13.07.2015 Views

WAVELETS: Theory and Applications An Introduction Willy Hereman ...

WAVELETS: Theory and Applications An Introduction Willy Hereman ...

WAVELETS: Theory and Applications An Introduction Willy Hereman ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

.<strong>WAVELETS</strong>: <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong><strong>An</strong> <strong>Introduction</strong><strong>Willy</strong> <strong>Hereman</strong>Dept. of Mathematical <strong>and</strong> Computer SciencesColorado School of MinesGolden, ColoradoUSAPh.D. Program, Department of PhysicsUniversity of <strong>An</strong>twerp<strong>An</strong>twerp, BelgiumDecember 4-15, 20001


.<strong>Introduction</strong> to <strong>WAVELETS</strong>: <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>LECTURE NOTESHOMEWORK ASSIGNMENT & EXAMBOOKS ON <strong>WAVELETS</strong>Prof. <strong>Willy</strong> <strong>Hereman</strong>Dept. of Mathematical <strong>and</strong> Computer SciencesColorado School of MinesGolden, ColoradoUSAHonors Course–Numerical AlgorithmsDepartment of Applied MathematicsUniversity of StellenboschStellenbosch, South AfricaMarch 9-23, 2001Wed.: 10-10:50, Fri.: 10-10:50, 11-11:502


Topics—Outline• <strong>Introduction</strong>: History, motivation, applications• Key ideas <strong>and</strong> definitions• Haar <strong>and</strong> Daubechies wavelets• Scaling <strong>and</strong> wavelet functions• Multi-resolution analysis• Wavelet analysis: decomposition <strong>and</strong> reconstruction• Fast Fourier Transform (FFT) versus Fast Wavelet Transform (FWT)• Vanishing moments, smoothness, approximation• Low <strong>and</strong> high pass filters• Quadrature Mirror Filters (QMF)• Construction of Daubechies’ wavelets• Construction of scaling <strong>and</strong> wavelet functions• Selected applications• Software demonstration3


• INTRODUCTION (<strong>An</strong>dré Weideman)• BACKGROUND AND EXPERIENCE WITH <strong>WAVELETS</strong>* 1993- Work with Gregory Beylkin at CU - Boulder.* 1993 - ’94 Sabbatical year devoted to wavelets <strong>and</strong> applications.* 1993 - Short course in Ghent, Belgium (my alma mater).* 1994- Work on coiflets (with Monzon <strong>and</strong> Beylkin),- work on Dubuc-Deslauriers’ subdivision scheme <strong>and</strong> wavelets,- work on Battle-Lemarié spline based wavelets.* Course on wavelets at CSM-Golden, CO (1995).* Short course on wavelets in <strong>An</strong>twerp. Fall 2000 (Also, May 1995).* 1998 Paper on coiflets.* Currently wavelet issues related to applications (facial recognition, fingerprints,etc.).* Belgian connection with Ingrid Daubechies <strong>and</strong> Wim Sweldens.• PLAN AT STELLENBOSCH* Gentle introduction to wavelets (concepts).* American style: ask questions.* Mediao Lecture notes in library.o Copies of slides in library.o Reference books in library.o Review papers in office.o Wavelet Explorer (Mathematica).• WHO HAS EXPERIENCE WITH <strong>WAVELETS</strong>?* o <strong>Theory</strong>.o <strong>Applications</strong>? Which?* Who has heard about wavelets <strong>and</strong> where, what context?* Relation to field of study.4


* Background in mathematics.* Reasons to take course?• GRADE FOR WAVELET SHORT COURSE* One assignment 4 or 5 problems.* One examination question (open book).• INFO ABOUT <strong>WAVELETS</strong>o long list of books (copy in library).o thous<strong>and</strong>s of papers.o two dozen good review papers.o Wavelet Digest (Wavelets for Kids) http://www.wavelet.org/wavelet.o Electronic resources.o Wavelet Software.o Info on WEB (see course Weideman).To get to Wavelet Explorer.- Start Mathematica.- Click on Help.- Click on Add-ons.- Click on Wavelet Explorer.DEMO OF WAVELET EXPLORERTo get intro to Wavelet ExplorerFrom wavelet Explorer Pick Fundamentals of WaveletsIn [1]In [2]In [3]In [4]To use it in your own notebook in MathematicaNeeds [“Wavelets‘ Wavelets‘”].? *aub*.DaubechiesFilter[n] (brief description)??DaubechiesFilter[n] (for full description with all options)DaubechiesFilter[3].For filtertaps of Daubechies averaging filter with 3 vanishing moments.5


GENERAL IDEAS ABOUT <strong>WAVELETS</strong>* Arena (setting) Mathematics behind data, signal, image analysis or processing(Engr.)<strong>and</strong> numerical analysis (Mathematics/Applied Mathematics).* Wavelets is at interface of engineering <strong>and</strong> mathematics (compare with mathematicalphysics, mathematical biology, mathematical finance, ....)* Counterpart to Fourier analysisFFT ←→ FWT (or discrete DWF)Fast Fourier transform Fast wavelet transformGreat Discovery of Jean-Baptiste Fourier (1768-1830).A periodic signal (sound, function) can be decomposed in harmonics (sinesor cosines, or complex exponentials).* Shortcomings of Fourier analysis (weaknesses)- sines <strong>and</strong> cosines wiggle (extend) infinitely far,- does not h<strong>and</strong>le gaps or localized signals well, or faulty data (too manycoefficients needed to make cancellations to zero),- a transient sharp “blip” needs many Fourier components. Huge numberof non-zero coefficients,- does not h<strong>and</strong>le fast variations (highly oscillatory signal) well,- trouble at discontinuities (overshoot, undershoot, Gibbs phenomena).* Strong points of Fourier analysis- functions are analytic <strong>and</strong> simple,- simple (sines <strong>and</strong> cosines) orthogonal functions,- fast FFT is n log n algorithm - due to trick invented in 1965 by J. Tuckey<strong>and</strong> J. Cooley (same trick applies for wavelets),- few coefficients in series are needed to represent a smooth periodic function,- very applicable recursive algorithms,- caused a revolution in scientific computing,- continuous <strong>and</strong> discrete transforms are available,6


→ Try to keep what’s good <strong>and</strong> try to improve on bad properties =⇒Wavelets.* Key requirements* Cost:o a few functions (no longer sines/cosines) should give good approximation,o orthogonal functions,o we want localization in both time (via translations) <strong>and</strong> (space) frequency(wavelength) via dilations <strong>and</strong> contractions,o we want fast, recursive algorithm,o zoom in - zoom out property,o something highly applicable,o mathematically on solid foundation (requires new mathematical concepts,ideas, ....construction),o continuous <strong>and</strong> discrete transforms.=⇒ no longer analytical functions,=⇒ not as simple as Fourier series or Fourier transform.WHAT IS A WAVELET?“a little wiggle, ripple”French: ondeletteHow many types of wavelets are there? - About 2 dozen practical types.(Daubechies’ wavelets, Meyer wavelets, biorthogonal wavelets, Battle-Lemariéwavelets, ...)HOW DOES ONE GET TO WAVELET BASIS?In Fourier analysis:Take sinusoids (or complex exponentials) as basis functions <strong>and</strong> then study theproperties of the Fourier series (or Fourier integral)In wavelet analysis:One poses the desired properties <strong>and</strong> then derives the resulting basis functions.7


[For instance, multiresolution is a key property, orthogonality also, <strong>and</strong> perhapssymmetry, vanishing moments property].Key idea:You want to construct a basis for IL 2 (IR) (= collection/space of all square integrablefunctions)f ∈ IL 2 (IR) if∫ +∞−∞ f(x)2 dx < ∞CONCEPTUAL ANALOGIES (OTHER PERSPECTIVES)1. The game of averages <strong>and</strong> differences <strong>and</strong> vanishing momentsStudent #1 has X 1 amount of money in bank accountStudent #2 has X 2 amount of money in bank accountYou can either give X 1 , X 2 itself or give theaveragedifferenceAdvantage ifS 1 = X 1 + X 22D 1 = X 1 − X 22⇐⇒ X 1 = S 1 + D 1⇐⇒ X 2 = S 2 − D 1X 1 = X 2 =⇒ D 1 = 0.If X 1 = X 2 follow the same constant trendthen simple “differences” creates a zero student number“he same amount in account” −→ difference = zero, −→ average = how mucheach has.Question: Is it possible to generalise this simple idea? YES.Look at it from a “signal data” processing point of view8


X 1 X 2} {{ } −→ X 3 X 4} {{ }move over in steps of two.X 5 . . .for averagesfor differences(1•2)(1•2)(1= h 0 •2)= h 1(1= g 0 • = g 12)ChoicesS 1 = 1 2 X 1 + 1 2 X 2 = h 0 X 1 + h 1 X 2D 1 = 1 2 X 1 − 1 2 X 2 = g 0 X 1 + g 1 X 2(12 , 1 2)(12 , −1 2)= h 0 , h 1= (g 0 , g 1 )or (1, 1) = (h 0 , h 1 )orLeaping ahead(1, −1) = (g 0 , g 1 )( )1 1 √2 , √ = (h 0 , h 1 )2(1√2 , −√ 1)2= (g 0 , g 1 ) Haar caseSimilarly S 2 = h 0 X 3 + h 1 X 4D 2 = g 0 X 3 + g 1 X 4 , etc.If X 1 , X 2 , X 3 , X 4 , . . . lie on line can we find h 0 , h 1 <strong>and</strong> g 0 , g 1 so that D 1 , D 2etc. are zero? No.We need four numbersh 0 , h 1 , h 2 , h 3 for averaging (low pass filter)g 0 , g 1 , g 2 , g 3 for differencing so that (high pass filter)D 1 = g 0 X 1 + g 1 X 2 + g 2 X 3 + g 4 X 4 = 0ifX 1 , X 2 , X 3 , X 4 , . . . are on lineAlso,9D 2 = 0 etc.


If X i are on parabola we will needWe will need six numbers.Etc. can be done for x n also.(h 0 , . . . , h 5 ) for averaging(g 0 , . . . , g 5 ) for differencing, sothat g 0 X 1 + . . . + g 5 X 6 = D 1 = 0if X i follow quadratic trenda + bX + cX 2↓ ↓ ↓.constant linear <strong>and</strong> quadratic combinedIf X i follow on a + bX + cX 2 + . . . + fX nthen you need 2n “magical” numbers with special properties so thatExamples of data following trendsD 1 = 0 ,D 2 = 0 , etc.* Pictures: cone <strong>and</strong> ball on tiled floor. Show <strong>and</strong> explain image compression.* Cartoon: how are the Disney cartoons made? Game for kids: picturebook with slightly different (shifted figures) on frozen background.* Video: TV broadcasting. Transmit only the differences.−→ Life is full of redundancy!2. Vanishing momentsIf you could construct a wavelet function ψ(x) which corresponds to “differencing”then you could require that ψ(x) annihilates constant, linear,quadratic, cubic, ..... trends . . . up to degree say x M−1so∫x l ψ(x) dx = 0 for l = 0, 1, 2, . . . M − 1} {{ }M moments10


Since a function f(x) can be written in McLaurin seriesf(x) =you would havef(0)} {{ }constant+ f ′ (0)x +} {{ }linearquadraticf ′′ (0)2 x2 + . . . + f (M−1)} {{ }(M − 1)! xM−1 + . . .degree M − 1∫f(x)ψ(x)dx = 0 + 0 + 0 . . . + 0 +∫x MM! ψ(x)dx + . . .} {{ }highly oscillating part−→ Wavelets would be sensitive to fast oscillating pieces of f(x) <strong>and</strong> annihilateslower varying pieces of f(x).3. Fingerprint storyPopularized wavelets(FBI competition for fingerprint compression)(Old systems for identification was based on facial features. Bertillion 1884).- 37 million fingerprint cards for criminals (some in duplicate),- 250 million fingerprint cards in total (job applications, immigration,background checks for employment ..., weapon purchases, ... ),- 60 km of “thin” cardboard,- each card has 10 rolled imprints of fingers, 2 unrolled thumb prints, twofull h<strong>and</strong>s,- cataloguing is several million cards behind,- request for identity check may take between 100 - 140 days,- enormous office building full of these cards.−→ Need for automation <strong>and</strong> electronic storage (via scanning), saves space.Allows for on-line verification (in shortest possible time, while suspect isbeing held).Should be accessible from every police car (digitizing tablet, modem, ...).- FBI has approximately 350 employees to h<strong>and</strong>le the verification requests,cataloguing, removing duplicates, etc. ...11


- Automatic system: IAFIS (Automatic Fingerprint Identification System).* cards are digitized <strong>and</strong> stored on 2 computers in a nuclear attackproof building (cellar 20 m deep in Clarksburg, West Virginia),* old card collection is moved to Federicksburg,* scanning all cards took 5 years,* cost: $640 million,* every police car has a scanner <strong>and</strong> they can fully automatically checkthe enormous database.- FBI get 45,000 requests per day for verification.- FBI adds 5,000 fingerprints to database per day.- Average checking time (for routine stuff, like for application for weaponspermit) takes 30 seconds.- Computer database is 40 terabytes.1 byte = 8 bids (zero or one)40 × 10 12 bytes (= 40,000 PC with harddrive of 10 gigabytes). Evencompressed!How does it get that large?Each square inch fingerprint image is broken into 500 × 500 grid of smallboxes, called pixels.Each pixel is given a gray-scale from 0 to 255↓white↓black−→ darkness of one pixel requires 8 bits = 1 byte.Start multiplying: 1 whole card ∼ = 10 MB.(Mega byte = 10 6 bytesGiga byte = 10 9 bytesTera byte = 10 12 bytes)=⇒ 2500 Tera byte = 2500 10 12 12


250 million cards ∼ = 250010 6 10 6}{{}MB∼ = 2500 × 10 2 ×For ≈ 37 million criminals alone10GB} {{ }harddrive∼ = 250, 000PC’s. (quarter million PC’s.)=⇒ 37,000 PC’s. 1,000 cards fill up one PC!Impossible without serious data compression for storage <strong>and</strong> transmission(via JPEG (Joint Photographic Experts Group) or something else.−→ FBI competition won by Ron Coifman (Yale) <strong>and</strong> Bradley <strong>and</strong> Brislawn,at Los Alamos National Laboratory (biorthogonal wavelets).DATA COMPRESSION:Sending 1 card without compression via 56K modem would take ≈ 20 minutesSt<strong>and</strong>ard compression ratios 3/1 or 2/1Wavelet compression ratios 15/1 or 20/1−→ with 20/1 compressiontransmission time = 1 minute.Space savings also factor 15 or 20−→ 1/20 of space(5% kept)(For cirminals’ card storage −→ less than 2,000 PC’s)Wavelet algorithms closer to home:* wavelet chip in modems (Aware Corp.)* JPEG 2000 st<strong>and</strong>ard for internet pictures (you see the details come in).13


APPLICATIONS OF <strong>WAVELETS</strong>Signal <strong>and</strong> Data processing:- analysis (eg. detection of edges, detection of faults, abrupt changes,defects like “cracks” in materials, . . . ),- compression (reduction of storage space, fast transmission, as in fingerprintapplication),- smoothing (attenuation of noise, denoising),- synthesis (reconstruction after compression or/<strong>and</strong> smoothening, orother types of modification).Types of signals1D : sound, speech, time-series (e.g. history of a stock in financial markets),2D : pictures, maps, . . . ,3D : spatial diffusion (e.g. of heat of body, dopamine injected in brain, . . . ).SAMPLE APPLICATIONS−→ Reconstruction of Johannes Brahms’ early recording (1889) of First HungarianDance (story in Scientific American 1993).Music speech−→ Medical applications: analysis of– MRI scan,– electro cardiogram,– ultrasonic images,– mammograms (tumor detection),– various other modern scanning, visualization methods in medicine.Medical imaging−→ Military applications:formation of images based on partial radar data (distinguish ambulancefrom tank).Military imaging−→ High speed data transmission:- single pictures (come gradually in focus),14


- video (explain principle).Digital communication−→ Denoising technology:(project for ADA Technologies: detection of metals like vanadium, mercury,lead in smoke, laser spectroscopy −→ least squares method <strong>and</strong>wavelets).Data analysis−→ Mathematical, engineering applications:fast PDE solvers, Ax = b solvers, numerical analysisFFT vs FWT−→ Geophysical applicationsseismic methods for detection of rock formations, pockets of gas, detectionof oil fields, . . . .CSMMassive data−→ Finance:analysis of time-series (prediction of behaviour of stocks, other financialintruments . . . ) .Money matters−→ Metereology:analysis of weather data, climate, temperature in oceans,. . . .Massive dataSHORT HISTORY“Wavelets come from a synthesis of ideas”.• First wavelet: Haar 1910 (box functions).• Engineering experiments in 1960’s −→ 1980’s.• Experiments with windowed Fourier Transforms.• 1980: Jean Morlet (geophysicist)- wavelets for analysis of seismic data.• 1980 Alex Grossmann: theoretical study of wavelets <strong>and</strong> wavelet transform.• 1985: Yves Meyer (harmonic analyst)15


- connections with other fields in maths,- connection with singular integral operators.• 1986 - 1988: Ingrid Daubechies (VUB colleague)- frames (generalized basis for Hilbert space),- 1988 - major breakthrough,- “Daubechies” family of orthonormal wavelets with compact support,- connection with coherent states.- Inspired by work of Mallat <strong>and</strong> Meyer on multi-resolution analysis<strong>and</strong> applications in decomposition <strong>and</strong> reconstruction of images (computergraphics).- “Ten lectures on Wavelets”.• Beyond 1988: exponential growth in theoretical developments.(5,000 papers in Science Citation Index).<strong>Applications</strong> in physics (coherent states), quantum field theory, electricalengineering, computer science, statistics, etc., etc., . . . .“SYNTHESIS OF IDEAS”16


SCALING AND WAVELET FUNCTIONS* Wavelet is little ripple, a little wave.∫ψ(x), not symmetric, such thatψ(x)dx = 0, <strong>and</strong> such that(admissibility condition)ψ(x) will have special properties.* Start with “mother” wavelet, concentrated, say, in interval [0,1].* Generate other wavelet by moving the mother wavelet left or right in unitsteps, <strong>and</strong> by dilating or compressing the mother wavelet by repeated factorsof 2.Compare with images (zoom into a picture)zoom outdilate (stretch) −→ lower resolution details of picture,zoom incompress (squeeze) −→ higher resolution details of picture.Look at TV-screen:large screen (blurred image) exp<strong>and</strong>ed imagesmall screen (sharper image) compressed image.Definition (Mathematical)Let IL 2 IR be the Hilbert space of square integrable functions on real line.A wavelet is a funtion ψ ∈ IL 2 (IR) such thatis an orthonormal basis of IL 2 (IR)2 j/2 ψ(2 j x − k) j, k ∈ ZThere are two families in the game:ϕ(x) scaling function −→ ϕ j,k (x)↓father where ϕ j,k (x) = 2 j/2 ϕ(2 j x − k) = 2 j/2 ϕ(2 j (x − k/2 j ))↑ ↑2 parameter family kids (boys)ψ(x) wavelet function −→ ψ j,k (x) −→ kids(girls)↓mother where ψ j,k (x) = 2 j/2 ψ(2 j x − k) = 2 j/2 ψ(2 j (x − k/2 j ))17


↑2 parameter familyHaar waveletDaubechies wavelet(DAUB4)Picture motherPicture fatherPictures of scaling <strong>and</strong> wavelet functions2 vanishing momentsKey features (desired properties).* The basis should be orthonormal “vectors” (here functions) should be mutuallyorthogonal, <strong>and</strong> properly normalized−→ fast algorithms to compute coefficients.* The basis functions (wavelets) should have vanishing moments−→ sparsity (lots of zeros) everywhere.* The algorithms should be recursive. True due to the multi-resolution propertiesof the basis (always devide or multiply by factor 2).* There should be no need for the functions themselvesso, the family {2 j/2 ψ(2 j x − k)} j,k is not needed.Instead one uses “filter coefficients or taps” for averaging, differencing (youwant to maintain a constant norm, independent of j).* NormalizationIf ψ j,k (x) = cψ(2 j x − k)Require ‖ψ j,k (x)‖ 2 = ‖ψ 0,0 (x)‖ 2 = ‖ψ‖ 2∫ψj,k (x) 2 dx = c 2 ∫ ψ 2 (2 j x − k)dx, set z = 2 j x − k= c 2 2 −j ∫ ψ 2 (z)dz = c 2 2 −j ‖ψ‖ 2 = 1.‖ψ‖ 2so we need c = 2 j/2 .Note: Daubechies waveletsIf ψ is a Daubechies wavelet with M vanishing moments that generates an orthonormalbasis of IL 2 (IR) thenψ is supported on [0, 2M − 1] or [−M + 1, M] if translated to leftover M − 118


Vanishing momentsϕ is supported on [0, 2M − 1].2 vanishing moments means4 vanishing momentsM vanishing moments∫ψ(x) dx = 0,∫x ψ(x) dx = 0∫x l ψ(x) dx = 0 for l = 0, 1, 2, 3∫x l ψ(x) dx = 0 l = 0, 1, 2, . . . , M − 1.Wavelets with vanishing moments will annihilate (ignore, or be blind to) certaintrends; linear (including const), quadratic, cubic, quartic, quintic, etc. <strong>and</strong> onlybe sensitive ( pick out) higher degree oscillations.Exp<strong>and</strong>ing <strong>and</strong> contracting wavelets.Compare with music.ψ quarter note at middle C (where your start)1V 2 ψ(x 2) half note a lower octave (stretch)2ψ(4x) 16 th note at 2 octaves higher (contract)THE REFINEMENT OR TWO-SCALE DIFFERENCE EQUATIONHaar caseϕ(x) =ϕ(x) = characteristic function on (0,1)⎧⎨⎩1 , 0 ≤ x < 10 , elsewhere (x < 0 or x ≥ 1).Observe ∫ 1∫ ϕ(x)dx = 1 = 10 0 ϕ2 (x)dx.Also, for scaling functionϕ(x) = ϕ(2x) + ϕ(2x − 1).Refinement equation for Haar case.Other names: dilation equation; two-scale difference equation.19


Verify0 ≤ x < 1/2 1 = 1 + 01/2 ≤ x ≤ 1 1 = 0 + 1x < 0 or x ≥ 1 0 = 0 + 0.Also, for wavelet functionψ(x) = ϕ(2x) − ϕ(2x − 1).Note: wavelet function can be defined in terms of scaling function.IN GENERAL (DAUBECHIES WAVELET AND OTHERS)Equivalentlyϕ(x) = √ 2 L−1 ∑k=0ψ(x) = √ 2 L−1 ∑k=0h k ϕ(2x − k)g k ϕ(2x − k)For Haar caseϕ(x/2) = √ 2 L−1 ∑k=0L = 2h k ϕ(x − k), similar for ψ(x/2)(length of filter)ϕ(x) = ϕ(2x) + ϕ(2x − 1)= √ 2(1 √2 ϕ(2x) + 1 √2ϕ(2x − 1)ψ(x) = ϕ(2x) − ϕ(2x − 1)= √ 1(√2 12ϕ(2x) − √ 12ϕ(2x − 1)−→ (h 0 , h 1 ) =−→ (g 0 , g 1 ) =(√2 1, 1)√2= H(√2 1, −√ 1)2= G))Filters for averaging <strong>and</strong> differencing.20


In generalAlways come in pairsH = (h 0 , h 1 , h 2 , . . . , h L−1 ) low pass filterG = (g 0 , g 1 , g 2 , . . . , g L−1 ) high pass filter.Note: As vectors −→ H ⊥ −→ Gi.e. ϕ⊥ψ as functionsH −→ G reverse the order <strong>and</strong> switch every other signH = (h 0 , h 1 , . . . , h L−1 ) −→ G = (h L−1 , −h L−2 , . . . , −h 0 ).Reverse (of refinement equation)Later, general:ϕ(2x) = 1 (ϕ(x) + ψ(x))2ϕ(2x − 1) = 1 (ϕ(x) − ψ(x))2ϕ(2x − l) = ∑ k(a l−2k ϕ(x − k) + b l−k ψ(x − k))Remarks1. In general there is no (explicit) analytical form for ϕ(x) or ψ(x)2. ϕ(x) is evaluated via the refinement equation at dyadic points x = k 2 jj, k ∈ Z−→ (Assignment plus old notes. Eigenvalue problem).Example:Set x = 1/2 ϕ(1/2) =Also0{ }} {1{ }} {ϕ(1) + ϕ(0) = 1ϕ(−1/2) = ϕ(−1) + ϕ(−2)= 0 + 0 = 0So, if ϕ is known at integers then ϕ is known at the halvesRecursive!ϕ(1/4) = ϕ(1/2) + ϕ(−1/2) = 121


General ϕ(2 j−1 n) = ϕ(2 j n) + ϕ(2 j n − 1)3. To be able to use {ϕ(x − k)} k ∈ Z to approximate even simple functionwe assumethat ϕ(x) <strong>and</strong> its translates form a partition of unity.∑k∈ Zϕ(x − k) = 1,∀x ∈ IRProof in Fourier domainˆϕ(0) = 1 =⇒ ∑ ϕ(x − k) = 1.kMore general:f(t) = ∑ nf n (t) where f n (t) = ϕ(t − n)f(t) −→ localized function.For Haar case:ϕ(x) = ϕ(2x) + ϕ(2x − 1)4. Refinement equations were known in context of splines.Examples* Piecewise linear spline (hat function)SatisfiesN 2 =* Piecewise quadratic splineSatisfies⎧⎪⎨⎪⎩x , 0 ≤ x < 12 − x , 1 ≤ x < 20 , elsewhereN 2 (x) = 1 2 N 2(2x) + N 2 (2x − 1) + 1 2 N 2(2x − 2)N 3 (x) =⎧⎪⎨⎪⎩1/2x 2 , 0 ≤ x ≤ 13/4 − (x − 3/2) 2 , 1 ≤ x < 21/2(x − 3) 2 , 2 ≤ x ≤ 30 , elsewhereN 3 (x) = 1 4 N 3(2x) + 3 4 N 3(2x − 1) + 3 4 N 3(2x − 2) + 1 4 N 3(2x − 3)22


5. In generalϕ(x) = √ 2 L−1 ∑k=0h k ϕ(2x − k)ψ(x) = √ 2 ∑ g k ϕ(2x − k)Proof - Integrate both sides1 =∫ϕ(x)dx = √ 2 L−1 ∑=√22L−1 ∑∫ϕ(x)dx=1=⇒ L−1 ∑k=0∫ψ(x)dx=0=⇒ L−1 ∑∫h kk=0∫h kk=0= √ 1 L−1 ∑2−→ L−1 ∑k=0Verify for Haar case √ 12+ √ 12= √ 22= √ 2∫ ∑ψ(x)dx = 0 =⇒ k g k = 0∑Similar proof fork g k = 0Verify for Haar case1 √2 − 1 √2= 0k=0h k = √ 2g k = 0z{ }} {ϕ (2x − k) dxϕ(z)dz} {{ }1h kk=0h k = √ 2linearlinear6. Orthogonality propertiesϕ(x) ⊥ ϕ(x − k), ∀k ∈ Z 0 (k ≠ 0)Inner product in IL 2 (IR)< f, g >=∫ +∞−∞f(t) g(t) dtSo < ϕ, ϕ n >=< ϕ, ϕ(x − n) >= δ noOne can show thatϕ(x)⊥ϕ(x − n), if n ≠ 0<strong>and</strong>ϕ 2 (x) normalized (n = 0)∫ϕ 2 (x)dx = 1leads to (No proof here - proof in extended notes)23


(i)(ii)L−1 ∑k=0h 2 k = 1 ←− quadratic (n = 0) case aboveL−1−2m ∑l=0Verify for Haar caseh 2m+l h l = 0 m = 1, 2, . . . , L 2− 1 (n ≠ 0 )aboveShow in detail via shifts of twoh 0 h 1 h 2 h 3 . . .h 0 h 1 . . .(i) ( 1 √2) 2 + ( 1 √2) 2 = 1 2 + 1 2 = 1L = 2 m = 0 - no condition of type (ii)ϕ ⊥ ψ (h 0 , h 1 ) ⊥ (g 0 , g 1 ) = (h 1 , −h 0 )so, h 0 h 1 − h 1 h 0 = 0.ForL = 8⎧⎪⎨⎪⎩h 0 h 2 + h 1 h 3 + h 2 h 4 + h 3 h 5 + h 4 h 6 + h 5 h 7 = 0h 0 h 4 + h 1 h 5 + h 2 h 6 + h 3 h 7 = 0h 0 h 6 + h 1 h 7 = 07. Admissibility ConditionIn general,L−1 ∑k=0∫h 2k = L−1 ∑k=0∫ψ(x)dx = 0ψ(x) = h 0 ϕ(2x) − h 1 ϕ(2x − 1)1∫{ }} {ϕ(z)dz − h 02ψ(x)dx = 0 = h 12=⇒ h 0 = h 1h 2k+1 = 1 √2,1{ }} {∫ϕ(z)dx<strong>and</strong> also L−1 ∑(−1) k h k = 0 (H ⊥ G)k=024


REPRESENTING FUNCTIONS IN A WAVELET BASISMulti-resolutionFor Haar case (1910){ψ j,k (x)} k,j∈ Z is a fully orthonormal basis for IL 2 (IR).So for f(x) ∈ IL 2 (IR)f(x) =In practice, Haar also used+∞ ∑j=−∞= +∞ ∑j=−∞+∞ ∑k=−∞+∞ ∑k=−∞a jk ψ j,k (x)a jk 2 j/2 ψ(2 j x − k)↑ waveletsf(x) = +∞ ∑c k ϕ(x − k) + +∞ ∑k=−∞k=−∞+∞ ∑j=0d jk ψ j,k (x)Effect of jx ←→ 2 j xt ←→ 2 j tEffect of k↓↓translates at scale adding weightedj = 0wavelets at differentscales, starting from j = 0<strong>and</strong> allowing translates also.space ←→ scaletime ←→ frequency (via dilation)localization in space (or time)(via translation)25


A few examplesRESOLUTION - MULTI-RESOLUTION1. Our number system has multi-resolution.Compare with computation of circumference circle2 radius= ππ = 3.1415926535j’aime a faire connaitre le nombre utile aux sages.3 = 3. 110 0 −→ what scaling function shows at a given resolution3.1 = 3. 110 0 + 1. 1 10} {{ }−→ better resolutionwavelet contribution - encodes the detail3.14 = 3. 110 0 + 1. 1 10} {{ }+ 4. 1 + . . .} {{10 2}Other direction: stretching (adding more <strong>and</strong> more detail), the scalingfunction too much we end up seeing nothing at all. Represent 3.14159 in10 = 10 1 or 100 = 10 2 scales.2. Picture of Dali’s painting.“Gala naked watching the sea”.(Salvador Dali, 1976, Dali Museum, Figueres, Spain).Zoom in: Look at detail (close-up) −→ Gala (Dali’s wife).Zoom out: Look at coarse picture (from afar) −→ Abraham Lincoln.Dali was aware of images at different scales of resolution.26


Basic notions (First for Haar case)Inspiration for multi-resolution properties.1. Consider the scaling function ϕ <strong>and</strong> the associated 2 parameter scaling familyϕ j,k (x) = 2 j/2 ϕ(2 j x − k)j, k ∈ ZFor fixed j : {ϕ j,k (x)} k∈ Zspans a subspace V j of IL 2 (IR).More precise: We define the subspace −→ closure.V j= span k∈ Z{ϕj,k (x) } j fixed<strong>and</strong> ϕ j,k (x) is a basis for V j , the space of piecewise constant functions (withdyastic points k 2 j ).Example:If f(x) ∈ V 0 then f(x) = ∑a kk∈ ZV 0 = space of piecewise constant functions over integers.V 1 = space of ... over halves = larger space than V 0 ,because the functions ϕ 1,k (x) = √ 2ϕ(2x − k)= √ 2ϕ(2(x − k/2))are narrower <strong>and</strong> translated in smaller steps.can represent finer detailSo V 0 ⊂ V 1In general . . . ⊂ V −2 ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ V 2 ⊂ . . .V j ⊂ V j+1 −→ Question: what “lies” between them?ϕ(x−k){ }} {ϕ 0,k (x)2. Consider the wavelet function ψ <strong>and</strong> the associated 2 parameter familyψ j,k (x) = 2 j/2 ψ(2 j x − k) j, k ∈ Z.For fixed j : {ψ j,k (x)} k∈ Z spans W j27


{ψ j,k } k∈ Z is basis for W j , again with piecewise functions ondyadic grid {k/2 j }is a fully orthonormal basis.3. {ψ j,k } (j,k∈ Zbasis for IL 2 IR. This basis is complete.It is an infinite basis in terms of wavelet functions.4. Practical alternativeTake the setwhich also forms a basis for IL 2 (IR).{ϕ j0 ,k(x) = j 0 /2ϕ(2 j 0 x − k),ψ j,k = 2 j/2 ψ(2 j x − k) } j≥0, k∈ Z.In practice, one quite often takes j 0 = 0<strong>and</strong> therefore takes{ϕ(x), ϕ(x ± 1), ϕ(x ± 2), . . . , . . .√ψ(x), ψ(x ± 1),√ψ(x ± 2), . . .2ψ(2x ± 1), 2ψ(2x ± 2), . . ..2 j/2 ψ(2 j x−k)} as the basisNote: The set {ϕ j0 ,k(x)} k∈ Z spans the same subspace as {ψ j,k (x)} j≤j0 , k∈ Z.5. Visualization of Haar’s multi-resolutionV 0coarseV 1 finer V 0 ⊂ V 1 ⊂ V 2V 2V j.still finerby having j sufficiently large the subspace V j is quite large.Using the wavelets ψ j,k (x) takes care of the differences.The precise relationship between V j , W j <strong>and</strong> IL 2 (IR) is given via the Multiresolution<strong>An</strong>alysis (MRA).28


6. Beyond the Haar caseThe same construction is possible, the same concepts <strong>and</strong> ideas hold for manytypes of wavelet families (Daubechies wavelets in particular).Advantage: We will be able to use more regular (smoother) functions ϕ <strong>and</strong>ψ at the cost of a more elaborate construction <strong>and</strong> loss of analytic or closedforms, longer filters, etc.Multi-resolution analysis (Meyer <strong>and</strong> Mallat - 1986)Multi-resolution analysis of IL 2 (IR) is an increasing sequence of closed (nested)subspacesSuch that(i) ⋂k∈ Z(ii) ⋃k∈ Z{V j } j∈ Z of IL 2 (IR),. . . ⊂ V −2 ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ V 2 ⊂ . . . ⊂ V j ⊂ V j+1 ⊂ . . .V j = {0} orlim V j = {0} (no overlap, separate spaces)j→−∞V j = IL 2 (IR) or lim V j = IL 2 (IR)j→∞(iii) For any f ∈ IL 2 (IR), for any j ∈ Z⎛⎝ ⋃ jV j is dense in IL 2 (IR)f(x) ∈ V j iff f(2x) ∈ V j+1(Also f(x) ∈ V0 ⇐⇒ f(2 j x) ∈ V j)(iv) For any f ∈ IL 2 (IR), for any k ∈ Zf(x) ∈ V 0 iff f(x − k) ∈ V 0⎞⎠(v) ∃ϕ ∈ V 0such that{ϕ(x − k)} k∈ Z is an orthonormal basis of V 0.Notes:(1) ϕ is the scaling function.(2) ψ will come as a by-product.29


(3) Riesz basis: A countable set {f n } of a Hilbert space IL 2 (IR) is a Riesz basisif ∀f ∈ IL 2 (IR) it can be uniquely written asf = ∑n∈ INc n f n <strong>and</strong> ∃A, B > 0 such thatA‖f‖ 2 ≤ ∑ n|c n | 2 ≤ B‖f‖ 2Now define W j as the orthogonal complement of V j in V j+1 ,i.e. V j ⊕ W j = V j+1 , j ∈ Z.Then IL 2 (IR) is represented as the direct sumIn practiceIL 2 (IR) = ⊕W jj∈ Z1. There is a coarsest scale “n” <strong>and</strong>V −n ⊂ . . . ⊂ V −1 ⊂ V 0 ⊂ V 1 ⊂ . . .−→ IL 2 (IR) = V −n ⊕ W j,j≥−n low resolution2. There is a finite number of scales, select j = 0 to be the coarsest scaleV 0 ⊂ V 1 ⊂ . . . ⊂ V n , V 0 ⊂ IL 2 (IR)↓ ↓coarsest finest3. In numerical implementations the subspace V 0 is finite dimensional.Be aware of other choices in the literature where ϕ j,k (x) = 2 −j/2 ϕ(2 −j x − k)ThenV j = V j+1 ⊕ W j+1j −→ −j<strong>and</strong>⊃ V −2 ⊃ V −1 ⊃ V 0 ⊃ V 1 ⊃ . . .30


EXPLANATION OF MULTI-RESOLUTION ANALYSISHaar basis on [0,1]V 0 is spanned by ϕ(x)W 0 is spanned by ψ(x)V 0 ⊥W 0 <strong>and</strong> V 1 = V 0 ⊕ W 0V 1 = space of all piecewise constant functions on half intervals.Basis for V 1 consists of √ 2ϕ(2x) <strong>and</strong> √ 2ϕ(2x − 1) −→ √ 2ϕ(2x − k), k = 0, 1.√√ 22ϕ(2x) = (ϕ(x) + ψ(x))2√√ 22ϕ(2x − 1) = (ϕ(x) − ψ(x))2↑ ↑∈ V 0 ∈ W 0Since V 0 ⊂ V 1 −→ ϕ(x) can be written in terms of√2ϕ(2x) <strong>and</strong>√2ϕ(2x − 1)IndeedSineϕ(x) = 1 √2(√2ϕ(2x) +√2ϕ(2x − 1))W 0 ⊂ V 1 −→ ψ(x) = ϕ(2x) − ϕ(2x − 1)= √ 1 (√ √ )2ϕ(2x) − 2ϕ(2x − 1)2Basis for W 1 consists of √ 2ψ(2x) <strong>and</strong> √ 2ψ(2x − 1) −→ √ 2ψ(2x − k), k = 0, 1.V 2 is spanned by 2ϕ(2 2 x − k) = 2ϕ(4x − k), k = 0, 1, 2, 3−→ space of piecewise functions on quarter interval.W 2 is spanned by 2ψ(4x − k), k = 0, 1, 2, 3V 2 = V 1 ⊕ W 1 = V 0 ⊕ W 0 ⊕ W 131


So, a function f ∈ V 2 can be written in terms ofϕ(x), ψ(x), 2ψ(2x) <strong>and</strong> √ 2ψ(2x − 1)But V 2 is also spanned by2ϕ(4x), 2ϕ(4x − 1), 2ϕ(4x − 2) <strong>and</strong> 2ϕ(4x − 3).In general,V j is spanned by 2 j/2 ϕ(2 j x − k) for fixed j <strong>and</strong> k = 0, 1, . . . , 2 j − 1W j is spanned by 2 j/2 ψ(2 j x − k), <strong>and</strong> k = 0, 1, . . . , 2 j − 1V j+1= V j ⊕ W j= V j−1 ⊕ W j−1 ⊕ W j= · · ·= · · ·V j+1= V 0 ⊕ W 0 ⊕ W 1 ⊕ · · · ⊕ W j<strong>and</strong> the translates of wavelets on the right are also translates of scaling functionson the left.Next step, move from [0,1] to IR by allowing all translations (no restrictions onindex k).A basis for IL 2 IR consists of ϕ(x − k) k∈ Z together with<strong>An</strong>other basis for IL 2 IR consists ofOrthogonality Issuesψ j,k = 2 j/2 ψ(2 j x − k) with j ≥ 0, k ∈ Zψ j,k (x) = 2 j/2 ψ(2 j x − k) ∀j ∈ Z , ∀k ∈ Z.1. For fixed j V j ⊥W j∫ϕj,k ψ j,l dx = 0 ∀k, l2. Since W j ⊂ V j+1 <strong>and</strong> W j+1 ⊥V j+1∫ψj,k (x)ψ j+1,l dx = 0=⇒ W j ⊥W j+1Then W j+1 ⊂ V j+2 <strong>and</strong> W j+2 ⊥V j+2 =⇒ W j+1 ⊥W j+2All W j are mutually orthogonal.32


3. Since V j ⊂ V j+1 <strong>and</strong> W j+1 ⊥V j+1∫ψp,k ψ q,l dx = 0 if p ≠ q=⇒ V j ⊥W j+1∫ϕj,k ψ j+1,l dx = 0.4. It is not true that V j ⊥V j+1 , but ϕ⊥ its translates.Representing a function in a wavelet basisThere are 5 different approaches (points of view).Each one leads to a key interpretation, to key properties <strong>and</strong> to an algorithmto perform wavelet decomposition.Approaches:1. inner product method,2. matrix method (change of basis),3. convolution method,4. FWT method,5. projection matrices method.Example to illustrate the methodsTake f(x) = 9ϕ(4x) + 1.ϕ(4x − 1) + 2ϕ(4x − 2) + 0.ϕ(4x − 3).Rewrite in basis 2 j/2 ϕ(2 j x − k) on V 2here j = 2 , k = 0, 1, 2, 3f(x) = 9 22ϕ(4x − 0)} {{ } +1 22ϕ(4x − 1)} {{ }= 9 2 ϕ 2,0(x) + 1 2 ϕ 2,1(x) + 1ϕ 2,2 (x) + 0ϕ 2,3 (x)+1 2ϕ(4x − 2) +0 ϕ(4x − 3)} {{ } } {{ }We want to writebasis vectors for V 2f(x) = aϕ(x) + bψ(x) + c √ 2ψ(2x) + d √ 2ψ(2x − 1)↓ ↓ ↓ ↘ ↙∈ V 2 ∈ V 0 ∈ W 0 ∈ W 133


There are 5 different methods to compute a, b, c <strong>and</strong> d.METHOD #1:Inner product method (not efficient)a = < f(x), ϕ(x) >= 9 2 < ϕ 2,0, ϕ > + 1 2 < ϕ 2,1′ϕ > +1 < ϕ 2,2′ ϕ > +0= 9 2 < 2ϕ(4x), ϕ(x) > +1 2< 2ϕ(4x − 1), ϕ(x) > + < 2ϕ(4x − 2), ϕ(x) >= 9 2 2. 1 4 + 1 2 .2. 1 4 + 2.1 4 + 0= 9 4 + 1 4 + 2 4 = 3.Similarlyb = < f(x), ψ(x) >= · · · = 2c = < f(x), √ 2ψ(2x) >= · · · = 4/ √ 2d = < f(x), √ 2ψ(2x − 1) >= · · · = 1/ √ 2−→ (x) = 3.ϕ(x) + 2ψ(x) + 4 √2. √ 2ψ(2x) + 1 √2. √ 2ψ(x − 1).So,f(x) = 3ϕ(x) + 2ψ(x) + 4 √2√2ψ2x +1 √2√2ψ(2x − 1)f (2) (x) = f (0) + g (0) + g (1)↓ ↓ ↓ ↓∈ V 2 ∈ V 0 ∈ W 0 ∈ W 11 coeff 1 coeff 2 coeffsIn general g (j) is made up with functions on mesh 1 2 j .Full decompositionf (n) (x) = f (0) + g (0) + g (1) + g (2) + · · · + g (n−1)# coefficients 1 + 1 + 2 + 4 + 8 + · · · + 2 n−1} {{ }2 n coefficientsAfter J steps of decompositionf (n) (x) =f (n−J) (x) + g (n−J) (x) + · · · + g (n−1) (x)# coefficients 2 n−J + · · · 2 n−2 + 2 n−1 = 2 n coefficients34


METHOD #2:Matrix MethodOld basis B = {2ϕ(4x), 2ϕ(4x − 1), 2ϕ(4x − 2), 2ϕ(4x − 3)}New basis B ′ = {ϕ(x), ψ(x), √ 2ψ(2x), √ 2ψ(2x − 1)}⎡⎢⎣9/21/210Column #1 :because⎤⎥⎦=⎡⎢⎣↑old coordinates1/2 1/2 1/ √ 2 01/2 1/2 −1/ √ 2 01/2 −1/2 0 1/ √ 21/2 −1/2 0 −1/ √ 2⎤ ⎡⎥ ⎢⎦ ⎣abcd⎤⎥⎦⇐⇒ → f = R → b↑ R = reconstruction matrixIf matrix with as columns the coordinatesof the new basis vectors in terms of theold basis.⎡⎢⎣1/21/21/21/2ϕ(x) = 1 2 2ϕ(4x) + 1 2 2ϕ(4x − 1) + 1 2 2ϕ(4x − 2) + 1 2ϕ(4x − 3)2Similarly, for columns 2, 3 <strong>and</strong> 4ψ(x) = 1 2 2ϕ(4x) + 1 2 2ϕ(4x − 1) − 1 2 2ϕ(4x − 2) − 1 2ϕ(4x − 3)2√ 12ψ(2x) = √2 2ϕ(4x) − √ 1 2ϕ(4x − 1) + 0.2ϕ(4x − 2) + 0.2ϕ(4x − 3)2√2ψ(2x − 1) = 0.2ϕ(4x) − 0.2ϕ(4x − 1) +√22ϕ(4x − 2) −1 √2 2ϕ(4x − 3)⎤⎥⎦→b = D → fD = decomposition matrixWe need→b = R −1 → f = R ⊤ → fbecause the columns of R are orthonormal vectors.35


−→⎡⎢⎣abcd⎤⎥⎦=⎡⎢⎣1/2 1/2 1/2 1/21/2 1/2 −1/2 −1/21/ √ 2 −1/ √ 2 0 00 0 1/ √ 2 −1/ √ 2⎤ ⎡⎥ ⎢⎦ ⎣9/21/210⎤⎥⎦=⎡⎢⎣324/ √ 21/ √ 2⎤⎥⎦.So, f (2) (x) = f(x) = 3ϕ(x) + 2ψ(x) + 4 √2√2ψ(2x) +1 √2√2ψ(2x − 1)= 3ϕ(x) + 2ψ(x) + 4ψ(2x) + 1ψ(2x − 1)PictureMETHOD #3:❀ 9ψ(4x) + ϕ(4x − 1) + 2ϕ(4x − 2) + 0ϕ(4x − 3)Convolution MethodFor Haar case H = ( 1 √2,1 √2 ), G = ( 1 √2, − 1 √2)→s(n)−→ H → s (n−1) −→ H → s (n−2) · · · −→ → s (0)G ↓ G ↓ G ↓ ↓ Gzero.→d(n−1) →d(n−2) →d(n−3) →d(0)} {{ }set asidestop at level⎡⎢⎣→s (0). . . . .→d(0). . . . .→d(1). . . . .→d(2). . . . ... . . . .→d(n−1)⎤⎥⎦.→s(2)= 9/2 1/2 1 0↓ GH −→→s (1) = 5/ √ 2 1/ √ 2↓ G→d(1)= 4/√2 1/√2 d (0) = 2H−→→s (0) = 3⎡ ⎤→(0)s . . .→(0)d ⎢ ⎥⎣ ⎦. . .→d(1)36


Assemble the result:⎡⎢⎣9/21/210⎤⎥⎦D=⇒⎡⎢⎣3. . . . .2. . . . .4/ √ 2√2⎤⎥⎦In general⎡→n ⎢s =⎢⎣.....⎤⎫⎪⎬⎥⎦⎪⎭2 n data −→⎡⎢⎣→s(0). . . .→d(0). . . .→d(1). . . .→d(2). . . .... . . .→dn−1⎤⎥⎦112⎫⎪ ⎬24n data8.2 n−1 ⎪ ⎭Convolution9/2 1/2 1 0 −→ 5/ √ 2 1/ √ 2↘ ↙ ↘ ↙ ↘ ↙Average: 5/ √ 2 1/ √ 2 Average: 3Difference: 4/ √ 2 1/ √ 2 Difference: 237


METHOD #4: Fast Wavelet TransformDecompose the matrix D into a product of 3 sparser matrices.Decompose at level 1: V 2 = V 1 ⊕ W 1h 0 h 1 −→g 0 g 1 −→⎡⎢⎣1 √21√2 0 0√20 00 0 √2 1 √2 1√12− 10 01 √2 − 1⎤ ⎡⎥ ⎢⎦ ⎣√29/21/210⎤⎥⎦=⎡⎢⎣5/ √ 24/ √ 21/ √ 21/ √ 2⎤⎥⎦− low frequency− high frequency− low frequency− high frequencybutterfly (structured) matrixorM 1→f =→b1Bring high frequencies to bottom via a permutation⎡⎢⎣1 0 0 00 0 1 00 1 0 00 0 0 1⎤ ⎡⎥ ⎢⎦ ⎣5/ √ 24/ √ 21/ √ 21/ √ 2⎤⎥⎦=⎡⎢⎣5/ √ 21/ √ 24/ √ 21/ √ 2⎤⎥⎦− low frequencies− low frequencies− high frequencies− high frequenciesvery sparseor M 2→b1 = → b 2Decompose at level 2: V 1 = V 0 ⊕ W 0⎡⎢⎣1 √21√2 0 0√20 00 0 1 00 0 0 1√12− 1⎤ ⎡⎥ ⎢⎦ ⎣5/ √ 21/ √ 24/ √ 21/ √ 2⎤⎥⎦=⎡⎢⎣324/ √ 21/ √ 2⎤⎥⎦SoorM 3→b2 = → b→ →M 1 f = b1→⎫⎪ →→ ↙ → ⎬ M 3 M 2 M 1 f = bM 2 b1 = b2→ ↙ →M 3 b2 =⎪= D f → = →b⎭bD = M 3 M 2 M 138


Count number of operationsForD → f = → b −→∼ N 2 operations (not counting additions)D is a dense N × N matrix12 multiplicationsForM 1→f=→b1M 2→b1 = → b 2M 3→b2In general= → b8 multiplicationsno cost, only shuffling4 multiplications⎫⎪⎬⎪⎭∼ 12 multiplicationsN log 2 N algorithm instead of N 2 algorithm.Compare with FFT Tukey, Cooley (1965)(See slides)* Same idea: write dense matrix as product of sparser “butterfly” <strong>and</strong> permutationmatrices.* Computation count N log 2 N versus N 2If N = 1024 N 2 = 1, 048576N log 2 N = 10240.• Show M 1 for Daubechies case (DAUB4)METHOD #5Projection matrices MethodSee e.g. Daubechies’ Ten Lectures on Wavelets.• Comparison with FFT.QUADRATURE MIRROR FILTERS(A look in the Fourier domain)The Fourier transform.There are 3 equivalent choices, depending on where one puts the “2π”.39


Each choice exists of two versions, depending on whether the minus is put inthe exponent of the direct or the inverse transform.So, we have1. (Ff)(ω) =ˆf(ω)def= 1 √2π∫ +∞−∞ f(x)e−iωx dx→ ω is in radians per second (1 radian = 12π circle)∫ +∞2. ˆf(ω)def=−∞ e−2πiωt dt→ ω in Hertz∫ +∞3. ˆf(ω) =−∞ f(x)e−iωx dx→ in radians.For these notes:∫ +∞Direct Transformation: ˆf(ω) = (Ff)(ω) =−∞ e−2πiωt f(t) dtInverse Transformation: f(t) = (F −1 ∫ +∞ˆf)(t) =−∞ e2πiωt f(ω) dω1. Apply the Fourier Transformation to the refinement equation(in real space)ϕ(x) = √ 2 L−1 ∑ˆϕ(ω) =h k ϕ(2x − k)k=0∫ +∞−∞ e−2πiωx ϕ(x)dx= √ 2 L−1 ∑k=0h k∫ +∞−∞ e−2πiωx ϕ(2x − k)dxSet u = 2x − k −→ x = u + k2−→ dx = du 2=√2 L−1 ∑∫ +∞u+kh k e−2πiω[ 2 ] ϕ(u)du2 k=0−∞= √ 1 L−1 ∑∫ +∞h k2 −∞ e−2πi ω 2 k e −2πi ω 2 u ϕ(u)duk=040


= √ 1 L−1 ∑h k e −2πi ω 2 k ∫ +∞2 k=0−∞ e−2πi( ω 2 )u ϕ(u)du= √ 1 L−1( )∑ωh k e −2πi ω 2 k ˆϕ2 2k−0DefineThenm 0 (ω) = √ 1 L−1 ∑h k e −2πikω2k=0ˆϕ(ω) = m 0(ω2)( )ωˆϕ2or equivalently,ˆϕ(2ω) = m 0 (ω) ˆϕ(ω)refinement equation in Fourier domain!Notes:m 0 (ω) is a trigonometric polynomialm 0 (ω + 1) = m 0 (ω)If we know m 0 (ω) =⇒ we know h k .2. Keep refiningSinceˆϕ(ω) = m 0(ω2)( )ωˆϕ2then ω → ω/2 ˆϕ ( ) ( ) ( )ω2 = ω m04 ˆϕ ω4then ω → ω/2 ˆϕ ( ) ( ) ( )ω4 = ω m08 ˆϕ ω8We getˆϕ(ω) = m 0(ω2) ( ) ( ) ( )ω ω ωm 0 m 0 · · · m 04 8 32(ωˆϕ32).Keep going ω −→ ω/2ˆϕ(ω) = N ∏j=1m 0(ω2 j )( )ωˆϕ2 N41


Take limit forButSo,N −→ ∞∏ˆϕ(ω) = ∞ ( )ωm 0 ˆϕ(0)2 jˆϕ(0) =∫j=1e −2πi0t ϕ(t)dt =∏ˆϕ(ω) = ∞ ( )ωm 02 jj=1∫ϕ(t)dt = 1Infinite refinement of the two-scale difference relation in the Fourier domain.Similarly,withorˆψ(ω) = m 1 (ω/2) ˆϕ(ω/2)ˆψ(2ω) = m1 (ω) ˆϕ(ω)m 1 (ω) def = √ 1 L−1 ∑2Also, by continuing the refinement processˆψ(ω) = m 1 (ω/2) ˆϕ(ω/2)k=0= m 1 (ω/2)m 0 (ω/4) ˆϕ(ω/4)g k e −2πikω= m 1 (ω/2)m 0 (ω/4)m 0 (ω/8) ˆϕ(ω/8)=⇒ ˆψ(ω) = m 1(ω2) ∞∏j=2Since G ⊥ H so g k = (−1) k h L−1−kone has m 1 (ω) = e −2πi(1−L)ω m 0(ω +12.m 0(ω2 j ))42


3. Change of notationSet z = e −2πiωThen m 0 (ω) −→ H(z) = √ 2m 0 (ω(z))<strong>An</strong>dH(z) = L−1 ∑k=0h k z km 1 (ω) → G(z) = √ 2m 1 (ω(z))G(z) = L−1 ∑k=0g k z kAlso, m 1 (ω) is related to m 0 (ω + 1/2) =⇒ G(z) = −z L−1 H(− 1 z )DERIVATION OF THE QMF CONDITION(Quadrature mirror filters)Tools neededParseval’s Identity∫ +∞∫< f, g >= f(x)g(x)dx = +∞ˆf(ω)g(ω)dω =< ˆf, ĝ >−∞ −∞Consequence (Plancherel’s formula)‖ f ‖ 2 ∫∫= ffdx = |f| 2 dx∫∫= ˆf(ω)f(ω)dω = | ˆf(ω)| 2 dω =‖ ˆf ‖ 2(F is an isometric isomorphism)First, we prove that the following statements are equivalent(i)∫ +∞< ϕ(x − k), ϕ(x − l) >= ϕ(x − k)ϕ(x − l)dx = δ kl−∞i.e. ϕ ⊥ ϕ translates.43


(ii)(iii)Proof:ˆϕ(ω) satisfies+∞ ∑k=−∞∫ +∞−∞ e−2πikω | ˆϕ(ω)| 2 dω = δ k0| ˆϕ(ω + k)| 2 = 1Define the function K(ω) = +∞ ∑| ˆϕ(ω + k)| 2k=−∞Then(1) K(ω) is 1 periodic(2)K(ω + 1) = ∑∫ 1= ∑ kk∈ Z| ˆϕ(ω + k + 1) | 2 = ∑∫ K(ω)dω = 10 0∫ k+1k= ∑ k∫ 1Set∑kl∈ Z| ˆϕ(ω + k) | 2 dω0 | ˆϕ(ω + k) |2 dωz = ω + k| ˆϕ(z) | 2 dz =∫ +∞∫ +∞−∞| ˆϕ(ω + l) | 2 = K(ω)| ˆϕ(z) |2 dzPlancherel= | ϕ(z) −∞ |2 dz = 1.So, K(ω) is 1 periodic <strong>and</strong> integrable (integrates to 1)So, K(ω) has a Fourier seriesWhere c n ==K(ω) =∫ 1+∞ ∑n=−∞c n e 2πinω0 e−2πinω K(ω)dω∫ 1+∞ ∑0 e−2πinωk=−∞| ˆϕ(ω + k) | 2 dω44


Setω + k = zConsequences= +∞ ∑∫ k+1k=−∞k= +∞ ∑∫ k+1==k=−∞ ∫ +∞ke −2πin(z−k) |ˆ ϕ(z) | 2 dze −2πinz | ˆϕ(z) | 2 dz−∞ e−2πinz ˆϕ(z) ˆϕ(z)dzˆϕ(z − n) ˆϕ(z)dz∫ +∞−∞Parseval=∫ +∞−∞ ϕ(x − n)ϕ(x)dx = δ noSo, c n = δ n0Hence, K(ω) = +∞ ∑=⇒ +∞ ∑k=−∞n=−∞δ no e 2πinω = 1| ˆϕ(ω + k) 2 |= 1.(1) If ˆϕ(0) = 1Then from+∞ ∑k=−∞| ˆϕ(ω + k) | 2 =|=⇒ ˆϕ(k) = δ k0(2)One can show that+∞ ∑k=−∞ϕ(x − k) = 1ˆϕ(k) = δ k0 ⇐⇒ +∞ ∑Proof: Similar to the above by settingk=−∞Partition of unity| ˆϕ(ω + k) | 2 = 1.P (x) = ∑ kϕ(x − k)showing that P (x + 1) = P (x) <strong>and</strong> P (x) integrableCompute c n =∫ 10 e−2πinx ∑ kϕ(x − k)dx= · · · = δ n0 , etc.45


(3)ˆϕ(k) = δ k0 ⇐⇒ ∑k∈ Zϕ(x − k) = 1Compare with Poisson summation formula∀xNow we can show that+∞ ∑n=−∞ˆf(n) = +∞ ∑k=−∞f(k)or, equivalently,| m 0 (ω) | 2 + | m 0 (ω + 1/2) | 2 = 1 QMF conditionH(z)H(1/z) + H(−z)H(−1/z) = 2Proofuse ˆϕ(2ω) = m 0 (ω) ˆϕ(ω) (1)DenoteK(ω) = ∑ | ˆϕ(ω + k) | 2 = 1kK(2ω) = ∑ | ˆϕ(2ω + k) | 2 = 1k(1)= ∑ k| ˆϕ(ω + k 2 ) |2 | m 0 (ω + k 2 ) |2Split in even <strong>and</strong> odd terms= ∑+l (k=2l)∑l (k=2l+1)m 0 (ω) is 1-periodic| ˆϕ(ω + l) | 2 | m 0 (ω + l) | 2| ˆϕ(ω + l + 1 2 ) |2 | m 0 (ω + l + 1 2 ) |2= ∑ | m 0 (ω) | 2 | ˆϕ(ω + l) | 2 + ∑ | m 0 (ω + 1ll 2 ) |2 | ˆϕ(ω + l + 1 2 ) |2= | m 0 (ω) | 2 ∑ (| ˆϕ(ω + l) | 2 + | m 0 ω + 1 )| 2 ∑ (| ˆϕ ω + l + 1l2 l2} {{ }1= | m 0 (ω) | 2 + | m 0 (ω + 1 2 ) |2 = 1 QMF} {{ }1)| 246


Rewrite in terms of H(z)H(z)H(1/z) + H(−z)H(−1/z) = 2Proofm 0 (ω) = 1 √2H(z) since z = e −2πiωm 0 (ω) = √ 1 ∑hk e −2πikω = 1 ∑√2 2= 1k√2H(1/z)m 0 (ω + 1/2) = √ 1 ∑h k e −2πik(ω+1/2)2k= √ 1 ∑h k (−1) k e −2πikω2k= √ 1 ∑2m 0 (ω + 1/2) = √ 12H(−1/z)kh k e 2πiωkh k (−z) k = 1 √2H(−z)Soorm 0 (ω)m 0 (ω) + m 0 (ω + 1/2)m 0 (ω + 1/2) = 1−→ H(z) √2H(1/z)√2+ H(−z) H(−1/z)√ √ = 12 2H(z)H(1/z) + H(−z)H(−1/z) = 2Expresses that ϕ ⊥ ϕ translates.Similarly,For reversalϕ ⊥ ψ G(z)H(1/z) + G(−z)H(−1/z) = 0ψ ⊥ ψ G(z)G(1/z) + G(−z)G(−1/z) = 2H ←→ GG(z) = −z L−1 H(−1/z)47


Vanishing moments for ψ(x)Theorem.The following statements are equivalent.(i) The wavelet function ψ has M vanishing momentsi.e.∫x m ψ(x)dx = 0 , m = 0, 1, 2, · · · , M − 1(ii) The filter coefficients h k satisfym = 0, 1, 2, · · · , M − 1L−1 ∑k=0(−1) k k m h k = 0,(iii) H(z) has z = −1 as a zero with multiplicity Mi.e. H(−1) = H ′ (−1) = · · · = H (M−1) (−1) = 0or H (m) (−1) = 0 , m = 0, 1, 2, · · · , M − 1Hence, H(z) = √ 2( 1+z2 )M Q(z)(iv) The matrix which determines the values of ϕ(x) at integers has eigenvalues1, 1 2 , (1 2 )2 , · · · , ( 1 2 )M−1(v) The Fourier transform of ψ , i.e. ˆψ(ω), has a M-fold zero at ω = 0(vi) The Fourier transform of ϕ, i.e. ˆϕ(ω), has a M-fold zero at ω = k, exceptat 0 where ˆϕ(0) = 1.Proof(some samples, to get the flavour)ˆψ(ω) =ˆψ(0) =ψ ′ (0) =So,∫∫ +∞−∞ ψ(x)e−2πiωx dx∫ +∞ψ(x)dx = 0 −→ ˆψ(0) = 0−∞ d ˆψ ∫dω | +∞ω=0 =−∞ ψ(x)(−2πix)e−2πiωx dxxψ(x)dx = 0 ←→ ˆψ ′ (0) = 0, etc.ˆψ(ω) = m 1 (ω/2) ˆϕ(ω/2) −→ ˆψ(0) = 0 =⇒ m 1 (0) = 0 −→ H(−1) = 0, etc.<strong>and</strong> also ˆϕ(0) = 1.48


Example: DAUB6. (3 vanishing moments)On the other h<strong>and</strong>−→ Q(z) is degree 2∫x m ψ(x)dx = 0 m = 0, 1, 2So, H(z) = √ ( )1 + z32 Q(z) (1)2∑H(z) = 5 h k z k = h 0 + h 1 z + · · · + h 5 z 5 (2)k=0So, Q(z) = a 0 + a 1 z + a 2 z 2H(1) = √ ∑2Q(1) = 5 h k = √ 2k=0( due to normalization)So, Q(1) = 1 =⇒ a 0 + a 1 + a 2 = 1Put H(z) = √ ( )1 + z32 Q(z) = √ ( )1 + z32 (a 0 + a 1 z + a 2 z 2 ) (3)22into QMF<strong>and</strong> take coeff of z 0 , z or 1 z , z2 or 1 z 2Solve=⇒⎧⎪⎨⎪⎩=⇒10(a 2 0 + a 2 1 + a 2 2) + 15(a 0 a 1 + a 1 a 2 ) + 6a 0 a 2 = 163(a 2 0 + a 2 1 + a 2 2) + 8(a 0 a 1 + a 1 a 2 ) + 10a 0 a 2 = 0a 0 a 1 + a 1 a 2 + 6a 0 a 2 = 0⎧⎪⎨⎪⎩a 2 0 + a 2 1 + a 2 2 = 19/4a 0 a 1 + a 1 a 2 = −9/4a 0 a 2 = 3/8Substitute in (3), compare with (2)(a 0 = 1 41 + √ 10 + 5 + 2 √ 10a 1 = 1 ( √ ) ( √ )4 2 − 2 10 =12 1 − 10a 2 = 1 (41 + √ √10 − 5 + 2 √ )10√)49


=⇒⎧⎪⎨⎪⎩h 0 = 1(16 √ 1 + √ √10 + 5 + 2 √ )102. .h 5 = 116 √ 2(1 + √ √10 − 5 + 2 √ )10DAUBECHIES <strong>WAVELETS</strong>: SOLVING THE QMFWe will solveSetthen| m 0 (ω) | 2 + | m 0 (ω + 1/2) | 2 = 1 QMF| m 0 (ω) | 2 = M 0 (ω)| m 0 (ω + 1/2) | 2 = M 0 (ω + 1/2)QMF : M 0 (ω) + M 0 (ω + 1/2) = 1For wavelets with M vanishing moments we haveM 0 (ω) =m 0 (ω) =⎡⎛So we will assume the form⎣⎛⎝ 1 + e−2πiω2⎞M⎠L(ω)→ trigonometric polynomial in e −2πiω1 + ⎝ e−2πiω2⎞ ⎛⎠where⎝ 1 + e2πiω2= cos 2M (πω)IL(ω)⎞⎤M⎠⎦IL(ω)IL(ω) = L(ω)L(ω)= |L(ω)| 2→ is trigonometric polynomial in e −2πiω→ can be written in sin 2 πω→ say P (sin 2 πω)ThenM 0 (ω) = cos 2M (πω)P (sin 2 πω)M 0 (ω + 1/2) = sin 2M (πω)P (cos 2 πω)50


Set y = sin 2 πω M 0 (ω) = (1 − y) M P (y)Then 1 − y = cos 2 πω M 0 (ω + 1/2) = y M P (1 − y)So we need to find P (y) such that(1 − y) M P (y) + y M P (1 − y) = 1Note:Doing this all for z = e −2πiω would give(z + 1) 2M(4z) M} {{ }(1−y) MStep 1: Find P (y)Most general solutionP (y){ }} {M (z − 1)2MQ(z)Q(1/z) + (−1)(4z) MP (y) = M−1 ∑k=0⎛} {{ }y M⎞Q(−z)Q(−1/z) = 1} {{ }P (1−y)M + k + 1( )⎝ 1⎠y k + y M Rk2 − ywhere R(y) is an odd polynomial chosen so that P (y) ≥ 0 for 0 ≤ y ≤ 1Let’s consider the case R = 0 ⇐⇒ minimum length IL where L = 2MArgument: P (y) polynomial in yP (1 − y) ∼ y −M(If R ≠ 0 then M > 2L , more freedom).P (y) ∼ (1 − y) −MTaylor⎛∞∑k=0⎞M + k + 1⎝ ⎠y kk−→ must be truncated at degree M − 1C<strong>and</strong>idateorP (y) = M−1 ∑k=0⎛⎞M + k + 1⎝ ⎠y kkQ(z)Q(1/z) = M−1 ∑(−1) k (1 − z) 2k −k (M + k − 1)!(4z)k!(M − 1)!k=051


Example: DAUB6 caseLHSRHSQ(z) = a 0 + a 1 z + a 2 z 2)= a0 + a 1z+ a 2z 2Q ( 1z( )1Q(z)Q = a 2 0 + a 2 1 + a 2 2 + (a 0 a 1 + a 1 a 2 )z2∑k=0⎛k (1 − z)2k(−1) 2 + k(4z) k⎝k⎞⎠ =⎛⎝ 2 0⎞⎠ −⎛= 194 − 9 (z + 1 )+ 3 4 z 8=⇒⎧⎪⎨⎪⎩⎞⎫⎬⎭(z + 1 za 2 0 + a 2 1 + a 2 2 = 19/4a 0 a 1 + a 1 a 2 = −9/4a 0 a 2 = 3/83 (1 − z)2⎝ ⎠ +4 ⎝1 4z 2(z 2 + 1 )z 2a 0 + a 1 + a 2 = 1 since Q(1) = 1Solvea⎧⎪ 0 = 1 (⎨ 41 + √ 10 +a 1 = 1 ( √ )2 1 − 10⎪ ⎩ a 2 = 1 4√5 + 2 √ )10(1 + √ √10 − 5 + 2 √ )10−→ H(z) = √ 2 ( )1+z 3 (2 a0 + a 1 z + a 2 z 2)≡ h 0 + h 1 z + · · · + h 5 z 5−→⎧⎪⎨⎪⎩h 0 = 1(16 √ 1 + √ √10 + 5 + 2 √ )102. ..h 5 = 116 √ 2.(1 + √ 10 −)+ a 0 a 2(z 2 + 1 z 2 )⎛√5 + 2 √ )10⎞⎠(1 − z)4(4z) 252


GENERAL POLYNOMIAL SOLUTION OF QMF(1 − y) M P (y) + y M P (1 − y) = 1Use Theorem of Bezout (gives existence <strong>and</strong> uniqueness of polynomial solutions).Theorem: If p 1 (x) <strong>and</strong> p 2 (x) are two polynomials of degree n 1 <strong>and</strong> n 2 with nocommon zero, then there exists two unique polynomials q 1 (x) <strong>and</strong> q 2 (x) of degree≤ n 2 − 1 <strong>and</strong> ≤ n 1 − 1 so thatApply Bezout’s theoremNow substitute 1 − y for yp 1 (x)q 1 (x) + p 2 (x)q 2 (x) = 1p 1 (y) = (1 − y) Mp 2 (y) = y MdegreeMdegreeM∃ q 1 (y) <strong>and</strong> q 2 (y) so that(1 − y) M q 1 (y) + y M q 2 (y) = 1−→ y M q 1 (1 − y) + (1 − y) M q 2 (1 − y) = 1Since q 1 (y) <strong>and</strong> q 2 (y) are unique =⇒ q 1 (y) = q 2 (1 − y)SoSo, (1 − y) M q 1 (y) + y M q 1 (1 − y) = 1<strong>and</strong> q 1 (y) is of degree ≤ M − 1P (y) = P M (y) (the polynomial we sought)Exists <strong>and</strong> is unique−→ P M (y) = M−1 ∑k=0⎛⎞M + k − 1⎝ ⎠y kkStep 2 How do we get Q(z) or m 0 (ω) now that we have M 0 (ω) =| m 0 (ω) | 2or P (y) = Q(z)Q(1/z)=⇒ Use spectral Factorization Theorem of Riesz53


Let A(ξ) be a positive trigonometric polynomial invariant under the symmetryξ −→ −ξthen A(ξ) is of the formA(ξ) = M ∑m=0a m cos(mξ) , a m ∈ IR<strong>and</strong> there then exists a trigonometric polynomial B(ξ) of degree M, i.e.such that | B(ξ) | 2 = A(ξ)B(ξ) is “root”.B(ξ) = M ∑m=0b m e imξ , b m ∈ IRIn practice: Factor A(ξ) <strong>and</strong> investigate the complex (or real) root structure.Example: DAUB 64 rootsA(ξ) = Q(z)Q(1/z) =38 − 9 4 z + 19 4 z2 − 9 4 z3 + 3 8 z4z 2⎫z ⎬ 1z ⎭ 2 inside unit circle |z 1 | = 0.3254061 Re(z 1 ) = 0.28725z −11z 1−1⎫⎬⎭2 outside unit circleQ(z) = cte ( z 2 − 2z Re(z 1 )+ | z 1 | 2)Q(1) = 1 −→ Q(z) = 1.8818688(z 2 − 0.57450z + 0.1058894)Then H(z) = √ 2( 1+z2 )3 Q(z) = h 0 + h 1 z + . . . + h 5 z 5−→ h 1 , h 2 , · · · , h 5 valuesDoing so one gets the numerical values of the DAUB6 filter taps.For the roots outside the unit circle in the Gauss plane one gets54


h 0 =1(16 √ 2(h 1 = 116 √ 2h 2 =18 √ 2h 3 =18 √ 2h 4 = 116 √ 2h 5 =116 √ 2(((1 + √ 10 +√√5 + 2 √ 10) ∼= 0.3326705529500825 · · ·5 + √ 10 + 3 5 + 2 √ 10) ∼= 0.8068915093110924 · · ·5 − √ √10 + 5 + 2 √ )10 ∼ = 0.4598775021184914 · · ·5 − √ √10 − 5 + 2 √ )10 ∼ = −0.1350110200102545 · · ·5 + √ 10 − 3(1 + √ 10 −√5 + 2 √ 10) ∼= −0.0854412738820267 · · ·√5 + 2 √ 10) ∼= 0.03522629188570 · · ·Using the roots inside the unit circle one gets the filter in reversed order.Construction of scaling <strong>and</strong> wavelet filtersEigenvalue-Eigenvector ProblemExample: DAUB6 (L = 6)ϕ(x) = √ 2 l−1 ∑k−0h k ϕ(2x − k)Assume that ϕ is bounded to an interval [a, b].Then[a, b] matching ←→[ ]a2 , b2,[a + 12, b + 1] [a + L + 1, · · · ,22, b + L − 1]2Soa ≡ a 2 −→ a = 0b ≡So ϕ(x) lives on interval [0, L − 1]Same for ϕ(x)b+L−12−→ ̸ 2b = ̸ b + L − 1b = L − 1Supp ϕ = Supp ψ = [0, L − 1]55


For L = 6 Set c k = √ 2h kϕ(0) = c 0 ϕ(0) + 0 (Since ϕ(−1) = 0, etc.)ϕ(1) = c 0 ϕ(2) + c 1 ϕ(1) + c 2 ϕ(0) + 0ϕ(2) = c 0 ϕ(4) + c 1 ϕ(3) + c 2 ϕ(2) + c 3 ϕ(1) + c 4 ϕ(0)ϕ(3) = c 0 ϕ(6) + c 1 ϕ(5) + c 2 ϕ(4) + c 3 ϕ(3) + c 4 ϕ(2) + c 5 ϕ(1)ϕ(4) = c 3 ϕ(5) + c 4 ϕ(4) + c 5 ϕ(3)ϕ(5) = c 5 ϕ(5)Since all c i ≠ 0, i = 0, · · · , 5 =⇒ ϕ(0) = ϕ(5) = 0⎧⎪⎨⎪⎩ϕ(0) = 0ϕ(1) = c 0 ϕ(2) + c 1 ϕ(1)ϕ(2) = c 0 ϕ(4) + c 1 ϕ(3) + c 2 ϕ(2) + c 3 ϕ(1)ϕ(3) = c 2 ϕ(4) + c 3 ϕ(3) + c 4 ϕ(2) + c 5 ϕ(1)ϕ(4) = c 4 ϕ(4) + c 5 ϕ(3)ϕ(5) = 0Write non-trivial equations in matrix form.⎡⎢⎣ϕ(1)ϕ(2)ϕ(3)ϕ(4)⎤⎥⎦=⎡⎢⎣Eigenvalue - Eigenvector Problem⎤c 1 c 0 0 0c 3 c 2 c 1 c 0c 5 c 4 c 3 c 2 ⎥⎦0 0 c 5 c 4→ϕ = A → ϕ⎡⎢⎣ϕ(1)ϕ(2)ϕ(3)ϕ(4)⎤⎥⎦λ → v = A → v where λ = 1→v unknown.Due to partition of unity ∑ v i = 1, so,ϕ(1) + ϕ(2) + ϕ(3) + ϕ(4) = 1(∗)Eigenvalues of matrix A are 1 4 , 1 2 , 1, 1−√ 10856


If you usec 0 = 1(161 + √ 10 +c 1 = 1(5 + √ 10 + 3c 2 = 1 8c 3 = 1 816(5 − √ 10 +(5 − √ 10 −√√5 + 2 √ 10√)5 + 2 √ 10)5 + 2 √ 10√5 + 2 √ 10Using (∗) you get for the eigenvector components))ϕ(1) = 1.28634ϕ(2) = −0.385837ϕ(3) = 0.0952675ϕ(4) = 0.00423435−→allows one to computeϕ , ψ at dyadicpoints . . .57


Reference Books on Wavelets available at Engr. Library:• Ingrid Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional ConferenceSeries in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992• Michael Frazier, <strong>An</strong> <strong>Introduction</strong> to Wavelets through Linear Algebra, SpringerVerlag, New York, 1998• Eugene Hern<strong>and</strong>ez <strong>and</strong> Guido Weiss, A First Course on Wavelets, CRC Press,Boca Raton, Florida, 1996• Gerald Kaiser, A Friendly Guide to Wavelets, Birkhauser Press, Boston, 1994• Yves Meyer (transl: Robert D. Ryan), Wavelets, Algorithms <strong>and</strong> <strong>Applications</strong>,SIAM, Philadelphia, 1993• Yves Nievergelt, Wavelets Made Easy, Birkhauser, Boston, 1999Review Papers available from Instructor’s Office (220)• Adhemar Bultheel, “Learning to swim in a sea of wavelets,” Bull.Math. Soc. vol. 2 (1995) 1-44.Belg.• Pieter W. Hemker, Tom H. Koornwinder, <strong>and</strong> Nico M. Temme, “Wavelets:Mathematical preliminaries,” from: T.H. Koornwinder (ed.), Wavelets: <strong>An</strong>Elementary Treatment of <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>, World Scientific, Singapore,1993, pp. 13-26.• Peter Meuller <strong>and</strong> Brani Vidakovic, “Wavelets for Kids: tutorial paper for thestatistical community,” (with Mathematical notebook, part B), ISDS, DukeUniversity. FTP to ftp.isds.duk.edu in directory /pub/brani/wav4Kids[A-B].ps.Z.uu• Peter Nacken, “Image compression using wavelets,” from: T.H. Koornwinder(ed.), Wavelets: <strong>An</strong> Elementary Treatment of <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>,World Scientific, Singapore, 1993, pp. 81-92.• Adri B. Olde Daalhuis, “Computing with Daubechies’ wavelets,” from: T.H.Koornwinder (ed.), Wavelets: <strong>An</strong> Elementary Treatment of <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>,World Scientific, Singapore, 1993, pp. 93-105.58


• T.K. Sarkar, et al. “A tutorial on wavelets from an electrical engineeringperspective: Part 1: Discrete wavelet techniques”, IEEE <strong>An</strong>tennas <strong>and</strong> PropagationMagazine, vol. 40, no.5, 1998, 49-70.• T.K. Sarkar, et al. “A tutorial on wavelets from an electrical engineeringperspective: Part 2: “The continuous case,” IEEE <strong>An</strong>tennas <strong>and</strong> PropagationMagazine, vol. 40, no. 6, 1998, 36-49.• Nico M. Temme, “Wavelets: First steps,” from: T.H. Koornwinder (ed.),Wavelets: <strong>An</strong> Elementary Treatment of <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>, WorldScientific, Singapore, 1993, pp. 1-12.Books available at Instructor’s Office 220 Engr. Bldg.:• C. Sidney Burrus, Ramesh A. Gopinath <strong>and</strong> Haitao Guo, <strong>Introduction</strong> toWavelets <strong>and</strong> Wavelet Transforms: A Primer, Prentice Hall, Upper SaddleRiver, New Jersey, 1998• Charles K. Chui, Wavelets: A Mathematical Tool for Signal <strong>An</strong>alysis, SIAM,Philadelphia, 1997• Ingrid Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional ConferenceSeries in Applied Mathematics, vol. 61, SIAM, Philadelphia, 1992• Barbara Burke Hubbard, The World According to Wavelets: The Story of aMathematical Technique in the Making (2nd edition), A.K. Peters, Natick,Massachusetts, 1998• Charles K. Chui, Wavelets: A Mathematical Tool for Signal <strong>An</strong>alysis, SIAM,Philadelphia, 1997• Stephane Mallat, A Wavelet Tour of Signal Processing (2nd edition), AcademicPress, New York, 1999• Yves Meyer (transl: Robert D. Ryan), Wavelets, Algorithms <strong>and</strong> <strong>Applications</strong>,SIAM, Philadelphia, 1993• Yves Nievergelt, Wavelets Made Easy, Birkhauser, Boston, 1999• Gilbert Strang <strong>and</strong> Truong Nguyen, Wavelets <strong>and</strong> Filter Banks, Wellesley-Cambridge Press, Wellesley, Massachusetts, 1996• M. Victor Wickerhauser, Wavelet Packet Laboratory, A.K. Peters, Wellesley,Massachusetts, 199459


TW Honns: Numeriese Algoritmes Huiswerk # 4(Vir 3/4/01) 2001INSTRUCTIONS:(i) General instructions (a) <strong>and</strong> (b) from the previous assignments apply.(ii) The computational part of the assignment should be done with software ofyour choice.Recommended: MATLAB, Mathematica, Fortran or C.Task 1: Wavelet Decomposition & Reconstruction with Haar WaveletsConsider a function f(x), that is piecewise constant on quarter-intervals:f(x) =⎧⎪⎨⎪⎩2, 0 ≤ x < 1 40,14 ≤ x < 1 2(1)16,2 ≤ x < 3 434,4 ≤ x < 1(i) Express f(x) in terms of the scaling function φ 2,0 (x) = 2φ(4x) <strong>and</strong> its translatesφ 2,1 (x) = 2φ(4x − 1), φ 2,2 (x) = 2φ(4x − 2), φ 2,3 (x) = 2φ(4x − 3).Let ⃗ f B denote the coordinate vector of f(x) with respect to the (old) basis B,made up with the above 4 functions belonging to the scaling family φ j,k (x) =2 j 2φ(2 j x − k). What is the explicit form of ⃗ f B ?(ii) Express f(x) in terms of the wavelet (new) basis B ′ = {φ 0,0 (x) = φ(x), ψ 0,0 (x) =ψ(x), ψ 1,0 (x) = √ 2ψ(2x), ψ 1,1 (x) = √ 2ψ(2x − 1)}.Let ⃗ f B′ denote the coordinate vector of f(x) with respect to the (new) basis B ′ ,made up with the above 4 functions. What is the explicit form of ⃗ f B ′?(iii) Find the explicit form of the transformation matrix D such that ⃗ f B′ = D ⃗ f B .The matrix D is called the decomposition matrix.(iv) Find the explicit form of the transformation matrix R such that ⃗ f B = R ⃗ f B ′.The matrix R is called the reconstruction matrix.(v) Show that the matrices D <strong>and</strong> R are both orthogonal matrices.(vi) Show that D can be written as the product of three matrices, i.e. D =D 2 P 1 D 1 , where D 1 is the matrix for averaging <strong>and</strong> differencing at level 1, D 260


is the matrix for averaging <strong>and</strong> differencing at level 2, <strong>and</strong> P 1 is a permutationmatrix which brings averages together (at the top) <strong>and</strong> differences together (atthe bottom).(vii) Verify your analytic work on the computer. Define the matrices D 1 , D 2 <strong>and</strong>P 1 <strong>and</strong> compute their product to obtain D. Compute the matrix R explicitly.Verify the formulas in (iii) <strong>and</strong> (iv).(viii) Compute f ⃗ B′ via repeated convolutions with the low-pass filter H = (h 0 , h 1 ) =( √ 12, √ 12) <strong>and</strong> the high-pass filter G = (g 0 , g 1 ) = (h 1 , −h 0 ) = ( √ 12, − 1How may times can you apply each filter if you start with the data defined byf(x)?(ix) If there are 4 data entries (the four values of f(x)) then all the matrices aresize 4 × 4.Generalize the above problem to sizes 8 × 8 <strong>and</strong> 16 × 16.For instance, for the 8 × 8 case, B = {2 √ 2φ(8x − k), k = 0, 1, 2, ..., 7} <strong>and</strong>B ′ = {φ(x), ψ(x), √ 2ψ(2x), √ 2ψ(2x − 1), 2ψ(4x), 2ψ(4x − 1), 2ψ(4x − 2), 2ψ(4x −3)}.Set up the matrices D <strong>and</strong> R for each case.(x) Show that for the 8×8 case, the matrix D can be written as D = D 3 P 2 D 2 P 1 D 1 .The explicit forms of all the decomposition <strong>and</strong> permutation matrices should bein your computer program.(xi) Show that for the 16 × 16 case, the matrix D can be written as D =D 4 P 3 D 3 P 2 D 2 P 1 D 1 . The explicit forms of all the decomposition <strong>and</strong> permutationmatrices should be in your computer program.(xii) Apply the Haar decomposition <strong>and</strong> reconstruction algorithm to the followingdata sets⃗f B = 2 √ 2[1, 3, 0, 5, 7, 4, 2, 10] T (2)√2).<strong>and</strong>Determine ⃗ f B′⃗f B = [4, 20, 0, 8, 4, 12, 12, 16, 24, 28, 4, 8, 0, 12, 36, 24] T (3)for both cases. Have the computer do the computations!Task 2: Construction of Daubechies Filter(s) (DAUB4) with 2 vanishingmomentsThis task involves the computation of the Daubechies filter(s) (DAUB4), H <strong>and</strong>G, each with 4 filter taps, corresponding to wavelets with two vanishing moments61


(M = 2).The goal is to find the real numbers (preferably 16 digits beyond the decimalpoint) h 0 , h 1 , h 2 <strong>and</strong> h 3 such that(i) G(g 0 , g 1 , g 2 , g 3 ) is a high-pass filter which annihilates both constant <strong>and</strong> lineartrends (or signals). Thus, we require two vanishing moments for ψ : i.e.∫ ∞∫ ψ(x)dx = ∞xψ(x)dx = 0. (4)−∞−∞(ii) H(h 0 , h 1 , h 2 , h 3 ) is normalized in the usual way:∫ ∞φ(x)dx = 1; (5)−∞(iii) The scaling function φ(x) is orthogonal to its translates, i.e.∫ ∞−∞ φ(x)φ(x − n)dx = δ n0, (6)where the Kronecker δ n0 equals 1 when n = 0 <strong>and</strong> zero otherwise.First, express the conditions in (i), (ii) <strong>and</strong> (iii) in terms of the filter taps of thelow-pass filter H. Second, solve that system of five(*) equations for h 0 , h 1 , h 2 <strong>and</strong>h 3 . How many solutions?(*) Remarks:(a) The quadratic condition coming from n = 0 in (iii) is actually redundant,but can <strong>and</strong> should be used to verify the results. So, one has to solve four (threelinear, one quadratic) equations.(b) The filter taps can be expressed in closed (irrational) form. Compare theclosed forms with the numerical values. Do they match?Task 3: Construction of the DAUB4 Scaling <strong>and</strong> Wavelets FunctionsThis task involves the construction of the scaling <strong>and</strong> wavelets functions, φ(x) <strong>and</strong>ψ(x), for the Daubechies wavelets with two vanishing moments (DAUB4), wherethe low-pass <strong>and</strong> high-pass filters, H <strong>and</strong> G, have 4 filter taps. The computationscan be done by h<strong>and</strong> or (easier) with a symbolic manipulation program such asMathematica or Maple.One of the solutions obtained in Task 2 readsh0 = 0.4829629131445343h1 = 0.836516303737808h2 = 0.2241438680420134h3 = -0.129409522551260462


(i) Use the exact, closed form irrational representation corresponding to the abovenumerical values of the filter H = {h 0 , h 1 , h 2 , h 3 }, of length L = 4, <strong>and</strong> the twoscaledifference (refinement or dilation) equations for φ(x) <strong>and</strong> ψ(x) :φ(x) = √ 2 L−1 ∑k=0ψ(x) = √ 2 L−1 ∑k=0h k φ(2x − k) = L−1 ∑k=0g k φ(2x − k) = L−1 ∑k=0c k φ(2x − k) with c k = √ 2h k , (7)d k φ(2x − k) with d k = √ 2g k , (8)to determine the values of the scaling function φ(x) at the integers. To do this,go through the following steps:(a) Prove that the scaling function φ(x) is compactly supported on the interval[0,L-1] = [0,3].(b) Prove that φ(0) = φ(3) = 0.(c) Set up the eigenvalue-eigenvector problem A⃗v = λ⃗v to determine φ(1) <strong>and</strong>φ(2).What is the matrix A? What is the vector ⃗v? What are the eigenvalues of A? Doyou notice anything special about these eigenvalues? What are the eigenvectors ofA? Which eigenvalue <strong>and</strong> eigenvector will allow you to determine φ(1) <strong>and</strong> φ(2)?(d) Use the resolution of the identity (also called partition of unity) property ofthe scaling function,∑φ(x − k) = 1 (9)k∈ Zto normalize φ(1) <strong>and</strong> φ(2). Compute the closed forms of the irrational numbersφ(1) <strong>and</strong> φ(2)?(ii) What is the compact support of the wavelet function ψ(x)? Why?(iii) Again, use the refinement equations for φ(x) <strong>and</strong> ψ(x) to compute the valuesof these functions at the so-called diadic (dyadic) rational (x = k 2 −j ), k <strong>and</strong> jinteger). Once the values of φ(x) <strong>and</strong> ψ(x) at integers are computed, (7) <strong>and</strong> (8)determine the values at the halves, quarters, eights, etc. In general, by repeatedapplications of the refinement equations, you can obtain the values of φ(x) <strong>and</strong>ψ(x) at diadic points x = k 2 −j for k = ..., −2, −1, 0, 1, 2, ...; j = 1, 2, 3, .... Fordecent resolution of the pictures, it suffices to run this iteration process till j = 4or 5. Determine explicitly the (closed-form irrational or numerical) values of φ(x), <strong>and</strong> 3.(iv) Graph the various iterations of φ(x) <strong>and</strong> ψ(x). Make sure that the horizontal<strong>and</strong> vertical axes are properly labelled.<strong>and</strong> ψ(x) at x = 0, 132 , 3 16 , 1 2 , 5 8 , 3 2 , 11 463


Task 4: Scaling <strong>and</strong> Wavelet Functions via a Cascade AlgorithmConsider the following cascade (iterative) scheme based on the refinement equationfor φ(x) :φ (i+1) (x) = √ 2 L−1 ∑h k φ (i) (2x − k), i ≥ 0, (10)k=0where the initial φ (0) (x) must be given. We use the characteristic function on theunit interval⎧1, 0 ≤ x < 1,φ (0) ⎪⎨(x) =(11)⎪⎩ 0, elsewhere.(i) For the Haar case (L = 2), take h 0 = h 1 = 1 √2, <strong>and</strong> implement the cascadealgorithm to compute the values of φ (1) (x), φ (4) (x) <strong>and</strong> φ 12) (x).(ii) Make pictures of these three scaling functions over their intervals of support.1For a decent resolution of the graphs, use steps of64. Do not go beyond theboundaries of the supporting intervals.Note: If you use Mathematica in order to efficiently compute the values of φ (i) (x),use a construction likephi[0,x_] := 0 /;phi[0,x_] := 0 /;phi[0,x_] := 1 /;x=1.0(x=0.0)h0=1/Sqrt[2];h1=1/Sqrt[2];phi[i_,x_] := phi[i,x] =N[Sqrt[2]*(h0*phi[i-1,2*x]+h1*phi[i-1,2*x-1]),8] /; i >= 1(iii) Still for the Haar case, use the relation (8) to compute the values of ψ (12) (x).(iv) Make a picture of this wavelet function.(v) What is the function corresponding to φ (∞) (x)? Does it have an analyticalform? What is it?(vi) What is the function corresponding to ψ (∞) (x)? Is there an analytical form?What is it?64


(vii) Repeat steps (i)-(iv) for the case of Daubechies wavelets (DAUB4) with twovanishing moments, whereh0 = 0.4829629131445343,h1 = 0.836516303737808,h2 = 0.2241438680420134,h3 = -0.1294095225512604.(viii) <strong>An</strong>swer the corresponding questions for the DAUB4 case: Can you still use(11) as the starting point? [Hint: Experiment with different initial conditions].What could one use instead?(ix) Assuming that (10) has a ‘fixed point’ for any choice of a low-pass filter,prove that the cascade algorithm always converges to the true scaling functioncorresponding to that filter.(x) Prove or disprove that the ‘fixed point’ φ(x) depends on the initial φ (0) (x).[Hint: for (ix) <strong>and</strong> (x) work with the equivalent of (10) in the Fourier domain].65


TW Honns: Numeriese Algoritmes Exam Question # 4(Vir Vrydae 6/4/01) 2001Question 4: Wavelets: solving the Quadrature Mirror Filter conditionBased on the Quadrature Mirror Filter (QMF) condition it is possible to computeFinite Impulse Response (FIR) low-pass <strong>and</strong> high-pass filters, (h 0 , h 1 , h 2 , ..., h L−1 )<strong>and</strong> (g 0 , g 1 , g 2 , ..., g L−1 ), for the Daubechies wavelets. The QMF condition readsforH(z)H( 1 z ) + H(−z)H(−1 ) = 2, ∀z, (12)zH(z) = L−1 ∑k=0h k z k , (13)where L is the length of the filter <strong>and</strong> h k are the low-pass filter taps.The conditionnormalizes the filter (<strong>and</strong> the scaling function).For a wavelet ψ(x) with M vanishing moments, i.e.∫ ∞H(1) = √ 2 (14)−∞ xm ψ(x)dx = 0, m = 0, 1, 2, ..., M − 1, (15)the polynomial H(z) <strong>and</strong> its derivatives up to order M −1 must be zero at z = −1.Thus,H(−1) = H ′ (−1) = H ′′ (−1) = ...... = H (M−1) (−1) = 0. (16)(i) Use the normalization condition H(1) = √ 2 <strong>and</strong> QMF (12) to show thatH(−1) = 0.What does the latter condition imply in terms of the filters (h 0 , h 1 , h 2 ,..., h L−1 )<strong>and</strong> (g 0 , g 1 , g 2 ,..., g L−1 )? What is relevance in signal processing?(ii) Show that (14) <strong>and</strong> (16) imply that H(z) is of the formwhere Q(z) is polynomial <strong>and</strong> Q(1) = 1.H(z) = √ ( )1 + zM2 Q(z), (17)2(iii) Show that for a FIR filter with M vanishing moments Q(z) has degree M −1.(iv) Consider the Haar case (L = 2, M = 1). What is Q(z)? Determine H(z) <strong>and</strong>the filter coefficients from (17) by comparing with (13).66


(v) If the QMF condition is rewritten in terms of Q(z), one can show (see LectureNotes, no need to prove this) that Q(z) must satisfyQ(z)Q( 1 z ) = M−1 ∑k=0What does (18) reduce to for the Haar case?(−1) k (M − 1 + k)!(1 − z) 2k (4z) −k . (18)k!(M − 1)!(vi) Substitute (13) directly into (12) to compute the conditions for h 0 , h 1 for theHaar case. How many conditions do you get? How many are trivial? How manyare nontrivial? What do these conditions express? Compute h 0 <strong>and</strong> h 1 explicitly,using (14) to normalize.(vii) Consider DAUB4, where L = 4, M = 2, corresponding to compactly supportedwavelets with two vanishing moments. What is the degree of Q(z)? Use(18) <strong>and</strong> Q(1) = 1 to determine Q(z) explicitly. Then, continuing with one ofthe (two possible) solutions, use (17) to compute H(z). Finally, use (13) to findclosed-form irrational expressions for the filter coefficients h 0 , h 1 , h 2 , <strong>and</strong> h 3 .(viii) Substitute (13) directly into (12) to compute the conditions for the h k forthe DAUB4 low-pass filter (L = 4). How many conditions do you get? How manyare trivial? How many are nontrivial? What do these conditions actually express?Verify that low-pass filter (h 0 , h 1 , h 2 , h 3 ) computed in (vii) satisfies all conditions,including (14).67


Books, Review Papers, Info about WaveletsCompiled by <strong>Willy</strong> <strong>Hereman</strong>—–Updated: February 9, 2001Books on Wavelets1. Ali N. Akansu <strong>and</strong> Richard A. Haddad, Multi-resolution Signal Decomposition:Transforms, Subb<strong>and</strong>s, <strong>and</strong> Wavelets, Academic Press, New York,19922. Ali N. Akansu <strong>and</strong> M. Medley (eds.), Wavelet, Subb<strong>and</strong> <strong>and</strong> Block Transformsin Communications <strong>and</strong> Multimedia, Kluwer Academic Press, Norwood,Massachusetts, 19983. Ali N. Akansu <strong>and</strong> Mark J.T. Smith, Subb<strong>and</strong> <strong>and</strong> Wavelet Transforms,Design <strong>and</strong> <strong>Applications</strong>, Kluwer Academic Press, Boston, 19954. Akram Aldroubi <strong>and</strong> Michael Unser (eds.), Wavelets in Medicine <strong>and</strong> Biology,CRC Press, Boca Raton, Florida, 19965. <strong>An</strong>estis <strong>An</strong>toniadis <strong>and</strong> G. Oppenheim (eds.), Wavelets <strong>and</strong> Statistics, SpringerVerlag, Berlin, 19956. M. Barlaud (ed.), Wavelets in Image Communication, Elsevier, Dublin, 19957. John J. Benedetto <strong>and</strong> Michael W. Frazier (eds.), Wavelets: Mathematics<strong>and</strong> <strong>Applications</strong>, CRC Press, Boca Raton, Florida, 19938. <strong>An</strong>drew Bruce <strong>and</strong> Hong-Ye Gao, Applied Wavelet <strong>An</strong>alysis with S-Plus,Spinger Verlag, Berlin, New York, 19969. C. Sidney Burrus, Ramesh A. Gopinath <strong>and</strong> Haitao Guo, <strong>Introduction</strong> toWavelets <strong>and</strong> Wavelet Transforms: A Primer, Prentice Hall, Upper SaddleRiver, New Jersey, 199810. Y.T. Chan, Wavelet Basics, Kluwer Academic Publishers, Norwood, Massachusetts,199511. Charles K. Chui, <strong>An</strong> <strong>Introduction</strong> to Wavelets. Vol. 1 series: Wavelet <strong>An</strong>alysis<strong>and</strong> its <strong>Applications</strong>, Academic Press, New York, 199212. Charles K. Chui (ed.), Wavelets: A Tutorial in <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>.Vol. 2 series: Wavelet <strong>An</strong>alysis <strong>and</strong> its <strong>Applications</strong>, Academic Press, NewYork, 199268


13. Charles K. Chui, Laura Montefusco <strong>and</strong> Luigia Puccio (eds.), Wavelets: <strong>Theory</strong>,Algorithms <strong>and</strong> <strong>Applications</strong>. Vol. 5 series: Wavelet <strong>An</strong>alysis <strong>and</strong> its<strong>Applications</strong>, Academic Press, Orl<strong>and</strong>o, Florida, 199514. Charles K. Chui, Wavelets: A Mathematical Tool for Signal <strong>An</strong>alysis, SIAM,Philadelphia, 199715. Albert Cohen <strong>and</strong> Robert Ryan, Wavelets <strong>and</strong> Multiscale Signal Processing,Chapman & Hall, London, 199516. J.M. Combes, A. Grossmann <strong>and</strong> Ph. Tchamitchian (eds.), Wavelets: Time-Frequency Methods <strong>and</strong> Phase Space, Proc. Int. Conf. Marseille, France,December 1987, Springer Verlag, New York, 199017. Wolfgang Dahmen, <strong>An</strong>drew Kurdila <strong>and</strong> Peter Oswald (eds.), MultiscaleWavelet Methods for Partial Differential Equations. Vol. 6. series: Wavelet<strong>An</strong>alysis <strong>and</strong> <strong>Applications</strong>, Academic Press, San Diego, 199718. Ingrid Daubechies, Ten Lectures on Wavelets, CBMS-NSF Regional ConferenceSeries in Applied Mathematics, 61, SIAM, Philadelphia, 199219. I. Daubechies, S. Mallat <strong>and</strong> A. Willsky (eds.), Special Issue on WaveletTransforms <strong>and</strong> Multiresolution Signal <strong>An</strong>alysis, IEEE Transactions on Information<strong>Theory</strong> 38 199220. Ingrid Daubechies (ed.), Different Perspectives on Wavelets, Proc. of Symposiain Applied Mathematics 47, Lecture Notes of Short Course, San <strong>An</strong>tonio,Texas, January 1993, AMS, Providence, Rhode Isl<strong>and</strong>, 199321. Guy David, Wavelets <strong>and</strong> Singular Integrals on Curves <strong>and</strong> Surfaces, LectureNotes Nankai Institute of Mathematics, Tianjin, People Republic of China,June 1988, Springer Verlag, Berlin, 199122. Marie Farge, J.C.R. Hunt <strong>and</strong> J.C. Vassilicos (eds.), Wavelets, Fractals <strong>and</strong>Fourier Transforms, Clarendon Press (Oxford University Press), Oxford, U.K.,199323. F.J. Fliege, Multirate Digital Signal Processing: Multirate Systems, FilterBanks <strong>and</strong> Wavelets, Wiley & Sons, New York, 199424. Efi Foufoula-Georgiou <strong>and</strong> Praveen Kumar (eds.), Wavelets in Geophysics,Academic Press, San Diego, 199469


25. Michael Frazier, <strong>An</strong> <strong>Introduction</strong> to Wavelets through Linear Algebra, SpringerVerlag, New York, 199826. Eugene Hernández <strong>and</strong> Guido Weiss, A First Course on Wavelets, CRC Press,Boca Raton, Florida, 199627. Matthius Holschneider, Wavelets: <strong>An</strong> <strong>An</strong>alysis Tool, Clarendon Press (OxfordUniversity Press), Oxford, U.K., 199528. Barbara Burke Hubbard, The World According to Wavelets: The Story of aMathematical Technique in the Making (2nd edition), A.K. Peters, Natick,Massachusetts, 199829. S. Jaffard <strong>and</strong> Yves Meyer, Wavelet Methods for Pointwise Regularity <strong>and</strong>Local Oscillations of Functions, AMS, Providence, Rhode Isl<strong>and</strong>, 199630. Kurt Jetter <strong>and</strong> Florencio I. Utreras (eds.), Multivariate Approximation:From CAGD to Wavelets, Proc. Int. Workshop, Santiago, Chili, September1992, World Scientific, Singapore, 199331. Jean-Pierre Kahane <strong>and</strong> P.G. Lemarié-Rieusset, Fourier Series <strong>and</strong> Wavelets,Gorden & Breach, London, 199532. Gerald Kaiser, A Friendly Guide to Wavelets, Birkhäuser Press, Boston, 199433. T.H. Koornwinder (ed.), Wavelets: <strong>An</strong> Elementary Treatment of <strong>Theory</strong> <strong>and</strong><strong>Applications</strong>, World Scientific, Singapore, 199334. <strong>An</strong>drew F. Laine (ed.), Mathematical Imaging: Wavelet <strong>Applications</strong> in Signal<strong>and</strong> Image Processing, Proc. Meeting, San Diego, CA, July 1993, SPIE2034, Bellingham, Washington, 199435. <strong>An</strong>drew F. Laine, Wavelet <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>, Kluwer Academic Publishers,Dordrecht, The Netherl<strong>and</strong>s 199536. P.G. Lemarié (ed.), Les Ondelettes en 1989, Lecture Notes in Mathematics,1438, Springer Verlag, Berlin, 199037. LeMehaute, Laurent <strong>and</strong> L.L. Schumaker (eds.), Wavelets, Images <strong>and</strong> SurfaceFitting, A.K. Peters, Wellesley, Massachusetts, 199438. Alfred K. Louis, Wavelets: <strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>, John Wiley, New York;Teubner, Germany, February 199770


39. Stéphane Mallat, A Wavelet Tour of Signal Processing (2nd edition), AcademicPress, New York, 199940. Peter R. Massopust, Fractal Functions, Fractal Surfaces <strong>and</strong> Wavelets, AcademicPress, Orl<strong>and</strong>o, Florida, 199441. Yves Meyer, Ondelettes et Opérateurs I, II et III, Hermann, Paris, 199042. Yves Meyer, Wavelets <strong>and</strong> <strong>Applications</strong>, Research Notes in Applied Mathematics,20, Proc. Int. Conf. Marseille, France, May 1989, Masson, Milan <strong>and</strong>Springer Verlag, Berlin, 199143. Yves Meyer, Wavelets <strong>and</strong> Operators. Vol. 1, Cambridge Studies in AdvancedMathematics 37, Cambridge University Press, Cambridge, 199244. Yves Meyer, Les Ondelettes, Algorithmes et <strong>Applications</strong>, Arm<strong>and</strong> Colin,199245. Yves Meyer (transl: Robert D. Ryan), Wavelets, Algorithms <strong>and</strong> <strong>Applications</strong>,SIAM, Philadelphia, 199346. Yves Meyer, Wavelets <strong>and</strong> Operators. Vol. 2: Calderón-Zygmund Operators<strong>and</strong> Multilinear Operators, Cambridge Studies in Advanced Mathematics 48,Yves Meyer, Cambridge University Press, Cambridge, 199547. Yves Meyer <strong>and</strong> S. Roques (eds.), Progress in Wavelet <strong>An</strong>alysis <strong>and</strong> <strong>Applications</strong>,Proc. Int. Conf. on Wavelets <strong>and</strong> <strong>Applications</strong>, Toulouse, France, June1992.48. Michel Misiti, Yves Misiti, Georges Oppenheim <strong>and</strong> Jean-Michel Poggi, WaveletToolbox User’s Guide, The MathWorks Inc., Natick, Massachusetts, 199649. Marius Mitrea, Clifford Wavelets, Singular Integrals <strong>and</strong> Hardy Spaces, LectureNotes in Mathematics 1575, Springer Verlag, Berlin, 199450. Rodolphe L. Motard <strong>and</strong> Babu Joseph (eds.), Wavelet <strong>Applications</strong> in ChemicalEngineering, Kluwer Academic Publishers, Boston, 199451. David E. Newl<strong>and</strong>, <strong>An</strong> <strong>Introduction</strong> to R<strong>and</strong>om Vibrations, Spectral <strong>and</strong>Wavelet <strong>An</strong>alysis (3rd edition), John Wiley, New York; Longman, U.K., 199352. Yves Nievergelt, Wavelets Made Easy, Birkhäuser, Boston, 199971


53. R. Todd Ogden, Essential Wavelets for Statistical <strong>Applications</strong> <strong>and</strong> Data<strong>An</strong>alysis, Birkhäuser Press, Boston, 199654. Mary B. Ruskai, Gregory Beylkin, Ronald Coifman <strong>and</strong> Ingrid Daubechies,Wavelets <strong>and</strong> Their <strong>Applications</strong>, Stephane Mallat, Yves Meyer <strong>and</strong> LouiseRaphael, Jones <strong>and</strong> Bartlett, Boston, Massachusetts, 199255. Larry L. Schumaker <strong>and</strong> Glenn Webb (eds.), Recent Advances in Wavelet<strong>An</strong>alysis, Wavelet <strong>An</strong>alysis <strong>and</strong> its <strong>Applications</strong> 3, Academic Press, NewYork, 199356. Eric J. Stollnitz, Tony D. DeRose <strong>and</strong> David H. Salesin, Morgan Kaufmann,San Francisco, 199657. Gilbert Strang <strong>and</strong> Truong Nguyen, Wavelets <strong>and</strong> Filter Banks, Wellesley-Cambridge Press, Wellesley, Massachusetts, 199658. Harold H. Szu (ed.), Wavelet <strong>Applications</strong>, Proc. Meeting Orl<strong>and</strong>, Florida,April 1994, SPIE 2242, Bellingham, Washington, 199459. C. Taswell, H<strong>and</strong>book of Wavelet Transform Algorithms, Birkhäuser Press,Boston, 199660. <strong>An</strong>thony Teolis, Computational Signal Processing with Wavelets, BirkhäuserPress, Boston, 199661. Ahmed H. Tewfik, Wavelets <strong>and</strong> Multiscale Signal Processing Techniques:<strong>Theory</strong> <strong>and</strong> <strong>Applications</strong>, 199762. Bruno Torrésani, <strong>An</strong>alyse Continue par Ondelettes, Savoirs Actuels, CNRSEditions, Paris, 199563. J.C. van den Berg (ed.), Wavelets in Physics, Cambridge University Press,Cambridge, 199864. Martin Vetterli <strong>and</strong> J. Kovacevic, Wavelets <strong>and</strong> Subb<strong>and</strong> Coding, PrenticeHall, Des Moines, Iowa, 199565. Gilbert G. Walter, Wavelets <strong>and</strong> Other Orthogonal Systems with <strong>Applications</strong>,CRC Press, Boca Raton, Florida, 199466. Mladen Victor Wickerhauser, Adapted Wavelet <strong>An</strong>alysis from <strong>Theory</strong> to Software,A.K. Peters, Wellesley, Massachusetts, 199472


67. M. Victor Wickerhauser, Wavelet Packet Laboratory, A.K. Peters, Wellesley,Massachusetts, 199468. Gregory W. Wornell, Signal Processing with Fractals: A Wavelet-based Approach,Prentice Hall, Upper Saddle River, New York, 199669. P. Wojtaszczyk, A Mathematical <strong>Introduction</strong> to Wavelets, London MathematicalSociety Graduate Texts, London, U.K., 199770. R<strong>and</strong>y K. Young, Wavelet <strong>Theory</strong> <strong>and</strong> Its <strong>Applications</strong>, Series in Engineering<strong>and</strong> Computer Science. VLSI, computer architecture <strong>and</strong> digital signalprocessing, Kluwer Academic Publishers, Dordrecht, 1993Some Review Papers on Wavelets1. Marc A. Berger, “Lectures on Wavelets <strong>and</strong> Lectures on Products of R<strong>and</strong>omMatrices,” School of Mathematics, Georgia Institute of Technology, Atlanta,GA 30332 (1991) 72 pages2. Gregory Beylkin, “Wavelets <strong>and</strong> Fast Numerical Algorithm,” Proc. Symposiain Appl. Math. 47 (1993) 89-1773. Gregory Beylkin, “Wavelets, Multiresolution <strong>An</strong>alysis <strong>and</strong> Fast NumericalAlgorithm,” Draft of INRIA Lectures, 19914. Adhemar Bultheel, “Learning to swim in a sea of wavelets,” Bull. Belg. Math.Soc. 2 (1995) 1-44.5. Ingrid Daubechies, “Orthonormal Bases of Compactly Supported Wavelets,”Comm. Pure Appl. Math. 41 (1988) 909-9966. Christopher E. Heil <strong>and</strong> David F. Walnut, “Continuous <strong>and</strong> Discrete WaveletTransforms, SIAM Review 31 (1989) 628-6667. Björn Jawerth <strong>and</strong> Wim Sweldens, “<strong>An</strong> Overview of Wavelet Based Multiresolution<strong>An</strong>alyses,” SIAM Review 36 (1994) 377-4128. Don Lancaster, “Hardware Hacker: Underst<strong>and</strong>ing transforms, video compressionsecrets, ... <strong>and</strong> more wavelet breakthroughs,” Radio-ElectronicsMagazine, July 1991, 68-?.9. Stephane G. Mallat, “A <strong>Theory</strong> for Multiresolution Signal Decomposition:The Wavelet Representation,” IEEE Trans. Patt. <strong>An</strong>al. Mach. Intell. 11(1989) 674-69373


10. Stephane G. Mallat, “Multiresolution Approximations <strong>and</strong> Wavelet OrthonormalBases of L 2 (R), Trans. AMS 315 (1989) 69-8711. Stephane G. Mallat, “Multifrequency Channel Decomposition of Images <strong>and</strong>Wavelet Model, IEEE Trans. Acoust. Speech Signal Process. 37 (1989) 2091-211012. Peter Meuller <strong>and</strong> Brani Vidakovic, Wavelets for Kids: tutorial paper for thestatistical community (with Mathematical notebook, part B), ISDS, DukeUniversity. FTP to ftp.isds.duk.edu in directory /pub/brani/wav4Kids[A-B].ps.Z.uu13. Yves Meyer, Book Reviews, Bulletin (New Series) of the AMS 28 (1993)350-360. Review of the books “<strong>An</strong> introduction to wavelets,” by C. Chui,<strong>and</strong> “Ten Lectures on Wavelets,” by I. Daubechies14. Olivier Rioul <strong>and</strong> Martin Vetterli, “Wavelets <strong>and</strong> Signal Processing,” IEEESignal Proc. Mag. 8 (1991) 14-3815. Alistair C.H. Rowe <strong>and</strong> Paul C. Abbott, “Daubechies wavelets <strong>and</strong> Mathematica,”Computers in Physics 9(6) (1995) 635-64816. Gilbert Strang, “Wavelet Transforms Versus Fourier Transforms,” Bulletin(New Series) AMS 28 (1993) 288-30517. Gilbert Strang, “Wavelets <strong>and</strong> Dilation Equations: A Brief <strong>Introduction</strong>,”SIAM Review 31 (1989) 614-62718. Gilbert Strang, “Wavelets,” American Scientist 82 (1994) 250-25519. Martin Vetterli, “Filter Banks Allowing Perfect Reconstruction,” Signal Processing10 (1986) 219-24420. Martin Vetterli <strong>and</strong> Cormac Herley, “Wavelets <strong>and</strong> Filter Banks: <strong>Theory</strong> <strong>and</strong>Design,” IEEE Trans. Acoust. Speech Signal Process. 40 (1992) 2207-2232Additional Information about Wavelets• Journal: Applied <strong>and</strong> Computational Harmonic <strong>An</strong>alysis: Time-Frequency<strong>and</strong> Time-Scaled <strong>An</strong>alysis, Wavelets, Numerical Algorithms <strong>and</strong> <strong>Applications</strong>(ACHA), C.K. Chui, R.R. Coifman <strong>and</strong> I. Daubechies (eds.), Academic Press,First issue: Nov.-Dec. 199374


• Wavelet Digest, editor: Wim Sweldens, Lucent Technologies, Bell Laboratories,http://wim.sweldens.com. Add yourself via email: add@wavelet.org, URL:http://www.wavelet.org/• Video Tape: Wavelets Making Waves in Mathematics <strong>and</strong> Engineering, IngridDaubechies, MAA Invited Lectures, Baltimore, Maryl<strong>and</strong>, January 1992,AMS-Selected Lectures in Mathematics• Wavelets on World Wide Web• Special Issue(s) on wavelets of IEEE Transactions on Information <strong>Theory</strong>(March 1992)• Literature Survey by Stefan Pittner, Institute for Applied <strong>and</strong> NumericalMathematics, Technical University Vienna, Austria, 700 entries, 220 pages,cost $20, 1993, Contact: pittner@uranus.tuwien.ac.at• Journal: Fourier <strong>An</strong>alysis <strong>and</strong> <strong>Applications</strong>, CRC Press, Boca Raton, Florida(1995-present)75

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!