03.12.2012 Views

Critical Zone Observatory - University of Arizona

Critical Zone Observatory - University of Arizona

Critical Zone Observatory - University of Arizona

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

The Jemez River Basin (NM) &<br />

Santa Catalina Mountains (AZ)<br />

<strong>Critical</strong> <strong>Zone</strong> <strong>Observatory</strong><br />

(JRB‐SCM CZO)<br />

Principal Investigators (all at <strong>University</strong> <strong>of</strong> <strong>Arizona</strong>):<br />

Jon Chorover (SWES) – Soil Biogeochemistry* †<br />

Peter Troch (HWR) Catchment Hydrology* †<br />

Peter Troch (HWR) – Catchment Hydrology* †<br />

Paul Brooks (HWR) – Catchment Biogeochemistry †<br />

Jon Pelletier (GEOS) – Geomorphology †<br />

Craig Rasmussen (SWES) – Pedology †<br />

g gy<br />

David Breshears (SNRE) – Terrestrial Ecology<br />

Travis Huxman (EEB/B2) – Physiological Ecology<br />

Kathleen Lohse (SNRE) – Soil and Watershed Biogeochemistry<br />

Shirley (Kurc) Papuga (SNRE) – Ecohydrology<br />

Jennifer McIntosh (HWR) – Aqueous Geochemistry<br />

Thomas Meixner (HWR) – Catchment Hydrochemistry<br />

Marcel Schaap (SWES) – Soil Physics<br />

*Lead PIs<br />

† Executive Committee


What is the <strong>Critical</strong> <strong>Zone</strong>?<br />

The external terrestrial terrestrial layer extending from the outer limits<br />

<strong>of</strong> vegetation to the lower boundary <strong>of</strong> groundwater,<br />

inclusive <strong>of</strong> all liquid, gas, mineral and biotic components.<br />

Brantley et al., 2007<br />

As defined by<br />

the National<br />

Research<br />

Council in the<br />

“BROES” BROES<br />

Report (2001).<br />

CZ = f hydrologic<br />

geochemical<br />

geomorphic<br />

pedologic<br />

ecologic


NSF 06‐588: <strong>Critical</strong> <strong>Zone</strong> Observatories<br />

(CZO)<br />

• “Processes occurring g at and near the Earth’s surface f do not<br />

operate independently, but the extent to which they are<br />

coupled, and at what temporal and spatial scales, remains<br />

largely g yunknown.”<br />

• Need for natural laboratories, where terrestrial processes<br />

and systems can be studied through detailed field<br />

observations and in situ measurements.<br />

• Techniques from several disciplines must be coordinated<br />

to collect data sets that are spatially dense and<br />

temporally extended extended.<br />

• Address the integration and coupling <strong>of</strong> earth surface<br />

processes as mediated by the presence and flux <strong>of</strong> fresh<br />

water.


Transformative Behavior <strong>of</strong> Energy, Water and Carbon in<br />

the <strong>Critical</strong> <strong>Zone</strong>:<br />

An <strong>Observatory</strong> to Quantify Linkages among<br />

Ecohydrology, Biogeochemistry, and Landscape Evolution<br />

• Builds ld on success <strong>of</strong> f the h SA SAHRA A ecohydrological<br />

h d l l<br />

observatory (JRB) and seed‐funded CZ research (SCM).<br />

• Collaborators from LANL, NCAR, VCNP, NMT, ASU,<br />

UCSD UCSD, UCLA, UCLA INRS, INRS NAU NAU, CU, CU UIUC<br />

• The CZO is organized around broad climate‐water<br />

questions relevant to arid and semi‐arid systems that<br />

require i an iintegrated, t t d multi‐disciplinary lti di i li approachh<br />

– How does variability in energy input and related mass flux<br />

influence CZ structure and function?<br />

– How do feedbacks between landscape evolution and the cycling <strong>of</strong><br />

water and carbon alter short‐ and long‐term CZ development?<br />

• Project duration 9/1/09 – 8/31/14


JRB-SCM CZO research integrates<br />

four cross-cutting g science themes<br />

(each linked by CZ process coupling and mass transfers)<br />

Hillslope water flux<br />

Mass transport<br />

Erosion<br />

Ecohydrology/<br />

Hydrologic Partitioning<br />

(EHP)<br />

Landscape Water Org Litho<br />

Evolution<br />

(LSE)<br />

CZ evolution,<br />

transmissivity/<br />

Water, Org, Litho<br />

Pools and Fluxes<br />

storage g<br />

Subsurface<br />

Biogeochemistry<br />

(SSB)<br />

Evapotranspiration<br />

Water transit time<br />

Soil storage<br />

Surface<br />

W Water<br />

Dynamics<br />

(SWD)<br />

Solute, DOM, H + , e- flux<br />

Flow Paths<br />

Soil/Rock Weathering Rx.


Jemez River Basin (NM) and Santa Catalina Mountains (AZ)


Santa Catalina Mountains (SCM)<br />

Valles Caldera (JRB)


Conceptual Model <strong>of</strong> the CZ:<br />

Open, non-equilibrium, dissipative system<br />

EEnvironmental i t l E Energy and d Mass M TTransfer f (EEMT)<br />

EEMT<br />

=<br />

E<br />

NPP<br />

Energy Source<br />

Solar Radiation<br />

Mass Mass, Momentum<br />

Momentum,<br />

and Heat<br />

+ E<br />

PPT<br />

+<br />

∑ E<br />

i<br />

i<br />

ENPP = NPP⋅Ebio E =ΔT⋅c ⋅P<br />

∑<br />

<strong>Critical</strong> <strong>Zone</strong><br />

PPT w eff<br />

E<br />

EEMT<br />

We postulate that<br />

critical zone structure<br />

EEM<br />

Catchment<br />

and Chemical C e ca function Energy e gy follow<br />

Structural organization<br />

(e.g., carbon and water)<br />

• Vegetation structure<br />

trends in EEMT. • Soil catena<br />

Gravitational Energy<br />

• Drainage networks<br />

(e.g., sediment and water)<br />

• Topography<br />

i<br />

:<br />

additional energy/mass fluxes<br />

Energy Sink<br />

Products passed<br />

external <strong>of</strong> <strong>Critical</strong><br />

<strong>Zone</strong><br />

Climatic forcing is in a single energy term with units kJ m -2 s -1


Jemez River Basin (JRB) Elevation Gradient<br />

MAT: 11 to 3 °C<br />

MAP: 0.4 to 0.8 m y-1 : 0.4 to 0.8 y


Santa Catalina Mountains (SCM) Elevation Gradient<br />

MAT: 18 to 11 °C<br />

MAP: 0.4 to 0.8 m y-1 4 y<br />

Soil MRT = 10-20 ky<br />

Parallel lithologies<br />

Granite and Schist<br />

Upper Sonoran<br />

Pinyon-Juniper<br />

Woodland-Grassland<br />

White Fir-<br />

P. Pine<br />

Ponderosa Pine<br />

Parallel lithology<br />

Granite and Schist<br />

Elev. (1000 m)<br />

2.6<br />

23 2.3<br />

2.0<br />

1.7<br />

14 1.4<br />

1.1<br />

0.8


Research Approach: Model Measure<br />

• <strong>Critical</strong> <strong>Zone</strong> Modeling<br />

– Empirical (Energy/Climate Based, EEMT)<br />

– Process coupled (hydrology‐biogeochemistry‐geomorphology)<br />

• Synoptic sampling l along l EE EEMT gradients d at bboth h JRB<br />

and SCM<br />

– Vegetation (ANPP, community structure/composition)<br />

– Soil (morphology, mineralogy, chemistry, microbiology, SOM)<br />

– Bedrock (morphology, mineralogy, chemistry)<br />

– Surface water (element/isotope p chemistry, y DCOM)<br />

• Installation <strong>of</strong> nested hillslope and catchment<br />

observatory instrumentation<br />

– Eddy flux towers<br />

– Soil solution samplers (spatially‐distributed chemistry, isotopes<br />

at sub‐catchment scale)<br />

– Soil oi moisture, oi u e, water ae po potential e ia aand temperature e pe a u epo probes e<br />

– Flumes and ISCO samplers


Field site<br />

instrumentation follows a<br />

nested catchment<br />

approach:<br />

Rain, , stream, , temperature p<br />

gages, snow lysimeters<br />

Soil moisture, temperature,<br />

and solution samplers<br />

Eddy Flux towers<br />

Emphasis on hillslope-scale<br />

Emphasis on hillslope scale<br />

process coupling


EHP<br />

Aspect controls water TTD<br />

Hypothesis: MTT<br />

increases from southern to<br />

northern aspect due to<br />

increasing water availability<br />

(E PPT), which leads to<br />

development <strong>of</strong> deeper soils,<br />

larger storage, longer water<br />

residence time.<br />

Broxton et al. (2009)


LSE<br />

Regolith/soil thickness can be<br />

modeled using sparse calibration data, LiDAR<br />

ddata, t and d an EEMT model d l f for weathering. th i<br />

Tested in the SCM site (Pelletier and Rasmussen,<br />

WRR 2009).


LSE EHP<br />

Pelletier and Rasmussen (in rev.)<br />

Kostrzewskietal,<br />

Brooks,<br />

Meixner et al.<br />

How does soil<br />

production affect<br />

catchment h water<br />

transit time?<br />

Broxton, Troch et al. (2009)<br />

H How does d variability i bili<br />

in catchment water<br />

transit time influence<br />

hydrochemical<br />

response?<br />

SWD


LLa JJara<br />

EHP<br />

USGS<br />

Redondo<br />

1983<br />

Redondo<br />

UA 2005<br />

SWD<br />

Kostrzewskietal, Brooks,<br />

Meixner et al. (2009)<br />

How do catchment<br />

wetting dynamics<br />

influence redox<br />

processes in soil?<br />

How do soil pore- pore<br />

scale redox<br />

processes affect<br />

catchment<br />

carbon b release? l ?<br />

SSB<br />

Thompson, Chorover, et al. (2007)


Development <strong>of</strong><br />

coupled process<br />

model<br />

EHP SWD<br />

LSE SSB


EHP<br />

Evapotranspiration,<br />

primary production,<br />

water transit time<br />

LSE<br />

DDenudation, d ti<br />

pedogenesis,<br />

structural<br />

organization g<br />

SWD<br />

SSB<br />

Weathering,<br />

rootmicrobeorganicmetalinteractions<br />

Catchment<br />

hydrochemical<br />

response, end<br />

member mixing


0 25 50 100 Meters 0 125 250 500Meters<br />

0 25 50 100Meters<br />

meters<br />

GC4 GC<br />

EHP<br />

GC1<br />

GC2<br />

GC3<br />

GC5<br />

GRANITE<br />

SCHIST<br />

N<br />

SC4<br />

SC1<br />

SC2<br />

SC3<br />

SC5


LSE<br />

Valley density (channel per unit<br />

area) ) can be related to a balance between soil<br />

production on hillslopes (a function <strong>of</strong> climate<br />

and rock type) and incision in channels.<br />

Testing in SCM (Pelletier and Rasmussen, JGRF).


Evolving<br />

Integrated Conceptual<br />

Modeling <strong>of</strong> Watershed Model<br />

Coupled Time and space p<br />

Processes<br />

Combine<br />

hydrologic‐<br />

hydrologic<br />

pedologic‐<br />

geomorphic‐<br />

theory at the<br />

hillslope scale to<br />

link process<br />

measurements t and d<br />

interpret/guide<br />

distributed<br />

observations<br />

b<br />

distribution <strong>of</strong> EEMT<br />

drives CZ processing<br />

<strong>of</strong> f energy, gy, water and<br />

carbon.<br />

Field Activities<br />

Coordinated,<br />

interdisciplinary,<br />

process‐based b d<br />

measurements &<br />

experimentation<br />

among cross‐cutting<br />

science themes<br />

Hypothesis‐<br />

Driven<br />

EExperimental e i e tal<br />

Design<br />

Instrumented<br />

hillslopes nested<br />

in subcatchments<br />

as f(elevation) f( ) to<br />

capture variation<br />

in EEMT and to<br />

identify<br />

biogeophysical<br />

controls


Geology Soils<br />

Topography Vegetation<br />

VCNP<br />

GIS

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!