13.07.2015 Views

Random matrix theory applied to acoustic backscattering and ...

Random matrix theory applied to acoustic backscattering and ...

Random matrix theory applied to acoustic backscattering and ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>R<strong>and</strong>om</strong> <strong>matrix</strong> <strong>theory</strong><strong>applied</strong> <strong>to</strong> <strong>acoustic</strong><strong>backscattering</strong> <strong>and</strong> imagingin complex mediaAlex<strong>and</strong>re Aubry (1,2) , Arnaud Derode (2)(1) John Pendry's group, Imperial College London, United Kingdom(2) Mathias Fink, Institut Langevin “Ondes et Images”, ESPCI ParisTech,Paris, FranceWorkshop « Correlations, Fluctuations <strong>and</strong> Disorder »- Grenoble (France) - Wednesday, December 15 th 2010


IntroductionWave propagation in r<strong>and</strong>om media is a multidisciplinary subject (optics, solid state physics,microwaves, <strong>acoustic</strong>s, seismology, etc.)Experimental flexibility of ultrasoundMulti-element arrayTime-resolved measurement of the amplitude <strong>and</strong> phase of the wave fieldNumerous applicationsImaging (adaptive focusing)Time reversalSpatial <strong>and</strong> temporal evolution of multiple scattering intensity(coherent <strong>backscattering</strong>)Array oftransducersSource iInterest of a <strong>matrix</strong> approachAcquisition of the inter-element <strong>matrix</strong> K.Receiver jk ijThis <strong>matrix</strong> contains all the information available onthe medium under investigation


IntroductionMatrix K in « simple » media C. Prada <strong>and</strong> M. Fink, Wave Motion, 20: 151-163, 1994D.O.R.T method : Singular value decomposition ofKK =t V * UΛΛ : Diagonal <strong>matrix</strong> containing the N singular values (λ 1> λ 2> … >λ N)U, V : Unitary matrices whose columns are the singular vec<strong>to</strong>rsSimple media: one eigenstate ⇔ one scattererEach eigenvec<strong>to</strong>r V iback-propagates respectively <strong>to</strong>wards each scatterer of the mediumE=V 1E=V 2Matrix K in complex media? Fundamental interest: link with r<strong>and</strong>om <strong>matrix</strong> <strong>theory</strong> Interest for detection <strong>and</strong> imaging (separation between single <strong>and</strong> multiple scattering) Interest for the study of multiple scattering (characterization)


IntroductionOne important parameter: the scattering mean free path l eSourceReceiverc( r )Disordered mediumSingle scattering (t l e/c)Nightmare for imagingStatistical approach, measurements of transportparameters (l e, D…)Which frequency, which medium?→ 2 MHz à 5 MHz, λ ∼ 0,5 mm<strong>R<strong>and</strong>om</strong> scattering sample ofsteel rods (l e∼ 10 mm)Agar-agar gel(l e∼ 1000 mm)Human trabecular bone(l e∼ 20 mm)Human soft tissues(l e∼ 100 mm)


Propagation <strong>matrix</strong>in r<strong>and</strong>om media6


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaExperimental procedure: Time frequency analysisN-element array oftransducersijc( r )<strong>R<strong>and</strong>om</strong> medium1/ Acquisition of the inter-element <strong>matrix</strong>H2/ Short-time Fourier analysis :H[ ]( t ) = h ( t )ij[ ]( t ) = h ( )t( t ) = 1 pour t ∈ [ − 5,5 s]ijw µw( t)= 0 elsewherekij( T, t ) = h ( T − t ) w(t)ij10µ sKeep the temporal resolu<strong>to</strong>n provided by ultrasonicmeasurements.The length δt of time window is chosen so that signalsassociated with the same scattering path arrive in thesame time-windowK( T,t )K( T, f )Numerical FourierTransform


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaStatistical properties of K in the multiple scattering regimeExperiment in a highly scattering mediumMatrix K (32×32)<strong>R<strong>and</strong>om</strong> scattering sampleof steel rods (l e∼ 10 mm)<strong>R<strong>and</strong>om</strong> distribution of scatterersK(T,f) = r<strong>and</strong>om <strong>matrix</strong>SVDt V *K =UΛNo longer one-<strong>to</strong>-oneequivalence between eigenstates<strong>and</strong> scatterers of the mediumExperimentStatistical approachDistribution of singular values = Quarter circle lawρ1π2( λ ) = 4 − λV. Marcenko <strong>and</strong> L. Pastur, Math.USSR-Sbornik 1, 457, 1967A. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 - Waves <strong>R<strong>and</strong>om</strong> Complex Media 20, 333-363, 2010


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaStatistical properties of K in the single scattering regimeAgar-agar gel(l e∼ 1000 mm)Experiment in a weakly scattering gelIn the single scattering regime, we are farfrom the expected quarter circle law…Single scatteringMultiple scatteringOccurrence of a deterministiccoherence along the antidiagonals ofK in the single scattering regime<strong>R<strong>and</strong>om</strong> feature in themultiple scattering regimeA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 - Waves <strong>R<strong>and</strong>om</strong> Complex Media 20, 333-363, 2010


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaDeterministic coherence in the single scattering regimexIsochronous volumei( X s , Z s )zR=cT/2δR=cδT/2jR-δ R /2R+δ R/2Paraxial approximation, point-like reflec<strong>to</strong>rs.Number of scattererscontained in theisochronous volumekij( T,f )=expReflectivity ofthe s thscattererN( ) s ⎛22 jkR[ x − X ] ⎞ ⎛ [ x j − X s ]R∑s = 1Asexp⎜⎝Position of thei th elementjki2Rs⎟ exp⎜⎠⎜⎝jkPosition of thes th scattererA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 - Waves <strong>R<strong>and</strong>om</strong> Complex Media 20, 333-363, 20102R2⎞⎟⎟⎠


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaDeterministic coherence in the single scattering regimekijkij( T,f )( T,f )==expexpN( ) s ⎛22 jkR[ x − X ] ⎞ ⎛ [ x j − X s ]R∑s = 1Asexp⎜⎝jki2⎞s ⎟ exp⎜jk⎟2R⎠⎜ 2R⎟⎝⎠⎛2⎟ ⎟ ⎞⎜ xi+ x j − 2XsAsexp⎜jk= 14R⎝⎠( ) ⎛2[ − ] ⎞ N2 jkR xsi x j[ ]Rexp⎜⎜⎝jk4RDeterministic term(independent from thedistribution of scatterers)⎟⎟⎠∑s<strong>R<strong>and</strong>om</strong> termAlong the antidiagonals of K, the term (x i+x j) is constant. Whatever the realization ofdisorder, there is a deterministic phase relation between coefficients k i-m,i+mof K locatedon the same antidiagonal:βm=ki − m,i + mkii⎛= exp⎜⎝[ mp]p is the array pitchR2⎞⎟⎠β mA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 - Waves <strong>R<strong>and</strong>om</strong> Complex Media 20, 333-363, 2010


Propagation <strong>matrix</strong> in r<strong>and</strong>om mediaStatistical properties of K in the single scattering regimeMatrix K in the single scattering regime:K⎡ ⎛⎢ ⎜ a⎢ ⎜⎣ ⎝= i + j − 1⎡exp⎢⎢⎣jk( i − j )2p4R2⎤ ⎞⎥⎟⎥⎟⎦ ⎠i,j⎤⎥⎥⎦Coefficients a pare r<strong>and</strong>om complex variables<strong>R<strong>and</strong>om</strong> Hankel <strong>matrix</strong>Matrix whose antidiagonals are constantK =[( a i + j − 1)]W. Bryc, A. Dembo <strong>and</strong> T. Jiang, The Annals of Probability34: 1-38, 2006.i,jA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 - Waves <strong>R<strong>and</strong>om</strong> Complex Media 20, 333-363, 2010


Detection <strong>and</strong> Imaging ofa target embeddedin a diffusive medium13


Detection <strong>and</strong> imaging in a r<strong>and</strong>om mediumExperimental configurationXL=20 mmArray of transducersa= 40 mm<strong>R<strong>and</strong>om</strong> scatteringsample made of steelrods (l e=7.7±0.3mm)TARGET:steel hollowcylinderφ=15mmThe target echo has <strong>to</strong> come through six mean freepaths of the diffusive medium. It undergoes adecreasing of a fac<strong>to</strong>r e -6 ≈1/400.ZClassical imaging techniques fail indetecting <strong>and</strong> imaging the target placedbehind the diffusive slab due <strong>to</strong> multiplescatteringIdea : Take advantage of the deterministic coherence of single scattered signalsBuilding of a smart radar/sonar which separates single scattered echoes fromthe multiple scattering backgroundA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 – J. Appl. Phys. 106, 044903, 2009


Detection <strong>and</strong> imaging in a r<strong>and</strong>om mediumExtract the single scattered echoes with our smart radarTARGETT=94.5µs (expected time-of-flight for the target) - f = 2.7 MHzMeasured <strong>matrix</strong> K“Single scattering” <strong>matrix</strong> K SNeed <strong>to</strong> combine the smart radar with an imaging techniqueThe D.O.R.T method C. Prada <strong>and</strong> M. Fink, Wave Motion 20, 151-163, 1994A. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 – J. Appl. Phys. 106, 044903, 2009


Detection <strong>and</strong> imaging in a r<strong>and</strong>om mediumThe D.O.R.T method <strong>applied</strong> <strong>to</strong> the “single scattering” <strong>matrix</strong> K SV 1Example for the time of flight expected for the target (f=2.7 MHz)Measured <strong>matrix</strong> KDORT method <strong>applied</strong> <strong>to</strong> KImageplane“Single Scattering” <strong>matrix</strong> K SDORT method <strong>applied</strong> <strong>to</strong> K SA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009 – J. Appl. Phys. 106, 044903, 2009


Detection <strong>and</strong> imaging in a r<strong>and</strong>om mediumThe D.O.R.T method <strong>applied</strong> <strong>to</strong> the “single scattering <strong>matrix</strong>” K FArray oftransducersXRCIBLEdBOur approach allows <strong>to</strong>:- Strongly diminish the noisy effect of multiplescattering- Smooth aberration effectsanr provide an image ofthe target of high quality.EchographicimageMultiple scattering generates a speckle imagewithout any direct relation with the reflectivity ofthe mediumSmart radarextractingthe singlescatteredechoesA perfect image of the target is obtained as if thehighly scattering slab had been removedA. Aubry <strong>and</strong> A. Derode, Phys. Rev. Lett. 102, 084301, 2009A. Aubry <strong>and</strong> A. Derode, J. Appl. Phys. 106, 044903, 2009


Multiple scatteringin weakly scattering media18


Multiple scattering in weakly scattering mediaUltrasound imagingHuman soft tissues are known for beingweakly scattering, l e>cTMultiple scattering is usually neglected forimaging purposesHuman soft tissues (l e∼ 100 mm)Idea: extract the multiple scatteringcontribution hidden by a predominantsingle scattering contributionTest of the Born approximationCharacterization of weaklyscattering media (measuremen<strong>to</strong>f transport parameters)A. Aubry <strong>and</strong> A. Derode, J. Acoust. Soc. Am. 128, in press, 2010 – arXiv:1003.1963


Multiple scattering in weakly scattering mediaThe proof by the coherent <strong>backscattering</strong> peakSpatial intensity profile as afunction of the distance betweenthe source <strong>and</strong> receiverTotal <strong>matrix</strong> KSmart RadarCoherent <strong>backscattering</strong>peakMultiplescatteringcontributionSRDistance source-receiver [mm]S=R p+p -A. Aubry <strong>and</strong> A. Derode, J. Acoust. Soc. Am. 128, in press, 2010IncoherentcontributionCoherentcontribution


Multiple scattering in weakly scattering mediaMultiple scattering in breast tissuesEchographicimage losesits credibilityMultiple scattering rate50%T=47 µsMultiple scattering of ultrasound is far from being negligible in human soft tissues around 4.3 MHzExperimental test for the Born approximationA. Aubry <strong>and</strong> A. Derode, J. Acoust. Soc. Am. 128, in press, 2010 – arXiv:1003.1963


Multiple scattering in weakly scattering mediaCharacterization of weakly scattering mediaArray oftransducersa = 50 mmijL = 100 mmgelBackscattered intensityL ext: extinction length1l extl e: scattering mean free path (scattering losses)l a: absorption mean free path (absorption losses)=1 1 +l l e aAgar-agar gel(l e∼ 1000 mm)Time evolution of single <strong>and</strong> multiple scattering intensitiesSingle scatteringintensityl ext=50 mmContinuous lines: <strong>theory</strong>Dots: experimentMultiple scatteringintensityRadiative transfer solutionJ. Paasschens, Phys. Rev. E,56, 1135, 1997Bettercharacterization ofthe diffusive mediumThe separation of single <strong>and</strong> multiple scattering allows <strong>to</strong> distinguish between scattering <strong>and</strong>absorption losses by measuring l eet l aindependently (here l a=50 mm <strong>and</strong> l e=2000 mm)A. Aubry <strong>and</strong> A. Derode, J. Acoust. Soc. Am. 128, in press, 2010 – arXiv:1003.1963


Imaging of diffusive media23


Imaging of diffusive mediaLocal measurements of D: Use of collimated beams<strong>R<strong>and</strong>om</strong> media can be inhomogeneous in disorder (e.g trabecular bone)Local measurements of D are needed (near-field)Use of collimated beams1/ Acquisition of the inter-element <strong>matrix</strong> H 2/ Gaussian beamforming <strong>applied</strong> <strong>to</strong> <strong>matrix</strong> HN-element array oftransducersijh ij(t) = impulse response between i <strong>and</strong> jCreation of a virtual array of sources/receiverslocated in the near-field of the boneA. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Imaging of diffusive mediaMeasurement of the diffusion constant D in the near-fieldSpatial intensity profile at a given time TNormalized intensity10 . 80 . 60 . 40 . 2∝Dt0- 4 0 - 2 0 0 2 0 4 0∝w 0S - R [ m m ]X E- X R[mm]<strong>R<strong>and</strong>om</strong> scattering sampleof steel rods (l e∼ 10 mm)Coherent<strong>backscattering</strong>peakIncoherentbackground:Diffusive haloS=R p+SRp -The information about the diffusion constant is contained in the diffusive halo.The separation of coherent <strong>and</strong> incoherent intensities is needed <strong>to</strong> obtain a measuremen<strong>to</strong>f the diffusion constant D.A. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Imaging of diffusive mediaBuilding of a fictive antireciprocal mediumMeasured <strong>matrix</strong> H ⇒ Fictive <strong>matrix</strong> H A :i < jh Aij = hiji = j AhAii = 0 i > j hij= − h ijH A , Antisymmetric <strong>matrix</strong>hAij=−hAjiReciprocal paths are exactly out of phase (artificial antireciprocity)Destructive interference beween reciprocal pathsMeasured <strong>matrix</strong> HI = Iinc + Icohi-++ -Virtual <strong>matrix</strong> H AIA=Iinc−Icohj+-Antireciprocal medium :An anticone is obtained instead of the classicalcoherent <strong>backscattering</strong> cone !A. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Imaging of diffusive mediaBuilding of a fictive antireciprocal medium<strong>R<strong>and</strong>om</strong> scattering sampleof steel rods (l e∼ 10 mm)Normalized intensity10 . 80 . 60 . 40 . 2Cone + AnticoneC o n e'A n t i c o n e 'X | E - X R R| [ m [mm] m ]- 4 0- 3 0- 2 0- 1 001 02 0Diffusive halo∝Dt0 . 90 . 80 . 70 . 60 . 50 . 40- 4 0 - 2 0 0 2 0 4 0S - R [ m m ]X E- X R[mm]3 04 02 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0T i m e [ µ s ]0 . 3Once the incoherent intensity is isolated, local measurements of the diffusion constantis possible. Multiple scattered waves can be used <strong>to</strong> image r<strong>and</strong>om media.Application <strong>to</strong> the imaging of a slice of trabecular boneA. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Imaging of diffusive mediaExperimental resultsfrequency range [2.5 ; 3.5] MHz(Coll. LIP)Density Image - ρ/ρ maxWA. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Imaging of diffusive mediaExperimental results(Coll. LIP)The highest values of D correspond <strong>to</strong> the areas where the bone is less dense, hencethe weaker scatteringImage obtained with local measurements of D shows more contrast than the imageprovided by density meaurementsA. Aubry <strong>and</strong> A. Derode, Phys. Rev. E. 75, 026602, 2007- Appl. Phys. Lett. 92, 124101, 2008


Conclusion & perspectives30


ConclusionConclusionPropagation opera<strong>to</strong>r in r<strong>and</strong>om mediaStatistical behaviour of singular values (RMT)Deterministic coherence of the single scattering contributionSeparation single scattering / multiple scatteringDetection <strong>and</strong> imaging embedded or hidden behind a highly scattering slabStudy of multiple scattering in weakly scattering media: Application <strong>to</strong> human soft tissuesImaging with local measurements of the diffusion constant: Application <strong>to</strong> human trabecularbone imagingPerspectivesThis work can be extended <strong>to</strong> all fields of wave physics for which multi-element array technologyis available <strong>and</strong> allows time-resolved measurements of the amplitude <strong>and</strong> the phase of thewave-fieldApplication <strong>to</strong> real r<strong>and</strong>om media: detection of defects in coarse grain austenitic steels (nuclearindustry), l<strong>and</strong>mine detectionImaging of human soft tissues with multiple scattering ?


Thank youfor your attention!Workshop « Correlations, Fluctuations <strong>and</strong> Disorder »- Grenoble (France) - Wednesday, December 15 th 2010

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!