13.07.2015 Views

A survey on strong KT structures - SSMR

A survey on strong KT structures - SSMR

A survey on strong KT structures - SSMR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

110 Anna Fino and Adriano Tomassini6 A 6-dimensi<<strong>strong</strong>>on</<strong>strong</strong>>al generalized Kähler structure solvmanifoldGeneralized Kähler <strong>structures</strong> have been introduced by Gualtieri in [24] in thec<<strong>strong</strong>>on</<strong>strong</strong>>text of generalized geometries as generalizati<<strong>strong</strong>>on</<strong>strong</strong>> of Kähler <strong>structures</strong>:Definiti<<strong>strong</strong>>on</<strong>strong</strong>> 6.1. A generalized Kähler structure <<strong>strong</strong>>on</<strong>strong</strong>> a 2n-dimensi<<strong>strong</strong>>on</<strong>strong</strong>>al manifoldM is a pair (J 1 , J 2 ) of generalized complex <strong>structures</strong> <<strong>strong</strong>>on</<strong>strong</strong>> M such that1. J 1 and J 2 commute;2. J 1 and J 2 are compatible with the indefinite metric (, ) <<strong>strong</strong>>on</<strong>strong</strong>> TM ⊕ T ∗ M;3. the bilinear form −(J 1 J 2 ·, ·) is positive definite.In terms of bi-Hermitian geometry, Apostolov and Gualtieri proved in [3] thata generalized Kähler structure <<strong>strong</strong>>on</<strong>strong</strong>> M is equivalent to a triple (g,J + ,J − ) where:1. g is a Riemannian metric <<strong>strong</strong>>on</<strong>strong</strong>> M;2. J + and J − are two complex <strong>structures</strong> <<strong>strong</strong>>on</<strong>strong</strong>> M compatible with g such thatd c +F + + d c −F − = 0, dd c +F + = dd c −F − = 0,where d c ± = i(∂ ± − ∂ ± ) and F ± is the fundamental form of the Hermitianstructure (J ± ,g).The 3-form d c +F + is called the torsi<<strong>strong</strong>>on</<strong>strong</strong>> form of the generalized Kähler structureand the generalized Kähler structure is said to be untwisted if the de Rhamcohomology class [d c +F + ] ∈ H 3 (M) vanishes and twisted if [d c +F + ] ≠ 0.C<<strong>strong</strong>>on</<strong>strong</strong>>structi<<strong>strong</strong>>on</<strong>strong</strong>>s of n<<strong>strong</strong>>on</<strong>strong</strong>>-trivial generalized Kähler <strong>structures</strong> are given for instancein [24, 3, 5, 31, 36, 35, 15]. For example in [36] the generalized Kählerquotient c<<strong>strong</strong>>on</<strong>strong</strong>>structi<<strong>strong</strong>>on</<strong>strong</strong>> is c<<strong>strong</strong>>on</<strong>strong</strong>>sidered in relati<<strong>strong</strong>>on</<strong>strong</strong>> with the hyperkähler quotient c<<strong>strong</strong>>on</<strong>strong</strong>>structi<<strong>strong</strong>>on</<strong>strong</strong>>and generalized Kähler <strong>structures</strong> are given <<strong>strong</strong>>on</<strong>strong</strong>> CP n , <<strong>strong</strong>>on</<strong>strong</strong>> some toric varietiesand <<strong>strong</strong>>on</<strong>strong</strong>> the complex Grassmannian.An interesting problem is thus to look for compact examples of generalizedKähler manifolds which do not admit any Kähler structure. A natural class ofmanifolds where to investigate the existence of these <strong>structures</strong> is provided byLie groups.By [24] any real compact semisimple Lie group G of even dimensi<<strong>strong</strong>>on</<strong>strong</strong>> admitsa twisted generalized Kähler structure. Indeed, by [42] G has left and rightinvariant complex <strong>structures</strong> J L and J R , which can be choosen to be Hermitianwith respect to the bi-invariant metric induced by the Killing form. Both (J L ,g)and (J R ,g) are str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> <strong>structures</strong> and the Bismut c<<strong>strong</strong>>on</<strong>strong</strong>>necti<<strong>strong</strong>>on</<strong>strong</strong>> ∇ is the flatc<<strong>strong</strong>>on</<strong>strong</strong>>necti<<strong>strong</strong>>on</<strong>strong</strong>> with skew-symmetric torsi<<strong>strong</strong>>on</<strong>strong</strong>> g(X,[Y,Z]). Moreover, (J L ,J R ,g) is ageneralized Kähler structure.In [10] Cavalcanti proved that there are no nilmanifolds, except tori, carryingan invariant generalized Kähler structure, since every generalized complex

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!