a fundamental str<strong>in</strong>g [37], with<strong>the</strong> correct tensionτ F1 = 2πR 10 τ M2 = 12πα ′. (2.43)Similarly we may identify <strong>the</strong> M5-brane with <strong>the</strong> type IIA NS5-brane when <strong>the</strong> circleis transverse, or with a D4-brane when <strong>the</strong> circle is parallel. Indeed τ NS5 = τ M5 andτ D4 = 2πR 10 τ M5 .F<strong>in</strong>ally, we should discuss <strong>the</strong> case <strong>of</strong> D6-<strong>branes</strong>. They couple magnetically to C 1 .Hence <strong>the</strong>ir M-<strong>the</strong>ory lift should be <strong>the</strong> “magnetic dual” <strong>of</strong> gravitons along <strong>the</strong> M-<strong>the</strong>orycircle: <strong>the</strong> M-<strong>the</strong>ory uplift <strong>of</strong> a D6-brane is a Taub-NUT space, also called KK monopole.In a KK monopole <strong>the</strong> M-<strong>the</strong>ory circle S 1 is non-trivially fibered over R 3 . While <strong>the</strong> totalspace is topologically R 4 , <strong>the</strong> metric asymptotes to S 1 ×S 2 at <strong>in</strong>f<strong>in</strong>ity <strong>in</strong> R 3 . In <strong>the</strong> case<strong>of</strong> n D6-<strong>branes</strong>, <strong>the</strong> first Chern class <strong>of</strong> <strong>the</strong> S 1 fibration is n, and <strong>the</strong> result<strong>in</strong>g Taub-NUT<strong>of</strong> charge n is topologically R 4 /Z n .We can summarize <strong>the</strong> type IIA/M-<strong>the</strong>ory duality <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:


2.2. A few words about str<strong>in</strong>g dualities 19M-<strong>the</strong>ory Type IIAG 11 G 10 , C 1 , e ΦA 3 C 3 , B 2KK-mode D0M2 D2 , F1M5 NS5 , D4KK-monopole D6? D8Note that <strong>the</strong> D8-brane has no M-<strong>the</strong>ory lift because <strong>the</strong>re is no known way to obta<strong>in</strong> aRomans mass from a 11 dimensional <strong>the</strong>ory.We will discuss <strong>the</strong> M-<strong>the</strong>ory/type IIA duality <strong>in</strong> a bit more detail <strong>in</strong> <strong>the</strong> second part<strong>of</strong> <strong>the</strong> <strong>the</strong>sis, which deals with <strong>the</strong> AdS 4 /CFT 3 <strong>correspondence</strong>. We will also need thisduality <strong>in</strong> Chapter 6, where we will take advantage <strong>of</strong> <strong>the</strong> fact that a system <strong>of</strong> NS5- andD4-<strong>branes</strong> lift to a s<strong>in</strong>gle smooth M5-brane <strong>in</strong> M-<strong>the</strong>ory (see also Appendix E).


Chapter 3D3-<strong>branes</strong> at s<strong>in</strong>gularitiesIn this Chapter we review <strong>the</strong> deep relationship which exists between D-<strong>branes</strong> at s<strong>in</strong>gularitiesand quiver <strong>gauge</strong> <strong>the</strong>ories. The tools we <strong>in</strong>troduce will be put to good use atvarious po<strong>in</strong>ts <strong>in</strong> this <strong>the</strong>sis.In section 3.1 we make our first encounter with N = 4 super-Yang-Mills. In section3.2, we expla<strong>in</strong> how to f<strong>in</strong>d <strong>the</strong> field <strong>the</strong>ory liv<strong>in</strong>g on a stack <strong>of</strong> D3-<strong>branes</strong> at any flatorbifold s<strong>in</strong>gularity, which leads us to <strong>in</strong>troduce quivers. In section 3.3 we briefly discuss<strong>the</strong> general case, for any Calabi-Yau s<strong>in</strong>gularity. In section 3.4 we <strong>in</strong>troduce a simpleHanany-Witten brane construction, which is <strong>in</strong>terest<strong>in</strong>g to deal with a simple class <strong>of</strong>conifold s<strong>in</strong>gularities. In section 3.5 we consider <strong>the</strong> case <strong>of</strong> a general toric CY s<strong>in</strong>gularity,and expla<strong>in</strong> what are brane til<strong>in</strong>gs and why <strong>the</strong>y are useful.3.1 The D3-brane and N = 4 SYM: a first encounterD3-<strong>branes</strong> are special among <strong>the</strong> <strong>the</strong> zoo <strong>of</strong> Dp-<strong>branes</strong>. For <strong>in</strong>stance, <strong>the</strong> p-brane metricis s<strong>in</strong>gular at r = 0 unless p = 3 [38]. Importantly, <strong>the</strong> extremal 3-brane solution (2.9)-(2.11) has constant dilaton, e Φ = g s . In <strong>the</strong> open str<strong>in</strong>g picture, this corresponds to <strong>the</strong>fact that <strong>the</strong> Yang-Mills coupl<strong>in</strong>g, which appears <strong>in</strong> <strong>the</strong> action asS YM = − 14g 2 YM∫d 4 xTrF µν F µν , (3.1)is classically marg<strong>in</strong>al <strong>in</strong> four dimensions. We have <strong>the</strong> relation g 2 YM = 4πg2 o = 4πg s ,where g o is <strong>the</strong> open str<strong>in</strong>g coupl<strong>in</strong>g. It turns out that <strong>the</strong> quantum <strong>the</strong>ory liv<strong>in</strong>g ona stack <strong>of</strong> N D3-brane is a maximally supersymmetric U(N) <strong>gauge</strong> <strong>the</strong>ory which hasan exactly marg<strong>in</strong>al coupl<strong>in</strong>g g YM . It is called N = 4 super-Yang-Mills (SYM), and itconta<strong>in</strong>s a s<strong>in</strong>gle N = 4 multiplet <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t <strong>of</strong> U(N). In term <strong>of</strong> N = 1 superfields,<strong>the</strong> N = 4 multiplet splits <strong>in</strong>to a vector multiplet V and three chiral multiplets Φ i ,i = 1,2,3. The chiral multiplets correspond to excitations along <strong>the</strong> three complexdirections z i transverse to <strong>the</strong> D3-brane. One has <strong>the</strong> relation Φ i = 2πz i /α ′ between<strong>the</strong> VEVs <strong>of</strong> <strong>the</strong> scalar component <strong>of</strong> <strong>the</strong> chiral superfields and <strong>the</strong> positions z i <strong>of</strong> <strong>the</strong>D3-<strong>branes</strong>. The N = 4 <strong>the</strong>ory written <strong>in</strong> N = 1 form also has a superpotentialW = Φ 1 [Φ 2 ,Φ 3 ], (3.2)21


22 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitieswith a precise value for <strong>the</strong> coupl<strong>in</strong>g dictated by <strong>the</strong> extended supersymmetry. This isall we need to know about N = 4 SYM for <strong>the</strong> moment.3.2 D-<strong>branes</strong> at s<strong>in</strong>gularities and quiversD-<strong>branes</strong> are <strong>in</strong>terest<strong>in</strong>g probes for s<strong>in</strong>gularities <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory, because <strong>the</strong>y can probea geometry which is more local than <strong>the</strong> str<strong>in</strong>g length √ α ′ . This is obviously <strong>the</strong> case fora D0-brane, for <strong>in</strong>stance, which is a po<strong>in</strong>t particle. Ano<strong>the</strong>r possibility is to consider aD3-brane <strong>in</strong> R 3,1 ×CY 3 , which is a po<strong>in</strong>t particle from <strong>the</strong> Calabi-Yau perspective. Wewant to know what happens to such a D3-brane probe when it goes to a s<strong>in</strong>gularity <strong>in</strong><strong>the</strong> CY 3 .We consider only algebraic s<strong>in</strong>gularities. Actually, we consider only Calabi-Yau s<strong>in</strong>gularities,so that <strong>the</strong>re is still at least N = 1 supersymmetry on <strong>the</strong> D3-brane worldvolume.An <strong>in</strong>troduction to <strong>the</strong> relevant concepts <strong>of</strong> algebraic geometry, with particular focus ontoric geometry, is provided <strong>in</strong> Appendix B.The simplest local Calabi-Yau 3-fold to consider is C 3 , which is just flat space. If weput a D3-brane on flat space, <strong>the</strong> low energy <strong>the</strong>ory on its worldvolume is <strong>the</strong> N = 4SYM <strong>the</strong>ory, as we just reviewed.3.2.1 D3-<strong>branes</strong> at orbifold s<strong>in</strong>gularitiesThe simplest local algebraic s<strong>in</strong>gularity we can th<strong>in</strong>k <strong>of</strong> is an orbifold <strong>of</strong> flat space, C 3 /Γ,for Γ a discrete group. The low energy <strong>the</strong>ory on probe D3-<strong>branes</strong> at <strong>the</strong> s<strong>in</strong>gularity wasfound <strong>in</strong> [39, 40]. The action <strong>of</strong> Γ should preserve <strong>the</strong> Calabi-Yau condition, which isequivalent to say that it preserves <strong>the</strong> Kähler and <strong>the</strong> homolomorphic forms,J = −i3∑dz i ∧d¯z i , Ω = dz 1 ∧dz 2 ∧dz 3 . (3.3)i=1To preserve J, Γ we must preserve <strong>the</strong> norm ∑ i |zi | 2 <strong>in</strong> C 3 , while to preserve Ω it mustbe <strong>of</strong> unit determ<strong>in</strong>ant. Hence Γ must be a discrete subgroup <strong>of</strong> SU(3). We denote <strong>the</strong>Γ action byg ∈ Γ : z i ↦→ ρ(g) i jz j , (3.4)where ρ(Γ) is some representation <strong>of</strong> Γ that we have to choose. We can understand <strong>the</strong><strong>the</strong>ory on a stack <strong>of</strong> N D3-brane by work<strong>in</strong>g on <strong>the</strong> cover<strong>in</strong>g space <strong>of</strong> C 3 /Γ, which isjust C 3 . There we have |Γ| = dimΓ images for each D3-brane. The <strong>the</strong>ory for N D3-<strong>branes</strong> on <strong>the</strong> orbifold is <strong>the</strong>n some projection <strong>of</strong> <strong>the</strong> U(|Γ|N) N = 4 <strong>the</strong>ory: we onlykeep <strong>the</strong> modes which are <strong>in</strong>variant under Γ. The D3-brane images transform <strong>in</strong>to <strong>the</strong>|Γ|-dimensional representation R(Γ), which is called <strong>the</strong> regular representation. It is areducible representation which conta<strong>in</strong>s all <strong>the</strong> irreducible representations <strong>of</strong> Γ i (Γ),R(g) = ⊕ i dim(Γ i )Γ i (g), ∀g ∈ Γ. (3.5)All fields <strong>in</strong> <strong>the</strong> U(|Γ|N) N = 4 <strong>the</strong>ory are <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t representation <strong>of</strong> <strong>the</strong> <strong>gauge</strong>group. Because <strong>of</strong> N = 1 supersymmetry we can forget about <strong>the</strong> fermions and just state


3.2. D-<strong>branes</strong> at s<strong>in</strong>gularities and quivers 23(a) Quiver for N D3-<strong>branes</strong> on C×C 2 /Z k . Each node represents aU(N) <strong>gauge</strong> group. Each arrow representsa bifundamental fields whileeach l<strong>in</strong>k from a node to iself representsan adjo<strong>in</strong>t field.(b) Hanany-Witten setup. TheNS5-<strong>branes</strong> (<strong>in</strong> red) are along <strong>the</strong>x 4 ,x 5 directions, while D4-<strong>branes</strong>(<strong>in</strong> black) are wrapped along <strong>the</strong> x 6compact direction. D4-<strong>branes</strong> canbreak on <strong>the</strong> NS5-<strong>branes</strong> and movealong <strong>the</strong>m, which corresponds to<strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong> N = 2quiver (VEVs for <strong>the</strong> adjo<strong>in</strong>t fields).Figure 3.1: The quiver for D3-<strong>branes</strong> on C × C 2 /Z k and <strong>the</strong> T-dual Hanany-Witten setup(expla<strong>in</strong>ed <strong>in</strong> section 3.4 below).<strong>the</strong> transformation laws <strong>of</strong> <strong>the</strong> bosonic fields under Γ. To have Γ <strong>in</strong>variance, we needA µ = R(g) −1 A µ R(g), (3.6)Φ i = ρ(g) j i R(g)−1 Φ j R(g). (3.7)The representation ρ here is <strong>the</strong> same as <strong>in</strong> (3.4), s<strong>in</strong>ce <strong>the</strong> complex field Φ i correspondsto motion along z i . The condition (3.6) means that <strong>the</strong> A µ must be block diagonal. The<strong>gauge</strong> group <strong>of</strong> <strong>the</strong> orbifold <strong>the</strong>ory is <strong>the</strong>n a product <strong>gauge</strong> groupU(dimΓ 1 N)×U(dimΓ 2 N)×··· , (3.8)accord<strong>in</strong>g to <strong>the</strong> decomposition (3.5). The condition (3.7) tells us which chiral multipletssurvive <strong>the</strong> projection. They will be ei<strong>the</strong>r <strong>in</strong> an adjo<strong>in</strong>t or <strong>in</strong> a bifundamental representation(fundamental <strong>of</strong> a <strong>gauge</strong> group and anti-fundamental <strong>of</strong> ano<strong>the</strong>r). We also f<strong>in</strong>d anon-trivial superpotential by expand<strong>in</strong>g <strong>the</strong> N = 4 superpotential W = TrΦ 1 [Φ 2 ,Φ 3 ] <strong>in</strong>term <strong>of</strong> <strong>the</strong> surviv<strong>in</strong>g fields.Such a <strong>gauge</strong> <strong>the</strong>ory can be usefully represented as a quiver diagram (toge<strong>the</strong>r with<strong>the</strong> superpotential), as was advocated by Douglas and Moore [39]. One draws a nodefor each <strong>gauge</strong> group, and an arrow from node n to node m for each bifundamental fieldX mn connect<strong>in</strong>g those two <strong>gauge</strong> groups. See figure 3.1(a) for an example.Letusworkoutaneasyexample. ConsiderΓ = Z k ,act<strong>in</strong>gas(z 1 ,z 2 ,z 3 ) ↦→ (z 1 ,ω n z 2 ,ω −n z 3 ),for ω = e 2πik . It is a subgroup <strong>of</strong> SU(2), and so it actually preserves N = 2 supersymmetry.Because Z k is Abelian each irreducible representation is <strong>of</strong> dimension one; thisimplies that <strong>the</strong> <strong>gauge</strong> group is U(N) k . Moreover, <strong>the</strong> condition (3.7) is(Φ 1 ) i j = ω j−i (Φ 1 ) i j , (Φ 2 ) i j = ω j−i+1 (Φ 2 ) i j , (Φ 2 ) i j = ω j−i−1 (Φ 2 ) i j . (3.9)


24 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitiesWe <strong>the</strong>n have Φ 1 = diag(φ 1 ,··· ,φ k ) andΦ 2 =⎛ ⎞0 ··· 0 X 1kX 21 0 ··· 0⎜⎝ 0 X 32 0 ⎟⎠ , Φ 3 =...0⎛ ⎞0 X 12 0 ···0 0 X 23 0⎜ .⎝ 0 .. ⎟⎠ . (3.10)X k1 0The quiver is shown <strong>in</strong> Fig.3.1(a). The superpotential isW =k∑φ i (X ii−1 X i−1i −X ii+1 X i+1i ) . (3.11)i=1This is known as <strong>the</strong> A k−1 quiver. Remark that <strong>in</strong> this case <strong>the</strong> form <strong>of</strong> <strong>the</strong> superpotentialis actually fixed by <strong>the</strong> N = 2 supersymmetry.3.2.2 Brane fractionation at s<strong>in</strong>gularitiesWe have just learned that <strong>the</strong> low energy <strong>gauge</strong> <strong>the</strong>ory on a D3-brane at an orbifolds<strong>in</strong>gularity is <strong>of</strong> <strong>the</strong> quiver type. This is because <strong>the</strong> D3-brane we considered had totransform <strong>in</strong> <strong>the</strong> regular representation <strong>of</strong> <strong>the</strong> orbifold group. For this reason it is <strong>of</strong>tencalled a regular D3-brane. However, <strong>the</strong> reducibility <strong>of</strong> <strong>the</strong> regular representation h<strong>in</strong>tsat <strong>the</strong> fact that <strong>the</strong> regular D3-brane is a composite object: at <strong>the</strong> s<strong>in</strong>gularity, <strong>the</strong> branecan fractionate <strong>in</strong>to a marg<strong>in</strong>al bound state <strong>of</strong> some o<strong>the</strong>r objects. A D3-brane whichtransforms <strong>in</strong>to an irrep Γ i <strong>of</strong> Γ is called a <strong>fractional</strong> D3-brane <strong>of</strong> type i [41]. A <strong>fractional</strong>brane is stuck at <strong>the</strong> s<strong>in</strong>gularity, because it has no images <strong>in</strong> C 3 . Its low energy <strong>gauge</strong><strong>the</strong>ory has a s<strong>in</strong>gle U(1).In <strong>the</strong> case <strong>of</strong> N = 2 s<strong>in</strong>gularities, which are <strong>of</strong> <strong>the</strong> form C×C 2 /Γ, however, we have anon-isolated s<strong>in</strong>gularity, along <strong>the</strong> l<strong>in</strong>e C. The <strong>fractional</strong> <strong>branes</strong> can <strong>the</strong>n move along <strong>the</strong>s<strong>in</strong>gularity l<strong>in</strong>e. This can also be seen <strong>in</strong> <strong>the</strong> quiver describ<strong>in</strong>g <strong>the</strong>ir low energy dynamics.For <strong>in</strong>stance, consider <strong>the</strong> A k−1 quiver discussed above. The F-term relations follow<strong>in</strong>gfrom <strong>the</strong> superpotential (3.11) (with N = 1, say) areX ii+1 (φ i −φ i+1 ) = 0, X i−1i (φ i−1 −φ i ) = 0, X ii−1 X i−1i −X ii+1 X i+1i = 0. (3.12)When φ 1 = ··· = φ k = φ, we have a a branch which is C×C 2 /Z k , described by φ andxy = t k , with x = ∏ i X ii+1, y = ∏ i X ii−1 and t = X 12 X 21 = ··· = X k1 X 1k . This branchis <strong>the</strong> moduli space for a regular D3-brane. There is also a branch <strong>of</strong> moduli space withX ii−1 = X ii+1 = 0 and <strong>the</strong> φ i arbitrary, which corresponds to configurations <strong>of</strong> <strong>fractional</strong><strong>branes</strong> along <strong>the</strong> s<strong>in</strong>gularity l<strong>in</strong>e.Note that non-isolated s<strong>in</strong>gularities can also occur <strong>in</strong> N = 1 orbifolds or <strong>in</strong> moregeneral algebraic varieties.3.2.3 Closed str<strong>in</strong>g perspective for D3-<strong>branes</strong> on orbifolds. Super<strong>gravity</strong>Closed str<strong>in</strong>g <strong>the</strong>ory on C 3 /Γ consist <strong>of</strong> |Γ| sectors: one untwisted sector correspond<strong>in</strong>gto <strong>the</strong> identity <strong>in</strong> Γ, and one twisted sector for each non-trivial element <strong>of</strong> Γ. Str<strong>in</strong>gs <strong>in</strong>


3.2. D-<strong>branes</strong> at s<strong>in</strong>gularities and quivers 25<strong>the</strong> twisted sector are stuck at <strong>the</strong> orbifold s<strong>in</strong>gularity. It is <strong>in</strong>terest<strong>in</strong>g that perturbativestr<strong>in</strong>g <strong>the</strong>ory (or more precisely a description <strong>of</strong> <strong>the</strong> closed str<strong>in</strong>g <strong>in</strong> term <strong>of</strong> a N = (2,2)free CFT) imposes that <strong>the</strong> period ∫ C B 2 on any exceptional curve 1 C is fixed [42]. In <strong>the</strong>presence <strong>of</strong> D-<strong>branes</strong>, we have that [43]∫14π 2 α ′B 2 = dim(Γ i)C i|Γ|,∫14π 2 α ′C 0B 2 = − ∑ i≠0dim(Γ i )|Γ|(3.13)where <strong>the</strong> exceptional 2-cycles C i for i ≠ 0 are <strong>in</strong> <strong>correspondence</strong> with <strong>the</strong> non-trivialirreducible representations <strong>of</strong> Γ appear<strong>in</strong>g <strong>in</strong> (3.5). We have that C 0 = − ∑ i≠0 C i <strong>in</strong>homology.We are really <strong>in</strong>terested <strong>in</strong> only <strong>the</strong> massless modes <strong>of</strong> type IIB str<strong>in</strong>g <strong>the</strong>ory, so it iseasier to consider just super<strong>gravity</strong>, tak<strong>in</strong>g good notice <strong>of</strong> <strong>the</strong> orbifold identification and<strong>of</strong> <strong>the</strong> additional twisted fields liv<strong>in</strong>g on <strong>the</strong> s<strong>in</strong>gular submanifolds. In <strong>the</strong> super<strong>gravity</strong>limit it is certa<strong>in</strong>ly natural for ∫ C iB 2 to take any value.Moreover, we have <strong>the</strong> natural identification <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> with wrapped <strong>branes</strong>[41]. A <strong>fractional</strong> D-brane is noth<strong>in</strong>g but a wrapped D-brane on a vanish<strong>in</strong>g cycle. Sucha brane can still have non-zero tension because <strong>of</strong> a non-zero value for <strong>the</strong> B-field, as wenow recall, follow<strong>in</strong>g <strong>the</strong> review [44]. This is easily seen <strong>in</strong> <strong>the</strong> DBI approximation 2 . Letus def<strong>in</strong>e <strong>the</strong> quantities˜bi = b i +f i ≡ 1 ∫(B24π 2 α ′ +2πα ′ )F 2 , (3.14)C iwith F 2 <strong>the</strong> world-volume flux. The E<strong>in</strong>ste<strong>in</strong> frame action for a probe D(p + 2)-branewrapped on <strong>the</strong> vanish<strong>in</strong>g 2-cycle C i is∫√∫ )S i = −τ p d p+1 ξe Φ−34 −detg|˜bi | + τ p(C p+1˜bi +A p+1 . (3.15)The twisted field A p+1 is def<strong>in</strong>ed such that∫ ∫τ p+2 C p+3 = τ pp+3p+1p+1A p+1 . (3.16)Importantly, <strong>the</strong> wrapped D(p+2)-brane couples to <strong>the</strong> RR potential C p+1 with a chargeQ (i)p = ˜b i τ p˜bi ∈ [0,1). (3.17)It is BPS as long as ˜b i is positive, because τ (i)p = |Q (i)p |. When ˜b i = 0 <strong>the</strong> <strong>fractional</strong>brane tension vanishes, which can lead to <strong>in</strong>terest<strong>in</strong>g phenomena, some <strong>of</strong> which are tobe discussed <strong>in</strong> this <strong>the</strong>sis. One chooses <strong>the</strong> background value <strong>of</strong> B 2 + 2πα ′ F 2 on eachcycle C i , <strong>in</strong>clud<strong>in</strong>g C 0 , such that ∑ i ˜b i = 1. This corresponds to <strong>the</strong> fact that s<strong>in</strong>ce aregular Dp-brane is a marg<strong>in</strong>al bound state <strong>of</strong> all <strong>the</strong> possible <strong>fractional</strong> <strong>branes</strong> we shouldhave S Dp = ∑ i S i.1 An exceptional curve, or generally an exceptional cycle, is a cycle which would appear <strong>in</strong> some partialresolution preserv<strong>in</strong>g <strong>the</strong> CY condition (see e.g. section B.4.1 <strong>in</strong> <strong>the</strong> Appendix). In <strong>the</strong> orbifold limit <strong>the</strong>Kähler class <strong>of</strong> this cycle goes to zero. However, <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory we have a complexified Kähler classJ +iB which doesn’t need to vanish.2 The DBI action for a D-brane is technically valid only at large volume. However, for N = 2 SUSYpreserv<strong>in</strong>g orbifolds we can extrapolate <strong>the</strong> results from large volume to <strong>the</strong> orbifold fixed po<strong>in</strong>t. WithN = 1 SUSY only <strong>the</strong> <strong>in</strong>formation correspond<strong>in</strong>g to <strong>the</strong> holomorphic data <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory on <strong>the</strong>D3-<strong>branes</strong> can be reliably extrapolated to small volume.


26 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularities3.3 Branes at generic Calabi-Yau s<strong>in</strong>gularitiesHav<strong>in</strong>g understood <strong>the</strong> case <strong>of</strong> an orbifold s<strong>in</strong>gularity, we now consider <strong>the</strong> general problem<strong>of</strong> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> low energy field <strong>the</strong>ory for D3-<strong>branes</strong> at any CY s<strong>in</strong>gularity. We canalready anticipate that many <strong>of</strong> <strong>the</strong> <strong>in</strong>gredients <strong>of</strong> <strong>the</strong> orbifold case will carry over to <strong>the</strong>general case: <strong>the</strong> low energy field <strong>the</strong>ory will be a quiver, and each node <strong>of</strong> <strong>the</strong> quiver willcorrespond to some brane wrapped on a vanish<strong>in</strong>g cycle. Such wrapped <strong>branes</strong> are stillcalled <strong>fractional</strong> <strong>branes</strong>. The question is how to f<strong>in</strong>d this quiver from <strong>the</strong> geometric data.In this section (which can be skipped) we consider <strong>the</strong> general case <strong>in</strong> a very sketchymanner; <strong>in</strong> <strong>the</strong> next sections we consider <strong>the</strong> case <strong>of</strong> toric s<strong>in</strong>gularities, where a solutioncan be given much more explicitly. The reason we have to be very sketchy <strong>in</strong> this sectionis that <strong>the</strong> way to phrase <strong>the</strong> problem rigorously uses quite a bit <strong>of</strong> a extra ma<strong>the</strong>maticalmach<strong>in</strong>ery (sheaves and homological algrebra) which is orthogonal to <strong>the</strong> tools used <strong>in</strong>this work. Never<strong>the</strong>less, for <strong>the</strong> sake <strong>of</strong> completeness, we will try to convey a rough idea<strong>of</strong> <strong>the</strong> deep relationship between CY s<strong>in</strong>gularities and quivers.Our whole setup preserves N = 1 supersymmetry <strong>in</strong> four dimensions. The questionwe are really ask<strong>in</strong>g is <strong>the</strong> follow<strong>in</strong>g: Given a Calabi-Yau threefold s<strong>in</strong>gularity, what is<strong>the</strong> holomorphic data <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory liv<strong>in</strong>g on a stack <strong>of</strong> D3-<strong>branes</strong> located at <strong>the</strong>s<strong>in</strong>gularity.• What are <strong>the</strong> <strong>gauge</strong> groups and what is <strong>the</strong> matter content?• What is <strong>the</strong> superpotential?This is what we mean by f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> quiver. Only <strong>the</strong>se pieces <strong>of</strong> <strong>in</strong>formation are encoded<strong>in</strong> <strong>the</strong> quiver-with-superpotential structure discussed <strong>in</strong> this chapter. In particular weare not ask<strong>in</strong>g any <strong>in</strong>formation about <strong>the</strong> Kähler potential <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory. Theholomorphic structure <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory is fully encoded <strong>in</strong> <strong>the</strong> holomorphic data <strong>of</strong> <strong>the</strong>CY threefold. It is <strong>in</strong>dependent <strong>of</strong> <strong>the</strong> Kähler structure <strong>of</strong> <strong>the</strong> CY 3 , and it can thus becomputed at large volume <strong>in</strong> <strong>the</strong> resolved s<strong>in</strong>gularity. This approach was first advocatedby Wijnholt <strong>in</strong> [45]. See also [46, 47]. The appropriate language to describe D-<strong>branes</strong>wrapped on holomorphic cycles, at large volume, is <strong>the</strong> language <strong>of</strong> B-<strong>branes</strong>, which are<strong>branes</strong> <strong>in</strong> <strong>the</strong> topological B-model at g s = 0; see [48, 49] for reviews. Ma<strong>the</strong>matically,B-<strong>branes</strong> are coherent sheaves. A coherent sheaf is a ma<strong>the</strong>matical object which makeswell def<strong>in</strong>ed <strong>the</strong> notion <strong>of</strong> a “vector bundle over a holomorphic cycle”. At this level<strong>of</strong> discussion, coherent sheaves are just <strong>the</strong> <strong>branes</strong> wrapped around po<strong>in</strong>ts, 2-cycles or4-cycles (D3-, D5-, D7-<strong>branes</strong>, respectively).The idea <strong>of</strong> <strong>the</strong> large volume perspective is that all <strong>the</strong> B-<strong>branes</strong> will correspondto some <strong>fractional</strong> <strong>branes</strong> at <strong>the</strong> s<strong>in</strong>gularity <strong>in</strong> <strong>the</strong> small volume limit 3 . One must f<strong>in</strong>dsome k<strong>in</strong>d <strong>of</strong> f<strong>in</strong>ite “basis” for <strong>the</strong> B-<strong>branes</strong>. Each coherent sheave E i <strong>in</strong> that basisshould correspond to a <strong>fractional</strong> brane, and to a node <strong>in</strong> <strong>the</strong> quiver. Moreover, <strong>the</strong>B-<strong>branes</strong> “<strong>in</strong>tersect” <strong>in</strong> a way which can be determ<strong>in</strong>ed by algebraic geometry. At <strong>the</strong>ses<strong>in</strong>tersection po<strong>in</strong>ts we have massless open str<strong>in</strong>gs. These open str<strong>in</strong>g modes are countedby some generalization <strong>of</strong> cohomology groups called Ext groups. Between <strong>the</strong> coherent3 Actually it is not always true, one should usually also perform a so-called stability analysis, whichgoes beyond <strong>the</strong> B-model computation, to make sure that <strong>the</strong> B-brane is a good BPS D-brane <strong>in</strong> <strong>the</strong>small volume limit.


3.3. Branes at generic Calabi-Yau s<strong>in</strong>gularities 27sheaves E and F, we have <strong>the</strong> groupsExt k (E,F), (3.18)with k = 0,··· ,n for a n-fold. Moreover, for Calabi-Yau n-folds we have <strong>the</strong> relationsExt k (E,F) ∼ = Ext n−k (F,E), (3.19)which is called Serre duality; so we only need to compute half <strong>of</strong> <strong>the</strong> Ext groups. Thistopological <strong>in</strong>formation allows one to read <strong>the</strong> quiver, <strong>in</strong> pr<strong>in</strong>ciple. In particular onecan sometimes argue (for <strong>in</strong>stance as <strong>in</strong> [50]) that <strong>the</strong> Ext 0 groups correspond to aN = 1 vector multiplets <strong>in</strong> <strong>the</strong> quiver, while <strong>the</strong> Ext 1 groups correspond to chiral multiplets.So dimExt 0 (E,E) counts <strong>the</strong> rank <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group at node E (we shouldhave dimExt 0 (E i ,E j ) = 0 for i ≠ j), and dimExt 1 (E i ,E j ) counts <strong>the</strong> number <strong>of</strong> bifundamentalfields between E i and E j . More complicated tricks also allow to compute <strong>the</strong>superpotential <strong>in</strong> some cases.In practice any computation is horrendously complicated, and <strong>the</strong> above programhas been carried out only <strong>in</strong> <strong>the</strong> case <strong>of</strong> complex cones over del Pezzo surfaces dP n ,n = 1,··· ,8 (which are non-toric for n > 3); see also [51]. In that case <strong>the</strong>re is a usefulbasis <strong>of</strong> B-<strong>branes</strong> called an exceptional collection which simplifies <strong>the</strong> problem [45, 47],and one can take advantage <strong>of</strong> exist<strong>in</strong>g ma<strong>the</strong>matical results.Note also that B-<strong>branes</strong> have <strong>the</strong> structure <strong>of</strong> a category: we have “objects”, <strong>the</strong>B-<strong>branes</strong>, and “morphism” between <strong>the</strong>m, <strong>the</strong> Ext groups. It is <strong>in</strong> this category languagethat <strong>the</strong> comparison <strong>of</strong> B-<strong>branes</strong> on some geometry with <strong>the</strong> structure <strong>of</strong> a quiver becomesvery natural, as we now expla<strong>in</strong>. We are follow<strong>in</strong>g [52, 53].3.3.1 Homological algebra and <strong>the</strong> relation between quivers and s<strong>in</strong>gularitiesLet us consider an abstract quiver with superpotential relations. By abstract quiver wemean that we only consider a graph made <strong>of</strong> nodes i = 1,··· ,G, and <strong>of</strong> arrows X αbetween <strong>the</strong> nodes. A path from i to j is a str<strong>in</strong>g <strong>of</strong> subsequent arrows go<strong>in</strong>g from i to j.A quiver relation is a relation between several paths between <strong>the</strong> same two nodes. We callsuperpotential relation a relation which follows from a superpotential W(X α ), consist<strong>in</strong>g<strong>of</strong> a formal sum <strong>of</strong> closed loops with signs 4 , so that any relation F can be derived asF X = ∂ X W = 0, (3.20)for some arrow X. A quiver algebra is just <strong>the</strong> algebra <strong>of</strong> paths, CQ, made <strong>of</strong> all <strong>the</strong> paths<strong>in</strong> <strong>the</strong> quiver (multiplication is <strong>the</strong> concatenation <strong>of</strong> paths), modulo <strong>the</strong> superpotentialrelations. We designate <strong>the</strong> relations by <strong>the</strong> ideal I, so <strong>the</strong> quiver algebra isA(Q) = CQ/I. (3.21)Note that for any quiver with closed loops <strong>the</strong> path algebra CQ is <strong>in</strong>f<strong>in</strong>ite dimensional,although <strong>the</strong>re are a f<strong>in</strong>ite number <strong>of</strong> generators, which are <strong>the</strong> arrows <strong>the</strong>mselves.4 W needs to consist <strong>of</strong> closed loops generically, so that ∂ XW relates several paths between <strong>the</strong> twosame nodes. It is <strong>the</strong> requirement <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variance <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory.


28 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitiesOf course we could add more structure to this quiver. We could assign a vector spaceE i = C n ito each node, and assign a l<strong>in</strong>ear map (n i ×n j matrix)X ij : C n i→ C n j, i.e. X ij ∈ Hom(E i ,E j ). (3.22)to each arrow. We could also assign a <strong>gauge</strong> symmetry Gl(n i ,C) to each node i, act<strong>in</strong>g<strong>in</strong> <strong>the</strong> obvious way. But this is some extra <strong>in</strong>formation, which is taken care <strong>of</strong> by <strong>the</strong>concept <strong>of</strong> quiver representation. A quiver representation is a representation <strong>of</strong> <strong>the</strong> quiveralgebra, which can be generated by <strong>the</strong> assignments just made <strong>of</strong> vector spaces and l<strong>in</strong>earmaps. The set <strong>of</strong> all representations has <strong>the</strong> structure <strong>of</strong> a category: an object is a quiverrepresentation, and a morphism is a set <strong>of</strong> l<strong>in</strong>ear maps between <strong>the</strong> vector spaces <strong>in</strong> <strong>the</strong>two quiver representations such that every square commutes 5 . This category is so-calledAbelian, and we can go to <strong>the</strong> derived category. This is not as awful as it sounds, butwe do not have space for def<strong>in</strong>itions here. Suffice to say that <strong>the</strong> objects <strong>in</strong> <strong>the</strong> derivedcategory, which we still denote E i , are cha<strong>in</strong> complex <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al objects. For <strong>in</strong>stancewe can have <strong>the</strong> trivial complex··· → 0 → E i → 0 → ··· (3.23)The relevant morphisms are also called Ext n (E,F), for n = 0,···3 (<strong>the</strong>y are “derivedfunctors <strong>of</strong> <strong>the</strong> Hom functor”).Physicallyspeak<strong>in</strong>g, <strong>the</strong>objects<strong>in</strong>thisderivedcategoryrepresent<strong>the</strong>supersymmetricvacua <strong>of</strong> <strong>the</strong> quiver, for all possible ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups. The group Ext 0 (E,F) =Hom(E,F) represent <strong>the</strong> <strong>gauge</strong> symmetries which would rema<strong>in</strong> unbroken if you tried tocomb<strong>in</strong>e objects E and F, while Ext 1 (E,F) is best thought as <strong>the</strong> physical modes (<strong>gauge</strong>equivalence class <strong>of</strong> modes satisfy<strong>in</strong>g <strong>the</strong> quiver relations) you can turn on between Eand F. Lastly <strong>the</strong> elements <strong>of</strong> Ext 2 (E,F) are related to <strong>the</strong> quiver relations <strong>the</strong>mselves.Now, for a quiver with superpotential relations it is possible to prove that [53]Ext 1 (E,F) ∼ = Ext 2 (E,F), (3.24)which follows from <strong>the</strong> fact that X and F X are somewhat “dual” because every relationfollow from a superpotential 6 .If we want to identify this quiver category structure with <strong>the</strong> B-brane category structureon a Calabi-Yau n-fold, we need that n = 3 because <strong>of</strong> (3.24) and (3.19). The preciseconjecture is that <strong>the</strong> derived category <strong>of</strong> quiver representations is isomorphic to <strong>the</strong> B-brane category (which is actually also a derived category) on a Calaby-Yau threefold, atleast <strong>in</strong> <strong>the</strong> case <strong>of</strong> a quiver with generic superpotential.3.4 Hanany-Witten setupsIn this section we succ<strong>in</strong>ctly discuss some systems <strong>of</strong> D4-<strong>branes</strong> suspended between NS5-<strong>branes</strong>, which are T-dual to systems <strong>of</strong> D3-<strong>branes</strong> on generalised conifolds <strong>in</strong> type IIB.In general, such Hanany-Witten setups [54] provide a very useful po<strong>in</strong>t <strong>of</strong> view on some5 The category <strong>of</strong> quiver representations is isomorphic to <strong>the</strong> category <strong>of</strong> A(Q)-modules.6 Actually this Serre relation holds only for certa<strong>in</strong> superpotentials, such that every <strong>fractional</strong> branerepresentation has a projective resolution; for <strong>in</strong>stance if W = 0 this is not <strong>the</strong> case [53].


3.4. Hanany-Witten setups 29(a) Orthogonal NS5-<strong>branes</strong> T-dual to<strong>the</strong> conifold.(b) Conifold quiver (alsoknown as Klebanov-Wittenquiver). The superpotential isW = A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 .Figure 3.2: The Hanany-Witten setup T-dual to D3-<strong>branes</strong> on <strong>the</strong> conifold, and <strong>the</strong> associatedquiver.<strong>gauge</strong> <strong>the</strong>ories, especially <strong>in</strong> <strong>the</strong> case <strong>of</strong> N = 2 extended supersymmetry. For <strong>in</strong>stance <strong>in</strong>Chapter 6 we will use such T-dual setup quite a lot.Consider N D3-<strong>branes</strong> at <strong>the</strong> C 2 /Z k s<strong>in</strong>gularity, as <strong>in</strong> section 3.2.1. T-dualis<strong>in</strong>g, weget k parallel NS5-<strong>branes</strong> localized around a circle <strong>in</strong> type IIA, as expla<strong>in</strong>ed <strong>in</strong> section2.2.2. Let x 6 be <strong>the</strong> direction <strong>of</strong> <strong>the</strong> circle. The spac<strong>in</strong>g (∆x 6 ) i between <strong>the</strong> i-th and(i+1)-th NS5-brane corresponds to <strong>the</strong> <strong>the</strong> period <strong>of</strong> <strong>the</strong> B-field on <strong>the</strong> vanish<strong>in</strong>g cycleC i <strong>in</strong> type IIB. There are also N D4-<strong>branes</strong> wrapped along <strong>the</strong> x 6 circle. This Hanany-Witten setup [54] is summarized <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g table:0 1 2 3 4 5 6 7 8 9NS5 i ◦ ◦ ◦ ◦ ◦ ◦D4 ◦ ◦ ◦ ◦ ◦(3.25)The D4-<strong>branes</strong> can split <strong>in</strong>to k <strong>fractional</strong> <strong>branes</strong>, each <strong>fractional</strong> brane stretch<strong>in</strong>g betweentwo adjacent NS5-<strong>branes</strong>. From this setup one can easily read <strong>the</strong> quiver field <strong>the</strong>ory,which agrees with <strong>the</strong> one we computed <strong>in</strong> section 3.2.1. See <strong>the</strong> Figure 3.1(b). Because<strong>the</strong> NS5-<strong>branes</strong> are parallel, <strong>the</strong> “<strong>fractional</strong>” D4-<strong>branes</strong> stretched between <strong>the</strong>m can movealong <strong>the</strong>m on <strong>the</strong> v = x 4 + ix 5 complex plane without break<strong>in</strong>g supersymmetry. Thisphenomena corresponds to <strong>fractional</strong> D3-<strong>branes</strong> mov<strong>in</strong>g along <strong>the</strong> s<strong>in</strong>gularity, or to <strong>the</strong>Coulomb branch <strong>in</strong> <strong>the</strong> low energy quiver <strong>the</strong>ory.Hanany-Witten setup <strong>of</strong> this type can also describe some N = 1 geometries [55,56]. The setup (3.25) preserves N = 2 supersymmetry, and it also has a U(1) R ×SU(2) R R-symmetry. The U(1) R corresponds to rotation <strong>in</strong> <strong>the</strong> (x 4 ,x 5 ) plane, while <strong>the</strong>SU(2) R rotates <strong>the</strong> vector (x 7 ,x 8 ,x 9 ). If we rotate one NS5-brane with respect to <strong>the</strong>o<strong>the</strong>rs, we break <strong>the</strong> R-symmetry to a diagonal U(1) R , hence we must have broken <strong>the</strong>supersymmetry at least to N = 1. This is <strong>in</strong>deed what happens [57]: if two NS5-<strong>branes</strong>are not parallel anymore, <strong>the</strong> adjo<strong>in</strong>t field associated to motions <strong>of</strong> <strong>the</strong> D4-<strong>branes</strong> along<strong>the</strong> NS5-<strong>branes</strong> gets an N = 1 mass term. When two NS5-<strong>branes</strong> are orthogonal, wecan <strong>in</strong>tegrate out this adjo<strong>in</strong>t field. In this way we obta<strong>in</strong> several new quivers from <strong>the</strong>


30 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitiesone <strong>of</strong> Figure 3.1(a) for C × C 2 /Z k : we simply <strong>in</strong>tegrate out any pair <strong>of</strong> adjo<strong>in</strong>t fieldsfor <strong>the</strong> two <strong>gauge</strong> groups located on each side <strong>of</strong> <strong>the</strong> NS5-brane which we rotate. Let ussay we rotate several NS5-<strong>branes</strong> onto <strong>the</strong> w = v 8 +ix 9 direction, and we call <strong>the</strong>se <strong>the</strong>NS5’-<strong>branes</strong>. We have0 1 2 3 4 5 6 7 8 9NS5 i ◦ ◦ ◦ ◦ ◦ ◦NS5’ j ◦ ◦ ◦ ◦ ◦ ◦D4 ◦ ◦ ◦ ◦ ◦(3.26)The simple example <strong>of</strong> <strong>the</strong> conifold geometry xy −vw = 0 is depicted <strong>in</strong> Figure 3.2, toge<strong>the</strong>rwith<strong>the</strong>associatedquiverwithsuperpotential.Thesuperpotentialcanbededucedfrom <strong>the</strong> superpotential <strong>of</strong> <strong>the</strong> N = 2 quiver by giv<strong>in</strong>g a mass to <strong>the</strong> adjo<strong>in</strong>t fields and<strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong>m out. In general, this setup can describe D3-<strong>branes</strong> on any generalisedconifold <strong>of</strong> <strong>the</strong> formxy −v m w n = 0. (3.27)For m = 0 we have <strong>the</strong> N = 2 case, C 2 /Z n . In general, we can see this geometry asa cyl<strong>in</strong>der C ∗ fibered over C 2 ∼ = {v,w} accord<strong>in</strong>g to <strong>the</strong> equation xy = f(v,w). Whenf(v,w) = 0 <strong>the</strong> S 1 <strong>of</strong> <strong>the</strong> cyl<strong>in</strong>der p<strong>in</strong>ches <strong>of</strong>f. If we T-dualise along this S 1 <strong>the</strong> loci where<strong>the</strong> fiber degenerates corresponds to <strong>the</strong> locations <strong>of</strong> <strong>the</strong> T-dual NS5-<strong>branes</strong> [58]. For <strong>the</strong>generalized conifold, f(v,w) = v m w n so that <strong>the</strong>re are n NS5-<strong>branes</strong> along v (at w n = 0)and m NS5-<strong>branes</strong> along w (at v m = 0) <strong>in</strong> <strong>the</strong> T-dual.Remark that from this T-duality argument we cannot specify <strong>the</strong> order<strong>in</strong>g <strong>of</strong> <strong>the</strong>various NS5 and NS5 ′ <strong>branes</strong> along <strong>the</strong> x 6 circle. This is because such order<strong>in</strong>g dependson <strong>in</strong>formation about <strong>the</strong> Kähler structure (<strong>in</strong> particular about periods <strong>of</strong> <strong>the</strong> B-field).3.5 Toric s<strong>in</strong>gularities and dimer modelsToric Calabi-Yau s<strong>in</strong>gularities form a very simple class <strong>of</strong> Calabi-Yau s<strong>in</strong>gularities (seeAppendix B for an <strong>in</strong>troduction). It is only natural to try to f<strong>in</strong>d <strong>the</strong> quiver for any toricCY s<strong>in</strong>gularity by tak<strong>in</strong>g advantage <strong>of</strong> <strong>the</strong> tools <strong>of</strong> toric geometry. This problem was firstadressed <strong>in</strong> [59]; <strong>in</strong> this early approach, one embeds any toric s<strong>in</strong>gularity X <strong>in</strong>to a largerC 3 /(Z n ×Z m ) s<strong>in</strong>gularity. The quiver <strong>of</strong> <strong>the</strong> parent orbifold is known, and one f<strong>in</strong>ds <strong>the</strong>quiver <strong>of</strong> X by Higgs<strong>in</strong>g <strong>the</strong> orbifold quiver (correspond<strong>in</strong>g to partial resolution <strong>in</strong> <strong>the</strong>geometry).A few years ago a breakthrough was made thanks to <strong>the</strong> work <strong>of</strong> Hanany, Kennawayand collaborators [60, 61]. These papers found a beautiful underly<strong>in</strong>g comb<strong>in</strong>atoric structureto <strong>the</strong> so called toric quivers, which makes <strong>the</strong> translation between toric geometryand quivers very deep and surpris<strong>in</strong>gly simple. The structure which made this simplificationpossible is known as brane til<strong>in</strong>g (and <strong>the</strong> associated dimer model). A lot <strong>of</strong> workfollowed, some <strong>of</strong> which will be reviewed <strong>in</strong> this section.We are ma<strong>in</strong>ly concerned with <strong>the</strong> determ<strong>in</strong>ation <strong>of</strong> <strong>the</strong> geometry associated to anytoricquiver. Formorecomprehensive<strong>in</strong>troductionto<strong>the</strong>subject, wereferto<strong>the</strong>beautifulreview [62] by Kennaway.


3.5. Toric s<strong>in</strong>gularities and dimer models 31(a) Periodic quiver. The signs correspondto <strong>the</strong> signs <strong>of</strong> <strong>the</strong> terms <strong>in</strong><strong>the</strong> superpotential.(b) Brane til<strong>in</strong>g <strong>of</strong> <strong>the</strong> torus. The fundamentaldoma<strong>in</strong> is <strong>in</strong>dicated <strong>in</strong> red.Figure 3.3: The periodic quiver and <strong>the</strong> brane til<strong>in</strong>g for <strong>the</strong> conifold quiver <strong>the</strong>ory.3.5.1 Toric quiver <strong>the</strong>ories as dimer modelsToric quivers are a particular type <strong>of</strong> quiver which satisfy one additional condition: eachchiral field <strong>of</strong> <strong>the</strong> quiver appears only l<strong>in</strong>early <strong>in</strong> <strong>the</strong> superpotential, <strong>in</strong> exactly two termswith opposite signs. This implies that all <strong>the</strong> F-term relations take <strong>the</strong> form “monomial= monomial”. For such a quiver, one can def<strong>in</strong>e a so-called planar quiver as follows[62]. Consider each superpotential term as a polygon. Give each polygon a positiveor negative orientation accord<strong>in</strong>g to <strong>the</strong> sign <strong>of</strong> <strong>the</strong> superpotential term, and glue <strong>the</strong>polygons toge<strong>the</strong>r along common arrows. S<strong>in</strong>ce each field appears only twice, we <strong>the</strong>nform an orientable Riemann surface, with <strong>the</strong> orientation <strong>in</strong>herited from <strong>the</strong> orientation<strong>of</strong> <strong>the</strong> polygons. We will assume that this Riemann surface is actually a torus (we canactually prove that by assum<strong>in</strong>g conformality <strong>of</strong> <strong>the</strong> <strong>the</strong>ory on <strong>the</strong> D3-<strong>branes</strong>, as will bediscussed <strong>in</strong> <strong>the</strong> next chapter). This graph on <strong>the</strong> torus is <strong>the</strong> planar graph. We couldalso have drawn a bi-periodic til<strong>in</strong>g <strong>of</strong> <strong>the</strong> plane by repeat<strong>in</strong>g polygons; that graph iscalled <strong>the</strong> “periodic quiver”.It is more <strong>in</strong>terest<strong>in</strong>g to consider <strong>the</strong> graph dual to <strong>the</strong> planar graph: each polygonwith positive (resp. negative) orientation becomes a white (resp. black) vertex, and eachquiver node becomes a face. This dual graph is bipartite graph on <strong>the</strong> torus called abrane til<strong>in</strong>g <strong>in</strong> <strong>the</strong> literature. An example is given <strong>in</strong> Figure 3.3. The dictionary betweenquiver and brane til<strong>in</strong>g is summarized <strong>in</strong> Insert 1. Given a brane til<strong>in</strong>g, a dimer is justa dist<strong>in</strong>guished edge. A perfect match<strong>in</strong>g is a configuration <strong>of</strong> dimers such that everyvertex is touched exactly once. We def<strong>in</strong>e <strong>the</strong> perfect match<strong>in</strong>g matrix M αk as{ 1 if <strong>the</strong> perfect match<strong>in</strong>g pk conta<strong>in</strong>s <strong>the</strong> fields XM αk =α0 o<strong>the</strong>rwise(3.28)A dimer model is noth<strong>in</strong>g but a brane til<strong>in</strong>g toge<strong>the</strong>r with its perfect match<strong>in</strong>gs.


32 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitiesInsert 1. Quiver from brane til<strong>in</strong>gA brane til<strong>in</strong>g is a bipartite graph on <strong>the</strong> torus: it has white and black vertices <strong>in</strong>equal numbers, and non-<strong>in</strong>tersect<strong>in</strong>g edges connect<strong>in</strong>g white to black vertices.• Each face i corresponds to a <strong>gauge</strong> group.• Each edge corresponds to a chiral field X ij . Look<strong>in</strong>g towards <strong>the</strong> white dot, <strong>the</strong>edge X ij is a field <strong>in</strong> <strong>the</strong> fundamental <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group i on its right and <strong>in</strong><strong>the</strong> anti-fundamental <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group j on its left.• Each white (black) vertex corresponds to a s<strong>in</strong>gle-trace superpotential term with<strong>the</strong> fields appear<strong>in</strong>g <strong>in</strong> clockwise (counterclockwise) order, and with a plus (m<strong>in</strong>us)sign <strong>in</strong> front.3.5.2 From quiver to geometry: moduli space and <strong>the</strong> forward algorithmThere are many <strong>in</strong>terest<strong>in</strong>g applications <strong>of</strong> brane til<strong>in</strong>gs and <strong>of</strong> <strong>the</strong> associated dimermodels. Here we are ma<strong>in</strong>ly concerned with its use to solve for <strong>the</strong> classical moduli space<strong>of</strong> <strong>the</strong> Abelian <strong>the</strong>ory [63]. This so-called forward algorithm [60, 61] built on <strong>the</strong> previouswork [64, 65, 59].There is a simple rule <strong>of</strong> thumb to see if a quiver can describe D3-<strong>branes</strong> at a CY 3s<strong>in</strong>gularity: <strong>the</strong> vacuum moduli space should conta<strong>in</strong> at least <strong>the</strong> CY threefold. Thisis because regular D3-<strong>branes</strong> are po<strong>in</strong>t-like probes <strong>of</strong> <strong>the</strong> geometry, and <strong>the</strong>y can bedisplaced away from <strong>the</strong> s<strong>in</strong>gularity without break<strong>in</strong>g supersymmetry. Recall that <strong>the</strong>moduli space <strong>of</strong> a N = 1 supersymmetric <strong>the</strong>ory is a complex manifold <strong>of</strong> <strong>the</strong> formM = {X α |dW = 0; D = 0}/G. (3.29)We first impose <strong>the</strong> F-flatness conditions dW = 0 on C[X α ], where X α are <strong>the</strong> complexscalars <strong>in</strong> <strong>the</strong> chiral multiplets. The result<strong>in</strong>g complex manifold Z was called <strong>the</strong> “masterspace” <strong>in</strong> recent literature [66]. Next we impose <strong>gauge</strong> <strong>in</strong>variance under <strong>the</strong> <strong>gauge</strong> groupG toge<strong>the</strong>r with <strong>the</strong> D-flatness conditions D = 0; equivalently one can just quotient by<strong>the</strong> complexified <strong>gauge</strong> group G C [67] (<strong>in</strong> o<strong>the</strong>r words <strong>the</strong>re is an equivalence between <strong>the</strong>Kähler quotient Z//G and <strong>the</strong> holomorphic quotient Z/G C ).The forward algorithm allows to compute efficiently <strong>the</strong> Abelian moduli space <strong>of</strong> anytoric quiver. In <strong>the</strong> Abelian <strong>the</strong>ory <strong>the</strong> <strong>gauge</strong> group is U(1) G . Hence, if W = 0 (for<strong>in</strong>stance <strong>in</strong> <strong>the</strong> Abelian conifold <strong>the</strong>ory) <strong>the</strong> moduli space (3.29) has an obviously toricdescription as a GLSM (see Appendix B). For a non-trivial superpotential satisfy<strong>in</strong>g <strong>the</strong>toric condition, <strong>the</strong> master space itself should be a toric variety, because it has an aff<strong>in</strong>edescription with relations <strong>of</strong> <strong>the</strong> form “monomial = monomial”. The master space can<strong>the</strong>n be described as a GLSM as well. The non-trivial problem is to f<strong>in</strong>d <strong>the</strong> correct set <strong>of</strong>homogeneous coord<strong>in</strong>ates for any quiver. As we will show, <strong>the</strong> perfect match<strong>in</strong>gs actuallydo <strong>the</strong> job, although <strong>the</strong>y usually give a redundant set <strong>of</strong> homogeneous coord<strong>in</strong>ates.


3.5. Toric s<strong>in</strong>gularities and dimer models 33Given a brane til<strong>in</strong>g, let us assign a complex field p k (so called complex match<strong>in</strong>gvariable) to each perfect match<strong>in</strong>g. Then assign to each quiver field a product <strong>of</strong> perfectmatch<strong>in</strong>g variables, accord<strong>in</strong>g toX α = ∏ kp M αkk. (3.30)Due to <strong>the</strong> toricity condition on <strong>the</strong> superpotential, any F-term relation ∂ Xα W = 0 is <strong>of</strong><strong>the</strong> form ∏ ′β∈V mX β = ∏ ′γ∈V nX γ (3.31)where ∏′ meansthat<strong>the</strong>productdoesnot<strong>in</strong>clude<strong>the</strong>fieldX α l<strong>in</strong>k<strong>in</strong>g<strong>the</strong>verticesV m andV n . Us<strong>in</strong>g <strong>the</strong> parametrization (3.30) solves <strong>the</strong> F-term relations because ∏ ′β∈V mX β =∑ ′ ∏k p β∈Vm M βkk, and ∑ ′β∈V mM βk = ∑ ′γ∈V nM γk = 1 (or 0) ∀k, by <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> perfectmatch<strong>in</strong>g.Then, we can easily construct a GLSM <strong>in</strong> term <strong>of</strong> <strong>the</strong> perfect match<strong>in</strong>g variables.First <strong>the</strong>re are <strong>the</strong> charges Q D associated to <strong>the</strong> U(1) G <strong>gauge</strong> group <strong>of</strong> <strong>the</strong> quiver. Let Ebe <strong>the</strong> number <strong>of</strong> quiver fields (edges <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g) and m be <strong>the</strong> number <strong>of</strong> perfectmatch<strong>in</strong>g variables. Then Q D is a (G − 1) × m matrix (Q D ) i kwhich gives <strong>the</strong> charges<strong>of</strong> <strong>the</strong> p k ’s under <strong>the</strong> quiver <strong>gauge</strong> group (we really have only a U(1) G−1 <strong>gauge</strong> groupbecause <strong>the</strong> diagonal U(1) does not couple to any field). It is def<strong>in</strong>ed asM α k (Qt D) k i = (Qt ) αi (3.32)<strong>in</strong> term <strong>of</strong> <strong>the</strong> perfect match<strong>in</strong>g matrix and <strong>of</strong> <strong>the</strong> charge matrix Q i α <strong>of</strong> <strong>the</strong> quiver. Thedef<strong>in</strong>ition <strong>of</strong> Q D is only up to elements <strong>of</strong> kerM. This ambiguity is fixed by <strong>in</strong>toduc<strong>in</strong>gadditional chargesQ t F = kerM ; i.e. M α k (Qt F) k l = 0, (3.33)which are charges for <strong>the</strong> perfect match<strong>in</strong>g variables which give zero charge to <strong>the</strong> quiverfields, accord<strong>in</strong>g to <strong>the</strong> map (3.30). They are thus <strong>gauge</strong> symmetries (redundancies) <strong>of</strong><strong>the</strong> parametrization (3.30). The GLSM is thusp 1 ··· p m FIU(1) l F(Q F ) l 1 ··· (Q F ) l m 0 (3.34)U(1) i D (Q D) i 1 ··· (Q D ) i m ξ iNote that we have also considered FI parameters here; however we do not have FI parametersfor <strong>the</strong> U(1) F symmetries because <strong>the</strong>y are not associated to dynamical <strong>gauge</strong>fields. It turns out that <strong>the</strong>re are m − G − 2 charges Q 7 F . In total, <strong>the</strong> GLSM hasm−3 U(1)’s, so that <strong>the</strong> result<strong>in</strong>g space is a 3 dimensional toric variety. Actually it is aCalabi-Yau, s<strong>in</strong>ce ∑ mk=1 (Q D) i k = 0, and ∑ mk=1 (Q F) l k= 0 too. The latter relation followsfrom <strong>the</strong> def<strong>in</strong>ition (3.33) and <strong>the</strong> fact that if we choose all <strong>the</strong> fields X γ which end on<strong>the</strong> same vertex we have that ∑ γ M γk = (1,··· ,1) (all <strong>the</strong> perfect match<strong>in</strong>gs are chosenonce), which implies <strong>the</strong> result.7 It is an “experimental” observation [59, 66] that <strong>the</strong> master space <strong>of</strong> toric quivers has dimensionG + 2. I am not aware <strong>of</strong> any pro<strong>of</strong> <strong>in</strong> <strong>the</strong> literature (although see [63]). I thank Amihay Hanany for<strong>correspondence</strong> on this po<strong>in</strong>t.


34 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitiesRecall that, once given <strong>the</strong> GLSM charges Q t = (Q t F ,Qt D), we can f<strong>in</strong>d <strong>the</strong> vectors <strong>of</strong><strong>the</strong> toric cone v = (v x ,v y ,1),simply by tak<strong>in</strong>g <strong>the</strong> kernel <strong>of</strong> Q,⎛v x (1) v x(2)v y (1) v y(2)··· v (m)1··· v y(m)⎜G = ⎝1 1 ··· 1⎞⎟⎠ , (3.35)QG t = 0. (3.36)The third l<strong>in</strong>e <strong>of</strong> (3.35) can be chosen so due to <strong>the</strong> CY condition. Note that we havechosen m toric vectors correspond<strong>in</strong>g to <strong>the</strong> m homogeneous coord<strong>in</strong>ates (p k ), but <strong>in</strong>general this is not a m<strong>in</strong>imal presentation <strong>of</strong> <strong>the</strong> toric diagram (several toric vectors willbe identical). For <strong>the</strong> physical mean<strong>in</strong>g <strong>of</strong> <strong>the</strong>se redundancies, see e.g. [62].3.5.3 Kasteleyn matrix and fast forward algorithmThe rema<strong>in</strong><strong>in</strong>g question is how to f<strong>in</strong>d <strong>the</strong> perfect match<strong>in</strong>g variables for a given branetil<strong>in</strong>g. The answer is provided by <strong>the</strong> Kasteleyn matrix [68, 60], which we now review.Let us draw <strong>the</strong> bipartite graph on a fundamental doma<strong>in</strong>, and denote γ x and γ y <strong>the</strong> twoboundaries with orientation, which are particular representatives <strong>of</strong> <strong>the</strong> two primitivehomology 1-cycles <strong>of</strong> <strong>the</strong> torus. Let us also denote by m,n = 1,··· ,V <strong>the</strong> white andblack vertices. Let X a mn be <strong>the</strong> edges l<strong>in</strong>k<strong>in</strong>g <strong>the</strong> white node m to <strong>the</strong> black node n.F<strong>in</strong>ally, let < X,γ > be <strong>the</strong> <strong>in</strong>tersection number <strong>of</strong> <strong>the</strong> edge X with <strong>the</strong> 1-cycle γ. Theimproved Kasteleyn matrix is def<strong>in</strong>ed asK mn = ∑ γX γ mnx y . (3.37)The perfect match<strong>in</strong>g are enumerated by <strong>the</strong> permanent 8 <strong>of</strong> K mn , which is def<strong>in</strong>ed similarlyto <strong>the</strong> determ<strong>in</strong>ant but with no m<strong>in</strong>us signs,permK = ∑i 1 ,...,i n(ǫ i 1...i n) 2 K i1 1...K <strong>in</strong>n . (3.38)This permanent is known as <strong>the</strong> characteristic polynomial <strong>of</strong> <strong>the</strong> dimer model. It can bewritten aspermK(x,y) = ∑ k p kx y , (3.39)where each summand p k is a perfect match<strong>in</strong>g, written asp k = ∏ α XM αkα . (3.40)Note that one should not take this notation seriously, unlike <strong>in</strong> <strong>the</strong> relation (3.30); perfectmatch<strong>in</strong>g are only a collection <strong>of</strong> edges, and would be more properly written asp k = {X α | M kα = 1}. (3.41)8 We could also work with <strong>the</strong> determ<strong>in</strong>ant, but at <strong>the</strong> cost <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g some extra signs <strong>in</strong> <strong>the</strong>def<strong>in</strong>itions.


3.5. Toric s<strong>in</strong>gularities and dimer models 35Insert 2. The fast forward algorithmThe fast forward algorithm [60, 61] is a very efficient way to f<strong>in</strong>d <strong>the</strong> toric diagramcorrespond<strong>in</strong>g to <strong>the</strong> Abelian moduli space <strong>of</strong> a toric quiver. Given a brane til<strong>in</strong>g, wedef<strong>in</strong>e <strong>the</strong> Kasteleyn matrix. Each row <strong>of</strong> this matrix represents a white node, eachcolumn a black node. Each entry is a sum <strong>of</strong> monomials∑K mn = X γ x y (3.44)γ∈{m→n}where we sum over <strong>the</strong> edges X γ which go from <strong>the</strong> white node m to <strong>the</strong> black noden; x,y are formal parameters and < X γ ,γ x >, < X γ ,γ y > are <strong>the</strong> number <strong>of</strong> times,with sign, <strong>the</strong> field X γ crosses <strong>the</strong> x and y boundaries <strong>of</strong> <strong>the</strong> fundamental doma<strong>in</strong>.The perfect match<strong>in</strong>g are found through <strong>the</strong> permanent (a determ<strong>in</strong>ant without <strong>the</strong>m<strong>in</strong>us signs)permK = ∑ k p kx hx(k) y hy(k) . (3.45)The set <strong>of</strong> po<strong>in</strong>ts (h x ,h z ) <strong>in</strong> Z 2 (sometimes called <strong>the</strong> Newton polygon <strong>of</strong> <strong>the</strong> polynomialpermK) is <strong>the</strong> toric diagram <strong>of</strong> <strong>the</strong> Calabi-Yau threefold we are look<strong>in</strong>g for!A change <strong>of</strong> fundamental doma<strong>in</strong> (which changes <strong>the</strong> values <strong>of</strong> <strong>the</strong> < X γ ,γ x,y >)corresponds to a Sl(3,Z) transformation <strong>of</strong> <strong>the</strong> toric diagram.The coefficientsh x (p k ) =< p k ,γ x >, h y (p k ) =< p k ,γ y >, (3.42)are called <strong>the</strong> slopes <strong>of</strong> <strong>the</strong> perfect match<strong>in</strong>g p k . They represent <strong>the</strong> flux that goes out <strong>of</strong><strong>the</strong> fundamental doma<strong>in</strong> through γ x or γ y , for a given perfect match<strong>in</strong>g p k :h x (p k ) = ∑ αM kα < X α ,γ x >,h y (p k ) = ∑ αM kα < X α ,γ y > . (3.43)This construction actually gives us more than just <strong>the</strong> perfect match<strong>in</strong>gs. It directlygives us <strong>the</strong> toric diagram. This so-called fast forward algorithm is summarized <strong>in</strong> <strong>the</strong>Insert 2. The claim <strong>of</strong> [61], proven <strong>in</strong> [63], is that <strong>the</strong> po<strong>in</strong>ts (h x ,h y ) ∈ Z 2 are precisely<strong>the</strong> po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> toric diagram for <strong>the</strong> CY 3 associated to <strong>the</strong> brane til<strong>in</strong>g. To prove that,we need to prove that <strong>the</strong> matrix⎛⎞h x (p 1 ) h x (p 2 ) ··· h x (p m )G h = ⎝h y (p 1 ) h y (p 2 ) ··· h y (p m ) ⎠ (3.46)1 1 ··· 1is <strong>the</strong> same (or Sl(2,Z) equivalent) to <strong>the</strong> matrix G def<strong>in</strong>ed <strong>in</strong> (3.35). In o<strong>the</strong>r words, weneed to prove thatQ F G t h = 0, and Q DG t h = 0. (3.47)The first equality directly follows from (3.43) and (3.33). To prove <strong>the</strong> second equality,we note that, us<strong>in</strong>g (3.43) and (3.32),(Q D ) i k (Gt h )k x = (Q D) i k Mk α < Xα ,γ x >= ∑ α Qi α < X α ,γ x >, (3.48)


36 Chapter 3. D3-<strong>branes</strong> at s<strong>in</strong>gularitieswith Q i α is <strong>the</strong> charge matrix <strong>of</strong> <strong>the</strong> quiver. We <strong>the</strong>n easily show that <strong>the</strong> l.h.s. is zero ∀i[63]. Suppose all <strong>the</strong> edges <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g are bifundamental fields (<strong>the</strong> <strong>in</strong>corporation<strong>of</strong> adjo<strong>in</strong>t fields is straightforward). For each face i <strong>in</strong> <strong>the</strong> til<strong>in</strong>g, <strong>the</strong>re are an even number<strong>of</strong> edges {X} which cross γ x . Consider two edges X and X ′ <strong>in</strong> {X} which are consecutiveas we go around <strong>the</strong> face i. From <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> a brane til<strong>in</strong>g, we have that <strong>the</strong> chargesQ i (X) and Q i (X ′ ) are <strong>the</strong> same (resp. <strong>of</strong> opposite sign) if <strong>the</strong> X and X ′ are separated byan odd (resp. even) number <strong>of</strong> edges. On <strong>the</strong> o<strong>the</strong>r hand < X,γ x > and < X ′ ,γ x > haveopposite (resp. same) sign if <strong>the</strong> separation is odd (resp. even). Hence <strong>the</strong> contribution<strong>of</strong> X and X ′ cancels out <strong>in</strong> (3.48). The same reason<strong>in</strong>g holds for <strong>the</strong> y component. Thiscompletes <strong>the</strong> pro<strong>of</strong>.3.5.4 An example: <strong>the</strong> dP 1 quiver.Let us work out an example, to see how <strong>the</strong> above concepts drastically simplify <strong>the</strong>computation <strong>of</strong> <strong>the</strong> moduli space. We consider <strong>the</strong> somewhat famous dP 1 quiver [59].It is a quiver correspond<strong>in</strong>g to D3-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> a complex cone over <strong>the</strong> first delPezzo surface 9 , C C (dP 1 ) (which is also <strong>the</strong> real cone over Y 2,1 ). The quiver is shown <strong>in</strong>Fig. 3.4(a). The superpotential isW = ǫ ab X a 12X b 23X 31 +ǫ ab X a 41X b 12X 24 +ǫ ab X 3 12X a 23X 34 X b 41 (3.49)From <strong>the</strong> correspond<strong>in</strong>g brane til<strong>in</strong>g shown <strong>in</strong> Fig. 3.4(b), we write down <strong>the</strong> Kasteleynmatrix, ⎛X23 2 X 31 X 1 ⎞12 x−1 yK = ⎝X 34 +X12 3 y−1 X23 1 X412 ⎠ (3.50)X41 1 X12 2 x X 24and its permanentpermK = ( X 1 12X 2 12X 3 12 +X 1 23X 2 23X 24 +X 24 X 31 X 34 +X 31 X 1 41X 2 41)++X 2 12X 2 23X 2 41x+X 3 12X 24 X 31 y −1 +X 1 12X 2 12X 34 y +X 1 12X 1 23X 1 41x −1 y . (3.51)The result<strong>in</strong>g 2d toric diagram (made <strong>of</strong> 5 po<strong>in</strong>ts) is shown <strong>in</strong> Figure 3.4(c). The perfectmatch<strong>in</strong>gs 10 and <strong>the</strong> correspond<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> toric diagram area = {X12,X 2 23,X 2 41} 2 = (1,0,0), e = {X12,X 1 12,X 2 12} 3 = (0,0,0),b = {X12,X 1 12,X 2 34 } = (0,1,0), f = {X23,X 1 23,X 2 24 } = (0,0,0),c = {X12,X 1 23,X 1 41} 1 = (−1,1,0), g = {X 24 ,X 31 ,X 34 } = (0,0,0),d = {X12,X 3 24 ,X 31 } = (0,−1,0), h = {X 31 ,X41,X 1 41} 2 = (0,0,0).The F-term relations <strong>of</strong> <strong>the</strong> <strong>the</strong>ory are solved byX12 1 = bce, X41 1 = ch, X23 1 = cf , X 34 = bg,X12 2 = abe, X41 2 = ah, X23 2 = af ,X12 3 = de, X 31 = dgh, X 24 = dfg,as one can easily check.(3.52)(3.53)9 The correspond<strong>in</strong>g AdS/CFT duality was first discussed <strong>in</strong> [69, 70].10 We denote (p k ) = (a,b,··· ,h) for later use <strong>in</strong> Chapter 13.


3.5. Toric s<strong>in</strong>gularities and dimer models 37(a) dP 1 quiver. (b) dP 1 Brane til<strong>in</strong>g. (c) Toric diagram.Figure 3.4: Quiver diagram, brane til<strong>in</strong>g and toric diagram <strong>of</strong> <strong>the</strong> dP 1 <strong>the</strong>ory.3.5.5 From geometry to quiver: <strong>the</strong> <strong>in</strong>verse algorithmIn <strong>the</strong> last subsections we discussed at some level <strong>of</strong> detail how to f<strong>in</strong>d <strong>the</strong> moduli space<strong>of</strong> any toric quiver. For completeness, we should also mention how we can recover <strong>the</strong>quiver <strong>the</strong>ory from <strong>the</strong> geometric data. An efficient method (dubbed <strong>the</strong> fast <strong>in</strong>versealgorithm) was found by Hanany and Vegh <strong>in</strong> [71]. It relies on <strong>the</strong> identification <strong>of</strong> <strong>the</strong>external legs <strong>in</strong> <strong>the</strong> (p,q)-web (dual <strong>of</strong> <strong>the</strong> toric diagram) with <strong>the</strong> zig-zag paths <strong>in</strong> <strong>the</strong>brane til<strong>in</strong>g. A zig-zag path is a path along <strong>the</strong> edges <strong>of</strong> <strong>the</strong> til<strong>in</strong>g which turn maximallyleft at a node, maximally right at <strong>the</strong> next, and so on. Zig-zag paths form oriented loops(which do not self-<strong>in</strong>tersect for a consistent quiver) which have homology charges (p,q)on <strong>the</strong> torus, and <strong>the</strong>y are identified with (p,q)-legs. For more details on <strong>the</strong> algorithm,which <strong>in</strong>volves a bit <strong>of</strong> draw<strong>in</strong>g, we refer to <strong>the</strong> orig<strong>in</strong>al paper [71]. A improved version<strong>of</strong> <strong>the</strong> algorithm was <strong>in</strong>troduced by [72].It is important to note that <strong>the</strong> result <strong>of</strong> <strong>the</strong> algorithm is not unique. In fact manyquivers can have <strong>the</strong> same moduli space (or more precisely <strong>the</strong> same CY 3 as a branch <strong>of</strong><strong>the</strong> moduli space). Such “toric dual” quivers are l<strong>in</strong>ked by some form <strong>of</strong> Seiberg duality[73, 74, 75]. This is a beautiful subject, which we will not study <strong>in</strong> this <strong>the</strong>sis.To conclude this section, let us also note that <strong>the</strong>re exists a str<strong>in</strong>g <strong>the</strong>ory pro<strong>of</strong> <strong>of</strong><strong>the</strong> relation between D3-<strong>branes</strong> at toric s<strong>in</strong>gularities and brane til<strong>in</strong>gs [76]. This pro<strong>of</strong>uses mirror symmetry to map <strong>the</strong> set <strong>of</strong> <strong>fractional</strong> D3-<strong>branes</strong> on a cone to D6-<strong>branes</strong><strong>in</strong>teresect<strong>in</strong>g <strong>in</strong> <strong>the</strong> type IIA mirror geometry. The brane til<strong>in</strong>g can <strong>the</strong>n be read fromthis D6-brane system.In <strong>the</strong> first Part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis, we will consider systems <strong>of</strong> D3-<strong>branes</strong> on ra<strong>the</strong>r simpleconifold geometries, <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>. We will haveto wait until <strong>the</strong> second Part, <strong>in</strong> particular <strong>in</strong> Chapter 13, to really use <strong>the</strong> power <strong>of</strong> <strong>the</strong>brane til<strong>in</strong>g techniques.


Part IGauge/<strong>gravity</strong> and cascades39


Chapter 4Conformal field <strong>the</strong>ories and <strong>the</strong>AdS/CFT <strong>correspondence</strong>This Chapter gives an <strong>in</strong>troduction to <strong>the</strong> AdS/CFT <strong>correspondence</strong>. Particular focusis put on <strong>the</strong> case <strong>of</strong> <strong>the</strong> AdS 5 /CFT 4 <strong>correspondence</strong>, stemm<strong>in</strong>g from properties <strong>of</strong> D3-<strong>branes</strong>. The general discussion <strong>of</strong> subection 4.3.3 also holds for <strong>the</strong> case <strong>of</strong> <strong>the</strong> dualitystemm<strong>in</strong>g from M2-<strong>branes</strong>, which we discuss <strong>in</strong> <strong>the</strong> second Part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis.4.1 Superconformal <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> 3+1 dimensionsIt is known s<strong>in</strong>ce <strong>the</strong> work <strong>of</strong> Coleman and Mandula [77] that a non-trivial QFT cannotenjoy arbitrary space-time symmetries. In <strong>the</strong> presence <strong>of</strong> massive fields <strong>the</strong> most generalbosonicsymmetryis<strong>the</strong>Po<strong>in</strong>carésymmetry. Ifall<strong>the</strong>fieldsaremassless, wecanalsohaveconformal symmetry. Conformal transformations are transformations which preserve <strong>the</strong>background metric up to an overall factor, g µν (x) → e ω(x) g µν (x).The conformal group <strong>of</strong> d dimensional M<strong>in</strong>kowski space-time consists <strong>of</strong> <strong>the</strong> Po<strong>in</strong>carégroup toge<strong>the</strong>r with scale transformations and <strong>the</strong> special conformal transformations,x µ → λx µ ,x µ →x µ +a µ x 21+2a ν x ν +a 2 x 2 . (4.1)LetusdenotebyM µν andP µ <strong>the</strong>Po<strong>in</strong>carégenerators(Lorentztransformationsandtranslations),by D <strong>the</strong> scale transformation and by K µ <strong>the</strong> special conformal transformations.The conformal algebra is actually isomorphic <strong>the</strong> SO(d,2) algebra,[J ab ,J cd ] = iη ac J bd +iη bd J ac −iη ad J bc −iη bc J ad . (4.2)Here a = (µ,d,d + 1), and we use <strong>the</strong> metric η ab = diag(− + ··· + −). The so(d,2)generators are(J ab ) =⎛1M µν 2 (K 1µ −P µ )2 (K ⎞µ +P µ )⎝− 1 2 (K ν −P ν ) 0 −D ⎠ (4.3)− 1 2 (K ν +P ν ) D 041


42 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>4.1.1 N = 1 superconformal algebraComb<strong>in</strong><strong>in</strong>g conformal transformations with N-extended supersymmetry <strong>in</strong> four dimensions,one obta<strong>in</strong>s <strong>the</strong> superconformal group SU(2,2|N). In <strong>the</strong> follow<strong>in</strong>g we focus on<strong>the</strong> N = 1 case. The generators <strong>of</strong> <strong>the</strong> N = 1 superconformal algebra can be organisedaccord<strong>in</strong>g to <strong>the</strong>ir scal<strong>in</strong>g dimensions. We haveQ αP µ¯Q˙α∆ M µν RS αK µThe elements <strong>of</strong> <strong>the</strong> super-Poicaré subalgebra are <strong>the</strong> top ones: P µ , Q, ¯Q and Mµν havescal<strong>in</strong>g dimension 1, 1 2 , 1 2 and 0, respectively. Special conformal transformations K µ havedimension −1. We also have dilatation and R-symmetry generators ∆ and R, both <strong>of</strong>dimension 0, and f<strong>in</strong>ally <strong>the</strong> conformal supersymmetry generators S and ¯S.One can consider several real forms <strong>of</strong> this algebra. For do<strong>in</strong>g quantum field <strong>the</strong>orywe need a self-adjo<strong>in</strong>t Hamiltonian. In M<strong>in</strong>kowsky space-time we <strong>the</strong>n require that Q † =¯Q, so that P † µ = P µ , and similarly for S, ¯S and Kµ . However this is not <strong>the</strong> mostconvenient way to deal with a CFT, because we cannot really def<strong>in</strong>e useful asymptoticstates. Instead, we go with to <strong>the</strong> Euclidian <strong>the</strong>ory on R 4 and we consider correlationfunctions <strong>of</strong> operators, much like for a statistical mechanical system. Consider <strong>the</strong>n R 4m<strong>in</strong>us <strong>the</strong> orig<strong>in</strong>. We can do a conformal transformation to <strong>the</strong> cyl<strong>in</strong>der R×S 3 ,¯S˙αdr 2 +r 2 dΩ 2 3 ∼ = dτ 2 +dΩ 2 3, (4.4)with r = e τ , and <strong>the</strong>n go to real time aga<strong>in</strong>, τ = it. Then ∆ = r∂ r = −i∂ t = H ′ , namely<strong>the</strong> dilatation operator on R 4 becomes an Hamiltonian on <strong>the</strong> cyl<strong>in</strong>der. For this H ′ to beself-adjo<strong>in</strong>t we must consider a real form <strong>of</strong> <strong>the</strong> algebra where P µ † = K µ and Q † α = S α .This is called <strong>the</strong> radial quantization picture.Any local operator <strong>in</strong> <strong>the</strong> Euclidean picture corresponds to a state on <strong>the</strong> cyl<strong>in</strong>der.Indeed any operator <strong>in</strong>sertion at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> R 4 corresponds to a boundary condition att = −∞,|O〉 = limO|0〉. (4.5)r→0Conversely, we can take any state on S 3 , consider it as a field configuration on some ballaround <strong>the</strong> orig<strong>in</strong>, and shr<strong>in</strong>k <strong>the</strong> ball to zero size thanks to conformal <strong>in</strong>variance. Thisis <strong>the</strong> state-operator <strong>correspondence</strong> <strong>of</strong> conformal field <strong>the</strong>ory.In <strong>the</strong> radial quantization picture, one can derive <strong>in</strong>terest<strong>in</strong>g bounds from unitarity.In particular ∆ ≥ 1 for scalar operators <strong>in</strong> any CFT. In any N = 1 SCFT we also have<strong>the</strong> important bound [78]∆ ≥ 3 |R| (4.6)2for any scalar operator. The R-charge is normalized so that [R,Q] = −Q.We now <strong>in</strong>troduce <strong>the</strong> notion <strong>of</strong> primary and superprimary operators. Operators <strong>in</strong><strong>the</strong> <strong>the</strong>ory will appear <strong>in</strong> representations <strong>of</strong> <strong>the</strong> (super)conformal algebra. Notice <strong>the</strong>nthat K µ lowers <strong>the</strong> conformal dimension <strong>of</strong> a field by −1. Hence, because <strong>the</strong>re is a lower


4.1. Superconformal <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> 3+1 dimensions 43bound on ∆ <strong>in</strong> a CFT, a conformal multiplet must have a lowest component, such that[K µ ,O p ] = 0. Such a O p is called a primary operator. Similarly, <strong>in</strong> a SCFT, S α and¯S˙α lower <strong>the</strong> dimensions by − 1 2. A superprimary operator is <strong>the</strong> lowest component <strong>of</strong> asuperconformal multiplet, i.e. it is such that[S,O sp ] ± = 0. (4.7)Any superprimary is also a primary. An operator which can be written as [Q,O] is calleda superconformal descendant. So a superconformal multiplet consist <strong>of</strong> one superprimaryoperator and several descendants.We are also <strong>in</strong>terested <strong>in</strong> short representations <strong>of</strong> <strong>the</strong> superalgebra, which are calledBPSorchiral multiplets, whichareannihilatedbysome<strong>of</strong><strong>the</strong>Q’s. Thelowestcomponent<strong>of</strong>achiralmultipletiscalledachiralsuperprimary,orchiralprimaryforshort. Itsaturates<strong>the</strong> bound (4.6) as ∆ = 3 2R. The dimension <strong>of</strong> a chiral primary is <strong>the</strong>n protected fromquantum corrections.4.1.2 N = 4 SYMThe N = 4 Super-Yang-Mills <strong>the</strong>ory is <strong>the</strong> maximally (rigid) supersymmetric <strong>the</strong>ory <strong>in</strong>four dimension. Its Lagrangian can easily be worked out from dimensional reduction <strong>of</strong>maximally supersymmetric 10 dimensional SYM, for <strong>in</strong>stance. In N = 1 notation, itreads (traces are implicit)∫L =d 2 θd 2¯θ3∑∫Φ i e V Φ † i +i=1( τ)d 2 θ16πi W2 +gΦ 1 [Φ 2 ,Φ 3 ] +h.c. (4.8)All<strong>the</strong>fieldsare<strong>in</strong><strong>the</strong>adjo<strong>in</strong>trepresentation<strong>of</strong>SU(N). Ithasahighdegree<strong>of</strong>symmetry,<strong>the</strong> superconformal group PSU(2,2|4), whose maximal bosonic subgroup is SO(4,2) ×SU(4). The six real scalar fields φ i (Φ 1 = φ 1 +iφ 2 , etc.) are <strong>in</strong> <strong>the</strong> 6 <strong>of</strong> <strong>the</strong> R-symmetrygroup SU(4) ∼ = SO(6). Accord<strong>in</strong>g to <strong>the</strong> NSVZ beta function (cfr Appendix C), <strong>the</strong><strong>gauge</strong> coupl<strong>in</strong>g is exactly marg<strong>in</strong>al <strong>in</strong> perturbation <strong>the</strong>ory, β(g) = 0. Indeed b 0 = 0, and<strong>the</strong> anomalous dimension for <strong>the</strong> chiral superfields must vanish by symmetry.There is also strong evidence that this <strong>the</strong>ory enjoys Montonen-Olive duality [79], alsoknown as S-duality, exchang<strong>in</strong>g strong and weak coupl<strong>in</strong>g, as τ → − 1 τ. Comb<strong>in</strong><strong>in</strong>g with<strong>the</strong> equivalence τ → τ +1 which shifts <strong>the</strong> θ angle by 2π, <strong>the</strong> conjecture is that N = 4SYM is <strong>in</strong>variant under any Sl(2,Z) transformation <strong>of</strong> its <strong>gauge</strong> coupl<strong>in</strong>g,τ →aτ +bcτ +d ,( ) a bc d∈ Sl(2,Z). (4.9)From <strong>the</strong> perspective <strong>of</strong> str<strong>in</strong>g <strong>the</strong>ory, this is quite natural. N = 4 SYM is <strong>the</strong> <strong>the</strong>oryliv<strong>in</strong>g on a bunch <strong>of</strong> flat D3-<strong>branes</strong>, and we have <strong>the</strong> identification τ = C 0 +i/g s between<strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g and <strong>the</strong> background value <strong>of</strong> <strong>the</strong> axio-dilaton. Montonen-Olive dualityis <strong>the</strong>n <strong>in</strong>herited from <strong>the</strong> S-duality <strong>of</strong> type IIB str<strong>in</strong>g <strong>the</strong>ory (under which <strong>the</strong> D3-braneis self-dual).As an important remark, note that although <strong>the</strong> <strong>gauge</strong> group on N D3-<strong>branes</strong> isU(N), <strong>the</strong> diagonal U(1) is free and can be decoupled <strong>in</strong> <strong>the</strong> IR. We will come back tothis po<strong>in</strong>t later on.


44 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>4.1.3 An example <strong>of</strong> an N = 2 SCFTGenerically <strong>the</strong>ories with less supersymmetries are not conformal. However for particularfield contents we can still tune all <strong>the</strong> beta functions to vanish, and hope (and hopefullycheck!) that <strong>the</strong> <strong>the</strong>ory is really a superconformal field <strong>the</strong>ory. An example which willbe <strong>of</strong> particular <strong>in</strong>terest to us <strong>in</strong> Chapter 6 is N = 2 SU(N) SQCD with N f = 2Nfundamental hypermultiplets. In N = 1 language, it conta<strong>in</strong>s one chiral superfield Φ<strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t representation, 2N chiral superfields Q <strong>in</strong> <strong>the</strong> fundamental and 2N chiralsuperfields ˜Q <strong>in</strong> <strong>the</strong> anti-fundamental. Aga<strong>in</strong>, one can check that b 0 = 0 so <strong>the</strong> betafunction vanishes at one loop. Actually, us<strong>in</strong>g <strong>the</strong> Seiberg-Witten <strong>the</strong>ory one can arguethat <strong>the</strong> <strong>the</strong>ory is exactly superconformal [80]. It is also thought to enjoy Montonen-Oliveduality.This example <strong>of</strong> N f = 2N N = 2 SQCD is actually an example <strong>of</strong> a cont<strong>in</strong>uous family<strong>of</strong> conformal field <strong>the</strong>ories, <strong>in</strong>dexed by <strong>the</strong> coupl<strong>in</strong>g τ which is exactly marg<strong>in</strong>al. It iscalled a l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts <strong>in</strong> coupl<strong>in</strong>g space. The SCFT we will consider <strong>in</strong> <strong>the</strong> first part<strong>of</strong> this work will also have this property <strong>of</strong> be<strong>in</strong>g part <strong>of</strong> a cont<strong>in</strong>uous l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>t.This is because we will consider <strong>the</strong>ories which have an AdS 5 dual under <strong>the</strong> AdS/CFTmap, and <strong>in</strong> all <strong>the</strong> cases <strong>the</strong> dual AdS 5 solution comes <strong>in</strong> a cont<strong>in</strong>uous family <strong>in</strong>dexedby <strong>the</strong> VEV <strong>of</strong> <strong>the</strong> axio-dilaton.In general, however, conformal field <strong>the</strong>ories only exist as isolated fixed po<strong>in</strong>ts <strong>in</strong>coupl<strong>in</strong>g space. The typical N = 2 example is <strong>the</strong> Argyres-Douglas fixed po<strong>in</strong>t [81] (seealso [82]). Anticipat<strong>in</strong>g, we note that this fact will be important <strong>in</strong> <strong>the</strong> second part <strong>of</strong>this work, which deals with SCFTs <strong>in</strong> three space-time dimensions. These <strong>the</strong>ories willtypicallybeisolatedfixedpo<strong>in</strong>ts, andthisisdualto<strong>the</strong>statementthat<strong>the</strong>AdS 4 solutions<strong>of</strong> M-<strong>the</strong>ory usually do not have marg<strong>in</strong>al directions.4.1.4 N = 1 SCFT: an example <strong>of</strong> a strongly coupled fixed po<strong>in</strong>tIn four dimensional <strong>the</strong>ories with extended supersymmetry, <strong>the</strong> l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts alwaysgoes through <strong>the</strong> orig<strong>in</strong> <strong>in</strong> coupl<strong>in</strong>g space, so that <strong>the</strong>se <strong>the</strong>ories can be made arbitrarilyweakly coupled. In N = 1 <strong>the</strong>ories we can have more general families <strong>of</strong> CFTs whichhave no weak coupl<strong>in</strong>g limit. Consider for <strong>in</strong>stance an N = 1 SU(N) <strong>the</strong>ory with N f =2N flavors, namely N f fundamental fields Q i and N f antifundamental fields ˜Q j , with asuperpotential <strong>of</strong> <strong>the</strong> form [83, 84]W = h(Q i ˜Qj )(Q j ˜Qi ). (4.10)Due to <strong>the</strong> flavor symmetry all <strong>the</strong> fields Q i and ˜Q i must have <strong>the</strong> same anomalousdimension γ 0 . The beta functions are proportional to each o<strong>the</strong>rs,( ) 8π2β(h) = (1+2γ 0 )h, βg 2 = N(1+2γ 0 ). (4.11)Hence <strong>the</strong> conditions for vanish<strong>in</strong>g beta functions reduce to <strong>the</strong> s<strong>in</strong>gle equation γ 0 (h,g) =− 1 2 <strong>in</strong> a two dimensional coupl<strong>in</strong>g space. Although we cannot compute γ 0(h,g) <strong>in</strong> general,we can show that this l<strong>in</strong>e does not go through <strong>the</strong> orig<strong>in</strong> by us<strong>in</strong>g Seiberg’s conjectureabout a <strong>the</strong> existence <strong>of</strong> a non-trivial CFT <strong>in</strong> N = 1 SQCD, namely at h = 0 [83]: s<strong>in</strong>ceγ 0 (0,g) = − 1 2 has a solution for g = g∗ > 0, <strong>the</strong> l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>t γ 0 (h,g) = − 1 2 nevergoes through <strong>the</strong> orig<strong>in</strong>. Consequently, <strong>the</strong> <strong>the</strong>ory is always strongly coupled.


4.2. Anti-de-Sitter space and near horizon limit 45Note that <strong>the</strong> superpotential (4.10) is not renormalizable. Consequently <strong>the</strong> <strong>the</strong>oryneeds some UV completion to be well def<strong>in</strong>ed. Actually <strong>the</strong>re is <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g option<strong>of</strong> embedd<strong>in</strong>g it <strong>in</strong>to <strong>the</strong> f<strong>in</strong>ite N = 2 N f = 2N SQCD [84]. This later <strong>the</strong>ory can bedeformed to N = 1 by a mass term for <strong>the</strong> adjo<strong>in</strong>t superfield Φ,W = gQΦ˜Q+ 1 2 mΦ2 . (4.12)Integrat<strong>in</strong>g out Φ, one recovers 1 <strong>the</strong> superpotential (4.10). Recall<strong>in</strong>g that <strong>the</strong>re is a S-duality symmetry <strong>in</strong> <strong>the</strong> N = 2 <strong>the</strong>ory, we can ask whe<strong>the</strong>r this property is <strong>in</strong>herited by<strong>the</strong> N = 1 <strong>the</strong>ory one obta<strong>in</strong>s by mass deformation. The answers turns out to be positive:Seiberg duality maps <strong>the</strong> <strong>the</strong>ory (4.10) to itself! These issues are discussed with greatcare <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al paper [84], as well as <strong>in</strong> [85], to which we refer for fur<strong>the</strong>r details.4.2 Anti-de-Sitter space and near horizon limitAnti-de-Sitter (AdS) space is a maximally symmetric solution to E<strong>in</strong>ste<strong>in</strong> equations witha negative cosmological constant Λ [86]. The metric for AdS space <strong>in</strong> d + 1 space-timedimensions readsds 2 (AdS d+1 ) = R 2( −cosh 2 ρdτ 2 +dρ 2 +s<strong>in</strong>h 2 ρdΩ 2 d−1), (4.13)with <strong>the</strong> AdS radius R 2 = −d(d − 1)/2Λ. These are <strong>the</strong> so-called global coord<strong>in</strong>ates.The time coord<strong>in</strong>ate τ goes from −∞ to +∞, as part <strong>of</strong> our def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> space (weare really consider<strong>in</strong>g <strong>the</strong> universal cover <strong>of</strong> AdS d+1 ). The AdS boundary is at ρ → ∞,and it has <strong>the</strong> form R×S d−1 . The isometry group <strong>of</strong> AdS is SO(4,2), <strong>the</strong> same as <strong>the</strong>conformal group <strong>in</strong> d space-time dimensions 2 . Instead <strong>of</strong> work<strong>in</strong>g <strong>in</strong> global AdS, we willonly work on <strong>the</strong> so-called Poicaré patch, which covers only half <strong>of</strong> AdS. The Po<strong>in</strong>carécoord<strong>in</strong>ates metric isds 2 = R2r 2 dr2 + r2R 2(η µνdx µ dx ν ). (4.14)The boundary at r → ∞ is just M<strong>in</strong>kowski space-time M d,1 . Note that we took x and rto be dimensionful coord<strong>in</strong>ates (x/R and r/R be<strong>in</strong>g dimensionless). For more details on<strong>the</strong> AdS space <strong>in</strong> our context, we refer to [38] and references <strong>the</strong>re<strong>in</strong>.4.2.1 Near horizon limit for D3-<strong>branes</strong>Consider <strong>the</strong> p = 3 extremal p-brane solution (2.9), correspond<strong>in</strong>g to N D3-<strong>branes</strong> <strong>in</strong> flatspace. The str<strong>in</strong>g frame metric isds 2 = h −1 2 ηµν dx µ dx ν +h 1 2(dr 2 +r 2 dΩ 2 )5 . (4.15))1 Actually one obta<strong>in</strong>s W = h((Q˜Q)(Q˜Q)− 1 (Q˜Q) 2 because Φ is <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t <strong>of</strong> SU(N) and notN<strong>of</strong> U(N), but this subtlety will not concern us.2 Note that actually SO(4,2) is <strong>the</strong> isometry <strong>of</strong> <strong>the</strong> AdS with compact time and not <strong>of</strong> its universalcover, so we really mean <strong>the</strong> algebra so(4,2). The same comment applies when we consider <strong>the</strong> symmetrygroup <strong>of</strong> field <strong>the</strong>ories: we actually never consider global issues, only <strong>the</strong> algebras.


46 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>There is a constant dilaton e Φ = g s , and a 4-form potential C 4 = g −1s h −1 dx 0 ∧···∧dx 3 .The warp factor h is given byh(r) = 1+ R4r 4 , with R4 = π3Vol(S 5 ) 4πα′2 g s N . (4.16)This background preserves 16 supercharges and <strong>the</strong> metric is asymptotically flat, at r →∞. For small r, on <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>re is a throat, a steep gravitational well createdby <strong>the</strong> massive D3-<strong>branes</strong> <strong>the</strong>mselves. The super<strong>gravity</strong> description <strong>of</strong> <strong>the</strong> D3-<strong>branes</strong> isvalid when √ g s N ≫ 1, so that <strong>the</strong> curvature radius R 2 is large <strong>in</strong> units <strong>of</strong> α ′ . We alsoneed g s ≪ 1 to suppress closed str<strong>in</strong>g loops. The near horizon geometry is <strong>the</strong> geometryobta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> limit r ≪ R,ds 2 = r2R 2η µνdx µ dx ν + R2r 2 dr2 + R 2 dΩ 2 5. (4.17)It is a direct product <strong>of</strong> AdS 5 and a sphere S 5 , both <strong>of</strong> radius R. The near horizongeometry preserves twice as many supersymmetries (<strong>the</strong> new 16 supercharges are relatedto conformal supercharges <strong>of</strong> <strong>the</strong> dual SCFT).4.3 The AdS 5 /CFT 4 <strong>correspondence</strong>The AdS/CFT conjecture stems from consider<strong>in</strong>g <strong>the</strong> dual description <strong>of</strong> D3-<strong>branes</strong>, <strong>in</strong>term <strong>of</strong> open or closed str<strong>in</strong>g degrees <strong>of</strong> freedom. We <strong>the</strong>n apply a k<strong>in</strong>d <strong>of</strong> “near horizonlimit” to both descriptions. Here we follow <strong>the</strong> presentation <strong>of</strong> [38].• The open str<strong>in</strong>g description <strong>of</strong> N D3-<strong>branes</strong> is valid when g s N ≪ 1. In that limit,D3-<strong>branes</strong> are rigid hypersurfaces <strong>in</strong> space-time and perturbative str<strong>in</strong>g <strong>the</strong>ory isvalid. At low energy E < α ′−1 2, <strong>the</strong> system can be descibed by an effective action<strong>of</strong> <strong>the</strong> formS = S brane +S bulk +S <strong>in</strong>t . (4.18)describ<strong>in</strong>g <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> massless modes <strong>of</strong> open and closed str<strong>in</strong>gs. Inparticular, S brane should be <strong>the</strong> N = 4 SYM Lagrangian plus α ′ corrections, for<strong>in</strong>stance written <strong>in</strong> <strong>the</strong> form <strong>of</strong> a DBI action. We <strong>the</strong>n take <strong>the</strong> limit Eα ′1 2 → 0,keep<strong>in</strong>g <strong>the</strong> energy E fixed. In this limit, all <strong>in</strong>teractions between <strong>the</strong> brane and<strong>the</strong> bulk fields vanish, and we are left with two decoupled system, S brane + S bulk :<strong>the</strong> N = 4 SYM field <strong>the</strong>ory, on <strong>the</strong> one hand, and free super<strong>gravity</strong> (a gas <strong>of</strong>non-<strong>in</strong>teract<strong>in</strong>g closed str<strong>in</strong>g modes) on <strong>the</strong> o<strong>the</strong>r hand.• In <strong>the</strong> opposite limit g s N ≫ 1, <strong>the</strong> closed str<strong>in</strong>g description is valid. In <strong>the</strong> metric(4.15), <strong>the</strong>re is a redshiftE = h −1 4 Er ≈ r R E r (4.19)between <strong>the</strong> energy E r measured by an observer at constant r and <strong>the</strong> energy Emeasured by an asymptotic observer at <strong>in</strong>f<strong>in</strong>ity (<strong>the</strong> RHS be<strong>in</strong>g <strong>the</strong> approximationat small r). This means that small energies E < α ′−1 2 can corresponds to arbitrarilyhigh energies E r at small r. We aga<strong>in</strong> take E to be small and fixed, and we take


4.3. The AdS 5 /CFT 4 <strong>correspondence</strong> 47<strong>the</strong> limit Eα ′1 2 → 0, while keep<strong>in</strong>g E r α ′1 2 fixed so that we can excite arbitrarilyheavy str<strong>in</strong>g modes <strong>in</strong> <strong>the</strong> throat. Accord<strong>in</strong>g to (4.19), we must <strong>the</strong>n take r → 0with r α ′ fixed. The result<strong>in</strong>g geometry is <strong>the</strong> near-horizon geometry (4.17) (with<strong>the</strong> understand<strong>in</strong>g that <strong>the</strong> coord<strong>in</strong>ate r is really r/α ′ ). There is also a decoupledfree super<strong>gravity</strong> system at large r, match<strong>in</strong>g <strong>the</strong> open str<strong>in</strong>g description.We can now state <strong>the</strong> Maldacena conjecture [9]: Str<strong>in</strong>g <strong>the</strong>ory on AdS 5 ×S 5 with Nunits <strong>of</strong> self-dual 5-form flux is equivalent to SU(N) N = 4 SYM <strong>in</strong> four dimensions. Theformer <strong>the</strong>ory is a gravitational <strong>the</strong>ory liv<strong>in</strong>g <strong>in</strong> 10 dimensions, while <strong>the</strong> latter <strong>the</strong>ory isa <strong>gauge</strong> <strong>the</strong>ory <strong>in</strong> four dimensions. This duality is an example <strong>of</strong> an holographic duality.Note that although <strong>the</strong> low energy <strong>gauge</strong> <strong>the</strong>ory on N D3-<strong>branes</strong> is U(N), <strong>the</strong> <strong>gauge</strong>group appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> conjecture is SU(N). This is because <strong>the</strong> U(1) factor is IR freeand decouples <strong>in</strong> <strong>the</strong> IR. We briefly discuss this issue fur<strong>the</strong>r <strong>in</strong> section 4.5.As an obvious consistency check, note that both sides <strong>of</strong> <strong>the</strong> duality have <strong>the</strong> sameglobal symmetries, <strong>the</strong> superconformal group PSU(2,2|4). In particular <strong>the</strong> R-symmetrySU(4) ∼ = SO(6) <strong>of</strong> N = 4 SYM is realized as <strong>the</strong> isometry group <strong>of</strong> <strong>the</strong> S 5 .4.3.1 Various versions <strong>of</strong> <strong>the</strong> AdS/CFT conjectureStrong form <strong>of</strong> <strong>the</strong> conjecture. In its strongest version, <strong>the</strong> AdS/CFT conjectureposits <strong>the</strong> exact equivalence <strong>of</strong> N = 4 SYM with <strong>gauge</strong> group SU(N) with type IIBstr<strong>in</strong>g <strong>the</strong>ory on AdS 5 × S 5 , with N units <strong>of</strong> F 5 flux through <strong>the</strong> S 5 . The relationshipbetween <strong>the</strong> CFT and <strong>the</strong> str<strong>in</strong>g <strong>the</strong>ory parameters areg 2 YM = 4πg s ,λ = g 2 YMN = R4α ′2 .Here λ = gYM 2 N is <strong>the</strong> ’t Ho<strong>of</strong>t coupl<strong>in</strong>g. S<strong>in</strong>ce we don’t really know how to dealwith “str<strong>in</strong>g <strong>the</strong>ory” at generic values <strong>of</strong> g s and α ′ , this conjecture is <strong>of</strong>ten consideredas a possible def<strong>in</strong>ition <strong>of</strong> non-perturbative str<strong>in</strong>g <strong>the</strong>ory. In <strong>the</strong> strong form <strong>of</strong> <strong>the</strong>conjecture, what is really required is that <strong>the</strong> geometry asymptotes to AdS 5 ×S 5 . In <strong>the</strong>bulk, we could have any quantum <strong>gravity</strong> effects, for <strong>in</strong>stance bubbl<strong>in</strong>g geometries [87],and classical geometry should not be a valid approximation.Classical limit. A milder version <strong>of</strong> <strong>the</strong> <strong>correspondence</strong> is obta<strong>in</strong>ed by turn<strong>in</strong>g <strong>of</strong>fclosed str<strong>in</strong>g <strong>in</strong>teractions, g s → 0, while keep<strong>in</strong>g fixed <strong>the</strong> curvature radius R/ √ α ′ . Itcorresponds to <strong>the</strong> planar limit N → ∞ <strong>of</strong> N = 4 SYM,g YM → 0,λ = gYMN 2 R 2fixed ⇔ g s → 0,α ′ fixed.Unfortunately, perturbative str<strong>in</strong>g <strong>the</strong>ory on a curved background with RR fluxes is veryhard. What has been checked however is that we can match str<strong>in</strong>g states to CFT states<strong>in</strong> <strong>the</strong> plane wave limit <strong>of</strong> AdS 5 ×S 5 [88].Low energy limit. As a fur<strong>the</strong>r simplification, we take <strong>the</strong> super<strong>gravity</strong> limit <strong>of</strong> lowcurvature. It is a strong coupl<strong>in</strong>g limit <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory,g YM → 0,λ = gYMN 2 R 2→ ∞ ⇔ g s → 0,α ′ → ∞.This is <strong>the</strong> limit we will be <strong>in</strong>terested <strong>in</strong>, <strong>in</strong> this work. In this limit we can use classical<strong>gravity</strong> to learn about a strongly coupled <strong>gauge</strong> <strong>the</strong>ory.


48 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>4.3.2 The energy-radius relationThe AdS/CFT <strong>correspondence</strong> is a realization <strong>of</strong> <strong>the</strong> holographic pr<strong>in</strong>ciple [89, 90], <strong>in</strong> <strong>the</strong>sense that <strong>gravity</strong> <strong>in</strong> AdS is encoded <strong>in</strong> a lower dimensional <strong>the</strong>ory on <strong>the</strong> boundary. It istempt<strong>in</strong>g to identify <strong>the</strong> AdS boundary at r → ∞ with <strong>the</strong> space-time on which <strong>the</strong> CFTlives (<strong>the</strong> “holographic sceen”), but it would be a bit mislead<strong>in</strong>g. To understand betterthis po<strong>in</strong>t, we must understand <strong>the</strong> mean<strong>in</strong>g <strong>of</strong> <strong>the</strong> non-compact radial direction from<strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory. Recall that <strong>the</strong> CFT is <strong>in</strong>variant under space-timedilatations, x µ → λx µ . This is also a symmetry <strong>of</strong> <strong>the</strong> AdS metric (4.14), withx µ → λx µ , r → 1 r. (4.20)λNote that r scales like <strong>the</strong> energy <strong>in</strong> <strong>the</strong> CFT. We are <strong>the</strong>n lead to identify <strong>the</strong> radialcoord<strong>in</strong>ate r with <strong>the</strong> energy scale <strong>in</strong> <strong>the</strong> conformal <strong>the</strong>ory,E ∝ r α ′ . (4.21)The proportionality constant does not really matter; what matters is that ratios <strong>of</strong> energiesand ratios <strong>of</strong> radii are <strong>the</strong> same. The energy-radius relation is also called <strong>the</strong> UV/IR<strong>correspondence</strong>, because high energy <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory corresponds to large distance <strong>in</strong><strong>the</strong> gravitational <strong>the</strong>ory. It is a very important notion, especially when we want to discussnon-conformal versions <strong>of</strong> <strong>the</strong> <strong>correspondence</strong>.4.3.3 The AdS/CFT map: general discussionIn order to flesh out <strong>the</strong> <strong>correspondence</strong>, we need apreciseway to relate<strong>the</strong> observables <strong>in</strong><strong>the</strong> two descriptions. The crucial steps to do so where taken <strong>in</strong> [91, 92]. The observables<strong>of</strong> a conformal field <strong>the</strong>ory are <strong>the</strong> correlations functions, 〈O〉 for any <strong>gauge</strong> <strong>in</strong>variantoperator O. Any such correlator should have a dual state <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory. We cannotreally be very specific about what are <strong>the</strong> “str<strong>in</strong>g <strong>the</strong>ory states”, but we have come tolearn that <strong>the</strong>y can look very diverse: super<strong>gravity</strong> excitations, perturbative str<strong>in</strong>g states,but also D-<strong>branes</strong> states and even whole new geometries. In <strong>the</strong> super<strong>gravity</strong> limit <strong>of</strong> <strong>the</strong><strong>correspondence</strong>, <strong>the</strong> available states are fewer and more manageable. From now on wewill ma<strong>in</strong>ly work <strong>in</strong> that limit.For later purposes, let us discuss <strong>the</strong> AdS d+1 /CFT d map <strong>in</strong> any dimension d. It ispractical to <strong>in</strong>troduce a generat<strong>in</strong>g functional for <strong>the</strong> correlators <strong>of</strong> <strong>the</strong> CFT, <strong>of</strong> <strong>the</strong> form〈 ∫ 〉exp φ 0 O , (4.24)dwhere φ 0 is some source (one for each operator). The idea <strong>of</strong> <strong>the</strong> AdS/CFT map isthat this generat<strong>in</strong>g function is given by <strong>the</strong> str<strong>in</strong>g partition function on AdS, withboundary conditions set at r → ∞ for <strong>the</strong> excitation dual to O. In super<strong>gravity</strong>, we cansolve <strong>the</strong> classical equations for various fields <strong>in</strong> AdS d+1 , sett<strong>in</strong>g boundary conditions atr → ∞. For <strong>in</strong>stance, <strong>the</strong> solution for a massive scalar field <strong>in</strong> AdS d+1 has <strong>the</strong> follow<strong>in</strong>gasymptotics at <strong>the</strong> boundary:CFTlim φ(x,r) =r→∞ r−∆ +φ + (x)+r −∆ −φ − (x), (4.25)


4.3. The AdS 5 /CFT 4 <strong>correspondence</strong> 49Insert 3. The gist <strong>of</strong> <strong>the</strong> AdS/CFT mapTo understand any AdS/CFT pair, we need to understand <strong>the</strong> dictionary betweenCFT operators and super<strong>gravity</strong>/str<strong>in</strong>g <strong>the</strong>ory modes,φ(x,z) ⇔ O. (4.22)In <strong>the</strong> expansion <strong>of</strong> a scalar mode near <strong>the</strong> boundary (at least when m 2 R 2 > − d24 +1),lim φ(x,r) =r→∞ r−∆ φ 1 (x)+r ∆−d φ 0 (x), (4.23)<strong>the</strong> non-normalizable mode φ 0 (x) corresponds to a source <strong>in</strong> <strong>the</strong> CFT, while <strong>the</strong> normalizablemode φ 1 (x) is proportional to <strong>the</strong> VEV 〈O〉.In o<strong>the</strong>r words, <strong>the</strong> normalizable modes change <strong>the</strong> vacuum <strong>of</strong> a given <strong>the</strong>ory, while <strong>the</strong>non-normalizable modes change <strong>the</strong> <strong>the</strong>ory by a perturbation <strong>of</strong> <strong>the</strong> UV Lagrangian.More generally <strong>the</strong> mode φ 0 is sometimes normalizable, <strong>in</strong> which cases it correspondsto a perturbation <strong>of</strong> <strong>the</strong> CFT by a relevant operator, which does not change <strong>the</strong> UVdynamics.with∆ ± = 1 2 ± √d 24 +m2 R 2 . (4.26)In AdS a scalar field can have negative m 2 without be<strong>in</strong>g unstable as long as m 2 R 2 ≥ − d24(<strong>the</strong> Breitenlohner-Freedman bound) [93, 94]. As long as m 2 R 2 > −d 2 /4+1, <strong>the</strong> modego<strong>in</strong>g like r −∆ +is normalizable, while <strong>the</strong> o<strong>the</strong>r one is not. If −d 2 /4 ≤ m 2 R 2 < −d 2 /4+1both modes are normalizables [38]. Suppose we are <strong>in</strong> <strong>the</strong> first (generic) situation, when<strong>the</strong> ∆ − is non-normalizable. The prescription <strong>of</strong> [92] is that this later mode is associatedto <strong>the</strong> source <strong>of</strong> <strong>the</strong> dual operator, as φ − = φ 0 . Moreover, for <strong>the</strong> CFT coupl<strong>in</strong>g ∫ φ 0 Oto be scale <strong>in</strong>variant (recall <strong>the</strong> radius-energy relation discussed above), O must scale asr −∆ −+d . We <strong>the</strong>n have thatd−∆ − = ∆ + ≡ ∆ = dimO. (4.27)This gives <strong>the</strong> relation between <strong>the</strong> mass <strong>of</strong> <strong>the</strong> scalar mode φ <strong>in</strong> super<strong>gravity</strong> and <strong>the</strong>conformal dimension <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>in</strong>variant scalar operator O <strong>in</strong> <strong>the</strong> CFT. Similarrelations can be worked out for modes <strong>of</strong> any sp<strong>in</strong>; see [38] for more details. We canschematically summarize <strong>the</strong> AdS/CFT map as〈exp∫〉d d xφ 0 OCFT= Z str<strong>in</strong>g[φ(x,r)| r→∞ ∼ r ∆−d φ 0]≈ e −Son−shell SUGRA [φ] , (4.28)The RHS is <strong>the</strong> super<strong>gravity</strong> approximation, <strong>in</strong> which case we really know what we aretalk<strong>in</strong>g about: to compute <strong>the</strong> CFT generat<strong>in</strong>g function <strong>in</strong> that limit, one must compute<strong>the</strong> on-shell super<strong>gravity</strong> action <strong>in</strong> term <strong>of</strong> <strong>the</strong> various fields φ, impos<strong>in</strong>g <strong>the</strong> boundarycondition we discussed above. S<strong>in</strong>ce such modes are non-normalizable, <strong>the</strong> on-shell actionwill generally diverge, and one will need to add counter-terms. This is actually <strong>the</strong> analog<strong>of</strong> <strong>the</strong> usual renormalization procedure <strong>in</strong> <strong>the</strong> CFT [95, 96].


50 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>We have just argued that non-normalizable modes correspond to boundary sources for<strong>the</strong> dual CFT operators. What about <strong>the</strong> normalizable modes, which go like r −∆ ? Suchmodes decay fast enough at large r, but <strong>the</strong>y become large at smaller radius. Accord<strong>in</strong>gto <strong>the</strong> UV/IR <strong>correspondence</strong>, it means that <strong>the</strong>se modes have a strong effect on <strong>the</strong> IRdynamics <strong>of</strong> <strong>the</strong> CFT. They are identified as vacuum expectation values (VEV) for <strong>the</strong>CFT operator [97, 98], φ − ∝ 〈O〉.More generally, as long as ∆ < d <strong>the</strong> mode φ 0 is normalizable 3 . It that case itcorresponds to a deformation <strong>of</strong> <strong>the</strong> CFT by a relevant operator, which is <strong>in</strong>consequential<strong>in</strong> <strong>the</strong> UV. Let us note also that <strong>in</strong> <strong>the</strong> case when both φ + and φ − are normalizable,we can choose ei<strong>the</strong>r one <strong>of</strong> <strong>the</strong>m to be <strong>the</strong> source, which allows to couple AdS scalarsto operators <strong>of</strong> conformal dimensions between d 2 − 1 and d 2+ 1 <strong>in</strong> <strong>the</strong> CFT. In N = 4SYM <strong>the</strong> source always corresponds to φ − , because all <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant operators have∆ > d 2= 2, but <strong>in</strong> o<strong>the</strong>r CFTs it needs not be <strong>the</strong> case [98].Let us also remark that <strong>the</strong> super<strong>gravity</strong> action <strong>in</strong> (4.28) is <strong>the</strong> d + 1 dimensionalaction on AdS after Kaluza-Kle<strong>in</strong> (KK) decomposition <strong>of</strong> <strong>the</strong> modes on <strong>the</strong> compact part<strong>of</strong> <strong>the</strong> geometry X (X = S 5 <strong>in</strong> <strong>the</strong> AdS 5 ×S 5 case). Indeed near <strong>the</strong> boundary, r ≫ R,<strong>the</strong> size <strong>of</strong> X gets much smaller than any f<strong>in</strong>ite lenght scale on <strong>the</strong> M<strong>in</strong>kowski boundary,so it makes sense to decompose <strong>the</strong> super<strong>gravity</strong> modes <strong>in</strong>to partial waves on X.4.3.4 The AdS 5 /N = 4 dictionaryWe are not go<strong>in</strong>g to discuss <strong>in</strong> any details <strong>the</strong> AdS/CFT map between N = 4 SYMand <strong>the</strong> dual super<strong>gravity</strong> solution. The KK spectrum from <strong>the</strong> reduction on S 5 witha self-dual F 5 flux was computed long ago <strong>in</strong> [99, 100]. All super<strong>gravity</strong> excitations fall<strong>in</strong>to half-BPS representations <strong>of</strong> SU(2,2|4), which is not surpris<strong>in</strong>g s<strong>in</strong>ce a long superconformalmultiplet should conta<strong>in</strong> states <strong>of</strong> sp<strong>in</strong> higher than 2. There is a one-to-one<strong>correspondence</strong> between <strong>the</strong> super<strong>gravity</strong> excitations and <strong>the</strong> half-BPS superconformalmultiplets <strong>in</strong> <strong>the</strong> N = 4 CFT. The chiral primary operators <strong>in</strong> <strong>the</strong>se multiplets are <strong>the</strong>s<strong>in</strong>gle trace operatorsO i1···i m= 1 N Trφ{i1 ···φ im} , (4.29)where <strong>the</strong> six scalar fields φ i <strong>of</strong> <strong>the</strong> N = 4 supermultiplet are fully symmetrized andtrace-free (<strong>in</strong> term <strong>of</strong> Dynk<strong>in</strong> <strong>in</strong>dex, <strong>the</strong>y are <strong>in</strong> <strong>the</strong> (0,m,0) <strong>of</strong> SU(4)). The super<strong>gravity</strong>mode dual to (4.29) is some mixture <strong>of</strong> <strong>the</strong> trace <strong>of</strong> <strong>the</strong> graviton and <strong>of</strong> fluctuations <strong>of</strong><strong>the</strong> 5-form field [100]. For a complete list <strong>of</strong> <strong>the</strong> operators dual to super<strong>gravity</strong> modes,see <strong>the</strong> review [101] and references <strong>the</strong>re<strong>in</strong>.4.4 From N = 4 to N = 1. Non-spherical horizonsOne might wonder whe<strong>the</strong>r <strong>the</strong> surpris<strong>in</strong>g Maldacena <strong>correspondence</strong> would not be due<strong>in</strong> large part to <strong>the</strong> very high degree <strong>of</strong> symmetry <strong>of</strong> <strong>the</strong> setup. In order to generalize<strong>the</strong> AdS/CFT <strong>correspondence</strong>, a first step is to consider conformal field <strong>the</strong>ories withless supersymmetries. A way to do that is to replace <strong>the</strong> S 5 geometry by a more general5-manifold which only preserves 4 supercharges. In <strong>the</strong> early days <strong>of</strong> <strong>the</strong> <strong>correspondence</strong>3 Actually <strong>the</strong> condition is ∆ < d +1 for an operator dual to a scalar field <strong>in</strong> AdS.2


4.4. From N = 4 to N = 1. Non-spherical horizons 51this was <strong>in</strong>verstigated <strong>in</strong> [102, 70]. Such a “non-spherical horizon” will be a Sasaki-E<strong>in</strong>ste<strong>in</strong> (SE) space (which just means that <strong>the</strong> associated cone is Calabi-Yau, as wereview below).In <strong>the</strong> same way as <strong>the</strong> maximally supersymmetric version <strong>of</strong> AdS/CFT stems froma scal<strong>in</strong>g limit on D3-<strong>branes</strong> <strong>in</strong> flat space, we can consider <strong>the</strong> same limit on D3-<strong>branes</strong><strong>in</strong> any geometry. If <strong>the</strong> D3-<strong>branes</strong> sits on a smooth po<strong>in</strong>t <strong>the</strong> near horizon limit will beAdS 5 ×S 5 as <strong>in</strong> flat space, s<strong>in</strong>ce any smooth geometry is locally flat. We are <strong>the</strong>n lead toconsider D3-<strong>branes</strong> at a s<strong>in</strong>gularity. It should be Calabi-Yau so that <strong>the</strong> setup preservesN = 1 supersymmetry <strong>in</strong> four dimensions (<strong>the</strong> CY itself preserves eight supercharges,and <strong>the</strong> parallel D3-<strong>branes</strong> break half <strong>of</strong> <strong>the</strong>m).On<strong>the</strong>onehand, weknow<strong>the</strong>lowenergyfield<strong>the</strong>oryonsuchD3-<strong>branes</strong>fromChapter3. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>re is a straightforward super<strong>gravity</strong> solution for N D3-<strong>branes</strong>on a Calabi-Yau cone. It is simplywith X 5 <strong>the</strong> relevant SE space andds 2 = h −1 2 ηµν dx µ dx ν (+h 1 2 dr 2 +r 2 ds 2 (X 5 ) ) , (4.30)h(r) = 1+ R4r 4 with R 4 =π 3Vol(X 5 ) 4πα′2 g s N . (4.31)We drop <strong>the</strong> 1 <strong>in</strong> <strong>the</strong> near-horizon limit, h = (R/r) 4 . The AdS 5 ×X 5 background has anisometry groupSU(2,2|1)×G ⊃ SO(3,1)×U(1) R ×G. (4.32)The superconformal group SU(2,2|1) has a U(1) R R-symmetry, which is an isometry <strong>of</strong>X 5 . The space X 5 might also have additional isometries G, which will correspond toadditional global symmetries <strong>of</strong> <strong>the</strong> dual CFT. For <strong>in</strong>stance, <strong>the</strong> X 5 base <strong>of</strong> a toric CYcone will have at least U(1) 2 ⊂ G.4.4.1 Sasaki-E<strong>in</strong>ste<strong>in</strong> manifoldsTo def<strong>in</strong>e a Sasaki-E<strong>in</strong>ste<strong>in</strong> manifold X 2n−1 <strong>of</strong> dimension 2n−1, we first def<strong>in</strong>e its metriccone C(X 5 ) asds(C(X 5 )) = dr 2 +r 2 ds(X 5 ). (4.33)The manifold X 5 is called Sasakian if C(X 5 ) is Kähler. For any such Kähler metric wecan def<strong>in</strong>e <strong>the</strong> so-called Reeb vector(ξ = I r ∂ ), (4.34)∂rwith I <strong>the</strong> complex structure on C(X 5 ) (it acts on <strong>the</strong> vector r∂ r , giv<strong>in</strong>g ano<strong>the</strong>r vector).ξ is a Kill<strong>in</strong>g vector (both on <strong>the</strong> cone and once pulled-back to X 5 ); see Appendix A<strong>of</strong> [103] for a pro<strong>of</strong>. As expla<strong>in</strong>ed <strong>in</strong> [103], a choice <strong>of</strong> metric on <strong>the</strong> cone correspondsto a choice <strong>of</strong> Reeb vector, and <strong>the</strong>re exists a unique choice <strong>of</strong> ξ correspond<strong>in</strong>g to aRicci-flat metric. When <strong>the</strong> metric (4.33) is Ricci-flat, <strong>the</strong> metric on X 5 is E<strong>in</strong>ste<strong>in</strong>,R αβ = (2n−2)g αβ , as a short computation shows. Hence a Sasaki-E<strong>in</strong>ste<strong>in</strong> metric on X 5means that (4.33) is Calabi-Yau.


52 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>The Reeb vector <strong>of</strong> a SE space generates <strong>the</strong> U(1) R isometry dual to <strong>the</strong> R-symmetry<strong>of</strong> <strong>the</strong> CFT. If <strong>the</strong> orbits <strong>of</strong> ξ close, X 5 is called a regular SE manifold (or “quasi-regular”if ξ has some fixed po<strong>in</strong>ts). Usually, <strong>the</strong> orbits <strong>of</strong> ξ do not close, and <strong>the</strong> SE space iscalled irregular.The best known SE 5-manifold is <strong>the</strong> T 1,1 manifold at <strong>the</strong> base <strong>of</strong> <strong>the</strong> conifold s<strong>in</strong>gularity.It is reviewed <strong>in</strong> Appendix F.1. In that case ξ = ∂ ψ and <strong>the</strong> space is regular. For along time <strong>the</strong> only known Sasaki-E<strong>in</strong>ste<strong>in</strong> metrics were <strong>the</strong> ones on S 5 and on T 1,1 [104].In <strong>the</strong> last decade th<strong>in</strong>gs changed with <strong>the</strong> construction <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite families <strong>of</strong> irregular SEmetrics on S 2 ×S 3 [105, 106, 107, 108]. These SE manifolds are known as L a,b,c (<strong>the</strong>re isalso <strong>the</strong> sub-family Y p,q ). The cones over <strong>the</strong>m are CY toric s<strong>in</strong>gularities. There existsalso a powerful technique, called Z-m<strong>in</strong>imization, to extract <strong>the</strong> volumes <strong>of</strong> SE manifoldswhen <strong>the</strong> metric is not explicitly known, both <strong>in</strong> toric [109] and non-toric [103] cases.4.4.2 Conformal N = 1 toric quiversIn Chapter 3 we discussed <strong>the</strong> structure <strong>of</strong> <strong>the</strong> low energy field <strong>the</strong>ory on D3-<strong>branes</strong> ats<strong>in</strong>gularities. In particular we expla<strong>in</strong>ed how to f<strong>in</strong>d <strong>the</strong> quiver for any toric s<strong>in</strong>gularity.As we po<strong>in</strong>ted out, this only extracted <strong>in</strong>formation about holomorphic data, which areprotected by supersymmetry. On <strong>the</strong> o<strong>the</strong>r hand we could not learn anyth<strong>in</strong>g about<strong>the</strong> runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> physical coupl<strong>in</strong>gs, which depend on <strong>the</strong> renormalisation <strong>of</strong> <strong>the</strong> Kählerpotential and which we cannot compute <strong>in</strong> general. The AdS/CFT <strong>correspondence</strong> allowsus to extract more <strong>in</strong>formation on <strong>the</strong> physical quiver <strong>gauge</strong> <strong>the</strong>ory. In particular, <strong>the</strong><strong>correspondence</strong> predicts that <strong>the</strong>re should be some l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>t <strong>in</strong> <strong>the</strong> quiver space<strong>of</strong> coupl<strong>in</strong>gs, correspond<strong>in</strong>g to <strong>the</strong> arbitrary constant value <strong>of</strong> <strong>the</strong> axio-dilaton <strong>in</strong> type IIBstr<strong>in</strong>g <strong>the</strong>ory.In <strong>the</strong> case <strong>of</strong> toric quivers we can check this us<strong>in</strong>g a Leigh-Strassler type <strong>of</strong> argument[84]. Consider a toric quiver as def<strong>in</strong>ed <strong>in</strong> section 3.5.1. It has G <strong>gauge</strong> groups, whichwe suppose to be all SU(N). It also has E bifundamental (or adjo<strong>in</strong>t) fields and Vsuperpotential terms. Because <strong>the</strong> correspond<strong>in</strong>g brane til<strong>in</strong>g is drawn on <strong>the</strong> torus as agraph with G faces, E edges and V vertices, we have <strong>the</strong> Euler identityG−E +V = 0. (4.35)The space <strong>of</strong> coupl<strong>in</strong>g <strong>of</strong> such a quiver is <strong>of</strong> dimension G + V, with G <strong>gauge</strong> coupl<strong>in</strong>gsand V superpotential coupl<strong>in</strong>gs. The conditions for <strong>the</strong> vanish<strong>in</strong>g <strong>of</strong> all beta functionsare3− ∑ (1+ 1 2 γ i) = 0, 3− 1 ∑(1−γ i ) = 0, (4.36)2i∈vwith v = 1,··· ,V and g = 1,··· ,G. Summ<strong>in</strong>g all <strong>the</strong>se conditions, we havei∈g∑(3− ∑ (1+ 1 2 γ i))+ ∑ (3− 1 ∑(1−γ i )) =2v i∈v g i∈g3V −2E − ∑ iγ i +3G−E + ∑ iγ i = 3(G−E +V) = 0, (4.37)where <strong>the</strong> last equality is (4.35). We <strong>the</strong>n have at least one relation between <strong>the</strong> betafunctions, so <strong>the</strong>re should exist a l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts. One can also reverse <strong>the</strong> argument


4.4. From N = 4 to N = 1. Non-spherical horizons 53[61]; <strong>the</strong>n conformality <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory implies that <strong>the</strong> planar graph <strong>of</strong> section 3.5.1must be a graph on <strong>the</strong> torus.4.4.3 Chiral r<strong>in</strong>g <strong>of</strong> N = 1 SCFTsThe chiral r<strong>in</strong>g <strong>of</strong> any N = 1 field <strong>the</strong>ory is <strong>the</strong> cohomology <strong>of</strong> <strong>the</strong> supercharge ¯Q˙α (fora review, see for <strong>in</strong>stance [110]). More precisely it is <strong>the</strong> set <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variant operatorsO which are chiral modulo <strong>the</strong> ones which are chiral exact,[¯Q˙α ,O] = 0, O ∼ O +[¯Q˙α ,O ′ ]. (4.38)The classical chiral r<strong>in</strong>g <strong>of</strong> a <strong>the</strong>ory with superpotential W has <strong>the</strong> schematic formC[X]/∂ X W <strong>in</strong> term <strong>of</strong> <strong>the</strong> fields X, and it is understood that we really consider <strong>gauge</strong>orbits only. The chiral r<strong>in</strong>g relations are ∂ X W = 0 because <strong>the</strong> equations <strong>of</strong> motions for<strong>the</strong> chiral superfield X are <strong>of</strong> <strong>the</strong> form ¯D ¯DX † = ∂ X W, so that <strong>the</strong> lowest component <strong>of</strong>∂ X W is ¯Q-exact. In this discussion we do not <strong>in</strong>clude <strong>the</strong> <strong>gauge</strong> chiral superfields W α ,but this can be done too (see [111] for <strong>in</strong>stance). Ignor<strong>in</strong>g that last po<strong>in</strong>t, <strong>the</strong> chiral r<strong>in</strong>gis <strong>the</strong> coord<strong>in</strong>ate r<strong>in</strong>g <strong>of</strong> <strong>the</strong> classical moduli space seen as an algebraic variety 4 . It canbe written <strong>in</strong> term <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variant variables O asC[O 1 ,···O n ]/I, (4.39)where <strong>the</strong> ideal I conta<strong>in</strong>s <strong>the</strong> F-flatness relations follow<strong>in</strong>g from dW = 0, while it alsoconta<strong>in</strong>s so-called syzygies, which are relations between <strong>gauge</strong> <strong>in</strong>variant fields follow<strong>in</strong>gfrom <strong>the</strong>ir def<strong>in</strong>ition <strong>in</strong> term <strong>of</strong> <strong>gauge</strong> variant fields.Whatwearereally<strong>in</strong>terested<strong>in</strong>is<strong>the</strong>quantumchiralr<strong>in</strong>g. Ingeneralnon-perturbativeeffects can change <strong>the</strong> chiral r<strong>in</strong>g relations, with corrections <strong>in</strong>volv<strong>in</strong>g <strong>the</strong> strong coupl<strong>in</strong>gscale Λ. However <strong>in</strong> <strong>the</strong> case <strong>of</strong> a conformal <strong>the</strong>ory such corrections cannot arise, so that<strong>the</strong> classical and quantum chiral r<strong>in</strong>gs are isomorphic. Moreover, <strong>in</strong> a N = 1 SCFT <strong>the</strong>chiral r<strong>in</strong>g operators are <strong>the</strong> superconformal primaries, with <strong>the</strong>ir quantum dimensiondeterm<strong>in</strong>ed by <strong>the</strong>ir R-charge, ∆ = 3 2 R.In <strong>the</strong> case <strong>of</strong> N = 1 quiver SCFTs, <strong>the</strong> moduli space is a N-symmetric product <strong>of</strong><strong>the</strong> Calabi-Yau variety associated to <strong>the</strong> quiver (we consistently ignore so-called baryonicoperators <strong>in</strong> this simplified discussion), denoted Sym N (CY 3 ). The chiral primary operatorscan be identified with elements <strong>of</strong> <strong>the</strong> coord<strong>in</strong>ate r<strong>in</strong>g <strong>of</strong> that moduli space, as wesaid.For <strong>in</strong>stance, consider <strong>the</strong> case <strong>of</strong> <strong>the</strong> conifold quiver. The <strong>gauge</strong> <strong>in</strong>variant operatorsare <strong>of</strong> <strong>the</strong> form Tr((AB) k ). To obta<strong>in</strong> a chiral primary <strong>the</strong> A’s and B’s <strong>in</strong>volved must besymmetrized,dueto<strong>the</strong>F-termrelations. Therewillbemanysyzygies<strong>in</strong>thatdescription.An alternative way to parametrize <strong>the</strong> chiral r<strong>in</strong>g is to use <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variance under<strong>the</strong> first <strong>gauge</strong> group to diagonalize <strong>the</strong> four commut<strong>in</strong>g matrices M ij = A i B j . Eacheigenvalue <strong>of</strong> M ij is identified with an aff<strong>in</strong>e coord<strong>in</strong>ate z ij for one <strong>of</strong> <strong>the</strong> N D3-<strong>branes</strong> on<strong>the</strong> conifold, and <strong>the</strong> permutation symmetry is noth<strong>in</strong>g but <strong>the</strong> residual Weyl <strong>in</strong>variance<strong>of</strong> this <strong>gauge</strong> fix<strong>in</strong>g. It is <strong>the</strong>n clear that <strong>the</strong> eigenvalues <strong>of</strong> M ij are coord<strong>in</strong>ates onSym N (CY 3 ), because <strong>the</strong> syzygy M 11 M 22 = M 12 M 21 is precisely <strong>the</strong> conifold equation.4 This is possible because OPE’s <strong>of</strong> chiral operators are never s<strong>in</strong>gular.


54 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>4.4.4 The Klebanov-Witten <strong>the</strong>ory and remarks about <strong>the</strong> AdS/CFTmap for N = 1 quiversThe best studied (and historically <strong>the</strong> first) example <strong>of</strong> an explicit AdS/CFT pair whichis not an orbifold <strong>of</strong> <strong>the</strong> N = 4 case is <strong>the</strong> duality between str<strong>in</strong>g <strong>the</strong>ory on AdS 5 ×T 1,1 and <strong>the</strong> so-called Klebanov-Witten (KW) <strong>the</strong>ory [102]. The SE manifold T 1,1 is<strong>the</strong> homogeneous space (SU(2) × SU(2))/U(1) endowed with a SE metric reviewed <strong>in</strong>Appendix F. The CY cone C(T 1,1 ) is noth<strong>in</strong>g but <strong>the</strong> conifold, whose associated quiverwe already discussed.The type IIB super<strong>gravity</strong> spectrum on AdS 5 from KK reduction over T 1,1 was analyzed<strong>in</strong> [112, 113, 114]. This spectrum can <strong>of</strong> course be matched precisely to operators<strong>in</strong> <strong>the</strong> N = 1 CFT constructed by Klebanov and Witten. In <strong>the</strong> N = 1 case not all <strong>the</strong>super<strong>gravity</strong> modes sit <strong>in</strong> short supermultiplets <strong>of</strong> SU(2,2|1). The particular subset <strong>of</strong>modes which do can be matched to N = 1 chiral operators <strong>in</strong> <strong>the</strong> CFT. In particular,<strong>the</strong> chiral primary operators are scalar operators <strong>of</strong> <strong>the</strong> formTrA i1 B j1 ···A ik B jk , (4.40)which are completely symmetric <strong>in</strong> <strong>the</strong> i, j <strong>in</strong>dices. They have dimension ∆ = 3k 2 andR-charge k. They are mapped to <strong>the</strong> mode <strong>in</strong> <strong>the</strong> “chiral AdS multiplet” with <strong>the</strong> lowestAdS mass, as analyzed <strong>in</strong> [114].For any SE manifold X 5 , <strong>the</strong> scalar KK modes with <strong>the</strong> lowest mass at fixed R-chargeturn out to be modes dual to <strong>the</strong> chiral primary operators with this same R-charge. Theyare a mix<strong>in</strong>g <strong>of</strong> <strong>the</strong> trace <strong>of</strong> <strong>the</strong> graviton with <strong>the</strong> F 5 fluctuations along X 5 , with masses[100, 98]m 2 R 2 = 16+E r −8 √ E r +4. (4.41)Here E r is <strong>the</strong> eigenvalue <strong>of</strong> <strong>the</strong> scalar Laplacian on X 5 , which depends on <strong>the</strong> R-charge.The chiral primary operators are also classified by <strong>the</strong>ir representation under G <strong>in</strong> (4.32),<strong>of</strong> course. For <strong>in</strong>stance G = SU(2) × SU(2) <strong>in</strong> <strong>the</strong> conifold <strong>the</strong>ory, and <strong>the</strong> operators(4.40) are <strong>in</strong> <strong>the</strong> (k,k) <strong>of</strong> SU(2)×SU(2).In <strong>the</strong> KW <strong>the</strong>ory with SU(N) × SU(N) <strong>gauge</strong> group, we have three complex coupl<strong>in</strong>gs,<strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs τ 1 , τ 2 and <strong>the</strong> superpotential coupl<strong>in</strong>g h, but <strong>the</strong> vanish<strong>in</strong>g<strong>of</strong> <strong>the</strong> exact beta functions only requires that γ A = γ B = − 1 2, similarly to what we wrote<strong>in</strong> section 4.1.4. Hence <strong>the</strong>re is a surface <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> two complex dimensions. One<strong>of</strong> <strong>the</strong>se flat directions is related to <strong>the</strong> VEV <strong>of</strong> <strong>the</strong> axio-dilaton τ = C 0 +i/g s , accord<strong>in</strong>gto <strong>the</strong> general argument <strong>of</strong> section 4.4.2, while <strong>the</strong> o<strong>the</strong>r is related to <strong>the</strong> period <strong>of</strong> <strong>the</strong>flat 2-form C 2 +τB 2 one can turn on over <strong>the</strong> 2-cycle <strong>of</strong> T 1,1 . One can show 5 that <strong>the</strong>precise dictionary is [102]τ 1 +τ 2 + N log(hµ) = τ , (4.42)πi ∫1τ 1 −τ 2 =2π 2 α ′ (C 2 +τB 2 )−τ . (4.43)S 2The expressions on <strong>the</strong> LHS are RG <strong>in</strong>variant quantities on <strong>the</strong> space <strong>of</strong> coord<strong>in</strong>ates, as5 I thank Stefano Cremonesi for <strong>in</strong>terest<strong>in</strong>g discussions about this po<strong>in</strong>t.


4.5. Spontaneous break<strong>in</strong>g <strong>of</strong> scale <strong>in</strong>variance 55one can easily check. The imag<strong>in</strong>ary part reads8π 2g 2 1+ 8π2g 2 2−2N log(|hµ|) =8π 2g 2 1− 8π2g 2 2=2πg s, (4.44)∫1πα ′ B 2 − 2π . (4.45)g s S 2 g sNote that <strong>the</strong> relation (4.44) makes sense only for |hµ| > e − πgsN, <strong>in</strong> particlar |hµ| 1<strong>in</strong> <strong>the</strong> super<strong>gravity</strong> limit <strong>of</strong> large g s N. This means that we cannot probe <strong>the</strong> wholesurface <strong>of</strong> fixed po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> limit, and <strong>in</strong> particular we have no hope todescribe <strong>the</strong> fixed po<strong>in</strong>t which exists at h = 0. The later fixed po<strong>in</strong>t is very similar to<strong>the</strong> <strong>in</strong>teract<strong>in</strong>g fixed po<strong>in</strong>t <strong>in</strong> N f = 2N c SQCD <strong>in</strong> <strong>the</strong> conformal w<strong>in</strong>dow [83] so it wouldbe very <strong>in</strong>terest<strong>in</strong>g to describe it holographically, but it seems that we would need str<strong>in</strong>g<strong>the</strong>ory to do that.4.5 Spontaneous break<strong>in</strong>g <strong>of</strong> scale <strong>in</strong>varianceTo fur<strong>the</strong>r generalize <strong>the</strong> AdS/CFT <strong>correspondence</strong>, <strong>the</strong> next step would be to break <strong>the</strong>conformal symmetry. This can be done explicitly <strong>in</strong> several way, and we will discuss aparticularly <strong>in</strong>terest<strong>in</strong>g way to do this <strong>in</strong> <strong>the</strong> next chapters. In this section, we would liketo discuss <strong>the</strong> spontaneous break<strong>in</strong>g <strong>of</strong> conformal <strong>in</strong>variance, due to a vacuum expectationvalue. We ma<strong>in</strong>ly follow [98] and some orig<strong>in</strong>al computations, relegated to <strong>the</strong> AppendixD.Accord<strong>in</strong>g to <strong>the</strong> strong form <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong>, <strong>the</strong> dual str<strong>in</strong>g <strong>the</strong>ory<strong>in</strong> asymptotically AdS space should not only reproduce <strong>the</strong> CFT, which sits at <strong>the</strong> orig<strong>in</strong><strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> N = 4, but also <strong>the</strong> full moduli space <strong>of</strong> vacua. This modulispace consists <strong>of</strong> a Coulomb branch only, correspond<strong>in</strong>g to <strong>the</strong> configuration space <strong>of</strong>N D3-<strong>branes</strong> on R 6 , with fixed center <strong>of</strong> mass. A natural th<strong>in</strong>g to do is to try andtake <strong>the</strong> Maldacena limit on some generic configuration <strong>of</strong> D3-<strong>branes</strong>, correspond<strong>in</strong>g to ageneric po<strong>in</strong>t on <strong>the</strong> Coulomb branch. For <strong>the</strong> supe<strong>gravity</strong> approximation to be valid weshould however consider big clumps <strong>of</strong> N i D3-<strong>branes</strong>, with ∑ i N i = N and N i large. Wealso assume that <strong>the</strong>ir separation is small <strong>in</strong> units <strong>of</strong> √ α ′ . Then <strong>the</strong> Maldacena limit justamounts to dropp<strong>in</strong>g <strong>the</strong> 1 <strong>in</strong> <strong>the</strong> expression (2.12) for <strong>the</strong> warp factor <strong>of</strong> a multi-centeredsolution.At large r, <strong>the</strong> multi-centered solution looks like <strong>the</strong> AdS 5 ×S 5 solution. It is convenientto rewrite <strong>the</strong> warp factor <strong>in</strong> term <strong>of</strong> a multi-polar expansion, which makes it easyto compare with <strong>the</strong> CFT operators. For simplicity, consider a simple setup with twostacks <strong>of</strong> D3-<strong>branes</strong> separated by a distance s. A first stack <strong>of</strong> N − N ′ D3-<strong>branes</strong> sitsat x = 0 <strong>in</strong> R 6 , and a second stack <strong>of</strong> N ′ D3-<strong>branes</strong> sits at |x| = s. In Appendix D wesolve for <strong>the</strong> warp factor <strong>of</strong> <strong>the</strong> D3-brane metric, <strong>in</strong> some coord<strong>in</strong>ates. The warp factordepends on a one angle θ 1 as well as on r. For r > s, we have()∞∑h(r,θ 1 ) = R4r 4 1+ N′ ( s) m0Ym0 (θ 1 ) . (4.46)N rm 0 =1We <strong>the</strong>n need to <strong>in</strong>terpret <strong>the</strong>se sublead<strong>in</strong>g contribution as super<strong>gravity</strong> excitationsaround <strong>the</strong> AdS background. We consider <strong>the</strong> trace <strong>of</strong> <strong>the</strong> graviton along S 5 , which


56 Chapter 4. Conformal field <strong>the</strong>ories and <strong>the</strong> AdS/CFT <strong>correspondence</strong>corresponds to chiral primary operators as expla<strong>in</strong>ed <strong>in</strong> section 4.4.4. Near <strong>the</strong> boundary<strong>of</strong> AdS 5 we have <strong>the</strong> expansionh α α = 5 h1/2 −h 1/2AdS 5h 1/2AdS 5= 5N2N ′ ∑m 0 >0( sr) m0Ym0 − 5 ( ) N′ 2 ∑2Nm 0 ,n 0 >0( sr) m0 +n 0Ym0 Y n0 +···(4.47)Thefirstterms<strong>in</strong><strong>the</strong>RHScorrespondtoVEVs<strong>of</strong>s<strong>in</strong>gletracescalaroperators<strong>in</strong><strong>the</strong>CFT,<strong>the</strong> follow<strong>in</strong>g terms correspond<strong>in</strong>g to VEVs <strong>of</strong> multi-trace operators [98]. The operatorswhich get VEVs <strong>in</strong> SU(N) N = 4 SYM are <strong>of</strong> <strong>the</strong> form (4.29). These operators are <strong>in</strong><strong>the</strong> (0,m 0 ,0) <strong>of</strong> SO(6), and we can write <strong>the</strong>m <strong>in</strong> term <strong>of</strong> some operators O (m) , def<strong>in</strong>edtensorially byO i1···i mŷ i1 ···ŷ im = O (m) Y m (4.48)(no summation on m). Here ŷ i are orthonormal basis vectors <strong>of</strong> R 6 , and Y m0 standsfor <strong>the</strong> scalar harmonics on S 5 . Of course <strong>in</strong> general m stands for <strong>the</strong> various quantumnumbers (m 0 ,··· ,m 4 ) but <strong>in</strong> our simple example only <strong>the</strong> operators <strong>in</strong>dexed by m 0 ,m 1 = ··· = m 4 = 0, get a VEV, given by〈O (m 0) 〉 ∝N ′ ( s) m0(m 0 −2)N 2πα ′ (4.49)for m 0 > 2, and similarly for m 0 = 2, even though <strong>the</strong> analysis is more <strong>in</strong>volved <strong>in</strong> thatcase [98]. Of course (4.49) it is simply a VEV for Tr(φ 1 ) m 0, <strong>in</strong>volv<strong>in</strong>g only <strong>the</strong> scalar fieldφ 1 , but one can easily generalize <strong>the</strong> above analysis to any multi-centered solution.Note that <strong>the</strong>re is a m 0 = 1 term <strong>in</strong> (4.47). It would correspond to a VEV for a scalaroperator <strong>of</strong> dimension one (i.e. a free field) :1 〈Trφ1 〉 ∝ N′ sN N 2πα ′. (4.50)It corresponds to <strong>the</strong> diagonal U(1) <strong>of</strong> <strong>the</strong> U(M) <strong>the</strong>ory liv<strong>in</strong>g on <strong>the</strong> <strong>branes</strong>, and itis effectively decoupled from <strong>the</strong> SU(M) dynamics. It was argued <strong>in</strong> several ways that<strong>the</strong> AdS/CFT <strong>correspondence</strong> <strong>in</strong>volves <strong>the</strong> <strong>gauge</strong> group SU(M) ra<strong>the</strong>r than U(M), <strong>the</strong>ma<strong>in</strong> po<strong>in</strong>t be<strong>in</strong>g that this U(1) mode is free <strong>in</strong> <strong>the</strong> CFT, while everyth<strong>in</strong>g couples atleast to <strong>gravity</strong> <strong>in</strong> <strong>the</strong> bulk. In super<strong>gravity</strong>, this m 0 = 1 mode is related to <strong>the</strong> so-calleddoubletonmodethatappearswhendimensionallyreduc<strong>in</strong>gtypeIIBonS 5 [100]. Actually,<strong>the</strong> m 0 = 1 term <strong>in</strong> (4.46) can be accounted for by a trivial coord<strong>in</strong>ate translation to <strong>the</strong>center <strong>of</strong> mass coord<strong>in</strong>ates [98], so that it is <strong>in</strong>deed non-physical (pure <strong>gauge</strong>).The solution (4.46) is only asympotically AdS. It can be shown [115] that it <strong>in</strong>terpolatesbetween an AdS solution at large r and ano<strong>the</strong>r AdS throat around <strong>the</strong> N −N ′D3-<strong>branes</strong> sources at <strong>the</strong> orig<strong>in</strong>. Accord<strong>in</strong>g to <strong>the</strong> energy-radius relation, go<strong>in</strong>g to smallr corresponds to go<strong>in</strong>g towards <strong>the</strong> IR <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory, and one is lead to guess that<strong>the</strong> departure <strong>of</strong> <strong>the</strong> background from AdS as r decreases really describes a non-trivialrenormalization group flow <strong>in</strong> <strong>the</strong> dual <strong>the</strong>ory. In <strong>the</strong> present case, <strong>the</strong> claim is that <strong>the</strong>solution with <strong>the</strong> warp factor (4.46) describes a renormalization group flow <strong>in</strong>terpolat<strong>in</strong>gbetween SU(N) N = 4 <strong>in</strong> <strong>the</strong> UV and SU(N −N ′ ) N = 4 <strong>in</strong> <strong>the</strong> IR, due to non-trivialVEVs. In <strong>the</strong> field <strong>the</strong>ory <strong>the</strong>re is a decrease <strong>in</strong> <strong>the</strong> number <strong>of</strong> degrees <strong>of</strong> freedom because


4.5. Spontaneous break<strong>in</strong>g <strong>of</strong> scale <strong>in</strong>variance 57we should <strong>in</strong>tegrate out modes which become heavy due <strong>of</strong> <strong>the</strong> Higgs mechanism, while<strong>in</strong> <strong>the</strong> <strong>gravity</strong> description we see some cont<strong>in</strong>uous decrease <strong>in</strong> <strong>the</strong> F 5 flux,∫ (1−(4π 2 α ′ ) 2 F 5 = N +N ′ r 6 )g s S 5 (r 2 +s 2 −2srcosθ 1 ) 3 −1 , (4.51)which <strong>in</strong>terpolates between N at large r and N −N ′ for r ≪ s. However, it is difficult tomake <strong>the</strong>se statements very precise. For <strong>in</strong>stance <strong>the</strong> θ 1 dependence seems to forbid anyunambiguous identification <strong>of</strong> <strong>the</strong> radius r with <strong>the</strong> energy scale <strong>in</strong> <strong>the</strong> dual <strong>the</strong>ory.We will be able to make much more precise statements <strong>in</strong> <strong>the</strong> models we will study<strong>in</strong> <strong>the</strong> next chapters. In those setups some monotonic functions <strong>in</strong> <strong>the</strong> super<strong>gravity</strong>background will bematched exactlyto<strong>the</strong> RG runn<strong>in</strong>g <strong>of</strong> coupl<strong>in</strong>gconstants as computedfrom <strong>the</strong> exact N = 1 beta functions <strong>in</strong> <strong>the</strong> dual field <strong>the</strong>ory.


Chapter 5Fractional D-<strong>branes</strong> and<strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>5.1 Overview: <strong>the</strong> <strong>gauge</strong> <strong>gravity</strong>/<strong>correspondence</strong>The AdS/CFT <strong>correspondence</strong> can be explored and extended <strong>in</strong> many directions. Onequestion <strong>of</strong> obvious physical <strong>in</strong>terest is whe<strong>the</strong>r one could use <strong>the</strong> <strong>correspondence</strong> toachieve some better understand<strong>in</strong>g <strong>of</strong> QCD. Let us be less ambitious, and ask whe<strong>the</strong>rwe could constructs models which are at least closer to QCD than superconformal field<strong>the</strong>ories. In particular a reasonable goal is to construct some str<strong>in</strong>g <strong>the</strong>ory dual to N = 1SQCD.We will be even humbler, and <strong>in</strong>vestigate models dual to N = 1 Super-Yang-Mills(SYM) <strong>the</strong>ory. There are roughly three models on <strong>the</strong> market, which we will enumerate<strong>in</strong> historical order. The first is <strong>the</strong> Polch<strong>in</strong>ski-Strassler model [116], <strong>in</strong> which <strong>the</strong> N = 4AdS/CFT duality is deformed by relevant operators, namely by mass terms break<strong>in</strong>gN = 4 to N = 1 SYM. The second model is <strong>the</strong> Maldacena-Nuñez (MN) solution [117],which is obta<strong>in</strong>ed by wrapp<strong>in</strong>g N D5- or NS5-<strong>branes</strong> around a 2-sphere, and f<strong>in</strong>d<strong>in</strong>g anassociated super<strong>gravity</strong> solution. The third is <strong>the</strong> Klebanov-Strassler (KS) solution [118],which we will discuss <strong>in</strong> detail <strong>in</strong> this chapter.It is <strong>of</strong>ten <strong>the</strong> case that we only discuss <strong>the</strong> super<strong>gravity</strong> limit <strong>of</strong> some str<strong>in</strong>g <strong>the</strong>orymodels. However one must keep <strong>in</strong> m<strong>in</strong>d that it is really <strong>the</strong>ir embedd<strong>in</strong>g <strong>in</strong>to str<strong>in</strong>g<strong>the</strong>ory which makes <strong>the</strong>m so <strong>in</strong>terest<strong>in</strong>g. For <strong>in</strong>stance a fundamental str<strong>in</strong>g can be dualto a flux tube, a D-brane can be dual to a doma<strong>in</strong> wall, etc. The rule <strong>of</strong> <strong>the</strong> game isgenerally to f<strong>in</strong>d a consistent super<strong>gravity</strong> solution, and to <strong>in</strong>terpret it <strong>in</strong> term <strong>of</strong> <strong>the</strong>dual <strong>the</strong>ory. The conjectured duality between non-conformal field <strong>the</strong>ories on <strong>the</strong> onehand and super<strong>gravity</strong> (or str<strong>in</strong>g <strong>the</strong>ory) models such as <strong>the</strong> MN or <strong>the</strong> KS solution on<strong>the</strong> o<strong>the</strong>r hand is called <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>. In such models we usuallyknow much less about <strong>the</strong> precise map between observables than <strong>in</strong> <strong>the</strong> AdS/CFT case.However <strong>the</strong> models we consider <strong>in</strong> this chapter are “close” to <strong>the</strong> AdS/CFT case <strong>in</strong> aprecise sense, which allows to apply similar techniques. For <strong>in</strong>stance <strong>in</strong> <strong>the</strong>se models onecan also apply <strong>the</strong> holographic renormalization program <strong>of</strong> AdS/CFT, as shown <strong>in</strong> [119].We will consider models based on <strong>fractional</strong> D3-<strong>branes</strong>. Consider for <strong>in</strong>stance <strong>the</strong>straightforward def<strong>in</strong>ition <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> on N = 1 or N = 2 orbifolds given <strong>in</strong>59


60 Chapter 5. Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>section 3.2.2. In Chapter 3 we discussed <strong>the</strong> quiver for regular D3-<strong>branes</strong> on C 3 /Γ butwe could also discuss any subquiver associated to some o<strong>the</strong>r representation <strong>of</strong> Γ. Inparticular <strong>the</strong> field <strong>the</strong>ory on M <strong>fractional</strong> <strong>branes</strong> <strong>of</strong> a s<strong>in</strong>gle type is simply SU(dimΓ i M)N = 1 SYM. In <strong>the</strong> case <strong>of</strong> N = 2 orbifolds <strong>the</strong> low energy <strong>the</strong>ory on <strong>the</strong> <strong>fractional</strong> <strong>branes</strong>is N = 2 SYM, and <strong>the</strong> adjo<strong>in</strong>t scalar field <strong>in</strong> <strong>the</strong> N = 2 vector multiplet corresponds to<strong>the</strong> fact that <strong>the</strong> s<strong>in</strong>gularity C×C 2 /Γ is non-isolated. The story is similar for D3-<strong>branes</strong>on any Calabi-Yau s<strong>in</strong>gularity.In reality, not any such <strong>fractional</strong> brane is physical, because typically <strong>the</strong>re mightbe tadpoles. This happens if <strong>the</strong> compact holomorphic cycle wrapped by <strong>the</strong> <strong>fractional</strong>D3-brane is dual to ano<strong>the</strong>r compact cycle <strong>in</strong> <strong>the</strong> Calabi-Yau threefold. Then <strong>the</strong> RRflux from <strong>the</strong> brane has nowhere to go and <strong>the</strong>re is an <strong>in</strong>consistency. Cancellation <strong>of</strong> RRtadpoles is dual to cancellation <strong>of</strong> anomalies <strong>in</strong> <strong>the</strong> quiver. The quiver for a regular D3-<strong>branes</strong> is typically a chiral <strong>the</strong>ory, so <strong>the</strong>re might be <strong>gauge</strong> anomalies. When consider<strong>in</strong>ga candidate <strong>fractional</strong> brane one must check that <strong>the</strong> quiver dual to N regular <strong>branes</strong> plusM <strong>fractional</strong> <strong>branes</strong> is not anomalous; this means that <strong>the</strong>re must be as many <strong>in</strong>com<strong>in</strong>gas outgo<strong>in</strong>g chiral fermions at each <strong>gauge</strong> group. We will not need to discuss this po<strong>in</strong>tfur<strong>the</strong>r because <strong>the</strong> models we will consider <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g are based on non-chiralquivers, such as <strong>the</strong> conifold quiver.5.1.1 The issue <strong>of</strong> <strong>the</strong> UV completionAll <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> dualities alluded to above have a common unavoidable problem:<strong>the</strong>y might look very much like N = 1 at small scale, but <strong>the</strong>y always have some verydifferent UV completion. In <strong>the</strong> Polch<strong>in</strong>ski-Strassler model <strong>the</strong> UV is simply N = 4,<strong>in</strong> <strong>the</strong> Maldacena-Nuñez model <strong>the</strong> UV is a six-dimensional <strong>the</strong>ory. In <strong>the</strong>se modelsone would like to decouple <strong>the</strong> SYM <strong>the</strong>ory from its UV, but it is never possible <strong>in</strong> <strong>the</strong>super<strong>gravity</strong> limit. The generic reason is that <strong>the</strong> scale <strong>of</strong> <strong>the</strong> UV physics is set by a scalem (<strong>the</strong> mass for <strong>the</strong> adjo<strong>in</strong>ts <strong>in</strong> Polch<strong>in</strong>ski-Strassler or <strong>the</strong> mass <strong>of</strong> <strong>the</strong> first KK mode<strong>in</strong> <strong>the</strong> MN solution), while <strong>the</strong> dynamically generated SYM scale is always <strong>of</strong> <strong>the</strong> formΛ = me − c λ, with λ <strong>the</strong> runn<strong>in</strong>g ’t Ho<strong>of</strong>t coupl<strong>in</strong>g. In <strong>the</strong> super<strong>gravity</strong> limit λ is large and<strong>the</strong> SYM scale is <strong>of</strong> <strong>the</strong> same order as <strong>the</strong> scale <strong>of</strong> <strong>the</strong> UV physics. The story is similar<strong>in</strong> <strong>the</strong> Klebanov-Strassler model, although <strong>the</strong> UV physics is somewhat more exotic, aswe will expla<strong>in</strong> <strong>in</strong> this Chapter.Actually we cannot expect to have a super<strong>gravity</strong> dual to any QCD-like <strong>the</strong>ory. Ageneral argument to that effect is that <strong>in</strong> Yang-Mills <strong>the</strong>ories one expects to have aspectrum <strong>of</strong> glueballs <strong>of</strong> arbitrary sp<strong>in</strong>, follow<strong>in</strong>g a Regge trajectory, while <strong>in</strong> super<strong>gravity</strong>one cannot have excitations <strong>of</strong> sp<strong>in</strong> higher than 2. We need str<strong>in</strong>g <strong>the</strong>ory to reproduce aRegge trajectory; after all that was <strong>the</strong> orig<strong>in</strong>al motivation to <strong>in</strong>vent it.Never<strong>the</strong>less, people have learned a great deal by study<strong>in</strong>g super<strong>gravity</strong> solutions dualto SYM-like <strong>the</strong>ories. Unfortunately we will not have <strong>the</strong> space to cover much <strong>of</strong> <strong>the</strong> manybeautiful th<strong>in</strong>gs people computed already at <strong>the</strong> level <strong>of</strong> super<strong>gravity</strong>.


5.2. Supersymmetry conditions 615.2 Supersymmetry conditionsIn this chapter we want to discuss super<strong>gravity</strong> solutions correspond<strong>in</strong>g to <strong>fractional</strong> D3-<strong>branes</strong>, which are D5-<strong>branes</strong> wrapped on vanish<strong>in</strong>g 2-cycles 1 . Fractional <strong>branes</strong> couplemagnetically to <strong>the</strong> RR potential C 2 , so <strong>the</strong> super<strong>gravity</strong> solutions we consider shouldhave some F 3 flux turned on.Let us consider <strong>the</strong> supersymmetry variations <strong>of</strong> <strong>the</strong> gravit<strong>in</strong>i and dilat<strong>in</strong>i <strong>in</strong> type IIBsuper<strong>gravity</strong> [120] (we write <strong>the</strong>m as <strong>in</strong> <strong>the</strong> Appendix <strong>of</strong> [121]). We consider <strong>the</strong> case <strong>of</strong>a constant axio-dilaton τ = i. Then, <strong>the</strong> conditions for supersymmetry areδψ M = ∇ M ǫ+ i1920 F(5) M 1···M 5Γ M 1···M 5ǫ+ i96 G(3) M 1 M 2 M 3(Γ M 1M 2 M 3M−9δ M 1M ΓM 2M 3)ǫ ∗ (5.1) = 0δλ = 1 24 G(3) M 1 M 2 M 3Γ M 1M 2 M 3ǫ = 0 (5.2)As is well known, <strong>in</strong> <strong>the</strong> absence <strong>of</strong> fluxes <strong>the</strong>se conditions reduce to ∇ M ǫ = 0, <strong>in</strong> whichcase we need covariantly constant sp<strong>in</strong>ors to preserve supersymmetry. For an R 4 × X 3ansatz this means we have at least one covariantly constant sp<strong>in</strong>or on X 6 2 , which reduces<strong>the</strong> holonomy from Sp<strong>in</strong>(6) ∼ = SU(4) to SU(3), hence X 6 is a Calabi-Yau. In our casewe do have fluxes, as well as warp<strong>in</strong>g functions <strong>in</strong> <strong>the</strong> metric. The general conditions forsupersymmetry have been analysed <strong>in</strong> [122] <strong>in</strong> term <strong>of</strong> SU(3) structures, with <strong>the</strong> upshotthat <strong>in</strong> type IIB <strong>the</strong> space X 6 must still be a complex manifold, but need not be Kähler.We will <strong>in</strong>stead consider <strong>the</strong> simple case <strong>of</strong> a D3-brane-like ansatz,ds 2 = h −1 2 ηµν dx µ dx ν +h 1 2 ds 2 (X 6 ), (5.3)F 5 = (1+∗ 10 )dh −1 ∧dx 0 ∧···∧dx 3 . (5.4)It corresponds to <strong>the</strong> so-called “type B” supersymmetric ansatz [123], for which we cansplit <strong>the</strong> 10 dimensional sp<strong>in</strong>or ǫ asǫ = ζ ⊗χ 1 , (5.5)<strong>in</strong> which case <strong>the</strong> variations with respect to ǫ and ǫ ∗ are l<strong>in</strong>early <strong>in</strong>dependent. Withthis ansatz <strong>the</strong> variation δψ µ identically vanishes, while <strong>the</strong> ǫ part <strong>of</strong> δψ m = 0 (with mstand<strong>in</strong>g for <strong>the</strong> <strong>in</strong>ternal coord<strong>in</strong>ates) implies that <strong>the</strong> metric on ds 2 (X 6 ) is Calabi-Yau[124, 123]. The rema<strong>in</strong><strong>in</strong>g conditions imply that G 3 is a primitive (2,1)-form with respectto <strong>the</strong> Kähler and complex structures <strong>of</strong> <strong>the</strong> CY X 6 . This implies that it is imag<strong>in</strong>aryself-dual (ISD) with respect to <strong>the</strong> CY metric on X 6 ,∗ 6 G 3 = iG 3 . (5.6)This is all we need to know to understand <strong>the</strong> models discussed <strong>in</strong> this <strong>the</strong>sis. Remarkhowever that this ansatz is very particular. For <strong>in</strong>stance <strong>the</strong> KS solution is a particularvacuum, while <strong>the</strong> full family <strong>of</strong> vacua dual <strong>the</strong> baryonic branch <strong>of</strong> <strong>the</strong> KS field <strong>the</strong>ory wasfound by solv<strong>in</strong>g a much more general ansatz [125] <strong>in</strong> term <strong>of</strong> SU(3) structure conditions[126].1 At <strong>the</strong> level <strong>of</strong> <strong>the</strong> B-model a <strong>fractional</strong> brane could be a wrapped 7-brane, but to have no tadpolesuch a brane should be dual to a non-compact 2-cycle. This would mean we are on a SE 5-manifold witha 1-cycle (and <strong>of</strong> course a 4-cycle) <strong>in</strong> homology, which is impossible for a CY 3 <strong>of</strong> strict SU(3) holonomy.2 Then we have at least N = 2 SUSY <strong>in</strong> 4 dimensions because we can vary <strong>in</strong>dependently bothgravit<strong>in</strong>i/dilat<strong>in</strong>i along <strong>the</strong> R 3,1 .


62 Chapter 5. Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>5.3 Fractional <strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity5.3.1 Backreact<strong>in</strong>g <strong>fractional</strong> <strong>branes</strong> on <strong>the</strong> conifold: <strong>the</strong> KT solutionThe “naive” solution for N regular D3-<strong>branes</strong> and M <strong>fractional</strong> D3-<strong>branes</strong> was first foundby Klevanov and Tseytl<strong>in</strong> [127], and will be referred to as <strong>the</strong> KT solution. With <strong>the</strong>formalismexpla<strong>in</strong>eds<strong>of</strong>ar, andassum<strong>in</strong>g<strong>the</strong>ansatz<strong>of</strong><strong>the</strong>previoussection, <strong>the</strong>derivation<strong>of</strong> a supersymmetric solution becomes almost easy. We want a supersymmetric solutionto <strong>the</strong> equations (A.5), with <strong>the</strong> N D3-<strong>branes</strong> replaced by N units <strong>of</strong> F 5 flux and anexplicit source term for M wrapped D5-<strong>branes</strong> localised at r = 0. Impos<strong>in</strong>g <strong>the</strong> ISDcondition for G 3 = F 3 +iH 3 , <strong>the</strong> only rema<strong>in</strong><strong>in</strong>g equations are <strong>the</strong> Bianchi identitiesdG 3 = −2πα ′ g s Mδ D5 , dF 5 = −H 3 ∧F 3 . (5.7)The D5-brane is wrapped on a holomorphic 2-cycle <strong>of</strong> T 1,1 , and its magnetic flux escapesthrough <strong>the</strong> dual 3-cycle 3 . As reviewed <strong>in</strong> Appendix F, <strong>the</strong>re exist a 3-form (F.16) ω3CFwhich <strong>in</strong>tegrates to 8π 2 over <strong>the</strong> conifold 3-cycle. We can solve <strong>the</strong> BI for F 3 by∫F 3 = − α′ g s12 MωCF 3 , so that −4π 2 α ′ F 3 = M . (5.8)g s S 3Thisgives<strong>the</strong>normalizationforG 3 ,whichmusto<strong>the</strong>rwisebeproportionalto<strong>the</strong>primitive(2,1)-form (F.17) <strong>of</strong> <strong>the</strong> conifold,G 3 = − α′ g s2 Mω(2,1) . (5.9)This solution implies a logr dependence <strong>of</strong> <strong>the</strong> background B-field, as first noted <strong>in</strong> [128]:H 3 = 3 2 α′ g s M dr(r ∧ωCF 2 , ⇒ B 2 = α ′ πb 0 + 3 2 g sM ln r )ω2 CF . (5.10)r 0The <strong>in</strong>tegration constants b 0 and r 0 are not <strong>in</strong>dependent, obviously, but it will turn outconvenient to write B 2 <strong>in</strong> this way (<strong>the</strong>n b 0 is <strong>the</strong> real <strong>in</strong>tegration constant while r 0 willbe <strong>the</strong> <strong>in</strong>tegration constant <strong>in</strong> <strong>the</strong> warp factor solution (5.12) below). The rema<strong>in</strong><strong>in</strong>gequation we have to solve is <strong>the</strong> BI for F 5 , which gives an equation for <strong>the</strong> warp factorh; rotational symmetry (<strong>the</strong> <strong>branes</strong> are at <strong>the</strong> tip) implies that h depends only on r:1r 5∂ rr 5 ∂ r h(r) = 81 2 (α′ g s M) 21 r . (5.11)The solution is easily found to be h ∼ lnr/r 4 . Remember<strong>in</strong>g <strong>the</strong>re must also be N units<strong>of</strong> flux through T 1,1 due to <strong>the</strong> regular D3-<strong>branes</strong>, <strong>the</strong> full solution readsh(r) = R4r 4 (1+ 32π α′ g sM 2N (ln r r 0+ 1 4 ) ). (5.12)3 This can be seen for <strong>in</strong>stance <strong>in</strong> toric geometry: <strong>the</strong> two-cycle is <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> two toric divisorscorrespond<strong>in</strong>g to opposite po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> toric diagram, while <strong>the</strong> 3-cycle can be taken as <strong>the</strong> base <strong>of</strong> athird toric divisor.


5.3. Fractional <strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity 63(a) KS quiver.(b) Seiberg dual (dualiz<strong>in</strong>g on <strong>the</strong>first node).Figure 5.1: Quiver diagram <strong>of</strong> <strong>the</strong> U(N+M)×U(N) KT/KS <strong>the</strong>ory (on <strong>the</strong> left) and its Seibergdual(on<strong>the</strong>right). Remarkthat<strong>the</strong>dualquiverisself-similarwith<strong>gauge</strong>groupU(N)×U(N−M).The constant R 4 is def<strong>in</strong>ed as <strong>in</strong> (4.31), with X 5 = T 1,1 (it has volume 1627 π3 ). The<strong>in</strong>tegration constant has been fixed <strong>in</strong> order to have N units <strong>of</strong> D3-brane charge at r = r 0 .The D3-brane charge is actually runn<strong>in</strong>g with r,∫1Q D3 = −(4π 2 α ′ ) 2 F 5 = N + 3g s T 1,1 2π g sM 2 ln r . (5.13)r 0The KT solution we have just derived is perfectly smooth at large r. Differently from<strong>the</strong> solution discussed around equation (4.51), however, <strong>the</strong> metric is not asymptoticallyAdS but <strong>in</strong>stead differs from it by logarithmic corrections. We will discuss this resultand its <strong>in</strong>terpretation <strong>in</strong> <strong>the</strong> next subsection, but we can already anticipate that <strong>the</strong>selog corrections beautifully encode <strong>the</strong> renormalization group runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> coupl<strong>in</strong>gconstants <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory.At small r, however, <strong>the</strong> metric has a naked s<strong>in</strong>gularity [127]. This could be expectedfrom <strong>the</strong> fact that <strong>the</strong> D3-brane charge (5.13) goes negative for r small enough, whichshould not be allowed physically.5.3.2 Cascade <strong>in</strong> <strong>the</strong> N = 1 quiverThe naive <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> KT solution is that it results from backreact<strong>in</strong>g N regular<strong>branes</strong> and M <strong>fractional</strong> <strong>branes</strong>. In that case <strong>the</strong> dual quiver is <strong>the</strong> one given <strong>in</strong> Figure5.1(a), with <strong>gauge</strong> group SU(N +M)×SU(N). However, <strong>the</strong> expression (5.13) for <strong>the</strong>D3-brane charge immediately leads to problems with this <strong>in</strong>terpretation. Firstly it iscont<strong>in</strong>uous, and secondly it <strong>in</strong>creases as r <strong>in</strong>creases.The first puzzle is not really a problem. The <strong>gauge</strong> <strong>in</strong>variant D3-brane charge ∫ F 5doesnotcount<strong>the</strong>number<strong>of</strong>D3-<strong>branes</strong>, becauseitisnotquantized, asbrieflyreviewed<strong>in</strong>Appendix A. One can def<strong>in</strong>e <strong>the</strong> Page charge (A.9), which is quantized but not <strong>in</strong>variantunder large <strong>gauge</strong> transformations. This Page charge is equal to N + b 0 M, although<strong>the</strong>re is an ambiguity related to large <strong>gauge</strong> transformations, which is actually related toSeiberg dualities <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory. We will spell out this <strong>in</strong>terpretation <strong>in</strong> more details<strong>in</strong> Chapter 7, section 7.3.3; see [129] for <strong>the</strong> orig<strong>in</strong>al presentation.In <strong>the</strong> follow<strong>in</strong>g we want to <strong>in</strong>terpret <strong>the</strong> logarithmic variation <strong>in</strong> F 5 and B 2 from <strong>the</strong>field <strong>the</strong>ory perspective. Let us consider <strong>the</strong> <strong>the</strong>ory <strong>in</strong> Figure 5.1(a), with <strong>gauge</strong> group


64 Chapter 5. Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>(a) Surface <strong>of</strong> fixed po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> KW model.The red dots on <strong>the</strong> axis <strong>of</strong> g 1 and g 2 are <strong>the</strong>SQCD fixed po<strong>in</strong>ts.(b) Renormalizationgrouptrajectories<strong>in</strong><strong>the</strong>KT/KS model.Figure 5.2: On <strong>the</strong> left we show <strong>the</strong> surface <strong>of</strong> fixed po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> Klebanov-Witten SCFT withSU(N)×SU(N) <strong>gauge</strong> group. On <strong>the</strong> right <strong>the</strong> <strong>gauge</strong> group is SU(N+M)×SU(N) and <strong>the</strong>re isno surface <strong>of</strong> fixed po<strong>in</strong>ts anymore, only <strong>the</strong> SQCD fixed po<strong>in</strong>ts survive (<strong>the</strong> red dots). We showan RG trajectory which is first attracted to g 2 = g ∗ 2 while <strong>the</strong> superpotential coupl<strong>in</strong>g h decreases,until <strong>the</strong> perturbation due to <strong>the</strong> first <strong>gauge</strong> group takes over and g 1 beg<strong>in</strong>s to <strong>in</strong>crease. As wego nearer to <strong>the</strong> g 1 = g ∗ 1 SQCD fixed po<strong>in</strong>t <strong>the</strong> coupl<strong>in</strong>g h becomes relevant and start <strong>in</strong>creas<strong>in</strong>gaga<strong>in</strong>. The area <strong>in</strong> pale red on <strong>the</strong> right is <strong>the</strong> surface where <strong>the</strong> RG runn<strong>in</strong>g is very slow, as longas N ≫ M, s<strong>in</strong>ce this surface is <strong>in</strong>herited from <strong>the</strong> KW surface <strong>of</strong> fixed po<strong>in</strong>ts. These figures are<strong>in</strong>spired from [85].SU(N +M)×SU(N), and superpotentialW = h(A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 ) (5.14)We will analyze <strong>the</strong> RG flow <strong>in</strong> some detail, follow<strong>in</strong>g [118, 85]. We have three dist<strong>in</strong>ctbeta functions,β( 8π2g12 ) = N +3M +2Nγ 0 , β( 8π2g22 ) = N −2M +2(N +M)γ 0 , β(h) = (1+2γ 0 )h.(5.15)If we set two <strong>of</strong> <strong>the</strong> coupl<strong>in</strong>g constants to zero, we can f<strong>in</strong>d a fixed po<strong>in</strong>t for <strong>the</strong> thirdcoupl<strong>in</strong>g. Consider <strong>the</strong> SQCD fixed po<strong>in</strong>t at g 2 = h = 0, g 1 = g1 ∗ . At this fixed po<strong>in</strong>t wehave γ 0 = − 1 2 − 3M2N , and we see that <strong>the</strong> coupl<strong>in</strong>g g 2 is irrelevant: for any small g 2 > 0,<strong>the</strong> RG flow will lead aga<strong>in</strong> to <strong>the</strong> SQCD fixed po<strong>in</strong>t <strong>of</strong> <strong>the</strong> first <strong>gauge</strong> group SU(N+M),as long as h = 0. On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> coupl<strong>in</strong>g h is relevant <strong>the</strong>re; this is completelyanalogous to <strong>the</strong> case <strong>of</strong> SQCD with N f < 2N c reviewed <strong>in</strong> Appendix C. This behavioris shown <strong>in</strong> Figure 5.2(b).The knowledge <strong>of</strong> SQCD with quartic superpotential expla<strong>in</strong>ed <strong>in</strong> Appendix C allowsus to follow <strong>the</strong> RG flow if we stay near <strong>the</strong> boundary <strong>of</strong> <strong>the</strong> surface <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> <strong>the</strong>KW model. As <strong>the</strong> superpotential coupl<strong>in</strong>g h <strong>in</strong>creases, what should we do? We can go to


5.3. Fractional <strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity 65Figure 5.3: The KT/KS RG flow, a.k.a. Seiberg duality cascade. Each time one <strong>of</strong> <strong>the</strong> two <strong>gauge</strong>coupl<strong>in</strong>g diverges, one goes to ano<strong>the</strong>r Seiberg dual frame; <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> Seiberg dual <strong>gauge</strong>group decreases while <strong>the</strong> o<strong>the</strong>r coupl<strong>in</strong>g will now <strong>in</strong>crease and eventually diverge.aSeibergdualdescription! TheSeibergdual<strong>the</strong>oryhas<strong>gauge</strong>groupSU(N−M)×SU(N)shown <strong>in</strong> Figure 5.1(b) and a self-similar superpotentialW = h ′ (a 1 b 1 a 2 b 2 −a 1 b 2 a 2 b 1 ), (5.16)which arises after <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> dual mesons M ij = A i B j . In this new description<strong>the</strong> coupl<strong>in</strong>g h ′ decreases and we flow towards <strong>the</strong> SQCD fixed po<strong>in</strong>t <strong>of</strong> SU(N − M).But if g 2 is non-zero <strong>the</strong> SU(N) <strong>gauge</strong> group is now <strong>in</strong> <strong>the</strong> same position as <strong>the</strong> first<strong>gauge</strong> group before: <strong>the</strong> SQCD fixed po<strong>in</strong>t <strong>of</strong> this SU(N) with N f = 2N −2M is now anattractor for <strong>the</strong> RG flow. As we approach <strong>the</strong> region <strong>of</strong> large g 2 <strong>the</strong> coupl<strong>in</strong>g h ′ becomesrelevant, and <strong>the</strong> story unfolds as before. This is <strong>the</strong> cascade: we can follow <strong>the</strong> RG flowthrough multiple Seiberg dualities, and at each step <strong>the</strong> rank <strong>of</strong> one or <strong>the</strong> o<strong>the</strong>r <strong>gauge</strong>group decreases by 2M, but <strong>the</strong> <strong>the</strong>ory rema<strong>in</strong>s self-similar.Go<strong>in</strong>g upstream <strong>in</strong> <strong>the</strong> cascade, we see that we have an SU(N +M)×SU(N) <strong>the</strong>oryat any scale, but N gets bigger and bigger. It is a quite unconventional UV completion.How does this RG flow match with <strong>the</strong> super<strong>gravity</strong> solution with “runn<strong>in</strong>g fluxes”?To have a precise match<strong>in</strong>g, we need a precise energy/radius relation, similarly to <strong>the</strong>AdS/CFT case, and this seems like a hard problem. However, let us see what happens ifwe keep <strong>the</strong> same relation as <strong>in</strong> <strong>the</strong> AdS case, r/r 0 = E/E 0 . Suppose we def<strong>in</strong>e <strong>the</strong> dual<strong>the</strong>ory at an energy E 0 correspond<strong>in</strong>g to <strong>the</strong> <strong>in</strong>tegration constant r 0 <strong>in</strong> (5.13). There weidentify Q D3 = N with <strong>the</strong> parameter N <strong>in</strong> <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups <strong>of</strong> <strong>the</strong> quiver<strong>the</strong>ory. We want to take N ≫ M; this is just a choice <strong>of</strong> <strong>the</strong> <strong>in</strong>tegration constant r 0 tobe large enough, and <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory it corresponds to go<strong>in</strong>g at very high energy <strong>in</strong><strong>the</strong> cascade. In this UV region we can use <strong>the</strong> KW results, <strong>in</strong> particular γ 0 = − 1 2up tocorrections <strong>of</strong> order (M/N) 2 4 . The field <strong>the</strong>ory beta functions becomeβ( 8π2g 2 1) = 3M +o( M N )2 , β( 8π2g22 ) = −3M +o( M N )2 , β(h) = o( M N )2 . (5.17)We see that <strong>in</strong> this UV limit <strong>the</strong> superpotential coupl<strong>in</strong>g is at a quasi fixed po<strong>in</strong>t, asits runn<strong>in</strong>g is much slower than <strong>the</strong> runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs. For simplicity we4 The first corrections are at this order because <strong>the</strong>re is a Z 2 symmetry which exchanges M → −Mand N → N + M [118]. It is important that <strong>the</strong>re is no o(M/N) corrections, because that would be<strong>in</strong>compatible with <strong>the</strong> constancy <strong>of</strong> <strong>the</strong> dilaton <strong>in</strong> <strong>the</strong> <strong>gravity</strong> solution.


66 Chapter 5. Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>can take hµ ≈ 1. In this approximation <strong>the</strong> AdS/CFT relationships (4.44)-(4.45) can beused, and <strong>the</strong>y simplify to8π 2g128π 2g12+ 8π2g 2 2− 8π2g 2 2≈=2πg s, (5.18)∫1πα ′ B 2 − 2π . (5.19)g s S 2 g sIn <strong>the</strong> KT background, we have that8π 2g 2 1− 8π2g 2 2= 4π (b 0 − 1 )+6M ln r . (5.20)g s 2 r 0Us<strong>in</strong>g <strong>the</strong> energy/radius relation r ∼ E, we can read <strong>the</strong> RG flow from super<strong>gravity</strong>. Wehave <strong>the</strong> runn<strong>in</strong>g8π 2g 2 1= 2πg sb 0 +3M ln r r 0,8π 2g 2 2= 2πg s(b 0 −1)−3M ln r r 0, (5.21)which exactly agrees with <strong>the</strong> field <strong>the</strong>ory result (5.17), with <strong>in</strong>itial conditions set byb 0 (when b 0 = 1 2 both <strong>gauge</strong> coupl<strong>in</strong>gs are equal at r = r 0). The <strong>gauge</strong> coupl<strong>in</strong>g g 2 1<strong>in</strong>creases while g 2 2 decreases. The puzzle is how can we follow <strong>the</strong> RG flow when g2 1 blowsup, which happens when r = r 0 exp(− 2πb 03Mg s). At that scale <strong>the</strong> super<strong>gravity</strong> solution isperfectly well behaved, but <strong>the</strong> period ∫ S 2 B 2 becomes negative. Moreover, at that scale<strong>the</strong> Maxwell D3-brane charge (5.13) is shifted from N to N −b 0 M. This is <strong>the</strong> first step<strong>of</strong> <strong>the</strong> cascade: we can go to a Seiberg dual frame <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory, as we expla<strong>in</strong>ed, andfollow <strong>the</strong> RG flow. In super<strong>gravity</strong> <strong>the</strong> Seiberg duality corresponds to a shift b 0 → b 0 −1<strong>of</strong> <strong>the</strong> B-field, which is a large <strong>gauge</strong> transformation [129]. From <strong>the</strong>re we can go on. Foreach cascade step r k /r k−1 = exp(− 2π3Mg s) <strong>the</strong> Maxwell charge shifts by −M. This dualitycascade is shown <strong>in</strong> Figure 5.3.5.3.3 The low energy <strong>the</strong>ory and <strong>the</strong> deformed conifoldSuppose we start sometwhere <strong>in</strong> <strong>the</strong> UV with an SU(N + M) × SU(N) <strong>gauge</strong> group,with N = kM for k some large <strong>in</strong>teger. As we go down along <strong>the</strong> cascade and flowto <strong>the</strong> IR, <strong>the</strong> <strong>gauge</strong> group will eventually reduce to SU(2M) × SU(M). The SU(M)group is asymptotically free so it seems that <strong>the</strong> dynamics is dom<strong>in</strong>ated by <strong>the</strong> SU(2M)<strong>gauge</strong> group, which has 2M flavors. The dynamics here is very close to what happensfor SQCD with N f = N c , <strong>the</strong> only difference be<strong>in</strong>g that <strong>the</strong> flavor group is brokento SU(M) × SU(2) × SU(2) by <strong>the</strong> superpotential (5.14). The low energy dynamics isequivalent to a system <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variant (under SU(2M)) mesons and baryons [130, 131],M ij = B i A j , B ∼ A 2M , ¯B ∼ B 2M . (5.22)ThebaryonsB, ¯B are<strong>the</strong>fullyantisymmetriccomb<strong>in</strong>ations<strong>of</strong><strong>the</strong>fieldsA i andB j , respectively,constructed by us<strong>in</strong>g <strong>the</strong> ǫ tensor <strong>of</strong> SU(2M). They are SU(M)×SU(2)×SU(2)s<strong>in</strong>glets. It is well known that N f = N c SQCD has a quantum deformed moduli space.


5.3. Fractional <strong>branes</strong> at <strong>the</strong> conifold s<strong>in</strong>gularity 67This deformation can be implemented through a Lagrange multiplier <strong>in</strong> <strong>the</strong> superpotential.In our case,W = h(M 11 M 22 −M 12 M 21 )+ξ(detM−B ¯B −Λ 4M2M). (5.23)Note that <strong>the</strong> matrix M <strong>of</strong> mesons must be understood as a 2M ×2M matrix. The scaleΛ 2M is <strong>the</strong> dynamically generated scale <strong>of</strong> SU(2M). The moduli space has two branches,as we will show. The F-terms relations are( )M22 −Mh 12= ξ(detM)M −1 , ξB = 0 = ξ−M 21 M ˜B, (5.24)11toge<strong>the</strong>r with <strong>the</strong> constra<strong>in</strong>t detM−B˜B = Λ 4M2M . If B, ˜B ≠ 0, we must have ξ = 0 and<strong>the</strong>n M ij = 0. It is <strong>the</strong> baryonic branch,M ij = 0,B ¯B = −Λ 4M2M . (5.25)which is <strong>the</strong> merger <strong>of</strong> two classical baryonic branches <strong>in</strong>to a s<strong>in</strong>gle one. The secondbranch is <strong>the</strong> mesonic branch, with non-vanish<strong>in</strong>g VEVs for M ij . In that case we musthave ξ ≠ 0, which forces <strong>the</strong> baryons to vanish. We will not discuss this branch fur<strong>the</strong>rhere 5 .Let us concentrate on <strong>the</strong> baryonic branch. In this vacuum, we can <strong>in</strong>tegrate out all<strong>the</strong> modes because we expect a mass gap <strong>of</strong> order Λ 2M , as <strong>in</strong> any conf<strong>in</strong><strong>in</strong>g <strong>the</strong>ory. Atscales below Λ 2M , we are left with pure SU(M) from <strong>the</strong> second <strong>gauge</strong> group, which hasit own dynamical scale Λ M . Actually, <strong>the</strong> baryonic branch vacuum breaks <strong>the</strong> baryonicsymmetry U(1) B which gives charge +1 to A i and −1 to B i , hence we must also have amassless Goldstone boson [134] <strong>in</strong> <strong>the</strong> low energy <strong>the</strong>ory. In summary, <strong>the</strong> <strong>the</strong>ory <strong>in</strong> <strong>the</strong>IR must be SU(M) SYM toge<strong>the</strong>r with a massless Goldstone chiral multiplet.What about <strong>the</strong> dual str<strong>in</strong>g <strong>the</strong>ory solution? A natural expectation is that <strong>the</strong> s<strong>in</strong>gularityat small r <strong>in</strong> <strong>the</strong> KT solution signals <strong>the</strong> breakdown <strong>of</strong> <strong>the</strong> super<strong>gravity</strong> approximationnear <strong>the</strong> <strong>fractional</strong> D3-brane sources, and that we need str<strong>in</strong>gy effects to resolve thiss<strong>in</strong>gularity. This expectation is correct, but it turns out, never<strong>the</strong>less, that <strong>the</strong> overalleffect <strong>of</strong> <strong>the</strong>se str<strong>in</strong>gy corrections can be fully captured by a super<strong>gravity</strong> solution, as wasshown <strong>in</strong> <strong>the</strong> sem<strong>in</strong>al work <strong>of</strong> Klebanov and Strassler [118].In a conf<strong>in</strong><strong>in</strong>g <strong>the</strong>ory with a mass gap, one expects <strong>the</strong> holographic direction encod<strong>in</strong>g<strong>the</strong> energy scale to term<strong>in</strong>ate <strong>in</strong> <strong>the</strong> IR. One can see this us<strong>in</strong>g <strong>the</strong> area law criterion forWilson loops, which are dual to open str<strong>in</strong>gs with <strong>the</strong>ir endpo<strong>in</strong>ts fixed at <strong>the</strong> boundary[135, 136]. We refer to <strong>the</strong> review [137] and references <strong>the</strong>re<strong>in</strong> for more details.A crucial clue as to how <strong>the</strong> warped conifold geometry could term<strong>in</strong>ate comes fromcomput<strong>in</strong>g <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> SU(M + 1) × SU(1) <strong>the</strong>ory. This <strong>the</strong>ory can bethought as dual to a s<strong>in</strong>gle probe D3-brane on <strong>the</strong> background dual to SU(M) (with <strong>the</strong>cascad<strong>in</strong>g UV completion discussed above), <strong>in</strong> which case <strong>the</strong> moduli space will be <strong>the</strong>space seen by this probe D3-brane. There will be an Affleck-D<strong>in</strong>e-Seiberg superpotential[138] which arises non-perturbatively for <strong>the</strong> <strong>gauge</strong> group SU(N + 1) with two flavors,and consequently one can show that <strong>the</strong> moduli space is <strong>of</strong> <strong>the</strong> form [118](M 11 M 22 −M 12 M 21 ∼h 1−M Λ 3M+1M+1) 1M. (5.26)5 A thorough discussion <strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g quiver can be found <strong>in</strong> [132]. A super<strong>gravity</strong>solution dual to some mesonic branch was discussed <strong>in</strong> [133].


68 Chapter 5. Fractional D-<strong>branes</strong> and <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong>This is <strong>the</strong> deformed conifold! So it must be that <strong>the</strong> <strong>fractional</strong> D3-<strong>branes</strong> at <strong>the</strong> apex<strong>of</strong> <strong>the</strong> cone trigger a complex deformation <strong>of</strong> it. This is called a geometric transition.Someth<strong>in</strong>g very similar is known to exist <strong>in</strong> <strong>the</strong> context <strong>of</strong> topological str<strong>in</strong>gs [139, 140],<strong>in</strong> which case open str<strong>in</strong>gs on <strong>the</strong> resolved conifold are dual to closed str<strong>in</strong>gs on <strong>the</strong>deformed conifold. In our physical context, <strong>the</strong> understand<strong>in</strong>g is that we have somestr<strong>in</strong>gy dynamical process (dynamical <strong>in</strong> <strong>the</strong> same sense as <strong>the</strong> scale Λ SYM is dynamical)by which M D5-<strong>branes</strong> wrapped on <strong>the</strong> vanish<strong>in</strong>g 2-cycle <strong>of</strong> <strong>the</strong> conifold are transmuted<strong>in</strong>to pure 3-form flux on <strong>the</strong> 3-cycle <strong>of</strong> <strong>the</strong> deformed conifold,− 1 ∫4π 2 α ′ F 3 = M . (5.27)g s S 3The KS solution builds on this <strong>in</strong>sight by propos<strong>in</strong>g <strong>the</strong> super<strong>gravity</strong> ansatz (5.3)-(5.4) based on <strong>the</strong> deformed conifold, X 6 = C def . The Calabi-Yau metric on this space isknown [104, 141]. To f<strong>in</strong>d a supersymmetric solution what we have to do is to construct aprimitive (2,1)-form G 3 on C def which asymptotes to <strong>the</strong> G 3 (5.9) <strong>of</strong> <strong>the</strong> KT solution atlarge r. Then one can <strong>in</strong>tegrate <strong>the</strong> warp factor equation (partly numerically), and onef<strong>in</strong>ds that <strong>the</strong> space is smooth at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> cone. When g s M is large <strong>the</strong> curvatureis small everywhere, and super<strong>gravity</strong> is a good approximation.We do not give <strong>the</strong> full detail <strong>of</strong> <strong>the</strong> KS solution here, because we will not need it much<strong>in</strong> this <strong>the</strong>sis 6 . We refer <strong>the</strong> reader to <strong>the</strong> orig<strong>in</strong>al papers [118, 142, 143, 144, 145, 146].The Klebanov-Strassler solution is dual to <strong>the</strong> Z 2 symmetric vacuum at B = ¯B = iΛ 2M2Mon <strong>the</strong> baryonic branch (5.25), while a family <strong>of</strong> super<strong>gravity</strong> solutions cover<strong>in</strong>g <strong>the</strong> fullbaryonic branch was worked out <strong>in</strong> [126].5.4 Fractional <strong>branes</strong> on various s<strong>in</strong>gularitiesWehavejustseenthatbackreact<strong>in</strong>g<strong>fractional</strong><strong>branes</strong>at<strong>the</strong>coneC(T 1,1 )leadstorunn<strong>in</strong>gfluxes at large radius and to a complex structure deformation (geometric transition) atsmall radius. How does this picture generalize to arbitrary s<strong>in</strong>gularities ? The “naive”KT ansatz with explicit sources on a CY cone can be generalized easily whenever <strong>the</strong>conical CY metric is known, <strong>the</strong> only technical difficulty be<strong>in</strong>g <strong>the</strong> construction <strong>of</strong> <strong>the</strong>primitive (2,1)-form G 3 . This was done <strong>in</strong> [10, 11] for <strong>the</strong> case <strong>of</strong> <strong>the</strong> N = 2 s<strong>in</strong>gularityC×C 2 /Z 2 , while <strong>the</strong> KT-like solution for <strong>the</strong> full family <strong>of</strong> C(Y p,q ) metrics was workedout <strong>in</strong> [147]. In all <strong>the</strong> known cases <strong>the</strong> solution has runn<strong>in</strong>g fluxes, B 2 ∼ lnr, while <strong>the</strong>s<strong>in</strong>gularity <strong>in</strong> <strong>the</strong> warped factor leads to a naked s<strong>in</strong>gularity at small radius.As for <strong>the</strong> conifold, <strong>the</strong>re are two conceptually different issues to address. The first is<strong>the</strong> UV puzzle: <strong>the</strong> runn<strong>in</strong>g fluxes <strong>in</strong>dicate that <strong>the</strong> Maxwell D3-brane charge <strong>in</strong>creaseswith r, and this must be <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> dual quiver field <strong>the</strong>ory, if possible. It turnsout that <strong>the</strong>re are two possible <strong>in</strong>terpretation:• The <strong>fractional</strong> brane may sit at an isolated s<strong>in</strong>gularity, so that it cannot move awayfrom <strong>the</strong> tip. Then <strong>the</strong> RG flow as seen <strong>in</strong> super<strong>gravity</strong> can be followed <strong>in</strong> <strong>the</strong>quiver language by repeat<strong>in</strong>g a self-similar sequence <strong>of</strong> Seiberg dualities. Theseduality cascades can be quite <strong>in</strong>tricate as <strong>the</strong> quiver grows more complex. These6 We will briefly <strong>in</strong>troduce <strong>the</strong> deformed conifold metric <strong>in</strong> section 7.4.3 <strong>of</strong> Chapter 7 below.


5.4. Fractional <strong>branes</strong> on various s<strong>in</strong>gularities 69Seiberg duality cascade were matched to <strong>the</strong> super<strong>gravity</strong> description for all <strong>the</strong>Y p,q quivers <strong>in</strong> [147].• The <strong>fractional</strong> <strong>branes</strong> may sit at a non-isolated codimension four s<strong>in</strong>gularity. Thesimplest example is <strong>the</strong> one <strong>of</strong> a N = 2 <strong>fractional</strong> brane on <strong>the</strong> orbifold C×C 2 /Γ.In general, <strong>fractional</strong> <strong>branes</strong> at non-isolated s<strong>in</strong>gularities are <strong>of</strong>ten simply calledN = 2 <strong>fractional</strong> <strong>branes</strong> as well, because <strong>the</strong>ir low energy dynamics is N = 2 SYMaway from <strong>the</strong> tip. In this case <strong>the</strong> runn<strong>in</strong>g fluxes cannot be <strong>in</strong>terpreted as a Seibergduality, and <strong>the</strong>re was some confusion <strong>in</strong> <strong>the</strong> literature concern<strong>in</strong>g <strong>the</strong> correct field<strong>the</strong>ory <strong>in</strong>terpretation. We will discuss <strong>in</strong> detail <strong>the</strong> N = 2 cascade <strong>in</strong> <strong>the</strong> C×C 2 /Z 2geometry <strong>in</strong> <strong>the</strong> next chapter.The second issue is to understand <strong>the</strong> IR <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g quiver <strong>the</strong>ory, and to implement<strong>the</strong> IR dynamical effects <strong>in</strong> <strong>the</strong> dual str<strong>in</strong>g <strong>the</strong>ory background. This should cure <strong>the</strong> bads<strong>in</strong>gularity <strong>of</strong> <strong>the</strong> KT-like solution. By direct analysis <strong>of</strong> <strong>the</strong> dual field <strong>the</strong>ory quiver(us<strong>in</strong>g <strong>the</strong> known non-perturbative effects aris<strong>in</strong>g <strong>in</strong> N = 1 <strong>the</strong>ories), it was found that<strong>the</strong>re are three k<strong>in</strong>ds <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, depend<strong>in</strong>g on <strong>the</strong> IR dynamics <strong>of</strong> <strong>the</strong> low energyquiver [148]:• Deformation <strong>fractional</strong> <strong>branes</strong>. These are <strong>the</strong> <strong>fractional</strong> <strong>branes</strong> which sit at a s<strong>in</strong>gularitywhich admits a complex structure deformation 7 . Such <strong>fractional</strong> <strong>branes</strong>trigger a geometric transition similarly to <strong>the</strong> conifold (it is actually always a conifoldtransition, locally). The low energy field <strong>the</strong>ory is conf<strong>in</strong><strong>in</strong>g.• DSB <strong>fractional</strong> <strong>branes</strong>. These are <strong>the</strong> <strong>fractional</strong> <strong>branes</strong> located at an isolated s<strong>in</strong>gularitywhich does not admit a complex structure deformation. Then <strong>the</strong> low energyquiver dynamically breaks supersymmetry (DSB) but <strong>the</strong>re is no stable vacua, <strong>in</strong>stead<strong>the</strong> <strong>the</strong>ory has a runnaway behavior [149, 148, 150, 151].• N = 2 <strong>fractional</strong> <strong>branes</strong>, atanon-isolateds<strong>in</strong>gularity. Inthiscase<strong>the</strong><strong>branes</strong>cannotundergo a geometric transition, because <strong>the</strong>re exists no local complex deformation<strong>of</strong> a non-isolated s<strong>in</strong>gularity. An abelian <strong>gauge</strong> group survives at low energy <strong>in</strong> <strong>the</strong>quiver. The low energy dynamics is effectively N = 2 and it can be understoodthanks to Seiberg-Witten <strong>the</strong>ory. We will discuss this case <strong>in</strong> <strong>the</strong> next chapter.One can also consider <strong>fractional</strong> <strong>branes</strong> <strong>of</strong> various k<strong>in</strong>ds simultaneously, which can lead to<strong>in</strong>terest<strong>in</strong>g physics. One such example with mixed features will be worked out at length<strong>in</strong> Chapter 7.7 We refer to subsection B.4.2 <strong>of</strong> Appendix B for details on this geometric condition.


Chapter 6The N = 2 cascade revisited and<strong>the</strong> enhançon bear<strong>in</strong>gsIn <strong>the</strong> previous chapter we reviewed <strong>the</strong> prototypical example <strong>of</strong> a super<strong>gravity</strong> solutionfor so-called deformation <strong>fractional</strong> brane. There exists a rich literature which deals with<strong>the</strong> Klebanov-Strassler solution and its various generalizations.The case <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong>, which <strong>in</strong>volves twisted sector fields propagat<strong>in</strong>galong a complex l<strong>in</strong>e <strong>of</strong> s<strong>in</strong>gularity, was less understood so far. Here we aim at fill<strong>in</strong>g thatgap. This chapter is based on [2], written <strong>in</strong> collaboration with Francesco Ben<strong>in</strong>i, MatteoBertol<strong>in</strong>i and Stefano Cremonesi.6.1 Introduction and overviewTheexamplewewillconsiderisanN = 2modelobta<strong>in</strong>edbyconsider<strong>in</strong>g<strong>fractional</strong><strong>branes</strong>at a C×C 2 /Z 2 orbifold (also known as A 1 s<strong>in</strong>gularity) [10, 11]. The super<strong>gravity</strong> solutionfound <strong>in</strong> [10, 11] has been <strong>in</strong>terpreted <strong>in</strong> various ways <strong>in</strong> <strong>the</strong> literature [11, 134, 152].Consideration <strong>of</strong> probe <strong>fractional</strong> <strong>branes</strong> <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> solutions [11] and recentmethods based on <strong>the</strong> computation <strong>of</strong> Page charges [129, 1] suggest that <strong>the</strong> RG flow <strong>of</strong><strong>the</strong> dual <strong>the</strong>ories <strong>in</strong>volves strong coupl<strong>in</strong>g transitions where <strong>the</strong> rank <strong>of</strong> <strong>the</strong> non-abelianfactor <strong>in</strong> a <strong>gauge</strong> group with an adjo<strong>in</strong>t chiral superfield drops accord<strong>in</strong>g to <strong>the</strong> samenumerology as <strong>in</strong> Seiberg duality, lead<strong>in</strong>g to a cascade. S<strong>in</strong>ce Seiberg-like dualities donot hold <strong>in</strong> this case, such strong coupl<strong>in</strong>g transitions cry for an explanation. It is worthstress<strong>in</strong>g that such a phenomenon is not specific to N = 2 models, but <strong>in</strong>stead appearsquite generically <strong>in</strong> any N = 1 setup admitt<strong>in</strong>g non-isolated s<strong>in</strong>gularities toge<strong>the</strong>r withisolated ones: <strong>the</strong> RG flow, as read from <strong>the</strong> <strong>gravity</strong> solution, is described by suitablecomb<strong>in</strong>ations<strong>of</strong>SeibergdualitycascadesandN = 2-liketransitions. Therefore, clarify<strong>in</strong>gwhich field <strong>the</strong>ory dynamics governs <strong>the</strong>se transitions is <strong>in</strong>strumental to understand<strong>in</strong>ghow str<strong>in</strong>g <strong>the</strong>ory UV-completes field <strong>the</strong>ories aris<strong>in</strong>g on systems <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> atra<strong>the</strong>r generic CY s<strong>in</strong>gularities.In this chapter we reconsider <strong>the</strong> cascad<strong>in</strong>g solution describ<strong>in</strong>g regular and <strong>fractional</strong>D3 <strong>branes</strong> at <strong>the</strong> C×C 2 /Z 2 orbifold, as a prototype <strong>of</strong> <strong>the</strong> more general class <strong>of</strong> <strong>branes</strong>at non-isolated s<strong>in</strong>gularities, and we provide a solution for this problem. Our proposal71


72 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gselaborates on previous ones [11, 134], and solves a number <strong>of</strong> problems raised <strong>the</strong>re. Thedual <strong>gauge</strong> <strong>the</strong>ory is a SU(N +M)×SU(N) N = 2 quiver with bifundamental matter,where N is <strong>the</strong> number <strong>of</strong> regular <strong>branes</strong> and M <strong>the</strong> number <strong>of</strong> <strong>fractional</strong> ones, and itsdual super<strong>gravity</strong> solution is known [10]. The structure <strong>of</strong> such a <strong>gauge</strong> <strong>the</strong>ory has manysimilarities with <strong>the</strong> conifold one, and <strong>the</strong> two are <strong>in</strong>deed related by a N = 1-preserv<strong>in</strong>gmass deformation [102]. In order to provide a precise <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g RGflow, we start approximat<strong>in</strong>g <strong>the</strong> dynamics around scales where one <strong>of</strong> <strong>the</strong> two <strong>gauge</strong>coupl<strong>in</strong>g diverges with an effective N = 2 SQCD, treat<strong>in</strong>g <strong>the</strong> o<strong>the</strong>r group as global.This allows us to claim that <strong>the</strong> transition occurs at <strong>the</strong> baryonic root (i.e.<strong>the</strong> po<strong>in</strong>t<strong>of</strong> <strong>the</strong> quantum moduli space <strong>of</strong> N = 2 SQCD where <strong>the</strong> baryonic branch meets <strong>the</strong>Coulomb branch), where <strong>the</strong> strongly coupled SU(N +M) group is effectively broken toSU(N −M) (plus abelian factors). As <strong>in</strong> <strong>the</strong> N = 1 conifold model, this is an iterativeprocess which has <strong>the</strong> effect <strong>of</strong> lower<strong>in</strong>g <strong>the</strong> effective ranks <strong>of</strong> <strong>the</strong> two <strong>gauge</strong> groups as <strong>the</strong>energy decreases, <strong>in</strong> a way which is exactly matched by <strong>the</strong> dual super<strong>gravity</strong> solution.On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> power <strong>of</strong> <strong>the</strong> Seiberg-Witten (SW) curve technology allows usto check our claim exactly, <strong>in</strong> <strong>the</strong> full quiver <strong>the</strong>ory. We provide a short <strong>in</strong>troduction toSeiberg-Witten <strong>the</strong>ory <strong>in</strong> Appendix E.Models aris<strong>in</strong>g from <strong>branes</strong> at non-isolated s<strong>in</strong>gularities have <strong>the</strong> dist<strong>in</strong>ctive property<strong>of</strong> hav<strong>in</strong>g, besides a Higgs branch, also a Coulomb branch. This allows for a ra<strong>the</strong>rmundane UV completion <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g quiver <strong>the</strong>ory, start<strong>in</strong>g with <strong>the</strong> conformalSU(N + M) × SU(N + M) <strong>the</strong>ory eng<strong>in</strong>eered by N + M D3 <strong>branes</strong> at <strong>the</strong> orbifolds<strong>in</strong>gularity, and Higgs<strong>in</strong>g it at some scale z 0 [11]. This stops <strong>the</strong> cascade <strong>in</strong> <strong>the</strong> UV as <strong>the</strong><strong>the</strong>ory is <strong>in</strong> a superconformal phase at energies higher than z 0 (notice that such a simpleSCFT completion is not possible for <strong>the</strong> N = 1 conifold model; see [153] for alternativeways to UV-complete <strong>the</strong> N = 1 cascade with a SCFT). We first discuss <strong>the</strong> case where<strong>the</strong> cut<strong>of</strong>f is at f<strong>in</strong>ite energy: by means <strong>of</strong> <strong>the</strong> relevant Seiberg-Witten curves [80, 154],we provide a detailed analysis <strong>of</strong> several vacua on <strong>the</strong> Coulomb branch, toge<strong>the</strong>r with <strong>the</strong>correspond<strong>in</strong>g super<strong>gravity</strong> duals. For vacua at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> Coulomb branch, <strong>the</strong>reis <strong>in</strong> fact no cascade at all [152], while we show that <strong>the</strong> smaller is <strong>the</strong> number <strong>of</strong> adjo<strong>in</strong>tsfields hav<strong>in</strong>g vanish<strong>in</strong>g VEV, <strong>the</strong> larger is <strong>the</strong> number <strong>of</strong> steps <strong>in</strong> <strong>the</strong> cascade.We <strong>the</strong>n consider <strong>the</strong> case where <strong>the</strong> cut<strong>of</strong>f is sent to <strong>in</strong>f<strong>in</strong>ity, correspond<strong>in</strong>g to <strong>the</strong><strong>in</strong>f<strong>in</strong>ite cascade limit. This setup is <strong>the</strong> one which makes contact with <strong>the</strong> conifoldcascade, as <strong>the</strong> two are expected to be related by a mass deformation. Actually, onlyspecific vacua <strong>of</strong> <strong>the</strong> N = 2 <strong>the</strong>ory survive such a mass deformation [155], and we provide<strong>the</strong> correspond<strong>in</strong>g SW curve, with a parametrically high level <strong>of</strong> accuracy. To f<strong>in</strong>d <strong>the</strong>super<strong>gravity</strong> solution <strong>in</strong>terpolat<strong>in</strong>g from <strong>the</strong> N = 2 to <strong>the</strong> N = 1 cascade is left to futureresearch.Our analysis also allows us to provide a description <strong>of</strong> an <strong>in</strong>f<strong>in</strong>ite class <strong>of</strong> new vacuaalong <strong>the</strong> Coulomb branch, where <strong>the</strong> RG flow alternates energy ranges where <strong>the</strong> <strong>the</strong>oryruns, and o<strong>the</strong>rs where <strong>the</strong> <strong>the</strong>ory is <strong>in</strong> a superconformal phase. The borders between<strong>the</strong>se subsequent regions are described by enhançon-like r<strong>in</strong>gs and we naturally dub <strong>the</strong>correspond<strong>in</strong>g geometric structures enhançon bear<strong>in</strong>gs. We provide <strong>the</strong> correspond<strong>in</strong>gsuper<strong>gravity</strong> duals and show, both from <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory and super<strong>gravity</strong> po<strong>in</strong>ts <strong>of</strong>view, how such vacua <strong>in</strong>terpolate between <strong>the</strong> non-cascad<strong>in</strong>g and <strong>the</strong> cascad<strong>in</strong>g vacua.The orig<strong>in</strong>al super<strong>gravity</strong> solution <strong>of</strong> [10], which is <strong>the</strong> build<strong>in</strong>g block for all super<strong>gravity</strong>duals along <strong>the</strong> Coulomb branch that we analyse, presents an unphysical repulsive


6.2. D3 <strong>branes</strong> on <strong>the</strong> C 2 /Z 2 orbifold and a cascad<strong>in</strong>g solution 73region around <strong>the</strong> orig<strong>in</strong>. Ano<strong>the</strong>r dist<strong>in</strong>ctive property <strong>of</strong> N = 2 models is <strong>the</strong> peculiarway <strong>in</strong> which such a s<strong>in</strong>gularity is cured. Models with N = 2 supersymmetry are notconf<strong>in</strong><strong>in</strong>g, and <strong>the</strong> resolution <strong>of</strong> <strong>the</strong> IR s<strong>in</strong>gularity is associated to <strong>the</strong> enhançon mechanism[156] which excises <strong>the</strong> unphysical region giv<strong>in</strong>g back a s<strong>in</strong>gularity-free solution.The scale at which <strong>the</strong> excision occurs depends on <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory vacuum oneis study<strong>in</strong>g [134, 152], and <strong>the</strong>refore <strong>the</strong> excised solutions will differ for different vacua.We work out <strong>the</strong> enhançon mechanism for all <strong>gauge</strong> <strong>the</strong>ory vacua mentioned above, comput<strong>in</strong>gexplicitly <strong>the</strong> warp factors <strong>of</strong> <strong>the</strong> excised solutions. It is worth notic<strong>in</strong>g that <strong>the</strong>way <strong>the</strong> enhançon mechanism works here is qualitatively different from <strong>the</strong> orig<strong>in</strong>al onediscussed <strong>in</strong> [156], s<strong>in</strong>ce <strong>in</strong> <strong>the</strong> present case <strong>the</strong> enhançon shell is not <strong>of</strong> real codimensionone, i.e. it is not a doma<strong>in</strong> wall: <strong>the</strong> modification <strong>of</strong> <strong>the</strong> solution corresponds to anactual excision for <strong>the</strong> twisted fields but not for <strong>the</strong> untwisted ones, most notably <strong>the</strong>metric and <strong>the</strong> RR 5-form field strength. In turn, <strong>the</strong> corrected warp factor and 5-formdepend on <strong>the</strong> excised configuration <strong>of</strong> twisted fields and <strong>fractional</strong> <strong>branes</strong> dual to <strong>the</strong>field <strong>the</strong>ory vacuum under consideration. We f<strong>in</strong>d that around <strong>the</strong> orig<strong>in</strong> <strong>the</strong> metric is free<strong>of</strong> s<strong>in</strong>gularities and <strong>the</strong> new solutions we f<strong>in</strong>d perfectly match, with<strong>in</strong> <strong>the</strong> super<strong>gravity</strong>approximation, <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory expectations.This chapter is organized as follows. In section 6.2 we briefly recall <strong>the</strong> N = 2 quiver<strong>gauge</strong><strong>the</strong>oryat<strong>the</strong>A 1 s<strong>in</strong>gularity, <strong>the</strong>structure<strong>of</strong>itsmodulispaceandthat<strong>of</strong><strong>the</strong>knownsuper<strong>gravity</strong> duals, both for <strong>the</strong> conformal and non-conformal models. In section 3 werecall how <strong>the</strong> non-perturbative dynamics <strong>of</strong> <strong>the</strong> model can be studied through Seiberg-Witten curves, and review <strong>the</strong> enhançon mechanism. Section 4, which <strong>in</strong>cludes <strong>the</strong> ma<strong>in</strong>result <strong>of</strong> this chapter, is devoted to <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g vacua, while <strong>in</strong> section5 we discuss a new class <strong>of</strong> vacua characterized by <strong>the</strong> presence <strong>of</strong> subsequent enhançonbear<strong>in</strong>gs. F<strong>in</strong>ally, <strong>in</strong> section 6 we work out <strong>the</strong> excision procedure and <strong>the</strong> correspond<strong>in</strong>gwarp factors for all <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory vacua previously discussed.6.2 D3 <strong>branes</strong> on <strong>the</strong> C 2 /Z 2 orbifold and a cascad<strong>in</strong>g solutionThe low energy <strong>the</strong>ory on N D3 <strong>branes</strong> placed at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> C × C 2 /Z 2 orbifoldis a four-dimensional U(N)×U(N) N = 2 <strong>gauge</strong> <strong>the</strong>ory with two bifundamental hypermultiplets.The field content is summarized <strong>in</strong> <strong>the</strong> quiver diagram <strong>of</strong> figure 6.1. The betafunctions <strong>of</strong> both SU(N) factors vanish, <strong>the</strong> diagonal U(1) is decoupled, while <strong>the</strong> antidiagonalU(1) becomes free <strong>in</strong> <strong>the</strong> IR and gives rise to a global symmetry, <strong>the</strong> baryonicsymmetry U(1) B .The classical moduli space agrees precisely with <strong>the</strong> possible configurations <strong>of</strong> regularand <strong>fractional</strong> D3 <strong>branes</strong> on C × C 2 /Z 2 . In terms <strong>of</strong> N = 1 superfields, <strong>the</strong> tree levelsuperpotential (dictated by N = 2 supersymmetry) readsW = (B 1 ΦA 1 −B 2 ΦA 2 )−(A 1˜ΦB1 −A 2˜ΦB2 ) , (6.1)where contractions over <strong>gauge</strong> <strong>in</strong>dices are implied. The correspond<strong>in</strong>g F-term equationsareΦA i −A i˜Φ = 0 , Bi Φ− ˜ΦB i = 0 , A 1 B 1 −A 2 B 2 = B 1 A 1 −B 2 A 2 = 0 . (6.2)


74 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsFigure 6.1: Quiver diagram <strong>of</strong> <strong>the</strong> U(N) L ×U(N) R N = 2 <strong>the</strong>ory, <strong>in</strong> N = 1 notation. Nodescorrespond to <strong>gauge</strong> factors, arrows connect<strong>in</strong>g different nodes represent bifundamental chiralsuperfields while arrows go<strong>in</strong>g from one node to itself represent adjo<strong>in</strong>t chiral superfields.The holomorphic <strong>gauge</strong> <strong>in</strong>variant operators, which descend to local coord<strong>in</strong>ates on <strong>the</strong>moduli space, are given by traces <strong>of</strong> products <strong>of</strong> <strong>the</strong> operators A i B j ≡ ϕ ij and Φ for <strong>the</strong>first <strong>gauge</strong> group, and B i A j ≡ ˜ϕ ij and ˜Φ for <strong>the</strong> second one.The moduli space consists <strong>of</strong> several branches. First we have <strong>the</strong> so-called Higgsbranches, where <strong>the</strong> hypermultiplets obta<strong>in</strong> vacuum expectation values (VEV’s). TheseVEV’s result <strong>in</strong> <strong>the</strong> Higgs<strong>in</strong>g <strong>of</strong> <strong>the</strong> quiver to a subgroup <strong>of</strong> <strong>the</strong> diagonal U(N) <strong>gauge</strong>group, and <strong>the</strong> <strong>the</strong>ory has an accidental N = 4 supersymmetry <strong>in</strong> <strong>the</strong> IR. The Higgsbranch has (C×C 2 /Z 2 ) N /S N geometry, correspond<strong>in</strong>g to <strong>the</strong> displacement <strong>of</strong> regular D3<strong>branes</strong><strong>in</strong><strong>the</strong>fulltransversespace, uptopermutations. Because<strong>of</strong>N = 2supersymmetry,<strong>the</strong>Kählermetricon<strong>the</strong>Higgsbranchisprotectedaga<strong>in</strong>stanyquantumcorrections. Nextwe have <strong>the</strong> Coulomb branch, on which <strong>the</strong> hypermultiplet VEV’s vanish while <strong>the</strong> VEV’sfor <strong>the</strong> two adjo<strong>in</strong>t scalars can take arbitrary values: at a generic po<strong>in</strong>t on this branch, <strong>the</strong>surviv<strong>in</strong>g <strong>gauge</strong> group is U(1) 2N . The Coulomb branch has <strong>the</strong> form C N /S N ×C N /S N ,which corresponds to <strong>the</strong> displacement <strong>of</strong> <strong>the</strong> two types <strong>of</strong> <strong>fractional</strong> D3 <strong>branes</strong>, each <strong>of</strong><strong>the</strong>m associated to one <strong>gauge</strong> factor, along <strong>the</strong> orbifold s<strong>in</strong>gularity l<strong>in</strong>e. The quantumcorrected metric on <strong>the</strong> Coulomb branch is exactly calculable thanks to Seiberg-Witten<strong>the</strong>ory [157]. F<strong>in</strong>ally, <strong>the</strong>re are mixed branches, where some hypermultiplet VEV’s andsome adjo<strong>in</strong>t VEV’s are turned on.In <strong>the</strong> large N and large ’t Ho<strong>of</strong>t coupl<strong>in</strong>g limit, <strong>the</strong> low energy superconformalSU(N)×SU(N) sector is better described by its type IIB super<strong>gravity</strong> dual [158]. Thefull Higgs branch is dual to a family <strong>of</strong> super<strong>gravity</strong> solutions correspond<strong>in</strong>g to D3 <strong>branes</strong>at arbitrary positions on <strong>the</strong> 6-dimensional transverse space,ds 2 = Z −1/2 η µν dx µ dx ν +Z 1/2 δ nm dx m dx n (6.3)g s F 5 = (1+∗)dvol 3,1 ∧dZ −1 , (6.4)where µ,ν = 0,...,3, m,n = 4,...,9 and <strong>the</strong> orbifold identification x = (x m ) ≃ (˜x) ≡(x 4,5 ,−x 6,7,8,9 ) is understood. Z is a harmonic function <strong>of</strong> x,∑N (Z = 4πg s α ′2 1|x−x j | 4 + 1)|x−˜x j | 4 . (6.5)j=1The function conta<strong>in</strong>s <strong>the</strong> D3 <strong>branes</strong> and <strong>the</strong>ir images. Notice that <strong>the</strong> total 5-form fluxon S 5 /Z 2 at <strong>in</strong>f<strong>in</strong>ity is N. The relation between <strong>the</strong> parameters x j and <strong>the</strong> field <strong>the</strong>ory


6.2. D3 <strong>branes</strong> on <strong>the</strong> C 2 /Z 2 orbifold and a cascad<strong>in</strong>g solution 75moduli is x j = 2πα ′ φ j , where φ j is an eigenvalue <strong>of</strong> <strong>the</strong> VEV <strong>of</strong> some field. Φ and ˜Φ aremapped to x 4 +ix 5 , while ϕ ij are mapped to algebraic coord<strong>in</strong>ates z ij on C 2 /Z 2 , such thatz 12 z 21 −z 2 11 = 0 and z 22 = z 11 . The super<strong>gravity</strong> axio-dilaton τ = C 0 +ie −Φ = C 0 + ig sis constant, 1 as D3 <strong>branes</strong> do not couple to it. It is related to <strong>the</strong> field <strong>the</strong>ory <strong>gauge</strong>coupl<strong>in</strong>gs and <strong>the</strong>ta angles byτ = τ 1 +τ 2 where τ j = θ j2π + 4πig 2 j, j = 1,2 . (6.6)In <strong>the</strong> follow<strong>in</strong>g we will take τ = i/g s unless o<strong>the</strong>rwise stated.Asnoticed<strong>in</strong>[134], foragenericpo<strong>in</strong>ton<strong>the</strong>Higgsbranch(andmoregenerallyonanybranch), <strong>the</strong> super<strong>gravity</strong> solution has large curvature. However, configurations whereall <strong>the</strong> <strong>branes</strong> are <strong>in</strong> big clumps have a good super<strong>gravity</strong> description, and configurationswhere only a small number <strong>of</strong> <strong>branes</strong> are isolated are well described by probe <strong>branes</strong> <strong>in</strong><strong>the</strong> background generated by <strong>the</strong> o<strong>the</strong>r <strong>branes</strong>.The Coulomb branch <strong>of</strong> our N = 2 quiver is described by <strong>fractional</strong> D3 <strong>branes</strong> along<strong>the</strong> orbifold s<strong>in</strong>gularity. In this case super<strong>gravity</strong> solutions <strong>in</strong>clude a non-trivial pr<strong>of</strong>ilefor <strong>the</strong> twisted field fluxes. Indeed, <strong>fractional</strong> D3 <strong>branes</strong> source magnetically <strong>the</strong> twistedscalar c and by supersymmetry <strong>the</strong>y also source its NSNS partner, <strong>the</strong> twisted scalarb. This can be easily understood recall<strong>in</strong>g [41] that <strong>fractional</strong> D3 <strong>branes</strong> are D5 <strong>branes</strong>wrapped on <strong>the</strong> exceptional 2-cycle C which lives at <strong>the</strong> orbifold s<strong>in</strong>gularity. The twistedscalars are simply <strong>the</strong> reduction <strong>of</strong> <strong>the</strong> RR and NSNS 2-form potentials, C 2 and B 2 , onC. They can be organized <strong>in</strong> a complex field aswhileγ ≡ c+τb = c+ ig sb = 14π 2 α ′ ∫C(C 2 + ig sB 2), (6.7)G 3 = F 3 + ig sH 3 = 4π 2 α ′ dγ ∧ω 2 (6.8)is<strong>the</strong>complexified3-formfieldstrength, whereω 2 isaclosedanti-selfdual (1,1)-formwithdelta-function support at <strong>the</strong> orbifold plane, normalized as ∫ C ω 2 = 1. Regular D3 <strong>branes</strong>do not couple to <strong>the</strong> twisted sector, hence <strong>the</strong> pr<strong>of</strong>ile <strong>of</strong> γ is affected solely by <strong>fractional</strong><strong>branes</strong>. The complex twisted scalar γ is <strong>the</strong>n subject to a two-dimensional Laplaceequation <strong>in</strong> C with sources at <strong>the</strong> positions <strong>of</strong> <strong>the</strong> <strong>fractional</strong> <strong>branes</strong>. Supersymmetricsolutions [123] have primitive, imag<strong>in</strong>ary self-dual and (2,1) G 3 flux, which implies thatγ = γ(z) is a meromorphic function <strong>of</strong> z = x 4 + ix 5 , such that dγ(z) has simple polesat <strong>the</strong> locations <strong>of</strong> sources. For a bunch <strong>of</strong> N <strong>fractional</strong> and N anti-<strong>fractional</strong> 2 <strong>branes</strong> atpositions z j and ˜z j , respectively, we haveγ = i [ ∑N log(z −z j )−πj=1N∑j=1]log(z − ˜z j ) +γ (0) . (6.9)1 We work <strong>in</strong> <strong>the</strong> str<strong>in</strong>g frame. Here Φ is <strong>the</strong> full dilaton, which is constant <strong>in</strong> all <strong>the</strong> solutions underconsideration, not to be confused with one <strong>of</strong> <strong>the</strong> adjo<strong>in</strong>t chiral superfields. From now on we will ra<strong>the</strong>ruse g s = e Φ .2 With some abuse <strong>of</strong> language, follow<strong>in</strong>g [152] we call ‘anti-<strong>fractional</strong> <strong>branes</strong>’ D5 <strong>branes</strong> wrapped onC with <strong>the</strong> opposite orientation, with some worldvolume flux through C <strong>in</strong> order to preserve <strong>the</strong> samesupercharges as <strong>the</strong> <strong>fractional</strong> <strong>branes</strong>.


76 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsHere γ (0) is an <strong>in</strong>tegration constant: its imag<strong>in</strong>ary part sets <strong>the</strong> value <strong>of</strong> b at large |z|or <strong>in</strong> <strong>the</strong> <strong>the</strong>ory at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> moduli space, while <strong>the</strong> real part does not reallyhave a physical mean<strong>in</strong>g <strong>in</strong> <strong>the</strong> dual <strong>the</strong>ory because <strong>of</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> axial anomaly,and we will set it to zero. The positions <strong>of</strong> <strong>the</strong> <strong>fractional</strong> <strong>branes</strong> z j and ˜z j are classicallyidentified with <strong>the</strong> eigenvalues Φ j , ˜Φ j <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory adjo<strong>in</strong>t scalars. Corrections tothis identification arise at quantum level and will be discussed <strong>in</strong> <strong>the</strong> next section.The holographic relations between <strong>the</strong> Yang-Mills coupl<strong>in</strong>gs and <strong>the</strong>ta angles and <strong>the</strong>super<strong>gravity</strong> fields are[ (τ 1 +τ 2 = τ τ 1 −τ 2 = 2γ −τ = 2 c+τ b− 1 )], (6.10)2but we will <strong>of</strong>ten set τ = i/g s . In particular, when b = 0 <strong>the</strong> imag<strong>in</strong>ary part <strong>of</strong> τ 1 vanishesand g 1 diverges, whereas for b = 1 it is g 2 which diverges. 3 What we face <strong>in</strong> such casesis obviously a peculiar field <strong>the</strong>ory, a SCFT with one divergent <strong>gauge</strong> coupl<strong>in</strong>g, <strong>in</strong> which<strong>in</strong>stanton corrections dom<strong>in</strong>ate even <strong>in</strong> <strong>the</strong> large N limit [159], and about which not muchis known. Although from <strong>the</strong> Seiberg-Witten curve analysis one does not expect extramassless fields <strong>in</strong> general, <strong>the</strong> super<strong>gravity</strong> description is a very <strong>in</strong>complete descriptionfor this phase. When c ∈ Z as well, extra massless states do appear, and <strong>the</strong> <strong>the</strong>ory entersa tensionless str<strong>in</strong>g phase, as orig<strong>in</strong>ally suggested <strong>in</strong> [160] from consistency <strong>of</strong> T-dualitywith type IIA str<strong>in</strong>g <strong>the</strong>ory.So far, we have only discussed <strong>the</strong> superconformal SU(N)×SU(N) <strong>the</strong>ory, 4 which hasawellbehavedUVlimitandwhosestr<strong>in</strong>gyrealizationthroughAdS/CFTisunambiguous.However, what we are really <strong>in</strong>terested <strong>in</strong> is <strong>the</strong> non-conformal SU(N + M) × SU(N)<strong>gauge</strong> <strong>the</strong>ory. This can be easily obta<strong>in</strong>ed through Higgs<strong>in</strong>g from <strong>the</strong> superconformalSU(N +M)×SU(N +M) <strong>the</strong>ory, which can be eng<strong>in</strong>eered plac<strong>in</strong>g N +M regular D3<strong>branes</strong> at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> orbifold: tak<strong>in</strong>g M VEV’s <strong>of</strong> <strong>the</strong> second adjo<strong>in</strong>t scalar to be ata scale |z 0 |/2πα ′ produces an effective SU(N +M)×SU(N)×U(1) M <strong>the</strong>ory below |z 0 |, 5where <strong>the</strong> U(1) factors are IR free and decouple. In <strong>the</strong> dual picture, this correspondsto plac<strong>in</strong>g M anti-<strong>fractional</strong> <strong>branes</strong> at, say, <strong>the</strong> roots <strong>of</strong> ˜z j M = −z0 M , while <strong>the</strong> o<strong>the</strong>rN anti-<strong>fractional</strong> <strong>branes</strong> and N +M <strong>fractional</strong> <strong>branes</strong> sit classically at <strong>the</strong> orig<strong>in</strong>. Thetwisted scalar <strong>in</strong> this configuration is <strong>the</strong>nz Mγ = i π log z M +z0M+γ (0) . (6.11)For <strong>the</strong> sake <strong>of</strong> simplicity, unless differently specified, <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g we will set <strong>the</strong>orbifold po<strong>in</strong>t value γ (0) = i2g s[161, 162], so that <strong>in</strong> <strong>the</strong> UV τ 1 = τ 2 = i2g s. In <strong>the</strong> largeM limit <strong>in</strong> which we work, (6.11) can be traded for its limit<strong>in</strong>g behaviorγ ={iMπ log z z 0+ i2g s≡ i M π log z z 1if |z| < |z 0 |γ (0) if |z| > |z 0 |(6.12)3 Actually b ∈ [0,1] is <strong>the</strong> only range <strong>of</strong> validity <strong>of</strong> <strong>the</strong> formulas, because o<strong>the</strong>rwise one would havenegative square coupl<strong>in</strong>gs. As noticed <strong>in</strong> [118] and extensively discussed <strong>in</strong> [129, 1], when b is outsidethis range one has to perform a large <strong>gauge</strong> transformation to shift it to <strong>the</strong> <strong>in</strong>terval where (6.10) can beapplied.4 From now on, we will <strong>of</strong>ten consciously forget <strong>the</strong> additional U(1)×U(1) factor which decouples atlow energies.5 In <strong>the</strong> follow<strong>in</strong>g, when speak<strong>in</strong>g about scales we will <strong>of</strong>ten omit <strong>the</strong> 2πα ′ factor.


6.3. The enhançon and <strong>the</strong> Seiberg-Witten curve 77where we set z 1 = e i π M γ(0) z 0 = e − π2gsM z 0 . Note that <strong>the</strong> twisted fluxes break <strong>the</strong> U(1)isometry correspond<strong>in</strong>g to rotation <strong>in</strong> <strong>the</strong> z-plane to a discrete subgroup Z 2M 6 . This isdual to <strong>the</strong> break<strong>in</strong>g <strong>of</strong> <strong>the</strong> U(1) R-symmetry because <strong>of</strong> anomalies <strong>in</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory[163].The <strong>gauge</strong> <strong>in</strong>variant D3 brane charge (Maxwell charge) carried by <strong>the</strong> fluxes <strong>of</strong> <strong>the</strong>solution is proportional to <strong>the</strong> 5-form flux; it is found by <strong>in</strong>tegrat<strong>in</strong>g <strong>the</strong> Bianchi identity<strong>in</strong> <strong>the</strong> absence <strong>of</strong> sources dF 5 = −H 3 ∧F 3 on <strong>the</strong> angular S 5 /Z 2 <strong>of</strong> radius r and reads,for r < ρ 0 = |z 0 |,∫1−(4π 2 α ′ ) 2 F 5 = N + g sM 2log r (6.13)π ρ 1with ρ 1 = |z 1 |.We see from eqs.(6.12)-(6.13) that, similarly to <strong>the</strong> Klebanov-Tseytl<strong>in</strong> (KT) solution[127], <strong>the</strong> solution enjoys logarithmically vary<strong>in</strong>g B field and 5-form flux below <strong>the</strong> cut<strong>of</strong>f:this naturally suggests that <strong>the</strong> dual field <strong>the</strong>ory might enjoy a cascad<strong>in</strong>g RG flow withsubsequent <strong>in</strong>f<strong>in</strong>ite coupl<strong>in</strong>g transitions reduc<strong>in</strong>g <strong>the</strong> rank <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>itely coupled nonabelian<strong>gauge</strong> group by 2M at scales ρ k = e −(2k−1)π 2gsM ρ 0 , k = 1,...,l, where l ≡ [N/M] −7[11]. This will be dealt with <strong>in</strong> section 4, where <strong>the</strong> N = 2 cascad<strong>in</strong>g nature <strong>of</strong> <strong>the</strong>solution will be discussed <strong>in</strong> great detail.Before attack<strong>in</strong>g this problem, though, we have to deal with ano<strong>the</strong>r phenomenon,whichalwaysarises<strong>in</strong>super<strong>gravity</strong>solutionsdualtonon-conformalsupersymmetric<strong>gauge</strong><strong>the</strong>ories with eight supercharges. By analyz<strong>in</strong>g <strong>the</strong> explicit form <strong>of</strong> <strong>the</strong> warp factor, itwas shown <strong>in</strong> [10] that <strong>the</strong> ten-dimensional metric obta<strong>in</strong>ed us<strong>in</strong>g (6.11), besides <strong>the</strong>obvious s<strong>in</strong>gularity on <strong>the</strong> orbifold fixed plane, displays an unphysical repulsive regionnear <strong>the</strong> orig<strong>in</strong>, at a scale <strong>of</strong> order e −πN/gsM2 ρ 1 . 8 One expects that, as suggested <strong>in</strong> [10],an enhançon-like mechanism [156] might be at work here, which excises <strong>the</strong> unphysicalregion render<strong>in</strong>g back a repulson-free solution. We will show that this is <strong>in</strong>deed <strong>the</strong> case,discuss<strong>in</strong>g<strong>in</strong><strong>the</strong>nextsection<strong>the</strong>specificway<strong>in</strong>which<strong>the</strong>enhançonmechanismmanifests<strong>in</strong> this context, and provid<strong>in</strong>g <strong>in</strong> section 6.6 an excised and s<strong>in</strong>gularity-free solution.6.3 The enhançon and <strong>the</strong> Seiberg-Witten curveThe quantum corrections to <strong>the</strong> Coulomb branch constra<strong>in</strong> <strong>the</strong> (anti)<strong>fractional</strong> D3 branepositions, z j and ˜z j , <strong>in</strong> <strong>the</strong> <strong>gravity</strong> dual. The full quantum corrected moduli space isexactly encoded <strong>in</strong> <strong>the</strong> full family <strong>of</strong> Seiberg-Witten (SW) curves [80, 154]. The SWcurves for <strong>the</strong> N = 2 superconformal field <strong>the</strong>ory at hand were found <strong>in</strong> [157]. At <strong>the</strong>classical level, <strong>the</strong> <strong>fractional</strong> brane positions z j and ˜z j correspond to <strong>the</strong> eigenvalues <strong>of</strong> <strong>the</strong>VEV’s <strong>of</strong> <strong>the</strong> adjo<strong>in</strong>t scalars Φ and ˜Φ. In <strong>the</strong> quantum <strong>the</strong>ory this identification cannotsurvive because <strong>the</strong> VEV’s parametrize <strong>the</strong> moduli space and are unconstra<strong>in</strong>ed, whereas<strong>fractional</strong> brane positions are constra<strong>in</strong>ed. That is, <strong>in</strong> <strong>the</strong> large N limit one expects [134]quantum corrections and <strong>the</strong> consequent constra<strong>in</strong>ts on z j and ˜z j to be bound, because6 Really, <strong>the</strong> cut<strong>of</strong>f <strong>fractional</strong> <strong>branes</strong> only preserve Z M, but this is irrelevant at large M or not veryclose to those <strong>branes</strong>.7 We denote by [y] ± <strong>the</strong> ceil<strong>in</strong>g and floor functions, namely <strong>the</strong> <strong>in</strong>tegers which better approximate yfrom above and below respectively.8 See appendix A <strong>of</strong> [164] for an analytic study <strong>of</strong> <strong>the</strong> warp factor found <strong>in</strong> [10].


78 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs<strong>of</strong> supersymmetry, to a non-negative 5-form flux (that means non-negative enclosed D3-charge) for all allowed configurations on <strong>the</strong> quantum moduli space, at least whenever <strong>the</strong>super<strong>gravity</strong> approximation is valid. This property is <strong>in</strong> fact at <strong>the</strong> core <strong>of</strong> <strong>the</strong> enhançonmechanism.Let us detail this po<strong>in</strong>t by first consider<strong>in</strong>g a simplified example. Consider <strong>the</strong> <strong>the</strong>orydiscussed previously with N = 0: this is an SU(M) × SU(M) superconformal <strong>the</strong>orywhich can be eng<strong>in</strong>eered by M regular D3 <strong>branes</strong>. Below <strong>the</strong> UV scale |z| = |z 0 |, <strong>the</strong><strong>the</strong>ory is effectively Higgsed to SU(M) N = 2 pure SYM (plus IR free U(1) factors).The dual super<strong>gravity</strong> solution is <strong>the</strong> one <strong>in</strong> (6.12)-(6.13) with N = 0, and it correspondsto <strong>the</strong> M <strong>fractional</strong> <strong>branes</strong> classically at <strong>the</strong> orig<strong>in</strong>. The quantum moduli space can bestudied with a good approximation by means <strong>of</strong> <strong>the</strong> SW curves for SU(M) [165, 166]y 2 =M∏(v −φ a ) 2 +4Λ 2M , (6.14)a=1where Λ is <strong>the</strong> strong coupl<strong>in</strong>g scale <strong>of</strong> N = 2 SU(M) SYM and φ a are <strong>the</strong> eigenvalues<strong>of</strong> <strong>the</strong> adjo<strong>in</strong>t scalar Φ parametriz<strong>in</strong>g a family <strong>of</strong> hyperelliptic curves <strong>in</strong> C 2 = {(v,y)}.The curves could also be written <strong>in</strong> terms <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variant symmetric polynomials.Classically (Λ = 0) <strong>the</strong> eigenvalues φ a co<strong>in</strong>cide with <strong>the</strong> double branch po<strong>in</strong>ts <strong>of</strong> (6.14),and correspond to <strong>the</strong> <strong>fractional</strong> brane positions on <strong>the</strong> z plane <strong>in</strong> <strong>the</strong> <strong>gravity</strong> description.An elegant way to see this is <strong>the</strong> follow<strong>in</strong>g: type IIB str<strong>in</strong>g <strong>the</strong>ory on <strong>the</strong> orbifold is T-dual to type IIA on a circle (with coord<strong>in</strong>ate x 6 ) with two parallel NS5 <strong>branes</strong> alongx 0 ,··· ,x 5 , separated <strong>in</strong> <strong>the</strong> compact direction x 6 (see [167] for a review). Fractional D3<strong>branes</strong> are T-dual to D4 <strong>branes</strong> stretched along x 6 between <strong>the</strong> two NS5’s. The classicalCoulomb branch is <strong>the</strong>n given by all <strong>the</strong> possible configurations <strong>of</strong> D4 <strong>branes</strong> on <strong>the</strong>plane v = x 4 + ix 5 . The system can be fur<strong>the</strong>r uplifted to M-<strong>the</strong>ory, where <strong>the</strong> NS5’sand <strong>the</strong> D4’s are just part <strong>of</strong> a s<strong>in</strong>gle M5 brane. The M5 brane seen as a Riemannsurface is identified with <strong>the</strong> SW curve [157]. At <strong>the</strong> quantum level, <strong>the</strong> eigenvalues φ astill parametrize <strong>the</strong> whole moduli space (up to Weyl <strong>gauge</strong> identifications), but <strong>the</strong>yno longer correspond to double branch po<strong>in</strong>ts nor <strong>fractional</strong> brane positions, strictlyspeak<strong>in</strong>g. In <strong>the</strong> perturbative regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory, |φ a | ≫ |Λ|, <strong>the</strong> branch po<strong>in</strong>ts stillappear <strong>in</strong> pairs close to φ a : <strong>in</strong> <strong>the</strong> M-<strong>the</strong>ory picture <strong>the</strong> D4 <strong>branes</strong> are <strong>in</strong>flated <strong>in</strong>to smalltubes. As soon as <strong>the</strong> VEV’s get <strong>in</strong>to <strong>the</strong> non-perturbative region (at scales comparablewith Λ), <strong>the</strong> branch po<strong>in</strong>ts get well separated and it does not make much sense to talkabout <strong>fractional</strong> brane positions anymore.At <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> moduli space (Φ = 0), <strong>the</strong> hyperelliptic curve (6.14) becomesy 2 = v 2M +4Λ 2M , which has 2M separate branch po<strong>in</strong>ts at v 2M = −4Λ 2M . In <strong>the</strong> largeM limit, <strong>the</strong> branch po<strong>in</strong>ts densely fill a r<strong>in</strong>g <strong>of</strong> radius 2 1/M |Λ|. It is also possible tosee that, add<strong>in</strong>g a probe <strong>fractional</strong> brane (<strong>in</strong> field <strong>the</strong>ory terms, consider <strong>the</strong> SU(M +1)<strong>the</strong>ory with one additional VEV φ), <strong>in</strong> which case <strong>the</strong> SW curves arey 2 = v 2M (v −φ) 2 +4Λ 2M+2 , (6.15)<strong>the</strong> probe can freely move <strong>in</strong> <strong>the</strong> semi-classical region outside <strong>the</strong> r<strong>in</strong>g, but it cannotpenetrate it. For |φ| ≫ |Λ|, <strong>the</strong> two extra branch po<strong>in</strong>ts are placed near φ, with a smallseparation <strong>of</strong> order Λ(Λ/φ) M , while <strong>the</strong> o<strong>the</strong>r 2M branch po<strong>in</strong>ts are still on <strong>the</strong> r<strong>in</strong>g. As|φ| approaches |Λ| and <strong>the</strong>n goes to zero, <strong>the</strong> branch po<strong>in</strong>ts split and melt <strong>in</strong>to <strong>the</strong> r<strong>in</strong>g.


6.3. The enhançon and <strong>the</strong> Seiberg-Witten curve 79As anticipated, <strong>the</strong> dual str<strong>in</strong>g <strong>the</strong>ory picture <strong>of</strong> this is <strong>the</strong> famous enhançon mechanism[156]. The tension <strong>of</strong> BPS <strong>fractional</strong> D3 <strong>branes</strong> is equal to <strong>the</strong>ir <strong>gauge</strong> <strong>in</strong>variantMaxwell D3-charge, which is γT nf = µ 3g s∣ ∣ g s Imγ +n f∣ ∣ = µ 3g s∣ ∣ b+n f∣ ∣ , (6.16)where n f is <strong>the</strong> number <strong>of</strong> units <strong>of</strong> worldvolume flux on <strong>the</strong> exceptional 2-cycle C (noticethat nei<strong>the</strong>r b or n f are <strong>gauge</strong> <strong>in</strong>variant, while <strong>the</strong>ir sum is). This turns out to beproportional to <strong>the</strong> perturbative moduli space metric on <strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong>SU(M) N = 2 pure SYM <strong>the</strong>ory 9 [10]. At <strong>the</strong> scale |Λ| = ρ 1 , b vanishes and <strong>fractional</strong>D3 <strong>branes</strong>, which are wrapped D5 <strong>branes</strong> with no worldvolume flux, become tensionless;below that scale <strong>the</strong>y would be non-supersymmetric and <strong>the</strong>y would feel a repulsivepotential. Notice also that <strong>the</strong> enclosed D3 brane charge would become negative forsmaller scales, which could hardly be <strong>the</strong> case if <strong>fractional</strong> D3 <strong>branes</strong> were at <strong>the</strong> orig<strong>in</strong>.Moreover, amassiveparticleprobewouldexperienceanunphysicalgravitationalrepulsionclose to <strong>the</strong> orig<strong>in</strong>. The resolution <strong>of</strong> this puzzle is that <strong>fractional</strong> <strong>branes</strong> cannot bebrought all at <strong>the</strong> same place, but ra<strong>the</strong>r melt <strong>in</strong>to a th<strong>in</strong> r<strong>in</strong>g <strong>of</strong> radius ρ 1 : <strong>the</strong> enhançonr<strong>in</strong>g. This changes <strong>the</strong> twisted fields distribution <strong>in</strong> <strong>the</strong> geometry: <strong>in</strong>side <strong>the</strong> r<strong>in</strong>g, b = 0(more generally it is <strong>in</strong>teger), c is constant, and <strong>the</strong>re is no D3 brane charge. The warpfactor needs to be re-computed us<strong>in</strong>g <strong>the</strong> correct configuration <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> andtwisted field, and <strong>the</strong> result is that <strong>the</strong> suspicious repulsive region disappears, as will beshown <strong>in</strong> section 6.6.In some sense, <strong>the</strong> whole region def<strong>in</strong>ed by b = 0 (more generally b ∈ Z) behaveslike a conductor: D5 charges (recall that <strong>the</strong> D3 charge vanishes along with <strong>the</strong> tension<strong>in</strong>side <strong>the</strong> enhançon) are pushed to <strong>the</strong> boundary and <strong>the</strong>re is no field <strong>in</strong>side. We will callsuch a region <strong>the</strong> enhançon plasma. We already noticed <strong>in</strong> section 6.2 that <strong>the</strong> IR field<strong>the</strong>ory dual to <strong>the</strong> <strong>in</strong>terior region is quite peculiar: it is a conformal SU(N) × SU(N)<strong>the</strong>ory with one divergent <strong>gauge</strong> coupl<strong>in</strong>g. However, <strong>in</strong> this particular case N = 0 and <strong>the</strong>dynamics is trivial <strong>in</strong>side <strong>the</strong> enhançon plasma: SU(M) is simply broken by <strong>in</strong>stantonsto U(1) M−1 .As discussed <strong>in</strong> [152], exactly <strong>the</strong> same k<strong>in</strong>d <strong>of</strong> behavior can be found <strong>in</strong> <strong>the</strong> mostgeneric situation, i.e. when N ≠ 0 and <strong>the</strong> <strong>the</strong>ory has product <strong>gauge</strong> group SU(N+M)×SU(N). S<strong>in</strong>ce <strong>the</strong> second <strong>gauge</strong> group is not asymptotically free, one should embed <strong>the</strong><strong>the</strong>ory <strong>in</strong>to <strong>the</strong> SU(N+M)×SU(N+M) conformal one, properly Higgsed, as sketched at<strong>the</strong> end <strong>of</strong> Section 6.2. One can <strong>the</strong>n exploit <strong>the</strong> power <strong>of</strong> <strong>the</strong> Seiberg-Witten technology.In order to write down <strong>the</strong> SW curve, let us def<strong>in</strong>e <strong>the</strong> complex coord<strong>in</strong>ateu = i x6 +ix 102πR 10, (6.17)which parametrizes <strong>the</strong> M-<strong>the</strong>ory torus def<strong>in</strong>ed by <strong>the</strong> identifications u ≃ u+1 ≃ u+τ.The complex structure τ is identified with <strong>the</strong> type IIB axio-dilaton. Let us also def<strong>in</strong>e<strong>the</strong> parameter q = e 2πiτ and <strong>the</strong> coord<strong>in</strong>ate t = e 2πiu ; note that t ≃ qt on <strong>the</strong> torus.9 There is a match<strong>in</strong>g with <strong>the</strong> perturbative result because <strong>in</strong> <strong>the</strong> large M limit <strong>in</strong>stanton correctionsare strongly suppressed, and abruptly show up at <strong>the</strong> scale Λ [159].


80 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsFor concreteness, let us stick aga<strong>in</strong> to <strong>the</strong> case <strong>of</strong> equal <strong>gauge</strong> coupl<strong>in</strong>gs <strong>in</strong> <strong>the</strong> UVCFT: τ 1 = τ 2 = τ/2. In terms <strong>of</strong> <strong>the</strong> quasi-modular Jacobi θ-functionsθ 3 (2u|2τ) =∞∑n=−∞θ 2 (2u|2τ) =q n2 t 2n , θ 4 (2u|2τ) =∞∑n=−∞∞∑n=−∞<strong>the</strong> SW curve for <strong>the</strong> conformal <strong>the</strong>ory can be written as [168]q (n−1 2 )2 t 2n−1 (6.18)(−1) n q n2 t 2n , (6.19)S(v)+R(v)S(v)−R(v) = f(u|τ), with f(u|τ) ≡ θ 3(u|τ/2)θ 4 (u|τ/2) = θ 3(2u|2τ)+θ 2 (2u|2τ)θ 3 (2u|2τ)−θ 2 (2u|2τ) , (6.20)or alternativelyR(v)S(v)= g(u|τ), with g(u|τ) ≡f −1f +1 = θ 2(2u|2τ)θ 3 (2u|2τ) . (6.21)Here R(v) = ∏ N+Ma=1 (v −φ a) and S(v) = ∏ N+Ma=1 (v − ˜φ a ) are degree N +M polynomialswhose zeros φ a and ˜φ a are <strong>the</strong> eigenvalues for <strong>the</strong> adjo<strong>in</strong>t scalars <strong>of</strong> <strong>the</strong> first and second<strong>gauge</strong> group, respectively.Follow<strong>in</strong>g [152], let us choose a Z M -<strong>in</strong>variant configuration for <strong>the</strong> anti-<strong>fractional</strong><strong>branes</strong> Higgs<strong>in</strong>g <strong>the</strong> CFT at large |z| (i.e. large |v| for <strong>the</strong> correspond<strong>in</strong>g D4 <strong>branes</strong>), andconsider <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> low energy SU(N +M)×SU(N) <strong>the</strong>ory,R(v) = v N+M S(v) = v N (v M −z M 0 ) . (6.22)The N common zeros <strong>of</strong> R(v) and S(v) factor out <strong>of</strong> <strong>the</strong> curve, without affect<strong>in</strong>g <strong>the</strong> RGflow. They correspond to N D3 <strong>branes</strong>, whose moduli space is flat (apart from orbifolds<strong>in</strong>gularities when several <strong>branes</strong> co<strong>in</strong>cide) and not quantum corrected. We are <strong>the</strong>n leftto consider an SU(M)×SU(M) <strong>the</strong>ory, spontaneously broken to SU(M)×U(1) M−1 at<strong>the</strong> scale z 0 . Hence, if <strong>the</strong> IR dynamics is not much affected by <strong>the</strong> UV Higgs<strong>in</strong>g, as it isnatural to expect, <strong>the</strong> low energy physics should be similar to <strong>the</strong> enhançon mechanismpreviously discussed, but with N leftover regular D3 <strong>branes</strong>.Let us give fur<strong>the</strong>r evidence for <strong>the</strong> above claim. As expla<strong>in</strong>ed <strong>in</strong> [157], we can extract<strong>the</strong> runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g from <strong>the</strong> bend<strong>in</strong>g <strong>of</strong> <strong>the</strong> two NS5 <strong>branes</strong> due to <strong>the</strong>unbalanced D4 <strong>branes</strong> tension. In <strong>the</strong> M-<strong>the</strong>ory picture, <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs at a scalev can be extracted from <strong>the</strong> SW curve look<strong>in</strong>g at <strong>the</strong> correspond<strong>in</strong>g two values <strong>of</strong> u; wehave that∆u = τ 1 , τ −∆u = τ 2 , (6.23)while <strong>the</strong> map between <strong>the</strong> type IIB twisted scalars (c, b) and <strong>the</strong> field <strong>the</strong>ory coupl<strong>in</strong>gs(τ 1 , τ 2 ) was given <strong>in</strong> (6.10). In particular, <strong>the</strong> curve (6.20) at <strong>the</strong> po<strong>in</strong>t (6.22) on <strong>the</strong>Coulomb branch reads1−2( vz 0) M= f(u|τ) . (6.24)


6.3. The enhançon and <strong>the</strong> Seiberg-Witten curve 811/g i2SU(N)SU(N)SU(N)SU(N+M)SU(N+M)SU(N+M)ln Λ ln z 0ln µFigure 6.2: RG flow <strong>of</strong> <strong>the</strong> <strong>the</strong>ory at <strong>the</strong> enhançon vacuum (orig<strong>in</strong> <strong>of</strong> <strong>the</strong> moduli space). Thelow energy <strong>the</strong>ory below Λ is a peculiar one, with one formally diverg<strong>in</strong>g coupl<strong>in</strong>g.One can check [152] that <strong>in</strong> <strong>the</strong> UV regime |v| > |z 0 |, <strong>the</strong> <strong>the</strong>ory is conformal wi<strong>the</strong>qual <strong>gauge</strong> coupl<strong>in</strong>gs. Compar<strong>in</strong>g (6.24) with (6.14), one can see 10 that <strong>the</strong> dynamicallygenerated scale is at Λ = q 14M z 0 . In <strong>the</strong> range |Λ| < |v| < |z 0 |, <strong>the</strong> two <strong>gauge</strong> coupl<strong>in</strong>gsare runn<strong>in</strong>g with opposite β-functionsβ =∂∂log|v|g 2 1,28π 2(|v|)= ±2M . (6.25)For |v| < |Λ| <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs are constant with 8π 2 /g 2 1,2 = 0, 2π/g s respectively. TheRG flow is sketched <strong>in</strong> figure 6.2. At <strong>the</strong> scale Λ, <strong>the</strong> <strong>gauge</strong> group is effectively brokenby <strong>in</strong>stantons from SU(N +M)×SU(N)×U(1) M to SU(N)×SU(N)×U(1) 2M , <strong>the</strong>latter be<strong>in</strong>g conformal up to an IR free abelian sector.Fur<strong>the</strong>r <strong>in</strong>formation is ga<strong>in</strong>ed from <strong>the</strong> computation <strong>of</strong> branch po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> SWcurve, which correspond to double po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> function f(u|τ): <strong>the</strong>y are at u ∗ =0, 1/2,τ/2,(1 + τ)/2 where f(u ∗ |τ) = f 0 , 1/f 0 , −f 0 , −1/f 0 respectively, and f 0 = 1 +4q 1/4 +O(q 1/2 ). The first set is located atu = τ 2 , τ +12: v ≃ v ± h = z 0e 2πih/M [ 1± 2 M( Λz 0) M ]h = 1,...,M . (6.26)These are almost double branch po<strong>in</strong>ts, which correspond to <strong>the</strong> M anti-<strong>fractional</strong> <strong>branes</strong>located near |z 0 |, correspond<strong>in</strong>g to <strong>the</strong> VEV’s <strong>of</strong> ˜Φ we used to Higgs <strong>the</strong> conformal <strong>the</strong>ory.The second set is located atu = 0, 1 2 : v ≃ v k = 2 1/M e 2πik/2M Λ k = 1,...,2M . (6.27)These branch po<strong>in</strong>ts correspond to M <strong>fractional</strong> <strong>branes</strong> melted <strong>in</strong>to an enhançon r<strong>in</strong>g atscale Λ.10 Notice that <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> approximation, g s → 0 with g sN large, <strong>the</strong> parameter q = e 2πiτ hasexponentially small modulus |q| = e −2π/gs , allow<strong>in</strong>g for a series expansion <strong>of</strong> f(t|q) <strong>in</strong> positive powers <strong>of</strong>q.


82 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsAs <strong>in</strong> <strong>the</strong> pure SYM case, probe <strong>fractional</strong> <strong>branes</strong> can be studied on this backgroundby means <strong>of</strong> <strong>the</strong> SW curves for <strong>the</strong> SU(N +M +1)×SU(N +M +1) <strong>the</strong>oryR(v)S(v) =v M (v −φ)= g(u|τ) , (6.28)(v M −z0 M )(v − ˜φ)where φ and ˜φ parametrize <strong>the</strong> extra VEV for Φ and ˜Φ. The branch po<strong>in</strong>ts correspond<strong>in</strong>gto <strong>the</strong> eigenvalue φ (<strong>the</strong> <strong>fractional</strong> D3 probe) can freely move outside <strong>the</strong> enhançon r<strong>in</strong>g,but as <strong>the</strong>y approach it and φ goes to 0, <strong>the</strong> two branch po<strong>in</strong>ts split and melt <strong>in</strong>to<strong>the</strong> enhançon r<strong>in</strong>g. The two branch po<strong>in</strong>ts correspond<strong>in</strong>g to <strong>the</strong> eigenvalue ˜φ (<strong>the</strong> anti<strong>fractional</strong>D3 probe) can <strong>in</strong>stead penetrate <strong>the</strong> enhançon r<strong>in</strong>g; when this happens, <strong>the</strong>yuncha<strong>in</strong> two branch po<strong>in</strong>ts from <strong>the</strong> r<strong>in</strong>g which follow <strong>the</strong>m <strong>in</strong>side: an anti-<strong>fractional</strong>brane eats a melted <strong>fractional</strong> brane from <strong>the</strong> r<strong>in</strong>g, form<strong>in</strong>g a regular D3 brane free tomove everywhere.From this analysis, one concludes that, no matter <strong>the</strong> value <strong>of</strong> N, <strong>the</strong> fluxes <strong>in</strong> eqs.(6.12) and (6.13) do describe <strong>the</strong> physics <strong>of</strong> <strong>the</strong> SU(N+M)×SU(N) <strong>the</strong>ory at <strong>the</strong> orig<strong>in</strong><strong>of</strong> its moduli space, provided that <strong>the</strong>y are excised at radius ρ 1 ≃ |Λ| by an enhançonmechanism. The solution should also be cut <strong>of</strong>f at a radius |z 0 |, or completed with Manti-<strong>fractional</strong> <strong>branes</strong>, provid<strong>in</strong>g a conformal AdS 5 UV completion. As already stressed,<strong>the</strong> warp factor needs to be recomputed <strong>in</strong> <strong>the</strong> presence <strong>of</strong> <strong>the</strong> correct configuration <strong>of</strong><strong>fractional</strong> <strong>branes</strong> and excised twisted fields. This will be done <strong>in</strong> section 6.6.Notice, however, that <strong>the</strong> super<strong>gravity</strong> solution <strong>of</strong> eqs. (6.12) and (6.13) does notseem to have any pathology below ρ 1 , at least down to a scale <strong>of</strong> order e − πNgsM 2 ρ 1 , where<strong>the</strong> 5-form flux (6.13) vanishes and <strong>the</strong> problematic repulsive region starts. The questionarises whe<strong>the</strong>r <strong>the</strong>re is any field <strong>the</strong>ory <strong>in</strong>terpretation for such a solution, suitably excisedonly at a radiusρ m<strong>in</strong> = ρ l+1 ≡ e − πlgsM ρ 1 with l ≡ [N/M] − , (6.29)<strong>the</strong> smallest <strong>in</strong>f<strong>in</strong>ite coupl<strong>in</strong>g scale outside <strong>the</strong> region <strong>of</strong> negative D3 brane charge. Asalready noticed, <strong>the</strong> presence <strong>of</strong> a constant 3-form flux and <strong>the</strong> logarithmic runn<strong>in</strong>g <strong>of</strong> <strong>the</strong>5-form flux strongly suggests a cascad<strong>in</strong>g behavior, as for <strong>the</strong> Klebanov-Tseytl<strong>in</strong>-StrasslerN = 1 model [118, 127], properly adapted to a N = 2 sett<strong>in</strong>g. An <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong>would-be N = 2 RG flow that can be extracted from <strong>the</strong> super<strong>gravity</strong> solution <strong>in</strong> terms<strong>of</strong> some sort <strong>of</strong> Seiberg duality cascade was <strong>in</strong> fact argued for <strong>in</strong> [11], but <strong>the</strong> existence<strong>of</strong> an appropriate N = 2 duality had not been clarified, so far. On <strong>the</strong> o<strong>the</strong>r hand, <strong>in</strong>[134] <strong>the</strong> reduction <strong>of</strong> 5-form flux was <strong>in</strong>terpreted as due to a distribution <strong>of</strong> D3 <strong>branes</strong>and/or wrapped D5 <strong>branes</strong>. It was fur<strong>the</strong>r suggested that a suitable distribution <strong>of</strong> D3<strong>branes</strong> only (Higgs branch) could perhaps account for it. However, <strong>the</strong> latter proposalencounters some problems <strong>in</strong> reproduc<strong>in</strong>g <strong>the</strong> runn<strong>in</strong>g <strong>of</strong> <strong>gauge</strong> coupl<strong>in</strong>gs and decrease <strong>of</strong>nonabelian <strong>gauge</strong> group ranks that is suggested by <strong>the</strong> super<strong>gravity</strong> solution.Draw<strong>in</strong>g on well established results about N = 2 SQCD, we propose that <strong>the</strong>re existfield <strong>the</strong>ory vacua, not at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> Coulomb branch, which display a cascad<strong>in</strong>gbehavior. They are dual to <strong>the</strong> solution <strong>in</strong> (6.12) and (6.13), valid well below <strong>the</strong> first<strong>in</strong>f<strong>in</strong>ite coupl<strong>in</strong>g radius ρ 1 down to some much lower scale, at most until <strong>the</strong> so-calledtrue enhançon scale Λ m<strong>in</strong> = ρ m<strong>in</strong> , where <strong>the</strong> twisted fields are excised. ρ m<strong>in</strong> is named


6.4. The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory 83<strong>the</strong> true enhançon radius s<strong>in</strong>ce it is <strong>the</strong> scale at which <strong>the</strong> excision is performed. All <strong>the</strong>higher <strong>in</strong>f<strong>in</strong>ite coupl<strong>in</strong>g scales, ρ j with j = 1,...,l, will be called generalized enhançonradii [134].We provide a precise identification <strong>of</strong> <strong>the</strong>se vacua <strong>in</strong> <strong>the</strong> next section. The excision<strong>of</strong> <strong>the</strong> twisted fields by means <strong>of</strong> <strong>the</strong> enhançon mechanism and <strong>the</strong> disappearance <strong>of</strong> <strong>the</strong>naive s<strong>in</strong>gularity will be discussed <strong>in</strong> section 6.6. Depend<strong>in</strong>g on <strong>the</strong> field <strong>the</strong>ory vacuaone is study<strong>in</strong>g, <strong>the</strong> excision can take place at different scales, for <strong>in</strong>stance at ρ = ρ 1 ,as <strong>in</strong> <strong>the</strong> vacua discussed <strong>in</strong> this section, or at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cascade, at <strong>the</strong> scaleρ = ρ m<strong>in</strong> , as for <strong>the</strong> cascad<strong>in</strong>g vacua to be discussed <strong>in</strong> section 4.6.4 The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>oryThe perturbative RG flow <strong>of</strong> <strong>the</strong> SU(N + M) × SU(N) <strong>the</strong>ory, given <strong>in</strong> (6.25), is suchthat <strong>the</strong> largest group goes to strong coupl<strong>in</strong>g at a scale Λ. The super<strong>gravity</strong> solution weare consider<strong>in</strong>g suggests that, <strong>in</strong> <strong>the</strong> dual vacuum, a mechanism effectively reduces <strong>the</strong><strong>gauge</strong> group to SU(N−M)×SU(N) below Λ, plus possible U(1) factors. This statementcan be supported by a computation <strong>of</strong> Page charges <strong>in</strong> super<strong>gravity</strong>, <strong>in</strong> <strong>the</strong> <strong>gauge</strong> thatgives sensible field <strong>the</strong>ory coupl<strong>in</strong>gs (as extensively discussed <strong>in</strong> [129, 1]). The value <strong>of</strong> b,<strong>in</strong> <strong>the</strong> <strong>gauge</strong> <strong>in</strong> which b ∈ [0,1], is found from (6.12) to beb = g s Imγ = g sMπ log ρ [ gs M−ρ 1 π log ρ ]ρ , (6.30)1 −where ρ = |z|. The D5 and D3 brane Page charges at radius r are evaluated to be 11Q Page5 = − 1Q Page3 = − 1(4π 2 α ′ ) 2 ∫(F5 +B 2 ∧F 3 ) = N +M∫4π 2 α ′ F3 = 2M (6.31)[gsMπ log r ρ e]− . (6.32)This shows that <strong>the</strong> non-abelian factors <strong>in</strong> <strong>the</strong> <strong>gauge</strong> group drop as SU(N + M) ×SU(N) → SU(N −M)×SU(N) not only at <strong>the</strong> first strong coupl<strong>in</strong>g scale ρ 1 = Λ 1 ≡ Λ,but actually at each generalized enhançon, which occurs at a scaleρ k = Λ k = e −π(k−1) gsM Λ 1 = e −π(2k−1) 2gsM ρ 0 k = 1,...,l , (6.33)where recall that l = [N/M] − and we also set N = lM +p. F<strong>in</strong>ally, at Λ l+1 ≡ Λ m<strong>in</strong> ≡e − gsMΛ πl1 <strong>the</strong>re is a true enhançon r<strong>in</strong>g with M tensionless <strong>fractional</strong> <strong>branes</strong>, and <strong>the</strong>non-abelian factors <strong>in</strong> <strong>the</strong> <strong>gauge</strong> group reduce accord<strong>in</strong>g to SU(M + p) × SU(p) →SU(p)×SU(p), with one <strong>in</strong>f<strong>in</strong>ite <strong>gauge</strong> coupl<strong>in</strong>g. Twisted fields have to be excised <strong>the</strong>reso as to avoid negative D3-charge <strong>in</strong> <strong>the</strong> <strong>in</strong>terior region.In pass<strong>in</strong>g let us stress, as <strong>in</strong> [134], that even though <strong>the</strong>ir dynamics takes place atarbitrarily low energies, <strong>the</strong> possible additional U(1) factors are described <strong>in</strong> <strong>the</strong> holographicsetup by modes at a f<strong>in</strong>ite radius where <strong>the</strong> correspond<strong>in</strong>g <strong>fractional</strong> D3 <strong>branes</strong>lie.11 The 3-cycle where <strong>the</strong> D5 charge <strong>in</strong>tegration is performed is <strong>the</strong> product <strong>of</strong> <strong>the</strong> exceptional 2-cycle Cand an S 1 on <strong>the</strong> orbifold l<strong>in</strong>e. S<strong>in</strong>ce <strong>the</strong> <strong>in</strong>tersection number is (D,C) = −2 where D is <strong>the</strong> cone over<strong>the</strong> 3-cycle, <strong>the</strong> D5 charge is twice <strong>the</strong> number <strong>of</strong> wrapped D5 <strong>branes</strong>.


84 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsIn order to have an <strong>in</strong>tuition on <strong>the</strong> strong coupl<strong>in</strong>g dynamics at hand, let us firstfocus on <strong>the</strong> first such generalized enhançon, which occurs at <strong>the</strong> scale Λ 1 = Λ. This willclearly be a prototype for any generalized enhançons. As already stressed, at <strong>the</strong> scale Λ,<strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> largest <strong>gauge</strong> group diverges (and <strong>in</strong>stantonic corrections dom<strong>in</strong>ate),while <strong>the</strong> o<strong>the</strong>r <strong>gauge</strong> coupl<strong>in</strong>g reaches <strong>the</strong> value gm<strong>in</strong> 2 = 4πg s. As a first step toward<strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> precise mechanism tak<strong>in</strong>g place, we can consider a corner <strong>of</strong><strong>the</strong> parameter space <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory where Ngm<strong>in</strong> 2 → 0. In this limit, <strong>the</strong> <strong>gauge</strong>dynamics <strong>of</strong> <strong>the</strong> second factor decouples and it effectively becomes a global symmetry:<strong>the</strong> <strong>the</strong>ory around Λ is simply SU(N +M) SQCD with 2N flavors. Moreover, possibleVEV’s for <strong>the</strong> smaller group adjo<strong>in</strong>t scalar effectively behave as masses for <strong>the</strong> largergroup hypermultiplets. In this case we are out <strong>of</strong> <strong>the</strong> super<strong>gravity</strong> approximation butthis analysis will give us some good <strong>in</strong>sight. Hence, let us quickly review some resultsabout <strong>the</strong> moduli space <strong>of</strong> N = 2 SQCD.6.4.1 One cascade step: N = 2 SQCDThe moduli space <strong>of</strong> N = 2 SQCD [155] with N c colors and N f flavors consists <strong>of</strong>a Coulomb branch and <strong>of</strong> various Higgs branches. The Coulomb branch [169, 155] isparametrized by <strong>the</strong> vacuum expectation value <strong>of</strong> <strong>the</strong> adjo<strong>in</strong>t scalar field Φ <strong>in</strong> <strong>the</strong> N = 2vector multiplet,∑Φ = Diag(φ 1 ,...,φ Nc ) φ a = 0 , (6.34)and is thus given by <strong>the</strong> N c − 1 dimensional complex space <strong>of</strong> φ a ’s modulo permutations(Weyl <strong>gauge</strong> transformations). The VEV’s generically break <strong>the</strong> SU(N c ) <strong>gauge</strong>group to its Cartan subgroup U(1) Nc−1 . However, at special submanifolds where <strong>the</strong>Higgs branches meet <strong>the</strong> Coulomb branch a non-abelian <strong>gauge</strong> symmetry survives. Higgsbranches can be divided <strong>in</strong>to a baryonic branch and various non-baryonic branches (accord<strong>in</strong>gto whe<strong>the</strong>r baryonic operators acquire VEV’s or not); <strong>the</strong> correspond<strong>in</strong>g <strong>in</strong>tersectionswith <strong>the</strong> Coulomb branch were dubbed roots. 12 Higgs branches are not quantumcorrected, however <strong>the</strong>ir <strong>in</strong>tersections among <strong>the</strong>mselves and with <strong>the</strong> Coulomb branchare modified at quantum level.The SW curve describ<strong>in</strong>g <strong>the</strong> Coulomb branch for vanish<strong>in</strong>g masses is [169, 171]a∏N cy 2 = (x−φ a ) 2 +4Λ 2Nc−N fx N f. (6.35)a=1Nonbaryonic branches are labeled by an <strong>in</strong>teger 1 ≤ r ≤ m<strong>in</strong>([N f /2] − , N c −2). The lowenergy effective <strong>the</strong>ory at <strong>the</strong> roots are <strong>the</strong> IR free or f<strong>in</strong>ite SU(r) × U(1) Nc−r SQCDwith N f hypermultiplets <strong>in</strong> <strong>the</strong> fundamental representation and charged under one <strong>of</strong><strong>the</strong> U(1) factors. At special po<strong>in</strong>ts along <strong>the</strong>se submanifolds, <strong>the</strong> SW curve shows thatN c −r−1 additional massless s<strong>in</strong>glet hypermultiplets arise, each one charged under one<strong>of</strong> <strong>the</strong> rema<strong>in</strong><strong>in</strong>g U(1) factors. It is important that <strong>the</strong>re are 2N c −N f such vacua, relatedby <strong>the</strong> broken Z 2Nc−N fnon-anomalous R-symmetry act<strong>in</strong>g on <strong>the</strong> Coulomb branch.12 Issues related to <strong>the</strong> baryonic root <strong>of</strong> N = 2 SQCD and <strong>the</strong> mass deformation to N = 1 were recentlydiscussed <strong>in</strong> [170].


6.4. The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory 85The baryonic branch exists for N c ≤ N f , and <strong>the</strong> baryonic root is a s<strong>in</strong>gle po<strong>in</strong>t,<strong>in</strong>variant under <strong>the</strong> Z 2Nc−N fR-symmetry. Thus its coord<strong>in</strong>ates on <strong>the</strong> Coulomb branchare 13 Φ bb = (0,...,0,φω,φω 2 ,...,φω 2Nc−N f) , (6.36)} {{ }N f −N cwhere ω = exp{2πi/(2N c −N f )}, for some value <strong>of</strong> φ (and φ = 0 classically). The <strong>gauge</strong>group is thus broken to SU(N f −N c )×U(1) 2Nc−N f, which is IR free. 14 The requirementthat a Higgs branch orig<strong>in</strong>ates from this root implies <strong>the</strong> presence <strong>of</strong> 2N c −N f masslesshypermultiplets charged only under <strong>the</strong> U(1) factors; this s<strong>in</strong>gles out a po<strong>in</strong>t <strong>in</strong> <strong>the</strong>submanifold described by (6.36). The result is φ = Λ, so that <strong>the</strong> SW curve takes <strong>the</strong>s<strong>in</strong>gular formy 2 = x 2(N f−N c) ( x 2Nc−N f+Λ 2Nc−N f ) 2 . (6.37)The x 2(N f−N c) factor corresponds to an unbroken SU(N f − N c ) <strong>gauge</strong> group. The rema<strong>in</strong><strong>in</strong>g2(2N c −N f ) branch po<strong>in</strong>ts show up <strong>in</strong> co<strong>in</strong>cident pairs, located at x k = Λω k−1 2with k = 1,...,2N c −N f , correspond<strong>in</strong>g to <strong>the</strong> 2N c −N f mutually local massless hypermultiplets.The reason for this detour should be clear by now: <strong>the</strong> non-perturbative dynamics at<strong>the</strong> baryonic root preserves <strong>the</strong> same Z 2Nc−N f= Z 2M R-symmetry as <strong>the</strong> super<strong>gravity</strong>solution we are discuss<strong>in</strong>g, and its low energy effective <strong>the</strong>ory possesses an SU(N f −N c ) = SU(N − M) non-abelian <strong>gauge</strong> symmetry precisely match<strong>in</strong>g <strong>the</strong> numerology <strong>of</strong><strong>the</strong> cascad<strong>in</strong>g <strong>in</strong>terpretation. Hence, iterat<strong>in</strong>g <strong>the</strong> above procedure at <strong>the</strong> subsequentgeneralized enhançons Λ k (where <strong>the</strong> higher rank <strong>gauge</strong> group coupl<strong>in</strong>g diverges), it isnatural to propose <strong>the</strong> super<strong>gravity</strong> solution <strong>in</strong> (6.12) and (6.13) (excised only down at<strong>the</strong> true enhançon ρ m<strong>in</strong> ) to be dual to a cascad<strong>in</strong>g SU(N + M) × SU(N) quiver <strong>gauge</strong><strong>the</strong>ory at subsequent baryonic roots <strong>of</strong> <strong>the</strong> strongly coupled <strong>gauge</strong> groups. 15 In whatfollows, we will provide several checks for <strong>the</strong> validity <strong>of</strong> our proposal.6.4.2 The cascad<strong>in</strong>g vacuum <strong>in</strong> <strong>the</strong> quiver <strong>gauge</strong> <strong>the</strong>oryLet us now turn to <strong>the</strong> full quiver <strong>gauge</strong> <strong>the</strong>ory SU(N +M)×SU(N). The vacuum wepropose as <strong>the</strong> dual <strong>of</strong> <strong>the</strong> full cascad<strong>in</strong>g solution is a vacuum <strong>in</strong> which, at each step along<strong>the</strong> result<strong>in</strong>g cascade, <strong>the</strong> largest <strong>of</strong> <strong>the</strong> two <strong>gauge</strong> groups goes to strong coupl<strong>in</strong>g witha behavior analogous to <strong>the</strong> <strong>the</strong> baryonic root <strong>of</strong> SQCD. This vacuum is <strong>in</strong>variant under<strong>the</strong> same non-anomalous Z 2M subgroup <strong>of</strong> <strong>the</strong> R-symmetry as <strong>the</strong> super<strong>gravity</strong> solutionwe started with. Moreover, not only has it <strong>the</strong> correct spontaneous symmetry break<strong>in</strong>gpattern but also <strong>the</strong> correct RG flow, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> beta functions and <strong>the</strong> separation <strong>of</strong>scales where <strong>the</strong> transitions occur, as can be extracted from super<strong>gravity</strong>.It is worth stress<strong>in</strong>g that our vacuum does not sit exactly at <strong>the</strong> baryonic roots, as<strong>the</strong>re are no baryonic roots <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory (see section 6.4.4 for an exception).13 For N f > 3N c/2 <strong>the</strong>re are o<strong>the</strong>r Z 2Nc−Nf -<strong>in</strong>variant submanifolds. However <strong>the</strong> baryonic root is justone po<strong>in</strong>t, and one can show that it <strong>in</strong> fact belongs to <strong>the</strong> submanifold (6.36) [155].14 We assume N f < 2N c so that <strong>the</strong> microscopic <strong>the</strong>ory is UV free. This bound is satisfied <strong>in</strong> <strong>the</strong>cascad<strong>in</strong>g quiver <strong>the</strong>ory.15 We should mention that a proposal for an N = 2 cascade at <strong>the</strong> baryonic root has been alluded to <strong>in</strong>[172], <strong>in</strong> <strong>the</strong> context <strong>of</strong> <strong>the</strong> M-<strong>the</strong>ory realization <strong>of</strong> this elliptic model.


86 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsHowever, it does approximate <strong>the</strong>m <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> limit <strong>in</strong> which q → 0, which is<strong>the</strong> limit <strong>of</strong> <strong>in</strong>terest to us.Let us start for concreteness with an SU((2K +1)M)×SU((2K +1)M) conformal<strong>the</strong>ory <strong>in</strong> <strong>the</strong> UV and <strong>the</strong>n break <strong>the</strong> <strong>gauge</strong> group to SU((2K + 1)M) × SU(2KM)by giv<strong>in</strong>g VEV’s <strong>of</strong> order z 0 <strong>in</strong> a Z M -<strong>in</strong>variant way to M eigenvalues <strong>of</strong> <strong>the</strong> adjo<strong>in</strong>tscalar ˜Φ. We choose a vacuum <strong>in</strong> which, at each step <strong>of</strong> <strong>the</strong> RG flow, <strong>the</strong> most stronglycoupled group is at its baryonic root (<strong>in</strong> <strong>the</strong> q → 0 limit). Let us write <strong>the</strong> SW curveas R(v)/S(v) = g(u|τ) as <strong>in</strong> (6.21), where u is <strong>the</strong> coord<strong>in</strong>ate on a torus <strong>of</strong> complexstructure τ. We choose <strong>the</strong> polynomials R(v) and S(v) <strong>of</strong> degree (2K +1)M, asK−1∏R(v) = v M (v 2M +q 1 2 +2j z 2Mj=00 )K−1∏S(v) = (v M −z0 M ) (v 2M +q 3 2 +2j z0 2M ) .j=0(6.38)The polynomial R(v) is related to <strong>the</strong> SU((2K + 1)M) group that starts flow<strong>in</strong>g towardstrong coupl<strong>in</strong>g at <strong>the</strong> cut<strong>of</strong>f scale z 0 , whereas <strong>the</strong> polynomial S(v) is related to<strong>the</strong> SU((2K + 1)M) group which is spontaneously broken to SU(2KM) <strong>the</strong>re. 16 Theeigenvalues <strong>of</strong> <strong>the</strong> two adjo<strong>in</strong>t scalar fields are put, <strong>in</strong> an alternat<strong>in</strong>g manner, at energiescorrespond<strong>in</strong>g to <strong>the</strong>ir subsequent strong coupl<strong>in</strong>g scales along <strong>the</strong> cascade: <strong>in</strong> <strong>the</strong> limit<strong>in</strong> which <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> weakly coupled group decouples at those scales, <strong>the</strong> vacuamimic <strong>the</strong> SQCD baryonic root. In agreement with <strong>the</strong> cascad<strong>in</strong>g RG flow <strong>of</strong> <strong>the</strong> super<strong>gravity</strong>solution,<strong>the</strong>hierarchy<strong>of</strong>strongcoupl<strong>in</strong>gscalesiscontrolledbyq = e 2πiτ . Because<strong>of</strong> <strong>the</strong> large M limit, <strong>the</strong> runn<strong>in</strong>g is led by <strong>the</strong> perturbative beta functions except at <strong>the</strong>successive strong coupl<strong>in</strong>g scales, where <strong>in</strong>stantonic corrections sharply appear. This field<strong>the</strong>ory runn<strong>in</strong>g can be explicitly checked ei<strong>the</strong>r numerically us<strong>in</strong>g <strong>the</strong> exact SW curve wewrote, or analytically by expand<strong>in</strong>g <strong>the</strong> polynomials energy range by energy range, <strong>in</strong> aneffective field <strong>the</strong>ory approach (see Appendix E.7). A plot <strong>of</strong> <strong>the</strong> result<strong>in</strong>g RG flow isshown <strong>in</strong> figure 6.3.We now move on to <strong>the</strong> study <strong>of</strong> <strong>the</strong> branch po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> curve. Recall that branchpo<strong>in</strong>ts are double solutions <strong>in</strong> v at fixed u. In <strong>the</strong> dual type IIA construction, a pair<strong>of</strong> co<strong>in</strong>cident branch po<strong>in</strong>ts at v corresponds to a D4 brane stretched between <strong>the</strong> twoNS5’s, while <strong>in</strong> type IIB it corresponds to a <strong>fractional</strong> brane at position z ≃ v on <strong>the</strong>orbifold s<strong>in</strong>gularity l<strong>in</strong>e. When <strong>the</strong> branch po<strong>in</strong>ts are not <strong>in</strong> pairs, <strong>the</strong> full M-<strong>the</strong>orydescription is needed, <strong>fractional</strong> <strong>branes</strong> are no longer perturbative states <strong>in</strong> type IIB and<strong>the</strong>ir wavefunction is spread over <strong>the</strong> whole b ∈ Z region [156] (at least <strong>in</strong> <strong>the</strong> large Mlimit).It turns out that <strong>the</strong> branch po<strong>in</strong>ts for u = 0, 1/2, up to corrections <strong>of</strong> higher order<strong>in</strong> q, lie atv M ≃ ∓q n+1/4 z M 0 , n = 0,...,K −1 and v M ≃ ∓2q K+1/4 z M 0 . (6.39)16 Very similarly, we can also describe a cascade with an SU(2KM) × SU(2KM) UV completion: itamounts to putt<strong>in</strong>g <strong>the</strong> cut<strong>of</strong>f and <strong>the</strong> vanish<strong>in</strong>g eigenvalues <strong>in</strong> <strong>the</strong> same adjo<strong>in</strong>t field/polynomial <strong>in</strong>(6.38), o<strong>the</strong>rwise preserv<strong>in</strong>g <strong>the</strong> structure <strong>of</strong> <strong>the</strong> polynomials. F<strong>in</strong>ally, <strong>the</strong> generalization to <strong>the</strong> cascadewith N = lM +p can be achieved by multiply<strong>in</strong>g R and S by <strong>the</strong> same degree p polynomial.


6.4. The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory 871/g i2pM+p2M+pN−MNNN+MppM+pN−2MN−MN+MN+MΛ l +1Λ lΛ 2Λ1z 0µFigure 6.3: RG flow <strong>of</strong> <strong>the</strong> <strong>the</strong>ory at <strong>the</strong> cascad<strong>in</strong>g vacuum (tak<strong>in</strong>g p = 0, for def<strong>in</strong>iteness). Here,as well as <strong>in</strong> figures 6.4 and 6.6, <strong>the</strong> horizontal axis is logarithmic and we have omitted <strong>the</strong> SUfactors for <strong>the</strong> <strong>gauge</strong> groups, to avoid clutter.The former class <strong>of</strong> po<strong>in</strong>ts consists <strong>of</strong> K sets <strong>of</strong> 2M double po<strong>in</strong>ts (which are doubleup to an accuracy discussed at <strong>the</strong> end <strong>of</strong> <strong>the</strong> next subsection), correspond<strong>in</strong>g to <strong>the</strong>K baryonic-root-like VEV’s <strong>of</strong> <strong>the</strong> first <strong>gauge</strong> group, whereas <strong>the</strong> latter are 2M wellseparated branch po<strong>in</strong>ts, correspond<strong>in</strong>g to <strong>the</strong> true enhançon <strong>of</strong> <strong>the</strong> low energy SU(M)<strong>the</strong>ory. The branch po<strong>in</strong>ts for u = τ/2, (τ +1)/2 lie atv M = ∓q n+3/4 z M 0 ,n = 0,...,K −1 and v M = (1±2q 1/4 )z M 0 . (6.40)The first class <strong>of</strong> po<strong>in</strong>ts consists aga<strong>in</strong> <strong>of</strong> K sets <strong>of</strong> 2M (almost) double po<strong>in</strong>ts, correspond<strong>in</strong>gto <strong>the</strong> K baryonic-root-like VEV’s <strong>of</strong> <strong>the</strong> second <strong>gauge</strong> group, while <strong>the</strong> secondset <strong>of</strong> po<strong>in</strong>ts are <strong>the</strong> almost paired branch po<strong>in</strong>ts associated to semiclassical <strong>fractional</strong><strong>branes</strong> at <strong>the</strong> cut<strong>of</strong>f scale z 0 .6.4.3 The <strong>in</strong>f<strong>in</strong>ite cascade limitIn this subsection we analyse <strong>the</strong> case <strong>of</strong> an <strong>in</strong>f<strong>in</strong>ite cascade, created as <strong>the</strong> cut<strong>of</strong>f anti<strong>fractional</strong><strong>branes</strong> are sent to <strong>in</strong>f<strong>in</strong>ity. We are <strong>in</strong>terested <strong>in</strong> this limit for two ma<strong>in</strong> reasons:first <strong>of</strong> all, this limit allows us to describe <strong>the</strong> field <strong>the</strong>ory vacuum and <strong>the</strong> SW curve dualto <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite cascade solution <strong>of</strong> [10], where <strong>the</strong>re are no cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong>;secondly, this <strong>in</strong>f<strong>in</strong>ite cascade bears strong connections and similarities, that we willspecify <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g, with <strong>the</strong> Klebanov-Tseytl<strong>in</strong>-Strassler N = 1 cascade [127, 118],which is necessarily unbounded <strong>in</strong> <strong>the</strong> UV s<strong>in</strong>ce <strong>fractional</strong> <strong>branes</strong> are stuck at an isolatedconifold s<strong>in</strong>gularity.In order to properly def<strong>in</strong>e this limit, we should keep fixed <strong>the</strong> IR enhançon scaleΛ m<strong>in</strong> , as well as <strong>the</strong> generalised enhançon scales def<strong>in</strong>ed <strong>in</strong> (6.33). It is thus convenientto rewrite <strong>the</strong> two polynomials as∏KR K (v) = v M (v 2M +q −2j Λ 2Mj=1S K (v) = (v M −q −1 4 −K Λ M m<strong>in</strong>)m<strong>in</strong>)K∏(v 2M +q 1−2j Λ 2Mj=1m<strong>in</strong>) .(6.41)


88 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsThe limit <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite cascade is formally K → ∞. Let us def<strong>in</strong>e x = (v/Λ m<strong>in</strong> ) M , obta<strong>in</strong><strong>in</strong>g<strong>the</strong> SW curveT K (x) ≡ R K(v)S K (v) =K∏(x 2 +q −2j )x j=1x−q −1/4−K K∏(x 2 +q 1−2j )j=1= g(u|τ) . (6.42)Note thatT K (x) =xx−q −1/4−KK∏(1+q 2j x 2 )j=1q K ∏ K (1+q 2j−1 x 2 )j=1(6.43)converges po<strong>in</strong>twise as K → ∞ for any fixed value <strong>of</strong> x (possibly with poles) s<strong>in</strong>ce |q| < 1,even though it does not converge uniformly.We can <strong>the</strong>n show that <strong>the</strong> approximate double po<strong>in</strong>ts become exact at any order <strong>in</strong>q at large enough |v| (i.e. <strong>the</strong> monopoles become exactly massless <strong>in</strong> <strong>the</strong> upper reach<strong>of</strong> <strong>the</strong> cascade). We will make use <strong>of</strong> <strong>the</strong> follow<strong>in</strong>g property <strong>of</strong> g at its double po<strong>in</strong>ts:g ( 0 ∣ ∣ τ)= −g(1/2∣ ∣τ)= 1/g(τ/2∣ ∣τ)= −1/g((1 + τ)/2∣ ∣τ). Moreover, <strong>the</strong> value <strong>of</strong> <strong>the</strong>periodic function at <strong>the</strong>se po<strong>in</strong>ts is given byg 0 (q) ≡ g(0|τ) = θ 2(0|2τ)θ 3 (0|2τ) = 2q 1 4∞∏j=1(1+q 2j ) 2(1+q 2j−1 ) 2 . (6.44)Let us start with <strong>the</strong> branch po<strong>in</strong>ts at u = 0, 1/2 and x = −ǫq −n , where n = 1,...,Kand ǫ = ±1. After some manipulations one gets∏T K (−ǫq −n 2ǫq 1/4 m<strong>in</strong>(n−1,K−n)∏j=1(1+q 2j ) 2 max(n−1,K−n)j=m<strong>in</strong>(n−1,K−n)+1) =(1+q2j )(1+ǫq 1/4+K−n ∏) m<strong>in</strong>(n,K−n)j=1(1+q 2j−1 ) 2 ∏ max(n,K−n)j=m<strong>in</strong>(n,K−n)+1 (1+q2j−1 ) .(6.45)Consequently, <strong>the</strong> equation T K (x) = ǫg 0 (q) is solved up to corrections O(q 2m<strong>in</strong>(n,K−n)+1 ),O(q 2m<strong>in</strong>(n−1,K−n)+2 ) and O(q 1/4+K−n ). In particular, <strong>in</strong> <strong>the</strong> case K ≥ 3n which is <strong>the</strong>lower part <strong>of</strong> <strong>the</strong> cascade we getT K (−ǫq −n )ǫg 0 (q)= 1+O(q 2n ) , (6.46)and <strong>the</strong> branch po<strong>in</strong>ts we found are correct up to O(q 2n ). Similarly, for <strong>the</strong> branch po<strong>in</strong>tsat u = τ/2, (τ +1)/2 and x = −ǫq −n+1/2 with n = 1,...,K, we getT K (−ǫq −n+1/2 1) =2ǫq 1/4 (1+sq 3/4+K−n ) ×∏ m<strong>in</strong>(n−1,K−n+1)∏j=1(1+q 2j−1 ) 2 max(n−1,K−n+1)× ∏ m<strong>in</strong>(n−1,K−n)j=1(1+q 2j ) 2 ∏ max(n−1,K−n)j=m<strong>in</strong>(n−1,K−n)+1 (1+q2j )j=m<strong>in</strong>(n−1,K−n+1)+1 (1+q2j−1 ), (6.47)


6.4. The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory 89and <strong>in</strong> particular, for K ≥ 3nT K (−ǫq −n+1/2 )(ǫg0 (q) ) −1= 1+O(q 2n−1 ) . (6.48)In order to show that <strong>the</strong>se two sets <strong>of</strong> branch po<strong>in</strong>ts are double, we compute{dT K 1 Kdx (x) = T K(x)x + ∑j=12xx 2 +q −2j − 1x−q −1/4−K − K ∑j=1}2xx 2 +q 1−2j . (6.49)One can show that T ′ K (−ǫq−n ) = O(q n+1/2 ) and T ′ K (−ǫq−n+1/2 ) = O(q n ) so that <strong>the</strong>po<strong>in</strong>ts are double, up to sub-lead<strong>in</strong>g corrections (from numerical studies it seems that <strong>the</strong>corrections actually appear at some much higher order).In a similar way, one shows that <strong>the</strong> non-double branch po<strong>in</strong>ts at u = 0, 1/2 andx = −2ǫ (enhançon) are correct up to O(q), whereas <strong>the</strong> almost double ones at u =τ/2, (τ +1)/2 and x = (1+2ǫq 1/4 )q −1/4−K (cut<strong>of</strong>f) are correct up to O(q 1/4 ).Summariz<strong>in</strong>g, our analysis shows that <strong>the</strong> SW curve (6.42) for <strong>the</strong> f<strong>in</strong>ite cascade has awell def<strong>in</strong>ed <strong>in</strong>f<strong>in</strong>ite cascade limit as we send K → ∞. We also evaluated to which degree<strong>the</strong> approximate double po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> q → 0 limit, appear<strong>in</strong>g at all <strong>the</strong> strong coupl<strong>in</strong>gscales except <strong>the</strong> smallest one, depart from be<strong>in</strong>g exactly double; we f<strong>in</strong>d that <strong>in</strong> <strong>the</strong><strong>in</strong>f<strong>in</strong>ite cascade limit <strong>the</strong> mass <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>g monopoles goes to 0 for any value <strong>of</strong>q as we consider higher and higher scales up <strong>in</strong> <strong>the</strong> cascade, that is large n. F<strong>in</strong>ally, onlyat <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite cascade do we f<strong>in</strong>d equally separated double po<strong>in</strong>ts (<strong>in</strong> <strong>the</strong>q → 0 limit), fill<strong>in</strong>g a true enhançon r<strong>in</strong>g <strong>in</strong> <strong>the</strong> large M limit.6.4.4 Mass deformationA not completely satisfactory feature <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g vacua we proposed is that, although<strong>the</strong>y preserve <strong>the</strong> Z 2M R-symmetry as <strong>the</strong> baryonic root <strong>of</strong> SQCD, <strong>the</strong> extra lightmonopoles are strictly massless only <strong>in</strong> <strong>the</strong> q → 0 limit or for very large n. At f<strong>in</strong>ite q andn, our vacua are not really s<strong>in</strong>gled out as very special po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> moduli space. Surelythis is enough to our purpose <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> field <strong>the</strong>ory vacua dual to <strong>the</strong> super<strong>gravity</strong>solutions <strong>in</strong> (6.12) and (6.13). However, it will be useful to argue for <strong>the</strong> existence <strong>of</strong> acascad<strong>in</strong>g vacuum with exactly massless monopoles.The task can be related to mass deformation <strong>of</strong> <strong>the</strong> N = 2 <strong>the</strong>ory to N = 1, after <strong>the</strong>addition <strong>of</strong> a mass term for <strong>the</strong> adjo<strong>in</strong>t scalarsW mass = m 2 (Φ2 − ˜Φ 2 ) . (6.50)In <strong>the</strong> case <strong>of</strong> N = 2 SQCD, a mass deformation lifts <strong>the</strong> moduli space and only <strong>the</strong>po<strong>in</strong>ts on <strong>the</strong> Coulomb branch with 2N c −N f extra massless monopoles survive, that is<strong>the</strong> baryonic root and <strong>the</strong> 2N f − N c special po<strong>in</strong>ts along <strong>the</strong> non-baryonic roots. Thereason is that <strong>in</strong> <strong>the</strong> dual M-<strong>the</strong>ory picture a mass deformation corresponds to a relativerotation <strong>of</strong> <strong>the</strong> two extended M5 branches (NS5-<strong>branes</strong> <strong>in</strong> IIA), and this is possible onlyif <strong>the</strong> curve has genus zero (because <strong>in</strong> <strong>the</strong> N = 1 <strong>the</strong>ory conf<strong>in</strong>ement breaks completely<strong>the</strong> <strong>gauge</strong> group, and <strong>the</strong> genus <strong>of</strong> <strong>the</strong> M-<strong>the</strong>ory/SW curve equals <strong>the</strong> rank <strong>of</strong> <strong>the</strong> left overgroup). On <strong>the</strong> o<strong>the</strong>r hand, moduli space po<strong>in</strong>ts with massless monopoles are s<strong>in</strong>gular


90 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gspo<strong>in</strong>ts where <strong>the</strong> genus <strong>of</strong> <strong>the</strong> curve reduces, and a maximal number <strong>of</strong> <strong>the</strong>m is neededto reach zero genus.This suggests that a special po<strong>in</strong>t on <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>ory should befound after a mass deformation. There are two ma<strong>in</strong> problems however. The first is that<strong>the</strong> cascad<strong>in</strong>g <strong>the</strong>ory is obta<strong>in</strong>ed from <strong>the</strong> conformal <strong>the</strong>ory by spontaneous break<strong>in</strong>g at<strong>the</strong> cut<strong>of</strong>f z 0 ; this is no longer a solution after mass deformation. A possible solution is toconsideran<strong>in</strong>f<strong>in</strong>itecascade,as<strong>in</strong><strong>the</strong>case<strong>of</strong><strong>the</strong>conifold<strong>the</strong>ory. Fromamoreconservativepo<strong>in</strong>t <strong>of</strong> view, one could consider an unstable time-dependent field configuration with af<strong>in</strong>ite cascade (with a large number <strong>of</strong> steps) <strong>in</strong> which <strong>the</strong> VEV’s for <strong>the</strong> spontaneousbreak<strong>in</strong>g are very large but collaps<strong>in</strong>g to zero. In this case <strong>the</strong> dimensionless parametercontroll<strong>in</strong>g <strong>the</strong> time evolution <strong>of</strong> <strong>the</strong> field is ¨Φ/Φ 3 = −(m/Φ) 2 , which is <strong>in</strong> fact very smallfor Φ ≫ m. This mechanism would “freeze” <strong>the</strong> cut<strong>of</strong>f <strong>in</strong> this limit. The o<strong>the</strong>r problemis that, unlike <strong>the</strong> SQCD case, after mass deformation <strong>the</strong> far IR is SU(M) N = 1 pureSYM, whose M vacua break Z 2M to Z 2 .These observations suggest that we should look for a genus zero SW curve whichbreaks Z 2M to Z 2 , mimick<strong>in</strong>g <strong>the</strong> curve for SU(M), and which describes an <strong>in</strong>f<strong>in</strong>itecascade. Let us start from one <strong>of</strong> <strong>the</strong> M genus zero curves <strong>of</strong> N = 2 SU(M) SYM:be<strong>in</strong>g <strong>of</strong> genus zero <strong>the</strong>y are parametrized by a complex coord<strong>in</strong>ate λ, from which oneconstructs two rational functions v and t [173, 174]v = λ+ Λ2λ , t = λM ⇒ t 2 −P M (v)t+Λ 2M = 0 , (6.51)where P M (v) is a particular polynomial <strong>of</strong> degree M <strong>in</strong> v. In <strong>the</strong> follow<strong>in</strong>g we will setΛ = 1; <strong>the</strong>n P M (v) is a Chebishev polynomial [159][√v + vP M (v) =2 −4] M [√v − v 2 −4] M+ . (6.52)2 2The genus zero curve for <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite cascade vacuum <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory is simplyobta<strong>in</strong>ed by wrapp<strong>in</strong>g <strong>the</strong> SYM curve on <strong>the</strong> torus,Q = limK→∞ Q K = limK∏K→∞j=−KF(q j t,v) = 0 with F(t,v) = t−P M (v)+ 1 t ,(6.53)where t = e 2πiu . This def<strong>in</strong>ition is ma<strong>in</strong>ly formal, as <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite product above doesnot converge. However its zero locus <strong>in</strong> T 2 ×C (<strong>the</strong> curve itself) is well def<strong>in</strong>ed, and itconsists <strong>of</strong> <strong>the</strong> SYM curve wrapped <strong>in</strong>f<strong>in</strong>itely many times on <strong>the</strong> torus. It is clear thatit has genus zero (be<strong>in</strong>g non-compact, we mean that it is parametrized by λ) and that itreproduces <strong>the</strong> correct IR behavior <strong>of</strong> SU(M) SYM.In order to make sense <strong>of</strong> it, and to check that it is <strong>the</strong> limit <strong>of</strong> a sequence <strong>of</strong> SWcurves for longer and longer cascades, with <strong>the</strong> correct hierarchy <strong>of</strong> scales as expectedfrom <strong>the</strong> RG flow at <strong>the</strong> baryonic roots, we consider f<strong>in</strong>ite K (eventually sent to ∞) andrewrite <strong>the</strong> curve as(˜Q K = q K(K+1) f(q)Q K = f(q) t−P + 1 t) K ∏j=1(1−Ptq j +t 2 q 2j)( 1− P t qj + q2jt 2 )= 0 ,(6.54)


6.4. The cascad<strong>in</strong>g vacuum <strong>in</strong> field <strong>the</strong>ory 91where f(q) = ∏ ∞j=1 (1 − q2j )(1 − q 2j−1 ) 2 . The zero locus is <strong>the</strong> same as before, butnow <strong>the</strong> product converges as K → ∞. Then, we def<strong>in</strong>e a sequence <strong>of</strong> SW curves forSU ( (2K +1)M ) ×SU ( (2K +1)M ) given bywith <strong>the</strong> polynomials ˜R K and ˜S K chosen asQ K ≡ −˜R K θ 3 (2u|2τ)+ ˜S K θ 2 (2u|2τ) = 0 , (6.55)˜R K (v) = P(v) ∏ Kj=1(q 2j P(v) 2 +1−2q 2j +q 4j) (6.56)˜S K (v) = q −1/4( 1−q K+1/4 P(v) )∏ Kj=1(q 2j−1 P(v) 2 +1−2q 2j−1 +q 4j−2) . (6.57)Us<strong>in</strong>g <strong>the</strong> identities( )θ 3 2u|2τ = ∏ ∞j=1 (1−q2j ) ( 1+t 2 q 2j−1)( 1+t −2 q 2j−1) (6.58)( )θ 2 2u|2τ = q 1/4 (t+t −1 ) ∏ ∞j=1 (1−q2j ) ( 1+t 2 q 2j)( 1+t −2 q 2j) , (6.59)one can explicitly verify that˜Q K = Q K up to orders O(q K+1/4 ) . (6.60)Moreover, s<strong>in</strong>ce <strong>the</strong> polynomials P M (v) behave as v M for v ≫ 1, one can check that <strong>the</strong>hierarchy <strong>of</strong> scales <strong>of</strong> <strong>the</strong> cascad<strong>in</strong>g vacuum <strong>of</strong> subsection 6.4.3 is reproduced, up to IRcorrections related to <strong>the</strong> different unbroken R-symmetries.Let us comment on this result. Eq. (6.53)-(6.54) def<strong>in</strong>es a genus zero curve wi<strong>the</strong>xactly double branch po<strong>in</strong>ts for any value <strong>of</strong> q, which describes a <strong>the</strong>ory with <strong>in</strong>f<strong>in</strong>itelylong cascade and exactly massless monopoles, dual to a specific type IIB super<strong>gravity</strong>solution with no AdS asymptotics. One could th<strong>in</strong>k <strong>of</strong> realiz<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory by wrapp<strong>in</strong>gan M5 brane along <strong>the</strong> curve, and <strong>the</strong>n comput<strong>in</strong>g observables from it. However onecould object that, unlike <strong>the</strong> N = 1 <strong>in</strong>f<strong>in</strong>ite KS cascade which makes sense as a field<strong>the</strong>ory through holographic renormalization [119], an <strong>in</strong>f<strong>in</strong>ite N = 2 cascade probablydoes not. The reason is that as we cascade down <strong>the</strong> IR-free U(1) factors accumulate,and an <strong>in</strong>f<strong>in</strong>ite cascade would require an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> photons at f<strong>in</strong>ite energies,which does not make much sense. Thus <strong>in</strong> (6.55)-(6.56) we constructed a sequence <strong>of</strong>legitimate SW curves for any value <strong>of</strong> K, describ<strong>in</strong>g larger and larger field <strong>the</strong>ories withcascade which, although not hav<strong>in</strong>g genus zero because <strong>of</strong> <strong>the</strong> UV cut<strong>of</strong>f, approximate<strong>the</strong> genus zero curve (6.54) with arbitrary precision, for any value <strong>of</strong> q and M. We couldcompute observables <strong>in</strong> <strong>the</strong> sequence, gett<strong>in</strong>g <strong>in</strong> <strong>the</strong> limit <strong>the</strong> same answer as from (6.54).Therefore this procedure makes sense <strong>of</strong> <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite cascade <strong>the</strong>ory, <strong>in</strong> <strong>the</strong> sense thatobservables <strong>in</strong> f<strong>in</strong>ite sectors are <strong>in</strong>sensible to <strong>the</strong> (possibly <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong>) decoupledphotons.Eventually, notice that <strong>the</strong> sequence <strong>in</strong> (6.55)-(6.56) conta<strong>in</strong>s <strong>the</strong> f<strong>in</strong>ite q correctionsto <strong>the</strong> N = 2 cascade that are required to have exactly massless monopoles and that weremiss<strong>in</strong>g <strong>in</strong> (6.41) because those were not visible <strong>in</strong> super<strong>gravity</strong>.The mass deformation <strong>of</strong> this N = 2 vacuum is particularly <strong>in</strong>terest<strong>in</strong>g because it<strong>in</strong>duces a flow from <strong>the</strong> cascad<strong>in</strong>g N = 2 <strong>the</strong>ory to <strong>the</strong> N = 1 Klebanov-Strassler (KS)cascade. This is expected on <strong>the</strong> field <strong>the</strong>ory side because <strong>the</strong> adjo<strong>in</strong>t fields have to be<strong>in</strong>tegrated out at <strong>the</strong> scale <strong>of</strong> <strong>the</strong> deformation mass parameter, leav<strong>in</strong>g <strong>the</strong> Klebanov-Strassler field <strong>the</strong>ory at smaller energies.


92 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsThis is clear also <strong>in</strong> M-<strong>the</strong>ory. The genus zero SW curve we proposed is <strong>the</strong> one <strong>of</strong>N = 2 SU(M) SYM, rewritten on <strong>the</strong> torus so as to create an elliptic model. Similarlyto <strong>the</strong> M genus zero po<strong>in</strong>ts on <strong>the</strong> Coulomb branch <strong>of</strong> N = 2 SYM which survive massdeformation and flow to <strong>the</strong> M conf<strong>in</strong><strong>in</strong>g vacua <strong>of</strong> N = 1 SYM, <strong>the</strong> M genus zero N = 2curves we proposed flow to <strong>the</strong> M cascad<strong>in</strong>g vacua <strong>of</strong> <strong>the</strong> N = 1 KS <strong>the</strong>ory, whose IR is<strong>in</strong> fact N = 1 SYM.The rotated N = 1 curve <strong>in</strong> <strong>the</strong> limit m → ∞ is easily written. As before, we startrotat<strong>in</strong>g <strong>the</strong> SW curve for SU(M) SYM, exploit<strong>in</strong>g <strong>the</strong> rational parametrization <strong>in</strong> terms<strong>of</strong> λ [174]⎧⎪⎨v = λ {t = vMt = λ M ⇒(6.61)⎪⎩w = ζλ −1 vw = ζwhere <strong>the</strong> low energy strong coupl<strong>in</strong>g scale ζ = Λ 3 N=1 = mΛ2 N=2is kept fixed <strong>in</strong> <strong>the</strong> limit,and a suitable rescal<strong>in</strong>g <strong>of</strong> variables is performed [173]. The curve for <strong>the</strong> quiver <strong>the</strong>oryis obta<strong>in</strong>ed by wrapp<strong>in</strong>g <strong>the</strong> curve on <strong>the</strong> M-<strong>the</strong>ory torus: 0 = ∏ j (qj t − v M ). After arescal<strong>in</strong>g to make <strong>the</strong> product converge, we get0 = (t−v M )K→∞∏j=1(tv M −q j (t 2 +v 2M )+q 2j tv M) , vw = ζ . (6.62)Note however that while <strong>in</strong> <strong>the</strong> N = 2 case <strong>the</strong> M5 brane embedd<strong>in</strong>g can be <strong>in</strong>terpretedas <strong>the</strong> exact SW curve for <strong>the</strong> field <strong>the</strong>ory, which encodes <strong>the</strong> prepotential and <strong>the</strong> fulldynamics, after break<strong>in</strong>g to N = 1 this is no longer <strong>the</strong> case. The <strong>the</strong>ory on <strong>the</strong> M5 branereduces to <strong>the</strong> field <strong>the</strong>ory <strong>of</strong> <strong>in</strong>terest only when, for particular choices <strong>of</strong> <strong>the</strong> parameters,<strong>the</strong> unwanted modes are decoupled, and we refer to [174, 175] for details.It should be possible to reproduce this <strong>in</strong>terpolat<strong>in</strong>g flow <strong>in</strong> super<strong>gravity</strong>, so as toga<strong>in</strong> <strong>in</strong>sight also on <strong>the</strong> Kähler data <strong>of</strong> <strong>the</strong>se N = 1 vacua. In particular, if <strong>the</strong> massdeformation is much larger than <strong>the</strong> enhançon scale Λ, <strong>the</strong> solution should <strong>in</strong>terpolate to<strong>the</strong> Klebanov-Tseytl<strong>in</strong> (KT) solution (before chiral symmetry break<strong>in</strong>g takes place <strong>in</strong> <strong>the</strong>IR). We leave <strong>the</strong> analysis <strong>of</strong> such an <strong>in</strong>terpolat<strong>in</strong>g solution, which should be performedalong <strong>the</strong> l<strong>in</strong>es <strong>of</strong> [176], to <strong>the</strong> future.6.5 More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gsIn this section we study o<strong>the</strong>r vacua <strong>of</strong> <strong>the</strong> SU(N +M)×SU(N) <strong>the</strong>ory, focus<strong>in</strong>g on aclass preserv<strong>in</strong>g <strong>the</strong> same Z 2M R-symmetry as <strong>the</strong> super<strong>gravity</strong> solution <strong>of</strong> section 2. Wewill start from <strong>the</strong> non-cascad<strong>in</strong>g enhançon vacuum <strong>of</strong> section 6.3 and gradually construct<strong>the</strong> cascad<strong>in</strong>g vacuum discussed previously by pull<strong>in</strong>g VEV’s out <strong>of</strong> <strong>the</strong> orig<strong>in</strong>. In thisprocess, we will observe new nontrivial vacua, for which we will propose novel type IIBdual backgrounds.Let us consider <strong>the</strong> follow<strong>in</strong>g family <strong>of</strong> polynomials for <strong>the</strong> SW curves <strong>of</strong> <strong>the</strong> SU(N +M)×SU(N +M) <strong>the</strong>ory, parametrized by φR(v) = v N−M (v 2M −φ 2M ) S(v) = v N (v M −z M 0 ) . (6.63)


6.5. More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs 93An overall v N−M factor (<strong>in</strong>terpreted as N −M D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong>) decouples from<strong>the</strong> SW curve (6.21), so that we will effectively reduce to <strong>the</strong> SU(2M)×SU(2M) case,withR(v) = v 2M −φ 2M S(v) = v M (v M −z M 0 ) . (6.64)For φ = 0 we are at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> SU(2M) × SU(M) effective<strong>the</strong>ory, where <strong>the</strong> enhançon mechanism takes place. We want to study <strong>the</strong> branch po<strong>in</strong>ts<strong>of</strong> <strong>the</strong> SW curve as we vary φ cont<strong>in</strong>uously, <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> approximation <strong>of</strong> small q,so that g 0 (q) = 2q 1/4 +O(q 5/4 ). We will use <strong>the</strong> shorthand notation ξ = v M and def<strong>in</strong>e<strong>the</strong> enhançon scale Λ = 2 1/M q 1/4M z 0 .Let us first consider <strong>the</strong> branch po<strong>in</strong>ts at u = 0, 1/2, related to <strong>the</strong> polynomial R.Depend<strong>in</strong>g on <strong>the</strong> value <strong>of</strong> |φ|, we f<strong>in</strong>d: 17• |φ M | < |q 1/4 z0 M| ( φξ ≃ ±Λ M 2) M, ξ ≃ ± , (6.65)Λnamely 2M equally separated branch po<strong>in</strong>ts at <strong>the</strong> enhançon r<strong>in</strong>g and 2M equallyspaced branch po<strong>in</strong>ts at a r<strong>in</strong>g <strong>of</strong> radius |φ 2 /Λ|;• |φ M | > |q 1/4 z M 0 | ξ ≃ ±(1+ǫq 1/4 )φ M , ǫ = ±1 , (6.66)namely 2M pairs <strong>of</strong> branch po<strong>in</strong>ts on a circle <strong>of</strong> radius |φ|.The branch po<strong>in</strong>ts at u = τ/2, (1+τ)/2 related to <strong>the</strong> polynomial S, as long as |φ M |


94 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs1/g 2 iN−MN−MNN+MN−MNN+MN+M1/2Mq2φΛΛφz2φΛ0µFigure 6.4: RG flow <strong>of</strong> <strong>the</strong> <strong>the</strong>ory at a vacuum with a perturbative Higgs<strong>in</strong>g at scale φ.First, <strong>in</strong> <strong>the</strong> case |Λ| < |φ| < |z 0 |, whose correspond<strong>in</strong>g RG flow is depicted <strong>in</strong> figure6.4, <strong>the</strong> <strong>the</strong>ory is conformal <strong>in</strong> <strong>the</strong> UV, down to z 0 where M eigenvalues <strong>of</strong> one adjo<strong>in</strong>tscalar break <strong>the</strong> <strong>gauge</strong> group to SU(N +M)×SU(N)×U(1) M , trigger<strong>in</strong>g <strong>the</strong> RG flow.They correspond to M semiclassical D5 −1 ’s <strong>in</strong> <strong>the</strong> type IIB picture. At <strong>the</strong> scale φ <strong>the</strong>reare 2M pairs <strong>of</strong> branch po<strong>in</strong>ts at <strong>the</strong> positions <strong>of</strong> <strong>the</strong> 2M VEV’s <strong>of</strong> <strong>the</strong> o<strong>the</strong>r adjo<strong>in</strong>tscalar, which break fur<strong>the</strong>r to SU(N −M)×SU(N)×U(1) 3M and <strong>in</strong>vert <strong>the</strong> RG flow.They correspond to 2M semiclassical D5’s <strong>in</strong> <strong>the</strong> geometry, which <strong>in</strong>vert <strong>the</strong> twistedfluxes; <strong>in</strong> particular b starts to grow as <strong>the</strong> radius decreases. At a lower energy scaleq 1/(2M) φ 2 /Λ <strong>the</strong> SU(N) coupl<strong>in</strong>g diverges, <strong>in</strong>stantons break <strong>the</strong> <strong>gauge</strong> group fur<strong>the</strong>r to<strong>the</strong> conformal SU(N −M)×SU(N −M) <strong>the</strong>ory with one divergent coupl<strong>in</strong>g (times <strong>the</strong>U(1) 4M factor), and we f<strong>in</strong>d 2M branch po<strong>in</strong>ts equally spaced along a r<strong>in</strong>g. In type IIB,b reaches <strong>the</strong> value 1 at <strong>the</strong> r<strong>in</strong>g and <strong>the</strong>re leaves M tensionless D5 −1 ’s smeared over <strong>the</strong>enhançon r<strong>in</strong>g. It is possible to see by add<strong>in</strong>g a D5 −1 probe that it cannot penetrate <strong>in</strong>to<strong>the</strong> <strong>in</strong>terior, whereas a D5 0 can penetrate <strong>the</strong> enhançon r<strong>in</strong>g, uncha<strong>in</strong><strong>in</strong>g a D5 −1 from itand mak<strong>in</strong>g a D3 brane, which is free to move <strong>in</strong>side.There is a more <strong>in</strong>terest<strong>in</strong>g behavior <strong>in</strong> <strong>the</strong> case <strong>of</strong> |φ| < |Λ|. If φ = 0 we are at <strong>the</strong>enhançon vacuum <strong>of</strong> Section 6.3. When φ does not vanish, <strong>the</strong> branch po<strong>in</strong>ts follow <strong>the</strong>pattern <strong>of</strong> figure 6.5 whereas <strong>the</strong> RG flow is <strong>the</strong> one depicted <strong>in</strong> figure 6.6. As before, MD5 −1 ’s are placed at <strong>the</strong> cut<strong>of</strong>f scale z 0 . From that scale downwards <strong>the</strong>re is a flow withdecreas<strong>in</strong>g b towards smaller radii, and an enhançon r<strong>in</strong>g with 2M equally spaced branchpo<strong>in</strong>ts at Λ, where b reaches 0 and M tensionless D5 0 ’s are melted on <strong>the</strong> r<strong>in</strong>g. At lowerenergies <strong>the</strong> <strong>the</strong>ory <strong>in</strong>cludes <strong>the</strong> conformal SU(N) × SU(N) factor with one divergentcoupl<strong>in</strong>g: b = 0 <strong>in</strong> <strong>the</strong> dual super<strong>gravity</strong> solution, because <strong>of</strong> <strong>the</strong> M <strong>fractional</strong> <strong>branes</strong> at<strong>the</strong> enhançon r<strong>in</strong>g. One could have expected that a new flow would start at a scale φbecause <strong>of</strong> <strong>the</strong> VEV’s, but it does not: it actually starts only at a lower scale φ 2 /Λ, where<strong>the</strong>re are 2M additional equally spaced branch po<strong>in</strong>ts; below this energy scale, <strong>the</strong> <strong>gauge</strong>group with divergent coupl<strong>in</strong>g starts runn<strong>in</strong>g towards weak coupl<strong>in</strong>g aga<strong>in</strong>, whereas <strong>the</strong>o<strong>the</strong>r one runs towards strong coupl<strong>in</strong>g. We enter a new perturbative regime, which ends


6.5. More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs 95∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘ ∘∘∘ ∘ ∘∘∘∘ ∘ ∘ ∘ ∘∘∘∘ ∘ ∘∘∘∘ ∘∘∘ ∘∘∘∘ ∘ ∘∘∘∘∘∘∘∘∘ ∘∘∘ ∘∘∘∘∘ ∘ ∘∘∘∘ ∘ ∘ ∘ ∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘Figure 6.5: Branch po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> U(20)×U(20) <strong>the</strong>ory at a vacuum with one enhançon bear<strong>in</strong>g,a non-perturbative region between two enhançon r<strong>in</strong>gs. Red (blue) circles denote branch po<strong>in</strong>tsrelated to <strong>the</strong> S (R) polynomial.with a f<strong>in</strong>al r<strong>in</strong>g <strong>of</strong> equally spaced branch po<strong>in</strong>ts at scale q 1/(2M) φ 2 /Λ where one <strong>gauge</strong>coupl<strong>in</strong>g diverges; <strong>in</strong> <strong>the</strong> <strong>in</strong>terior we f<strong>in</strong>d a new conformal SU(N − M) × SU(N − M)sector, with one divergent coupl<strong>in</strong>g, down to <strong>the</strong> IR.We will call <strong>the</strong> r<strong>in</strong>g at scale φ 2 /Λ an anti-enhançon. From <strong>the</strong> super<strong>gravity</strong> po<strong>in</strong>t <strong>of</strong>view it is <strong>in</strong>dist<strong>in</strong>guishable from a usual enhançon. However from <strong>the</strong> field <strong>the</strong>ory po<strong>in</strong>t <strong>of</strong>view it is quite peculiar: it represents <strong>in</strong>stantonic effects that break <strong>the</strong> upper conformal<strong>the</strong>ory to a runn<strong>in</strong>g one. These effects at <strong>the</strong> scale φ 2 /Λ are triggered by VEV’s at <strong>the</strong>scale φ: <strong>the</strong>y take some “aff<strong>in</strong>e RG time” to break <strong>the</strong> group; moreover this means that<strong>the</strong> effective conformal <strong>the</strong>ory must have some remnant <strong>of</strong> <strong>the</strong> scale Λ. These issuesdeserve fur<strong>the</strong>r <strong>in</strong>vestigations.We dub <strong>the</strong> regions between enhançon and anti-enhançon r<strong>in</strong>gs, where b ∈ Z and <strong>the</strong><strong>the</strong>ory enjoys a superconformal phase, enhançon bear<strong>in</strong>gs.It turns out that one can construct two different type IIB solutions that describe thisRG flow. The first one, say Higgs<strong>in</strong>g-<strong>in</strong>spired (H), by cont<strong>in</strong>uity with <strong>the</strong> case |φ| > |Λ|where a perturbative Higgs mechanism takes place, <strong>in</strong>terprets <strong>the</strong> r<strong>in</strong>g <strong>of</strong> branch po<strong>in</strong>tsat φ 2 /Λ as an anti-enhançon made <strong>of</strong> M tensionless D5 0 ’s (like <strong>the</strong> ones at Λ), which<strong>the</strong>refore force b to grow as <strong>the</strong> radius decreases, so that it rema<strong>in</strong>s bounded by 0 and1. The <strong>in</strong>nermost r<strong>in</strong>g, placed where b reaches 1, is an enhançon r<strong>in</strong>g made <strong>of</strong> smearedtensionless D5 −1 . In this picture <strong>the</strong> D5 0 ’s (D5 −1 ’s) are always associated to <strong>the</strong> first(second) <strong>gauge</strong> group.The second, say cascade-<strong>in</strong>spired (C), works by analogy with <strong>the</strong> Klebanov-Tseytl<strong>in</strong>-Strassler N = 1 cascade and <strong>in</strong>terprets <strong>the</strong> r<strong>in</strong>g <strong>of</strong> branch po<strong>in</strong>ts at φ 2 /Λ as an antienhançonmade <strong>of</strong> M tensionless D5 0 , and b becomes negative at smaller radii. Then b ismonotonic, and <strong>the</strong> <strong>in</strong>nermost r<strong>in</strong>g at b = −1 is <strong>in</strong>terpreted as an enhançon r<strong>in</strong>g made <strong>of</strong>M tensionless D5 1 . This is <strong>the</strong> picture that matches with <strong>the</strong> solution <strong>in</strong> (6.12)-(6.13) andwhich is usually considered <strong>in</strong> <strong>the</strong> literature. The association between <strong>fractional</strong> <strong>branes</strong>and <strong>gauge</strong> groups is such that wrapped (anti)D5 <strong>branes</strong> always correspond to <strong>the</strong> larger(smaller) <strong>gauge</strong> group.


96 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs1/g2iN−MNN−MNN+MN−MNNN+MN+Mq 1/2M φ 2Λφ 2ΛφΛz0µFigure 6.6: RG flow <strong>of</strong> <strong>the</strong> <strong>the</strong>ory at a vacuum with one enhançon bear<strong>in</strong>g. The <strong>the</strong>ory iseffectively <strong>the</strong> conformal SU(N)×SU(N) between <strong>the</strong> scales Λ and φ 2 /Λ.Type IIB solutions like <strong>the</strong> two we are discuss<strong>in</strong>g here can be explicitly constructedby excis<strong>in</strong>g and glu<strong>in</strong>g twisted fields <strong>of</strong> <strong>the</strong> solution <strong>in</strong> (6.12)-(6.13) (possibly generatedby one or <strong>the</strong> o<strong>the</strong>r k<strong>in</strong>d <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>) and <strong>of</strong> a fluxless solution, with suitablesources account<strong>in</strong>g for <strong>the</strong> discont<strong>in</strong>uities at <strong>the</strong> glued surfaces, along <strong>the</strong> l<strong>in</strong>es <strong>of</strong> [177].As already stressed <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> ord<strong>in</strong>ary enhançon r<strong>in</strong>g, this excision and glu<strong>in</strong>gprocedure works for twisted fields, which are constra<strong>in</strong>ed to <strong>the</strong> orbifold fixed plane.Instead, untwisted fields like <strong>the</strong> metric can propagate also <strong>in</strong> <strong>the</strong> four dimensions <strong>of</strong> <strong>the</strong>orbifold, and must be computed once <strong>the</strong> twisted fields and <strong>fractional</strong> brane configurationis specified; this will be done <strong>in</strong> section 6.6. It should be remarked that <strong>the</strong>y turn outto be <strong>the</strong> same <strong>in</strong> <strong>the</strong> two pictures. One immediately realizes that all <strong>gauge</strong> <strong>in</strong>variantquantities one could compute from <strong>the</strong> two solutions will give <strong>the</strong> same answer, and <strong>in</strong><strong>the</strong> field <strong>the</strong>ory moduli space we have only one vacuum to match with <strong>the</strong> two solutions.This suggests that an ambiguity must be at work.The ambiguity is particularly apparent <strong>in</strong> <strong>the</strong> T-dual type IIA/M-<strong>the</strong>ory description.In type IIA, on each NS5-brane <strong>the</strong>re is some worldvolume G 1 = dA 0 flux. Space-timefill<strong>in</strong>g I3 brane <strong>in</strong>tersections <strong>of</strong> codimension two, where D4 <strong>branes</strong> end on an NS5 brane,are magnetic sources for A 0 ; <strong>the</strong> flux ∮ G 1 through any closed path <strong>in</strong> <strong>the</strong> 2 dimensions <strong>of</strong><strong>the</strong> NS5 worldvolume parametrized by v, <strong>in</strong> which I3 <strong>branes</strong> are po<strong>in</strong>ts, jumps by one unitwhenever <strong>the</strong> path crosses one <strong>of</strong> <strong>the</strong>se po<strong>in</strong>ts. In what follows we will consider circularpaths centered <strong>in</strong> <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> v plane. One direction transverse to <strong>the</strong> NS5’s, say x 6 ,is compact <strong>of</strong> radius R and <strong>the</strong> distance between <strong>the</strong> two NS5-<strong>branes</strong> is 2πbR. In figure6.7(a) we plotted <strong>the</strong> local geometry around a r<strong>in</strong>g where <strong>the</strong> perturbative Higgs<strong>in</strong>g takesplace as <strong>in</strong> <strong>the</strong> RG flow <strong>of</strong> figure 6.4: <strong>the</strong> NS5 on <strong>the</strong> left has a flux ∮ G 1 = −M (<strong>in</strong>suitable units) below <strong>the</strong> stretched D4 <strong>branes</strong>, that jumps to M above <strong>the</strong> D4’s, while<strong>the</strong> opposite happens to <strong>the</strong> NS5 on <strong>the</strong> right whose flux jumps from M to −M. Alonga generalized enhançon r<strong>in</strong>g b is <strong>in</strong>teger valued, so that <strong>the</strong> stretched D4’s are degenerateand <strong>the</strong> NS5’s touch, as <strong>in</strong> figure 6.7(b). This <strong>in</strong>terpretation leads to <strong>the</strong> H-picture <strong>in</strong>IIB: b has a saw-shaped pr<strong>of</strong>ile bounded by [0,1] and <strong>the</strong>re are 2M <strong>fractional</strong> <strong>branes</strong> <strong>of</strong>one k<strong>in</strong>d <strong>in</strong> <strong>the</strong> enhançon bear<strong>in</strong>g, M on each boundary. But <strong>the</strong> same IIA configuration


6.5. More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs 97NS5 2L(v) 0NS5 1NS5 2M−MNS5 1 −MMNS5 2H−pictureML(v)−M−MD4 ’sMNS5 1M−M|v|C−picture−MMx 6(a)(b)Figure 6.7: IIA description and ambiguity. (a) a po<strong>in</strong>t <strong>of</strong> <strong>the</strong> moduli space where 2M D4 <strong>branes</strong>are stretched between two NS5 <strong>branes</strong>. (b) ano<strong>the</strong>r po<strong>in</strong>t where <strong>the</strong> D4 <strong>branes</strong> have collapsedto zero length. In <strong>the</strong> H-picture we <strong>in</strong>terpret <strong>the</strong> D4 <strong>branes</strong> as still present, provid<strong>in</strong>g bend<strong>in</strong>gtension and flux jump; <strong>in</strong> <strong>the</strong> C-picture, <strong>the</strong> D4 <strong>branes</strong> are simply not <strong>the</strong>re.can be equally well <strong>in</strong>terpreted as two NS5 <strong>branes</strong> that just cross, without any D4 <strong>branes</strong>between <strong>the</strong>m and without any jump <strong>in</strong> <strong>the</strong> flux. This leads to <strong>the</strong> C-picture <strong>in</strong> IIB: bis monotonic, and <strong>the</strong> bear<strong>in</strong>g has <strong>fractional</strong> <strong>branes</strong> on one side and anti-<strong>fractional</strong> on<strong>the</strong> o<strong>the</strong>r side, which cancel <strong>the</strong>ir charge. In <strong>the</strong> type IIA picture <strong>the</strong>re is clearly a s<strong>in</strong>gleconfiguration (dual to a s<strong>in</strong>gle vacuum <strong>in</strong> field <strong>the</strong>ory) which gives rise to two pictures <strong>in</strong>IIB.In type IIB, <strong>the</strong> ambiguity is related to S-duality: <strong>the</strong> duality group PSL(2,Z) actscovariantly on <strong>the</strong> parameter space, whilst <strong>the</strong> left over Z 2 that acts as (B 2 ,C 2 ) →(−B 2 ,−C 2 ) and (b,c) → (−b,−c) on <strong>the</strong> twisted fields, is <strong>gauge</strong>d. The novel feature hereis that <strong>the</strong> enhançon bear<strong>in</strong>gs are doma<strong>in</strong> walls on <strong>the</strong> C orbifold l<strong>in</strong>e, and <strong>the</strong> Z 2 can acton each doma<strong>in</strong> separately. At <strong>the</strong> same time, as already stressed, <strong>the</strong> ambiguity doesnot affect <strong>the</strong> untwisted fields: F 5 and <strong>the</strong> warp factor are <strong>the</strong> same <strong>in</strong> <strong>the</strong> two pictures,s<strong>in</strong>ce <strong>the</strong>y depend on <strong>the</strong> twisted fields only quadratically <strong>in</strong> <strong>the</strong>ir field strengths; B 2 andC 2 are zero <strong>in</strong> <strong>the</strong> bulk.We can keep play<strong>in</strong>g <strong>the</strong> same game <strong>of</strong> add<strong>in</strong>g suitable VEV’s, expla<strong>in</strong>ed so far <strong>in</strong> thissection, to <strong>the</strong> newly found solutions, so as to generate longer and longer RG flows withmore and more transitions and reductions <strong>of</strong> degrees <strong>of</strong> freedom. Of course <strong>the</strong> number <strong>of</strong>steps is at most [N/M] − . In this way we produce a class <strong>of</strong> vacua with a sort <strong>of</strong> cascad<strong>in</strong>gbehavior, with cascades <strong>of</strong> different lengths.


98 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsWe conclude discuss<strong>in</strong>g <strong>the</strong> behavior <strong>of</strong> probes through <strong>the</strong> enhançon bear<strong>in</strong>g, asextracted from <strong>the</strong> branch po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> SW curve with a pair <strong>of</strong> VEV’s added <strong>in</strong> <strong>the</strong>perturbative regime outside <strong>the</strong> bear<strong>in</strong>g, and <strong>in</strong>terpret<strong>in</strong>g it <strong>in</strong> <strong>the</strong> C-picture (<strong>the</strong> o<strong>the</strong>rone is equivalent). Consider first mov<strong>in</strong>g <strong>the</strong> VEV for <strong>the</strong> adjo<strong>in</strong>t scalar <strong>of</strong> <strong>the</strong> <strong>gauge</strong>group related to <strong>the</strong> branch po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> bear<strong>in</strong>g, keep<strong>in</strong>g <strong>the</strong> VEV for <strong>the</strong> o<strong>the</strong>r adjo<strong>in</strong>tfixed. As we decrease <strong>the</strong> VEV towards <strong>the</strong> outer enhançon scale, <strong>the</strong> two branch po<strong>in</strong>tsreach <strong>the</strong> r<strong>in</strong>g and <strong>the</strong>re split and melt <strong>in</strong>to it. Noth<strong>in</strong>g happens until <strong>the</strong> VEV becomessmaller than <strong>the</strong> scale <strong>of</strong> <strong>the</strong> <strong>in</strong>ner anti-enhançon scale, when two branch po<strong>in</strong>ts escapefrom this r<strong>in</strong>g, pair up and <strong>the</strong>n cont<strong>in</strong>ue <strong>the</strong>ir motion as almost double branch po<strong>in</strong>ts.In <strong>the</strong> C-picture, this corresponds to a D5 0 which melts at <strong>the</strong> outer enhançon, and latercomes out <strong>of</strong> <strong>the</strong> <strong>in</strong>ner anti-enhançon as a D5 0 . Similarly, we can move <strong>the</strong> VEV for <strong>the</strong>adjo<strong>in</strong>t scalar <strong>of</strong> <strong>the</strong> o<strong>the</strong>r <strong>gauge</strong> group. The correspond<strong>in</strong>g two branch po<strong>in</strong>ts cross <strong>the</strong>outer enhançon r<strong>in</strong>g, uncha<strong>in</strong><strong>in</strong>g two <strong>of</strong> its branch po<strong>in</strong>ts. When <strong>the</strong>y reach <strong>the</strong> <strong>in</strong>nerr<strong>in</strong>g, <strong>the</strong>y leave two branch po<strong>in</strong>ts <strong>the</strong>re and move on. In <strong>the</strong> C-picture, this correspondsto a D5 −1 that captures a D5 0 at <strong>the</strong> enhançon and becomes a D3-brane, free to move<strong>in</strong>side<strong>the</strong>bear<strong>in</strong>g; <strong>the</strong>nitleavesaD5 0 at<strong>the</strong>anti-enhançon andbecomesaD5 1 whichisam<strong>in</strong>imal BPS object <strong>in</strong> <strong>the</strong> region b ∈ [−1,0] below <strong>the</strong> anti-enhançon r<strong>in</strong>g. This behavior<strong>of</strong> probes through <strong>the</strong> enhançon bear<strong>in</strong>gs <strong>in</strong> <strong>the</strong> case <strong>of</strong> monotonic b precisely accountsfor <strong>the</strong> non-trivial rearrangement <strong>of</strong> m<strong>in</strong>imal objects <strong>in</strong> BPS bound states claimed <strong>in</strong> [11].6.5.1 Reconstruct<strong>in</strong>g <strong>the</strong> cascad<strong>in</strong>g vacuum at <strong>the</strong> baryonic rootsWe can now connect <strong>the</strong> enhançon bear<strong>in</strong>g vacua discussed so far with <strong>the</strong> cascad<strong>in</strong>gvacuum at <strong>the</strong> baryonic roots <strong>of</strong> section 6.4. Such a cascad<strong>in</strong>g vacuum has <strong>the</strong> propertythat all <strong>the</strong> complexified strong coupl<strong>in</strong>g scales along <strong>the</strong> cascade are related by <strong>the</strong> samehierarchy q 1/2M , which ensures that, at least for q → 0, <strong>the</strong> branch po<strong>in</strong>ts pair up.We start from a vacuum with an enhançon bear<strong>in</strong>g and send <strong>the</strong> thickness <strong>of</strong> <strong>the</strong>bear<strong>in</strong>g to zero send<strong>in</strong>g |φ| → |Λ| for <strong>the</strong> relevant strong coupl<strong>in</strong>g scale Λ. So do<strong>in</strong>g, weend up with a s<strong>in</strong>gle circle at scale Λ where 4M branch po<strong>in</strong>ts lie, 2M com<strong>in</strong>g from <strong>in</strong>sideand 2M com<strong>in</strong>g from outside. For generic phases <strong>of</strong> φ, <strong>the</strong>se branch po<strong>in</strong>ts do not pair up,and on <strong>the</strong> type IIB side we end up with a source term at <strong>the</strong> glued surface, account<strong>in</strong>g fora discont<strong>in</strong>uity <strong>of</strong> c. If <strong>in</strong>stead <strong>the</strong> phase <strong>of</strong> φ is suitably tuned, branch po<strong>in</strong>ts com<strong>in</strong>g from<strong>the</strong> outer boundary and branch po<strong>in</strong>ts com<strong>in</strong>g from <strong>the</strong> <strong>in</strong>ner boundary <strong>of</strong> <strong>the</strong> bear<strong>in</strong>gcollide, hence form<strong>in</strong>g double branch po<strong>in</strong>ts. Repeat<strong>in</strong>g <strong>the</strong> game with a vacuum withmany enhançon bear<strong>in</strong>gs, we can obta<strong>in</strong> <strong>the</strong> cascad<strong>in</strong>g vacuum along <strong>the</strong> baryonic rootssend<strong>in</strong>g <strong>the</strong> thickness <strong>of</strong> each bear<strong>in</strong>g to zero, see figure 6.8.In type IIB, as we reduce <strong>the</strong> bear<strong>in</strong>g to zero thickness we make <strong>the</strong> two smearedsources at <strong>the</strong> <strong>in</strong>ner and outer boundaries <strong>of</strong> <strong>the</strong> bear<strong>in</strong>g co<strong>in</strong>cide. Follow<strong>in</strong>g [134], wecall <strong>the</strong> result<strong>in</strong>g shell a generalized enhançon r<strong>in</strong>g. In <strong>the</strong> H-picture, this is made <strong>of</strong>2M tensionless <strong>fractional</strong> <strong>branes</strong>, which account for <strong>the</strong> U(1) 2M factor left over by <strong>the</strong><strong>gauge</strong> break<strong>in</strong>g. The presence <strong>of</strong> <strong>the</strong> 2M massless hypermultiplets is more difficult tobe claimed: one could th<strong>in</strong>k <strong>of</strong> <strong>the</strong>m as aris<strong>in</strong>g at <strong>the</strong> 2M po<strong>in</strong>ts along <strong>the</strong> r<strong>in</strong>g whereγ ∈ Z+τZ; however <strong>the</strong>y should only be massless for <strong>the</strong> correct tun<strong>in</strong>g <strong>of</strong> <strong>the</strong> phase <strong>of</strong>φ. Our belief is just that <strong>the</strong> IIB super<strong>gravity</strong> description is <strong>in</strong>complete at <strong>the</strong> enhançonbear<strong>in</strong>gs. On <strong>the</strong> contrary, <strong>in</strong> <strong>the</strong> M-<strong>the</strong>ory description <strong>the</strong> mass <strong>of</strong> BPS hypermultipletstates is given by <strong>the</strong> mass (proportional to <strong>the</strong> area) <strong>of</strong> M2 disks end<strong>in</strong>g on <strong>the</strong> M5 brane


6.5. More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs 991/gi21/g2iφ Λ kln µln µFigure 6.8: In <strong>the</strong> limit where <strong>the</strong> thickness <strong>of</strong> <strong>the</strong> bear<strong>in</strong>gs is sent to zero, one can reconstruct<strong>the</strong> cascad<strong>in</strong>g vacuum along subsequent baryonic roots.[157, 178, 179, 180] which is <strong>the</strong> same as <strong>the</strong> SW curve; it is easy to see that <strong>the</strong> 2Mdouble branch po<strong>in</strong>ts corresponds to massless hypermultiplets.In <strong>the</strong> C-picture <strong>the</strong> generalized enhançon is made <strong>of</strong> M <strong>fractional</strong> and M anti<strong>fractional</strong><strong>branes</strong>, both tensionless and D3-chargeless. When <strong>the</strong> phase <strong>of</strong> φ is suitablychosen and <strong>the</strong> <strong>in</strong>ner and outer branch po<strong>in</strong>ts co<strong>in</strong>cide as we shr<strong>in</strong>k <strong>the</strong> bear<strong>in</strong>g, <strong>the</strong>D5-charges locally cancel leav<strong>in</strong>g <strong>the</strong> cont<strong>in</strong>uous super<strong>gravity</strong> solution <strong>of</strong> Section 6.2;o<strong>the</strong>rwise a source rema<strong>in</strong>s account<strong>in</strong>g for <strong>the</strong> discont<strong>in</strong>uity <strong>of</strong> c, and one might th<strong>in</strong>k <strong>of</strong>smeared dipoles <strong>of</strong> <strong>fractional</strong>/anti-<strong>fractional</strong> <strong>branes</strong>. In this picture <strong>the</strong> identification <strong>of</strong><strong>the</strong> field <strong>the</strong>ory modes is even subtler: even when a perfect annihilation seems to occur,this cannot be <strong>the</strong> case as <strong>the</strong> U(1) 2M factor must still be <strong>the</strong>re.Let us conclude comment<strong>in</strong>g on how <strong>the</strong> cascad<strong>in</strong>g vacuum at subsequent baryonicroots naturally arises as <strong>the</strong> dual <strong>of</strong> <strong>the</strong> super<strong>gravity</strong> solution <strong>of</strong> section 6.2. Such super<strong>gravity</strong>solution was constructed impos<strong>in</strong>g rotational isometry on <strong>the</strong> C orbifold l<strong>in</strong>eand without <strong>in</strong>troduc<strong>in</strong>g any source. Rotational isometry translates to Z 2M symmetry <strong>in</strong>field <strong>the</strong>ory, whilst absence <strong>of</strong> sources requires all <strong>the</strong> VEV’s to be at a strongly coupledscale. Among <strong>the</strong>se vacua, only <strong>the</strong> cascad<strong>in</strong>g vacuum <strong>in</strong> <strong>the</strong> C-picture avoid seem<strong>in</strong>gdiscont<strong>in</strong>uities <strong>of</strong> c (<strong>the</strong>ta angles) and b.6.5.2 More bear<strong>in</strong>gs: <strong>the</strong> enhançon plasmaSo far we have described a class <strong>of</strong> Z 2M -symmetric solutions <strong>of</strong> IIB super<strong>gravity</strong>, correspond<strong>in</strong>gto vacua <strong>of</strong> <strong>the</strong> dual field <strong>the</strong>ory with <strong>the</strong> same property, characterized by<strong>the</strong> presence <strong>of</strong> <strong>the</strong> enhançon plasma <strong>in</strong> <strong>the</strong> shape <strong>of</strong> fat r<strong>in</strong>gs (that we called enhançonbear<strong>in</strong>gs). From a simple numerical <strong>in</strong>spection <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory Coulomb branch, onediscovers that <strong>the</strong> enhançon plasma can take quite different shapes (see for <strong>in</strong>stance figure6.9). We give here a general characterization <strong>of</strong> such vacua, <strong>in</strong> <strong>the</strong> large N limit.We will show that from <strong>the</strong> po<strong>in</strong>t <strong>of</strong> view <strong>of</strong> IIB super<strong>gravity</strong> any choice <strong>of</strong> <strong>the</strong> enhançonplasma doma<strong>in</strong>s, with <strong>the</strong> only constra<strong>in</strong>t <strong>of</strong> charge quantization, leads to anactual solution and represents a field <strong>the</strong>ory vacuum. For def<strong>in</strong>iteness, we will study <strong>the</strong>SU(N)×SU(N) conformal <strong>the</strong>ory with b = 1 2, spontaneously broken to non-conformal<strong>the</strong>ories. Thus first <strong>of</strong> all we distribute some number <strong>of</strong> anti-<strong>fractional</strong> <strong>branes</strong> <strong>in</strong> a circularr<strong>in</strong>g <strong>of</strong> radius ρ 0 <strong>in</strong> <strong>the</strong> C-plane orbifold s<strong>in</strong>gularity. Then we will arbitrarily specify<strong>the</strong> enhançon plasma doma<strong>in</strong>s, without any restriction on <strong>the</strong> number <strong>of</strong> <strong>the</strong>ir holes andallow<strong>in</strong>g nested doma<strong>in</strong>s.


100 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs∘∘∘∘∘∘∘∘∘∘∘∘∘∘ ∘∘∘∘∘ ∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘ ∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘ ∘∘∘∘∘∘∘∘∘ ∘∘ ∘∘∘∘∘∘∘ ∘∘∘∘∘∘∘∘∘∘ ∘∘∘ ∘ ∘∘∘∘∘ ∘ ∘∘∘ ∘∘∘∘∘∘∘∘∘∘∘∘ ∘∘ ∘∘∘∘∘∘∘∘ ∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘∘Figure6.9: Somevacua<strong>of</strong><strong>the</strong>U(40)×U(40)<strong>in</strong>which<strong>the</strong>enhançonplasmaassumesexoticshapes.Left: <strong>the</strong> plasma has two holes. Right: <strong>the</strong> fat r<strong>in</strong>g has broken <strong>in</strong>to a horseshoe, disclos<strong>in</strong>g <strong>the</strong><strong>in</strong>ner region.The strategy to construct IIB super<strong>gravity</strong> solution is to solve for <strong>the</strong> twisted potentialsb and c first, and <strong>the</strong>n for F 5 and <strong>the</strong> warp factor.The enhançon plasma doma<strong>in</strong>s behave as conductors for <strong>the</strong> objects carry<strong>in</strong>g D5charge, so that charges distribute <strong>the</strong>mselves on <strong>the</strong> boundaries and <strong>in</strong>side <strong>the</strong>re are n<strong>of</strong>ields: b and c are constant with b ∈ Z. Outside <strong>the</strong> plasma doma<strong>in</strong>s <strong>the</strong>re are regionsD i where b and c are non-trivial. Consider one <strong>of</strong> <strong>the</strong>se regions, with its boundary givenby a collection <strong>of</strong> curves C i,α : <strong>the</strong>re is one external curve C i,E while we call <strong>the</strong> <strong>in</strong>ternalones ˜C i,α . The boundary conditions <strong>in</strong> D i are that b ∈ Z on each curve C i,α , and s<strong>in</strong>cewe choose not to have generalized enhançon r<strong>in</strong>gs nor tensionful <strong>fractional</strong> <strong>branes</strong> around(<strong>the</strong>y both can be obta<strong>in</strong>ed by send<strong>in</strong>g to zero thickness an enhançon plasma with fatr<strong>in</strong>g or circular shape), up to <strong>gauge</strong> transformations and picture ambiguity b = 1 onC i,E and b = 0,1 on ˜C i,α . The only exception is <strong>the</strong> outermost region D E where b = 1 2on <strong>the</strong> external r<strong>in</strong>g at |z| = ρ 0 and <strong>the</strong> <strong>branes</strong> are tensionful, while b = 0 on C E,α .Supersymmetry constra<strong>in</strong>s γ(z) = c+ ig sb to be a local meromorphic function, and afterour choice <strong>of</strong> boundary conditions actually holomorphic. To be precise, e −iγ must be aholomorphic section <strong>of</strong> a C ∗ bundle. Rephras<strong>in</strong>g, we look for a harmonic real function bwith fixed boundary conditions, and a local harmonic real function c which satisfies <strong>the</strong>Cauchy-Riemann relations.Theproblem<strong>of</strong>f<strong>in</strong>d<strong>in</strong>gaharmonicfunctionbwithprescribedvalueson<strong>the</strong>boundariesC i,α has one and only one solution. It can be found by m<strong>in</strong>imiz<strong>in</strong>g <strong>the</strong> functional∫D[u] = |∂u| 2 (6.69)D iamongst all u ∈ C (1) (D i \ ⋃ α C i,α) ∩ C (0) (D i ) with u ∣ ∣Ci,α= b(C i,α ). A local harmonicfunction that satisfies <strong>the</strong> Cauchy-Riemann relation can be constructed asc(z) = 1 g s∫ zp 0(∂y bdx−∂ x bdy ) , g s dc = ∂ y bdx−∂ x bdy = −∗db , (6.70)where z = x + iy, p 0 is an arbitrary reference po<strong>in</strong>t and ∗ is constructed with <strong>the</strong> flatmetric on C. Notice that ∗dγ = −idγ. c(z) turns out to be a multi-valued function with


6.5. More super<strong>gravity</strong> duals: enhançon bear<strong>in</strong>gs 101monodromies which give a representation <strong>of</strong> <strong>the</strong> homology group <strong>of</strong> D i . However, as longas <strong>the</strong> twisted field-strength dc is concerned, this is globally def<strong>in</strong>ed.As we will expla<strong>in</strong> <strong>in</strong> section 6.6, <strong>the</strong> warp factor is obta<strong>in</strong>ed by solv<strong>in</strong>g a Poissonequation (6.75) on <strong>the</strong> orbifold C 2 /Z 2 × C, with two k<strong>in</strong>ds <strong>of</strong> D3-charge source terms,both localized along <strong>the</strong> orbifold l<strong>in</strong>e. One is proportional to |∂ z γ| 2 and comes from<strong>the</strong> twisted fluxes. The o<strong>the</strong>r one is localized on <strong>the</strong> tensionful <strong>fractional</strong> <strong>branes</strong> <strong>in</strong> <strong>the</strong>external r<strong>in</strong>g and represents <strong>the</strong>ir D3-charge. In general <strong>the</strong> brane density per unit lengthω along <strong>the</strong> r<strong>in</strong>g is not constant but ra<strong>the</strong>r given byω = − 1 2 Re ∂ tγ , (6.71)where <strong>the</strong> derivative is taken tangent to <strong>the</strong> boundary. This comes from <strong>the</strong> Bianchiidentity dF 3 ∼ δ (4)D5. On <strong>the</strong> boundaries <strong>of</strong> <strong>the</strong> enhançon plasma doma<strong>in</strong>s <strong>the</strong>re are<strong>fractional</strong> <strong>branes</strong> too with density (6.71), but <strong>the</strong>y are tensionless as b ∈ Z <strong>in</strong>side. Thus<strong>the</strong> only contribution <strong>of</strong> <strong>the</strong> latter k<strong>in</strong>d comes from <strong>the</strong> circular cut<strong>of</strong>f r<strong>in</strong>g at |z| = ρ 0 .We do not go <strong>in</strong>to fur<strong>the</strong>r details here, as <strong>the</strong> computation <strong>of</strong> <strong>the</strong> warp factor is fullyexpla<strong>in</strong>ed <strong>in</strong> section 6.6. What matters is that <strong>the</strong>re is always one and only one solutionnormalizable at <strong>in</strong>f<strong>in</strong>ity. The 5-form flux is <strong>the</strong>n given by: g s F 5 = (1+∗)dvol 3,1 ∧dZ −1 .So far we showed that for any choice <strong>of</strong> <strong>the</strong> enhançon plasma doma<strong>in</strong>s, we can <strong>in</strong> pr<strong>in</strong>ciplesolve <strong>the</strong> super<strong>gravity</strong> equations. The last constra<strong>in</strong>t is <strong>the</strong> D5-charge quantization,which amounts to <strong>the</strong> monodromy <strong>of</strong> c(z) be<strong>in</strong>g quantized∮dc ∈ 2Z , (6.72)or <strong>in</strong> o<strong>the</strong>r terms e −iπγ be<strong>in</strong>g a s<strong>in</strong>gle-valued function. A basis <strong>of</strong> monodromies is given by∆c(˜C i,α ) on <strong>the</strong> <strong>in</strong>ternal boundaries ˜C i,α , and <strong>the</strong> <strong>in</strong>tegral is <strong>the</strong> total number <strong>of</strong> <strong>fractional</strong><strong>branes</strong> on <strong>the</strong>m. As <strong>the</strong> solution only depends on <strong>the</strong> choice <strong>of</strong> <strong>the</strong> enhançon plasmaboundaries (and <strong>the</strong> value <strong>of</strong> b on <strong>the</strong>m), (6.72) descends to a constra<strong>in</strong>t (<strong>in</strong> fact <strong>the</strong> onlyone) for <strong>the</strong>m.The total D3-charge <strong>of</strong> <strong>the</strong> system is <strong>the</strong>n easily determ<strong>in</strong>ed. The contribution from<strong>the</strong> fluxes <strong>in</strong> all <strong>the</strong> regions D i isQ flux3 = 1 ∑∫dc∧db = − 1 ∑∑∫bdc = − 1 ∑b(C i,α )∆c(C i,α ) . (6.73)2 D i2 C i,α2iiαThe contribution from <strong>the</strong> anti-<strong>fractional</strong> <strong>branes</strong> on <strong>the</strong> external cut<strong>of</strong>f r<strong>in</strong>g can be readfrom (6.71) to be: Q cut<strong>of</strong>f3 = − 1 ∮4 ρ 0dc, because b = 1 2<strong>the</strong>re. S<strong>in</strong>ce <strong>the</strong> external r<strong>in</strong>g is<strong>the</strong> external boundary C E,E <strong>of</strong> <strong>the</strong> outermost region D E , this contribution can be addedto (6.73) by formally consider<strong>in</strong>g b(C E,E ) = 1 <strong>in</strong>stead <strong>of</strong> 1/2. Notice that (6.73) is <strong>gauge</strong>and picture <strong>in</strong>variant. However, for our choice <strong>of</strong> <strong>gauge</strong> and picture <strong>the</strong> total charge isQ total3 = ∑ (1−b(˜Ci,α ) ) ∆c(˜C i,α ) ≡ N , (6.74)i,αi,αwhere we used that C i,E = − ∑ α ˜C i,α <strong>in</strong> homology, and b(C i,E ) = 1. This expressioncounts <strong>the</strong> number <strong>of</strong> <strong>fractional</strong> (as opposed to anti-<strong>fractional</strong>) <strong>branes</strong>. And <strong>in</strong> fact <strong>the</strong>


102 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gssolution we constructed is dual to a vacuum <strong>of</strong> <strong>the</strong> SU(N)×SU(N) <strong>the</strong>ory. It is clearthat if we want to embed this vacuum <strong>in</strong> a larger <strong>the</strong>ory, we can simply add regular D3<strong>branes</strong>.Summariz<strong>in</strong>g, we have shown that any choice <strong>of</strong> enhançon plasma doma<strong>in</strong>s, up to <strong>the</strong>charge quantization constra<strong>in</strong>t, gives rise to a solution <strong>of</strong> IIB super<strong>gravity</strong> with sources.Tak<strong>in</strong>g <strong>the</strong> limit <strong>of</strong> zero thickness, we can also <strong>in</strong>clude generalized enhançons and isolatedbunches <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>; bunches <strong>of</strong> regular <strong>branes</strong> are easily <strong>in</strong>cluded as well. Each<strong>of</strong> <strong>the</strong>se solutions is dual to a vacuum on <strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong> SU(N) × SU(N)SCFT. Even though we cannot be more specific about <strong>the</strong> exact map (it should be workedout by comput<strong>in</strong>g operator VEV’s holographically), this huge class <strong>of</strong> solutions helps <strong>in</strong>cover<strong>in</strong>g <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> dual field <strong>the</strong>ory.6.6 Excisions, warp factors and <strong>the</strong> cure <strong>of</strong> repulson s<strong>in</strong>gularitiesIn this section we take <strong>in</strong>to account <strong>the</strong> excision <strong>of</strong> twisted fields <strong>in</strong>side <strong>the</strong> enhançonr<strong>in</strong>g and bear<strong>in</strong>gs and work out <strong>the</strong> correct warp factor for a quite general rotationallysymmetricconfiguration<strong>of</strong><strong>fractional</strong><strong>branes</strong>,whichwillbeusefultodescribe<strong>the</strong>enhançonvacuum <strong>of</strong> section 6.3, <strong>the</strong> cut <strong>of</strong>f cascad<strong>in</strong>g vacuum <strong>of</strong> section 6.2, <strong>the</strong> <strong>in</strong>f<strong>in</strong>ite cascadevacuum <strong>of</strong> section 6.4.3 and <strong>the</strong> vacua with rotationally symmetric bear<strong>in</strong>gs <strong>of</strong> section6.5.We stress once aga<strong>in</strong> that consistency <strong>of</strong> <strong>the</strong> configuration <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, <strong>in</strong>agreement with <strong>the</strong> dual field <strong>the</strong>ory picture encoded <strong>in</strong> <strong>the</strong> SW curve, implies an excision<strong>of</strong> <strong>the</strong> naive twisted field solution at enhançon r<strong>in</strong>gs. Unlike <strong>the</strong> situation <strong>of</strong> [156], where<strong>the</strong>re is an enhançon shell <strong>of</strong> codimension 1 <strong>in</strong> <strong>the</strong> non-compact part <strong>of</strong> <strong>the</strong> <strong>in</strong>ternalgeometry, here we face enhançon r<strong>in</strong>gs hav<strong>in</strong>g codimension 1 only for <strong>the</strong> twisted fieldswhich are constra<strong>in</strong>ed to live on <strong>the</strong> orbifold plane, but not for <strong>the</strong> bulk fields whichpropagate also <strong>in</strong> <strong>the</strong> four additional dimensions <strong>of</strong> <strong>the</strong> orbifold. Consequently, <strong>the</strong> usualexcision <strong>of</strong> [156, 177] works for twisted fields but not for untwisted fields; <strong>in</strong> particular,<strong>the</strong> warp factor has to be computed once and for all, once <strong>the</strong> correct configuration <strong>of</strong><strong>fractional</strong> <strong>branes</strong> and twisted fields describ<strong>in</strong>g some <strong>gauge</strong> <strong>the</strong>ory vacuum is specified.The equation which determ<strong>in</strong>es <strong>the</strong> warp factor Z follows from <strong>the</strong> modified Bianchiidentity for F 5 <strong>in</strong> <strong>the</strong> presence <strong>of</strong> sources at <strong>the</strong> locations <strong>of</strong> tensionful (anti-)<strong>fractional</strong><strong>branes</strong>; it is a Poisson’s equation which reads [10]∑∆ 6 Z +(4π 2 α ′ ) 2 gs 2 |∂ z γ| 2 δ (4) (⃗x)+2(4π 2 α ′ ) 2 g s Q(x i )δ (6) (x−x i ) = 0 , (6.75)where ∆ 6 is <strong>the</strong> 6-dimensional Laplacian and x = (⃗y,⃗x) a 6-dimensional vector, ⃗y ≡(Rez, Imz) = (x 4 ,x 5 ) be<strong>in</strong>g a vector on <strong>the</strong> orbifold fixed plane R 2 and ⃗x = (x 6 ,...,x 9 )be<strong>in</strong>g a vector <strong>in</strong> <strong>the</strong> cover<strong>in</strong>g space R 4 <strong>of</strong> <strong>the</strong> orbifold. In <strong>the</strong> previous formula, Q(x i )is <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant D3 brane charge <strong>of</strong> a regular or (anti-)<strong>fractional</strong> D3 brane placedat x i , which depends on <strong>the</strong> object and on <strong>the</strong> value <strong>of</strong> fields at its position (<strong>in</strong> <strong>the</strong> case<strong>of</strong> <strong>fractional</strong> <strong>branes</strong>). The sum runs over all tensionful <strong>fractional</strong> D3 <strong>branes</strong> as well asregular D3 <strong>branes</strong> along with <strong>the</strong>ir images.We will first consider M tensionless <strong>fractional</strong> <strong>branes</strong> melted <strong>in</strong> an enhançon r<strong>in</strong>g <strong>of</strong>radius ρ e <strong>in</strong> <strong>the</strong> fixed plane parametrized by z, toge<strong>the</strong>r with M ‘cut<strong>of</strong>f’ anti-<strong>fractional</strong>i


6.6. Excisions, warp factors and <strong>the</strong> cure <strong>of</strong> repulson s<strong>in</strong>gularities 103<strong>branes</strong> at <strong>the</strong> M roots <strong>of</strong> z M = −z0 M , which are used to Higgs <strong>the</strong> conformal UV <strong>the</strong>oryat <strong>the</strong> scale ρ 0 = |z 0 |. Here and <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g, ρ e is <strong>the</strong> scale at which <strong>the</strong> excisionshould be performed and its actual value depends, case by case, on <strong>the</strong> vacuum one isactually consider<strong>in</strong>g. We will also impose that <strong>the</strong> total <strong>gauge</strong> <strong>in</strong>variant D3 brane charge<strong>of</strong> <strong>the</strong> configuration be N +M, add<strong>in</strong>g regular D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong> when needed, sothat <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory is SU(N +M)×SU(N +M) <strong>in</strong> <strong>the</strong> UV. Us<strong>in</strong>g <strong>the</strong> freedom<strong>of</strong> shift<strong>in</strong>g <strong>the</strong> axion b by an <strong>in</strong>teger via a large <strong>gauge</strong> transformation, we will also setb(ρ) = 0 for ρ < ρ e . F<strong>in</strong>ally, we will be general and place <strong>the</strong> cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong>at a scale ρ 0 such that b(ρ 0 ) can acquire any positive value; <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant D3 branecharge supported by each <strong>of</strong> <strong>the</strong> anti-<strong>fractional</strong> <strong>branes</strong> is <strong>the</strong>refore−n f −b(ρ 0 ) = [b(ρ 0 )] + −b(ρ 0 ) . (6.76)In o<strong>the</strong>r words, <strong>the</strong>se anti-<strong>fractional</strong> <strong>branes</strong> are D5 <strong>branes</strong> wrapped on −C, with −[b(ρ 0 )] +units <strong>of</strong> worldvolume flux on it. Be<strong>in</strong>g <strong>in</strong> <strong>the</strong> large M limit, we can safely approximate<strong>the</strong> cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong> with a r<strong>in</strong>g.The warp factor gets different contributions. First <strong>of</strong> all, if <strong>the</strong>re are some regularD3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong>, <strong>the</strong>y source <strong>the</strong> usual term accord<strong>in</strong>g to (6.5). Secondly, <strong>the</strong> Mcut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong>, because <strong>of</strong> <strong>the</strong>ir tension, contribute <strong>the</strong> follow<strong>in</strong>g term <strong>in</strong><strong>the</strong> r<strong>in</strong>g approximationZ r<strong>in</strong>g,M (ρ,σ;ρ 0 ) = 8πg s Mα ′2 ([b(ρ 0 )] + −b(ρ 0 ))σ 2 +ρ 2 +ρ 2 0[(σ 2 +ρ 2 +ρ 2 0 )2 −4ρ 2 0 ρ2] 3/2 , (6.77)where ρ = |⃗y| and σ = |⃗x|. Fractional <strong>branes</strong> at <strong>the</strong> enhançon r<strong>in</strong>g, be<strong>in</strong>g tensionless, donot contribute directly to <strong>the</strong> warp factor. F<strong>in</strong>ally, <strong>the</strong>re is a term sourced by <strong>the</strong> twistedfield strengthsdγ = iM dzπ z Θ(|z|−|z e|)Θ(|z 0 |−|z|) . (6.78)In general it takes <strong>the</strong> formZ fl (⃗y,⃗x) = 4πα ′2 g 2 s∫d 2 z|∂ z γ| 2 1[|⃗x| 2 +|⃗y −⃗z| 2 ] 2 , (6.79)which <strong>in</strong> <strong>the</strong> case under consideration reduces to{Z fl,M (ρ,r;ρ e ,ρ 0 ) = 2(g sMα ′ ) 2 r 4 +(ρ 2 e + √ )(r 2 +ρ 2 e) 2 −4ρ 2 eρ 2 r 2 −2ρ 2 eρ 2r 4 2log+r 4 +(ρ 2 0 +√ (r 2 +ρ 2 0 )2 −4ρ 2 0)r ρ2 2 −2ρ 2 0 ρ2[]}+2log ρ2 0ρ 2 + r2 3(r 2 −ρ 2 )+ρ 2 0 −ρ2e r 2 −ρ 2 √(r 2 +ρ 2 0 )2 −4ρ − 3(r2 −ρ 2 )+ρ 2 e −ρ 2√ ,20 ρ2 (r 2 +ρ 2 e) 2 −4ρ 2 eρ 2 (6.80)where r 2 = ρ 2 +σ 2 .Notice that <strong>the</strong> total D3 brane charge, which is N +M if <strong>the</strong> UV <strong>the</strong>ory has <strong>gauge</strong>groupSU(N+M)×SU(N+M), getssectioned<strong>in</strong>differentpieces. Thefluxtermcarriesacharge M b(ρ 0 ), s<strong>in</strong>ce b(ρ 0 ) = gsM πlog ρ 0ρ e; <strong>the</strong> cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong> carry a charge


104 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gsM ([b(ρ 0 )] + −b(ρ 0 )); f<strong>in</strong>ally, <strong>the</strong>re are N − [b(ρ 0 )] − M regular D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong>.This can be checked via <strong>the</strong> large r asymptotics <strong>of</strong> <strong>the</strong> different terms <strong>in</strong> <strong>the</strong> warp factor.The vacuum considered <strong>in</strong> [152] and described <strong>in</strong> section 6.3 has N regular D3 <strong>branes</strong>at <strong>the</strong> orig<strong>in</strong>, <strong>the</strong> enhançon r<strong>in</strong>g at ρ 1 = e − π2gsM ρ 0 , and M cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong>at ρ 0 , where b(ρ 0 ) = 1 2, carry<strong>in</strong>g M/2 units <strong>of</strong> D3 charge; <strong>the</strong> twisted fluxes between<strong>fractional</strong> and anti-<strong>fractional</strong> <strong>branes</strong> carry o<strong>the</strong>r M/2 units <strong>of</strong> D3 charge.The vacuum with a f<strong>in</strong>ite cascade start<strong>in</strong>g at z 0 and reach<strong>in</strong>g SU(M) <strong>in</strong> <strong>the</strong> <strong>in</strong>fraredhas no regular D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong>, M <strong>fractional</strong> <strong>branes</strong> with no D3 charge melted atan enhançon r<strong>in</strong>g at ρ m<strong>in</strong> = ρ N/M ≡ e − πNgsM 2 ρ 1 , and M cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong> at ρ 0 ,where b(ρ 0 ) = N M + 1 2, carry<strong>in</strong>g aga<strong>in</strong> M/2 units <strong>of</strong> D3 charge; this time <strong>the</strong> twisted fluxesbetween <strong>fractional</strong> and anti-<strong>fractional</strong> <strong>branes</strong> carry N +M/2 units <strong>of</strong> D3 charge. As weexpla<strong>in</strong>ed <strong>in</strong> detail <strong>in</strong> section 6.5, what happens is that at each generalized enhançon r<strong>in</strong>gscale along <strong>the</strong> cascade (where b ∈ Z) melted tensionless <strong>fractional</strong> and anti-<strong>fractional</strong><strong>branes</strong> are left, naively annihilat<strong>in</strong>g if c is cont<strong>in</strong>uous cross<strong>in</strong>g radially <strong>the</strong> generalizedenhançon r<strong>in</strong>g. In case N = lM + p is not a multiple <strong>of</strong> M, <strong>the</strong>n ρ m<strong>in</strong> = e − πlgsM ρ 1 ,b(ρ 0 ) = l+ 1 2and <strong>the</strong>re are p D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong>: <strong>the</strong> IR <strong>the</strong>ory below <strong>the</strong> enhançonscale is <strong>the</strong> SU(p)×SU(p) <strong>the</strong>ory with one <strong>in</strong>f<strong>in</strong>ite coupl<strong>in</strong>g.The <strong>in</strong>f<strong>in</strong>ite cascade limit can even be def<strong>in</strong>ed cont<strong>in</strong>uously: it is enough to sendcont<strong>in</strong>uously <strong>the</strong> cut<strong>of</strong>f ρ 0 → ∞ keep<strong>in</strong>g ρ m<strong>in</strong> fixed and b(ρ m<strong>in</strong> ) = 0. This can be achievedif b(ρ 0 ) = gsM π ln ρ 0ρ m<strong>in</strong>: as we change <strong>the</strong> cut<strong>of</strong>f ρ 0 , we also change <strong>the</strong> value <strong>of</strong> <strong>the</strong> <strong>gauge</strong>coupl<strong>in</strong>gs at <strong>the</strong> cut<strong>of</strong>f (and on <strong>the</strong> str<strong>in</strong>g side <strong>the</strong> tension <strong>of</strong> <strong>the</strong> cut<strong>of</strong>f <strong>branes</strong>) so that lowenergy physics is not modified. Notice that every time a b(ρ 0 ) ∈ Z threshold is crossed,<strong>the</strong> total D3 brane charge <strong>of</strong> <strong>the</strong> configuration (<strong>the</strong> ranks <strong>of</strong> <strong>the</strong> UV CFT) jumps byM units, and <strong>the</strong> cut<strong>of</strong>f anti-<strong>fractional</strong> <strong>branes</strong> change. The warp factor for <strong>the</strong> <strong>in</strong>f<strong>in</strong>itecascade with no regular D3 <strong>branes</strong> is noth<strong>in</strong>g but Z fl,M (ρ,r;ρ m<strong>in</strong> ,∞), see eq. (6.80). Ifneeded, <strong>the</strong> addition <strong>of</strong> p regular D3 <strong>branes</strong> is straightforward.We can also f<strong>in</strong>d <strong>the</strong> warp factor for a configuration with any number <strong>of</strong> rotationallysymmetric bear<strong>in</strong>gs. The total warp factor is sourced by twisted fluxes and possibly bycut<strong>of</strong>fanti-<strong>fractional</strong><strong>branes</strong>, if<strong>the</strong>reisno<strong>in</strong>f<strong>in</strong>itecascade<strong>in</strong><strong>the</strong>UV.Insidebear<strong>in</strong>gsfluxesvanish, whereasoutside<strong>the</strong>ytake<strong>the</strong>usualform|dγ| = M dρπ ρ . Thereforefluxescontributeto <strong>the</strong> warp factor by a sum <strong>of</strong> terms tak<strong>in</strong>g <strong>the</strong> schematic form Z fl,M (ρ,r;ρ (i+1)> ,ρ (i)< ),where ρ (i+1)> is <strong>the</strong> outer radius <strong>of</strong> <strong>the</strong> (i + 1)-th bear<strong>in</strong>g and ρ i < is <strong>the</strong> <strong>in</strong>ner radius <strong>of</strong><strong>the</strong> i-th bear<strong>in</strong>g, if <strong>the</strong> order<strong>in</strong>g po<strong>in</strong>ts <strong>in</strong>wards. The requirement that ρ (i)< and ρ (i+1)> beboundaries <strong>of</strong> subsequent bear<strong>in</strong>gs translates <strong>in</strong>to ρ (i)< = e πn igsM ρ (i+1)> , for some n i ∈ N.F<strong>in</strong>ally, by now it should also be clear how to write <strong>the</strong> warp factor <strong>in</strong> <strong>the</strong> case <strong>of</strong>perturbative Higgs<strong>in</strong>gs by backreact<strong>in</strong>g r<strong>in</strong>gs <strong>of</strong> tensionful <strong>fractional</strong> and anti-<strong>fractional</strong><strong>branes</strong>, add<strong>in</strong>g terms like (6.77) sourced at suitable radii and with <strong>the</strong> suitable normalizations.We end this section with some important remarks about <strong>the</strong> backreacted geometries.For concreteness, we concentrate on solutions without bear<strong>in</strong>gs nor perturbative Higgs<strong>in</strong>gexcept at <strong>the</strong> cut<strong>of</strong>f, s<strong>in</strong>ce <strong>the</strong> generalization <strong>of</strong> <strong>the</strong> statements we are about to makeshould be clear.The warp factor diverges (and <strong>the</strong> gravitational potential felt by a massive particlehas an absolute m<strong>in</strong>imum) only at <strong>the</strong> locations <strong>of</strong> sources for it (<strong>fractional</strong> <strong>branes</strong> and


6.7. Conclusions 105ΣV∼Z 12 00Ρ eΡ 0Figure 6.10: Potential V = V(ρ,σ) felt by a massive particle <strong>in</strong> <strong>the</strong> background dual to a vacuumwith f<strong>in</strong>ite cascade. The orig<strong>in</strong> is a saddle po<strong>in</strong>t while <strong>the</strong> absolute m<strong>in</strong>imum is on <strong>the</strong> σ = 0 axisall along <strong>the</strong> range where <strong>the</strong> dual field <strong>the</strong>ory undergoes a RG flow, from <strong>the</strong> enhançon radiusρ e up to <strong>the</strong> UV cut-<strong>of</strong>f ρ 0 .twisted field strengths), namely on <strong>the</strong> orbifold plane σ = 0 and for ρ ∈ [ρ e ,ρ 0 ]. There areno repulsive regions even when <strong>the</strong> D3 brane charge vanishes at some IR scale, as occursat <strong>the</strong> enhançon scale <strong>in</strong> <strong>the</strong> vacuum <strong>of</strong> [152] with N = 0 and <strong>in</strong> <strong>the</strong> f<strong>in</strong>ite or <strong>in</strong>f<strong>in</strong>itecascade solution with p = 0. Massive objects (but BPS ones) are always attracted by <strong>the</strong>sources <strong>of</strong> stress-energy: <strong>the</strong>y want to go where twisted fluxes and <strong>fractional</strong> <strong>branes</strong> (andpossibly regular D3 <strong>branes</strong>) lie. For concreteness, we report <strong>in</strong> figure 6.10 <strong>the</strong> shape <strong>of</strong><strong>the</strong> effective potential V(ρ,σ) felt by a massive particle: it is proportional to Z −1/2 , once<strong>the</strong> k<strong>in</strong>etic terms are normalized to be ( dρdτ )2 +( dσdτ )2 , τ be<strong>in</strong>g <strong>the</strong> worldl<strong>in</strong>e proper time.In <strong>the</strong>se solutions <strong>the</strong> curvature diverges approach<strong>in</strong>g <strong>the</strong> doma<strong>in</strong> where twisted fluxeshave support. Therefore, strictly speak<strong>in</strong>g, <strong>the</strong> <strong>gravity</strong> solution cannot be trusted <strong>in</strong> thatregion and str<strong>in</strong>g <strong>the</strong>ory is needed to resolve <strong>the</strong> curvature s<strong>in</strong>gularity. Still, <strong>the</strong> M-<strong>the</strong>orypicture suggests that <strong>the</strong> form <strong>of</strong> <strong>the</strong> twisted fields will rema<strong>in</strong> unchanged.F<strong>in</strong>ally, if <strong>the</strong>re are no D3 <strong>branes</strong> at <strong>the</strong> orig<strong>in</strong> <strong>the</strong> geometry smoothly approaches flatspace at r = 0, where <strong>the</strong> warp factor approaches( 1Z(0) = 2(g s Mα ′ ) 2 ρ 4 − 1 )e ρ 4 +8πg s Mα ′2 ([b(ρ 0 )] + −b(ρ 0 )) 10ρ 4 0, (6.81)signal<strong>in</strong>g that excitations <strong>in</strong> <strong>the</strong> non-abelian sector have a m<strong>in</strong>imal energy (consistentlywith <strong>the</strong> SU(M) factor be<strong>in</strong>g broken to U(1) M−1 ). If <strong>in</strong>stead <strong>the</strong>re are regular D3 <strong>branes</strong>at <strong>the</strong> orig<strong>in</strong>, <strong>the</strong>y dom<strong>in</strong>ate <strong>the</strong> IR asymptotics which is AdS 5 × S 5 /Z 2 , signal<strong>in</strong>g anon-abelian fixed po<strong>in</strong>t.6.7 ConclusionsIn this chapter, we filled a gap <strong>in</strong> <strong>the</strong> understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory dual <strong>in</strong>terpretation<strong>of</strong> super<strong>gravity</strong> solutions with runn<strong>in</strong>g fluxes, aris<strong>in</strong>g when consider<strong>in</strong>g <strong>fractional</strong>


106 Chapter 6. The N = 2 cascade revisited and <strong>the</strong> enhançon bear<strong>in</strong>gs<strong>branes</strong> at generic Calabi-Yau s<strong>in</strong>gularities. It has been known for some time that <strong>fractional</strong><strong>branes</strong> at isolated s<strong>in</strong>gularities describe RG flows which can be described <strong>in</strong> terms<strong>of</strong> cascades <strong>of</strong> Seiberg dualities. A similar <strong>in</strong>terpretation was not possible for <strong>branes</strong> atnon-isolated s<strong>in</strong>gularities, s<strong>in</strong>ce <strong>the</strong>ir effective dynamics is <strong>in</strong>tr<strong>in</strong>sically N = 2.The basic outcome <strong>of</strong> our analysis is that, for <strong>branes</strong> at non-isolated s<strong>in</strong>gularities, <strong>the</strong>reduction <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group ranks along <strong>the</strong> RG flow can be understood <strong>in</strong> terms <strong>of</strong> asequence <strong>of</strong> strong coupl<strong>in</strong>g transitions rem<strong>in</strong>iscent <strong>of</strong> <strong>the</strong> low energy description <strong>of</strong> <strong>the</strong>baryonic root <strong>of</strong> N = 2 SQCD. The energy range spanned by <strong>the</strong> cascade depends on <strong>the</strong>po<strong>in</strong>t <strong>in</strong> <strong>the</strong> Coulomb branch one is sitt<strong>in</strong>g at; specifically, on <strong>the</strong> number <strong>of</strong> non-vanish<strong>in</strong>gVEV’s for <strong>the</strong> adjo<strong>in</strong>t scalars.We were also able to provide a <strong>gravity</strong> dual description <strong>of</strong> a new set <strong>of</strong> <strong>in</strong>f<strong>in</strong>itelymany vacua, characterized by new geometric structures, <strong>the</strong> enhançon bear<strong>in</strong>gs, where<strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory alternates energy ranges where it runs, with ranges <strong>in</strong> which it is<strong>in</strong> a strongly coupled superconformal phase.For all <strong>the</strong>se vacua, an enhançon mechanism takes place <strong>in</strong> <strong>the</strong> far IR. This changes<strong>the</strong> twisted fields configuration and ultimately <strong>the</strong> metric, whose correct repulson-freeexpression we provided for all vacua we have been study<strong>in</strong>g.We should also note that Stefano Cremonesi analysed fur<strong>the</strong>r <strong>the</strong> IR <strong>of</strong> this model <strong>in</strong>[181], f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> exact twisted flux configuration correspond<strong>in</strong>g to any Coulomb branchvacua (any Seiberg-Witten curve). The upshot <strong>of</strong> <strong>the</strong> analysis <strong>of</strong> [181] is that one shouldreally th<strong>in</strong>k <strong>of</strong> <strong>the</strong> N = 2 <strong>fractional</strong> <strong>branes</strong> as be<strong>in</strong>g transmuted <strong>in</strong>to twisted flux. Inthat respect we see that <strong>the</strong> mechanism <strong>of</strong> resolution <strong>of</strong> <strong>the</strong> IR s<strong>in</strong>gularity at f<strong>in</strong>ite g s issimilar to <strong>the</strong> geometric transition for deformation <strong>fractional</strong> <strong>branes</strong>.Our analysis focused, for def<strong>in</strong>iteness, on <strong>the</strong> A 1 s<strong>in</strong>gularity, but our results have amuch wider validity. First, <strong>the</strong>y trivially extend to any N = 2 s<strong>in</strong>gularity, as for <strong>in</strong>stance<strong>the</strong> full ADE series. Second, any Calabi-Yau cone with non-isolated s<strong>in</strong>gularities, whichupon <strong>the</strong> <strong>in</strong>clusion <strong>of</strong> <strong>branes</strong> generically gives rise to a N = 1 <strong>the</strong>ory, should present<strong>the</strong> same behavior. This is suggested from <strong>the</strong> super<strong>gravity</strong> solution and it is a ra<strong>the</strong>rnon-trivial claim s<strong>in</strong>ce SW techniques are not available <strong>in</strong> <strong>the</strong> N = 1 context.More complicated flows occur when <strong>fractional</strong> <strong>branes</strong> at isolated and non-isolateds<strong>in</strong>gularities are both present, which is <strong>in</strong> fact <strong>the</strong> most generic situation. In a genericcascade some cascade “steps” can be understood <strong>in</strong> terms <strong>of</strong> Seiberg duality, some <strong>of</strong><strong>the</strong>m cannot as <strong>the</strong> <strong>the</strong>ory, due to <strong>the</strong> presence <strong>of</strong> adjo<strong>in</strong>t fields, exhibits at some energiesan effective N = 2 behavior. We conjecture that <strong>in</strong> those cases too <strong>the</strong> rank reductionis due to <strong>the</strong> adjo<strong>in</strong>t fields be<strong>in</strong>g at baryonic-root-like po<strong>in</strong>ts <strong>of</strong> its moduli space. In <strong>the</strong>next chapter we will consider several examples <strong>of</strong> such cascades <strong>of</strong> mixed type, f<strong>in</strong>d<strong>in</strong>gperfect agreement with our proposal.


Chapter 7Cascades <strong>of</strong> mixed k<strong>in</strong>d and<strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong><strong>branes</strong>In this Chapter we f<strong>in</strong>d <strong>the</strong> KT-like solution for arbitrary <strong>fractional</strong> <strong>branes</strong> on a nonchiralquivercorrespond<strong>in</strong>gtoaZ2 orbifold<strong>of</strong><strong>the</strong>conifold. Thegeometryhasnon-isolateds<strong>in</strong>gularities, so we can consider simultaneously <strong>the</strong> various k<strong>in</strong>ds <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, tostudy <strong>the</strong>ir <strong>in</strong>terplay. This geometry was studied <strong>in</strong> <strong>the</strong> earlier work [182] with <strong>the</strong> hopethat one could brane-eng<strong>in</strong>eer dynamical SUSY break<strong>in</strong>g while bypass<strong>in</strong>g <strong>the</strong> typicalrunaway <strong>in</strong>stability (actually <strong>the</strong>re is still a runaway direction along a baryonic branch,but <strong>the</strong> hope was to realize metastable DSB).Our ma<strong>in</strong> reason to study this geometry here is because it is an <strong>in</strong>terest<strong>in</strong>g modelto apply <strong>the</strong> ideas <strong>of</strong> <strong>the</strong> previous Chapter about <strong>the</strong> N = 2 cascade <strong>in</strong> a more genericN = 1 context. This Chapter is based on [1], written with Riccardo Argurio, FrancescoBen<strong>in</strong>i, Matteo Bertol<strong>in</strong>i and Stefano Cremonesi. 17.1 IntroductionThe <strong>correspondence</strong> between <strong>gauge</strong> <strong>the</strong>ories with non-trivial low-energy dynamics andstr<strong>in</strong>g <strong>the</strong>ory backgrounds has an enormous potential. The str<strong>in</strong>g <strong>the</strong>ory setup is usuallyestablished draw<strong>in</strong>g uniquely on <strong>the</strong> holomorphic data <strong>of</strong> a supersymmetric <strong>gauge</strong> <strong>the</strong>ory,<strong>in</strong>clud<strong>in</strong>g a specific choice <strong>of</strong> vacuum. Then, solv<strong>in</strong>g <strong>the</strong> classical equations <strong>of</strong> motion<strong>of</strong> super<strong>gravity</strong> one can <strong>in</strong> pr<strong>in</strong>ciple obta<strong>in</strong>, through <strong>the</strong> warp factor, all <strong>the</strong> dynamical<strong>in</strong>formations on <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory low-energy dynamics, that would <strong>in</strong>stead usually implyprecise knowledge <strong>of</strong> <strong>the</strong> Kähler sector. The limitation <strong>of</strong> this procedure to super<strong>gravity</strong>and not to full str<strong>in</strong>g <strong>the</strong>ory corresponds <strong>in</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory to tak<strong>in</strong>g some large N andstrong ’t Ho<strong>of</strong>t coupl<strong>in</strong>g limit.A fruitful arena where to address <strong>the</strong>se issues has proven to be that <strong>of</strong> D3-<strong>branes</strong> atCalabi-Yau (CY) s<strong>in</strong>gularities. In this context, <strong>the</strong> most celebrated example where such1 Actually <strong>the</strong> paper [1] was written before [2], and it gave <strong>the</strong> motivation to fur<strong>the</strong>r study N = 2cascades, when we realized that <strong>the</strong>y were poorly understood.107


108 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>a program has been successfully completed is <strong>the</strong> warped deformed conifold [118], whichdescribes a <strong>the</strong>ory with conf<strong>in</strong>ement and chiral symmetry break<strong>in</strong>g.It is <strong>of</strong> obvious <strong>in</strong>terest to apply <strong>the</strong> above program to <strong>gauge</strong> <strong>the</strong>ories with a variedlow-energy behavior. D3-<strong>branes</strong> at CY s<strong>in</strong>gularities typically give rise to N = 1 quiver<strong>gauge</strong><strong>the</strong>ories, whicharesupersymmetric<strong>the</strong>oriescharacterizedbyproduct<strong>gauge</strong>groups,matter <strong>in</strong> <strong>the</strong> bifundamental representation and a tree level superpotential, all such databe<strong>in</strong>g dictated by <strong>the</strong> structure <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularity. Most quiver <strong>gauge</strong> <strong>the</strong>ories can haveseveral different IR behaviors, depend<strong>in</strong>g on which branch <strong>of</strong> <strong>the</strong> moduli space one issitt<strong>in</strong>g on. Already <strong>in</strong> <strong>the</strong> simple conifold <strong>the</strong>ory, one has a baryonic branch display<strong>in</strong>gconf<strong>in</strong>ement and a mass gap <strong>in</strong> <strong>the</strong> <strong>gauge</strong> sector, and mesonic branches with a dynamicswhich is N = 4 to a good approximation. In more general quivers, o<strong>the</strong>r k<strong>in</strong>ds <strong>of</strong> lowenergybehaviors are possible. Some quivers will actually have no vacua and display arunaway behavior [149, 148, 150, 151], but this leaves little hope <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g a regular<strong>gravity</strong> dual. O<strong>the</strong>r quivers will on <strong>the</strong> o<strong>the</strong>r hand conta<strong>in</strong> branches <strong>of</strong> <strong>the</strong> moduli spacewhere <strong>the</strong> dynamics is approximately <strong>the</strong> one on <strong>the</strong> Coulomb branch <strong>of</strong> an N = 2 <strong>the</strong>ory.The latter can also be thought <strong>of</strong> as mesonic branches, albeit <strong>of</strong> complex dimension one<strong>in</strong>stead <strong>of</strong> three as <strong>in</strong> <strong>the</strong> (generic) N = 4 case.In this chapter, we construct <strong>the</strong> <strong>gravity</strong> dual <strong>of</strong> <strong>the</strong> most generic <strong>gauge</strong> <strong>the</strong>ory onecan eng<strong>in</strong>eer us<strong>in</strong>g D3-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> a Z k non-chiral orbifold <strong>of</strong> <strong>the</strong> conifold [56],focus<strong>in</strong>gforsimplicity, butwithlittleloss<strong>of</strong>generality, on<strong>the</strong>casek = 2. Thiss<strong>in</strong>gularityadmits different k<strong>in</strong>ds <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, trigger<strong>in</strong>g conf<strong>in</strong>ement or enjoy<strong>in</strong>g an N = 2mesonic branch and known as deformation or N = 2 <strong>fractional</strong> <strong>branes</strong>, respectively.We aim at describ<strong>in</strong>g <strong>the</strong> backreaction <strong>of</strong> <strong>the</strong> most general D3-brane bound state. Thedifficulty<strong>in</strong>do<strong>in</strong>gsostemsfrom<strong>the</strong>factthat<strong>the</strong>UVcompletionwhichcorrespondsto<strong>the</strong>super<strong>gravity</strong> solution is qualitatively different <strong>in</strong> <strong>the</strong> two cases. For deformation <strong>branes</strong>,<strong>the</strong> renormalization group (RG) flow is best described <strong>in</strong> terms <strong>of</strong> a cascade <strong>of</strong> Seibergdualities which <strong>in</strong>creases <strong>the</strong> overall rank <strong>of</strong> <strong>the</strong> quiver nodes towards <strong>the</strong> UV. For N = 2<strong>branes</strong>, <strong>the</strong> RG flow (which is <strong>in</strong>deed present and also <strong>in</strong>creases <strong>the</strong> ranks towards <strong>the</strong>UV [10, 11]) seems to be better represented by some form <strong>of</strong> non-perturbative Higgs<strong>in</strong>g,as argued <strong>in</strong> <strong>the</strong> previous chapter.It should be clear that whenever <strong>the</strong>re are N = 2 <strong>branes</strong> around <strong>the</strong> IR <strong>of</strong> <strong>the</strong> <strong>gravity</strong>dual is bound to conta<strong>in</strong> some s<strong>in</strong>gularity. This is because open str<strong>in</strong>g degrees <strong>of</strong> freedomcannot completely transmute <strong>in</strong>to flux. Indeed, on <strong>the</strong> Coulomb branch we still have bydef<strong>in</strong>ition some surviv<strong>in</strong>g abelian <strong>gauge</strong> group, which cannot be described <strong>in</strong> terms <strong>of</strong>closed str<strong>in</strong>g degrees <strong>of</strong> freedom. This situation is similar to <strong>the</strong> situation where one aimsat describ<strong>in</strong>g <strong>the</strong>ories with flavors. There too, flavor degrees <strong>of</strong> freedom must be describedby open str<strong>in</strong>gs, and hence flavor <strong>branes</strong> must be present <strong>in</strong> <strong>the</strong> <strong>gravity</strong> dual as physicalsources [183]. Thus <strong>in</strong> our set up we expect to have physical sources correspond<strong>in</strong>g toN = 2 <strong>fractional</strong> <strong>branes</strong>. The ma<strong>in</strong> difference with respect to <strong>the</strong> case <strong>of</strong> flavor <strong>branes</strong> isthat N = 2 <strong>fractional</strong> <strong>branes</strong> are not <strong>in</strong>f<strong>in</strong>itely extended <strong>in</strong> <strong>the</strong> Calabi-Yau.The ma<strong>in</strong> results <strong>of</strong> our analysis can be summarized as follows. We f<strong>in</strong>d an explicitsuper<strong>gravity</strong> solution describ<strong>in</strong>g a generic distribution <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>, both <strong>of</strong> <strong>the</strong>deformation and N = 2 k<strong>in</strong>d, on <strong>the</strong> orbifolded conifold, and correspond<strong>in</strong>g to <strong>the</strong> UVregime <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory. It describes holographically an RG flow which exactlymatches<strong>the</strong>betafunctionsthatonecancompute<strong>in</strong><strong>the</strong>dualfield<strong>the</strong>oryand<strong>the</strong>expectedreduction <strong>of</strong> degrees <strong>of</strong> freedom towards <strong>the</strong> IR, which occurs through a cascade. We


7.2. The orbifolded conifold 109Figure 7.1: The quiver diagram <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory, for <strong>the</strong> most generic choice <strong>of</strong> ranks.Circles represent unitary <strong>gauge</strong> groups, arrows represent bifundamental chiral superfields. Forlater purposes we have parametrized <strong>the</strong> four <strong>in</strong>dependent ranks <strong>in</strong> terms <strong>of</strong> a common N.develop an algorithm to follow <strong>the</strong> RG flow <strong>of</strong> each <strong>gauge</strong> coupl<strong>in</strong>g from <strong>the</strong> super<strong>gravity</strong>solution. An <strong>in</strong>terest<strong>in</strong>g feature is that <strong>in</strong> this general sett<strong>in</strong>g <strong>the</strong>re are cascade stepsthat do not always have a simple <strong>in</strong>terpretation <strong>in</strong> terms <strong>of</strong> Seiberg dualities. This isdue to <strong>the</strong> presence <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong>, or more generally to <strong>the</strong> presence <strong>of</strong>twisted fluxes. Never<strong>the</strong>less, super<strong>gravity</strong> considerations and field <strong>the</strong>ory expectations(based on <strong>the</strong> non-holomorphic beta function) exactly match. As far as <strong>the</strong> IR regime isconcerned, we perform a non-trivial consistency check match<strong>in</strong>g <strong>the</strong> field <strong>the</strong>ory effectivesuperpotential with that predicted from <strong>the</strong> geometric background. We also provide <strong>the</strong>solution for <strong>the</strong> 3-form fluxes and discuss <strong>the</strong> pattern <strong>of</strong> s<strong>in</strong>gularities resolution, while weonly set <strong>the</strong> stage for comput<strong>in</strong>g <strong>the</strong> exact warp factor <strong>in</strong> this case.Thischapterisstructuredasfollows. Insection7.2weexpla<strong>in</strong>oursetupand<strong>in</strong>troduce<strong>the</strong> m<strong>in</strong>imal geometrical data that is needed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g. In section 7.3 we present<strong>the</strong> super<strong>gravity</strong> solution which is expected to reproduce <strong>the</strong> UV behavior <strong>of</strong> our quiver<strong>gauge</strong> <strong>the</strong>ory. We take <strong>the</strong> CY base to be <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular conifold, butwe take <strong>in</strong>to account all <strong>the</strong> fluxes sourced by <strong>the</strong> <strong>fractional</strong> <strong>branes</strong> and compute <strong>the</strong>irbackreaction on <strong>the</strong> warp factor. We <strong>the</strong>n check that <strong>the</strong> result is <strong>in</strong>deed compatiblewith <strong>the</strong> expected RG flow and perform a number <strong>of</strong> non-trivial <strong>gauge</strong>/<strong>gravity</strong> dualitychecks. In section 7.4 we discuss <strong>the</strong> extension <strong>of</strong> <strong>the</strong> previous solution towards <strong>the</strong>IR, discuss <strong>the</strong> s<strong>in</strong>gularity structure <strong>of</strong> our solution, <strong>the</strong>ir resolutions, and match <strong>the</strong>effective superpotential obta<strong>in</strong>ed on <strong>the</strong> two sides <strong>of</strong> <strong>the</strong> <strong>correspondence</strong>. The appendicesconta<strong>in</strong> many technical data which might help <strong>in</strong> better understand<strong>in</strong>g <strong>the</strong> form <strong>of</strong> <strong>the</strong>super<strong>gravity</strong> ansatz that we solve <strong>in</strong> <strong>the</strong> ma<strong>in</strong> text and <strong>the</strong> geometric structure <strong>of</strong> <strong>the</strong>orbifolded conifold CY s<strong>in</strong>gularity we consider.7.2 The orbifolded conifoldWe consider <strong>in</strong> what follows an orbifolded avatar <strong>of</strong> <strong>the</strong> familiar conifold quiver. Wefocus on a non-chiral Z 2 orbifold <strong>of</strong> <strong>the</strong> conifold and consider <strong>the</strong> correspond<strong>in</strong>g N = 1supersymmetric quiver <strong>gauge</strong> <strong>the</strong>ory obta<strong>in</strong>ed by plac<strong>in</strong>g a bound state <strong>of</strong> regular and<strong>fractional</strong> D3-<strong>branes</strong> at its tip. This <strong>the</strong>ory has been analyzed at great length <strong>in</strong> [182],to which we refer for more details.The quiver <strong>gauge</strong> <strong>the</strong>ory is shown <strong>in</strong> Figure 7.1. The <strong>gauge</strong> <strong>the</strong>ory has four <strong>gauge</strong>


110 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>factors and a tree level superpotential for <strong>the</strong> bifundamental fieldsW = λ(X 12 X 21 X 14 X 41 −X 23 X 32 X 21 X 12 +X 34 X 43 X 32 X 23 −X 41 X 14 X 43 X 34 ) , (7.1)where X ij is a chiral superfield <strong>in</strong> <strong>the</strong> fundamental representation <strong>of</strong> <strong>the</strong> i-th <strong>gauge</strong> groupand antifundamental representation <strong>of</strong> <strong>the</strong> j-th <strong>gauge</strong> group, and traces on <strong>the</strong> <strong>gauge</strong>degrees <strong>of</strong> freedom are understood.We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> dynamics <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory with <strong>the</strong> most generic rankassignment, as <strong>in</strong> Figure 7.1. Depend<strong>in</strong>g on <strong>the</strong> values <strong>of</strong> <strong>the</strong> M i ’s, various k<strong>in</strong>ds <strong>of</strong>IR dynamics can occur: conf<strong>in</strong>ement, runaway behavior or a (locally N = 2) quantummoduli space.There is a relation between <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> various <strong>gauge</strong> groups <strong>in</strong> <strong>the</strong> quiver and<strong>the</strong> number <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> wrapp<strong>in</strong>g <strong>the</strong> different 2-cycles <strong>in</strong> <strong>the</strong> geometry. In turn,<strong>the</strong> <strong>fractional</strong> <strong>branes</strong> source <strong>the</strong> RR 3-form flux which is an important <strong>in</strong>gredient <strong>in</strong> orderto determ<strong>in</strong>e <strong>the</strong> super<strong>gravity</strong> solution. In <strong>the</strong> follow<strong>in</strong>g <strong>of</strong> this section we provide <strong>the</strong>l<strong>in</strong>k between <strong>the</strong>se three sets <strong>of</strong> data (ranks, <strong>branes</strong> wrapp<strong>in</strong>g cycles, fluxes). For a moredetailed discussion we refer to appendix F.2.7.2.1 Regular and <strong>fractional</strong> <strong>branes</strong>The superconformal <strong>the</strong>ory (N ≠ 0, M i = 0) can be eng<strong>in</strong>eered by plac<strong>in</strong>g N regularD3-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> cone. Unbalanced ranks <strong>in</strong> <strong>the</strong> quiver <strong>of</strong> Figure 7.1 correspond<strong>in</strong>stead to <strong>the</strong> presence <strong>of</strong> <strong>fractional</strong> D3-<strong>branes</strong> and <strong>the</strong> correspond<strong>in</strong>g break<strong>in</strong>g <strong>of</strong>conformal <strong>in</strong>variance. From <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory viewpo<strong>in</strong>t, <strong>fractional</strong> <strong>branes</strong> correspond to<strong>in</strong>dependent anomaly free rank assignments <strong>in</strong> <strong>the</strong> quiver (modulo <strong>the</strong> superconformalone). Hence, <strong>in</strong> <strong>the</strong> present case, we have three types <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> to play with.As reviewed <strong>in</strong> Section 5.4, <strong>fractional</strong> <strong>branes</strong> can be classified <strong>in</strong> terms <strong>of</strong> <strong>the</strong> IRdynamics <strong>the</strong>y trigger [148].The deformation <strong>fractional</strong> <strong>branes</strong> are those associated to a s<strong>in</strong>gle node <strong>in</strong> <strong>the</strong> quiver,or to several decoupled nodes, or else to several contiguous nodes whose correspond<strong>in</strong>gclosed loop operator appears <strong>in</strong> <strong>the</strong> tree level superpotential. This subsector <strong>of</strong> <strong>the</strong> quiver<strong>gauge</strong> <strong>the</strong>ory undergoes conf<strong>in</strong>ement. Examples <strong>of</strong> this k<strong>in</strong>d <strong>in</strong> our <strong>the</strong>ory correspond torank assignments (1,0,0,0), (1,0,1,0) or (1,1,1,0) and cyclic permutations.The N = 2 <strong>fractional</strong> <strong>branes</strong> are those associated to contiguous nodes <strong>in</strong> <strong>the</strong> quiverwhose correspond<strong>in</strong>g meson does not appear as an <strong>in</strong>dividual term <strong>in</strong> <strong>the</strong> superpotential.Rank assignments correspond<strong>in</strong>g to this class <strong>of</strong> <strong>branes</strong> <strong>in</strong> our quiver are for <strong>in</strong>stance(1,1,0,0) and cyclic permutations.F<strong>in</strong>ally, <strong>fractional</strong> <strong>branes</strong> <strong>of</strong> any o<strong>the</strong>r class (which is <strong>the</strong> most generic case, <strong>in</strong> fact)are DSB <strong>branes</strong>. They lead to ADS-like superpotential and runaway behavior. Geometrically,<strong>the</strong>y are associated with geometries where <strong>the</strong> complex structure deformation isobstructed, this tension be<strong>in</strong>g <strong>the</strong> geometric counterpart <strong>of</strong> <strong>the</strong> runaway. In this case <strong>the</strong>occupied nodes have unbalanced ranks.Obviously, comb<strong>in</strong><strong>in</strong>g different <strong>fractional</strong> <strong>branes</strong> <strong>of</strong> a given class, one can obta<strong>in</strong> <strong>fractional</strong><strong>branes</strong> <strong>of</strong> ano<strong>the</strong>r class. Hence one can choose different <strong>fractional</strong> brane bases todescribe <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory. In our present case, we will be able to choose a basis composedonly <strong>of</strong> deformation and N = 2 <strong>fractional</strong> <strong>branes</strong>. We have just seen to which rank


7.2. The orbifolded conifold 111assignments <strong>the</strong> various <strong>branes</strong> should correspond, now we have to review which 2-cycles<strong>the</strong>y are associated to.7.2.2 Geometry, cycles and quiver ranksThere is a well established relation between quiver configurations, <strong>the</strong> primitive topologicallynon-trivial shr<strong>in</strong>k<strong>in</strong>g 2-cycles <strong>of</strong> a given CY s<strong>in</strong>gularity, and <strong>the</strong> possible exist<strong>in</strong>g<strong>fractional</strong> D3-<strong>branes</strong>, s<strong>in</strong>ce <strong>the</strong> latter can be geometrically viewed as D5-<strong>branes</strong> wrappedon such cycles. Let us review such relation for our CY s<strong>in</strong>gularity (see appendix F.2 fora full analysis).The conifold is a non-compact CY three-fold described by <strong>the</strong> follow<strong>in</strong>g equation <strong>in</strong>C 4 : z 1 z 2 −z 3 z 4 = 0. WeconsideraZ 2 orbifold<strong>of</strong>suchs<strong>in</strong>gularitydef<strong>in</strong>edby<strong>the</strong>symmetryΘ : (z 1 ,z 2 ,z 3 ,z 4 ) → (z 1 ,z 2 ,−z 3 ,−z 4 ) . (7.2)The result<strong>in</strong>g orbifolded geometry is described by <strong>the</strong> follow<strong>in</strong>g equation <strong>in</strong> C 4(z 1 z 2 ) 2 −xy = 0 , (7.3)where x = z3 2 and y = z2 4 . There is a s<strong>in</strong>gular locus <strong>in</strong> this variety which consists <strong>of</strong>two complex l<strong>in</strong>es, that we call <strong>the</strong> p and q l<strong>in</strong>es, respectively. They meet at <strong>the</strong> tip{z 1 = z 2 = x = y = 0} and correspond to <strong>the</strong> fixed po<strong>in</strong>t locus <strong>of</strong> <strong>the</strong> orbifold action Θ.One can as well describe <strong>the</strong> variety as a real manifold. The coord<strong>in</strong>ates we use aredef<strong>in</strong>ed <strong>in</strong> appendix F.1. From this po<strong>in</strong>t <strong>of</strong> view <strong>the</strong> conifold is a real cone over T 1,1 ,which <strong>in</strong> turn is a U(1) bundle over S 2 ×S 2 . The orbifold action (7.2) reads <strong>in</strong> this caseΘ : (φ 1 ,φ 2 ) → (φ 1 −π,φ 2 +π) . (7.4)The two complex l<strong>in</strong>es are def<strong>in</strong>ed, <strong>in</strong> complex and real coord<strong>in</strong>ates respectively, asp = {z 1 = x = y = 0, ∀z 2 } = {θ 1 = θ 2 = 0, ∀r,ψ ′ }q = {z 2 = x = y = 0, ∀z 1 } = {θ 1 = θ 2 = π, ∀r,ψ ′′ } ,(7.5)where ψ ′ = ψ − φ 1 − φ 2 and ψ ′′ = ψ + φ 1 + φ 2 are (well def<strong>in</strong>ed) angular coord<strong>in</strong>atesalong <strong>the</strong> s<strong>in</strong>gularity l<strong>in</strong>es. In a neighborhood <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular l<strong>in</strong>es (and outside <strong>the</strong> tip)<strong>the</strong> geometry looks locally like <strong>the</strong> A 1 -s<strong>in</strong>gularity C×C 2 /Z 2 . The fixed po<strong>in</strong>t curve p sitsat <strong>the</strong> north poles <strong>of</strong> both S 2 ’s while <strong>the</strong> curve q sits at <strong>the</strong> south poles. A sketch <strong>of</strong> <strong>the</strong>conifold geometry <strong>in</strong> <strong>the</strong>se real coord<strong>in</strong>ates and <strong>of</strong> <strong>the</strong> fixed po<strong>in</strong>ts <strong>of</strong> Θ is given <strong>in</strong> Figure7.2.Our CY cone has three vanish<strong>in</strong>g 2-cycles. Two <strong>of</strong> <strong>the</strong>se three 2-cycles arise due to <strong>the</strong>orbifold action. Such exceptional 2-cycles are located all along <strong>the</strong> C 2 /Z 2 s<strong>in</strong>gular l<strong>in</strong>esp and q, and we call <strong>the</strong>m C 2 and C 4 , respectively. The third relevant 2-cycle descendsfrom <strong>the</strong> 2-cycle <strong>of</strong> <strong>the</strong> parent conifold geometry, whose base T 1,1 is topologically S 2 ×S 3 .Correspond<strong>in</strong>gly, we will have a basis consist<strong>in</strong>g <strong>of</strong> three <strong>fractional</strong> <strong>branes</strong>.In appendix F.2 we construct different <strong>fractional</strong> brane bases. However, <strong>the</strong> basiswe will favor here is <strong>the</strong> one aris<strong>in</strong>g most naturally when view<strong>in</strong>g our s<strong>in</strong>gularity as aZ 2 projection <strong>of</strong> <strong>the</strong> conifold, which as anticipated is given <strong>in</strong> terms <strong>of</strong> <strong>the</strong> two N = 22-cycles C 2 and C 4 and a deformation 2-cycle, C β . This basis <strong>of</strong> 2-cycles corresponds to a


112 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>ψp*p*rq*θ 1,ϕ1q*θ 2,ϕ2Figure 7.2: The s<strong>in</strong>gular conifold <strong>in</strong> real angular coord<strong>in</strong>ates: it is a real cone <strong>in</strong> r over T 1,1 ,which <strong>in</strong> turn is a U(1) fibration <strong>in</strong> ψ over <strong>the</strong> Kähler-E<strong>in</strong>ste<strong>in</strong> space CP 1 ×CP 1 parameterizedby θ i and φ i . The fixed po<strong>in</strong>t locus <strong>of</strong> <strong>the</strong> orbifold action Θ is given by two l<strong>in</strong>es p and q, localizedat antipodal po<strong>in</strong>ts on <strong>the</strong> two S 2 ’s. At <strong>the</strong> tip <strong>the</strong> spheres shr<strong>in</strong>k and p and q meet.Figure 7.3: The (p,q)-web (right) associated to <strong>the</strong> specific triangulation (which corresponds toa specific resolution) <strong>of</strong> <strong>the</strong> toric diagram <strong>of</strong> <strong>the</strong> orbifolded conifold (left).particular resolution <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularity, which is encoded <strong>in</strong> <strong>the</strong> triangulation <strong>of</strong> <strong>the</strong> toricdiagram (and <strong>the</strong> associated (p,q)-web) reported <strong>in</strong> Figure 7.3.We now mention some results derived <strong>in</strong> appendix F.2. First, a l<strong>in</strong>ear comb<strong>in</strong>ation<strong>of</strong> <strong>the</strong> three cycles above, C CF ≡ 2C β + C 2 + C 4 , has a vanish<strong>in</strong>g <strong>in</strong>tersection with <strong>the</strong>exceptional 2-cycles C 2 and C 4 and it corresponds to <strong>the</strong> 2-cycle <strong>of</strong> <strong>the</strong> double cover<strong>in</strong>gconifold geometry. Hence, a brane wrapp<strong>in</strong>g it does not couple to closed str<strong>in</strong>g twistedsectors, which are those associated to exceptional cycles, and it gives rise to <strong>the</strong> orbifold <strong>of</strong><strong>the</strong> configuration <strong>of</strong> a <strong>fractional</strong> brane at <strong>the</strong> s<strong>in</strong>gular conifold [127]. It thus correspondsto a quiver rank assignment (1,0,1,0). Given <strong>the</strong> obvious rank assignments (0,1,1,0)and (1,1,0,0) for <strong>branes</strong> wrapped on C 2 and C 4 respectively, it follows that <strong>the</strong> rankassociated to a D5-brane wrapped on C β is (0,−1,0,0). We will f<strong>in</strong>d it more convenientto use a D5-brane wrapped on −C β ≡ C α , correspond<strong>in</strong>g to <strong>the</strong> quiver (0,1,0,0).Eventually, one needs to compute <strong>the</strong> RR 3-form fluxes sourced by each <strong>fractional</strong>brane. Our f<strong>in</strong>d<strong>in</strong>gs, which are derived <strong>in</strong> appendix F.2, are summarized <strong>in</strong> <strong>the</strong> Table


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 113below:− ∫ A 2F 3 − ∫ A 4F 3 − ∫ A CFF 3 <strong>gauge</strong> <strong>the</strong>oryD5 on C 2 2 0 0 (0,1,1,0)D5 on C 4 0 2 0 (1,1,0,0)D5 on C α 1 1 −1 (0,1,0,0)(7.6)where fluxes are understood <strong>in</strong> units <strong>of</strong> 4π 2 α ′ g s . The 3-cycle A 2 corresponds to <strong>the</strong>product <strong>of</strong> <strong>the</strong> exceptional 2-cycle C 2 transverse to <strong>the</strong> p-l<strong>in</strong>e with <strong>the</strong> S 1 on p. Similarly,A 4 is<strong>the</strong> product<strong>of</strong> <strong>the</strong>exceptional C 4 with <strong>the</strong>S 1 <strong>in</strong><strong>the</strong> q-l<strong>in</strong>e. F<strong>in</strong>ally, A CF is<strong>the</strong> image<strong>of</strong> <strong>the</strong> compact 3-cycle <strong>of</strong> <strong>the</strong> double cover<strong>in</strong>g conifold under <strong>the</strong> orbifold projection.The table above is all we need to translate directly a quiver with generic rank assignmentto a super<strong>gravity</strong> solution with <strong>the</strong> correspond<strong>in</strong>g 3-form flux.7.3 Super<strong>gravity</strong> background for <strong>the</strong> UV regimeIn this section we present <strong>the</strong> super<strong>gravity</strong> solution describ<strong>in</strong>g <strong>the</strong> most general D3-brane system one can consider on <strong>the</strong> orbifolded conifold. The solution is expected tobe dual to <strong>the</strong> previously discussed <strong>gauge</strong> <strong>the</strong>ory with <strong>the</strong> most general rank assignment:(N +M 1 ,N +M 2 ,N +M 3 ,N). 2Fractional <strong>branes</strong> are magnetic sources for <strong>the</strong> RR 3-form flux. This typically results<strong>in</strong> some s<strong>in</strong>gularity <strong>of</strong> <strong>the</strong> backreacted super<strong>gravity</strong> solution. In some cases, namely when<strong>the</strong>re are only deformation <strong>branes</strong> around, <strong>the</strong> s<strong>in</strong>gularity is smoo<strong>the</strong>d out by <strong>the</strong> complexstructure deformation <strong>the</strong> <strong>branes</strong> <strong>in</strong>duce. One gets back a s<strong>in</strong>gularity-free solution where<strong>branes</strong> are replaced by fluxes [118, 140]. In more general situations it is more difficult t<strong>of</strong><strong>in</strong>d a regular solution. As already noticed, <strong>in</strong> <strong>the</strong> case <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong> this is<strong>in</strong> fact not even expected to be possible, because <strong>the</strong>re should always be some rema<strong>in</strong><strong>in</strong>gopen str<strong>in</strong>g modes correspond<strong>in</strong>g to <strong>the</strong> left over U(1) N−1 <strong>gauge</strong> degrees <strong>of</strong> freedom on<strong>the</strong> Coulomb branch. Hence, (a remnant <strong>of</strong>) <strong>the</strong> brane sources rema<strong>in</strong>s <strong>in</strong> <strong>the</strong> <strong>gravity</strong>dual.This said, <strong>in</strong> order to take <strong>the</strong> lead<strong>in</strong>g effect <strong>of</strong> any such k<strong>in</strong>d <strong>of</strong> <strong>fractional</strong> brane <strong>in</strong>toaccount, it is enough to make an educated ansatz for <strong>the</strong> super<strong>gravity</strong> fields and to imposesuitable boundary conditions on <strong>the</strong> system <strong>of</strong> differential equations. Therefore, <strong>in</strong> whatfollows, we will only consider <strong>the</strong> type IIB bulk action S IIB , eq. (A.1), and implement<strong>the</strong> effects <strong>of</strong> each brane source by properly chosen boundary conditions.7.3.1 The UV regime: runn<strong>in</strong>g fluxes and s<strong>in</strong>gularity l<strong>in</strong>esThe general solution we are look<strong>in</strong>g for has constant axio-dilaton τ = C 0 +ie −Φ = i, butnon-trivial RR and NSNS 3-form fluxes (which are usually organized <strong>in</strong> a complex 3-formG 3 = F 3 +ie −Φ H 3 = F 3 +iH 3 ), RR 5-form field strength F 5 and warp factor. The ansatzreadsds 2 10 = h −1/2 dx 2 3,1 +h 1/2 (dr 2 +r 2 ds 2 T 1,1 )F 5 = (1+∗ 10 )dh −1 ∧dvol 3,1G 3 = G U 3 +G T 3(7.7)2 Our conventions for type IIB super<strong>gravity</strong> and D-brane actions, toge<strong>the</strong>r with <strong>the</strong> equations <strong>of</strong> motionfor <strong>the</strong> bulk fields, can be found <strong>in</strong> appendix A.


114 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>where <strong>the</strong> orbifold Z 2 identification (7.2) act<strong>in</strong>g on <strong>the</strong> <strong>in</strong>ternal coord<strong>in</strong>ates is understood,his<strong>the</strong>warpfactor, while<strong>the</strong>superscriptsU andT on<strong>the</strong>3-formfluxstandforuntwistedand twisted sector fluxes, respectively. The above ansatz is <strong>the</strong> one <strong>of</strong> a warped s<strong>in</strong>gularcone. Any deformation <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular geometry will still asymptote to this cone for largevalues <strong>of</strong> <strong>the</strong> radial coord<strong>in</strong>ate, and it is <strong>in</strong> this sense that we will th<strong>in</strong>k <strong>of</strong> <strong>the</strong> solutionas represent<strong>in</strong>g (at least) <strong>the</strong> UV regime <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory.Recall that for <strong>the</strong> solution to be supersymmetric, <strong>the</strong> complex 3-form G 3 should be(2,1), primitive and imag<strong>in</strong>ary-self-dual [123]∗ 6 G 3 = iG 3 , (7.8)where ∗ 6 is constructed with <strong>the</strong> unwarped metric. We will see that <strong>the</strong> warp factordepends on <strong>the</strong> radial coord<strong>in</strong>ate as well as some <strong>of</strong> <strong>the</strong> angular coord<strong>in</strong>ates, as typicalfor solutions with N = 2 <strong>branes</strong> around [10].The equations <strong>of</strong> motion we have to solve are written <strong>in</strong> appendix A, eqs. (A.5).The warp factor equation is given by <strong>the</strong> BI for F 5 . The E<strong>in</strong>ste<strong>in</strong> equations are <strong>the</strong>nautomatically satisfied by our ansatz (7.7).Itiseasytocheckthat, givenall<strong>the</strong>geometricaldatadiscussed<strong>in</strong><strong>the</strong>previoussection,and tak<strong>in</strong>g for simplicity all <strong>fractional</strong> <strong>branes</strong> sitt<strong>in</strong>g at <strong>the</strong> tip, <strong>the</strong> complex 3-form G 3reads 3[G 3 = − α′2 g s(M 1 −M 2 +M 3 ) ω3 CF −3i dr ]r ∧ωCF 2+2iπα ′ g s (−M 1 +M 2 +M 3 ) dz 2∧ω (p)2 +2iπα ′ g s (M 1 +M 2 −M 3 ) dz 1∧ω (q)2z 2 z[1= − α′2 g s(M 1 −M 2 +M 3 ) ω3 CF −3i dr ]r ∧ωCF 2(+iπα ′ g s (−M 1 +M 2 +M 3 ) 3 dr )r +idψ′ ∧ω (p)2(+iπα ′ g s (M 1 +M 2 −M 3 ) 3 dr )r +idψ′′ ∧ω (q)2 ,whereω3 CF andω2 CF aredef<strong>in</strong>ed<strong>in</strong>appendixF.1, andω (p)exceptional 2-cocycles def<strong>in</strong>ed by <strong>the</strong> <strong>in</strong>tegrals below.For <strong>the</strong> present purposes it suffices to recall that∫C CFω CF2 = 4π ,∫C 2ω (p)2 =∫C 4ω (q)2 = 1 , and2 andω (q)∫(7.9)2 are<strong>the</strong>twonormalizedA CFω CF3 = 8π 2 , (7.10)where A CF is <strong>the</strong> image under <strong>the</strong> orbifold projection <strong>of</strong> <strong>the</strong> 3-sphere on <strong>the</strong> doublecover<strong>in</strong>g conifold. The second equality <strong>in</strong> (7.9) can be easily obta<strong>in</strong>ed by us<strong>in</strong>g eqs. (F.2-3 The vielbe<strong>in</strong> we use for <strong>the</strong> s<strong>in</strong>gular conifold can be found <strong>in</strong> (F.9). Appendix F.1 conta<strong>in</strong>s a review<strong>of</strong> <strong>the</strong> s<strong>in</strong>gular conifold geometry.


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 115F.5). It is <strong>the</strong>n easy to check that <strong>the</strong> RR 3-form fluxes on <strong>the</strong> A-cycles are− 1 ∫4π 2 α ′ F 3 = M 1 −M 2 +M 3 (7.11)g s A CF− 1 ∫4π 2 α ′ F 3 = −M 1 +M 2 +M 3 (7.12)g s A 2− 1 ∫4π 2 α ′ F 3 = M 1 +M 2 −M 3 . (7.13)g s A 4Itisimportanttostressatthispo<strong>in</strong>tthat<strong>the</strong>aboveequationsarereally<strong>the</strong><strong>in</strong>put(i.e. <strong>the</strong>asymptotic conditions) <strong>in</strong> solv<strong>in</strong>g <strong>the</strong> equations. They are <strong>in</strong> one-to-one <strong>correspondence</strong>with a choice <strong>of</strong> ranks <strong>in</strong> <strong>the</strong> quiver. The real part <strong>of</strong> G 3 , that is F 3 , is thus essentiallydeterm<strong>in</strong>ed <strong>in</strong> this way. Then <strong>the</strong> imag<strong>in</strong>ary self-dual condition (7.8) fixes also H 3 , <strong>the</strong>imag<strong>in</strong>ary part <strong>of</strong> G 3 . The latter is thus <strong>the</strong> output <strong>of</strong> solv<strong>in</strong>g <strong>the</strong> super<strong>gravity</strong> equations.As we will see <strong>in</strong> <strong>the</strong> next subsection, this is a non-trivial output <strong>in</strong> <strong>the</strong> sense that it willconta<strong>in</strong> <strong>in</strong>formation about <strong>the</strong> runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs. Fur<strong>the</strong>r dynamical dataon <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory is conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> warp factor.From <strong>the</strong> ansatz (7.7), one sees that <strong>the</strong> warp factor should satisfy <strong>the</strong> follow<strong>in</strong>gequation <strong>in</strong> <strong>the</strong> unwarped <strong>in</strong>ternal manifold∗ 6 d∗ 6 dh ≡ ∆h = −∗ 6 (H 3 ∧F 3 ) , (7.14)with boundary conditions dictated by <strong>the</strong> D-brane sources. To compute H 3 ∧ F 3 from(7.9) and to solve for <strong>the</strong> warp factor h <strong>in</strong> (7.14), <strong>the</strong> first issue is whe<strong>the</strong>r <strong>the</strong>re aremixed terms between twisted and untwisted sectors <strong>in</strong> <strong>the</strong> expansion <strong>of</strong> such 6-form <strong>in</strong><strong>the</strong> cocycle basis. Let us consider a closed 2-form ω 2 , that represents <strong>the</strong> Po<strong>in</strong>caré dual<strong>of</strong> an exceptional cycle C <strong>in</strong> any submanifold transverse to <strong>the</strong> s<strong>in</strong>gularity l<strong>in</strong>e, and α 2 asmooth 2-form with vanish<strong>in</strong>g flux on <strong>the</strong> exceptional cycle. The 4-form ω 2 ∧α 2 , whichwould give mixed terms, vanishes at any po<strong>in</strong>t but <strong>the</strong> s<strong>in</strong>gular one. One can <strong>the</strong>n writeω 2 ∧α 2 = Cδ 4 and compute C as∫ ∫C = ω 2 ∧α 2 = α 2 = 0 . (7.15)This implies that <strong>the</strong>re are no mixed terms between <strong>the</strong> twisted sector and <strong>the</strong> untwistedone. Then <strong>the</strong> 6-form H 3 ∧F 3 is easily computed. From (7.9) for <strong>the</strong> 3-form fluxes, us<strong>in</strong>gdrr ∧ωCF 2 ∧ω3 CF = − 54r dr ∧dvol T 1,1we getω (p)2 ∧ω (p)2 = − 14π 2 δ(2) (1−cosθ 1 ,1−cosθ 2 ) s<strong>in</strong>θ 1 dθ 1 ∧dφ 1 ∧s<strong>in</strong>θ 2 dθ 2 ∧dφ 2ω (q)2 ∧ω (q)2 = − 14π 2 δ(2) (1+cosθ 1 ,1+cosθ 2 ) s<strong>in</strong>θ 1 dθ 1 ∧dφ 1 ∧s<strong>in</strong>θ 2 dθ 2 ∧dφ 2 ,C(7.16){H 3 ∧F 3 = 81α ′2 gs2 1 1r 6 2 (M 1−M 2 +M 3 ) 2 +(M 1 −M 2 −M 3 ) 2 δ (2) (1−cosθ 1 ,1−cosθ 2 )}+(M 1 +M 2 −M 3 ) 2 δ (2) (1+cosθ 1 ,1+cosθ 2 ) dr∧r 5 dvol T 1,1 . (7.17)


116 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>The equation we have to solve for <strong>the</strong> warp factor is <strong>the</strong>n{∆h = −81α ′2 gs2 1 1r 6 2 (M 1 −M 2 +M 3 ) 2 +(M 1 −M 2 −M 3 ) 2 δ (2) (1−cosθ 1 ,1−cosθ 2 )}+(M 1 +M 2 −M 3 ) 2 δ (2) (1+cosθ 1 ,1+cosθ 2 ) . (7.18)Def<strong>in</strong><strong>in</strong>g <strong>the</strong> angular functionf(x,y) = 124∞∑(n,m)≠(0,0)(2n+1)(2m+1)n(n+1)+m(m+1) P n(x)P m (y) , (7.19)where P n (t) are Legendre polynomials, and which satisfies <strong>the</strong> differential equation∆ ang f(cosθ 1 ,cosθ 2 ) = −δ (2) (1−cosθ 1 ,1−cosθ 2 )+ 1 4 , (7.20)<strong>the</strong> solution f<strong>in</strong>ally reads (see appendix F.3 for details){h = 27πα′2 12 r 4 g s N + 3g2 [](s(M 1 −M 2 +M 3 ) 2 +(M 1 −M 3 ) 2 +M22 log r + 1 )4πr 0 4+ 6g2 [s(M 1 −M 2 +M 3 ) 2 f(cosθ 1 ,cosθ 2 )+(M 1 +M 2 −M 3 ) 2 f(−cosθ 1 ,−cosθ 2 )] } .π(7.21)The constant terms <strong>in</strong>side <strong>the</strong> {...} <strong>in</strong> eq. (7.21) have been fixed <strong>in</strong> such a way that<strong>the</strong> effective D3-charge at r = r 0 is N. This is a choice for <strong>the</strong> physical mean<strong>in</strong>g onewants to give to r 0 , as any such constant term can be absorbed <strong>in</strong>to a redef<strong>in</strong>ition <strong>of</strong> r 0 .The above solution is not smooth, as <strong>the</strong> warp factor displays s<strong>in</strong>gularities at small r.Moreover, asalreadyanticipated, weexpectanenhançonbehaviortobeatworkwhenever<strong>the</strong>re are N = 2 <strong>branes</strong> <strong>in</strong> <strong>the</strong> orig<strong>in</strong>al bound state. Similarly to [10, 11], <strong>the</strong> enhançonradius can be def<strong>in</strong>ed by <strong>the</strong> m<strong>in</strong>imal surface below which <strong>the</strong> effective D3-charge changessign. The resolution <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularities has to do with <strong>the</strong> IR dynamics <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong><strong>the</strong>ory. The structure <strong>of</strong> <strong>the</strong> vacua, as well as <strong>the</strong> phases <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory can enjoy,depend crucially on <strong>the</strong> classes <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> present and on <strong>the</strong> hierarchy <strong>of</strong> <strong>the</strong>scales Λ i associated to each quiver node. Hence, <strong>the</strong> way <strong>the</strong> s<strong>in</strong>gularity is dealt with willchange accord<strong>in</strong>gly. These issues will be discussed <strong>in</strong> detail <strong>in</strong> section 7.4. Here we justwant to stress that no matter <strong>the</strong> hierarchy between <strong>the</strong> dynamically generated scales Λ iand <strong>the</strong> specific <strong>fractional</strong> <strong>branes</strong> content, <strong>the</strong> above solution is a good description <strong>of</strong> <strong>the</strong>UV regime <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory. In <strong>the</strong> follow<strong>in</strong>g we will <strong>the</strong>n present a number <strong>of</strong>non-trivial checks <strong>of</strong> <strong>the</strong> duality which apply <strong>in</strong> this regime.7.3.2 Checks <strong>of</strong> <strong>the</strong> duality: beta functions and Maxwell chargesIn this subsection we perform some non-trivial checks <strong>of</strong> <strong>the</strong> proposed <strong>gauge</strong>/<strong>gravity</strong>duality: we discuss <strong>the</strong> computation <strong>of</strong> <strong>gauge</strong> coupl<strong>in</strong>g beta functions and analyze <strong>the</strong>RG flow <strong>of</strong> our solutions us<strong>in</strong>g standard techniques. In <strong>the</strong> follow<strong>in</strong>g subsection we adopt


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 117a new perspective proposed <strong>in</strong> [129], which is based on Page charges [184] and enables usto get stronger predictions from super<strong>gravity</strong>.Typically, given a super<strong>gravity</strong> background dual to a quiver <strong>gauge</strong> <strong>the</strong>ory, <strong>the</strong> knowledge<strong>of</strong> <strong>the</strong> various brane charges at any value <strong>of</strong> <strong>the</strong> radial coord<strong>in</strong>ate r allows one, <strong>in</strong>pr<strong>in</strong>ciple, to extract <strong>the</strong> <strong>gauge</strong> ranks <strong>of</strong> <strong>the</strong> dual <strong>the</strong>ory at <strong>the</strong> scale µ holographically dualto r. Fur<strong>the</strong>rmore, from <strong>the</strong> value <strong>of</strong> closed str<strong>in</strong>g fields, one can learn about parametersand runn<strong>in</strong>g coupl<strong>in</strong>gs appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> dual field <strong>the</strong>ory. In <strong>the</strong>ories like IIB super<strong>gravity</strong>,whose action conta<strong>in</strong>s Chern-Simons terms lead<strong>in</strong>g to modified Bianchi identities for<strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant field strengths, different notions <strong>of</strong> charges carried by <strong>the</strong> same fieldsmay be <strong>in</strong>troduced [184]. Follow<strong>in</strong>g standard techniques, we will start us<strong>in</strong>g <strong>the</strong> so-calledMaxwell charges, which are <strong>in</strong>tegrals <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variant RR field strengths.In order to specify <strong>the</strong> dictionary between <strong>the</strong> str<strong>in</strong>g and <strong>the</strong> <strong>gauge</strong> sides, one needsto understand <strong>the</strong> details <strong>of</strong> <strong>the</strong> microscopic D-brane configuration that realizes <strong>the</strong> field<strong>the</strong>ory. As expla<strong>in</strong>ed <strong>in</strong> [11], <strong>the</strong> idea is to match <strong>the</strong> brane charges <strong>of</strong> <strong>the</strong> super<strong>gravity</strong>solution at some value <strong>of</strong> r with <strong>the</strong> charges <strong>of</strong> a system <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> that, <strong>in</strong> <strong>the</strong>presence<strong>of</strong><strong>the</strong>sameclosedstr<strong>in</strong>gfieldsasthose<strong>of</strong><strong>the</strong>super<strong>gravity</strong>solution, eng<strong>in</strong>eers<strong>the</strong>field<strong>the</strong>ory: <strong>in</strong>thiswayonereads<strong>the</strong>effective<strong>the</strong>oryat<strong>the</strong>scaleµ. Acomplicationarisesbecause <strong>the</strong> mean<strong>in</strong>gful brane configuration changes along <strong>the</strong> radial direction: whencerta<strong>in</strong> radial thresholds are crossed <strong>the</strong> D3-charge <strong>of</strong> one <strong>of</strong> <strong>the</strong> effective constituents <strong>of</strong><strong>the</strong> system changes sign, and <strong>the</strong> system is no longer BPS. One has <strong>the</strong>n to rearrange <strong>the</strong>charges <strong>in</strong>to different BPS constituents. The field <strong>the</strong>ory counterpart is that, when one<strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs diverges, one has to resort to a different description.When <strong>the</strong> <strong>the</strong>ory admits only deformation <strong>fractional</strong> <strong>branes</strong>, <strong>the</strong> l<strong>in</strong>k between differentfield <strong>the</strong>ory descriptions is established by Seiberg duality. This was orig<strong>in</strong>ally proposedand checked <strong>in</strong> <strong>the</strong> conifold <strong>the</strong>ory [118], <strong>the</strong>n applied to o<strong>the</strong>r s<strong>in</strong>gularities [147, 185] andeven to <strong>the</strong>ories with non-compact D7-<strong>branes</strong> [186, 129]. In N = 2 solutions like <strong>the</strong> one<strong>of</strong> [10] <strong>the</strong> procedure works also well [11]. In this latter case, however, one expects <strong>the</strong>cascade not to be triggered by subsequent Seiberg dualities: <strong>the</strong> correct <strong>in</strong>terpretation isthrough a non-perturbative duality as we expla<strong>in</strong>ed <strong>in</strong> Chapter 6 (which formally lookslike a mundane Higgs<strong>in</strong>g phenomenon).The super<strong>gravity</strong> solution presented <strong>in</strong> Section 7.3.1 is <strong>the</strong> first example <strong>of</strong> a solutiondescrib<strong>in</strong>g <strong>the</strong> backreaction <strong>of</strong> a bound state conta<strong>in</strong><strong>in</strong>g both deformation and N = 2<strong>fractional</strong> <strong>branes</strong>, and hence represents an excellent opportunity to study <strong>the</strong>ir <strong>in</strong>terplay.One expects N = 2 <strong>fractional</strong> <strong>branes</strong> to behave as <strong>the</strong>ir cous<strong>in</strong>s <strong>in</strong> pure N = 2 setups,and we will f<strong>in</strong>d good evidence that this is <strong>the</strong> case. The novelty is that even deformation<strong>fractional</strong> <strong>branes</strong>, when prob<strong>in</strong>g a geometry admitt<strong>in</strong>g N = 2 <strong>branes</strong>, may have that k<strong>in</strong>d<strong>of</strong> behavior, sometimes.Let us first compare <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory beta functions with <strong>the</strong> super<strong>gravity</strong> prediction.The anomalous dimensions <strong>of</strong> matter fields <strong>in</strong> <strong>the</strong> UV are to lead<strong>in</strong>g order <strong>the</strong> same as <strong>in</strong><strong>the</strong> conformal <strong>the</strong>ory, γ = −1/2. Def<strong>in</strong><strong>in</strong>g χ a = 8π 2 /g 2 a, <strong>the</strong> four one-loop beta functionsb a ≡ ∂/∂(logµ)χ a are <strong>the</strong>nb 1 = 3 2 (2M 1 −M 2 ) b 2 = 3 2 (−M 1 +2M 2 −M 3 )b 4 = 3 2 (−M 1 −M 3 ) b 3 = 3 2 (−M 2 +2M 3 ) .(7.22)On <strong>the</strong> o<strong>the</strong>r hand, <strong>in</strong>spection <strong>of</strong> <strong>the</strong> action <strong>of</strong> probe <strong>fractional</strong> D3-<strong>branes</strong> allows one to


118 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>f<strong>in</strong>d<strong>the</strong>dictionarybetween<strong>the</strong><strong>gauge</strong>coupl<strong>in</strong>gsand<strong>the</strong><strong>in</strong>tegrals<strong>of</strong>B 2 on<strong>the</strong>correspond<strong>in</strong>gshr<strong>in</strong>k<strong>in</strong>g 2-cycles [158, 70, 102, 128]. 4 With <strong>the</strong> conventions laid out <strong>in</strong> appendix A,<strong>the</strong> dictionary is easily found to beχ 2 +χ 3 =χ 1 +χ 2 =∫12πα ′ g s∫12πα ′ g sC 2B 2 χ 1 +χ 3 =C 4B 2∫12πα ′ g sχ 1 +χ 2 +χ 3 +χ 4 = 2πg s,C CFB 2(7.23)with a radius-energy relation <strong>in</strong> <strong>the</strong> UV region r/α ′ = µ, like <strong>in</strong> <strong>the</strong> conformal case.Recall that C CF = C 2 +C 4 −2C α .Integrat<strong>in</strong>g <strong>the</strong> NSNS 3-form given <strong>in</strong> eq. (7.9) one gets for <strong>the</strong> B 2 fieldB 2 = 3 2 α′ g s log r r 0[(M 1 −M 2 +M 3 )ω CF2 +2π(−M 1 +M 2 +M 3 )ω (p)+2π(M 1 +M 2 −M 3 )ω (q)2]+πα ′[ ]a CF ω2 CF +4π(a 2 ω (p)2 +a 4 ω (p)4 )2, (7.24)where a CF , a 2 , a 4 are <strong>in</strong>tegration constants. This implies that∫12πα ′ g s∫12πα ′ g s∫12πα ′ g sC CFB 2 = 3(M 1 −M 2 +M 3 )log r r 0+ 2πg sa CFC 2B 2 = 3 2 (−M 1 +M 2 +M 3 )log r r 0+ 2πg sa 2C 4B 2 = 3 2 (M 1 +M 2 −M 3 )log r r 0+ 2πg sa 4 .(7.25)The three <strong>in</strong>tegration constants a CF , a 2 , a 4 correspond to <strong>the</strong> periods <strong>of</strong> B 2 at r = r 0 ,<strong>the</strong> latter hav<strong>in</strong>g be<strong>in</strong>g chosen to be <strong>the</strong> value <strong>of</strong> <strong>the</strong> holographic coord<strong>in</strong>ate where <strong>the</strong>effective D3-brane charge is N, see <strong>the</strong> discussion after eq. (7.20). We can th<strong>in</strong>k <strong>of</strong> it asa UV cut-<strong>of</strong>f for <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory, i.e. <strong>the</strong> scale where <strong>the</strong> dual UV bare Lagrangianis def<strong>in</strong>ed. Then <strong>the</strong> <strong>in</strong>tegration constants fix, through eqs. (7.23), <strong>the</strong> bare coupl<strong>in</strong>gs <strong>of</strong><strong>the</strong> dual non-conformal <strong>gauge</strong> <strong>the</strong>ory. It is easy to check that <strong>the</strong> logarithmic derivatives<strong>of</strong> (7.25) give exactly <strong>the</strong> same beta functions as <strong>the</strong> field <strong>the</strong>ory computation <strong>in</strong> (7.22).As generically happens <strong>in</strong> super<strong>gravity</strong> solutions dual to non-conformal <strong>the</strong>ories, <strong>the</strong>Maxwell D3-charge runs. It is easily computed from eq. (A.4) and (7.21) to be <strong>in</strong> ourcaseQ D3 (r) = N + 3g s2π[M21 +M 2 2 +M 2 3 −M 1 M 2 −M 2 M 3]logrr 0. (7.26)As <strong>in</strong> [118], <strong>the</strong> periods <strong>of</strong> B 2 are no more periodic variables <strong>in</strong> <strong>the</strong> non-conformal super<strong>gravity</strong>solutions. One should <strong>the</strong>n <strong>in</strong>vestigate what <strong>the</strong> shift <strong>in</strong> Q D3(r) is once we move<strong>in</strong> <strong>the</strong> radial direction from r down to r ′ , where ∆r = r −r ′ > 0 is <strong>the</strong> m<strong>in</strong>imal radiusshift for which all <strong>the</strong> periods <strong>of</strong> B 2 on C α , C 2 , C 4 change by an <strong>in</strong>teger (<strong>in</strong> units <strong>of</strong> 4π 2 α ′ ).The shift <strong>in</strong> Q D3(r) should <strong>the</strong>n be compared aga<strong>in</strong>st <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory expectation for4 Such formula apply <strong>in</strong> <strong>the</strong> UV <strong>of</strong> <strong>the</strong> super<strong>gravity</strong> solution because <strong>the</strong> superpotential coupl<strong>in</strong>g is ata quasi-fixed po<strong>in</strong>t, as expla<strong>in</strong>ed <strong>in</strong> Chapter 5.


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 1193214...87 6 5 4 3 2 1Figure 7.4: Example <strong>of</strong> <strong>the</strong> pattern <strong>of</strong> <strong>the</strong> cascade <strong>of</strong> Seiberg dualities for ranks (N +P,N,N +P,N) as derived from <strong>the</strong> field <strong>the</strong>ory. Black numbers <strong>in</strong>dicate Seiberg dualities, performed on<strong>gauge</strong> groups with diverg<strong>in</strong>g coupl<strong>in</strong>gs. Inverse squared <strong>gauge</strong> coupl<strong>in</strong>gs are plotted versus <strong>the</strong>logarithm <strong>of</strong> <strong>the</strong> energy scale.<strong>the</strong> decrease <strong>of</strong> <strong>the</strong> ranks under a specific sequence <strong>of</strong> cascade steps. What changes aftersuch a sequence are <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups, all decreas<strong>in</strong>g by <strong>the</strong> same <strong>in</strong>tegernumber, <strong>the</strong> <strong>the</strong>ory be<strong>in</strong>g o<strong>the</strong>rwise self-similar, and with <strong>the</strong> <strong>in</strong>itial values <strong>of</strong> <strong>the</strong> coupl<strong>in</strong>gs.Sometimes a cyclic permutation <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group factors is also needed, as <strong>in</strong>[118]. We will call such a sequence <strong>of</strong> cascade steps a quasi-period.We are now ready to check <strong>the</strong> super<strong>gravity</strong> predictions aga<strong>in</strong>st <strong>the</strong> field <strong>the</strong>ory cascade<strong>in</strong>somesimplecases.Weconsiderthreeexampleswithdeformation<strong>fractional</strong><strong>branes</strong>only, where <strong>the</strong> RG flow can be followed by perform<strong>in</strong>g successive Seiberg dualities, while<strong>in</strong> <strong>the</strong> fourth example below we need an N = 2 duality at some steps <strong>of</strong> <strong>the</strong> cascade.1. (N +P,N,N +P,N)This <strong>the</strong>ory is <strong>the</strong> daughter <strong>of</strong> <strong>the</strong> duality cascade discussed <strong>in</strong> [118]. There are Pdeformation <strong>branes</strong> <strong>of</strong> type (1,0,1,0) (correspond<strong>in</strong>g to D5-<strong>branes</strong> wrapped over C CF ).We get for <strong>the</strong> charge and <strong>the</strong> periodsQ D3 (r) = N + 3g s4π 4P2 log r r 0b Cα = − 3g s4π 2P log r r 0+a α , b C2 = a 2 , b C4 = a 4 ,(7.27)where a CF = a 2 + a 4 − 2a α and b Ci are <strong>the</strong> periods <strong>of</strong> B 2 along <strong>the</strong> cycle C i <strong>in</strong> units<strong>of</strong> 4π 2 α ′ . From <strong>the</strong> above equation we see that r ′ = r exp[−4π/(6g s P)], and under thisradial shift Q D3 (r ′ ) = Q D3 (r) − 2P. This matches with <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory expectationss<strong>in</strong>ce <strong>the</strong> <strong>the</strong>ory is quasi-periodic with a shift N → N −2P, which is obta<strong>in</strong>ed after foursubsequent Seiberg dualities on <strong>the</strong> different <strong>gauge</strong> groups. See Figure 7.4 for an explicitexample <strong>of</strong> <strong>the</strong> RG flow computed <strong>in</strong> field <strong>the</strong>ory, for some values <strong>of</strong> <strong>the</strong> bare coupl<strong>in</strong>gs.


120 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>1342...10987654321Figure 7.5: Example <strong>of</strong> <strong>the</strong> pattern <strong>of</strong> <strong>the</strong> cascade <strong>of</strong> Seiberg dualities for ranks (N+P,N,N,N)as derived from <strong>the</strong> field <strong>the</strong>ory.Obviously, for any cyclic permutation <strong>of</strong> <strong>the</strong> above rank assignment we have <strong>the</strong> samestory.2. (N +P,N,N,N)Q D3 (r) = N + 3g s4π 2P2 log r r 0b Cα = − 3g s4π P log r r 0+a α , b C2 = − 3g s4π P log r r 0+a 2 , b C4 = 3g s4π P log r r 0+a 4 .(7.28)From<strong>the</strong>aboveequationweseethatr ′ = r exp[−4π/(3g s P)]andconsequentlyQ D3 (r ′ ) =Q D3 (r)−2P. This matches aga<strong>in</strong> with <strong>gauge</strong> <strong>the</strong>ory expectations. Although <strong>the</strong> quiverlooks self-similar after four Seiberg dualities, <strong>the</strong> <strong>the</strong>ory is not: <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gsreturn to <strong>the</strong>ir orig<strong>in</strong>al values only after eight Seiberg dualities, as shown <strong>in</strong> Figure 7.5.Hence <strong>in</strong> this case a quasi-period needs eight dualities and <strong>the</strong> shift <strong>in</strong> <strong>the</strong> ranks is <strong>in</strong>deedN → N −2P. Aga<strong>in</strong>, similar conclusions hold for any cyclic permutations <strong>of</strong> <strong>the</strong> aboverank assignment.3. (N +Q,N +Q,N +Q,N)b Cα = a α ,Q D3 (r) = N + 3g s4π 2Q2 log r r 0b C2 = 3g s4π Qlog r r 0+a 2 ,b C4 = 3g s4π Qlog r r 0+a 4 .(7.29)Here, r ′ = r exp[−4π/(3g s Q)] and Q D3 (r ′ ) = Q D3 (r)−2Q. A quasi-period requires eightSeiberg dualities and aga<strong>in</strong> agrement with field <strong>the</strong>ory expectations is found. Notice thatthis <strong>the</strong>ory appears along <strong>the</strong> RG flow <strong>of</strong> <strong>the</strong> <strong>the</strong>ory (N ′ ,N ′ ,N ′ ,N ′ +Q).


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 1214. (N +P,N +P,N,N)Q D3 (r) = N + 3g s4π 2P2 log r r 0b Cα = 3g s4π P log r r 0+a α , b C2 = a 2 , b C4 = 3g s4π 2P log r r 0+a 4 .(7.30)Here r ′ = r exp[−4π/(3g s P)] and Q D3 (r ′ ) = Q D3 (r) − 2P. For such N = 2 <strong>fractional</strong><strong>branes</strong> we have to perform some duality at nodes with adjo<strong>in</strong>ts (cfr. <strong>the</strong> left quiveron Figure 7.7 below), at some step along <strong>the</strong> cascade. We conjecture that it can beunderstood as some N = 1 generalization <strong>of</strong> <strong>the</strong> baryonic root transition found <strong>in</strong> <strong>the</strong>N = 2 cascade. Formally its only effect is to change <strong>the</strong> rank <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group withan adjo<strong>in</strong>t from N + P to N − P. For this reason we will loosely refer to this nonperturbativetransition as “Higgs<strong>in</strong>g”. The RG flow is shown <strong>in</strong> Figure 7.10 (we willexpla<strong>in</strong> how this can be obta<strong>in</strong>ed from super<strong>gravity</strong> below). The quiver looks self-similarafter three Seiberg dualities, which consist <strong>of</strong> one Seiberg duality on node 1, one Higgs<strong>in</strong>gon node 2 and aga<strong>in</strong> one Seiberg duality on node 1. However a quasi-period needs sixdualities, as apparent <strong>in</strong> Figure 7.10, and <strong>the</strong> shift <strong>in</strong> <strong>the</strong> ranks is N → N − 2P, asexpected.7.3.3 Page charges and <strong>the</strong> RG flow from super<strong>gravity</strong>There is ano<strong>the</strong>r way <strong>of</strong> match<strong>in</strong>g our runn<strong>in</strong>g super<strong>gravity</strong> solutions (and more generallytype IIB solutions constructed from <strong>fractional</strong> <strong>branes</strong> at conical s<strong>in</strong>gularities) with cascad<strong>in</strong>gfield <strong>the</strong>ories. The method was orig<strong>in</strong>ally proposed <strong>in</strong> [129], work<strong>in</strong>g on ideas <strong>in</strong>[184]. Instead <strong>of</strong> us<strong>in</strong>g Maxwell charges, which are conserved and <strong>gauge</strong> <strong>in</strong>variant but notquantized nor localized, <strong>the</strong> method is based on Page charges [187] which are conservedand quantized, and <strong>the</strong>refore more suitable to be identified with <strong>gauge</strong> ranks, even though<strong>the</strong>y shift under large <strong>gauge</strong> transformations.Let C be a formal sum (polyform) <strong>of</strong> RR potentials C = ∑ C p , and F = (d+H 3 ∧)C<strong>the</strong> field strength polyform. Suppose we have a Dp-brane, whose dual current (looselyspeak<strong>in</strong>g its Po<strong>in</strong>caré dual) is a (9−p)-form Ω 9−p , with world-volume flux F 2 . Then <strong>the</strong>EOM/BI for <strong>the</strong> fluxes read⇒(d+H 3 ∧)F = e F ∧ ∑ σ p 2κ 2 τ p Ω 9−ppdF Page ≡ d(e B 2∧F) = e 2πα′ F 2∧ ∑ σ p 2κ 2 τ p Ω 9−p ,p(7.31)where σ 1 = σ 7 = 1 and σ −1 = σ 3 = σ 5 = −1. In particular F Page is a closed polyformoutside <strong>the</strong> <strong>branes</strong>. Then Maxwell and Page charges are def<strong>in</strong>ed asMaxwell: Q p = σ p2κ 2 τ p∫S 8−p FPage: Q Pagep= σ p2κ 2 τ p∫S 8−p e B 2∧F . (7.32)The idea is that it is possible to read <strong>the</strong> field <strong>the</strong>ory RG flow from super<strong>gravity</strong>po<strong>in</strong>twise. At fixed radial coord<strong>in</strong>ate r dual to some scale µ, standard formulæ allow usto compute <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs from <strong>the</strong> dilaton and <strong>the</strong> <strong>in</strong>tegrals <strong>of</strong> B 2 . Such formulæ


122 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>do not give real coupl<strong>in</strong>gs <strong>in</strong> general, but need particular <strong>in</strong>teger shifts <strong>of</strong> B 2 , which arelarge <strong>gauge</strong> transformations. Consequently, Page charges get shifted by some <strong>in</strong>tegervalues. Hav<strong>in</strong>g at hand a dictionary, <strong>the</strong>y are readily mapped to <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong><strong>the</strong>ory at that scale.At some specific radii, <strong>in</strong> order to keep <strong>the</strong> coupl<strong>in</strong>gs real, one has to perform afur<strong>the</strong>r large <strong>gauge</strong> transformation, shift<strong>in</strong>g B 2 and <strong>the</strong>refore end<strong>in</strong>g up with differentranks. These po<strong>in</strong>ts connect different steps <strong>of</strong> <strong>the</strong> cascade and can usually be <strong>in</strong>terpreted<strong>in</strong> <strong>the</strong> field <strong>the</strong>ory as Seiberg dualities [118] or non-perturbative Higgs<strong>in</strong>gs. In particular,ranks are not cont<strong>in</strong>uously vary<strong>in</strong>g functions but ra<strong>the</strong>r <strong>in</strong>teger discont<strong>in</strong>uous ones. Thisis not <strong>the</strong> end <strong>of</strong> <strong>the</strong> story: <strong>in</strong> general <strong>the</strong> shifts <strong>of</strong> B 2 are not enough to save us fromimag<strong>in</strong>ary coupl<strong>in</strong>gs, and one is forced to <strong>in</strong>troduce multiple dictionaries. We will seehow everyth<strong>in</strong>g beautifully merges.Let us make <strong>the</strong> po<strong>in</strong>t clear us<strong>in</strong>g <strong>the</strong> Klebanov-Strassler cascade [127, 118]. Thefirst step is to identify a dictionary between <strong>the</strong> field <strong>the</strong>ory ranks and Page charges.An SU(N + M) × SU(N) <strong>the</strong>ory is microscopically eng<strong>in</strong>eered with N regular and M<strong>fractional</strong> D3-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> conifold, thus from eq. (7.31) Q Page3 = N, Q Page5 =M. The formulæ for <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs areχ 1 = 2πg sbχ 2 = 2πg s(1−b) , (7.33)where χ a = 8π 2 /g 2 a and a = 1 refers to <strong>the</strong> larger group, while 4π 2 α ′ b = ∫ S 2 B 2 . From<strong>the</strong> actual UV solution [127], we have (for B 2 <strong>in</strong> some <strong>gauge</strong>)b = 14π 2 α ′ ∫S 2 B 2 = 3g sM2π log r r 0Q 3 = − 12κ 2 τ 3∫F 5 = N + 3g sM 2T 1,1 2πlog r r 0.(7.34)At any radius/energy scale x ≡ logr/r 0 one should perform a large <strong>gauge</strong> transformationand shift b by some <strong>in</strong>teger ∆b such that χ a ≥ 0, compute <strong>the</strong> Page charges <strong>in</strong> such a<strong>gauge</strong>, and f<strong>in</strong>ally use <strong>the</strong> dictionary to evaluate <strong>the</strong> ranks at that scale.It is easy to evaluate ∆b and Q Page3 <strong>in</strong> this example. They read[ 3gs M∆b = −2π]−xQ Page3 = N −∆bM = N +[ 3gs M2π x ]− M , (7.35)where <strong>the</strong> floor function [y] − is <strong>the</strong> greatest <strong>in</strong>teger less than or equal to y. Apply<strong>in</strong>g <strong>the</strong>algorithm at any x, we can plot <strong>the</strong> RG flow <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs and <strong>the</strong> ranks alongit. The result (<strong>the</strong> famous KS cascade) is depicted <strong>in</strong> Figure 7.6. Notice that we neverimposed cont<strong>in</strong>uity <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs (even though it is a well motivated physicalrequirement), never<strong>the</strong>less <strong>the</strong> super<strong>gravity</strong> solution predicts it. Moreover it also suggestsa reduction <strong>in</strong> <strong>the</strong> <strong>gauge</strong> group ranks without expla<strong>in</strong><strong>in</strong>g <strong>the</strong> correspond<strong>in</strong>g field <strong>the</strong>orymechanism. It turns out that <strong>in</strong> this case Seiberg duality can beautifully account for it[118, 85].We want to apply <strong>the</strong> same procedure to our class <strong>of</strong> solutions. In order to do that,however, we need some more mach<strong>in</strong>ery. Given a basis <strong>of</strong> 2-cycles C i and 3-cycles A j onradial sections, one def<strong>in</strong>es an <strong>in</strong>tersection matrixC i ·A j = I ij i,j = 1...p , (7.36)


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 123χQ Page3 = N − MSU(N) × SU(N − M)Q Page3 = NSU(N) × SU(N + M)1Q Page3 = N + MSU(N + 2M) × SU(N + M)-101xFigure 7.6: Flow <strong>in</strong> <strong>the</strong> KS <strong>the</strong>ory as computed with <strong>the</strong> algorithm. x is <strong>in</strong> units <strong>of</strong> 2π/3g s Mwhile χ <strong>in</strong> units <strong>of</strong> 2π/g s . At <strong>in</strong>teger values <strong>of</strong> x a large <strong>gauge</strong> transformation is required. At eachstep <strong>the</strong> Page D3-charge and <strong>the</strong> field <strong>the</strong>ory is <strong>in</strong>dicated.where p is <strong>the</strong> number <strong>of</strong> <strong>fractional</strong> <strong>branes</strong>. Let (n I ) = (#D5 i ,#D3), I = 1...p+1 be<strong>the</strong> occupation vector, that is <strong>the</strong> numbers <strong>of</strong> D5-<strong>branes</strong> wrapped on C i and <strong>of</strong> D3-<strong>branes</strong>.A dictionary F (m) relates this system to <strong>the</strong> ranks r a , a = 1...P <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>oryr a = [F (m) ] aI n I . (7.37)In general P ≥ p+1, but for our non-chiral <strong>the</strong>ory P = p+1 and F (m) is <strong>in</strong>vertible. In<strong>the</strong> follow<strong>in</strong>g i,j = 1...p while I,J,a,b = 1...p + 1. Let (Q I ) be <strong>the</strong> vector <strong>of</strong> Pagecharges(Q I ) =(− 12κ 2 τ 5∫A jF 3 , − 12κ 2 τ 3∫)F Page5 , (7.38)<strong>the</strong>n <strong>the</strong> Bianchi identity eq. (7.31) implies that Q j = −I t ji n i. Introduc<strong>in</strong>g <strong>the</strong> matrixĨ = diag(−I t ,1) we can write: Q I = ĨIJ n J . It follows that (suppress<strong>in</strong>g <strong>in</strong>dices)r =(F (m) Ĩ −1) Q . (7.39)The formulæ relat<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs to <strong>the</strong> super<strong>gravity</strong> solution can be derivedby consider<strong>in</strong>g <strong>the</strong> worldvolume action <strong>of</strong> probe D3- and wrapped D5-<strong>branes</strong> [185]. Letχ a = 8π 2 /g 2 a as before. Consider<strong>in</strong>g D3-<strong>branes</strong> one concludes that ∑ χ a = 2π/g s ; <strong>the</strong>n<strong>the</strong> <strong>in</strong>tegral <strong>of</strong> B 2 on some 2-cycle C j is related to <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g on <strong>the</strong> probe D5-brane, which is itself related to <strong>the</strong> sum <strong>of</strong> <strong>the</strong> χ’s correspond<strong>in</strong>g to <strong>the</strong> ranks <strong>in</strong>creasedby <strong>the</strong> D5, as <strong>in</strong> (7.23). Def<strong>in</strong><strong>in</strong>g <strong>the</strong> vector(B I ) =one can summarize <strong>the</strong> relations by( ∫ 1)4π 2 α ′ B 2 , 1C i(7.40)2πg sB = F t (m) χ ⇒ χ = 2πg sF −1t(m) B . (7.41)


124 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>Under large <strong>gauge</strong> transformations <strong>the</strong> <strong>in</strong>tegrals <strong>of</strong> B 2 change by <strong>in</strong>teger amounts, thus<strong>the</strong> first p components <strong>of</strong> <strong>the</strong> vector B undergo a particular shift B i → B i +Z i , for someZ i ∈ Z. As a result <strong>the</strong> Page D3-charge is shifted by∆Q Page3 = − 1 ∫2κ 2 ∆B 2 ∧F 3 = Q j (I −1 ) jk Z k , (7.42)τ 3while <strong>the</strong> <strong>in</strong>ferred <strong>gauge</strong> coupl<strong>in</strong>gs change accord<strong>in</strong>g to eq. (7.41).Wenowapply<strong>the</strong>algorithmtooursolutions(7.9), where<strong>the</strong><strong>in</strong>tegrals<strong>of</strong>B 2 are(7.25),for some values <strong>of</strong> <strong>the</strong> charges (equivalently for some M i ’s). Us<strong>in</strong>g <strong>the</strong> basis {C 2 ,C 4 ,C α }for <strong>the</strong> 2-cycles and {A 2 ,A 4 ,A CF } for <strong>the</strong> 3-cycles, <strong>the</strong> <strong>in</strong>tersection matrix I ij is givenby⎛ ⎞−2 0 0I ij = ⎝ 0 −2 0⎠ (7.43)−1 −1 1as <strong>in</strong> (F.39), while <strong>the</strong> dictionary [F (1) ] aI derived <strong>in</strong> section 7.2.2 (see Table (7.6)), referr<strong>in</strong>gto <strong>the</strong> central quiver <strong>in</strong> Figure 7.7, is reported <strong>in</strong> Figure 7.8. One quickly discoversthat, for generic values <strong>of</strong> <strong>the</strong> <strong>in</strong>tegration constants a i and <strong>of</strong> <strong>the</strong> radial coord<strong>in</strong>ate r,<strong>the</strong>re is no <strong>gauge</strong> transformation that produces positive χ a <strong>in</strong> eq. (7.41).One is led to <strong>the</strong> conclusion that multiple dictionaries are needed. This had to beexpected s<strong>in</strong>ce perform<strong>in</strong>g any Seiberg duality on <strong>the</strong> central quiver <strong>in</strong> Figure 7.7 one obta<strong>in</strong>s<strong>the</strong> lateral quivers (depend<strong>in</strong>g on <strong>the</strong> node chosen), which are substantially differentand cannot be described by <strong>the</strong> same dictionary, even up to reshuffl<strong>in</strong>g <strong>of</strong> <strong>the</strong> nodes.It turns out that even two dictionaries are not enough <strong>in</strong> our case. We provide a set<strong>of</strong> six dictionaries such that, at any energy, for one and only one dictionary <strong>the</strong>re is onelarge <strong>gauge</strong> transformation that gives non-negative χ a , see Figure 7.8.The dictionaries besides F (1) are obta<strong>in</strong>ed from it through formal Seiberg dualities.Consider a system with occupation vector n = (n 1 ,n 2 ,n 3 ,N). Start with <strong>the</strong> centralquiver where <strong>the</strong> ranks are given by eq. (7.37) us<strong>in</strong>g F (1) . Then a formal Seiberg dualityon one node gives a new quiver with new ranks (and superpotential), from which a newdictionary F (m) is directly read. Actually <strong>the</strong>re is an ambiguity because <strong>the</strong> number <strong>of</strong>D3-<strong>branes</strong> N could have changed <strong>in</strong> <strong>the</strong> process (but not <strong>the</strong> o<strong>the</strong>r charges) and <strong>the</strong>none is free to add l<strong>in</strong>es <strong>of</strong> 1’s to any <strong>of</strong> <strong>the</strong> first three columns. One can show that <strong>the</strong>physical result, that is <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs and ranks <strong>in</strong> <strong>the</strong> correct <strong>gauge</strong> <strong>of</strong> B 2 , is notaffected. In our case, a Seiberg duality on node 1 gives F (4) , on node 2 F (6) , on node 3F (3) , on node 4 F (5) and on two opposite nodes F (2) .We can f<strong>in</strong>ally apply <strong>the</strong> algorithm at any radius x ≡ logr/r 0 , that is:• f<strong>in</strong>d a dictionary <strong>in</strong> <strong>the</strong> set {F (m) } and a large <strong>gauge</strong> transformation B i (x) →B i (x)+Z i such that, accord<strong>in</strong>g to eq. (7.41), χ I ≥ 0 ∀I. It turns out that <strong>the</strong>reis always one and only one solution; 5• compute <strong>the</strong> D3-brane Page charge <strong>in</strong> this <strong>gauge</strong>, us<strong>in</strong>g eq. (7.42) (D5-brane chargesare <strong>in</strong>variant);5 To be precise, when one <strong>of</strong> <strong>the</strong> χ I vanishes <strong>the</strong>re are two dictionaries (with <strong>the</strong>ir <strong>gauge</strong>s) that do <strong>the</strong>job. At <strong>the</strong>se radii <strong>the</strong>re is <strong>the</strong> transition between <strong>the</strong> validity doma<strong>in</strong>s <strong>of</strong> two different field <strong>the</strong>ory duals.


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 125Figure 7.7: Seiberg dual quivers. The central quiver is <strong>the</strong> most extensively discussed one <strong>in</strong> thischapter. The left quiver is obta<strong>in</strong>ed with a Seiberg duality on node 1 or 3, while <strong>the</strong> right one onnode 2 or 4.⎛ ⎞ ⎛ ⎞ ⎛ ⎞0 1 0 1 0 1 0 1 0 1 0 1F (3) = ⎜1 1 1 1⎟⎝0 1 1 1⎠ F (1) = ⎜1 1 1 1⎟⎝1 0 0 1⎠ F (5) = ⎜1 1 1 1⎟⎝1 0 0 1⎠0 0 0 1 0 0 0 1 1 1 0 1⎛ ⎞ ⎛ ⎞ ⎛ ⎞1 0 1 1 1 0 1 1 0 1 1 1F (4) = ⎜1 1 1 1⎟⎝1 0 0 1⎠ F (2) = ⎜1 1 1 1⎟⎝0 1 1 1⎠ F (6) = ⎜0 0 0 1⎟⎝1 0 1 1⎠0 0 0 1 0 0 0 1 0 0 1 1Figure 7.8: A set <strong>of</strong> six dictionaries for <strong>the</strong> orbifolded conifold <strong>the</strong>ory. F (3) , F (4) refer to <strong>the</strong> leftquiver, with adjo<strong>in</strong>ts on nodes 2-4; F (1) , F (2) refer to <strong>the</strong> central quiver, without adjo<strong>in</strong>ts; F (5) ,F (6) refer to <strong>the</strong> right quiver, with adjo<strong>in</strong>ts on nodes 1-3. The four columns represent <strong>the</strong> nodesactivated by a D5-brane on C 2 , C 4 , C α and a D3-brane respectively.• use <strong>the</strong> dictionary and <strong>the</strong> charges <strong>in</strong> eq. (7.39) to evaluate <strong>the</strong> ranks at that scale<strong>in</strong> <strong>the</strong> correspond<strong>in</strong>g quiver.As a result, one can plot <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs along <strong>the</strong> flow and keep track <strong>of</strong> <strong>the</strong> variousfield <strong>the</strong>ory descriptions.It is clear that <strong>the</strong> transition radii between two different descriptions (dictionaries)occur when one <strong>of</strong> <strong>the</strong> χ I vanishes. But <strong>in</strong> pr<strong>in</strong>ciple <strong>the</strong>re is no reason why one shouldexpect, from <strong>the</strong> procedure above, cont<strong>in</strong>uous coupl<strong>in</strong>gs at <strong>the</strong> transition po<strong>in</strong>ts. Surpris<strong>in</strong>glyenough, it turns out that <strong>the</strong> result<strong>in</strong>g coupl<strong>in</strong>g are <strong>in</strong>deed cont<strong>in</strong>uous. Some plotswith explanation are <strong>in</strong> Figures 7.9, 7.10, 7.11, 7.12 (obta<strong>in</strong>ed via a ma<strong>the</strong>matica code).In <strong>the</strong> follow<strong>in</strong>g, we comment on <strong>in</strong>terest<strong>in</strong>g examples.1. (N +P,N,N +P,N)The RG flow, as computed from super<strong>gravity</strong> with <strong>the</strong> algorithm above, is plotted <strong>in</strong>Figure 7.9 (for P = 1 and some typical choice <strong>of</strong> <strong>the</strong> <strong>in</strong>tegration constants a 2 , a 4 , a α and<strong>the</strong> start<strong>in</strong>g radius x = logr/r 0 ). It precisely matches with <strong>the</strong> field <strong>the</strong>ory expectations,with respect to both <strong>gauge</strong> coupl<strong>in</strong>gs and ranks at any step. All transition po<strong>in</strong>ts canbe <strong>in</strong>terpreted by means <strong>of</strong> a s<strong>in</strong>gle Seiberg duality, as <strong>the</strong> prototypical example <strong>in</strong> [118].Notice that <strong>the</strong> <strong>in</strong>tegral <strong>of</strong> B 2 on C 2 and C 4 is constant and generically not <strong>in</strong>teger.


126 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>Figures: <strong>the</strong> follow<strong>in</strong>g figures represent <strong>the</strong> RG flow as computed from SUGRA with <strong>the</strong> algorithm,for typical values <strong>of</strong> <strong>the</strong> <strong>in</strong>tegration constants a 2 , a 4 , a α and <strong>the</strong> <strong>in</strong>itial radius x = logr/r 0 .The <strong>gauge</strong> coupl<strong>in</strong>gs are <strong>in</strong> units <strong>of</strong> 2π/g s . On <strong>the</strong> right side we report, for each step, <strong>the</strong> dictionaryused and <strong>the</strong> ranks <strong>in</strong> <strong>the</strong> quiver; <strong>the</strong> addition <strong>of</strong> N is understood. Underl<strong>in</strong>ed ranks signalan adjo<strong>in</strong>t chiral superfield at <strong>the</strong> correspond<strong>in</strong>g node. The red l<strong>in</strong>e represents <strong>the</strong> first group,<strong>the</strong> orange <strong>the</strong> second one, <strong>the</strong> light green <strong>the</strong> third one, <strong>the</strong> dark green <strong>the</strong> fourth one.Χ0.50.40.30.20.1Dic. Ranks1 ( 1 , 0 , 1 , 0 )4 ( -1 , 0 , 1 , 0 )2 ( -1 , 0 , -1 , 0 )5 ( -1 , 0 , -1 , -2 )1 ( -1 , -2 , -1 , -2 ).0.8 0.6 0.4 0.2xFigure 7.9: RG flow for <strong>the</strong> (N +1,N,N +1,N) <strong>the</strong>ory from SUGRA.0.8 0.6 0.4 0.2Χ0.50.40.30.20.1xDic. Ranks1 ( 1 , 1 , 0 , 0 )4 ( 0 , 1 , 0 , 0 )5 ( 0 , -1 , 0 , 0 )2 ( -1 , -1 , 0 , 0 )6 ( -1 , -1 , -1 , 0 )3 ( -1 , -1 , -1 , -2 )1 ( -1 , -1 , -2 , -2 ).Figure 7.10: RG flow for <strong>the</strong> (N +1,N +1,N,N) <strong>the</strong>ory from super<strong>gravity</strong>.


7.3. Super<strong>gravity</strong> background for <strong>the</strong> UV regime 1270.8 0.6 0.4 0.2Χ0.60.40.2xDic. Ranks1 ( 2 , 0 , 1 , 0 )4 ( -2 , 0 , 1 , 0 )2 ( -2 , 0 , -1 , 0 )5 ( -2 , 0 , -1 , -3 )3 ( -2 , 0 , -2 , -3 )2 ( -2 , -4 , -2 , -3 )6 ( -2 , -4 , -5 , -3 )3 ( -2 , -4 , -5 , -4 )2 ( -6 , -4 , -5 , -4 )5 ( -6 , -4 , -5 , -7 )1 ( -6 , -7 , -5 , -7 )3 ( -8 , -7 , -5 , -7 )2 ( -8 , -7 , -9 , -7 )5 ( -8 ,-10, -9 , -7 )1 ( -8 ,-10, -9 ,-10).Figure 7.11: RG flow for <strong>the</strong> (N +2,N,N +1,N) <strong>the</strong>ory from super<strong>gravity</strong>.Χ0.8 0.6 0.4 0.20.70.60.50.40.30.20.1xDic. Ranks1 ( 1 , 0 , 0 , 0 )4 ( -1 , 0 , 0 , 0 )5 ( -1 , -1 , 0 , 0 )1 ( -1 , -1 , -1 , 0 )4 ( -1 , -1 , -1 , -2 )6 ( -1 , -1 , -2 , -2 )1 ( -1 , -2 , -2 , -2 ).Figure 7.12: RG flow for <strong>the</strong> (N +1,N,N,N) <strong>the</strong>ory from super<strong>gravity</strong>.2. (N +P,N +P,N,N)The super<strong>gravity</strong> RG flow is shown <strong>in</strong> Figure 7.10 (for P = 1 and typical <strong>in</strong>tegrationconstants). This <strong>the</strong>ory is realized with N = 2 <strong>fractional</strong> <strong>branes</strong> only, and one expects abehavior quite similar to <strong>the</strong> N = 2 setup <strong>of</strong> [10]. The algorithm confirms that <strong>the</strong>re aresteps <strong>of</strong> <strong>the</strong> cascade where <strong>the</strong> node with divergent coupl<strong>in</strong>g has an adjo<strong>in</strong>t chiral fieldand N = 2 superpotential. In <strong>the</strong> example <strong>of</strong> Figure 7.10, after a Seiberg duality on node1, one is left with <strong>the</strong> left hand side quiver <strong>of</strong> Figure 7.7, and superpotentialW = −X 12 X 21 X 14 X 41 +M 22 (X 21 X 12 −X 23 X 32 )+X 32 X 23 X 34 X 43 −M 44 (X 43 X 34 −X 41 X 14 ).(7.44)The next node with diverg<strong>in</strong>g coupl<strong>in</strong>g is node 2. Notice that if one neglects <strong>the</strong> <strong>gauge</strong>dynamics on <strong>the</strong> o<strong>the</strong>r nodes and possible subtleties related to a non-trivial Kähler potentialand anomalous dimensions <strong>of</strong> node 2, <strong>the</strong> <strong>the</strong>ory is effectively N = 2 masslessSQCD with N +P colors and 2N flavors. We conjecture that it can be described along


128 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong><strong>the</strong> l<strong>in</strong>es <strong>of</strong> <strong>the</strong> N = 2 cascade [2] discussed <strong>in</strong> <strong>the</strong> previous chapter: we can go to a dualdescription at <strong>the</strong> analog <strong>of</strong> <strong>the</strong> baryonic root. We refer to this as (non-perturbative)Higgs<strong>in</strong>g.On <strong>the</strong> <strong>gravity</strong> side this step <strong>in</strong> <strong>the</strong> cascade occurs when∫14π 2 α ′C 2B 2 ∈ Zor∫14π 2 α ′C 4B 2 ∈ Z (7.45)(<strong>in</strong> this case only C 4 ). S<strong>in</strong>ce C 2 and C 4 are shrunk 2-cycles along <strong>the</strong> N = 2 s<strong>in</strong>gularityl<strong>in</strong>es, at <strong>the</strong>se radii (<strong>the</strong> generalized enhançons) <strong>the</strong>re are extra massless fields andtensionless objects <strong>in</strong> super<strong>gravity</strong>.3. (N +P,N,N +Q,N)The super<strong>gravity</strong> RG flow for <strong>the</strong> case (N +2,N,N +1,N) is shown <strong>in</strong> Figure 7.11.This <strong>the</strong>ory is realized with deformation <strong>fractional</strong> <strong>branes</strong> only. Never<strong>the</strong>less, <strong>the</strong> factthat <strong>the</strong> geometry admits N = 2 <strong>fractional</strong> <strong>branes</strong> causes that, at some steps, <strong>the</strong>re is areduction <strong>of</strong> rank <strong>in</strong> a node with adjo<strong>in</strong>t; as before, this is <strong>in</strong>terpreted <strong>in</strong> term <strong>of</strong> Higgs<strong>in</strong>g.Shells where such transitions occur are precisely at radii where one <strong>of</strong> <strong>the</strong> periods <strong>of</strong> B 2on C 2 or C 4 vanishes.This ra<strong>the</strong>r <strong>in</strong>trigu<strong>in</strong>g fact can be understood by notic<strong>in</strong>g that <strong>in</strong> some <strong>in</strong>termediatesteps, i.e. when <strong>the</strong>re are nodes with adjo<strong>in</strong>ts, <strong>the</strong> relevant dictionary forces us to re<strong>in</strong>terpret<strong>the</strong> configuration as if it were composed <strong>of</strong> deformation <strong>fractional</strong> <strong>branes</strong> toge<strong>the</strong>rwith a number <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong>.For generic P and Q th<strong>in</strong>gs can be analysed <strong>in</strong> a similar way. Notice that for P andQ large and coprime, <strong>the</strong> flow becomes quickly very complicated.4. (N +P,N,N,N)The super<strong>gravity</strong> RG flow for <strong>the</strong> case (N+1,N,N,N) is shown <strong>in</strong> Figure 7.12. As <strong>in</strong><strong>the</strong> previous examples, when one <strong>of</strong> <strong>the</strong> periods <strong>of</strong> B 2 on C 2 or C 4 vanishes super<strong>gravity</strong>predicts some transition that cannot be <strong>in</strong>terpreted as a Seiberg duality <strong>in</strong> <strong>the</strong> FT. Thisflow is anyway peculiar because perform<strong>in</strong>g a Seiberg duality on a conformal node it ispossible to provide a dual FT <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> RG flow us<strong>in</strong>g only Seiberg dualities,aswas done<strong>in</strong><strong>the</strong>previoussubsection. However, super<strong>gravity</strong> seemstopredictadifferentpattern <strong>of</strong> dualities which never<strong>the</strong>less leads to <strong>the</strong> same evolution <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs.Let us summarize what we found. There exists a well-def<strong>in</strong>ed algorithm that, givena m<strong>in</strong>imal set <strong>of</strong> dictionaries, allows one to derive <strong>the</strong> field <strong>the</strong>ory RG flow from a super<strong>gravity</strong>solution. For toric s<strong>in</strong>gularities, as <strong>the</strong> one we are describ<strong>in</strong>g, <strong>the</strong> dictionariescan be derived us<strong>in</strong>g standard techniques (see for <strong>in</strong>stance [188]) and, given <strong>the</strong> first, <strong>the</strong>o<strong>the</strong>r ones follow apply<strong>in</strong>g formal Seiberg dualities. It is not clear to us how to determ<strong>in</strong>e<strong>the</strong> m<strong>in</strong>imal number <strong>of</strong> dictionaries, and we have obta<strong>in</strong>ed <strong>the</strong>m by hand. Moreover, itwould be <strong>in</strong>terest<strong>in</strong>g to understand how to extend <strong>the</strong> algorithm to super<strong>gravity</strong> solutionsdual to chiral <strong>gauge</strong> <strong>the</strong>ories, as those <strong>in</strong> [147].Our geometry admits both deformation and N = 2 <strong>fractional</strong> <strong>branes</strong>. We saw examples<strong>of</strong> cascades from deformation <strong>branes</strong> that can be <strong>in</strong>terpreted <strong>in</strong> term <strong>of</strong> Seibergdualities only, examples with N = 2 <strong>branes</strong> that are very close to pure N = 2 <strong>the</strong>oriesand whose <strong>in</strong>terpretation should be similar to <strong>the</strong> N = 2 cascade, but also examples


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 129which one would say are realized with deformation <strong>branes</strong> only that never<strong>the</strong>less requiresometh<strong>in</strong>g like non-perturbative Higgs<strong>in</strong>g, at some steps.7.4 The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>oryAs already noticed, <strong>the</strong> solution presented <strong>in</strong> <strong>the</strong> previous section is s<strong>in</strong>gular. In thissection we discuss how to extend it towards <strong>the</strong> IR (i.e. at small radii on <strong>the</strong> <strong>gravity</strong>side). It is not difficult to see that <strong>the</strong> warp factor (7.21) becomes s<strong>in</strong>gular at shortdistances, so that <strong>the</strong> metric has a repulson type s<strong>in</strong>gularity.This is <strong>of</strong> course expected, s<strong>in</strong>ce our solution is similar to <strong>the</strong> ones <strong>of</strong> [127] and [10]: weare consider<strong>in</strong>g <strong>the</strong> backreaction <strong>of</strong> <strong>the</strong> <strong>branes</strong> <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> limit, but super<strong>gravity</strong>cannot be <strong>the</strong> full story near <strong>the</strong> <strong>branes</strong> <strong>the</strong>mselves, where <strong>the</strong> str<strong>in</strong>gy dynamics shouldbe dom<strong>in</strong>ant. Resolv<strong>in</strong>g <strong>the</strong> s<strong>in</strong>gularity <strong>the</strong>n amounts to a clever guess <strong>of</strong> what <strong>the</strong>sestr<strong>in</strong>gy effects would lead to. Deformation <strong>fractional</strong> <strong>branes</strong> and N = 2 <strong>fractional</strong> <strong>branes</strong>are very different <strong>in</strong> that respect.In <strong>the</strong> case <strong>of</strong> deformation <strong>branes</strong> at conifold po<strong>in</strong>ts, <strong>the</strong> s<strong>in</strong>gularity can be smoo<strong>the</strong>dout <strong>in</strong> super<strong>gravity</strong> by consider<strong>in</strong>g <strong>the</strong> warp<strong>in</strong>g <strong>of</strong> <strong>the</strong> deformed conifold <strong>in</strong>stead <strong>of</strong> <strong>the</strong>s<strong>in</strong>gular conifold. This is what has been done <strong>in</strong> [118], and <strong>the</strong> procedure <strong>in</strong>troduces adimensionful parameter ǫ, related to <strong>the</strong> dynamical scale <strong>of</strong> a conf<strong>in</strong><strong>in</strong>g <strong>gauge</strong> group.In <strong>the</strong> case <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong>, one does not expect that <strong>the</strong> repulson s<strong>in</strong>gularitycan be smoo<strong>the</strong>d <strong>in</strong> a similar way. Indeed, <strong>the</strong> U(1) N abelian degrees <strong>of</strong> freedom on<strong>the</strong> Coulomb branch can only appear through <strong>the</strong> presence <strong>of</strong> left-over open str<strong>in</strong>g modes<strong>in</strong> <strong>the</strong> <strong>gravity</strong> dual. This means that physical <strong>branes</strong> are still present, although <strong>the</strong>y areexpected to form a r<strong>in</strong>g that effectively cloaks <strong>the</strong> s<strong>in</strong>gularity [10]. This is <strong>the</strong> enhançonmechanism first discussed <strong>in</strong> [156]. The enhançon radius (where probe <strong>fractional</strong> <strong>branes</strong>become tensionless) <strong>the</strong>n provides a dimensionful parameter, which basically correspondsto <strong>the</strong> dynamically generated scale <strong>of</strong> <strong>the</strong> N = 2 <strong>gauge</strong> <strong>the</strong>ory.Note that <strong>in</strong> addition to <strong>the</strong> repulson s<strong>in</strong>gularity, <strong>the</strong> presence <strong>of</strong> twisted flux makes<strong>the</strong> warp factor s<strong>in</strong>gular all along <strong>the</strong> Coulomb branch, which co<strong>in</strong>cides with <strong>the</strong> l<strong>in</strong>e<strong>of</strong> orbifold s<strong>in</strong>gularities. It <strong>the</strong>n signals that one should <strong>in</strong>clude new massless modes <strong>in</strong><strong>the</strong> low energy effective <strong>the</strong>ory also at large values <strong>of</strong> r. This is what happens <strong>in</strong> ourN = 1 orbifolded conifold setup as well. Still, <strong>the</strong> super<strong>gravity</strong> solution can already giveus some important <strong>in</strong>sight <strong>in</strong>to <strong>the</strong> dynamics, particularly about <strong>the</strong> RG flow trajectory<strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory dual, as we saw <strong>in</strong> <strong>the</strong> previous section.We now turn to <strong>the</strong> IR effective <strong>the</strong>ory at <strong>the</strong> bottom <strong>of</strong> <strong>the</strong> cascade. In our solutions,it is clear that <strong>the</strong> IR behaviour can be quite different depend<strong>in</strong>g on which dynamicsdom<strong>in</strong>ates, i.e. which nodes <strong>in</strong> <strong>the</strong> low-energy quiver have <strong>the</strong> largest dynamical scale.As was argued <strong>in</strong> <strong>the</strong> previous section, <strong>the</strong> RG flow will, <strong>in</strong> a way or ano<strong>the</strong>r, reduce <strong>the</strong>ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups by a common additive factor. In o<strong>the</strong>r words, <strong>the</strong> effectivenumber <strong>of</strong> regular <strong>branes</strong> will dim<strong>in</strong>ish as we go <strong>in</strong>wards to <strong>the</strong> IR, and we assume thatwe eventually reach a po<strong>in</strong>t where <strong>the</strong> quiver has only three nodes.In <strong>the</strong> follow<strong>in</strong>g, we will first analyze <strong>the</strong> low-energy dynamics from <strong>the</strong> <strong>gauge</strong> <strong>the</strong>orypo<strong>in</strong>t <strong>of</strong> view. We perform <strong>the</strong> analysis <strong>in</strong> two different regimes: ei<strong>the</strong>r <strong>the</strong> N = 2effective dynamics is <strong>the</strong> most important effect, or else <strong>the</strong> N = 1 conf<strong>in</strong><strong>in</strong>g behaviordom<strong>in</strong>ates. As a consistency check <strong>of</strong> <strong>the</strong> candidate <strong>gravity</strong> dual, we reproduce <strong>the</strong>effective superpotential from <strong>the</strong> holomorphic data <strong>of</strong> <strong>the</strong> geometry <strong>in</strong> that latter limit.


130 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>Figure 7.13: The 3-node quiver that corresponds to <strong>the</strong> IR bottom <strong>of</strong> <strong>the</strong> cascade.We eventually consider <strong>the</strong> equations determ<strong>in</strong><strong>in</strong>g <strong>the</strong> warp factor. The latter is relatedto data encoded <strong>in</strong> <strong>the</strong> full Kähler potential <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory. Hence, comput<strong>in</strong>g<strong>the</strong> warp factor would be <strong>the</strong> ma<strong>in</strong> challenge <strong>in</strong> order to ga<strong>the</strong>r new dynamical <strong>in</strong>formationon <strong>the</strong> low-energy <strong>the</strong>ory. To do that, <strong>the</strong> two limits <strong>in</strong> which <strong>the</strong> dynamics ispredom<strong>in</strong>antly conf<strong>in</strong><strong>in</strong>g or N = 2 are quite different. In <strong>the</strong> latter case, we will arguethat <strong>the</strong> enhançon is so large that a possible local deformation <strong>of</strong> <strong>the</strong> geometry wouldbe irrelevant, and so <strong>the</strong> UV solution presented <strong>in</strong> <strong>the</strong> previous section is basically <strong>the</strong>correct <strong>gravity</strong> dual up to <strong>the</strong> enhançon radius. When <strong>in</strong>stead <strong>the</strong> conf<strong>in</strong><strong>in</strong>g dynamics is<strong>the</strong> strongest, one expects to have a <strong>gravity</strong> dual consist<strong>in</strong>g <strong>of</strong> <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong> deformedconifold, with s<strong>in</strong>gularities along <strong>the</strong> orbifold fixed l<strong>in</strong>e. We must anticipate that we willstop short <strong>of</strong> actually comput<strong>in</strong>g <strong>the</strong> warp factor <strong>in</strong> that case.7.4.1 Gauge <strong>the</strong>ory IR dynamicsIn this subsection we perform <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory analysis for <strong>the</strong> low-energy behavior <strong>of</strong>a generic 3-node quiver, see Figure 7.13. It will <strong>of</strong>ten prove useful to actually th<strong>in</strong>k <strong>of</strong>moduli spaces <strong>in</strong> terms <strong>of</strong> mobile (<strong>fractional</strong>) <strong>branes</strong>, so we will freely make reference tothis <strong>in</strong>terpretation even <strong>in</strong> <strong>the</strong> course <strong>of</strong> <strong>the</strong> purely <strong>gauge</strong> <strong>the</strong>oretic analysis.Let us call Λ i <strong>the</strong> dynamically generated scale <strong>of</strong> <strong>the</strong> i-th node <strong>of</strong> <strong>the</strong> quiver, withi = 1,2,3. We consider two qualitatively different regimes.First we analyze <strong>the</strong> regime Λ 2 ≫ Λ 1,3 , where <strong>the</strong> dom<strong>in</strong>ant quantum effects comefrom <strong>the</strong> second node. As we will see, for M 2 < M 1 +M 3 , <strong>the</strong>re is no deformation <strong>of</strong> <strong>the</strong>(mesonic) moduli space, which itself corresponds to hav<strong>in</strong>g a stack <strong>of</strong> N = 2 <strong>fractional</strong><strong>branes</strong> on <strong>the</strong>ir Coulomb branch. For M 2 > M 1 +M 3 , we f<strong>in</strong>d a runaway behavior on <strong>the</strong>Coulomb branch. This is <strong>in</strong>terpreted <strong>in</strong> <strong>the</strong> <strong>gravity</strong> dual as a fully regular deformation<strong>of</strong> <strong>the</strong> geometry <strong>in</strong> <strong>the</strong> presence <strong>of</strong> N = 2 <strong>fractional</strong> <strong>branes</strong>. Indeed, <strong>in</strong> this case <strong>the</strong>exceptional cycle <strong>the</strong> <strong>branes</strong> wrap is blown-up and m<strong>in</strong>imizes its volume at <strong>in</strong>f<strong>in</strong>ity: <strong>the</strong>N = 2 <strong>branes</strong> are pushed away.Secondly, <strong>the</strong> regime Λ 2 ≪ Λ 1,3 is analyzed (a similar analysis was performed <strong>in</strong> <strong>the</strong>appendix <strong>of</strong> [182]). One f<strong>in</strong>ds gaug<strong>in</strong>o condensation for both nodes one and three, withS 1 = S 3 . On <strong>the</strong> dual geometric side, <strong>the</strong> deformation <strong>branes</strong> trigger a geometric transitionthat still preserves an orbifold s<strong>in</strong>gularity l<strong>in</strong>e <strong>in</strong> <strong>the</strong> result<strong>in</strong>g deformed geometry.The s<strong>in</strong>gularity l<strong>in</strong>e can accommodate some left over N = 2 <strong>branes</strong> which explore <strong>the</strong>irmoduli space.Regime Λ 2 ≫ Λ 1,3In this regime, <strong>the</strong> only <strong>gauge</strong> dynamics we take <strong>in</strong>to account is <strong>the</strong> one <strong>of</strong> <strong>the</strong> secondnode. The quiver configuration is (M 1 ,M 2 ,M 3 ,0) with 3M 2 > M 1 +M 3 , so that node 2


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 131has a strongly coupled IR dynamics and it makes sense to neglect <strong>the</strong> scales <strong>of</strong> <strong>the</strong> o<strong>the</strong>rnodes as a first approximation.The tree level superpotential isand <strong>the</strong> quantum corrected one isW = W tree −(M 1 −M 2 +M 3 )W tree = λX 12 X 23 X 32 X 21 (7.46)(detKΛ 3M 2−M 1 −M 32) 1M 1 −M 2 +M 3. (7.47)If M 2 > M 1 +M 3 , this is <strong>the</strong> familiar Affleck-D<strong>in</strong>e-Seiberg (ADS) superpotential [138],while if M 2 < M 1 +M 3 , it is <strong>the</strong> effective superpotential for <strong>the</strong> free Seiberg dual mesonsand vanish<strong>in</strong>g dual quark VEVs. 6The meson matrix for <strong>the</strong> second node isK ≡( )X12 X 21 X 12 X 23≡X 32 X 21 X 32 X 23( )K11 K 13. (7.48)K 31 K 33Let us denoteS 2 ≡(detKΛ 3M 2−M 1 −M 32) 1M 1 −M 2 +M 3. (7.49)We want to determ<strong>in</strong>e <strong>the</strong> moduli space <strong>of</strong> such a <strong>the</strong>ory. Consider<strong>in</strong>g <strong>the</strong> effectivesuperpotential <strong>in</strong> terms <strong>of</strong> <strong>the</strong> mesons, one has <strong>the</strong> follow<strong>in</strong>g F-flatness conditionsThis impliesS 2 (K −1 ) 11 = 0 = S 2 (K −1 ) 33λK 31 −S 2 (K −1 ) 31 = 0 = λK 13 −S 2 (K −1 ) 13 (7.50)M 1 S 2 = M 3 S 2 . (7.51)We must <strong>the</strong>n have 7 that S 2 = 0, which implies that K 13 and K 31 must vanish, anddetK = detK 11 detK 33 . When M 2 < M 1 + M 3 <strong>the</strong> constra<strong>in</strong>t S 2 = 0 means thatdetK = 0. Us<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> freedom <strong>of</strong> <strong>the</strong> first and third nodes, <strong>the</strong> general solutionconsists <strong>of</strong> K diagonal with M 2 non-vanish<strong>in</strong>g eigenvalues. There are as many dist<strong>in</strong>ctsuch solutions as <strong>the</strong>re are possibilities <strong>of</strong> choos<strong>in</strong>g M 2 out <strong>of</strong> <strong>the</strong> M 1 + M 3 N = 2subquiver configurations (1,1,0,0) or (0,1,1,0).When we have <strong>in</strong>stead M 2 > M 1 + M 3 , <strong>the</strong>re is an ADS superpotential, and <strong>the</strong>constra<strong>in</strong>t on <strong>the</strong> mesons becomedetK = detK 11 detK 33 → ∞ . (7.52)6 In pr<strong>in</strong>ciple, we should worry about additional baryonic directions <strong>in</strong> <strong>the</strong> effective dynamics. Theirfully quantum analysis is beyond <strong>the</strong> scope <strong>of</strong> <strong>the</strong> present analysis, however both <strong>the</strong> classical <strong>gauge</strong><strong>the</strong>ory analysis <strong>of</strong> <strong>the</strong> higgs<strong>in</strong>g patterns and <strong>the</strong>ir <strong>in</strong>terpretation <strong>in</strong> terms <strong>of</strong> brane motions h<strong>in</strong>t that <strong>the</strong>statements concern<strong>in</strong>g <strong>the</strong> mesonic VEVs should not be modified.7 Unless M 1 = M 3, where we have ano<strong>the</strong>r possible solution: K 11 = K 33 = 0 and S 2 = Λ 3 2(λΛ 2)presumably related to a non-Coulomb branch.M 1M 2 −M 1,


132 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>This corresponds to a runaway behavior <strong>of</strong> <strong>the</strong> N = 2 brane configuration (<strong>the</strong> samephenomenon was observed <strong>in</strong> [189, 190]). Indeed, after all <strong>the</strong> N = 2 configurations havebeen accounted for (by mov<strong>in</strong>g on <strong>the</strong> Coulomb branch), <strong>the</strong>re rema<strong>in</strong>s <strong>the</strong> configuration(0,M 2 −M 1 −M 3 ,0,0), that conf<strong>in</strong>es, and we know that this should correspond to <strong>the</strong>follow<strong>in</strong>g deformation <strong>of</strong> <strong>the</strong> geometry seen by D3-<strong>branes</strong>(z 1 z 2 −S 2 )z 1 z 2 = xy . (7.53)This space only has a s<strong>in</strong>gularity at <strong>the</strong> orig<strong>in</strong>, so that <strong>the</strong> Coulomb branch (whichcorresponds to a s<strong>in</strong>gularity l<strong>in</strong>e <strong>in</strong> <strong>the</strong> orbifolded conifold) is lifted, <strong>the</strong> supersymmetricvacua be<strong>in</strong>g preserved only at <strong>in</strong>f<strong>in</strong>ity. Geometrically what happens is that <strong>the</strong> N = 2<strong>branes</strong> become non-BPS, as <strong>the</strong>y wrap a blown-up cycle, and <strong>the</strong>y can only m<strong>in</strong>imize<strong>the</strong>ir tension by mov<strong>in</strong>g <strong>of</strong>f to <strong>in</strong>f<strong>in</strong>ity.Regime Λ 2 ≪ Λ 1,3In<strong>the</strong>regimeΛ 1,3 ≫ Λ 2 ,gaug<strong>in</strong>ocondensationat<strong>the</strong>firstandthirdnodesis<strong>the</strong>dom<strong>in</strong>anteffect <strong>in</strong> <strong>the</strong> IR. This corresponds to a complex structure deformation <strong>of</strong> <strong>the</strong> geometry,<strong>in</strong>duced by <strong>the</strong> deformation <strong>fractional</strong> <strong>branes</strong>. We aga<strong>in</strong> consider <strong>the</strong> quiver configuration(M 1 ,M 2 ,M 3 ,0) with tree level superpotential (7.46).Let us restrict to <strong>the</strong> case where M 2 < M 1 ,M 3 . 8 The first and <strong>the</strong> third <strong>gauge</strong> groupsdevelop an ADS superpotential at <strong>the</strong> quantum level, while <strong>the</strong> second <strong>gauge</strong> group canbe considered classical. In term <strong>of</strong> <strong>the</strong> mesons M = X 21 X 12 and N = X 23 X 32 <strong>of</strong> <strong>the</strong>first and third nodes respectively (which are both M 2 ×M 2 matrices <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t pluss<strong>in</strong>glet <strong>of</strong> <strong>the</strong> second node), <strong>the</strong> full effective superpotential readsW = λMN +(M 1 −M 2 )()Λ 3M 1 ( )1−M 2 M 1 −M 21Λ 3M 13−M 2 M 3 −M 23+(M 3 −M 2 ) . (7.54)detMdetNInstead <strong>of</strong> solv<strong>in</strong>g for <strong>the</strong> extrema <strong>of</strong> <strong>the</strong> above superpotential, we f<strong>in</strong>d it useful to first<strong>in</strong>tegrate <strong>in</strong> <strong>the</strong> glueball superfields for <strong>the</strong> two conf<strong>in</strong><strong>in</strong>g <strong>gauge</strong> groups. We are alsomotivated <strong>in</strong> do<strong>in</strong>g this by <strong>the</strong> approach which uses <strong>the</strong> Gukov-Vafa-Witten (GVW) [191]superpotential to make <strong>the</strong> l<strong>in</strong>k between <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory and <strong>the</strong> geometrical quantities,and which will be pursued <strong>in</strong> section 7.4.2. We thus obta<strong>in</strong>W = λMN+(M 1 −M 2 )S 1 −S 1 log SM 1−M 21 detMΛ 3M 1−M 21+(M 3 −M 2 )S 3 −S 3 log SM 3−M 23 detNΛ 3M 3−M 2(7.55)which is a Taylor-Veneziano-Yankielowicz (TVY) [192] k<strong>in</strong>d <strong>of</strong> superpotential. Of course,extremiz<strong>in</strong>g with respect to S 1 and S 3 will lead us back to <strong>the</strong> previous ADS-like superpotential.However let us extremize with respect to all fields toge<strong>the</strong>rλN = S 1 M −1 , λM = S 3 N −1 , (7.56)8 If M 2 > M 1,M 3, two Seiberg dualities on nodes one and three br<strong>in</strong>g us back to <strong>the</strong> case analyzedpreviously because we can assume that <strong>the</strong> dual scales are such that ˜Λ 1,3 ≪ Λ 2. If M 1 > M 2 > M 3, it ispossible to show that <strong>the</strong> system has a runaway behavior.3,


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 133log SM 1−M 21 detMΛ 3M 1−M 2= 0, log SM 3−M 23 detN1Λ 3M 3−M 2= 0 . (7.57)3The above equations imply that M is proportional to <strong>the</strong> <strong>in</strong>verse <strong>of</strong> N, and thatS 1 = S 3 ≡ S =( )λ M 2Λ 3M 1−M 21 Λ 3M 13−M 2M 1 −M 2 +M 33 . (7.58)This <strong>of</strong> course implies that also detM is fixed, while <strong>the</strong> moduli space is spanned by <strong>the</strong>values <strong>of</strong> M subject to this constra<strong>in</strong>t. Once <strong>the</strong> effective N = 2 dynamics <strong>of</strong> <strong>the</strong> SU(M 2 )<strong>gauge</strong> group is taken <strong>in</strong>to account, <strong>the</strong> moduli space reduces to <strong>the</strong> M 2 −1 directions <strong>in</strong><strong>the</strong> Cartan subalgebra.Letusalsoconsidertwolimit<strong>in</strong>gcases. IfM 1 = M 2 = M 3 ≡ M, onecancheckthat<strong>the</strong>mesonic and <strong>the</strong> baryonic branches decouple. On <strong>the</strong> mesonic branch, <strong>the</strong> superpotential(7.55) is correct and <strong>the</strong> solution to its extremization isdetM = Λ 2M1 , detN = Λ 2M3 , S 1 = S 3 = ( λ M Λ 2M1 Λ 2M3) 1M. (7.59)The dynamics is essentially <strong>the</strong> same as before. Note that <strong>the</strong> S i act effectively as Lagrangemultipliers, and <strong>the</strong>ir be<strong>in</strong>g non zero is a signal <strong>of</strong> <strong>the</strong> decoupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> mesonicfrom <strong>the</strong> baryonic branch. This was <strong>the</strong> case <strong>of</strong> most <strong>in</strong>terest <strong>in</strong> [182].The o<strong>the</strong>r limit<strong>in</strong>g case is M 2 = 0. Here <strong>the</strong>re are no mesons M and N, and hence nocoupl<strong>in</strong>gbetweennodesoneandthree. Wejusthaveasum<strong>of</strong>twoVeneziano-Yankielowiczsuperpotentials [193] for two decoupled SYM <strong>the</strong>ories. Consistently, we obta<strong>in</strong> uponextremization(S 1 =Λ 3M 11) 1 (M 1, S 3 =Λ 3M 33) 1M 3 . (7.60)In this case, <strong>the</strong> two VEVs S i are <strong>in</strong>dependent. It corresponds to a generic deformation<strong>of</strong> <strong>the</strong> geometry, as reviewed <strong>in</strong> appendix F.2.7.4.2 The Gukov-Vafa-Witten superpotentialIn this subsection, we make an important consistency check <strong>of</strong> our <strong>gauge</strong>/<strong>gravity</strong> set upby match<strong>in</strong>g <strong>the</strong> GVW superpotential [191] to <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory effective superpotentialconsidered <strong>in</strong> <strong>the</strong> previous subsection.It is well known that Calabi-Yau compactification <strong>of</strong> type IIB <strong>in</strong> <strong>the</strong> presence <strong>of</strong> fluxeshelps to restrict <strong>the</strong> allowed values <strong>of</strong> <strong>the</strong> complex structure moduli. The dynamics <strong>of</strong><strong>the</strong>se moduli can be encoded <strong>in</strong> an effective superpotential W GVW for <strong>the</strong> result<strong>in</strong>g fourdimensional super<strong>gravity</strong>. In <strong>the</strong> <strong>gauge</strong>/<strong>gravity</strong> <strong>correspondence</strong> setup, W GVW can alsobe computed, provided we fix some boundary conditions at <strong>in</strong>f<strong>in</strong>ity on <strong>the</strong> non-compactCY we are us<strong>in</strong>g. It can be written as∫iW GVW =2πg s α ′4 G 3 ∧Ω , (7.61)M 6where Ω is <strong>the</strong> holomorphic 3-form. One can <strong>the</strong>n compare this W GVW superpotential to<strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory superpotential, s<strong>in</strong>ce <strong>the</strong>y are expected to agree on-shell. 99 Remark that W GV W is a super<strong>gravity</strong> superpotential, <strong>in</strong> particular dW GV W = 0 = W GV W on supersymmetriccompactifications. To decouple <strong>gravity</strong> we must consider non-compact manifolds and accord<strong>in</strong>glyon <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory side we only have dW = 0.


134 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>In <strong>the</strong> absence <strong>of</strong> brane sources, <strong>the</strong> G 3 flux is closed and depends only on <strong>the</strong> cohomologyclass <strong>of</strong> G 3 . Add<strong>in</strong>g some D5-brane sources for G 3 , however, one must keep track<strong>of</strong> <strong>the</strong> position <strong>of</strong> <strong>the</strong>se <strong>branes</strong> [174, 194, 195]. Separat<strong>in</strong>g G 3 <strong>in</strong>to a bulk contribution (i.e.closed part) G b 3 and a contribution from <strong>the</strong> sources Gs 3 , and us<strong>in</strong>g Riemann relations for<strong>the</strong> closed part, one hasi ∑( ∫ ∫ ∫ ∫W GVW =2πg s α ′4 G b 3 Ω− (G b 3 +G s 3)A j B j B jjA jΩ)− 2πiα ′3∑N = 2 <strong>branes</strong>∫Ξ 3Ω ,(7.62)where Ξ 3 is a 3-cha<strong>in</strong> that extends from <strong>the</strong> 2-cycle wrapped by <strong>the</strong> D5-brane to somereference 2-cycle near <strong>in</strong>f<strong>in</strong>ity. 10LetusnowcomputeW GVW <strong>in</strong>ourorbifoldedconifoldgeometry. Weconsideragenericsmooth deformation, with <strong>the</strong> two complex structure parameters ǫ 1 , ǫ 3 arbitrary, see(F.36), and we take <strong>the</strong> limit where <strong>the</strong> wrapped D5-<strong>branes</strong> are far from <strong>the</strong> deformationnear <strong>the</strong> tip. With an obvious l<strong>in</strong>ear change <strong>of</strong> coord<strong>in</strong>ates, <strong>the</strong> geometry is def<strong>in</strong>ed byxy −(u 2 −v 2 +ǫ 1 )(u 2 −v 2 +ǫ 3 ) = 0 (7.63)<strong>in</strong> C 4 ∼ = {x,y,u,v}. The holomorphic 3-form Ω is given byΩ = 1 du∧dv ∧dx2π 2 x. (7.64)We obta<strong>in</strong> <strong>the</strong> usual results for <strong>the</strong> periods <strong>of</strong> Ω on <strong>the</strong> A and B cycles (see appendicesF.2 and F.4 for more details)∫A jΩ = ǫ j ,and∫B jΩ = ǫ j2πi log (ǫi4ev 2 0)+regular , (7.65)where v = v 0 is a cut-<strong>of</strong>f for <strong>the</strong> non-compact B-cycles. The contribution to (7.62) com<strong>in</strong>gfrom D5-<strong>branes</strong> wrapped on C 2 is computed <strong>in</strong> appendix F.4 : for a D5-brane located atv = ξ, <strong>in</strong> <strong>the</strong> limit |v 0 | 2 , |ξ| 2 ≫ |ǫ k |, we have <strong>the</strong> simple result∫Ω = − 1Ξ 32πi (ǫ 1 −ǫ 3 )log ξ ( ǫ2)+Ov 0 ξ 4Let us now consider <strong>the</strong> follow<strong>in</strong>g F 3 fluxes− 1 ∫4π 2 g s α ′ G b 3 = M 1 , − 1 ∫A 14π 2 g s α ′. (7.66)A 3G b 3 = M 3 −M 2 . (7.67)This means we assume that M 1 and M 3 − M 2 D5-<strong>branes</strong> that were wrapped on <strong>the</strong>2-cycles C 1 and C 3 , see eq. (F.35), have undergone geometric transition <strong>in</strong>dependently. 1110 For an <strong>in</strong>tuitive feel for <strong>the</strong> mean<strong>in</strong>g <strong>of</strong> that formula, one can th<strong>in</strong>k <strong>of</strong> a one-dimensional analogy:dF (s) = δ source means that F (s) is a step function that beg<strong>in</strong>s at <strong>the</strong> location <strong>of</strong> <strong>the</strong> source. It is easy togeneralise <strong>the</strong> argument to 6 dimensions, at least formally by <strong>in</strong>tegration by part.11 There is thus an arbitrar<strong>in</strong>ess <strong>in</strong> choos<strong>in</strong>g <strong>the</strong>se fluxes, and we actually wrote <strong>the</strong> flux assignmentthat makes <strong>the</strong> follow<strong>in</strong>g arguments <strong>the</strong> simplest. The identifications (7.74) and (7.76) below consistentlyreflect this choice.


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 135We also have M 2 D5-<strong>branes</strong> wrapped on C 2 , at positions |ξ i | 2 ≫ |ǫ 1,2 |. Let us f<strong>in</strong>allydenote <strong>the</strong> B-periods <strong>of</strong> G 3 by <strong>the</strong> complex numbersB k ≡ − 1 ∫4π 2 g s α ′ G 3 , k = 1, 3 . (7.68)B kPlugg<strong>in</strong>g all this <strong>in</strong>to (7.62) and denot<strong>in</strong>g <strong>the</strong> product <strong>of</strong> <strong>the</strong> positions ξ i by ξ M 2, we get() ()α ′3 ǫ M 11W GVW = −ǫ 1 lne M 1 (2v0 ) 2M 1−M 2 (2ξ) M 2e −2πiB ǫ M 3−M 21 3 (2ξ) M 2−ǫ 3 lne M 3−M 2(2v0 ) 2M 3−M 2e −2πiB 3(7.69)This flux plus <strong>branes</strong> configuration should correspond to <strong>the</strong> mesonic branch <strong>of</strong> <strong>the</strong> <strong>gauge</strong><strong>the</strong>ory (M 1 ,M 2 ,M 3 ,0) <strong>in</strong> <strong>the</strong> regime <strong>of</strong> section 7.4.1. In order to compare this superpotentialto <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory result, we need to f<strong>in</strong>d <strong>the</strong> correct <strong>gauge</strong>/<strong>gravity</strong> dictionary.Let us identify as usual <strong>the</strong> cut<strong>of</strong>f <strong>of</strong> <strong>the</strong> B-cycle with <strong>the</strong> UV cut<strong>of</strong>f <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory,so that we have1α ′3 (2v 0) 2 = µ 3 10α ′3 ǫ 1,3 = S 1,3 , (7.70)Naturally, µ 0 is <strong>the</strong> UV scale at which we def<strong>in</strong>e <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory, while S 1 and S 3 are<strong>the</strong> gaug<strong>in</strong>o condensates <strong>of</strong> <strong>the</strong> first and third node <strong>of</strong> <strong>the</strong> quiver. We also know from <strong>the</strong><strong>gauge</strong> <strong>the</strong>ory analysis that <strong>the</strong> eigenvalues n i <strong>of</strong> <strong>the</strong> meson matrix N are to be identifiedwith <strong>the</strong> coord<strong>in</strong>ates z (i)2 on <strong>the</strong> p-l<strong>in</strong>e <strong>of</strong> s<strong>in</strong>gularities. More preciselyn i ∝ z (i)2 = ξ i +√ξi 2 +ǫ ≈ 2ξ i, for |ξ i | 2 ≫ |ǫ 1,3 | , (7.71)tak<strong>in</strong>g <strong>the</strong> root close to ξ i . Equat<strong>in</strong>g <strong>the</strong> dimensionless ratios ξ/v 0 = n i /µ 2 0 on both sides<strong>of</strong> <strong>the</strong> <strong>correspondence</strong>, we f<strong>in</strong>d <strong>the</strong> relation1α ′3/2 2ξ i =n iµ 1/20. (7.72)We still have to relate <strong>the</strong> B-periods <strong>of</strong> G 3 (7.68) to <strong>gauge</strong> <strong>the</strong>ory quantities. This is <strong>the</strong>most subtle part, s<strong>in</strong>ce <strong>the</strong>se periods are not topological, but <strong>in</strong>stead depend cruciallyon <strong>the</strong> boundary conditions at <strong>in</strong>f<strong>in</strong>ity (and hence on <strong>the</strong> bare Lagrangian <strong>of</strong> <strong>the</strong> field<strong>the</strong>ory). By <strong>the</strong> non-renormalisation <strong>the</strong>orem, we know that W should not depend on<strong>the</strong> cut-<strong>of</strong>f. Impos<strong>in</strong>g µ 0∂W∂µ 0= 0 gives us <strong>the</strong> follow<strong>in</strong>g two conditions−2πi ∂B 1∂lnµ 0= 3M 1 −2M 2 , −2πi ∂B 3∂lnµ 0= 3M 3 −M 2 . (7.73)In <strong>the</strong> particular case M 1 = 0, S 1 = 0, only <strong>the</strong> second condition has to be imposed.Then, it is easy to see thatB 3 ≡ τ (3)0 (7.74)should be identified with <strong>the</strong> UV value <strong>of</strong> <strong>the</strong> holomorphic coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> third node,which provides <strong>the</strong> correct beta function. We have <strong>the</strong>n reproduced <strong>the</strong> effective superpotentialfor <strong>the</strong> (0,M 2 ,M 3 ,0) quiver, where <strong>the</strong> second node is treated as a flavorgroup()S M 3−M 23 detNW = − S 3 lne M 3−M 2µ 3M 3 −M 20 e 2πiτ(3) 0. (7.75).


136 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>In <strong>the</strong> general case, M 1 ≠ 0, <strong>in</strong> order to satisfy <strong>the</strong> relations (7.73) we get for B 1 <strong>the</strong>identificationB 1 = τ (1)0 + M 22πi ln(µ 0λ) , (7.76)where 1/λ is some scale, <strong>in</strong>dependent <strong>of</strong> µ 0 , that we will identify with <strong>the</strong> <strong>in</strong>verse <strong>of</strong> <strong>the</strong>tree level quartic coupl<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory.Def<strong>in</strong><strong>in</strong>g <strong>the</strong> usual holomorphic SQCD scalesΛ 3M 1−M 21 = µ 3M 1−M 20 e 2πiτ(1) 0 , Λ 3M 3−M 23 = µ 3M 3−M 20 e 2πiτ(3) 0 , (7.77)we <strong>the</strong>n f<strong>in</strong>d <strong>the</strong> follow<strong>in</strong>g superpotential(S M 1−M 21W = M 1 S 1 − S 1 lnΛ 3M 1−M 21)S M 21λ M +(M2 3 −M 2 )S 3 − S 3 lndetN( )S M 3−M 23 detNΛ 3M 3−M 2.3(7.78)This superpotential is precisely equal to <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory result (7.55), provided <strong>the</strong>first F-flatness condition <strong>of</strong> (7.56) is imposed. This field <strong>the</strong>ory constra<strong>in</strong>t has a technicalcounterpart<strong>in</strong>ouranalysis: <strong>in</strong>super<strong>gravity</strong>weneedtoassumethatageometrictransitionhas taken place, so that we have a smooth geometry. Hence, C 2 = C 4 and <strong>the</strong> p- and q-l<strong>in</strong>es meet smoothly, so <strong>the</strong>re is only one type <strong>of</strong> wrapped D5-brane to consider. This iswhy we only dealt with one s<strong>in</strong>gle brane position ξ while <strong>the</strong>re are two different mesonsM and N <strong>in</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory.7.4.3 IR regime and s<strong>in</strong>gularities resolutionLet us now <strong>in</strong>vestigate how <strong>the</strong> backgrounds discussed <strong>in</strong> section 3 must be modified atsmall radii <strong>in</strong> order to take <strong>in</strong>to account <strong>the</strong> non-trivial IR dynamics <strong>of</strong> <strong>the</strong> full physicalquiver <strong>gauge</strong> <strong>the</strong>ory. As already mentioned previously, <strong>the</strong> dynamical scales at lowenergies correspond to different dimensionful quantities <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> solution, depend<strong>in</strong>gon <strong>the</strong> qualitative dynamics <strong>of</strong> <strong>the</strong> relevant node. For nodes 1 and 3, whoselow-energy dynamics is N = 1, <strong>the</strong> scales Λ 1 ,Λ 3 are related to <strong>the</strong> deformation parameters<strong>of</strong> <strong>the</strong> geometry ǫ 1 ,ǫ 3 . For node 2, which leads essentially to N = 2 dynamics, <strong>the</strong>scale Λ 2 is related to <strong>the</strong> enhançon radius ρ c at which a probe N = 2 <strong>fractional</strong> branebecomes tensionless; ρ c is related to <strong>the</strong> twisted flux terms <strong>in</strong> (7.9).Let us first briefly consider <strong>the</strong> regime where <strong>the</strong> dom<strong>in</strong>ant IR dynamics is N = 2,that is when Λ 2 ≫ Λ 1 ,Λ 3 . This translates <strong>in</strong> super<strong>gravity</strong> <strong>in</strong> a hierarchy where <strong>the</strong> lengthscale def<strong>in</strong>ed by ρ c is much larger than <strong>the</strong> length scales def<strong>in</strong>ed by ǫ 1 = ǫ 3 (recall that<strong>the</strong> two deformation parameters must be equal if <strong>the</strong>re are BPS N = 2 <strong>fractional</strong> <strong>branes</strong>around). S<strong>in</strong>ce <strong>the</strong> enhançon radius effectively cloaks <strong>the</strong> s<strong>in</strong>gularity, length scales smallerthan ρ c are not accessible any more. Hence, <strong>the</strong> geometry which can be probed is alwaysat length scales for which <strong>the</strong> deformation is negligible. We thus conclude that <strong>in</strong> thisregime <strong>the</strong> UV solution <strong>of</strong> section 3 is a very good approximation even as far as <strong>the</strong> IRbehavior is concerned. Of course, <strong>the</strong> low-energy dynamics is N = 2 <strong>in</strong> this case and <strong>the</strong><strong>gravity</strong> dual description <strong>of</strong> it has <strong>the</strong> usual drawback <strong>of</strong> be<strong>in</strong>g essentially s<strong>in</strong>gular.We now consider <strong>the</strong> richer case <strong>of</strong> <strong>the</strong> opposite regime, when Λ 1 , Λ 3 ≫ Λ 2 and <strong>the</strong>dom<strong>in</strong>ant IR dynamics is conf<strong>in</strong><strong>in</strong>g. Here we expect to be able to probe length scaleswhere <strong>the</strong> deformation drastically changes <strong>the</strong> underly<strong>in</strong>g geometry.


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 137There is actually a simple way to approach this problem. One can have BPS N = 2<strong>fractional</strong> <strong>branes</strong> <strong>in</strong> <strong>the</strong> deformed geometry only when <strong>the</strong> two deformation parametersare equal and <strong>the</strong> geometry is given by(z 1 z 2 −ǫ) 2 = xy . (7.79)As remarked <strong>in</strong> [182], this can obviously be seen as <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong> deformed conifoldz 1 z 2 −ǫ = z 3 z 4 (7.80)under Θ : (z 1 ,z 2 ,z 3 ,z 4 ) → (z 1 ,z 2 ,−z 3 ,−z 4 ). There is a s<strong>in</strong>gle s<strong>in</strong>gularity l<strong>in</strong>e alongz 3 = z 4 = 0, z 1 z 2 = ǫ.We can relate this complex form <strong>of</strong> <strong>the</strong> embedd<strong>in</strong>g to <strong>the</strong> real coord<strong>in</strong>ates on <strong>the</strong>deformed conifold as followsz 1 = √ ǫe i 2 (φ 1+φ 2 ) { s<strong>in</strong> θ 12 s<strong>in</strong> θ 22 e(τ+iψ)/2 +cos θ 12 cos θ 22 e−(τ+iψ)/2}z 2 = √ ǫe − i 2 (φ 1+φ 2 ) { cos θ 12 cos θ 22 e(τ+iψ)/2 +s<strong>in</strong> θ 12 s<strong>in</strong> θ 22 e−(τ+iψ)/2}z 3 = √ ǫe − i 2 (φ 1−φ 2 ) { cos θ 12 s<strong>in</strong> θ 22 e(τ+iψ)/2 −s<strong>in</strong> θ 12 cos θ 22 e−(τ+iψ)/2}z 4 = √ ǫe i 2 (φ 1−φ 2 ) { s<strong>in</strong> θ 12 cos θ 22 e(τ+iψ)/2 −cos θ 12 s<strong>in</strong> θ 22 e−(τ+iψ)/2} .(7.81)Note that τ is a dimensionless radial coord<strong>in</strong>ate, and that for τ large ǫe τ → r 3 , weasymptote to <strong>the</strong> s<strong>in</strong>gular conifold described <strong>in</strong> (F.2-F.5). We refer to appendix F.1 for<strong>the</strong> notation used hereafter.The Calabi-Yau metric on <strong>the</strong> deformed conifold reads[ds 2 6 = 22 33 ǫ2/3 K(τ)13K 3 (τ)(dτ 2 +ζ 2) + 1 τ ((σ2 s<strong>in</strong>h2 1 −Σ 1 ) 2 +(σ 2 −Σ 2 ) 2)2+ 1 2 cosh2 τ 2((σ 1 +Σ 1 ) 2 +(σ 2 +Σ 2 ) 2)] , (7.82)withK(τ) =(s<strong>in</strong>hτ coshτ −τ)1/3s<strong>in</strong>hτ. (7.83)The orbifold action is (φ 1 ,φ 2 ) → (φ 1 −π,φ 2 +π), like <strong>in</strong> <strong>the</strong> s<strong>in</strong>gular case. The fixed l<strong>in</strong>eat z 3 = z 4 = 0 is described by two halves: p = {θ 1 = θ 2 = 0} and q = {θ 1 = θ 2 = π}. Wehave ∣ ∣∣pz 1 = √ ∣ǫe −(τ+iψ′ )/2 ∣∣pz 2 = √ ǫe (τ+iψ′ )/2z 1∣ ∣∣q= √ ǫe (τ+iψ′′ )/2z 2∣ ∣∣q= √ ǫe −(τ+iψ′′ )/2(7.84)with ψ ′ = ψ −φ 1 −φ 2 and ψ ′′ = ψ +φ 1 +φ 2 . This l<strong>in</strong>e is completely smooth now: <strong>the</strong>p- and q-l<strong>in</strong>es are glued toge<strong>the</strong>r at τ = 0, with <strong>the</strong> identification ψ ′ = −ψ ′′ . The fullsubmanifold can alternatively be described with a s<strong>in</strong>gle patch, by extend<strong>in</strong>g <strong>the</strong> doma<strong>in</strong>


138 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong><strong>of</strong> τ to −∞ < τ < +∞ and us<strong>in</strong>g, say, only ψ ′ . With this observation <strong>in</strong> m<strong>in</strong>d, <strong>the</strong> metricon <strong>the</strong> s<strong>in</strong>gularity l<strong>in</strong>e isds 2 3ǫ= 22 2/3 (dτ 29K 2 +dψ ′2) . (7.85)(τ)It is a cyl<strong>in</strong>der, on which we can <strong>in</strong>troduce <strong>the</strong> complex coord<strong>in</strong>ate w = τ +iψ ′ . We canconstruct <strong>the</strong> follow<strong>in</strong>g 1-form on <strong>the</strong> l<strong>in</strong>eγ = dz ∣2 ∣∣p≡ dlogz 2 = 1 z 2 2 (dτ +idψ′ ) = 1 dw . (7.86)2Consider now a SUSY preserv<strong>in</strong>g ansatz similar to (7.7), but with a warped deformedconifold metricds 2 10 = h −1/2 dx 2 3,1 +h 1/2 ds 2 6 . (7.87)The untwisted G 3 will be as <strong>in</strong> [118], and <strong>the</strong> twisted part will get contribution by N = 2<strong>branes</strong> and by deformation <strong>branes</strong>, generically. It can be written asG 3 = α′ [2 g s(−M 1 +M 2 −M 3 ) ω3 KS − i ]dB2KSg s∑M 2−2πiα ′ g s (M 1 +M 2 −M 3 )dlogz 2 ∧ω 2 +4πiα ′ g s dlog(z 2 −z (j)2 )∧ω 2 (7.88)where ω3 KS and dB2 KS are <strong>the</strong> ones <strong>of</strong> [118]. In particular dω3 KS = 0 and ∫ A CFω3 KS = 8π 2 .Insteadω 2 is<strong>the</strong>anti-self-dual format<strong>the</strong>orbifoldpo<strong>in</strong>t, normalisedsuchthat ∫ C 2ω 2 = 1.Moreover, z (j)2 are <strong>the</strong> positions <strong>of</strong> <strong>the</strong> M <strong>fractional</strong> <strong>branes</strong> on <strong>the</strong> z 2 plane. We get∫1−4π 2 α ′ F 3 = M 1 −M 2 +M 3g s A∫ CF1−4π 2 α ′ F 3 = −M 1 +M 2 +M 3 (7.89)g s A∫ 21−4π 2 α ′ F 3 = M 1 +M 2 −M 3 ,g s A 4which exactly match those <strong>of</strong> <strong>the</strong> UV solution. These <strong>in</strong>tegrals are easily performed bynotic<strong>in</strong>g that, <strong>in</strong> A 2 , <strong>the</strong> circle on <strong>the</strong> p l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity is around z 2 = ∞, while <strong>in</strong>A 4 ≡ −A 2 <strong>the</strong> circle on <strong>the</strong> q l<strong>in</strong>e at <strong>in</strong>f<strong>in</strong>ity is around z 2 = 0. 12 The M 2 sources providefor <strong>the</strong> difference between ∫ A 2F 3 and − ∫ A 4F 3 .We can consider a simpler configuration, where <strong>the</strong> N = 2 <strong>fractional</strong> <strong>branes</strong> arelocated at τ = τ 0 and are smeared on <strong>the</strong> circle parametrized by ψ ′ . We <strong>the</strong>n consider∑M 2j=0dlog(z 2 −z (j)2 ) → M 22πij=0∮ dz0z 0dlog(z 2 −z 0 ) , (7.90)with z 0 = √ ǫe 1 2 (τ 0+ψ 0 ′) , and <strong>the</strong> <strong>in</strong>tegrand is a differential <strong>in</strong> z 2 . The <strong>in</strong>tegral is thusperformed at fixed τ 0 . It is easy to see that∮1 dz0dlog(z 2 −z 0 ) = dz ∮2 1 ( 1 1 )dz 0 − . (7.91)2πi z 0 z 2 2πi z 0 z 0 −z 212 Notice also that A 2∼ = C2 ×ψ ′ while A 4∼ = C4 ×ψ ′′ = −C 2 ×ψ ′ .


7.4. The IR regime <strong>of</strong> <strong>the</strong> <strong>the</strong>ory 139The <strong>in</strong>tegral is vanish<strong>in</strong>g if |z 2 | < |z 0 | (that is τ < τ 0 ), while it is unity if |z 2 | > |z 0 |,which is τ > τ 0 . Hence, if we take <strong>the</strong> <strong>branes</strong> to be smeared along <strong>the</strong> τ = 0 circle, <strong>the</strong>3-form flux readsG 3 = α′ [2 g s(−M 1 +M 2 −M 3 ) ω3 KS − i ]dB2KSg s]−πiα ′ g s[(M 1 +M 2 −M 3 )−2M 2 Θ(τ) dw∧ω 2 , (7.92)where Θ is <strong>the</strong> Heaviside step function. It is straightforward to see that <strong>the</strong> twisted part<strong>of</strong> <strong>the</strong> 3-form flux we get here is exactly equal to <strong>the</strong> one <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular conifold case(7.9).The warp factor equation reads∆h = −∗ 6 (H 3 ∧F 3 )− M 22 (4π2 α ′ ) 2 g s ∗ 6 δ 6 . (7.93)Wehave<strong>in</strong>cludedanexplicitsourcetermbecause<strong>in</strong>thiscase<strong>the</strong>source<strong>branes</strong>arelocatedat an o<strong>the</strong>rwise smooth po<strong>in</strong>t <strong>of</strong> <strong>the</strong> geometry. As <strong>in</strong> <strong>the</strong> s<strong>in</strong>gular case, <strong>the</strong> twisted anduntwisted 3-form terms do not mix, and we can write <strong>the</strong> above equation <strong>in</strong> a way muchsimilar to <strong>the</strong> one appear<strong>in</strong>g <strong>in</strong> (7.18). There will be a first, completely smooth term on<strong>the</strong> r.h.s. com<strong>in</strong>g from ∗ 6 (H3 KS ∧F3 KS ). The terms com<strong>in</strong>g from <strong>the</strong> twisted flux will besimilar to <strong>the</strong> ones <strong>in</strong> (7.18), with a τ-dependent prefactor. Eventually, <strong>the</strong> term com<strong>in</strong>gfrom <strong>the</strong> explicit source term will conta<strong>in</strong> a δ(τ). Of course, <strong>the</strong> warp factor will be asum <strong>of</strong> <strong>the</strong> particular <strong>in</strong>homogeneous solutions <strong>of</strong> <strong>the</strong> Laplace equation with <strong>the</strong> varioussource terms. For <strong>in</strong>stance, <strong>the</strong>re will be a first piece which will be given by h KS (τ). Theo<strong>the</strong>r pieces will necessarily <strong>in</strong>volve a dependence on <strong>the</strong> o<strong>the</strong>r coord<strong>in</strong>ates. Because <strong>of</strong><strong>the</strong> smear<strong>in</strong>g, we can consider an ansatz for h which does not depend on φ i . However aswe will see <strong>in</strong>stantly, we will have to keep explicit ψ dependence <strong>in</strong> h. 13The Laplacian on <strong>the</strong> deformed conifold for h(τ,ψ,θ 1 ,θ 2 ) reads (see also <strong>the</strong> appendix<strong>of</strong> [133])2 2 3ǫ 2 33 ∆h = 3s<strong>in</strong>h 2 τ ∂ (τ K 2 s<strong>in</strong>h 2 τ∂ τ h)+6K 2 ∂ψ 2 h+ 2coshτ)(∂1h+cotθ 2 1 ∂ 1 h+cot 2 θ 1 ∂ψ 2 h+∂2 2h+cotθ 2 ∂ 2 h+cot 2 θ 2 ∂ψ 2 h+Ks<strong>in</strong>h 2 τ4Ks<strong>in</strong>h 2 τ[cosψ ( cotθ 1 cotθ 2 ∂ 2 ψ h−∂ 1∂ 2 h ) +s<strong>in</strong>ψ ( cotθ 1 ∂ 1 ∂ ψ h+cotθ 2 ∂ ψ ∂ 2 h )] .(7.94)We see that <strong>the</strong> angular operator on <strong>the</strong> third l<strong>in</strong>e has explicit dependence on ψ. Asolution <strong>of</strong> <strong>the</strong> Laplace equation <strong>in</strong>dependent on ψ must <strong>the</strong>n be also <strong>in</strong>dependent <strong>of</strong> θ 1and θ 2 , which is not consistent with <strong>the</strong> functional dependence <strong>of</strong> <strong>the</strong> source terms. Hencewe are forced to consider a ψ dependent warp function.We can now view <strong>the</strong> Laplace operator on h as a sum (weighted by functions <strong>of</strong>τ) <strong>of</strong> angular operators, which can be thought <strong>of</strong> as act<strong>in</strong>g on <strong>the</strong> variables def<strong>in</strong><strong>in</strong>g<strong>the</strong> 5-dimensional space T 1,1 . The angular operators appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> first two l<strong>in</strong>es13 This is because ∂ ψ does not generate an isometry <strong>of</strong> <strong>the</strong> deformed conifold. Hence smear<strong>in</strong>g <strong>the</strong>sources along ψ does not help.


140 Chapter 7. Cascades <strong>of</strong> mixed k<strong>in</strong>d and <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>are actually <strong>the</strong> three angular operators which def<strong>in</strong>e <strong>the</strong> Laplacian on T 1,1 , ∂ψ 2 and(∂i 2 +cotθ i∂ i +cot 2 θ i ∂ψ 2 ) for i = 1,2, when <strong>the</strong>y act on functions which do not dependon <strong>the</strong> φ i angles. We can thus f<strong>in</strong>d a complete basis <strong>of</strong> functions on T 1,1 which aresimultaneously eigenfunctions <strong>of</strong> <strong>the</strong>se three operators.In <strong>the</strong> deformed conifold however, we also have <strong>the</strong> additional angular operator on <strong>the</strong>third l<strong>in</strong>e <strong>of</strong> eq. (7.94). This operator will <strong>in</strong>evitably mix eigenfunctions <strong>of</strong> <strong>the</strong> previousthree operators, hence mak<strong>in</strong>g <strong>the</strong> problem <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g solutions to <strong>the</strong> Laplace equationa problem <strong>of</strong> solv<strong>in</strong>g an (<strong>in</strong>f<strong>in</strong>ite) system <strong>of</strong> ord<strong>in</strong>ary differential equations.Go<strong>in</strong>g over this analysis, even qualitatively or numerically, is obviously beyond <strong>the</strong>scope <strong>of</strong> <strong>the</strong> present work. The ma<strong>in</strong> reason is that locally, <strong>the</strong> solution for <strong>the</strong> warpfactor will aga<strong>in</strong> look like <strong>the</strong> one for N = 2 <strong>fractional</strong> <strong>branes</strong> at a C 2 /Z 2 s<strong>in</strong>gularity,with its enhançon-like s<strong>in</strong>gular behavior. Hence <strong>the</strong> deep IR region has <strong>the</strong> difficultiescommon to <strong>the</strong> o<strong>the</strong>r N = 2 <strong>gravity</strong> duals. Never<strong>the</strong>less, it could be <strong>in</strong>terest<strong>in</strong>g to g<strong>of</strong>ur<strong>the</strong>r along <strong>the</strong> analysis <strong>of</strong> <strong>the</strong> IR region <strong>of</strong> this configuration.Let us now end this section with a very short remark on a particular case, which is <strong>the</strong>one occur<strong>in</strong>g when M 2 = 0. From <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory po<strong>in</strong>t <strong>of</strong> view, we expect a completelyregular geometry(z 1 z 2 −ǫ 1 )(z 1 z 2 −ǫ 3 ) = xy . (7.95)In particular, this geometry no longer possesses l<strong>in</strong>es <strong>of</strong> A 1 -s<strong>in</strong>gularities. However, from<strong>the</strong> UV expression for <strong>the</strong> 3-form fluxes (7.9) or (7.88), it seems that when M 1 ≠ M 3<strong>the</strong>re is still a twisted piece. This cannot be completely correct <strong>of</strong> course. The ǫ 1 = ǫ 3geometry is locally a C 2 /Z 2 fibration over <strong>the</strong> fixed l<strong>in</strong>e (topologically a cyl<strong>in</strong>der). Whenturn<strong>in</strong>g on different deformations ǫ 1 ≠ ǫ 3 , <strong>the</strong> C 2 /Z 2 s<strong>in</strong>gularity is blown-up fiberwise,with a base-dependent volume <strong>of</strong> <strong>the</strong> blown-up 2-cycle. In particular its volume is a τ-dependent parameter a(τ) such that a → 0 when τ → ±∞, while it reaches a maximumaround τ = 0. The 3-form can be constructed from <strong>the</strong> ASD 2-form on <strong>the</strong> ALE spacewhich is <strong>the</strong> blow-up <strong>of</strong> C 2 /Z 2 , and is <strong>the</strong>refore completely smooth <strong>in</strong> <strong>the</strong> bulk <strong>of</strong> <strong>the</strong>geometry. However it asymptotes a δ-function behaviour for large radii, i.e. <strong>in</strong> <strong>the</strong> UVregion. Hence, <strong>the</strong>re is no contradiction <strong>in</strong> <strong>the</strong> fact that <strong>the</strong> UV solution displays twistedflux also when <strong>the</strong>re is no real orbifold fixed l<strong>in</strong>e.7.5 ConclusionsIn this chapter we presented a super<strong>gravity</strong> solution which describes <strong>fractional</strong> <strong>branes</strong> at<strong>the</strong> orbifolded conifold. The <strong>in</strong>put is essentially given by <strong>the</strong> geometry probed by <strong>the</strong><strong>branes</strong> and its possible deformations, toge<strong>the</strong>r with <strong>the</strong> RR 3-form fluxes sourced by <strong>the</strong><strong>fractional</strong> <strong>branes</strong>. The output can be summarized <strong>in</strong> <strong>the</strong> NSNS 3-form flux and <strong>the</strong> warpfactor, which should thus shed light on <strong>the</strong> characteristics <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory whichare not directly related to <strong>the</strong> holomorphic sector.We have performed some non-trivial checks both on <strong>the</strong> UV behavior <strong>of</strong> <strong>the</strong> NSNSflux, match<strong>in</strong>g with a cascad<strong>in</strong>g <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> RG-flow <strong>of</strong> <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory, and on<strong>the</strong> IR low-energy <strong>the</strong>ory by match<strong>in</strong>g <strong>the</strong> effective superpotentials. The latter check <strong>of</strong>course only concerns <strong>the</strong> holomorphic sector, but clarifies <strong>the</strong> IR effects that <strong>the</strong> <strong>fractional</strong><strong>branes</strong> have on <strong>the</strong> geometry.


Part IIChern-Simons quivers andM-<strong>the</strong>ory141


Chapter 8AdS 4 /CFT 3 and <strong>the</strong> quest for a<strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong>M-<strong>the</strong>ory is <strong>the</strong> strong coupl<strong>in</strong>g limit <strong>of</strong> type IIA str<strong>in</strong>g <strong>the</strong>ory, and it is also l<strong>in</strong>kedto <strong>the</strong> o<strong>the</strong>r str<strong>in</strong>g <strong>the</strong>ories by various dualities. S<strong>in</strong>ce its discovery [33, 34], it hasrema<strong>in</strong>ed ra<strong>the</strong>r clouded <strong>in</strong> mystery. We know that it has 11 dimensional super<strong>gravity</strong>as its low energy limit, and we know that it conta<strong>in</strong>s extended objects preserv<strong>in</strong>g half <strong>of</strong><strong>the</strong> supersymmetry, as we recalled <strong>in</strong> Chapter 2.As we will review, <strong>the</strong>re is a natural Maldacena limit that we can take on a stack<strong>of</strong> M2-<strong>branes</strong> [9]. The <strong>gravity</strong> dual is an AdS 4 background <strong>in</strong> M-<strong>the</strong>ory. Until recently,almost noth<strong>in</strong>g was known about <strong>the</strong> dual CFT, which should arise as <strong>the</strong> low energy<strong>the</strong>ory on M2-<strong>branes</strong>. In <strong>the</strong> super<strong>gravity</strong> limit, we can compute correlators <strong>in</strong> <strong>the</strong> dualconformal <strong>the</strong>ory (and make prediction about <strong>the</strong> dual <strong>the</strong>ory when it is not known),us<strong>in</strong>g <strong>the</strong> general AdS/CFT techniques reviewed <strong>in</strong> Chapter 4, section 4.3.3. The questfor an explicit description <strong>of</strong> <strong>the</strong> dual CFT will be <strong>the</strong> subject <strong>of</strong> this second part <strong>of</strong> <strong>the</strong><strong>the</strong>sis.8.1 M2-brane solution <strong>in</strong> eleven dimensional super<strong>gravity</strong>The bosonic action for eleven-dimensional super<strong>gravity</strong> is{∫1S =(2π) 8 lp9 d 11 x √ (−G 11 R− 1 )2 |G 4| 2 − 1 ∫2}A 3 ∧G 4 ∧G 4 , (8.1)withl p <strong>the</strong>11dPlancklenght. Thebosonicequations<strong>of</strong>motionare<strong>the</strong>E<strong>in</strong>ste<strong>in</strong>equationsand <strong>the</strong> equation for <strong>the</strong> 4-form,d∗G 4 + 1 2 G 4 ∧G 4 = −(2π) 8 l 9 pδS locδA 3, (8.2)where we allowed for <strong>the</strong> possibility <strong>of</strong> localized sources coupl<strong>in</strong>g electrically to A 3 , whichare M2-<strong>branes</strong> with m<strong>in</strong>imal coupl<strong>in</strong>gS M2 ⊃ τ M2∫A 3 . (8.3)143


144 Chapter 8. AdS 4 /CFT 3 and <strong>the</strong> quest for a <strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong>We are ma<strong>in</strong>ly <strong>in</strong>terested <strong>in</strong> solutions correspond<strong>in</strong>g to M2-<strong>branes</strong> at s<strong>in</strong>gularities [196].We would like to place M2-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> a 8-dimensional cone C(X 7 ), with X 7 <strong>the</strong>7-dimensional base. The ansatz isds 2 = h −2 3 dx µ dx µ +h 1 3 (dr 2 +r 2 ds 2 (X 7 )), (8.4)G 4 = dx 0 ∧dx 1 ∧dx 3 ∧dh −1 , (8.5)where x µ are <strong>the</strong> 2+1 coord<strong>in</strong>ates along <strong>the</strong> flat M2-brane worldvolume, and <strong>the</strong> warpfactor h is a function on C(X 7 ). The equation (8.2) reduces to a Poisson equation on <strong>the</strong>cone,∑N∆h = −(2πl p ) 6 δ (i)M2 , (8.6)where <strong>the</strong> RHS corresponds to <strong>the</strong> M2-brane sources. Let us consider a stack <strong>of</strong> NM2-<strong>branes</strong> at <strong>the</strong> tip. We <strong>the</strong>n haveih(r) = 1+ R6r 6 with R 6 = N (2πl p) 66Vol(X 7 ) . (8.7)This solution is an extremal black brane solution similar to <strong>the</strong> ones which exist for D-<strong>branes</strong>, witha(non-s<strong>in</strong>gular)horizonatr = 0. Thenumber<strong>of</strong>preservedsupersymmetrieswill depend on whe<strong>the</strong>r <strong>the</strong> cone C(X 7 ) admits globally def<strong>in</strong>ed sp<strong>in</strong>ors, imply<strong>in</strong>g reducedholonomy [197, 196]. To preserve N supersymmetries <strong>in</strong> 2+1 dimensions 1 , C(X 7 ) shouldhave a reduced holonomy groupSp<strong>in</strong>(8−N) ⊂ Sp<strong>in</strong>(8). (8.8)We will be <strong>in</strong>terested <strong>in</strong> <strong>the</strong> case <strong>of</strong> N ≥ 2 SUSY. For N = 2, <strong>the</strong> cone is Calabi-Yau(Sp<strong>in</strong>(6) ∼ = SU(4) holonomy) and <strong>the</strong> base X 7 is a Sasaki-E<strong>in</strong>ste<strong>in</strong> manifold 2 . For N = 3<strong>the</strong> cone is hyper-Kähler, and <strong>the</strong> base is 3-Sasakian. The maximally supersymmetriccase, N = 8, is obviously flat space, R 8 , which is a cone over <strong>the</strong> 7-sphere S 7 . Solutionswith N ≥ 4 always <strong>in</strong>volve quotients <strong>of</strong> S 7 .In <strong>the</strong> near horizon limit, we obta<strong>in</strong> a source-less solution (<strong>of</strong>ten called Freund-Rub<strong>in</strong>[198] solution)ds 2 =G 4( rR) 4dx µ dx µ +R 2dr2r 2 + R 2 ds 2 (X 7 ), (8.9)= 6r5R 6 dx0 ∧dx 1 ∧dx 3 ∧dr, (8.10)The geometry is AdS 4 ×X 7 , with N units <strong>of</strong> flux through X 7 ,∫1(2πl p ) 6 ∗G 4 = N . (8.11)X 71 We will review 3d SUSY <strong>in</strong> <strong>the</strong> next chapter. N SUSY means that <strong>the</strong>re are 2N supercharges. Theformula (8.8) is just a convenient way to summarize results which must be derived for each N.2 Cfr. section 4.4 <strong>in</strong> Chapter 4.


8.1. M2-brane solution <strong>in</strong> eleven dimensional super<strong>gravity</strong> 145It is <strong>of</strong>ten convenient to work with different coord<strong>in</strong>ates. If we def<strong>in</strong>e <strong>the</strong> dimensionlesscoord<strong>in</strong>ates z = (R/r) 2 and y = 2x/R, we can express <strong>the</strong> solution <strong>in</strong> term <strong>of</strong> <strong>the</strong> “unitAdS 4 ” spaceds 2 (AdS 4 ) = dyµ dy µ +dz 2We havez 2with dvol(AdS 4 ) = dy0 ∧dy 1 ∧dy 2 ∧dzz 2 . (8.12)( )1ds 2 = R 2 4 ds2 (AdS 4 ) + ds 2 (X 7 ) , (8.13)G 4 = − 3 8 R3 dvol(AdS 4 ), (8.14)Remark that <strong>the</strong> radius <strong>of</strong> <strong>the</strong> <strong>in</strong>ternal manifold X 7 is twice <strong>the</strong> radius <strong>of</strong> AdS 4 .S<strong>in</strong>ce <strong>the</strong> near horizon geometry has an AdS factor, we have a doubl<strong>in</strong>g <strong>of</strong> supercharges,which should correspond to <strong>the</strong> superconformal charges <strong>in</strong> a dual three dimensionalSCFT. The full group <strong>of</strong> isometries <strong>of</strong> <strong>the</strong> solution conta<strong>in</strong>s a supergroup calledOSp(N|4). We haveOSp(N|4)×G ⊃ SO(3,2)×SO(N) R ×G, (8.15)where SO(N) R ×G is <strong>the</strong> isometry group <strong>of</strong> X 7 .8.1.1 Energy/radius relationTodiscuss<strong>the</strong>energy/radiusrelation<strong>in</strong><strong>the</strong>AdS 4 /CFT 3 <strong>correspondence</strong>, wef<strong>in</strong>ditconvenientto consider <strong>the</strong> metric (8.9), because <strong>the</strong> radial direction r <strong>of</strong> <strong>the</strong> cone C(X 7 ) is <strong>the</strong>most natural coord<strong>in</strong>ate <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory context. In <strong>the</strong>se coord<strong>in</strong>ate, <strong>the</strong> dilatationsymmetry acts asx µ → λx µ , r → 1 r. (8.16)We see that r scales like <strong>the</strong> square root <strong>of</strong> <strong>the</strong> energy. We also have that √ g 00 = (r/R) 2 ,so that energies are redshifted as r 2 . We must <strong>the</strong>refore have an energy/radius relation<strong>of</strong> <strong>the</strong> formE CFT ∼ r2lp3 . (8.17)This also matches with <strong>the</strong> fact that scalar fields have classical dimension 1 2<strong>in</strong> 2+1dimensions.8.1.2 Type IIA reductionIt will be important later on to have some basic understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> type IIA reduction.Let us choose a direction parametrized by an angle ψ ∼ ψ +2π, along which to reduce<strong>the</strong> eleven dimensional metric to ten dimension. The reduction ansatz is( 2ds 2 11d = e −2Φ 3 ds2IIA +e 4Φ 3 C 1 +l p g 2 3 s dψ), (8.18)λ 1 2G 4 = F 4 +g 2 3 s l p H 3 ∧dψ, (8.19)


146 Chapter 8. AdS 4 /CFT 3 and <strong>the</strong> quest for a <strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong>HereΦisidentifiedwith<strong>the</strong>fluctuat<strong>in</strong>gpart<strong>of</strong><strong>the</strong>typeIIAdilaton, andwehave<strong>in</strong>cludeda factor <strong>of</strong> g s = e Φ 0, for later convenience. The metric decomposition (8.18) describes<strong>the</strong> 11d space-time as a circle fibration over a 10d space-time. The coord<strong>in</strong>ate radius <strong>of</strong><strong>the</strong> circle isR 10 = g 2 3 s l p . (8.20)The connection C 1 is <strong>the</strong> RR 1-form potential <strong>of</strong> type IIA super<strong>gravity</strong>, with curvature(field strength) F 2 = dC 1 . Plugg<strong>in</strong>g this reduction ansatz <strong>in</strong>to <strong>the</strong> action (8.1) we obta<strong>in</strong><strong>the</strong> type IIA bosonic action [14],S IIA = 12κ 2 ∫d 10 x √ −G s e −2Φ R + 12κ 2 ∫{e −2Φ 4dΦ∧∗dΦ − 1 2 F 2 ∧∗F 2−e −2Φ1 2 H 3 ∧∗H 3 − 1 2 ˜F 4 ∧∗˜F 4− 1 2 B 2 ∧F 4 ∧F 4 }, (8.21)where <strong>the</strong> three l<strong>in</strong>es correspond to <strong>the</strong> three terms <strong>in</strong> (8.1). We have def<strong>in</strong>ed ˜F 4 =F 4 − H 3 ∧ C 1 , and 2κ 2 = (2π) 7 lp/g 8 s 2/3 . Note that although <strong>the</strong> action (8.21) is written<strong>in</strong> <strong>the</strong> str<strong>in</strong>g frame, <strong>the</strong> 10d Newton constant is <strong>the</strong> physical one. Compar<strong>in</strong>g with (2.4),we f<strong>in</strong>d thatl p = √ α ′ g 1 3 s . (8.22)For an AdS 4 ×X 7 background, we choose <strong>the</strong> M-<strong>the</strong>ory circle to correspond to somecircle fiber <strong>in</strong> X 7 , which mean that we see X 7 as a fiber bundle with base M 6 ,S 1 → X 7π → M6 . (8.23)The fibration might be s<strong>in</strong>gular (if <strong>the</strong> circle degenerates somewhere), <strong>in</strong> which case <strong>the</strong>remight be additional objects <strong>in</strong> <strong>the</strong> type IIA reduction. We will discuss this possibilitylater. In general, let us suppose we can write <strong>the</strong> metric on X 7 as 3ds 2 (X 7 ) = ds 2 (M 6 )+ w k 2(kP +dψ)2 (8.24)withψ anangle<strong>of</strong>period2π,wsomefunction<strong>of</strong><strong>the</strong>coord<strong>in</strong>atesonM 6 ,andk aparameterwhich we can tune <strong>in</strong> order to make <strong>the</strong> M-<strong>the</strong>ory circle arbitrarily small. It follows from(8.18)-(8.19)that<strong>the</strong>typeIIAbackground<strong>in</strong><strong>the</strong>str<strong>in</strong>gframeis(recallthatl p = √ α ′ g 1/3s )e Φ = w 3 4( Rkg s√α ′ds 2 IIA =√ ( )w 1√kg s α ′ R3 4 ds2 (AdS 4 ) + ds 2 (M 6 ) , (8.25))32, F2 = kg s√α ′ dP , F 4 = − 3 8 R3 dvol(AdS 4 ),(8.26)Remark that when w is non-trivial, we have both a dilaton pr<strong>of</strong>ile and a non-trivialwarp<strong>in</strong>g <strong>of</strong> <strong>the</strong> AdS 4 space.3 Here I follow <strong>the</strong> notation <strong>of</strong> [199].


8.2. AdS 4 /CFT 3 : <strong>the</strong> AdS side 1478.2 AdS 4 /CFT 3 : <strong>the</strong> AdS sideHav<strong>in</strong>g understood <strong>the</strong> general case <strong>of</strong> M2-<strong>branes</strong> at s<strong>in</strong>gularities from <strong>the</strong> super<strong>gravity</strong>po<strong>in</strong>t <strong>of</strong> view, we would like to know whe<strong>the</strong>r we can f<strong>in</strong>d <strong>the</strong> dual superconformal field<strong>the</strong>ories. Such <strong>the</strong>ories are quite elusive. One obvious difference from <strong>the</strong> AdS 5 /CFT 4case is that <strong>the</strong> <strong>the</strong>ory dual to AdS 4 ×X 7 has typically no weakly coupled limit, because<strong>the</strong>re is no dimensionless parameter <strong>in</strong> M-<strong>the</strong>ory. A priori, <strong>the</strong> only clutch we have is <strong>the</strong>relationRl p∼ N 1/6 , (8.27)which means that <strong>the</strong> 11 dimensional super<strong>gravity</strong> approximation is valid <strong>in</strong> <strong>the</strong> large Nlimit, N be<strong>in</strong>g <strong>the</strong> number <strong>of</strong> M2-<strong>branes</strong>.Let us consider <strong>the</strong> maximally supersymmetric case <strong>of</strong> M2-<strong>branes</strong> on flat space. Theassociated AdS 4 × S 7 background has been studied <strong>in</strong> detail quite a while ago [200,201]. The super<strong>gravity</strong> fluctuations organize <strong>in</strong>to short superconformal multiplets, verysimilarlyto<strong>the</strong>AdS 5 ×S 5 case. SuchBPSexcitationsshouldcorrespondtochiralprimaryoperators <strong>in</strong> <strong>the</strong> dual SCFT.Some fur<strong>the</strong>r <strong>in</strong>sight can be uncovered by consider<strong>in</strong>g <strong>the</strong> M-<strong>the</strong>ory/type IIA relationship4 . In particular, it is <strong>in</strong>structive to consider <strong>the</strong> sphere S 7 as a Hopf fibration overCP 3 . For M 6 = CP 3 , w = 1 and k ∈ Z, <strong>the</strong> metric (8.24) describes a smooth quotientspace S 7 /Z k ,S 1 → S 7 /Z kπ → CP 3 . (8.28)In <strong>the</strong> type IIA reduction F 2 carries k units <strong>of</strong> flux along <strong>the</strong> CP 1 ⊂ CP 3 [202]. We alsohave R = (2πkNg 2 s) 1/6√ α ′ , ande 2(Φ+Φ0) = √ 2π N1/2. (8.29)k5/2 Note that we have reabsorbed <strong>the</strong> constant g s = e Φ 0def<strong>in</strong>ed <strong>in</strong> (8.18) <strong>in</strong>to <strong>the</strong> full dilaton,which is <strong>the</strong> actual type IIA str<strong>in</strong>g coupl<strong>in</strong>g. We see that perturbative str<strong>in</strong>g <strong>the</strong>ory isvalid whenk ≫ N 1/5 , (8.30)The metric is)1ds 2 IIA = Rs( 2 4 ds2 (AdS 4 ) + ds 2 (CP 3 ) , with Rs 2 = √ N2π√k α′ , (8.31)R s is <strong>the</strong> curvature radius <strong>in</strong> 10d, and type IIA super<strong>gravity</strong> is a good approximation aslong ask ≪ N ≪ k 5 . (8.32)We will see <strong>in</strong> <strong>the</strong> next chapters examples <strong>of</strong> dual conformal field <strong>the</strong>ories where <strong>the</strong>parameter N/k is <strong>the</strong> analog <strong>of</strong> a ’t Ho<strong>of</strong>t coupl<strong>in</strong>g, which can be perturbative whenk ≫ N.4 This is a key po<strong>in</strong>t to understand <strong>the</strong> ABJM <strong>the</strong>ory [202], which we will review <strong>in</strong> Chapter 11.


148 Chapter 8. AdS 4 /CFT 3 and <strong>the</strong> quest for a <strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong>8.3 SCFT on M2-<strong>branes</strong>?We would like to shed some light on <strong>the</strong> low energy <strong>the</strong>ory liv<strong>in</strong>g on a stack <strong>of</strong> M2-<strong>branes</strong>,which we expect to be an <strong>in</strong>teract<strong>in</strong>g superconformal <strong>the</strong>ory. At first sight we have nogood tools to tackle <strong>the</strong> construction <strong>of</strong> this <strong>the</strong>ory beyond N = 1. For a s<strong>in</strong>gle M2-brane,<strong>the</strong> M2-brane action can be written as a standard Nambu-Goto action (for <strong>the</strong> bosonicpart),∫S M2 = −τ M2 d 3 ξ √ ∫G 11 +τ M2 A 3 , (8.33)where <strong>the</strong> background fields are pulled-back. The worldvolume bosonic fields are just 8scalars φ a , correspond<strong>in</strong>g to <strong>the</strong> 8 transverse directions. We usually write <strong>the</strong> action <strong>in</strong><strong>the</strong> classically equivalent sigma-model form,S M2 = − τ M22∫d 3 ξ √ ( ) ∫γ γ ij ∂ i φ a ∂ j φ b G ab −1 +τ M2A 3 , (8.34)where γ ij is an auxiliary worldvolume metric. The supersymmetric M2-brane action wasconstucted <strong>in</strong> <strong>the</strong> late 80’s <strong>in</strong> [203, 204], and it explicitly preserves space-time supersymmetry,similarly to <strong>the</strong> Green-Schwarz superstr<strong>in</strong>g action. In flat space, we have afree <strong>the</strong>ory with N = 8 rigid supersymmetry [203], and <strong>the</strong> φ a transform <strong>in</strong> <strong>the</strong> vectorrepresentation <strong>of</strong> a global SO(8), correspond<strong>in</strong>g to rotation <strong>in</strong> <strong>the</strong> transverse direction.We are not <strong>in</strong>terested <strong>in</strong> <strong>the</strong> M2-brane <strong>the</strong>ory by itself, but ra<strong>the</strong>r <strong>in</strong> <strong>the</strong> low energy<strong>the</strong>ory. For a s<strong>in</strong>gle M2-brane at a smooth po<strong>in</strong>t <strong>in</strong> space, <strong>the</strong> low energy <strong>the</strong>ory shouldjust be a free <strong>the</strong>ory. For N > 1, we are at a loss. In <strong>the</strong> case <strong>of</strong> D-<strong>branes</strong> <strong>in</strong> str<strong>in</strong>g<strong>the</strong>ory, we know from perturbative str<strong>in</strong>g <strong>the</strong>ory that <strong>the</strong> correct generalization fromN = 1 to N > 1 <strong>in</strong>volves tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong> non-abelian degrees <strong>of</strong> freedom <strong>in</strong><strong>the</strong> vector excitation <strong>of</strong> <strong>the</strong> open str<strong>in</strong>g. In <strong>the</strong> case <strong>of</strong> M2-<strong>branes</strong>, we do not have suchunderstand<strong>in</strong>g. Fundamental str<strong>in</strong>gs uplift to M2-brane tubes end<strong>in</strong>g on open M2-<strong>branes</strong>and <strong>the</strong>re is no perturbative way to deal directly with such an <strong>in</strong>teract<strong>in</strong>g system. Whatwe can do, and what we will do, is to avoid <strong>the</strong>se difficulties by us<strong>in</strong>g <strong>the</strong> various M-<strong>the</strong>ory/str<strong>in</strong>g <strong>the</strong>ory dualities.8.3.1 M2- from D2-brane: dual photonA first way to th<strong>in</strong>k about <strong>the</strong> problem is to use <strong>the</strong> simplest duality between M-<strong>the</strong>oryand type IIA, obta<strong>in</strong>ed by compactify<strong>in</strong>g flat space on a circle <strong>of</strong> radius R 10 = √ αg s ,R 1,9 × S 1 . A stack <strong>of</strong> N M2-<strong>branes</strong> transverse to this circle (say along (x 0 ,x 1 ,x 2 )) isdual to a stack <strong>of</strong> N D2-<strong>branes</strong> <strong>in</strong> flat space. We certa<strong>in</strong>ly know how to deal with sucha system when g s is small. The low energy <strong>the</strong>ory is just a Yang-Mills <strong>the</strong>ory with U(N)<strong>gauge</strong> group, and with 7 scalars <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t representation (and <strong>the</strong> associated fermionsrequired by supersymmetry),− 1 ∫gYM2d 3 xTr(14 F µνF µν + 1 2)7∑D µ φ i D µ φ i . (8.35)The problem is that <strong>the</strong> coupl<strong>in</strong>g constant g 2 has dimension <strong>of</strong> mass. This means that<strong>in</strong> three dimensions <strong>the</strong> Yang-Mills <strong>gauge</strong> coupl<strong>in</strong>g is classically relevant, because it runsi=1


8.3. SCFT on M2-<strong>branes</strong>? 149already at tree level. Simply, for <strong>the</strong> dimensionless coupl<strong>in</strong>g α ≡ g 2 /µ∂α∂lnµ = −α + o(α2 ) (8.36)and <strong>the</strong> <strong>the</strong>ory is asymptotically free. In <strong>the</strong> <strong>in</strong>frared, <strong>the</strong> <strong>the</strong>ory is strongly coupled andwe loose control. Note that we haveg 2 YM = g s√α ′(8.37)so <strong>the</strong> <strong>the</strong>ory becomes strongly coupled at scales µ ≤ g s / √ α ′ . Tak<strong>in</strong>g <strong>in</strong>to account <strong>the</strong>backreaction <strong>of</strong> <strong>the</strong> D2-<strong>branes</strong>, we have a curved background with a dilaton pr<strong>of</strong>ilee Φ ∼ N 1 4r 5 4, (8.38)where r → 0 roughly corresponds to <strong>the</strong> IR limit <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory. We did not ga<strong>in</strong>anyth<strong>in</strong>g, s<strong>in</strong>ce <strong>the</strong> str<strong>in</strong>g <strong>the</strong>ory description breaks down near <strong>the</strong> <strong>branes</strong>, and one shouldreally consider <strong>the</strong> M-<strong>the</strong>ory description <strong>in</strong>stead. Indeed, from <strong>the</strong> last relation it seemsthat <strong>the</strong> M-<strong>the</strong>ory circle decompactifies as we go near <strong>the</strong> D2-<strong>branes</strong>.In <strong>the</strong> case <strong>of</strong> a s<strong>in</strong>gle D2-brane, <strong>the</strong>re is an <strong>in</strong>terest<strong>in</strong>g way to see how <strong>the</strong> M-<strong>the</strong>orydescription can arise, <strong>in</strong> field <strong>the</strong>ory terms. The bosonic content <strong>of</strong> <strong>the</strong> D2-brane <strong>the</strong>oryconsists <strong>of</strong> a photon and 7 free scalars. It is an <strong>in</strong>terest<strong>in</strong>g fact that a U(1) connection isdual to a scalar <strong>in</strong> 2+1 dimensions. Consider <strong>the</strong> actionS = − 12g 2 ∫F ∧∗F − 12π∫ϕ∧dF , (8.39)which consists <strong>of</strong> <strong>the</strong> Maxwell action toge<strong>the</strong>r with a dimensionless auxiliary field ϕ whichimposes <strong>the</strong> Bianchi identity dF = 0. In <strong>the</strong> absence <strong>of</strong> source, this <strong>the</strong>ory is equivalentto <strong>the</strong> Maxwell <strong>the</strong>ory formulated <strong>in</strong> term <strong>of</strong> <strong>the</strong> vector potential. We just need to path<strong>in</strong>tegrate over ϕ and F <strong>in</strong>stead <strong>of</strong> A,∫Z = DFDϕe iS[F,ϕ] . (8.40)Integrat<strong>in</strong>g out F only, we f<strong>in</strong>d <strong>the</strong> dual actionS dual = − 1 g 2 ∫2(2π) 2 dϕ∧∗dϕ = − 1 ∫2g 2 dφ∧∗dφ, (8.41)describ<strong>in</strong>g a free scalar field φ = g 2 ϕ/2π <strong>of</strong> dimension one. Note that, because <strong>of</strong> itsdef<strong>in</strong>ition dφ = ∗F, this scalar is only def<strong>in</strong>ed up to a constant shift. Moreover, thisscalar is periodic <strong>of</strong> period g 2 ,φ ∼ φ+g 2 (8.42)or ϕ ∼ ϕ+2π because <strong>of</strong> <strong>the</strong> flux quantization condition, ∫ F ∈ 2πZ around any 2-sphere.Hence an abelian <strong>gauge</strong> field is dual to a periodic free scalar with a shift symmetry.This scalar is <strong>of</strong>ten called <strong>the</strong> dual photon. At low energy, µ ≪ g 2 , we can ignore <strong>the</strong>periodicity condition on φ. This is <strong>the</strong> field <strong>the</strong>ory analog <strong>of</strong> <strong>the</strong> fact that <strong>the</strong> M-<strong>the</strong>orycircle decompactifies near <strong>the</strong> D2-brane horizon. We can also easily perform <strong>the</strong> <strong>in</strong>verseduality from scalar to vector. If one does this carefully for <strong>the</strong> M2-brane action, one canrecover <strong>the</strong> full D2-brane action [36].


150 Chapter 8. AdS 4 /CFT 3 and <strong>the</strong> quest for a <strong>the</strong>ory <strong>of</strong> multiple M2-<strong>branes</strong>8.3.2 Flavors and large N f limitAs an aside, let us remark that for a generic Yang-Mills <strong>the</strong>ory coupled to matter, wewill have <strong>the</strong> follow<strong>in</strong>g one-loop correction to <strong>the</strong> beta function,(∂α∂lnµ = −α 1+ b )04π α , (8.43)with b 0 a one-loop coefficient given by [205]b 0 = 2312 T(adj)− 1 6∑fermioniT(r i )− 1 12∑scalarjT(r j ). (8.44)Here T(r) are representation <strong>in</strong>dices (T(fund) = 1 and T(adj) = 2N for SU(N)). Wesee that b 0 is negative when <strong>the</strong>re is a lot <strong>of</strong> matter (or <strong>in</strong> <strong>the</strong> abelian case), and <strong>the</strong>reexists <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g possibility <strong>of</strong> hav<strong>in</strong>g a Wilson-Fisher fixed po<strong>in</strong>t [206] at one-loop,with α ∗ = 4π/|b 0 |. This fixed po<strong>in</strong>t is weakly coupled if we choose <strong>the</strong> field contentappropriately.For <strong>in</strong>stance, consider a N = 2 supersymmetric U(N) <strong>the</strong>ory with N f chiral superfields<strong>in</strong> <strong>the</strong> fundamental and antifundamental representations (so called flavors). In thatcase, <strong>the</strong> one-loop coefficient is <strong>the</strong> same as <strong>the</strong> one loop coefficient <strong>in</strong> N = 1 SQCD <strong>in</strong>4d,b 0 = 3N −N f . (8.45)Such a system can be eng<strong>in</strong>eered by add<strong>in</strong>g N f D6-<strong>branes</strong> on top <strong>of</strong> <strong>the</strong> D2-<strong>branes</strong>, andone can <strong>the</strong>n f<strong>in</strong>d a super<strong>gravity</strong> description as <strong>in</strong> [207]. It would be <strong>in</strong>terest<strong>in</strong>g to seewhe<strong>the</strong>r one can f<strong>in</strong>d some explicit str<strong>in</strong>g <strong>the</strong>ory description <strong>of</strong> such a fixed po<strong>in</strong>t. In thispart <strong>of</strong> <strong>the</strong> <strong>the</strong>sis we will <strong>in</strong>troduce field <strong>the</strong>ory models which have similar properties,be<strong>in</strong>g expected to flow to a non-trivial fixed po<strong>in</strong>t which can be made wealkly coupledwhen <strong>the</strong> number <strong>of</strong> flavors is large. For those models we will know which is <strong>the</strong> correctstr<strong>in</strong>g <strong>the</strong>ory dual.In <strong>the</strong> case <strong>of</strong> N = 2 supersymmetric U(1) <strong>the</strong>ories coupled to matter, we expect <strong>the</strong>existence <strong>of</strong> a SCFT for any number <strong>of</strong> matter fields. These <strong>the</strong>ories can be <strong>in</strong>vestigatedus<strong>in</strong>g 3d mirror symmetry [208]. This is a beautiful subject <strong>in</strong> its own, to which we willnot do justice.In <strong>the</strong> case <strong>of</strong> <strong>the</strong> N = 6 <strong>the</strong>ory on a stack <strong>of</strong> D2-<strong>branes</strong>, <strong>the</strong> one-loop coupl<strong>in</strong>gvanishes, b 0 = 0: <strong>the</strong> quantum effects do not alter <strong>the</strong> classical runn<strong>in</strong>g <strong>of</strong> g YM 5 .5 At least at one-loop, but it is tempt<strong>in</strong>g to guess that this property survives at all order, similarly to<strong>the</strong> case <strong>of</strong> N = 4 <strong>in</strong> 4d, which is T-dual. It would be someth<strong>in</strong>g <strong>in</strong>terest<strong>in</strong>g to <strong>in</strong>vestigate, s<strong>in</strong>ce <strong>in</strong> 3d<strong>the</strong>re is no analog to <strong>the</strong> “exact” NSVZ beta function [209].


Chapter 9Superconformal <strong>the</strong>ories <strong>in</strong> threedimensionsIn <strong>the</strong> hope <strong>of</strong> giv<strong>in</strong>g a Lagrangian description <strong>of</strong> <strong>the</strong> low energy field <strong>the</strong>ory liv<strong>in</strong>gon a stack <strong>of</strong> M2-<strong>branes</strong>, we would like to construct supersymmetric <strong>the</strong>ories which areclassicaly conformal. A step <strong>in</strong> that direction was taken by Schwarz [210], build<strong>in</strong>g onearlier work [211, 212, 213]. The idea is to use supersymmetric Chern-Simons <strong>the</strong>oriescoupled to matter.Inthis Chapter wereview<strong>the</strong>field<strong>the</strong>ory background <strong>of</strong> thissecondPart <strong>of</strong><strong>the</strong><strong>the</strong>sis.We review particle states and supersymmetry <strong>in</strong> 2+1 dimensions; <strong>in</strong> particular we expla<strong>in</strong><strong>in</strong> detail and fix our notation for <strong>the</strong> N = 2 superspace formalism. Next we expla<strong>in</strong> <strong>the</strong>construction <strong>of</strong> Chern-Simons (CS) <strong>the</strong>ories and CS-matter <strong>the</strong>ories, and comment onsome quantum properties <strong>of</strong> such <strong>the</strong>ories <strong>in</strong> <strong>the</strong> N = 2 supersymmetric case.9.1 Sp<strong>in</strong>ors <strong>in</strong> three dimensions and supersymmetryWe beg<strong>in</strong> by fix<strong>in</strong>g our conventions for sp<strong>in</strong>ors (for this we follow <strong>the</strong> Appendix <strong>of</strong> [214]),<strong>the</strong>n we expla<strong>in</strong> <strong>in</strong> some details <strong>the</strong> representation <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Po<strong>in</strong>caré and super-Po<strong>in</strong>caré algebra. In three dimensions with M<strong>in</strong>kowski metric η µν = diag(−++), <strong>the</strong>Lorentz group is SO(2,1) and <strong>the</strong> sp<strong>in</strong> group is SU(1,1). The associated Dirac matricesare taken to satisfy{γ µ ,γ ν } = 2η µν . (9.1)They can be chosen as (γ µ ) α β = (iσ 2 ,σ 1 ,σ 3 ), with <strong>the</strong> sp<strong>in</strong> <strong>in</strong>dex α,β = 1,2 :( ) ( ) ( )γ 0 0 1= , γ 1 0 1= , γ 2 1 0= . (9.2)−1 0 1 0 0 −1They satisfyγ µ γ ν = η µν +ǫ µνρ γ ρ , tr(γ µ γ ν γ ρ ) = 2ǫ µνρ . (9.3)The generators <strong>of</strong> <strong>the</strong> Dirac representation <strong>of</strong> <strong>the</strong> Lorentz group are obta<strong>in</strong>ed asΣ µν = i 4 [γµ ,γ ν ] = i 2 ǫµνρ γ ρ . (9.4)151


152 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionsDirac sp<strong>in</strong>ors (ψ α ) are <strong>the</strong>n vector with two complex components transform<strong>in</strong>g <strong>in</strong> <strong>the</strong>fundamental representation <strong>of</strong> SU(1,1) 1 . We can raise and lower sp<strong>in</strong>or <strong>in</strong>dices with ǫ αβand ǫ αβ (ǫ 12 = −ǫ 12 = 1); <strong>in</strong> particular (γ µ ) αβ = (−1,−σ 3 ,σ 1 ).Remark that <strong>in</strong> three dimensions <strong>the</strong>re is no equivalent <strong>of</strong> γ 5 (a matrix which anticommuteswith all <strong>the</strong> Dirac matrices), and consequently <strong>the</strong>re is no notion <strong>of</strong> chiralityand no projection to Weyl sp<strong>in</strong>ors. As <strong>in</strong> any dimension, <strong>the</strong>re is a charge conjugationmatrix C [215],C = σ 2 =( ) 0 −i, C t = −C, (γ µ ) t = −Cγ µ C −1 . (9.5)i 0Note that C = C −1 = C † too. We can impose a reality condition ψ ∗ = −iγ 0 Cψ, whichis simplyψ ∗ = ψ (9.6)<strong>in</strong> this representation with real Dirac matrices (9.2). The m<strong>in</strong>imal sp<strong>in</strong>or <strong>in</strong> 3 dimensionsis this Majorana sp<strong>in</strong>or, which has two real components. Let us also def<strong>in</strong>e <strong>the</strong> Diracconjugate and <strong>the</strong> Majorana conjugate¯ψ = ψ † γ 0 , ¯ψM = −iψ t C. (9.7)Note that ¯ψ = ¯ψ M for a Majorana sp<strong>in</strong>or. The free action for a fermion (whe<strong>the</strong>rMajorana or not) is <strong>the</strong>n 2 L = −i¯ψγ µ ∂ µ ψ −im¯ψψ. (9.8)9.1.1 The parity symmetry <strong>in</strong> 2+1 dimensionsThe discrete parity transformation P acts as a change <strong>of</strong> sign on one <strong>of</strong> <strong>the</strong> spatialcoord<strong>in</strong>ates, say (x 0 ,x 1 ,x 2 ) → (x 0 ,−x 1 ,x 2 ). Requir<strong>in</strong>g that <strong>the</strong> Dirac k<strong>in</strong>etic term be<strong>in</strong>variant under P implies that fermions transform asψ → γ 1 ψ. (9.9)Thisimpliesthatafermionmasstermim¯ψψ isodd underparity. A<strong>gauge</strong>fieldtransformsas(A 0 ,A 1 ,A 2 ) → (A 0 ,−A 1 ,A 2 ) (9.10)The standard Yang-Mills k<strong>in</strong>etic term is P-even, but <strong>the</strong> Chern-Simons term (to bereviewed below) is P-odd.1 The group SU(1,1) is <strong>the</strong>(group)<strong>of</strong> 2×2 matrices U <strong>of</strong> unit determ<strong>in</strong>ant and such that U † ωU = ω,0 −iwhere we can take ω = σ 2 = . S<strong>in</strong>ce U = e iT , <strong>the</strong> correspond<strong>in</strong>g generators T are traceless andi 0such that T † = ωTω. This is <strong>the</strong> case <strong>of</strong> <strong>the</strong> iγ µ appear<strong>in</strong>g <strong>in</strong> (9.4).2 The i <strong>in</strong> <strong>the</strong> mass term is necessary to make it real, due to our conventions for γ-matrices. Cfr. <strong>the</strong>Insert 4 below.


9.1. Sp<strong>in</strong>ors <strong>in</strong> three dimensions and supersymmetry 1539.1.2 Po<strong>in</strong>caré algebraThe representation <strong>the</strong>ory <strong>of</strong> <strong>the</strong> Poicaré algebra is slightly unusual, so it might be a goodidea to pause and consider it <strong>in</strong> some detail. In this subsection we follow [216].In 2+1 dimensions, we can dualize <strong>the</strong> Lorentz generators M µν to a pseudo-vector<strong>in</strong> term <strong>of</strong> which <strong>the</strong> Po<strong>in</strong>caré algebra readsL µ = 1 2 ǫµνρ M νρ , (9.11)[L µ ,L ν ] = iǫ µνρ L ρ , [L µ ,P µ ] = iǫ µνρ P ρ [P µ ,P ν ] = 0. (9.12)The irreducible representations are caracterized by two Casimirs, as <strong>in</strong> four dimensions:P 2 = P µ P µ W = P µ L µ . (9.13)The mass m and sp<strong>in</strong> s <strong>of</strong> a s<strong>in</strong>gle particle state are def<strong>in</strong>ed by <strong>the</strong> Wigner conditionsP 2 |ψ〉 = −m 2 |ψ〉, W|ψ〉 = −sm|ψ〉. (9.14)As <strong>in</strong> four dimensions, one can study how <strong>the</strong> algebra can be represented on fields, with<strong>the</strong> eigenvalue conditions understood as a physical requirement (generally imposed by<strong>the</strong> equations <strong>of</strong> motion, for local fields). P µ is represented on any field φ(p) by p µ <strong>in</strong>momentum space (or p µ = −i∂ µ <strong>in</strong> position space), but <strong>the</strong> non-trivial <strong>in</strong>formation is <strong>in</strong><strong>the</strong> representation <strong>of</strong> <strong>the</strong> Lorentz group. For scalar fields and Dirac sp<strong>in</strong>ors, we haveScalar: L µ = −iǫ µνρ p ν∂∂p ρ , Dirac sp<strong>in</strong>or: Lµ = −iǫ µνρ p ν∂∂p ρ1+ i 2 γµ (9.15)The conditions (9.14) are solved with s = 0, (p 2 +m 2 )φ = 0 (<strong>the</strong> Kle<strong>in</strong>-Gordon equation)for a scalar field φ, and with s = ± 1 2 and (±iγµ p µ +m)ψ = 0 (<strong>the</strong> Dirac equation) for afermionψ. Fora<strong>gauge</strong>fieldA µ , letusconsider<strong>the</strong><strong>gauge</strong><strong>in</strong>variantvector ˜F µ = 1 2 ǫµνρ F νρ .We can represent <strong>the</strong> algebra withThe condition (PL+sm)˜F = 0 reads(L µ ) ν ρ = −iǫ µαβ p α∂∂p βδν ρ + iǫ µνσ η σρ . (9.16)(ip µ ǫ µρσ +smη ρσ ) ˜F σ = 0. (9.17)This can be realised <strong>in</strong> term <strong>of</strong> equations <strong>of</strong> motions for a <strong>gauge</strong> field with a purelyChern-Simons term, as we will see later. In that case we have s = 1.As a curiosity, remark that <strong>in</strong> 2+1 dimensions it is possible to solve for <strong>the</strong> constra<strong>in</strong>ts(9.14) for any real sp<strong>in</strong> s; such states are <strong>the</strong> so-called “anions”. Such anions can berealised <strong>in</strong> <strong>the</strong>ories with Chern-Simons <strong>gauge</strong> field <strong>in</strong>teraction. This <strong>in</strong>terest<strong>in</strong>g possibilitywill not concern us directly <strong>in</strong> this <strong>the</strong>sis, however, because we will consider conformalfields <strong>the</strong>ories, which do not have any particle <strong>in</strong>terpretation.


154 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensions9.1.3 N-extended supersymmetryThe supersymmetry algebra <strong>in</strong> 2+1 dimensions is similar to <strong>the</strong> one <strong>in</strong> four dimensions.We consider N-extended supersymmetry, where <strong>the</strong> supercharges Q i α, i = 1,··· , N areMajorana sp<strong>in</strong>ors. In addition to (9.12), we have[P µ ,Q i α] = 0, [L µ ,Q i α] = i 2 (γµ ) βα Q β , (9.18)while <strong>the</strong> supercharges anti-commute between <strong>the</strong>mselves as( ){Q i α,Q j β } = −γµ αβ P µδ ij P0 +P= 1 −P 2δ ij (9.19)−P 2 P 0 −P 1This relation implies that P 0 = (Q 1 ) 2 + (Q 2 ) 2 , so <strong>the</strong> energy is positive def<strong>in</strong>ite (recallthat <strong>the</strong> two components Q are real <strong>in</strong> our conventions). The N-extended SUSY algebrahas an automorphism group, also known as R-symmetry group, which is SO(N); see [215]and references <strong>the</strong>re<strong>in</strong>. The maximal rigid supersymmetry allowed <strong>in</strong> three dimensions <strong>in</strong>N = 8. The real sp<strong>in</strong>ors Q i transform <strong>in</strong> <strong>the</strong> vector representation <strong>of</strong> SO(N). S<strong>in</strong>ce weare go<strong>in</strong>g to consider superconformal <strong>the</strong>ories, we will not be <strong>in</strong>terested <strong>in</strong> <strong>the</strong> possibility<strong>of</strong> add<strong>in</strong>g a central charge Z ij on <strong>the</strong> RHS <strong>of</strong> (9.19) 3 .Massive representations. To discuss <strong>the</strong> massive representations <strong>of</strong> <strong>the</strong> SUSYalgebra, it is useful to def<strong>in</strong>e complex superchargesQ i = Q i 1 −iQ i 2, ¯Qi = Q i 1 +iQ i 2 (9.20)which are eigenvectors <strong>of</strong> <strong>the</strong> rotation generator L 0 = M 12 ,[L 0 ,Q i ] = − 1 2 Qi , [L 0 , ¯Q i ] = + 1 2 ¯Q i , (9.21)In <strong>the</strong> center <strong>of</strong> mass reference frame P µ = (m,0,0), <strong>the</strong> SUSY algebra (9.19) takes <strong>the</strong>familiar form{Q i , ¯Q j } = 2mδ ij , {Q i ,Q j } = 0, { ¯Q i , ¯Q j } = 0. (9.22)The massive supermultiplet <strong>the</strong>n has 2 N complex components, by <strong>the</strong> usual construction<strong>of</strong> a fermionic Fock space. For N = 1, we have a multiplet <strong>of</strong> two complex compontents,|m,s〉, and Q|m,s〉 = |m,s+ 1 〉. (9.23)2The shift <strong>in</strong> <strong>the</strong> sp<strong>in</strong> follows from (9.21) and <strong>the</strong> def<strong>in</strong>ition (9.14). For rigid supersymmetry,we would have ei<strong>the</strong>r a complex scalar and Dirac sp<strong>in</strong>or, or a Dirac sp<strong>in</strong>or and amassive vector. Note that <strong>in</strong> term <strong>of</strong> <strong>the</strong> real supercharges <strong>the</strong> four real-valued states youcan build from a reference state Ω are {Ω, Q 1 Ω, Q 2 Ω, Q 1 Q 2 Ω}; from this representation,however, it is not directly obvious how <strong>the</strong> states organize <strong>in</strong>to Po<strong>in</strong>caré representations<strong>of</strong> different sp<strong>in</strong>s.3 When N = 2 <strong>the</strong> central charge Z corresponds to a real mass for some fields [217], which we willbriefly discuss <strong>in</strong> <strong>the</strong> context <strong>of</strong> Chapter 13.


9.2. N = 2 supersymmetry, superspace and superfields 155Massless representations. The“helicity”group<strong>of</strong>amasslessparticleisO(1) ∼ = Z 2 ,correspond<strong>in</strong>gto<strong>the</strong>evenoroddstatistic<strong>of</strong><strong>the</strong>fields. Thetwoirreduciblerepresentations<strong>of</strong> Z 2 correspond to scalar and Majorana sp<strong>in</strong>or fields [218]. The case <strong>of</strong> massless vectorfields is covered too because <strong>the</strong>y can be dualized to scalars 4 , as we saw <strong>in</strong> <strong>the</strong> lastchapter. It is <strong>of</strong>ten convenient to consider <strong>the</strong> massless representations as <strong>the</strong> m = 0limit <strong>of</strong> <strong>the</strong> massive ones, which will help us to reta<strong>in</strong> some dist<strong>in</strong>ction between scalarand vector fields <strong>in</strong> physical contexts.Fix<strong>in</strong>g a reference frame P µ = (E,0,E), <strong>the</strong> SUSY algebra reads( ){Q i α,Q j 2E 0β } = δ ij (9.24)0 0This means Q i 2 = 0, and we are left with <strong>the</strong> charges Qi 1 , such that {Qi 1 ,Qj 1 } = 2Eδij .This gives supermultiplets <strong>of</strong> 2 N real components. In <strong>the</strong> case <strong>of</strong> N = 1, we have just tworeal components, Ω and Q 1 Ω, which correspond to a real scalar and a Majorana fermion.9.2 N = 2 supersymmetry, superspace and superfieldsWe now turn to <strong>the</strong> N = 2 case, which will be <strong>the</strong> typical amount <strong>of</strong> SUSY discussed <strong>in</strong>this <strong>the</strong>sis. For N = 2, we can def<strong>in</strong>e <strong>the</strong> complex chargesQ α = Q 1 α +iQ 2 α, ¯Qα = Q 1 α −iQ 2 α, (9.25)correspond<strong>in</strong>g to Dirac sp<strong>in</strong>ors. This will def<strong>in</strong>e a complex structure on field space <strong>in</strong> anyN = 2 field <strong>the</strong>ory. The SUSY algebra reads{Q α , ¯Q β } = −2γ µ αβ P µ, {Q α ,Q β } = 0, {¯Q α , ¯Q β } = 0. (9.26)This is <strong>the</strong> same as <strong>the</strong> N = 1 SUSY algebra <strong>in</strong> four dimensions (with 4d Weyl sp<strong>in</strong>orscorrespond<strong>in</strong>g to 3d Dirac sp<strong>in</strong>ors), and consequently we can borrow our knowledge fromthis much more familiar setup. The two irreducible massless representations are <strong>the</strong> chiralmuliplet and <strong>the</strong> vector multiplet. Notice that <strong>the</strong> R-symmetry is SO(2) R∼ = U(1)R .We can <strong>in</strong>troduce a superspace (x µ ,θ α ,¯θ α ). We refer to <strong>the</strong> Insert 4 for more detailsand useful formulas. The supersymmetry generators are represented on superspace asQ α = ∂ α −i(γ µ¯θ)α ∂ µ , ¯Qα = −¯∂ α +i(θγ µ ) α ∂ µ , (9.27)while <strong>the</strong> supercovariant derivative areD α = ∂ α +i(γ µ¯θ)α ∂ µ , ¯Dα = −¯∂ α −i(θγ µ ) α ∂ µ . (9.28)Let us construct <strong>the</strong> <strong>of</strong>f-shell representations <strong>of</strong> <strong>the</strong> N = 2 SUSY algebra <strong>in</strong> term <strong>of</strong>superfields. The two basic supermultiplets are <strong>the</strong> chiral muliplet and <strong>the</strong> vector multiplet.The chiral muliplet consists <strong>of</strong> a complex scalar φ and a Dirac fermion ψ. Thecorrespond<strong>in</strong>g chiral superfield conta<strong>in</strong>s an additional auxilliary complex field F,Φ(y,θ) = φ(y)+ √ 2θψ(y)+θ 2 F(y), (9.29)4 Remark also that, consistently, massless <strong>gravity</strong> is non-propagat<strong>in</strong>g <strong>in</strong> 3d.


156 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionsInsert 4. 3d sp<strong>in</strong>ors and N = 2 superspace formulasWe follow <strong>the</strong> conventions <strong>of</strong> [214] for sp<strong>in</strong>ors, as spelled out <strong>in</strong> section 9.1. The superspacecoord<strong>in</strong>ates are organized <strong>in</strong>to a Dirac sp<strong>in</strong>orθ α ,¯θα = (θ † ) β (γ 0 ) αβ ,We def<strong>in</strong>e <strong>the</strong> follow<strong>in</strong>g notation (both for θ and for any Dirac sp<strong>in</strong>or)Useful superspace identities areχψ = χ α ψ α = ǫ αβ χ β ψ α , θ 2 = θ α θ α , ¯θ2 = ¯θ α¯θα , etc.θ α θ β = 1 2 ǫαβ θ 2 , θ α θ β = 1 2 ǫ αβθ 2 , etc.,(θ¯θ) 2 = − 1 2 θ2¯θ2 , (θ¯θ)(θγ ν¯θ) = 0, (θγµ¯θ)(θγν¯θ) =12 gµν θ 2¯θ2 .Care must also be taken when tak<strong>in</strong>g hermitian conjugates (<strong>the</strong> rules are different from 4d,due to our convention for γ 0 ). We have(χψ) † = −¯χ¯ψ,(χ¯ψ) † = −χ¯ψand <strong>in</strong> particular(θ 2 ) † = −¯θ 2 , (θ¯θ) † = −θ¯θ.On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> comb<strong>in</strong>ation θγ µ¯θ is real.<strong>in</strong> term <strong>of</strong> <strong>the</strong> chiral coord<strong>in</strong>ate y µ = x µ + iθγ µ¯θ. Of course we have that ¯Dα Φ = 0.Similarly, we have anti-chiral superfields ¯Φ = Φ † , such that D α¯Φ = 0,¯Φ(ȳ,¯θ) = ¯φ(ȳ)− √ 2¯θ ¯ψ(ȳ)− ¯θ 2 ¯F(ȳ). (9.30)The vector multiplet V conta<strong>in</strong>s a real scalar σ and a vector A µ (which can be seen as<strong>the</strong> dimensional reduction <strong>of</strong> a 4d vector), as well as a Dirac fermion χ. In <strong>the</strong> standardWess-Zum<strong>in</strong>o <strong>gauge</strong>, <strong>the</strong> correspond<strong>in</strong>g vector superfield conta<strong>in</strong>s only one additionalauxiliary field D,V(x,θ,¯θ) = 2iθ¯θσ(x)+2θγ µ¯θAµ (x)+ √ 2iθ 2 ¯θ¯χ(x)−√ 2i¯θ2 θχ(x)+θ 2¯θ2 D(x). (9.31)One can easily check that V † = V, us<strong>in</strong>g Insert 4. Under (abelian) <strong>gauge</strong> transformation,<strong>the</strong> vector mutliplet transforms asV → V +Λ+Λ † , (9.32)for Λ an arbitrary chiral superfield. In Wess-Zum<strong>in</strong>o <strong>gauge</strong>, we have that V n = 0 forn ≥ 3, and12 V 2 = ( η µν A µ A ν +σ 2) θ 2¯θ2(9.33)It is also <strong>in</strong>terest<strong>in</strong>g to def<strong>in</strong>e so-called l<strong>in</strong>ear multiplets Σ, which are real multipletssatisfy<strong>in</strong>g <strong>the</strong> conditionsD 2 Σ = 0, ¯D2 Σ = 0. (9.34)Such a multiplet conta<strong>in</strong>s a conserved current J µ which appears as (θγ µ¯θ)Jµ ⊂ Σ.


9.2. N = 2 supersymmetry, superspace and superfields 1579.2.1 Abelian <strong>gauge</strong> field, conserved current and N = 2 LagrangianIn 2+1 dimensions, <strong>the</strong>re is conserved current associated to any abelian <strong>gauge</strong> field, aslong as <strong>the</strong> <strong>gauge</strong> field does not couple to a magnetic current. This current is simply <strong>the</strong>dual field strength ∗F = ˜F,∗F = 1 2 ǫ µνρF νρ dx µ = ˜F µ dx µ , (9.35)which is conserved due to <strong>the</strong> Bianchi Identity. In N = 2 supersymmetric <strong>the</strong>ories, thiscurrent is part <strong>of</strong> a l<strong>in</strong>ear multipletΣ ≡ i 4 ¯D α D α V , (9.36)which readsΣ = σ + 1 √2θ¯χ − 1 √2¯θχ+iθ¯θD +12 θγρ¯θǫρµν F µν− i2 √ ¯θ 2 θγ µ ∂ µ χ + i2 2 √ 2 θ2 (∂ µ¯χγ µ¯θ) 1 +4 ∂ µ∂ µ σθ 2¯θ2 . (9.37)This Σ is <strong>gauge</strong> <strong>in</strong>variant. The N = 2 Lagrangian is simply <strong>the</strong> square <strong>of</strong> this l<strong>in</strong>earmutlipletL<strong>gauge</strong> = 1 ∫g 2 d 2 θd 2¯θΣ 2 = 1 {g 2 − 1 2 ∂ µσ∂ µ σ − i 2¯χγµ ∂ µ χ − 1 4 F µνF µν + 1 }2 D2 .(9.38)As we already noted <strong>in</strong> <strong>the</strong> last chapter, <strong>the</strong> coupl<strong>in</strong>g constant g 2 has mass dimensionone, mak<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory strongly coupled <strong>in</strong> <strong>the</strong> <strong>in</strong>frared.For later purposes, it will be <strong>in</strong>terest<strong>in</strong>g to look at <strong>the</strong> SUSY variation <strong>of</strong> <strong>the</strong> gaug<strong>in</strong>oχ, which is easily obta<strong>in</strong>ed by comput<strong>in</strong>g [ǫQ++¯ǫ¯Q,Σ]. We haveδ ǫ χ = √ 1 ǫ α Q α χ β = iǫ α( )(γ µ ) α β (∂ µ σ +i˜F µ )−Dδαβ , (9.39)2and similarly for δ¯ǫ¯χ.The coupl<strong>in</strong>g <strong>of</strong> matter <strong>in</strong> N = 2 <strong>the</strong>ories is done as <strong>in</strong> N = 1 <strong>the</strong>ories <strong>in</strong> 4d, witha standard k<strong>in</strong>etic term (m<strong>in</strong>d an extra m<strong>in</strong>us sign) and <strong>the</strong> possibility <strong>of</strong> turn<strong>in</strong>g on asuperpotential,∫L matter = d 2 θd 2¯θ( ) ∫ ∫−Φ † e V Φ + d 2 θW(Φ) + d 2¯θW(Φ † ). (9.40)9.2.2 Vector/scalar dualityWe can easily generalize <strong>the</strong> considerations <strong>of</strong> section 8.3.1 to <strong>the</strong> N = 2 formalism,show<strong>in</strong>g that a vector superfield is dual to a chiral superfield. Consider <strong>the</strong> action∫ {∫d 3 x d 4 θ 1 g 2Σ2 + 1 ∫d 2 θΦ¯D 2 Σ+ 1 ∫d 2¯θΦ }† D 2 Σ , (9.41)8π 8π


158 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionswith Φ a dimensionless chiral superfield, impos<strong>in</strong>g <strong>the</strong> Bianchi Identity D 2 Σ = 0, ¯D 2 Σ =0. Integrat<strong>in</strong>g out Σ, we f<strong>in</strong>d <strong>the</strong> dual action∫ ∫d 3 x d 4 θ(− g28π 2Φ† Φ). (9.42)We have that Σ = −g 2 (Φ+Φ † )/4π. In particular, <strong>the</strong> scalar components <strong>of</strong> Φ are relatedto <strong>the</strong> real scalar σ and to <strong>the</strong> dual photon ϕ (def<strong>in</strong>ed as g 2 ∂ µ ϕ = 2π ˜F µ ) accord<strong>in</strong>g toφ = − 2πg2σ + iϕ. (9.43)The dual photon ϕ is only def<strong>in</strong>ed up to a constant shift. If exact, this shift symmetryforbids <strong>the</strong> chiral superfield Φ from enter<strong>in</strong>g <strong>in</strong> <strong>the</strong> superpotential [217], but <strong>in</strong> general<strong>the</strong> shift symmetry can be broken by non-perturbative effects [219].9.2.3 Non-abelian generalizationWe could also construct <strong>the</strong> N = 2 generalization <strong>of</strong> <strong>the</strong> Yang-Mills Lagrangian, for anysimple <strong>gauge</strong> group G, simply by replac<strong>in</strong>g derivatives by covariant derivatives <strong>in</strong> (9.38).The non-abelian generalization <strong>of</strong> (9.32) isThe field strength superfield ise V → e Λ† e V e Λ . (9.44)Σ = i 4 ¯D α e −V D α e V , (9.45)and <strong>the</strong> super-Yang-Mills Lagrangian rema<strong>in</strong>s <strong>of</strong> <strong>the</strong> simple form∫1g 2 d 2 θd 2¯θΣ 2 . (9.46)9.3 Chern-Simon term and topologically massive photonOur purpose <strong>in</strong> this part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis is to discuss superconformal field <strong>the</strong>ories. S<strong>in</strong>ce<strong>the</strong> Yang-Mills coupl<strong>in</strong>g is a dimensionful parameter <strong>in</strong> three dimensions, it seems thatwe cannot use SYM <strong>the</strong>ories for our purposes. Matter seems even worse because <strong>the</strong><strong>gauge</strong> coupl<strong>in</strong>g runs to strong coupl<strong>in</strong>g <strong>in</strong> <strong>the</strong> <strong>in</strong>frared, and we loose any control on our<strong>the</strong>ory. Never<strong>the</strong>less we saw <strong>in</strong> <strong>the</strong> last chapter that we can have a weakly <strong>the</strong>ory at largeN f . There exists ano<strong>the</strong>r way to get a weak coupl<strong>in</strong>g limit, through <strong>the</strong> addition <strong>of</strong> aChern-Simons term. We will review that construction [220] <strong>in</strong> this section.9.3.1 The pure Chern-Simons actionGiven a <strong>gauge</strong> group G and a <strong>gauge</strong> field A with field strength F = dA+[A,A], we canalways write a Chern-Simons (CS) actionS CS = k ∫Tr(A∧dA+ 2 )4π 3 A∧A∧A (9.47)M


9.3. Chern-Simon term and topologically massive photon 159which is def<strong>in</strong>ed on any 3-manifold M, and does not depend on <strong>the</strong> metric. Under a f<strong>in</strong>ite<strong>gauge</strong> transformationA → A ′ = U −1 AU +U −1 dU , (9.48)<strong>the</strong> CS action changes byδS CS = k ∫d ( A∧dUU −1) − k ∫4π12πMMU −1 dU ∧U −1 dU ∧U −1 dU . (9.49)The first term is a total derivative, which we assume to vanish. The second term isactually <strong>the</strong> w<strong>in</strong>d<strong>in</strong>g number [220] <strong>of</strong> <strong>the</strong> <strong>gauge</strong> tranformation around <strong>the</strong> 3-manifold M,w = 124π∫M2 (U −1 dU) 3 ∈ Z. (9.50)This w<strong>in</strong>d<strong>in</strong>g number is an <strong>in</strong>teger, which is non-zero for so-called large <strong>gauge</strong> transformations(<strong>the</strong> ones not connected to <strong>the</strong> identity). For flat space compactified to S 3 , <strong>the</strong>possible w<strong>in</strong>d<strong>in</strong>g numbers are classified by <strong>the</strong> third homotopy group <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group,π 3 (G), similarly to <strong>in</strong>stantons <strong>in</strong> four dimensions. Invariance <strong>of</strong> <strong>the</strong> path <strong>in</strong>tegral∫Z = DAe iS CS(9.51)implies <strong>the</strong> conditionk ∈ Z (9.52)for non-abelian simple <strong>gauge</strong> groups, for which π 3 (G) = Z. We will take k to be quantizedalso <strong>in</strong> <strong>the</strong> abelian case, for simplicity. k is <strong>of</strong>ten called <strong>the</strong> Chern-Simons level. The CSequations <strong>of</strong> motions are simplyF = 0, (9.53)so <strong>the</strong> pure CS <strong>the</strong>ory describes flat connections. It is an <strong>in</strong>terest<strong>in</strong>g <strong>the</strong>ory never<strong>the</strong>lessfor non-trivial manifolds M, for which (9.51) and o<strong>the</strong>r quantum observables are relatedto topological <strong>in</strong>variants [221]. In this work we are <strong>in</strong>terested <strong>in</strong> flat space, and <strong>the</strong> reasonwhy <strong>the</strong> Chern-Simons term will be <strong>in</strong>terest<strong>in</strong>g never<strong>the</strong>less is that <strong>the</strong> <strong>gauge</strong> field canbe coupled to dynamical matter fields, as we will soon discuss. In components and <strong>in</strong>M<strong>in</strong>kowski space-time, <strong>the</strong> CS Lagrangian readsL CS = k (4π Trǫµνρ A µ ∂ ν A ρ + 2 )3 A µA ν A ρ . (9.54)9.3.2 Topologically massive <strong>gauge</strong> fieldConsider an abelian <strong>the</strong>ory with a photon A µ , and an action which consists <strong>of</strong> both aMaxwell term (with electric coupl<strong>in</strong>g g <strong>of</strong> mass dimension 1 2) and a Chern-Simons termat level k, ∫ {S = d 3 xTr − 14g 2F µνF µν + k }4π ǫµνρ A µ ∂ ν A ρ (9.55)The equations <strong>of</strong> motion are∂ µ F µν + g2 k4π ǫµρν F µρ = 0. (9.56)


160 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionsWe can also write <strong>the</strong>m <strong>in</strong> term <strong>of</strong> <strong>the</strong> dual field strength ˜F µ (9.35),This is exactly <strong>the</strong> equation (9.17), withǫ µνρ ∂ µ ˜Fρ + g2 k2π ˜F ν = 0. (9.57)s = 1,m = m CS = g2 k2π(9.58)Hence <strong>the</strong> Lagrangian (9.55) describes a massive excitation <strong>of</strong> sp<strong>in</strong> one (if k is negativewe take s = −1 and m = −g 2 k/2π). Such a <strong>gauge</strong> field is called topologically massive,because its mass comes entirely from <strong>the</strong> topological Chern-Simons term. This is a novelphenomenon which is particular to 2+1 dimensions. In addition and <strong>in</strong>dependently, wecould also have a Brout-Englert-Higgs mechanism as <strong>in</strong> 3+1 dimensions.To check that we are <strong>in</strong>deed deal<strong>in</strong>g with a massive sp<strong>in</strong>-one s<strong>in</strong>gle particle state, wecan compute <strong>the</strong> propagator [220]. In Landau <strong>gauge</strong>,1∆ µν (p) =(ηp 2 +m 2 µν + p µp ν +m CS ǫ µνρ p ρ )CSp 2 . (9.59)It <strong>in</strong>deed has a pole at p 2 = −m 2 CS. Remark that if we also <strong>in</strong>clude a Higgs mechanism,<strong>the</strong> propagator would have two <strong>in</strong>dependent poles [216] (and <strong>the</strong> massive vector wouldhave two <strong>in</strong>dependents physical degrees <strong>of</strong> freedom).As we flow to <strong>the</strong> IR, <strong>the</strong> Maxwell-Chern-Simons <strong>the</strong>ory becomes trivial. The Wilsonianeffective action would only conta<strong>in</strong> <strong>the</strong> Chern-Simons term, which by itself has nodynamics.9.4 N = 2 Chern-Simons <strong>the</strong>oriesOne can easily write a N = 2 supersymmetric CS term, us<strong>in</strong>g <strong>the</strong> superfields (9.31) and(9.37). It must be a classically marg<strong>in</strong>al operator (dimension 3), which is ei<strong>the</strong>r a F-term<strong>of</strong> dimension 2 or a D-term <strong>of</strong> dimension 1. S<strong>in</strong>ce <strong>the</strong> lowest dimensional F-term we canconstruct is <strong>the</strong> Yang-Mills superfield W 2 (as <strong>in</strong> 4d), which has dimension 3, <strong>the</strong> CS termmust be a D-term. In <strong>the</strong> abelian case, <strong>the</strong> correct answer isIn components,∫S CS =∫S CS =d 3 x k4π∫d 2 θd 2¯θVΣ. (9.60)d 3 x k4π {ǫµνρ A µ ∂ ν A ρ − i¯χχ + 2σD} . (9.61)Note that <strong>the</strong> Chern-Simons action (9.60) is <strong>in</strong>variant under <strong>the</strong> generalized <strong>gauge</strong> transformation(9.32), s<strong>in</strong>ce∫ ∫δ d 4 θVΣ = d 4 θ(Λ+Λ † )Σ = 1 16 D2 ¯D2 (Λ+Λ † )Σ = 0.The non-abelian generalization for <strong>the</strong> N = 2 CS term is simply∫d 3 x k {ǫ(A µνρ µ ∂ ν A ρ + 2 ) }4π 3 A µA ν A ρ − i¯χχ + 2σD , (9.62)


9.4. N = 2 Chern-Simons <strong>the</strong>ories 161with <strong>the</strong> trace over <strong>gauge</strong> <strong>in</strong>dices left implicit. The superspace expression is a bit particular,however:∫S CS = d 3 x k ∫d 2 θd 2¯θ∫ 1dt i 4π 2 Tr{V ¯D α e −tV D α e tV } . (9.63)9.4.1 Topologically massive vector multiplet0Consider <strong>the</strong> N = 2 Maxwell-Chern-Simons system,∫L = d 4 θ 1 {g 2 Σ 2 + m }2 VΣ(9.64)with m = g2 k2π. In addition to (9.56), <strong>the</strong> equations <strong>of</strong> motion arei(γ µ ∂ µ +m)χ = 0, and (∂ µ ∂ µ −m 2 )σ = 0, (9.65)as expected by supersymmetry (we have <strong>in</strong>tegrated over <strong>the</strong> auxiliary field D). From nowon we will focus on <strong>the</strong>ories possess<strong>in</strong>g a Chern-Simons term and no Yang-Mills term,but one can always th<strong>in</strong>k <strong>of</strong> a Maxwell/Yang-Mills UV completion, which is irrelevant <strong>in</strong><strong>the</strong> IR.Let us also remark that <strong>in</strong> a SU(N) Yang-Mills-Chern-Simons (YM-CS) <strong>the</strong>ory withno SUSY, <strong>the</strong> CS coefficient is renormalized at one-loop, to k → k+N [222]. In <strong>the</strong> pureCS <strong>the</strong>ory <strong>the</strong>re seems to be no such correction, or ra<strong>the</strong>r it seems that this correctionis strongly dependent on <strong>the</strong> regularization procedure [223]. This confus<strong>in</strong>g situationgreatly improves with supersymmetry. It was shown <strong>in</strong> [224] that <strong>in</strong> N = 1 YM-CS<strong>the</strong>ory <strong>the</strong> CS shift is <strong>of</strong> N/2 at one loop, while <strong>in</strong> N = 2 <strong>the</strong>ories <strong>the</strong> CS level is notrenormalized at all.9.4.2 Chern-Simons-matter superconformal <strong>the</strong>oriesWe will now consider coupl<strong>in</strong>g <strong>the</strong> Chern-Simons action to matter fields φ,∫S = S CS [A] + d 3 xA µ J µ [φ] (9.66)with J µ <strong>the</strong> matter current. The equation <strong>of</strong> motion for <strong>the</strong> <strong>gauge</strong> field is a constra<strong>in</strong>tk2π ˜F µ = −J µ (9.67)which equates <strong>the</strong> matter current J with <strong>the</strong> “topological” current ˜F (note that bothcurrents are conserved).In a non-abelian <strong>the</strong>ory (and <strong>in</strong> <strong>the</strong> unbroken phase), it is clear that k cannot berenormalized beyond one-loop, because higher loop contributions would go like 1/k L−1and k could not rema<strong>in</strong> an <strong>in</strong>teger, lead<strong>in</strong>g to a non-perturbative <strong>in</strong>consistency. Whencoupl<strong>in</strong>g <strong>the</strong> Chern-Simons action to matter fields, <strong>the</strong>re is strong evidence 5 that <strong>the</strong> CS5 In [225] is is proven that <strong>the</strong> beta function <strong>of</strong> <strong>the</strong> coupl<strong>in</strong>g 1/k vanishes <strong>in</strong> any CS-matter <strong>the</strong>ory. Wecould never<strong>the</strong>less have a one-loop shift, as <strong>in</strong> YM-CS-matter <strong>the</strong>ories, although <strong>the</strong> result [222], valid <strong>in</strong><strong>the</strong> YM-CS case, suggests that also <strong>in</strong> <strong>the</strong> pure CS-matter case <strong>the</strong>re is no one-loop shift when we haveN ≥ 2 SUSY.


162 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionslevel is not renormalized at all, whe<strong>the</strong>r <strong>in</strong> <strong>the</strong> abelian or non-abelian case [225]. We willassume this to be <strong>the</strong> case <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g.Let us consider a N = 2 <strong>the</strong>ory with generic matter Φ i coupled to some <strong>gauge</strong> group,toge<strong>the</strong>r with a Chern-Simons term (9.62) for <strong>the</strong> vector multiplet,∫S = SCS N=2 +d 3 x{ ∫d 4 θ ∑ i∫(−Φ † i eV Φ i ) +d 2 θW(Φ) + c.c}(9.68)where all representation <strong>in</strong>dices and traces are left implicit. Consider first <strong>the</strong> case when<strong>the</strong>re is no superpotential. In components, <strong>the</strong> matter Lagrangian readsL matter = −D µ φ † i Dµ φ i −i¯ψ i γ µ D µ ψ i +F †i F i−φ † i Dφ i−φ † i σ2 φ i +i¯ψ i σψ i +iφ † i χψ i+i¯ψ i¯χφ i ,(9.69)where D µ is <strong>the</strong> <strong>gauge</strong> covariant derivative, while <strong>the</strong> fields σ and D also act on <strong>the</strong>fields as appropriate representations <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group. The sum over i (<strong>the</strong> matterfields) is implicit. The auxiliary field D appears only l<strong>in</strong>early <strong>in</strong> (9.68). Integrat<strong>in</strong>g it outdeterm<strong>in</strong>es <strong>the</strong> non-dynamical scalar field σ <strong>in</strong> term <strong>of</strong> <strong>the</strong> matter fields,σ = 4π k∑(φ † i Ta R iφ i )t a , (9.70)iwith t a <strong>the</strong> adjo<strong>in</strong>t representation generators <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group, normalized so thattr(t a t b ) = 1 2 δab , and T Ri <strong>the</strong> generator <strong>of</strong> <strong>the</strong> representation under which φ i transforms.We can also <strong>in</strong>tegrate χ and ¯χ (and F, trivially), which gives a Lagrangian <strong>of</strong> <strong>the</strong> formL = L CS (A) −D µ φ † i Dµ φ i − 16π2k 2 (φ† i Ta φ i )(φ † j Tb φ j )(φ † k Ta T b φ k )−i¯ψ i γ µ D µ ψ i − 4π k i(¯ψ i T a ψ i )(φ † j Ta φ j )− 8π k i(φ† i Ta ψ i )(¯ψ j T a φ j ) (9.71)The first term is (9.54). This whole Lagrangian is classically marg<strong>in</strong>al. In [226] it wasargued that this <strong>the</strong>ory is actually exactly marg<strong>in</strong>al, giv<strong>in</strong>g us a Lagrangian description<strong>of</strong> a N = 2 SCFT. The only coupl<strong>in</strong>g constant here is 1/k, which we have seen cannotbe renormalized. Also, no superpotential can be dynamically generated: for each chiralsuperfield Φ i <strong>the</strong>re is a U(1) global symmetry which changes its phase; this symmetry alsoholds <strong>in</strong> <strong>the</strong> quantum <strong>the</strong>ory, because <strong>the</strong>re is no chiral anomaly <strong>in</strong> 3d. Consequently noholomorphicsuperpotentialW(Φ)canbegenerated. Theonlynon-trivialrenormalization<strong>of</strong> (9.71) which may occur is by wave function renormalization, affect<strong>in</strong>g <strong>the</strong> Kählerpotential. Gaiotto and Y<strong>in</strong> [226] argued that such corrections do occur but can onlylead to irrelevant terms <strong>in</strong> <strong>the</strong> Wilsonian effective action, or else can be reabsorbed by arescal<strong>in</strong>g <strong>of</strong> <strong>the</strong> fields. These general arguments should hold at least at weak coupl<strong>in</strong>g (klarge), as was also checked by explicit perturbative computations.There is an important difference here from <strong>the</strong> case <strong>of</strong> conformal <strong>the</strong>ories with acont<strong>in</strong>uous coupl<strong>in</strong>g, such as N = 4 SYM <strong>the</strong>ories <strong>in</strong> 4d. When <strong>the</strong>re is a cont<strong>in</strong>uouscoupl<strong>in</strong>g we can deform <strong>the</strong> <strong>the</strong>ory by add<strong>in</strong>g <strong>the</strong> correspond<strong>in</strong>g marg<strong>in</strong>al operator to<strong>the</strong> Lagrangian. In N = 4 SYM we can add <strong>the</strong> Lagrangian itself, δL = αL, with α<strong>in</strong>f<strong>in</strong>itesimal correspond<strong>in</strong>g to a small shift <strong>in</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g. Here <strong>the</strong> coupl<strong>in</strong>g


9.4. N = 2 Chern-Simons <strong>the</strong>ories 163is quantized, so that such a cont<strong>in</strong>uous shift <strong>of</strong> L is not allowed 6 . Each CS level kcorresponds to an isolated conformal field <strong>the</strong>ory.In <strong>the</strong> absence <strong>of</strong> superpotential, any N = 2 chiral operator (<strong>the</strong> lowest component<strong>of</strong> a chiral superfield) is also a chiral primary <strong>in</strong> <strong>the</strong> SCFT. The quantum dimension <strong>of</strong><strong>the</strong> simplest <strong>gauge</strong> <strong>in</strong>variant chiral operator Trφ i φ j can be computed perturbatively atsmall ’t Ho<strong>of</strong>t coupl<strong>in</strong>g. Consider for <strong>in</strong>stance <strong>the</strong> case <strong>of</strong> an SU(N) <strong>the</strong>ory with Madjo<strong>in</strong>t chiral superfields Φ i , i = 1,··· ,M. Perturbative computations <strong>in</strong>volve <strong>the</strong> ’tHo<strong>of</strong>t coupl<strong>in</strong>g λ = N/k. The scalar potential isV = 16π2k 2 Tr[φ i ,φ † i ][φ j,φ † j ][φ k,φ † k]. (9.72)In this example <strong>the</strong> conformal dimension <strong>of</strong> Trφ i φ j was computed <strong>in</strong> <strong>the</strong> large N limitand at two loops <strong>in</strong> [226],∆(Trφ 2 ) = 1−2λ 2 (M −1). (9.73)S<strong>in</strong>ce ∆ = R for chiral primaries, this results gives <strong>the</strong> R-charge <strong>of</strong> φ at two loops,R(φ) = 1 2 −λ2 (M −1). (9.74)which <strong>the</strong>n determ<strong>in</strong>es <strong>the</strong> quantum dimension <strong>of</strong> any chiral primary operator Tr(φ k ) as∆ = kR(φ).9.4.3 N = 2 SCFT with superpotential and weak non-renormalization<strong>the</strong>oremIt seems a general rule that <strong>the</strong> chiral superfields have a lower R-charge <strong>in</strong> <strong>the</strong> <strong>in</strong>teract<strong>in</strong>gN = 2 CS-matter <strong>the</strong>ory (when W = 0). This means that <strong>the</strong> classically marg<strong>in</strong>alsuperpotential <strong>of</strong> <strong>the</strong> formW = α ijkl Tr(Φ i Φ j Φ k Φ l ) (9.75)is actually relevant for α ≪ 1/k, so α must grow towards <strong>the</strong> IR (<strong>the</strong> <strong>the</strong>ory at W = 0is an unstable fixed po<strong>in</strong>t). On <strong>the</strong> o<strong>the</strong>r hand, if α ≫ 1/k we can approximate <strong>the</strong><strong>the</strong>ory by a Wess-Zum<strong>in</strong>o model, <strong>in</strong> which case α decreases along <strong>the</strong> RG flow [226]. Wecan conclude that <strong>the</strong>re exist a RG fixed po<strong>in</strong>t at f<strong>in</strong>ite α, with superconformal R-chargeR(Φ i ) = 1 2(all R-charges are equal due to <strong>the</strong> flavor symmetry). We would expect suchfixed po<strong>in</strong>ts to be isolated <strong>in</strong> <strong>the</strong> space <strong>of</strong> coupl<strong>in</strong>gs α ijkl . It was argued <strong>in</strong> [226] that <strong>the</strong>reexists a manifold <strong>of</strong> fixed po<strong>in</strong>t at two loops, but one would suspect that only isolatedfixed po<strong>in</strong>ts survive at higher order. Somewhat surpris<strong>in</strong>gly, it was recently argued (andexplicitly computed at 4 loops) that <strong>the</strong> cont<strong>in</strong>uous manifold <strong>of</strong> fixed po<strong>in</strong>ts survives atall orders [227].In 3d <strong>the</strong> non-renormalization “<strong>the</strong>orems” for <strong>the</strong> superpotential coupl<strong>in</strong>gs <strong>in</strong> a CSmatter<strong>the</strong>oryarelessstrongthan<strong>in</strong>4dYang-Mills<strong>the</strong>ories.Ifaparticularsuperpotentialcoupl<strong>in</strong>gs α ijkl is zero, <strong>the</strong>n is stays zero <strong>in</strong> perturbation <strong>the</strong>ory, because it would o<strong>the</strong>rwisebreak a U(1) symmetry. This is <strong>the</strong> only useful non-renormalization result wehave.6 However, s<strong>in</strong>ce <strong>the</strong> quantization <strong>of</strong> k is non-perturbative, it is not clear to me whe<strong>the</strong>r <strong>the</strong> LagrangianL seen as an operator is renormalized or not (whe<strong>the</strong>r it is chiral primary or not).


164 Chapter 9. Superconformal <strong>the</strong>ories <strong>in</strong> three dimensionsIt is true that <strong>the</strong> spurious R-symmetry which assigns charge 2 to α ijkl implies thatα ijkl only appears l<strong>in</strong>early (by holomorphy). In 4d Yang-Mills <strong>the</strong>ory one can arguethat <strong>the</strong>re is no perturbative renormalization <strong>of</strong> <strong>the</strong> holomorphic coupl<strong>in</strong>g α through <strong>the</strong><strong>gauge</strong> coupl<strong>in</strong>g ei<strong>the</strong>r. In <strong>the</strong> Chern-Simons <strong>the</strong>ory corrections by λ do occur. In anycase, we are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> physical coupl<strong>in</strong>g, which is also renormalized through <strong>the</strong>wave function renormalization <strong>of</strong> <strong>the</strong> chiral fields, and <strong>in</strong> that respect it is not so differentfrom <strong>the</strong> 4d case: <strong>the</strong> anomalous dimension <strong>of</strong> <strong>the</strong> operators enter<strong>in</strong>g <strong>in</strong> (9.75), at anyf<strong>in</strong>ite α, will be some function <strong>of</strong> both λ and <strong>the</strong> α’s.9.4.4 N = 3 CS-matter <strong>the</strong>oryWe can obta<strong>in</strong> a N = 3 supersymmetric <strong>the</strong>ory by start<strong>in</strong>g with <strong>the</strong> matter content <strong>of</strong> anN = 4 <strong>the</strong>ory (same as N = 2 <strong>in</strong> 4d). In particular, <strong>the</strong> vector superfield now conta<strong>in</strong>s anadditional complex scalar Φ. Let us consider a <strong>the</strong>ory with N f hypermultiplets Q, ˜Q (twochiral superfields <strong>in</strong> N = 2 notation, <strong>in</strong> conjugate representations <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group).The N = 3 <strong>the</strong>ory readsL N=3 = L N=2CS +∫d 4 θ(−Q † i eV Q i − ˜Q)†i e−V ˜Qi +∫(d 2 θ − k )8π Φ2 + ˜QΦQ +c.c.(9.76)The field Φ is auxilliary <strong>in</strong> <strong>the</strong> same way as <strong>the</strong> o<strong>the</strong>r fields <strong>in</strong> <strong>the</strong> vector multiplet. Wecan <strong>in</strong>tegrate it out, giv<strong>in</strong>g us <strong>the</strong> quartic superpotentialW = 2π k (˜QT a Q)(˜QT a Q). (9.77)This superpotential has <strong>the</strong> form (9.75), but this particular fixed po<strong>in</strong>t at α = 2π k hasan enhanced N = 3 supersymmetry. This <strong>the</strong>ory is aga<strong>in</strong> an isolated fixed po<strong>in</strong>t (atleast when we only allow for this coupl<strong>in</strong>g, which preserves an SU(N f ) flavor symmetry).From <strong>the</strong> argument <strong>of</strong> <strong>the</strong> last subsection, we know that <strong>the</strong> operator (˜QQ) 2 is actuallyirrelevant as a deformation <strong>of</strong> <strong>the</strong> N = 3 fixed po<strong>in</strong>t, s<strong>in</strong>ce <strong>the</strong> fixed po<strong>in</strong>t is IR stable. InN = 3 <strong>the</strong>ories <strong>the</strong> superconformal R-charge is part <strong>of</strong> a non-abelian SU(2) R group, andit cannot be renormalized. In particular <strong>the</strong> chiral primary fields reta<strong>in</strong> <strong>the</strong>ir classicaldimension. For <strong>in</strong>stance <strong>the</strong> mesons ˜QQ have dimension 1. However, <strong>the</strong>re are alsonon-trivial chiral r<strong>in</strong>g relations due to (9.77); <strong>in</strong> particular (˜QQ) 2 is a chiral descendant,which can acquire a (positive) anomalous dimension. The fact that <strong>the</strong> dimension <strong>of</strong>(˜QQ) 2 is unprotected by <strong>the</strong> superconformal algebra means that this operator it not agood coord<strong>in</strong>ate on a putative larger manifold <strong>of</strong> fixed po<strong>in</strong>ts. In our case <strong>the</strong> fixed po<strong>in</strong>tis isolated and <strong>the</strong>re does not exist such coord<strong>in</strong>ates.


Chapter 10Monopole operators <strong>in</strong> threedimensionsWe <strong>in</strong>troduce <strong>in</strong> this chapter some important players <strong>in</strong> three dimensional CFTs, <strong>the</strong>monopole operators. They are local operators which <strong>in</strong>sert some magnetic source at apo<strong>in</strong>t <strong>in</strong> R 3 .In <strong>the</strong> first section we review <strong>the</strong> Dirac monopole [228] and <strong>the</strong> related Goddard-Nuyts-Olive (GNO) monopoles [229] <strong>in</strong> U(N) <strong>gauge</strong> <strong>the</strong>ory. We describe <strong>in</strong> some detailsuch monopole configurations and expla<strong>in</strong> how <strong>the</strong>y relate to particular chiral operatorsparametriz<strong>in</strong>g <strong>the</strong> Coulomb branch. We <strong>the</strong>n expla<strong>in</strong> <strong>in</strong> <strong>the</strong> free abelian example howthis relates to <strong>the</strong> concept <strong>of</strong> monopole operator as a local operator <strong>in</strong>sert<strong>in</strong>g a magneticsource at a po<strong>in</strong>t.In <strong>the</strong> second section we <strong>in</strong>troduce monopole operators <strong>in</strong> any CFT, as def<strong>in</strong>ed byBorokhov, Kapust<strong>in</strong> and Wu <strong>in</strong> [230, 231]. In <strong>the</strong> weakly coupled limit one can compute<strong>the</strong>charge<strong>in</strong>ducedbyquantumfluctuations<strong>of</strong>matterfields. Theonlycontributioncomesfrom some zero modes <strong>of</strong> a Dirac operator on S 2 . It has been conjectured <strong>in</strong> some casesthat this result is “semi-topological” and <strong>the</strong>refore holds at any coupl<strong>in</strong>g [231].We emphasize that <strong>the</strong> monopole operators will play a crucial work <strong>in</strong> our work [3].It is somewhat disappo<strong>in</strong>t<strong>in</strong>g that we will have to make some conjecture concern<strong>in</strong>g <strong>the</strong>non-perturbative validity <strong>of</strong> <strong>the</strong> formulas for <strong>the</strong> <strong>in</strong>duced charges. A complete field <strong>the</strong>oryderivation <strong>of</strong> <strong>the</strong> assumptions <strong>of</strong> [3] is beyond <strong>the</strong> scope <strong>of</strong> this <strong>the</strong>sis, and is left for futurework.Interest<strong>in</strong>g operators which we will not consider are Wilson l<strong>in</strong>es, which are nonlocaloperators which <strong>in</strong>sert an electric particle along a worldl<strong>in</strong>e. We just remark that<strong>in</strong> abelian Chern-Simons <strong>the</strong>ories Wilson l<strong>in</strong>es can be local and equivalent to monopoleoperators [232, 233].In this chapter we work exclusively <strong>in</strong> Euclidean space, ei<strong>the</strong>r <strong>in</strong> R 3 with <strong>the</strong> metricds 2 = dr 2 +r 2 dΩ 2 , or <strong>in</strong> R×S 2 with <strong>the</strong> metric ds 2 = dτ 2 +dΩ 2 .165


166 Chapter 10. Monopole operators <strong>in</strong> three dimensions10.1 Monopoles <strong>in</strong> three dimensional SYM <strong>the</strong>oriesThe bosonic part <strong>of</strong> <strong>the</strong> Euclidean N = 2 super-Yang-Mills action can be written <strong>in</strong> term<strong>of</strong> differential forms asS = 1 ∫2g 2 (F ∧∗F +Dσ ∧∗Dσ) , (10.1)where F = dA + A ∧ A, while D = d + A is <strong>the</strong> covariant derivative <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>trepresentation, and an overall trace is implied. In <strong>the</strong> above action and <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gwe have set <strong>the</strong> auxilliary field D to zero. We can equivalently write this action asS = 1 ∫4g 2 ((F +∗Dσ)∧∗(F +∗Dσ)+(F −∗Dσ)∧∗(F −∗Dσ)) , (10.2)from which one derives <strong>the</strong> boundS ≥ ∓ 1 g 2 ∫F ∧Dσ = ∓ 1 g 2 ∫S 2 ∞Fσ. (10.3)This <strong>in</strong>equality is saturated if and only if <strong>the</strong> fields satisfy <strong>the</strong> Bogomolny equations [234]F = ∓∗Dσ (10.4)This BPS bound is <strong>of</strong> course l<strong>in</strong>ked to supersymmetry. The Euclidian version <strong>of</strong> <strong>the</strong>gaug<strong>in</strong>o variation (9.39) isδ ǫ χ = −iǫ(γ µ (D µ σ − ˜F µ )−D), δ¯ǫ¯χ = −iǫ(γ µ (D µ σ + ˜F µ )−D), (10.5)with γ µ <strong>the</strong> Euclidean γ-matrices, def<strong>in</strong>ed such that γ µ γ ν = δ µν +iǫ µνρ γ ρ (cfr. [235] formore detailed conventions). We will call a field configurations BPS when δ¯χ = 0, andanti-BPS when δχ = 0. Henceforth we will focus on <strong>the</strong> BPS case, for which (recall thatD = 0)∗F = −Dσ, ⇔ F = −∗Dσ. (10.6)It is well known that <strong>the</strong> field configurations satisfy<strong>in</strong>g this equation are <strong>the</strong> ’t Ho<strong>of</strong>t-Polyakov monopoles [236, 237], aris<strong>in</strong>g <strong>in</strong> <strong>the</strong> non-abelian <strong>the</strong>ory spontaneously brokento its Cartan subgroup,G → U(1) r , (10.7)due to a VEV for σ. While monopoles are solitons <strong>in</strong> four dimensions (f<strong>in</strong>ite energysolutions),<strong>the</strong>yare<strong>in</strong>stead<strong>in</strong>stantons<strong>in</strong>threedimensions,<strong>in</strong><strong>the</strong>sensethat<strong>the</strong>ym<strong>in</strong>imize<strong>the</strong> Euclidean action. We are not particularly <strong>in</strong>terested <strong>in</strong> <strong>the</strong> solutions to <strong>the</strong> non-l<strong>in</strong>earBogomolny equations, but only <strong>in</strong> <strong>the</strong> generic properties <strong>of</strong> <strong>the</strong> low energy <strong>the</strong>ory <strong>in</strong> <strong>the</strong>presence <strong>of</strong> magnetic flux. 1 Let us consider <strong>the</strong> <strong>gauge</strong> group U(N). A generic GNOmonopole has a magnetic charge along <strong>the</strong> U(1) N Cartan subgroup. It can be describedby a non-trivial U(1) N <strong>gauge</strong> connection on R 3 \{0} , def<strong>in</strong>ed on two patches surround<strong>in</strong>g<strong>the</strong> monopole localized at r = 0,A ± = H (±1−cosθ)dφ. (10.8)21 Smooth monopole solutions are classified by π 2(G/U(1) r ) and <strong>the</strong>re is no smooth monopole forG = U(1); <strong>the</strong> GNO monopoles we consider are broader <strong>in</strong> that we do allow for s<strong>in</strong>gularities <strong>in</strong> <strong>the</strong> fields.


10.1. Monopoles <strong>in</strong> three dimensional SYM <strong>the</strong>ories 167The two connections are related by a U(1) N <strong>gauge</strong> transformation A + = A − + Hdφ.Requir<strong>in</strong>g s<strong>in</strong>gle-valuedness <strong>of</strong> this <strong>gauge</strong> transformation as we go around <strong>the</strong> equator,φ → φ+2π, we are lead to <strong>the</strong> Dirac quantization condition <strong>of</strong> magnetic flux,H = diag(n 1 ,··· ,n N ), n i ∈ Z. (10.9)Note that permutations <strong>of</strong> <strong>the</strong> n i ’s is a <strong>gauge</strong> symmetry. For generic <strong>gauge</strong> group G <strong>the</strong>magnetic fluxes def<strong>in</strong>e <strong>the</strong> roots <strong>of</strong> a dual group G ∨ [229], but <strong>in</strong> our case U(N) ∨ = U(N)andH isaelement<strong>of</strong><strong>the</strong>rootspace<strong>of</strong>U(N)itself. TopreserveN = 2supersymmetry, weneed to solve (10.6). We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> abelian solution only (which approximatesany complete non-l<strong>in</strong>ear solution at large distances), so that we simply have F = −∗dσ.This gives <strong>the</strong> diagonal solutionF = H 2 dΩ 2, σ = σ 0 + H 2r . (10.10)The diagonal matrix σ 0 = diag(σ 1 ,··· ,σ N ) is an <strong>in</strong>tegration constant. The action <strong>of</strong> <strong>the</strong>monopole configuration isS on−shell = − 1 ∫g 2 Tr(Fσ) = − 2πg 2Tr(Hσ 0) = − 2π ∑g 2 n i σ i . (10.11)S 2 ∞Monopole (3d <strong>in</strong>stantons) constitute saddle po<strong>in</strong>ts which will contribute to <strong>the</strong> path<strong>in</strong>tegral <strong>of</strong> 3d Yang-Mills <strong>the</strong>ory, giv<strong>in</strong>g rise to non-perturbative corrections. S<strong>in</strong>ce <strong>the</strong>action is positive-def<strong>in</strong>ite by construction, we must have that ∑ i n iσ i ≤ 0, which restricts<strong>the</strong> allowed choice <strong>of</strong> σ 0 . Each possible magnetic flux along some U(1) i corresponds to adist<strong>in</strong>ct topological sector, lead<strong>in</strong>g to a new perturbative expansion around <strong>the</strong> monopolesaddle po<strong>in</strong>t. Such contributions are weighted by an overall factore −2π|n iσ i |/g 2 (10.12)(no sum implied), and <strong>the</strong>y are <strong>the</strong>refore negligible as long as σ i ≫ g 2 . On <strong>the</strong> o<strong>the</strong>rhand, near <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> Coulomb branch, σ i < g 2 , we expect <strong>the</strong> contributions fromevery topological sector to be equally important, but we lack any direct perturbativecontrol.10.1.1 The Coulomb branchThe VEV σ 0 = diag(σ 1 ,··· ,σ N ) parametrizes <strong>the</strong> Coulomb branch <strong>of</strong> <strong>the</strong> U(N) <strong>the</strong>ory.When <strong>the</strong> eigenvalues σ i as well as <strong>the</strong>ir differences σ i − σ j are all large, <strong>the</strong> <strong>gauge</strong>group is broken to U(1) N at a correspond<strong>in</strong>gly high scale. In a <strong>the</strong>ory with N = 2supersymmetry, we expect <strong>the</strong> moduli space to be a complex manifold. Indeed we canalso give VEVs to <strong>the</strong> dual photons <strong>of</strong> <strong>the</strong> low energy U(1) N group, and parametrize <strong>the</strong>result<strong>in</strong>g complexified Coulomb branch by <strong>the</strong> scalar components <strong>of</strong> <strong>the</strong> chiral superfieldΦ def<strong>in</strong>ed <strong>in</strong> (9.43). Remark that <strong>in</strong> Euclidean space we have some extra factor <strong>of</strong> i <strong>in</strong><strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> dual photon,∂ µ ϕ = − 2πig 2 ˜F µ . (10.13)i


168 Chapter 10. Monopole operators <strong>in</strong> three dimensionsThe dual photon ϕ be<strong>in</strong>g a periodic variable, it is natural to def<strong>in</strong>e a s<strong>in</strong>gle valued chiralsuperfield asT = e Φ = exp(−2π σ +iϕ). (10.14)g2 We def<strong>in</strong>e a T i for each U(1) i <strong>in</strong> U(1) N . These fields have charge one under <strong>the</strong> shiftsymmetry <strong>of</strong> <strong>the</strong> dual photons. These are important coord<strong>in</strong>ates on <strong>the</strong> Coulomb branch,which however are good only away from <strong>the</strong> orig<strong>in</strong>. As shown <strong>in</strong> [217, 219], quantumeffects will change <strong>the</strong> topology <strong>of</strong> <strong>the</strong> Coulomb branch when additional matter fields arepresent, splitt<strong>in</strong>g it <strong>in</strong>to several branches which meet at <strong>the</strong> orig<strong>in</strong>. There we expect an<strong>in</strong>teract<strong>in</strong>g SCFT to exist.Notethat<strong>the</strong>shiftsymmetry<strong>of</strong><strong>the</strong>dualphotonisnoth<strong>in</strong>gbut<strong>the</strong>magneticsymmetryassociated to <strong>the</strong> conserved current ˜F µ . Hence <strong>the</strong> field T has unit magnetic charge, andrepresents a supersymmetric “monopole” <strong>in</strong> some very concrete sense. We can def<strong>in</strong>esuch a monopole with generic flux H byT (H) = exp( ∑ <strong>in</strong> i Φ i ). (10.15)This is our first encounter with a so-called monopole operator. One should th<strong>in</strong>k as thisT as surviv<strong>in</strong>g as a special operator <strong>in</strong> <strong>the</strong> conformal field <strong>the</strong>ory at <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong>Coulomb branch.10.1.2 Monopole operator <strong>in</strong> <strong>the</strong> 3d Maxwell <strong>the</strong>oryThe monopole operator T(x) <strong>in</strong>serts a Dirac monopole/<strong>in</strong>stanton at <strong>the</strong> po<strong>in</strong>t x. In <strong>the</strong>case <strong>of</strong> a free Maxwell <strong>the</strong>ory, this can be easily understood. The <strong>in</strong>sertion <strong>of</strong> <strong>the</strong> operatorT(x) (n) = e <strong>in</strong>ϕ(x) (10.16)<strong>in</strong> <strong>the</strong> path <strong>in</strong>tegral changes <strong>the</strong> allowed boundary conditions for <strong>the</strong> fields, allow<strong>in</strong>g forn units <strong>of</strong> magnetic flux around <strong>the</strong> po<strong>in</strong>t x. This is seen for <strong>in</strong>stance <strong>in</strong> <strong>the</strong> dual photonformulation <strong>of</strong> <strong>the</strong> Maxwell <strong>the</strong>ory (8.41). We have∫〈T(0) (n) 〉 =Dϕexp{− 1 2∫∫d 3 x g24π 2∂ µϕ∂ µ ϕ +<strong>in</strong>This <strong>in</strong>sertion changes <strong>the</strong> perturbative saddle po<strong>in</strong>t from ϕ = 0 toϕ = n 2}d 3 xϕδ 3 (x) . (10.17)2πig 2 1r , (10.18)Such a s<strong>in</strong>gularity <strong>in</strong> <strong>the</strong> dual photon field corresponds to n units <strong>of</strong> magnetic flux atr = 0, as we can see by us<strong>in</strong>g <strong>the</strong> relation (10.13). This reason<strong>in</strong>g is directly extended to<strong>the</strong> N = 2 BPS operator( )T(x) (n) = e n − 2πg 2σ(x)+iϕ(x) . (10.19)The operator e λσ is a “po<strong>in</strong>t operator” which likewise <strong>in</strong>serts a s<strong>in</strong>gularity for <strong>the</strong> realscalar field σ, and <strong>the</strong> particular value <strong>of</strong> λ <strong>in</strong> (10.19) is fixed by supersymmetry.This discussion is isomorphic to <strong>the</strong> discussion <strong>of</strong> l<strong>in</strong>e operators given by Kapust<strong>in</strong> <strong>in</strong>[238]. In particular <strong>the</strong> operator T is noth<strong>in</strong>g but <strong>the</strong> ’t Ho<strong>of</strong>t operator dimensionally


10.2. Monopole operators <strong>in</strong> 3d CFT 169reduced from four to three dimensions. This means that T stands for ’T Ho<strong>of</strong>t, althoughwe will call it a “monopole operator” to conform to fashion.Once we turn on <strong>in</strong>teractions, <strong>the</strong> dual photon trick is not applicable anymore, butnever<strong>the</strong>less <strong>the</strong> monopole operator is still a well def<strong>in</strong>ed concept. At least this is so <strong>in</strong>any conformal field <strong>the</strong>ory, which we will now discuss.10.2 Monopole operators <strong>in</strong> 3d CFTIn[230,231], monopoleoperatorswheredef<strong>in</strong>ed<strong>in</strong>3dconformalfield<strong>the</strong>orieswithabelian<strong>gauge</strong> fields. Consider for <strong>in</strong>stance an abelian Chern-Simons <strong>the</strong>ory coupled to matter. Itis classicaly conformal, and we assume for <strong>the</strong> moment that this property is not broken byquantum effects. A monopole operator, also sometimes called vortex operator, is simplyone which <strong>in</strong>serts n units <strong>of</strong> magnetic charge at a s<strong>in</strong>gle po<strong>in</strong>t <strong>in</strong> R 3 . This means that<strong>the</strong> OPE <strong>of</strong> such an operator O with <strong>the</strong> conserved current ˜F µ has a s<strong>in</strong>gularity˜F µ (x)O(y) ∼ n 21|x−y| 2O(y). (10.20)In <strong>the</strong> path <strong>in</strong>tegral language, such an operator <strong>in</strong>serts a new boundary condition on <strong>the</strong><strong>gauge</strong> field, requir<strong>in</strong>g that <strong>the</strong> magnetic flux around <strong>the</strong> po<strong>in</strong>t p = {y µ } be n. To have acomplete def<strong>in</strong>ition, we need to specify also <strong>the</strong> new boundary conditions for all <strong>the</strong> o<strong>the</strong>rfields <strong>in</strong> <strong>the</strong> <strong>the</strong>ory, which must now live on <strong>the</strong> punctured space R 3 \{p}. In general <strong>the</strong>remight be many allowed operators with <strong>the</strong> same magnetic charge.A more manageable def<strong>in</strong>ition is obta<strong>in</strong>ed by us<strong>in</strong>g radial quantization <strong>in</strong>stead <strong>of</strong> <strong>the</strong>operator language. In <strong>the</strong> radial quantization picture a monopole operator is noth<strong>in</strong>g buta state on R×S 2 with n units <strong>of</strong> magnetic flux through S 2 . This makes also clear whylocal monopole operators are specific to three dimensions: In four dimensions <strong>the</strong>re is nosuch local operators because vector bundles on S 3 do not carry any <strong>in</strong>terest<strong>in</strong>g topologicalnumbers (4d ’t Ho<strong>of</strong>t operator are extended operators correspond<strong>in</strong>g to <strong>the</strong> <strong>in</strong>sertion <strong>of</strong>a monopole worldl<strong>in</strong>e) [238]. To go from <strong>the</strong> <strong>the</strong>ory on R 3 to <strong>the</strong> <strong>the</strong>ory on R×S 2 , wechange coord<strong>in</strong>ates to τ = lnr, and we redef<strong>in</strong>e all <strong>the</strong> fields asφ = e −∆(φ)τ ˜φ, (10.21)where ∆(φ) is <strong>the</strong> scal<strong>in</strong>g dimension <strong>of</strong> φ, and ˜φ are <strong>the</strong> new fields we use <strong>in</strong> <strong>the</strong> radialquantization picture.We must also discuss <strong>the</strong> issue <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variance. Gauge <strong>in</strong>variance <strong>of</strong> a state onR×S 2 is simply Gauss law, which can be writtenδSδA τ|ψ〉 = 0, (10.22)for any physical state |ψ〉 (A τ is <strong>the</strong> τ component <strong>of</strong> <strong>the</strong> <strong>gauge</strong> field). In <strong>the</strong> case <strong>of</strong> aChern-Simons matter <strong>the</strong>ory <strong>of</strong> <strong>the</strong> generic form (9.66), we have( ) k2π ˜F τ +ρ |ψ〉 = 0, (10.23)


170 Chapter 10. Monopole operators <strong>in</strong> three dimensionswhere ρ = J τ is <strong>the</strong> charge density operator. This means that, for <strong>gauge</strong> <strong>in</strong>variance <strong>of</strong> astate carry<strong>in</strong>g electric charge Q toge<strong>the</strong>r with n units <strong>of</strong> magnetic flux, we needkn+Q = 0. (10.24)In particular, monopole operator must always be “dressed” by appropriate matter fields<strong>in</strong> a Chern-Simons <strong>the</strong>ory. Indeed, a “bare” monopole operator <strong>of</strong> magnetic charge ncorresponds to a state with an electric tadpole, s<strong>in</strong>ce its action conta<strong>in</strong>s a termS ⊃ k ∫4π∫A∧dA = knA 0 dt . (10.25)This tadpole can only be cancelled by add<strong>in</strong>g additional matter fields for a total charge <strong>of</strong>Q = −kn. In <strong>the</strong> follow<strong>in</strong>g chapters we will keep referr<strong>in</strong>g to <strong>the</strong> bare monopole operatorT (n) as “<strong>the</strong>” monopole operators, ma<strong>in</strong>ly for notational convenience. We will write <strong>gauge</strong><strong>in</strong>variant operators schematically asO (n) ∼ T (n) φ 1···φ kn . (10.26)Never<strong>the</strong>less it should be kept <strong>in</strong> m<strong>in</strong>d that only <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant operators have aphysical mean<strong>in</strong>g. This is true <strong>in</strong> particular for such operators which do not have anydescription <strong>in</strong> term <strong>of</strong> Lagrangian fields, <strong>in</strong> general. We will not discuss <strong>in</strong> any detail <strong>the</strong>non-abelian extension <strong>of</strong> <strong>the</strong>se results, although <strong>the</strong>y are <strong>of</strong> much <strong>in</strong>terest <strong>in</strong> relation with<strong>the</strong> AdS 4 /CFT 3 <strong>correspondence</strong>.10.2.1 N = 2 BPS monopole operatorsConsistently with <strong>the</strong> discussion <strong>of</strong> section (10.1), N = 2 BPS monopole operators whichcreate some flux at r = 0 <strong>in</strong> R 3 must also set a boundary conditionlimr→0 σ = n 2r(10.27)for <strong>the</strong> scalar field σ <strong>in</strong> <strong>the</strong> vector supermultiplet. To discuss <strong>the</strong> correspond<strong>in</strong>g state<strong>in</strong> R×S 2 , we need to consider <strong>the</strong> curved space version <strong>of</strong> <strong>the</strong> gaug<strong>in</strong>o variation (10.5).This was studied <strong>in</strong> [235], where it is found that (sett<strong>in</strong>g to zero <strong>the</strong> VEV <strong>of</strong> all <strong>the</strong> o<strong>the</strong>rfields)δ¯ǫ¯χ ∼ γ µ(˜Fµ¯ǫ+(∂ )µ σ)¯ǫ+2σ∇ µ¯ǫ , (10.28)where ∇ is <strong>the</strong> sp<strong>in</strong> connection, and ¯ǫ must be a Kill<strong>in</strong>g sp<strong>in</strong>or. The solution to δ¯ǫ¯χ = 0is more easily found by simply rescal<strong>in</strong>g <strong>the</strong> solution (10.10), which givesF = H 2 dΩ 2, ˜σ = n 2 . (10.29)This means that <strong>the</strong> field σ must have a constant VEV n/2 at τ = −∞.


10.2. Monopole operators <strong>in</strong> 3d CFT 17110.2.2 Induced charges from quantum effectsSo far we have discussed <strong>the</strong> concept <strong>of</strong> monopole operator assum<strong>in</strong>g that <strong>the</strong> CFT hasa weakly coupled Lagrangian description. For most <strong>of</strong> <strong>the</strong> models with N = 2 we willconsider this is not <strong>the</strong> case. One way to circumvent this difficulty is to work <strong>in</strong> a weaklycoupled UV completion, for <strong>in</strong>stance <strong>in</strong> <strong>the</strong> UV <strong>of</strong> a YM-CS-matter <strong>the</strong>ory which UVcompletes <strong>the</strong> CS-matter <strong>the</strong>ory, as done <strong>in</strong> [235]. Ano<strong>the</strong>r weakly coupled crutch isobta<strong>in</strong>ed by tak<strong>in</strong>g <strong>the</strong> CS level k to be large, or one can also take <strong>the</strong> number <strong>of</strong> flavorfields N f to be large [230, 231].We now discuss some quantum properties <strong>of</strong> monopole operator is such a weaklycoupled limit, for N = 2 <strong>the</strong>ories. In particular, we would like to compute <strong>the</strong> exactR-charge <strong>of</strong> <strong>the</strong> bare monopole operator <strong>in</strong> <strong>the</strong> SCFT. With that knowledge we can <strong>the</strong>ncompute <strong>the</strong> exact dimension <strong>of</strong> any chiral primaries monopole operator, <strong>in</strong> pr<strong>in</strong>ciple, ifwe know <strong>the</strong> R-charge <strong>of</strong> all <strong>the</strong> Lagrangian fields. Note that <strong>in</strong> general we do not knowwhich is <strong>the</strong> exact superconformal R-charge, but we can still express <strong>the</strong> correction to <strong>the</strong>R-charge <strong>of</strong> a given monopole operator <strong>in</strong> term <strong>of</strong> <strong>the</strong> unknown R-charges <strong>of</strong> <strong>the</strong> matterfields. Actually we can also compute <strong>the</strong> quantum correction to any U(1) charge Q.The conformal dimension <strong>of</strong> <strong>the</strong> bare monopole operator is <strong>the</strong> energy <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>gstate<strong>in</strong>radialquantization.Thisenergyvanishesclassically, but<strong>in</strong><strong>the</strong>quantum<strong>the</strong>ory it is usually strongly renormalized. In <strong>the</strong> weakly coupled <strong>the</strong>ory <strong>the</strong> ma<strong>in</strong> effectwill come from fluctuations <strong>of</strong> free quantum fields charged under a classical monopolebackground. In [230] it was shown that only <strong>the</strong> fermions contribute to this zero po<strong>in</strong>tenergy, so we will discuss <strong>the</strong> fermions only.Consider a particular U(1) <strong>gauge</strong> group (it could be part <strong>of</strong> a larger <strong>gauge</strong> group). In<strong>the</strong> presence <strong>of</strong> a N = 2 monopole background for this vector multiplet, any fermion ψcharged under this U(1) will satisfy <strong>the</strong> wave equation(γ µ D µ ± n )ψ(τ,θ,φ) = 0. (10.30)2The ± is for BPS or anti-BPS background. The first term is <strong>the</strong> Dirac operator <strong>in</strong> thismonopole background,γ µ D µ = γ τ ∂ τ +D S 2 , with D S 2 = γ a (∇ a +iA a ). (10.31)The second term <strong>in</strong> (10.30) comes from <strong>the</strong> coupl<strong>in</strong>g ¯ψσψ. The eigenvalues and eigenfunctions<strong>of</strong> D S 2 were worked out <strong>in</strong> [239], for <strong>in</strong>stance. Let J be <strong>the</strong> total angular momentumoperator, with eigenvalue j, and let n be <strong>the</strong> magnetic flux. We haveD S 2Ψ 0 nm = 0 for j = |n|−12D S 2Ψ ± njm = i∆± jn Ψ± njmfor j = |n|+12(10.32), |n|+3 ,··· (10.33)2with m = −j,··· ,j, and ∆ ± jnsome eigenvalues which can be found e.g. <strong>in</strong> [235]. Hence<strong>the</strong>re are |n| zero modes <strong>of</strong> this Dirac operator on S 2 . On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong> equation(10.30) has no zero energy solution: each mode Ψ ± njmcorresponds to a state <strong>of</strong> energy±|j + 1 2 |, while <strong>the</strong> zero modes Ψ0 nm correspond to states <strong>of</strong> energy |n|2. This means that<strong>the</strong> vacuum state <strong>of</strong> <strong>the</strong> bare monopole is unique. From <strong>the</strong>re one can compute any charge


172 Chapter 10. Monopole operators <strong>in</strong> three dimensionsby normal order<strong>in</strong>g, with some subtleties well expla<strong>in</strong>ed <strong>in</strong> [231, 235]. It turns out thatonly <strong>the</strong> |n| modes Ψ 0 nm contribute to <strong>the</strong> normal order<strong>in</strong>g constant.The f<strong>in</strong>al answer is that for any abelian symmetry Q under which <strong>the</strong> fermion ψis charged, with charge Q(ψ), <strong>the</strong>re is an <strong>in</strong>duced charge for <strong>the</strong> bare BPS monopoleoperatorδQ(T (n) ) = − |n| Q(ψ), (10.34)2and m<strong>in</strong>us that result for an anti-BPS monopole. In particular we can compute <strong>the</strong> R-charge, us<strong>in</strong>g <strong>the</strong> fact that <strong>in</strong> <strong>the</strong> semi-classical <strong>the</strong>ory R(ψ) = − 1 2for any matter fermion.Assum<strong>in</strong>g T (n) is a chiral primary operator, we deduce that it has conformal dimension|n|2 N f if <strong>the</strong>re are N f fermions coupled to <strong>the</strong> relevant U(1) vector.Thereissomecircumstantialevidencethat<strong>the</strong>aboveresultfor<strong>the</strong>quantumcharges<strong>of</strong>monopoleoperatorsisactuallyvalidforanycoupl<strong>in</strong>g, <strong>in</strong><strong>the</strong>case<strong>of</strong>N = 2supersymmetry(both by direct arguments and us<strong>in</strong>g 3d mirror symmetry) [231]. This certa<strong>in</strong>ly seemstrue for N > 2, and <strong>the</strong>re is some pro<strong>of</strong> that it is so <strong>in</strong> some <strong>in</strong>terest<strong>in</strong>g cases [235], suchas <strong>in</strong> <strong>the</strong> ABJM <strong>the</strong>ory we will discuss <strong>in</strong> <strong>the</strong> next Chapter.10.2.3 OPE <strong>of</strong> monopole operatorsAs a f<strong>in</strong>al remark, note that <strong>in</strong> radial quantization we can <strong>in</strong> pr<strong>in</strong>ciple compute <strong>the</strong> OPEbetween T (n) and T (−n) [231]. In general we can haveT (n) T (−n) ∼ ∑ ic i O i , (10.35)where <strong>the</strong> O i are all <strong>the</strong> operators with no monopole charge and twice <strong>the</strong> quantumnumbers <strong>of</strong> T (n) (s<strong>in</strong>ce Q(T (n) ) = Q(T (−n) ) accord<strong>in</strong>g to (10.34)). We have also takenadvantage <strong>of</strong> <strong>the</strong> fact that <strong>the</strong>se monopole operators are chiral, so that <strong>the</strong> OPE is nons<strong>in</strong>gular.In particular, if <strong>the</strong> conformal dimension <strong>of</strong> T vanishes (as well as all o<strong>the</strong>rquantum numbers), <strong>the</strong> only possible OPE isT (n) T (−n) ∼ 1 or 0. (10.36)Thecoefficientsc i <strong>in</strong>(10.35)canbecomputed<strong>in</strong>radialquantizationas<strong>the</strong>matrixelement〈T (−n)† |O i |T (n) 〉. (10.37)Theactualcomputation<strong>of</strong>suchelements<strong>in</strong>anynon-trivial<strong>the</strong>oryishoweverquitebeyond<strong>the</strong> scope <strong>of</strong> this <strong>the</strong>sis. Note also that <strong>in</strong> general <strong>the</strong> bare monopole operators carryelectric charges (from <strong>the</strong> CS <strong>in</strong>teraction, and/or from quantum effects), <strong>in</strong> which case<strong>the</strong> above relation should be understood to hold only for <strong>gauge</strong> <strong>in</strong>variant chiral primaryoperators; schematically,O (n) O (−n) ∼ ∑ c i O (0)i. (10.38)i


Chapter 11The ABJM <strong>the</strong>ory andChern-Simons quiversRecent progress <strong>in</strong> writ<strong>in</strong>g down <strong>the</strong>ories correspond<strong>in</strong>g to M2-<strong>branes</strong> orig<strong>in</strong>ates <strong>in</strong><strong>the</strong> work <strong>of</strong> Bagger-Lambert [240, 241] and Gustavsson [242] (BLG), who wrote down aLagrangian with explicit N = 8 supersymmetry. This earlier work did not use Chern-Simons <strong>the</strong>ories but ra<strong>the</strong>r an exotic structure called a three-algebra, which we will notdiscuss. It was soon shown [243] that <strong>the</strong> BLG <strong>the</strong>ory was equivalent to a more familiarChern-Simons <strong>the</strong>ory. One shortcom<strong>in</strong>g <strong>of</strong> <strong>the</strong> BLG <strong>the</strong>ory is that it apparently describes<strong>the</strong> low energy <strong>the</strong>ory on only two co<strong>in</strong>cident M2-<strong>branes</strong> (with additional subtleties wewill not enter <strong>in</strong>to).Build<strong>in</strong>gonthispioneer<strong>in</strong>gwork, Aharony, Bergman, JafferisandMaldacena(ABJM)proposed a Chern-Simons <strong>the</strong>ory which has a U(N) × U(N) <strong>gauge</strong> group, with Chern-Simons levels (k,−k). It should correspond to <strong>the</strong> low energy <strong>the</strong>ory on a stack <strong>of</strong> NM2-<strong>branes</strong>. They gave a str<strong>in</strong>g <strong>the</strong>ory derivation <strong>of</strong> <strong>the</strong>ir proposal by us<strong>in</strong>g a dualitybetween a particular Hanany-Witten setup <strong>in</strong> type IIB and M2-<strong>branes</strong> on some orbifolds<strong>in</strong>gularity (this construction will be reviewed <strong>in</strong> <strong>the</strong> next Chapter).A general lesson taught by <strong>the</strong> ABJM proposal is that <strong>in</strong> order to give a Lagrangiandescription <strong>of</strong> multiple M2-<strong>branes</strong>, we might have to abandon <strong>the</strong> hope <strong>of</strong> an explicitrealization <strong>of</strong> all <strong>the</strong> global symmetries. Some symmetries might only arise as accidentalsymmetries at <strong>the</strong> superconformal fixed po<strong>in</strong>t. For <strong>in</strong>stance, <strong>in</strong> <strong>the</strong> ABJM <strong>the</strong>ory for NM2-<strong>branes</strong> <strong>in</strong> flat space only a subset N = 6 <strong>of</strong> <strong>the</strong> N = 8 supersymmetry is realized at<strong>the</strong> level <strong>of</strong> <strong>the</strong> Lagrangian, while <strong>the</strong> rema<strong>in</strong><strong>in</strong>g supersymmetries are realized thanks tonon-perturbative effects <strong>in</strong>volv<strong>in</strong>g monopole operators. We should also note that <strong>in</strong> thatcase <strong>the</strong> field <strong>the</strong>ory is strongly coupled, so <strong>the</strong> Lagrangian description is not really usefulanyway.This might seem like a step back from <strong>the</strong> ambition <strong>of</strong> a fully explicit Lagrangian<strong>the</strong>ory with N = 8 SUSY. It might be that this dream is not realizable, and that M2-<strong>branes</strong> <strong>the</strong>ory <strong>in</strong> flat space cannot have a weakly coupled Lagrangian description, assuggested by <strong>the</strong> fact that <strong>the</strong> M-<strong>the</strong>ory setup has no tunable parameter.The truly great achievement <strong>of</strong> <strong>the</strong> ABJM model is that is has a weakly coupled limit,for k large and λ = N/k small. On <strong>the</strong> o<strong>the</strong>r hand for λ ≫ 1 we can also use ei<strong>the</strong>r 11dimensional super<strong>gravity</strong> or 10 dimensional type IIA super<strong>gravity</strong>, as described already173


174 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quivers(a) ABJM quiver.(b) Toric diagram <strong>of</strong>C 4 /Z k .Figure 11.1: The ABJM quiver and its moduli space. The <strong>gauge</strong> group is U(N) × U(N) withChern-Simons levels (k,−k). The toric diagram <strong>of</strong> C 4 /Z k conta<strong>in</strong>s four po<strong>in</strong>ts, which can betaken as (1,0,0), (0,1,0), (1,1,0) and (0,0,k) (here k = 3).<strong>in</strong> Chapter 8. In that context all <strong>the</strong> heavy mach<strong>in</strong>ery <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong>can be applied fruitfully. For <strong>in</strong>stance we can extrapolate results for BPS quantities fromweak to strong coupl<strong>in</strong>g 1 .This Part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis is concerned with <strong>the</strong> generalization <strong>of</strong> <strong>the</strong> ABJM constructionto <strong>in</strong>stances <strong>of</strong> AdS 4 /CFT 3 dualities with less supersymmetries. In <strong>the</strong> next chapter wewill review an <strong>in</strong>terest<strong>in</strong>g N = 3 construction, which directly generalizes ABJM <strong>in</strong> severaldirections. In this chapter we are particularly <strong>in</strong>terested <strong>in</strong> N = 2 Chern-Simons quiver<strong>the</strong>ories [244, 245]. They are candidates to describe M2-<strong>branes</strong> at Calabi-Yau fourfolds<strong>in</strong>gularities. Remark that examples with m<strong>in</strong>imal N = 1 supersymmetry have also beenproposed [246, 247, 248, 249].In <strong>the</strong> first two sections <strong>of</strong> this Chapter we review <strong>the</strong> ABJM proposal and expla<strong>in</strong><strong>the</strong> crucial role played by monopole operators. In <strong>the</strong> rema<strong>in</strong><strong>in</strong>g <strong>of</strong> <strong>the</strong> Chapter we brieflypresent some attempts <strong>in</strong> <strong>the</strong> literature towards build<strong>in</strong>g Chern-Simons quiver for M2-<strong>branes</strong>onanyCalabi-Yaucone. Wewillfocuson<strong>the</strong>toriccase, whichismoremanageable2 . In particular we expla<strong>in</strong> a generalization <strong>of</strong> <strong>the</strong> fast forward algorithm [251, 252, 253]which will be useful <strong>in</strong> Chapter 13.11.1 The ABJM <strong>the</strong>oryIn this section we <strong>in</strong>troduce <strong>the</strong> famous ABJM <strong>the</strong>ory [202], which is a Chern-Simons<strong>the</strong>ory with N = 6 supersymmetry. The matter content is <strong>the</strong> same as <strong>the</strong> famousconifold quiver, as shown <strong>in</strong> Fig. 11.1(a). It is a Chern-Simons matter <strong>the</strong>ory with <strong>gauge</strong>1 This assumes that we can treat λ as cont<strong>in</strong>uous <strong>in</strong> some regimes.2 The non-toric case is <strong>of</strong> <strong>in</strong>terest too, ma<strong>in</strong>ly because toric Calabi-Yau fourfolds do not admit complexdeformations [250]. A <strong>correspondence</strong> between a Chern-Simons quiver and a non-toric 8 dimensionalconifold was <strong>in</strong>itiated <strong>in</strong> [199], where it is shown that a complex deformation <strong>of</strong> <strong>the</strong> cone corresponds toa relevant deformation <strong>of</strong> <strong>the</strong> superpotential.


11.1. The ABJM <strong>the</strong>ory 175group U(N) k ×U(N) −k , where <strong>the</strong> subscripts (k,−k) are <strong>the</strong> Chern-Simons levels <strong>of</strong> eachU(N) factor. In N = 2 notation, we have four chiral matter fields (A 1 ,A 2 ,B 1 ,B 2 ), whereA 1 , A 2 transform <strong>in</strong> <strong>the</strong> (N, ¯N) <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group, and B 1 , B 2 <strong>in</strong> <strong>the</strong> ( ¯N,N). Let usdenote <strong>the</strong> N = 2 vector superfields by V 1 and V 2 , for <strong>the</strong> first and second <strong>gauge</strong> group.The ABJM Lagrangian reads∫L ABJM = L CS [V 1 ;k]+L CS [V 2 ,−k]+∫+d 4 θ2∑i=1()Tr −A † i eV 1A i e −V 2−B † i e−V 1B i e V 2d 2 θ 4π k Tr (ǫ ij ǫ kl A i B k A j B l)+ c.c. (11.1)The N = 2 Chern-Simons terms L CS are given by (9.62)-(9.63). The superpotentialcoupl<strong>in</strong>g 4π/k is fixed by <strong>the</strong> requirement <strong>of</strong> N = 3 supersymmetry, as <strong>in</strong> Section 9.4.4.We can derive it by writ<strong>in</strong>g <strong>the</strong> action <strong>in</strong> term <strong>of</strong> an auxiliary complex scalar for eachvector multiplet (<strong>in</strong> which case <strong>the</strong> auxiliary fields fill a N = 4 vector multiplet, whichconta<strong>in</strong>s three real scalars). Consider <strong>the</strong> superpotentialW = − k8π Tr(Φ2 1 −Φ 2 2)+ ∑ iTr(B i Φ 1 A i +A i Φ 2 B i ) (11.2)where <strong>the</strong> coupl<strong>in</strong>g between <strong>the</strong> N = 4 hypermultiplets H i = (A i ,B i ) and <strong>the</strong> scalarsfrom <strong>the</strong> vector multiplets is fixed by supersymmetry, while <strong>the</strong> Chern-Simons mass termfor Φ 1 and Φ 2 breaks N = 4 to N = 3. Integrat<strong>in</strong>g out <strong>the</strong>se fields, we obta<strong>in</strong>W = 4π k Tr(A 1B 1 A 2 B 2 −A 1 B 2 A 2 B 1 ). (11.3)One can check that it can be written as <strong>in</strong> (11.1), which makes explicit that <strong>the</strong> <strong>the</strong>orypreserves a larger SU(2) A ×SU(2) B flavor symmetry, under which (A 1 ,A 2 ) and (B 1 ,B 2 )transform <strong>in</strong>dependently. In addition, <strong>the</strong> <strong>the</strong>ory has a SU(2) R R-symmetry, under which(A 1 ,B † 1 ) and (A 2,B † 2 ) are doublets. In <strong>the</strong> N = 2 notations we only see explicitly <strong>the</strong>Abelian subgroup U(1) R , under which all chiral superfields have charge 1 2 . The SU(2) Rdoes not commute with <strong>the</strong> SU(2) A ×SU(2) B flavor symmetry. It is easy to see that <strong>the</strong>three SU(2) factors generate a larger SU(4) R R-symmetry, under which <strong>the</strong> fields(C 1 ,C 2 ,C 3 ,C 4 ) = (A 1 ,A 2 ,B † 1 ,B† 2 ) (11.4)transform <strong>in</strong> <strong>the</strong> fundamental representation. S<strong>in</strong>ce this SU(4) ∼ = Sp<strong>in</strong>(6) is a R-symmetry, this is <strong>the</strong> first h<strong>in</strong>t that <strong>the</strong> ABJM action <strong>in</strong> fact preserves N = 6 supersymmetry.By <strong>in</strong>tegrat<strong>in</strong>g out all <strong>the</strong> auxiliary fields and writ<strong>in</strong>g <strong>the</strong> Lagrangian <strong>in</strong> itsfull glory, <strong>in</strong> term <strong>of</strong> component fields, one can check that <strong>the</strong> action is <strong>in</strong>deed <strong>in</strong>variantunder this SU(4) R [202, 214]. The full global symmetry <strong>of</strong> <strong>the</strong> ABJM model isSU(4) R ×U(1) b , (11.5)where <strong>the</strong> so-called baryonic symmetry U(1) b is <strong>the</strong> symmetry which assigns charge +1to A i and −1 to B i .The proposal <strong>of</strong> ABJM is that this Chern-Simons SCFT is dual to M-<strong>the</strong>ory onAdS 4 ×S 7 /Z k , for a particular Z k quotient which we will discuss momentarily. At large


176 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quiversk <strong>the</strong> <strong>the</strong>ory is weakly coupled if <strong>the</strong> ’t Ho<strong>of</strong>t coupl<strong>in</strong>g λ = N/k is small, while for λ largewe can use ei<strong>the</strong>r M-<strong>the</strong>ory or type IIA str<strong>in</strong>g <strong>the</strong>ory, as described <strong>in</strong> Chapter 8, section8.2.This duality is very <strong>in</strong>terest<strong>in</strong>g because <strong>of</strong> <strong>the</strong> large amount <strong>of</strong> supersymmetry preserved.In <strong>the</strong> last two years a great deal <strong>of</strong> work has lent credence to this proposal. Basicallyany <strong>of</strong> <strong>the</strong> checks that could be done <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> duality between AdS 5 ×S 5and N = 4 SYM has some analog <strong>in</strong> <strong>the</strong> ABJM context, and much <strong>of</strong> it has been donealready.11.1.1 The ABJM moduli spaceLet us compute <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory. Consider first <strong>the</strong> Abelian case.The <strong>gauge</strong> group is U(1) k ×U(1) −k . Integrat<strong>in</strong>g out <strong>the</strong> auxiliary fields D 1 , D 2 fixes <strong>the</strong>value <strong>of</strong> σ 1 , σ 2 toσ 1 = σ 2 = 2π ∑( |Ai | 2 −|B i | 2) . (11.6)kiS<strong>in</strong>ce W = 0 <strong>in</strong> <strong>the</strong> Abelian case, we have <strong>the</strong> four variables A i , B i , which rema<strong>in</strong>unconstra<strong>in</strong>ed 3 . Westillhavetotakecare<strong>of</strong><strong>gauge</strong><strong>in</strong>variance, however. Naivelywewouldhave to impose <strong>the</strong> U(1) 1 −U(1) 2 <strong>gauge</strong> symmetry, which is <strong>the</strong> only one which couplesto <strong>the</strong> matter fields. However this would not give a Kähler moduli space (because due to<strong>the</strong> CS terms <strong>the</strong>re is no associated moment map to make a proper Kähler quotient). Amore careful consideration <strong>of</strong> <strong>the</strong> CS <strong>in</strong>teractions give <strong>the</strong> resolution <strong>of</strong> this puzzle. Letus def<strong>in</strong>eA D = A 1 +A 2 , A b = A 1 −A 2 . (11.7)The Abelian Chern-Simons term is <strong>the</strong>n writtenS CS = k ∫A b ∧dA D , (11.8)4πOnly A b couples to <strong>the</strong> matter fields, while A D only appears here, <strong>in</strong> that comb<strong>in</strong>ation.We can <strong>the</strong>n use <strong>the</strong> dual photon trick, writ<strong>in</strong>g <strong>the</strong> action <strong>in</strong> term <strong>of</strong> F D = dA D andimpos<strong>in</strong>g <strong>the</strong> Bianchi identity through a Lagrange multiplier ϕS CS = k4π∫A b ∧F D + 12π∫ϕ∧dF D . (11.9)Integrat<strong>in</strong>g out F D , we see that <strong>the</strong> dual photon is related to <strong>the</strong> <strong>gauge</strong> field A b , asA b = 2 dϕ, (11.10)kso we can trade one for <strong>the</strong> o<strong>the</strong>r, and ϕ is not <strong>gauge</strong> <strong>in</strong>variant. Although it is <strong>in</strong>variantunder U(1) D , under a U(1) b <strong>gauge</strong> transformation A b → A b +dΛ we haveϕ → ϕ+ k Λ. (11.11)23 The reader should contrast this with <strong>the</strong> situation <strong>in</strong> <strong>the</strong> N = 1 conifold <strong>the</strong>ory, where we have aD-term constra<strong>in</strong>t |A i| 2 −|B i| 2 = 0. Here <strong>the</strong> “D-term” can be arbitrary, and its value only determ<strong>in</strong>es<strong>the</strong> value <strong>of</strong> <strong>the</strong> auxiliary fields σ 1, σ 2.


11.2. Chiral r<strong>in</strong>g and monopole operators 177Flux quantization implies that ϕ has period π (see below around equ. (11.41) for adiscussion <strong>in</strong> <strong>the</strong> general case <strong>of</strong> N = 2 CS quivers). If we <strong>gauge</strong> fix ϕ = 0, we still havea residual Z k <strong>gauge</strong> symmetry, Λ = 2πn/k, n ∈ Z, which acts on <strong>the</strong> matter fields as(A i ,B i ) → (e 2π<strong>in</strong>k Ai ,e −2π<strong>in</strong>k B i ). (11.12)Let us summarize <strong>the</strong> logic <strong>of</strong> this computation. The naive th<strong>in</strong>g to do would be toquotient by U(1) b from <strong>the</strong> start, but this would not give a complex moduli space. Theresolution <strong>of</strong> this puzzle is that we can dualize <strong>the</strong> photon <strong>of</strong> U(1) D , giv<strong>in</strong>g us an extrareal moduli. We <strong>the</strong>n need to quotient by U(1) b , but <strong>the</strong> dual photon ϕ transforms under<strong>the</strong> <strong>gauge</strong> symmetry U(1) b . It is convenient to get rid <strong>of</strong> ϕ by <strong>gauge</strong> fix<strong>in</strong>g it to zero,which however leaves a discrete Z k <strong>gauge</strong> symmetry. We <strong>the</strong>n have <strong>the</strong> moduli spaceC 4 /Z k , with Z k act<strong>in</strong>g on(z 1 ,z 2 ,z 3 ,z 4 ) → (ωz 1 ,ωz 2 ,ω −1 z 3 ,ω −1 z 4 ), ω = e 2π<strong>in</strong>k . (11.13)We could also choose a different complex structure, for <strong>in</strong>stance <strong>the</strong> one <strong>of</strong> (11.4), whichmakes <strong>the</strong> SU(4) R and <strong>the</strong> associated N = 6 SUSY more manifest. We prefer to focuson <strong>the</strong> description <strong>in</strong> term <strong>of</strong> <strong>the</strong> complex structure (11.13) s<strong>in</strong>ce it is <strong>the</strong> one <strong>in</strong>ducedby <strong>the</strong> particular N = 2 notation we chose, and we are <strong>in</strong>terested <strong>in</strong> generaliz<strong>in</strong>g <strong>the</strong>discussion to arbitrary N = 2 Chern-Simons quivers. Note that C 4 /Z k is toric, with <strong>the</strong>toric diagram given <strong>in</strong> Figure 11.1(b).The non-Abelian generalization is straightforward <strong>in</strong> this case, because we can diagonalizeall <strong>the</strong> matrices <strong>in</strong>volved (due to <strong>the</strong> F-term relations). As expected, <strong>the</strong> modulispace <strong>of</strong> <strong>the</strong> U(N)×U(N) <strong>the</strong>ory corresponds to <strong>the</strong> moduli space <strong>of</strong> N M2-<strong>branes</strong> at aC 4 /Z k s<strong>in</strong>gularity,M = Sym N ( C 4 /Z k). (11.14)11.2 Chiral r<strong>in</strong>g and monopole operatorsAn important check <strong>of</strong> this AdS/CFT duality proposal is whe<strong>the</strong>r <strong>the</strong> chiral r<strong>in</strong>g <strong>of</strong> <strong>the</strong>large N <strong>the</strong>ory matches <strong>the</strong> super<strong>gravity</strong> spectrum. Consider first <strong>the</strong> Abelian case,N = 1, and focus on N = 2 chiral fields for simplicity. If we only consider <strong>the</strong> fieldsappear<strong>in</strong>g <strong>in</strong> <strong>the</strong> Lagrangian, <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant operators are <strong>of</strong> <strong>the</strong> form A i B j , whichgives an algebraic description <strong>of</strong> <strong>the</strong> conifold, <strong>of</strong> complex dimension 3, <strong>in</strong>stead <strong>of</strong> <strong>the</strong>orbifold C 4 /Z k . The chiral r<strong>in</strong>g also conta<strong>in</strong>s monopole operators, which makes <strong>the</strong>study <strong>of</strong> chiral r<strong>in</strong>gs a much more complicated problem than <strong>in</strong> 4d SCFT, where <strong>the</strong>classical and quantum chiral r<strong>in</strong>gs are isomorphic. We can have ei<strong>the</strong>r so-called diagonalor <strong>of</strong>f-diagonal fluxes along U(1) k ×U(1) −k . A bare monopole operator with <strong>of</strong>f-diagonalfluxes (n,−n) would have an electric charge (kn,kn). Such an operator cannot be made<strong>in</strong>variant us<strong>in</strong>g <strong>the</strong> field content <strong>of</strong> <strong>the</strong> <strong>the</strong>ory, hence it cannot appear <strong>in</strong> <strong>the</strong> spectrum.Ano<strong>the</strong>r way to see this is that Gauss law for A D <strong>in</strong> (11.8) would read∫S 2 F b = 0 (11.15)for any state on R × S 2 . Hence we only have to consider <strong>the</strong> diagonal operator T (n) ,which has magnetic flux (n,n) along U(1) k × U(1) −k . It has electric charge (nk,−nk),


178 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quiversaccord<strong>in</strong>g to <strong>the</strong> discussion <strong>of</strong> <strong>the</strong> previous Chapter. It can be shown that <strong>the</strong> conformaldimension <strong>of</strong> this bare monopole operator is precisely zero [214]. We can write chiraloperators <strong>of</strong> <strong>the</strong> form (take n ≥ 0)O (n) ∼ T (n) B kn (AB) l , O (−n) ∼ T (−n) A kn (AB) l , (11.16)<strong>of</strong> conformal dimension 1 2kn+l. Recall that this way <strong>of</strong> writ<strong>in</strong>g <strong>the</strong> monopole operatorsis ma<strong>in</strong>ly a notational convenience. Their proper def<strong>in</strong>ition is through <strong>the</strong> correspond<strong>in</strong>gstate <strong>in</strong> R×S 2 . It can be checked that <strong>the</strong> basic monopole operatorsgenerate <strong>the</strong> full chiral r<strong>in</strong>gO (−1)i 1···i k= T (−1) A i1 ···A ik , O (1)i 1···i k= T (1) B i1 ···B ik , (11.17)C[O (−1)i 1···i k,O (1)i 1···i k] ∼ = Spec ( C 4 /Z k). (11.18)Monopole operators correspond to states which have momentum n/R along <strong>the</strong> M-<strong>the</strong>orycircle (D0-<strong>branes</strong> <strong>in</strong> type IIA). The isometry U(1) M associated to <strong>the</strong> M-<strong>the</strong>ory fibrationcorresponds to <strong>the</strong> conserved current ∗F D <strong>in</strong> <strong>the</strong> ABJM <strong>the</strong>ory. Indeed, we havek4π ∗F D = J b , (11.19)where J b is <strong>the</strong> current <strong>of</strong> <strong>the</strong> baryonic symmetry U(1) b . The isometry U(1) M∼ = U(1)bcorresponds to a shift <strong>of</strong> <strong>the</strong> dual photon ϕ or equivalently to a rotation <strong>of</strong> <strong>the</strong> phase <strong>of</strong><strong>the</strong> bifundamental fields. This global symmetry is to be dist<strong>in</strong>guished from <strong>the</strong> <strong>gauge</strong>symmetry which corresponds to a simultaneous shift <strong>of</strong> <strong>the</strong> dual photon and <strong>of</strong> <strong>the</strong> phase<strong>of</strong> <strong>the</strong> bifundamental fields.11.2.1 Non-Abelian caseIn <strong>the</strong> non-Abelian case, a generic diagonal monopole has fluxes H = (n 1 ,··· ,n N ), andH lies <strong>in</strong> <strong>the</strong> root lattice <strong>of</strong> <strong>the</strong> diagonal U(N). The space dual to <strong>the</strong> root lattice is <strong>the</strong>weight lattice. Any vector <strong>in</strong> <strong>the</strong> weight lattice <strong>of</strong> U(N), W = (e 1 ,··· ,e N ), determ<strong>in</strong>esa correspond<strong>in</strong>g representation <strong>of</strong> highest weights given by W [254, 255]. Consider anorder<strong>in</strong>g <strong>of</strong> W with e 1 ≥ e 2 ≥ ··· ≥ e N . Then, <strong>the</strong> correspond<strong>in</strong>g Young tableau has e 1boxes on <strong>the</strong> first row, e 2 boxes on <strong>the</strong> second row, etc. It is a result <strong>of</strong> [254] that <strong>in</strong> aU(N) <strong>the</strong>ory with CS level k, <strong>the</strong> monopoles H transform <strong>in</strong> <strong>the</strong> U(N) representationW = kH = (kn 1 ,··· ,kn N ). (11.20)Itwas shown <strong>in</strong>[235] that all<strong>of</strong><strong>the</strong>sebaremonopoleoperatorshavevanish<strong>in</strong>gR-chargeat<strong>the</strong> quantum level. Of particular <strong>in</strong>terest are <strong>the</strong> monopoles with flux H = (n,0,··· ,0),which transforms <strong>in</strong> <strong>the</strong> kn-symmetric product <strong>of</strong> <strong>the</strong> fundamental representation. The<strong>gauge</strong><strong>in</strong>variantoperatorsonecanbuildfromthisparticularT (n) are<strong>the</strong>analog<strong>of</strong>(11.16).They should be chiral primary operators, correspond<strong>in</strong>g to a chiral r<strong>in</strong>g isomorphic toSpec ( C 4 /Z k), (11.21)


11.3. N = 2 Abelian quivers and <strong>the</strong>ir classical moduli space 179and <strong>the</strong>y should match to <strong>the</strong> super<strong>gravity</strong> excitations along AdS 4 × S 7 /Z k . On <strong>the</strong>o<strong>the</strong>r hand, all <strong>the</strong> o<strong>the</strong>r possible monopole operators do not have <strong>the</strong> right symmetriesto be matched to super<strong>gravity</strong> states. Hence we expect that <strong>the</strong>y are not BPS and that<strong>the</strong>y acquire large anomalous dimensions. Anomalous dimensions <strong>of</strong> operators with nomagnetic charge can be computed <strong>in</strong> <strong>the</strong> large k limit, for <strong>in</strong>stance <strong>in</strong> [256], match<strong>in</strong>gexpectations. But it is not clear (to <strong>the</strong> best <strong>of</strong> my knowledge) whe<strong>the</strong>r it is possible todo similar perturbative computations <strong>in</strong> <strong>the</strong> presence <strong>of</strong> monopole operators. If we work<strong>in</strong> <strong>the</strong> large k limit, monopole operators decouple from <strong>the</strong> spectrum, while <strong>in</strong> <strong>the</strong> <strong>gravity</strong>dual we can consider type IIA str<strong>in</strong>g <strong>the</strong>ory on AdS 4 × CP 3 . It is <strong>in</strong> this context thatmost direct checks <strong>of</strong> <strong>the</strong> ABJM proposal have been performed.The punchl<strong>in</strong>e is that monopole operators are precisely very important if one wouldlike to understand <strong>the</strong> M-<strong>the</strong>ory limit ra<strong>the</strong>r than <strong>the</strong> type IIA limit.11.2.2 Enhanced SUSYIn <strong>the</strong> ABJM <strong>the</strong>ory, <strong>the</strong> monopole operator have one additional virtue. They enhance<strong>the</strong> supersymmetry from N = 6 to N = 8 when k = 1,2. Indeed, C 4 and C 4 /Z 2both preserve a larger SO(8) R symmetry, and <strong>the</strong> correspond<strong>in</strong>g N = 8 SUSY, butsuch enhanced supersymmetry is not seen <strong>in</strong> <strong>the</strong> Lagrangian. It was shown explicitly <strong>in</strong>[235, 257] how this enhancement comes about. There are 16 conserved currents associatedto <strong>the</strong> SU(4) R ×U(1) b symmetry, which take <strong>the</strong> form()j µ IJ = i C I D µ C † J −(D µC I )C † J +fermions , (11.22)where <strong>the</strong> C I ’s are as def<strong>in</strong>ed <strong>in</strong> (11.4). The traceless part give <strong>the</strong> currents <strong>of</strong> SU(4) R ,while <strong>the</strong> trace ∑ I j II corresponds to U(1) b . When k = 1,2, we can write down 12additional <strong>gauge</strong> <strong>in</strong>variant currents, by us<strong>in</strong>g monopole operators with H = (n,··· ,0):T (−n) i(C I D µ C J −C J D µ C I +fermions) , (11.23)written here as 6 complex currents, and n = 1,2 for k = 2,1, respectively. In total wehave 28 conserved currents, which generate a full SO(8) R symmetry [235]. The explicitform <strong>of</strong> <strong>the</strong> on-shell N = 8 SUSY transformations were written down <strong>in</strong> [257].11.3 N = 2 Abelian quivers and <strong>the</strong>ir classical moduli spaceThe ABJM <strong>the</strong>ory has <strong>the</strong> structure <strong>of</strong> a quiver. At first sight this is somewhat unexpected.As we saw <strong>in</strong> Chapter 3 quivers are tightly l<strong>in</strong>ked with D-<strong>branes</strong> at Calabi-Yauthreefold s<strong>in</strong>gularities. We will see <strong>in</strong> <strong>the</strong> next Chapter that this is <strong>the</strong> case here too; for<strong>in</strong>stance <strong>the</strong> fact that <strong>the</strong> ABJM quiver is <strong>the</strong> conifold quiver is not a co<strong>in</strong>cidence [258].One <strong>of</strong> <strong>the</strong> <strong>the</strong>mes <strong>of</strong> this second Part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis is to understand this relationshipbetter.In this section we review <strong>the</strong> constructions <strong>of</strong> N = 2 Chern-Simons quivers <strong>in</strong>itiated <strong>in</strong>[244, 245], followed by a large number <strong>of</strong> works [251, 252, 253, 259, 260, 261, 262, 263, 258,264, 199, 265, 266, 267]. The rules <strong>of</strong> <strong>the</strong> game are to work out <strong>the</strong> moduli space <strong>of</strong> anysuch Chern-Simons quiver and to check whe<strong>the</strong>r it can correspond to M2-<strong>branes</strong> on a CYfourfold. In <strong>the</strong> toric case we can use brane til<strong>in</strong>g methods, and an <strong>in</strong>terest<strong>in</strong>g algoritm


180 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quivershas been developed to compute <strong>the</strong> relevant branch <strong>of</strong> <strong>the</strong> moduli space [251, 252, 253],directly generaliz<strong>in</strong>g <strong>the</strong> forward algorithm reviewed <strong>in</strong> section 3.5.A Chern-Simons quiver <strong>the</strong>ory is a quiver <strong>in</strong> which each node correspond to a 3dvector multiplet with U(N) <strong>gauge</strong> group, and with Chern-Simons <strong>in</strong>teractions only (noYang-Mills term). The Chern-Simons level <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group U(N) i is written k i , andit is a quantized <strong>in</strong>teger. Apart from that <strong>the</strong> quiver has <strong>the</strong> same structure as <strong>the</strong> oneswe use for D-<strong>branes</strong>: <strong>the</strong>re are matter fields <strong>in</strong> bifundamental and adjo<strong>in</strong>t representationsonly, and a superpotential. We restrict to quivers with <strong>gauge</strong> groupU(N) 1 ×U(N) 2 ×···×U(N) G . (11.24)Different ranks for <strong>the</strong> <strong>gauge</strong> groups are possible and this is l<strong>in</strong>ked with ei<strong>the</strong>r <strong>fractional</strong>M2-<strong>branes</strong> [268] or cascad<strong>in</strong>g solutions [269, 270]; we will not discuss such developments4 .From now on we will focus on <strong>the</strong> Abelian case. Consider a quiver with <strong>gauge</strong> groupU(1) G and CS levels (k 1 ,··· ,k G ). The matter fields are denoted ei<strong>the</strong>r by X α , α =1,··· ,M or by X ij when we want to emphasize that <strong>the</strong> field X goes from node i to nodej; we also denote i = h(α) and j = t(α) for <strong>the</strong> node at <strong>the</strong> head or tail <strong>of</strong> <strong>the</strong> arrowX. The def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> <strong>the</strong>ory also <strong>in</strong>cludes some superpotential W(X). It should be <strong>of</strong>classical dimension 2 if we want to have a weakly coupled description at large CS levels,but <strong>in</strong> general we can consider W some arbitrary polynomial <strong>in</strong> <strong>the</strong> fields, <strong>in</strong> <strong>the</strong> hopethat <strong>the</strong> <strong>the</strong>ory flows to a strongly coupled fixed po<strong>in</strong>t for any CS levels. The LagrangianreadsL = ∑ L CS [V i ;k i ] + ∑ ∫ ( ) ∫d 4 θ −X αe † V t(α)X α e −V h(α)+ d 2 θW(X)+c.c. (11.25)iαThe scalar superpotential iswith <strong>the</strong> F-term part familiar from N = 1 <strong>the</strong>ories <strong>in</strong> 4d,V F = ∑ ∣ ∂W ∣∣∣2∣∂X α αandV = V F +V D , (11.26)(11.27)V D = − ∑ ik i2π σ iD i + ∑ α|X α | 2 (D t(a) −D h(a) ) + ∑ α|X α | 2 (σ t(α) −σ h(α) ) 2 (11.28)Let us def<strong>in</strong>e <strong>the</strong> quantity,D i = ∑i|t(α)=i|X α | 2 − ∑j|h(α)=j|X α | 2 = ∑ αg i [X α ]|X α | 2 , (11.29)which <strong>in</strong> four dimensions would be <strong>the</strong> N = 1 D-term for <strong>the</strong> <strong>gauge</strong> group U(1) i (hereg i [X α ] is <strong>the</strong> electric charge <strong>of</strong> X α under U(1) i , which is ±1 or 0 <strong>in</strong> our quivers). Integrat<strong>in</strong>gout <strong>the</strong> fields D i , we have a simple scalar potentialV D = ∑ α|X α | 2 (σ t(α) −σ h(α) ) 2 , (11.30)4 In <strong>the</strong> non-toric case we also expect that some <strong>the</strong>ories describ<strong>in</strong>g “regular” M2-<strong>branes</strong> can have<strong>gauge</strong> groups with different ranks, similarly to <strong>the</strong> case <strong>of</strong> D-<strong>branes</strong> on non-toric CY threefolds.


11.3. N = 2 Abelian quivers and <strong>the</strong>ir classical moduli space 181toge<strong>the</strong>r with a set <strong>of</strong> constra<strong>in</strong>tsk i2π σ i = D i , (11.31)which imply ∑ i k iσ i = 0. To compute <strong>the</strong> moduli space <strong>of</strong> such a quiver, we impose<strong>the</strong> conditions V F = 0 and V D = 0. The F-flatness conditions ∂W/∂X a = 0 def<strong>in</strong>e analgebraic variety (sometimes called <strong>the</strong> master space)Z = {X α | dW = 0} ⊂ C M , (11.32)like for a quiver <strong>the</strong>ory <strong>in</strong> 3+1 dimensions. In addition we need to solve V D = 0 and <strong>the</strong>constra<strong>in</strong>ts (11.31). We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> branch <strong>of</strong> <strong>the</strong> moduli space for whichσ 1 = ··· = σ G ≡ σ, (11.33)<strong>in</strong> which case V D automatically vanishes. Such a branch exists only if∑i k i = 0. (11.34)This later condition will be part <strong>of</strong> our def<strong>in</strong>ition <strong>of</strong> a Chern-Simons quiver, because itis necessary <strong>in</strong> order to have a Calabi-Yau fourfold 5 [244], for this particular branch <strong>of</strong><strong>the</strong> moduli space. The case ∑ i k i ≠ 0 is associated to a non-zero Romans mass <strong>in</strong> <strong>the</strong>type IIA <strong>gravity</strong> dual [247], a situation we will not consider. On <strong>the</strong> branch (11.33), σ isdeterm<strong>in</strong>ed by <strong>the</strong> quantities D i ,The constra<strong>in</strong>ts (11.31) reduce to G−2 constra<strong>in</strong>ts∑σ2π = ∑ k ii |k| 2 D i . (11.35)i v iD i = 0 ∀{v i } such that ∑ i v ik i = 0 . (11.36)In o<strong>the</strong>r words, <strong>in</strong> contrast to quivers <strong>in</strong> 3+1 dimensions, we only impose G − 2 D-flatness conditions, correspond<strong>in</strong>g to <strong>the</strong> subgroup <strong>of</strong> U(1) G orthogonal to both ∑ i U(1) iand ∑ i k iU(1) i . The moduli space is <strong>the</strong>n a Kähler quotient Z//U(1) G−2 . However wemust be careful with our <strong>gauge</strong> fix<strong>in</strong>g. Let us def<strong>in</strong>e <strong>the</strong> photonsA D =G∑A i ,i=1A b = 1 qG∑k i A i (11.37)i=1where q = gcd{k i }. One can show that <strong>the</strong> only way A D enters <strong>the</strong> action is through aterm [244]∫qA b ∧dA D . (11.38)2πGDualiz<strong>in</strong>g A D , we havedϕ = q G A b, (11.39)5 For a non-toric quiver with different ranks N i <strong>the</strong> condition to have a CY 4 is ∑ ikiNi = 0.


182 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quiverswith <strong>gauge</strong> transformationA b → A b +dΛ, ϕ → ϕ+ q Λ. (11.40)GThe periodicity <strong>of</strong> ϕ depends on <strong>the</strong> allowed magnetic fluxes for all <strong>the</strong> F i = dA i . Onthis particular branch (11.33), we need F 1 = ··· = F G ≡ F to preserve supersymmetry[244]; when ϕ → ϕ+c we <strong>the</strong>n haveδS = c2π∫S 2 F D = cG2π∫S 2 F = cGn, (11.41)and s<strong>in</strong>ce <strong>the</strong> quantum <strong>the</strong>ory is <strong>in</strong>variant if δS = 2πn, ϕ has periodicity 2π/G. Hence<strong>the</strong> <strong>gauge</strong> fix<strong>in</strong>g <strong>of</strong> ϕ leaves a residual symmetryZ q ⊂ U(1) b , (11.42)which we must impose. As a result, <strong>the</strong> moduli space is a Z q quotient <strong>of</strong> <strong>the</strong> Kählerquotient <strong>of</strong> <strong>the</strong> master space Z by U(1) G−2 :M = (Z//U(1) G−2 )/Z q . (11.43)We call this branch <strong>of</strong> <strong>the</strong> moduli space <strong>the</strong> geometric branch; it can also be called <strong>the</strong>Coulomb branch, s<strong>in</strong>ce <strong>the</strong>re is an unbroken U(1) D <strong>gauge</strong> symmetry. If this Coulombbranch is a CY 4 , it is tempt<strong>in</strong>g to guess that <strong>the</strong> quiver describes <strong>the</strong> low energy <strong>the</strong>ory<strong>of</strong> a s<strong>in</strong>gle M2-brane at <strong>the</strong> tip <strong>of</strong> <strong>the</strong> CY fourfold. Fur<strong>the</strong>r checks <strong>in</strong> that direction wouldbe <strong>the</strong> match<strong>in</strong>g <strong>of</strong> <strong>the</strong> o<strong>the</strong>r branches <strong>of</strong> <strong>the</strong> moduli space to partial resolutions <strong>of</strong> <strong>the</strong>CY 4 s<strong>in</strong>gularity; work <strong>in</strong> that direction was performed e.g. <strong>in</strong> [262, 264, 271], but muchrema<strong>in</strong>s to be understood.11.3.1 Toric Chern-Simons quivers and <strong>the</strong> Kasteleyn matrix algorithmIn <strong>the</strong> case <strong>of</strong> so called toric quivers, as def<strong>in</strong>ed <strong>in</strong> Chapter 3, section 3.5, we can use ageneralized fast forward algorithm to f<strong>in</strong>d <strong>the</strong> moduli space [251, 252, 253]. The output <strong>of</strong>this algorithm is <strong>the</strong> 3d toric diagram for a Calabi-Yau fourfold. The extra <strong>in</strong>formation<strong>in</strong> <strong>the</strong> 2+1 dimensional case are <strong>the</strong> CS levels k i . One assigns an <strong>in</strong>teger n ij to eachbifundamental field X ij . The CS levels are <strong>the</strong>n def<strong>in</strong>ed to be [251, 252]k i = ∑ j(n ij −n ji ), (11.44)where <strong>the</strong> sum is over all <strong>the</strong> edges X ij around <strong>the</strong> face i <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g; each edgecontributes +n ij (−n ij ) to <strong>the</strong> group on its right (left), look<strong>in</strong>g towards <strong>the</strong> white node.With this parametrization, <strong>the</strong> constra<strong>in</strong>t ∑ i k i = 0 is automatically satisfied. In Figure11.2 we show <strong>the</strong> ref<strong>in</strong>ed brane til<strong>in</strong>g for <strong>the</strong> dP 1 quiver <strong>of</strong> section 3.5.4.The Kasteleyn matrix algorithm proceeds as <strong>in</strong> <strong>the</strong> 3+1 dimensional case, except thatwe add one more formal variable z <strong>in</strong> <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> Kasteleyn matrix,∑K mn = X γ x y z nγ . (11.45)γ∈{m→n}


11.3. N = 2 Abelian quivers and <strong>the</strong>ir classical moduli space 183Figure 11.2: Brane til<strong>in</strong>g for <strong>the</strong> dP 1 quiver, ref<strong>in</strong>ed with weights n α . The correspond<strong>in</strong>g Chern-Simons quiver has CS levels (k 1 ,k 2 ,k 3 ,−k 1 −k 2 −k 3 ).Comput<strong>in</strong>g <strong>the</strong> permanent, we have 6permK = ∑ k t kx hx(k) y hy(k) z hz(k) . (11.46)The slopes h x , h y are def<strong>in</strong>ed as <strong>in</strong> (3.43), while h z ish z (t k ) = ∑ αM kα n α . (11.47)We easily see that <strong>the</strong> po<strong>in</strong>ts(h x ,h y ,h z ) ∈ Z 3 (11.48)describe <strong>the</strong> toric diagram <strong>of</strong> <strong>the</strong> CY 4 (<strong>the</strong> geometric branch) <strong>of</strong> <strong>the</strong> last section. Simply,we have that (<strong>in</strong> <strong>the</strong> notation <strong>of</strong> section 3.5)∑(Q F) lkk h ∑z(k) = 0, (G D) ikk h z(k) = ∑ α Qi αn α = k i . (11.49)The first relation follows from (11.47) and (3.33), while <strong>the</strong> second follows from (11.47),(3.32) and <strong>the</strong> def<strong>in</strong>ition <strong>of</strong> <strong>the</strong> weights n α for <strong>the</strong> fields X α . It means that we only imposea U(1) G−2 subgroup <strong>of</strong> <strong>the</strong> quiver <strong>gauge</strong> symmetry, correspond<strong>in</strong>g to <strong>the</strong> electric chargesorthogonal to U(1) b (and U(1) D ).For our dP 1 example, <strong>the</strong> improved permK ispermK = X 31 X 1 41X 2 41 +X 2 12X 2 23X 2 41x+X 1 12X 2 12X 1 41x −1 y++X 1 12X 2 12X 3 12z k 1+X 3 12X 24 X 31 y −1 z k 1+X 1 23X 2 23X 24 z k 1+k 2++X 24 X 31 X 34 z k 1+k 2 +k 3+X 1 12X 2 12X 34 yz k 1+k 2 +k 3.(11.50)Notice that sett<strong>in</strong>g z = 1 we reproduce <strong>the</strong> 3+1 dimensional algorithm. Thus <strong>the</strong> projection<strong>of</strong> <strong>the</strong> 3d toric diagram <strong>of</strong> <strong>the</strong> 2+1 dimensional <strong>the</strong>ory on <strong>the</strong> plane h z = 0 is <strong>the</strong> 2dtoric diagram <strong>of</strong> <strong>the</strong> 3+1 dimensional <strong>the</strong>ory.6 Note that we change notation with respect to Chapter 3: from now on we will denote <strong>the</strong> perfectmatch<strong>in</strong>g variables by t k <strong>in</strong>stead <strong>of</strong> p k .


184 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quiversIf q = gcd{k i } > 1, some <strong>in</strong>ternal po<strong>in</strong>ts are not represented by any perfect match<strong>in</strong>g,and <strong>the</strong> result <strong>of</strong> <strong>the</strong> GLSM has to be quotiented by Z q . Alternatively we can <strong>in</strong>cludeall po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> toric diagram <strong>in</strong> <strong>the</strong> GLSM, at <strong>the</strong> price <strong>of</strong> add<strong>in</strong>g new fields and <strong>gauge</strong>symmetries.Accord<strong>in</strong>g to (11.49), <strong>the</strong> coord<strong>in</strong>ates h z determ<strong>in</strong>e <strong>the</strong> particular U(1) b ⊂ U(1) G ,whose photon A b is related to <strong>the</strong> dual photon ϕ <strong>of</strong> <strong>the</strong> diagonal <strong>gauge</strong> group. As wediscussed already <strong>in</strong> <strong>the</strong> ABJM case (and we will come back to <strong>the</strong> po<strong>in</strong>t at length <strong>in</strong>Chapter 13), this U(1) b corresponds to <strong>the</strong> M-<strong>the</strong>ory circle <strong>in</strong> <strong>the</strong> geometric setup.11.4 A look at proposals for M2-brane <strong>the</strong>oriesIn <strong>the</strong> discussion <strong>of</strong> <strong>the</strong> previous section, we did not assume that <strong>the</strong> CS quiver had awell def<strong>in</strong>ed “parent quiver” <strong>in</strong> 3+1 dimension. In 3+1 dimensions, <strong>the</strong>re are variousconsistency conditions that a quiver has to satisfy <strong>in</strong> order to describe D3-<strong>branes</strong> at as<strong>in</strong>gularity, see e.g. [72]. One such condition is cancellation <strong>of</strong> <strong>gauge</strong> anomalies, whichrestricts <strong>the</strong> allowed matter content. Ano<strong>the</strong>r condition is that <strong>the</strong> quiver <strong>the</strong>ory shouldflow to a superconformal fixed po<strong>in</strong>t <strong>in</strong> <strong>the</strong> IR; basically this restrict <strong>the</strong> field content sothat <strong>the</strong> number <strong>of</strong> color and flavor <strong>in</strong> each node is <strong>in</strong> <strong>the</strong> Seiberg conformal w<strong>in</strong>dow (seeAppendix C). In 2+1 dimensions, none <strong>of</strong> <strong>the</strong>se restrictions are necessary: <strong>the</strong>re is nocont<strong>in</strong>uous anomaly and almost any matter content is believed to lead to a SCFT <strong>in</strong> <strong>the</strong><strong>in</strong>frared.In <strong>the</strong> absence <strong>of</strong> a clear understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> l<strong>in</strong>k between M2-<strong>branes</strong> and quivers,this lead to <strong>the</strong> study <strong>of</strong> many proposals for M2-brane <strong>the</strong>ories [244, 245, 251, 252, 253,259, 260, 261, 262, 263, 258, 264, 199, 265, 266, 267, 272]. The ma<strong>in</strong> tool to constructsuch <strong>the</strong>ories is that <strong>the</strong>ir moduli space reproduces <strong>the</strong> expected CY 4 geometry, and thatone can understand <strong>the</strong> partial resolution from one s<strong>in</strong>gularity to ano<strong>the</strong>r one as Higgs<strong>in</strong>g<strong>in</strong> <strong>the</strong> quiver, much like <strong>in</strong> 3+1 dimensions [262, 264, 271].It is fair to say that most <strong>of</strong> <strong>the</strong> studies <strong>of</strong> such quivers <strong>in</strong> <strong>the</strong> litterature consider <strong>the</strong><strong>gauge</strong> <strong>the</strong>ory at <strong>the</strong> classical level only. This <strong>of</strong>ten implies tak<strong>in</strong>g a large k (CS levels)limit, even though <strong>in</strong> general <strong>the</strong> anomalous dimensions are large and <strong>the</strong>re really doesnot exist any weak coupl<strong>in</strong>g limit.11.4.1 Brane til<strong>in</strong>gs with multiple boundsOfparticular<strong>in</strong>teresttousisanewk<strong>in</strong>d<strong>of</strong>branetil<strong>in</strong>gwhichisnotobviously<strong>in</strong>consistent<strong>in</strong> 2+1 dimensions: <strong>the</strong> so-called mutiple bounds brane til<strong>in</strong>gs. These are til<strong>in</strong>gs <strong>in</strong> whicha white and a black node are connected by two or more edges (an example with doublebounds is shown <strong>in</strong> Figure 11.3(a)).The associated quiver has <strong>gauge</strong> groups with only one arrow enter<strong>in</strong>g and one arrowleav<strong>in</strong>g; <strong>in</strong> 3+1 dimensions this corresponds to N = 1 SQCD with N f = N c , whichis certa<strong>in</strong>ly not conformal, and this is why such til<strong>in</strong>gs never appear when consider<strong>in</strong>gD3-<strong>branes</strong> at CY 3 s<strong>in</strong>gularities.A particular property <strong>of</strong> such til<strong>in</strong>gs is that <strong>the</strong>re are several perfect match<strong>in</strong>gs whichhave <strong>the</strong> same slopes (h x ,h y ), but different values <strong>of</strong> h z . Indeed, consider a til<strong>in</strong>g withno multiple bound, and choose some edge X, which is conta<strong>in</strong>ed <strong>in</strong> some number <strong>of</strong>perfect match<strong>in</strong>gs {t X }. We obta<strong>in</strong> a n-tuple bound til<strong>in</strong>g simply by replac<strong>in</strong>g this edge


11.4. A look at proposals for M2-brane <strong>the</strong>ories 185(a) Quiver.(b) 3d Toric diagram fork = 1.(c) Brane til<strong>in</strong>g.Figure 11.3: Brane til<strong>in</strong>g, quiver and toric diagram <strong>of</strong> <strong>the</strong> Q 1,1,1 model <strong>of</strong> [259]. Notice <strong>the</strong> twodouble-bounds <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g. The superpotential is W = −ǫ ij A 1 C 1 B i C 2 A 2 B j .X by n edges C 1 ,··· ,C n . For any perfect match<strong>in</strong>g p X <strong>of</strong> <strong>the</strong> s<strong>in</strong>gle bound quiver <strong>the</strong>reare n perfect match<strong>in</strong>gs <strong>in</strong> this new til<strong>in</strong>g. For a generic assignment <strong>of</strong> <strong>the</strong> weights n αto <strong>the</strong> new edges C α , we have n − 1 new po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> toric diagram, with coord<strong>in</strong>ates(h x ,h y ,h z ), but with <strong>the</strong> particular property that <strong>the</strong>y all project to <strong>the</strong> same po<strong>in</strong>t(h x ,h y ) when z = 0. This means that <strong>in</strong> general <strong>the</strong> toric diagram conta<strong>in</strong>s a l<strong>in</strong>e <strong>of</strong> h+1external po<strong>in</strong>ts (where h depends on <strong>the</strong> choice <strong>of</strong> n α ). This corresponds to a complexcodimension 2 s<strong>in</strong>gularity, which is locally C 2 ×C 2 /Z h . A difficulty with <strong>the</strong> <strong>in</strong>tepretation<strong>of</strong> <strong>the</strong> multiple bound <strong>the</strong>ories as M2-brane <strong>the</strong>ories is that <strong>the</strong>y do not seem to accountfor such a non-isolated s<strong>in</strong>gularity: <strong>the</strong>re are extra modes with SU(h) <strong>gauge</strong> symmetrylocalized at <strong>the</strong> s<strong>in</strong>gularity <strong>in</strong> M-<strong>the</strong>ory (or h D6-<strong>branes</strong> <strong>in</strong> a type IIA reduction), whichare not seen <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory.In Chapter 13 we will present an alternate description <strong>of</strong> <strong>the</strong> same geometries withcodimension 2 s<strong>in</strong>gularities. It might be that <strong>the</strong> multiple bound <strong>the</strong>ories are somewhatdual to <strong>the</strong> <strong>the</strong>ories <strong>of</strong> Chapter 13. Ano<strong>the</strong>r possibility is that <strong>the</strong> multiple bounds<strong>the</strong>ories are actually <strong>in</strong>consistent (<strong>the</strong>y do not describe M2-<strong>branes</strong>).Example: a double-bound til<strong>in</strong>g for Q 1,1,1 .An <strong>in</strong>terest<strong>in</strong>g example is <strong>the</strong> CS quiver proposed <strong>in</strong> [259] as a candidate for <strong>the</strong>description <strong>of</strong> M2-<strong>branes</strong> on <strong>the</strong> C(Q 1,1,1 ) s<strong>in</strong>gularity. This CS quiver <strong>the</strong>ory was fur<strong>the</strong>rstudied <strong>in</strong> [262, 273]. The Sasaski-E<strong>in</strong>ste<strong>in</strong> seven manifold Q 1,1,1 is a homogenous space(SU(2) × SU(2) × SU(2))/U(1) 2 , and it can also be seen as a regular circle fibration<strong>of</strong> CP 1 × CP 1 × CP 1 . For <strong>the</strong>se reasons it is a nice space to study, much like <strong>the</strong> fivedimensional T 1,1 <strong>in</strong> type IIB.The brane til<strong>in</strong>g is shown <strong>in</strong> Figure 11.3(a). It can be obta<strong>in</strong>ed from <strong>the</strong> conifoldtil<strong>in</strong>g by doubl<strong>in</strong>g both edges A 1 and A 2 (compare to Figure 3.3(b) <strong>in</strong> Chapter 3), asA 1 → A 1 ,C 1 , A 2 → C 2 ,A 2 . (11.51)The quiver is <strong>the</strong> one <strong>of</strong> Figure 11.3(c), with CS levels (k,k,−k,−k) and sextic superpotentialW = A 1 C 1 B 2 C 2 A 2 B 1 −A 1 C 1 B 1 C 2 A 2 B 2 . (11.52)


186 Chapter 11. The ABJM <strong>the</strong>ory and Chern-Simons quiversThe permanent <strong>of</strong> <strong>the</strong> Kasteleyn matrix ispermK = A x + A 2 y + B 1 + B 2 xy + C 1 xz −k + C 2 yz k . (11.53)Fromthiswecanread<strong>the</strong>toricdiagram<strong>of</strong>Q 1,1,1 /Z k , shown<strong>in</strong>Fig. 11.3(b). Inthissimplecase, each perfect match<strong>in</strong>g corresponds to a s<strong>in</strong>gle field s<strong>in</strong>ce <strong>the</strong> Abelian superpotentialvanishes. The geometric branch <strong>of</strong> <strong>the</strong> moduli space is described by <strong>the</strong> GLSMA 1 A 2 B 1 B 2 C 1 C 2U(1) B1 1 1 −1 −1 0 0U(1) B2 0 0 1 1 −1 −1Z k −1 0 0 0 1 0(11.54)The last l<strong>in</strong>e keeps track <strong>of</strong> <strong>the</strong> charge <strong>of</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ates under <strong>the</strong> Z k ⊂U(1) b by which we have to quotient C(Q 1,1,1 ):(A 1 ,A 2 ,B 1 ,B 2 ,C 1 ,C 2 ) ∼ (e −2πi k A1 ,A 2 ,B 1 ,B 2 ,e 2πik C1 ,C 2 ). (11.55)We see that <strong>the</strong> quotient breaks <strong>the</strong> SU(2) 3 isometry <strong>of</strong> Q 1,1,1 to SU(2). At k = 1we expect an enhanced symmetry due to <strong>the</strong> monopole operators. Indeed, by us<strong>in</strong>g <strong>the</strong>diagonal monopoles operators T, ˜T which have magnetic flux ±1 along U(1)D , we canform <strong>the</strong> SU(2) doublets(A 1 ,TA 2 ), (B 1 ,B 2 ), (C 1 , ˜TC 2 ), (11.56)which allows to restore <strong>the</strong> larger SU(2)×SU(2)×SU(2) symmetry. For k > 1, <strong>the</strong>re isa column <strong>of</strong> k po<strong>in</strong>ts below A 1 , and similarly above A 2 . This corresponds to <strong>the</strong> fact that<strong>the</strong>Z k action(11.55)hasalocus<strong>of</strong>fixedpo<strong>in</strong>ts, consist<strong>in</strong>g<strong>of</strong>twobranches{A 1 = C 1 = 0}and {A 2 = C 2 = 0}. The topology <strong>of</strong> each <strong>of</strong> <strong>the</strong>se branches is C 2 .In <strong>the</strong> next Chapter we will obta<strong>in</strong> a better str<strong>in</strong>g <strong>the</strong>ory understand<strong>in</strong>g <strong>of</strong> N = 2Chern-Simons quivers related to M2-brane <strong>the</strong>ories, at least <strong>in</strong> <strong>the</strong> toric case. At <strong>the</strong> time<strong>of</strong> writ<strong>in</strong>g, <strong>the</strong> status <strong>of</strong> <strong>the</strong> multiple-bounds brane til<strong>in</strong>gs <strong>in</strong> that overall picture is stillproblematic, s<strong>in</strong>ce it is not known how or whe<strong>the</strong>r one can obta<strong>in</strong> <strong>the</strong>m by some str<strong>in</strong>gyduality from better established <strong>the</strong>ories.


Chapter 12Chern-Simons quivers fromstr<strong>in</strong>gy dualitiesGiven <strong>the</strong> construction <strong>of</strong> Chern-Simons quivers reviewed <strong>in</strong> <strong>the</strong> last chapter, it isnatural to wonder why does <strong>the</strong> quiver structure appear at all. After all, quivers areuseful tools to describe D-<strong>branes</strong>, but it is not a priori clear that M2-<strong>branes</strong> shouldbehave similarly. For <strong>in</strong>stance, it is known that M2-<strong>branes</strong> <strong>the</strong>ories do not behave like D-brane <strong>the</strong>ories upon orbifold<strong>in</strong>g [214, 274]: <strong>the</strong> Douglas-Moore [39] orbifold<strong>in</strong>g procedure(see Chapter 3) on a M2-brane quiver for a space X does not lead to a quiver for M2-<strong>branes</strong> on X/Γ.In this Chapter we expla<strong>in</strong> <strong>the</strong> present understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> relation between M2-<strong>branes</strong> and quivers. This understand<strong>in</strong>g is always through some str<strong>in</strong>g <strong>the</strong>ory duality.In <strong>the</strong> first section we expla<strong>in</strong> how <strong>the</strong> ABJM <strong>the</strong>ory and some N = 3 supersymmetricgeneralizations can be obta<strong>in</strong>ed from a type IIB brane setup. In <strong>the</strong> second section, weexpla<strong>in</strong> an <strong>in</strong>terest<strong>in</strong>g generalization <strong>of</strong> <strong>the</strong> ABJM quiver which naturally arises fromthis type IIB understand<strong>in</strong>g: we consider add<strong>in</strong>g flavors (fields <strong>in</strong> <strong>the</strong> fundamental/antifundamentalrepresentation) to <strong>the</strong> ABJM quiver. This prepares <strong>the</strong> ground for <strong>the</strong>understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> next Chapter.In <strong>the</strong> last section we will consider a different understand<strong>in</strong>g <strong>of</strong> Chern-Simons quiver,which comes about through <strong>the</strong> type IIA/M-<strong>the</strong>ory duality. Part <strong>of</strong> that section is basedon our paper [3], written <strong>in</strong> collaboration with Stefano Cremonesi and Francesco Ben<strong>in</strong>i.12.1 Fivebrane systems, M-<strong>the</strong>ory/type IIB duality andABJMIn <strong>the</strong> orig<strong>in</strong>al paper [202] <strong>the</strong> relation between <strong>the</strong> CS quiver <strong>the</strong>ory and M2-<strong>branes</strong> onC 4 /Z k was given a nice str<strong>in</strong>g <strong>the</strong>ory derivation through an <strong>in</strong>terest<strong>in</strong>g Hanany-Wittensetup <strong>in</strong> type IIB. This brane setup eng<strong>in</strong>eers a YM-CS-matter <strong>the</strong>ory which flows to <strong>the</strong>CS-matter ABJM <strong>the</strong>ory <strong>in</strong> <strong>the</strong> IR.Consider type IIB str<strong>in</strong>g <strong>the</strong>ory. Take two NS5-<strong>branes</strong> on a circle with coord<strong>in</strong>ate x 6and N D3-<strong>branes</strong> wrapp<strong>in</strong>g this circle. Let us put <strong>the</strong> NS5-brane at x 6 = 0 and <strong>the</strong> NS5’at x 6 = πR 6 (assum<strong>in</strong>g x 6 ∼ x 6 +2πR 6 ). This is T-dual to D2-<strong>branes</strong> on C×C 2 /Z 2 ×R187


188 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualities(a) Intermediate HW construction forABJM.(b) Intermediate quiver with flavors<strong>in</strong><strong>the</strong>ABJMconstruction, <strong>in</strong>N = 2notation.Figure 12.1: Intermediate step <strong>in</strong> <strong>the</strong> fivebrane construction <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory. We show both<strong>the</strong> <strong>branes</strong> and <strong>the</strong> low energy quiver which lives on <strong>the</strong> D3-<strong>branes</strong>. The boxes represent <strong>the</strong> U(k)flavor groups liv<strong>in</strong>g on <strong>the</strong> stack <strong>of</strong> D5-<strong>branes</strong>. There are two <strong>in</strong>dependent flavor groups because<strong>the</strong> D5-<strong>branes</strong> can break <strong>in</strong> two halves on <strong>the</strong> NS5-brane.<strong>in</strong> type IIA, similarly to <strong>the</strong> discussion <strong>of</strong> Section 3.4 <strong>in</strong> Chapter 3. The low energy <strong>the</strong>oryis <strong>the</strong> C×C 2 /Z 2 quiver with Yang-Mills terms and no CS levels. It has N = 4 SUSY, aswell as an explicit R-symmetry SO(4) R∼ = SO(3)×SO(3) which corresponds to rotations<strong>in</strong> (x 3 ,x 4 ,x 5 ) and (x 7 ,x 8 ,x 9 ) (see (12.1 below)). To <strong>in</strong>troduce Chern-Simons levels, wehave to replace one <strong>of</strong> <strong>the</strong> NS5-<strong>branes</strong> by a (1,k)-fivebrane [275, 276]. An <strong>in</strong>terest<strong>in</strong>g wayto see this is given <strong>in</strong> [276, 202]. Let us add k D5-<strong>branes</strong> to <strong>the</strong> setup, as follows:0 1 2 3 4 5 6 7 8 9N D3 ◦ ◦ ◦ ◦NS5, NS5’ ◦ ◦ ◦ ◦ ◦ ◦k D5 ◦ ◦ ◦ ◦ ◦ ◦(12.1)and such that <strong>the</strong> D5- and <strong>the</strong> NS5-brane <strong>in</strong>tersect at x 6 = x 7 = x 8 = 0. This breaks<strong>the</strong> supersymmetry to N = 2 <strong>in</strong> <strong>the</strong> 2 + 1 dimensional low energy <strong>the</strong>ory on <strong>the</strong> D3-<strong>branes</strong>. The effect <strong>of</strong> <strong>the</strong> D5-<strong>branes</strong> is to add N = 2 massless flavors <strong>in</strong> <strong>the</strong> <strong>the</strong>ory, asdepicted <strong>in</strong> Fig. 12.1(b). The flavor group is U(k)×U(k), correspond<strong>in</strong>g to <strong>the</strong> fact that<strong>the</strong> D5-<strong>branes</strong> might break on <strong>the</strong> NS5-brane. These flavors give us a way to generatea Chern-Simons term, because <strong>in</strong> 2 + 1 dimensions <strong>in</strong>tegrat<strong>in</strong>g out charged fermionscan generate such a term <strong>in</strong> <strong>the</strong> effective action [277, 278]. This is due to a one-loopcontribution <strong>of</strong> <strong>the</strong> form 1N f2∫d 3 (q(2π) 3 A µ(−p)tr γ µγρ (p ρ +q ρ )+im(p+q) 2 +m 2 γ ν γ σ )p σ +im(p+q) 2 +m 2 A ν (p), (12.2)with N f <strong>the</strong> number <strong>of</strong> Dirac fermions (all <strong>of</strong> mass m), and <strong>the</strong> trace is over fermionic <strong>in</strong>dices.TheChern-Simonstermorig<strong>in</strong>atesfrom<strong>the</strong>contributionproportionaltotr(γ µ γ ν γ ρ ) =2ǫ µνρ . For N f massive Dirac fermions <strong>in</strong> <strong>the</strong> fundamental or anti-fundamental represen-1 We write <strong>the</strong> formula for <strong>the</strong> Abelian case, for simplicity.


12.1. Fivebrane systems, M-<strong>the</strong>ory/type IIB duality and ABJM 189(a) NS5- and D5-<strong>branes</strong> <strong>in</strong>tersect<strong>in</strong>g.(b) Web deformation.Figure 12.2: Web deformation <strong>of</strong> <strong>the</strong> NS5-/D5-brane <strong>in</strong>tersection. The D3 <strong>branes</strong> <strong>in</strong>tersect <strong>the</strong>(1,k)-fivebrane <strong>in</strong> <strong>the</strong> middle.tation <strong>of</strong> U(N), <strong>the</strong> CS level <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group is shifted byk → N f2m, when |m| → ∞. (12.3)|m|This effects is possible <strong>in</strong> a N = 2 supersymmetric <strong>the</strong>ory because <strong>in</strong> 2+1 dimensions onecan give a real real mass to a chiral multiplet X through <strong>the</strong> Lagrangian term [219, 217]∫d 4 θX † e˜2imθ¯θX. (12.4)This term conta<strong>in</strong>s a real mass term im¯ψψ for <strong>the</strong> Dirac fermion <strong>in</strong> <strong>the</strong> chiral multiplet.It also breaks parity, like <strong>the</strong> Chern-Simons term generated <strong>in</strong> <strong>the</strong> IR effective <strong>the</strong>ory. Inour case, we can give real masses to ψ q and ψ p . Let us choose∫d 4 θ(−p † 1 e2imθ¯θp 1 −q † 2 e−2imθ¯θq 2 −q † 1 e2i˜mθ¯θq 1 −p † 1 e−2i˜mθ¯θp 2 ). (12.5)Tak<strong>in</strong>gm = −˜m(vectormass)correspondstomov<strong>in</strong>g<strong>the</strong>D5-branealong<strong>the</strong>x 5 direction(equivalently one could give a VEV σ = m = −˜m to <strong>the</strong> scalar <strong>in</strong> <strong>the</strong> N = 2 vectormultiplet). We are ra<strong>the</strong>r <strong>in</strong>terested <strong>in</strong> <strong>the</strong> mass deformation with m = ˜m = m A , <strong>the</strong>so-called axial mass. In that case <strong>the</strong> fermion mass terms areim A (¯ψ p1 ψ p1 + ¯ψ q1 ψ q1 − ¯ψ p2 ψ p2 − ¯ψ q2 ψ q2 ). (12.6)Integrat<strong>in</strong>g out all <strong>the</strong> fermions, we obta<strong>in</strong> Chern-Simons levels k and −k for <strong>the</strong> two<strong>gauge</strong> groups. In <strong>the</strong> brane picture, <strong>the</strong> axial mass corresponds to a web-deformation <strong>of</strong><strong>the</strong> five<strong>branes</strong> [279], as shown <strong>in</strong> Figure 12.2. This effect is possible because <strong>the</strong> D5-branecan break <strong>in</strong>to two halves on <strong>the</strong> NS5, each half be<strong>in</strong>g a localized source for <strong>the</strong> scalarφ 9 ∼ x 9 on <strong>the</strong> NS5-brane. The pr<strong>of</strong>ile <strong>of</strong> <strong>the</strong> NS5-brane <strong>in</strong> (x 5 ,x 9 ) is given by <strong>the</strong>solution to a 1-dimensional Laplace equation [279]∂ 2 5φ 7 (x 5 ) ∼ g s2 {kδ(x5 −2πα ′ m A ) −kδ(x 5 +2πα ′ m A )}, (12.7)


190 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualities(a) N = 3 brane setup.(b) Elliptic CS-quiver.Figure 12.3: N = 3 brane setup and <strong>the</strong> correspond<strong>in</strong>g elliptic CS-quiver.which gives Figure 12.2(b). The brane stretch<strong>in</strong>g at angle must be a (1,k)-fivebranebound state, because <strong>of</strong> flux conservation. The angle θ between <strong>the</strong> NS5- and <strong>the</strong> (1,k)is fixed by N = 2 supersymmetry <strong>in</strong> term <strong>of</strong> <strong>the</strong> type IIB axio-dilaton; when C 0 = 0, wehave tanθ = g s k, as follows from (12.7). Send<strong>in</strong>g m A → ∞, we are left with only <strong>the</strong>(1,k)-fivebrane, toege<strong>the</strong>r with <strong>the</strong> rema<strong>in</strong><strong>in</strong>g NS5’-brane. The low energy <strong>the</strong>ory is <strong>the</strong>C×C 2 /Z 2 quiver with N = 2 Chern-Simons terms. We can obta<strong>in</strong> a N = 3 <strong>the</strong>ory byadd<strong>in</strong>g a mass term m = ±k/8π for <strong>the</strong> complex adjo<strong>in</strong>t chiral superfields Φ 1 , Φ 2 , whichis <strong>the</strong> N = 3 completion <strong>of</strong> <strong>the</strong> Chern-Simons <strong>in</strong>teraction (we already encountered it at<strong>the</strong> end <strong>of</strong> Chapter 9). This corresponds to a rotation <strong>of</strong> <strong>the</strong> NS5’-brane by a angle θ <strong>in</strong>both <strong>the</strong> planes (x 3 ,x 7 ) and (x 4 ,x 8 ). Thus we have reconstructed <strong>the</strong> Yang-Mills-Chern-Simons UV completion <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory from a type IIB brane setup.This N = 3 brane setup has a simple M-<strong>the</strong>ory dual, which is obta<strong>in</strong>ed by T-dualiz<strong>in</strong>galong x 6 and fur<strong>the</strong>r uplift<strong>in</strong>g to M-<strong>the</strong>ory. In fact <strong>the</strong> hyper-Kähler metric <strong>of</strong> <strong>the</strong> dualM-<strong>the</strong>ory geometry is precisely known [280], <strong>in</strong> term <strong>of</strong> a U(1) 2 fibration over R 6 . TheD3-<strong>branes</strong> are simply M2-<strong>branes</strong> on that geometry. These hyper-Kähler spaces are <strong>in</strong>terest<strong>in</strong>g8dimensionalgeneralizations<strong>of</strong>amulti-Taub-NUT.TheIRlimiton<strong>the</strong>M2-<strong>branes</strong>amounts to zoom<strong>in</strong>g on <strong>the</strong> orig<strong>in</strong> <strong>of</strong> <strong>the</strong> geometry, which has <strong>the</strong> effect <strong>of</strong> wash<strong>in</strong>g out<strong>the</strong> effect <strong>of</strong> <strong>the</strong> Taub-NUT-like structure (<strong>the</strong> topology R 6 × S 1 × S 1 at <strong>in</strong>f<strong>in</strong>ity) andleav<strong>in</strong>g us with a conical s<strong>in</strong>gularity at <strong>the</strong> orig<strong>in</strong>.Here we are simply <strong>in</strong>terested <strong>in</strong> <strong>the</strong> complex structure <strong>of</strong> such geometries, with <strong>the</strong>implicit understand<strong>in</strong>g that we perform <strong>the</strong> above near-horizon limit, so that we obta<strong>in</strong>a conical hyper-Kähler metric. In <strong>the</strong> case <strong>of</strong> ABJM, <strong>the</strong> complex structure is C 4 /Z k . In<strong>the</strong> low energy <strong>the</strong>ory only <strong>the</strong> Chern-Simons <strong>in</strong>teractions rema<strong>in</strong>.12.1.1 N = 3 generalizationsThis fivebrane realization <strong>of</strong> ABJM is easily generalized to a family <strong>of</strong> N = 3 quiver-Chern-Simons <strong>the</strong>ories [281, 282], <strong>the</strong> so-called elliptic quivers. The brane configurationconsists <strong>of</strong> G five<strong>branes</strong> along a circle, as shown <strong>in</strong> Figure 12.3(a). The i-th brane has


12.1. Fivebrane systems, M-<strong>the</strong>ory/type IIB duality and ABJM 191charge (1,q i ), and it spans <strong>the</strong> directions:0 1 2 6 [3,7] [4,8] [5,9](1,q i )-brane ◦ ◦ ◦ θ i / θ i / θ i /N D3 ◦ ◦ ◦ ◦(12.8)In this table we also <strong>in</strong>cluded N D3-<strong>branes</strong> along x 6 . The orientation angle θ i <strong>in</strong> eachplane (x i ,x i+4 ) is such that tanθ i = q i (for τ = i). The quiver (Fig. 12.3(b)) is made <strong>of</strong>G <strong>gauge</strong> groups connected through a s<strong>in</strong>gle loop. The Lagrangian is similar to <strong>the</strong> one <strong>of</strong>(11.1), with <strong>the</strong> N = 3 superpotentialW =G∑i=12πk i(A i B i −B i−1 A i−1 ) 2 . (12.9)The Chern-Simons levels (k 1 ,··· ,k G ) are determ<strong>in</strong>ed <strong>in</strong> term <strong>of</strong> <strong>the</strong> fivebrane charges,k i = q i −q i−1 , ⇔ q i = ∑ ij=1 k j . (12.10)Note that a transformation which shifs all <strong>the</strong> q’s by a constant does not affect <strong>the</strong> CSlevels. We can choose <strong>the</strong> last fivebrane (i = G) to be a NS5-brane (by perform<strong>in</strong>g aSl(2,Z) transformation τ → 1/(1−q G τ)).12.1.2 Moduli space and hyper-toric geometryIn [282], it was shown that <strong>the</strong> moduli space <strong>of</strong> this N = 3 quiver is a hyper-toric variety.Letusbrieflyexpla<strong>in</strong>thisgeometricconstruction. Hypertoricgeometryisageneralization<strong>of</strong><strong>the</strong>Kählerapproachtotoricgeometry, jump<strong>in</strong>gfrom<strong>the</strong>fieldCtoH(<strong>the</strong>quaternions).A nice account is provided <strong>in</strong> [283]. A hypertoric variety is a 4n–real-dimensional varietyadmitt<strong>in</strong>g a (C ∗ ) n torus action (much like a 2n-real-dimensional toric variety does), whichis hyper-Kähler (i.e. admits 3 complex structures satisfy<strong>in</strong>g <strong>the</strong> quaternion algebra). 2Let us def<strong>in</strong>e a set <strong>of</strong> d vectors (u i ) <strong>in</strong> a lattice N ∼ = Z n , def<strong>in</strong><strong>in</strong>g a l<strong>in</strong>ear mapβ ≡ (u 1 ,···u d ) : R d → R n (12.11)and def<strong>in</strong>e <strong>the</strong> charge covectors (Q 1 ,···Q d−n ) as spann<strong>in</strong>g <strong>the</strong> kernel <strong>of</strong> β. Then <strong>the</strong>variety M(u,λ) is def<strong>in</strong>ed as <strong>the</strong> hyper-Kähler quotientM(u,λ) = H d ///G, (12.12)with G = kerβ. Here λ stands for hyper-Kähler parameters. Choos<strong>in</strong>g one <strong>of</strong> <strong>the</strong> 3complex structures, one can split each quaternion variable h as h = (z,w) ∈ C 2 . Thetorus C ∗ acts on h ast·h = (tz,t −1 w) (12.13)2 We see that, confus<strong>in</strong>gly, a hyper-toric variety is generally not toric, s<strong>in</strong>ce <strong>the</strong> typical isometry <strong>of</strong> ahyper-toric variety <strong>of</strong> complex dimension 2n is U(1) n <strong>in</strong>stead <strong>of</strong> U(1) 2n .


192 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualitiesHence, we have H n ∼ = (z i ,w i ). The quotient is taken by def<strong>in</strong><strong>in</strong>g a triplet <strong>of</strong> momentmapsµ R a = 1 ∑Q i2a(|zi | 2 −|w i | 2) , (12.14)µ C a = ∑ iiQ i az i w i . (12.15)for each U(1) a , a = 1,···d−n and sett<strong>in</strong>gµ R a = λ R a, µ C a = λ C a. (12.16)where <strong>the</strong> constants λ are <strong>the</strong> hyper-Kähler parameters. To obta<strong>in</strong> a cone, we need toset λ = 0. Then, we quotient by <strong>the</strong> U(1) d−n <strong>gauge</strong> symmetry. There is an importantsubtlety, much like for <strong>the</strong> toric case, <strong>in</strong> def<strong>in</strong><strong>in</strong>g kerβ. If (u) only generate a sublatticeN ′ <strong>of</strong> N, <strong>the</strong>n we have to quotient also by <strong>the</strong> discrete group Γ = N/N ′ :G = U(1) d−n ×Γ. (12.17)In our case, we set n = 2, so that <strong>the</strong> space is eight dimensional. The hyper-toricvariety M(u,λ) is <strong>the</strong>n def<strong>in</strong>ed by a set <strong>of</strong> d = G <strong>in</strong>teger vectors on <strong>the</strong> plane. Inthat case, <strong>the</strong> Theorem (4.1) <strong>of</strong> [283] says that M(u,0) is <strong>the</strong> Riemannian cone overa compact 3-Sasakian manifold if and only if: (i) every subset <strong>of</strong> two vectors <strong>in</strong> (u) isl<strong>in</strong>early <strong>in</strong>dependant and (ii) every s<strong>in</strong>gle vector <strong>in</strong> (u) is a part <strong>of</strong> a Z-basis <strong>of</strong> Z 2 .If condition (ii) <strong>of</strong> <strong>the</strong> <strong>the</strong>orem does not hold, but <strong>in</strong>stead one generates a sublattice<strong>of</strong> Z 2 , <strong>the</strong> hyper-Kähler cone has non-isolated quotient s<strong>in</strong>gularities.The crucial observation <strong>of</strong> [282] is that <strong>the</strong> metric β <strong>of</strong> vectors <strong>in</strong> <strong>the</strong> hyper-toric fancorresponds to <strong>the</strong> charges <strong>of</strong> <strong>the</strong> (p,q) <strong>branes</strong> <strong>in</strong> <strong>the</strong> type IIB setup. For <strong>the</strong> setup <strong>of</strong>Fig. 12.3(a), we have( ) 1 1 ··· 1 1β = (u 1 ,···u G ) =. (12.18)q 1 q 2 ··· q G−1 0This characterization <strong>of</strong> <strong>the</strong> moduli space <strong>in</strong> term <strong>of</strong> <strong>the</strong> hyper-Kähler quotient (12.12)allows to use many known ma<strong>the</strong>matical results to study <strong>the</strong> associated AdS/CFT correspondance.It also suggests <strong>in</strong>terest<strong>in</strong>g generalizations, to which we now turn.12.2 N = 3 Flavors <strong>in</strong> ABJM: <strong>the</strong> Gaiotto-Jafferis constructionThe generic hyper-toric geometry characterized by( )p1 pβ = 2 ··· p dq 1 q 2 ··· q d(12.19)can be realized as a type IIB setup <strong>in</strong>volv<strong>in</strong>g (p,q) <strong>branes</strong> [280]. However, we have almostno understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> field <strong>the</strong>ory on D3-<strong>branes</strong> suspended between arbitrary (p,q)-<strong>branes</strong>, so we cannot use that construction to study explicit <strong>in</strong>stances <strong>of</strong> <strong>the</strong> AdS 4 /CFT 3<strong>correspondence</strong>.


12.2. N = 3 Flavors <strong>in</strong> ABJM: <strong>the</strong> Gaiotto-Jafferis construction 193(a) N = 3 brane setup.(b) CS-quiver with a s<strong>in</strong>gle vector-likeflavor.Figure 12.4: The Gaiotto-Jafferis N = 3 brane setup and <strong>the</strong> correspond<strong>in</strong>g CS-quiver withflavors.There is however one case which we understand very well, which is simply <strong>the</strong> case <strong>of</strong>D3-<strong>branes</strong> <strong>in</strong>tersect<strong>in</strong>g (0,1)-five<strong>branes</strong> (D5-<strong>branes</strong>) [54]. A D5-brane <strong>in</strong>tersect<strong>in</strong>g a stack<strong>of</strong> D3-<strong>branes</strong> <strong>in</strong>troduces fields <strong>in</strong> <strong>the</strong> fundamental and antifundamental representation <strong>of</strong><strong>the</strong> U(N) <strong>gauge</strong> group on <strong>the</strong> D3-<strong>branes</strong>, also called flavors. Let us consider <strong>in</strong> detail anexample with( ) 1 1 0β = . (12.20)k 0 1This corresponds to add<strong>in</strong>g a s<strong>in</strong>gle D5-brane to <strong>the</strong> ABJM setup, <strong>in</strong> between <strong>the</strong> NS5’-and <strong>the</strong> (1,k)5-brane, for <strong>in</strong>stance. The brane construction and <strong>the</strong> N = 3 quiver withflavors are shown <strong>in</strong> Fig. 12.4. The base <strong>of</strong> <strong>the</strong> cone characterized by (12.20) is a smoothZ k orbifold<strong>of</strong>aspacecalledN 0,1,0 , whichwaswellstudied<strong>in</strong><strong>the</strong>str<strong>in</strong>g<strong>the</strong>orycontext, for<strong>in</strong>stance <strong>in</strong> [284] <strong>in</strong> <strong>the</strong> early days <strong>of</strong> <strong>the</strong> AdS/CFT correspondance. It is a homogenousspace <strong>of</strong> <strong>the</strong> form SU(3)/U(1), with isometry group SU(3)×SU(2).In <strong>the</strong> follow<strong>in</strong>g, we will construct this space as a aff<strong>in</strong>e variety, and show how thisgeometry is reproduced by <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> flavored quiver (when k = 1, although<strong>the</strong> generalization is straigtforward), follow<strong>in</strong>g Gaiotto and Jafferis [285]. We use N = 2supersymmetricnotationsbecausewewillgeneralizethisk<strong>in</strong>d<strong>of</strong>analysistoN = 2models<strong>in</strong> <strong>the</strong> next chapter. Note that N = 3 flavors were also studied <strong>in</strong> [286, 287].12.2.1 The N 0,1,0 space as an algebraic varietyLet us consider <strong>the</strong> geometry characterized by <strong>the</strong> hyper-toric fan (12.20) with k = 1. Itis <strong>the</strong> cone over N 0,1,0 , whose resolution is <strong>the</strong> cotangent bundle T ∗ CP 2 [283]. To <strong>the</strong>hyper-toric fan, we associate <strong>the</strong> GLSMz 1 z 2 z 3 w 1 w 2 w 3U(1) 1 −1 k −1 1 −k(12.21)A useful po<strong>in</strong>t <strong>of</strong> view is that <strong>the</strong> GLSM <strong>of</strong> a hyper-toric variety def<strong>in</strong>es a toric variety,and that <strong>the</strong> hyper-toric variety is obta<strong>in</strong>ed by impos<strong>in</strong>g additional “F-terms relations”


194 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualities(12.15). In our example, we have <strong>the</strong> follow<strong>in</strong>g 9 <strong>gauge</strong> <strong>in</strong>variant complex variables:x 0 = z 1 z 2 , x 1 = z 1 w 1 , x 2 = z 1 w 3 ,x 3 = z 3 z 2 , x 4 = z 3 w 1 , x 5 = z 3 w 3 ,x 6 = w 2 z 2 , x 7 = w 2 w 1 , x 8 = w 2 w 3 ,(12.22)and <strong>the</strong> “<strong>in</strong>termediate” 5-complex-dimensional toric variety is def<strong>in</strong>ed byx 0 x 4 −x 1 x 3 = 0, x 0 x 5 −x 2 x 3 = 0, x 0 x 7 −x 1 x 6 = 0,x 0 x 8 −x 2 x 6 = 0, x 1 x 5 −x 2 x 4 = 0, x 1 x 8 −x 2 x 7 = 0,x 3 x 7 −x 4 x 6 = 0, x 3 x 8 −x 5 x 6 = 0, x 4 x 8 −x 5 x 7 = 0,(12.23)Moreover, we have an additional “F-term” condition µ C = 0:x 1 +x 5 −x 6 = 0, (12.24)which allows to elim<strong>in</strong>ate x 5 , say, <strong>in</strong> term <strong>of</strong> <strong>the</strong> o<strong>the</strong>r variables. For k > 1, <strong>the</strong> story issimilar, although more tedious to write down.12.2.2 Recover<strong>in</strong>g N 0,1,0 from <strong>the</strong> quantum chiral r<strong>in</strong>gConsider now <strong>the</strong> <strong>the</strong>ory <strong>of</strong> Figure 12.4. We have <strong>the</strong> chiral superfields fields p and q, <strong>in</strong><strong>the</strong> fundamental and anti-fundamental <strong>of</strong> <strong>the</strong> first <strong>gauge</strong> group, and <strong>the</strong> bifundamentalfields A i , B i as <strong>in</strong> ABJM. The superpotential is fixed by N = 3 supersymmetry,W = 2π k (A 1B 1 −A 2 B 2 +pq) 2 − 2π k (B 2A 2 −B 1 A 1 ) 2 . (12.25)For p = q = 0, it reduces to <strong>the</strong> ABJM superpotential (11.3). The explicitly realizedglobal symmetry isSU(2) R ×SU(2) F ×U(1) B . (12.26)The “baryonic” symmetry U(1) B rotates p and q with opposite charges. When k = 1,SU(2) F is enhanced to SU(3) due to non-perturbative effects, as we will show. We focuson <strong>the</strong> Coulomb branch, for which p = q = 0. We also consider only <strong>the</strong> abelian <strong>the</strong>ory,<strong>in</strong> which case <strong>the</strong>re is no F-term relations. At first sight it is not clear how to recover <strong>the</strong>algebraic construction <strong>of</strong> <strong>the</strong> last subsection from <strong>the</strong> quiver <strong>the</strong>ory with a s<strong>in</strong>gle flavor,s<strong>in</strong>ce it would seem that <strong>the</strong> Coulomb branch is <strong>the</strong> same as <strong>in</strong> ABJM. However, we needto consider more carefully <strong>the</strong> monopole operators. They have <strong>the</strong> same electric chargesas <strong>in</strong> ABJM. However, <strong>the</strong>y now have a non-vanish<strong>in</strong>g R-charge. This follows directlyfrom <strong>the</strong> discussion <strong>of</strong> Chapter 10, equation (10.34). S<strong>in</strong>ce <strong>the</strong> fermions ψ p , ψ q <strong>in</strong> <strong>the</strong>chiral multiplets p, q have R-charge − 1 2(<strong>in</strong> N = 3 <strong>the</strong>ories <strong>the</strong> R-charges are <strong>the</strong> classicalones), <strong>the</strong> <strong>in</strong>duced R-charge <strong>of</strong> <strong>the</strong> monopole operators isR(T (n) ) = − |n|2 (R(ψ p)+R(ψ p )) = |n|2 . (12.27)This means that <strong>the</strong> bare monopole operators operators T, ˜T carry<strong>in</strong>g ±1 units <strong>of</strong> magneticflux along U(1) D have dimension 1 2 , <strong>the</strong> same dimension as <strong>the</strong> chiral field A i, B i .This allows to construct an enhanced SU(3) global symmetry, by form<strong>in</strong>g SU(3) triplets(A 1 ,A 2 ,T), (B 1 ,B 2 , ˜T). (12.28)


12.3. Str<strong>in</strong>gy derivation <strong>of</strong> N = 2 Chern-Simons quivers 195The abelian chiral r<strong>in</strong>g is generated by <strong>the</strong> follow<strong>in</strong>g <strong>gauge</strong> <strong>in</strong>variant operators:X 0 = A 1 B 1 , X 1 = A 1 B 2 , X 2 = A 1˜T,X 3 = TB 1 , X 4 = TB 2 , X 5 = T ˜T, (12.29)X 6 = A 2 B 1 , X 7 = A 2 B 2 , X 8 = A 2˜T,The <strong>correspondence</strong> with <strong>the</strong> hyper-toric description is clear:z 1 z 2 z 3 w 1 w 2 w 3A 1 B 1 T B 2 A 2˜T(12.30)The U(1) <strong>of</strong> <strong>the</strong> <strong>gauge</strong> l<strong>in</strong>ear model (12.21) is <strong>the</strong> U(1) b <strong>of</strong> <strong>the</strong> quiver 3 . To obta<strong>in</strong>C(N 0,1,0 ), <strong>the</strong> crucial relation is <strong>the</strong> F-term relation (12.24). In <strong>the</strong> field <strong>the</strong>ory language,it readsT ˜T = A 2 B 1 −A 1 B 2 . (12.31)This is a completely quantum relation. As expla<strong>in</strong>ed <strong>in</strong> Chapter 10, <strong>the</strong> OPE T ˜T can apriori conta<strong>in</strong> any operator with <strong>the</strong> same quantum numbers. S<strong>in</strong>ce T ˜T has dimension1 and is a s<strong>in</strong>glet under SU(2) F , <strong>the</strong> only possible operator which could have appearedwas ǫ ij A i B j . That it <strong>in</strong>deed appears was argued <strong>in</strong> [285]. In <strong>the</strong> next Chapter we willconjecture a similar OPE <strong>in</strong> a N = 2 setup, allow<strong>in</strong>g us to consider generic flavors <strong>in</strong>N = 2 quivers. Before we do that, we will now <strong>in</strong>troduce ano<strong>the</strong>r str<strong>in</strong>g <strong>the</strong>ory derivation<strong>of</strong> a larger class <strong>of</strong> AdS 4 /CFT 3 dualities.12.3 Str<strong>in</strong>gy derivation <strong>of</strong> N = 2 Chern-Simons quiversFor some <strong>of</strong> <strong>the</strong> N = 2 quivers proposed <strong>in</strong> <strong>the</strong> litterature, such as <strong>the</strong> ones reviewed<strong>in</strong> <strong>the</strong> last chapter, it is not known how or whe<strong>the</strong>r <strong>the</strong>y can be constructed from str<strong>in</strong>g<strong>the</strong>ory. This puts <strong>the</strong> associated AdS 4 /CFT 3 duality conjectures on a less firm groundthan <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> N = 3 quivers <strong>of</strong> this chapter, which do have a clear str<strong>in</strong>g <strong>the</strong>oryderivation <strong>in</strong> term <strong>of</strong> D3- and five<strong>branes</strong>.In this section we review and slightly clarify a type IIA derivation <strong>of</strong> <strong>the</strong> N = 2 Chern-Simons quiver associated to M2-<strong>branes</strong> on any toric Calabi-Yau fourfold s<strong>in</strong>gularity [258].It will provide use with a better understand<strong>in</strong>g as to why M2-brane quivers look like D-brane quivers. This derivation was first explicitly considered by Aganagic [258]. Therelation between <strong>the</strong> CY 4 geometric moduli space <strong>of</strong> a 3d quiver CS <strong>the</strong>ory and <strong>the</strong>CY 3 = CY 4 //U(1) M mesonic moduli space <strong>of</strong> a 4d <strong>gauge</strong> <strong>the</strong>ory with <strong>the</strong> same quiverand superpotential was po<strong>in</strong>ted out before <strong>in</strong> [282, 244, 245].We consider toric Calabi-Yau s<strong>in</strong>gularities only. The basic idea <strong>of</strong> [258] is to write atoric CY 4 cone as l<strong>in</strong>e fibration over a toric Calabi-Yau threefold,C → CY 4 → CY 3 . (12.32)The fibration structure <strong>of</strong> <strong>the</strong> S 1 ⊂ C corresponds to <strong>the</strong> fibration structure <strong>of</strong> <strong>the</strong> M-<strong>the</strong>ory circle. Reduc<strong>in</strong>g along this circle, <strong>the</strong> type IIA setup is <strong>the</strong> CY 3 fibered over a reall<strong>in</strong>e. M2-<strong>branes</strong> become D2-<strong>branes</strong> on <strong>the</strong> CY 3 <strong>in</strong> type IIA, <strong>in</strong> which case we know <strong>the</strong>ir3 Indeed for Chern-Simons level k, <strong>the</strong> U(1) charge <strong>of</strong> <strong>the</strong> monopole operator is ±k, as <strong>in</strong> (12.21).


196 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualitiesassociated quiver very well. Moreover <strong>the</strong> non-trivial fibration leads to Chern-Simons<strong>in</strong>teraction <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory, as we will review.We stress aga<strong>in</strong> that <strong>the</strong>re is generally several ways to choose <strong>the</strong> M-<strong>the</strong>ory circle,correspond<strong>in</strong>g to several different weak str<strong>in</strong>g coupl<strong>in</strong>g limits <strong>of</strong> M-<strong>the</strong>ory.12.3.1 CY 4 as a U(1) fibrationLet us expla<strong>in</strong> how to rewrite a toric CY d-fold as a (possibly s<strong>in</strong>gular) U(1) fibrationover a manifold, which <strong>in</strong> turn is <strong>the</strong> fibration <strong>of</strong> a toric CY (d − 1)-fold along a reall<strong>in</strong>e, with Kähler moduli that vary l<strong>in</strong>early along <strong>the</strong> l<strong>in</strong>e. We beg<strong>in</strong> by follow<strong>in</strong>g <strong>the</strong>exposition <strong>in</strong> [258], but we fur<strong>the</strong>r stress <strong>the</strong> regularity conditions one has to impose on<strong>the</strong> choice <strong>of</strong> fibration structure.Consider a toric CY d-fold, realized as <strong>the</strong> moduli space <strong>of</strong> a <strong>gauge</strong>d l<strong>in</strong>ear sigmamodel(GLSM). There are R+d chiral superfields φ s with s = 1,...,R+d, and R U(1)<strong>gauge</strong> groups with <strong>in</strong>teger charges Q a s (<strong>of</strong> maximal rank) with a = 1,...,R. The CYcondition is ∑ s Qa s = 0 for all a. The number R + d <strong>of</strong> fields can be taken to be equalto <strong>the</strong> number <strong>of</strong> dots <strong>in</strong> <strong>the</strong> (d−1)-dimensional toric diagram. Then <strong>the</strong> charge matrixQ a s encodes <strong>the</strong> R l<strong>in</strong>ear relations ∑ s Qa s⃗v s = 0 between <strong>the</strong> vectors {⃗v s } <strong>in</strong> <strong>the</strong> toric fan.The CY Y d is simply <strong>the</strong> Kähler quotient C R+d //U(1) R , which corresponds to impos<strong>in</strong>g<strong>the</strong> moment map (D-term) equations∑s Qa s |φ s | 2 = r a (12.33)and quotient<strong>in</strong>g by <strong>the</strong> <strong>gauge</strong> groupφ s → e i∑ a λaQa sφ s . (12.34)The moment map (or FI) parameters r a are <strong>the</strong> resolution parameters <strong>of</strong> Y d . We will bema<strong>in</strong>ly <strong>in</strong>terested <strong>in</strong> <strong>the</strong> conical case r a = 0. Moreover, for each a <strong>the</strong> charges Q a s can betaken coprime without loss <strong>of</strong> generality.To exhibit <strong>the</strong> fibered structure, we add <strong>the</strong> complex variable r 0 +iθ 0 and choose aset <strong>of</strong> charges Q 0 s satisfy<strong>in</strong>g <strong>the</strong> CY condition ∑ s Q0 s = 0. Then we impose one moreequation and divide by one more <strong>gauge</strong> symmetry:∑s Q0 s|φ s | 2 = r 0 ; θ 0 → θ 0 +λ , φ s → e iλQ0 sφ s . (12.35)It is easy to check that <strong>the</strong> manifold is <strong>the</strong> same as before: us<strong>in</strong>g (12.35) r 0 can be elim<strong>in</strong>atedwhile θ 0 can be <strong>gauge</strong>d away (without leav<strong>in</strong>g any residual <strong>gauge</strong> transformation).On <strong>the</strong> o<strong>the</strong>r hand, we can fix r 0 and th<strong>in</strong>k <strong>of</strong> θ 0 as a U(1) fibration. The basemanifold Y d−1 is <strong>the</strong>n <strong>the</strong> Kähler quotient C R+d //U(1) R+1 :∑∑s Q0 s|φ s | 2 = r 0 ,s Qa s |φ s | 2 = r a ∀a = 1,...,R , (12.36)modded out byφ s → e iλQ0 s + i ∑ a λaQa sφ s . (12.37)Y d−1 is toric and Calabi-Yau. Moreover, Y d−1 is fibered over <strong>the</strong> real l<strong>in</strong>e r 0 , with aparticular comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong> resolution parameters (set by Q 0 s) vary<strong>in</strong>g l<strong>in</strong>early with r 0 .The tip <strong>of</strong> Y d is at r 0 = 0.


12.3. Str<strong>in</strong>gy derivation <strong>of</strong> N = 2 Chern-Simons quivers 197Figure 12.5: Projection <strong>of</strong> <strong>the</strong> toric diagram <strong>of</strong> C 4 -left- to one <strong>of</strong> <strong>the</strong> conifold -right-.Project<strong>in</strong>g <strong>the</strong> toric diagram. Given <strong>the</strong> set <strong>of</strong> charges Q a s, <strong>the</strong> toric fan <strong>of</strong>Y d is given by R + d primitive vectors {⃗v s } <strong>in</strong> Z d which solve <strong>the</strong> R l<strong>in</strong>ear conditions∑s Qa s⃗v s = 0 for all a = 1,...,R. We can collect <strong>the</strong> vectors as columns <strong>of</strong> a matrix(G K ) i s, with i = 1,...,d, <strong>of</strong> maximal rank. ThenQ a s (G T K) s i = 0 (12.38)and <strong>the</strong> rows <strong>of</strong> G K span <strong>the</strong> kernel <strong>of</strong> Q a s as a map from R R+d to R R . We can use atransformation <strong>of</strong> SL(d,Z) to map <strong>the</strong> vectors to ⃗v s = (1, ⃗w s ). The same equation canbe used to obta<strong>in</strong> <strong>the</strong> charges <strong>of</strong> a GLSM, given <strong>the</strong> matrix G K <strong>of</strong> all vectors <strong>in</strong> <strong>the</strong> toricfan.The toric diagram <strong>of</strong> Y d−1 can be obta<strong>in</strong>ed <strong>in</strong> <strong>the</strong> same way. We add <strong>the</strong> extracondition ∑ s Q0 s⃗v s = 0. The vectors ⃗v s do not satisfy it, because <strong>the</strong> rows <strong>of</strong> (G K ) i s arel<strong>in</strong>early <strong>in</strong>dependent. In order to satisfy <strong>the</strong> extra relation, we must project <strong>the</strong> vectorson a hyperplane <strong>in</strong> such a way that <strong>the</strong> l<strong>in</strong>ear comb<strong>in</strong>ation 4⃗v M ≡ primitive ∑ s Q0 s⃗v s (12.39)vanishes, that is a hyperplane orthogonal to ⃗v M . Notice that <strong>the</strong> CY condition on Q 0 splus <strong>the</strong> particular chosen frame ⃗v s = (1, ⃗w s ) assures that ⃗v M = (0, ⃗w M ). To make<strong>the</strong> projection clearer, we can perform an SL(d−1,Z) transformation that maps ⃗v M to(0,...,0,1), and changes <strong>the</strong> toric diagram <strong>of</strong> Y d accord<strong>in</strong>gly. Then <strong>the</strong> toric diagram <strong>of</strong>Y d−1 is obta<strong>in</strong>ed from <strong>the</strong> one <strong>of</strong> Y d with <strong>the</strong> “vertical” projection that forgets <strong>the</strong> lastcomponent, as <strong>in</strong> Figure 12.5.Fixed po<strong>in</strong>ts. The reduction Y d−1 = Y d //U(1) M can always be done. However,whenever <strong>the</strong> U(1) M fiber degenerates, we should expect some extra object or s<strong>in</strong>gularity<strong>in</strong> <strong>the</strong> type IIA background, on top <strong>of</strong> any possible geometric toric s<strong>in</strong>gularity (evennon-isolated) <strong>of</strong> Y d−1 .A first class <strong>of</strong> s<strong>in</strong>gularities arises from loci where <strong>the</strong> fiber U(1) M shr<strong>in</strong>ks:• each strictly external dot ⃗v s <strong>in</strong> <strong>the</strong> (d − 1)-dimensional toric diagram <strong>of</strong> Y d is aconical toric divisor (complex codimension one) where <strong>the</strong> circle ⃗v s shr<strong>in</strong>ks;• each external edge v sr connect<strong>in</strong>g two adjacent dots ⃗v s and ⃗v r is a conical codimension2 surface where <strong>the</strong> span <strong>in</strong> U(1) d <strong>of</strong> <strong>the</strong> two circles shr<strong>in</strong>ks;4 We mean that ⃗v M is <strong>the</strong> primitive vector <strong>in</strong> Z d which is parallel to ∑ s Q0 s⃗v s.


198 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualities• each external polyhedron v s1 ...s n<strong>of</strong> dimension n−1 constructed between <strong>the</strong> strictlyexternal dots⃗v s1 ,...,⃗v sn is a conical codimension n surface where <strong>the</strong> span <strong>in</strong> U(1) d<strong>of</strong> <strong>the</strong> n circles shr<strong>in</strong>ks.In order to have a non-s<strong>in</strong>gular Kähler quotient for <strong>the</strong> projection, we should make surethat<strong>the</strong>circle⃗v M isnotconta<strong>in</strong>ed<strong>in</strong>any<strong>of</strong><strong>the</strong>spansabove(<strong>the</strong>firstcaseisautomaticallyexcluded). Practically, we require ⃗w M not to be parallel to any external sub-object <strong>in</strong> <strong>the</strong>convex polyhedron <strong>of</strong> <strong>the</strong> (d−1)-dimensional toric diagram. We stress that we are notworried about s<strong>in</strong>gularities <strong>in</strong> <strong>the</strong> quotient Y d−1 , but ra<strong>the</strong>r about degenerations <strong>of</strong> <strong>the</strong>fiber.There is a second class <strong>of</strong> possible s<strong>in</strong>gularities, where <strong>the</strong> U(1) M fiber degeneratesto U(1)/Z p for some p. This happens if some <strong>of</strong> <strong>the</strong> charges <strong>in</strong> Q 0 s have modulus largerthan 1. In this case, <strong>the</strong>re could be a conical surface where <strong>the</strong> fiber U(1) M degenerates:we have to make sure that <strong>the</strong> only po<strong>in</strong>t where this happens is <strong>the</strong> tip <strong>of</strong> Y d .The case <strong>of</strong> CY 4 . Specializ<strong>in</strong>g to <strong>the</strong> case <strong>of</strong> <strong>in</strong>terest – Y 4 and Y 3 = Y 4 //U(1) M–, whenever none <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularities above arises <strong>in</strong> <strong>the</strong> quotient<strong>in</strong>g, we are sure that<strong>the</strong> reduction <strong>of</strong> M-<strong>the</strong>ory on Y 4 along U(1) M gives a pure IIA background (to which <strong>the</strong>arguments <strong>in</strong> [258] can be applied), without extra objects on top <strong>of</strong> it.In particular, we should make sure that: 1) <strong>the</strong>re are no external edges <strong>in</strong> <strong>the</strong> 3d toricdiagram parallel to ⃗w M ; 2) <strong>the</strong>re are no external faces parallel to ⃗w M ; 3) once ⃗w M isexpressed as an <strong>in</strong>teger sum <strong>of</strong> <strong>the</strong> ⃗w s <strong>in</strong> <strong>the</strong> 3d toric diagram, if some coefficients havemodulus larger than 1, <strong>the</strong> fiber does not degenerate outside <strong>the</strong> tip <strong>of</strong> Y 4 .On <strong>the</strong> contrary, whenever <strong>the</strong> fiber degenerates, we should expect some extra objects<strong>in</strong> type IIA that have to be taken <strong>in</strong>to account. In <strong>the</strong> next Chapter, we will study whathappens if <strong>the</strong> fiber shr<strong>in</strong>ks on a complex codimension-two submanifold <strong>of</strong> <strong>the</strong> four-fold(giv<strong>in</strong>g rise to D6-<strong>branes</strong>). The o<strong>the</strong>r cases deserve a separate study.12.3.2 Chern-Simons quivers from type IIABy <strong>the</strong> above construction, we have a duality between M2-<strong>branes</strong> at <strong>the</strong> tip <strong>of</strong> a CY 4 andD2-<strong>branes</strong> on a CY 3 fibered over R (<strong>the</strong> D2-<strong>branes</strong> sit at r 0 = 0 and at <strong>the</strong> tip <strong>of</strong> <strong>the</strong>threefold). Accord<strong>in</strong>g to (12.35), <strong>the</strong> coord<strong>in</strong>ate r 0 is a Kähler modulus <strong>of</strong> <strong>the</strong> Calabi-Yauthreefold. More generally, we can consider∑s Q0 s|φ s | 2 = hr 0 ; θ 0 → θ 0 +hλ , φ s → e iλQ0 sφ s , (12.40)for h some positive <strong>in</strong>teger. This changes Y d to Y d /Z h , correspond<strong>in</strong>g to shr<strong>in</strong>k<strong>in</strong>g <strong>the</strong> θ 0circle by a factor <strong>of</strong> h. This is usually by such a fur<strong>the</strong>r orbifold that a weakly coupledtype IIA background is obta<strong>in</strong>ed, as <strong>in</strong> <strong>the</strong> ABJM case. The <strong>gauge</strong> <strong>in</strong>variant vielbe<strong>in</strong>characteriz<strong>in</strong>g <strong>the</strong> M-<strong>the</strong>ory fibration isdθ 0 +i ∑ s q sdφ s /φ s , (12.41)with q s such that ∑q ∑sQ ass = 0, q sQ 0ss = h. (12.42)This identifies <strong>the</strong> connection ∑ s q sdφ s /φ s as <strong>the</strong> RR 1-form C 1 . The RR 2-form fluxF 2 = dC 1 is [258]F 2 = ∑ s q sω s , with ω s = δ 2 (φ s )dφ s ∧d¯φ s (12.43)


12.3. Str<strong>in</strong>gy derivation <strong>of</strong> N = 2 Chern-Simons quivers 199where ω s is a two-form which localizes on <strong>the</strong> toric divisor D s = {φ s = 0}. In term <strong>of</strong>cohomology classes,[F 2 ] = ∑ s q s[D s ] (12.44)We can <strong>the</strong>n compute <strong>the</strong> flux <strong>of</strong> F 2 through any curve by standard toric geometrymethods [288].If <strong>the</strong> fibration were trivial, <strong>the</strong> N = 2 field <strong>the</strong>ory on <strong>the</strong> D2-<strong>branes</strong> would be <strong>the</strong>dimensional reduction <strong>of</strong> <strong>the</strong> N = 1 quiver <strong>the</strong>ory on D3-<strong>branes</strong>, for <strong>the</strong> same CY 3 . Suchquivers were discussed at length <strong>in</strong> this <strong>the</strong>sis. Each node <strong>of</strong> <strong>the</strong> quiver corresponds toa <strong>fractional</strong> D2-brane, which is some l<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> D2-<strong>branes</strong>, D4-<strong>branes</strong> on 2-cycles and D6-<strong>branes</strong> on 4-cycles. For any holomorphic two-cycle C <strong>in</strong> Y d−1 <strong>the</strong>re is acorrespond<strong>in</strong>g U(1) <strong>in</strong> <strong>the</strong> GLSM, correspond<strong>in</strong>g to a D-termThe flux <strong>of</strong> F 2 through C is∫∑s QC s |φ s | 2 = r C . (12.45)F 2 = ∑ s q sQ C s = n C h. (12.46)Due to (12.42), <strong>the</strong> only contribution will come from Q 0 , with some <strong>in</strong>teger coefficient n Cdepend<strong>in</strong>g on C.Consider N <strong>fractional</strong> D2-<strong>branes</strong> wrapp<strong>in</strong>g C <strong>in</strong> Y d−1 . The Wess-Zum<strong>in</strong>o term <strong>in</strong> <strong>the</strong>D2-brane action will conta<strong>in</strong> a term∫∫C 1 ∧Tr(F ∧F) = F 2 Tr(A∧dA+∫R 2 A∧A∧A), (12.47)2,1 3R 2,1 ×CCwhere we <strong>in</strong>tegrated by part. Hence <strong>the</strong> flux F 2 due to <strong>the</strong> non-trivial fibration <strong>of</strong> <strong>the</strong>M-<strong>the</strong>ory circle <strong>in</strong>duces a Chern-Simons levelk C = n C h (12.48)for<strong>the</strong><strong>gauge</strong>groupcorrespond<strong>in</strong>gtoC. SimilarconsiderationscanbemadeforD6-<strong>branes</strong>on 4-cycles [258]. Hence, with some knowledge <strong>of</strong> <strong>the</strong> algebraic geometry <strong>of</strong> <strong>the</strong> Calabi-Yau threefold, we can <strong>in</strong> pr<strong>in</strong>ciple reconstruct <strong>the</strong> Chern-Simons levels <strong>of</strong> <strong>the</strong> CS-quiver<strong>the</strong>ory. In total we obta<strong>in</strong> a Yang-Mills-Chern-Simons <strong>the</strong>ory on <strong>the</strong> D2-<strong>branes</strong>.The ABJM quiver. As an example, let us see how this works for C 4 /Z k . Wego from this space to <strong>the</strong> conifold by a Kähler quotient. Let us call <strong>the</strong> homogenouscoord<strong>in</strong>ates A 1 ,A 2 ,B 1 ,B 2 . Due to <strong>the</strong> D-term relation|A 1 | 2 +|A 2 | 2 −|B 1 | 2 −|B 2 | 2 = kr 0 , (12.49)<strong>the</strong> type IIA geometry is <strong>the</strong> resolved conifold fibered over R ∼ = {r 0 }. There are tw<strong>of</strong>ractional <strong>branes</strong> on <strong>the</strong> conifold, correspond<strong>in</strong>g to [CP 1 ] and [1]−[CP 1 ]. The RR fluxthrough CP 1 is simply ∫CP 1 F 2 = k. (12.50)


200 Chapter 12. Chern-Simons quivers from str<strong>in</strong>gy dualitiesHence <strong>the</strong> Chern-Simons <strong>the</strong>ory is <strong>the</strong> conifold quiver with Chern-Simons levels (k,−k),as expected.The construction <strong>of</strong> [258] gives a neat explanation <strong>of</strong> <strong>the</strong> str<strong>in</strong>g <strong>the</strong>ory orig<strong>in</strong> <strong>of</strong> Chern-Simons quiver. The explanation <strong>of</strong> <strong>the</strong> quiver structure <strong>of</strong> ABJM and its generalizationsboilsdowntowellknownproperties<strong>of</strong>D-<strong>branes</strong>. Thisisworthstress<strong>in</strong>g, becauseitmeansthat <strong>the</strong> quiver, by itself, does not conta<strong>in</strong> any properties which would be “<strong>in</strong>tr<strong>in</strong>sic” to<strong>the</strong> M2-brane. In particular, many different quivers will be dual (generaliz<strong>in</strong>g 3d mirrorsymmetry [208]) if <strong>the</strong>y correspond to <strong>the</strong> same M-<strong>the</strong>ory geometry. The situation isdifferent from <strong>the</strong> case <strong>of</strong> Seiberg duality for D3-brane quivers, because <strong>in</strong> that latter case<strong>the</strong> dualities are well understood as a reshuffl<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>fractional</strong> <strong>branes</strong>. Here <strong>the</strong>re is nosuch “mechanical” understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> M-<strong>the</strong>ory duality, because we still do not haveany direct control over <strong>the</strong> M2-brane degrees <strong>of</strong> freedom. Instead we have to rely on adual picture, ei<strong>the</strong>r <strong>in</strong> type IIB like <strong>in</strong> <strong>the</strong> first part <strong>of</strong> this chapter, or <strong>in</strong> type IIA like <strong>in</strong>this section.In <strong>the</strong> next chapter we will generalize <strong>the</strong> type IIA derivation <strong>of</strong> N = 2 M2-brane<strong>the</strong>ories to <strong>the</strong> case where <strong>the</strong> M-<strong>the</strong>ory Calabi-Yau fourfold conta<strong>in</strong>s non-isolated s<strong>in</strong>gularities<strong>in</strong> complex codimension two.


Chapter 13Flavors <strong>in</strong> N = 2 toricChern-Simons quiversIn this second Part <strong>of</strong> <strong>the</strong> <strong>the</strong>sis we have discussed <strong>in</strong> some detail various <strong>the</strong>ories whichare conjectured to describe <strong>the</strong> low energy <strong>the</strong>ory on M2-<strong>branes</strong> sitt<strong>in</strong>g on some eightdimensional cone. Each such proposal leads to a new <strong>in</strong>stance <strong>of</strong> a AdS 4 /CFT 3 duality,although <strong>in</strong> <strong>the</strong> N = 2 case <strong>the</strong>re is generally no weak coupl<strong>in</strong>g limit <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory(similarly to <strong>the</strong> case <strong>of</strong> N = 1 quiver SCFTs <strong>in</strong> 4d). Almost all <strong>of</strong> <strong>the</strong> field <strong>the</strong>orywhich we reviewed <strong>in</strong>volve <strong>gauge</strong> groups with only adjo<strong>in</strong>t and bifundamental matter,like conformal quiver <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> 3+1 dimensions. In <strong>the</strong> previous Chapter we haveseen that this is not a co<strong>in</strong>cidence.The str<strong>in</strong>g <strong>the</strong>ory understand<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>correspondence</strong> leads to natural generalizations.It has been proposed recently that <strong>the</strong> dynamics <strong>of</strong> M2-<strong>branes</strong> on some hyper-Kähler cones (N = 3 SUSY) is described by flavored quiver CS <strong>the</strong>ories, <strong>in</strong>clud<strong>in</strong>gmatter <strong>in</strong> <strong>the</strong> fundamental and antifundamental representation <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups[285, 286, 287]; we reviewed such a proposal <strong>in</strong> section 12.2 <strong>in</strong> <strong>the</strong> last chapter. Flavorswere fur<strong>the</strong>r studied <strong>in</strong> [289, 290, 291].We aim to extend this program to M2-<strong>branes</strong> prob<strong>in</strong>g toric CY 4 s<strong>in</strong>gularities. ThisChapter is entirely based on [3], written <strong>in</strong> collaboration with Stefano Cremonesi andFrancesco Ben<strong>in</strong>i. A similar approach was advocated by Daniel L. Jafferis [292], withwhom we coord<strong>in</strong>ated <strong>the</strong> release <strong>of</strong> <strong>the</strong> arXiv prepr<strong>in</strong>ts. The later work [292] also givesa discussion <strong>of</strong> some non-toric examples.13.1 Motivation and overviewOne <strong>of</strong> <strong>the</strong> problems we want to address is what happens when <strong>the</strong> fourfold has conicalcomplex codimension-two s<strong>in</strong>gularities, which means that <strong>the</strong> base H 7 itself hascodimension-two s<strong>in</strong>gularities: this is related to <strong>the</strong> addition <strong>of</strong> flavors – fields <strong>in</strong> <strong>the</strong>fundamental representation <strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups. An A h−1 complex codimension-two s<strong>in</strong>gularitylocally looks like C 2 ×C 2 /Z h . M-<strong>the</strong>ory on such a background develops SU(h)<strong>gauge</strong> fields liv<strong>in</strong>g along <strong>the</strong> s<strong>in</strong>gularity, and by <strong>the</strong> AdS/CFT map <strong>the</strong>re must be anSU(h) global symmetry <strong>in</strong> <strong>the</strong> boundary <strong>the</strong>ory. Many models <strong>in</strong> <strong>the</strong> literature have201


202 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiverssuch s<strong>in</strong>gularities, however <strong>the</strong> large non-Abelian symmetry is not manifest. It is naturalto look for a description <strong>in</strong> terms <strong>of</strong> flavors <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory.Ano<strong>the</strong>r way to understand <strong>the</strong> issue is to select a U(1) isometry <strong>of</strong> <strong>the</strong> CY 4 thatpreserves <strong>the</strong> holomorphic 4-form Ω 4 , quotient <strong>the</strong> geometry by Z k ⊂ U(1) and reducealong <strong>the</strong> circle to type IIA. The result<strong>in</strong>g background is a warped product AdS 4 × w H 6 ,with RR fluxes and vary<strong>in</strong>g dilaton. If 1 ≪ k ≪ N 1/5 type IIA is weakly coupled,whereas for k ≫ N one expects a Lagrangian description for <strong>the</strong> 2-brane <strong>the</strong>ory withweakly coupled <strong>gauge</strong> groups. If <strong>the</strong> U(1) circle shr<strong>in</strong>ks on a complex codimension-twosurface <strong>in</strong> <strong>the</strong> CY 4 , we get D6-<strong>branes</strong> <strong>in</strong> <strong>the</strong> type IIA background, fill<strong>in</strong>g AdS 4 andwrapp<strong>in</strong>g a 3-cycle <strong>in</strong> H 6 . In fact, C 2 ×C 2 /Z h is <strong>the</strong> complex structure <strong>of</strong> a multi-Taub-NUT which, if reduced along its U(1) isometry, gives rise to h D6-<strong>branes</strong>. It is knownthat <strong>the</strong> D2-D6 system <strong>in</strong>troduces flavors <strong>in</strong> <strong>the</strong> <strong>the</strong>ory liv<strong>in</strong>g on D2-<strong>branes</strong>, as happens<strong>in</strong> <strong>the</strong> N = 3 case [285, 286, 287].A more systematic tool to derive <strong>the</strong> <strong>the</strong>ory on M2-<strong>branes</strong> prob<strong>in</strong>g a CY 4 geometry is<strong>the</strong> Kähler quotient approach [258] which we reviewed <strong>in</strong> <strong>the</strong> last Chapter. This approachis powerful because it does not need metric details <strong>of</strong> <strong>the</strong> four-fold, but only algebraicgeometric data. When <strong>the</strong> U(1) fiber shr<strong>in</strong>ks on codimension-two submanifolds <strong>of</strong> <strong>the</strong>CY 4 ,wegetD6-<strong>branes</strong>wrapp<strong>in</strong>gdivisors<strong>of</strong><strong>the</strong>CY 3 ,and<strong>the</strong><strong>the</strong>oryonM2-<strong>branes</strong>has<strong>the</strong>same quiver and superpotential as <strong>the</strong> <strong>the</strong>ory on D3-<strong>branes</strong> on <strong>the</strong> CY 3 <strong>in</strong> <strong>the</strong> presence <strong>of</strong>D7-<strong>branes</strong> wrapp<strong>in</strong>g <strong>the</strong> same divisors. For h D7-<strong>branes</strong> wrapp<strong>in</strong>g an irreducible divisor,<strong>the</strong> effect is that <strong>of</strong> <strong>in</strong>troduc<strong>in</strong>g h pairs <strong>of</strong> quarks (p,q) coupled via <strong>the</strong> superpotentialtermδW = p(divisor equation)q ,where <strong>the</strong> divisor equation is written <strong>in</strong> terms <strong>of</strong> <strong>the</strong> bifundamental matter fields <strong>in</strong> <strong>the</strong><strong>the</strong>ory.Led by <strong>the</strong>se considerations, we can study what happens if we start with an N = 2quiver Chern-Simons <strong>the</strong>ory, dual to a toric CY 4 geometry, and we flavor it. We meanthat we select a subset {X α } <strong>of</strong> bifundamental fields <strong>in</strong> <strong>the</strong> quiver, and for each <strong>of</strong> <strong>the</strong>mwe <strong>in</strong>troduce h α pairs <strong>of</strong> chiral multiplets (p α ,q α ) <strong>in</strong> <strong>the</strong> (anti)fundamental representation<strong>of</strong> <strong>the</strong> <strong>gauge</strong> groups, coupled by <strong>the</strong> superpotential termW = W 0 + ∑ α p αX α q α ,W 0 be<strong>in</strong>g <strong>the</strong> “unflavored” superpotential. Because <strong>of</strong> <strong>the</strong> parity anomaly, this has to beaccompanied by a shift <strong>of</strong> Chern-Simons levels. A concept <strong>of</strong> “chirality” is <strong>in</strong>duced byN = 2 supersymmetry, and <strong>in</strong>herited from four dimensions.To study <strong>the</strong> chiral r<strong>in</strong>g and moduli space <strong>of</strong> this <strong>the</strong>ory, a crucial rôle is played byBPS diagonal monopole operators T (n) [293, 294, 232, 230, 231, 295, 233, 235]. Due toquantum corrections, <strong>the</strong>y acquire global and <strong>gauge</strong> charges <strong>in</strong> <strong>the</strong> presence <strong>of</strong> flavors.Generically<strong>the</strong>reisonlyonepossiblenon-trivialOPEcompatiblewithall<strong>the</strong>symmetries,that <strong>in</strong> <strong>the</strong> Abelian case readsT ˜T = ∏ α (X α) hα .We conjecture that this quantum F-term relation holds, s<strong>in</strong>ce our results strongly supportthis claim from <strong>the</strong> AdS/CFT po<strong>in</strong>t <strong>of</strong> view. The moduli space has Higgs and Coulomb


13.2. M-<strong>the</strong>ory reduction and D6-<strong>branes</strong> : A top-down perspective 203branches. We show that <strong>the</strong> geometric branch, <strong>in</strong> which p α = q α = 0, is described by <strong>the</strong>matter fields X a plus <strong>the</strong> two monopole operators T and ˜T, subject to <strong>the</strong> classical F-term relations from W plus this quantum F-term relation, modded out by <strong>the</strong> full <strong>gauge</strong>group U(1) G . The geometric moduli space is still a toric CY 4 , that we precisely identify.Similar ideas appeared <strong>in</strong> [296].The Chapter is organized as follows. In Section 13.2 we start with a top-down perspective,and analyze <strong>the</strong> Kähler quotient reduction <strong>of</strong> M-<strong>the</strong>ory <strong>in</strong> <strong>the</strong> presence <strong>of</strong> KKmonopoles. In Section 13.3 we turn to a bottom-up approach and flavor quiver Chern-Simons <strong>the</strong>ories; <strong>the</strong>ir moduli space is studied <strong>in</strong> Section 13.4. Section 13.5 is devoted todeformations by real and complex masses. In Section 13.6 we work out many examples.13.2 M-<strong>the</strong>ory reduction and D6-<strong>branes</strong> : A top-down perspectiveLet us consider M2-<strong>branes</strong> prob<strong>in</strong>g a toric conical Calabi-Yau four-fold Y 4 <strong>in</strong> M-<strong>the</strong>ory. 1We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> type IIA str<strong>in</strong>g <strong>the</strong>ory background that one obta<strong>in</strong>s by reduc<strong>in</strong>galong a U(1) isometry, <strong>in</strong> particular <strong>in</strong> <strong>the</strong> case that <strong>the</strong> four-fold conta<strong>in</strong>s KK monopolesand <strong>the</strong> U(1) shr<strong>in</strong>ks along <strong>the</strong>m. The isometry group <strong>of</strong> a toric four-fold conta<strong>in</strong>s U(1) 4 .A specific U(1) or more generally R subgroup is <strong>the</strong> superconformal R-symmetry, while<strong>the</strong> rema<strong>in</strong><strong>in</strong>g commut<strong>in</strong>g U(1) 3 Fleaves <strong>the</strong> holomorphic 4-form <strong>in</strong>variant. Reductionalong a circle <strong>in</strong> U(1) 3 Fmanifestly preserves eight supercharges <strong>in</strong> type IIA.The toric data <strong>of</strong> <strong>the</strong> four-fold are specified by a Lagrangian U(1) 4 fibration over astrictly convex rational polyhedral cone. Each facet <strong>of</strong> <strong>the</strong> cone represents a toric divisor.Infact<strong>the</strong>normalvectortoafacet, normalizedtohave<strong>in</strong>tegercomponents, represents<strong>the</strong>U(1) cycle that shr<strong>in</strong>ks on <strong>the</strong> facet. The collection {⃗v s } <strong>in</strong> Z 4 <strong>of</strong> <strong>the</strong> normal vectors to allfacets is called <strong>the</strong> toric fan. The Calabi-Yau condition is equivalent to <strong>the</strong> end-po<strong>in</strong>ts <strong>of</strong>all vectors <strong>in</strong> <strong>the</strong> toric fan be<strong>in</strong>g coplanar; one can <strong>the</strong>n use an SL(4,Z) transformationto rewrite <strong>the</strong>m as ⃗v s = (1, ⃗w s ), with {⃗w s } vectors <strong>in</strong> Z 3 . The <strong>in</strong>formation encoded<strong>in</strong> <strong>the</strong> toric fan can be summarized by <strong>the</strong> 3d toric diagram: a 3d convex polyhedronwhose strictly external po<strong>in</strong>ts are ⃗w s . We will call strictly external, among <strong>the</strong> externalpo<strong>in</strong>ts, a po<strong>in</strong>t which does not lie along a l<strong>in</strong>e connect<strong>in</strong>g two external po<strong>in</strong>ts – thismeans that strictly external po<strong>in</strong>ts are not <strong>in</strong>side an edge nor a face <strong>of</strong> <strong>the</strong> toric diagram.Each strictly external po<strong>in</strong>t represents a conical toric divisor. The elements (0,1,0,0),(0,0,1,0), (0,0,0,1) <strong>in</strong> <strong>the</strong> Z 4 ambient space <strong>of</strong> <strong>the</strong> toric fan generate <strong>the</strong> flavor U(1) 3 Fsymmetry group that commutes with <strong>the</strong> R-symmetry.Over <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> two adjacent facets, two U(1) cycles <strong>in</strong> <strong>the</strong> fiber shr<strong>in</strong>k.Suppose that <strong>the</strong> shr<strong>in</strong>k<strong>in</strong>g cycles are (1,x,y,z) and (1,x,y,z + 1) (two po<strong>in</strong>ts verticallyaligned) <strong>in</strong> Z 4 : at <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> two facets <strong>the</strong> U(1) M cycle (0,0,0,1),l<strong>in</strong>ear difference <strong>of</strong> <strong>the</strong> previous ones, shr<strong>in</strong>ks as well. This happens along a complexcodimension-two conical submanifold <strong>of</strong> <strong>the</strong> four-fold, and one can locally view <strong>the</strong> M-<strong>the</strong>ory background as a KK monopole for that U(1) M action. Reduc<strong>in</strong>g along U(1) M ,one gets a D6-brane on some type IIA background.As reviewed <strong>in</strong> section 12.3, <strong>the</strong> type IIA background can be written as <strong>the</strong> fibration1 We refer <strong>the</strong> reader to [297, 62, 298, 4] for a simple <strong>in</strong>troduction to basic facts about toric geometryand its relevance for quiver <strong>gauge</strong> <strong>the</strong>ories.


204 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversFigure 13.1: Vertical projection from <strong>the</strong> 3d toric diagram <strong>of</strong> Y 4 to <strong>the</strong> 2d toric diagram <strong>of</strong> Y 3 .The three aligned po<strong>in</strong>ts give rise to two D6-<strong>branes</strong>.<strong>of</strong> a CY 3 cone Y 3 over a real l<strong>in</strong>e r 0 ∈ R [258]. Degeneration loci <strong>of</strong> <strong>the</strong> U(1) M fiber result<strong>in</strong> various “objects” <strong>in</strong> <strong>the</strong> type IIA background. The toric threefold Y 3 is def<strong>in</strong>ed by a2d toric diagram which is <strong>the</strong> projection <strong>of</strong> <strong>the</strong> 3d toric diagram to a plane orthogonalto <strong>the</strong> primitive vector ⃗v M that represents <strong>the</strong> cycle U(1) M used for <strong>the</strong> reduction. Wecan always perform an SL(3,Z) transformation <strong>of</strong> <strong>the</strong> 3d toric diagram and map ⃗v M to(0,0,0,1); <strong>the</strong>n <strong>the</strong> 2d toric diagram <strong>of</strong> Y 3 is <strong>the</strong> “vertical” projection <strong>of</strong> <strong>the</strong> 3d diagramto <strong>the</strong> plane z = 0.In our example, <strong>the</strong> fact that two adjacent external po<strong>in</strong>ts 2 <strong>in</strong> <strong>the</strong> 3d toric diagramproject to <strong>the</strong> same po<strong>in</strong>t (which is <strong>the</strong>n necessarily strictly external) <strong>in</strong> <strong>the</strong> 2d toricdiagram, implies <strong>the</strong> presence <strong>of</strong> a D6-brane wrapp<strong>in</strong>g a toric divisor <strong>of</strong> <strong>the</strong> CY 3 <strong>in</strong> typeIIA (spann<strong>in</strong>g <strong>the</strong> spacetime R 2,1 and localized at r 0 = 0). The toric divisor is specifiedby <strong>the</strong> projected po<strong>in</strong>t. More generally, if <strong>the</strong> 3d toric diagram has a collection <strong>of</strong> h+1aligned adjacent external po<strong>in</strong>ts (1,x,y,z j ) with z j = z, z+1, ..., z+h, and we reducealong <strong>the</strong> U(1) M cycle (0,0,0,1), all h + 1 po<strong>in</strong>ts project down to <strong>the</strong> same strictlyexternal po<strong>in</strong>t <strong>in</strong> <strong>the</strong> 2d toric diagram and give rise to h co<strong>in</strong>cident D6-<strong>branes</strong> wrapp<strong>in</strong>ga toric divisor <strong>of</strong> <strong>the</strong> CY 3 (see Figure 13.1).Along <strong>the</strong> D6-<strong>branes</strong> lives a U(h) <strong>gauge</strong> <strong>the</strong>ory, which by <strong>the</strong> AdS/CFT map correspondsto a U(h) global symmetry on <strong>the</strong> boundary. We could <strong>the</strong>n expect <strong>the</strong> boundary<strong>the</strong>ory to admit a description <strong>in</strong> which such a symmetry is manifest. The same conclusioncan be reached <strong>in</strong> M-<strong>the</strong>ory: h+1 adjacent external po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> 3d toric diagram<strong>in</strong>dicate h KK monopoles <strong>in</strong> Y 4 (a multi-Taub-NUT geometry), whose complex structureis locally C 2 ×C 2 /Z h ; <strong>the</strong> A h−1 s<strong>in</strong>gularity carries SU(h) <strong>gauge</strong> fields, besides <strong>the</strong> U(1)<strong>gauge</strong> field from <strong>the</strong> KK reduction <strong>of</strong> <strong>the</strong> M-<strong>the</strong>ory potential C 3 . More precisely, <strong>in</strong> <strong>the</strong>near core limit <strong>the</strong> latter U(1) KK mode is non-normalizable – correspond<strong>in</strong>gly <strong>in</strong> <strong>the</strong>dual <strong>the</strong>ory <strong>the</strong> diagonal U(1) <strong>in</strong> U(h) is actually <strong>gauge</strong>d.2 Po<strong>in</strong>ts are adjacent if <strong>the</strong> l<strong>in</strong>e connect<strong>in</strong>g <strong>the</strong>m is strictly external, not conta<strong>in</strong>ed <strong>in</strong> a face.


13.2. M-<strong>the</strong>ory reduction and D6-<strong>branes</strong> : A top-down perspective 20513.2.1 IIA background as a CY 3 fibration with D6-<strong>branes</strong>The symplectic reduction <strong>of</strong> Y 4 to a CY 3 is useful because it allows to exploit all <strong>the</strong>powerful techniques available for D3-<strong>branes</strong> prob<strong>in</strong>g toric s<strong>in</strong>gularities, to get <strong>in</strong>formationabout <strong>the</strong> field <strong>the</strong>ory. Given a toric CY 3 s<strong>in</strong>gularity <strong>in</strong> type IIB and N D3-<strong>branes</strong>prob<strong>in</strong>g it, <strong>the</strong> dual SCFT <strong>in</strong> 3+1 dimensions can be generically found with <strong>the</strong> fast<strong>in</strong>verse algorithm [71] briefly discussed <strong>in</strong> Chapter 3. 3We want to extend <strong>the</strong> <strong>correspondence</strong> <strong>of</strong> [258] to cases <strong>in</strong> which <strong>the</strong> Kähler quotienthas complex dimension-two degeneration loci. To beg<strong>in</strong> with, let us understand what <strong>the</strong>toric divisors <strong>of</strong> Y 3 correspond to. Each strictly external po<strong>in</strong>t ⃗p <strong>in</strong> <strong>the</strong> 2d toric diagramcorresponds to a toric divisor, to which is associated a collection <strong>of</strong> Q bifundamentalfields {X η } η=1,...,Q <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory, that have <strong>the</strong> same charges under all global (butnot <strong>gauge</strong>) symmetries. The number Q is given by [299]( )∣ Q =∆x ∆y ∣∣∣∣ det ∆x ′ ∆y ′ , (13.1)where (∆x,∆y) is <strong>the</strong> vector connect<strong>in</strong>g <strong>the</strong> strictly external po<strong>in</strong>t ⃗p to <strong>the</strong> next strictlyexternal po<strong>in</strong>t along <strong>the</strong> perimeter, while (∆x ′ ,∆y ′ ) is <strong>the</strong> vector connect<strong>in</strong>g ⃗p to <strong>the</strong>previous strictly external po<strong>in</strong>t. 4 A time-fill<strong>in</strong>g D3-brane wrapped on <strong>the</strong> 3-cycle whichis <strong>the</strong> radial section <strong>of</strong> <strong>the</strong> toric divisor (such embedd<strong>in</strong>g is supersymmetric) correspondsto a dibaryonic operator X N η [300, 297, 301]. S<strong>in</strong>ce <strong>the</strong> 3-cycle has <strong>the</strong> topology <strong>of</strong> aLens space with fundamental group Z Q [297], <strong>the</strong> D3-<strong>branes</strong> admit a Z Q flat connectionresult<strong>in</strong>g <strong>in</strong> Q degenerate vacua. They correspond to <strong>the</strong> Q different dibaryonic operators{X N η }. An easy way to identify <strong>the</strong> set <strong>of</strong> fields is through perfect match<strong>in</strong>gs <strong>in</strong> <strong>the</strong> branetil<strong>in</strong>g construction [68, 60, 61, 76].Instead <strong>of</strong> wrapp<strong>in</strong>g a D3-brane on a radial section, one can wrap h spacetime-fill<strong>in</strong>gD7-<strong>branes</strong> on <strong>the</strong> whole toric divisor (this problem has been considered, e.g., <strong>in</strong> [302,303, 304, 129, 186]). They <strong>in</strong>troduce a U(h) global symmetry <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory, and hflavors <strong>of</strong> chiral fields p η , q η coupled to one <strong>of</strong> <strong>the</strong> bifundamental fields X η through <strong>the</strong>superpotential term W = p η X η q η . A Z Q connection, flat everywhere but at <strong>the</strong> tip, canbe specified on <strong>the</strong> D7-<strong>branes</strong> to dist<strong>in</strong>guish which bifundamental is flavored.The same discussion holds <strong>in</strong> type IIA: D6-<strong>branes</strong> wrapp<strong>in</strong>g toric divisors <strong>of</strong> <strong>the</strong> CY 3provide chiral flavors to <strong>the</strong> quiver <strong>gauge</strong> <strong>the</strong>ory on D2-<strong>branes</strong> at <strong>the</strong> tip. Each stack <strong>of</strong>h D6-<strong>branes</strong> <strong>in</strong>troduces a U(h) flavor group (this is not always <strong>the</strong> case: we will be moreprecise <strong>in</strong> Section 13.5) and flavor chiral multiplets pˆki, q jˆkcoupled to a bifundamentalX ij through a superpotential term 5 W = TrpˆkiX ij q jˆk. (13.2)Here ˆk stands for a flavor group, i,j for <strong>gauge</strong> groups and fields are <strong>in</strong> <strong>the</strong> fundamental(anti-fundamental) <strong>of</strong> <strong>the</strong> first (second) <strong>in</strong>dex; all <strong>in</strong>dices are contracted. We will jumpbetween <strong>the</strong> notations X a and X ij for bifundamental fields. The field X ij is determ<strong>in</strong>edas expla<strong>in</strong>ed above.3 A huge number <strong>of</strong> examples has been explicitly worked out, see [62, 298] and references <strong>the</strong>re<strong>in</strong>.4 Q is more conveniently def<strong>in</strong>ed as <strong>the</strong> modulus <strong>of</strong> <strong>the</strong> cross product <strong>of</strong> two consecutive legs <strong>in</strong> <strong>the</strong>(p,q)-web that is dual to <strong>the</strong> 2d toric diagram.5 We absorb superpotential coupl<strong>in</strong>gs <strong>in</strong>side chiral superfields.


206 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversThe D6-<strong>branes</strong> are localized along R: reduc<strong>in</strong>g <strong>the</strong> cone Y 4 <strong>the</strong>ir position is r 0 = 0.More generally, <strong>the</strong> position along r 0 corresponds to a real mass for <strong>the</strong> quarks <strong>in</strong> field<strong>the</strong>ory, and to a partial resolution (or Kähler) parameter <strong>in</strong> M-<strong>the</strong>ory (see Section 13.5.1).S<strong>in</strong>ce D6-<strong>branes</strong>, possibly with worldvolume flux, are sources for RR fields, <strong>the</strong> 2- and4-form fluxes on 2- and 4-cycles vanish<strong>in</strong>g at <strong>the</strong> CY 3 s<strong>in</strong>gularity jump at r 0 :∫δ F 2 = #(C 2 ,D6) ,C 2∫δ F 4 = #(C 4 ,D6,C (Fwv)4 ) , (13.3)C 4where <strong>the</strong> jump depends on <strong>the</strong> <strong>in</strong>tersection on Y 3 between <strong>the</strong> cycles, <strong>the</strong> divisor and<strong>the</strong> cycle represent<strong>in</strong>g <strong>the</strong> worldvolume flux. This means that mov<strong>in</strong>g <strong>the</strong> D6’s to <strong>the</strong> leftor to <strong>the</strong> right <strong>of</strong> <strong>the</strong> D2-<strong>branes</strong>, <strong>the</strong> CS levels must jump as well. We will study this <strong>in</strong>detail.Summariz<strong>in</strong>g, whenever <strong>the</strong> U(1) M action has codimension-two fixed loci which descend<strong>in</strong> type IIA to D6-<strong>branes</strong> wrapp<strong>in</strong>g divisors <strong>of</strong> <strong>the</strong> CY 3 , <strong>the</strong> field <strong>the</strong>ory derivedus<strong>in</strong>g <strong>the</strong> CY 3 s<strong>in</strong>gularity is actually flavored.We conclude this section with some comments. Two important differences betweenchiral flavors <strong>in</strong> AdS 5 /CFT 4 and <strong>in</strong> AdS 4 /CFT 3 must be borne <strong>in</strong> m<strong>in</strong>d. Firstly, <strong>in</strong> 4d<strong>gauge</strong> <strong>the</strong>ories chiral flavors are constra<strong>in</strong>ed by <strong>gauge</strong> anomaly cancelation, whereas <strong>in</strong>3d such a constra<strong>in</strong>t does not exist. The dual statement is that D7-<strong>branes</strong> wrapp<strong>in</strong>gdivisors are constra<strong>in</strong>ed by RR C 0 tadpole cancelation, whilst D6-<strong>branes</strong> are not because<strong>the</strong> RR F 2 flux can escape to <strong>in</strong>f<strong>in</strong>ity along <strong>the</strong> transverse non-compact real l<strong>in</strong>e. Thenumber <strong>of</strong> fundamental m<strong>in</strong>us anti-fundamental fields for a <strong>gauge</strong> group <strong>in</strong> 3d need notvanish: if it is odd, <strong>the</strong> parity anomaly requires <strong>the</strong> presence <strong>of</strong> half-<strong>in</strong>tegral CS levels[305, 277, 278]. Secondly, <strong>in</strong> general <strong>the</strong> addition <strong>of</strong> flavors to an AdS 5 /CFT 4 pair breaksconformal <strong>in</strong>variance and <strong>the</strong> RG flows leads <strong>the</strong> <strong>the</strong>ory to a fixed po<strong>in</strong>t which is outside<strong>the</strong> validity <strong>of</strong> super<strong>gravity</strong> [304] (<strong>the</strong> dual statement is that D7-<strong>branes</strong> force <strong>the</strong> dilatonto run towards −∞ at <strong>the</strong> tip). Flavor<strong>in</strong>g AdS 4 /CFT 3 pairs, <strong>the</strong> <strong>the</strong>ory still flows to an<strong>in</strong>teract<strong>in</strong>g fixed po<strong>in</strong>t which however <strong>in</strong> many examples [285, 286, 287, 207, 306] (and <strong>in</strong><strong>the</strong> ones <strong>of</strong> this work too) is still described by type IIA/M-<strong>the</strong>ory.In <strong>the</strong> follow<strong>in</strong>g, we will focus on <strong>the</strong> Abelian case: we will consider a s<strong>in</strong>gle M2/D2-brane and <strong>the</strong> correspond<strong>in</strong>g quiver <strong>the</strong>ory will have U(1) <strong>gauge</strong> groups. One expects <strong>the</strong>low energy field <strong>the</strong>ory on a stack <strong>of</strong> N M2/D2-<strong>branes</strong> to be described by <strong>the</strong> same quiverwith U(N) <strong>gauge</strong> groups, and <strong>the</strong> geometric moduli space to be <strong>the</strong> symmetric product<strong>of</strong> N copies <strong>of</strong> Y 4 . We leave <strong>the</strong> non-Abelian extension for <strong>the</strong> future.13.3 Flavor<strong>in</strong>g Chern-Simons-matter <strong>the</strong>ories : A bottomupperspectiveIn <strong>the</strong> rest <strong>of</strong> <strong>the</strong> chapter we turn to a bottom-up perspective. We start with a generictoric CY 4 geometry and a regular (as described <strong>in</strong> Section 12.3.1 <strong>in</strong> <strong>the</strong> last Chapter) IIAreduction along U(1) M , such that <strong>the</strong> Chern-Simons-matter <strong>the</strong>ory dual to M2-<strong>branes</strong>prob<strong>in</strong>g Y 4 can be read <strong>of</strong>f [258]. Then we study <strong>the</strong> effect <strong>of</strong> chirally flavor<strong>in</strong>g such a<strong>the</strong>ory <strong>in</strong> a very general way, and <strong>in</strong> particular we study how <strong>the</strong> flavor<strong>in</strong>g deforms <strong>the</strong>moduli space <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>ory. Alternatively, we can start with a toric CY 3 geometry


13.3. Flavor<strong>in</strong>g Chern-Simons-matter <strong>the</strong>ories : A bottom-up perspective 207and its dual quiver <strong>the</strong>ory (which <strong>in</strong> 3+1 dimensions is <strong>the</strong> <strong>the</strong>ory dual to D3-<strong>branes</strong>prob<strong>in</strong>g Y 3 ), add to it generic N = 2 Chern-Simons coupl<strong>in</strong>gs (which corresponds t<strong>of</strong>iber<strong>in</strong>g Y 3 over R and add<strong>in</strong>g RR fluxes) and flavors (D6-<strong>branes</strong>), and study what is <strong>the</strong>result<strong>in</strong>g CY 4 geometry seen by M2-<strong>branes</strong>.To beg<strong>in</strong> with, let us specify <strong>the</strong> flavor<strong>in</strong>g procedure. The start<strong>in</strong>g po<strong>in</strong>t is an N = 2quiverChern-Simons<strong>the</strong>ory<strong>in</strong>2+1dimensions. ThematterfieldsarechiralmultipletsX a<strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t or bifundamental representation, and we restrict ourselves to <strong>the</strong> Abeliancase. Then we <strong>in</strong>troduce B families <strong>of</strong> flavor chiral multiplets (p α ,q α ), each coupled to amatter field X α via <strong>the</strong> superpotentialW = W 0 + ∑ α p αX α q α . (13.4)Here p α (q α ) transform <strong>in</strong> <strong>the</strong> anti-fundamental (fundamental) <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group underwhich X α is <strong>in</strong> <strong>the</strong> fundamental (anti-fundamental). Each pair (p α ,q α ) really representsh α fields, and <strong>in</strong>troduces a U(h α ) flavor symmetry.We could be more general and couple a flavor pair to a bifundamental operator O α =∏ nβ=1 X β constructed from a str<strong>in</strong>g <strong>of</strong> matter fields X β . This is equivalent to coupl<strong>in</strong>geach <strong>of</strong> <strong>the</strong> X β to its own flavor pair (p β ,q β ), and <strong>the</strong>n <strong>in</strong>troduc<strong>in</strong>g complex massesW = W 0 +n∑β=1n−1∑p β X β q β + m β p β+1 q β . (13.5)Integrat<strong>in</strong>g out <strong>the</strong> massive fields, we flavor <strong>the</strong> operator O α (see Section 13.5.2).Every time we <strong>in</strong>troduce two new flavor fields (p,q) coupled to X α , <strong>the</strong> parity anomaly[305, 277, 278] requires to shift two CS levels asβ=1δk i = ± 1 2 g i[X α ] , (13.6)g i be<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> charges. The sign is a choice <strong>of</strong> <strong>the</strong>ory. If we add h α flavors (p α ,q α ),we choose sign h α times, so that <strong>the</strong> shiftδk i =( hα)2 −γ α g i [X α ] (13.7)is parametrized by an <strong>in</strong>teger γ α with 0 ≤ γ α ≤ h α .The reason for this is that <strong>gauge</strong> <strong>in</strong>variance requires [305, 277, 278]k i + 1 2∑ψ(gi [ψ] ) 2 ∈ Z , (13.8)where <strong>the</strong> sum runs over all fermions charged under <strong>the</strong> i-th <strong>gauge</strong> group. When <strong>the</strong>second term is half-<strong>in</strong>tegral, <strong>the</strong> fermion determ<strong>in</strong>ant is multiplied by (−1) under certa<strong>in</strong><strong>gauge</strong> transformations, and <strong>the</strong> lack <strong>of</strong> <strong>gauge</strong> <strong>in</strong>variance <strong>of</strong> <strong>the</strong> CS terms cures it. In oursetup <strong>the</strong> <strong>gauge</strong> charges <strong>of</strong> flavors are g i = ±1, so consistency requires that each addition<strong>of</strong> two flavor fields is accompanied by a half-<strong>in</strong>tegral opposite shift <strong>of</strong> two CS levels (unlessX α is <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t).Wecanproceed<strong>in</strong><strong>the</strong>oppositewayand<strong>in</strong>tegrate<strong>the</strong>flavorsout, bygiv<strong>in</strong>g<strong>the</strong>marealmass. Todothis, wepromote<strong>the</strong>U(h)flavorsymmetrytoabackground<strong>gauge</strong>symmetry;


208 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers<strong>the</strong>n a VEV 〈σ F 〉 for <strong>the</strong> real adjo<strong>in</strong>t background scalar field σ F <strong>in</strong> <strong>the</strong> U(h) vectormultiplet provides real masses to all flavors charged under U(h). After diagonalization<strong>of</strong> 〈σ F 〉 by a flavor rotation, each flavor <strong>of</strong> charge q ψ acquires a real mass M ψ = q ψ 〈σ F 〉.When <strong>in</strong>tegrat<strong>in</strong>g out massive fermions {ψ}, <strong>the</strong> CS levels k i are shifted by one-loopdiagrams ask i → k i + 1 ∑ (gi [ψ] ) 2 Sgn(Mψ ) . (13.9)2 ψIntegrat<strong>in</strong>g out just two flavor fields (p,q), M p = 〈σ F 〉 and M q = −〈σ F 〉; we can <strong>the</strong>nwrite δk i = 1 2 g i[X α ] Sgn(〈σ F 〉). The choice <strong>of</strong> Sgn(〈σ F 〉) corresponds to <strong>the</strong> choice <strong>of</strong> sign<strong>in</strong> (13.6): a choice <strong>of</strong> positive (negative) sign <strong>in</strong> (13.6) is undone by 〈σ F 〉 < 0 (〈σ F 〉 > 0).In <strong>the</strong> next subsection we compute <strong>the</strong> effect <strong>of</strong> flavors on monopole operators, while<strong>in</strong> Section 13.4 we study <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ories.13.3.1 Monopole operators and flavorsA fundamental rôle <strong>in</strong> <strong>the</strong> study <strong>of</strong> <strong>the</strong> quantum moduli space <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>oriesis played by monopole operators [293, 294, 232, 230, 231, 295, 233, 235]. We discussed<strong>the</strong>se operators <strong>in</strong> Chapter 10.In this section we discuss <strong>the</strong> effect <strong>of</strong> <strong>the</strong> fundamental matter fields on <strong>the</strong> “diagonal”monopole operators, that we will denote T (n) . They have <strong>the</strong> same magnetic flux n alongeach U(1) <strong>gauge</strong> group <strong>in</strong> <strong>the</strong> quiver 6 . They pick up electric charges (nk 1 ,...,nk G )under U(1) G , where G is <strong>the</strong> number <strong>of</strong> <strong>gauge</strong> factors and k i are <strong>the</strong> CS levels. Theywere studied <strong>in</strong> detail <strong>in</strong> [235] and shown to be BPS (after hav<strong>in</strong>g been dressed by scalarmodes) <strong>in</strong> <strong>the</strong> ABJM <strong>the</strong>ory [202] and its N = 3 elliptic generalizations [281, 282]; weexpect <strong>the</strong>m to be BPS <strong>in</strong> generic N = 2 <strong>the</strong>ories describ<strong>in</strong>g M2-<strong>branes</strong> on CY 4 , s<strong>in</strong>ce<strong>the</strong>y correspond to modes <strong>of</strong> eleven-dimensional super<strong>gravity</strong> <strong>in</strong> short multiplets.The monopole operators T (n) can acquire a charge under any U(1) symmetry <strong>of</strong> <strong>the</strong><strong>the</strong>ory, both global and <strong>gauge</strong>d, from quantum corrections [230, 231, 295, 235]. In <strong>the</strong>case <strong>of</strong> global symmetries <strong>the</strong> charge comes entirely from fermionic modes, while <strong>in</strong> <strong>the</strong>case <strong>of</strong> <strong>gauge</strong> symmetries <strong>the</strong> quantum contribution adds to <strong>the</strong> contribution <strong>of</strong> <strong>the</strong> CSlevels. The quantum correction (<strong>in</strong> <strong>the</strong> Abelian case) to <strong>the</strong> charge Q from fermionicmodes isδQ[T (n) ] = − |n| ∑Q[ψ] , (13.10)2 ψwhere we sum over all fermions ψ <strong>in</strong> <strong>the</strong> <strong>the</strong>ory. Notice that only fermions <strong>in</strong> chiral representationscontribute. The result is proportional to <strong>the</strong> mixed Q-gravitational anomalythat <strong>the</strong> same <strong>the</strong>ory would have <strong>in</strong> 3+1 dimensions.Formula (13.10) implies that <strong>in</strong> Chern-Simons quiver <strong>the</strong>ories satisfy<strong>in</strong>g <strong>the</strong> toriccondition, diagonal monopole charges do not receive any quantum correction. Quiver<strong>the</strong>ories have matter chiral multiplets <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t and bifundamental representationonly; <strong>the</strong> toric condition is that all <strong>gauge</strong> ranks are <strong>the</strong> same (here 1), each matter fieldappears <strong>in</strong> <strong>the</strong> superpotential <strong>in</strong> exactly two monomials, and <strong>the</strong> number G <strong>of</strong> <strong>gauge</strong>groups plus <strong>the</strong> number P <strong>of</strong> monomials <strong>in</strong> <strong>the</strong> superpotential equals <strong>the</strong> number E <strong>of</strong>matter fields. Let Q be a non-R global or <strong>gauge</strong> symmetry: each monomial W µ <strong>in</strong> <strong>the</strong>6 A detailed study <strong>of</strong> <strong>the</strong> full spectrum <strong>of</strong> monopole operators would be <strong>of</strong> great <strong>in</strong>terest, but is beyond<strong>the</strong> scope <strong>of</strong> this work.


13.3. Flavor<strong>in</strong>g Chern-Simons-matter <strong>the</strong>ories : A bottom-up perspective 209superpotential must have vanish<strong>in</strong>g charge. Summ<strong>in</strong>g over all monomials: 2 ∑ ψ Q[ψ] =2 ∑ a Q[X a] = ∑ ∑µ a∈µ Q[X a] = 0, where X a are all matter fields, and gaug<strong>in</strong>i must bechargeless. In <strong>the</strong> case <strong>of</strong> <strong>the</strong> R-symmetry, each monomial W µ must have R-charge 2, sothat: 2 ∑ ψ R[ψ] = 2G+2∑ a R[ψ a] = 2G−2E+2 ∑ a R[X a] = 2G−2E+2P = 0, wherewe used <strong>the</strong> fact that gaug<strong>in</strong>i have R-charge 1.Therefore, let us start with a quiver <strong>the</strong>ory <strong>in</strong> which <strong>the</strong> monopole fields T (n) haveonly <strong>gauge</strong> charges (nk 1 ,...,nk G ). Then we flavor <strong>the</strong> <strong>the</strong>ory as <strong>in</strong> (13.4): we couple aset <strong>of</strong> flavor pairs (p α ,q α ), each <strong>in</strong> number h α , to some bifundamental operators X α <strong>in</strong><strong>the</strong> quiver, constructed as products <strong>of</strong> bifundamental fields, 7 viaW = W 0 + ∑ α p αX α q α . (13.11)We are <strong>in</strong>terested <strong>in</strong> <strong>the</strong> charges <strong>in</strong>duced on <strong>the</strong> monopole operators by flavors. Let usstart with non-R symmetries. First, <strong>the</strong>re are <strong>the</strong> new flavor symmetries U(h α ) <strong>of</strong> whichp α and q α are <strong>in</strong> conjugate representations, so that <strong>the</strong> diagonal monopole operatorscannot get a charge under U(h α ). 8 Next, for any U(1) flavor symmetry <strong>of</strong> W 0 underwhich X α has charge Q α , (qp) α must have charge −Q α . Then, accord<strong>in</strong>g to (13.10), <strong>the</strong>diagonal monopoles pick up a chargeQ[T (n) ] = |n| ∑2h αQ[X α ] (13.12)α<strong>in</strong> <strong>the</strong> flavored quiver. In <strong>the</strong> case <strong>of</strong> <strong>gauge</strong> charges, <strong>the</strong> contribution from fermions hasto be summed with <strong>the</strong> contribution from Chern-Simons coupl<strong>in</strong>gs:g i [T (n) ] = nk i + |n|2∑α h αg i [X α ] , (13.13)where g i are <strong>the</strong> <strong>gauge</strong> charges under U(1) G . Eventually, consider <strong>the</strong> R-symmetry:R[p α ]+R[q α ] = 2−R[X α ] at <strong>the</strong> IR fixed po<strong>in</strong>t, so that <strong>the</strong> monopoles get an R-chargeR[T (n) ] = − |n| ∑2h (α R[ψpα ]+R[ψ qα ] ) = |n| ∑α 2h αR[X α ] . (13.14)αThese charges allow us to conjecture <strong>the</strong> follow<strong>in</strong>g holomorphic quantum relation:(∏ ) |n|T (n) T (−n) = , (13.15)α Xhα αwhich is consistent with all manifest symmetries <strong>in</strong> <strong>the</strong> action. This is understood as anoperator statement: <strong>the</strong> equation must be multiplied on both sides by <strong>the</strong> necessary fieldsto form <strong>gauge</strong>-<strong>in</strong>variant operators. In Section 13.4 we show that <strong>in</strong> <strong>the</strong> usual unflavoredcase (where quantum corrections seem not to play a rôle) <strong>the</strong> relation T (n) T (−n) = 1can be <strong>in</strong>ferred from <strong>the</strong> form <strong>of</strong> <strong>the</strong> moduli space. Moreover, (13.15) is analogous to<strong>the</strong> quantum relation which appeared <strong>in</strong> <strong>the</strong> N = 3 setup <strong>of</strong> [285] (see also [231]), andwe will show that it reproduces <strong>the</strong> CY 4 moduli spaces as expected from <strong>the</strong> M-<strong>the</strong>oryreduction, as we also check <strong>in</strong> several examples <strong>in</strong> Section 13.6. In <strong>the</strong> follow<strong>in</strong>g we willuse <strong>the</strong> notationT (1) ≡ T , T (−1) ≡ ˜T , (13.16)for <strong>the</strong> simplest diagonal monopole operators.7 We are ma<strong>in</strong>ly <strong>in</strong>terested <strong>in</strong> <strong>the</strong> case that X α are pure bifundamental fields, but <strong>the</strong> arguments thatfollow apply as well to composite bifundamental fields, i.e. connected open paths <strong>in</strong> <strong>the</strong> quiver.8 To apply (13.10), take any generator <strong>of</strong> U(h α) and consider <strong>the</strong> U(1) subgroup it generates.


210 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers13.4 Moduli space <strong>of</strong> flavored quiversInthissectionwecompute<strong>the</strong>geometricbranch<strong>of</strong><strong>the</strong>modulispace<strong>of</strong>anyN = 2flavoredChern-Simons quiver, us<strong>in</strong>g <strong>the</strong> conjectured OPE (13.15) as a crucial <strong>in</strong>gredient. We firstgive an alternative derivation <strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> unflavored CS quivers, emphasiz<strong>in</strong>g<strong>the</strong> rôle played by <strong>the</strong> monopoles operators. Next we discuss <strong>the</strong> moduli space <strong>of</strong> flavoredCS quiver. We will use brane til<strong>in</strong>gs with multiple bounds as an <strong>in</strong>termediate tool, whichwill allow us to use <strong>the</strong> Kasteleyn matrix algorithm <strong>of</strong> section 11.3.1 to easily extract <strong>the</strong>toric diagram.13.4.1 Unflavored quivers and monopolesThe moduli space <strong>of</strong> any (unflavored) N = 2 Chern-Simons quiver <strong>the</strong>ory was workedout <strong>in</strong> [244], whose construction we reviewed <strong>in</strong> Chapter 11. In that analysis we <strong>gauge</strong>fixed <strong>the</strong> U(1) b symmetry, and <strong>the</strong>re was a rema<strong>in</strong><strong>in</strong>g discrete <strong>gauge</strong> identification whichlead to <strong>the</strong> conclusion that <strong>the</strong> moduli space was a particular Z q orbifold <strong>of</strong> <strong>the</strong> “naive”moduli space. Here we present an alternative analysis <strong>of</strong> <strong>the</strong> moduli space, which showshow <strong>the</strong> monopole operators T, ˜T can be <strong>in</strong>cluded at <strong>the</strong> classical level. Instead <strong>of</strong> <strong>gauge</strong>fix<strong>in</strong>g <strong>the</strong> dual photon ϕ, we keep it <strong>in</strong> <strong>the</strong> description <strong>of</strong> <strong>the</strong> moduli space. Given <strong>the</strong>periodicity <strong>of</strong> ϕ, we can construct <strong>the</strong> two complex fieldsT = ρe iGϕ , ˜T = ˜ρe −iGϕ , (13.17)where<strong>the</strong>irdimensionlessmoduliρand ˜ρarenotspecifiedyet. The<strong>gauge</strong>transformationsareT → e i∑ k i θ iT , ˜T → e−i ∑ k i θ i ˜T , (13.18)so that <strong>the</strong>ir <strong>gauge</strong> charges are ±(k 1 ,...,k G ) respectively. Keep<strong>in</strong>g T, ˜T <strong>in</strong> <strong>the</strong> description,we will have to divide by <strong>the</strong> full <strong>gauge</strong> group U(1) G (still noth<strong>in</strong>g is charged underU(1) diag ). We can rewrite <strong>the</strong> D-term equations (11.36) and (11.35) aswith <strong>the</strong> extra complex constra<strong>in</strong>t0 = ˜D i = k i g 2 |T| 2 −k i g 2 |˜T| 2 +D i ∀i (13.19)T ˜T = 1 , (13.20)where ˜D i are “improved D-terms”. Here g 2 is some mass scale, discussed below. Theimproved D-term equations can be thought <strong>of</strong> as aris<strong>in</strong>g <strong>in</strong> <strong>the</strong> presence <strong>of</strong> extra chiralfields T, ˜T with charges ±(k 1 ,...,k G ).The equivalence works as follows:0 = ∑ c i ˜Di = ∑ ∑c i D i ∀{c i } s.t. c i k i = 0i ii0 = ∑ ik i|k| 2 ˜D i = g 2 |T| 2 −g 2 |˜T| 2 + ∑ ik i|k| 2 D i .(13.21)The first set is exactly (11.36). The second equation is equivalent to (11.35) if we expressρ and ˜ρ <strong>in</strong> terms <strong>of</strong> σ through <strong>the</strong> equations (13.20) and|T| 2 −|˜T| 2 + σ = 0. (13.22)2πg2


13.4. Moduli space <strong>of</strong> flavored quivers 211These two equations have one and only one solution <strong>in</strong> terms <strong>of</strong> σ.As a result, <strong>the</strong> same moduli space can be obta<strong>in</strong>ed by add<strong>in</strong>g T, ˜T to <strong>the</strong> set {X a }<strong>of</strong> chiral fields, add<strong>in</strong>g (13.20) to <strong>the</strong> set <strong>of</strong> classical F-term relations derived from <strong>the</strong>superpotential, and divid<strong>in</strong>g by <strong>the</strong> full <strong>gauge</strong> group U(1) G . Rephras<strong>in</strong>g, we start with alarger algebraic variety˜Z = {X a ,T, ˜T | dW = 0, T ˜T = 1} ⊂ C M+2 , (13.23)and construct <strong>the</strong> geometric moduli space as <strong>the</strong> Kähler quotientM = ˜Z//U(1) G . (13.24)It is natural to associate T and ˜T with <strong>the</strong> monopole operators. In fact, follow<strong>in</strong>g[217], it is natural to comb<strong>in</strong>e <strong>the</strong> vector multiplet scalar σ and <strong>the</strong> scalar dual to <strong>the</strong>photon <strong>in</strong> a chiral multiplet. The mass scale g 2 does not affect <strong>the</strong> moduli space, andwe can use <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> diagonal photon A diag <strong>in</strong> a YM-CS UV completion <strong>of</strong> <strong>the</strong><strong>the</strong>ory. The relation (13.20) is a particular case <strong>of</strong> <strong>the</strong> quantum relation (13.15): we seethat <strong>in</strong> <strong>the</strong> unflavored case it appears at <strong>the</strong> classical level, <strong>in</strong> <strong>the</strong> parametrization <strong>of</strong> <strong>the</strong>moduli space. Moreover T and ˜T are necessary to parametrize <strong>the</strong> moduli space withoperators <strong>in</strong>variant under <strong>the</strong> full U(1) G <strong>gauge</strong> group, as we saw <strong>in</strong> our discussion <strong>of</strong> <strong>the</strong>ABJM <strong>the</strong>ory <strong>in</strong> Chapter 11.13.4.2 Flavored quiversLet us study <strong>the</strong> geometric moduli space <strong>of</strong> a quiver <strong>the</strong>ory, flavored along <strong>the</strong> l<strong>in</strong>es<strong>of</strong> Section 13.3. Let {X α } be <strong>the</strong> set <strong>of</strong> bifundamental fields which are flavored, withsuperpotential W = W 0 + ∑ α p αX α q α , and h α <strong>the</strong> number <strong>of</strong> flavors <strong>in</strong> each family.The F-term equations dW = 0 are clearly modified. In particular <strong>the</strong>re could beHiggs branches where p α , q α get a VEV. This can happen when X α = 0, which, <strong>in</strong> <strong>the</strong>dual gravitational <strong>the</strong>ory, corresponds ei<strong>the</strong>r <strong>in</strong> IIA to <strong>the</strong> D2-brane end<strong>in</strong>g on <strong>the</strong> D6-<strong>branes</strong> and turn<strong>in</strong>g on <strong>in</strong>stanton field-strength configurations on <strong>the</strong>ir worldvolume, or <strong>in</strong>M-<strong>the</strong>ory to <strong>the</strong> M2-brane end<strong>in</strong>g on <strong>the</strong> local C 2 ×C 2 /Z hα s<strong>in</strong>gularity. However we willnot study Higgs branches. Therefore on <strong>the</strong> branch wherep α = 0 , q α = 0 ∀α (13.25)<strong>the</strong> F-term equations dW = 0 are <strong>the</strong> same as <strong>in</strong> <strong>the</strong> unflavored case. To those, we add<strong>the</strong> conjectured quantum relation (13.15):We get an algebraic varietyT ˜T = ∏ α Xhα α . (13.26)˜Z = {X a ,T, ˜T | dW = 0, T ˜T = ∏ αX hαα } ⊂ C M+2 , (13.27)where M is <strong>the</strong> total number <strong>of</strong> bifundamental chiral fields. ˜Z has to be divided by <strong>the</strong>complexified <strong>gauge</strong> group U(1) G , so that <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> flavored quiver isM flav = ˜Z//U(1) G . (13.28)


212 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers−→Figure 13.2: Deformation <strong>of</strong> <strong>the</strong> unflavored <strong>the</strong>ory to construct <strong>the</strong> A-<strong>the</strong>ory.The <strong>gauge</strong> charges <strong>of</strong> T and ˜T are <strong>in</strong> (13.13), and recall that, generically, <strong>in</strong> <strong>the</strong> flavor<strong>in</strong>gprocess <strong>the</strong> Chern-Simons levels have to be shifted as expla<strong>in</strong>ed <strong>in</strong> Section 13.3. Noticethat, even though not discussed <strong>in</strong> this chapter, <strong>the</strong> same construction goes through if wecouple a flavor group not to a bifundamental field X α but to a bifundamental operatorO α = ∏ β X β built out <strong>of</strong> a connected open path <strong>in</strong> <strong>the</strong> quiver.13.4.3 Toric flavored CS quiversIn case <strong>the</strong> CS-matter quiver <strong>the</strong>ory is a brane til<strong>in</strong>g, and thus its geometric modulispace is a toric CY 4 , <strong>the</strong> flavor<strong>in</strong>g <strong>of</strong> Section 13.3 produces a new <strong>the</strong>ory whose geometricmoduli space is still a toric CY 4 , and we can explicitly provide its toric diagram.Toricity is easy to understand: if we <strong>in</strong>terpret <strong>the</strong> til<strong>in</strong>g as a quiver <strong>the</strong>ory <strong>in</strong> 3+1dimensions, its mesonic moduli space is M 3+1 = {X a |dW = 0}//U(1) G , which is a toricthreefold and thus has (at least) U(1) 3 symmetry. The space M flav <strong>in</strong> (13.28) is <strong>the</strong>n afourfold, has an extra U(1) symmetry act<strong>in</strong>g on T, ˜T and is <strong>the</strong>n toric.The strategy is to consider a different <strong>the</strong>ory – that we call <strong>the</strong> A(uxiliary)-<strong>the</strong>ory, asopposed to <strong>the</strong> flavored <strong>the</strong>ory under consideration 9 – <strong>of</strong> which we can easily construct<strong>the</strong> toric diagram, and <strong>the</strong>n show that its geometric moduli space is <strong>the</strong> same as M flav <strong>in</strong>(13.28). The A-<strong>the</strong>ory is a usual CS-matter brane til<strong>in</strong>g <strong>the</strong>ory, and its geometric modulispace can be computed with <strong>the</strong> Kasteleyn matrix algorithm. It is constructed as follows.We start with <strong>the</strong> brane til<strong>in</strong>g <strong>of</strong> <strong>the</strong> unflavored <strong>the</strong>ory, ref<strong>in</strong>ed by numbers n ij thatencode <strong>the</strong> CS levels as k i = ∑ j (n ij −n ji ). Every time <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory we add h αflavors (p α ,q α ) coupled to a bifundamental X α ≡ X ij , <strong>in</strong> <strong>the</strong> A-<strong>the</strong>ory we <strong>in</strong>troduce h αnew <strong>gauge</strong> groups U(1) (l)1 with l = 1,...,h α and substitute X ij by h α +1 bifundamentalfields C i1 ,C 12 ,...,C hαj coupled to <strong>the</strong> new groups <strong>in</strong> a cha<strong>in</strong> as <strong>in</strong> Figure 13.2. Thenew superpotential <strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory is equal to <strong>the</strong> old one, but with <strong>the</strong> substitutionX ij → C i1 C 12 ...C hαj. In <strong>the</strong> til<strong>in</strong>g this corresponds to substitut<strong>in</strong>g <strong>the</strong> edge X ij byh α +1 nearby edges C i1 ,C 12 ,...,C hαj, connect<strong>in</strong>g <strong>the</strong> same two superpotential nodes asX ij , and enclos<strong>in</strong>g h α new faces U(1) (l)1 between <strong>the</strong>m. 10Then we assign <strong>in</strong>tegers to <strong>the</strong> C fields: go<strong>in</strong>g from C i1 to C hαj, <strong>the</strong>y must be asequence <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g consecutive <strong>in</strong>tegers <strong>in</strong>clud<strong>in</strong>g n ij (<strong>the</strong> old <strong>in</strong>teger <strong>of</strong> X ij ). This9 We call <strong>the</strong> A-<strong>the</strong>ory “auxiliary” because it is not our primary object <strong>of</strong> study, but ra<strong>the</strong>r a tool tocompute <strong>the</strong> toric diagram <strong>of</strong> M flav .10 Such a feature <strong>of</strong> <strong>the</strong> til<strong>in</strong>g has been dubbed “multi-bond” and studied <strong>in</strong> [253, 260, 263]. See <strong>the</strong>discussion <strong>in</strong> Chapter 11.


13.4. Moduli space <strong>of</strong> flavored quivers 213means that we can choose an <strong>in</strong>teger γ α , with 0 ≤ γ α ≤ h α , and <strong>the</strong>n <strong>the</strong> numbers n are:(C i1 ,C 12 ,...,C hαj) → (n ij −γ α , n ij −γ α +1,...,n ij −γ α +h α ) . (13.29)The parameter γ α , that represents <strong>the</strong> choice <strong>of</strong> <strong>the</strong>ory, must be taken equal to <strong>the</strong> one<strong>in</strong> (13.7). The CS levels <strong>of</strong> <strong>the</strong> new <strong>gauge</strong> groups U(1) (l)1 are all 1; <strong>the</strong> CS levels <strong>of</strong> U(1) (i)and U(1) (j) are shifted as k i → k i −γ α and k j → k j +γ α −h α .We claim that <strong>the</strong> moduli space M flav <strong>in</strong> (13.28) is a CY 4 , and its 3d toric diagramis <strong>the</strong> toric diagram obta<strong>in</strong>ed from <strong>the</strong> A-<strong>the</strong>ory, for <strong>in</strong>stance by <strong>the</strong> Kasteleyn matrixalgorithm. The pro<strong>of</strong> is given <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g subsection.The deformation <strong>of</strong> <strong>the</strong> unflavored moduli space at <strong>the</strong> level <strong>of</strong> toric diagram is readilyunderstood. The perfect match<strong>in</strong>gs t k that def<strong>in</strong>e <strong>the</strong> unflavored 3d toric diagram,obta<strong>in</strong>ed by <strong>the</strong> Kasteleyn matrix algorithm, have “horizontal” coord<strong>in</strong>ates (x,y) and“height” z. For each perfect match<strong>in</strong>g t k , we add a number <strong>of</strong> consecutive po<strong>in</strong>ts aboveand below t k , with <strong>the</strong> same horizontal coord<strong>in</strong>ates (x,y) as t k . The po<strong>in</strong>ts are added to<strong>the</strong> perfect match<strong>in</strong>gs which appear <strong>in</strong> <strong>the</strong> parametrization (3.30) <strong>of</strong> flavored fields X α .To be precise, <strong>the</strong> number <strong>of</strong> consecutive po<strong>in</strong>ts above and below t k is:t k→ ∑ α M kα(h α −γ α ) above and ∑ α M kαγ α below,where M kα is <strong>the</strong> <strong>the</strong> perfect match<strong>in</strong>g matrix. A rich zoology <strong>of</strong> examples is provided <strong>in</strong>Section 13.6.The reason for <strong>the</strong> addition <strong>of</strong> po<strong>in</strong>ts goes as follows. In construct<strong>in</strong>g <strong>the</strong> til<strong>in</strong>g <strong>of</strong> <strong>the</strong>A-<strong>the</strong>ory, we substitute <strong>the</strong> edges X α with h α + 1 new edges connect<strong>in</strong>g <strong>the</strong> same twosuperpotential nodes, and assign <strong>the</strong>m <strong>the</strong> <strong>in</strong>tegers <strong>in</strong> (13.29). Therefore, for each perfectmatch<strong>in</strong>g that was constructed us<strong>in</strong>g X α , we get h α new perfect match<strong>in</strong>gs with <strong>the</strong> samehorizontal coord<strong>in</strong>ates and consecutive heights determ<strong>in</strong>ed by <strong>the</strong>ir <strong>in</strong>tegers. It is easy tocheck that <strong>the</strong> net result on <strong>the</strong> toric diagram is <strong>the</strong> one claimed above.F<strong>in</strong>ally, s<strong>in</strong>ce each field X a appears <strong>in</strong> at least one strictly external perfect match<strong>in</strong>g,<strong>the</strong> deformed 3d toric diagram <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ory has external “columns <strong>of</strong> verticallyaligned po<strong>in</strong>ts”, which correspond to local KK monopoles <strong>in</strong> <strong>the</strong> CY 4 that is local C 2 ×C 2 /Z hα s<strong>in</strong>gularities. Thus <strong>the</strong> bottom-up approach gives results <strong>in</strong> perfect agreementwith <strong>the</strong> top-down analysis <strong>of</strong> Section 13.2.13.4.4 Moduli space <strong>of</strong> flavored quivers from <strong>the</strong> A-<strong>the</strong>ory: a pro<strong>of</strong>In this subsection we prove that <strong>the</strong> geometric moduli space <strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory is <strong>the</strong> sameas M flav <strong>in</strong> (13.28).Consider a s<strong>in</strong>gle bifundamental X α ≡ X ij flavored by h α quarks (p α ,q α ) <strong>in</strong> <strong>the</strong>flavored <strong>the</strong>ory. In <strong>the</strong> A-<strong>the</strong>ory X ij has been substituted by h α + 1 bifundamentalsC i1 , C 12 , ..., C hαj, h α new <strong>gauge</strong> groups U(1) (l)1 with l = 1,...,h α have been added,and <strong>the</strong> o<strong>the</strong>r two <strong>gauge</strong> groups <strong>in</strong>volved have CS levels k i −γ α and k j +γ α −h α , with0 ≤ γ α ≤ h α , <strong>in</strong> terms <strong>of</strong> <strong>the</strong> levels k i and k j before flavor<strong>in</strong>g. As we showed <strong>in</strong> Section13.4.1, <strong>the</strong> geometric moduli space <strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory is <strong>the</strong> Kähler quotientM A−<strong>the</strong>ory = {X a ,R, ˜R | dW A = 0, R˜R = 1}//U(1)˜G , (13.30)


214 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiverswhere R, ˜R are <strong>the</strong> monopoles <strong>in</strong> <strong>the</strong> A-<strong>the</strong>ory, W A its superpotential and ˜G = G+h α is<strong>the</strong> total number <strong>of</strong> <strong>gauge</strong> groups.The only fields charged under <strong>the</strong> h α new groups U(1) (l)1 are C i1 ,C 12 ,...,C hαj, R and˜R. Their charges, <strong>in</strong>clud<strong>in</strong>g U(1) ki −γ αand U(1) kj +γ α−h α, are:C i1 C 12 ... C hα−1,h αC hαj R ˜RU(1) ki −γ α1 0 ... 0 0 k i −γ α −k i +γ αU(1) (1)1 −1 1 0 0 1 −1U(1) (2)1 0 −1 0 0 1 −1. . . . . . .U(1) (hα−1)1 0 0 1 0 1 −1U(1) (hα)1 0 0 −1 1 1 −1U(1) kj +γ α−h α0 0 ... 0 −1 k j +γ α −h α −k j −γ α +h αLet us perform <strong>the</strong> Kähler quotient by <strong>the</strong> complexified <strong>gauge</strong> group ∏ h αl=1 U(1)(l) 1 only:it is done by <strong>in</strong>troduc<strong>in</strong>g <strong>gauge</strong> <strong>in</strong>variants and relations between <strong>the</strong>m. The <strong>in</strong>dependent<strong>gauge</strong> <strong>in</strong>variants are:T ≡ R(C i1 ) hα (C 12 ) hα−1 ...(C hα−1,h α) 1 R˜R = 1˜T ≡ ˜R(C 12 ) 1 (C 23 ) 2 ...(C hαj) hα X ij ≡ C i1 C 12 ...C hαj ,(13.31)where we dubbed one <strong>of</strong> <strong>the</strong>m as <strong>the</strong> old field X ij . The only relation isT ˜T = (X ij ) hα . (13.32)We see that, after quotient<strong>in</strong>g, <strong>the</strong> new monopole operators are T, ˜T and obey a “quantum”F-term relation. The charges <strong>of</strong> X ij , T, ˜T under <strong>the</strong> rema<strong>in</strong><strong>in</strong>g two groups are:X ij T ˜TU(1) ki −γ α1 k i −γ α +h α −k i +γ αU(1) kj +γ α−h α−1 k j +γ α −h α −k j −γ αWe want to compare <strong>the</strong>se charges with those <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory. When <strong>the</strong> flavored<strong>the</strong>ory is be<strong>in</strong>g flavored by h α quarks, its CS levels have to be shifted by δk l = ( h α2−γ α)gl [X ij ] (13.7), where γ α is a choice <strong>of</strong> <strong>the</strong>ory. Plugg<strong>in</strong>g <strong>in</strong>to (13.13) we get:g l [T] = k l +(h α −γ α )g l [X ij ] g l [˜T] = −k l +γ α g l [X ij ] . (13.33)Thispreciselyagreeswith<strong>the</strong>tableaboveifweidentify<strong>the</strong>choice<strong>of</strong>0 ≤ γ α ≤ h α between<strong>the</strong> flavored and A-<strong>the</strong>ory. So <strong>the</strong> quotient by ∏ h αl=1 U(1)(l) 1 gives <strong>the</strong> A-<strong>the</strong>ory monopoles<strong>the</strong> same quantum charges as <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory. 11Let us now consider <strong>the</strong> classical F-term relations. In <strong>the</strong> A-<strong>the</strong>ory, <strong>the</strong> F-terms are<strong>of</strong> two sorts: differentiat<strong>in</strong>g W A by a field which is not C i1 ,...,C hαj we get <strong>the</strong> same11 The CS levels are different <strong>in</strong> <strong>the</strong> flavored and A-<strong>the</strong>ory, but this does not matter. What matters for<strong>the</strong> moduli space are <strong>the</strong> charges <strong>of</strong> chiral fields.


13.5. Back to geometry: real and complex masses 215equation as <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory, but with X ij → C i1 ...C hαj; differentiat<strong>in</strong>g W A byone <strong>of</strong> C i1 ,...,C hαj we get <strong>the</strong> same equation as <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory, but multipliedby <strong>the</strong> o<strong>the</strong>r C fields:(∏C)(flavored <strong>the</strong>ory relation) = 0 . (13.34)As long as no more than one <strong>of</strong> <strong>the</strong> C fields vanishes, we exactly reproduce <strong>the</strong> sameF-terms as <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory. When more than one C field vanishes, all equationsbecome trivial and <strong>the</strong> A-<strong>the</strong>ory could develop a branch which is not conta<strong>in</strong>ed <strong>in</strong> <strong>the</strong>geometric moduli space <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ory. However, <strong>the</strong> geometric moduli space<strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory (which is <strong>the</strong> CY 4 ) is <strong>the</strong> one where <strong>the</strong> F-terms are solved by <strong>the</strong>parametrization X α = ∏ k tM kαk, thus if <strong>the</strong> flavored <strong>the</strong>ory relations are satisfied atC ≠ 0, <strong>the</strong>y are satisfied also at C = 0.We have thus shown that:M A−<strong>the</strong>ory = {X A a | dW A = 0}//U(1)˜G−2 == {X A a ,R, ˜R | dW A = 0, R˜R = 1}//U(1)˜G == {X F a ,T, ˜T | dW flav = 0, T ˜T = ∏ X hαα }//U(1) G = M flav .(13.35)The argument is straightforwardly generalized to <strong>the</strong> case that we flavor multiple fieldsX α , each with its own h α quarks. This concludes <strong>the</strong> pro<strong>of</strong>.Let us conclude with a remark. Suppose that <strong>the</strong> <strong>the</strong>ory before flavor<strong>in</strong>g has someglobal Abelian symmetry, under which X ij has charge Q. Then also <strong>the</strong> A-<strong>the</strong>ory hassuch a symmetry, if we assign charges Q/(h α +1) to C i1 ,...,C hαj. It is easy to computethat, after modd<strong>in</strong>g out by ∏ l U(1)(l) 1 , both T and ˜T have charge h α Q/2. This reproduces<strong>the</strong> quantum formulæ (13.12) and (13.14).13.5 Back to geometry: real and complex massesEach non-compact toric divisor <strong>of</strong> a toric CY 3 is a strictly external po<strong>in</strong>t <strong>of</strong> its 2d toricdiagram. In <strong>the</strong> field <strong>the</strong>ory it corresponds to a set <strong>of</strong> fields {X η } η=1,...,Q (with <strong>the</strong> sameglobal charges), where Q is determ<strong>in</strong>ed by (13.1): <strong>the</strong> equation X η = 0, for any <strong>of</strong> <strong>the</strong> Qfields, def<strong>in</strong>es <strong>the</strong> divisor as a submanifold <strong>of</strong> <strong>the</strong> mesonic moduli space. Plac<strong>in</strong>g a stack <strong>of</strong>h D6-<strong>branes</strong> on <strong>the</strong> divisor <strong>in</strong>troduces h flavors coupled to one <strong>of</strong> <strong>the</strong> fields {X η } via <strong>the</strong>superpotential δW = pX η q. This follows from <strong>the</strong> fact that <strong>the</strong> modes from 2-6 str<strong>in</strong>gsdescribed by (p,q) become massless when some D2-<strong>branes</strong> are on top <strong>of</strong> <strong>the</strong> D6-<strong>branes</strong>.Moreover <strong>the</strong> D6-<strong>branes</strong> carry U(h) <strong>gauge</strong> fields, which by <strong>the</strong> AdS/CFT map give riseto U(h) global symmetry <strong>in</strong> <strong>the</strong> boundary <strong>the</strong>ory.There are Q fields such that <strong>the</strong> equation X η = 0 describes <strong>the</strong> same irreducible divisor.The reason is that <strong>the</strong> radial section <strong>of</strong> <strong>the</strong> divisor can have non-trivial fundamentalgroup (<strong>in</strong> <strong>the</strong> toric case π 1 (S 3 /Z Q ) = Z Q ); <strong>the</strong>refore a flat connection can be specifiedas boundary condition on <strong>the</strong> D6 worldvolume, dist<strong>in</strong>guish<strong>in</strong>g which <strong>of</strong> <strong>the</strong> Q fields itis coupled to. The connection is <strong>the</strong>n flat everywhere but at <strong>the</strong> tip, where its flux canaffect <strong>the</strong> shift <strong>of</strong> CS levels via (13.3). Indeed, flavor<strong>in</strong>g different fields <strong>in</strong> <strong>the</strong> set {X η }implies shift<strong>in</strong>g different CS levels (13.6). Clearly we can pile up D6-<strong>branes</strong> with differentflat connection.


216 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversThe converse is not true: a generic field X a corresponds – via <strong>the</strong> equation X a = 0 –to a collection <strong>of</strong> pairwise <strong>in</strong>tersect<strong>in</strong>g toric divisors, ra<strong>the</strong>r than to a s<strong>in</strong>gle irreducibledivisor. More precisely, each field is part <strong>of</strong> a set {X η } 1,...,Q which corresponds to acollection <strong>of</strong> consecutive strictly external po<strong>in</strong>ts along <strong>the</strong> perimeter <strong>of</strong> <strong>the</strong> toric diagram.The number Q <strong>of</strong> fields <strong>in</strong> <strong>the</strong> set is still given by <strong>the</strong> formula <strong>in</strong> footnote 4, but tak<strong>in</strong>g<strong>the</strong> cross product between two non-consecutive legs (<strong>in</strong> <strong>the</strong> (p,q)-web) that enclose <strong>the</strong>sequence <strong>of</strong> po<strong>in</strong>ts [299]. Flavor<strong>in</strong>g one <strong>of</strong> <strong>the</strong> fields X η via δW = pX η q is accomplishedby plac<strong>in</strong>g a stack <strong>of</strong> D6-<strong>branes</strong> on <strong>the</strong> collection <strong>of</strong> <strong>in</strong>tersect<strong>in</strong>g divisors, described byX η = 0. The map is easily worked out with perfect match<strong>in</strong>gs and <strong>the</strong> Kasteleyn matrixalgorithm; we gave an example <strong>in</strong> Section 3.5.4.All <strong>the</strong>se statements translate to M-<strong>the</strong>ory. A stack <strong>of</strong> h D6-<strong>branes</strong> on <strong>the</strong> fibered CY 3uplift to a CY 4 with h KK monopoles, which locally have complex structure C 2 ×C 2 /Z hand <strong>the</strong> geometry <strong>of</strong> a multi-Taub-NUT. The equation X α = 0 describes <strong>the</strong> location<strong>of</strong> <strong>the</strong> core <strong>of</strong> <strong>the</strong> multi-Taub-NUT. Such a s<strong>in</strong>gularity <strong>in</strong> M-<strong>the</strong>ory carries SU(h) <strong>gauge</strong>fields, while <strong>the</strong> extra U(1) comes from <strong>the</strong> KK reduction <strong>of</strong> <strong>the</strong> bulk potential C 3 . Infact <strong>the</strong> geometry <strong>of</strong> h co<strong>in</strong>cident KK monopoles isds 2 KK = U d⃗x·d⃗x+ 1 U (dθ +A ω) 2 with U = 1|⃗x| + 1 λ 2 , (13.36)where ⃗x ∈ R 3 , U is a harmonic function on R 3 , A ω = ⃗ω ·d⃗x is a U(1) connection on R 3such that dU = ∗ 3 dA ω , θ has period 4π/h and λ is <strong>the</strong> asymptotic radius <strong>of</strong> <strong>the</strong> circle.For h = 1 <strong>the</strong> metric is smooth, o<strong>the</strong>rwise it has an A h−1 s<strong>in</strong>gularity. The 2-form[|⃗x| ( ) ]B = dΛ = d dθ +Aω|⃗x|+λ 2 (13.37)is closed, anti-self-dual, regular and <strong>in</strong>tegrable. Thus a local KK reduction C 3 = A∧Bgives an extra U(1) <strong>gauge</strong> field propagat<strong>in</strong>g around <strong>the</strong> core <strong>of</strong> <strong>the</strong> multi-Taub-NUT.The flat boundary condition for <strong>the</strong> connection on <strong>the</strong> D6-<strong>branes</strong> uplifts to a flatboundary condition for C 3 (and possibly <strong>the</strong> <strong>gauge</strong> fields at <strong>the</strong> s<strong>in</strong>gularity). However,s<strong>in</strong>ce <strong>in</strong> type IIA <strong>the</strong> connection is not flat at <strong>the</strong> tip and its flux can affect <strong>the</strong> CSlevels which ultimately determ<strong>in</strong>e <strong>the</strong> fibration <strong>of</strong> <strong>the</strong> CY 3 along R, <strong>in</strong> M-<strong>the</strong>ory differentboundary conditions can uplift to different geometries. An example will be given <strong>in</strong>subsection 13.6.3.13.5.1 Real masses and partial resolutionsWe can <strong>in</strong>troduce real masses for chiral fields with <strong>the</strong> term∫d 4 θZ † e 2i˜mθ¯θZ . (13.38)As <strong>in</strong> Section 13.3, we can th<strong>in</strong>k <strong>of</strong> <strong>the</strong> real mass as a VEV for a background scalar σ F ,<strong>in</strong> <strong>the</strong> N = 2 vector multiplet <strong>of</strong> U(h). In this way we give opposite mass to <strong>the</strong> flavorsp and q. The VEV <strong>of</strong> σ F corresponds to <strong>the</strong> position <strong>of</strong> <strong>the</strong> D6-<strong>branes</strong> along <strong>the</strong> real l<strong>in</strong>eR transverse to <strong>the</strong> CY 3 . When <strong>the</strong> D6-<strong>branes</strong> at r 0 are displaced from <strong>the</strong> D2-<strong>branes</strong>at <strong>the</strong> tip, <strong>the</strong> flavors can be <strong>in</strong>tegrated out at low energy. We showed <strong>in</strong> (13.3) that


13.5. Back to geometry: real and complex masses 217opposite signs for σ F affect <strong>the</strong> CS levels, consistently with <strong>the</strong> field <strong>the</strong>ory discussion <strong>in</strong>Section 13.3.Real masses, like Fayet-Iliopoulos parameters, do not affect <strong>the</strong> superpotential [217].Uplift<strong>in</strong>g to M-<strong>the</strong>ory, real masses do not affect <strong>the</strong> complex structure <strong>of</strong> <strong>the</strong> CY 4 butra<strong>the</strong>r its Kähler parameters: <strong>the</strong>y correspond to blow<strong>in</strong>g up a 2-cycle. In simple examples,<strong>in</strong>tegrat<strong>in</strong>g out a flavor pair corresponds to remov<strong>in</strong>g a s<strong>in</strong>gle strictly external po<strong>in</strong>tfrom <strong>the</strong> 3d toric diagram: <strong>the</strong> local C 2 ×C 2 /Z h s<strong>in</strong>gularity manifests itself as a column<strong>of</strong> h+1 external po<strong>in</strong>ts, and <strong>in</strong>tegrat<strong>in</strong>g out a quark pair with negative (positive) 〈σ F 〉corresponds to a partial resolution <strong>of</strong> <strong>the</strong> upmost (lowest) po<strong>in</strong>t <strong>in</strong> <strong>the</strong> column. Only <strong>in</strong>this limit <strong>of</strong> <strong>in</strong>f<strong>in</strong>ite mass/resolution parameter, <strong>the</strong> effective complex structure changes,as <strong>the</strong> removal <strong>of</strong> <strong>the</strong> po<strong>in</strong>t <strong>in</strong> <strong>the</strong> toric diagram shows. In more complicated situations,<strong>the</strong> partial resolution correspond<strong>in</strong>g to giv<strong>in</strong>g <strong>in</strong>f<strong>in</strong>ite real mass to a flavor pair couldcorrespond to remov<strong>in</strong>g more than one po<strong>in</strong>t: <strong>the</strong> precise map is via perfect match<strong>in</strong>gs,as analyzed <strong>in</strong> Section 13.4.2.13.5.2 Complex massesComplex masses for <strong>the</strong> flavors can correspond to geometric deformations <strong>of</strong> <strong>the</strong> D6-brane embedd<strong>in</strong>gs, but not always. Suppose we want to flavor a bifundamental operatorO α = ∏ β X β, made <strong>of</strong> an open cha<strong>in</strong> <strong>of</strong> bifundamental fields. We can proceed <strong>in</strong> <strong>the</strong>follow<strong>in</strong>g way: we flavor each field X β separately, and <strong>the</strong>n <strong>in</strong>troduce complex masses foreach chiral pair:n∑n−1∑W = W 0 + p β X β q β + m β p β+1 q β . (13.39)β=1After <strong>in</strong>tegrat<strong>in</strong>g out <strong>the</strong> massive flavors, we getW = W 0 + (−1)n−1 ∏β m ββ=1p 1(∏β X β)qn ≡ W 0 +p α O α q α , (13.40)with suitable redef<strong>in</strong>ition <strong>of</strong> fields. S<strong>in</strong>ce fermions <strong>in</strong> vector-like representations do notcontribute to <strong>the</strong> monopole charges, <strong>the</strong> quantum F-term relation is unmodified:T ˜T = ∏ α (X α) hα = (O α ) hα . (13.41)Therefore <strong>the</strong> two <strong>the</strong>ories where we flavor O α or each X β separately have <strong>the</strong> samegeometric moduli space, and can only differ <strong>in</strong> <strong>the</strong>ir Higgs branches.The complex masses m β do not correspond to deformations <strong>of</strong> <strong>the</strong> D6-brane embedd<strong>in</strong>gs.In fact we can probe <strong>the</strong> embedd<strong>in</strong>g with D2-<strong>branes</strong>: <strong>the</strong> quarks become masslesson ⋃ β {X β = 0}, which does not depend on m β . Such masses correspond to VEVs forhigher dimensional fields localized at <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> D6-<strong>branes</strong>, which do notchange <strong>the</strong> embedd<strong>in</strong>g.This leads to <strong>the</strong> follow<strong>in</strong>g natural generalization. Consider start<strong>in</strong>g with a conicalCY 3 , not necessarily toric, and its dual quiver <strong>the</strong>ory def<strong>in</strong>ed by D3-<strong>branes</strong> prob<strong>in</strong>g it.We can always <strong>in</strong>clude RR fluxes and fiber it along R, that is add N = 2 Chern-Simonsterms <strong>in</strong> field <strong>the</strong>ory (<strong>the</strong> geometry <strong>the</strong>n uplifts to a CY 4 <strong>in</strong> M-<strong>the</strong>ory). Then consider a


218 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiverscollection <strong>of</strong> divisors <strong>of</strong> <strong>the</strong> CY 3 , def<strong>in</strong>ed by a set <strong>of</strong> “bifundamental equations” written<strong>in</strong> terms <strong>of</strong> bifundamental fields <strong>in</strong> <strong>the</strong> quiver <strong>the</strong>ory:⋃α {equation α = 0} . (13.42)Each equation is a bifundamental operator and, if it is an adjo<strong>in</strong>t, a mass term µ canbe <strong>in</strong>cluded. We place h α D6-<strong>branes</strong> on <strong>the</strong> divisor {equation α = 0}. For each equation,this corresponds to <strong>in</strong>troduc<strong>in</strong>g a pair <strong>of</strong> h α flavor fields, with <strong>the</strong> correct <strong>gauge</strong> chargesto couple to <strong>the</strong> bifundamental operator. They contribute to <strong>the</strong> charges <strong>of</strong> monopoleoperators precisely such that <strong>the</strong> only non-trivial possible quantum relation isIt <strong>the</strong>n follows that <strong>the</strong> moduli space is <strong>the</strong> CY 4T ˜T = ∏ α (equation α) hα . (13.43)M flav = {X a ,T, ˜T | dW = 0, T ˜T = ∏ α (equation α) hα }//U(1) G . (13.44)It would be nice to check or prove this statement.13.6 Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>oriesInthissectionwediscussvariousexamples<strong>of</strong>three-dimensionaltoricquiver<strong>gauge</strong><strong>the</strong>orieswith flavors. Some <strong>of</strong> <strong>the</strong> flavored quivers have Chern-Simons terms, o<strong>the</strong>rs do not.However, even when <strong>the</strong>re are no CS terms, <strong>the</strong> models have a large N f expansion (N fbe<strong>in</strong>g generically <strong>the</strong> number <strong>of</strong> flavors) and <strong>in</strong> <strong>the</strong> large N and large N f limit <strong>the</strong>yare expected to be dual to type IIA str<strong>in</strong>g <strong>the</strong>ory on a weakly curved background withD6-<strong>branes</strong>. When <strong>the</strong> CS levels do not vanish and <strong>the</strong>re are flavors, two <strong>in</strong>dependentexpansion parameters k and N f may be taken large and allow a reduction to type IIAstr<strong>in</strong>g <strong>the</strong>ory.All <strong>the</strong> YM-CS quivers we consider are expected to flow to an <strong>in</strong>teract<strong>in</strong>g fixed po<strong>in</strong>t.Us<strong>in</strong>g <strong>the</strong> conjectured OPE <strong>of</strong> monopole operators expla<strong>in</strong>ed <strong>in</strong> Section 13.3.1, we discuss<strong>the</strong>quantum chiralr<strong>in</strong>gatthisfixedpo<strong>in</strong>t. GivenanytoricflavoredChern-Simonsquiver,we can use <strong>the</strong> Kasteleyn matrix algorithm <strong>in</strong> <strong>the</strong> A-<strong>the</strong>ory to f<strong>in</strong>d <strong>the</strong> toric diagram <strong>of</strong><strong>the</strong> geometric moduli space. We will see <strong>in</strong> various examples how this works <strong>in</strong> detail.Practically, we solve <strong>the</strong> moduli space equations <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ory by <strong>in</strong>troduc<strong>in</strong>gnew perfect match<strong>in</strong>g variables as suggested by <strong>the</strong> A-<strong>the</strong>ory. The associated GLSMcorresponds to <strong>the</strong> toric CY 4 <strong>of</strong> <strong>the</strong> geometric moduli space.Recallthat <strong>the</strong><strong>gauge</strong> <strong>in</strong>variantfunctions <strong>of</strong> <strong>the</strong>GLSMare<strong>the</strong>aff<strong>in</strong>ecoord<strong>in</strong>ates<strong>of</strong><strong>the</strong>toric variety, and that <strong>the</strong>y satisfy an algebra which def<strong>in</strong>es <strong>the</strong> geometry as an algebraicvariety. It follows from our construction that <strong>the</strong> quantum chiral r<strong>in</strong>g <strong>of</strong> <strong>the</strong> quivercorresponds to <strong>the</strong> r<strong>in</strong>g <strong>of</strong> aff<strong>in</strong>e coord<strong>in</strong>ates on <strong>the</strong> toric variety. This is an importantpo<strong>in</strong>t, s<strong>in</strong>ce this equivalence is a necessary condition for <strong>the</strong> existence <strong>of</strong> an AdS/CFT<strong>correspondence</strong>.For each example we can consider <strong>the</strong> charges Q 0 ≡ Q M <strong>of</strong> <strong>the</strong> GLSM fields underU(1) M . In our convention <strong>the</strong> charges are such that ∑ s QM s ⃗v s = (0,0,0,1), see Section13.2. 12 Then, one can work out <strong>in</strong> each case what is <strong>the</strong> locus <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> U(1) M12 This only def<strong>in</strong>es Q M modulo <strong>the</strong> baryonic symmetries (<strong>the</strong> o<strong>the</strong>r U(1)s <strong>in</strong> <strong>the</strong> GLSM). However <strong>the</strong>U(1) M charges <strong>of</strong> <strong>the</strong> aff<strong>in</strong>e coord<strong>in</strong>ates are unambiguous.


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 219action, and to which divisors it corresponds to <strong>in</strong> <strong>the</strong> type IIA reduction, mak<strong>in</strong>g <strong>the</strong> l<strong>in</strong>kwith <strong>the</strong> top-down approach <strong>of</strong> Section 13.2.Let us fix <strong>the</strong> notation. The perfect match<strong>in</strong>g variables t i <strong>of</strong> <strong>the</strong> unflavored quiverare denoted a z ,b z ,c z ,···, with z <strong>the</strong> vertical coord<strong>in</strong>ate <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> <strong>the</strong>toric diagram. The toric diagram <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ory is obta<strong>in</strong>ed by add<strong>in</strong>g columns<strong>of</strong> po<strong>in</strong>ts above and below some <strong>of</strong> <strong>the</strong> orig<strong>in</strong>al po<strong>in</strong>ts, as expla<strong>in</strong>ed <strong>in</strong> Section 13.4.2. Byan SL(4,Z) transformation, we can always set <strong>the</strong> base <strong>of</strong> three <strong>of</strong> <strong>the</strong> columns <strong>of</strong> po<strong>in</strong>tsto z = 0. We will always choose such a convenient frame. Although we consider quiverswith Abelian <strong>gauge</strong> groups only, we never<strong>the</strong>less write <strong>the</strong> non-Abelian superpotentials,<strong>in</strong> order to make <strong>the</strong> l<strong>in</strong>k with well-known quivers more explicit.13.6.1 Flavor<strong>in</strong>g <strong>the</strong> C 3 quiverOur first example is <strong>the</strong> flavor<strong>in</strong>g <strong>of</strong> N = 8 SYM, <strong>the</strong> low energy field <strong>the</strong>ory on a D2-brane on flat C 3 ×R. The quiver is simply that <strong>of</strong> N = 4 SYM <strong>in</strong> 3+1 dimensions. InN = 2 notation, we have a s<strong>in</strong>gle vector superfield and three adjo<strong>in</strong>t chiral superfieldsΦ 1 , Φ 2 , Φ 3 , with superpotential W = Φ 1 [Φ 2 ,Φ 3 ].We can add one, two or three flavor groups by coupl<strong>in</strong>g flavors to <strong>the</strong> appropriatechiral superfields, as shown <strong>in</strong> Figure 13.3. We denote by p i and q i <strong>the</strong> fundamental andantifundamentalfields<strong>in</strong><strong>the</strong>i-thflavorgroupcoupledto<strong>the</strong>fieldΦ i . Theflavor<strong>in</strong>g<strong>of</strong>aΦ icorresponds to <strong>in</strong>troduc<strong>in</strong>g D6-<strong>branes</strong> at z i = 0, x 9 = 0, and D2/D6-brane <strong>in</strong>tersections<strong>in</strong>duce <strong>the</strong> superpotential∑h 1 ∑h 2 ∑h 3W = Φ 1 [Φ 2 ,Φ 3 ]+ p 1,i Φ 1 q 1,i + p 2,j Φ 2 q 2,j + p 3,l Φ 3 q 3,l . (13.45)i=1j=1In <strong>the</strong> general case, <strong>the</strong> flavor group is G F = U(h 1 )×U(h 2 )×U(h 3 )/U(1). The charges <strong>of</strong><strong>the</strong> fields under <strong>the</strong> various <strong>gauge</strong> and global symmetries are summarized <strong>in</strong> <strong>the</strong> follow<strong>in</strong>gtable:l=1Φ i p 1 q 1 p 2 q 2 p 3 q 3˜T TU(1) 0 −1 1 −1 1 −1 1 0 0U(h 1 ) (1) (h 1 ) (h 1 ) (1) (1) (1) (1) (1) (1)U(h 2 ) (1) (1) (1) (h 2 ) (h 2 ) (1) (1) (1) (1)U(h 3 ) (1) (1) (1) (1) (1) (h 3 ) (h 3 ) (1) (1)(13.46)In this simple case, flavor groups are non-chirally coupled and so <strong>the</strong> monopole operatorsT, ˜T do not acquire any <strong>gauge</strong> charge. Never<strong>the</strong>less, <strong>the</strong>y do acquire some R-charge,R(T) = R(˜T) = 1 2The quantum holomorphic relation (13.15) is(h1 R(Φ 1 )+h 2 R(Φ 2 )+h 2 R(Φ 2 ) ) . (13.47)T ˜T = Φ h 11 Φh 22 Φh 33 . (13.48)Itdescribesanaff<strong>in</strong>evarietywhoseaff<strong>in</strong>ecoord<strong>in</strong>atesare<strong>the</strong>five<strong>gauge</strong><strong>in</strong>variantoperatorsT, ˜T and Φ i (<strong>in</strong> <strong>the</strong> case <strong>of</strong> a U(N) <strong>gauge</strong> group one should consider <strong>the</strong> eigenvalues). Letus discuss a few particular cases related to known models <strong>in</strong> <strong>the</strong> literature [253, 263, 290].


220 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers(a) Quiver withone flavor group.(b) Quiver with two flavorgroups.(c) Quiver with three flavorgroups.Figure 13.3: Quivers for flavored SQED. Circles are <strong>gauge</strong> groups, squares are flavor groups.Colored arrows <strong>in</strong>dicate bifundamental fields coupled to flavors via a superpotential term.(a) C 4 (b) C ×C (c) D 3Figure 13.4: Toric diagrams correspond<strong>in</strong>g to some flavors for <strong>the</strong> C 3 quiver.• In <strong>the</strong> case h 2 = h 3 = 0, The chiral r<strong>in</strong>g relation isT ˜T = Φ h 11 , (13.49)and <strong>the</strong> geometric branch <strong>of</strong> <strong>the</strong> moduli space is C 2 ×C 2 /Z h1 . For h 1 = 1 we haveC 4 , see Figure 13.4(a). This model is related to <strong>the</strong> dual ABJM model <strong>of</strong> [253, 263].We discuss it <strong>in</strong> a bit more details <strong>in</strong> Section 13.6.1.• For h 1 = h 2 = 1, h 3 = 0, we have C × C (C <strong>the</strong> conifold), see Fig. 13.4(b). TheA-<strong>the</strong>ory for this model is <strong>the</strong> so-called Phase III <strong>of</strong> C×C discussed <strong>in</strong> [263].• For h 1 = 2, h 2 = 1, h 3 = 0, we have C times <strong>the</strong> suspended p<strong>in</strong>ch po<strong>in</strong>t (SPP).This was also noticed <strong>in</strong> [290]. In general, for h 1 = a, h 2 = b, <strong>the</strong> geometry isC×C(L aba ).• For h 1 = h 2 = h 3 = 1, <strong>the</strong> geometry is D 3 , see Fig. 13.4(c) . The A-<strong>the</strong>ory for thismodel is <strong>the</strong> Phase III <strong>of</strong> D 3 discussed <strong>in</strong> [263].When some h i > 1, <strong>the</strong>se geometries have non-isolated s<strong>in</strong>gularities. Remark that wehave considered <strong>the</strong> most general toric flavor<strong>in</strong>g <strong>of</strong> <strong>the</strong> C 3 quiver. The GLSM for <strong>the</strong>


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 221Figure 13.5: Toric diagrams <strong>of</strong> C 2 ×C 2 /Z h , for h = 3.strictly external po<strong>in</strong>ts ist 1 t 2 t 3 t 4 t 5 t 6U(1) B1 h 2 −h 1 0 −h 2 h 1 0(13.50)U(1) B2 0 h 3 −h 2 0 −h 3 h 2U(1) B3 −h 3 0 h 1 h 3 0 −h 1This GLSM does not encode various orbifold identifications which might <strong>in</strong> general arise:for a full description <strong>of</strong> <strong>the</strong> geometry one should consider <strong>the</strong> full GLSM, encod<strong>in</strong>g all <strong>the</strong>relations <strong>in</strong> <strong>the</strong> toric diagram, with h 1 +h 2 +h 3 +3 homogeneous coord<strong>in</strong>ates.Flavor<strong>in</strong>g Φ 1 : <strong>the</strong> dual ABJM geometryLet us discuss a bit more <strong>in</strong> detail <strong>the</strong> case C 2 × C 2 /Z h . This geometry has <strong>the</strong> toricdiagram shown <strong>in</strong> Figure 13.5,a 0 = (0,0,0), ··· , a h = (0,0,h), b 0 = (0,1,0), c 0 = (1,0,0) (13.51)There are h+3 homogeneous coord<strong>in</strong>ates, and GLSMa 0 b 0 c 0 a 1 a 2 a 3 ··· a h−1 a hU(1) B1 1 0 0 −2 1 0 ··· 0 0U(1) B2 0 0 0 1 −2 1 ··· 0 0U(1) B3 0 0 0 0 1 −2 ··· 0 0....U(1) Bh−1 0 0 0 0 0 0 ··· −2 1U(1) M 1 0 0 −1 0 0 ··· 0 0(13.52)


222 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversThe five aff<strong>in</strong>e coord<strong>in</strong>ates arex 1 = Φ 1 = a 0 a 1 ...a h−1 a h , x 2 = T = a h 0a h−11 ...a 2 h−2 a h−1 ,x 3 = ˜T = a 1 a 2 2...a h−1h−1 ah h , x 4 = Φ 2 = b 0 , x 5 = Φ 3 = c 0 ,(13.53)and <strong>of</strong> course <strong>the</strong>y satisfyx 2 x 3 = x h 1. (13.54)Also, <strong>the</strong> Q M charges <strong>of</strong> (x 1 ,··· ,x 5 ) are (0,1,−1,0,0), so that U(1) M has fixed po<strong>in</strong>tsat x 2 = x 3 = 0. Gaug<strong>in</strong>g U(1) M , we get <strong>the</strong> type IIA geometry, which is C 3 spanned by(z 1 ,z 2 ,z 3 ) = (x 1 ,x 4 ,x 5 ) s<strong>in</strong>ce <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant coord<strong>in</strong>ate x 2 x 3 can be elim<strong>in</strong>ated by(13.54). The locus <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> U(1) M <strong>in</strong> <strong>the</strong> CY 4 descends to <strong>the</strong> divisor x 1 = 0 <strong>in</strong>C 3 , where we must have a stack <strong>of</strong> h D6-<strong>branes</strong>. This was <strong>the</strong> argument <strong>of</strong> section 13.2,which motivates <strong>the</strong> field <strong>the</strong>ory we presented.Note that <strong>the</strong> same geometry is obta<strong>in</strong>ed as <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong> so-called dualABJM model <strong>of</strong> [253], at CS level h. This model was also studied <strong>in</strong> [263, 307, 272], andsome puzzles were found. At h = 1, <strong>the</strong> dual ABJM model corresponds to <strong>the</strong> A-<strong>the</strong>oryfor our flavored <strong>the</strong>ory with a s<strong>in</strong>gle flavor. For h flavors, our A-<strong>the</strong>ory is a til<strong>in</strong>g withan (h+1)-ple bond. It would be <strong>in</strong>terest<strong>in</strong>g to compare <strong>in</strong> more details our proposal to<strong>the</strong> one <strong>of</strong> [253].For some specific values <strong>of</strong> <strong>the</strong> superpotential coupl<strong>in</strong>gs, <strong>the</strong> supersymmetry <strong>of</strong> ourflavored quiver gets enhanced to N = 4, s<strong>in</strong>ce <strong>the</strong> geometry C 2 ×C 2 /Z h is hyper-Kähler.Indeed, our setup is a N = 2 version <strong>of</strong> <strong>the</strong> setup considered <strong>in</strong> [207].13.6.2 Flavor<strong>in</strong>g <strong>the</strong> conifold quiverConsider <strong>the</strong> quiver <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory, equal to <strong>the</strong> Klebanov-Witten (KW) quiverfor D-<strong>branes</strong> on <strong>the</strong> conifold C. It has two nodes, four bifundamental fields, A 1 , A 2 , B 1 ,B 2 , and superpotential W = A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 . There are four po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> toricdiagram <strong>of</strong> C 4 /Z k , correspond<strong>in</strong>g to <strong>the</strong> four perfect match<strong>in</strong>gs <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g <strong>of</strong> <strong>the</strong>conifold <strong>the</strong>ory and to <strong>the</strong> bifundamental fields: because <strong>the</strong> F-term relations are trivial<strong>in</strong> <strong>the</strong> Abelian <strong>the</strong>ory, we can write (with abuse <strong>of</strong> notation)a k = A 1 = (0,0,k) , b 0 = B 1 = (0,1,0) ,c 0 = A 2 = (1,1,0) , d 0 = B 2 = (1,0,0) .(13.55)We <strong>the</strong>n consider <strong>the</strong> toric diagram obta<strong>in</strong>ed by add<strong>in</strong>g four columns <strong>of</strong> po<strong>in</strong>ts <strong>of</strong> heightsh a , h b , h c , h d above <strong>the</strong> four base po<strong>in</strong>ts (any o<strong>the</strong>r choice <strong>of</strong> add<strong>in</strong>g <strong>the</strong> po<strong>in</strong>ts above orbelow, is SL(4,Z) equivalent to this up to a change <strong>in</strong> k):a k+i = (0,0,k +i) , b j = (0,1,j) , c l = (1,1,l) , d m = (1,0,m) , (13.56)where i = 0,...,h a , j = 0,...,h b , l = 0,...,h c , m = 0,...,h d . See Figure 13.6(b).This toric geometry corresponds to a generic flavor<strong>in</strong>g <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory at levelk, with flavor group G F = U(h a )×U(h b )×U(h c )×U(h d )/U(1). The quiver is shown <strong>in</strong>Figure 13.6(a), and <strong>the</strong> superpotential isW = A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 +∑h a ∑ ∑h c ∑+ p 1,i A 1 q 1,i + p 2,j B 1 q 2,j + p 3,l A 2 q 3,l + p 4,r B 2 q 4,r .i=1h bj=1l=1h dr=1(13.57)


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 223(a) The quiver. (b) Toric diagram, for k = 2.Figure 13.6: Quiver for a generic flavor<strong>in</strong>g <strong>of</strong> ABJM, and <strong>the</strong> correspond<strong>in</strong>g toric diagram, withfour columns <strong>of</strong> heights h a , ···, h d .Before study<strong>in</strong>g several <strong>in</strong>terest<strong>in</strong>g cases, let us discuss <strong>the</strong> general solution for <strong>the</strong> geometricmoduli space <strong>in</strong> this family <strong>of</strong> models. We have <strong>the</strong> quantum relation (13.15),T ˜T = A ha1 Bh b1 Ahc 2 Bh d2 , (13.58)and <strong>the</strong> CS levels are (k+f,−k−f), with f = 1 2 (h a−h b +h c −h d ). The <strong>gauge</strong> charges<strong>of</strong> bifundamental fields and monopole operators are (schematically)A i B j T ˜TU(1) k+f 1 −1 k +2f −kU(1) −(k+f) −1 1 −k −2f k(13.59)The relation (13.58) can be solved by <strong>the</strong> perfect match<strong>in</strong>g variables, asand∏h a ∏ ∏h cA 1 = a k+i , B 1 = b j , A 2 = c l , B 2 =i=0T =˜T =( h a∏i=0( h a∏i=0h bj=0)( ∏h ba ha−ik+ia i k+ij=0)( ∏h bj=0)( ∏h cb h b−jjb j j)( ∏h cl=0c l ll=0l=0)( ∏h dc hc−llm=0)( ∏h dm=0d m m),h d ∏m=0)d h d−mmd m (13.60)(13.61)Notice that each perfect match<strong>in</strong>g variable (13.55) <strong>of</strong> <strong>the</strong> ABJM <strong>the</strong>ory is replaced by<strong>the</strong> product <strong>of</strong> all GLSM fields associated to <strong>the</strong> relevant column <strong>of</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> toricdiagram. Monopole operators are <strong>in</strong>stead products <strong>of</strong> fields along <strong>the</strong> four columns, with<strong>in</strong>creas<strong>in</strong>g or decreas<strong>in</strong>g powers as we move vertically. This is to be compared to (13.31).It is easy to show that <strong>the</strong> U(1) ambiguities <strong>of</strong> this parametrization reproduce <strong>the</strong> GLSMassociated to <strong>the</strong> toric diagram (13.56).


224 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers(a) The quiver. (b) C ×CFigure 13.7: ABJM quiver with one chiral flavor, and its dual geometry.Flavor<strong>in</strong>g <strong>the</strong> field A 1 : <strong>the</strong> C ×C geometryLetusaddaU(1)flavorgroupto<strong>the</strong>3dKW<strong>the</strong>ory(k = 0), coupledto<strong>the</strong>bifundamentalfield A 1 as <strong>in</strong> Figure 13.7(a). The superpotential is W = A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 +pA 1 q,and <strong>the</strong> CS levels are ( 1 2 ,−1 2). The charges <strong>of</strong> <strong>the</strong> fields under <strong>the</strong> <strong>gauge</strong> and flavor groupsareU(1)12U(1) −12A i B i p q T ˜T1 −1 0 −1 1 0−1 1 1 0 −1 0U(1) F 0 0 −1 1 0 0(13.62)There are seven <strong>gauge</strong> <strong>in</strong>variant operators, namely A i B j , TB i and ˜T. Us<strong>in</strong>g <strong>the</strong> quantumrelation T ˜T = A 1 , we can however express A 1 B i as ˜TTB i , so that we actually have only5 generators <strong>of</strong> <strong>the</strong> chiral r<strong>in</strong>g,x 1 = TB 1 , x 2 = A 2 B 2 , x 3 = TB 2 , x 4 = A 2 B 1 , x 5 = ˜T , (13.63)subject to <strong>the</strong> relationx 1 x 2 −x 3 x 4 = 0. (13.64)Hence, <strong>the</strong> moduli space is C×C. Indeed, <strong>the</strong> quantum relation can be solved by T = a 0 ,˜T = a 1 and A 1 = a 0 a 1 . The GLSM isa 0 b 0 c 0 d 0 a 1U(1) B 1 −1 1 −1 0U(1) M 1 0 0 0 −1(13.65)where we also specified <strong>the</strong> U(1) M charges. The toric diagram is shown <strong>in</strong> Figure 13.7(b).The locus <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> <strong>the</strong> U(1) M action descends to <strong>the</strong> toric divisor {a 0 = 0} <strong>in</strong><strong>the</strong> conifold, where <strong>the</strong> D6-brane sits.


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 225(a) C(Y 2,1 (CP 2 )) (b) D 3 . (c) The cubic conifold.Figure 13.8: Toric diagrams correspond<strong>in</strong>g to some flavors for <strong>the</strong> ABJM quiver.Flavor<strong>in</strong>g <strong>the</strong> field A 1 : <strong>the</strong> C(Y 2,1 (CP 2 )) geometryLet us <strong>the</strong>n couple a U(1) flavor group to A 1 <strong>in</strong> <strong>the</strong> ABJM <strong>the</strong>ory at level k = 1. Now<strong>the</strong> CS levels are ( 3 2 ,−3 2) and <strong>the</strong> fields have <strong>gauge</strong> chargesU(1)32U(1) −32A i B i p q T ˜T1 −1 0 −1 2 −1−1 1 1 0 −2 1(13.66)The quantum relation is solved by T = a 1 , ˜T = a 2 , A 1 = a 1 a 2 . The GLSM isa 1 b 0 c 0 d 0 a 2U(1) B 2 −1 1 −1 −1U(1) M 1 0 0 0 −1(13.67)The correspond<strong>in</strong>g toric diagram is shown <strong>in</strong> Fig. 13.8(a), and it corresponds to <strong>the</strong> coneover Y 2,1 (CP 2 ) [308]. This geometry and a related <strong>the</strong>ory (actually <strong>the</strong> A-<strong>the</strong>ory for ourflavored <strong>the</strong>ory) was discussed <strong>in</strong> [271]. There are n<strong>in</strong>e <strong>gauge</strong> <strong>in</strong>variant operators for thisquiver, match<strong>in</strong>g <strong>the</strong> n<strong>in</strong>e aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> C(Y 2,1 (CP 2 )) s<strong>in</strong>gularity:x 1 = TB 1 B 1 = a 1 b 2 0 , x 2 = TB 2 B 2 = a 1 d 2 0 , x 3 = ˜TA 1 = a 1 a 2 2 ,x 4 = TB 1 B 2 = a 1 b 0 d 0 , x 5 = A 1 B 1 = a 1 b 0 a 2 , x 6 = A 1 B 2 = a 1 d 0 a 2 ,x 7 = A 2 B 1 = b 0 c 0 , x 8 = A 2 B 2 = c 0 d 0 , x 9 = ˜TA 2 = c 0 a 2The chiral r<strong>in</strong>g relations are:x 1 x 8 = x 4 x 7 , x 2 x 9 = x 6 x 8 , x 3 x 7 = x 5 x 9 , x 4 x 9 = x 5 x 8 ,x 1 x 9 = x 5 x 7 , x 2 x 7 = x 4 x 8 , x 3 x 8 = x 6 x 9 , x 4 x 9 = x 6 x 7 ,x 1 x 2 = x 2 4 , x 1x 3 = x 2 5 , x 2x 3 = x 2 6 ,x 1 x 6 = x 4 x 5 , x 2 x 5 = x 4 x 6 , x 3 x 4 = x 5 x 6 .(13.68)


226 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers(a) ABJM quiver with two chiral flavor groups. (b) C(Q 1,1,1 ).Figure 13.9: ABJM quiver with two chiral flavor groups, and a dual geometry.Flavor<strong>in</strong>g <strong>the</strong> fields A 1 and A 2 : <strong>the</strong> C(Q 1,1,1 ) geometryConsider <strong>the</strong> conifold quiver with two U(1) flavor groups coupled to A 1 and A 2 respectively,as <strong>in</strong> Fig. 13.9(a). The superpotential isW = A 1 B 1 A 2 B 2 −A 1 B 2 A 2 B 1 +p 1 A 1 q 1 +p 2 A 2 q 2 , (13.69)and we choose vanish<strong>in</strong>g CS levels. In <strong>the</strong> toric diagram, this corresponds to add<strong>in</strong>g onepo<strong>in</strong>t below a 0 and one po<strong>in</strong>t above c 0 , see Fig. 13.9(b). The <strong>gauge</strong> charges <strong>of</strong> <strong>the</strong> fieldsand monopole operators areA i B i p i q i T ˜TU(1) 0 1 −1 0 −1 1 1U(1) 0 −1 1 1 0 −1 −1(13.70)The monopole operators satisfy <strong>the</strong> relationT ˜T = A 1 A 2 . (13.71)We can solve it by <strong>in</strong>troduc<strong>in</strong>g two new perfect match<strong>in</strong>g variables a −1 and c 1 :A 1 = a −1 a 0 , B 1 = b 0 , T = a −1 c 0 ,A 2 = c 0 c 1 , B 2 = d 0 , ˜T = a0 c 1 .(13.72)The associated GLSM is a m<strong>in</strong>imal presentation <strong>of</strong> <strong>the</strong> one for <strong>the</strong> real cone over Q 1,1,1 :a 0 b 0 c 0 d 0 a −1 c 1U(1) B1 1 −1 1 −1 0 0U(1) B2 1 0 1 0 −1 −1U(1) M 0 0 1 0 0 −1(13.73)The <strong>gauge</strong> <strong>in</strong>variant operators generat<strong>in</strong>g <strong>the</strong> chiral r<strong>in</strong>g are:x 1 = A 1 B 1 = a −1 a 0 b 0 , x 2 = A 2 B 2 = c 0 c 1 d 0 , x 3 = A 2 B 1 = b 0 c 0 c 1 ,x 4 = A 1 B 2 = a −1 a 0 d 0 , x 5 = ˜TB 1 = a 0 b 0 c 1 , x 6 = ˜TB 2 = a 0 c 1 d 0 ,x 7 = TB 1 = a −1 b 0 c 0 , x 8 = TB 2 = a −1 c 0 d 0 .


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 227They <strong>of</strong> course correspond to <strong>the</strong> aff<strong>in</strong>e coord<strong>in</strong>ates on C(Q 1,1,1 ), whose algebra isx 1 x 2 −x 3 x 4 = 0 , x 1 x 2 −x 5 x 8 = 0 , x 1 x 2 −x 6 x 7 = 0 ,x 1 x 3 −x 5 x 7 = 0 , x 1 x 6 −x 4 x 5 = 0 , x 1 x 8 −x 4 x 7 = 0 ,x 2 x 4 −x 6 x 8 = 0 , x 2 x 5 −x 3 x 6 = 0 , x 2 x 7 −x 3 x 8 = 0 .(13.74)Remark that <strong>the</strong> aff<strong>in</strong>e coord<strong>in</strong>ates have U(1) M chargesx 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8U(1) M 0 0 0 0 −1 −1 1 1(13.75)so <strong>the</strong> U(1) M fixed po<strong>in</strong>t locus is at x 5 = x 6 = x 7 = x 8 = 0, x 1 x 2 = x 3 x 4 = x 1 x 3 =x 2 x 4 = 0. This locus <strong>of</strong> fixed po<strong>in</strong>ts has two branches:1) x 1 = x 4 = 0, x 5 = x 6 = x 7 = x 8 = 0, ∀x 2 , x 3 ⇐⇒ a 0 = a −1 = 02) x 2 = x 3 = 0, x 5 = x 6 = x 7 = x 8 = 0, ∀x 1 , x 4 ⇐⇒ c 0 = c 1 = 0 .(13.76)It is easy to see that <strong>the</strong>y descend to <strong>the</strong> toric divisors {a 0 = 0} and {c 0 = 0} <strong>in</strong> <strong>the</strong>conifold C. The D6-<strong>branes</strong> wrapp<strong>in</strong>g <strong>the</strong>se divisors provide us with <strong>the</strong> chiral flavors <strong>in</strong><strong>the</strong> quiver field <strong>the</strong>ory.Ano<strong>the</strong>rquiverfor<strong>the</strong>lowenergyfield<strong>the</strong>oryonM2-<strong>branes</strong>onC(Q 1,1,1 )wasproposed<strong>in</strong> [259], and fur<strong>the</strong>r studied <strong>in</strong> [262]. The quiver <strong>of</strong> [259], which has two double-bonds,is precisely <strong>the</strong> A-<strong>the</strong>ory <strong>of</strong> our chirally flavored conifold <strong>the</strong>ory.Flavor<strong>in</strong>g <strong>the</strong> fields A 1 and B 1 : <strong>the</strong> D 3 geometryLet us now couple a U(1) flavor group to A 1 and a U(1) flavor group to B 1 , with δW =p 1 A 1 q 1 +˜p 1 B 1˜q 1 and vanish<strong>in</strong>g CS levels. In this case <strong>the</strong>re is no <strong>in</strong>duced <strong>gauge</strong> charge for<strong>the</strong> monopole operators, because <strong>the</strong>re are as many <strong>in</strong>com<strong>in</strong>g as outgo<strong>in</strong>g arrows <strong>in</strong> each<strong>gauge</strong> group. We have <strong>the</strong> quantum relation T ˜T = A 1 B 1 , which is solved by A 1 = a 0 a 1 ,B 1 = b 0 b 1 , T = a 0 b 0 and ˜T = a 1 b 1 . The associated GLSM isa 0 b 0 c 0 d 0 a 1 b 1U(1) B1 1 −1 1 −1 0 0U(1) B2 1 −1 0 0 −1 1U(1) M 1 0 0 0 −1 0(13.77)The toric diagram, shown <strong>in</strong> Fig. 13.8(b), is <strong>the</strong> one <strong>of</strong> <strong>the</strong> D 3 geometry. The generators<strong>of</strong> <strong>the</strong> chiral r<strong>in</strong>g arex 1 = ˜T , x 2 = A 2 B 2 , x 3 = T , x 4 = A 1 B 2 , x 5 = A 2 B 1 . (13.78)As expected, <strong>the</strong>y satisfy <strong>the</strong> def<strong>in</strong><strong>in</strong>g equation <strong>of</strong> <strong>the</strong> D 3 s<strong>in</strong>gularity:x 1 x 2 x 3 −x 4 x 5 = 0 . (13.79)The locus <strong>of</strong> fixed po<strong>in</strong>ts <strong>of</strong> U(1) M has two branches which descend to <strong>the</strong> two divisors{a 0 = 0} and {b 0 = 0} <strong>in</strong> <strong>the</strong> conifold.


228 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers(a) The A 1 quiver.(b) C×C.Figure 13.10: Quiver <strong>of</strong> <strong>the</strong> modified C×C 2 /Z 2 model (CS levels (1,−1)), and moduli space.Flavor<strong>in</strong>g A 1 , A 2 , B 1 , B 2 : <strong>the</strong> cubic conifoldConsider coupl<strong>in</strong>g a U(1) flavor group to each bifundamental field, with vanish<strong>in</strong>g CSlevels. The quantum relation isT ˜T = A 1 B 1 A 2 B 2 . (13.80)One can check that <strong>the</strong> moduli space is described by <strong>the</strong> follow<strong>in</strong>g GLSM:a 0 b 0 c 0 d 0 a 1 b 1 c 1 d 1U(1) B1 1 −1 1 −1 0 0 0 0U(1) B2 0 0 0 0 1 −1 1 −1U(1) B3 1 0 0 −1 −1 0 0 1U(1) B4 1 −1 0 0 −1 1 0 0U(1) M 1 0 0 0 −1 0 0 0(13.81)The toric diagram is shown <strong>in</strong> Fig. 13.8(c), and we will call this geometry <strong>the</strong> cubicconifold. The <strong>gauge</strong> <strong>in</strong>variant operators arex 1 = a 0 b 0 c 0 d 0 = T, x 2 = a 1 b 1 c 1 d 1 = ˜T, x 3 = a 0 b 0 a 1 b 1 = A 1 B 1 ,x 4 = c 0 d 0 c 1 d 1 = A 2 B 2 , x 5 = a 0 d 0 a 1 d 1 = A 1 B 2 , x 6 = b 0 c 0 b 1 c 1 = A 2 B 1 ,satisfy<strong>in</strong>g <strong>the</strong> equationsx 1 x 2 −x 3 x 4 = 0 , x 1 x 2 −x 5 x 6 = 0 . (13.82)This is a complete <strong>in</strong>tersection. The U(1) M charges <strong>of</strong> (x 1 ,··· ,x 6 ) are (1,−1,0,0,0,0).The locus <strong>of</strong> fixed po<strong>in</strong>t is at x 1 = x 2 = 0, x 3 x 4 = x 5 x 6 = 0, which has four branches anddescend to <strong>the</strong> four toric divisors <strong>of</strong> <strong>the</strong> conifold.13.6.3 Flavor<strong>in</strong>g <strong>the</strong> modified C×C 2 /Z 2 <strong>the</strong>oryIn this section we add flavors to <strong>the</strong> so-called modified C×C 2 /Z 2 <strong>the</strong>ory <strong>of</strong> [245]. Thequiver <strong>of</strong> <strong>the</strong> unflavored <strong>the</strong>ory, Fig. 13.10(a), is <strong>the</strong> one for D-<strong>branes</strong> at a C × C 2 /Z 2s<strong>in</strong>gularity; we choose <strong>the</strong> height numbers n ij equal to 1 for <strong>the</strong> bifundamental X 1 12 and0 o<strong>the</strong>rwise, so that <strong>the</strong> two <strong>gauge</strong> groups have CS levels (1,−1). The superpotential isW = Φ 1 (X 1 12X 2 21 −X 2 12X 1 21)−Φ 2 (X 2 21X 1 12 −X 1 21X 2 12) . (13.83)


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 229(a) CS levels (0,0). (b) One flavored bifundamental. (c) CS levels (1,−1).Figure 13.11: The C×C 2 /Z 2 quiver with a U(2) flavor group coupled to X 1 12. Those two toricquivers are obta<strong>in</strong>ed by fix<strong>in</strong>g <strong>the</strong> CS levels as <strong>in</strong>dicated.From <strong>the</strong> permanent <strong>of</strong> <strong>the</strong> Kasteleyn matrix,PermK = X 1 21X 2 21 +X 2 12X 2 21x+X 1 21X 1 12x −1 z +X 1 12X 2 12z +Φ 1 Φ 2 y , (13.84)we see that <strong>the</strong> perfect match<strong>in</strong>gs area 0 = {X 1 21 ,X2 21 } = (0,0,0), d 1 = {X 1 12 ,X2 12 } = (0,0,1),b 0 = {X 2 12 ,X2 21 } = (1,0,0), e 0 = {Φ 1 ,Φ 2 } = (0,1,0),c 1 = {X 1 21 ,X1 12 } = (−1,0,1). (13.85)The 3d toric diagram, Fig. 13.10(b), is <strong>the</strong> one <strong>of</strong> C × C. The F-term equations implyX 1 12 X2 21 = X2 12 X1 21 and Φ 1 = Φ 2 along <strong>the</strong> mesonic branch. They are solved byX 1 12 = c 1 d 1 , X 2 12 = b 0 d 1 , X 1 21 = a 0 c 1 , X 2 21 = a 0 b 0 , Φ 1 = Φ 2 = e 0 .The face <strong>in</strong> <strong>the</strong> 3d toric diagram whose vertices are {a 0 ,c 1 ,d 1 ,b 0 } is vertical, <strong>the</strong>reforeadditional objects may appear <strong>in</strong> <strong>the</strong> type IIA background. Never<strong>the</strong>less, encouragedby <strong>the</strong> results <strong>of</strong> [245] where <strong>the</strong> geometric moduli space was successfully matched withC×C, we will trust <strong>the</strong> duality and add flavors to this model.We will study three illustrative examples where two flavor pairs are added to this<strong>the</strong>ory.U(2) flavor group coupled to X12 1 : levels (0,0)We study two cases where we couple a U(2) flavor group to X12 1 , as <strong>in</strong> Fig. 13.11(b).Considerfirst<strong>the</strong>casewhere<strong>the</strong>CSlevelsvanish. Thebifundamentalfieldsandmonopoleoperators <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>ory have <strong>gauge</strong> chargesX 12 X 21 Φ T ˜TU(1) 0 1 −1 0 1 1U(1) 0 −1 1 0 −1 −1(13.86)


230 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversThe <strong>gauge</strong> <strong>in</strong>variant operators <strong>in</strong> <strong>the</strong> geometric branch are Φ, X 12 X 21 , TX 21 , ˜TX 21 .In <strong>the</strong> A-<strong>the</strong>ory, this flavor<strong>in</strong>g corresponds to replac<strong>in</strong>g <strong>the</strong> edge X 1 12 with n X 1 12 = 1 <strong>in</strong><strong>the</strong> orig<strong>in</strong>al brane til<strong>in</strong>g with a triple-bond with n = −1,0,1. It amounts to consider<strong>in</strong>ga 3d toric diagram with <strong>the</strong> po<strong>in</strong>ts {a 0 ,b 0 ,c −1 ,c 0 ,c 1 ,d −1 ,d 0 ,d 1 ,e 0 } as <strong>in</strong> Fig. 13.11(a).We solve for <strong>the</strong> F-term relation and <strong>the</strong> quantum relation T ˜T = X 1 12 byX 1 12 = c −1 c 0 c 1 d −1 d 0 d 1 , X 2 12 = b 0 d −1 d 0 d 1 ,X21 1 = a 0 c −1 c 0 c 1 , X21 2 = a 0 b 0 , Φ 1 = Φ 2 = e 0 ,˜T = c 0 c 2 1d 0 d 2 1 , T = c 2 −1c 0 d 2 −1d 0 .(13.87)The charges <strong>of</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> four-fold and <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>oryfields under <strong>the</strong> associated U(1) 5 GLSM area 0 b 0 c 1 d 1 e 0 c 0 d 0 c −1 d −1 X 12 X 21 Φ T ˜TU(1) B1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0U(1) B2 1 0 1 −1 0 −1 0 0 0 −1 1 0 −1 −1U(1) B3 1 0 0 0 0 0 −1 0 0 −1 1 0 −1 −1U(1) B4 1 0 0 0 0 −1 0 1 −1 −1 1 0 −1 −1U(1) B5 −2 0 0 1 0 0 0 0 1 2 −2 0 2 2match<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> charges (13.86). The aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> fourfold match <strong>the</strong><strong>gauge</strong> <strong>in</strong>variant operators <strong>of</strong> <strong>the</strong> flavored quiver <strong>the</strong>ory:x 1 = e 0 = Φ 1 = Φ 2 , x 2 = a 0 b 2 0d −1 d 0 d 1 = X12X 2 21 2 ,x 3 = a 0 b 0 c 0 c 2 1d 0 d 2 1 = ˜TX 21 2 , x 4 = a 0 c −1 c 2 0c 3 1d 0 d 2 1 = ˜TX 21 1 ,x 5 = a 0 b 0 c −1 c 0 c 1 d −1 d 0 d 1 = X12X 1 21 2 = X12X 2 21 1 ,x 6 = a 0 c 2 −1c 2 0c 2 1d −1 d 0 d 1 = X12X 1 21 1 ,x 7 = a 0 b 0 c 2 −1c 0 d 2 −1d 0 = TX21 2 , x 8 = a 0 c 3 −1c 2 0c 1 d 2 −1d 0 = TX21 1 .(13.88)U(2) flavor group coupled to X12 1 : levels (1,−1)Consider now <strong>the</strong> case <strong>of</strong> CS levels (1,−1). The <strong>gauge</strong> charges are:X 12 X 21 Φ T ˜TU(1) 1 1 −1 0 2 0U(1) −1 −1 1 0 2 0(13.89)The <strong>gauge</strong> <strong>in</strong>variant operators are Φ, X 12 X 21 , T(X 21 ) 2 , ˜T.In <strong>the</strong> A-<strong>the</strong>ory, this flavor<strong>in</strong>g corresponds to replac<strong>in</strong>g <strong>the</strong> edge X 1 12 with n X 1 12 = 1<strong>in</strong> <strong>the</strong> orig<strong>in</strong>al brane til<strong>in</strong>g by a triple-bond with n = 0,1,2. The GLSM field appear<strong>in</strong>g<strong>in</strong> <strong>the</strong> 3d toric diagram, Fig. 13.11(c), are {a 0 ,b 0 ,c 0 ,c 1 ,c 2 ,d 0 ,d 1 ,d 2 ,e 0 }. We solve for<strong>the</strong> geometric moduli space by sett<strong>in</strong>gX 1 12 = c 0 c 1 c 2 d 0 d 1 d 2 , X 2 12 = b 0 d 0 d 1 d 2 ,X21 1 = a 0 c 0 c 1 c 2 , X21 2 = a 0 b 0 , Φ 1 = Φ 2 = e 0 ,˜T = c 1 c 2 2d 1 d 2 2 , T = c 2 0c 1 d 2 0d 1 .(13.90)


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 231(a) The quiver.(b) Toric diagram when <strong>the</strong> CS levels are (1,−1).Figure 13.12: Modified C×C 2 /Z 2 model with two flavored bifundamentals, and dual geometry.The charges <strong>of</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> fourfold and <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>oryfields under <strong>the</strong> U(1) 5 GLSM area 0 b 0 c 1 d 1 e 0 c 0 d 0 c 2 d 2 X 12 X 21 Φ T ˜TU(1) B1 1 −1 −1 1 0 0 0 0 0 0 0 0 0 0U(1) B2 1 0 1 −1 0 −1 0 0 0 −1 1 0 −2 0U(1) B3 1 0 0 0 0 0 −1 0 0 −1 1 0 −2 0U(1) B4 1 0 0 −2 0 0 0 0 1 −1 1 0 −2 0U(1) B5 0 0 −2 0 0 1 0 1 0 0 0 0 0 0match<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> charges (13.89). The aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> four-fold match <strong>the</strong>holomorphic <strong>gauge</strong> <strong>in</strong>variants <strong>of</strong> <strong>the</strong> flavored quiver <strong>the</strong>ory:x 1 = a 0 b 0 c 0 c 1 c 2 d 0 d 1 d 2 = X 1 12X 2 21 = X 2 12X 1 21 , x 2 = e 0 = Φ 1 = Φ 2 ,x 3 = a 2 0b 2 0c 2 0c 1 d 2 0d 1 = T(X 2 21) 2 , x 4 = a 0 c 2 0c 2 1c 2 2d 0 d 1 d 2 = X 1 12X 1 21 ,x 5 = a 2 0b 0 c 3 0c 2 1c 2 d 2 0d 1 = TX 1 21X 2 21 , x 6 = a 0 b 2 0d 0 d 1 d 2 = X 2 12X 2 21 ,x 7 = a 2 0c 4 0c 3 1c 2 2d 2 0d 1 = T(X 1 21) 2 , x 8 = c 1 c 2 2d 1 d 2 2 = ˜T .U(1) 2 flavor groups coupled to X12 1 and X1 21 : levels (1,−1)Let us study a case where we couple a U(1) flavor group to X12 1 and a U(1) flavor groupto X21 1 , as <strong>in</strong> Fig. 13.12(a). The quantum relation reads T ˜T = X12 1 X2 12 . We consider <strong>the</strong>case with CS levels (1,−1): bifundamentals and monopole operators charges areX 12 X 21 Φ T ˜TU(1) 1 1 −1 0 1 −1U(1) −1 −1 1 0 −1 1(13.91)The <strong>gauge</strong> <strong>in</strong>variant operators are Φ, X 12 X 21 , TX 21 , ˜TX 12 .In <strong>the</strong> A-<strong>the</strong>ory, this flavor<strong>in</strong>g corresponds to replac<strong>in</strong>g <strong>the</strong> edge X 1 12 with n X 1 12 = 1<strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g by a double-bond with n = 0,1, and <strong>the</strong> edge X 1 21 with n X 1 21 = 0 byano<strong>the</strong>r double-bond, with n = −1,0. All <strong>the</strong> o<strong>the</strong>r n ij vanish. This gives a 3d toricdiagram with po<strong>in</strong>ts {a −1 ,a 0 ,b 0 ,c −1 ,c 0 ,c ′ 0 ,c 1,d 0 ,d 1 ,e 0 }, Fig. 13.12(b). This is not a


232 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversm<strong>in</strong>imal presentation <strong>of</strong> <strong>the</strong> toric diagram. In particular, unlike for <strong>the</strong> o<strong>the</strong>r multiplicities,<strong>the</strong> dist<strong>in</strong>ction between c 0 and c ′ 0 is not needed to express <strong>the</strong> bifundamentals andmonopole operators <strong>in</strong> terms <strong>of</strong> GLSM fields solv<strong>in</strong>g <strong>the</strong> F-term equations. It is possibleto replace <strong>the</strong> two <strong>of</strong> <strong>the</strong>m by a s<strong>in</strong>gle field ˜c 0 (sett<strong>in</strong>g c 0 c ′ 0 = ˜c 0 <strong>in</strong> <strong>the</strong> formulæ below),gett<strong>in</strong>g rid <strong>of</strong> a U(1) <strong>in</strong> <strong>the</strong> GLSM. We will do that <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g. Keep<strong>in</strong>g <strong>in</strong>steadall <strong>the</strong> perfect match<strong>in</strong>g fields <strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory may be useful <strong>in</strong> <strong>the</strong> study <strong>of</strong> partialresolutions dual to real mass terms.We solve for <strong>the</strong> geometric moduli space by sett<strong>in</strong>gX 1 12 = c −1˜c 0 c 1 d 0 d 1 , X 2 12 = b 0 d 0 d 1 ,X21 1 = a −1 a 0 c −1˜c 0 c 1 , X21 2 = a −1 a 0 b 0 , Φ 1 = Φ 2 = e 0 ,˜T = a 0˜c 0 c 2 1d 1 , T = a −1 c 2 −1˜c 0 d 0 .(13.92)The charges <strong>of</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> four-fold and <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>oryfields under <strong>the</strong> result<strong>in</strong>g U(1) 5 GLSM area 0 b 0 ˜c 0 d 0 e 0 a −1 c 1 c −1 d 1 X 12 X 21 Φ T ˜TU(1) B1 1 0 0 −1 0 0 0 0 0 −1 1 0 −1 1U(1) B2 −2 1 1 0 0 0 0 0 0 1 −1 0 1 −1U(1) B3 1 0 −1 0 0 0 1 0 −1 −1 1 0 −1 1U(1) B4 1 0 −1 0 0 −1 0 1 0 0 0 0 0 0U(1) B5 0 0 2 0 0 0 −1 −1 0 0 0 0 0 0match<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> charges (13.91). The aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> four-fold match <strong>the</strong>holomorphic <strong>gauge</strong> <strong>in</strong>variants <strong>of</strong> <strong>the</strong> flavored quiver <strong>the</strong>ory:x 1 = e 0 = Φ 1 = Φ 2 , x 2 = a −1 a 0 b 2 0d 0 d 1 = X 2 12X 2 21 ,x 3 = a 2 −1a 0 c 3 −1c 2 0c ′20 c 1 d 0 = TX 1 21 , x 4 = a 0 c −1 c 2 0c ′20 c 3 1d 0 d 2 1 = ˜TX 1 12 ,x 5 = a 2 −1a 0 b 0 c 2 −1c 0 c ′ 0d 0 = TX 2 21 , x 6 = a 0 b 0 c 0 c ′ 0c 2 1d 0 d 2 1 = ˜TX 2 12 ,x 7 = a −1 a 0 c 2 −1c 2 0c ′20 c 2 1d 0 d 1 = X 1 12X 1 21 = ˜TT ,x 8 = a −1 a 0 b 0 c −1 c 0 c ′ 0c 1 d 0 d 1 = X 1 12X 2 21 = X 2 12X 1 21 .(13.93)The toric diagram <strong>of</strong> <strong>the</strong> CY 4 is <strong>the</strong> same as <strong>in</strong> <strong>the</strong> double-flavored X12 1 model with CSlevels (0,0) studied <strong>in</strong> subsection 13.6.3: thus <strong>the</strong> geometric branches <strong>of</strong> <strong>the</strong> moduli spaces<strong>of</strong> <strong>the</strong>se two <strong>the</strong>ories are <strong>the</strong> same, although <strong>the</strong> manifest flavor symmetries <strong>of</strong> <strong>the</strong> quiversare different. Presumably, <strong>the</strong> M-<strong>the</strong>ory backgrounds will differ <strong>in</strong> monodromies <strong>of</strong> <strong>the</strong>3-form potential C 3 .The three double flavored models analyzed here for <strong>the</strong> modified C × C 2 /Z 2 modellead to D6-<strong>branes</strong> along <strong>the</strong> same toric divisor <strong>in</strong>side <strong>the</strong> CY 3 . However <strong>the</strong>re are different<strong>gauge</strong> connections on <strong>the</strong> flavor <strong>branes</strong>, everywhere flat but at <strong>the</strong> tip, and <strong>gauge</strong> fluxeson <strong>the</strong> 2-cycles at <strong>the</strong> s<strong>in</strong>gularity. In spite <strong>of</strong> <strong>the</strong> D6-<strong>branes</strong> be<strong>in</strong>g identically embeddedat <strong>the</strong> level <strong>of</strong> <strong>the</strong> complex structure, <strong>the</strong> type IIA/M-<strong>the</strong>ory backgrounds differ, because<strong>the</strong> different <strong>gauge</strong> fluxes at <strong>the</strong> s<strong>in</strong>gularity generate RR fluxes that backreact onto <strong>the</strong>metric.


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 233(a) The quiver.(b) The 2d toric diagram.Figure 13.13: The dP 0 quiver and <strong>the</strong> 2d toric diagram.13.6.4 Flavor<strong>in</strong>g <strong>the</strong> dP 0 quiverThe dP 0 quiver, Fig. 13.13(a), is <strong>the</strong> quiver for D-<strong>branes</strong> at a C 3 /Z 3 s<strong>in</strong>gularity. Ithas three nodes and n<strong>in</strong>e bifundamental fields, X i , Y i , Z i , i = 1,2,3. We choose toparametrize <strong>the</strong> CS levels by (k 1 ,k 2 ,k 3 ) = (q−p,q,p−2q). The charges under <strong>the</strong> U(1) 3<strong>gauge</strong> group areX i Y i Z i T ˜TU(1) q−p −1 1 0 q −p −q +pU(1) q 0 −1 1 q −qU(1) p−2q 1 0 −1 p−2q −p+2q(13.94)The superpotential is W = X i Y j Z k ǫ ijk , so <strong>the</strong> <strong>in</strong>dices ijk are fully symmetric <strong>in</strong> <strong>the</strong> chiralr<strong>in</strong>g. From <strong>the</strong> permanent <strong>of</strong> <strong>the</strong> Kasteleyn matrix,PermK = X 1 Y 1 Z 1 xz p +X 2 Y 2 Z 2 x −1 y −1 +X 3 Y 3 Z 3 y+X 1 X 2 X 3 z p−q +Y 1 Y 2 Y 3 z q +Z 1 Z 2 Z 3 ,we read <strong>of</strong>f <strong>the</strong> perfect match<strong>in</strong>gs and <strong>the</strong> coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> po<strong>in</strong>ts <strong>in</strong> <strong>the</strong> toric diagram:a p = {X 1 ,Y 1 ,Z 1 } = (1,0,p) , e p−q = {X 1 ,X 2 ,X 3 } = (0,0,p−q) ,b 0 = {X 2 ,Y 2 ,Z 2 } = (0,1,0) , f q = {Y 1 ,Y 2 ,Y 3 } = (0,0,q) ,c 0 = {X 3 ,Y 3 ,Z 3 } = (−1,−1,0) , g 0 = {Z 1 ,Z 2 ,Z 3 } = (0,0,0) .(13.95)The choice <strong>of</strong> SL(4,Z) frame is such that for p,q > 0 we have <strong>the</strong> geometry Y p,q (CP 2 )as presented <strong>in</strong> [308]. In particular, this family <strong>in</strong>cludes <strong>the</strong> geometry M 3,2 = Y 3,2 (CP 2 ).The perfect match<strong>in</strong>g variables allow to solve <strong>the</strong> F-term relations asX 1 = a p e p−q , Y 1 = a p f q , Z 1 = a p g 0 ,X 2 = b 0 e p−q , Y 2 = b 0 f q , Z 2 = b 0 g 0 ,X 3 = c 0 e p−q , Y 3 = c 0 f q , Z 3 = c 0 g 0 ,(13.96)and <strong>the</strong> redundancies <strong>in</strong> this parametrization correspond to a non-m<strong>in</strong>imal GLSM for <strong>the</strong>toric geometry. We couple chiral flavors to bifundamental fields <strong>in</strong> <strong>the</strong> dP 0 quiver, andconsider a few simple but <strong>in</strong>terest<strong>in</strong>g examples, flavor<strong>in</strong>g <strong>the</strong> <strong>the</strong>ory with vanish<strong>in</strong>g CSlevels p = q = 0. The 2d diagram is shown <strong>in</strong> Fig. 13.13(b).


234 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiversU(1) flavor group coupled to X 1Let us couple one flavor to <strong>the</strong> field X 1 <strong>in</strong> <strong>the</strong> quiver with vanish<strong>in</strong>g CS levels, which<strong>in</strong>duces CS levels (− 1 2 ,0, 1 2 ). The quantum relation is T ˜T = X 1 , and <strong>the</strong> <strong>gauge</strong> charges<strong>of</strong> <strong>the</strong> fields and monopole operators are:X i Y i Z i T ˜TU(1) −1 −1 1 0 −1 02U(1) 0 0 −1 1 0 0U(1)121 0 −1 1 0(13.97)To f<strong>in</strong>d <strong>the</strong> geometric branch <strong>of</strong> <strong>the</strong> moduli space, we solve both <strong>the</strong> F-terms and <strong>the</strong>quantum relation by add<strong>in</strong>g two new variables a 1 and e 1 to <strong>the</strong> solution (13.96):X 1 = a 0 a 1 e 0 e 1 , Y 1 = a 0 a 1 f 0 , Z 1 = a 0 a 1 g 0 , T = a 0 e 0 ,X 2 = b 0 e 0 e 1 , Y 2 = b 0 f 0 , Z 2 = b 0 g 0 , ˜T = a1 e 1 ,X 3 = c 0 e 0 e 1 , Y 3 = c 0 f 0 , Z 3 = c 0 g 0 .(13.98)The associated GLSM isa 0 b 0 c 0 e 0 f 0 g 0 a 1 e 1U(1) B1 1 1 1 −2 0 −1 0 0U(1) B2 1 1 1 −1 −2 0 0 0U(1) B3 1 1 1 0 −1 −2 0 0U(1) B4 1 0 0 −1 0 0 −1 1U(1) M 1 0 0 0 0 0 −1 0(13.99)The three first rows correspond to <strong>the</strong> <strong>gauge</strong> group U(1) 3 <strong>of</strong> <strong>the</strong> quiver. This GLSMis a non-m<strong>in</strong>imal presentation <strong>of</strong> <strong>the</strong> toric geometry <strong>of</strong> Fig. 13.14(a), correspond<strong>in</strong>g toadd<strong>in</strong>g two po<strong>in</strong>ts a 1 and e 1 as suggested by <strong>the</strong> A-<strong>the</strong>ory. We have also specified <strong>the</strong> Q Mcharges. Gaug<strong>in</strong>g U(1) M leads to <strong>the</strong> CY 3 C 3 /Z 3 , and <strong>the</strong> locus <strong>of</strong> fixed po<strong>in</strong>ts projects to<strong>the</strong> non-compact divisor {a 0 = 0}. Let us check that <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant operators match<strong>the</strong> aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> toric variety. There are 10 operators <strong>of</strong> <strong>the</strong> form XYZ, 6 <strong>of</strong><strong>the</strong> form TYZ, and ˜T, but <strong>the</strong> quantum relation makes X 1 YZ = ˜TTYZ redundant, sothat we are left with 11 generators <strong>of</strong> <strong>the</strong> chiral r<strong>in</strong>g. We can check that <strong>the</strong>y match all<strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant functions <strong>of</strong> <strong>the</strong> GLSM:x 1 = TY 1 Z 1 = a 3 0 e 0f 0 g 0 a 2 1 , x 6 = TY 2 Z 2 = a 0 b 2 0 e 0f 0 g 0 , x 11 = ˜T = a 1 e 1 .x 2 = X 2 Y 2 Z 2 = b 3 0 e 0f 0 g 0 e 1 , x 7 = X 2 Y 2 Z 3 = b 2 0 c 0e 0 f 0 g 0 e 1 ,x 3 = X 3 Y 3 Z 3 = c 3 0 e 0f 0 g 0 e 1 , x 8 = TY 3 Z 3 = a 0 c 2 0 e 0f 0 g 0 ,x 4 = TY 1 Z 2 = a 2 0 b 0e 0 f 0 g 0 a 1 , x 9 = X 2 Y 3 Z 3 = b 0 c 2 0 e 0f 0 g 0 e 1 ,x 5 = TY 1 Z 3 = a 2 0 c 0e 0 f 0 g 0 a 1 , x 10 = TY 2 Z 3 = a 0 b 0 c 0 e 0 f 0 g 0 ,U(1) 2 flavor groups coupled to X 1 and Y 1Consider flavor<strong>in</strong>g X 1 = ae and Y 1 = ef. There are two possible CS levels, but let usconsider <strong>the</strong> case (0,− 1 2 , 1 2 ) correspond<strong>in</strong>g to add<strong>in</strong>g four perfect match<strong>in</strong>g variables a 1,


13.6. Examples – various flavored quiver <strong>gauge</strong> <strong>the</strong>ories 235(a)(b)Figure 13.14: Toric diagram obta<strong>in</strong>ed by flavor<strong>in</strong>g one or two fields <strong>in</strong> <strong>the</strong> dP 0 quiver.a 2 , e 1 , f 1 . The toric diagram is <strong>in</strong> Fig. 13.14(b). The field <strong>the</strong>ory <strong>gauge</strong> charges areX i Y i Z i T ˜TU(1) 0 −1 1 0 0 0U(1) −1 0 −1 1 −1 02U(1)1 1 0 −1 1 02(13.100)The quantum relation is T ˜T = X 1 Y 1 . There are aga<strong>in</strong> 11 <strong>gauge</strong> <strong>in</strong>variant operators:X i Y j Z k , TZ i and ˜T, but <strong>the</strong> three operators X 1 Y 1 Z i are redundant due to <strong>the</strong> quantumrelation. We can solve <strong>the</strong> moduli space equations byX 1 = a 0 a 1 a 2 e 0 e 1 , Y 1 = a 0 a 1 a 2 f 0 f 1 , Z 1 = a 0 a 1 a 2 g 0 , T = a 2 0 a 1e 0 f 0 ,X 2 = b 0 e 0 e 1 , Y 2 = b 0 f 0 f 1 , Z 2 = b 0 g 0 , ˜T = a1 a 2 2 e 1f 1 .X 3 = c 0 e 0 e 1 , Y 3 = c 0 f 0 f 1 , Z 3 = c 0 g 0 ,and <strong>the</strong> associated GLSM isa 0 b 0 c 0 e 0 f 0 g 0 a 1 e 1 a 2 f 1U(1) B1 1 1 1 −2 0 −1 0 0 0 0U(1) B2 1 1 1 −1 −2 0 0 0 0 0U(1) B3 1 1 1 0 −1 −2 0 0 0 0U(1) B4 1 0 0 0 0 0 −2 0 1 0U(1) B5 1 0 0 −1 0 0 −1 1 1 0U(1) B6 1 0 0 0 −1 0 −1 0 0 1(13.101)The map between aff<strong>in</strong>e coord<strong>in</strong>ates and <strong>gauge</strong> <strong>in</strong>variant operators isx 1 = TZ 1 = a 3 0 a2 1 a 2e 0 f 0 g 0 , x 6 = X 1 Y 2 Z 2 = a 0 a 1 a 2 b 2 0 e 0e 1 f 0 f 1 g 0 ,x 2 = X 2 Y 2 Z 2 = b 3 0 e 0e 1 f 0 f 1 g 0 , x 7 = X 2 Y 2 Z 3 = b 2 0 c 0e 0 e 1 f 0 f 1 g 0 ,x 3 = X 3 Y 3 Z 3 = c 3 0 e 0e 1 f 0 f 1 g 0 , x 8 = X 1 Y 3 Z 3 = a 0 a 1 a 2 c 2 0 e 0e 1 f 0 f 1 g 0 ,x 4 = TZ 2 = a 2 0 a 1b 0 e 0 f 0 g 0 , x 9 = X 2 Y 3 Z 3 = b 0 c 2 0 e 0e 1 f 0 f 1 g 0 ,x 5 = TZ 3 = a 2 0 a 1ce 0 f 0 g 0 , x 10 = X 1 Y 2 Z 3 = a 0 a 1 a 2 b 0 c 0 e 0 e 1 f 0 f 1 g 0 ,x 11 = ˜T = a 1 a 2 2 e 1f 1 .


236 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quivers(a) The quiver.(b) Toric diagram.Figure 13.15: The dP 1 quiver with one flavor. Flavor<strong>in</strong>g X 1 12 has <strong>the</strong> effect <strong>of</strong> add<strong>in</strong>g a newpo<strong>in</strong>t above two external po<strong>in</strong>ts and one <strong>in</strong>ternal po<strong>in</strong>t <strong>in</strong> <strong>the</strong> toric diagram.13.6.5 Flavor<strong>in</strong>g <strong>the</strong> dP 1 quiverThedP 1 quiverdescribesD-<strong>branes</strong>at<strong>the</strong>C(Y 2,1 )CY 3 s<strong>in</strong>gularity. Thequiverhas4nodesand 10 bifundamental fields, as section 3.5.4. The brane til<strong>in</strong>g and quiver are shown <strong>in</strong>Fig. 3.4 and its perfect match<strong>in</strong>gs are given <strong>in</strong> (3.52). Consider coupl<strong>in</strong>g a s<strong>in</strong>gle flavorto <strong>the</strong> field X12 1 , as <strong>in</strong> Figure 13.15(a). This time <strong>the</strong> field we flavor corresponds to twoexternal po<strong>in</strong>ts b 0 and c 0 , , as well as an <strong>in</strong>ternal po<strong>in</strong>t e 0 , <strong>in</strong> <strong>the</strong> toric diagram <strong>of</strong> dP 1 .The Chern-Simons levels are ( 1 2 ,−1 2 ,0,0), which corresponds to add<strong>in</strong>g three po<strong>in</strong>ts b 1,c 1 and e 1 <strong>in</strong> <strong>the</strong> toric diagram, as shown <strong>in</strong> Figure 13.15(b).U(1)12X j 12 X23 i X41 i X 31 X 24 X 34 T ˜T1 0 −1 −1 0 0 1 0−1 1 0 0 1 0 −1 0U(1)12U(1) 0 0 −1 0 1 0 1 0 0U(1) 0 0 1 1 0 −1 −1 0 0(13.102)The quantum relation is T ˜T = X12 1 . The F-term equations are solved byX 1 12 = b 0b 1 c 0 c 1 e 0 e 1 , X 1 41 = c 0c 1 h 0 , X 1 23 = c 0c 1 f 0 , X 34 = b 0 b 1 g 0 ,X 2 12 = a 0b 0 b 1 e 0 e 1 , X 2 41 = a 0h 0 , X 2 23 = a 0f 0 , T = b 0 c 0 e 0 ,X 3 12 = d 0e 0 e 1 , X 31 = d 0 g 0 h 0 , X 24 = d 0 f 0 g 0 , ˜T = b1 c 1 e 1 .The GLSM isa 0 b 0 c 0 d 0 e 0 f 0 g 0 h 0 b 1 c 1 e 1U(1) B1 0 0 0 0 1 0 0 −1 0 0 0U(1) B2 0 0 0 0 −1 1 0 0 0 0 0U(1) B3 0 0 0 0 0 −1 1 0 0 0 0U(1) B4 1 0 1 1 −1 0 −1 −1 0 0 0U(1) B5 0 1 0 1 −1 −1 0 0 0 0 0U(1) B6 0 1 −1 0 0 0 0 0 −1 1 0U(1) B7 0 1 0 0 −1 0 0 0 −1 0 1(13.103)


13.7. Conclusions 237The three first l<strong>in</strong>es correspond to <strong>the</strong> <strong>gauge</strong> charges under <strong>the</strong> first three <strong>gauge</strong> groups.Us<strong>in</strong>g <strong>the</strong> F-term relations toge<strong>the</strong>r with T ˜T = X12 1 , one can show that <strong>the</strong>re are only 10<strong>in</strong>dependent generators <strong>of</strong> <strong>the</strong> chiral r<strong>in</strong>g,x 1 = X12 3 X 24X41 1 , x 4 = TX 24 X41 2 , x 7 = TX23 1 X 34X41 2 , x 10 = ˜T .x 2 = X12 3 X 24X41 2 , x 5 = X12 3 X2 23 X 34X41 2 , x 8 = TX23 2 X 34X41 2 ,x 3 = TX 24 X41 1 , x 6 = TX23 1 X 34X41 1 , x 9 = X12 2 X2 23 X 34X41 2 .and that <strong>the</strong>y match <strong>the</strong> 10 aff<strong>in</strong>e coord<strong>in</strong>ates <strong>of</strong> <strong>the</strong> toric geometry <strong>of</strong> Figure 13.15(b).13.7 ConclusionsIn this chapter, we studied <strong>the</strong> chiral r<strong>in</strong>g <strong>of</strong> (conjectured) CFTs describ<strong>in</strong>g <strong>the</strong> IR fixedpo<strong>in</strong>t <strong>of</strong> general 3d N = 2 supersymmetric quiver <strong>gauge</strong> <strong>the</strong>ories with chiral flavors, withor without CS terms, focus<strong>in</strong>g on <strong>the</strong> toric case. These CFTs are conjectured to beholographically dual to M-<strong>the</strong>ory on AdS 4 ×H 7 backgrounds.We have generalized <strong>the</strong> str<strong>in</strong>gy derivation <strong>of</strong> <strong>the</strong> quiver <strong>the</strong>ories [258] to cases where<strong>the</strong> M-<strong>the</strong>ory circle degenerates at complex codimension-two loci <strong>in</strong> <strong>the</strong> toric CY 4 cone,lead<strong>in</strong>g to flavor D6-<strong>branes</strong> wrapp<strong>in</strong>g toric divisors <strong>of</strong> <strong>the</strong> fibered CY 3 <strong>in</strong> type IIA str<strong>in</strong>g<strong>the</strong>ory. The holomorphic embedd<strong>in</strong>g <strong>of</strong> flavor <strong>branes</strong> determ<strong>in</strong>es <strong>the</strong> superpotential coupl<strong>in</strong>gsbetween <strong>the</strong> (anti)fundamental flavor superfields and bifundamental matter <strong>in</strong> <strong>the</strong>dual <strong>the</strong>ory, whereas <strong>the</strong> RR F 2 fluxes contributed by D6-<strong>branes</strong> shift <strong>the</strong> CS levels.Conversely, we have studied <strong>the</strong> addition <strong>of</strong> flavors coupled to bifundamental fields <strong>in</strong>toric 3d Abelian quiver <strong>the</strong>ories. Flavor<strong>in</strong>g is accompanied by shifts <strong>of</strong> some CS levels<strong>in</strong> order to balance <strong>the</strong> parity anomaly. We proved that <strong>the</strong> geometric branch <strong>of</strong> <strong>the</strong>moduli space (<strong>the</strong> one where flavor fields do not acquire a VEV) <strong>of</strong> <strong>the</strong> chirally flavoredquiver <strong>the</strong>ories is a toric conical CY 4 , and provided a recipe for deriv<strong>in</strong>g <strong>the</strong> toric diagram,exploit<strong>in</strong>ganauxiliaryquiver<strong>the</strong>orywhosebranetil<strong>in</strong>ghasmulti-bonds<strong>in</strong>stead<strong>of</strong>flavors.The derivation <strong>of</strong> <strong>the</strong> moduli space relies on <strong>the</strong> existence <strong>of</strong> a non-trivial holomorphicOPE between BPS diagonal monopole operators, that we conjecture to appear at <strong>the</strong>quantum level s<strong>in</strong>ce it is consistent with all global and <strong>gauge</strong> symmetries <strong>of</strong> <strong>the</strong> <strong>the</strong>ory.Apply<strong>in</strong>g <strong>the</strong> reduction <strong>of</strong> [258] to <strong>the</strong> CY 4 branch, we can provide a str<strong>in</strong>gy derivation<strong>of</strong> <strong>the</strong> proposed flavored <strong>gauge</strong> <strong>the</strong>ories, clos<strong>in</strong>g <strong>the</strong> circle.Firstly, it would be <strong>in</strong>terest<strong>in</strong>g to explore <strong>the</strong> Higgs branches <strong>of</strong> <strong>the</strong> flavored <strong>the</strong>ories.In <strong>the</strong> presence <strong>of</strong> <strong>in</strong>tersect<strong>in</strong>g D6-<strong>branes</strong>, it will be crucial to understand whe<strong>the</strong>r newsuperpotential <strong>in</strong>teractions aris<strong>in</strong>g from flavor <strong>branes</strong> <strong>in</strong>tersections can appear and bemarg<strong>in</strong>al at <strong>the</strong> IR fixed po<strong>in</strong>t. The issue may be addressed us<strong>in</strong>g orbifold techniquesand follow<strong>in</strong>g <strong>the</strong> result <strong>of</strong> partial resolutions, as suggested <strong>in</strong> [303].Secondly, it would be nice to understand whe<strong>the</strong>r <strong>the</strong> auxiliary multi-bond branetil<strong>in</strong>gs are dual to <strong>the</strong> flavored quiver <strong>the</strong>ories we studied. This issue requires <strong>the</strong> study<strong>of</strong> <strong>the</strong> full flavored <strong>the</strong>ory and A-<strong>the</strong>ory moduli spaces. Partial resolutions, <strong>in</strong>terpreted asHiggs<strong>in</strong>gs (removal <strong>of</strong> one edge <strong>in</strong> a multi-bond) <strong>in</strong> <strong>the</strong> A-<strong>the</strong>ory, correspond to explicitbreak<strong>in</strong>g <strong>of</strong> <strong>the</strong> flavor groups due to real mass terms <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory. Even thoughthis is rem<strong>in</strong>iscent <strong>of</strong> mirror symmetry, <strong>the</strong> P- and A-<strong>the</strong>ory are not geometric dual <strong>in</strong> <strong>the</strong>sense <strong>of</strong> [290]: <strong>the</strong>y correspond to <strong>the</strong> same M-<strong>the</strong>ory reduction. The str<strong>in</strong>gy derivationnaturally leads to <strong>the</strong> flavored <strong>the</strong>ory. Moreover, add<strong>in</strong>g multi-bonds or flavor<strong>in</strong>gs are


238 Chapter 13. Flavors <strong>in</strong> N = 2 toric Chern-Simons quiverslocal operations <strong>in</strong> <strong>the</strong> brane til<strong>in</strong>g/quiver, <strong>the</strong>refore any duality between <strong>the</strong> two <strong>the</strong>oriesmust be a local operation as well. F<strong>in</strong>ally, notice that giv<strong>in</strong>g a VEV to a bifundamentalfield <strong>in</strong> <strong>the</strong> flavored <strong>the</strong>ory not only Higgses <strong>the</strong> <strong>gauge</strong> groups but also gives mass toall flavors coupled to it. In <strong>the</strong> brane til<strong>in</strong>g <strong>of</strong> <strong>the</strong> A-<strong>the</strong>ory, all <strong>the</strong> edges between twovertices are removed.Itwouldalsobe<strong>in</strong>terest<strong>in</strong>gtoextendouranalysisto<strong>the</strong>fullclass<strong>of</strong>ADE s<strong>in</strong>gularities<strong>in</strong>M-<strong>the</strong>ory, whichgoesbeyond<strong>the</strong>toriccase: D-types<strong>in</strong>gularitiesdescendtoorientifolds<strong>in</strong>typeIIA.Onecouldalsoconsider<strong>the</strong>addition<strong>of</strong>aRomansmassto<strong>the</strong>typeIIA<strong>gravity</strong>duals with D6-<strong>branes</strong>, contribut<strong>in</strong>g a CS term to <strong>the</strong> diagonal <strong>gauge</strong> group [247, 309]:this would be particularly <strong>in</strong>terest<strong>in</strong>g for models with no CS terms, s<strong>in</strong>ce it would providea manifestly conformal action <strong>in</strong> <strong>the</strong> sense <strong>of</strong> ABJM [202]. F<strong>in</strong>ally, one could apply <strong>the</strong>projection <strong>of</strong> [249] to identify N = 1 dual pairs with flavors.


Appendix AType IIB SUGRA action, chargesand equations <strong>of</strong> motionWe follow conventions accord<strong>in</strong>g to which <strong>the</strong> action <strong>of</strong> Type IIB super<strong>gravity</strong> reads, <strong>in</strong>E<strong>in</strong>ste<strong>in</strong> frameS IIB = 1 {∫2κ 2 d 10 x √ −gR − 1 ∫ [dΦ∧∗dΦ+e 2Φ F 1 ∧∗F 1 + 1 2 2 F 5 ∧∗F 5+e −Φ H 3 ∧∗H 3 +e Φ F 3 ∧∗F 3 −C 4 ∧H 3 ∧F 3] } , (A.1)where κ 2 = π(2π) 6 α ′4 g 2 s is <strong>the</strong> Newton coupl<strong>in</strong>g constant and <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variant fieldstrengths are def<strong>in</strong>ed asF 1 = dC 0 , F 3 = dC 2 +C 0 H 3 , F 5 = dC 4 +C 2 ∧H 3 , H 3 = dB 2 . (A.2)In our conventions <strong>the</strong> E<strong>in</strong>ste<strong>in</strong> frame is def<strong>in</strong>ed from <strong>the</strong> str<strong>in</strong>g frame by rescal<strong>in</strong>g <strong>the</strong>metric by <strong>the</strong> fluctuat<strong>in</strong>g part <strong>of</strong> <strong>the</strong> dilaton field. Moreover, our RR fields are normalizedso as to appear <strong>in</strong> <strong>the</strong> action <strong>in</strong> a democratic way with respect to <strong>the</strong> NSNS fields, that is<strong>the</strong> Newton coupl<strong>in</strong>g constant κ enters as an overall factor <strong>in</strong> front <strong>of</strong> <strong>the</strong> E<strong>in</strong>ste<strong>in</strong> framesuper<strong>gravity</strong> action. As a consequence, <strong>the</strong> dilaton field Φ appear<strong>in</strong>g <strong>in</strong> <strong>the</strong> action (A.1) isits fluctuat<strong>in</strong>g part, only, as its VEV has been absorbed <strong>in</strong>to κ. With <strong>the</strong>se conventions,<strong>the</strong> world-volume action for a Dp-brane isS Dploc = −τ p∫Dpd p+1 ξe p−34 Φ √−det(ĝ +e −Φ/2 F)+τ p∫C ∧e F ∧Ω 9−p ,(A.3)where F = ˆB 2 + 2πα ′ F 2 (<strong>the</strong> hat on <strong>the</strong> NSNS 2-form means that <strong>the</strong> form is pulledbackon <strong>the</strong> D-brane world-volume) and τ p = 1/[(2π) p α ′p+1 2 g s ]. F<strong>in</strong>ally, C is a polyformC = ∑ C p , with C p be<strong>in</strong>g all possible RR potentials (electric and magnetic), and Ω 9−pis a form localized on <strong>the</strong> Dp-brane worldvolume (<strong>the</strong> Po<strong>in</strong>caré dual to <strong>the</strong> cycle) andclosed.With<strong>the</strong>seconventions,<strong>the</strong>D3-braneandD5-branecharges(socalledMaxwellcharges[184], see below) are, respectively∫∫11Q D3 = −(4π 2 α ′ ) 2 F 5 , Q D5 = −g s 4π 2 α ′ F 3 . (A.4)g s239


240 Appendix A. Type IIB SUGRA action, charges and equations <strong>of</strong> motionThe equations <strong>of</strong> motion for <strong>the</strong> fields relevant to <strong>the</strong> solutions discussed <strong>in</strong> this <strong>the</strong>sisared e φ ∗F 3 = H 3 ∧F 5 −2κ 2δS locδC 2dF 5 = −H 3 ∧F 3 −2κ 2δS locδC 4d e −φ ∗H 3 = −F 3 ∧F 5 −2κ 2δS locδB 2,(A.5)where we have imposed self-duality <strong>of</strong> F 5 on shell. By compar<strong>in</strong>g <strong>the</strong> equations with <strong>the</strong>Bianchi identities <strong>of</strong> <strong>the</strong> dual field strengths we get <strong>the</strong> relationF 7 = − e φ ∗F 3 .(A.6)The BIs modified by D-brane sources aredF 3 = −2κ 2δS locδC 6dH 3 = 0 . (A.7)Remark that <strong>in</strong> our conventions, <strong>the</strong> complex 3-form G 3 = dC 2 +τH 3 is simplyG 3 = F 3 +iH 3(A.8)when <strong>the</strong> axio-dilation is constant.A.1 Maxwell and Page charges for D3-<strong>branes</strong>The charges def<strong>in</strong>ed <strong>in</strong> (A.4) are <strong>gauge</strong> <strong>in</strong>variant quantities, but <strong>the</strong>y are not quantized <strong>in</strong>general, because <strong>the</strong> Dirac quantization condition only applies to dC 4 and dC 2 , which areclosed, while F 5 and F 3 are not closed <strong>in</strong> <strong>the</strong> presence <strong>of</strong> generic RR flux. Such chargeswere called Maxwell charges <strong>in</strong> [184].Let us focus on <strong>the</strong> case <strong>of</strong> F 5 , with only F 3 flux and no F 1 flux, which is <strong>the</strong> case <strong>of</strong><strong>in</strong>terest <strong>in</strong> this <strong>the</strong>sis (we refer to [129] for a general discussion <strong>in</strong> <strong>the</strong> presence <strong>of</strong> D3-,D5- and D7-brane charges). The Page charge for D3-<strong>branes</strong> is def<strong>in</strong>ed as [184]∫Q Page 1D3= −(4π 2 α ′ ) 2 (F 5 +B 2 ∧F 3 ). (A.9)g sThe form F 5 +B 2 ∧F 3 is closed <strong>in</strong> <strong>the</strong> absence <strong>of</strong> localized sources, s<strong>in</strong>ce dF 5 = −H 3 ∧F 3 .Locally, F 5 + B 2 ∧ F 3 can be written as d(C 4 + B 2 ∧ C 2 ), so <strong>the</strong> Page charge will benon-zero only if <strong>the</strong>re is some magnetic-monopole-like configuration. The Page charge is<strong>the</strong>n a topological quantity, and it is quantized.However, <strong>the</strong> Page charge is not <strong>gauge</strong> <strong>in</strong>variant under large <strong>gauge</strong> transformations <strong>of</strong><strong>the</strong> B-field, B 2 → B 2 +Λ 2 for Λ 2 some closed 2-form <strong>in</strong> a non-trivial cohomology class.


Appendix BAlgebraic geometry and toricgeometryIn this Appendix we will review <strong>the</strong> relevant ma<strong>the</strong>matical concepts we need <strong>in</strong> algebraicgeometry, and particularly <strong>in</strong> toric geometry. The goal is to present toric geometry <strong>in</strong> itsnatural conceptual environement, which is algebraic geometry. All <strong>the</strong> relevant conceptsare <strong>in</strong>troduced along <strong>the</strong> way. This <strong>in</strong>troduction to toric geometry is based on lecturesgiven by <strong>the</strong> author at <strong>the</strong> Modave summer school <strong>in</strong> september 2008 [4].Section B.1 is an <strong>in</strong>troduction to <strong>the</strong> basic concepts <strong>of</strong> algebraic geometry. In sectionB.2 we will discuss <strong>the</strong> Calabi-Yau condition. In section B.3 we will delve <strong>in</strong>to <strong>the</strong> core<strong>of</strong> <strong>the</strong> subject, def<strong>in</strong><strong>in</strong>g toric varieties as particular holomorphic quotients, and show<strong>in</strong>ghow to <strong>in</strong>troduce local coord<strong>in</strong>ates <strong>in</strong> term <strong>of</strong> aff<strong>in</strong>e varieties (aff<strong>in</strong>e patches). Remarkthat we will ma<strong>in</strong>ly be <strong>in</strong>terested <strong>in</strong> local properties, and so we will mostly concentrateon non-compact toric varieties. In particular we will consider Calabi-Yau toric varieties,which are always non-compact. In section B.4 we will <strong>in</strong>troduce <strong>the</strong> notion <strong>of</strong> s<strong>in</strong>gularity<strong>in</strong> algebraic geometry, and we will show how we can deal with s<strong>in</strong>gular po<strong>in</strong>ts <strong>in</strong> <strong>the</strong>toric case. In section B.5 we <strong>in</strong>troduce a second way to def<strong>in</strong>e toric varieties, <strong>the</strong> Kählerquotient, also known as <strong>gauge</strong>d l<strong>in</strong>ear sigma-model.The presentation aims to be as self-conta<strong>in</strong>ed as possible, but general knowledge <strong>of</strong>complexgeometryisassumedatsomepo<strong>in</strong>t, especially<strong>in</strong>sectionB.2. Good<strong>in</strong>troductionsto complex geometry and Calabi-Yau manifolds can be found for <strong>in</strong>stance <strong>in</strong> [310, 311,312]. A very <strong>in</strong>terest<strong>in</strong>g ma<strong>the</strong>matical reference is [313]. The standard reference on toricgeometry is [314]. Posterior developments as expla<strong>in</strong>ed <strong>in</strong> [315] are also important, as<strong>the</strong>y actually simplify matters. See [316] for a nice account from a physicist perspective.B.1 Algebraic geometry: <strong>the</strong> gist <strong>of</strong> itWe know that <strong>in</strong> geometry we always deal with some bunch <strong>of</strong> “po<strong>in</strong>ts” that has moreor less structure to it. A set <strong>of</strong> po<strong>in</strong>ts toge<strong>the</strong>r with a topology is called a topologicalspace. Recall that a topology is what you def<strong>in</strong>e to be <strong>the</strong> open sets <strong>in</strong> your space, henceit provides a notion <strong>of</strong> locality. A topological space that locally looks like <strong>the</strong> euclidianspace R n is called a manifold. If moreover <strong>the</strong> transition functions are differentiable (C ∞for <strong>in</strong>stance), it is called a differentiable manifold.241


242 Appendix B. Algebraic geometry and toric geometrySmooth algebraic varieties can be seen as particular k<strong>in</strong>d <strong>of</strong> manifolds which aresimpler <strong>in</strong> some sense. Roughly speak<strong>in</strong>g, <strong>the</strong>y can be thought <strong>of</strong> as manifolds withrational transition functions 1 . On <strong>the</strong> o<strong>the</strong>r hand, generic algebraic varieties are notmanifolds, s<strong>in</strong>ce <strong>the</strong>y allow for various s<strong>in</strong>gularities; <strong>in</strong> that sense <strong>the</strong>y are more general.Remark that it is possible to def<strong>in</strong>e algebraic varieties <strong>in</strong>tr<strong>in</strong>sically, <strong>in</strong> a way similarto what one does <strong>in</strong> differential geometry, but for do<strong>in</strong>g so we would need to <strong>in</strong>troduce<strong>the</strong> language <strong>of</strong> sheaves, and that would carry us too far afield. We will follow <strong>the</strong> moredown to earth route, which def<strong>in</strong>es algebraic varieties extr<strong>in</strong>sically as <strong>the</strong> algebraic set <strong>of</strong>zeros <strong>of</strong> some polynomials. Given a function f : R n → R, we can def<strong>in</strong>e a subset <strong>of</strong> R n ,R n ⊃ Σ = {f −1 (0)} = {x ∈ R n |f(x) = 0},which locally <strong>in</strong>herits its manifold structure from R n . However, this Σ is badly s<strong>in</strong>gular<strong>in</strong> general. If we restrict f to be a polynomial, th<strong>in</strong>gs become much more tractable. It isone <strong>of</strong> <strong>the</strong> great advantages <strong>of</strong> <strong>the</strong> algebraic side <strong>of</strong> algebraic-geometry that s<strong>in</strong>gularitiesbecome easier to deal with.Therefore we are now consider<strong>in</strong>g algebraic equations only. Hence it is very convenientto work with polynomials valued <strong>in</strong> C, because C is algebraically complete. From nowon, unless o<strong>the</strong>rwise stated, all variables are C-valued, and by dimension we always meancomplex dimension (half <strong>the</strong> real dimension).Some algebraic def<strong>in</strong>itions and propositions are reviewed <strong>in</strong> Insert 5, without demonstrations.For more details, see any algebraic geometry textbook, such as [317].In this section we will first def<strong>in</strong>e aff<strong>in</strong>e varieties, which are <strong>the</strong> basic objects <strong>of</strong>algebraic geometry. Next we def<strong>in</strong>e <strong>the</strong> projective space CP n , which provides us witha particular example <strong>of</strong> <strong>the</strong> holomorphic quotient construction that we will encounter<strong>in</strong> detail when we def<strong>in</strong>e toric varieties <strong>in</strong> section B.3. For completeness we also def<strong>in</strong>eprojective varieties, which are subvarieties <strong>of</strong> CP n .B.1.1 Aff<strong>in</strong>e varietiesVarieties def<strong>in</strong>ed as algebraic subset <strong>of</strong> C n lead to <strong>the</strong> concept <strong>of</strong> aff<strong>in</strong>e varieties. ConsiderC n = {(x 1 ,··· ,x n )}. Associated to it, we have <strong>the</strong> r<strong>in</strong>g <strong>of</strong> polynomials <strong>in</strong> n variables,which is denoted byR n ≡ C[x 1 ,··· ,x n ].(B.2)It is obviously a r<strong>in</strong>g (it is an additive group toge<strong>the</strong>r with an associative product, distributivewith respect to <strong>the</strong> addition); moreover it is a commutative r<strong>in</strong>g. An algebraicsubset Z(T ) <strong>of</strong> C n is def<strong>in</strong>ed as <strong>the</strong> zero locus <strong>of</strong> a set <strong>of</strong> polynomials T ⊂ R n :Z(T ) = {(x 1 ,··· ,x n ) ∈ C n |p i (x 1 ,··· ,x n ) = 0,∀p i ∈ T }.(B.3)On <strong>the</strong> o<strong>the</strong>r hand, for any subset Y ⊂ C n , we denote <strong>the</strong> set <strong>of</strong> all polynomials thatvanish on Y by J(Y). A natural question to ask is what is <strong>the</strong> relation between J(Z(T ))and T . This is <strong>the</strong> content <strong>of</strong> <strong>the</strong> famous Hilbert’s Nullstellensatz.The whole idea <strong>of</strong> algebraic geometry is that you can def<strong>in</strong>e a space by <strong>the</strong> algebra <strong>of</strong>functions def<strong>in</strong>ed on it 2 . Let us look at <strong>the</strong> polynomials which give rise to well def<strong>in</strong>ed1 For toric varieties we will see that it is precisely that.2 Note that <strong>the</strong> r<strong>in</strong>g <strong>of</strong> polynomials is naturally an algebra too.


B.1. Algebraic geometry: <strong>the</strong> gist <strong>of</strong> it 243Insert 5. A few notions <strong>of</strong> algebraR<strong>in</strong>g. A r<strong>in</strong>g is a set R equipped with two b<strong>in</strong>ary operations, + and ·, such that(i) (R,+) is a commutative group,(ii)·isassociativeand<strong>the</strong>reexistaneutralelement(calledunity). Ifmoreover·iscommutativewe talk <strong>of</strong> a commutative r<strong>in</strong>g (it is <strong>the</strong> case <strong>in</strong> <strong>the</strong>se lectures).(iii) · is distributive over + .Examples: The sel <strong>of</strong> all <strong>in</strong>tegers Z is a r<strong>in</strong>g. Ano<strong>the</strong>r example is <strong>the</strong> r<strong>in</strong>g <strong>of</strong> polynomials <strong>in</strong> nvariables, denoted C[x 1 ,··· ,x n ].Ideal. An ideal I <strong>of</strong> a r<strong>in</strong>g R is a subset I ⊂ R such that(i) i,j ∈ I ⇒ i−j ∈ I,(ii) i ∈ I,r ∈ R ⇒ ir ∈ I.Proposition: I an ideal <strong>of</strong> R implies that <strong>the</strong> quotient R/I is a r<strong>in</strong>g too.Notation: Given a set <strong>of</strong> elements {r 1 ,··· ,r k } ⊂ R, we denote (r 1 ,··· ,r k ) <strong>the</strong> idealgenerated by this set, which is <strong>the</strong> smallest ideal <strong>of</strong> R conta<strong>in</strong><strong>in</strong>g {r 1 ,··· ,r k }.Prime ideal. An ideal P ⊂ R is a prime ideal if for any ideals I,J ⊂ R,I ·J = {ij ∈ R|i ∈ I,j ∈ J} ⊂ P ⇒ I ⊂ P or J ⊂ P.Example: In <strong>the</strong> r<strong>in</strong>g C[x,y], <strong>the</strong> ideal (xy) is not prime. It has a primary decomposition <strong>in</strong>to(x) and (y).Radical <strong>of</strong> an ideal. Let I be an ideal <strong>of</strong> R. The radical <strong>of</strong> I, denoted rad(I), is <strong>the</strong><strong>in</strong>tersection <strong>of</strong> all <strong>the</strong> prime ideals conta<strong>in</strong><strong>in</strong>g I. (rad(I) is itself an ideal.)Example: In C[x,y], rad((x n y m )) = (xy).An ideal I ⊂ R is said to be radical if rad(I) = I.Height <strong>of</strong> a prime ideal. The height h(P) <strong>of</strong> a prime ideal P ⊂ R is <strong>the</strong> largest <strong>in</strong>teger hsuch that <strong>the</strong>re exist a cha<strong>in</strong> <strong>of</strong> strict <strong>in</strong>clusions <strong>of</strong> prime ideals P iP 0 ⊂ P 1 ⊂ ··· ⊂ P h = P .(B.1)It gives a notion <strong>of</strong> <strong>the</strong> dimension <strong>of</strong> an ideal. Moreover it can be shown that <strong>the</strong> dimension<strong>of</strong> <strong>the</strong> aff<strong>in</strong>e variety correspond<strong>in</strong>g to <strong>the</strong> quotient r<strong>in</strong>g C[x 1 ,··· ,x n ]/P is n−h(P).Zero divisor and <strong>in</strong>tegral doma<strong>in</strong>. An element r ∈ R, r ≠ 0, is called a zero divisor if<strong>the</strong>re exists s ∈ R, s ≠ 0, such that rs = 0. A commutative r<strong>in</strong>g without zero divisor is calledan <strong>in</strong>tegral doma<strong>in</strong>.Proposition: Given R an <strong>in</strong>tegral doma<strong>in</strong>, and I ⊂ R an ideal, <strong>the</strong>n R/I is an <strong>in</strong>tegraldoma<strong>in</strong> if and only if I is prime.


244 Appendix B. Algebraic geometry and toric geometryfunctions on <strong>the</strong> algebraic set (B.3). Two polynomials p 1 and p 2 will take <strong>the</strong> same valueon Z(T ) if p 1 − p 2 = t, with some t ∈ T , s<strong>in</strong>ce t vanishes on Z(T ) by def<strong>in</strong>ition. We<strong>the</strong>n only need to consider <strong>the</strong> equivalence classes <strong>of</strong> polynomials <strong>in</strong> R n that are l<strong>in</strong>earlyequivalent up to elements <strong>of</strong> T . This is denoted byA(Z(T )) = C[x 1 ,··· ,x n ]/T .(B.4)We want this quotient to def<strong>in</strong>e a proper r<strong>in</strong>g <strong>of</strong> functions on Z(T ). This happens if Tis an ideal <strong>of</strong> <strong>the</strong> r<strong>in</strong>g C[x 1 ,··· ,x n ]. An ideal <strong>of</strong> a r<strong>in</strong>g R is a subset I ⊂ R such that Iis a subgroup for <strong>the</strong> addition and is <strong>in</strong>variant under multiplication by any element <strong>in</strong> R.Given any set <strong>of</strong> polynomials, it is not difficult to extend it <strong>in</strong>to a full-fledged ideal, asone can see <strong>in</strong> <strong>the</strong> examples below. One usually denote <strong>the</strong> ideal generated this way by(p 1 ,··· ,p k ).Examples:• Take <strong>the</strong> r<strong>in</strong>g C[x] <strong>of</strong> polynomials <strong>in</strong> x. The set {x} is not an ideal (for <strong>in</strong>stance itis not even a subgroup), but we can generate one simply by multiply<strong>in</strong>g with everyelement <strong>of</strong> C[x]. The ideal, denoted (x), is simply <strong>the</strong> set <strong>of</strong> all polynomials withoutconstant term. The quotient by <strong>the</strong> ideal simply gives <strong>the</strong> constants:C[x]/(x) = C.(B.5)• Consider <strong>the</strong> ideal (x 2 ) <strong>in</strong>stead. The quotient C[x]/(x 2 ) is a r<strong>in</strong>g generated by <strong>the</strong>two elements {1,x} such that x.x = 0. Such a x is called a zero divisor.• On <strong>the</strong> r<strong>in</strong>g C[x,y], consider <strong>the</strong> ideal (xy). The quotient r<strong>in</strong>g C[x,y]/(xy) has twozero divisors (x and y).This last example corresponds to <strong>the</strong> surface xy = 0 <strong>in</strong> C 2 . It consists <strong>of</strong> two brancheswhich meet at <strong>the</strong> orig<strong>in</strong>. In general, any algebraic set will consist <strong>of</strong> several “branches”,Z(T ) = Σ 1 ∪···∪Σ m ,(B.6)andcorrespond<strong>in</strong>gly<strong>the</strong>quotientr<strong>in</strong>g(B.4)willhavezerodivisors. Toavoidzerodivisors,one must ask that <strong>the</strong> ideal be prime (see <strong>the</strong> Appendix 5 for <strong>the</strong> def<strong>in</strong>ition). In ourexample, (xy) is not prime, but it has a decomposition <strong>in</strong> two prime factors (x) and (y).These two ideals correspond to <strong>the</strong> two “branches” x = 0 and y = 0.Each component <strong>in</strong> <strong>the</strong> decomposition (B.6) is called irreducible if it cannot be decomposedfur<strong>the</strong>r.Def<strong>in</strong>ition: An aff<strong>in</strong>e variety is an irreducible algebraic subset <strong>of</strong> C n .It is called “aff<strong>in</strong>e” simply because it is def<strong>in</strong>ed <strong>in</strong> C n , which is an aff<strong>in</strong>e space (i.e.a vector space where you can shift <strong>the</strong> orig<strong>in</strong> anywhere). The very important th<strong>in</strong>g toremember is that <strong>the</strong>re is a one-to-one <strong>correspondence</strong> between aff<strong>in</strong>e varieties and primeideals:1−1Σ = Z(P) ←→ A(Σ) = C[x 1 ,··· ,x n ]/P. (B.7)


B.1. Algebraic geometry: <strong>the</strong> gist <strong>of</strong> it 245Insert 6. Hilbert’s NullstellensatzConsider an ideal I <strong>of</strong> C[x 1 ,··· ,x n ]. Given <strong>the</strong> algebraic subset Z(I) ⊂ C n , as def<strong>in</strong>ed <strong>in</strong>section B.1.1, is <strong>the</strong> knowledge <strong>of</strong> Z(I) enough to reconstruct <strong>the</strong> ideal I? The answer is thatyou can only f<strong>in</strong>d rad(I). This is <strong>the</strong> content <strong>of</strong> <strong>the</strong> famous Hilbert’s Nullstellensatz. Moreprecisely: Theorem. For any ideal I <strong>of</strong> C[x 1 ,··· ,x n ],J(Z(I)) = rad(I),where J(Z(I)) is <strong>the</strong> set <strong>of</strong> all polynomials vanish<strong>in</strong>g on Z(I).We <strong>the</strong>n have a one-to-one <strong>correspondence</strong> between algebraic sets and radical ideals. Remarkthat <strong>in</strong> dimension one, it implies that a polynomial with isolated zeros is fully determ<strong>in</strong>edby its roots; <strong>the</strong> Nullstellensatz is a generalisation <strong>of</strong> <strong>the</strong> fundamental <strong>the</strong>orem <strong>of</strong> algebra tohigher dimensions.This is a consequence <strong>of</strong> <strong>the</strong> Hilbert’s Nullstellensatz (see Insert 6), which implies thatif T = P is a prime ideal <strong>the</strong>n <strong>the</strong> set <strong>of</strong> polynomials vanish<strong>in</strong>g on Z(P) is P itself,J(Z(P)) = P.Def<strong>in</strong>ition: The r<strong>in</strong>g A(Σ) def<strong>in</strong>ed as <strong>in</strong> (B.4),A(Σ) = C[x 1 ,··· ,x n ]/P,(B.8)is called <strong>the</strong> coord<strong>in</strong>ate r<strong>in</strong>g, or structure r<strong>in</strong>g, <strong>of</strong> <strong>the</strong> aff<strong>in</strong>e variety Σ. This constructionis familiar from supersymmetric <strong>the</strong>ories: <strong>the</strong>re <strong>the</strong> x i are <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variants operators,and P is generated by <strong>the</strong> F-terms. The structure r<strong>in</strong>g <strong>in</strong> that case is called <strong>the</strong> chiralr<strong>in</strong>g.Example: <strong>the</strong> conifold. The ubiquitous conifold, C 0 , which has been such a centraltool <strong>in</strong> recent developments <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory, is an aff<strong>in</strong>e variety def<strong>in</strong>ed by a s<strong>in</strong>gleequation <strong>in</strong> C 4 ,x 1 x 2 −x 3 x 4 = 0.(B.9)Ma<strong>the</strong>maticians call it a “threefold ord<strong>in</strong>ary double po<strong>in</strong>t”, or node. Its coord<strong>in</strong>ate r<strong>in</strong>gisA(C 0 ) = C[x 1 ,x 2 ,x 3 ,x 4 ]/(x 1 x 2 −x 3 x 4 ). (B.10)B.1.2 Projective varietiesAff<strong>in</strong>e varieties, be<strong>in</strong>g def<strong>in</strong>ed by polynomial equations <strong>in</strong> C n , are not compact. Theprojective space CP n is <strong>the</strong> simplest example <strong>of</strong> a compact algebraic variety (actually itis toric too). The standard way to def<strong>in</strong>e it is as <strong>the</strong> set <strong>of</strong> complex l<strong>in</strong>es <strong>in</strong> C n+1 ,CP n = (Cn+1 \{0})C ∗ . (B.11)The action <strong>of</strong> C ∗ = C\{0} is to multiply all coord<strong>in</strong>ates <strong>in</strong> C n+1 by λ ∈ C ∗ , which def<strong>in</strong>es<strong>the</strong> equivalence relation[x 0 ,··· ,x n ] ∼ [λx 0 ,··· ,λx n ]. (B.12)


246 Appendix B. Algebraic geometry and toric geometryThe orig<strong>in</strong> {0} was removed before tak<strong>in</strong>g <strong>the</strong> quotient so that C ∗ may act freely. Theresult<strong>in</strong>g space is fully regular. The x i are called homogeneous coord<strong>in</strong>ates, and a po<strong>in</strong>t<strong>in</strong> CP n is represented by <strong>the</strong> equivalence class [x 0 ,··· ,x n ]. We can cover CP n with n+1aff<strong>in</strong>e patches, one for each x i ≠ 0. The local coord<strong>in</strong>ates on <strong>the</strong> i-patch are z (i)k= x k /x i ,and <strong>the</strong> transition functions are <strong>the</strong> rational functionsk (z(j) ) = z(j) k. (B.13)z (i)The Riemann sphere CP 1 is <strong>the</strong> best known example. It has two patches, and <strong>the</strong>transition function on <strong>the</strong> equator is z N = 1/z S .We can def<strong>in</strong>e subvarieties <strong>of</strong> CP n by tak<strong>in</strong>g <strong>the</strong> vanish<strong>in</strong>g locus <strong>of</strong> a set <strong>of</strong> polynomialsp i ∈ R n+1 . For <strong>the</strong> equations p i = 0 to make sense, <strong>the</strong>y should be constant on anyequivalence class [x 0 ,··· ,x i ], which means <strong>the</strong> p’s are homogeneous (i.e. <strong>the</strong>y are sums<strong>of</strong> monomials <strong>of</strong> fixed degree):z (j)ip i (x 0 ,··· ,x n ) ∼ λ d p i (x 0 ,··· ,x n ).(B.14)Def<strong>in</strong>ition: Given a homogeneous prime ideal P h <strong>in</strong> R n+1 , <strong>the</strong> associated projectivevariety is def<strong>in</strong>ed asΣ(P h ) = {[x 0 ,··· ,x n ] | p i = 0 ∀p i ∈ P h ⊂ R n+1 }.It is easy to check that if <strong>the</strong> p i ’s are homogenous <strong>of</strong> degree d, so is <strong>the</strong> ideal (p i ).The homogeneous coord<strong>in</strong>ate r<strong>in</strong>g is denoted byS(Σ) = R n+1 /P h .(B.15)(B.16)Projective plane curves. In CP 2 , consider a hypersurface def<strong>in</strong>ed by a s<strong>in</strong>glepolynomial p <strong>of</strong> degree d. If moreover∂p(x)∂x i= 0∀i, ∀x s.th. p(x) = 0,(B.17)<strong>the</strong> curve is regular; it is a Riemann surface. Such Riemann surfaces are classified by<strong>the</strong>ir genus. There exists a <strong>the</strong>orem stat<strong>in</strong>g thatg = (d−1)(d−2) . (B.18)2In particular, for d = 3, we have a torus, or elliptic curve (g = 1). The general equationreads∑c ijk x i 0x j 1 xk 2 = 0.(B.19)i+j+k=3We have 10 parameters here. However 9 <strong>of</strong> <strong>the</strong>m can be removed by a Gl(3,C) transformationon <strong>the</strong> homogeneous coord<strong>in</strong>ates. This leaves us with one parameter, which isbasically <strong>the</strong> complex structure modulus <strong>of</strong> <strong>the</strong> torus. We will come back to <strong>the</strong> importantissue <strong>of</strong> complex structure moduli later on <strong>in</strong> <strong>the</strong>se lectures.Remark that <strong>the</strong>re are many more algebraic varieties than just aff<strong>in</strong>e and projectiveones. In general, one can patch toge<strong>the</strong>r aff<strong>in</strong>e varieties to obta<strong>in</strong> any algebraic variety,similarly to <strong>the</strong> idea <strong>of</strong> patch<strong>in</strong>g toge<strong>the</strong>r open sets to form manifolds <strong>in</strong> differentialgeometry. We will see this explicitly <strong>in</strong> <strong>the</strong> simpler context <strong>of</strong> toric varieties.


B.2. The Calabi-Yau condition 247B.1.3 Spectrum and scheme, <strong>in</strong> two wordsLet us <strong>in</strong>troduce <strong>the</strong> notion <strong>of</strong> spectrum <strong>of</strong> a r<strong>in</strong>g. This is done only to set a usefulnotation that you might <strong>of</strong>ten encounter <strong>in</strong> <strong>the</strong> literature. The concepts <strong>of</strong> spectrum andscheme stem from tak<strong>in</strong>g seriously <strong>the</strong> idea that it is really <strong>the</strong> algebra <strong>of</strong> functions on itwhich def<strong>in</strong>es a space. One starts with a purely algebraic object : given any r<strong>in</strong>g A, onedef<strong>in</strong>es its spectrumSpec(A) ≡ {P ⊂ A},(B.20)to be <strong>the</strong> set <strong>of</strong> all prime ideals <strong>of</strong> A (except A itself). This set can be given a naturaltopology, and it is <strong>the</strong>n shown that, <strong>in</strong> <strong>the</strong> particular case <strong>of</strong> <strong>the</strong> coord<strong>in</strong>ate r<strong>in</strong>g <strong>of</strong> anaff<strong>in</strong>e variety,Spec(A(Σ)) ∼ = Σ,(B.21)up to important subtleties that we shall willfully skip (<strong>in</strong> particular we are really talk<strong>in</strong>gabout <strong>the</strong> maximal ideals here). The scheme structure is <strong>the</strong>n obta<strong>in</strong>ed by <strong>in</strong>troduc<strong>in</strong>glocal coord<strong>in</strong>ates by means <strong>of</strong> a so-called structure sheaf (for <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>troductions tosheaf concepts <strong>in</strong> physics, see for <strong>in</strong>stance [48, 49]).B.2 The Calabi-Yau conditionIn this section we consider algebraic manifolds, i.e. non-s<strong>in</strong>gular algebraic varieties. It isfair to warn <strong>the</strong> reader that we will be apply<strong>in</strong>g results <strong>of</strong> this section <strong>in</strong> s<strong>in</strong>gular cases<strong>in</strong> <strong>the</strong> next section, although we will not discuss how this can be rigorously done.An algebraic manifold is obviously a complex manifold: all <strong>the</strong> quantities we are deal<strong>in</strong>gwith are holomorphic by construction, and <strong>the</strong> variety <strong>in</strong>herits its complex structurefrom <strong>the</strong> embedd<strong>in</strong>g space C n or CP n . In this section, s<strong>in</strong>ce we deal with manifolds, wecan take a more direct, “<strong>in</strong>tr<strong>in</strong>sic”, differential-geometric standpo<strong>in</strong>t. This will simplifymatter, s<strong>in</strong>ce differential geometry is bound to be more familiar to <strong>the</strong> reader.B.2.1 Holomorphic vector bundles and l<strong>in</strong>e bundlesConsider a complex manifold X <strong>of</strong> dimension m. On every open set we have local coord<strong>in</strong>atefunctions z 1 ,··· ,z m , and we can def<strong>in</strong>e <strong>the</strong> exterior algebra <strong>of</strong> <strong>the</strong>se coord<strong>in</strong>atefunctions, generated by one-formsdz 1 ,··· ,dz m .(B.22)At any po<strong>in</strong>t p <strong>in</strong> <strong>the</strong> open set, {dz i (p)} form a basis for <strong>the</strong> holomorphic cotangent spaceT ∗ pX at p. The multiplication operation on forms is <strong>the</strong> exterior product. All <strong>in</strong> all wehave 2 m l<strong>in</strong>early <strong>in</strong>dependent elements1, dz i , dz i1 ∧dz i2 , ··· , dz i1 ∧···∧dz im , (B.23)which form a graded algebra. At each degree, p-forms at any particular po<strong>in</strong>t span an!vector space <strong>of</strong> dimensionp!(n−p!) .Us<strong>in</strong>g holomorphic Gl(m,C)-valued transition functions, we can patch all cotangentspaces toge<strong>the</strong>r <strong>in</strong>to <strong>the</strong> holomorphic cotangent bundle T ∗ X:C m−→ T ∗ Xπ−→ X,(B.24)


248 Appendix B. Algebraic geometry and toric geometrywhich is itself a manifold <strong>of</strong> dimension 2m. This is a particular case <strong>of</strong> an holomorphicvector bundle E,C k π−→ E −→ X,(B.25)with C k <strong>the</strong> fiber, and π <strong>the</strong> natural projection, which is an holomorphic map. k is called<strong>the</strong> rank <strong>of</strong> <strong>the</strong> bundle.Def<strong>in</strong>ition: An holomorphic l<strong>in</strong>e bundle (or l<strong>in</strong>e bundle for short) is an holomorphicvector bundle <strong>of</strong> rank one.A very important l<strong>in</strong>e bundle is <strong>the</strong> canonical bundle K X . It is def<strong>in</strong>ed as <strong>the</strong> m <strong>the</strong>xterior product <strong>of</strong> T ∗ X,C −→ K X ≡ Λ (m,0) T ∗ Xπ−→ X.(B.26)Sections <strong>of</strong> <strong>the</strong> canonical bundle are holomorphic m-forms, that we can write (on eachcoord<strong>in</strong>ate patch)Ω = f(z)dz 1 ∧···∧dz m ,(B.27)for f(z) some holomorphic function.B.2.2 Calabi-Yau manifolds. Kähler and complex moduliThe Calabi-Yau condition is that <strong>the</strong> canonical bundle be trivial, i.e.Λ (m,0) T ∗ X ∼ = C × X.(B.28)This implies <strong>the</strong> existence <strong>of</strong> a never vanish<strong>in</strong>g global section. Standard arguments <strong>the</strong>nimply that <strong>the</strong> function f(z) <strong>in</strong> (B.27) must be a constant. This unique (up to rescal<strong>in</strong>gby a constant) Ω is usually called <strong>the</strong> holomorphic m-form <strong>of</strong> <strong>the</strong> Calabi-Yau manifoldX.Kähler structure. A complex manifold can be endowed with a Kähler structure.Thereisnoroomheretoexpla<strong>in</strong><strong>in</strong>detailwhatthisis, see[310,311]. Intwowordsthough,a Kähler structure is a symplectic structure compatible with <strong>the</strong> complex structure: youneed a closed and non-degenerate (1,1)-form ω. The nice th<strong>in</strong>g is that complex structureplus Kähler structure implies <strong>the</strong>re is a compatible Riemannian structure, i.e. a hermitianmetric. This metric is def<strong>in</strong>ed byg(∂ z , ¯∂¯z ) = ω(∂ z ,i ¯∂¯z )(B.29)for any two vectors ∂ z , ¯∂¯z <strong>in</strong> <strong>the</strong> tangent space (holomorphic and anti-holomorphic). TheKahler form ω is a representative <strong>of</strong> a Dolbeault cohomology class[ω] ∈ H 1,1 (X).(B.30)[ω] is called <strong>the</strong> Kähler class <strong>of</strong> ω.Now, we can state Yau’s <strong>the</strong>orem (Yau proved a conjecture made earlier by Calabi):CY Theorem : Given X a compact complex manifold with trivial canonical bundle, andgiven a Kähler form ˜ω on X, <strong>the</strong>re exist a unique Ricci flat metric <strong>in</strong> <strong>the</strong> Kähler class <strong>of</strong>˜ω. That is, a unique Ricci-flat metric given by (B.29) for some ω ∈ [˜ω].On <strong>the</strong> o<strong>the</strong>r hand, it is “easy” to show that Ricci-flatness implies <strong>the</strong> triviality <strong>of</strong> <strong>the</strong>l<strong>in</strong>e bundle. For a non-compact manifold, <strong>the</strong> <strong>the</strong>orem does not hold (strictly speak<strong>in</strong>g).


B.2. The Calabi-Yau condition 249One can still f<strong>in</strong>d a Ricci-flat metric <strong>in</strong> general, but one must specify some boundaryconditions at <strong>in</strong>f<strong>in</strong>ity.Kähler moduli space. Given a Calabi-Yau manifold X, we see <strong>the</strong>re are cont<strong>in</strong>uousfamilies <strong>of</strong> Ricci-flat metrics, one for each cohomology class[ω] =∑λ i [ω] i .h 1,1i=1(B.31)These parameters λ are coord<strong>in</strong>ates <strong>in</strong> a vector space H 1,1 (X) (here <strong>the</strong> [ω] i are basisvectors). It is called <strong>the</strong> Kähler moduli space <strong>of</strong> X. Its dimension is denoted by h 1,1 .Complex moduli space. Given an algebraic variety, if one modifies <strong>the</strong> equationcont<strong>in</strong>uously, vary<strong>in</strong>g some parameters, <strong>the</strong> variety will be “deformed” accord<strong>in</strong>gly. Thisis called a variation <strong>of</strong> <strong>the</strong> complex structure.Consider <strong>the</strong> example <strong>of</strong> <strong>the</strong> torus <strong>of</strong> section B.1.2; we saw <strong>the</strong>re are 10 parametersone can vary, but 9 <strong>of</strong> <strong>the</strong>m do not change <strong>the</strong> complex structure, because <strong>the</strong>y are justa l<strong>in</strong>ear reshuffl<strong>in</strong>g <strong>of</strong> <strong>the</strong> embedd<strong>in</strong>g space coord<strong>in</strong>ates, so <strong>the</strong> complex moduli space <strong>of</strong><strong>the</strong> torus is one dimensional.Consider also <strong>the</strong> conifold, def<strong>in</strong>ed by x 1 x 2 −x 3 x 4 . If I write, for <strong>in</strong>stance,x 1 x 2 −bx 3 x 4 +cx 4 = 0,(B.32)<strong>the</strong> constants b and c can obviously be absorbed <strong>in</strong> a redef<strong>in</strong>ition <strong>of</strong> x 3 , with x ′ 3 = bx 3−c.For an aff<strong>in</strong>e variety <strong>in</strong> C n , we can transform <strong>the</strong> variables byGl(n,C)⋉T n ,(B.33)with T n <strong>the</strong> group <strong>of</strong> translations. In <strong>the</strong> case <strong>of</strong> C 0 <strong>in</strong> C 4 , we have 15 possible parametersforagenericpolynomial<strong>of</strong>degree2. Howevermost<strong>of</strong><strong>the</strong>mcanberemovedbyaGl(4,C)⋉T 4 transformation. One can check that <strong>the</strong> only parameter which cannot be removed bysuch a transformation is <strong>the</strong> constant term,x 1 x 2 −x 3 x 4 −a = 0.(B.34)Such a space is called <strong>the</strong> deformed conifold, and it is regular.The space <strong>of</strong> all complex deformations <strong>of</strong> an algebraic variety X is called <strong>the</strong> complexmoduli space <strong>of</strong> X. It is a ra<strong>the</strong>r complicated space. Its l<strong>in</strong>earisation (<strong>the</strong> tangentspace) is given by <strong>the</strong> cohomology group H m−1,1 (X) (m <strong>the</strong> dimension <strong>of</strong> X) <strong>in</strong> <strong>the</strong> case<strong>of</strong> Calabi-Yau manifolds. In general, <strong>the</strong> question is much more complicated. In <strong>the</strong>particular case <strong>of</strong> <strong>the</strong> <strong>the</strong>ory <strong>of</strong> complex deformations <strong>of</strong> toric Calabi-Yau s<strong>in</strong>gularities,<strong>the</strong>re is some important results to be learned, as we will see.B.2.3 Divisors and l<strong>in</strong>e bundlesDef<strong>in</strong>ition: A (Weyl) divisor D <strong>of</strong> a complex variety X is a l<strong>in</strong>ear comb<strong>in</strong>ation (aformal sum with <strong>in</strong>teger coefficients) <strong>of</strong> codimension one irreducible subvarieties,D = ∑ <strong>in</strong> i V i , n i ∈ Z, V i ⊂ X.(B.35)


250 Appendix B. Algebraic geometry and toric geometryIf all n i ≥ 0, <strong>the</strong> divisor D is said to be effective.To any l<strong>in</strong>e bundle L with a regular section s (which means that on any open set U α ,s α is a polynomial <strong>in</strong> <strong>the</strong> local coord<strong>in</strong>ates) we have an associated hypersurface Y <strong>in</strong> Xdef<strong>in</strong>ed byY = {s(p) = 0, p ∈ X}.(B.36)We can decompose Y <strong>in</strong>to irreducible parts. On any aff<strong>in</strong>e patch, <strong>the</strong> polynomial s αcan be factorized <strong>in</strong> C[x 1 ,··· ,x n ]. In fact, (s α ) is decomposed <strong>in</strong>to prime ideals, andone keeps track <strong>of</strong> <strong>the</strong> multiplicity 3 n i <strong>of</strong> each dist<strong>in</strong>ct ideal P i . The prime ideal P icorresponds to <strong>the</strong> subvariety V i <strong>in</strong> (B.35). More precisely, one should <strong>of</strong> course patch all<strong>the</strong> Vi α toge<strong>the</strong>r to construct V i ⊂ X.Go<strong>in</strong>g <strong>the</strong> o<strong>the</strong>r way around, an effective divisor D = ∑ i n iV i def<strong>in</strong>es a l<strong>in</strong>e bundle,denoted O X (D). By def<strong>in</strong>ition its sections will vanish on each V i with a zero <strong>of</strong> order n i .On can generalize this construction to any divisor, where now n i < 0 corresponds toa pole <strong>of</strong> order n i for <strong>the</strong> correspond<strong>in</strong>g sections <strong>of</strong> O X (D).Example. On X = CP n , we can set z i = 0 (z i an homogeneous coord<strong>in</strong>ate). Itcorresponds to <strong>the</strong> hyperplane H (any H i = {z i = 0} is l<strong>in</strong>early equivalent to <strong>the</strong> o<strong>the</strong>rs).A general divisor is <strong>the</strong>n D = nH, n ∈ Z. Its associated l<strong>in</strong>e bundle is usually denotedO(n). Note that O(−1), correspond<strong>in</strong>g to D = −H, is really <strong>the</strong> dual <strong>of</strong> <strong>the</strong> hyperplanel<strong>in</strong>e bundle (i.e. its sections are <strong>in</strong> Hom(O(1),C)). It is called <strong>the</strong> tautological l<strong>in</strong>e bundle<strong>of</strong> CP n .B.3 Toric geometry 1: The algebraic storyWe are now ready to discuss toric geometry. In this section we def<strong>in</strong>e a toric variety as aparticular holomorphic quotient (or GIT quotient) <strong>of</strong> C n .Def<strong>in</strong>ition: A toric variety X (<strong>of</strong> dimension m) is an algebraic variety conta<strong>in</strong><strong>in</strong>g<strong>the</strong> algebraic torus T = (C ∗ ) m as a dense open subset, toge<strong>the</strong>r with a natural actionT×X → X.We can write X asX ∆ = {Cn \Z ∆ }. (B.37)GHere, <strong>the</strong> groupG ∼ = (C ∗ ) n−m ×Γ,(B.38)is an algebraic torus times an abelian discrete group Γ. This construction generalizes<strong>the</strong> one for projective spaces. For it to make sense, we have to specify a set <strong>of</strong> po<strong>in</strong>tsZ ∆ ⊂ C n , and <strong>of</strong> course we must know how G acts on C n .B.3.1 Cones and fan. Homogeneous coord<strong>in</strong>atesAll this data def<strong>in</strong><strong>in</strong>g a toric variety can be encoded <strong>in</strong> a simple auxiliary object called afan. Hence <strong>the</strong> fan can be taken to def<strong>in</strong>e <strong>the</strong> toric variety. An equivalent def<strong>in</strong>ition willbe <strong>in</strong> term <strong>of</strong> <strong>the</strong> <strong>gauge</strong>d l<strong>in</strong>ear sigma-model <strong>of</strong> section B.5: <strong>the</strong> same data is present <strong>in</strong>both def<strong>in</strong>itions, <strong>in</strong> particular <strong>the</strong> charge matrix to be def<strong>in</strong>ed momentarily. Moreover,3 There is a multiplicity because <strong>the</strong> ideal (s α) is not radical <strong>in</strong> general.


B.3. Toric geometry 1: The algebraic story 251thisdataiscomb<strong>in</strong>atoric, whichmeansthatisisgivenby discretequantities. Whatmakestoric geometry attractive is that complicated geometric problems can <strong>of</strong>ten be reducedto simpler comb<strong>in</strong>atoric problems.Let N ∼ = Z m be a lattice, and N R = N ⊗R <strong>the</strong> vector space obta<strong>in</strong>ed by allow<strong>in</strong>g realcoefficients.Def<strong>in</strong>ition: A strongly convex rational polyhedral cone σ ⊂ N R , or cone for short,is a setσ = { ∑ a i v i | a i ≥ 0},(B.39)igenerated by a f<strong>in</strong>ite set <strong>of</strong> vectors {v i } n i=1convexity”).<strong>in</strong> N, and such that σ ∩(−σ) = {0} (“strongDef<strong>in</strong>ition: A fan is a collection ∆ <strong>of</strong> cones <strong>in</strong> N R such that(i) each face <strong>of</strong> a cone is also a cone,(ii) <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> two cones is a face <strong>of</strong> each.Let us call ∆(1) <strong>the</strong> set <strong>of</strong> one-dimensional cones <strong>in</strong> N R . The correspond<strong>in</strong>g vectors<strong>in</strong> N are denoted (v 1 ,··· ,v n ). To each v i , one associates a homogeneous coord<strong>in</strong>ate z i .These are <strong>the</strong> coord<strong>in</strong>ates on C n <strong>in</strong> <strong>the</strong> holomorphic quotient construction (B.37).Remark that we always have n ≥ m. The (m×n) matrix(with k = 1,··· ,m) <strong>in</strong>duces a map(v k i) = (v k 1,··· ,v k n) (B.40)φ : C n → C m : (z 1 ,··· ,z n ) ↦→ ( ∏ ni=1 z v1 ii,··· , ∏ ni=1 z vm ii).(B.41)We def<strong>in</strong>e ˜G = (C ∗ ) n−m ⊂ G to be <strong>the</strong> kernel <strong>of</strong> φ:˜G = Ker(φ).(B.42)It is easily seen that ˜G acts on C n as˜G ⊃ (C ∗ ) a : (z 1 ,··· ,z n ) ↦→ (λ Qa 1 z1 ,··· ,λ Qa nz n )(B.43)for each a, where <strong>the</strong> charge vectors Q a are <strong>in</strong> <strong>the</strong> kernel <strong>of</strong> <strong>the</strong> l<strong>in</strong>ear map (B.40), thatis:∑(vi)Q k a i = 0. (B.44)iHence, practically speak<strong>in</strong>g, given a fan with n vectors <strong>in</strong> N we must f<strong>in</strong>d <strong>the</strong> n − ml<strong>in</strong>ear relations among <strong>the</strong>m. The coefficients are precisely <strong>the</strong> Q a i above.The discrete group Γ ⊂ G is def<strong>in</strong>ed asΓ = N/N ′ ,(B.45)where N ′ ⊂ N is <strong>the</strong> sublattice generated over Z by <strong>the</strong> vectors v i . The quotient by thisΓ gives rise to so-called orbifold s<strong>in</strong>gularities.


252 Appendix B. Algebraic geometry and toric geometryFigure B.1: The toric fan <strong>of</strong> CP 2 . Notice that it conta<strong>in</strong>s 7 cones: three top-dimensional ones(<strong>of</strong> dimension 2), three 1-dimensional ones (generated by <strong>the</strong> vectors), and a s<strong>in</strong>gle 0-dimensionalone (<strong>the</strong> po<strong>in</strong>t <strong>in</strong> <strong>the</strong> center).Last but not least piece <strong>of</strong> data <strong>in</strong> <strong>the</strong> construction, <strong>the</strong> zero set Z ∆ is found as follows:For any subset <strong>of</strong> ∆(1) (correspond<strong>in</strong>g to vectors v i1 ,··· ,v il ) which do not generate acone <strong>in</strong> ∆, associate an algebraic set V i1 ,···,i ldef<strong>in</strong>ed by z i1 = ··· = z il = 0. Then Z ∆ is<strong>the</strong> union <strong>of</strong> all <strong>the</strong>se subsets <strong>of</strong> C n .We’d better move on to examples.• Consider <strong>the</strong> fan <strong>in</strong> figure B.1, generated by 3 vectors <strong>in</strong> N ∼ = Z 2 :v 1 = (1,0), v 2 = (0,1), v 3 = (−1,−1).The one relation v 1 +v 2 +v 3 = 0 gives a s<strong>in</strong>gle charge vector (see (B.44))Q = (1,1,1),(B.46)(B.47)so we have <strong>the</strong> follow<strong>in</strong>g group action <strong>of</strong> G = C ∗ on <strong>the</strong> homogeneous coord<strong>in</strong>ates:G : (z 1 ,z 2 ,z 3 ) ↦→ (λz 1 ,λz 2 ,λz 3 ).(B.48)Moreover, one sees that Z ∆ = {(0,0,0)}. The construction obviously gives us CP 2as def<strong>in</strong>ed earlier.• The (s<strong>in</strong>gular) conifold C 0 is a 3-dimensional aff<strong>in</strong>e variety. It is not difficult torealize that a toric aff<strong>in</strong>e variety can only correspond to a s<strong>in</strong>gle top-dimensionalcone <strong>in</strong> <strong>the</strong> fan (see below). The fan for <strong>the</strong> conifold conta<strong>in</strong>s 10 cones (<strong>in</strong>clud<strong>in</strong>g<strong>the</strong> 0-dimensional one). It is generated by four lattice vectors <strong>in</strong> N ∼ = Z 3 :v 1 = (0,0,1), v 2 = (1,0,1), v 3 = (1,1,1), v 4 = (0,1,1).(B.49)There is a s<strong>in</strong>gle relation with charge vector (1,−1,1,−1), so G is one dimensionaland acts asG : (z 1 ,z 2 ,z 3 ,z 4 ) ↦→ (λz 1 ,λ −1 z 2 ,λz 3 ,λ −1 z 4 ). (B.50)The zero set isZ ∆ = {z 1 = z 3 = 0}∪{z 2 = z 4 = 0}.(B.51)


B.3. Toric geometry 1: The algebraic story 253B.3.2 Coord<strong>in</strong>ate r<strong>in</strong>gs and dual conesThehomogeneouscoord<strong>in</strong>atesareveryusefulformanypurposes. However, itisnaturaltoask how we can describe a toric variety <strong>in</strong> local coord<strong>in</strong>ates: as for manifolds, we wouldlike to be able to cover our varieties with open sets equipped with local coord<strong>in</strong>ates.The relevant notion <strong>of</strong> open sets is different here from <strong>the</strong> usual topology <strong>of</strong> differentialgeometry 4 , but this will not concern us here. We should say, however, that because wedeal with s<strong>in</strong>gular spaces, <strong>the</strong> most “local” one can get is to aff<strong>in</strong>e varieties <strong>the</strong>mselves.This is why it was so crucial to spend some time <strong>in</strong>troduc<strong>in</strong>g <strong>the</strong>m. Moreover, because<strong>the</strong> only non-s<strong>in</strong>gular aff<strong>in</strong>e variety is C m itself, for non-s<strong>in</strong>gular varieties <strong>the</strong> relevantopen sets are simply C m and we recover <strong>the</strong> usual notions for complex manifolds, whichwe used <strong>in</strong> section B.2.How do we f<strong>in</strong>d such local coord<strong>in</strong>ates? The fan aga<strong>in</strong> provides <strong>the</strong> answer. Toeach top-dimensional cone we associate an aff<strong>in</strong>e variety (aff<strong>in</strong>e patch). The transitionfunctions between <strong>the</strong>se patches are also naturally encoded <strong>in</strong> <strong>the</strong> fan.Given a s<strong>in</strong>gle m-dimensional cone σ spanned by n vectors, we want to f<strong>in</strong>d <strong>the</strong>coord<strong>in</strong>ate r<strong>in</strong>g associated to it. S<strong>in</strong>ce a toric variety is def<strong>in</strong>ed as a quotient by G, localcoord<strong>in</strong>ates should be G-<strong>in</strong>variant polynomials 5 :x = z n 11 ···znn n , G : x ↦→ λ ∑ i Qa i n ix = x, (B.52)which means that <strong>the</strong> positive <strong>in</strong>tegers n i are such that ∑ i Qa i n i = 0. Because <strong>of</strong> (B.44),this means that we can taken i = 〈w,v i 〉(B.53)for any w ∈ Hom(N,Z) : The local coord<strong>in</strong>ates are <strong>in</strong> one-to-one <strong>correspondence</strong> wi<strong>the</strong>lements <strong>in</strong> <strong>the</strong> dual lattice M ∼ = Z m ,M = Hom(N,Z).(B.54)In fact, <strong>the</strong> condition n i ≥ 0 def<strong>in</strong>es <strong>the</strong> dual real cone σ ∨ ∈ M R ,σ ∨ = {aw ∈ M R | a ∈ R ≥0 , 〈w,v i 〉 ≥ 0 ∀v i ∈ σ}.(B.55)Then, <strong>the</strong> coord<strong>in</strong>ate r<strong>in</strong>g we are look<strong>in</strong>g for is simplyA σ = C[σ ∨ ∩M].(B.56)Indeed σ ∨ ∩M is a semi-group def<strong>in</strong><strong>in</strong>g <strong>the</strong> monomials <strong>in</strong> <strong>the</strong> r<strong>in</strong>g, and <strong>the</strong> addition <strong>in</strong>σ ∨ ∩M becomes <strong>the</strong> multiplication <strong>in</strong> <strong>the</strong> r<strong>in</strong>g. One can easily write this as <strong>the</strong> quotient<strong>of</strong> a polynomial r<strong>in</strong>g by some ideals:• First, f<strong>in</strong>d a m<strong>in</strong>imal set <strong>of</strong> lattice vectors (w 1 ,··· ,w r ) generat<strong>in</strong>g σ ∨ ∩ M; <strong>in</strong>general this is <strong>the</strong> most tricky part <strong>of</strong> <strong>the</strong> construction. We associate to this set <strong>the</strong>polynomial r<strong>in</strong>g R r = C[x 1 ,··· ,x r ].4 The natural topology <strong>in</strong> algebraic geometry is called <strong>the</strong> Zariski topology. See any textbook such as[317].5 The reader should generalize <strong>the</strong> follow<strong>in</strong>g considerations to <strong>the</strong> case when G has a non-trivial discretesubgroup Γ. See <strong>the</strong> examples below.


254 Appendix B. Algebraic geometry and toric geometry• F<strong>in</strong>d all <strong>the</strong> relations between <strong>the</strong> w i ′ s, and associate to each relation an element <strong>of</strong>R r :∑m i w i = ∑ m j w j , m i ,m j ∈ N ⇒ p(x) = ∏ x m ii− ∏ x m ii(B.57)i∈I j∈J i∈I i∈Jwhere I∪J = {1,··· ,r} and I∩J = 0. This generates a prime ideal P σ = (p), andwe <strong>the</strong>n haveA σ = C[σ ∨ ∩M] = C[x 1,··· ,x r ]. (B.58)(p)It is not obvious but none<strong>the</strong>less true that this ideal is prime, and moreover it is suchthat <strong>the</strong> associated aff<strong>in</strong>e varietyU σ = Spec( C[x 1,··· ,x r ]P σ) (B.59)has dimension m 6 . Here we used <strong>the</strong> notation <strong>of</strong> (B.21).The aff<strong>in</strong>e varieties U σi , σ i ∈ ∆, can be patched toge<strong>the</strong>r to form a more general toricvariety X ∆ . Suppose <strong>the</strong> cone τ is a face <strong>of</strong> both σ i and σ j . Then, we have thatσ ∨ i,j ⊂ τ ∨ ⇒ C[σ ∨ i,j ∩M] ⊂ C[τ ∨ ∩M] ⇒ U τ ⊂ U σi ∩U σj . (B.60)In words, <strong>the</strong> aff<strong>in</strong>e set associated to <strong>the</strong> face is <strong>in</strong> <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> aff<strong>in</strong>e sets <strong>of</strong><strong>the</strong> two cones. Hence <strong>the</strong> relations between local coord<strong>in</strong>ates <strong>in</strong> x (i) for U σi and x (j) forU σj can be read <strong>of</strong>f from <strong>the</strong> relations between <strong>the</strong> generators <strong>of</strong> σ ∨ i ∩M and σ ∨ j ∩M:∑r il=1q l w (i)l=r j∑l ′ =1q l ′w (j)l ′ , q l,l ′ ∈ Z ⇒∏r i(x (i)ll) q l=r j∏l ′ (x (j)l ′ ) q l ′(B.61)We see that <strong>the</strong> transition functions are always rational functions.Examples:• Consider aga<strong>in</strong> <strong>the</strong> fan for CP 2 . There are three 2-dimensional cones, σ 1 , σ 2 , σ 3 ,and for each <strong>of</strong> <strong>the</strong>mU σi = Spec(C[σi ∨ ∩M]) ∼ = C 2 . (B.62)Apply<strong>in</strong>g (B.61), we see that <strong>the</strong> transition functions between U σ1 = (x 1 ,x 2 ) andU σ2 = (y 1 ,y 2 ), for <strong>in</strong>stance, arex 1 = y 1y 2, x 2 = 1 y 2. (B.63)• Consider <strong>the</strong> simple fan <strong>in</strong> N ∼ = Z 2 shown <strong>in</strong> <strong>the</strong> Fig.B.2(a). It has a s<strong>in</strong>gle topdimensional cone, spanned by6 This means that <strong>the</strong> height <strong>of</strong> <strong>the</strong> ideal P σ is always r −m.v 1 = (1,1), et v 2 = (1,−1). (B.64)


B.3. Toric geometry 1: The algebraic story 255(a) The toric conefor C 2 /Z 2 .(b) The toric fan for dP 1 .(c) The toric fan for dP 2 .Figure B.2: Some examples <strong>of</strong> toric fans <strong>in</strong> dimension two.Notice that <strong>the</strong>re is no relation between <strong>the</strong> two vectors, so ˜G is trivial, howeverwe do have a discrete group Γ <strong>in</strong> <strong>the</strong> quotient (B.37), Γ = Z 2 , s<strong>in</strong>ce v 1 and v 2 onlygenerates half <strong>of</strong> <strong>the</strong> lattice N. In term <strong>of</strong> local coord<strong>in</strong>ates, we have <strong>the</strong> dual coneσ ∨ generated by w 1 = (1,−1) and w 2 = (1,1). In order to generate <strong>the</strong> dual coneσ ∨ ∩M (over Z), we need to <strong>in</strong>troduce a third vector w 3 = (1,0). Then, assign<strong>in</strong>ghomogeneous coord<strong>in</strong>ates x,y,z to <strong>the</strong>se three vectors, we have <strong>the</strong> relationw 1 +w 2 = 2w 3 ⇔ xy = z 2 . (B.65)The later equation is <strong>the</strong> algebraic def<strong>in</strong>ition <strong>of</strong> C 2 /Z 2 , seen as an aff<strong>in</strong>e variety.• In Figures B.2(b) and B.2(c), we have drawn <strong>the</strong> toric fans for <strong>the</strong> first and seconddel Pezzo surfaces (denoted dP 1 and dP 2 ). As you can see from <strong>the</strong> fan, <strong>the</strong>y aresmooth surfaces (each dual cone corresponds to a C 2 patch). You should be ableto work out <strong>the</strong> transition functions between <strong>the</strong> patches as <strong>in</strong> <strong>the</strong> case <strong>of</strong> CP 2 .Now comes an important proposition:


256 Appendix B. Algebraic geometry and toric geometryProposition: A toric variety X ∆ is compact if and only if its fan ∆ spans <strong>the</strong> wholeN R .See Chapter 2 <strong>of</strong> [314] for a pro<strong>of</strong>. One sees <strong>in</strong> <strong>the</strong> above examples that CP 2 anddP 1,2 are compact spaces, while C 2 /Z 2 or <strong>the</strong> conifold are <strong>of</strong> course not.B.3.3 Calabi-Yau toric varietiesIn this subsection, we show how <strong>the</strong> Calabi-Yau condition is translated <strong>in</strong>to a simplecondition on <strong>the</strong> comb<strong>in</strong>atoric data for X ∆ .We saw <strong>in</strong> section B.2 that <strong>the</strong> Calabi-Yau condition for X is <strong>the</strong> triviality <strong>of</strong> <strong>the</strong>canonical bundle K X . Here we show how one can express K X <strong>in</strong> term <strong>of</strong> a simple set <strong>of</strong>divisors called toric divisors.Def<strong>in</strong>ition: A toric divisor is a divisor <strong>in</strong>variant under <strong>the</strong> action <strong>of</strong> G.Us<strong>in</strong>g <strong>the</strong> homogeneous coord<strong>in</strong>ates (z i ), we can easily def<strong>in</strong>e subvarieties that areG-<strong>in</strong>variant. Indeed, <strong>the</strong> simple algebraic sets{(z 1 ,··· ,z n ) | z i = 0∀i ∈ I ⊂ {1,··· ,n}}.(B.66)are obviously G-<strong>in</strong>variant. In particular, <strong>the</strong> subvarietiesD i ≡ {z i = 0}∩X ∆(B.67)are toric divisors 7 . They actually generate <strong>the</strong> full group <strong>of</strong> divisors <strong>of</strong> X ∆ .Consider X ∆ smooth with canonical bundle K X . One can show thatK X = O X (−n∑D i ).i(B.68)The argument goes as follows. Because X ∆ is regular, each coord<strong>in</strong>ate r<strong>in</strong>g A σ is freelygenerated:U σ∼ = C k ×(C ∗ ) m−k , ⇔ A σ = C[x 1 ,··· ,x k ,x k+1 ,x −1k+1 ,··· ,x m,x −1m ].(B.69)Consider for simplicity <strong>the</strong> case k = m, which means σ is <strong>of</strong> dimension m (<strong>the</strong> generalizationis straightforward). A section <strong>of</strong> <strong>the</strong> canonical bundle isΩ =1x 1···x mdx 1 ∧···∧dx m .(B.70)This section corresponds to a divisor. Equivalently, <strong>the</strong> dual section <strong>in</strong> K −1X correspondsto an effective divisor, described locally byIt is called <strong>the</strong> anti-canonical divisor.{x 1···x m = 0}∩U σ . (B.71)7 This is because <strong>the</strong> ideal (z i) has height one, which implies D i is codimension one <strong>in</strong> X ∆ too.


B.3. Toric geometry 1: The algebraic story 257On <strong>the</strong> o<strong>the</strong>r hand, a section <strong>of</strong> <strong>the</strong> l<strong>in</strong>e bundle O( ∑ i D i) corresponds to <strong>the</strong> divisorWe know that{{z 1 z 2···z n = 0}∩X} ⊂ X.x 1···x m = z 〈w,v 1〉1 ···z 〈w,vn〉n with w =m∑w j .j(B.72)(B.73)Suppose <strong>the</strong> first m vectors amongst <strong>the</strong> v i ’s span <strong>the</strong> cone σ. S<strong>in</strong>ce U σ∼ = C m , we have〈w,v i 〉 = 1 for i = 1,··· ,m. Hence <strong>the</strong> anti-canonical divisor corresponds to ∑ i D i onU σ . This implies that K −1X = O(∑ ni D i), which is what we wanted to show.The important relation (B.68) allows us to state <strong>the</strong> Calabi-Yau condition (triviality<strong>of</strong> <strong>the</strong> canonical bundle) <strong>in</strong> a very simple way. Note that any G-<strong>in</strong>variant function, asdef<strong>in</strong>ed <strong>in</strong> (B.52), is <strong>of</strong> course a section <strong>of</strong> <strong>the</strong> trivial bundle. We <strong>the</strong>n see that O X ( ∑ i D i)is trivial if and only ifG : z 1···z n ↦→ λ ∑ i Qa i (z1···z n ) = z 1···z n⇔ ∑ iQ a i = 0,(B.74)or equivalently if <strong>the</strong>re exist a dual vector w ∈ M such that 〈w,v i 〉 = 1 for all v i <strong>in</strong> <strong>the</strong>fan. We <strong>the</strong>n have shown <strong>the</strong> follow<strong>in</strong>g:Proposition: The toric variety X ∆ is Calabi-Yau if and only if all <strong>the</strong> vectors v i <strong>in</strong>∆ end on <strong>the</strong> same hyperplane <strong>in</strong> N, which happens if and only if ∑ i Qa i = 0 ∀a.Remark that we chose <strong>the</strong> v i for <strong>the</strong> conifold <strong>in</strong> (B.49) especially to make <strong>the</strong> CYproperty explicit.It also follows from <strong>the</strong> proposition at <strong>the</strong> end <strong>of</strong> <strong>the</strong> last subsection that a toric CYcannot be compact.B.3.4 Toric diagrams and p-q websFor toric Calabi-Yau varieties, <strong>the</strong> comb<strong>in</strong>atoric <strong>in</strong>formation encoded <strong>in</strong> <strong>the</strong> fan can beexpressed <strong>in</strong> term <strong>of</strong> a reduced lattice <strong>of</strong> dimension m−1.This is particularly convenient <strong>in</strong> order to describe toric CY threefolds (toric CY <strong>of</strong>dimension 3), which are <strong>the</strong> objects <strong>of</strong> ma<strong>in</strong> relevance to physics. Instead <strong>of</strong> draw<strong>in</strong>g a3-dimensional fan, we can simply project it on <strong>the</strong> special plane def<strong>in</strong>ed by 〈w,v i 〉 = 1.In <strong>the</strong> Figures are some examples <strong>of</strong> toric diagram. The one for <strong>the</strong> conifold is given<strong>in</strong> Fig.B.3(a), while Fig.B.3(b) corresponds to <strong>the</strong> complex cone over <strong>the</strong> dP 1 surface,which happens to be a Calabi-Yau s<strong>in</strong>gularity.In Fig.B.3(c) is a s<strong>in</strong>gularity called <strong>the</strong> Suspended P<strong>in</strong>ch Po<strong>in</strong>t (SPP). One can easilyshow that, <strong>in</strong> local coord<strong>in</strong>ates, <strong>the</strong> SPP is an aff<strong>in</strong>e variety <strong>in</strong> C 4 def<strong>in</strong>ed by <strong>the</strong> ideal(xy −z 2 t) <strong>in</strong> C[x,y,z,t].One can also draw <strong>the</strong> dual <strong>of</strong> <strong>the</strong> toric diagram, which is called <strong>the</strong> pq-web (simply,for each l<strong>in</strong>e <strong>in</strong> <strong>the</strong> toric diagram, you draw an orthogonal l<strong>in</strong>e <strong>in</strong> <strong>the</strong> pq-web). Such


258 Appendix B. Algebraic geometry and toric geometry(a) Toric diagram for<strong>the</strong> conifold.(b) Toric diagram forC C (dP 1 ).(c) Toric diagramfor <strong>the</strong>SPP.Figure B.3: Some examples <strong>of</strong> toric diagrams for local CY threefolds.(a) pq-web <strong>of</strong> <strong>the</strong> resolvedconifold.(b) pq-web <strong>of</strong> <strong>the</strong> (resolved)C C (dP 1 ).Figure B.4: pq-webswebs have a nice physical <strong>in</strong>terpretation as webs <strong>in</strong>tersect<strong>in</strong>g five<strong>branes</strong> [318, 319]: M-<strong>the</strong>ory on a toric 3-fold is T-dual to type IIB with a web <strong>of</strong> D5-, NS5- and more generally(p,q)-5-<strong>branes</strong> reproduc<strong>in</strong>g <strong>the</strong> pq-web <strong>of</strong> <strong>the</strong> toric geometry.Examples <strong>of</strong> pq-webs for <strong>the</strong> conifold and for <strong>the</strong> first del Pezzo cone are given <strong>in</strong> FigsB.4(a) and B.4(b). You first have to triangulate <strong>the</strong> diagram (see next Section), and <strong>the</strong>ntake <strong>the</strong> dual diagram.B.4 Deal<strong>in</strong>g with toric s<strong>in</strong>gularitiesWhat is a s<strong>in</strong>gularity <strong>in</strong> algebraic geometry? Let X be an algebraic variety <strong>of</strong> dimensionm. A po<strong>in</strong>t <strong>in</strong> X will be deemed s<strong>in</strong>gular if <strong>the</strong> tangent space at that po<strong>in</strong>t has dimensionlarger than dimX = m.Without loss <strong>of</strong> generality, we can def<strong>in</strong>e <strong>the</strong> tangent space T x X at <strong>the</strong> po<strong>in</strong>t x foraff<strong>in</strong>e varieties only:Tangent space <strong>of</strong> X. If X = Z(J), with J a prime ideal <strong>of</strong> R n = C[x 1 ,··· ,x n ],


B.4. Deal<strong>in</strong>g with toric s<strong>in</strong>gularities 259we can def<strong>in</strong>e <strong>the</strong> follow<strong>in</strong>g ideal <strong>of</strong> R n , generated by degree one polynomials, for eachpo<strong>in</strong>t x:J x = { ∑n ∂p(x) ( x i −x i (x) ) ∈ R n |p ∈ J } . (B.75)∂x iiThis ideal generates a l<strong>in</strong>ear aff<strong>in</strong>e variety that we def<strong>in</strong>e to be <strong>the</strong> tangent space atx ∈ X,T x X ≡ Z(J x ).(B.76)This obviously generalizes <strong>the</strong> usual def<strong>in</strong>ition <strong>of</strong> a tangent space. Now, a po<strong>in</strong>t x <strong>in</strong> Xis called non-s<strong>in</strong>gular if its tangent space has <strong>the</strong> same dimension as <strong>the</strong> variety X. Ofcourse, X is said to be non-s<strong>in</strong>gular if it has no s<strong>in</strong>gular po<strong>in</strong>ts. For s<strong>in</strong>gular po<strong>in</strong>ts <strong>the</strong>dimension <strong>of</strong> T x X is larger than m. Practically speak<strong>in</strong>g, when given an aff<strong>in</strong>e variety <strong>in</strong>terms <strong>of</strong> its def<strong>in</strong><strong>in</strong>g polynomials p(x) (i.e. <strong>in</strong> local coord<strong>in</strong>ates), one f<strong>in</strong>ds <strong>the</strong> s<strong>in</strong>gularlocus as <strong>the</strong> set <strong>of</strong> po<strong>in</strong>ts x such thatp(x) = 0, dp(x) = 0. (B.77)For toric varieties, <strong>the</strong>re is a straightforward <strong>the</strong>orem [314] which states that <strong>the</strong>aff<strong>in</strong>e variety X σ associated to <strong>the</strong> cone σ is non-s<strong>in</strong>gular if and only if σ is generated byan <strong>in</strong>tegral basis <strong>of</strong> <strong>the</strong> lattice N.Polytope and unit simplex. In m dimensions, we will call polytope <strong>the</strong> convexhull 8 <strong>of</strong> k dist<strong>in</strong>ct po<strong>in</strong>ts <strong>in</strong> N ∼ = Z m . Given a m-dimensional cone σ <strong>in</strong> a toric fan,<strong>the</strong> basic polytope is <strong>the</strong> polytope delimited by <strong>the</strong> orig<strong>in</strong> and <strong>the</strong> vectors v i ∈ σ. For<strong>in</strong>stance, for <strong>the</strong> conifold we have (0,0,0), (0,0,1), (1,0,1), (1,1,1), (0,1,1). In generalwe have n vectors v i , so we have k = n+1 po<strong>in</strong>ts def<strong>in</strong><strong>in</strong>g <strong>the</strong> basic polytope.On <strong>the</strong> o<strong>the</strong>r hand, a simplex is <strong>the</strong> m-dimensional generalization <strong>of</strong> a triangle ortetrahedron: <strong>the</strong> convex hull <strong>of</strong> m + 1 po<strong>in</strong>ts. We def<strong>in</strong>e <strong>the</strong> simplicial volume <strong>of</strong> apolytope as <strong>the</strong> number <strong>of</strong> simplexes it conta<strong>in</strong>s.Indeed, any polytope can be subdivided <strong>in</strong>to simplexes: this is called a simplicialdecomposition. We can now reformulate <strong>the</strong> above <strong>the</strong>orem as:Proposition: The aff<strong>in</strong>e variety X σ associated to <strong>the</strong> cone σ is non-s<strong>in</strong>gular if andonly if <strong>the</strong> basic polytope associated to σ ∩N has unit simplicial volume.B.4.1 Resolution <strong>of</strong> toric s<strong>in</strong>gularities and simplicial decompositionWe can <strong>the</strong>n “des<strong>in</strong>gularize” any toric variety by subdivid<strong>in</strong>g its associated fan fur<strong>the</strong>runtil every cone is based on a unit simplex.For a toric CY threefold, simplicial decomposition is equivalent to a triangulation <strong>of</strong>its toric diagram. For <strong>in</strong>stance, <strong>in</strong> Fig.B.3(a) one can see that <strong>the</strong> basic simplex <strong>of</strong> C 0has simplicial volume 2, while <strong>the</strong> cone over dP 1 <strong>in</strong> Fig.B.3(b) has simplicial volume 4,so <strong>the</strong>y are s<strong>in</strong>gular. The two possible triangulations <strong>of</strong> <strong>the</strong> conifold diagram are shown<strong>in</strong> Figure B.5.8 As one can f<strong>in</strong>d <strong>in</strong> Wikipedia.org, for <strong>in</strong>stance, a convex hull <strong>of</strong> k po<strong>in</strong>ts is <strong>the</strong> m<strong>in</strong>imal convex setconta<strong>in</strong><strong>in</strong>g <strong>the</strong>se po<strong>in</strong>ts. This is just <strong>the</strong> higher dimensional generalization <strong>of</strong> 2-dimensional polygons and3-dimensional polyhedrons.


260 Appendix B. Algebraic geometry and toric geometryFigure B.5: The two possible resolutions <strong>of</strong> <strong>the</strong> conifold.Example. Take <strong>the</strong> conifold aga<strong>in</strong>. Its basic simplex has volume 2. We can split it<strong>in</strong>to a fan conta<strong>in</strong><strong>in</strong>g two cones, each <strong>of</strong> unit volume. This is called <strong>the</strong> resolved conifold.Now we have two 3-dimensional cones <strong>in</strong> <strong>the</strong> fan, σ 1 and σ 2 . The dual cones correspondto two copies <strong>of</strong> C 3 :σ ∨ 1 : {(1,0,0), (0,−1,1), (−1,1,0)} → C 3 = {x 1 ,y 1 ,z 1 }, (B.78)σ ∨ 2 : {(0,1,0), (−1,0,1), (1,−1,0)} → C 3 = {x 2 ,y 2 ,z 2 }, (B.79)We see that <strong>the</strong> relations between <strong>the</strong> vectors <strong>in</strong> <strong>the</strong> dual lattice give us <strong>the</strong> follow<strong>in</strong>gtransition functions between <strong>the</strong> two patches:z 1 = 1 z 2,x 1y 1= x 2y 2, x 1 z 1 = x 2 , etc. (B.80)The second relation is actually <strong>the</strong> def<strong>in</strong><strong>in</strong>g equation <strong>of</strong> <strong>the</strong> conifold s<strong>in</strong>gularity. Before<strong>the</strong> triangulation <strong>of</strong> <strong>the</strong> toric diagram, that was all what one would get. The triangulationprocedure <strong>in</strong>troduced new coord<strong>in</strong>ates, z 1 and z 2 with z 1 = 1/z 2 , which give <strong>the</strong> complexstructure <strong>of</strong> a CP 1 . Away from <strong>the</strong> po<strong>in</strong>t x 1 = y 1 = x 2 = y 2 = 0, <strong>the</strong>se coord<strong>in</strong>ates areredundant, but at <strong>the</strong> former conifold s<strong>in</strong>gularity, we now have a full CP 1 .Remark that <strong>in</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ate description, you still have <strong>the</strong> same fourcoord<strong>in</strong>ates z 1 ,···z 4 . What changes is that <strong>the</strong> zero set Z ∆ is now different when <strong>the</strong>fan is subdivided: Z ∆ = {z 1 = z 2 = z 3 = z 4 = 0}, so that <strong>the</strong> s<strong>in</strong>gularity is effectivelyremoved.Such a procedure, which replaces an isolated s<strong>in</strong>gularity by a holomorphic cycle, iscalled a resolution <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularity.More precisely [313], a resolution ( ˜X,π) <strong>of</strong> <strong>the</strong> variety X is a non-s<strong>in</strong>gular variety ˜Xtoge<strong>the</strong>r with a surjective map π : ˜X → X which is biholomorphic on open sets whereverπ is also<strong>in</strong>jective. In o<strong>the</strong>r words, π is a biholomorphism “away” from <strong>the</strong> s<strong>in</strong>gular po<strong>in</strong>ts,while <strong>the</strong> s<strong>in</strong>gularities are replaced by some smooth spaces, for <strong>in</strong>stance by means <strong>of</strong> asmall resolution, or by blow<strong>in</strong>g <strong>the</strong>m up.Blow up. A blow up is a procedure which replaces <strong>the</strong> s<strong>in</strong>gular locus <strong>of</strong> X byCP m−1 . (Beware that <strong>in</strong> <strong>the</strong> physics literature <strong>the</strong> terms “blow up” is sometimes usedto designate any k<strong>in</strong>d <strong>of</strong> resolution.) Hence a blow up <strong>in</strong>troduces new divisors, calledexceptional divisors (<strong>the</strong>se are def<strong>in</strong>ed as <strong>the</strong> prime divisors E ⊂ ˜X such that π(E) hascodimension 2 or more <strong>in</strong> X).


B.4. Deal<strong>in</strong>g with toric s<strong>in</strong>gularities 261Figure B.6: Splitt<strong>in</strong>g <strong>of</strong> <strong>the</strong> conifold diagram <strong>in</strong>to M<strong>in</strong>kowski summands.Small resolution. On <strong>the</strong> o<strong>the</strong>r hand, a small resolution is a resolution such that˜X has no exceptional divisors. In particular, <strong>the</strong> resolution <strong>of</strong> <strong>the</strong> conifold is a smallresolution.The resolutions we usually deal with <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory are actually crepant resolutions.The resolution ( ˜X,π) <strong>of</strong> X is said to be crepant when 9π ∗ (O(K X )) = O(K ˜X).(B.81)In particular, <strong>the</strong> Calabi-Yau condition is preserved by a crepant resolution.For a toric CY threefold, a blow up consists <strong>in</strong> <strong>in</strong>troduc<strong>in</strong>g a CP 2 at <strong>the</strong> s<strong>in</strong>gularity,while a small resolution <strong>in</strong>troduces a CP 1 <strong>in</strong>stead. We can conv<strong>in</strong>ce ourselves that <strong>the</strong>blow up corresponds to add<strong>in</strong>g an <strong>in</strong>ternal po<strong>in</strong>t <strong>in</strong> <strong>the</strong> toric diagram (see <strong>the</strong> pq-webFig.B.4(b) for <strong>in</strong>stance), while <strong>the</strong> small resolution corresponds to a triangulation whichdoes not <strong>in</strong>troduce new po<strong>in</strong>ts (like for <strong>the</strong> conifold).B.4.2 Deformation <strong>of</strong> toric s<strong>in</strong>gularities: <strong>the</strong> versal spaceAno<strong>the</strong>rwaytogetrid<strong>of</strong>as<strong>in</strong>gularityistodeform it: thismodifies<strong>the</strong>complexstructure.For <strong>in</strong>stance, we saw that <strong>the</strong> conifold equation x 1 x 2 −x 3 x 4 = 0 admits a deformation tox 1 x 2 −x 3 x 4 = e, e ≠ 0. (B.82)This new space, called <strong>the</strong> deformed conifold, is non-s<strong>in</strong>gular. The complex structure hasobviously changed, but it turns out that it is still a Calabi-Yau variety. However, it is nottoric anymore, because <strong>the</strong> deformation has broken one <strong>of</strong> <strong>the</strong> C ∗ action <strong>in</strong> <strong>the</strong> T 3 act<strong>in</strong>gon <strong>the</strong> s<strong>in</strong>gular conifold (as one can see from <strong>the</strong> equation). In this particular case, <strong>the</strong>Calabi-Yau metric is explicitly known [104] .9 The canonical bundle for a s<strong>in</strong>gular variety is itself tricky to def<strong>in</strong>e. A straightforward generalisation<strong>of</strong> <strong>the</strong> idea <strong>of</strong> holomorphic l<strong>in</strong>e bundle is what is called an <strong>in</strong>vertible sheaf (which is a sheaf <strong>of</strong> moduleslocally isomorphic to <strong>the</strong> structure sheaf O X). Then one works with <strong>the</strong> sheaf O(K X), <strong>the</strong> sheaf <strong>of</strong> regularsections <strong>of</strong> K X, which is assumed to be <strong>in</strong>vertible. You can pull-back this sheaf us<strong>in</strong>g π, but <strong>in</strong> generalπ ∗ (O(K X)) is not equal to O(K ˜X). It turns out that <strong>the</strong> discrepancy can come from exceptional divisorsonly, and if <strong>the</strong>re is no discrepancy <strong>the</strong> resolution is said to be crepant (so we see that small resolutionsare crepant by def<strong>in</strong>ition).


262 Appendix B. Algebraic geometry and toric geometryFigure B.7: Splitt<strong>in</strong>g <strong>of</strong> <strong>the</strong> C C (dP 2 ) diagram <strong>in</strong>to M<strong>in</strong>kowsky summands. The triangle correspondsto a rema<strong>in</strong><strong>in</strong>g s<strong>in</strong>gularity which admits no complex deformation.It turns out that for any deformation <strong>of</strong> <strong>the</strong> def<strong>in</strong><strong>in</strong>g polynomials which is <strong>of</strong> degreelower or equal to <strong>the</strong>se same polynomials, <strong>the</strong> result<strong>in</strong>g deformed variety is still Calabi-Yau. Of course <strong>in</strong> general we don’t know <strong>the</strong> Ricci-flat metric on it, but <strong>the</strong> CY <strong>the</strong>oremguarantees its existence.S<strong>in</strong>ce we are deal<strong>in</strong>g here with non-compact CY varieties, we also should not modify<strong>the</strong> boundary conditions at <strong>in</strong>f<strong>in</strong>ity. This means that we focus on normalizable deformations,which are those which do not change <strong>the</strong> def<strong>in</strong><strong>in</strong>g polynomials at <strong>in</strong>f<strong>in</strong>ity.For a s<strong>in</strong>gle <strong>in</strong>tersection variety like <strong>the</strong> one above, it is easy to work out by hand all<strong>the</strong> possible deformations. For more complicated varieties, however, it becomes tedious.Also, for non-complete <strong>in</strong>tersection varieties 10 , it may happen that <strong>the</strong>re is no consistentmodification <strong>of</strong> <strong>the</strong> def<strong>in</strong><strong>in</strong>g equations.For toric varieties, <strong>the</strong>re exists a very useful algorithm, due to Altmann [250], whichgives <strong>the</strong> number <strong>of</strong> normalizable deformations <strong>of</strong> <strong>the</strong> s<strong>in</strong>gularity for any isolated toricCY s<strong>in</strong>gularity (and also <strong>the</strong>ir explicit form, see [250], or [320, 321] for some physicspapers which use it <strong>in</strong> detail). 11 We will focus on CY threefolds, that we can draw astoric diagrams on a sheet <strong>of</strong> paper, and where all <strong>the</strong> <strong>in</strong>terest<strong>in</strong>g phenomenons occur.The various complex deformations <strong>of</strong> an isolated CY s<strong>in</strong>gularity correspond to <strong>the</strong>possible “M<strong>in</strong>kowski decompositions” <strong>of</strong> <strong>the</strong> toric diagram. This means that we deform<strong>the</strong> toric diagram <strong>in</strong>to closed sub-diagrams (called M<strong>in</strong>kowski summands). See FiguresB.6 and B.7. What we are really look<strong>in</strong>g for are <strong>the</strong> “breath<strong>in</strong>g modes” <strong>of</strong> <strong>the</strong> toricdiagram. We do it <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way:• Consider an aff<strong>in</strong>e toric Calabi-Yau threefold, with its toric diagram D conta<strong>in</strong><strong>in</strong>gn po<strong>in</strong>ts and n edges. First, assign to each edge <strong>of</strong> D ⊂ Z 2 a lattice vectord i = p h −p t ,(B.83)given by <strong>the</strong> difference between <strong>the</strong> head and <strong>the</strong> tail <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>g edge <strong>of</strong>D, when go<strong>in</strong>g <strong>in</strong> <strong>the</strong> counterclockwise direction.10 One talks <strong>of</strong> non-complete <strong>in</strong>tersection when <strong>the</strong> dimension <strong>of</strong> <strong>the</strong> embedd<strong>in</strong>g space C n m<strong>in</strong>us <strong>the</strong>number <strong>of</strong> def<strong>in</strong><strong>in</strong>g polynomials is smaller than <strong>the</strong> dimension <strong>of</strong> X. It is <strong>the</strong> general case. (In algebraiclanguage, it means that <strong>the</strong> height <strong>of</strong> <strong>the</strong> def<strong>in</strong><strong>in</strong>g ideal is smaller than <strong>the</strong> number <strong>of</strong> generat<strong>in</strong>gpolynomials.)11 Notice that <strong>the</strong> SPP <strong>in</strong> <strong>the</strong> example above is not an isolated s<strong>in</strong>gularities: it has a full C worth <strong>of</strong>s<strong>in</strong>gularities, a s<strong>in</strong>gularity l<strong>in</strong>e.


B.5. Toric geometry 2: Gauged l<strong>in</strong>ear sigma-model 263• Def<strong>in</strong>e <strong>the</strong> vector spaceV(D) = { (t 1 ,··· ,t n )|n∑t i d i = 0 } .i(B.84)This vector space, <strong>in</strong>clud<strong>in</strong>g <strong>the</strong> trivial (t,t,t,t) component, is obviously <strong>of</strong> dimensionn−2. Ignor<strong>in</strong>g <strong>the</strong> trivial rescal<strong>in</strong>g, this is <strong>the</strong> l<strong>in</strong>earized space <strong>of</strong> deformations<strong>of</strong> X, <strong>of</strong> dimension n − 3. The deformation could be obstructed at second order,however.• The versal 12 space <strong>of</strong> complex deformations <strong>of</strong> X is def<strong>in</strong>ed by <strong>the</strong> follow<strong>in</strong>g ideal<strong>of</strong> C[t 1 ,··· ,t n ]:( n∑J = p k ≡ (t i ) k d i |k ∈ Z >0). (B.85)iActually this ideal is generated by <strong>the</strong> f<strong>in</strong>ite set <strong>of</strong> polynomials p 1 ,··· ,p K , whereK is <strong>the</strong> maximum <strong>of</strong> <strong>the</strong> lattice width <strong>of</strong> <strong>the</strong> m<strong>in</strong>imal pair <strong>of</strong> strips conta<strong>in</strong><strong>in</strong>g D[250].This whole procedure amounts to f<strong>in</strong>d <strong>the</strong> M<strong>in</strong>kowski summands <strong>of</strong> <strong>the</strong> diagram D.In term <strong>of</strong> <strong>the</strong> dual pq-web, it corresponds to splitt<strong>in</strong>g <strong>the</strong> pq-web <strong>in</strong>to sub-webs <strong>in</strong>equilibrium (i.e. <strong>the</strong> external legs must still sum to zero). For <strong>in</strong>stance, you can see that<strong>the</strong> diagram <strong>in</strong> Fig.B.3(b) admits no M<strong>in</strong>kowski decomposition. This means that <strong>the</strong>dP 1 s<strong>in</strong>gularity cannot be deformed: although its l<strong>in</strong>ear space <strong>of</strong> deformations (B.84) hasdimension one, <strong>the</strong>re is an obstruction at second order.Example. Consider <strong>the</strong> conifold, whose diagram is just a square. We have <strong>the</strong>follow<strong>in</strong>g edge vectors:d 1 = (1,0), d 2 = (0,1), d 3 = (−1,0), d 4 = (0,−1).(B.86)The l<strong>in</strong>ear space <strong>of</strong> deformation is simply generated by (t 1 ,t 2 ,t 1 ,t 2 ). There is no higherorder obstruction so <strong>the</strong> versal space boils down to <strong>the</strong> l<strong>in</strong>ear spaceSpec(C[t]) = C,(B.87)correspond<strong>in</strong>g to <strong>the</strong> freedom <strong>of</strong> add<strong>in</strong>g a constant term e <strong>in</strong> (B.82).B.5 Toric geometry 2: Gauged l<strong>in</strong>ear sigma-modelThereisanalternative,complementaryapproachtotoricvarieties,whichdoesnotdirectlyrelyonalgebraicgeometry, butra<strong>the</strong>rdealswith<strong>the</strong>symplectic or(moreprecisely)Kählerproperties <strong>of</strong> our varieties.The idea is to split <strong>the</strong> quotient by (C ∗ ) n−m <strong>in</strong> (B.37) <strong>in</strong>to two steps. S<strong>in</strong>ceC ∗ ∼ = U(1)×R>0 ,(B.88)12 “Versal space” means that all <strong>the</strong> possible deformations are <strong>the</strong>re, but that <strong>the</strong> same deformationmight appear several times (if it appear only once we would have a “universal” space <strong>of</strong> deformation, thatis what happens for compact Calabi-Yau varieties, whose complex moduli space has a simpler topology.See [313].).


264 Appendix B. Algebraic geometry and toric geometrywe will first fix some “po<strong>in</strong>t” t ∈ R >0 (and t → 0 will correspond to a s<strong>in</strong>gular limit for<strong>the</strong> toric variety), and secondly we will divide by <strong>the</strong> U(1) action (which is <strong>the</strong> <strong>gauge</strong>group, <strong>in</strong> <strong>the</strong> physics parlance). Such a procedure is well def<strong>in</strong>ed because we have a welldef<strong>in</strong>ed Kähler form on <strong>the</strong> parent space C n . It is called a Kähler quotient <strong>of</strong> C n .B.5.1 Kähler quotient and moment mapsBefore explor<strong>in</strong>g <strong>the</strong> “physics”, let us briefly expla<strong>in</strong> what is a Kähler quotient ma<strong>the</strong>matically.We will focus on <strong>the</strong> quotient <strong>of</strong> C n by an abelian group. The group G = U(1) r(r = n−m) acts on C n as (compare to (B.43))U(1) r : C n → C n : (z i ) ↦→ (e i∑ a ξaQa i zi ), (B.89)where ξ = (ξ 1 ,··· ,ξ r ) are element <strong>of</strong> <strong>the</strong> Lie algebra g = u(1) r ∼ = R r <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group.The action <strong>of</strong> g is <strong>the</strong>nξ ·F(z) = ( i ∑ i∑aξ a Q a iz i∂∂z i+c.c.)F(z).(B.90)The complex conjugate is necessary to make it a real action.Def<strong>in</strong>ition: Given a Kähler manifold with Kähler 2-form ω, a moment map µ for<strong>the</strong> group action <strong>of</strong> G on C n is an element <strong>of</strong> <strong>the</strong> dual Lie algebra, g ∗ , such thatd〈µ,ξ〉 ≡ d(µ a ξ a ) = i ξ ω,(B.91)where here i ξ denote <strong>the</strong> <strong>in</strong>terior product with <strong>the</strong> vector ξ appear<strong>in</strong>g on <strong>the</strong> r.h.s. <strong>of</strong>(B.90).You can easily show that, <strong>in</strong> our case, <strong>the</strong> Kähler manifold be<strong>in</strong>g simply C n with <strong>the</strong>canonical Kähler formω = −i ∑ dz i ∧d¯z i ,(B.92)i<strong>the</strong> moment maps areµ a = ∑ iQ a i|z i | 2 −t a ,(B.93)where <strong>the</strong> t a are <strong>in</strong>tegration constants. Then, <strong>the</strong> Kähler quotient proceeds as follows:• Set µ a = 0, i.e.∑Q a i|z i | 2 = t a ∀a, (B.94)iThis is called a restriction to a level set at level t. The parameters t a could be setto zero, as we will see.• The second step is to quotient by <strong>the</strong> compact <strong>gauge</strong> group U(1) r , whose actionwas def<strong>in</strong>ed <strong>in</strong> (B.89).The first step def<strong>in</strong>es a lower-dimensional real algebraic submanifold <strong>in</strong> <strong>the</strong> spaceR n ≥0 spanned by <strong>the</strong> |z i|’s. Then <strong>the</strong> second step tells us which subgroup U(1) m <strong>of</strong> <strong>the</strong>U(1) n ⊂ C n torus must be fibered at each po<strong>in</strong>t to produce <strong>the</strong> f<strong>in</strong>al m-dimensionalvariety.


B.5. Toric geometry 2: Gauged l<strong>in</strong>ear sigma-model 265B.5.2 The GLSM storyIf your are familiar with supersymmetric <strong>the</strong>ories (or you have read <strong>the</strong> <strong>in</strong>troductioncarefully), <strong>the</strong> above must have looked like known territory. The restriction to a level setis simply <strong>the</strong> imposition <strong>of</strong> <strong>the</strong> D-term constra<strong>in</strong>ts <strong>in</strong> some abelian <strong>gauge</strong> <strong>the</strong>ory, while<strong>the</strong> second steps corresponds to fix<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> freedom (restrict<strong>in</strong>g to <strong>gauge</strong> orbits).Hence, we can see toric varieties as <strong>the</strong> moduli space <strong>of</strong> vacua <strong>of</strong> a “<strong>gauge</strong>d l<strong>in</strong>earsigma-model” (GLSM). We have n chiral fields whose scalar component are <strong>the</strong> z i ’s, and<strong>the</strong>y are charged under <strong>the</strong> <strong>gauge</strong> group asz 1 ··· z n FIU(1) 1 Q 1 1 ··· Q 1 n t 1.. .. .U(1) r Q r 1 ··· Q r n t rBecause <strong>the</strong> <strong>gauge</strong> group is U(1) r , <strong>the</strong>re are possible Fayet-Iliopoulos (FI) parameters t a<strong>in</strong> <strong>the</strong> D-terms conditions (B.94). This was first realised by Witten <strong>in</strong> [322], where heused a 2-dimensional GLSM as an auxiliary device to f<strong>in</strong>d 2-dimensional CFTs. Here <strong>the</strong>auxiliary <strong>the</strong>ory is four dimensional (<strong>the</strong> ma<strong>in</strong> difference with respect to [322] be<strong>in</strong>g that<strong>the</strong> FI parameters are real), and its <strong>in</strong>frared corresponds to a Calabi-Yau “as probed byD3-<strong>branes</strong>” 13 .Examples. Consider <strong>the</strong> GLSM with a s<strong>in</strong>gle U(1) and four fields with <strong>the</strong> follow<strong>in</strong>gcharges:z 1 z 2 z 3 z 4U(1) p p −p+q −p−qand no FI term. The result<strong>in</strong>g toric Calabi-Yau s<strong>in</strong>gularity is a real cone over a real 5-dimensionalSasaki-E<strong>in</strong>ste<strong>in</strong> 14 spacecalledY p,q [323]. Thisfamily<strong>of</strong>toricCYs<strong>in</strong>gularitieshas received a lot a attention <strong>in</strong> <strong>the</strong> physics litterature dur<strong>in</strong>g <strong>the</strong> last years, because <strong>the</strong>correspond<strong>in</strong>g Ricci-flat metrics are known explicitly [105], which is a ra<strong>the</strong>r spectacularfeat and allowed for some new checks <strong>of</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong>.B.5.3 Toric varieties as torus fibration <strong>of</strong> polytopesAn aff<strong>in</strong>e toric variety X can be visualized quite simply as a torus fibration over a polytope∆:U(1) m → X µ H−→ ∆(B.95)Indeed, <strong>the</strong> toric variety X has an isometry groupH = U(1) m = U(1)nU(1) r,(B.96)and <strong>the</strong>re is a moment map µ H on X associated to this H. This moment map is precisely<strong>the</strong> map which projects out <strong>the</strong> U(1) m fibers <strong>in</strong> <strong>the</strong> exact short sequence (B.95) [323].13 You should not take this analogy too seriously: <strong>the</strong> GLSM is an auxiliary construction, like <strong>the</strong> fan,<strong>the</strong>re is a priori no real physics <strong>the</strong>re.14 Sasaki basically means that <strong>the</strong> real 6-dimensional cone is Kähler, while <strong>the</strong> E<strong>in</strong>ste<strong>in</strong> condition on <strong>the</strong>5-dimensional base metric implies <strong>the</strong> Ricci-flatness <strong>of</strong> <strong>the</strong> cone. Hence a SE manifold <strong>of</strong> real dimension2n−1 is <strong>the</strong> real base <strong>of</strong> a CY cone <strong>of</strong> complex dimension n.


266 Appendix B. Algebraic geometry and toric geometryFor cones (t a = 0), <strong>the</strong> polytope is precisely <strong>the</strong> toric cone σ for X. Given <strong>the</strong> chargevectors Q a , one can construct several σ’s such thatσ = { Span((v i ) ∈ N ∼ = Z m )| ∑ iQ a iv i ∀a } .(B.97)All <strong>the</strong>se σ are related to each o<strong>the</strong>r by Sl(m,Z) transformations. Consider, for <strong>in</strong>stance,tak<strong>in</strong>g an orthogonal basis <strong>of</strong> Z m for <strong>the</strong> first m lattice vectors v i (correspond<strong>in</strong>g to <strong>the</strong>first m homogeneous coord<strong>in</strong>ates). The rema<strong>in</strong><strong>in</strong>g vectors <strong>of</strong> σ follow from (B.44). Thischoice <strong>of</strong> lattice basis vectors corresponds to a choice <strong>of</strong> subgroup forU(1) m ⊂ U(1) n .(B.98)This is simply because we made a choice about which <strong>of</strong> <strong>the</strong> homogeneous coord<strong>in</strong>ates(z i ) are <strong>the</strong> “dependent” ones. Here we chose <strong>the</strong> variables (z m+1 ,··· ,z n ) to be functions<strong>of</strong> <strong>the</strong> (z 1 ,··· ,z m ). More precisely, <strong>the</strong> modulus are fixed by <strong>the</strong> D-terms (B.94), while<strong>the</strong> phases <strong>of</strong> (z m+1 ,··· ,z n ) are redundant U(1) r degrees <strong>of</strong> freedom that we can <strong>gauge</strong>fix.Then we see explicitly that <strong>the</strong> aff<strong>in</strong>e toric variety is realized as a U(1) m fibration<strong>of</strong> σ ⊂ N R . In <strong>the</strong> bulk, <strong>the</strong> real torus T m ∼ = U(1) m is non-degenerate, while on <strong>the</strong><strong>in</strong>tersection <strong>of</strong> <strong>the</strong> hyperplane (v j = 0, ∀j ∈ I ⊂ (1,···m)) with <strong>the</strong> cone σ, <strong>the</strong>re is adegeneration <strong>of</strong> <strong>the</strong> (#I)-torus (Tj 1 1×···×T(#I) 1 ). At <strong>the</strong> tip <strong>of</strong> σ <strong>the</strong> whole torus shr<strong>in</strong>ksto zero, and we have a s<strong>in</strong>gularity.Example. Take <strong>the</strong> conifold aga<strong>in</strong>. We have Q = (1,−1,1,−1). If we take a basis <strong>of</strong>Z 3 as (0,0,1), (0,1,1) and (1,1,1), we must have that <strong>the</strong> fourth vector <strong>in</strong> σ be (1,0,1).On <strong>the</strong> o<strong>the</strong>r hand, if we take <strong>the</strong> orthogonal basis for <strong>the</strong> lattice, σ is generated by(1,0,0), (0,1,0), (0,0,1), (1,−1,1). (B.99)We see that <strong>the</strong> first σ is obta<strong>in</strong>ed from <strong>the</strong> second by <strong>the</strong> Sl(3,Z) transformation⎛ ⎞0 1 1⎝ 0 0 1 ⎠. (B.100)1 1 1When t a ≠ 0 for some a’s, we have a (possibly partially) resolved s<strong>in</strong>gularity. From<strong>the</strong> polytope po<strong>in</strong>t <strong>of</strong> view, <strong>the</strong> resolution amounts to “chopp<strong>in</strong>g <strong>of</strong>f” <strong>the</strong> tip <strong>of</strong> σ, s<strong>in</strong>cewe cannot reach <strong>the</strong> po<strong>in</strong>t z 1 = ··· = z n = 0 anymore. As an aside, let us note <strong>the</strong><strong>in</strong>terest<strong>in</strong>g relation between <strong>the</strong> parameter t a and <strong>the</strong> period <strong>of</strong> <strong>the</strong> Kähler form on <strong>the</strong>correspond<strong>in</strong>g 2-cycle C a (<strong>in</strong> <strong>the</strong> case <strong>of</strong> a small resolution by a CP 1 ) [288] :∫ω = t a .(B.101)C aSo <strong>the</strong> FI parameters <strong>in</strong> <strong>the</strong> GLSM really map to <strong>the</strong> “Kähler volumes” <strong>of</strong> <strong>the</strong> resolv<strong>in</strong>gcycles.The GLSM perspective is very <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> order to explore <strong>the</strong> topology <strong>of</strong> toric varieties,and it is “easier” because more explicit. One can easily visualize toric divisors andcompute <strong>the</strong>ir <strong>in</strong>tersections us<strong>in</strong>g <strong>the</strong> GLSM. Nice reviews exist <strong>in</strong> <strong>the</strong> physics literatureon this part <strong>of</strong> <strong>the</strong> story. See <strong>in</strong> particular: [288], [324], and <strong>the</strong> chapter 7 <strong>of</strong> [325].


Appendix CN = 1 renormalization group andSeiberg dualityC.1 RG equations for N = 1 <strong>gauge</strong> <strong>the</strong>oriesLetusbrieflyrecallsomeresultson<strong>the</strong>renormalization<strong>of</strong>N = 1<strong>gauge</strong><strong>the</strong>ories. Considera <strong>the</strong>ory with a <strong>gauge</strong> groupl<strong>in</strong>g g and some superpotential coupl<strong>in</strong>gs h n . We havea superpotential W = ∑ n h nO n for some operators O n polynomial <strong>in</strong> <strong>the</strong> UV chiralsuperfields <strong>of</strong> <strong>the</strong> <strong>the</strong>ory.C.1.1 Superpotential coupl<strong>in</strong>gsIt is well known that <strong>the</strong> holomorphic superpotential coupl<strong>in</strong>gs h n are not renormalized[131]. However, <strong>the</strong> physical coupl<strong>in</strong>g do suffer wave-function renormalisation. Considerfor <strong>in</strong>stance <strong>the</strong> superpotential termW ⊃ hO = h ∏ i(Φ i ) d i(C.1)where <strong>the</strong> operator O has a classical dimension d O = ∑ i d i. We def<strong>in</strong>e <strong>the</strong> dimensionlessphysical coupl<strong>in</strong>g as ( ) ∏˜h = µ d O−3Z −d i2ih(C.2)iwhere µ is <strong>the</strong> renormalisation scale and Z i is <strong>the</strong> wave-renormalisation factor <strong>of</strong> <strong>the</strong> fieldΦ 1 i . Consequently, <strong>the</strong> quantum beta function for ˜h is)β(˜h) = µ(d ∂˜h∂µ = O + 1 ∑d i γ i −3 ˜h. (C.3)2We use <strong>the</strong> follow<strong>in</strong>g def<strong>in</strong>ition for <strong>the</strong> anomalous dimension <strong>of</strong> a field φ:iγ φ = −µ ∂∂µ lnZ φ. (C.4)1 Note that Φ = √ ZΦ 0, with Φ and Φ 0 <strong>the</strong> renormalised and bare quantities, respectively.267


268 Appendix C. N = 1 renormalization group and Seiberg dualityThe quantum dimension for a scalar φ is 1+ 1 2 γ φ. In general, <strong>the</strong> beta function for anysuperpotential coupl<strong>in</strong>g isβ(˜h n ) = (dimO n −3)˜h n ,(C.5)withdimO n <strong>the</strong>quantumdimension<strong>of</strong><strong>the</strong>operatorO n . Notethatanomalousdimensionsare functions <strong>of</strong> all <strong>the</strong> coupl<strong>in</strong>g constants <strong>of</strong> <strong>the</strong> <strong>the</strong>ory, and also <strong>of</strong> <strong>the</strong> renormalisationscale µ, γ i = γ i (h n ,g;µ). At a quantum fixed po<strong>in</strong>t, <strong>the</strong> dependence on µ <strong>of</strong> coursedisappears.C.1.2 Gauge coupl<strong>in</strong>gOne usually def<strong>in</strong>es <strong>the</strong> holomorphic <strong>gauge</strong> coupl<strong>in</strong>gτ = θ2π +i4π g 2 .(C.6)The angle θ is <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> topological term F ∧F. This holomorphic coupl<strong>in</strong>g isonly renormalised at one loop, accord<strong>in</strong>g toµ ∂τ∂µ = ib 02π , with b 0 = 3 2 T(adj)− 1 2∑T(r i ).i(C.7)Here T(r) is <strong>the</strong> <strong>in</strong>dex <strong>of</strong> <strong>the</strong> representation r. The representations <strong>in</strong>dex are normalizedsuch that <strong>the</strong> fundamental <strong>of</strong> SU(N) has <strong>in</strong>dex T(fond) = 1 (<strong>the</strong>n T(adj) = 2N forSU(N)). In particular, for SU(N) SQCD with N f flavor, we have b 0 = 3N −N f .On <strong>the</strong> o<strong>the</strong>r hand <strong>the</strong> physical <strong>gauge</strong> coupl<strong>in</strong>g does suffer higher loop corrections,aga<strong>in</strong> from wave-function renormalisation <strong>of</strong> <strong>the</strong> chiral fields. The all-order formula iscalled <strong>the</strong> NSVZ beta function [209]. It is also <strong>of</strong>ten called <strong>the</strong> “exact beta function”,but <strong>of</strong> course this beta function aga<strong>in</strong> depends on <strong>the</strong> anomalous dimensions, which areunknown functions <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g, γ i (g). The NSVZ beta function can also bederived by arguments similar to <strong>the</strong> ones just presented for <strong>the</strong> case <strong>of</strong> <strong>the</strong> superpotentialcoupl<strong>in</strong>gs [326]. It reads( ) 8π2βg 2= b 0 + 1 ∑T(r i )γ i .2i(C.8)Remark that we actually only wrote <strong>the</strong> numerator <strong>of</strong> <strong>the</strong> NSVZ function. The physicalmean<strong>in</strong>g <strong>of</strong> <strong>the</strong> denom<strong>in</strong>ator (which has a pole) is unclear. The way we will ma<strong>in</strong>ly use<strong>the</strong> “exact” formulae (C.3) and (C.8) is as tools to f<strong>in</strong>d non-trivial exact fixed po<strong>in</strong>ts <strong>of</strong><strong>the</strong> renormalisation group flow, as expla<strong>in</strong>ed <strong>in</strong> <strong>the</strong> ma<strong>in</strong> text.C.2 Seiberg duality <strong>in</strong> <strong>the</strong> conformal w<strong>in</strong>dowConsider N = 1 SQCD with SU(N c ) <strong>gauge</strong> group and N f flavors Q i , ˜Q j , i,j = 1,··· ,N f ,<strong>of</strong>ten called <strong>the</strong> “electric” <strong>the</strong>ory. The flavor symmetry <strong>of</strong> this <strong>the</strong>ory is SU(N f ) L ×SU(N f ) R , act<strong>in</strong>g <strong>in</strong>dependently on Q and ˜Q. It can be shown that for 3N c − N f > εwith ε positive and very small, <strong>the</strong>re exists a perturbative fixed po<strong>in</strong>t at two loops, at


C.3. Seiberg duality with a quartic superpotential 269a critical value g = g ∗ ∼ ε N[83]. It was famously conjectured by Seiberg [83] that thisfixed po<strong>in</strong>t is <strong>in</strong> fact exact and that it exist for any N f <strong>in</strong> <strong>the</strong> range32 N c < N f < 3N c . (C.9)This range is called <strong>the</strong> conformal w<strong>in</strong>dow <strong>of</strong> SQCD. Us<strong>in</strong>g <strong>the</strong> NSVZ beta function, wesee that <strong>the</strong> anomalous dimension γ 0 <strong>of</strong> <strong>the</strong> quarks Q, ˜Q must be γ0 = (N f −3N c )/N fat <strong>the</strong> fixed po<strong>in</strong>t, and that <strong>the</strong> superconformal R-charge isR(Q) = R(˜Q) = N f −N cN f. (C.10)As we decrease N f , <strong>the</strong> anomalous dimensions get large and <strong>the</strong> <strong>in</strong>teract<strong>in</strong>g fixed po<strong>in</strong>tbecomes strongly coupled. Let us call this SCFT <strong>the</strong> “electric SCFT”.Consider also ano<strong>the</strong>r N = 1 <strong>the</strong>ory with SU(N f −N c ) <strong>gauge</strong> group and N f flavorsq i , ˜q j , j = 1,··· ,N f , toge<strong>the</strong>r with a <strong>gauge</strong> s<strong>in</strong>glet field M i j transform<strong>in</strong>g <strong>in</strong> <strong>the</strong> (N f, ¯N f )<strong>of</strong> SU(N f ) L ×SU(N f ) R , and a superpotentialW = yq i M i j ˜qj ,(C.11)which preserves <strong>the</strong> SU(N f ) L × SU(N f ) R flavor group. This is called <strong>the</strong> “magnetic”<strong>the</strong>ory. Us<strong>in</strong>g <strong>the</strong> exact beta functions for <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g g and <strong>the</strong> superpotentialcoupl<strong>in</strong>g y, one can show that such <strong>the</strong>ory might <strong>in</strong>deed posses an exact fixed po<strong>in</strong>t aslong as <strong>the</strong> parameters N f and N c satisfy (C.9). First notice that if y = 0 we are at <strong>the</strong>SQCD fixed po<strong>in</strong>t with Ñc = N f −N c , with γ 0 = (3N c −2N f )/N f for <strong>the</strong> quarks q, ˜q,while <strong>the</strong> <strong>gauge</strong> s<strong>in</strong>glet M is decoupled and must have dimension 1. Hence <strong>the</strong> operatorM˜qq is a relevant deformation <strong>of</strong> <strong>the</strong> SQCD fixed po<strong>in</strong>t. For any small y <strong>the</strong> <strong>the</strong>ory <strong>the</strong>nflows away from this fixed po<strong>in</strong>t, and can reach ano<strong>the</strong>r fixed po<strong>in</strong>t where <strong>the</strong> anomalousdimension for M is <strong>in</strong>creased to γ M = (4N f − 6N c )/N f . This isolated fixed po<strong>in</strong>t atnon-trivial values <strong>of</strong> g and y is called <strong>the</strong> “magnetic SCFT”.The Seiberg duality conjecture is that <strong>the</strong> electric and magnetic SCFT are preciselyequivalent. Forreviews<strong>of</strong><strong>the</strong>beautifulconsistencychecksonecanmake<strong>of</strong>thisconjecture,wereferto[131]. Itis<strong>in</strong>terest<strong>in</strong>gtonotethatat<strong>the</strong>magneticfixedpo<strong>in</strong>t<strong>the</strong>fieldsM i j canbe identified with <strong>the</strong> SQCD mesons ˜Q i Q j <strong>in</strong> <strong>the</strong> electric SCFT; for <strong>in</strong>stance it is easy tocheck <strong>the</strong>y both have <strong>the</strong> same quantum dimension, ∆(M) = ∆(˜QQ) = 3(N f −N c )/N f .For this reason <strong>the</strong> field M is <strong>of</strong>ten called <strong>the</strong> “dual meson”.Seiberg duality is also <strong>of</strong>ten stated as “<strong>the</strong> IR limits <strong>of</strong> <strong>the</strong> electric and magnetic<strong>the</strong>ories are equivalent”; this formulation is <strong>the</strong>n correct even for N f < 3 2 N c, when SQCDdoes not reach a fixed po<strong>in</strong>t but becomes dual to an IR free magnetic <strong>the</strong>ory <strong>in</strong> <strong>the</strong> IR[83].C.3 Seiberg duality with a quartic superpotentialThe N = 1 Seiberg duality as presented <strong>in</strong> <strong>the</strong> previous section is a duality between twoisolated fixed po<strong>in</strong>ts. In that respect it is quite different from <strong>the</strong> S-duality <strong>of</strong> N = 4,


270 Appendix C. N = 1 renormalization group and Seiberg dualityfor <strong>in</strong>stance, which acts on a cont<strong>in</strong>uous l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts. An <strong>in</strong>terest<strong>in</strong>g extension <strong>of</strong>Seiberg duality is obta<strong>in</strong>ed by add<strong>in</strong>g a quartic superpotentialW = h(Q i ˜Qj )(Q j ˜Qi )(C.12)to <strong>the</strong> electric SCFT. For h small, we can compute <strong>the</strong> beta function us<strong>in</strong>g <strong>the</strong> anomalousdimensions <strong>of</strong> <strong>the</strong> electric SCFT. We have three cases:• N f = 2N c . This case was discussed <strong>in</strong> <strong>the</strong> ma<strong>in</strong> text, <strong>in</strong> section 4.1.4. The betafunction for g and for h are proportional, so <strong>the</strong>re is a l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts.• N f > 2N c . We have R(Q) > 1 2at <strong>the</strong> electric SCFT. The quartic superpotential(C.12) is <strong>the</strong>n irrelevant, as it would be classically.• N f < 2N c . In this case we have R(Q) < 1 2<strong>in</strong> <strong>the</strong> electric SCFT, so <strong>the</strong> quarticsuperpotential is relevant. We can <strong>the</strong>n use it to perturb <strong>the</strong> fixed po<strong>in</strong>t and starta non-trivial RG flow.The third case is <strong>the</strong> most <strong>in</strong>terest<strong>in</strong>g: we see an <strong>in</strong>stance <strong>of</strong> a superpotential which isclassically irrelevant but becomes relevant at strong coupl<strong>in</strong>g (near <strong>the</strong> electric SCFTfixed po<strong>in</strong>t).The Seiberg dual <strong>the</strong>ory has a SU(N f − N c ) <strong>gauge</strong> group, N f dual quarks and <strong>the</strong>dual mesons, with superpotentialW = yq i M i j ˜q j +hM i jM j i .(C.13)Note that <strong>the</strong> coupl<strong>in</strong>g h looks like a mass term. However, we must check its RG runn<strong>in</strong>gas <strong>in</strong> <strong>the</strong> case <strong>of</strong> <strong>the</strong> electric <strong>the</strong>ory. For N f = 2N c <strong>the</strong> coupl<strong>in</strong>g h is marg<strong>in</strong>al, hence wehave a l<strong>in</strong>e <strong>of</strong> fixed po<strong>in</strong>ts, as expected from <strong>the</strong> electric <strong>the</strong>ory. When N f > 2N c <strong>the</strong>coupl<strong>in</strong>g h is irrelevant, while for N f < 2N c it is relevant.If we <strong>in</strong>tegrate out <strong>the</strong> field M, we obta<strong>in</strong> <strong>the</strong> effective superpotentialW = h ′ (q i˜q j )(q j˜q i ),(C.14)with h ′ ∼ y 2 /m, so we see that <strong>the</strong> electric and magnetic <strong>the</strong>ories have <strong>the</strong> same superpotential.However, when h is a relevant coupl<strong>in</strong>g, <strong>the</strong> dual h ′ is an irrelevant coupl<strong>in</strong>g,and vice-versa. As carefully expla<strong>in</strong>ed <strong>in</strong> [85], when N f < 2N c Seiberg duality relates <strong>the</strong>RG flow away from <strong>the</strong> electric SCFT, as h grows from 0 to <strong>in</strong>f<strong>in</strong>ity, to <strong>the</strong> dual RG flowfrom h ′ = ∞ to 0, towards <strong>the</strong> magnetic SCFT.In <strong>the</strong> case N f = 2N c , both electric and magnetic <strong>the</strong>ories have an SU(N c ) <strong>gauge</strong>group and a marg<strong>in</strong>al quartic superpotential, so <strong>the</strong>y are really self-similar, and Seibergduality is most similar to an S-duality, relat<strong>in</strong>g strong to weak coupl<strong>in</strong>g h on <strong>the</strong> l<strong>in</strong>e <strong>of</strong>fixed po<strong>in</strong>ts.Seiberg duality for SQCD with a quartic superpotential can be derived from a carefulanalysis <strong>of</strong> N = 2 SQCD, as was done <strong>in</strong> [155]; <strong>in</strong> that early reference, however, <strong>the</strong>ymissed <strong>the</strong> fact that <strong>the</strong> quartic superpotential can actually turn out to be relevant <strong>in</strong><strong>the</strong> far IR, which is quite important to understand <strong>the</strong> famous duality cascade <strong>of</strong> [118].


Appendix DSpherical coord<strong>in</strong>ates on R 6In this Appendix we discuss some coord<strong>in</strong>ates on S 5 and <strong>the</strong> associated harmonic functions(which we present for completeness although we will not need <strong>the</strong>m <strong>in</strong> any detail).We <strong>the</strong>n go on to derive <strong>the</strong> equation (4.46) <strong>of</strong> Chapter 4.D.1 Spherical polar coord<strong>in</strong>ates on R 6We consider <strong>the</strong> follow<strong>in</strong>g spherical polar coord<strong>in</strong>ates on R 6 :x 1 = rcosθ 1x 2 = rs<strong>in</strong>θ 1 cosθ 2x 3 = rs<strong>in</strong>θ 1 s<strong>in</strong>θ 2 cosθ 3x 4 = rs<strong>in</strong>θ 1 s<strong>in</strong>θ 2 s<strong>in</strong>θ 3 cosθ 4x 5 = rs<strong>in</strong>θ 1 s<strong>in</strong>θ 2 s<strong>in</strong>θ 3 s<strong>in</strong>θ 4 cosϕx 6 = rs<strong>in</strong>θ 1 s<strong>in</strong>θ 2 s<strong>in</strong>θ 3 s<strong>in</strong>θ 4 s<strong>in</strong>ϕ(D.1)where θ j ∈ [0,π] and ϕ ∈ [0,2π). The volume form is <strong>the</strong>nr 5 dr∧dvol(S 5 ) = r 5 dr∧(s<strong>in</strong>θ 1 ) 4 (s<strong>in</strong>θ 2 ) 3 (s<strong>in</strong>θ 3 ) 2 s<strong>in</strong>θ 4 dθ 1 ∧dθ 2 ∧dθ 3 ∧dθ 4 ∧dϕ . (D.2)The Laplacian on R 6 is∆ R 6 = 1 r 5∂ rr 5 ∂ r + 1 r 2∆ S 5 ,(D.3)with <strong>the</strong> angular Laplacian on S 5 that reads∆ S 5 = (∂ θ1 +4cotθ 1 )∂ θ1 ++1(s<strong>in</strong>θ 1 ) 2(∂ θ 2+3cotθ 2 )∂ θ2 +1(s<strong>in</strong>θ 1 s<strong>in</strong>θ 2 s<strong>in</strong>θ 3 ) 2(∂ θ 4+cotθ 4 )∂ θ4 +1(s<strong>in</strong>θ 1 s<strong>in</strong>θ 2 ) 2(∂ θ 3+2cotθ 3 )∂ θ3 +1(s<strong>in</strong>θ 1 s<strong>in</strong>θ 2 s<strong>in</strong>θ 3 s<strong>in</strong>θ 4 ) 2∂2 ϕ(D.4)271


272 Appendix D. Spherical coord<strong>in</strong>ates on R 6D.2 Spherical harmonics <strong>of</strong> S 5 and Gegenbauer polynomialsLet m 0 ,m 1 ,m 2 ,m 3 ,m 4 be <strong>in</strong>tegers such that m 0 ≥ m 1 ≥ ··· ≥ m 4 ≥ 0. The eigenvalueequation is∆ S 5Y m (θ i ;±ϕ) = −m 0 (m 0 +4)Y m (θ i ;±ϕ) . (D.5)A complete set <strong>of</strong> spherical harmonics <strong>of</strong> degree m 0 is given by:Y m (θ i ;±ϕ) = e ±im 4ϕ ·(s<strong>in</strong>θ 1 ) m 1C m 1+2m 0 −m 1(cosθ 1 )·(s<strong>in</strong>θ 2 ) m 2C m 2+ 3 2m 1 −m 2(cosθ 2 )··(s<strong>in</strong>θ 3 ) m 3C m 3+1m 2 −m 3(cosθ 3 )·(s<strong>in</strong>θ 4 ) m 4C m 4+ 1 2m 3 −m 4(cosθ 4 ) .(D.6)Here C m n (x) is <strong>the</strong> Gegenbauer polynomial <strong>of</strong> degree n and order m. Gegenbauer polynomials,for m > 0, can be def<strong>in</strong>ed by <strong>the</strong> generat<strong>in</strong>g function [327, 328]G(x,t) ≡∞∑Cn m (x)t n =n=01(1−2xt+t 2 ) m .(D.7)A useful explicit expression for <strong>the</strong> Gegenbauer polynomials can be easily derived bywrit<strong>in</strong>g G(cosθ,t) as a function <strong>of</strong> <strong>the</strong> complex variable w = te iθ :It follows thatG(cosθ,t) = G(w) =C m n (cosθ) =n∑k=0Γ(m+n−k)(n−k)!Γ(m)1(w −1) m (¯w −1) m. (D.8)Γ(m−k)k!Γ(m)e i(n−2k)θ .(D.9)For completeness, let us write down <strong>the</strong> differential equation whose solutions are <strong>the</strong>Gegenbauer polynomials [327]:(x 2 −1) d2dx 2Cm n (x)+(2m+1)x ddx Cm n (x)−n(n+2m)C m n (x) = 0 .They form an orthogonal set on [−1,1] :(D.10)∫ 1−1and this latter formula implies∫ π0dx(1−x 2 ) m−1 2 Cmn (x)C m r (x) = 21−2m πΓ(n+2m)n!(n+m)[Γ(m)] 2 δ nr ,dθ(s<strong>in</strong>θ) 2m C m n (cosθ) = 2 −2m πΓ(2m+1)[Γ(1+m)] 2 δ n0 .We could also def<strong>in</strong>e an orthonormalised set <strong>of</strong> harmonics {Y m },∫S 5 Y m Y ∗ n = δ nm .(D.11)(D.12)(D.13)By us<strong>in</strong>g <strong>the</strong> above properties <strong>of</strong> <strong>the</strong> Cn m ’s, we f<strong>in</strong>d <strong>the</strong> normalization constant a m , def<strong>in</strong>edasY m = a m Y m ,(D.14)


D.3. Solv<strong>in</strong>g for <strong>the</strong> warp factor <strong>of</strong> a 2 stacks system 273to be given bya m =((m0 −m 1 )!···(m 3 −m 4 )![Γ(2+m 1 )···Γ( 1 2 +m 4)] 2 (2+m 0 )···( 1 2 +m 3)2π 5 4 −3−(m 1+···+m 4 ) Γ(4+m 0 +m 1 )···Γ(1+m 3 +m 4 )D.3 Solv<strong>in</strong>g for <strong>the</strong> warp factor <strong>of</strong> a 2 stacks system)12.(D.15)Consider a stack <strong>of</strong> N − N ′ D3-<strong>branes</strong> at (x i ) = 0, and a stack <strong>of</strong> N ′ D3-<strong>branes</strong> at(x i ) = (s,0,··· ,0). The warp factor equation,∆ 6 h = −2κ 2 τ 3((N −N ′ )δ 6 (x)+N ′ δ 6 (x−s) ) ,(D.16)can be expanded <strong>in</strong> harmonics. In this particular case, we haveδ 6 (x−s) = δ(x 1 −s)δ(x 2 )···δ(x 6 ) =with Y m0 (θ 1 ) = C 2 m 0(cosθ 1 ). Then, expand<strong>in</strong>g asδ(r −s)r 5∑m 0(m 0 +2)2π 3 Y m0 (θ 1 ), (D.17)h(r,θ 1 ) = ∑ m 0˜Hm0 (r) Y m0 (θ 1 ),(D.18)we have <strong>the</strong> radial equations[∆ r − m ]0(m 0 +4)˜Hr 2 m0 (r) = −4R(N−N 4 δ(r)′ )r 5 δ m 0 ,0 −4RN 4 (m 0 +2)′2δ(r −s)r 5 , (D.19)where RN 4 = 4πNα′2 g s . It is <strong>the</strong>n straightforward to derive (for r > s)()∞∑h(r,θ 1 ) = R4 Nr 4 1+ N′ ( s) m0Ym0 (θ 1 ) . (D.20)N rThis is equation (4.46).m 0 =1


Appendix ESeiberg-Witten <strong>the</strong>orySeiberg-Witten <strong>the</strong>ory is <strong>the</strong> <strong>the</strong>ory which provides <strong>the</strong> full non-perturbative solution forN = 2 supersymmtric <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> four dimensions, <strong>in</strong> <strong>the</strong> sense that it gives <strong>the</strong>exact low energy Wilsonian action. In this Appendix we will <strong>in</strong>toduce <strong>the</strong> SW formalismfrom scratch, emphasiz<strong>in</strong>g <strong>the</strong> aspects which are important to understand <strong>the</strong> work presented<strong>in</strong> Chapter 6. We first <strong>in</strong>troduce <strong>the</strong> SW formalism <strong>in</strong> <strong>the</strong> field <strong>the</strong>ory language,and later mention <strong>the</strong> beautiful relationship between SW <strong>the</strong>ory and M-<strong>the</strong>ory. We focuson <strong>the</strong> case <strong>of</strong> <strong>the</strong> special unitary <strong>gauge</strong> group SU(N).E.1 N = 2 vector mutliplet and <strong>the</strong> effective actionThe N = 2 four dimensional vector multiplet conta<strong>in</strong>s a vector, two Weyl fermionsand one complex scalar, all <strong>in</strong> <strong>the</strong> adjo<strong>in</strong>t representation <strong>of</strong> <strong>the</strong> <strong>gauge</strong> group. In orderto construct a supersymmetric action, it is useful to <strong>in</strong>troduce an N = 2 superspace(x,θ,¯θ,˜θ,¯˜θ), where <strong>the</strong> Grasmannians ˜θ, ¯˜θ extend <strong>the</strong> usual N = 1 superspace. TheN = 2 vector superfield can be expanded <strong>in</strong> term <strong>of</strong> N = 1 chiral superfields Φ andW α = − 1 4 ¯D 2 D α V, as [329, 330]Ψ(y,θ, ˜θ) = Φ(y,θ) + √ 2˜θ α W α (y,θ) + ˜θ˜θΨ (D) (y,θ),(E.1)where we have used <strong>the</strong> chiral coord<strong>in</strong>ate y µ = x µ +iθσ µ¯θ +i˜θσ µ¯˜θ, andΨ (D) (y,θ) = Φ † (y −iθσ µ¯θ,θ,¯θ)e 2V(y−iθσ µ¯θ,θ,¯θ) ∣ ∣θθ.The most general action for <strong>the</strong> N = 2 vector superfield isL = 1 ∫4π Im d 2 θd 2˜θF(Ψ),(E.2)(E.3)where F is any holomorphic function <strong>of</strong> Ψ, called <strong>the</strong> prepotential. It is <strong>the</strong> holomorphicityproperty <strong>of</strong> <strong>the</strong> prepotential which ultimately allows to compute <strong>the</strong> effective actionexactly <strong>in</strong> any vacuum. In <strong>the</strong> UV, <strong>the</strong> <strong>the</strong>ory is def<strong>in</strong>ed byF(Ψ) = τ 2 Ψ2 ,(E.4)275


276 Appendix E. Seiberg-Witten <strong>the</strong>orywith τ <strong>the</strong> usual holomorphic <strong>gauge</strong> coupl<strong>in</strong>g, as <strong>in</strong> (C.6). Expend<strong>in</strong>g <strong>in</strong> N = 1 components,this gives <strong>the</strong> renormalizable action∫S ={ ∫d 4 x Imd 2 θ τ ∫8π W2 +}d 2 θd 2¯θ 1g 2Φ† e 2V Φ . (E.5)The factor <strong>of</strong> 1/g 2 <strong>in</strong> front <strong>of</strong> <strong>the</strong> k<strong>in</strong>etic term for Φ might look unconventional, but it isnatural <strong>in</strong> a N = 2 <strong>in</strong>variant action. Classically, <strong>the</strong> moduli space <strong>of</strong> vacua is <strong>the</strong> so-calledCoulomb branch, for any φ (φ <strong>the</strong> complex scalar) such that [φ,φ † ] = 0. A convenientparametrization <strong>of</strong> <strong>the</strong> classical moduli space is by <strong>the</strong> eigenvalues <strong>of</strong> φ,φ = diag(ϕ 1 ,··· ,ϕ N ),∑ϕ i = 0,i(E.6)and up to permutations <strong>of</strong> <strong>the</strong> ϕ i ’s (which are residual <strong>gauge</strong> symmetries). In a genericvacuum, <strong>the</strong> <strong>gauge</strong> group is broken asSU(N) → U(1) N−1 .(E.7)Note that quantum mechanically <strong>the</strong> parameters ϕ i are not good coord<strong>in</strong>ates on <strong>the</strong>moduli space. Instead one should <strong>in</strong> pr<strong>in</strong>ciple parametrize <strong>the</strong> moduli space by a set <strong>of</strong><strong>gauge</strong> <strong>in</strong>variant polynomials.In a generic vacuum <strong>the</strong> residual <strong>gauge</strong> symmetry is abelian. Expand<strong>in</strong>g (E.3), wesee that <strong>the</strong> low energy effective action (LEEA) should take <strong>the</strong> form 1∫S =d 4 x 14π Im {∫d 2 θ 1 ∫2 F ab(Φ)W aα Wα b +d 2 θd 2¯θΦ }†a F a (Φ) , (E.8)where a,b = 1,··· ,N −1 are Lie algebra <strong>in</strong>dices <strong>in</strong> <strong>the</strong> Cartan <strong>of</strong> SU(N), andF a = ∂F∂Φ a ,F ab = ∂2 F∂Φ a Φ b ≡ τ ab(E.9)Remark that <strong>the</strong> effective <strong>gauge</strong> coupl<strong>in</strong>g Imτ ab is a metric on field space, s<strong>in</strong>ce we have<strong>the</strong> scalar k<strong>in</strong>etic termL ⊃ − 14π Im(τ ab(φ))∂ µ¯φa ∂ µ φ b . (E.10)We <strong>the</strong>n have <strong>the</strong> metric on field space (and henceforth on moduli space)ds 2 = Im(τ ab )dφ a d¯φ b .(E.11)On physical ground, this metric should be positive def<strong>in</strong>ite. However, s<strong>in</strong>ce τ is anholomorphic function Imτ is harmonic, so it cannot be positive everywhere. We will seethat <strong>the</strong> way out <strong>of</strong> this conundrum is that φ a are not good coord<strong>in</strong>ates everywhere: wewill need several patches to consistently map <strong>the</strong> full moduli space.1 This does not mean that any vacuum has a Lagrangian description, however: <strong>in</strong> some vaccua we haveto <strong>in</strong>clude extra hypermultiplets to describe massless monopoles and dyons, and we can do that only formutually local excitations.


E.2. Electric-magnetic duality 277E.1.1 R-symmetry and <strong>the</strong> perturbative prepotentialClassically, <strong>the</strong> UV <strong>the</strong>ory (E.5) has a R-symmetry U(1) R which assigns charge 0, 1 and2 to <strong>the</strong> vector, <strong>the</strong> fermions and <strong>the</strong> complex scalar, respectively. There is however achiral anomaly,φ → e i2α φ, θ → θ −4Nα, (E.12)which breaks U(1) R to Z 4N . Moreover, <strong>the</strong> actual symmetry act<strong>in</strong>g on <strong>the</strong> Coulombbranch is Z 2M s<strong>in</strong>ce φ has R-charge 2. We can easily compute <strong>the</strong> perturbative runn<strong>in</strong>gcoupl<strong>in</strong>g, by <strong>the</strong> follow<strong>in</strong>g trick [331, 332]: s<strong>in</strong>ce F ′′ = τ, <strong>the</strong> anomalous shift <strong>in</strong> <strong>the</strong> <strong>the</strong>taangle can be written asF ′′ (e 2iα φ)−F ′′ (φ) = − 4Nα2π⇒ ∂3 F∂φ 3 = i Nπ φ ,(E.13)where <strong>the</strong> implication is for α <strong>in</strong>f<strong>in</strong>itesimal. Integrat<strong>in</strong>g <strong>the</strong> expression on <strong>the</strong> right, wehaveτ pert = F pert ′′ = − 2N2πi ln φ Λ , with Λ = µe2πiτ(µ) , (E.14)while <strong>the</strong> prepotential can be schematically written asF pert = − N2πi φ2 ln φ Λ .(E.15)This result is actually exact <strong>in</strong> perturbation <strong>the</strong>ory [331]. However, non-perturbativeeffects will drastically change <strong>the</strong> result at strong coupl<strong>in</strong>g.E.2 Electric-magnetic dualityClassical electric-magnetic duality for abelian <strong>gauge</strong> fields exchanges <strong>the</strong> field strengthwith its Hodge dual, F ↔ ∗F. Consequently, it exchanges electric and magnetic sources,or equation <strong>of</strong> motion (EOM) and Bianchi identity (BI)d∗F = ∗j e , dF = ∗j m with j e ↔ j m . (E.16)In <strong>the</strong> absence <strong>of</strong> sources, this is also a symmetry <strong>of</strong> <strong>the</strong> quantum <strong>the</strong>ory. Formally, itcan be seen as a change <strong>of</strong> variable <strong>in</strong> <strong>the</strong> path <strong>in</strong>tegral. Suppose that we take F <strong>in</strong>stead<strong>of</strong> <strong>the</strong> <strong>gauge</strong> field A to be <strong>the</strong> dynamical field (<strong>the</strong> one we path <strong>in</strong>tegrate over). We cando that provided we also <strong>in</strong>troduce a Lagrange multiplier A D which imposes <strong>the</strong> BI,{S = −∫R 1 3,1 4 F ∧∗F + 1 }2 A D ∧dF (E.17)We can <strong>the</strong>n perform <strong>the</strong> path <strong>in</strong>tegral over F. The equation <strong>of</strong> motion for F tells usthat ∗F = F D ; plugg<strong>in</strong>g <strong>in</strong>to <strong>the</strong> action, we have a new action 2 which only depends onA D , through F D = dA D ,S dual ={−∫R 1 }3,1 4 F D ∧∗F D . (E.18)2 Recall that <strong>in</strong> Lorentzian signature <strong>the</strong> operator ∗ : Λ 2 → Λ 2 squares to −1 <strong>in</strong> four dimensions, soF = −∗F D.


278 Appendix E. Seiberg-Witten <strong>the</strong>oryThis generalizes easily to <strong>the</strong> free abelian action for <strong>the</strong> N = 1 vector multiplet. Wecan write it <strong>in</strong> term <strong>of</strong> W α and <strong>the</strong> auxiliary vector superfield V D impos<strong>in</strong>g <strong>the</strong> Bianchiidentity DW − ¯D ¯W = 0,S = 1 ∫8π= 1 ∫8π{∫d 4 xIm d 2 θτW 2 + 1 ∫ }d 2 θd 2¯θVD DW2∫d 4 xIm d 2 θ { τW 2 −2W D W } .(E.19)(E.20)Solv<strong>in</strong>g for W <strong>in</strong> term <strong>of</strong> W D = − 1 ¯D 4 2 DV, we have W = 1 τ W D which gives <strong>the</strong> S-dualactionS = 1 ∫ ∫d 4 xIm d 2 θτ D WD 2 with τ D = − 1 8πτ . (E.21)Moreover, <strong>the</strong> action (E.19) is also <strong>in</strong>variant under τ → τ +1, which shifts to <strong>the</strong>ta angleby 2π. In total, we have a Sl(2,Z) <strong>in</strong>variance,τ →aτ +bcτ +d ,( ) a b∈ Sl(2,Z).c d(E.22)This <strong>in</strong>variance also extends to <strong>the</strong> N = 2 free vector multiplet. Let us def<strong>in</strong>e <strong>the</strong> dualfieldΦ D = ∂F∂Φ .(E.23)The S-duality can be understood as a Legendre transformation on <strong>the</strong> prepotential [330],F D (Φ D ) = F(Φ)−ΦΦ D , with Φ = − ∂F D∂Φ D(E.24)Obviously,τ D = ∂2 F D∂Φ 2 D= −( ) −1 ∂ΦD= − 1 ∂Φ τ . (E.25)The second term <strong>in</strong> equation (E.8) is also <strong>in</strong>variant under this duality transformation.Under a generic Sl(2,Z) transformation, we have( )ΦD→Φ( a bc d)(ΦDΦ)(E.26)Note that for τ = ∂φ D∂φ<strong>the</strong> transformation (E.22) follows from this transformation. Whenwe have r abelian fields, <strong>the</strong> duality group generalizes to <strong>the</strong> symplectic group Sp(2r,Z).In particular, <strong>the</strong> fields Φ, Φ D have <strong>the</strong> <strong>in</strong>variant Lagrangian∫d 2 θd 2¯θ( ) ( )( )Φ †a 0 1 ΦbD Φ†a δ Dab , (E.27)−1 0with a,b = 1,··· ,r. S<strong>in</strong>ce τ ab = F ab = ∂ a Φ Db , we can write <strong>the</strong> scalar metric (E.11) <strong>in</strong>term <strong>of</strong> φ and φ D simply asds 2 = dφ a Dd¯φ a .(E.28)Φb


E.3. S<strong>in</strong>gularities and massless monopoles 279The actual moduli space M is some complicated submanifold <strong>of</strong> complex dimension r <strong>in</strong>C 2r ∼ = {φ D ,φ}. Let us call z <strong>the</strong> coord<strong>in</strong>ates on M, on some patch. The metric on <strong>the</strong>moduli space <strong>in</strong> local coord<strong>in</strong>ates readsds 2 = ∂φc D∂z a ∂¯φ b c∂¯z bdza d¯z b .(E.29)We have uncovered an important geometric structure, thanks to S-duality: <strong>the</strong> spaceC 2r ∼ = {φ D ,φ} is naturally seen as a Sp(2r,Z) bundle 3 ,C r −→ C 2r π−→ M.(E.30)We can <strong>in</strong>terpret <strong>the</strong> fields (φ(z),φ D (z)) as a non-trivial section <strong>of</strong> this bundle: <strong>the</strong>functions (φ a D ,φa ) on different patches are related by non-trivial Sp(2r,Z) duality transformationson overlaps.E.3 S<strong>in</strong>gularities and massless monopolesThe Wilsonian action for N = 2 SU(N) SYM,∫S = d 4 x 1 {∫4π Im d 2 θ 1 2 τ ab(Φ)W aα Wα b +∫d 2 θd 2¯θΦ }†a Φ a D , (E.31)describes N −1 massless photons and <strong>the</strong>ir associated N = 2 superpartners. In <strong>the</strong> IRlimit any such vacuum is a trivial SCFT. This action is valid at low energy up to <strong>the</strong>scale <strong>of</strong> <strong>the</strong> first massive excitations. The lowest mass states will be <strong>the</strong> ones which areprotected by <strong>the</strong> N = 2 supersymmetry, saturat<strong>in</strong>g <strong>the</strong> BPS bound M ≥ √ 2|Z| whichfollows from <strong>the</strong> N = 2 SUSY algebra. Remark that <strong>the</strong> possible massive excitationwe are talk<strong>in</strong>g about can be thought as ’t Ho<strong>of</strong>t-Polyakov monopoles [293, 294] <strong>in</strong> <strong>the</strong>semi-classical limit; <strong>the</strong>y are some solitonic excitations <strong>of</strong> <strong>the</strong> non-l<strong>in</strong>ear SU(N) <strong>the</strong>ory.Moreover, <strong>the</strong>y fall <strong>in</strong>to N = 2 hypermultiplets. Perturbatively, it is well known that|Z| = hφ/g 2 for a ’t Ho<strong>of</strong>t-Polyakov monopole <strong>of</strong> magnetic charge h when <strong>the</strong> θ anglevanishes 4 , while for generic complex coupl<strong>in</strong>g τ we have Z = hφτ, due to <strong>the</strong> Witteneffect [333], and Z = φ(hτ +q) for a dyon. The non-perturbative expression for Z <strong>in</strong> <strong>the</strong>N = 2 low energy <strong>the</strong>ory can be deduced from <strong>the</strong> requirement <strong>of</strong> duality <strong>in</strong>variance; itis given by [154]Z = h a φ a D +q a φ a ,(E.32)with (φ,φ D ) = (φ(z 0 ),φ D (z 0 )) <strong>in</strong> <strong>the</strong> particular vacuum z = z 0 . The charges q and h are<strong>the</strong> electric and magnetic charge <strong>of</strong> <strong>the</strong> state. Moreover, only <strong>the</strong> excitations with h andq relatively prime are stable [154]. The Sl(2N −2,Z) duality symmetry acts as( ) ( ) ( ( )φD φD h→ M , → (Mφ φ q)−1 ) t h. (E.33)q3 This is similar to <strong>the</strong> way symplectic bundles appear <strong>in</strong> classical mechanics. (φ D,φ) are <strong>the</strong> analog <strong>of</strong><strong>the</strong> canonical variables (p,q). The form dφ∧d¯φ D−dφ D∧ ¯φ is a symplectic form, and (E.28) a symplecticmetric.4 In our context this form <strong>of</strong> <strong>the</strong> mass is forced by <strong>the</strong> N = 2-preserv<strong>in</strong>g superpotential term Φ˜QQ,when coupl<strong>in</strong>g an hypermutliplet to <strong>the</strong> vector multiplet.


280 Appendix E. Seiberg-Witten <strong>the</strong>oryAt isolated po<strong>in</strong>ts on <strong>the</strong> moduli space, some BPS monopoles (generically some dyons<strong>of</strong> a given charge (q,h)) might have a vanish<strong>in</strong>g mass, M = √ 2|Z| = 0. For <strong>in</strong>stance ifφ D = 0 <strong>in</strong> a vacuum <strong>the</strong> monopole <strong>of</strong> charge (1,0) would be massless. In general, form,n ∈ Z relatively prime, if <strong>the</strong> particular comb<strong>in</strong>ation mφ D −nφ vanishes, <strong>the</strong> dyon <strong>of</strong>charge (h,q) = (m,n) becomes massless, as we can see from (E.32). At such a po<strong>in</strong>t <strong>the</strong>metric (E.29) is s<strong>in</strong>gular: we should <strong>in</strong>clude an hypermultiplet <strong>in</strong> <strong>the</strong> LEEA to accountfor <strong>the</strong> new massless degrees <strong>of</strong> freedom.S<strong>in</strong>gularities on <strong>the</strong> moduli space correspond to monodromies <strong>of</strong> <strong>the</strong> section (φ D ,φ).Suppose we have a hypermuliplet (written Q, ˜Q <strong>in</strong> term <strong>of</strong> two N = 1 chiral superfields)withcharge(h,q) = (0,1)(electricallycoupled)toaU(1)vectormultiplet, whichbecomesmassless at z = z 0 . Suppose we can choose some local coord<strong>in</strong>ates on <strong>the</strong> moduli spaceas z − z 0 = φ. S<strong>in</strong>ce <strong>the</strong> U(1) <strong>gauge</strong> group is IR free <strong>in</strong> <strong>the</strong> presence <strong>of</strong> a masslesshypermultiplet, we can apply perturbation <strong>the</strong>ory near φ = 0. One can easily show (for<strong>in</strong>stance, use (C.7) <strong>in</strong> Appendix C with b 0 = −2N f = −2 for a <strong>gauge</strong> group U(1)) that<strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g goes likeτ(φ) = 22πi ln φ Λ .(E.34)We <strong>the</strong>n haveφ = z −z 0 , φ D = 1 πi (z −z 0)ln (z −z 0)Λ. (E.35)When perform<strong>in</strong>g a rotation around z 0 , <strong>the</strong> function φ is <strong>in</strong>variant by assumption but φ Dchanges as φ D → φ D +2φ. This is a monodromy, which we can also write as( ) ( )ΦD ΦD→ MΦ (0,1) , with MΦ(0,1) =( ) 1 2. (E.36)0 1From this result we can easily work out <strong>the</strong> monodromy matrix around a po<strong>in</strong>t whereany dyon <strong>of</strong> charge (m,n) becomes massless. If m and n are relatively prime, <strong>the</strong>re existan Sl(2,Z) matrix S such that (m,n) = S(0,1):( )( ) ( ) a bm n = S 0 1 , S = , such that an−bm = 1. (E.37)m nThe later equation <strong>in</strong> term <strong>of</strong> a and b is called Bezout’s identity, and it always has asolution. It follows that <strong>the</strong> monodromy matrix around <strong>the</strong> generic dyon is( )M (m,n) = S −1 1+2mn 2n2M (0,1) S =−2m 2 . (E.38)1−2nmThis result straightforwardly generalizes to a <strong>gauge</strong> group U(1) r and Sp(2r,Z)-valuedmonodromies.There is also a weak coupl<strong>in</strong>g monodromies at <strong>in</strong>f<strong>in</strong>ity on <strong>the</strong> moduli space, whichis not <strong>of</strong> this type. A path circl<strong>in</strong>g around <strong>in</strong>f<strong>in</strong>ity is homotopic to (m<strong>in</strong>us) <strong>the</strong> product<strong>of</strong> all <strong>the</strong> paths go<strong>in</strong>g once around a s<strong>in</strong>gle strong coupl<strong>in</strong>g s<strong>in</strong>gularity. Hence <strong>the</strong> weakcoupl<strong>in</strong>g monodromy at <strong>in</strong>f<strong>in</strong>ity can be found by tak<strong>in</strong>g <strong>the</strong> product <strong>of</strong> all <strong>the</strong> srongcoupl<strong>in</strong>g monodromies. More details can be found e.g. <strong>in</strong> [166].


E.4. Solution through <strong>the</strong> Seiberg-Witten curve 281(a) The x-plane with threebranch cuts (N = 3).(b) An artistic view <strong>of</strong> <strong>the</strong>curve.(c) The degenerate classicallimit.Figure E.1: A hyperelliptic curve <strong>of</strong> genus 2, correspond<strong>in</strong>g to a typical SU(3) vaccum. On <strong>the</strong>left hand side we show <strong>the</strong> x-plane with 2N = 6 s<strong>in</strong>gular po<strong>in</strong>ts, and a choice <strong>of</strong> branch cutsconnect<strong>in</strong>g <strong>the</strong> upper and lower sheet. The branch cuts correspond to <strong>the</strong> handles connect<strong>in</strong>g <strong>the</strong>twoRiemannsphereson<strong>the</strong>middlefigure. Therighthandsideisadegeneratecase, correspond<strong>in</strong>gto a classical limit, where <strong>the</strong> branch cuts have shrunk to double po<strong>in</strong>t s<strong>in</strong>gularities.E.4 Solution through <strong>the</strong> Seiberg-Witten curveSolv<strong>in</strong>g for <strong>the</strong> Wilsonian action <strong>of</strong> N = 2 SYM is equivalent to f<strong>in</strong>d<strong>in</strong>g <strong>the</strong> correctsection (φ D ,φ) which enters <strong>in</strong>to <strong>the</strong> metric (E.29) on <strong>the</strong> moduli space. This was doneby Seiberg and Witten [154] for SU(2), and fur<strong>the</strong>r generalized to SU(N) [165, 166], byus<strong>in</strong>g physical <strong>in</strong>sight as to which dyons might become massless at strong coupl<strong>in</strong>g. Thecorrespond<strong>in</strong>g monodromies gives enough <strong>in</strong>formation to f<strong>in</strong>d (φ D ,φ), <strong>in</strong> pr<strong>in</strong>ciple.Never<strong>the</strong>less, it is a very hard ma<strong>the</strong>matical problem. As <strong>of</strong>ten <strong>the</strong> case with <strong>the</strong>great achievements <strong>in</strong> ma<strong>the</strong>matical physics, some fur<strong>the</strong>r <strong>in</strong>sight could be obta<strong>in</strong>ed bygeometriz<strong>in</strong>g <strong>the</strong> problem. The key po<strong>in</strong>t is to notice that <strong>the</strong> coupl<strong>in</strong>g matrix τ ab , whichis positive def<strong>in</strong>ite and transforms under Sp(2N −2,Z), can be <strong>in</strong>terpreted as <strong>the</strong> periodmatrix <strong>of</strong> a Riemann surface <strong>of</strong> genus g = N − 1. Actually, <strong>the</strong> complex moduli space<strong>of</strong> a generic Riemann surface is too large. It turns out <strong>the</strong> special class <strong>of</strong> genus N −1Riemann surfaces described byy 2 =2N∏k=1(x−x (0)k )(E.39)have <strong>the</strong> right properties; here x (0)kare complex structure parameters. These Riemannsurfaces are called hyperelliptic curves. They are represented here as a double-sheetedcover <strong>of</strong> <strong>the</strong> Riemann sphere (with coord<strong>in</strong>ate x) with 2N branch po<strong>in</strong>ts; see Figure E.1for a graphical view.The Seiberg-Witten solution for any Coulomb branch vacuum z = z 0 is given <strong>in</strong>term <strong>of</strong> a particular hyperelliptic curve Σ(z 0 ), where <strong>the</strong> roots x (0)kare related to <strong>the</strong>coord<strong>in</strong>ates on <strong>the</strong> moduli space and to <strong>the</strong> strong coupl<strong>in</strong>g scale Λ. We also need aparticular meromorphic one-form λ ∈ H 1 (Σ(z 0 ),C). Then, <strong>the</strong> local value <strong>of</strong> <strong>the</strong> section(φ D ,φ) is given by ∮ ∮φ Da = λ,, φ b = λ, (E.40)α a β bwith (α a ,β b ) a symplectic basis <strong>of</strong> 1-cycles on <strong>the</strong> curve Σ. Of course, a change <strong>of</strong> basis


282 Appendix E. Seiberg-Witten <strong>the</strong>oryFigure E.2: Representations <strong>of</strong> <strong>the</strong> α and γ cycles <strong>of</strong> <strong>the</strong> genus N −1 curve.corresponds to a duality transformation on (φ D ,φ). Moreover, <strong>the</strong> monodronies on <strong>the</strong>moduli space beautifully translate to monodronies <strong>of</strong> <strong>the</strong> curve. A s<strong>in</strong>gularity on <strong>the</strong>moduli space associated to a massless dyon <strong>of</strong> charge (m,n) corresponds to <strong>the</strong> 1-cycleν = mα+nβ p<strong>in</strong>ch<strong>in</strong>g <strong>of</strong>f. The monodromy (<strong>in</strong> <strong>the</strong> complex moduli space <strong>of</strong> <strong>the</strong> curve)<strong>of</strong> any o<strong>the</strong>r 1-cycle γ = (h,q) around ν = (m,n) is given by a simple Picard-Lefschetzformula [334]M ν : γ −→ γ −2〈γ,ν〉ν,(E.41)with <strong>the</strong> <strong>in</strong>tersection number 〈γ,ν〉 = hn − qm. It automatically reproduces <strong>the</strong> monodromy(E.33)-(E.38).In this geometric language, <strong>the</strong> full solution we are look<strong>in</strong>g for is a family <strong>of</strong> ellipticcurves Σ(z) fibered over <strong>the</strong> quantum moduli space parametrized by <strong>the</strong> coord<strong>in</strong>ates z.For simplicity, let us just state <strong>the</strong> solution [165, 166, 159], and briefly argue that itis physically sensible. It is convenient to parametrize <strong>the</strong> Coulomb branch as <strong>in</strong> (E.6).However, it is important to keep <strong>in</strong> m<strong>in</strong>d that quantum mechanically we cannot identityϕ i with φ i . The SU(N) curve and <strong>the</strong> associated 1-form arey 2 = P(x) 2 +4Λ 2N , λ = 1 xN2πiy dP(x), with P(x) = ∏(x−ϕ i ). (E.42)At weak coupl<strong>in</strong>g, Λ ≪ ϕ i , ∀i, we have double po<strong>in</strong>t s<strong>in</strong>gularities, <strong>in</strong>stead <strong>of</strong> branch cuts.The Riemann surface it <strong>the</strong>n highly degenerate, as shown <strong>in</strong> Figure E.1(c), with all <strong>the</strong>β-cycles shr<strong>in</strong>k<strong>in</strong>g to zero. Moreover, when k different ϕ i co<strong>in</strong>cide, some k −1 α cycleswill shr<strong>in</strong>k too. This corresponds to <strong>the</strong> s<strong>in</strong>gularities on <strong>the</strong> classical moduli space dueto <strong>the</strong> presence <strong>of</strong> massless W-bosons, where <strong>the</strong> <strong>gauge</strong> group is only partially broken toSU(k)×U(1) N−k . Note that <strong>in</strong> <strong>the</strong> quantum moduli space, as described by this curve,<strong>the</strong>re is no such non-abelian po<strong>in</strong>t with <strong>in</strong>teract<strong>in</strong>g massless vector fields.It is <strong>in</strong>terest<strong>in</strong>g to check <strong>the</strong> decoupl<strong>in</strong>g limit from SU(N) to SU(N − 1). Supposeϕ N ≫ ϕ i≠N . Then we can factorize it from <strong>the</strong> curve, and consider <strong>the</strong> effective curvefor SU(N −1)i=1ỹ 2 =∏N−1i=1(x−ϕ i )+4˜Λ 2N−2 , with ˜Λ2N−2 = Λ2Nϕ 2 N. (E.43)This relation between <strong>the</strong> dynamical scales <strong>of</strong> SU(N) and SU(N−1) is <strong>the</strong> one expectedfrom <strong>the</strong> standard decoupl<strong>in</strong>g argument.Let us order <strong>the</strong> 2N branch po<strong>in</strong>ts x (0)k<strong>of</strong> (E.42) <strong>in</strong> some way. As long as ϕ i ≫ Λand that <strong>the</strong> ϕ i are well separated, <strong>the</strong> branch po<strong>in</strong>ts come <strong>in</strong> pairs <strong>of</strong> almost doublepo<strong>in</strong>t, so that it is natural to consider branch cuts between each pair x 0 2i−1 = ϕ i − ǫ,


E.5. SW curves for N = 2 SQCD with N f flavors 283x 0 2i = ϕ i + ǫ; this semi-classical understand<strong>in</strong>g was used to draw Figure E.1(b). Let uscall γ i <strong>the</strong> 1-cycle which circles around <strong>the</strong> almost double po<strong>in</strong>t at x = ϕ i (note that∑ Ni=1 γ i = 0). One can check that, <strong>in</strong> <strong>the</strong> classical limit,∮φ i = λ = 1γ i2πi∮xP ′ (x)γ iPdx+o(Λ) = ϕ i +o(Λ).(E.44)Let us call α a <strong>the</strong> 1-cycle which goes from x 0 2a+1 to x0 2a on <strong>the</strong> upper sheet, and back on<strong>the</strong> lower sheet, for a = 1,··· ,N −1. These cycles are represented <strong>in</strong> Figure E.2. Let usalso def<strong>in</strong>e <strong>the</strong> N −1 <strong>in</strong>dependent cyclesβ a = ∑ i≤aγ i . (E.45)These are <strong>the</strong> cycles appear<strong>in</strong>g <strong>in</strong> (E.40). One can check that 〈α a ,β b 〉 = δ ab .E.5 SW curves for N = 2 SQCD with N f flavorsConsider N = 2 SQCD, namely <strong>the</strong> SU(N) <strong>the</strong>ory coupled to N f hypermultiplets (flavors).In N = 1 notation, <strong>the</strong> hypermultiplets (Q, ˜Q † ) are coupled to <strong>the</strong> adjo<strong>in</strong>t chiralfield Φ through <strong>the</strong> superpotentialW = √ 2˜Q j ΦQ j + ∑ jm j ˜Qj Q j ,(E.46)with j = 1,··· ,N f . We allow for arbitrary N = 2 preserv<strong>in</strong>g masses for <strong>the</strong> hypermultiplets.The various branches <strong>of</strong> <strong>the</strong> moduli space <strong>of</strong> this <strong>the</strong>ory were studied <strong>in</strong> detail <strong>in</strong>[155]. We can dist<strong>in</strong>guish between <strong>the</strong> Higgs branches and <strong>the</strong> Coulomb branch. On <strong>the</strong>former <strong>the</strong> hypermultiplets get a VEV and <strong>the</strong> <strong>gauge</strong> group is fully broken. The classicalmetric on <strong>the</strong> Higgs branch is not renormalized <strong>in</strong> a N = 2 <strong>the</strong>ory. On <strong>the</strong> o<strong>the</strong>r hand<strong>the</strong> Coulomb branch looks classicaly similar to <strong>the</strong> one <strong>of</strong> <strong>the</strong> pure SU(N) SYM <strong>the</strong>ory,s<strong>in</strong>ce a generic non-zero VEV for Φ gives a mass to all <strong>the</strong> hypermultiplets. The crucialnew phenomenon can appear at places where <strong>the</strong> Coulomb branch meets a Higgs branch.In particular, <strong>the</strong> locus <strong>of</strong> <strong>in</strong>teresection can change non-perturbatively, giv<strong>in</strong>g rise to adual <strong>in</strong>terpretation <strong>of</strong> <strong>the</strong> low energy physics. We review <strong>the</strong> relevant such facts when weneed <strong>the</strong>n <strong>in</strong> Chapter 6.In <strong>the</strong> case <strong>of</strong> non-zero masses m j , <strong>the</strong> non-perturbative central charge formula becomes[80]Z = h a φ a D +q a φ a +n j m j ,(E.47)where n j is <strong>the</strong> charge under <strong>the</strong> U(1) flavor symmetry act<strong>in</strong>g on <strong>the</strong> hypermultiplet <strong>of</strong>mass m j . The duality group leav<strong>in</strong>g Z <strong>in</strong>variant is a larger group Sl(2,2N −2,Z)⋉Z N f,so that <strong>the</strong> fields (a D ,a) characteriz<strong>in</strong>g <strong>the</strong> Coulomb branch are a section <strong>of</strong> a morecomplicated bundle. We are mostly <strong>in</strong>terested <strong>in</strong> <strong>the</strong> case m j = 0 anyway. The Seiberg-Witten curve for N = 2 SQCD with N f < 2N is [80, 169, 171]N∏ fN∏y 2 = P(x) 2 +4Λ 2N−N f(x+m j ), , with P(x) = (x−ϕ i ).j=1i=1(E.48)


284 Appendix E. Seiberg-Witten <strong>the</strong>oryFor N f > 2N <strong>the</strong> <strong>the</strong>ory is IR free, and <strong>the</strong> description <strong>in</strong> term <strong>of</strong> <strong>the</strong> curve (E.48)breaks down above some scale <strong>of</strong> order Λ. The case N f = 2N is special, because <strong>the</strong>exact beta function identically vanishes and <strong>the</strong> <strong>the</strong>ory is conformal. The determ<strong>in</strong>ation<strong>of</strong> <strong>the</strong> Seiberg-Witten curve <strong>in</strong> that case [80, 169] is a ra<strong>the</strong>r subtle issue, related to <strong>the</strong>possibility <strong>of</strong> hav<strong>in</strong>g a S-duality <strong>in</strong>variant <strong>the</strong>ory (similarly to N = 4 SYM). We remarkthat <strong>the</strong> SW curve for <strong>the</strong> N f = 2N elliptic quiver <strong>of</strong> Chapter 6might be better motivatedthan <strong>the</strong> similar curve <strong>in</strong> <strong>the</strong> usual N f = 2N c <strong>the</strong>ory, due to <strong>the</strong> clearer str<strong>in</strong>g <strong>the</strong>oryembedd<strong>in</strong>g <strong>of</strong> <strong>the</strong> elliptic quiver.E.6 SW curves from M-<strong>the</strong>oryA supris<strong>in</strong>gly simple relationship between <strong>the</strong> Seiberg-Witten <strong>the</strong>ory approach to N =2 <strong>gauge</strong> <strong>the</strong>ories on <strong>the</strong> one hand and str<strong>in</strong>g <strong>the</strong>ory/M-<strong>the</strong>ory on <strong>the</strong> o<strong>the</strong>r hand wasuncovered by Witten [157] us<strong>in</strong>g <strong>the</strong> type IIA/M-<strong>the</strong>ory duality. Consider two paralleltype IIA NS5-<strong>branes</strong> separated by a distance L = ∆x 6 <strong>in</strong> <strong>the</strong> x 6 direction, and a bunch<strong>of</strong> N D4-<strong>branes</strong> stretch<strong>in</strong>g between <strong>the</strong>m:0 1 2 3 4 5 6 7 8 9NS5 ◦ ◦ ◦ ◦ ◦ ◦NS5’ ◦ ◦ ◦ ◦ ◦ ◦D4 ◦ ◦ ◦ ◦ ◦(E.49)This setup brane-eng<strong>in</strong>eers N = 2 U(N) SYM. The boundary condition for <strong>the</strong> D4-braneend<strong>in</strong>g on <strong>the</strong> NS5-brane sets to zero <strong>the</strong> A 6 component <strong>of</strong> <strong>the</strong> <strong>gauge</strong> field 5 , as well as<strong>the</strong> scalar fields correspond<strong>in</strong>g to x 7 ,x 8 ,x 9 . At energies smaller than 1/L, <strong>the</strong> low energy<strong>the</strong>ory is four dimensional N = 2 SYM. The complex scalar <strong>in</strong> <strong>the</strong> N = 2 multipletcorresponds to motion <strong>of</strong> <strong>the</strong> D4-<strong>branes</strong> along <strong>the</strong> NS5-<strong>branes</strong>, <strong>in</strong> <strong>the</strong> v = x 4 + ix 5direction. The <strong>gauge</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> low energy <strong>the</strong>ory is8π 2g 2 = ∆x6 √α ′ g s.(E.50)The perturbative beta function for g can be accounted for by <strong>the</strong> bend<strong>in</strong>g <strong>of</strong> <strong>the</strong> NS5-<strong>branes</strong> due to <strong>the</strong> D4-<strong>branes</strong> tension: <strong>the</strong> D4-brane sources <strong>the</strong> field responsible for <strong>the</strong> x 6pr<strong>of</strong>ile <strong>of</strong> each NS5-brane. The logv solution <strong>of</strong> <strong>the</strong> result<strong>in</strong>g Laplace equation reproduces<strong>the</strong> perturbative runn<strong>in</strong>g <strong>of</strong> g [157], because <strong>the</strong> radius |v| can be related to <strong>the</strong> VEV <strong>of</strong>a (probe) eigenvalue <strong>of</strong> <strong>the</strong> adjo<strong>in</strong>t field, which is <strong>in</strong> turn related to <strong>the</strong> RG scale <strong>in</strong> aN = 2 <strong>the</strong>ory.The crucial observation is that <strong>the</strong> non-perturbative corrections to <strong>the</strong> low energy<strong>the</strong>ory can be captured by uplift<strong>in</strong>g <strong>the</strong> IIA setup to M-<strong>the</strong>ory. This means that wetake R 10 = √ α ′ g s large. We want to do that while keep<strong>in</strong>g <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>g fixed,so we rescale <strong>the</strong> distance L to be large too. Remark that this limit R 10 ,L → ∞ seemsopposite to <strong>the</strong> field <strong>the</strong>ory limit. However, what makes it useful is that we have N = 2supersymmetry, <strong>in</strong> which case <strong>the</strong> LEEA only depends on holomorphic quantities. InM-<strong>the</strong>ory, <strong>the</strong> IIA five<strong>branes</strong> and D4-<strong>branes</strong> all lift to a s<strong>in</strong>gle smooth M5-brane. The5 It follows by T-duality from <strong>the</strong> type IIB setup <strong>of</strong> [54].


E.7. Effective field <strong>the</strong>ory approach to <strong>the</strong> cascad<strong>in</strong>g SW curve 285M5-brane seen as an algebraic curve can be identified with <strong>the</strong> Seiberg-Witten curve <strong>of</strong><strong>the</strong> SYM <strong>the</strong>ory! As an illustration, consider Figure E.1: Fig. E.1(c) can be seen as<strong>the</strong> type IIA description, where <strong>the</strong> l<strong>in</strong>es stand for <strong>the</strong> D4-<strong>branes</strong> stretch<strong>in</strong>g between <strong>the</strong>two NS5-<strong>branes</strong>; Fig. E.1(b) can be <strong>in</strong>terpreted as a smooth M5-brane. We see that <strong>the</strong>D4-<strong>branes</strong> ticken <strong>in</strong>to “tubes” as we <strong>in</strong>crease g s .Def<strong>in</strong>e <strong>the</strong> complex coord<strong>in</strong>atesu = i x6 +ix 1 02πR 10, t = e 2πiu . (E.51)The M5-brane embedd<strong>in</strong>g is described <strong>in</strong> term <strong>of</strong> an equation F(v,t). At fixed v, <strong>the</strong>roots <strong>of</strong> F(t,v) = 0 give <strong>the</strong> t positions <strong>of</strong> <strong>the</strong> NS5-<strong>branes</strong>; s<strong>in</strong>ce we have two NS5-<strong>branes</strong>,F(t,v) is quadratic <strong>in</strong> t. If we fix a value <strong>of</strong> t “<strong>in</strong> between” <strong>the</strong> two NS5-<strong>branes</strong>, <strong>the</strong> roots<strong>of</strong> F would classically correspond to positions <strong>of</strong> D4-<strong>branes</strong> on <strong>the</strong> v-plane. There are ND4-<strong>branes</strong> so F is <strong>of</strong> degree N <strong>in</strong> v. The M5-brane curve F = 0 is <strong>of</strong> <strong>the</strong> form [157]A(v)t 2 +B(v)t+C(v) = 0.(E.52)In our example, we actually have A = −C = 1, and <strong>the</strong> roots <strong>of</strong> B are <strong>the</strong> positions<strong>of</strong> <strong>the</strong> D4-<strong>branes</strong> <strong>in</strong> <strong>the</strong> classical setup. We can identify this curve with (E.42) by <strong>the</strong>identifications(x = v, y = 2Λ N t+ B ), P = Λ N B. (E.53)2We can similarly <strong>in</strong>clude flavors, <strong>in</strong> <strong>the</strong> form <strong>of</strong> semi-<strong>in</strong>f<strong>in</strong>ite D4-<strong>branes</strong> end<strong>in</strong>g on <strong>the</strong>left hand side NS5-brane from <strong>the</strong> left or on <strong>the</strong> right hand side one from <strong>the</strong> right.The position <strong>of</strong> such semi-<strong>in</strong>f<strong>in</strong>ite D4-<strong>branes</strong> (correspond<strong>in</strong>g to hypermultiplet masses) isencoded <strong>in</strong> <strong>the</strong> roots <strong>of</strong> A(v) and B(v) <strong>in</strong> (E.52).In Chapter 6 we study a so-called elliptic model: we put two NS5-<strong>branes</strong> on a compactcircle <strong>in</strong> <strong>the</strong> x 6 -direction, toge<strong>the</strong>r with D4-<strong>branes</strong> wrapp<strong>in</strong>g <strong>the</strong> circle. The M-<strong>the</strong>oryuplift <strong>of</strong> that configuration [157, 168] is discussed <strong>in</strong> that chapter.E.7 Effective field <strong>the</strong>ory approach to <strong>the</strong> cascad<strong>in</strong>g SWcurveLet us check <strong>the</strong> statements <strong>of</strong> section 6.4.2 <strong>in</strong> Chapter 6 concern<strong>in</strong>g <strong>the</strong> RG flow and<strong>the</strong> double po<strong>in</strong>ts (6.39)-(6.40), us<strong>in</strong>g an effective field <strong>the</strong>ory approach for <strong>the</strong> Seiberg-Witten curve between two strong coupl<strong>in</strong>g transitions. Def<strong>in</strong><strong>in</strong>g ξ ≡ v M and α ≡ z M 0 , wehave <strong>the</strong> follow<strong>in</strong>g Seiberg-Witten curve,ξ ∏ h−1j=0 (ξ2 +q 1 2 +2j α 2 )(ξ −α) ∏ h−1j=0 (ξ2 +q 3 2 +2j α 2 ) = g(t|q) = q 1 14 (t+t )+O(q 5 4 )(E.54)Now, def<strong>in</strong><strong>in</strong>g Λ 2Mjwhere, at small q,≡ q j+1 2z 2M0 , we can look at <strong>the</strong> curve <strong>in</strong> <strong>the</strong> range Λ 2n < v < Λ 2n−1 ,R1S ≈ −q 4(ξ 2 +Λ 2M2n )Λ M 2n ξ = g(t,q) ≈ q 1 14 (t+t ),(E.55)


286 Appendix E. Seiberg-Witten <strong>the</strong>orywhich givesξΛ M 2nt 2 +(ξ 2 +Λ 2M2n )t+ξΛ M 2n = 0,(E.56)This is a SW curve for a SU(2M) <strong>gauge</strong> group with 2M massless flavors [157], at <strong>the</strong>baryonicroot(henceithasexactdoublepo<strong>in</strong>ts). Extract<strong>in</strong>g<strong>the</strong>rootsfort(andneglect<strong>in</strong>gΛ n /v because <strong>of</strong> large M), one f<strong>in</strong>dsu 1 = −u 2 = − M ( ) v2πi log e −2πik 2MΛ 2n= − M 2πi log vΛ 2n+ 1 2 k,(E.57)where k = 0,1. We see that at v = Λ 2n , u 1 = u 2 = 0, 1 2(that is, <strong>the</strong> two NS5’s <strong>in</strong>tersect atx 6 = 0, but <strong>in</strong> fact <strong>the</strong> correspond<strong>in</strong>g M5 brane also self-<strong>in</strong>tersects at two dist<strong>in</strong>ct po<strong>in</strong>tson <strong>the</strong> torus). S<strong>in</strong>ce τ 1 = u 2 −u 1 = τ −τ 2 , we have reproduced <strong>the</strong> correct perturbativerunn<strong>in</strong>g <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs. Also notice that this effective field <strong>the</strong>ory for <strong>the</strong> firstnode is valid only up to v = Λ 2n−1 , where accord<strong>in</strong>g to (E.57) u 1 = u 2 = τ 2 , τ 2 + 1 2 (thatis when <strong>the</strong> coupl<strong>in</strong>g <strong>of</strong> <strong>the</strong> second <strong>gauge</strong> group hits a Landau pole).One can perform <strong>the</strong> same analysis for <strong>the</strong> second <strong>gauge</strong> group, i.e. for <strong>the</strong> doublepo<strong>in</strong>ts at u = τ 2 , τ 2 + 1 2, obta<strong>in</strong><strong>in</strong>g (6.40).


Appendix FThe conifold and a Z 2 orbifold<strong>the</strong>re<strong>of</strong>F.1 Generalities on <strong>the</strong> conifold geometryThe s<strong>in</strong>gular conifold C 0 can be def<strong>in</strong>ed as an aff<strong>in</strong>e variety <strong>in</strong> C 4 ∼ = {z 1 ,z 2 ,z 3 ,z 4 },z 1 z 2 −z 3 z 4 = 0 .(F.1)By a l<strong>in</strong>ear change <strong>of</strong> coord<strong>in</strong>ates, this can also be written as: w1 2 +w2 2 +w2 3 +w2 4 = 0.The conifold is a CY cone, whose base is a Sasaki-E<strong>in</strong>ste<strong>in</strong> manifold called T 1,1 [104].The latter is described algebraically by <strong>the</strong> <strong>in</strong>tersection <strong>of</strong> <strong>the</strong> cone with a unit sphere <strong>in</strong>C 4 ∑: 4i=1 |w i| 2 = 1. In terms <strong>of</strong> real coord<strong>in</strong>ates, w i = x i + iy i , one gets ⃗x · ⃗x = 1/2,⃗y · ⃗y = 1/2, ⃗x · ⃗y = 0, which can be seen as an S 2 fibration over S 3 . However such afibration is trivial 1 , so that topologically T 1,1 ∼ = S 2 ×S 3 . The follow<strong>in</strong>g coord<strong>in</strong>ate systemon <strong>the</strong> cone will be useful 2 z 1 = r 3/2 e i 2 (ψ+φ 1+φ 2 ) s<strong>in</strong> θ 12 s<strong>in</strong> θ 22 , (F.2)z 2 = r 3/2 e i 2 (ψ−φ 1−φ 2 ) cos θ 12 cos θ 22 , (F.3)z 3 = r 3/2 e i 2 (ψ−φ 1+φ 2 ) cos θ 12 s<strong>in</strong> θ 22 , (F.4)z 4 = r 3/2 e i 2 (ψ+φ 1−φ 2 ) s<strong>in</strong> θ 12 cos θ 22 . (F.5)Here, 0 ≤ ψ ≤ 4π , 0 ≤ φ i ≤ 2π , 0 ≤ θ i ≤ π, and we have <strong>the</strong> follow<strong>in</strong>g angularperiodicities⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ψ ψ +4π ψ +2π ψ +2π⎝φ 1⎠ ≃ ⎝ φ 1⎠ ≃ ⎝φ 1 +2π⎠ ≃ ⎝ φ 1⎠ . (F.6)φ 2 φ 2 φ 2 φ 2 +2π1 WecancoverS 3 withtwopatches, <strong>in</strong>tersect<strong>in</strong>gat<strong>the</strong>equator. Thebundleisconstructedbyspecify<strong>in</strong>ga transition function on this equator (itself an S 2 ), which is a map from S 2 to SO(3), <strong>the</strong> structure group<strong>of</strong> <strong>the</strong> fiber. Such maps are always trivial (π 2(SO(3)) = 0), so <strong>the</strong> bundle is trivial.2 Remark that we differ from <strong>the</strong> conventions <strong>of</strong> [118] by a flip <strong>in</strong> <strong>the</strong> orientation <strong>of</strong> <strong>the</strong> angles φ i.287


288 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong>In <strong>the</strong>se coord<strong>in</strong>ates, <strong>the</strong> Calabi-Yau metric reads: ds 2 C 0= dr 2 +r 2 ds 2 T 1,1 , with <strong>the</strong>Sasaki-E<strong>in</strong>ste<strong>in</strong> metric <strong>of</strong> T 1,1ds 2 T 1,1 = ∑i=1,21( dθ26 i +s<strong>in</strong> 2 θ i dφ 2 1( ∑ ) 2i)+ dψ − cosθ i dφ i .9i=1,1(F.7)It describes a circle bundle, where <strong>the</strong> circle ψ is fibered over S 2 × S 2 . In terms <strong>of</strong> <strong>the</strong>natural vielbe<strong>in</strong> for <strong>the</strong> two 2-spheres, u i = dθ i , v i = s<strong>in</strong>θ i dφ i (i = 1,2), it is useful todef<strong>in</strong>e rotated vielbe<strong>in</strong> for <strong>the</strong> 2-spheres [335](σ1)=σ 2( cosψ2−s<strong>in</strong> ψ )( )2 u1s<strong>in</strong> ψ 2cos ψ v2 1(Σ1)=Σ 2( cosψ2−s<strong>in</strong> ψ )( )2 u2s<strong>in</strong> ψ 2cos ψ v2 2. (F.8)Let us also def<strong>in</strong>e ζ = dψ − ∑ i=1,2 cosθ idφ i . For <strong>the</strong> s<strong>in</strong>gular conifold, we will use <strong>the</strong>follow<strong>in</strong>g ordered vielbe<strong>in</strong>{e r = dr, e ψ = r 3 ζ, e1 = √ r σ 1 , e 2 = √ r σ 2 , e 3 = √ r Σ 1 , e 4 = r }√ Σ 2 . (F.9)6 6 6 6The metric <strong>of</strong> <strong>the</strong> conifold <strong>the</strong>n reads ds 2 C 0= ∑ 6n=1 (en ) 2 , and <strong>the</strong> volume form isdvol C0 = e r ∧e ψ ∧e 1 ∧e 2 ∧e 3 ∧e 4 = 1108 r5 dr∧dψ∧dθ 1 ∧s<strong>in</strong>θ 1 dφ 1 ∧dθ 2 ∧s<strong>in</strong>θ 2 dφ 2 . (F.10)A complex vielbe<strong>in</strong> can be def<strong>in</strong>ed as{E 1 = e 1 +ie 2 , E 2 = e 3 +ie 4 , E 3 = e r +ie ψ} .In terms <strong>of</strong> this complex structure, <strong>the</strong> Kähler form isJ ≡ i 2(E 1 ∧E 1 +E 2 ∧E 2 +E 3 ∧E 3 )( ) r2= d6 ζ(F.11), (F.12)which is (1,1), closed and satisfies J ∧J ∧J = 6dvol C0 . It is exact, s<strong>in</strong>ce we are at <strong>the</strong>zero resolution po<strong>in</strong>t <strong>in</strong> Kähler moduli space where <strong>the</strong> cohomology class <strong>of</strong> J is trivial.The holomorphic top form isΩ (3,0) ≡ E 1 ∧E 2 ∧E 3 = − 4 9dz 1 ∧dz 2 ∧dz 3z 3. (F.13)Let us now review 2- and 3-(co)cycles for <strong>the</strong> conifold. We have <strong>the</strong> closed (1,1)-formω CF2 ≡ 3i2r 2 (E 1 ∧E 1 −E 2 ∧E 2 )= 1 2 (σ 1 ∧σ 2 −Σ 1 ∧Σ 2 ) == 1 2 (s<strong>in</strong>θ 1dθ 1 ∧dφ 1 −s<strong>in</strong>θ 2 dθ 2 ∧dφ 2 ) .The 2-cycle <strong>in</strong> T 1,1 is topologically a 2-sphere C CF . It can be represented by(F.14)C CF : θ 1 = θ 2 ≡ θ , φ 1 = 2π −φ 2 ≡ φ , ψ = 0 , φ ∈ [0,2π), θ ∈ (0,π) .(F.15)


F.2. The orbifolded conifold geometry 289It turns out that ∫ C CFω CF2 = 4π. In addition, one usually def<strong>in</strong>es <strong>the</strong> real closed 3-formω CF3 ≡ ζ ∧ω CF2 , (F.16)which is <strong>the</strong> real part <strong>of</strong> <strong>the</strong> imag<strong>in</strong>ary-self-dual (ISD) primitive (2,1)-formω (2,1) ≡ 9) (2r 3E3 ∧(E 1 ∧E 1 −E 2 ∧E 2 = ζ −3i dr )∧ω2 CF , (F.17)rdef<strong>in</strong>ed on <strong>the</strong> whole conifold. Imag<strong>in</strong>ary self-duality means that ∗ 6 ω (2,1) = iω (2,1) . The3-cycle <strong>in</strong> T 1,1 has <strong>the</strong> topology <strong>of</strong> a 3-sphere. We call it A CF . It can be represented byIts orientation is such that ∫ A CFω CF3 = 8π 2 .F.2 The orbifolded conifold geometryA CF : θ 2 = φ 2 = 0 . (F.18)In this appendix, we derive <strong>the</strong> results presented <strong>in</strong> section 7.2 concern<strong>in</strong>g <strong>the</strong> relationbetween<strong>the</strong>ranks<strong>in</strong><strong>the</strong>quiver, <strong>the</strong>cycleswrappedby<strong>the</strong>different<strong>fractional</strong><strong>branes</strong>, and<strong>the</strong> fluxes present <strong>in</strong> <strong>the</strong> super<strong>gravity</strong> solution. In order to do this, we need first to discuss<strong>in</strong> detail <strong>the</strong> compact 2-cycles <strong>of</strong> <strong>the</strong> geometry, on which <strong>the</strong> <strong>branes</strong> can wrap. Then wediscuss <strong>the</strong> compact 3-cycles <strong>of</strong> <strong>the</strong> geometry, which support <strong>the</strong> RR fluxes sourced by<strong>the</strong> <strong>branes</strong>, and <strong>the</strong>ir <strong>in</strong>tersections with <strong>the</strong> 2-cycles (<strong>in</strong> <strong>the</strong> base <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular cone).This will allow us to write <strong>the</strong> 3-form fluxes directly <strong>in</strong> terms <strong>of</strong> <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> <strong>gauge</strong>groups <strong>in</strong> <strong>the</strong> quiver.The CY s<strong>in</strong>gularity on which our <strong>gauge</strong> <strong>the</strong>ory is eng<strong>in</strong>eered is a non-chiral Z 2 orbifold<strong>of</strong> <strong>the</strong> conifold (F.1), obta<strong>in</strong>ed consider<strong>in</strong>g <strong>the</strong> follow<strong>in</strong>g action on <strong>the</strong> coord<strong>in</strong>ates z i <strong>in</strong>C 4 Θ : (z 1 ,z 2 ,z 3 ,z 4 ) → (z 1 ,z 2 ,−z 3 ,−z 4 ) . (F.19)The orbifold geometry is still an algebraic variety. To describe it one can <strong>in</strong>troduce acomplete set <strong>of</strong> <strong>in</strong>variants: x ≡ z3 2, y ≡ z2 4 and t ≡ z 3z 4 , which satisfy <strong>the</strong> constra<strong>in</strong>txy = t 2 . The conifold equation is rewritten as t = z 1 z 2 so that t can be elim<strong>in</strong>ated andwe are left withf = (z 1 z 2 ) 2 −xy = 0 .(F.20)The s<strong>in</strong>gular locus f = df = 0 consists <strong>of</strong> two complex l<strong>in</strong>es that meet at <strong>the</strong> tip <strong>of</strong> <strong>the</strong>geometry {z 1 = z 2 = x = y = 0}, and corresponds to <strong>the</strong> fixed po<strong>in</strong>t locus <strong>of</strong> <strong>the</strong> orbifoldaction Θ.One can use real coord<strong>in</strong>ates as well, those already def<strong>in</strong>ed <strong>in</strong> appendix F.1. Theorbifold action (F.19), which is an identification <strong>in</strong> <strong>the</strong> cover<strong>in</strong>g space, where we willwork, readsΘ : (φ 1 ,φ 2 ) → (φ 1 −π,φ 2 +π) . (F.21)The two complex l<strong>in</strong>es, that we call <strong>the</strong> p and q l<strong>in</strong>e respectively, are def<strong>in</strong>ed, <strong>in</strong> complexand real coord<strong>in</strong>ates, asp = {z 1 = x = y = 0, ∀z 2 } = {θ 1 = θ 2 = 0, ∀r,ψ ′ }q = {z 2 = x = y = 0, ∀z 1 } = {θ 1 = θ 2 = π, ∀r,ψ ′′ } ,(F.22)(F.23)


290 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong>where ψ ′ = ψ − φ 1 − φ 2 and ψ ′′ = ψ + φ 1 + φ 2 are (well def<strong>in</strong>ed) angular coord<strong>in</strong>atesalong <strong>the</strong> s<strong>in</strong>gularity l<strong>in</strong>es. In a neighborhood <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular l<strong>in</strong>es (and outside <strong>the</strong> tip)<strong>the</strong> geometry looks locally like <strong>the</strong> A 1 -s<strong>in</strong>gularity C×C 2 /Z 2 . The fixed po<strong>in</strong>t curve p sitsat <strong>the</strong> north poles <strong>of</strong> both S 2 ’s while <strong>the</strong> curve q sits at <strong>the</strong> south poles.2-cycles and resolutionsFrom <strong>the</strong> above analysis it follows that <strong>the</strong> s<strong>in</strong>gular geometry has three vanish<strong>in</strong>g2-cycles.Two <strong>of</strong> <strong>the</strong>se three cycles arise due to <strong>the</strong> orbifold action; such exceptional 2-cycles arelocated all along <strong>the</strong> C 2 /Z 2 s<strong>in</strong>gular l<strong>in</strong>es p and q (F.22), and we call <strong>the</strong>m C 2 and C 4 ,respectively. Locally, one could resolve <strong>the</strong> space <strong>in</strong>to an ALE space fibered over C ∗ . Thethird relevant 2-cycle descends from <strong>the</strong> 2-cycle <strong>of</strong> <strong>the</strong> double cover<strong>in</strong>g conifold geometry,whose base T 1,1 is topologically S 2 ×S 3 .Our goal <strong>in</strong> what follows is to p<strong>in</strong>po<strong>in</strong>t <strong>the</strong> precise map between vanish<strong>in</strong>g 2-cycles,wrapped D5-<strong>branes</strong>, 3-form RR fluxes and quiver rank assignments. To this end, itwill prove useful to take advantage <strong>of</strong> our CY cone be<strong>in</strong>g a toric variety 3 , s<strong>in</strong>ce <strong>in</strong> thiscase one can use standard techniques to understand <strong>the</strong> structure <strong>of</strong> 2-cycles and <strong>the</strong>ir<strong>in</strong>tersections. Let us sketch how this comes about.A toric variety can be described as <strong>the</strong> moduli space <strong>of</strong> an associated supersymmetric<strong>gauge</strong>d l<strong>in</strong>ear σ-model (GLSM). Consider n chiral superfields t i , i = 1...n charged undera product <strong>of</strong> abelian <strong>gauge</strong> groups U(1) s , with charges Qa i , a = 1...s. In <strong>the</strong> absence <strong>of</strong>a superpotential, <strong>the</strong> potential for <strong>the</strong> scalar components isV(t i ) =s∑ ( n∑ ) 2Qa i |t i | 2 −ξ a .a=1i=1(F.24)where ξ a are Fayet-Iliopoulos parameters (FI). The moduli space <strong>of</strong> vacua M is given by<strong>the</strong> D-flatness equations modulo U(1) s <strong>gauge</strong> transformations∣M ={t i ∈ C n ∣∣n∑}/Qa i |t i | 2 = ξ a ∀a = 1,...,s U(1) s ,i=1(F.25)where U(1) s acts as t i → e iQ a i φ a t i . When <strong>the</strong> FI’s are such that dimM = n−s, M is<strong>the</strong> desired toric variety (and n−s = r is just <strong>the</strong> number <strong>of</strong> isometry abelian factors).Putt<strong>in</strong>g <strong>the</strong> FI’s to zero <strong>the</strong> variety, if admissible, is scale <strong>in</strong>variant: this corresponds toa cone. As <strong>the</strong> FI’s change, <strong>the</strong> Kähler moduli <strong>of</strong> M also change and one gets resolutionsor blow-ups. Generically, different regions <strong>in</strong> <strong>the</strong> parameter space <strong>of</strong> <strong>the</strong> FI parameterscorrespond to different resolutions, delimited by flop transition curves.In our case <strong>the</strong> GLSM has six fields t i whose charges Qa i are reported <strong>in</strong> <strong>the</strong> tablebelowt 1 t 2 t 3 t 4 t 5 t 60 0 1 −2 1 0 ξ 2(F.26)1 −1 0 1 −1 0 ξ β−2 1 0 0 0 1 ξ 43 A toric manifold is a manifold <strong>of</strong> complex dimension r which admits an isometry group (at least asbig as) U(1) r . A toric CY threefold is <strong>the</strong>n a CY threefold whose isometry group is at least U(1) 3 . For arecent <strong>in</strong>troduction, see e.g. [288].


F.2. The orbifolded conifold geometry 291Figure F.1: The toric diagram and <strong>the</strong> dual (p,q)-web. The specific toric diagram triangulationis <strong>the</strong> one related to hav<strong>in</strong>g all ξ a > 0 <strong>in</strong> <strong>the</strong> associated GLSM.We can parameterize <strong>the</strong> toric variety with <strong>the</strong> <strong>gauge</strong> <strong>in</strong>variantst 3 t 4 t 5 = z 1 t 1 t 2 t 6 = z 2 t 1 t 2 2t 2 3t 4 = x t 1 t 4 t 2 5t 2 6 = y (F.27)which, consistently, satisfy <strong>the</strong> def<strong>in</strong><strong>in</strong>g equation (F.20). We can also give a parametrizationfor <strong>the</strong> so-called toric divisors, which are <strong>the</strong> four-dimensional hypersurfaces <strong>in</strong> <strong>the</strong>toric CY def<strong>in</strong>ed by D i = {t i = 0}. We recognize D 4 = {z 1 = x = y = 0} as <strong>the</strong> p l<strong>in</strong>eand D 1 = {z 2 = x = y = 0} as <strong>the</strong> q-l<strong>in</strong>e.The toric diagram and <strong>the</strong> related (p,q)-web correspond<strong>in</strong>g to choos<strong>in</strong>g all ξ a > 0(which amounts to a given triangulation <strong>of</strong> <strong>the</strong> toric diagram) are depicted <strong>in</strong> FigureF.1. For <strong>the</strong> particular resolution correspond<strong>in</strong>g to ξ 2 ,ξ β ,ξ 4 > 0 <strong>the</strong> three holomorphic2-cycles can be directly read from <strong>the</strong> (p,q)-web. They can be explicitly constructed as<strong>in</strong>tersections <strong>of</strong> toric divisorsC 2 = D 2 ·D 4 C β = D 2 ·D 5 C 4 = D 1 ·D 5 . (F.28)This can be explicitly checked us<strong>in</strong>g D-term equations, which for <strong>the</strong> <strong>in</strong>tersections <strong>of</strong><strong>in</strong>terest areD 2 D 4 : |t 3 | 2 +|t 5 | 2 = ξ 2 |t 6 | 2 = 2|t 1 | 2 +ξ 4 |t 1 | 2 = |t 5 | 2 +ξ β (F.29)D 2 D 5 : |t 4 | 2 +|t 1 | 2 = ξ β |t 3 | 2 = 2|t 4 | 2 +ξ 2 |t 6 | 2 = 2|t 1 | 2 +ξ 4 (F.30)D 1 D 5 : |t 2 | 2 +|t 6 | 2 = ξ 4 |t 3 | 2 = 2|t 4 | 2 +ξ 2 |t 4 | 2 = |t 2 | 2 +ξ β . (F.31)As one can see, each C i topologically is a CP 1 (parameterized by <strong>the</strong> first two variables<strong>in</strong> each row) <strong>of</strong> volume ξ i .Let us consider also ano<strong>the</strong>r basis <strong>of</strong> 2-cycles, which arises <strong>in</strong> a different resolution<strong>of</strong> <strong>the</strong> s<strong>in</strong>gular conical geometry (correspond<strong>in</strong>g to a different triangulation <strong>of</strong> <strong>the</strong> toricdiagram). Consider <strong>the</strong>region<strong>in</strong><strong>the</strong>space<strong>of</strong>FIparameterswhereξ β < 0with ξ 2 +ξ β > 0and ξ 4 +ξ β > 0. We can <strong>in</strong>troduceξ 1 = ξ 4 +ξ β > 0 ξ 3 = ξ 2 +ξ β > 0 ξ α = −ξ β > 0 . (F.32)This new resolution can be obta<strong>in</strong>ed from <strong>the</strong> one <strong>in</strong> Figure F.1 with a flop transitionon C β ↔ C α . The toric diagram triangulation and <strong>the</strong> correspond<strong>in</strong>g dual (p,q)-web for<strong>the</strong> new geometry are sketched <strong>in</strong> Figure F.2. In order to have a nice presentation <strong>of</strong> <strong>the</strong>


292 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong>Figure F.2: The toric diagram and <strong>the</strong> dual (p,q)-web <strong>in</strong> <strong>the</strong> region <strong>of</strong> <strong>the</strong> FI parameter spacewhere ξ β < 0.GLSM charges <strong>in</strong> terms <strong>of</strong> <strong>the</strong> new positive FI’s, we can l<strong>in</strong>early re-shuffle Table (F.26)gett<strong>in</strong>gt 1 t 2 t 3 t 4 t 5 t 6−1 0 0 1 −1 1 ξ 1(F.33)−1 1 0 −1 1 0 ξ α1 −1 1 −1 0 0 ξ 3Repeat<strong>in</strong>g <strong>the</strong> same analysis as before one f<strong>in</strong>ds <strong>the</strong> holomorphic 4 2-cycles <strong>in</strong> this newresolution <strong>in</strong> terms <strong>of</strong> toric divisorsC 3 = D 2 ·D 4 C α = D 1 ·D 4 C 1 = D 1 ·D 5 . (F.34)Aga<strong>in</strong> <strong>the</strong> FI parameters are <strong>the</strong> positive volumes <strong>of</strong> <strong>the</strong> correspond<strong>in</strong>g 2-cycles C i . From<strong>the</strong> relations among FI parameters we read <strong>the</strong> relationsC 1 = C 4 +C β C 3 = C 2 +C β , (F.35)which can be thought <strong>of</strong> as relations <strong>in</strong> homology between vanish<strong>in</strong>g cycles.A comment is <strong>in</strong> order at this po<strong>in</strong>t. In this non-chiral case, vanish<strong>in</strong>g 2-cycles are<strong>in</strong> one-to-one <strong>correspondence</strong> with possible <strong>fractional</strong> <strong>branes</strong>. All <strong>the</strong> divisors are noncompact 4-cycles. This implies that all dual 2-cycles support non-anomalous <strong>fractional</strong><strong>branes</strong>. This does not hold <strong>in</strong> general, as only 2-cycles dual to non-compact 4-cycles giveanomaly-free <strong>fractional</strong> <strong>branes</strong>, <strong>the</strong>ir number be<strong>in</strong>g equal to <strong>the</strong> number <strong>of</strong> 3-cycles <strong>in</strong> <strong>the</strong>real base <strong>of</strong> <strong>the</strong> CY cone (which <strong>in</strong> turn corresponds to <strong>the</strong> number <strong>of</strong> baryonic charges).This is <strong>the</strong> geometric counterpart <strong>of</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory be<strong>in</strong>g non-chiral. Conversely,chiral <strong>the</strong>ories are related to CY cones where <strong>the</strong>re are compact 4-cycles around. Thelatter put constra<strong>in</strong>ts on <strong>the</strong> allowed <strong>fractional</strong> D3-<strong>branes</strong> configurations, because <strong>of</strong> <strong>the</strong>RR tadpole cancellation condition.Once we wrap a D5-brane on a 2-cycle, it will thus source a 3-form RR flux. We turnto consider <strong>the</strong> compact 3-cycles <strong>of</strong> <strong>the</strong> geometry which can support this flux, and <strong>the</strong>irdual non-compact 3-cycles.4 Notice that generically if an homology class C has a holomorphic representative, −C does not because<strong>the</strong> representative becomes antiholomorphic and one should look for a different one. In particular, <strong>in</strong>different resolutions <strong>the</strong> rôle <strong>of</strong> homology classes with a holomorphic representative is exchanged.


F.2. The orbifolded conifold geometry 293xy = 0z ,zxy = 0**H (z ,z )=0131 2H (z ,z )=01 2Figure F.3: The 6-dimensional manifold seen as a s<strong>in</strong>gular C ∗ fibration over <strong>the</strong> (z 1 ,z 2 ) space.The surfaces H k (z 1 ,z 2 ) = z 1 z 2 −ǫ k = 0, k = 1,3, are <strong>the</strong> loci where <strong>the</strong> C ∗ fiber degenerates toa cone xy = 0 and a non-trivial S 1 shr<strong>in</strong>ks.3-cycles and deformationsThe study <strong>of</strong> compact and non-compact 3-cycles is best performed <strong>in</strong> a regular geometryobta<strong>in</strong>ed by complex deformation <strong>of</strong> <strong>the</strong> s<strong>in</strong>gular space, ra<strong>the</strong>r than by resolution (whichis a Kähler deformation).The algebraic variety (F.20) admits two normalizable complex deformations parameterizedby ǫ 1 and ǫ 3 [182]f = (z 1 z 2 −ǫ 1 )(z 1 z 2 −ǫ 3 )−xy = 0 .(F.36)The deformed geometry is regular for ǫ 1 ≠ ǫ 3 , provided ǫ 1 ǫ 3 ≠ 0. For ǫ 1 = ǫ 3 ≠ 0 it stillhas a C ∗ l<strong>in</strong>e <strong>of</strong> A 1 s<strong>in</strong>gularities (locally C×C 2 /Z 2 ) and corresponds to a Z 2 orbifold <strong>of</strong><strong>the</strong> deformed conifold. For ǫ 3 = 0 it has a conifold s<strong>in</strong>gularity at <strong>the</strong> tip.A convenient way to visualize <strong>the</strong> geometry is to regard (F.36) as a s<strong>in</strong>gular C ∗fibration over C 2 ≃ (z 1 ,z 2 )xy = H 1 (z 1 ,z 2 )H 3 (z 1 ,z 2 ) with H k (z 1 ,z 2 ) = z 1 z 2 −ǫ k . (F.37)At any po<strong>in</strong>t (z 1 ,z 2 ) where H 1 (z 1 ,z 2 )H 3 (z 1 ,z 2 ) ≠ 0 <strong>the</strong> fiber has equation xy = c ≠ 0and is a copy <strong>of</strong> C ∗ . On each surface H k (z 1 ,z 2 ) = 0 <strong>the</strong> fiber degenerates to a cone xy = 0and an S 1 shr<strong>in</strong>ks. On <strong>the</strong> o<strong>the</strong>r hand, each surface H k (z 1 ,z 2 ) = 0 is an hyperboloid<strong>in</strong> C 2 and has <strong>the</strong> topology <strong>of</strong> C ∗ . For a general deformation, ǫ 1 ≠ ǫ 3 , <strong>the</strong>y are disjo<strong>in</strong>tand never touch. When ǫ 1 = ǫ 3 <strong>the</strong>y degenerate one on top <strong>of</strong> <strong>the</strong> o<strong>the</strong>r, while when onedeformation parameter vanishes <strong>the</strong> correspond<strong>in</strong>g hyperboloid degenerates <strong>in</strong>to a cone.See Figure F.3 for a picture <strong>of</strong> <strong>the</strong> geometry.Figure F.3 is very useful to visualize compact and non-compact 3-cycles as well as2-cycles <strong>in</strong> <strong>the</strong> deformed geometry. Any l<strong>in</strong>e segment <strong>of</strong> real dimension one <strong>in</strong> <strong>the</strong> C 2space (z 1 ,z 2 ) which beg<strong>in</strong>s and ends on <strong>the</strong> locus xy = 0 represents a closed submanifold<strong>of</strong> real dimension two, obta<strong>in</strong>ed by fiber<strong>in</strong>g on that segment an S 1 which lives <strong>in</strong> <strong>the</strong> C ∗ x,y


294 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong>C2A 2C1A 1A 3C3Figure F.4: The projection <strong>of</strong> <strong>the</strong> A and C cycles <strong>in</strong> <strong>the</strong> (x,y) space. The non-compact B-cyclesare obta<strong>in</strong>ed as C-cycles fibers over r.cyl<strong>in</strong>der and shr<strong>in</strong>ks to zero at <strong>the</strong> endpo<strong>in</strong>ts. When <strong>the</strong> l<strong>in</strong>e segment is non-contractible(keep<strong>in</strong>g <strong>the</strong> endpo<strong>in</strong>ts on <strong>the</strong> xy = 0 locus), it represents a non-trivial element <strong>in</strong> <strong>the</strong>homology group H 2 (M,Z). In <strong>the</strong> same way, a real dimension two surface with boundaryon <strong>the</strong> xy = 0 locus gives rise to a closed dimension three submanifold after <strong>the</strong> S 1 hasbeen fibered on it. When <strong>the</strong> surface is non-contractible (keep<strong>in</strong>g <strong>the</strong> boundary on <strong>the</strong>xy = 0 locus), it gives rise to a non-trivial 3-cycle. Compact 3-cycles A i arise fromcompact surfaces while non-compact 3-cycles B i arise from non-compact surfaces.In Figure F.4 we depicted <strong>the</strong> various 2-cycles C i and compact 3-cycles A i for <strong>the</strong>deformedorbifoldedconifold. Wehaveused<strong>the</strong>basiswhichismostnaturalwhencomplexdeformations are concerned. Non-compact 3-cycles B i are easily obta<strong>in</strong>ed as well: <strong>the</strong> realdimension two base surfaces are non-compact “vertical” foils with one or two boundarieson <strong>the</strong> degeneration loci, and are related to <strong>the</strong> l<strong>in</strong>e segment support<strong>in</strong>g <strong>the</strong> 2-cycles C i .In <strong>the</strong> regular deformed geometry, a canonical symplectic basis for <strong>the</strong> third homologygroup H 3 (M,Z) is given by {A 1 ,A 3 ,B 1 ,B 3 } with <strong>in</strong>tersection numbers A i·B j = δ ij . A 1and A 3 have topology S 3 while B 1 and B 3 have topology R 3 . One can also consider al<strong>in</strong>ear comb<strong>in</strong>ation <strong>of</strong> <strong>the</strong>m, A 2 = A 1 −A 3 (see Figure F.4) and its dual B 2 = −B 1 +B 3: <strong>the</strong>y have <strong>in</strong>tersection number A 2 ·B 2 = −2.The asymptotic behavior <strong>of</strong> super<strong>gravity</strong> solutions based on <strong>the</strong>se spaces is fixed,among o<strong>the</strong>r parameters, by <strong>the</strong> D5-charges at <strong>in</strong>f<strong>in</strong>ity. These are constructed by <strong>in</strong>tegrat<strong>in</strong>gsuitable currents on <strong>the</strong> 3-cycles <strong>in</strong> radial sections <strong>of</strong> <strong>the</strong> asymptotically conicalgeometry. This is equivalent to consider<strong>in</strong>g any radial section <strong>in</strong> <strong>the</strong> s<strong>in</strong>gular conical geometry(ǫ 1 = ǫ 3 = 0). The latter perspective is useful because from any 3-cycle <strong>in</strong> a radialsection we can construct a non-compact conical 4-cycle hav<strong>in</strong>g <strong>the</strong> 3-cycle as its radialsection: this allows us to <strong>in</strong>troduce a concept <strong>of</strong> holomorphy and to use toric divisors<strong>in</strong>stead <strong>of</strong> 3-cycles <strong>in</strong> radial sections.From <strong>the</strong> GLSM description we know that <strong>the</strong> number <strong>of</strong> compact 3-cycles <strong>in</strong> radialsections (which equals <strong>the</strong> number <strong>of</strong> baryonic charges and <strong>the</strong> number <strong>of</strong> non-anomalous<strong>fractional</strong> <strong>branes</strong>) is three. For concreteness we choose <strong>the</strong> follow<strong>in</strong>g basis: A 2 , A 4 and


F.2. The orbifolded conifold geometry 295A CF . A 2 is <strong>the</strong> radial section <strong>of</strong> <strong>the</strong> toric divisor D 4 , and corresponds to <strong>the</strong> product<strong>of</strong> <strong>the</strong> exceptional 2-cycle C 2 along <strong>the</strong> p-l<strong>in</strong>e (which is ∼ = C ∗ ) with S 1 <strong>in</strong> <strong>the</strong> latter; <strong>in</strong><strong>the</strong> same way, A 4 is <strong>the</strong> radial section <strong>of</strong> <strong>the</strong> toric divisor D 1 , and is <strong>the</strong> product <strong>of</strong> <strong>the</strong>exceptional C 4 along <strong>the</strong> q-l<strong>in</strong>e times S 1 . A CF is <strong>the</strong> compact 3-cycle <strong>of</strong> <strong>the</strong> cover<strong>in</strong>g spaceconifold 5 : under<strong>the</strong>orbifoldactionithasanimage, andn<strong>of</strong>ixedpo<strong>in</strong>ts. Inparticular, <strong>the</strong>representative 3-cycle at θ 2 = π/2 and φ 2 = 0 is mapped to <strong>the</strong> divisor {x = z 2 1 ,y = z2 2 }which has <strong>the</strong> GLSM description t 1 t 2 2 = t 4t 2 5 . Compar<strong>in</strong>g <strong>the</strong> charges we f<strong>in</strong>d that A CFcorresponds to <strong>the</strong> toric divisor D 1 +2D 2 = D 4 +2D 5 . Summariz<strong>in</strong>g, our basis <strong>of</strong> 3-cyclesand <strong>the</strong> correspond<strong>in</strong>g toric divisors areA 2 ≃ D 4 A 4 ≃ D 1 A CF ≃ D 1 +2D 2 = D 4 +2D 5 . (F.38)Notice that <strong>in</strong> <strong>the</strong> deformed geometry A 2 = −A 4 <strong>in</strong> homology. Never<strong>the</strong>less <strong>the</strong>y cangive rise to different charges when explicit sources are present <strong>in</strong> <strong>the</strong> geometry and thisis <strong>in</strong> fact <strong>the</strong> case <strong>of</strong> N = 2 <strong>branes</strong> which do not undergo complete geometric transition.In order to compute <strong>the</strong> 3-form fluxes generated by D5-<strong>branes</strong> wrapped on 2-cycles,we will need <strong>the</strong> <strong>in</strong>tersection matrix between divisors and 2-cycles. In our basis we f<strong>in</strong>dA 2 ≃ D 4 A 4 ≃ D 1 A CFC 2 −2 0 0C 4 0 −2 0C β 1 1 −1(F.39)This table is computed from <strong>the</strong> charges <strong>in</strong> Table (F.26): <strong>in</strong> <strong>the</strong> GLSM constructioneach <strong>gauge</strong> field gives rise to an element C a <strong>of</strong> <strong>the</strong> homology group H 2 (M,Z), and <strong>the</strong><strong>in</strong>tersection between it and a toric divisor D i is <strong>the</strong> charge Q ia .The <strong>fractional</strong> <strong>branes</strong>/ranks <strong>correspondence</strong>We have now all <strong>the</strong> <strong>in</strong>gredients to f<strong>in</strong>ally figure out <strong>the</strong> precise <strong>correspondence</strong> between<strong>fractional</strong> <strong>branes</strong> (that is wrapped D5-<strong>branes</strong>) and quiver rank assignments.Consider a D5-brane wrapped on a 2-cycle C i <strong>of</strong> our CY 3 . The Bianchi identity forF 3 is violated by <strong>the</strong> sourcedF 3 = −2κ 2 τ 5 Ω 4 ,(F.40)where Ω 4 is a 4-form with δ-function support on <strong>the</strong> D5 world-volume. We are <strong>in</strong>terested<strong>in</strong> <strong>the</strong> flux generated on a 3-cycle A j <strong>in</strong> <strong>the</strong> radial section. First we have to resolve <strong>the</strong>geometry, switch<strong>in</strong>g on <strong>the</strong> FI parameters <strong>of</strong> <strong>the</strong> associated GLSM. This does not change<strong>the</strong> holomorphic data nor <strong>the</strong> quantized charges. Then we identify a non-compact divisorD j which has A j as radial section. Be<strong>in</strong>g <strong>the</strong> geometry smooth, A j turns out to be <strong>the</strong>boundary <strong>of</strong> D j∫∫F 3 = − dF 3 = 2κA j∫D 2 τ 5 Ω 4 = 2κ 2 τ 5 (D j , C i ) ,j D j(F.41)where (D j , C i ) is <strong>the</strong> <strong>in</strong>tersection number as <strong>in</strong> Table (F.39), and we fixed <strong>the</strong> orientationambiguityrequir<strong>in</strong>gconsistencywithknowncases, suchas<strong>the</strong>conifoldand<strong>the</strong>Z 2 orbifold5 Actually A CF = A 1 +A 3.


296 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong><strong>of</strong> R 6 . If <strong>the</strong>re is a holomorphic representative for C i , we can <strong>the</strong>n directly compute <strong>the</strong><strong>in</strong>tersection from <strong>the</strong> GLSM data.The last th<strong>in</strong>g to determ<strong>in</strong>e are <strong>the</strong> quiver rank assignments correspond<strong>in</strong>g to each<strong>fractional</strong> brane. A D5-brane wrapped on <strong>the</strong> exceptional 2-cycles C 2 and C 4 along <strong>the</strong>C 2 /Z 2 l<strong>in</strong>es p and q gives rise to an N = 2 <strong>fractional</strong> brane, and we conventionally choose<strong>the</strong> rank assignments to be, respectively, (0,1,1,0) and (1,1,0,0). The rank assignmentfor a D5-brane wrapped on C β can be def<strong>in</strong>ed by observ<strong>in</strong>g that <strong>the</strong> comb<strong>in</strong>ation C CF =2C β + C 2 + C 4 does not couple to twisted fields and gives rise to <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong>Klebanov-Tseytl<strong>in</strong> <strong>the</strong>ory [127], see Table (F.39). This implies that <strong>the</strong> correspond<strong>in</strong>g<strong>gauge</strong> <strong>the</strong>ory is <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong> KT <strong>the</strong>ory. We can say that <strong>the</strong> ranks for one D5 onC β are (a,b,c,d). Requir<strong>in</strong>g that 2C β +C 2 +C 4 is <strong>in</strong> <strong>the</strong> class (N +1,N,N +1,N) or(N,N +1,N,N +1), which do correspond to <strong>the</strong> orbifold <strong>of</strong> <strong>the</strong> KT <strong>the</strong>ory, s<strong>in</strong>gles outtwo possibilities for C β : ei<strong>the</strong>r (1,0,1,1) or (0,0,0,1). To select <strong>the</strong> correct option weshould consider <strong>the</strong> <strong>in</strong>duced D3-charge on <strong>the</strong> <strong>fractional</strong> D3 probe.The <strong>in</strong>duced D3-charge is proportional to <strong>the</strong> <strong>in</strong>tegral <strong>of</strong> B 2 (or more generally <strong>of</strong>F = B 2 +2πα ′ F 2 ) on <strong>the</strong> correspond<strong>in</strong>g 2-cycle C:∫1 (Q 3 = τ 5 F = τ 3 B2C 4π 2 α∫C′ +2πα ′ F ) . (F.42)The actual value depends on <strong>the</strong> background value <strong>of</strong> B 2 . This is arbitrary at this level(and it is related to <strong>the</strong> UV cut-<strong>of</strong>f values <strong>of</strong> <strong>the</strong> <strong>gauge</strong> coupl<strong>in</strong>gs <strong>in</strong> <strong>the</strong> dual <strong>gauge</strong> <strong>the</strong>ory).We only require <strong>the</strong>se background values to be positive (so as to describe mutuallyBPS objects) and less than one (<strong>in</strong> order to describe non-composite, that is elementary,objects). Along <strong>the</strong> p and q l<strong>in</strong>es <strong>the</strong> physics is locally C 2 /Z 2 , thus we can naturallyset [39]: ∫ C 2B 2 = ∫ C 4B 2 = (4π 2 α ′ )/2. If we consider <strong>the</strong> KT <strong>the</strong>ory and set also [127]∫∫ C CFB 2 = (4π 2 α ′ )/2, <strong>the</strong>n us<strong>in</strong>g <strong>the</strong> previous relation C CF = 2C β + C 2 + C 4 , we getC βB 2 = −(4π 2 α ′ )/4.This implies that while <strong>the</strong> N = 2 <strong>branes</strong> have positive D3-charge, a D5-branewrapped on C β has negative D3-brane charge and it is not mutually BPS. Putt<strong>in</strong>g oneunit <strong>of</strong> worldvolume flux on <strong>the</strong> wrapped D5 we get positive D3-charge: 3/4. The totalD3-charge for C CF = 2C β +C 2 +C 4 (with two units <strong>of</strong> flux on C β ) is 5/2. This is exactly<strong>the</strong> D3-charge <strong>of</strong> <strong>the</strong> configuration (3,2,3,2), which implies that one D5-brane wrappedon C β with one unit <strong>of</strong> worldvolume flux gives rise to <strong>the</strong> <strong>the</strong>ory (1,0,1,1). A similaranalysis shows that a D5-brane wrapped on C α = −C β (with no background world-volumeflux) corresponds to a rank assignement (0,1,0,0). F<strong>in</strong>ally, direct application <strong>of</strong> Table(F.39) tells us what <strong>the</strong> fluxes sourced by D5-<strong>branes</strong> wrapped on any 2-cycles are.Our f<strong>in</strong>d<strong>in</strong>gs are summarized <strong>in</strong> <strong>the</strong> Table below− ∫ A 2F 3 − ∫ A 4F 3 − ∫ A CFF 3 D3-charge <strong>gauge</strong> <strong>the</strong>oryD5 on C 2 2 0 0 1/2 (0,1,1,0)D5 on C 4 0 2 0 1/2 (1,1,0,0)D5 on C β −1 −1 1 3/4 (1,0,1,1)D5 on C α 1 1 −1 1/4 (0,1,0,0)(F.43)where fluxes are <strong>in</strong> units <strong>of</strong> 4π 2 α ′ g s .As anticipated, we will use D5 <strong>branes</strong> wrapped on C 2 , C 4 and C α = −C β withoutworldvolume flux as a basis for <strong>fractional</strong> <strong>branes</strong> to discuss our <strong>gauge</strong>/<strong>gravity</strong> duality.


F.3. Poisson equation on <strong>the</strong> s<strong>in</strong>gular conifold 297This is <strong>the</strong> most natural basis for discuss<strong>in</strong>g rank assignments parametrized as <strong>in</strong> Figure7.1, where <strong>fractional</strong> <strong>branes</strong> modify <strong>the</strong> ranks <strong>of</strong> <strong>the</strong> first three quiver nodes only.F.3 Poisson equation on <strong>the</strong> s<strong>in</strong>gular conifoldThe Poisson equation for <strong>the</strong> warp factor on <strong>the</strong> conifold reads[ 1r 5∂ rr 5 ∂ r + 1 2∑ [6( 1) 2 ]r 2 ∂ θi s<strong>in</strong>θ i ∂ θi +6 ∂ φi −cotθ i ∂ ψ + 9 ]s<strong>in</strong>θ i s<strong>in</strong>θ i r 2 ∂2 ψ h = C r 6 δ′ si=1(F.44)where <strong>the</strong> RHS is <strong>the</strong> same as <strong>in</strong> (7.18). Due to <strong>the</strong> symmetries <strong>of</strong> <strong>the</strong> configuration withN = 2 <strong>branes</strong> at <strong>the</strong> tip, <strong>the</strong> ansatz for <strong>the</strong> warp factor does not depend <strong>of</strong> ψ and φ i .Then we are left with[ 1r 5∂ rr 5 ∂ r + 1 2∑]6r 2 ∂ θi s<strong>in</strong>θ i ∂ θi h = C s<strong>in</strong>θ i r 6 δ′ s . (F.45)i=1Follow<strong>in</strong>g [147], we propose an ansatzwith which <strong>the</strong> Laplacian simplifies toh = 1 r 4 g(t,θ 1,θ 2 ) t = log r r 0(F.46)∆h = 1 r 6 {−4∂ t g +∂ 2 tg +2∑i=16}∂ θi s<strong>in</strong>θ i ∂ θi g . (F.47)s<strong>in</strong>θ iSome solutions are g = Q+At−Cf(θ 1 ,θ 2 ) and <strong>the</strong> equation reduces to−C2∑i=16s<strong>in</strong>θ i∂ θi s<strong>in</strong>θ i ∂ θi f = 4A+Cδ ′ s .(F.48)The constant Q is related to a δ(r) that is <strong>the</strong> number <strong>of</strong> D3-<strong>branes</strong> at <strong>the</strong> tip. In [147]a constra<strong>in</strong>t relation between A and C is found, which amounts to charge cancellationon <strong>the</strong> compact angular sections. We will not care about it here, and simply try to f<strong>in</strong>dsolutions.It will prove useful to <strong>in</strong>troduce Legendre polynomials, which are eigenfunctions <strong>of</strong><strong>the</strong> angular Laplacian 6∆ ang =2∑i=16s<strong>in</strong>θ i∂ θi s<strong>in</strong>θ i ∂ θi = 62∑∂ cosθi (1−cos 2 θ i )∂ cosθii=1(F.49)∆ ang P n (cosθ i ) = −6n(n+1)P n (cosθ i ) (i = 1,2) . (F.50)The last formula follows from <strong>the</strong> differential equation(1−x 2 )P ′′n(x)−2xP ′ n(x)+n(n+1)P n (x) = 0 .6 We only write <strong>the</strong> relevant part <strong>in</strong>clud<strong>in</strong>g derivatives with respect to θ i.(F.51)


298 Appendix F. The conifold and a Z 2 orbifold <strong>the</strong>re<strong>of</strong>The eigenfunctions <strong>of</strong> <strong>the</strong> angular Laplacian on <strong>the</strong> conifold are products <strong>of</strong> Legendrepolynomials∆ ang P l1 (cosθ 1 )P l2 (cosθ 2 ) = −6 [ l 1 (l 1 +1)+l 2 (l 2 +1) ] P l1 (cosθ 1 )P l2 (cosθ 2 ). (F.52)The product <strong>of</strong> δ-functions is easily written as4δ(1−cosθ 1 )δ(1−cosθ 2 ) =∞∑(2l 1 +1)P l1 (cosθ 1 )l 1 =0Then <strong>the</strong> solution we are look<strong>in</strong>g for is∞∑(2l 2 +1)P l2 (cosθ 2 ) . (F.53)l 2 =0f = 1 24∞∑l 1 ,l 2 ≠(0,0)(2l 1 +1)(2l 2 +1)l 1 (l 1 +1)+l 2 (l 2 +1) P l 1(cosθ 1 )P l2 (cosθ 2 ) ,(F.54)where this last sum excludes (l 1 ,l 2 ) = (0,0). One gets∆ ang f = −δ(1−cosθ 1 )δ(1−cosθ 2 )+ 1 4 .(F.55)F.4 Periods <strong>of</strong> ΩHere we provide some details on <strong>the</strong> computation <strong>of</strong> <strong>the</strong> periods <strong>of</strong> Ω <strong>in</strong> <strong>the</strong> deformedorbifolded conifold. A general expression for <strong>the</strong> holomorphic 3-form is given byΩ ∝ 1 ∮dw 1 ∧dw 2 ∧dw 3 ∧dw 4= dw 1 ∧dw 2 ∧dw 3, (F.56)2πi P ∂P/∂w 4P=0where P[w] is <strong>the</strong> polynomial equation def<strong>in</strong><strong>in</strong>g <strong>the</strong> geometry. We takeP = xy −(u 2 −v 2 +ǫ 1 )(u 2 −v 2 +ǫ 3 ) = 0 .(F.57)The geometry is described as <strong>in</strong> appendix F.2: <strong>the</strong> cyl<strong>in</strong>der xy = const. is fibered overC 2 ∼ = {u,v}. The fibration degenerates at <strong>the</strong> lociu 2 1 = v 2 −ǫ 1 , and u 2 2 = v 2 −ǫ 3 , (F.58)and <strong>the</strong> 2- and 3-cycles are visualised as <strong>in</strong> Fig.F.4.Choos<strong>in</strong>g a convenient normalisation, we haveΩ = 1 du∧dv ∧dx2π 2 x. (F.59)Then, for any 3-cha<strong>in</strong> Π 3∫Ω = i ∫du∧dv = i ∫udv .Π 3π C jπ γ j(F.60)Here C j is a 2-cha<strong>in</strong> over which an S 1 is fibered accord<strong>in</strong>g to (F.57), giv<strong>in</strong>g us <strong>the</strong> 3-cha<strong>in</strong>,and γ j is its boundary. The geometry is <strong>the</strong>n visualized as a double-sheeted v-plane, with<strong>the</strong> upper and lower sheets connected through <strong>the</strong> cuts at u 2 1 = 0 and u2 2 = 0 (see F.58).


F.4. Periods <strong>of</strong> Ω 299Then <strong>the</strong> 3-cycle A i corresponds to γ i circl<strong>in</strong>g around <strong>the</strong> correspond<strong>in</strong>g cut on <strong>the</strong>v-plane, while for B i one goes from <strong>the</strong> upper sheet to <strong>the</strong> lower one through <strong>the</strong> cut.Us<strong>in</strong>g <strong>the</strong> <strong>in</strong>def<strong>in</strong>ite <strong>in</strong>tegral∫ √vF(v,ǫ) ≡ 2 −ǫ dv = 1 v2[ √ v 2 −ǫ−ǫlog ( v + √ v 2 −ǫ )] , (F.61)whose expansion for v 2 ≫ ǫ goes aswe obta<strong>in</strong>∫A jΩ = ǫ j ,F(v,ǫ) = 1 2 v2 − 1 ( ǫ2)4 ǫlog(4v2 e)+Ov 4 , (F.62)and∫B jΩ = ǫ j2πi log (ǫj4ev 2 0)+regular ,(F.63)where v = v 0 is a cut-<strong>of</strong>f for <strong>the</strong> non-compact cycle.Similarly, we can consider a 3-cha<strong>in</strong> Ξ 3 that beg<strong>in</strong>s on a representative <strong>of</strong> C 2 stretch<strong>in</strong>gbetween u 1 = ξ and u 2 = ξ <strong>in</strong> C 2 = {u,v}, and goes to <strong>in</strong>f<strong>in</strong>ity at v = v 0 . For |v 0 | 2 ≫ |ǫ k |,<strong>the</strong> <strong>in</strong>tegral <strong>of</strong> Ω over Ξ 3 is (notice that contrarily to what happens for <strong>the</strong> B-cycle wedo not <strong>in</strong>tegrate past <strong>the</strong> cut)∫Ω = 1 []F(ξ,ǫ 1 )−F(ξ,ǫ 3 )+(ǫ 1 −ǫ 3 )log(2e 1/4 v 0 ) +regular . (F.64)Ξ 32πiIn <strong>the</strong> limit |ξ| 2 ≫ |ǫ k |, we get <strong>the</strong> simpler result (7.66).


Bibliography[1] R. Argurio, F. Ben<strong>in</strong>i, M. Bertol<strong>in</strong>i, C. Closset, and S. Cremonesi, “Gauge/<strong>gravity</strong>duality and <strong>the</strong> <strong>in</strong>terplay <strong>of</strong> various <strong>fractional</strong> <strong>branes</strong>,” Phys. Rev. D78 (2008)046008, arXiv:0804.4470 [hep-th].[2] F. Ben<strong>in</strong>i, M. Bertol<strong>in</strong>i, C. Closset, and S. Cremonesi, “The N=2 cascade revisitedand <strong>the</strong> enhancon bear<strong>in</strong>gs,” Phys. Rev. D79 (2009) 066012, arXiv:0811.2207[hep-th].[3] F. Ben<strong>in</strong>i, C. Closset, and S. Cremonesi, “Chiral flavors and M2-<strong>branes</strong> at toricCY4 s<strong>in</strong>gularities,” JHEP 02 (2010) 036, arXiv:0911.4127 [hep-th].[4] C. Closset, “Toric geometry and local Calabi-Yau varieties: An <strong>in</strong>troduction totoric geometry (for physicists),” arXiv:0901.3695 [hep-th].[5] I. Newton, Philosophiae naturalis pr<strong>in</strong>cipia ma<strong>the</strong>matica. London: Jussusocietatis regi ac typis Josephi Streater, 1687.[6] A. E<strong>in</strong>ste<strong>in</strong>, “Die Grundlage der allgeme<strong>in</strong>en Relativitäts<strong>the</strong>orie,” Annalen DerPhysik 49 (1916) .[7] W. Heisenberg, “Über quanten<strong>the</strong>oretische Umdeutung k<strong>in</strong>ematischer undmechanischer Beziehungen,” Z. Phys. 33:879 (1925) .[8] E. Schröd<strong>in</strong>ger, “An Undulatory Theory <strong>of</strong> <strong>the</strong> Mechanics <strong>of</strong> Atoms andMolecules,” Phys. Rev. 28 (1926) .[9] J. M. Maldacena, “The large N limit <strong>of</strong> superconformal field <strong>the</strong>ories andsuper<strong>gravity</strong>,” Adv. Theor. Math. Phys. 2 (1998) 231–252,arXiv:hep-th/9711200.[10] M. Bertol<strong>in</strong>i et al., “Fractional D-<strong>branes</strong> and <strong>the</strong>ir <strong>gauge</strong> duals,” JHEP 02 (2001)014, arXiv:hep-th/0011077.[11] J. Polch<strong>in</strong>ski, “N = 2 <strong>gauge</strong>-<strong>gravity</strong> duals,” Int. J. Mod. Phys. A16 (2001)707–718, arXiv:hep-th/0011193.[12] G. ’t Ho<strong>of</strong>t, “A planar diagram <strong>the</strong>ory for strong <strong>in</strong>teractions,” Nucl. Phys. B72(1974) 461.[13] S. Kachru, R. Kallosh, A. D. L<strong>in</strong>de, and S. P. Trivedi, “De Sitter vacua <strong>in</strong> str<strong>in</strong>g<strong>the</strong>ory,” Phys. Rev. D68 (2003) 046005, arXiv:hep-th/0301240.301


302 Bibliography[14] J. Polch<strong>in</strong>ski, “Str<strong>in</strong>g <strong>the</strong>ory. Vol. 2: Superstr<strong>in</strong>g <strong>the</strong>ory and beyond,”.Cambridge, UK: Univ. Pr. (1998) 531 p.[15] J. Polch<strong>in</strong>ski, “Dirichlet-Branes and Ramond-Ramond Charges,” Phys. Rev. Lett.75 (1995) 4724–4727, arXiv:hep-th/9510017.[16] P. K. Townsend, “P-brane democracy,” arXiv:hep-th/9507048.[17] J. E. Paton and H.-M. Chan, “Generalized veneziano model with isosp<strong>in</strong>,” Nucl.Phys. B10 (1969) 516–520.[18] J. Polch<strong>in</strong>ski, “Str<strong>in</strong>g <strong>the</strong>ory. Vol. 1: An <strong>in</strong>troduction to <strong>the</strong> bosonic str<strong>in</strong>g,”.Cambridge, UK: Univ. Pr. (1998) 402 p.[19] D. Belov and G. W. Moore, “Holographic action for <strong>the</strong> self-dual field,”arXiv:hep-th/0605038.[20] G. T. Horowitz and A. Strom<strong>in</strong>ger, “Black str<strong>in</strong>gs and P-<strong>branes</strong>,” Nucl. Phys.B360 (1991) 197–209.[21] M. Born and L. Infeld, “Foundations <strong>of</strong> <strong>the</strong> new field <strong>the</strong>ory,” Proc. Roy. Soc.Lond. A144 (1934) 425–451.[22] L. J. Romans, “Massive N=2a Super<strong>gravity</strong> <strong>in</strong> Ten-Dimensions,” Phys. Lett.B169 (1986) 374.[23] T. Mohaupt, “Black holes <strong>in</strong> super<strong>gravity</strong> and str<strong>in</strong>g <strong>the</strong>ory,” Class. Quant. Grav.17 (2000) 3429–3482, arXiv:hep-th/0004098.[24] K. Becker, M. Becker, and J. H. Schwarz, “Str<strong>in</strong>g <strong>the</strong>ory and M-<strong>the</strong>ory: Amodern <strong>in</strong>troduction,”. Cambridge, UK: Cambridge Univ. Pr. (2007) 739 p.[25] A. Giveon, M. Porrati, and E. Rab<strong>in</strong>ovici, “Target space duality <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory,”Phys. Rept. 244 (1994) 77–202, arXiv:hep-th/9401139.[26] T. H. Buscher, “A Symmetry <strong>of</strong> <strong>the</strong> Str<strong>in</strong>g Background Field Equations,” Phys.Lett. B194 (1987) 59.[27] R. Gregory, J. A. Harvey, and G. W. Moore, “Unw<strong>in</strong>d<strong>in</strong>g str<strong>in</strong>gs and T-duality <strong>of</strong>Kaluza-Kle<strong>in</strong> and H- monopoles,” Adv. Theor. Math. Phys. 1 (1997) 283–297,arXiv:hep-th/9708086.[28] D. Tong, “NS5-<strong>branes</strong>, T-duality and worldsheet <strong>in</strong>stantons,” JHEP 07 (2002)013, arXiv:hep-th/0204186.[29] E. Witten, “Branes, Instantons, And Taub-NUT Spaces,” JHEP 06 (2009) 067,arXiv:0902.0948 [hep-th].[30] E. Cremmer, B. Julia, and J. Scherk, “Super<strong>gravity</strong> <strong>the</strong>ory <strong>in</strong> 11 dimensions,”Phys. Lett. B76 (1978) 409–412.[31] C. N. Pope. http://faculty.physics.tamu.edu/pope/ihplec.pdf.


Bibliography 303[32] M. J. Duff, B. E. W. Nilsson, and C. N. Pope, “Kaluza-Kle<strong>in</strong> Super<strong>gravity</strong>,” Phys.Rept. 130 (1986) 1–142.[33] E. Witten, “Str<strong>in</strong>g <strong>the</strong>ory dynamics <strong>in</strong> various dimensions,” Nucl. Phys. B443(1995) 85–126, arXiv:hep-th/9503124.[34] P. K. Townsend, “The eleven-dimensional supermembrane revisited,” Phys. Lett.B350 (1995) 184–187, arXiv:hep-th/9501068.[35] J. H. Schwarz, “The power <strong>of</strong> M <strong>the</strong>ory,” Phys. Lett. B367 (1996) 97–103,arXiv:hep-th/9510086.[36] P. K. Townsend, “D-<strong>branes</strong> from M-<strong>branes</strong>,” Phys. Lett. B373 (1996) 68–75,arXiv:hep-th/9512062.[37] M. J. Duff, P. S. Howe, T. Inami, and K. S. Stelle, “Superstr<strong>in</strong>gs <strong>in</strong> D = 10 fromsupermem<strong>branes</strong> <strong>in</strong> D = 11,” Phys. Lett. B191 (1987) 70.[38] O. Aharony, S. S. Gubser, J. M. Maldacena, H. Ooguri, and Y. Oz, “Large N field<strong>the</strong>ories, str<strong>in</strong>g <strong>the</strong>ory and <strong>gravity</strong>,” Phys. Rept. 323 (2000) 183–386,arXiv:hep-th/9905111.[39] M. R. Douglas and G. W. Moore, “D-<strong>branes</strong>, Quivers, and ALE Instantons,”arXiv:hep-th/9603167.[40] A. E. Lawrence, N. Nekrasov, and C. Vafa, “On conformal field <strong>the</strong>ories <strong>in</strong> fourdimensions,” Nucl. Phys. B533 (1998) 199–209, arXiv:hep-th/9803015.[41] D.-E. Diaconescu, M. R. Douglas, and J. Gomis, “Fractional <strong>branes</strong> and wrapped<strong>branes</strong>,” JHEP 02 (1998) 013, arXiv:hep-th/9712230.[42] P. S. Asp<strong>in</strong>wall, “Resolution <strong>of</strong> orbifold s<strong>in</strong>gularities <strong>in</strong> str<strong>in</strong>g <strong>the</strong>ory,”arXiv:hep-th/9403123.[43] M. Billo, B. Craps, and F. Roose, “Orbifold boundary states from Cardy’scondition,” JHEP 01 (2001) 038, arXiv:hep-th/0011060.[44] M. Bertol<strong>in</strong>i, “Four Lectures On The Gauge/Gravity Correspondence,” Int. J.Mod. Phys. A18 (2003) 5647–5712, arXiv:hep-th/0303160.[45] M. Wijnholt, “Large volume perspective on <strong>branes</strong> at s<strong>in</strong>gularities,” Adv. Theor.Math. Phys. 7 (2004) 1117–1153, arXiv:hep-th/0212021.[46] F. Cachazo, B. Fiol, K. A. Intriligator, S. Katz, and C. Vafa, “A geometricunification <strong>of</strong> dualities,” Nucl. Phys. B628 (2002) 3–78, arXiv:hep-th/0110028.[47] C. P. Herzog, “Exceptional collections and del Pezzo <strong>gauge</strong> <strong>the</strong>ories,” JHEP 04(2004) 069, arXiv:hep-th/0310262.[48] E. Sharpe, “Lectures on D-<strong>branes</strong> and sheaves,” arXiv:hep-th/0307245.[49] P. S. Asp<strong>in</strong>wall, “D-<strong>branes</strong> on Calabi-Yau manifolds,” arXiv:hep-th/0403166.


304 Bibliography[50] C. P. Herzog, “Seiberg duality is an exceptional mutation,” JHEP 08 (2004) 064,arXiv:hep-th/0405118.[51] C. P. Herzog and R. L. Karp, “Exceptional collections and D-<strong>branes</strong> prob<strong>in</strong>g torics<strong>in</strong>gularities,” JHEP 02 (2006) 061, arXiv:hep-th/0507175.[52] M. R. Douglas, “Lectures on D-<strong>branes</strong> on Calabi-Yau manifolds,”. Prepared forICTP Spr<strong>in</strong>g School on Superstr<strong>in</strong>gs and Related Matters, Trieste, Italy, 2-10 Apr2001.[53] D. Berenste<strong>in</strong> and M. R. Douglas, “Seiberg duality for quiver <strong>gauge</strong> <strong>the</strong>ories,”arXiv:hep-th/0207027.[54] A. Hanany and E. Witten, “Type IIB superstr<strong>in</strong>gs, BPS monopoles, and threedimensional<strong>gauge</strong> dynamics,” Nucl. Phys. B492 (1997) 152–190,arXiv:hep-th/9611230.[55] S. Elitzur, A. Giveon, and D. Kutasov, “Branes and N = 1 duality <strong>in</strong> str<strong>in</strong>g<strong>the</strong>ory,” Phys. Lett. B400 (1997) 269–274, arXiv:hep-th/9702014.[56] A. M. Uranga, “Brane Configurations for Branes at Conifolds,” JHEP 01 (1999)022, arXiv:hep-th/9811004.[57] J. L. F. Barbon, “Rotated <strong>branes</strong> and N = 1 duality,” Phys. Lett. B402 (1997)59–63, arXiv:hep-th/9703051.[58] M. Bershadsky, C. Vafa, and V. Sadov, “D-Str<strong>in</strong>gs on D-Manifolds,” Nucl. Phys.B463 (1996) 398–414, arXiv:hep-th/9510225.[59] B. Feng, A. Hanany, and Y.-H. He, “D-brane <strong>gauge</strong> <strong>the</strong>ories from torics<strong>in</strong>gularities and toric duality,” Nucl. Phys. B595 (2001) 165–200,arXiv:hep-th/0003085.[60] A. Hanany and K. D. Kennaway, “Dimer models and toric diagrams,”arXiv:hep-th/0503149.[61] S. Franco, A. Hanany, K. D. Kennaway, D. Vegh, and B. Wecht, “Brane Dimersand Quiver Gauge Theories,” JHEP 01 (2006) 096, arXiv:hep-th/0504110.[62] K. D. Kennaway, “Brane Til<strong>in</strong>gs,” Int. J. Mod. Phys. A22 (2007) 2977–3038,arXiv:0706.1660 [hep-th].[63] S. Franco and D. Vegh, “Moduli spaces <strong>of</strong> <strong>gauge</strong> <strong>the</strong>ories from dimer models:Pro<strong>of</strong> <strong>of</strong> <strong>the</strong> <strong>correspondence</strong>,” JHEP 11 (2006) 054, arXiv:hep-th/0601063.[64] M. R. Douglas, B. R. Greene, and D. R. Morrison, “Orbifold resolution byD-<strong>branes</strong>,” Nucl. Phys. B506 (1997) 84–106, arXiv:hep-th/9704151.[65] C. Beasley, B. R. Greene, C. I. Lazaroiu, and M. R. Plesser, “D3-<strong>branes</strong> on partialresolutions <strong>of</strong> abelian quotient s<strong>in</strong>gularities <strong>of</strong> Calabi-Yau threefolds,” Nucl. Phys.B566 (2000) 599–640, arXiv:hep-th/9907186.


Bibliography 305[66] D. Forcella, A. Hanany, Y.-H. He, and A. Zaffaroni, “The Master Space <strong>of</strong> N=1Gauge Theories,” JHEP 08 (2008) 012, arXiv:0801.1585 [hep-th].[67] M. A. Luty and W. Taylor, “Varieties <strong>of</strong> vacua <strong>in</strong> classical supersymmetric <strong>gauge</strong><strong>the</strong>ories,” Phys. Rev. D53 (1996) 3399–3405, arXiv:hep-th/9506098.[68] P. W. Kasteleyn, “Graph <strong>the</strong>ory and crystal physics,” Graph <strong>the</strong>ory and<strong>the</strong>oretical physics 43–110. Academic Press, London, 1967.[69] A. Kehagias, “New type IIB vacua and <strong>the</strong>ir F-<strong>the</strong>ory <strong>in</strong>terpretation,” Phys. Lett.B435 (1998) 337–342, arXiv:hep-th/9805131.[70] D. R. Morrison and M. R. Plesser, “Non-spherical horizons. I,” Adv. Theor. Math.Phys. 3 (1999) 1–81, arXiv:hep-th/9810201.[71] A. Hanany and D. Vegh, “Quivers, til<strong>in</strong>gs, <strong>branes</strong> and rhombi,” JHEP 10 (2007)029, arXiv:hep-th/0511063.[72] D. R. Gulotta, “Properly ordered dimers, R-charges, and an efficient <strong>in</strong>versealgorithm,” JHEP 10 (2008) 014, arXiv:0807.3012 [hep-th].[73] C. E. Beasley and M. R. Plesser, “Toric duality is Seiberg duality,” JHEP 12(2001) 001, arXiv:hep-th/0109053.[74] B. Feng, A. Hanany, Y.-H. He, and A. M. Uranga, “Toric duality as Seibergduality and brane diamonds,” JHEP 12 (2001) 035, arXiv:hep-th/0109063.[75] S. Benvenuti, A. Hanany, and P. Kazakopoulos, “The toric phases <strong>of</strong> <strong>the</strong> Y(p,q)quivers,” JHEP 07 (2005) 021, arXiv:hep-th/0412279.[76] B. Feng, Y.-H. He, K. D. Kennaway, and C. Vafa, “Dimer models from mirrorsymmetry and quiver<strong>in</strong>g amoebae,” Adv. Theor. Math. Phys. 12 (2008) 3,arXiv:hep-th/0511287.[77] S. R. Coleman and J. Mandula, “All possible symmetries <strong>of</strong> <strong>the</strong> S matrix,” Phys.Rev. 159 (1967) 1251–1256.[78] S. M<strong>in</strong>walla, “Restrictions imposed by superconformal <strong>in</strong>variance on quantum field<strong>the</strong>ories,” Adv. Theor. Math. Phys. 2 (1998) 781–846, arXiv:hep-th/9712074.[79] C. Montonen and D. I. Olive, “Magnetic Monopoles as Gauge Particles?,” Phys.Lett. B72 (1977) 117.[80] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry break<strong>in</strong>g <strong>in</strong>N=2 supersymmetric QCD,” Nucl. Phys. B431 (1994) 484–550,arXiv:hep-th/9408099.[81] P. C. Argyres and M. R. Douglas, “New phenomena <strong>in</strong> SU(3) supersymmetric<strong>gauge</strong> <strong>the</strong>ory,” Nucl. Phys. B448 (1995) 93–126, arXiv:hep-th/9505062.


306 Bibliography[82] P. C. Argyres, M. Ronen Plesser, N. Seiberg, and E. Witten, “New N=2Superconformal Field Theories <strong>in</strong> Four Dimensions,” Nucl. Phys. B461 (1996)71–84, arXiv:hep-th/9511154.[83] N. Seiberg, “Electric - magnetic duality <strong>in</strong> supersymmetric nonAbelian <strong>gauge</strong><strong>the</strong>ories,” Nucl. Phys. B435 (1995) 129–146, arXiv:hep-th/9411149.[84] R. G. Leigh and M. J. Strassler, “Exactly marg<strong>in</strong>al operators and duality <strong>in</strong>four-dimensional N=1 supersymmetric <strong>gauge</strong> <strong>the</strong>ory,” Nucl. Phys. B447 (1995)95–136, arXiv:hep-th/9503121.[85] M. J. Strassler, “The duality cascade,” arXiv:hep-th/0505153.[86] S. W. Hawk<strong>in</strong>g and G. F. R. Ellis, “The Large scale structure <strong>of</strong> space-time,”.Cambridge University Press, Cambridge, 1973.[87] H. L<strong>in</strong>, O. Lun<strong>in</strong>, and J. M. Maldacena, “Bubbl<strong>in</strong>g AdS space and 1/2 BPSgeometries,” JHEP 10 (2004) 025, arXiv:hep-th/0409174.[88] D. E. Berenste<strong>in</strong>, J. M. Maldacena, and H. S. Nastase, “Str<strong>in</strong>gs <strong>in</strong> flat space andpp waves from N = 4 super Yang Mills,” JHEP 04 (2002) 013,arXiv:hep-th/0202021.[89] G. ’t Ho<strong>of</strong>t, “Dimensional reduction <strong>in</strong> quantum <strong>gravity</strong>,” arXiv:gr-qc/9310026.[90] L. Sussk<strong>in</strong>d, “The World as a hologram,” J. Math. Phys. 36 (1995) 6377–6396,arXiv:hep-th/9409089.[91] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, “Gauge <strong>the</strong>ory correlators fromnon-critical str<strong>in</strong>g <strong>the</strong>ory,” Phys. Lett. B428 (1998) 105–114,arXiv:hep-th/9802109.[92] E. Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2(1998) 253–291, arXiv:hep-th/9802150.[93] P. Breitenlohner and D. Z. Freedman, “Positive Energy <strong>in</strong> anti-De SitterBackgrounds and Gauged Extended Super<strong>gravity</strong>,” Phys. Lett. B115 (1982) 197.[94] P. Breitenlohner and D. Z. Freedman, “Stability <strong>in</strong> Gauged ExtendedSuper<strong>gravity</strong>,” Ann. Phys. 144 (1982) 249.[95] S. de Haro, S. N. Solodukh<strong>in</strong>, and K. Skenderis, “Holographic reconstruction <strong>of</strong>spacetime and renormalization <strong>in</strong> <strong>the</strong> AdS/CFT <strong>correspondence</strong>,” Commun.Math. Phys. 217 (2001) 595–622, arXiv:hep-th/0002230.[96] K. Skenderis, “Lecture notes on holographic renormalization,” Class. Quant.Grav. 19 (2002) 5849–5876, arXiv:hep-th/0209067.[97] V. Balasubramanian, P. Kraus, and A. E. Lawrence, “Bulk vs. boundarydynamics <strong>in</strong> anti-de Sitter spacetime,” Phys. Rev. D59 (1999) 046003,arXiv:hep-th/9805171.


Bibliography 307[98] I. R. Klebanov and E. Witten, “AdS/CFT <strong>correspondence</strong> and symmetrybreak<strong>in</strong>g,” Nucl. Phys. B556 (1999) 89–114, arXiv:hep-th/9905104.[99] M. Gunayd<strong>in</strong> and N. Marcus, “The Spectrum <strong>of</strong> <strong>the</strong> s**5 Compactification <strong>of</strong> <strong>the</strong>Chiral N=2, D=10 Super<strong>gravity</strong> and <strong>the</strong> Unitary Supermultiplets <strong>of</strong> U(2, 2/4),”Class. Quant. Grav. 2 (1985) L11.[100] H. J. Kim, L. J. Romans, and P. van Nieuwenhuizen, “The Mass Spectrum <strong>of</strong>Chiral N=2 D=10 Super<strong>gravity</strong> on S**5,” Phys. Rev. D32 (1985) 389.[101] E. D’Hoker and D. Z. Freedman, “Supersymmetric <strong>gauge</strong> <strong>the</strong>ories and <strong>the</strong>AdS/CFT <strong>correspondence</strong>,” arXiv:hep-th/0201253.[102] I. R. Klebanov and E. Witten, “Superconformal field <strong>the</strong>ory on three<strong>branes</strong> at aCalabi-Yau s<strong>in</strong>gularity,” Nucl. Phys. B536 (1998) 199–218,arXiv:hep-th/9807080.[103] D. Martelli, J. Sparks, and S.-T. Yau, “Sasaki-E<strong>in</strong>ste<strong>in</strong> manifolds and volumem<strong>in</strong>imisation,” Commun. Math. Phys. 280 (2008) 611–673,arXiv:hep-th/0603021.[104] P. Candelas and X. C. de la Ossa, “Comments on Conifolds,” Nucl. Phys. B342(1990) 246–268.[105] J. P. Gauntlett, D. Martelli, J. Sparks, and D. Waldram, “Sasaki-E<strong>in</strong>ste<strong>in</strong> metricson S(2) x S(3),” Adv. Theor. Math. Phys. 8 (2004) 711–734,arXiv:hep-th/0403002.[106] J. P. Gauntlett, D. Martelli, J. F. Sparks, and D. Waldram, “A new <strong>in</strong>f<strong>in</strong>ite class<strong>of</strong> Sasaki-E<strong>in</strong>ste<strong>in</strong> manifolds,” Adv. Theor. Math. Phys. 8 (2006) 987–1000,arXiv:hep-th/0403038.[107] M. Cvetic, H. Lu, D. N. Page, and C. N. Pope, “New E<strong>in</strong>ste<strong>in</strong>-Sasaki spaces <strong>in</strong>five and higher dimensions,” Phys. Rev. Lett. 95 (2005) 071101,arXiv:hep-th/0504225.[108] D. Martelli and J. Sparks, “Toric Sasaki-E<strong>in</strong>ste<strong>in</strong> metrics on S**2 x S**3,” Phys.Lett. B621 (2005) 208–212, arXiv:hep-th/0505027.[109] D. Martelli, J. Sparks, and S.-T. Yau, “The geometric dual <strong>of</strong> a-maximisation fortoric Sasaki- E<strong>in</strong>ste<strong>in</strong> manifolds,” Commun. Math. Phys. 268 (2006) 39–65,arXiv:hep-th/0503183.[110] R. Argurio, G. Ferretti, and R. Heise, “An <strong>in</strong>troduction to supersymmetric <strong>gauge</strong><strong>the</strong>ories and matrix models,” Int. J. Mod. Phys. A19 (2004) 2015–2078,arXiv:hep-th/0311066.[111] F. Cachazo, M. R. Douglas, N. Seiberg, and E. Witten, “Chiral R<strong>in</strong>gs andAnomalies <strong>in</strong> Supersymmetric Gauge Theory,” JHEP 12 (2002) 071,arXiv:hep-th/0211170.


308 Bibliography[112] S. S. Gubser, “E<strong>in</strong>ste<strong>in</strong> manifolds and conformal field <strong>the</strong>ories,” Phys. Rev. D59(1999) 025006, arXiv:hep-th/9807164.[113] A. Ceresole, G. Dall’Agata, R. D’Auria, and S. Ferrara, “Spectrum <strong>of</strong> type IIBsuper<strong>gravity</strong> on AdS(5) x T(11): Predictions on N = 1 SCFT’s,” Phys. Rev. D61(2000) 066001, arXiv:hep-th/9905226.[114] A. Ceresole, G. Dall’Agata, and R. D’Auria, “KK spectroscopy <strong>of</strong> type IIBsuper<strong>gravity</strong> on AdS(5) x T(11),” JHEP 11 (1999) 009, arXiv:hep-th/9907216.[115] I. R. Klebanov and A. Murugan, “Gauge/Gravity Duality and Warped ResolvedConifold,” JHEP 03 (2007) 042, arXiv:hep-th/0701064.[116] J. Polch<strong>in</strong>ski and M. J. Strassler, “The str<strong>in</strong>g dual <strong>of</strong> a conf<strong>in</strong><strong>in</strong>g four-dimensional<strong>gauge</strong> <strong>the</strong>ory,” arXiv:hep-th/0003136.[117] J. M. Maldacena and C. Nunez, “Towards <strong>the</strong> large N limit <strong>of</strong> pure N = 1 superYang Mills,” Phys. Rev. Lett. 86 (2001) 588–591, arXiv:hep-th/0008001.[118] I. R. Klebanov and M. J. Strassler, “Super<strong>gravity</strong> and a conf<strong>in</strong><strong>in</strong>g <strong>gauge</strong> <strong>the</strong>ory:Duality cascades and chiSB-resolution <strong>of</strong> naked s<strong>in</strong>gularities,” JHEP 08 (2000)052, arXiv:hep-th/0007191.[119] O. Aharony, A. Buchel, and A. Yarom, “Holographic renormalization <strong>of</strong> cascad<strong>in</strong>g<strong>gauge</strong> <strong>the</strong>ories,” Phys. Rev. D72 (2005) 066003, arXiv:hep-th/0506002.[120] J. H. Schwarz, “Covariant Field Equations <strong>of</strong> Chiral N=2 D=10 Super<strong>gravity</strong>,”Nucl. Phys. B226 (1983) 269.[121] D. Arean, D. E. Crooks, and A. V. Ramallo, “Supersymmetric probes on <strong>the</strong>conifold,” JHEP 11 (2004) 035, arXiv:hep-th/0408210.[122] M. Grana, R. M<strong>in</strong>asian, M. Petr<strong>in</strong>i, and A. Tomasiello, “Supersymmetricbackgrounds from generalized Calabi-Yau manifolds,” JHEP 08 (2004) 046,arXiv:hep-th/0406137.[123] M. Grana and J. Polch<strong>in</strong>ski, “Gauge / <strong>gravity</strong> duals with holomorphic dilaton,”Phys. Rev. D65 (2002) 126005, arXiv:hep-th/0106014.[124] M. Grana and J. Polch<strong>in</strong>ski, “Supersymmetric three-form flux perturbations onAdS(5),” Phys. Rev. D63 (2001) 026001, arXiv:hep-th/0009211.[125] G. Papadopoulos and A. A. Tseytl<strong>in</strong>, “Complex geometry <strong>of</strong> conifolds and 5-branewrapped on 2- sphere,” Class. Quant. Grav. 18 (2001) 1333–1354,arXiv:hep-th/0012034.[126] A. Butti, M. Grana, R. M<strong>in</strong>asian, M. Petr<strong>in</strong>i, and A. Zaffaroni, “The baryonicbranch <strong>of</strong> Klebanov-Strassler solution: A supersymmetric family <strong>of</strong> SU(3)structure backgrounds,” JHEP 03 (2005) 069, arXiv:hep-th/0412187.


Bibliography 309[127] I. R. Klebanov and A. A. Tseytl<strong>in</strong>, “Gravity Duals <strong>of</strong> Supersymmetric SU(N) xSU(N+M) Gauge Theories,” Nucl. Phys. B578 (2000) 123–138,arXiv:hep-th/0002159.[128] I. R. Klebanov and N. A. Nekrasov, “Gravity duals <strong>of</strong> <strong>fractional</strong> <strong>branes</strong> andlogarithmic RG flow,” Nucl. Phys. B574 (2000) 263–274, arXiv:hep-th/9911096.[129] F. Ben<strong>in</strong>i, F. Canoura, S. Cremonesi, C. Nunez, and A. V. Ramallo,“Backreact<strong>in</strong>g Flavors <strong>in</strong> <strong>the</strong> Klebanov-Strassler Background,” JHEP 09 (2007)109, arXiv:0706.1238 [hep-th].[130] N. Seiberg, “Exact results on <strong>the</strong> space <strong>of</strong> vacua <strong>of</strong> four-dimensional SUSY <strong>gauge</strong><strong>the</strong>ories,” Phys. Rev. D49 (1994) 6857–6863, arXiv:hep-th/9402044.[131] K. A. Intriligator and N. Seiberg, “Lectures on supersymmetric <strong>gauge</strong> <strong>the</strong>oriesand electric- magnetic duality,” Nucl. Phys. Proc. Suppl. 45BC (1996) 1–28,arXiv:hep-th/9509066.[132] A. Dymarsky, I. R. Klebanov, and N. Seiberg, “On <strong>the</strong> moduli space <strong>of</strong> <strong>the</strong>cascad<strong>in</strong>g SU(M+p) x SU(p) <strong>gauge</strong> <strong>the</strong>ory,” JHEP 01 (2006) 155,arXiv:hep-th/0511254.[133] C. Krishnan and S. Kuperste<strong>in</strong>, “The Mesonic Branch <strong>of</strong> <strong>the</strong> Deformed Conifold,”JHEP 05 (2008) 072, arXiv:0802.3674 [hep-th].[134] O. Aharony, “A note on <strong>the</strong> holographic <strong>in</strong>terpretation <strong>of</strong> str<strong>in</strong>g <strong>the</strong>orybackgrounds with vary<strong>in</strong>g flux,” JHEP 03 (2001) 012, arXiv:hep-th/0101013.[135] S.-J. Rey and J.-T. Yee, “Macroscopic str<strong>in</strong>gs as heavy quarks <strong>in</strong> large N <strong>gauge</strong><strong>the</strong>ory and anti-de Sitter super<strong>gravity</strong>,” Eur. Phys. J. C22 (2001) 379–394,arXiv:hep-th/9803001.[136] J. M. Maldacena, “Wilson loops <strong>in</strong> large N field <strong>the</strong>ories,” Phys. Rev. Lett. 80(1998) 4859–4862, arXiv:hep-th/9803002.[137] J. Sonnensche<strong>in</strong>, “What does <strong>the</strong> str<strong>in</strong>g / <strong>gauge</strong> <strong>correspondence</strong> teach us aboutWilson loops?,” arXiv:hep-th/0003032.[138] I. Affleck, M. D<strong>in</strong>e, and N. Seiberg, “Dynamical Supersymmetry Break<strong>in</strong>g <strong>in</strong>Supersymmetric QCD,” Nucl. Phys. B241 (1984) 493–534.[139] R. Gopakumar and C. Vafa, “On <strong>the</strong> <strong>gauge</strong> <strong>the</strong>ory/geometry <strong>correspondence</strong>,”Adv. Theor. Math. Phys. 3 (1999) 1415–1443, arXiv:hep-th/9811131.[140] C. Vafa, “Superstr<strong>in</strong>gs and topological str<strong>in</strong>gs at large N,” J. Math. Phys. 42(2001) 2798–2817, arXiv:hep-th/0008142.[141] R. M<strong>in</strong>asian and D. Tsimpis, “On <strong>the</strong> geometry <strong>of</strong> non-trivially embedded<strong>branes</strong>,” Nucl. Phys. B572 (2000) 499–513, arXiv:hep-th/9911042.[142] C. P. Herzog, I. R. Klebanov, and P. Ouyang, “Remarks on <strong>the</strong> warped deformedconifold,” arXiv:hep-th/0108101.


310 Bibliography[143] C. P. Herzog, I. R. Klebanov, and P. Ouyang, “D-<strong>branes</strong> on <strong>the</strong> conifold and N =1 <strong>gauge</strong> / <strong>gravity</strong> dualities,” arXiv:hep-th/0205100.[144] C. P. Herzog and I. R. Klebanov, “On str<strong>in</strong>g tensions <strong>in</strong> supersymmetric SU(M)<strong>gauge</strong> <strong>the</strong>ory,” Phys. Lett. B526 (2002) 388–392, arXiv:hep-th/0111078.[145] I. R. Klebanov, P. Ouyang, and E. Witten, “A <strong>gravity</strong> dual <strong>of</strong> <strong>the</strong> chiralanomaly,” Phys. Rev. D65 (2002) 105007, arXiv:hep-th/0202056.[146] S. S. Gubser, C. P. Herzog, and I. R. Klebanov, “Symmetry break<strong>in</strong>g and axionicstr<strong>in</strong>gs <strong>in</strong> <strong>the</strong> warped deformed conifold,” JHEP 09 (2004) 036,arXiv:hep-th/0405282.[147] C. P. Herzog, Q. J. Ejaz, and I. R. Klebanov, “Cascad<strong>in</strong>g RG flows from newSasaki-E<strong>in</strong>ste<strong>in</strong> manifolds,” JHEP 02 (2005) 009, arXiv:hep-th/0412193.[148] S. Franco, A. Hanany, F. Saad, and A. M. Uranga, “Fractional Branes andDynamical Supersymmetry Break<strong>in</strong>g,” JHEP 01 (2006) 011,arXiv:hep-th/0505040.[149] D. Berenste<strong>in</strong>, C. P. Herzog, P. Ouyang, and S. P<strong>in</strong>ansky, “SupersymmetryBreak<strong>in</strong>g from a Calabi-Yau S<strong>in</strong>gularity,” JHEP 09 (2005) 084,arXiv:hep-th/0505029.[150] M. Bertol<strong>in</strong>i, F. Bigazzi, and A. L. Cotrone, “Supersymmetry break<strong>in</strong>g at <strong>the</strong> end<strong>of</strong> a cascade <strong>of</strong> Seiberg dualities,” Phys. Rev. D72 (2005) 061902,arXiv:hep-th/0505055.[151] K. A. Intriligator and N. Seiberg, “The runaway quiver,” JHEP 02 (2006) 031,arXiv:hep-th/0512347.[152] M. Petr<strong>in</strong>i, R. Russo, and A. Zaffaroni, “N = 2 <strong>gauge</strong> <strong>the</strong>ories and systems with<strong>fractional</strong> <strong>branes</strong>,” Nucl. Phys. B608 (2001) 145–161, arXiv:hep-th/0104026.[153] T. J. Hollowood and S. Prem Kumar, “An N = 1 duality cascade from adeformation <strong>of</strong> N = 4 SUSY Yang-Mills,” JHEP 12 (2004) 034,arXiv:hep-th/0407029.[154] N. Seiberg and E. Witten, “Monopole Condensation, And Conf<strong>in</strong>ement In N=2Supersymmetric Yang-Mills Theory,” Nucl. Phys. B426 (1994) 19–52,arXiv:hep-th/9407087.[155] P. C. Argyres, M. R. Plesser, and N. Seiberg, “The Moduli Space <strong>of</strong> N=2 SUSYQCD and Duality <strong>in</strong> N=1 SUSY QCD,” Nucl. Phys. B471 (1996) 159–194,arXiv:hep-th/9603042.[156] C. V. Johnson, A. W. Peet, and J. Polch<strong>in</strong>ski, “Gauge <strong>the</strong>ory and <strong>the</strong> excision <strong>of</strong>repulson s<strong>in</strong>gularities,” Phys. Rev. D61 (2000) 086001, arXiv:hep-th/9911161.[157] E. Witten, “Solutions <strong>of</strong> four-dimensional field <strong>the</strong>ories via M- <strong>the</strong>ory,” Nucl.Phys. B500 (1997) 3–42, arXiv:hep-th/9703166.


Bibliography 311[158] S. Kachru and E. Silverste<strong>in</strong>, “4d conformal <strong>the</strong>ories and str<strong>in</strong>gs on orbifolds,”Phys. Rev. Lett. 80 (1998) 4855–4858, arXiv:hep-th/9802183.[159] M. R. Douglas and S. H. Shenker, “Dynamics <strong>of</strong> SU(N) supersymmetric <strong>gauge</strong><strong>the</strong>ory,” Nucl. Phys. B447 (1995) 271–296, arXiv:hep-th/9503163.[160] E. Witten, “Some comments on str<strong>in</strong>g dynamics,” arXiv:hep-th/9507121.[161] P. S. Asp<strong>in</strong>wall, “K3 surfaces and str<strong>in</strong>g duality,” arXiv:hep-th/9611137.[162] J. D. Blum and K. A. Intriligator, “Consistency conditions for <strong>branes</strong> at orbifolds<strong>in</strong>gularities,” Nucl. Phys. B506 (1997) 223–235, arXiv:hep-th/9705030.[163] M. Bertol<strong>in</strong>i, P. Di Vecchia, M. Frau, A. Lerda, and R. Marotta, “N = 2 <strong>gauge</strong><strong>the</strong>ories on systems <strong>of</strong> <strong>fractional</strong> D3/D7 <strong>branes</strong>,” Nucl. Phys. B621 (2002)157–178, arXiv:hep-th/0107057.[164] M. Billo, L. Gallot, and A. Liccardo, “Classical geometry and <strong>gauge</strong> duals for<strong>fractional</strong> <strong>branes</strong> on ALE orbifolds,” Nucl. Phys. B614 (2001) 254–278,arXiv:hep-th/0105258.[165] A. Klemm, W. Lerche, S. Yankielowicz, and S. Theisen, “Simple s<strong>in</strong>gularities andN=2 supersymmetric Yang-Mills <strong>the</strong>ory,” Phys. Lett. B344 (1995) 169–175,arXiv:hep-th/9411048.[166] P. C. Argyres and A. E. Faraggi, “The vacuum structure and spectrum <strong>of</strong> N=2supersymmetric SU(n) <strong>gauge</strong> <strong>the</strong>ory,” Phys. Rev. Lett. 74 (1995) 3931–3934,arXiv:hep-th/9411057.[167] A. Giveon and D. Kutasov, “Brane dynamics and <strong>gauge</strong> <strong>the</strong>ory,” Rev. Mod. Phys.71 (1999) 983–1084, arXiv:hep-th/9802067.[168] I. P. Ennes, C. Lozano, S. G. Naculich, and H. J. Schnitzer, “Elliptic models andM-<strong>the</strong>ory,” Nucl. Phys. B576 (2000) 313–346, arXiv:hep-th/9912133.[169] A. Hanany and Y. Oz, “On <strong>the</strong> Quantum Moduli Space <strong>of</strong> Vacua <strong>of</strong> N = 2Supersymmetric SU(N c ) Gauge Theories,” Nucl. Phys. B452 (1995) 283–312,arXiv:hep-th/9505075.[170] S. Bolognesi, “A Co<strong>in</strong>cidence Problem: How to Flow from N=2 SQCD to N=1SQCD,” JHEP 11 (2008) 029, arXiv:0807.2456 [hep-th].[171] P. C. Argyres, M. R. Plesser, and A. D. Shapere, “The Coulomb phase <strong>of</strong> N=2supersymmetric QCD,” Phys. Rev. Lett. 75 (1995) 1699–1702,arXiv:hep-th/9505100.[172] J. Evsl<strong>in</strong>, “The cascade is a MMS <strong>in</strong>stanton,” arXiv:hep-th/0405210.[173] K. Hori, H. Ooguri, and Y. Oz, “Strong coupl<strong>in</strong>g dynamics <strong>of</strong> four-dimensional N= 1 <strong>gauge</strong> <strong>the</strong>ories from M <strong>the</strong>ory fivebrane,” Adv. Theor. Math. Phys. 1 (1998)1–52, arXiv:hep-th/9706082.


312 Bibliography[174] E. Witten, “Branes and <strong>the</strong> dynamics <strong>of</strong> QCD,” Nucl. Phys. B507 (1997)658–690, arXiv:hep-th/9706109.[175] J. de Boer, K. Hori, H. Ooguri, and Y. Oz, “Kaehler potential and higherderivative terms from M <strong>the</strong>ory five-brane,” Nucl. Phys. B518 (1998) 173–211,arXiv:hep-th/9711143.[176] N. Halmagyi, K. Pilch, C. Romelsberger, and N. P. Warner, “The complexgeometry <strong>of</strong> holographic flows <strong>of</strong> quiver <strong>gauge</strong> <strong>the</strong>ories,” JHEP 09 (2006) 063,arXiv:hep-th/0406147.[177] C. V. Johnson, R. C. Myers, A. W. Peet, and S. F. Ross, “The enhancon and <strong>the</strong>consistency <strong>of</strong> excision,” Phys. Rev. D64 (2001) 106001, arXiv:hep-th/0105077.[178] A. Fayyazudd<strong>in</strong> and M. Spal<strong>in</strong>ski, “The Seiberg-Witten differential fromM-<strong>the</strong>ory,” Nucl. Phys. B508 (1997) 219–228, arXiv:hep-th/9706087.[179] M. Henn<strong>in</strong>gson and P. Yi, “Four-dimensional BPS-spectra via M-<strong>the</strong>ory,” Phys.Rev. D57 (1998) 1291–1298, arXiv:hep-th/9707251.[180] A. Mikhailov, “BPS states and m<strong>in</strong>imal surfaces,” Nucl. Phys. B533 (1998)243–274, arXiv:hep-th/9708068.[181] S. Cremonesi, “Transmutation <strong>of</strong> N=2 <strong>fractional</strong> D3 <strong>branes</strong> <strong>in</strong>to twisted sectorfluxes,” arXiv:0904.2277 [hep-th].[182] R. Argurio, M. Bertol<strong>in</strong>i, S. Franco, and S. Kachru, “Gauge/<strong>gravity</strong> duality andmeta-stable dynamical supersymmetry break<strong>in</strong>g,” JHEP 01 (2007) 083,arXiv:hep-th/0610212.[183] A. Karch and E. Katz, “Add<strong>in</strong>g flavor to AdS/CFT,” JHEP 06 (2002) 043,arXiv:hep-th/0205236.[184] D. Marolf, “Chern-Simons terms and <strong>the</strong> three notions <strong>of</strong> charge,”arXiv:hep-th/0006117.[185] S. Franco, Y.-H. He, C. Herzog, and J. Walcher, “Chaotic duality <strong>in</strong> str<strong>in</strong>g<strong>the</strong>ory,” Phys. Rev. D70 (2004) 046006, arXiv:hep-th/0402120.[186] F. Ben<strong>in</strong>i, “A chiral cascade via backreact<strong>in</strong>g D7-<strong>branes</strong> with flux,” JHEP 10(2008) 051, arXiv:0710.0374 [hep-th].[187] D. N. Page, “CLASSICAL STABILITY OF ROUND AND SQUASHED SEVENSPHERES IN ELEVEN-DIMENSIONAL SUPERGRAVITY,” Phys. Rev. D28(1983) 2976.[188] A. Butti, “Deformations <strong>of</strong> toric s<strong>in</strong>gularities and <strong>fractional</strong> <strong>branes</strong>,” JHEP 10(2006) 080, arXiv:hep-th/0603253.[189] D. Berenste<strong>in</strong>, “D-brane realizations <strong>of</strong> runaway behavior and modulistabilization,” arXiv:hep-th/0303230.


Bibliography 313[190] E. Imeroni and A. Lerda, “Non-perturbative <strong>gauge</strong> superpotentials fromsuper<strong>gravity</strong>,” JHEP 12 (2003) 051, arXiv:hep-th/0310157.[191] S. Gukov, C. Vafa, and E. Witten, “CFT’s from Calabi-Yau four-folds,” Nucl.Phys. B584 (2000) 69–108, arXiv:hep-th/9906070.[192] T. R. Taylor, G. Veneziano, and S. Yankielowicz, “Supersymmetric QCD and ItsMassless Limit: An Effective Lagrangian Analysis,” Nucl. Phys. B218 (1983) 493.[193] G. Veneziano and S. Yankielowicz, “An Effective Lagrangian for <strong>the</strong> Pure N=1Supersymmetric Yang-Mills Theory,” Phys. Lett. B113 (1982) 231.[194] M. Aganagic and C. Vafa, “Mirror symmetry, D-<strong>branes</strong> and count<strong>in</strong>g holomorphicdiscs,” arXiv:hep-th/0012041.[195] M. Aganagic, C. Beem, and S. Kachru, “Geometric Transitions and DynamicalSUSY Break<strong>in</strong>g,” Nucl. Phys. B796 (2008) 1–24, arXiv:0709.4277 [hep-th].[196] B. S. Acharya, J. M. Figueroa-O’Farrill, C. M. Hull, and B. J. Spence, “Branes atconical s<strong>in</strong>gularities and holography,” Adv. Theor. Math. Phys. 2 (1999)1249–1286, arXiv:hep-th/9808014.[197] K. Becker and M. Becker, “M-Theory on Eight-Manifolds,” Nucl. Phys. B477(1996) 155–167, arXiv:hep-th/9605053.[198] P. G. O. Freund and M. A. Rub<strong>in</strong>, “Dynamics <strong>of</strong> Dimensional Reduction,” Phys.Lett. B97 (1980) 233–235.[199] D. Martelli and J. Sparks, “AdS 4 /CFT 3 duals from M2-<strong>branes</strong> at hypersurfaces<strong>in</strong>gularities and <strong>the</strong>ir deformations,” arXiv:0909.2036 [hep-th].[200] B. Biran, A. Casher, F. Englert, M. Rooman, and P. Sp<strong>in</strong>del, “The fluctuat<strong>in</strong>gSeven Sphere <strong>in</strong> eleven-dimensional Super<strong>gravity</strong>,” Phys. Lett. B134 (1984) 179.[201] A. Casher, F. Englert, H. Nicolai, and M. Rooman, “The mass spectrum <strong>of</strong>super<strong>gravity</strong> on <strong>the</strong> round seven sphere,” Nucl. Phys. B243 (1984) 173.[202] O. Aharony, O. Bergman, D. L. Jafferis, and J. Maldacena, “N=6 superconformalChern-Simons-matter <strong>the</strong>ories, M2-<strong>branes</strong> and <strong>the</strong>ir <strong>gravity</strong> duals,” JHEP 10(2008) 091, arXiv:0806.1218 [hep-th].[203] E. Bergshoeff, E. Sezg<strong>in</strong>, and P. K. Townsend, “Supermem<strong>branes</strong> andeleven-dimensional super<strong>gravity</strong>,” Phys. Lett. B189 (1987) 75–78.[204] E. Bergshoeff, E. Sezg<strong>in</strong>, and P. K. Townsend, “Properties <strong>of</strong> <strong>the</strong>Eleven-Dimensional Super Membrane Theory,” Ann. Phys. 185 (1988) 330.[205] E. Imeroni, “The <strong>gauge</strong> / str<strong>in</strong>g <strong>correspondence</strong> towards realistic <strong>gauge</strong> <strong>the</strong>ories,”arXiv:hep-th/0312070.[206] K. G. Wilson and M. E. Fisher, “Critical exponents <strong>in</strong> 3.99 dimensions,” Phys.Rev. Lett. 28 (1972) 240–243.


314 Bibliography[207] S. A. Cherkis and A. Hashimoto, “Super<strong>gravity</strong> solution <strong>of</strong> <strong>in</strong>tersect<strong>in</strong>g <strong>branes</strong>and AdS/CFT with flavor,” JHEP 11 (2002) 036, arXiv:hep-th/0210105.[208] K. A. Intriligator and N. Seiberg, “Mirror symmetry <strong>in</strong> three dimensional <strong>gauge</strong><strong>the</strong>ories,” Phys. Lett. B387 (1996) 513–519, arXiv:hep-th/9607207.[209] V. A. Novikov, M. A. Shifman, A. I. Va<strong>in</strong>shte<strong>in</strong>, and V. I. Zakharov, “ExactGell-Mann-Low Function <strong>of</strong> Supersymmetric Yang-Mills Theories from InstantonCalculus,” Nucl. Phys. B229 (1983) 381.[210] J. H. Schwarz, “Superconformal Chern-Simons <strong>the</strong>ories,” JHEP 11 (2004) 078,arXiv:hep-th/0411077.[211] S. J. Gates, M. T. Grisaru, M. Rocek, and W. Siegel, “Superspace, or onethousand and one lessons <strong>in</strong> supersymmetry,” Front. Phys. 58 (1983) 1–548,arXiv:hep-th/0108200.[212] H. Nish<strong>in</strong>o and S. J. Gates, Jr., “Chern-Simons <strong>the</strong>ories with supersymmetries <strong>in</strong>three- dimensions,” Int. J. Mod. Phys. A8 (1993) 3371–3422.[213] S. J. Gates, Jr. and H. Nish<strong>in</strong>o, “Remarks on <strong>the</strong> N=2 supersymmetricChern-Simons <strong>the</strong>ories,” Phys. Lett. B281 (1992) 72–80.[214] M. Benna, I. Klebanov, T. Klose, and M. Smedback, “SuperconformalChern-Simons Theories and AdS 4 /CFT 3 Correspondence,” JHEP 09 (2008) 072,arXiv:0806.1519 [hep-th].[215] A. Van Proeyen, “Tools for supersymmetry,” arXiv:hep-th/9910030.[216] G. V. Dunne, “Aspects <strong>of</strong> Chern-Simons <strong>the</strong>ory,” arXiv:hep-th/9902115.[217] O. Aharony, A. Hanany, K. A. Intriligator, N. Seiberg, and M. J. Strassler,“Aspects <strong>of</strong> N = 2 supersymmetric <strong>gauge</strong> <strong>the</strong>ories <strong>in</strong> three dimensions,” Nucl.Phys. B499 (1997) 67–99, arXiv:hep-th/9703110.[218] B. B<strong>in</strong>egar, “Relativistic field <strong>the</strong>ories <strong>in</strong> three dimensions,” J. Math. Phys. 23(1982) 1511.[219] J. de Boer, K. Hori, and Y. Oz, “Dynamics <strong>of</strong> N = 2 supersymmetric <strong>gauge</strong><strong>the</strong>ories <strong>in</strong> three dimensions,” Nucl. Phys. B500 (1997) 163–191,arXiv:hep-th/9703100.[220] S. Deser, R. Jackiw, and S. Templeton, “Topologically massive <strong>gauge</strong> <strong>the</strong>ories,”Ann. Phys. 140 (1982) 372–411.[221] E. Witten, “Quantum field <strong>the</strong>ory and <strong>the</strong> Jones polynomial,” Commun. Math.Phys. 121 (1989) 351.[222] R. D. Pisarski and S. Rao, “Topologically Massive Chromodynamics <strong>in</strong> <strong>the</strong>Perturbative Regime,” Phys. Rev. D32 (1985) 2081.


Bibliography 315[223] G. Giavar<strong>in</strong>i, C. P. Mart<strong>in</strong>, and F. Ruiz Ruiz, “Shift versus no shift <strong>in</strong> localregularizations <strong>of</strong> Chern- Simons <strong>the</strong>ory,” Phys. Lett. B332 (1994) 345–348,arXiv:hep-th/9406034.[224] H.-C. Kao, K.-M. Lee, and T. Lee, “The Chern-Simons coefficient <strong>in</strong>supersymmetric Yang-Mills Chern-Simons <strong>the</strong>ories,” Phys. Lett. B373 (1996)94–99, arXiv:hep-th/9506170.[225] A. N. Kapust<strong>in</strong> and P. I. Pron<strong>in</strong>, “Nonrenormalization <strong>the</strong>orem for <strong>gauge</strong> coupl<strong>in</strong>g<strong>in</strong> (2+1)- dimensions,” Mod. Phys. Lett. A9 (1994) 1925–1932,arXiv:hep-th/9401053.[226] D. Gaiotto and X. Y<strong>in</strong>, “Notes on superconformal Chern-Simons-matter <strong>the</strong>ories,”JHEP 08 (2007) 056, arXiv:0704.3740 [hep-th].[227] C.-M. Chang and X. Y<strong>in</strong>, “Families <strong>of</strong> Conformal Fixed Po<strong>in</strong>ts <strong>of</strong> N=2Chern-Simons- Matter Theories,” arXiv:1002.0568 [hep-th].[228] P. Dirac, “Quantised S<strong>in</strong>gularities <strong>in</strong> <strong>the</strong> Electromagnetic Field,” Proc. Roy. Soc.(London) A 133, 60 (1931) .[229] P. Goddard, J. Nuyts, and D. I. Olive, “Gauge Theories and Magnetic Charge,”Nucl. Phys. B125 (1977) 1.[230] V. Borokhov, A. Kapust<strong>in</strong>, and X.-k. Wu, “Topological disorder operators <strong>in</strong>three-dimensional conformal field <strong>the</strong>ory,” JHEP 11 (2002) 049,arXiv:hep-th/0206054.[231] V. Borokhov, A. Kapust<strong>in</strong>, and X.-k. Wu, “Monopole operators and mirrorsymmetry <strong>in</strong> three dimensions,” JHEP 12 (2002) 044, arXiv:hep-th/0207074.[232] G. W. Moore and N. Seiberg, “Tam<strong>in</strong>g <strong>the</strong> Conformal Zoo,” Phys. Lett. B220(1989) 422.[233] N. Itzhaki, “Anyons, ’t Ho<strong>of</strong>t loops and a generalized connection <strong>in</strong> threedimensions,” Phys. Rev. D67 (2003) 065008, arXiv:hep-th/0211140.[234] E. B. Bogomolny, “Stability <strong>of</strong> Classical Solutions,” Sov. J. Nucl. Phys. 24 (1976)449.[235] M. K. Benna, I. R. Klebanov, and T. Klose, “Charges <strong>of</strong> Monopole Operators <strong>in</strong>Chern-Simons Yang-Mills Theory,” arXiv:0906.3008 [hep-th].[236] G. ’t Ho<strong>of</strong>t, “Magnetic monopoles <strong>in</strong> unified <strong>gauge</strong> <strong>the</strong>ories,” Nucl. Phys. B79(1974) 276–284.[237] A. M. Polyakov, “Particle spectrum <strong>in</strong> quantum field <strong>the</strong>ory,” JETP Lett. 20(1974) 194–195.[238] A. Kapust<strong>in</strong>, “Wilson-’t Ho<strong>of</strong>t operators <strong>in</strong> four-dimensional <strong>gauge</strong> <strong>the</strong>ories andS-duality,” Phys. Rev. D74 (2006) 025005, arXiv:hep-th/0501015.


316 Bibliography[239] T. T. Wu and C. N. Yang, “Dirac Monopole Without Str<strong>in</strong>gs: MonopoleHarmonics,” Nucl. Phys. B107 (1976) 365.[240] J. Bagger and N. Lambert, “Model<strong>in</strong>g multiple M2’s,” Phys. Rev. D75 (2007)045020, arXiv:hep-th/0611108.[241] J. Bagger and N. Lambert, “Gauge Symmetry and Supersymmetry <strong>of</strong> MultipleM2-Branes,” Phys. Rev. D77 (2008) 065008, arXiv:0711.0955 [hep-th].[242] A. Gustavsson, “Algebraic structures on parallel M2-<strong>branes</strong>,” Nucl. Phys. B811(2009) 66–76, arXiv:0709.1260 [hep-th].[243] M. Van Raamsdonk, “Comments on <strong>the</strong> Bagger-Lambert <strong>the</strong>ory and multiple M2-<strong>branes</strong>,” JHEP 05 (2008) 105, arXiv:0803.3803 [hep-th].[244] D. Martelli and J. Sparks, “Moduli spaces <strong>of</strong> Chern-Simons quiver <strong>gauge</strong> <strong>the</strong>oriesand AdS(4)/CFT(3),” Phys. Rev. D78 (2008) 126005, arXiv:0808.0912[hep-th].[245] A. Hanany and A. Zaffaroni, “Til<strong>in</strong>gs, Chern-Simons Theories and M2 Branes,”JHEP 10 (2008) 111, arXiv:0808.1244 [hep-th].[246] H. Ooguri and C.-S. Park, “Superconformal Chern-Simons Theories and <strong>the</strong>Squashed Seven Sphere,” JHEP 11 (2008) 082, arXiv:0808.0500 [hep-th].[247] D. Gaiotto and A. Tomasiello, “The <strong>gauge</strong> dual <strong>of</strong> Romans mass,”arXiv:0901.0969 [hep-th].[248] N. Bobev, N. Halmagyi, K. Pilch, and N. P. Warner, “Holographic, N=1Supersymmetric RG Flows on M2 Branes,” JHEP 09 (2009) 043,arXiv:0901.2736 [hep-th].[249] D. Forcella and A. Zaffaroni, “N=1 Chern-Simons <strong>the</strong>ories, orientifolds andSp<strong>in</strong>(7) cones,” arXiv:0911.2595 [hep-th].[250] K. Altmann, “The versal Deformation <strong>of</strong> an isolated toric Gorenste<strong>in</strong> S<strong>in</strong>gularity,”arXiv:alg-geom/9403004.[251] K. Ueda and M. Yamazaki, “Toric Calabi-Yau four-folds dual toChern-Simons-matter <strong>the</strong>ories,” JHEP 12 (2008) 045, arXiv:0808.3768[hep-th].[252] Y. Imamura and K. Kimura, “Quiver Chern-Simons <strong>the</strong>ories and crystals,” JHEP10 (2008) 114, arXiv:0808.4155 [hep-th].[253] A. Hanany, D. Vegh, and A. Zaffaroni, “Brane Til<strong>in</strong>gs and M2 Branes,” JHEP 03(2009) 012, arXiv:0809.1440 [hep-th].[254] A. Kapust<strong>in</strong> and E. Witten, “Electric-magnetic duality and <strong>the</strong> geometricLanglands program,” arXiv:hep-th/0604151.


Bibliography 317[255] I. Klebanov, T. Klose, and A. Murugan, “AdS4/CFT3 – Squashed, Stretched andWarped,” JHEP 03 (2009) 140, arXiv:0809.3773 [hep-th].[256] J. A. M<strong>in</strong>ahan and K. Zarembo, “The Be<strong>the</strong> ansatz for superconformalChern-Simons,” JHEP 09 (2008) 040, arXiv:0806.3951 [hep-th].[257] A. Gustavsson and S.-J. Rey, “Enhanced N=8 Supersymmetry <strong>of</strong> ABJM Theoryon R(8) and R(8)/Z(2),” arXiv:0906.3568 [hep-th].[258] M. Aganagic, “A Str<strong>in</strong>gy Orig<strong>in</strong> <strong>of</strong> M2 Brane Chern-Simons Theories,”arXiv:0905.3415 [hep-th].[259] S. Franco, A. Hanany, J. Park, and D. Rodriguez-Gomez, “Towards M2-braneTheories for Generic Toric S<strong>in</strong>gularities,” JHEP 12 (2008) 110, arXiv:0809.3237[hep-th].[260] A. Hanany and Y.-H. He, “M2-Branes and Quiver Chern-Simons: A TaxonomicStudy,” arXiv:0811.4044 [hep-th].[261] A. Amariti, D. Forcella, L. Girardello, and A. Mariotti, “3D Seiberg-like Dualitiesand M2 Branes,” arXiv:0903.3222 [hep-th].[262] S. Franco, I. R. Klebanov, and D. Rodriguez-Gomez, “M2-<strong>branes</strong> on Orbifolds <strong>of</strong><strong>the</strong> Cone over Q 1,1,1 ,” JHEP 08 (2009) 033, arXiv:0903.3231 [hep-th].[263] J. Davey, A. Hanany, N. Mekareeya, and G. Torri, “Phases <strong>of</strong> M2-braneTheories,” JHEP 06 (2009) 025, arXiv:0903.3234 [hep-th].[264] J. Davey, A. Hanany, N. Mekareeya, and G. Torri, “Higgs<strong>in</strong>g M2-brane Theories,”arXiv:0908.4033 [hep-th].[265] J. Davey, A. Hanany, and J. Pasukonis, “On <strong>the</strong> Classification <strong>of</strong> Brane Til<strong>in</strong>gs,”arXiv:0909.2868 [hep-th].[266] J. Hewlett and Y.-H. He, “Prob<strong>in</strong>g <strong>the</strong> Space <strong>of</strong> Toric Quiver Theories,”arXiv:0909.2879 [hep-th].[267] M. Taki, “M2-<strong>branes</strong> Theories without 3+1 Dimensional Parents via Un-Higgs<strong>in</strong>g,” arXiv:0910.0370 [hep-th].[268] O. Aharony, O. Bergman, and D. L. Jafferis, “Fractional M2-<strong>branes</strong>,” JHEP 11(2008) 043, arXiv:0807.4924 [hep-th].[269] O. Aharony, A. Hashimoto, S. Hirano, and P. Ouyang, “D-brane Charges <strong>in</strong>Gravitational Duals <strong>of</strong> 2+1 Dimensional Gauge Theories and Duality Cascades,”arXiv:0906.2390 [hep-th].[270] J. Evsl<strong>in</strong> and S. Kuperste<strong>in</strong>, “ABJ(M) and Fractional M2’s with Fractional M2Charge,” JHEP 12 (2009) 016, arXiv:0906.2703 [hep-th].[271] N. Benishti, Y.-H. He, and J. Sparks, “(Un)Higgs<strong>in</strong>g <strong>the</strong> M2-brane,”arXiv:0909.4557 [hep-th].


318 Bibliography[272] D. Rodriguez-Gomez, “M5 spikes and operators <strong>in</strong> <strong>the</strong> HVZ membrane <strong>the</strong>ory,”arXiv:0911.0008 [hep-th].[273] N. Benishti, D. Rodriguez-Gomez, and J. Sparks, “Baryonic symmetries and M5<strong>branes</strong> <strong>in</strong> <strong>the</strong> AdS 4 /CFT 3 <strong>correspondence</strong>,” arXiv:1004.2045 [hep-th].[274] K. Hosomichi, K.-M. Lee, S. Lee, S. Lee, and J. Park, “N=5,6 SuperconformalChern-Simons Theories and M2-<strong>branes</strong> on Orbifolds,” JHEP 09 (2008) 002,arXiv:0806.4977 [hep-th].[275] T. Kitao, K. Ohta, and N. Ohta, “Three-dimensional <strong>gauge</strong> dynamics from braneconfigurations with (p,q)-fivebrane,” Nucl. Phys. B539 (1999) 79–106,arXiv:hep-th/9808111.[276] O. Bergman, A. Hanany, A. Karch, and B. Kol, “Branes and supersymmetrybreak<strong>in</strong>g <strong>in</strong> 3D <strong>gauge</strong> <strong>the</strong>ories,” JHEP 10 (1999) 036, arXiv:hep-th/9908075.[277] A. N. Redlich, “Gauge Non<strong>in</strong>variance and Parity Nonconservation <strong>of</strong>Three-Dimensional Fermions,” Phys. Rev. Lett. 52 (1984) 18.[278] A. N. Redlich, “Parity Violation and Gauge Non<strong>in</strong>variance <strong>of</strong> <strong>the</strong> Effective GaugeField Action <strong>in</strong> Three-Dimensions,” Phys. Rev. D29 (1984) 2366–2374.[279] O. Aharony and A. Hanany, “Branes, superpotentials and superconformal fixedpo<strong>in</strong>ts,” Nucl. Phys. B504 (1997) 239–271, arXiv:hep-th/9704170.[280] J. P. Gauntlett, G. W. Gibbons, G. Papadopoulos, and P. K. Townsend,“Hyper-Kaehler manifolds and multiply <strong>in</strong>tersect<strong>in</strong>g <strong>branes</strong>,” Nucl. Phys. B500(1997) 133–162, arXiv:hep-th/9702202.[281] Y. Imamura and K. Kimura, “On <strong>the</strong> moduli space <strong>of</strong> ellipticMaxwell-Chern-Simons <strong>the</strong>ories,” Prog. Theor. Phys. 120 (2008) 509–523,arXiv:0806.3727 [hep-th].[282] D. L. Jafferis and A. Tomasiello, “A simple class <strong>of</strong> N=3 <strong>gauge</strong>/<strong>gravity</strong> duals,”JHEP 10 (2008) 101, arXiv:0808.0864 [hep-th].[283] R. Bielawski and A. Dancer, “The geometry and topology <strong>of</strong> toric hyper-Kahlermanifolds,” Comm. Anal. Geom. 8 8 (2000) 727–759.[284] M. Billo, D. Fabbri, P. Fre, P. Merlatti, and A. Zaffaroni, “R<strong>in</strong>gs <strong>of</strong> short N = 3superfields <strong>in</strong> three dimensions and M-<strong>the</strong>ory on AdS(4) x N(0,1,0),” Class.Quant. Grav. 18 (2001) 1269–1290, arXiv:hep-th/0005219.[285] D. Gaiotto and D. L. Jafferis, “Notes on add<strong>in</strong>g D6 <strong>branes</strong> wrapp<strong>in</strong>g RP3 <strong>in</strong> AdS4x CP3,” arXiv:0903.2175 [hep-th].[286] S. Hohenegger and I. Kirsch, “A note on <strong>the</strong> holography <strong>of</strong> Chern-Simons matter<strong>the</strong>ories with flavour,” JHEP 04 (2009) 129, arXiv:0903.1730 [hep-th].[287] Y. Hikida, W. Li, and T. Takayanagi, “ABJM with Flavors and FQHE,” JHEP07 (2009) 065, arXiv:0903.2194 [hep-th].


Bibliography 319[288] F. Denef, “Les Houches Lectures on Construct<strong>in</strong>g Str<strong>in</strong>g Vacua,”arXiv:0803.1194 [hep-th].[289] M. Fujita and T.-S. Tai, “Eschenburg space as <strong>gravity</strong> dual <strong>of</strong> flavored N=4Chern- Simons-matter <strong>the</strong>ory,” JHEP 09 (2009) 062, arXiv:0906.0253[hep-th].[290] K. Jensen and A. Karch, “ABJM Mirrors and a Duality <strong>of</strong> Dualities,” JHEP 09(2009) 004, arXiv:0906.3013 [hep-th].[291] M. Ammon, J. Erdmenger, R. Meyer, A. O’Bannon, and T. Wrase, “Add<strong>in</strong>gFlavor to AdS4/CFT3,” arXiv:0909.3845 [hep-th].[292] D. L. Jafferis, “Quantum corrections to N=2 Chern-Simons <strong>the</strong>ories with flavorand <strong>the</strong>ir AdS4 duals,” arXiv:0911.4324 [hep-th].[293] G. ’t Ho<strong>of</strong>t, “On <strong>the</strong> Phase Transition Towards Permanent Quark Conf<strong>in</strong>ement,”Nucl. Phys. B138 (1978) 1.[294] A. M. Polyakov, “Quark Conf<strong>in</strong>ement and Topology <strong>of</strong> Gauge Groups,” Nucl.Phys. B120 (1977) 429–458.[295] V. Borokhov, “Monopole operators <strong>in</strong> three-dimensional N = 4 SYM and mirrorsymmetry,” JHEP 03 (2004) 008, arXiv:hep-th/0310254.[296] D. L. Jafferis, “M2-<strong>branes</strong>, CS <strong>the</strong>ories and AdS4/CFT3,”. Talk given at Str<strong>in</strong>gs2009, Roma June 22-26, 2009,http://str<strong>in</strong>gs2009.roma2.<strong>in</strong>fn.it/talks/Jafferis Str<strong>in</strong>gs09.pdf.[297] S. Franco, A. Hanany, D. Martelli, J. Sparks, D. Vegh, and B. Wecht, “Gauge<strong>the</strong>ories from toric geometry and brane til<strong>in</strong>gs,” JHEP 01 (2006) 128,arXiv:hep-th/0505211.[298] M. Yamazaki, “Brane Til<strong>in</strong>gs and Their Applications,” Fortsch. Phys. 56 (2008)555–686, arXiv:0803.4474 [hep-th].[299] A. Hanany and A. Iqbal, “Quiver <strong>the</strong>ories from D6-<strong>branes</strong> via mirror symmetry,”JHEP 04 (2002) 009, arXiv:hep-th/0108137.[300] D. Berenste<strong>in</strong>, C. P. Herzog, and I. R. Klebanov, “Baryon spectra and AdS/CFT<strong>correspondence</strong>,” JHEP 06 (2002) 047, arXiv:hep-th/0202150.[301] A. Butti, D. Forcella, and A. Zaffaroni, “Count<strong>in</strong>g BPS baryonic operators <strong>in</strong>CFTs with Sasaki- E<strong>in</strong>ste<strong>in</strong> duals,” JHEP 06 (2007) 069, arXiv:hep-th/0611229.[302] P. Ouyang, “Holomorphic D7-<strong>branes</strong> and flavored N = 1 <strong>gauge</strong> <strong>the</strong>ories,” Nucl.Phys. B699 (2004) 207–225, arXiv:hep-th/0311084.[303] S. Franco and A. M. . Uranga, “Dynamical SUSY break<strong>in</strong>g at meta-stable m<strong>in</strong>imafrom D- <strong>branes</strong> at obstructed geometries,” JHEP 06 (2006) 031,arXiv:hep-th/0604136.


320 Bibliography[304] F. Ben<strong>in</strong>i, F. Canoura, S. Cremonesi, C. Nunez, and A. V. Ramallo, “Unquenchedflavors <strong>in</strong> <strong>the</strong> Klebanov-Witten model,” JHEP 02 (2007) 090,arXiv:hep-th/0612118.[305] A. J. Niemi and G. W. Semen<strong>of</strong>f, “Axial Anomaly Induced FermionFractionization and Effective Gauge Theory Actions <strong>in</strong> Odd Dimensional Space-Times,” Phys. Rev. Lett. 51 (1983) 2077.[306] M. S. Bianchi, S. Penati, and M. Siani, “Infrared stability <strong>of</strong> ABJ-like <strong>the</strong>ories,”arXiv:0910.5200 [hep-th].[307] J. Choi, S. Lee, and J. Song, “Superconformal Indices for Orbifold Chern-SimonsTheories,” JHEP 03 (2009) 099, arXiv:0811.2855 [hep-th].[308] D. Martelli and J. Sparks, “Notes on toric Sasaki-E<strong>in</strong>ste<strong>in</strong> seven-manifolds andAdS 4 /CFT 3 ,” JHEP 11 (2008) 016, arXiv:0808.0904 [hep-th].[309] D. Gaiotto and A. Tomasiello, “Perturb<strong>in</strong>g <strong>gauge</strong>/<strong>gravity</strong> duals by a Romansmass,” arXiv:0904.3959 [hep-th].[310] B. R. Greene, “Str<strong>in</strong>g <strong>the</strong>ory on Calabi-Yau manifolds,” arXiv:hep-th/9702155.[311] V. Bouchard, “Lectures on complex geometry, Calabi-Yau manifolds and toricgeometry,” arXiv:hep-th/0702063.[312] T. Hubsch, “Calabi-Yau manifolds: A Bestiary for physicists,”. S<strong>in</strong>gapore,S<strong>in</strong>gapore: World Scientific (1992) 362 p.[313] D. D. Joyce, Compact manifolds with special holonomy. Oxford Ma<strong>the</strong>maticalMonographs series, OUP, 2000.[314] W. Fulton, Introduction to Toric Varieties. Pr<strong>in</strong>ceton University Press, 1993.[315] D. Cox, “Recent developments <strong>in</strong> toric geometry,” arXiv:alg-geom/9606016.[316] H. Skarke, “Str<strong>in</strong>g dualities and toric geometry: An <strong>in</strong>troduction,”arXiv:hep-th/9806059.[317] P. Griffiths and J. Harris, Pr<strong>in</strong>ciples <strong>of</strong> Algebraic Geometry. Wiley, 1978.[318] O. Aharony, A. Hanany, and B. Kol, “Webs <strong>of</strong> (p,q) 5-<strong>branes</strong>, five dimensionalfield <strong>the</strong>ories and grid diagrams,” JHEP 01 (1998) 002, arXiv:hep-th/9710116.[319] N. C. Leung and C. Vafa, “Branes and toric geometry,” Adv. Theor. Math. Phys.2 (1998) 91–118, arXiv:hep-th/9711013.[320] S. P<strong>in</strong>ansky, “Quantum deformations from toric geometry,” JHEP 03 (2006) 055,arXiv:hep-th/0511027.[321] R. Argurio and C. Closset, “A Quiver <strong>of</strong> Many Runaways,” JHEP 09 (2007) 080,arXiv:0706.3991 [hep-th].


Bibliography 321[322] E. Witten, “Phases <strong>of</strong> N = 2 <strong>the</strong>ories <strong>in</strong> two dimensions,” Nucl. Phys. B403(1993) 159–222, arXiv:hep-th/9301042.[323] D. Martelli and J. Sparks, “Toric geometry, Sasaki-E<strong>in</strong>ste<strong>in</strong> manifolds and a new<strong>in</strong>f<strong>in</strong>ite class <strong>of</strong> AdS/CFT duals,” Commun. Math. Phys. 262 (2006) 51–89,arXiv:hep-th/0411238.[324] M. Kreuzer, “Toric Geometry and Calabi-Yau Compactifications,”arXiv:hep-th/0612307.[325] K. Hori et al., “Mirror symmetry,”. Providence, USA: AMS (2003) 929 p.[326] N. Arkani-Hamed and H. Murayama, “Holomorphy, rescal<strong>in</strong>g anomalies and exactbeta functions <strong>in</strong> supersymmetric <strong>gauge</strong> <strong>the</strong>ories,” JHEP 06 (2000) 030,arXiv:hep-th/9707133.[327] A. Erdeliy, W. Magnus, F. Oberhett<strong>in</strong>ger, and F. Tricomi, Higher TranscendentalFunctions, vol. I and II. Bateman Manuscript Project.[328] http://functions.wolfram.com/Polynomials/GegenbauerC3/.[329] R. Grimm, M. Sohnius, and J. Wess, “Extended Supersymmetry and GaugeTheories,” Nucl. Phys. B133 (1978) 275.[330] A. Bilal, “Duality <strong>in</strong> N=2 SUSY SU(2) Yang-Mills Theory: A pedagogical<strong>in</strong>troduction to <strong>the</strong> work <strong>of</strong> Seiberg and Witten,” arXiv:hep-th/9601007.[331] N. Seiberg, “Supersymmetry and Nonperturbative beta Functions,” Phys. Lett.B206 (1988) 75.[332] L. Alvarez-Gaume and S. F. Hassan, “Introduction to S-duality <strong>in</strong> N = 2supersymmetric <strong>gauge</strong> <strong>the</strong>ories: A pedagogical review <strong>of</strong> <strong>the</strong> work <strong>of</strong> Seiberg andWitten,” Fortsch. Phys. 45 (1997) 159–236, arXiv:hep-th/9701069.[333] E. Witten, “Dyons <strong>of</strong> Charge e <strong>the</strong>ta/2 pi,” Phys. Lett. B86 (1979) 283–287.[334] W. Lerche, “Introduction to Seiberg-Witten <strong>the</strong>ory and its str<strong>in</strong>gy orig<strong>in</strong>,” Nucl.Phys. Proc. Suppl. 55B (1997) 83–117, arXiv:hep-th/9611190.[335] R. Gwyn and A. Knauf, “The Geometric Transition Revisited,” Rev. Mod. Phys.8012 (2008) 1419–1453, arXiv:hep-th/0703289.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!