13.07.2015 Views

The SNS neutron EDM experiment - 8th International UCN ...

The SNS neutron EDM experiment - 8th International UCN ...

The SNS neutron EDM experiment - 8th International UCN ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>The</strong> <strong>SNS</strong> <strong>neutron</strong> <strong>EDM</strong> <strong>experiment</strong>: overviewand the Kerr-effect electric-field monitorByung Kyu Park 1 , Alex Sushkov 2 , Darwin Windes 1 , Dima Budker 1(for the n<strong>EDM</strong> collaboration)1 Department of Physics, University of California, Berkeley2 Department of Physics, Yale University7th <strong>International</strong> <strong>UCN</strong> WorkshopPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 1 / 29


Outline1 <strong>The</strong> <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: an overview2 <strong>The</strong> <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: current progress3 Kerr-effect electric field monitorPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 2 / 29


State of the <strong>neutron</strong> <strong>EDM</strong>Currently: |d n| < 2.9 × 10 −26 e · cm, Baker et al., PRL 97, 131801 (2006)Summary of current and expected <strong>experiment</strong>al limits on n<strong>EDM</strong> aCP violation instandard model (fromK 0 decay) not enoughto explain amount ofmatter in universeStringent limit onextensions to thestandard modelConstrain or verifysupersymmetrypredictions in nearfuturea Lamoreaux and Golub, “<strong>The</strong> Neutron Electric Dipole Moment: Yesterday,Today, and Tomorrow” in Lepton Dipole Moments, ed. Roberts & Marciano, 2009Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 3 / 29


State of the <strong>neutron</strong> <strong>EDM</strong>Currently: |d n| < 2.9 × 10 −26 e · cm, Baker et al., PRL 97, 131801 (2006)Summary of current and expected <strong>experiment</strong>al limits on n<strong>EDM</strong> aCP violation instandard model (fromK 0 decay) not enoughto explain amount ofmatter in universeStringent limit onextensions to thestandard modelConstrain or verifysupersymmetrypredictions in nearfuturea Lamoreaux and Golub, “<strong>The</strong> Neutron Electric Dipole Moment: Yesterday,Today, and Tomorrow” in Lepton Dipole Moments, ed. Roberts & Marciano, 2009Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 3 / 29


<strong>SNS</strong> <strong>experiment</strong>: distinguishing features<strong>UCN</strong> production by “superthermal” method 1 with ultrapuresuperfluid 4 He and storage in the same cell<strong>UCN</strong> storage within the helium volume:Gain in <strong>neutron</strong> density by at 2 orders of magnitudes from previous<strong>experiment</strong>sLHe is good dielectric → higher applied electric field by factor of 4Use of 3 He:as polarizer: selectively absorbs antialigned <strong>neutron</strong>s; improves<strong>neutron</strong> polarization from 90% to 95%as comagnetometer: precesses under B field and sees the samefield as <strong>neutron</strong>s; control systematics related to magnetic fieldsas <strong>neutron</strong> detector: if <strong>neutron</strong> is absorbed, <strong>neutron</strong> wasanti-aligned; if it is not absorebd, it was aligned1 Golub and Pendlebury, Phys. Lett. A 62, 337 (1977)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 4 / 29


<strong>EDM</strong> sensitivity: statisticsPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 5 / 29


<strong>EDM</strong> sensitivity: statistics∆EΩ L= −⃗µ·⃗B= γ B BPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 5 / 29


<strong>EDM</strong> sensitivity: statistics∆E + δE= −⃗µ·⃗B − ⃗ d·⃗EΩ L ± δΩ L = γ B B ± γ E EIf state of n completely specified byexisting quantum numbers, ⃗ d ‖ ⃗µPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 5 / 29


<strong>EDM</strong> sensitivity: statistics∆E + δE= −⃗µ·⃗B − ⃗ d·⃗EΩ L ± δΩ L = γ B B ± γ E EIf state of n completely specified byexisting quantum numbers, ⃗ d ‖ ⃗µSensitivity: δΩ L ∝1E √ NτT<strong>The</strong> <strong>SNS</strong> <strong>experiment</strong>:E ≈ 50 kV/cmN ≈ 150 per cm 3 × 3000 cm 3τ ≈ 500 s for each measurementT ≈ 300 live days for initial duration ofthe <strong>experiment</strong>2π × δΩ L ≈ 2.6 µHzHigh electric field and density madepossible by keeping <strong>neutron</strong>s insuperfluid heliumHigh voltage (≈ 500 kV) is producedwithout an actual high voltage supply withgain capacitorsPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 5 / 29


<strong>EDM</strong> sensitivity: systematics⃗v × ⃗ E effectFor bottled <strong>UCN</strong>, only quadraticdynamic phase—linear geometricphase may remainmagnetic field fluctationcorrect with 3 He signalpseudomagnetic field in thepresence of polarized 3 Hesignificant but canceled withtwo-cell designgeometric phase aoccurs with B field inhomogeneitydoesn’t cancel between 3 He and ntemperature-dependentFrom Conceptual Design Report for the n<strong>EDM</strong> Projecta Commins. Am. J. Phys. 59, 1077 (1991),Pendlebury et al. Phys. Rev. A 70, 032102 (2004)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 6 / 29


<strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: <strong>UCN</strong> sourceBeamline from <strong>SNS</strong>Superthermal production of <strong>UCN</strong> ain ultrapure superfluid 4 He at 0.5 Kfinal <strong>neutron</strong> temperature: 3 mKa Golub and Pendlebury, Phys. Lett. A 62, 337 (1977)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 7 / 29


<strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: 3 He comagnetometercomagnetometers:measure local magneticfield fluctuationsHg comagnetometerssuccessfully used before3 He occupy samevolume as <strong>neutron</strong>s insuperfluid 4 He: idealcomagnetometer for<strong>SNS</strong> <strong>experiment</strong>3 He precession signaldetected byexternally-placedSQUIDsHarris et al., Phys. Rev. Lett. 82, 904 (1999)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 8 / 29


<strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: 3 He <strong>neutron</strong> detectorn + 3 He → p + 3 H + 764 keVreaction products produce UV scintillation light (80 nm) in the LHe 2UV scintillation light down-shifted (430 nm) and detectedgreater cross section (by factor of 200) in the singlet statemeasures beat frequency between Ω L, 3 He and Ω L,n (small becausegyromagnetic ratio is the same within 10%)Figure from W. Korsch’s talk at PANIC08, “<strong>The</strong> <strong>SNS</strong> Neutron <strong>EDM</strong> Experiment”2 Doyle and Lamoreaux, Europhys. Lett. 26, 253 (1994)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 9 / 29


<strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: 3 He <strong>neutron</strong> detectorOptimization of initial 3 He and n angleCalculation by Pinghan Chu for n<strong>EDM</strong> collaborationChange in Ω L,n without change inΩ L, 3 He → n<strong>EDM</strong>3 He has negligible <strong>EDM</strong>:d199 Hg < 10−28 e · cm, and <strong>EDM</strong> ofdiamagnetic atom varies as Z 2Dressed spin technique amodify effective gyromagnetic ratiowith oscillating B field so thatγ n ′ = γ ′3 He(critical dressing)optimize sensitivity to d n byappropriate choice of initial angle:as much as a factor of 2 increasein sensitivitya Golub and Lamoreaux, Phys. Rep. 237, 1 (1994)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 10 / 29


<strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong>: Measurement Cycle1 Diffuse polarized 3 He atoms into themeasurement cell2 Illuminate the measurement cell with polarizedcold <strong>neutron</strong>s to produced polarized <strong>UCN</strong>aligned with the 3 He atoms3 Apply π/2 pulse to rotate spins to beperpendicular to the magnetic field4 Make precession frequency measurements5 Remove 3 He atoms from the cryostats bydiffusion to the purifier6 Reload the collection volume with polarized 3 Hefrom the ABS7 Return to step 1100 sec1000 sec10 sec500 sec100 sec(300 sec,during othersteps)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 11 / 29


<strong>SNS</strong> n<strong>EDM</strong> Experiment: progressBasic R&D done, including:valve test: 10,000 cycles without failure3 He relaxation time: measured at Duke and UIUC; results agreeand meet project requirement<strong>UCN</strong> storage time: 300 s at 20K in vacuum with same wall coatingDielectric breakdown in superfluid 4 He: 50 kV/cm at 7-cmseparationcos θ coils tested for magnetic field homogeneityLHe scintillation test with HV: major components successfully testedDesign optimization and engineering currently in progressBuilding construction in progressPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 12 / 29


Measurement CellPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 13 / 29


3 He servicesPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 14 / 29


ApparatusPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 15 / 29


BuildingPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 16 / 29


Building (April 2009)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 17 / 29


Building (May 2009)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 18 / 29


<strong>The</strong> n<strong>EDM</strong> collaborationM. Ahmed 7 , R. Alarcon 1 , R. Allen 16 , A. Apostol 11 , A. Avakian 4 , S. Baessler 19 , S. Balascuta 1 , L. Bartoszek 2 , D. Beck 8 ,E. Beise 12 , J. Boissevain 11 , B. Bourque 11 , H. Breuer 12 , D. Budker 3 , M. Busch 7 , J. Chacon 11 , C.-Y. Liu 9 , P. Chu 8 ,V. Cianciolo 16 , S. Clayton 11 , M. Cooper 11 , C. Crawford 10 , K. Dow 13 , J. Dunne 14 , D. Dutta 14 , A. Esler 8 , M. Espy 11 ,B. Filippone 6 , A. P. Galvan 6 , H. Gao 7 , R. Golub 15 , T. Gorringe 10 , C. Gould 15 , G. Greene 16 , D. Haase 15 , D. Hasell 13 ,M. Hayden 17 , E. Hazen 4 , R. Hennings-Yeomans 11 , P. R. Huffman 15 , E. Ihloff 13 , T. Ito 11 , J. Kelsey 13 , A. Kolarkar 4 ,E. Korobkina 15 , W. Korsch 10 , S. Lamoreaux 20 , V. Logashenko 4 , J. Long 9 , M. Makela 11 , A. Matlachov 11 , C. M. Mauger 11 ,B. Mckeown 6 , D. McKinsey 20 , M. Mendenhall 6 , H. Meyer 9 , F. Mezei 11 , J. Miller 4 , R. Milner 13 , E. Olivas 11 , J.-C. Peng 8 ,B. K. Park 3 , S. Penttila 16 , B. Plaster 10 , J. Ramsey 11 , R. Redwine 13 , L. Roberts 3 , I. Savukov 11 , R. Schmid 6 , J. Seele 13 ,G. Seidel 5 , M. Snow 9 , W. Sondheim 11 , S. Stanislaus 18 , A. Sushkov 20 , C. Swank 15 , S. Tajima 7 , J. Torgerson 11 ,E. Tsentalovich 13 , C. Vidal 13 , P. Volegov 11 , W. S. Wilburn 11 , S. Williamson 8 , D. Windes 3 , H. Yan 10 , A. Q. Ye 7 , J. Yoder 8 ,A. R. Young 15 , W. Zheng 7 , X. Zhu 71 Arizona State University, Tuscon, AZ;2 Bartoszek Engineering, Aurora, IL;3 University of California, Berkeley, CA;4 Boston University, Boston, MA;5 Brown University, Providence, RI;6 California Institute of Technology, Pasadena, CA;7 Duke University, Durham, NC;8 University of Illinois, Urbana-Champaign, IL;9 Indiana University, Bloomington, IN;10 University of Kentucky, Lexington, KY;11 Los Alamos National Laboratory, Los Alamos, NM;12 University of Maryland, College Park, MD;13 Massachusetts Institute of Technology, Cambridge, MA;14 Mississippi State University, Mississippi State, MS;15 North Carolina State University, Raleigh, NC;16 Oak Ridge National Laboratory, Oak Ridge, TN;17 Simon Fraser University, Burnaby, BC, Canada;18 Valparaiso University, Valparaiso, IN;19 University of Virginia, Charlottesville, VA;20 Yale University, New Haven, CT90 members from 20 institutionsPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 19 / 29


Kerr-effect electric-field monitorNeed to measure electric field directlyE field requirements: at least 1% homogeneity within the cell, andprecise reversal of E field for systematics (quadratic ⃗v × ⃗ E)presence of dielectric can affect reversing electric fieldcharge accumulation on acrylic plates can affect electric fieldKerr effect probes electric field in the medium itselfPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 20 / 29


Optical access for Kerr monitorsmall LHe Kerr constant a :1.4 × 10 −20 (cm/V) 2expected ellipticity in <strong>SNS</strong><strong>experiment</strong>: ≈ 10 µradstress-induced birefringencein optical windows: offset onthe order of mrads and driftson the order of 100 µrad over100 secondssolution: cancel the noise outcancellation demonstratedto 1% of the noise in amock-up setup bOriginal cancellation schemea Sushkov et al., Phys. Rev. Lett. 93, 153003 (2004)b Park, Sushkov, and Budker, Rev. Sci. Instr. 79, 013108(2008)Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 21 / 29


Kerr monitor: demonstration in a mock setupCancellation in real timePark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 22 / 29


Kerr monitor: demonstration in a mock setupBetter cancellation with integration over 10 sPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 23 / 29


Kerr monitor: implementation within n<strong>EDM</strong> apparatusEarly conceptual designPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 24 / 29


Kerr monitor: implementation within n<strong>EDM</strong> apparatusEarly conceptual designPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 25 / 29


Kerr monitor: implementation within n<strong>EDM</strong> apparatusRecent design illustrations from John RamseyPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 26 / 29


Kerr monitor: implementation within n<strong>EDM</strong> apparatusRecent design illustrations from John RamseyPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 27 / 29


Kerr monitor: implementation within n<strong>EDM</strong> apparatusPark (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 28 / 29


Summary<strong>The</strong> n<strong>EDM</strong> collaboration plans to measure the electric dipolemoment of the <strong>neutron</strong> with precision of δd n ≈ 3 × 10 −28 e · cm, 2orders of magnitude improvement from the current limitHigh intensity <strong>neutron</strong> beam from <strong>SNS</strong> and new <strong>UCN</strong> productiontechnique gives <strong>UCN</strong> density two orders of magnitudes higherthan previous <strong>experiment</strong>sHighest applied electric field to dateLocal electric field strength to be monitored to 1% accuracy usingKerr effect in LHeStart collecting data in 2016?Park (for n<strong>EDM</strong> collaboration) (UC Berkeley) <strong>SNS</strong> n<strong>EDM</strong> <strong>experiment</strong> 7th <strong>UCN</strong> workshop 29 / 29

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!