13.07.2015 Views

Fluid Dynamics of a Terrestrial Magma Ocean - NMSU Geophysics ...

Fluid Dynamics of a Terrestrial Magma Ocean - NMSU Geophysics ...

Fluid Dynamics of a Terrestrial Magma Ocean - NMSU Geophysics ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

336 Origin <strong>of</strong> the Earth and Mooncorrection. J. Geophys. Res., 78, 6101–6103.Flemings M. C., Riek R. G., and Young K. P. (1976) Rheocasting.Mater. Sci. Eng., 25, 103–117.Frankel N. A. and Acrivos A. (1967) On the viscosity <strong>of</strong> a concentratedsuspension <strong>of</strong> solid spheres. Chem. Eng. Sci., 22,847–853.Gans R. F. (1972) Viscosity <strong>of</strong> the Earth’s core. J. Geophys. Res.,77, 360–366.Gasparik T. and Drake M. J. (1995) Partitioning <strong>of</strong> elements amongtwo silicate perovskites, superphase B, and volatile-bearing meltat 23 GPa and 1500–600°C. Earth Planet. Sci. Lett., 134, 307–318.Ghiorso M. S. (1997) Thermodynamic models <strong>of</strong> igneous processes.Annu. Rev. Earth Sci., 25, 221–241.Glazier J. A., Segawa T., Naert A., and Sano M. (1999) Evidenceagainst ‘ultrahard’ thermal turbulence at very high Rayleighnumbers. Nature, 398, 307–310.Golitsyn G. S. (1980) Geostrophic convection. Dokl. Akad. NaukSSSR, 251, 1356–1360.Golitsyn G. S. (1981) Structure <strong>of</strong> convection in rapid rotation.Dokl. Akad. Nauk SSSR, 261, 317–320.Grossmann S. and Lohse D. (1992) Scaling in hard turbulentRayleigh-Bénard flow. Phys. Rev. A, 46, 903–917.Grove T. L. (1990) Cooling histories <strong>of</strong> lavas from Serocki volcano.Proc. <strong>Ocean</strong> Drilling Prog., 106/109, 3–8.Grove T. L. and Walker D. (1977) Cooling histories <strong>of</strong> Apollo 15quartz-normative basalts. Proc. Lunar Sci. Conf. 8th, pp. 1501–1520.Halliday A., Rehkäamper M., Lee D.-C., and Yi W. (1996) Earlyevolution <strong>of</strong> the Earth and Moon: New constraints from Hf-W isotope geochemistry. Earth Planet. Sci. Lett., 142, 75–89.Herzberg C. and Gasparik T. (1991) Garnet and pyroxenes in themantle: A test <strong>of</strong> the majorite hypothesis. J. Geophys. Res.,96, 16263–16274.Hirth G. and Kohlstedt D. L. (1995a) Experimental constraints onthe dynamics <strong>of</strong> the partially molten upper mantle: Deformationin the diffusion creep regime. J. Geophys. Res., 100, 1981–2001.Hirth G. and Kohlstedt D. L. (1995b) Experimental constraints onthe dynamics <strong>of</strong> the partially molten upper mantle 2. Deformationin the dislocation creep regime. J. Geophys. Res., 100,15441–15449.Holland K. G. and Ahrens T. J. (1997) Melting <strong>of</strong> (Mg,Fe) 2 SiO 4at the core-mantle boundary <strong>of</strong> the Earth. Science, 275, 1623–1625.Holloway J. R. (1988) Planetary atmospheres during accretion:The effect <strong>of</strong> C-O-H-S equilibria (abstract). In Lunar and PlanetaryScience XIX, pp. 499–500. Lunar and Planetary Institute,Houston.Hopfinger E. J. (1989) Turbulence and vortices in rotating fluids.In Theoretical and Applied Mechanics (P. Germain, M. Piau,and D. Caillerie, eds.), pp. 117–138. Elsevier, New York.Hopfinger E. J., Browand F. K., and Gagne Y. (1982) Turbulenceand waves in a rotating tank. J. <strong>Fluid</strong> Mech., 125, 505–534.Ichikawa K., Kinoshita Y., and Shimamura S. (1985) Grain refinementin Al-Cu binary alloys by rheocasting. Trans. Japan Inst.Metals, 26, 513–522.Ida S., Canup R. M., and Stewart G. R. (1997) Lunar accretionfrom an impact-generated disk. Nature, 389, 353–357.Ita J. and Cohen R. E. (1998) Diffusion in MgO at high pressure:Implications for lower mantle rheology. Geophys. Res. Lett.,25, 1095–1098.Ito E. and Takahashi E. (1987) Melting <strong>of</strong> peridotite at uppermostlower-mantle conditions. Nature, 328, 514–517.Jin Z.-M., Green H. W., and Zhou Y. (1994) Melt topology inpartially molten mantle peridotite during ductile deformation.Nature, 372, 164–167.Julien K., Legg S., McWilliams J., and Werne J. (1996) Hard turbulencein rotating Rayleigh-Bénard convection. Phys. Rev. E,53, 5557–5560.Karato S. and Li P. (1992) Diffusion creep in perovskite: Implicationsfor the rheology <strong>of</strong> the lower mantle. Science, 255, 1238–1240.Karato S.-I. and Murthy V. R. (1997a) Core formation and chemicalequilibrium in the Earth — I. Physical consideration. Phys.Earth Planet. Inter., 100, 61–79.Karato S.-I. and Murthy V. R. (1997b) Core formation and chemicalequilibrium in the Earth — II. Chemical consequences forthe mantle and the core. Phys. Earth Planet. Inter., 100, 81–95.Kashchiev D. (1969) Solution <strong>of</strong> the nonsteady state problem innucleation kinetics. Surf. Sci., 14, 209–220.Kasting J. F. (1988) Runaway and moist greenhouse atmosphereand the evolution <strong>of</strong> Earth and Venus. Icarus, 74, 472–494.Kato T., Ringwood A. E., and Irifune T. (1988a) Experimentaldetermination <strong>of</strong> element portioning between silicate perovskites,garnets and liquids: Constraints on early differentiation<strong>of</strong> the mantle. Earth Planet. Sci. Lett., 89, 123–145.Kato T., Ringwood A. E., and Irifune T. (1988b) Constraints onelement partition coefficients between MgSiO 3 perovskite andliquid determined by direct measurements. Earth Planet. Sci.Lett., 90, 65–68.Kaula W. M. (1979) Thermal evolution <strong>of</strong> earth and moon growingby planetesimals impacts. J. Geophys. Res., 84, 999–1008.King S. D. (1995) Models <strong>of</strong> mantle viscosity. In Mineral Physicsand Crystallography: A Handbook <strong>of</strong> Physical Constants(T. J. Ahrens, ed.), pp. 227–236. AGU, Washington, DC.Knittle E. and Jeanloz R. (1989) Melting curve <strong>of</strong> (Mg,Fe)SiO 3perovskite to 96 GPa: Evidence for a structural transition inlower mantle melts. Geophys. Res. Lett., 16, 421–424.Kohlstedt D. L. and Zimmerman M. E. (1996) Rheology <strong>of</strong> partiallymolten mantle rocks. Annu. Rev. Earth Planet. Sci., 24,41–62, 1996.Kraichnan R. H. (1962) Turbulent thermal convection at arbitraryPrandtl number. Phys. <strong>Fluid</strong>s, 5, 1374–1389.Krieger I. M. and Dougherty T. J. (1959) A mechanism for non-Newtonian flow in suspensions <strong>of</strong> rigid spheres. Trans. Soc.Rheol., 3, 137–152.Kushiro I. (1980) Viscosity, density, and structure <strong>of</strong> silicate meltsat high pressures, and their petrological applications. In Physics<strong>of</strong> <strong>Magma</strong>tic Processes (R. B. Hargraves, ed.), pp. 93–120.Princeton Univ., Princeton.Kushiro I. (1986) Viscosity <strong>of</strong> partial melts in the upper mantle.J. Geophys. Res., 91, 9343–9350.Lee D.-C. and Halliday A. N. (1995) Hafnium-tungsten chronometryand the timing <strong>of</strong> terrestrial core formation. Nature, 378,771–774.Lejeune A.-M. and Richet P. (1995) Rheology <strong>of</strong> crystal-bearingsilicate melts: An experimental study at high viscosities. J.Geophys. Res., 100, 4215–4229.Li. J. and Agee C. B. (1996) Geochemistry <strong>of</strong> mantle-core differentiationat high pressure. Nature, 381, 686–689.Lifshitz I. M. and Slyozov V. V. (1961) The kinetics <strong>of</strong> precipitationfrom supersaturated solid solution. J. Phys. Chem. Solids,19, 35–50.Li P., Karato S., and Wang Z. (1996) High-temperature creep in

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!