03.12.2012 Views

CALIBRATION OF AC-DC CURRENT TRANSFER STANDARDS ...

CALIBRATION OF AC-DC CURRENT TRANSFER STANDARDS ...

CALIBRATION OF AC-DC CURRENT TRANSFER STANDARDS ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>CALIBRATION</strong> <strong>OF</strong><br />

<strong>AC</strong>-<strong>DC</strong> <strong>CURRENT</strong> <strong>TRANSFER</strong> <strong>STANDARDS</strong><br />

BASED ON<br />

CALCUABLE THERMAL CONVERTERS ON<br />

QUARTZ SUBSTRATE<br />

Torsten Funck<br />

P TB<br />

B


Contents<br />

• Introduction<br />

• Quartz-PMJTCs for current transfer<br />

• Calculation of the current transfer difference<br />

• Validation of the model used for calculation<br />

• Measurement setup<br />

• <strong>AC</strong>-<strong>DC</strong> current transfer standards<br />

• Step-up chains<br />

• Improved measurement uncertainties<br />

• Conclusions<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

2<br />

P TB<br />

B


Introduction<br />

Electrical quantities are defined, realized an maintained at direct<br />

current (dc).<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

3<br />

P TB<br />

B<br />

For alternating current (ac) calibrations, traceability is given due to<br />

ac-dc transfer.<br />

For current, the measured quantity is δ i , the ac-dc current transfer<br />

difference:<br />

I<br />

δ=<br />

i<br />

ac<br />

−I<br />

I<br />

dc<br />

dc


Quartz-PMJTCs<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

4<br />

P TB<br />

B<br />

Planar multijunction thermal converters (PMJTCs) on a quartz<br />

substrate are used as a calcuable standard<br />

+ Very low conductivity of the substrate<br />

+ Low dielectric constant ε r<br />

+ Low, calculable transfer difference<br />

- Difficult to manufacture<br />

- Low thermal time-constant<br />

- Low sensitivity


Calculation of δ i due to heater impedance<br />

L H /10<br />

L H /10<br />

R<br />

Re<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

δ<br />

R H /10<br />

R H /10<br />

i1<br />

=<br />

0<br />

C 2 /10<br />

0<br />

C 1 /10<br />

C 2 /10<br />

{ } 1 H −<br />

Z<br />

0<br />

0<br />

G 2 vs (f)‏<br />

G 1 vs (f)‏<br />

G 2 vs (f)‏<br />

5<br />

P TB<br />

B


Calculation of δ i due to stray capacitances<br />

R Cu<br />

I I<br />

f, 0<br />

R Cu<br />

L Cu<br />

L Cu<br />

C carrier<br />

δ<br />

i2<br />

=<br />

R Au<br />

R Au<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

L Au<br />

G carrier<br />

L Au<br />

C wAu<br />

| |<br />

| | 1<br />

Z2⋅(<br />

Z3+<br />

Z4<br />

)<br />

−<br />

Z ⋅(<br />

⋅Z+<br />

Z )<br />

3<br />

2 1 2<br />

L H<br />

G quartz<br />

L H<br />

R H<br />

6<br />

P TB<br />

B


Current transfer differences<br />

30<br />

μ A/A<br />

25<br />

δ i<br />

20<br />

15<br />

10<br />

5<br />

0<br />

-5<br />

R H = 700 Ω<br />

R H = 350 Ω<br />

R H = 240 Ω<br />

R H = 117 Ω<br />

0,1 MHz 1<br />

frequency<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

7<br />

P TB<br />

B


Validation of the calculation<br />

μA/A<br />

Δδ i<br />

2<br />

0<br />

-2<br />

-4<br />

-6<br />

-8<br />

-10<br />

-12<br />

-14<br />

-16<br />

117 Ω - 700 Ω<br />

measured<br />

calculated<br />

0,1 MHz 1<br />

frequency<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

8<br />

P TB<br />

B


Uncertainties using built-in Tee<br />

μA/A<br />

0,6<br />

u<br />

0,7<br />

0,5<br />

0,4<br />

0,3<br />

0,2<br />

0,1<br />

frequency<br />

MHz 1<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

9<br />

P TB<br />

B


Measurement setup using driven guards<br />

• Symmetrical setup<br />

• Upper standard connected „upside down“<br />

• Constant voltage across parasitic capacitances =><br />

equal transfer differences in “upper position” and<br />

“lower position”<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

10<br />

P TB<br />

B


<strong>AC</strong>-<strong>DC</strong> current transfer standards<br />

• Low currents: PMJTC with low heater<br />

resistance<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

11<br />

P TB<br />

B<br />

Problem: Technology limits 90 Ω < R H < 900 Ω<br />

• Medium currents: Shunt + PMJTC<br />

Problems: Shunt inductance<br />

Current dependence<br />

• High currents: Cooled shunt + PMJTC<br />

Problems: Shunt inductance<br />

Current dependence<br />

Compliance voltage of current source


Shunts used at PTB<br />

Up to 300 mA: PTB design (top)‏<br />

500 mA to 5 A: Holt design (middle)‏<br />

10 A and 20 A: Fluke design (bottom)‏<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

12<br />

P TB<br />

B


Shunts in Justervesenet design<br />

Current<br />

input<br />

+ Low cost materials<br />

Resistors<br />

Output to<br />

TCC<br />

+ Large number of resistors ensure equal<br />

current distribution<br />

+ Very small area of current path yields low<br />

inductive coupling<br />

- No case<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

13<br />

P TB<br />

B<br />

Justervesenet


High current shunts<br />

Set of four shunts:<br />

• 10 A to 30 A (25 mΩ)‏<br />

• 30 A to 50 A (10 mΩ)‏<br />

• 50 A to 80 A (5 mΩ)‏<br />

• 80 A to 100 A (3 mΩ)‏<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

EL-9800<br />

(NIST Design)‏<br />

14<br />

P TB<br />

B


New high current shunts<br />

Proven design scaled for<br />

higher currents<br />

800 mV nominal output<br />

voltage<br />

Available up to 100 A<br />

+ Precision resistors provide also dc accuracy<br />

+ Large number of resistors ensure equal current distribution<br />

+ Small area of current path yields low inductive coupling<br />

- No case<br />

- Quite expensive<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

15<br />

P TB<br />

B


Step-up chains using different standards<br />

Step \ Chain<br />

start<br />

1<br />

2<br />

3<br />

4<br />

5<br />

6<br />

7<br />

1 A<br />

2 A<br />

5 A<br />

20 mA<br />

50 mA<br />

100 mA<br />

200 mA<br />

500 mA<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

1 A<br />

5 A<br />

100 mA<br />

500 mA<br />

Chains A & B: Self-made and Holt shunts<br />

A<br />

30 mA<br />

Chain C: Justervesenet-Shunts (two sets)‏<br />

B<br />

C<br />

1 A<br />

3 A<br />

5 A<br />

30 mA<br />

100 mA<br />

300 mA<br />

Comparison of the chains: 1 A at 1 MHz: Δ < 10 µA/A<br />

5 A at 100 kHz: Δ < 5 µA/A<br />

16<br />

P TB<br />

B


Measurement of the level dependence<br />

Assumption:<br />

Current level dependence of shunts<br />

results from self-heating<br />

Measurement approach:<br />

Shunt with low voltage drop used as a standard<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

17<br />

P TB<br />

B<br />

• => Low power => low self-heating => low current level dependence<br />

• Low voltage drop => voltage-amplifier necessary to operate PMJTC


Measurement setup: Shunt with Amplifier<br />

Device<br />

under test<br />

<strong>AC</strong><br />

Voltage<br />

Transconductance<br />

Amplifier<br />

PMJTC<br />

<strong>AC</strong>-<strong>DC</strong> Switch<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

Hi<br />

Low<br />

Shunt<br />

Shunt<br />

x11<br />

<strong>DC</strong><br />

Voltage<br />

Amplifier<br />

with PMJTC<br />

nV nV<br />

Hi<br />

Low<br />

Standard<br />

18<br />

P TB<br />

B


Uncertainty of measurement<br />

The following sources of uncertainty of the step-up<br />

procedure can be identified for each step:<br />

u (δ std ) Standard uncertainty of the (calculable) transfer difference of<br />

the standard used, i.e. uncertainty of previous step<br />

u (δ C ) Standard uncertainty of the comparison procedure<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

19<br />

P TB<br />

B<br />

u (δ A ) Type A standard uncertainty, i.e. the standard deviation of the<br />

mean<br />

u (δ Lev ) Standard uncertainty due to the current level effects<br />

in the shunt<br />

u (δ LF ) Standard uncertainty due to PMJTC low frequency<br />

effects, which are level dependent


Improvements in measurement uncertainties<br />

Current<br />

30 mA<br />

100 mA<br />

300 mA<br />

1 A<br />

3 A<br />

10 A<br />

30 A<br />

100 A<br />

Expanded uncertainty of measurement in µA/A at the frequencies<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

20<br />

P TB<br />

B<br />

10 Hz 1 kHz 10 kHz 100 kHz 500 kHz 1 MHz<br />

5 5 5 10 - -<br />

1 1 1 1 1 2<br />

5 5 5 10 - -<br />

2 2 2 2 2 5<br />

10 10 10 20 - -<br />

2 2 2 2 3 5<br />

10 10 10 30 - -<br />

4 3 3 4 6 10<br />

20 20 20 60<br />

4 4 4 8<br />

25 25 25 80<br />

12 12 12 25<br />

-<br />

30<br />

-<br />

30<br />

-<br />

60<br />

-<br />

120<br />

Blue: (2006)‏<br />

- - - -<br />

40 40 80 150<br />

Red : old (2002)


Conclusions<br />

• PMJTCs on quartz substrate developed at PTB are well suited<br />

for current transfer at low current up to 1 MHz<br />

• Potential driven guarding reduces the uncertainty of the<br />

comparison measurements<br />

• New shunts with low current level dependence and low<br />

transfer difference allow further reduction of the step-up<br />

procedure's uncertainty<br />

• New approaches for the determination of the current level<br />

dependence allow for corrections and therefore for further<br />

reduction of the uncertainty<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

21<br />

P TB<br />

B


Thank you for your<br />

EM Day 2007 <strong>AC</strong>-<strong>DC</strong> <strong>AC</strong> <strong>DC</strong> current transfer standards<br />

attention!<br />

Torsten Funck<br />

22<br />

P TB<br />

B

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!