13.07.2015 Views

A survey on strong KT structures - SSMR

A survey on strong KT structures - SSMR

A survey on strong KT structures - SSMR

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

A <str<<strong>strong</strong>>on</<strong>strong</strong>>g>survey</str<<strong>strong</strong>>on</<strong>strong</strong>>g> <<strong>strong</strong>>on</<strong>strong</strong>> str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> <strong>structures</strong> 107of a smooth complex manifold ( ˜M, ˜J) endowed with a ˜J-Hermitian str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong>metric ˜g and of a map π : ˜M → M, such thati) π : ˜M \ E → M \ S is a biholomorphism, where S is the singular set of Mand E = π −1 (S) is the excepti<<strong>strong</strong>>on</<strong>strong</strong>>al set;ii) ˜g = π ∗ g <<strong>strong</strong>>on</<strong>strong</strong>> the complement of a neighborhood of E.By applying Hir<<strong>strong</strong>>on</<strong>strong</strong>>aka Resoluti<<strong>strong</strong>>on</<strong>strong</strong>> of Singularities Theorem [32] to resolve thesingularities of a complex algebraic variety by a finite number of blow-ups, in [19]we proved the followingTheorem 3.4. Let (M,J) be a complex orbifold of complex dimensi<<strong>strong</strong>>on</<strong>strong</strong>> n endowedwith a J-Hermitian str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> metric g. Then there exists a str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> resoluti<<strong>strong</strong>>on</<strong>strong</strong>>.4 Simply-c<<strong>strong</strong>>on</<strong>strong</strong>>nected examplesIn [19] we applied the previous theorem to a quotient of a torus by the finite groupZ 2 . More precisely let T 6 = R 6 /Z 6 be the standard torus and let (x 1 ,...,x 6 ) beglobal coordinates <<strong>strong</strong>>on</<strong>strong</strong>> R 2n .C<<strong>strong</strong>>on</<strong>strong</strong>>sider <<strong>strong</strong>>on</<strong>strong</strong>> T 6 the involuti<<strong>strong</strong>>on</<strong>strong</strong>> σ induced byσ ( (x 1 ,...,x 6 ) ) = (−x 1 ,...,−x 6 ).and the complex structure J defined by{η 1 = dx 1 + i ( f dx 3 + dx 4) ,η j = dx j + idx 3+j , j = 2,3,where f = f(x 3 ,x 6 ) is a C ∞ , Z 6 -periodic and even functi<<strong>strong</strong>>on</<strong>strong</strong>>.Then, as a c<<strong>strong</strong>>on</<strong>strong</strong>>sequence of Theorem 3.4, we can prove the followingTheorem 4.1. [19] The quotient (T 6 /〈σ〉,J) is a complex orbifold with singularpoint setS ={x + Z 6 | x ∈ 1 }2 Z6 .The J-Hermitian metric g = 1 2∑ nj=1(η j ⊗ η j + η j ⊗ η j) is str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong>. Moreover,(T 6 /〈σ〉,J) admits a str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> resoluti<<strong>strong</strong>>on</<strong>strong</strong>> which is simply-c<<strong>strong</strong>>on</<strong>strong</strong>>nected.Very interesting examples of 6-dimensi<<strong>strong</strong>>on</<strong>strong</strong>>al simply-c<<strong>strong</strong>>on</<strong>strong</strong>>nected str<<strong>strong</strong>>on</<strong>strong</strong>>g <strong>KT</strong> manifoldswere found in [21] by using torus bundles. They proved that for everypositive integer k ≥ 1, the manifold (k −1)(S 2 ×S 4 )♯k(S 3 ×S 3 ) admits a str<<strong>strong</strong>>on</<strong>strong</strong>>g

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!