13.07.2015 Views

Stability and Robustness: Reliability in the World of Uncertainty

Stability and Robustness: Reliability in the World of Uncertainty

Stability and Robustness: Reliability in the World of Uncertainty

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>:<strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyYury Nikul<strong>in</strong>Department <strong>of</strong> Ma<strong>the</strong>maticsUniversity <strong>of</strong> TurkuApril 9, 2009Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion1 The <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty2 Robust Optimization3 <strong>Stability</strong> Analysis4 ConclusionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty1 The <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty2 Robust Optimization3 <strong>Stability</strong> Analysis4 ConclusionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


EpigraphOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyButterfly effect... Superfluous one tenth degree <strong>in</strong> somepo<strong>in</strong>t – <strong>and</strong> a cyclone bursts out here <strong>in</strong>stead<strong>of</strong> <strong>the</strong>re, it storms over countries which wouldbe spared if it were not this tenth...... We f<strong>in</strong>d here aga<strong>in</strong> <strong>the</strong> same discrepancybetween a smallest reason which is notsensed by an observer, <strong>and</strong> a significanteffect caus<strong>in</strong>g sometimes terribleconsequences...Jules Henri Po<strong>in</strong>caré. The science <strong>and</strong> <strong>the</strong>method. 1908. Paris.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyUncerta<strong>in</strong>ty <strong>in</strong> Optimization<strong>in</strong>accuracy <strong>of</strong> <strong>in</strong>itial datanon-adequacy <strong>of</strong> models to real processeserrors <strong>of</strong> numerical methodserrors <strong>of</strong> round<strong>in</strong>g <strong>of</strong>fabsence or lack <strong>of</strong> precise <strong>and</strong> reliable <strong>in</strong>formation etc.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyUncerta<strong>in</strong>ty <strong>in</strong> Schedul<strong>in</strong>g <strong>and</strong> Time-tabl<strong>in</strong>gequipment (mach<strong>in</strong>e) breakdowns or activity (job) disruptionearl<strong>in</strong>ess or tard<strong>in</strong>ess, changes <strong>of</strong> job process<strong>in</strong>gchanges <strong>of</strong> release dates, due dates, deadl<strong>in</strong>es or resourceavailability etc.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tySelf-Propagated Cha<strong>in</strong> Reactionsnuclear cha<strong>in</strong> reactiondom<strong>in</strong>o effectbutterfly effect<strong>the</strong>rmal runawaycascad<strong>in</strong>g failureelectron avalancheYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty<strong>World</strong> Economic Crisis: Dom<strong>in</strong>o Effect1. PessimisticAccountReportPr<strong>of</strong>it10%downTransfer100billiondollarsattemporarydisposalPurchaseshares<strong>of</strong><strong>the</strong>GasProduc<strong>in</strong>gCompany100<strong>World</strong>EconomicCrisisasanexample<strong>of</strong><strong>the</strong>Dom<strong>in</strong>oEffectsGasProduc<strong>in</strong>gCompanyBankDeposit100GlobalF<strong>in</strong>ancialService1004. DepositWithdrawGett<strong>in</strong>g75b.d.tobuysharesPensionFund3. Sell<strong>in</strong>gsharesonlowerprices.Gett<strong>in</strong>g75b.d.Deficit15b.d.CommercialBankBuy<strong>in</strong>gfixedcostshares5. Sell<strong>in</strong>g2. Withdrawmoney90billiondollars.Lost10b.d.CommercialEnterprise5050shares.Gett<strong>in</strong>g50b.dDeficit25b.d.LongtermcreditIndustrialEnterpriseGovernment25+15=40b.d.RescuebailoutAverytemporarymeasuretosecure<strong>the</strong>f<strong>in</strong>ancialmarketplayers<strong>and</strong>overcomeliquiditydeficit.O<strong>the</strong>rwise,badlongtermconsequences:f<strong>in</strong>ancialsectorcollapse,<strong>in</strong>dustrialsectorslowsdown,unemploymentgrows,economicfalls<strong>in</strong>torecession“Hid<strong>in</strong>ganelephantbeh<strong>in</strong>damouse!”Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyIf only be<strong>in</strong>g predicted <strong>and</strong> controlleduncerta<strong>in</strong>ty may pr<strong>of</strong>it!Complicated system + artificially caused uncerta<strong>in</strong>ty ↦→ systemnon-stability ↦→ controlled to some extent cha<strong>in</strong> reactions ↦→ systembe<strong>in</strong>g changed ↦→ diversification, selection or separation ↦→measur<strong>in</strong>g new data <strong>and</strong> gett<strong>in</strong>g <strong>the</strong> result.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyFrom Microwave Heat<strong>in</strong>g to Electron Collid<strong>in</strong>gThermal runaway used <strong>in</strong> microwave heat<strong>in</strong>gMicrowaves + materials ↦→ energyabsorption ↦→ materials heat<strong>in</strong>g ↦→ controlled<strong>the</strong>rmal runaway ↦→ selective localoverheat<strong>in</strong>g ↦→ material separation based ontemperature.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyFrom Microwave Heat<strong>in</strong>g to Electron Collid<strong>in</strong>gProton avalanche used <strong>in</strong> Large Hadron ColliderThe Large Hadron Collider (LHC) is <strong>the</strong> world’slargest <strong>and</strong> highest-energy particle acceleratorcomplex, <strong>in</strong>tended to collide oppos<strong>in</strong>g beams <strong>of</strong>protons with very high k<strong>in</strong>etic energy (8 billiondollars, 14 years, 40 countries)GoalsTo confirm <strong>the</strong> Big Bang <strong>the</strong>oryTo unveil <strong>the</strong> secrets <strong>of</strong> dark matterTo get more knowledge about mass <strong>and</strong>gravityYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionModel<strong>in</strong>g Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyUncerta<strong>in</strong>ty can be modeled by means <strong>of</strong>:possible scenarios (parameter realizations)fuzzy numbers <strong>and</strong> fuzzy objective functionsvarious probabilistic measures<strong>in</strong>terval dataYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Interval Uncerta<strong>in</strong>tyOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyAdvantagesLower <strong>and</strong> upper <strong>in</strong>terval bounds are easy to specifyNo statistical observations needed for <strong>the</strong> modelEasy implementation <strong>and</strong> practical useDisadvantagesInf<strong>in</strong>ite number <strong>of</strong> problem <strong>in</strong>put parameter realization -scenarios (can be overcome for some models!)Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Interval Uncerta<strong>in</strong>tyOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>tyAdvantagesLower <strong>and</strong> upper <strong>in</strong>terval bounds are easy to specifyNo statistical observations needed for <strong>the</strong> modelEasy implementation <strong>and</strong> practical useDisadvantagesInf<strong>in</strong>ite number <strong>of</strong> problem <strong>in</strong>put parameter realization -scenarios (can be overcome for some models!)Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion1 The <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty2 Robust Optimization3 <strong>Stability</strong> Analysis4 ConclusionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionWhat is Robust Optimization?Play<strong>in</strong>g aga<strong>in</strong>st <strong>the</strong> Worst-CaseInstead <strong>of</strong> produc<strong>in</strong>g an optimal solution for a normal situation, whichis described by determ<strong>in</strong>istic models but rarely occurs <strong>in</strong> practice, <strong>and</strong>where recovery to optimality can be complicated, <strong>the</strong> aim <strong>of</strong> robustoptimization is to produce solutions that optimize additionallyconstructed objectives assur<strong>in</strong>g <strong>the</strong> optimal solution to rema<strong>in</strong>feasible after worst case realization <strong>of</strong> uncerta<strong>in</strong> problem <strong>in</strong>putparameters.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionWhat is a Robust Solution?Straightforward <strong>Robustness</strong>An optimal solution is robust if it rema<strong>in</strong>s optimal under anyrealization <strong>of</strong> <strong>the</strong> <strong>in</strong>put dataAbsolute <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum among all scenariosobjective valueRelative <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum regret or, among allscenarios, <strong>the</strong> maximum deviation from optimal solutionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionWhat is a Robust Solution?Straightforward <strong>Robustness</strong>An optimal solution is robust if it rema<strong>in</strong>s optimal under anyrealization <strong>of</strong> <strong>the</strong> <strong>in</strong>put dataAbsolute <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum among all scenariosobjective valueRelative <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum regret or, among allscenarios, <strong>the</strong> maximum deviation from optimal solutionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionWhat is a Robust Solution?Straightforward <strong>Robustness</strong>An optimal solution is robust if it rema<strong>in</strong>s optimal under anyrealization <strong>of</strong> <strong>the</strong> <strong>in</strong>put dataAbsolute <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum among all scenariosobjective valueRelative <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum regret or, among allscenarios, <strong>the</strong> maximum deviation from optimal solutionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionWhat is a Robust Solution?Straightforward <strong>Robustness</strong>An optimal solution is robust if it rema<strong>in</strong>s optimal under anyrealization <strong>of</strong> <strong>the</strong> <strong>in</strong>put dataAbsolute <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum among all scenariosobjective valueRelative <strong>Robustness</strong>A solution which m<strong>in</strong>imizes <strong>the</strong> maximum regret or, among allscenarios, <strong>the</strong> maximum deviation from optimal solutionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemAssume that with each edge e = ij ∈ E we associate a cost <strong>in</strong>terval[l ij , u ij ], 0 < l ij < u ij , i.e. For each edge ij ∈ E its cost c ij is notfixed <strong>and</strong> belongs to [l ij , u ij ].The total cost c T <strong>of</strong> spann<strong>in</strong>g tree T ∈ T G is def<strong>in</strong>ed as:c T := ∑ij∈E Tc ij .A scenario s ∈ S is a particular realization <strong>of</strong> <strong>the</strong> edge costs taken<strong>the</strong>ir values from associated <strong>in</strong>tervals.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemAssume that with each edge e = ij ∈ E we associate a cost <strong>in</strong>terval[l ij , u ij ], 0 < l ij < u ij , i.e. For each edge ij ∈ E its cost c ij is notfixed <strong>and</strong> belongs to [l ij , u ij ].The total cost c T <strong>of</strong> spann<strong>in</strong>g tree T ∈ T G is def<strong>in</strong>ed as:c T := ∑ij∈E Tc ij .A scenario s ∈ S is a particular realization <strong>of</strong> <strong>the</strong> edge costs taken<strong>the</strong>ir values from associated <strong>in</strong>tervals.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemAssume that with each edge e = ij ∈ E we associate a cost <strong>in</strong>terval[l ij , u ij ], 0 < l ij < u ij , i.e. For each edge ij ∈ E its cost c ij is notfixed <strong>and</strong> belongs to [l ij , u ij ].The total cost c T <strong>of</strong> spann<strong>in</strong>g tree T ∈ T G is def<strong>in</strong>ed as:c T := ∑ij∈E Tc ij .A scenario s ∈ S is a particular realization <strong>of</strong> <strong>the</strong> edge costs taken<strong>the</strong>ir values from associated <strong>in</strong>tervals.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemAssume that with each edge e = ij ∈ E we associate a cost <strong>in</strong>terval[l ij , u ij ], 0 < l ij < u ij , i.e. For each edge ij ∈ E its cost c ij is notfixed <strong>and</strong> belongs to [l ij , u ij ].The total cost c T <strong>of</strong> spann<strong>in</strong>g tree T ∈ T G is def<strong>in</strong>ed as:c T := ∑ij∈E Tc ij .A scenario s ∈ S is a particular realization <strong>of</strong> <strong>the</strong> edge costs taken<strong>the</strong>ir values from associated <strong>in</strong>tervals.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemFor each spann<strong>in</strong>g tree T <strong>in</strong> scenario s <strong>the</strong> deviation for T <strong>in</strong> scenarios is def<strong>in</strong>ed as:dev s T := cs T − m<strong>in</strong>T ′ ∈T cs T ′.Let S be <strong>the</strong> set <strong>of</strong> all scenarios. For a given spann<strong>in</strong>g tree T ∈ T G<strong>the</strong> worst-case scenario s T is def<strong>in</strong>ed as:s T := arg maxs∈S devs T .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemFor each spann<strong>in</strong>g tree T <strong>in</strong> scenario s <strong>the</strong> deviation for T <strong>in</strong> scenarios is def<strong>in</strong>ed as:dev s T := cs T − m<strong>in</strong>T ′ ∈T cs T ′.Let S be <strong>the</strong> set <strong>of</strong> all scenarios. For a given spann<strong>in</strong>g tree T ∈ T G<strong>the</strong> worst-case scenario s T is def<strong>in</strong>ed as:s T := arg maxs∈S devs T .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemFor each spann<strong>in</strong>g tree T <strong>in</strong> scenario s <strong>the</strong> deviation for T <strong>in</strong> scenarios is def<strong>in</strong>ed as:dev s T := cs T − m<strong>in</strong>T ′ ∈T cs T ′.Let S be <strong>the</strong> set <strong>of</strong> all scenarios. For a given spann<strong>in</strong>g tree T ∈ T G<strong>the</strong> worst-case scenario s T is def<strong>in</strong>ed as:s T := arg maxs∈S devs T .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemFor each spann<strong>in</strong>g tree T <strong>in</strong> scenario s <strong>the</strong> deviation for T <strong>in</strong> scenarios is def<strong>in</strong>ed as:dev s T := cs T − m<strong>in</strong>T ′ ∈T cs T ′.Let S be <strong>the</strong> set <strong>of</strong> all scenarios. For a given spann<strong>in</strong>g tree T ∈ T G<strong>the</strong> worst-case scenario s T is def<strong>in</strong>ed as:s T := arg maxs∈S devs T .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemThe robust deviation <strong>of</strong> T is given as:dev sTT:= csTT− m<strong>in</strong> c sTT ′ ∈TT . ′GA spann<strong>in</strong>g tree T 0 is said to be a robust spann<strong>in</strong>g tree if it has <strong>the</strong>smallest robust deviation among all spann<strong>in</strong>g treesT 0 := arg m<strong>in</strong>T ∈T Gdev sTT .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemThe robust deviation <strong>of</strong> T is given as:dev sTT:= csTT− m<strong>in</strong> c sTT ′ ∈TT . ′GA spann<strong>in</strong>g tree T 0 is said to be a robust spann<strong>in</strong>g tree if it has <strong>the</strong>smallest robust deviation among all spann<strong>in</strong>g treesT 0 := arg m<strong>in</strong>T ∈T Gdev sTT .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemThe robust deviation <strong>of</strong> T is given as:dev sTT:= csTT− m<strong>in</strong> c sTT ′ ∈TT . ′GA spann<strong>in</strong>g tree T 0 is said to be a robust spann<strong>in</strong>g tree if it has <strong>the</strong>smallest robust deviation among all spann<strong>in</strong>g treesT 0 := arg m<strong>in</strong>T ∈T Gdev sTT .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemTheoremYaman et al, 2001The scenario <strong>in</strong> which <strong>the</strong> costs <strong>of</strong> every edge on a spann<strong>in</strong>g treeT ∈ T G is at its upper bound <strong>and</strong> <strong>the</strong> cost <strong>of</strong> every o<strong>the</strong>r edge is at itslower bound is a worst-case scenario, i.e. c sTij = u ij ∀ ij ∈ E T <strong>and</strong>c sTij = l ij ∀ ij ∈ E \ E T .Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree Problem: ExampleFigure: Initial graph G, <strong>the</strong> central tree <strong>and</strong> <strong>the</strong> tree which is maximallyYury Nikul<strong>in</strong> <strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemMethodologyMIP, CPLEXYaman et al., 2001Branch <strong>and</strong> BoundAron <strong>and</strong> Van Hentenryck, 2002Improved Branch <strong>and</strong> BoundMontemanni <strong>and</strong> Gambardella, 20052-Approximation AlgorithmKasperski <strong>and</strong> Ziel<strong>in</strong>ski, 2006Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionThe Robust Spann<strong>in</strong>g Tree ProblemFuture Research Perspectivesdevelop<strong>in</strong>g new fast heuristicsconsider<strong>in</strong>g biobjective modelsf<strong>in</strong>d<strong>in</strong>g approximation algorithms<strong>and</strong> many o<strong>the</strong>rs...Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion1 The <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty2 Robust Optimization3 <strong>Stability</strong> Analysis4 ConclusionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> analysisHistorical Orig<strong>in</strong>Jacques Hadamard (December 8, 1865 -October 17, 1963) <strong>in</strong>troduced <strong>the</strong> stabilitycondition <strong>and</strong> treated it with<strong>in</strong> <strong>the</strong> concept <strong>of</strong>a well-posed ma<strong>the</strong>matical programm<strong>in</strong>gproblem equally with <strong>the</strong> conditions <strong>of</strong>existence <strong>and</strong> uniqueness <strong>of</strong> <strong>the</strong> solution.GoalsIt appears to be important to allocate classes<strong>of</strong> problems <strong>in</strong> which small changes <strong>of</strong> <strong>in</strong>putdata lead to small changes <strong>of</strong> <strong>the</strong> result.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> analysisHistorical Orig<strong>in</strong>Jacques Hadamard (December 8, 1865 -October 17, 1963) <strong>in</strong>troduced <strong>the</strong> stabilitycondition <strong>and</strong> treated it with<strong>in</strong> <strong>the</strong> concept <strong>of</strong>a well-posed ma<strong>the</strong>matical programm<strong>in</strong>gproblem equally with <strong>the</strong> conditions <strong>of</strong>existence <strong>and</strong> uniqueness <strong>of</strong> <strong>the</strong> solution.GoalsIt appears to be important to allocate classes<strong>of</strong> problems <strong>in</strong> which small changes <strong>of</strong> <strong>in</strong>putdata lead to small changes <strong>of</strong> <strong>the</strong> result.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionGeneric Comb<strong>in</strong>atorial Optimization ProblemProblem FormulationE = {e 1 , e 2 , ..., e n }, n > 1, ground set <strong>of</strong> elementsT ⊆ 2 E , |T | > 1, be a family <strong>of</strong> non-empty subsets <strong>of</strong> Efor e ∈ E: c(e) = (c 1 (e), c 2 (e), ..., c m (e)), m ≥ 1C = {c i (e j )} ∈ R m×n+ , where R + = {u ∈ R : u > 0}denote for k ∈ N, N k = {1, 2, ..., k} <strong>and</strong> let for t ∈ T ,N(t) = {j : e j ∈ t}Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionGeneric Comb<strong>in</strong>atorial Optimization ProblemProblem FormulationA vector criterionf(C, t) = (f 1 (C, t), f 2 (C, t), ..., f m (C, t)),wheref i (C, t) = ∑j∈N(t)c i (e j ), i ∈ N m .Def<strong>in</strong>itionA solution t is Pareto optimal if <strong>and</strong> only if <strong>the</strong>re is no solution t ′ suchthat f i (C, t ′ ) ≤ f i (C, t) for all i ∈ N m <strong>and</strong> at least one strict <strong>in</strong>equalityholds.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionGeneric Comb<strong>in</strong>atorial Optimization ProblemProblem FormulationA vector criterionf(C, t) = (f 1 (C, t), f 2 (C, t), ..., f m (C, t)),wheref i (C, t) = ∑j∈N(t)c i (e j ), i ∈ N m .Def<strong>in</strong>itionA solution t is Pareto optimal if <strong>and</strong> only if <strong>the</strong>re is no solution t ′ suchthat f i (C, t ′ ) ≤ f i (C, t) for all i ∈ N m <strong>and</strong> at least one strict <strong>in</strong>equalityholds.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionGeneric Comb<strong>in</strong>atorial Optimization ProblemProblem FormulationIf <strong>the</strong> sets E <strong>and</strong> T are fixed, <strong>the</strong>n an <strong>in</strong>stance <strong>of</strong> m-criteriacomb<strong>in</strong>atorial optimization problem is uniquely determ<strong>in</strong>ed by <strong>the</strong>matrix C ∈ R m×n+ .Denote P m (C) <strong>the</strong> set <strong>of</strong> all Pareto optimal solutions.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionMeasur<strong>in</strong>g deviation from <strong>the</strong> optimumRelative ErrorFor t 0 ∈ P m (C 0 ) <strong>and</strong> C ∈ R m×n+ , we <strong>in</strong>troduced a so-called relativeerror <strong>of</strong> t 0 :ε P (C, t 0 ) = maxt∈TTransformation <strong>in</strong> scalar casem<strong>in</strong> f i (C, t 0 ) − f i (C, t).i∈N m f i (C, t)In <strong>the</strong> scalar case, i.e. for m=1, <strong>the</strong> Pareto set transforms <strong>in</strong>to <strong>the</strong> set<strong>of</strong> optimal solutions. Therefore <strong>the</strong> relative error ε P (C, t 0 ) converts<strong>in</strong>to:f 1 (C, t 0 ) − m<strong>in</strong> f 1(C, t)t∈Tε P (C, t 0 ) =m<strong>in</strong> f 1(C, t)t∈T.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionMeasur<strong>in</strong>g deviation from <strong>the</strong> optimumRelative ErrorFor t 0 ∈ P m (C 0 ) <strong>and</strong> C ∈ R m×n+ , we <strong>in</strong>troduced a so-called relativeerror <strong>of</strong> t 0 :ε P (C, t 0 ) = maxt∈TTransformation <strong>in</strong> scalar casem<strong>in</strong> f i (C, t 0 ) − f i (C, t).i∈N m f i (C, t)In <strong>the</strong> scalar case, i.e. for m=1, <strong>the</strong> Pareto set transforms <strong>in</strong>to <strong>the</strong> set<strong>of</strong> optimal solutions. Therefore <strong>the</strong> relative error ε P (C, t 0 ) converts<strong>in</strong>to:f 1 (C, t 0 ) − m<strong>in</strong> f 1(C, t)t∈Tε P (C, t 0 ) =m<strong>in</strong> f 1(C, t)t∈T.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionPertubed ProblemPerurbationsFor a given p ∈ [0, q(C 0 )), whereq(C 0 ) = m<strong>in</strong>{c 0 i (e j) : i ∈ N m , j ∈ N n }, we consider a setΩ p (C 0 ) = {C ∈ R m×n+ : |c i (e j ) − c 0 i(e j )| ≤ p, i ∈ N m , j ∈ N n }.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> Function Def<strong>in</strong>itionDef<strong>in</strong>itionFor a Pareto optimal solution t 0 ∈ P m (C 0 ) <strong>and</strong> p ∈ [0, q(C 0 )), <strong>the</strong>value <strong>of</strong> <strong>the</strong> stability function is def<strong>in</strong>ed as follows:S P (t 0 , p) =max ε P(C, t 0 ).C∈Ω p(C 0 )Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> Function CalculationLet for t, t ′ ∈ T , t ⊗ t ′ = (t\t ′ ) ∪ (t ′ \t). Thus|t ⊗ t ′ | = |(t\t ′ ) ∪ (t ′ \t)| = |t| + |t ′ | − 2|t ∩ t ′ |.TheoremFor t 0 ∈ P m (C 0 ) <strong>and</strong> p ∈ [0, q(C 0 )), <strong>the</strong> stability function can beexpressed by <strong>the</strong> formula:S P (t 0 , p) = maxt∈Tm<strong>in</strong> f i (C 0 , t 0 ) − f i (C 0 , t) + p|(t ⊗ t 0 )|i∈N m f i (C 0 ., t) − p|t|Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> Function CalculationLet for t, t ′ ∈ T , t ⊗ t ′ = (t\t ′ ) ∪ (t ′ \t). Thus|t ⊗ t ′ | = |(t\t ′ ) ∪ (t ′ \t)| = |t| + |t ′ | − 2|t ∩ t ′ |.TheoremFor t 0 ∈ P m (C 0 ) <strong>and</strong> p ∈ [0, q(C 0 )), <strong>the</strong> stability function can beexpressed by <strong>the</strong> formula:S P (t 0 , p) = maxt∈Tm<strong>in</strong> f i (C 0 , t 0 ) − f i (C 0 , t) + p|(t ⊗ t 0 )|i∈N m f i (C 0 ., t) − p|t|Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> Radius Def<strong>in</strong>itionDef<strong>in</strong>itionThe stability radius R S P (t0 ) is def<strong>in</strong>ed as:R S P (t0 ) = sup{p ∈ [0, q(C 0 )) : S P (t 0 , p) = 0}.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> Radius CalculationTheoremFor t 0 ∈ P m (C 0 ), <strong>the</strong> stability radius is expressed by <strong>the</strong> formulaRP(t S 0 ) = m<strong>in</strong>{q(C 0 ), m<strong>in</strong> max f i (C 0 , t) − f i (C 0 , t 0 )t∈T \{t 0 } i∈N m |(t ⊗ t 0 },)|Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


ExampleOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionExampleConsider <strong>the</strong> vector travel<strong>in</strong>g salesman problem def<strong>in</strong>ed ongraph G = K 4E = {e 1 , e 2 , ..., e 6 }T = {t 1 , t 2 , t 3 },t 1 = {e 1 , e 2 , e 5 , e 6 }, t 2 = {e 1 , e 3 , e 4 , e 6 }, t 3 = {e 2 , e 3 , e 4 , e 5 }1 1 1e e3 3 e3e1 e2 e1 e2 e1e24 4 4e5 e6 e5 e6 e5e62 e 3 2 e 3 2 e 34 4 4Figure: All Hamiltonian cycles <strong>in</strong> graph K 4Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


ExampleOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionExampleC 0 =[ 2 2 3 2 1 13 1 1 4 3 3]f(C 0 , t 1 ) = (9, 9), f(C 0 , t 2 ) = (7, 10), f(C 0 , t 3 ) = (6, 11)P 2 (C 0 ) = {t 1 , t 2 , t 3 }Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


ExampleOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionExample0.80.60.40.2Figure: <strong>Stability</strong> functions S P(t 1, p), S P(t 2, p), S P(t 3, p)Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion<strong>Stability</strong> AnalysisFuture Research Perspectivesdevelop<strong>in</strong>g heuristics to calculate stability function <strong>and</strong> stabilityradiusspecify<strong>in</strong>g atta<strong>in</strong>able lower <strong>and</strong> upper boundsconsider<strong>in</strong>g problems with non-l<strong>in</strong>ear objectivesextend<strong>in</strong>g <strong>the</strong> results for problems with various optimalitypr<strong>in</strong>ciples<strong>and</strong> many o<strong>the</strong>rs...Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eOutl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusion1 The <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyReasons for Uncerta<strong>in</strong>tyExtreme Consequences <strong>of</strong> Uncerta<strong>in</strong>tyEfficient Use <strong>of</strong> Uncerta<strong>in</strong>tyModel<strong>in</strong>g Uncerta<strong>in</strong>ty2 Robust Optimization3 <strong>Stability</strong> Analysis4 ConclusionYury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionReliable Model<strong>in</strong>gTake care about <strong>in</strong>itial parameters <strong>in</strong> your model to make it morerealistic <strong>and</strong> reliable!... Initial data is <strong>the</strong> shaky bridge above <strong>the</strong> precipice separat<strong>in</strong>g <strong>the</strong>model <strong>and</strong> <strong>the</strong> reality. It is necessary to take care <strong>of</strong> its stability <strong>and</strong>robustness <strong>in</strong> order to not stumble on <strong>the</strong> way to <strong>the</strong> target...Unknown.Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Outl<strong>in</strong>eThe <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>tyRobust Optimization<strong>Stability</strong> AnalysisConclusionQuestions <strong>and</strong> AnswersThank you for your time <strong>and</strong> <strong>in</strong>terest!Yury Nikul<strong>in</strong><strong>Stability</strong> <strong>and</strong> <strong>Robustness</strong>: <strong>Reliability</strong> <strong>in</strong> <strong>the</strong> <strong>World</strong> <strong>of</strong> Uncerta<strong>in</strong>ty


Multicriteria Optimization <strong>and</strong>Sensitivity Analysispresented by16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 1


Introduction: Sensitivity analysis vsRobust optimizationSensitivity analysis <strong>and</strong> stability <strong>the</strong>oryorig<strong>in</strong>ate from postoptimality analysis, i.e.an optimal solution has been found <strong>and</strong> we studydifferent aspect <strong>of</strong> ist optimality under possibleuncerta<strong>in</strong>ty <strong>of</strong> problem parametersRobust optimization deals with construct<strong>in</strong>g a newrobust counterpart model which somehow takes<strong>in</strong>to account <strong>in</strong>accuracy <strong>of</strong> <strong>in</strong>put data <strong>and</strong> searches fora solution optimiz<strong>in</strong>g a new specific objective16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 2


General problem16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 3


Deal<strong>in</strong>g with uncerta<strong>in</strong>ty16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 4


Ma<strong>in</strong> contributors•Ben-Tal <strong>and</strong> Nemirovski - ellipsoidal uncerta<strong>in</strong>ty for cont<strong>in</strong>iousoptimization problems•Kouvelis <strong>and</strong> Yu, as well as Averbakh - m<strong>in</strong>max regret forscenario-based uncerta<strong>in</strong>ty, worst case optimization•Yaman <strong>and</strong> Karasan, M<strong>in</strong>temanni <strong>and</strong> Gambardella –absolute <strong>and</strong> relative robustness for <strong>the</strong> m<strong>in</strong>imum spann<strong>in</strong>g tree<strong>and</strong> shortest path problems•Bertsimas <strong>and</strong> Sim - robust optimization with control <strong>of</strong>conservatism <strong>of</strong> a solution16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 5


Classical approachKouvelis P. <strong>and</strong> Yu G. (1997). Robust discrete optimization <strong>and</strong> itsapplications. Kluwer Academic Publishers, Norwell, M.A.A comprehensive treatment <strong>of</strong> <strong>the</strong> state <strong>of</strong> <strong>the</strong> art (up to 1997) <strong>in</strong>robust discrete optimization <strong>and</strong> extensive references arepresented <strong>in</strong> this work. However, <strong>the</strong>re still are more open problemsthan solved ones. Most <strong>of</strong> <strong>the</strong> known results correspond toscenario-represented models <strong>of</strong> uncerta<strong>in</strong>ty, i.e. where <strong>the</strong>re existsa f<strong>in</strong>ite number <strong>of</strong> possible scenarios each <strong>of</strong> which is givenexplicitly by list<strong>in</strong>g <strong>the</strong> correspond<strong>in</strong>g values <strong>of</strong> parameters. It isshown that most classical polynomially solvable comb<strong>in</strong>atorialoptimization problems loose this nice property <strong>and</strong> become NPhard<strong>in</strong> a robust version with scenario-represented uncerta<strong>in</strong>ty.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 6


Worst-case or maximum regretoptimization: bibliography16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 7


Telecommunication <strong>and</strong> MST16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 8


S<strong>in</strong>gle commodity reformulation form<strong>in</strong>imum spann<strong>in</strong>g tree problem16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 9


Multicommodity reformulation form<strong>in</strong>imum spann<strong>in</strong>g tree problem16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 10


Multicommodity reformulation form<strong>in</strong>imum spann<strong>in</strong>g tree problem16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 11


Dual problem16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 12


Multicommodity Flow Problem.Reformulation for MSTLet A = {( i,j)∈V× V :{ i,j}∈ E}D = ( V , A)− digraph orig<strong>in</strong>ated by graph G = (V,E)fykijijbe <strong>the</strong> flow <strong>of</strong> commodity k on arc(i,j)be an <strong>in</strong>teger variable def<strong>in</strong><strong>in</strong>g a capacity for <strong>the</strong> flow<strong>of</strong> each commodity on arc(i,j)only if that arc is a member<strong>of</strong> directed spann<strong>in</strong>g tree def<strong>in</strong>ed by <strong>the</strong> vector y.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 13


Interval data <strong>and</strong> scenariosG = ( E,Vs ∈ S,cTsij∈[l, u= { t | t = ( V , E), e = ( i,j)∈ E,ijijt]is fixed for any ( i,)},cst=[ lij∑( i,j)∈, uE tijc], 0sij,


RST problem reformulation as mixed<strong>in</strong>teger programm<strong>in</strong>g∑k ≠1∑k ≠1σkijσσ≥∑ke e ke∈Ek∈V, k≠1k1m<strong>in</strong> ux − ( α −α ) −(n-1) μs.t.+ μ ≤ l + ( u −l ) x ∀{ i, j} ∈E(1)kij ij ij ij ij+ μ ≤ l + ( u −l ) x ∀{ i, j} ∈E(2)kji ij ij ij ijαkj∑−α ∀(i, j) ∈A ∀k ∈V \{ 1 }(3)kiσ , α ≥ 0, μ −unrestricted16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 15


RST problem reformulation as mixed<strong>in</strong>teger programm<strong>in</strong>g( i,j)∈A≤ (n-1)xf∑ijfij−∑( j,i)∈Aijfji=⎧ n −1if i = 1⎨⎩-1if ∀i∈V\{1}∀{i,j}∈ E(4)(5)≤ (n-1)xfij∑e∈Exf ≥e= n-10, xeij∈{01 , }∀{i,j}∈E(6)(7)16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 16


Exact algorithms•Kouvelis <strong>and</strong> Yu 1997 – first formulation for f<strong>in</strong>ite set <strong>of</strong> scenarios. Ithas been proven that <strong>the</strong> problem is NP-hard for bounded set S <strong>and</strong>strongly NP-hard for unbounde set S.•Yaman, Karasan <strong>and</strong> P<strong>in</strong>ar (2001) – basic <strong>the</strong>oretical backgrounds for<strong>the</strong> problem•Aron <strong>and</strong> Hentenryck (2002) – one more evidence <strong>of</strong> NP-hardness: <strong>the</strong>RST problem is related to <strong>the</strong> well-known central tree problem. Twocases when <strong>the</strong> RST problem is easily solvable:a) no edge <strong>in</strong>tervals have <strong>in</strong>tersectionsb) graph is complete <strong>and</strong> all edge costs take <strong>the</strong>ir value from <strong>the</strong> same<strong>in</strong>terval•Montemanni <strong>and</strong> Gambardella (2003) – branch <strong>and</strong> bound procedurewhich outperforms all exact algorithms known before16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 17


Robust Spann<strong>in</strong>g Tree Problem with<strong>in</strong>terval data16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 18


Weak edges <strong>and</strong> weak treeDef<strong>in</strong>ition. A spann<strong>in</strong>g tree is a weak tree if it is a MST for somerealization s <strong>of</strong> edge costs. An edge e is a weak edge if it belongsto some weak tree.Theorem.1. A spann<strong>in</strong>g tree t is a weak tree iff it is a MST when <strong>the</strong> costs<strong>of</strong> every edge on this tree corresponds to its lower bounds <strong>and</strong><strong>the</strong> costs <strong>of</strong> o<strong>the</strong>r edges correspond to <strong>the</strong>ir upper bounds.2. Edge e is a weak edge iff <strong>the</strong>re exists a MST us<strong>in</strong>g edge ewhere <strong>the</strong> cost <strong>of</strong> edge e is at its lower bound <strong>and</strong> <strong>the</strong> costs <strong>of</strong><strong>the</strong> rema<strong>in</strong><strong>in</strong>g edges are at <strong>the</strong>ir upper bounds.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 19


Example: weak edgesweaknon-weak12-57-1553-46-9 8-1022-76-101-3 4-943-8316/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 20


Strong edgesDef<strong>in</strong>ition. An edge e is a strong edge if it lies on a m<strong>in</strong>imumspann<strong>in</strong>g tree for all realization <strong>of</strong> edge costs.Theorem.Edge e is a strong edge iff <strong>the</strong>re exists a MST us<strong>in</strong>g edge e where<strong>the</strong> cost <strong>of</strong> edge e is at ist upper bound <strong>and</strong> <strong>the</strong> costs <strong>of</strong> <strong>the</strong>rema<strong>in</strong><strong>in</strong>g edges are at <strong>the</strong>ir lower bounds.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 21


Example: Strong edgesstrong12-553-422-71-3 4-943-8316/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 22


RST <strong>and</strong> weak tree. Preprocess<strong>in</strong>gProposition 1. A RST is a weak tree, i.e. it is a MST for somerealization <strong>of</strong> edge costs.Proposition 2. A non-weak edge e can be deleted from graph Gwhen solv<strong>in</strong>g a RST. (Rule P1)Proposition 3. An edge which lies on some MST for eachscenario (strong edge) can be <strong>in</strong>serted <strong>in</strong>to <strong>the</strong> RST. (Rule P2)16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 23


CPLEX results on complete graphs16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 24


Branch <strong>and</strong> bound. The search tree16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 25


Branch<strong>in</strong>g strategyNode d with <strong>the</strong> smallest value <strong>of</strong> lb(d),d is not a leaf<strong>in</strong>(d‘)=<strong>in</strong>(d)out(d‘)=out(d) ∪{e},e∈t(d)\<strong>in</strong>(d)<strong>in</strong>(d‘‘)=<strong>in</strong>(d) ∪{e},out(d‘‘)=out(d),e∈t(d)\<strong>in</strong>(d)t(d‘‘)=t(d)16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 26


Selection <strong>of</strong> e <strong>and</strong> calculation <strong>of</strong> t(d′)16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 27


Lower bound16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 28


Summary <strong>of</strong> branch <strong>and</strong> bound16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 29


SA: preprocess<strong>in</strong>g, <strong>in</strong>itial solution <strong>and</strong>search space16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 30


SA: neighborhood search moveCase1.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 31


SA: neighborhood search moveCase2.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 32


Acceptance probability16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 33


Runn<strong>in</strong>g time16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 34


Efficiency16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 35


SA summary• In spite <strong>of</strong> SA is generally oriented on f<strong>in</strong>d<strong>in</strong>ghigh quality solution <strong>in</strong> long run, we achievedboth good quality <strong>and</strong> acceptable efficiency• The algorithm can be considered aspromis<strong>in</strong>g on large <strong>in</strong>stances when all exactstrategies are time consum<strong>in</strong>g• The algorithm is still open for fur<strong>the</strong>rimprovements16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 36


ConclusionsThere is no unique underst<strong>and</strong><strong>in</strong>g <strong>of</strong> robustness.There are several approaches, each <strong>of</strong> <strong>the</strong>m hasown advantages <strong>and</strong> disadvantages.Which one to choose for a particular problemis a very difficult question which has to be solved by<strong>the</strong> decision maker based on his\her preferences,expectations <strong>and</strong> manag<strong>in</strong>g experience!The material for this presentation ic compiled from several different sources:•Mustafa P<strong>in</strong>ar „Recent Developments <strong>in</strong> Robust Optimization“•Papers by Dimitras Betsimas et al. , Yaman et al. <strong>and</strong> Montemanni et al.16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 37


16/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 38


GoBack


Heuristics for Central Tree ProblemYury Nikul<strong>in</strong>Department <strong>of</strong> Ma<strong>the</strong>matics, University <strong>of</strong> Turku


The Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe Central Tree ProblemHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 2/33


Distance MeasureThe Central TreeProblemLet G = (V, E) be a connected graph <strong>and</strong> letT G := {T | T = (V, E T )} represent <strong>the</strong> set <strong>of</strong> all spann<strong>in</strong>g trees<strong>of</strong> graph G.Heuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 3/33


Distance MeasureThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksLet G = (V, E) be a connected graph <strong>and</strong> letT G := {T | T = (V, E T )} represent <strong>the</strong> set <strong>of</strong> all spann<strong>in</strong>g trees<strong>of</strong> graph G.Def<strong>in</strong>ition. The distance between two spann<strong>in</strong>g trees T 1 <strong>and</strong> T 2<strong>of</strong> a graph is def<strong>in</strong>ed as a half <strong>of</strong> card<strong>in</strong>ality <strong>of</strong> <strong>the</strong> symmetricdifference between set <strong>of</strong> edges E T1 <strong>and</strong> E T2 :Dist(T 1 , T 2 ) = 1 ˙|T 1 △ T 2 |= 1 1 ∪ T 2 )\(T 1 ∩ T 2 ) |2 2˙|(THeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 3/33


Distance MeasureThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksLet G = (V, E) be a connected graph <strong>and</strong> letT G := {T | T = (V, E T )} represent <strong>the</strong> set <strong>of</strong> all spann<strong>in</strong>g trees<strong>of</strong> graph G.Def<strong>in</strong>ition. The distance between two spann<strong>in</strong>g trees T 1 <strong>and</strong> T 2<strong>of</strong> a graph is def<strong>in</strong>ed as a half <strong>of</strong> card<strong>in</strong>ality <strong>of</strong> <strong>the</strong> symmetricdifference between set <strong>of</strong> edges E T1 <strong>and</strong> E T2 :Dist(T 1 , T 2 ) = 1 ˙|T 1 △ T 2 |= 1 1 ∪ T 2 )\(T 1 ∩ T 2 ) |2 2˙|(TDef<strong>in</strong>ition. The distance between two spann<strong>in</strong>g trees T 1 <strong>and</strong> T 2<strong>of</strong> a graph is def<strong>in</strong>ed as <strong>the</strong> number <strong>of</strong> edges presented <strong>in</strong> onetree but not <strong>in</strong> <strong>the</strong> o<strong>the</strong>r:Dist(T 1 , T 2 ) =| T 1 \T 2 |=| T 2 \T 1 | .Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 3/33


The Central Tree ProblemThe Central TreeProblemHeuristics for <strong>the</strong>CTPRecall that <strong>the</strong> cospann<strong>in</strong>g tree ¯T <strong>of</strong> a spann<strong>in</strong>g tree T is <strong>the</strong>edge complement <strong>of</strong> T <strong>in</strong> G, i.e. ¯T = (V, E ¯T), E ¯T = E\E T .Also, if a graph G has n vertices <strong>and</strong> c connected components,<strong>the</strong>n <strong>the</strong> rank ρ(G) <strong>of</strong> graph G is n − c.F<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 4/33


The Central Tree ProblemThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksRecall that <strong>the</strong> cospann<strong>in</strong>g tree ¯T <strong>of</strong> a spann<strong>in</strong>g tree T is <strong>the</strong>edge complement <strong>of</strong> T <strong>in</strong> G, i.e. ¯T = (V, E ¯T), E ¯T = E\E T .Also, if a graph G has n vertices <strong>and</strong> c connected components,<strong>the</strong>n <strong>the</strong> rank ρ(G) <strong>of</strong> graph G is n − c.Def<strong>in</strong>ition. [Deo, 1966]The Central Tree Problem (shortly CTP) consists <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g centraltree T ∗ such that <strong>the</strong> rank ρ( ¯T ∗ ) <strong>of</strong> cospann<strong>in</strong>g tree ¯T ∗ ism<strong>in</strong>imal, i.e.ρ( ¯T ∗ ) ≤ ρ( ¯T) ∀ T ∈ T G .Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 4/33


The Central Tree ProblemThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksRecall that <strong>the</strong> cospann<strong>in</strong>g tree ¯T <strong>of</strong> a spann<strong>in</strong>g tree T is <strong>the</strong>edge complement <strong>of</strong> T <strong>in</strong> G, i.e. ¯T = (V, E ¯T), E ¯T = E\E T .Also, if a graph G has n vertices <strong>and</strong> c connected components,<strong>the</strong>n <strong>the</strong> rank ρ(G) <strong>of</strong> graph G is n − c.Def<strong>in</strong>ition. [Deo, 1966]The Central Tree Problem (shortly CTP) consists <strong>in</strong> f<strong>in</strong>d<strong>in</strong>g centraltree T ∗ such that <strong>the</strong> rank ρ( ¯T ∗ ) <strong>of</strong> cospann<strong>in</strong>g tree ¯T ∗ ism<strong>in</strong>imal, i.e.ρ( ¯T ∗ ) ≤ ρ( ¯T) ∀ T ∈ T G .Thus, a central tree is a spann<strong>in</strong>g tree whose edge removalleads to splitt<strong>in</strong>g graph G <strong>in</strong>to <strong>the</strong> maximum number <strong>of</strong>components.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 4/33


The CTP vs. MDTPThe Central TreeProblemThe Maximally Distant Tree Problem (MDTP) consists <strong>in</strong>f<strong>in</strong>d<strong>in</strong>g a pair <strong>of</strong> extremal trees with <strong>the</strong> largest distance.Heuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 5/33


The CTP vs. MDTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe Maximally Distant Tree Problem (MDTP) consists <strong>in</strong>f<strong>in</strong>d<strong>in</strong>g a pair <strong>of</strong> extremal trees with <strong>the</strong> largest distance.Def<strong>in</strong>ition. The goal <strong>of</strong> <strong>the</strong> CTP is to f<strong>in</strong>d a spann<strong>in</strong>g tree suchthat <strong>the</strong> distance to maximally distant tree is m<strong>in</strong>imized:m<strong>in</strong>T ∈T GmaxT ′ ∈T GDist(T, T ′ ) (1)Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 5/33


The CTP vs. MDTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe Maximally Distant Tree Problem (MDTP) consists <strong>in</strong>f<strong>in</strong>d<strong>in</strong>g a pair <strong>of</strong> extremal trees with <strong>the</strong> largest distance.Def<strong>in</strong>ition. The goal <strong>of</strong> <strong>the</strong> CTP is to f<strong>in</strong>d a spann<strong>in</strong>g tree suchthat <strong>the</strong> distance to maximally distant tree is m<strong>in</strong>imized:m<strong>in</strong>T ∈T GmaxT ′ ∈T GDist(T, T ′ ) (1)Thus, CTP can be considered as dual to MDSTPHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 5/33


Short ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksFigure 1: Initial graph G <strong>and</strong> extremal spann<strong>in</strong>g treesHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 6/33


Short ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksFigure 1: Initial graph G <strong>and</strong> extremal spann<strong>in</strong>g treesFigure 2: Initial graph G, <strong>the</strong> central tree <strong>and</strong> <strong>the</strong> tree which ismaximally distant to <strong>the</strong> central treeHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 6/33


Complexity <strong>of</strong> <strong>the</strong> CTPThe Central TreeProblemTheorem. [ Bezrukov et al., 1996]The Central Tree Problem is NP-hardHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 7/33


Complexity <strong>of</strong> <strong>the</strong> CTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksTheorem. [ Bezrukov et al., 1996]The Central Tree Problem is NP-hardTo prove this fact <strong>the</strong> authors used transformation from ExactCover by 3-set problem, which is known to be NP-CompleteHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 7/33


Complexity <strong>of</strong> <strong>the</strong> CTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksTheorem. [ Bezrukov et al., 1996]The Central Tree Problem is NP-hardTo prove this fact <strong>the</strong> authors used transformation from ExactCover by 3-set problem, which is known to be NP-CompleteThus, <strong>the</strong>re is no polynomial algorithm for <strong>the</strong> CTP unlessP = NP .Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 7/33


Complexity <strong>of</strong> <strong>the</strong> CTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksTheorem. [ Bezrukov et al., 1996]The Central Tree Problem is NP-hardTo prove this fact <strong>the</strong> authors used transformation from ExactCover by 3-set problem, which is known to be NP-CompleteThus, <strong>the</strong>re is no polynomial algorithm for <strong>the</strong> CTP unlessP = NP .A non-trivial class <strong>of</strong> graphs for which <strong>the</strong> CTP is known tohave polynomial algorithm is a class <strong>of</strong> complete graphs.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 7/33


ApplicationsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe CTP can f<strong>in</strong>d its application <strong>in</strong> many real-life models. For example,<strong>in</strong> computer network<strong>in</strong>g, spann<strong>in</strong>g tree topologies can beefficiently used to model network configurations.Similar network problems have many applications <strong>in</strong> telecommunications,circuit analysis, facility allocation, <strong>and</strong> related doma<strong>in</strong>s<strong>in</strong> electric, gas, <strong>and</strong> sewer networks.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 8/33


Equivalence between 0 − 1 RSTP <strong>and</strong> CTPThe Central TreeProblemThe follow<strong>in</strong>g <strong>the</strong>orem establishes equivalence between 0 − 1RSTP <strong>and</strong> CTP.Heuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 9/33


Equivalence between 0 − 1 RSTP <strong>and</strong> CTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe follow<strong>in</strong>g <strong>the</strong>orem establishes equivalence between 0 − 1RSTP <strong>and</strong> CTP.Theorem. [Aron <strong>and</strong> Van Hentenryck, 2004] A spann<strong>in</strong>g tree T ∈T G is a robust spann<strong>in</strong>g tree <strong>of</strong> zero-one robust spann<strong>in</strong>g treeproblem if <strong>and</strong> only if it is a central tree <strong>of</strong> G.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 9/33


One more evidence <strong>of</strong> NP-hardnessThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksAverbakh <strong>and</strong> Lebedev proved <strong>in</strong> 2004 that <strong>the</strong> RSTP isNP-Hard even if <strong>the</strong> <strong>in</strong>tervals <strong>of</strong> uncerta<strong>in</strong>ty are all equal to[0, 1]. They also proved that <strong>the</strong> RSTP is polynomially solvableif <strong>the</strong> number <strong>of</strong> edges with uncerta<strong>in</strong> lengths is fixed orbounded by <strong>the</strong> logarithm <strong>of</strong> a polynomial function <strong>of</strong> <strong>the</strong> totalnumber <strong>of</strong> edges.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 10/33


Robust deviation for <strong>the</strong> central treeThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThus for a central tree T ∗ , <strong>the</strong> robust deviation is expressed as:dev s T ∗T ∗= maxT ∈T GDist(T ∗ , T).Let T ∗ be a central tree <strong>and</strong> N T ∗comp be <strong>the</strong> number <strong>of</strong>components <strong>of</strong> G − E T ∗. Then <strong>the</strong> robust deviation dev s T ∗T ∗N T ∗comp are related as follows:<strong>and</strong>dev s T ∗T ∗+ N T ∗comp = |E T ∗| + 1 = |V |Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 11/33


MILP FormulationCorollary from <strong>the</strong> result by Yaman et al., 2001The Central TreeProblemHeuristics for <strong>the</strong>CTPm<strong>in</strong> ∑ij∈Ex ij −∑k∈V, k≠1[α k k − α k 1] − (n − 1)µ (2)F<strong>in</strong>al Remarkssubject toσij k ≥ αj k − αi k ∀{ij} ∈ A ∀k ∈ V \{1} (3)∑σij k + µ ≤ x ij ∀ij ∈ E (4)k≠1∑σji k + µ ≤ x ij ∀ij ∈ E (5)k≠1Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 12/33


MILP FormulationThe Central TreeProblem∑{ij}∈Af ij −∑{ji}∈Af ji ={n-1, if i = 1-1, if i ∈ V \{1}(6)Heuristics for <strong>the</strong>CTPf ij ≤ (n − 1)x ij ∀ij ∈ E (7)F<strong>in</strong>al Remarksf ji ≤ (n − 1)x ij ∀ij ∈ E (8)∑ij∈Ex ij = n − 1 (9)f, σ, α ≥ 0, µ − unrestricted (10)x ij ∈ {0, 1} ∀ij ∈ E. (11)Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 13/33


Approximation for <strong>the</strong> CTPThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksFor <strong>the</strong> CTP, any spann<strong>in</strong>g tree represents an approximated solutionwith approximation ratio 2 <strong>in</strong> terms <strong>of</strong> <strong>the</strong> robust deviation,i.e.∀T ∈ T G dev s TT≤ 2dev s T 0T, 0where T 0 is a central tree.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 14/33


Case <strong>of</strong> two disjo<strong>in</strong>t spann<strong>in</strong>g treesThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksTheorem 1. Let T 1 <strong>and</strong> T 2 be two edge-disjo<strong>in</strong>t spann<strong>in</strong>g trees <strong>in</strong> <strong>the</strong> graphG = (V, E). Then dev s T ∗T≥ ⌈ ∗|V |−12⌉, where T ∗ is a central tree.In o<strong>the</strong>r words, <strong>the</strong>orem 1 states that if <strong>the</strong> graph conta<strong>in</strong>s twoedge-disjo<strong>in</strong>t spann<strong>in</strong>g trees, <strong>the</strong>n <strong>the</strong> central tree has at most|V |−1⌊2⌋ edges <strong>in</strong> common with <strong>the</strong> maximally distant tree, or|V |−1equivalently, <strong>the</strong> robust spann<strong>in</strong>g tree has at most ⌊2⌋edges <strong>in</strong> common with <strong>the</strong> correspond<strong>in</strong>g m<strong>in</strong>imum spann<strong>in</strong>gtree <strong>in</strong> <strong>the</strong> worst-case scenario associated with T ∗ .Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 15/33


The Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> CTPHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 16/33


MINCUTThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksAlgorithm MINCUT(G = (E, V ))Input: A connected graph G = (E, V )Output: A cut <strong>of</strong> m<strong>in</strong>imum weight1. Let v 1 be any vertex <strong>of</strong> G <strong>and</strong> S = {v 1 }2. for i = 2 to |V |3. do v i = arg max {d(v, S)}v∈V \S4. S = S ∪ {v i }5. if |V | = 2 <strong>the</strong>n return δ({v |V | })6. else7. G ′ is obta<strong>in</strong>ed from G by contract<strong>in</strong>g {v |V |−1 , v |V | }<strong>in</strong> G8. C is returned by MINCUT(G ′ = (E ′ , V ′ ))9. Among C <strong>and</strong> δ(v |V | ) return <strong>the</strong> smallest cut <strong>in</strong>terms <strong>of</strong> weightHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 17/33


Greedy Construction HeuristicThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksAlgorithm Greedy Construction Heuristic(G = (E, V ))Input: A connected graph G = (E, V )Output: The edges E 0 <strong>of</strong> a potential central tree T 01. Initialize G ′ = G, E 0 = {}, LC = [G]2. while |E 0 | < |V | − 13. do Take an arbitrary element C from LC4. Apply MINCUT(C) <strong>and</strong> return <strong>the</strong> set <strong>of</strong> edgesMINCUTSET(C)5. for all edges e ∈ MINCUTSET(C)6. do if E 0 + {e} does not conta<strong>in</strong> cycles7. <strong>the</strong>n E 0 = E 0 + {e}8. else do noth<strong>in</strong>g9. Update LC by remov<strong>in</strong>g C <strong>and</strong> add<strong>in</strong>g thosecomponents <strong>of</strong> C ′ = C − MINCUTSET(C) whichare not an isolated vertex10. return E 0Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 18/33


Complexity <strong>of</strong> Greedy strategyThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksWhile runn<strong>in</strong>g <strong>of</strong> <strong>the</strong> greedy strategy we perform <strong>the</strong> MINCUTprocedure at most |V | − 1 times, so <strong>the</strong> complexity <strong>of</strong> our constructionheuristic is O(|E||V | 2 + |V | 3 log|V |). Notice also that <strong>the</strong>actual runn<strong>in</strong>g time <strong>of</strong> <strong>the</strong> algorithm may also depend on <strong>the</strong> wayhow <strong>the</strong> components are ordered <strong>in</strong> <strong>the</strong> list LC.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 18/33


ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 19/33


ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 19/33


ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 19/33


ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 19/33


ExampleThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 19/33


Open ProblemThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksGiven graph G = (V, E). Is it true that if <strong>the</strong>re existsa spann<strong>in</strong>g tree T 0 <strong>and</strong> a sequence <strong>of</strong> MINCUTSETsMCS 1 , MCS 2 , ..., MCS k with |MCS 1 | + |MCS 2 | + |MCS k | =|V | − 1 where k is a number <strong>of</strong> iterations <strong>in</strong> GCH, such that T 0can be constructed as a union over all i <strong>of</strong> all edges e ∈ MCS i ,<strong>the</strong>n T 0 is a central tree? In o<strong>the</strong>r words: suppose that when weexecute GCH all <strong>the</strong> edges from <strong>the</strong> MINCUTSET are <strong>in</strong>cluded <strong>in</strong><strong>the</strong> f<strong>in</strong>al tree T 0 ; is it <strong>the</strong>n true that T 0 is always a central tree?Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 20/33


The Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksFast Local Search ImprovementAlgorithm Fast Local Search Improvement(G = (E, V ), T )Input: A connected graph G = (E, V ), a spann<strong>in</strong>g tree TOutput: An improved potential central tree T 01. Initialize T 0 = T2. F<strong>in</strong>d a spann<strong>in</strong>g tree ˆT which is maximally distant to T by solv<strong>in</strong>gm<strong>in</strong>imum spann<strong>in</strong>g tree problem for <strong>the</strong> worst-case 0 − 1 scenarioassociated with T3. for all edges e ∈ E ˆT\E T4. do Let V 1 <strong>and</strong> V 2 be vertex sets <strong>of</strong> two components <strong>of</strong> ˆT − e5. if ∃ ẽ ∈ E\{E T ∪ E ˆT} such that one endpo<strong>in</strong>t <strong>of</strong> ẽ belongs to V 1<strong>and</strong> <strong>the</strong> o<strong>the</strong>r endpo<strong>in</strong>t belongs to V 2 :6. <strong>the</strong>n choose ano<strong>the</strong>r edge e ′ ∈ E ˆT\E T7. else F<strong>in</strong>d <strong>the</strong> fundamental cycle C <strong>of</strong> T ∪ {e}8. for all edges ē ∈ E C , ē ≠ e9. do F<strong>in</strong>d <strong>the</strong> fundamental cycle ¯C <strong>of</strong> ˆT ∪ {ē}10. if ∃ e ∗ ∈ E ¯C, e ∗ ≠ ē such that e ∗ ∈ E T :11. <strong>the</strong>n choose ano<strong>the</strong>r ē12. else construct a new spann<strong>in</strong>g tree T 0 byreplac<strong>in</strong>g edge ē with e13. break both cycles14. return T 0Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 21/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksLInstance A 30% 30%Instance B 30% 70%Instance C 70% 30%Instance D 70% 70%dTable 1: Instance generat<strong>in</strong>g parameters L <strong>and</strong> d.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 22/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al Remarks|V | 10 15 20 40Instance A 17 24 46 148Instance B 11 21 35 106Instance C 21 50 82 297Instance D 16 27 47 158Table 2: Number <strong>of</strong> edges.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 23/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksGCH 10 15 20 40Distance 6 6 11 33Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.10 0.16 0.46 8.46GCH+FLSI 10 15 20 40Distance 5 6 11 31Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.11 0.17 0.48 8.92SLS 10 15 20 40Distance 6 7 13 36Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.32 0.94 30.64 1175.0ES 10 15 20 40Distance 5 6 - -Runn<strong>in</strong>g time (<strong>in</strong> sec.) 14.92 486.0 - -Table 3: Instance sample A.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 24/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksGCH 10 15 20 40Distance 6 12 17 87Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.07 0.34 0.82 38.35GCH+FLSI 10 15 20 40Distance 6 12 17 37Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.07 0.37 0.88 38.72SLS 10 15 20 40Distance 7 13 19 39Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.46 0.62 52.33 2888.0ES 10 15 20 40Distance 6 - - -Runn<strong>in</strong>g time (<strong>in</strong> sec.) 195.0 - - -Table 4: Instance sample B.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 25/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksGCH 10 15 20 40Distance 2 7 12 29Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.02 0.17 0.31 6.17GCH+FLSI 10 15 20 40Distance 2 6 12 26Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.03 0.19 0.32 6.54SLS 10 15 20 40Distance 2 7 12 27Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.07 0.59 3.79 453.9ES 10 15 20 40Distance 2 6 - -Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.28 279.0 - -Table 5: Instance sample C.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 26/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksGCH 10 15 20 40Distance 6 8 15 34Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.08 0.19 0.47 15.9GCH+FLSI 10 15 20 40Distance 5 8 13 33Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.09 0.24 0.57 16.3SLS 10 15 20 40Distance 6 8 15 38Runn<strong>in</strong>g time (<strong>in</strong> sec.) 0.31 2.25 28.46 2742.7ES 10 15 20 40Distance 5 - - -Runn<strong>in</strong>g time (<strong>in</strong> sec.) 12.69 - - -Table 6: Instance sample D.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 27/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al Remarks|V | = 10 Instance A Instance B Instance C Instance DGCH 75 90 80 73GCH+FLSI 92 95 94 90Table 7: Average (over 100 runs) performance <strong>of</strong> GCH<strong>and</strong>.GCH+FLSI on <strong>in</strong>stances with 10 vertices|V | = 15 Instance A Instance B Instance C Instance DGCH 7 9 8 7GCH+FLSI 9 9 9 8Table 8: Average (over 50 runs) performance <strong>of</strong> GCH <strong>and</strong>GCH+FLSI on <strong>in</strong>stances with 15 verticesHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 28/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al Remarks|V | 50 100 150 200Instance A 15sec 1h 2h 6hInstance B 40sec 3h 6h 19hInstance C 13sec 50m<strong>in</strong> 2h 6hInstance D 25sec 2h30m<strong>in</strong> 7h 20hTable 9: Average (over 10 runs) runn<strong>in</strong>g time <strong>of</strong> GCH+FLSI onlarge <strong>in</strong>stances.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 29/33


Computational ExperimentsThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al Remarks|V | 50 100 150 200GCH 30 59 89 120GCH+FLSI 29 56 81 115Lower Bound 25 50 75 100Runn<strong>in</strong>g time 6sec 110sec 10m<strong>in</strong> 40m<strong>in</strong>Table 10: Large <strong>in</strong>stances with graphs conta<strong>in</strong><strong>in</strong>g <strong>the</strong> union <strong>of</strong>two edge-disjo<strong>in</strong>t spann<strong>in</strong>g trees.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 30/33


The Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksF<strong>in</strong>al RemarksHeuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 31/33


What to do nextThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al Remarks■ F<strong>in</strong>d new mechanisms which can be <strong>in</strong>corporated <strong>in</strong>to <strong>the</strong>greedy strategy to make it determ<strong>in</strong>istic <strong>and</strong> faster.■ Specify classes <strong>of</strong> graphs for which we can guarantee <strong>the</strong>quality <strong>of</strong> <strong>the</strong> solution found by <strong>the</strong> greedy constructionheuristic (e.g. be<strong>in</strong>g at most a factor <strong>of</strong> 1.5 from <strong>the</strong>optimum). Here we measure <strong>in</strong> terms <strong>of</strong> <strong>the</strong> number <strong>of</strong>connected components <strong>in</strong> G − E T versus <strong>the</strong> number <strong>of</strong>connected components <strong>in</strong> G − E T ∗, where T ∗ is a centraltree■ Develop new approximation algorithms with guaranteedapproximation ratio better than 2 <strong>in</strong> terms <strong>of</strong> robust deviation.■ What is <strong>the</strong> worst case performance <strong>of</strong> <strong>the</strong> greedyconstruction heuristic <strong>in</strong> terms <strong>of</strong> <strong>the</strong> number <strong>of</strong> connectedcomponents <strong>in</strong> G − E T versus <strong>the</strong> number <strong>of</strong> connectedcomponents <strong>in</strong> G − E T ∗?Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 32/33


ConclusionThe Central TreeProblemHeuristics for <strong>the</strong>CTPF<strong>in</strong>al RemarksThe results represent a very first attempt to attack <strong>the</strong> CTP withheuristics. The proposed approach can be efficiently used tosolve zero-one RSTP. So, it may be considered as a first steptowards general <strong>in</strong>tention to create a powerful methodological arsenalto deal with <strong>in</strong>terval RSTP <strong>of</strong> larger sizes.Heuristics for <strong>the</strong> Central Tree Problem Yury Nikul<strong>in</strong> - p. 33/33


GoBack


Sensitivity Analysis <strong>in</strong> Game TheoryYury Nikul<strong>in</strong>Department <strong>of</strong> Ma<strong>the</strong>matics, University <strong>of</strong> Turku


ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsProblem FormulationSensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 2/29


Game descriptionProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsWe consider a coalition game with m ≥ 2 players. Let X i be af<strong>in</strong>ite set <strong>of</strong> (pure) strategies <strong>of</strong> <strong>the</strong> playeri ∈ N m := {1, 2, ..., m}. We assume |X i | = 2 for all i ∈ N m<strong>in</strong>dicat<strong>in</strong>g each player has a choice <strong>of</strong> 2 antagonistic strategiesto play. We also assume X i := {0, 1} for all i ∈ N m , i.e. <strong>the</strong>choice <strong>of</strong> each strategy is encoded by means <strong>of</strong> Booleanvariables x i . The set <strong>of</strong> all solutions X can be generallydef<strong>in</strong>ed as a subset <strong>of</strong> Cartesian product over all players <strong>of</strong><strong>the</strong>ir sets <strong>of</strong> strategiesX ⊆ ∏i∈N mX i = {0, 1} m .Observe that now - formally - X is a set <strong>of</strong> ordered m-tuples.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 3/29


Pay<strong>of</strong>f functionsProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsA vector <strong>of</strong> pay<strong>of</strong>f functions (pay<strong>of</strong>f pr<strong>of</strong>ile)p(C, x) := (p 1 (C, x), ..., p m (C, x)) Tconsists <strong>of</strong> <strong>in</strong>dividual pay<strong>of</strong>f functions p i (C, x) for each playeri ∈ N m , which are def<strong>in</strong>ed as l<strong>in</strong>ear functions on <strong>the</strong> set <strong>of</strong>solutions X:p i (C, x) := C i x.Here C i is i-th row <strong>of</strong> matrix C = [c ij ] ∈ R m×m+ ,x := (x 1 , x 2 , ..., x m ) T , x i ∈ X i , i ∈ N m .Note that for each player i ∈ N m , <strong>the</strong> <strong>in</strong>dividual pay<strong>of</strong>f p i (C, x)depends on solution x, i.e. on <strong>the</strong> strategy chosen by player ias well as <strong>the</strong> strategies chosen by all <strong>the</strong> o<strong>the</strong>r players. Thusa set <strong>of</strong> pay<strong>of</strong>f pr<strong>of</strong>iles P(C, X) is <strong>the</strong> follow<strong>in</strong>gP(C, X) := {p(C, x) : x ∈ X}.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 4/29


Form<strong>in</strong>g a coalition, bansProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsLet s be a number <strong>of</strong> coalitions <strong>in</strong> <strong>the</strong> game <strong>and</strong> letJ := (J 1 , J 2 , ..., J s ) be a set <strong>of</strong> coalitions formed. Let alsoX Jr := ∏j∈J rX j , J r ∈ J, r ∈ N s .be a set <strong>of</strong> strategy comb<strong>in</strong>ations accessible by coalition J r .The set <strong>of</strong> strategy comb<strong>in</strong>ations accessible by coalition J r ,with respect to <strong>the</strong> set <strong>of</strong> banned strategies B r , is def<strong>in</strong>ed as:X BrJ r:= X Jr \B r , J r ∈ J, r ∈ N s .Thus for a m-player s-coalition game with coalition pr<strong>of</strong>ile(J 1 , J 2 , ..., J s ) <strong>and</strong> ban pr<strong>of</strong>ile B := (B 1 , B 2 , ..., B s ), a set <strong>of</strong>solutions is def<strong>in</strong>ed as:X := ∏XJ Brr.r∈N sSensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 5/29


Feasible solutionsProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFor any solution x ∗ ∈ X, any coalition J r ∈ J, r ∈ N s , letW Jr (x ∗ ) be a set <strong>of</strong> all non-banned solutions accessible bycoalition J r from x ∗ by chang<strong>in</strong>g strategies <strong>of</strong> only thoseplayers who are <strong>the</strong> members <strong>of</strong> J r :WJ Brr(x ∗ ) := XJ Brr× ∏x ∗ i .i∈N m \J rFor brevity sake, we denote W Jr (x ∗ ) := W BrJ r(x ∗ ).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 6/29


EquilibriaProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsWe <strong>in</strong>troduce <strong>the</strong> notion <strong>of</strong> equilibrium for <strong>the</strong> m-players-coalition game with matrix C <strong>and</strong> coalition pr<strong>of</strong>ileJ = (J 1 , J 2 , ..., J s ). A solution x ∗ ∈ X is called J-equilibrium if∀ r ∈ N s Λ r (C, J r , x ∗ ) = ∅,where{Λ r (C, J r , x ∗ ) := x ∈ W Jr (x ∗ ) :() ()}∀j ∈ J r p j (C, x) ≤ p j (C, x ∗ ) & ∃j ′ ∈ J r p j ′(C, x) < p j ′(C, x ∗ ) .Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 7/29


Special casesProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsObviously, if J = ({1}, {2}, ..., {m}) <strong>and</strong> B r = ∅ for all r ∈ N m(m coalitions, each coalition has one member, no bans), <strong>the</strong>n<strong>the</strong> concept <strong>of</strong> J-equilibrium transforms <strong>in</strong>to <strong>the</strong> well-knowconcept <strong>of</strong> <strong>the</strong> Nash equilibrium. On <strong>the</strong> o<strong>the</strong>r h<strong>and</strong>, ifJ = ({1, 2, ..., m}) <strong>and</strong> B = (∅) (one coalition that conta<strong>in</strong>s allplayers, no bans), <strong>the</strong>n <strong>the</strong> concept <strong>of</strong> J-equilibrium transforms<strong>in</strong>to <strong>the</strong> well-know concept <strong>of</strong> <strong>the</strong> Pareto efficiency or Paretoequilibrium.For <strong>the</strong> game with matrix C, we denote PE m (C, X) <strong>and</strong>NE m (C, X) <strong>the</strong> set <strong>of</strong> Pareto <strong>and</strong> Nash equilibria, respectively.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 8/29


Orig<strong>in</strong>al problemProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsIt is assumed that <strong>the</strong> set <strong>of</strong> strategy pr<strong>of</strong>iles X is fixed, i.e wehave coalition <strong>and</strong> ban pr<strong>of</strong>iles J <strong>and</strong> B fixed, but <strong>the</strong> orig<strong>in</strong>almatrix <strong>of</strong> coefficients may vary or be estimated with errors.Moreover, it is assumed that for some orig<strong>in</strong>ally specifiedmatrix C 0 = {c 0 ij } ∈ Rm×m + we know a J-equilibrium x ∗ whichis an element <strong>of</strong> <strong>the</strong> set <strong>of</strong> all J-equilibria JE(C 0 , X).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 9/29


Relative errorProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsNamely, <strong>in</strong> case <strong>of</strong> J-equilibrium we <strong>in</strong>troduce forx ∗ ∈ JE(C 0 , X) <strong>and</strong> a given matrix C ∈ R m×m+ <strong>the</strong> relativeerror <strong>of</strong> this solution:ε(C, J, x ∗ ) := maxr∈N smax m<strong>in</strong>x∈W J r (x∗ )p i (C, x ∗ ) − p i (C, x).i∈J r p i (C, x)Observe that for an arbitrary C ∈ R m×m+ we haveε(C, J, x ∗ ) ≥ 0. If ε(C, J, x ∗ ) > 0, <strong>the</strong>n x ∗ ∉ JE(C, X) <strong>and</strong> thispositive value <strong>of</strong> <strong>the</strong> relative error may be treated as a measure<strong>of</strong> <strong>in</strong>efficiency <strong>of</strong> <strong>the</strong> strategy pr<strong>of</strong>ile x ∗ for <strong>the</strong> game with matrixC.The equality ε(C, J, x ∗ ) = 0 formulates <strong>in</strong> general onlynecessary condition for x ∗ to be J-equilibrium, i.e.ε(C, J, x ∗ ) = 0 does not guarantee that x ∗ ∈ JE m (C, X).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 10/29


ExampleProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsExample 1. Let m = 2, s = 1, J = ({1, 2}) <strong>and</strong> C 0 =(1 22 1Assume that B = ({(0, 0) T , (1, 1) T }), i.e. X = {x 1 , x 2 },x 1 = (0, 1) T , x 2 = (1, 0) T . Then P(C 0 , X) = {(2, 1) T , (1, 2) T }.If we consider <strong>the</strong> matrixC =(1 12 1),).<strong>the</strong>n P(C, X) = {(1, 1) T , (1, 2) T }. Evidently, x 2 ∈ PE 2 (C 0 , X)<strong>and</strong> ε(C 0 , J, x 2 ) = 0, but x 2 ∉ PE 2 (C, X) <strong>and</strong> ε(C, J, x 2 ) = 0.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 11/29


ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctions<strong>Stability</strong> <strong>and</strong> Accuracy FunctionsSensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 12/29


<strong>Stability</strong> FunctionProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFor a given ρ ∈ [0, q(C 0 , X)), whereq(C 0 , X) := m<strong>in</strong>{c 0 ij , i ∈ N m, j ∈ N m }, we consider a setΩ ρ (C 0 ) := {C ∈ R m×m+ : |c ij − c 0 ij| ≤ ρ, i ∈ N m , j ∈ N m }.For a J-equilibrium x ∗ ∈ JE m (C 0 , X) <strong>and</strong> ρ ∈ [0, q(C 0 , X)), <strong>the</strong>value <strong>of</strong> <strong>the</strong> stability function is def<strong>in</strong>ed as follows:S(C 0 , J, x ∗ , ρ) :=max ε(C, J,C∈Ω ρ (C 0 ) x∗ ).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 13/29


Accuracy FunctionProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsIn a similar way, for a given δ ∈ [0, 1), we consider a setΘ δ (C 0 ) := {C ∈ R m×m+ : |c ij − c 0 ij| ≤ δ · c 0 ij, i ∈ N m , j ∈ N m }.For a J-equilibrium x ∗ ∈ JE m (C 0 , X) <strong>and</strong> δ ∈ [0, 1), <strong>the</strong> value<strong>of</strong> <strong>the</strong> accuracy function is def<strong>in</strong>ed as follows:A(C 0 , J, x ∗ , δ) :=max ε(C, J,C∈Θ δ (C 0 ) x∗ ).It is easy to check that S(C 0 , J, x ∗ , ρ) ≥ 0 for anyρ ∈ [0, q(C 0 , X)) as well as A(C 0 , J, x ∗ , δ) ≥ 0 for eachδ ∈ [0, 1).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 14/29


SufficiencyProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsDenoteΩ ′ ρ(C 0 ) := {C ∈ R m×m+ : |c ij − c 0 ij| < ρ, i ∈ N m , j ∈ N m }.Proposition 1. For x ∗ ∈ JE m (C 0 , X) <strong>and</strong> ρ ∈ [0, q(C 0 , X)), we havex ∗ ∈ JE m (C, X) for any C ∈ Ω ′ ρ(C 0 ) if <strong>and</strong> only ifS(C 0 , J, x ∗ , ρ) = 0.DenoteΘ ′ δ(C 0 ) := {C ∈ R m×m+ : |c ij − c 0 ij| < δ · c 0 ij, i ∈ N m , j ∈ N m }.Proposition 2. For x ∗ ∈ JE m (C 0 , X) <strong>and</strong> δ ∈ [0, 1), we havex ∗ ∈ JE m (C, X) for any C ∈ Θ ′ δ (C0 ) if <strong>and</strong> only ifA(C 0 , J, x ∗ , δ) = 0.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 15/29


<strong>Stability</strong> <strong>and</strong> Accuracy RadiiProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFormally, <strong>the</strong> stability radius R S (C 0 , J, x ∗ ) <strong>and</strong> <strong>the</strong> accuracyradius R A (C 0 , J, x ∗ ) are def<strong>in</strong>ed <strong>in</strong> <strong>the</strong> follow<strong>in</strong>g way:R S (C 0 , J, x ∗ ) := sup{ρ ∈ [0, q(C 0 , X)) : S(C 0 , J, x ∗ , ρ) = 0},R A (C 0 , J, x ∗ ) := sup{δ ∈ [0, 1) : A(C 0 , J, x ∗ , δ) = 0}.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 16/29


Formula for <strong>Stability</strong> FunctionProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsTheorem 1. For x ∗ ∈ JE m (C 0 , X) <strong>and</strong> ρ ∈ [0, q(C 0 , X)), <strong>the</strong> stabilityfunction can be expressed by <strong>the</strong> formula:S(C 0 , J, x ∗ , ρ) = maxr∈N smax m<strong>in</strong> Ci 0(x∗ − x) + ρ ‖ x ∗ − x ‖ 1x∈W J r (x∗ ) i∈J r Ci 0x − ρ ‖ x ‖ 1.(1)Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 17/29


Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFirst we will prove that S(C 0 , J, x ∗ , ρ) ≤ Γ(C 0 , J, x ∗ , ρ), whereΓ(C 0 , J, x ∗ , ρ) is <strong>the</strong> right-h<strong>and</strong> side <strong>of</strong> (1). Indeed, chang<strong>in</strong>g<strong>the</strong> order <strong>of</strong> m<strong>in</strong>imums <strong>and</strong> maximums, we getS(C 0 , J, x ∗ , ρ) =max ε(C, J,C∈Ω ρ (C 0 ) x∗ ) =maxC∈Ω ρ (C 0 ) maxr∈N smaxr∈N smax m<strong>in</strong> p i (C, x ∗ ) − p i (C, x)x∈W J r (x∗ ) i∈J r p i (C, x)max m<strong>in</strong>x∈W J r (x∗ ) i∈J rmaxC∈Ω ρ (C 0 )C i (x ∗ − x)C i x.≤Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 18/29


Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFor any fixed r ∈ N s <strong>and</strong> x ∈ W Jr (x ∗ ) <strong>and</strong> all i ∈ J r <strong>the</strong>maximum <strong>of</strong> C i(x ∗ −x)C i xover C ∈ Ω ρ (C 0 ) is atta<strong>in</strong>ed whenc ∗ ij =⎧⎪⎨⎪⎩c 0 ij − φ, if x∗ j = 0, i ∈ J r, j ∈ N m ;c 0 ij + φ, if x∗ j = 1, i ∈ J r, j ∈ N m ;c 0 ij , if i ∉ J r, j ∈ N m ,where φ ≥ 0 is taken to satisfy C ∗ ∈ Ω ρ (C 0 ). Thenmaxr∈N smaxx∈W J r (x∗ ) m<strong>in</strong>i∈J rC ∗ i (x∗ − x)C ∗ i x =(2)maxr∈N smaxx∈W J r (x∗ ) m<strong>in</strong>i∈J rC 0 i (x∗ − x) + ρ ‖ x ∗ − x ‖ 1C 0 i x − ρ ‖ x ‖ 1= Γ(C 0 , J, x ∗ , ρ).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 19/29


Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsSo, we have that S(C 0 , J, x ∗ , ρ) ≤ Γ(C 0 , J, x ∗ , ρ). Now itrema<strong>in</strong>s to show that S(C 0 , J, x ∗ , ρ) ≥ Γ(C 0 , J, x ∗ , ρ). Considera matrix C ∗ with elements def<strong>in</strong>ed accord<strong>in</strong>g to (2) for anyr ∈ N s . ThenS(C 0 , x ∗ , J, ρ) =maxC∈Ω ρ (C 0 ) ε(C, J, x∗ ) ≥ ε(C ∗ , J, x ∗ ) =maxr∈N smaxr∈N smaxx∈W J r (x∗ ) m<strong>in</strong>i∈J rC ∗ i (x∗ − x)C ∗ i x =max m<strong>in</strong> Ci 0(x∗ − x) + ρ ‖ x ∗ − x ‖ 1x∈W J r (x∗ ) i∈J r Ci 0x − ρ ‖ x ‖ 1So, we have that S(C 0 , x ∗ , J, ρ) ≥ Γ(C 0 , x ∗ , J, ρ). Thiscompletes <strong>the</strong> pro<strong>of</strong>.= Γ(C 0 , J, x ∗ , ρ).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 20/29


Formula for <strong>Stability</strong> RadiusProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsTheorem 2. For x ∗ ∈ JE m (C 0 , X), <strong>the</strong> stability radius can be expressedby <strong>the</strong> formula:R S (C 0 , J, x ∗ ) = m<strong>in</strong>{q(C 0 , X), m<strong>in</strong>r∈N sm<strong>in</strong> max Ci 0(x∗ − x)}.x∈W J r (x∗ )\{x ∗ } i∈J r ‖ x ∗ − x ‖ 1(3)Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 21/29


Sketch <strong>of</strong> <strong>the</strong> pro<strong>of</strong>ProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsIf ρ = 0, <strong>the</strong>n S(C 0 , J, x ∗ , 0) = 0. Assume thatS(C 0 , J, x ∗ , ρ) > 0. Us<strong>in</strong>g formula (1) specified by <strong>the</strong>orem 1,we derive that S(C 0 , J, x ∗ , ρ) > 0 if <strong>and</strong> onlymaxr∈N smax m<strong>in</strong> Ci 0(x∗ − x) + ρ ‖ x ∗ − x ‖ 1x∈W J r (x∗ ) i∈J r Ci 0x − ρ ‖ x ‖ 1> 0.Last <strong>in</strong>equality holds if <strong>and</strong> only ifρ ≥ ˜ρ := m<strong>in</strong>r∈N sm<strong>in</strong>x∈W J r (x∗ )\{x ∗ } maxi∈J rC 0 i (x − x∗ )‖ x − x ∗ ‖ 1.Thus, if ˜ρ ≤ q(C 0 , X), <strong>the</strong>n we get that S(C 0 , J, x ∗ , ρ) = 0 on<strong>the</strong> <strong>in</strong>terval [0, ˜ρ). O<strong>the</strong>rwise <strong>the</strong> stability function is equal tozero on [0, q(C 0 , X)). This ends <strong>the</strong> pro<strong>of</strong>.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 22/29


Independent players, no bansProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsFrom <strong>the</strong>orem 2, we get <strong>the</strong> follow<strong>in</strong>g resultsCorollary 1. For a game with m <strong>in</strong>dependent players <strong>and</strong> no bans(J = ({1}, ..., {m}), B r = ∅ for all r ∈ N m ) <strong>the</strong> stability radius <strong>of</strong> aNash equilibrium x ∗ ∈ NE m (C 0 , X) can be expressed by <strong>the</strong> formulaR S (C 0 , J, x ∗ ) = m<strong>in</strong>i∈N mc 0 ii.In o<strong>the</strong>r words, corollary 1 states that <strong>the</strong> stability radius <strong>of</strong>x ∗ ∈ NE m (C 0 , X) is def<strong>in</strong>ed by elements on <strong>the</strong> pr<strong>in</strong>cipaldiagonal <strong>of</strong> C 0 .Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 23/29


Independent players, no bansProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsNotice that, if <strong>the</strong> game does not accept bans, <strong>the</strong>n <strong>the</strong> value<strong>of</strong> stability (accuracy) radius is determ<strong>in</strong>ed by pr<strong>in</strong>cipaldiagonal elements, i.e. R S (C 0 , J, x ∗ ) = q(C 0 , X)(R A (C 0 , J, x ∗ ) = 1). It means that <strong>in</strong> this case <strong>the</strong> stability <strong>and</strong>accuracy functions cannot provide any additional <strong>in</strong>formationabout game solution stability but only duplicate <strong>in</strong>formationderived by means <strong>of</strong> stability <strong>and</strong> accuracy radii. That suggeststo use stability <strong>and</strong> accuracy functions as efficient tools <strong>of</strong>stability analysis only for <strong>the</strong> games with numerous bans.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 24/29


Accuracy Function <strong>and</strong> RadiusProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsTheorem 3. For x ∗ ∈ JE m (C 0 , X) <strong>and</strong> δ ∈ [0, 1), <strong>the</strong> accuracyfunction can be expressed by <strong>the</strong> formula:A(C 0 , J, x ∗ , δ) = maxr∈N smax m<strong>in</strong>x∈W J r (x∗ )Ci 0(x∗ − x) + δ ∑ c 0 ij |x∗ j − x j|j∈N mi∈J r (1 − δ)Ci 0x .Theorem 4. For x ∗ ∈ JE m (C 0 , X) <strong>and</strong> δ ∈ [0, 1), <strong>the</strong> accuracy radiuscan be expressed by <strong>the</strong> formula:R A (C 0 , J, x ∗ , δ) = m<strong>in</strong>{1, m<strong>in</strong>r∈N sm<strong>in</strong>x∈W J r (x∗ )\{x ∗ } maxCi 0(x∗ − x)∑i∈J r c 0 ij |x∗ j − x j|j∈N m}.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 25/29


ExampleProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsLet m = 3, s = 2, J = ({1}, {2, 3}) <strong>and</strong>⎛1 2 1C 0 ⎜= ⎝ 2 1 21 3 2⎞⎟⎠.Assume also that B = (∅, {(0, 0) T , (1, 1) T }), i.e.X = {x 1 , x 2 , x 3 , x 4 }, x 1 = (0, 0, 1) T , x 2 = (0, 1, 0) T ,x 3 = (1, 0, 1) T , <strong>and</strong> x 4 = (1, 1, 0) T .Then C 0 x 1 = (1, 2, 2) T , C 0 x 2 = (2, 1, 3) T , C 0 x 3 = (2, 4, 3) T ,C 0 x 4 = (3, 3, 4) T , <strong>and</strong> JE 3 (C 0 , X) = {x 1 , x 2 }. Us<strong>in</strong>g formula(3), we calculate R 3 (C 0 , J, x 1 ) = 1 2 <strong>and</strong> R3 (C 0 , J, x 2 ) = 1 2 . Ithappens that for both solutions x 1 <strong>and</strong> x 2 , <strong>the</strong> stability radius isequal to 1 2 . To get more <strong>in</strong>formation about x1 <strong>and</strong> x 2 , we maycheck <strong>the</strong> behavior <strong>of</strong> <strong>the</strong>se solutions when <strong>the</strong>y becomenon-equilibria by means <strong>of</strong> calculat<strong>in</strong>g stability functions on<strong>in</strong>terval [0, q(C 0 , X)), q(C 0 , X) = 1 us<strong>in</strong>g formula (1):Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 26/29


ExampleProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctions{S(C 0 , J, x 1 , ρ) = max{S(C 0 , J, x 2 , ρ) = maxmax { 0, −1 + ρ2 − 2ρmax{0, −1 + ρ3 − 2ρ}, max{0, m<strong>in</strong>{1 + 2ρ1 − ρ}, max{0,−1 + 2ρ2 − ρ } },,−1 + 2ρ3 − ρwhere ρ ∈ [0, 1).Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 27/29


ExampleProblemFormulation1.0<strong>Stability</strong> <strong>and</strong>AccuracyFunctions0.750.50.250.00.00.250.5rho0.751.0Figure 1: <strong>Stability</strong> functions S(C 0 , J, x 1 , ρ) <strong>and</strong> S(C 0 , J, x 2 , ρ)for ρ ∈ [0, 1).Graphics for S(C 0 , J, x 1 , ρ) (cont<strong>in</strong>uous l<strong>in</strong>e) <strong>and</strong> S(C 0 , J, x 2 , ρ)(dotted l<strong>in</strong>e) are depicted <strong>in</strong> figure 1.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 28/29


Conclud<strong>in</strong>g remarksProblemFormulation<strong>Stability</strong> <strong>and</strong>AccuracyFunctionsThe accuracy <strong>and</strong> stability functions describe <strong>the</strong> quality <strong>of</strong>equilibrium <strong>in</strong> <strong>the</strong> game with uncerta<strong>in</strong> coefficients <strong>in</strong> pay<strong>of</strong>fs.The def<strong>in</strong>itions <strong>of</strong> <strong>the</strong>se functions are directly connected withgiven optimality pr<strong>in</strong>ciples. While <strong>the</strong> stability <strong>and</strong> accuracyradii determ<strong>in</strong>e only maximum values <strong>of</strong> <strong>in</strong>dependentperturbations preserv<strong>in</strong>g <strong>the</strong> property <strong>of</strong> be<strong>in</strong>g equilibrium for agiven solution, <strong>the</strong> stability <strong>and</strong> accuracy functions willadditionally give <strong>the</strong> answer what happens with <strong>the</strong> solutionafter it becomes non-optimal <strong>in</strong> terms <strong>of</strong> quantitative measure<strong>of</strong> stability reflect<strong>in</strong>g <strong>the</strong> speed <strong>of</strong> relative deterioration <strong>of</strong> <strong>the</strong>given solution.Sensitivity Analysis <strong>in</strong> Game Theory Yury Nikul<strong>in</strong> - p. 29/29


presented by28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 1


Fuzz<strong>in</strong>ess: one more way <strong>of</strong> deal<strong>in</strong>gwith uncerta<strong>in</strong>ty28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 2


Membership Function28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 3


Crisp <strong>and</strong> Fuzzy Numbers28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 4


Various shapes <strong>of</strong> membershipfunctions28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 5


Geometrical <strong>in</strong>terpretation: Union28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 6


Geometrical <strong>in</strong>terpretation:Inversion or complement28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 7


Geometrical <strong>in</strong>terpretation:Intersection28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 8


Probability vs Possibility28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 9


Fuzzy sets28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 10


Five-po<strong>in</strong>t Fuzzy Number28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 11


Comparison <strong>of</strong> fuzzy numbers:strong comparison rulesμ(x)1λεR28/04/2009 This work has been supported by DFG 12


Comparison <strong>of</strong> fuzzy numbers:<strong>in</strong>comparable numbersμ(x)1λεR28/04/2009 This work has been supported by DFG 13


Maximal <strong>and</strong> M<strong>in</strong>imalfuzzy numbersμ(x)1λεR28/04/2009 This work has been supported by DFG 14


Fuzzy arithmetics28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 15


Fuzzy maximum <strong>and</strong> m<strong>in</strong>imum28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 16


Comparison <strong>of</strong> fuzzy numbers: weak<strong>and</strong> strong comparison rules28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 17


Statistical data about flight delays28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 18


Accumulative delays28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 19


Possibility distribution28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 20


Nested Interval approximation28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 21


Fuzzy Number represent<strong>in</strong>g delays28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 22


Fuzzy Flight Gate Schedul<strong>in</strong>g28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 23


28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 24


ConclusionsThere is no unique underst<strong>and</strong><strong>in</strong>g <strong>of</strong> deal<strong>in</strong>g with uncerta<strong>in</strong>ty.There are several approaches, each <strong>of</strong> <strong>the</strong>m hasown advantages <strong>and</strong> disadvantages.Which one to choose for a particular problemis a very difficult question which has to be solved by<strong>the</strong> decision maker based on own preferences,expectations <strong>and</strong> manag<strong>in</strong>g experience!28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 25


28/04/2009 Yury Nikul<strong>in</strong>, Sensitivity analysis 26

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!