13.07.2015 Views

UNIFORMLY RIGID SPACES 1. Introduction Let K be a non ...

UNIFORMLY RIGID SPACES 1. Introduction Let K be a non ...

UNIFORMLY RIGID SPACES 1. Introduction Let K be a non ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

40 CHRISTIAN KAPPENA = R[[S]], then M(A) is the closure of the Berkovich open unit disc in theBerkovich closed unit disc, which is obtained by adding the Gauss point.The corresponding element of M(R[[S]] ⊗ R K) is precisely the Gauss normdiscussed above.The formation of M(A) does not <strong>be</strong>have well with respect to localization:If A = R〈X, Y 〉[[Z]]/(XY − Z), equipped with the Jacobson-adic topology,and if B = A {X−Y } , then the induced map M(B) → M(A) is not injective,<strong>be</strong>cause the formally smooth R-algebra A has no <strong>non</strong>trivial idempotents,while B is a direct sum of two domains, such that M(B) contains twoGauss points mapping to a single Gauss point in M(A). In particular, theformation of M(A) does not globalize. Nonetheless, we think that a quasicompactuniformly rigid K-space X should <strong>be</strong> viewed as a compactificationof its underlying rigid K-space X r . This should <strong>be</strong> made more precise bystudying the topos of X.References[1] Vladimir Berkovich. Spectral theory and analytic geometry over <strong>non</strong>-archimedeanfields, volume 33 of Mathematical Surveys and Monographs. American MathematicalSociety, 1990.[2] Vladimir Berkovich. Vanishing cycles for formal schemes II. Invent. Math.,125(2):367–390, 1996.[3] Pierre Berthelot. Cohomologie rigide et cohomologie rigide à supports propres.Prépublication de l’université de Rennes 1, 1996.[4] Siegfried Bosch. Lectures on formal and rigid geometry. Preprint series of the SFBGeometrische Strukturen in der Mathematik, Münster, 378, 2005.[5] Siegfried Bosch, Ulrich Güntzer, and Reinhold Remmert. Non-Archimedean analysis.A systematic approach to rigid analytic geometry, volume 261 of Grundlehrender Mathematischen Wissenschaften. Springer-Verlag, Berlin, 1984.[6] Siegfried Bosch and Werner Lütkebohmert. Formal and rigid geometry I. Rigidspaces. Math. Ann., 295:291–317, 1993.[7] Siegfried Bosch and Werner Lütkebohmert. Formal and rigid geometry II. Flatteningtechniques. Math. Ann., 296(3):403–429, 1993.[8] Nicolas Bourbaki. Commutative algebra, volume Chapters 1–7 of Elements of Mathematics.Springer-Verlag, 1998.[9] Ching-Li Chai. A bisection of the artin conductor. unpublished, http://www.math.upenn.edu/~chai/papers_pdf/bAcond_v2<strong>1.</strong>pdf.[10] Brian Conrad. Irreducible components of rigid spaces. Ann. Inst. Fourier (Grenoble),49(2):473–541, 1999.[11] Johan de Jong. Crystalline Dieudonné module theory via formal and rigid geometry.Inst. Hautes Études Sci. Publ. Math., 82:5–96, 1995.[12] Johan de Jong. Erratum to: ”Crystalline Dieudonné module theory via formal andrigid geometry”. Inst. Hautes Études Sci. Publ. Math., 87:175–175, 1998.[13] David Eisenbud. Commutative algebra with a view towards algebraic geometry, volume150 of Graduate Texts in Mathematics. Springer-Verlag, 1995.[14] Alexander Grothendieck and Jean Dieudonné. Éléments de géométrie algébriqueIII. étude cohomologique des faisceaux cohérents. I. Inst. Hautes Études Sci. Publ.Math., 11:167 pp., 196<strong>1.</strong>

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!