13.07.2015 Views

Indoor Air as a Source of VOC Contamination in Shallow Soils - GSI ...

Indoor Air as a Source of VOC Contamination in Shallow Soils - GSI ...

Indoor Air as a Source of VOC Contamination in Shallow Soils - GSI ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Soil & Sediment <strong>Contam<strong>in</strong>ation</strong>, 15:103–122, 2006Copyright © Taylor & Francis LLCISSN: 1532-0383 pr<strong>in</strong>t / 1549-7887 onl<strong>in</strong>eDOI: 10.1080/15320380500364473<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong><strong>in</strong> <strong>Shallow</strong> <strong>Soils</strong> Below Build<strong>in</strong>gsTHOMAS E. MCHUGH, PHILLIP C. DE BLANC,AND ROGER J. POKLUDAGroundwater Services, Inc., Houston, TX, USAUS EPA and many state regulatory agency guidance documents recommend belowfoundationvapor sampl<strong>in</strong>g <strong>as</strong> a key element <strong>of</strong> site <strong>in</strong>vestigations to determ<strong>in</strong>e if vapormigration from underly<strong>in</strong>g soil <strong>in</strong>to build<strong>in</strong>gs is a completed exposure pathway (USEPA,2002; WIDHFS, 2003; San Diego County, 2004; PADEP, 2004). If volatile organiccompounds (<strong>VOC</strong>s) are detected below the build<strong>in</strong>g foundation, then <strong>VOC</strong> migrationfrom the subsurface is <strong>as</strong>sumed to be occurr<strong>in</strong>g, and further <strong>in</strong>vestigation is neededto determ<strong>in</strong>e the extent <strong>of</strong> the <strong>VOC</strong> impact. These guidance documents are predicatedon the <strong>as</strong>sumption that <strong>VOC</strong>s detected <strong>in</strong> below-foundation samples have orig<strong>in</strong>atedfrom deeper with<strong>in</strong> the subsurface. However, detection <strong>of</strong> <strong>VOC</strong>s <strong>in</strong> below-foundationvapor samples alone is not sufficient to conclude that the <strong>VOC</strong>s are migrat<strong>in</strong>g fromthe subsurface upward towards a build<strong>in</strong>g. <strong>VOC</strong>s detected <strong>in</strong> below-foundation vaporsamples can orig<strong>in</strong>ate from <strong>in</strong>door sources, migrat<strong>in</strong>g down through the slab by diffusionor advection. Commonly referenced conceptual models for vapor <strong>in</strong>trusion address <strong>VOC</strong>migration from the subsurface <strong>in</strong>to build<strong>in</strong>gs but do not consider the potential for <strong>VOC</strong>migration from build<strong>in</strong>gs <strong>in</strong>to the subsurface (USEPA, 2002; Johnson and Ett<strong>in</strong>ger, 1991;Parker, 2003). The advective and diffusive forces that lead to the migration <strong>of</strong> <strong>VOC</strong>s fromthe subsurface <strong>in</strong>to build<strong>in</strong>gs are equally likely to result <strong>in</strong> the migration <strong>of</strong> <strong>VOC</strong>s frombuild<strong>in</strong>gs <strong>in</strong>to the subsurface when pressure or concentration gradients support suchmigration. In this paper we present: i) pressure gradient me<strong>as</strong>urements <strong>in</strong>dicat<strong>in</strong>g bidirectionaladvective flow across build<strong>in</strong>g foundations, ii) simple model<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>gthat <strong>in</strong>door sources <strong>of</strong> <strong>VOC</strong>s may cause subsurface impacts through advection acrossthe build<strong>in</strong>g foundation, and iii) field data from a site where <strong>in</strong>door sources rather thansubsurface contam<strong>in</strong>ation were the source <strong>of</strong> <strong>VOC</strong>s detected <strong>in</strong> below-foundation vaporsamples.KeywordsVapor <strong>in</strong>trusion, <strong>in</strong>door air, subsurface migrationIntroductionLargely <strong>in</strong> response to the f<strong>in</strong>d<strong>in</strong>gs at two Colorado sites with chlor<strong>in</strong>ated solvent groundwaterplumes, the Corrective Action Branch <strong>of</strong> the Office <strong>of</strong> Solid W<strong>as</strong>te and EmergencyResponse (OSWER) at the US EPA developed and rele<strong>as</strong>ed a draft supplemental guidance<strong>in</strong> 2001 to evaluate the vapor <strong>in</strong>trusion to <strong>in</strong>door air pathway at RCRA corrective actionfacilities (US EPA, 2001a). In 2002, the US EPA issued the Draft Guidance for Evaluat<strong>in</strong>gthe Vapor Intrusion to <strong>Indoor</strong> <strong>Air</strong> Pathway from Groundwater and <strong>Soils</strong> (“US EPAVapor Intrusion Guidance,” US EPA, 2002), which superceded the draft 2001 guidance.Address correspondence to Thom<strong>as</strong> McHugh, Groundwater Services, Inc., 2211 Norfolk, Suite1000, Houston, TX 77098-4044, USA. E-mail: temchugh@gsi-net.com103


104 T. E. McHugh et al.Because model<strong>in</strong>g failed to identify the vapor <strong>in</strong>trusion impacts at the Colorado sites(Renner, 2002), the US EPA draft guidance documents have a reduced reliance on modelsfor pathway screen<strong>in</strong>g and favor direct me<strong>as</strong>urements to evaluate the potential for vapor<strong>in</strong>trusion at corrective action sites (Schuver, 2003). In addition, a number <strong>of</strong> state and localregulatory agencies have recently issued new or updated guidance that similarly emph<strong>as</strong>izesfield me<strong>as</strong>urements <strong>in</strong>stead <strong>of</strong> model<strong>in</strong>g for the evaluation <strong>of</strong> the vapor <strong>in</strong>trusion pathway(WIDHFS, 2003; San Diego County, 2004; PADEP, 2004).In its current form, the US EPA Vapor Intrusion Guidance (US EPA, 2002) recommendsa tiered approach for evaluation <strong>of</strong> the vapor <strong>in</strong>trusion pathway at corrective action sitesconsist<strong>in</strong>g <strong>of</strong>: i) a prelim<strong>in</strong>ary pathway evaluation b<strong>as</strong>ed on the presence <strong>of</strong> a volatilesource and receptor, ii) an evaluation <strong>of</strong> volatile organic compound (<strong>VOC</strong>) concentrationsus<strong>in</strong>g generic and “semi-site-specific” screen<strong>in</strong>g concentrations, and iii) a site <strong>in</strong>vestigationto evaluate vapor <strong>in</strong>trusion by direct me<strong>as</strong>urement and limited mathematical model<strong>in</strong>g.For anumber <strong>of</strong> common <strong>VOC</strong>s such <strong>as</strong> trichloroethene (TCE) and benzene, both thegeneric and the “semi-site-specific” groundwater vapor <strong>in</strong>trusion screen<strong>in</strong>g limits proposedby the US EPA are equal to dr<strong>in</strong>k<strong>in</strong>g water Maximum Contam<strong>in</strong>ant Levels (i.e., 5 ug/L)—a“screen<strong>in</strong>g level” that is likely to screen out very few groundwater corrective action sites.As a result, a majority <strong>of</strong> corrective action sites where US EPA guidance is applied willrequire field-b<strong>as</strong>ed site <strong>in</strong>vestigations to evaluate the potential for vapor <strong>in</strong>trusion impacts.However, site-specific evaluations <strong>of</strong> potential vapor <strong>in</strong>trusion, particularly those <strong>in</strong>volv<strong>in</strong>gthe me<strong>as</strong>urement <strong>of</strong> <strong>in</strong>door air <strong>VOC</strong> levels, can prove to be highly problematic due to thepresence <strong>of</strong> common <strong>in</strong>door sources <strong>of</strong> <strong>VOC</strong>s already present with<strong>in</strong> build<strong>in</strong>gs (McHughet al., 2004). Average background <strong>in</strong>door air concentrations <strong>of</strong> many common <strong>VOC</strong>s <strong>in</strong>build<strong>in</strong>gs located away from corrective action sites exceed US EPA screen<strong>in</strong>g concentrationsfor <strong>in</strong>door air (see Table 1). Therefore, for <strong>VOC</strong>s <strong>as</strong>sociated with common <strong>in</strong>door sources,the direct me<strong>as</strong>urement <strong>of</strong> concentrations <strong>in</strong> <strong>in</strong>door air is <strong>of</strong>ten not an effective method foridentify<strong>in</strong>g vapor <strong>in</strong>trusion impacts.US EPA and many state regulatory agency guidance documents recommend belowfoundationvapor sampl<strong>in</strong>g <strong>as</strong> a key element <strong>of</strong> site <strong>in</strong>vestigations to evaluate <strong>in</strong>door air (USEPA, 2002; WIDHFS, 2003; San Diego County, 2004; PADEP, 2004). In an attempt to elim<strong>in</strong>atethe confound<strong>in</strong>g effect <strong>of</strong> <strong>in</strong>door <strong>VOC</strong> sources, these guidance documents typicallyrecommend below-foundation vapor sampl<strong>in</strong>g prior to sampl<strong>in</strong>g <strong>of</strong> <strong>in</strong>door air (e.g., Page 38<strong>of</strong> US EPA, 2002). If no <strong>VOC</strong>s are detected <strong>in</strong> the below-foundation vapor samples, thenmigration <strong>of</strong> <strong>VOC</strong>s from the subsurface through the build<strong>in</strong>g foundation is not consideredto be a problem. However, if <strong>VOC</strong>s are detected <strong>in</strong> the below-foundation samples, then migrationfrom the subsurface is <strong>as</strong>sumed to be occurr<strong>in</strong>g, and further evaluation is requiredto determ<strong>in</strong>e the extent <strong>of</strong> the subsurface impact. These guidance documents are predicatedon the <strong>as</strong>sumption that <strong>VOC</strong>s detected <strong>in</strong> below-foundation samples have orig<strong>in</strong>ated fromdeeper with<strong>in</strong> the subsurface and are migrat<strong>in</strong>g towards the build<strong>in</strong>g. However, b<strong>as</strong>ed onthe results <strong>of</strong> model<strong>in</strong>g and field analyses, detection <strong>of</strong> <strong>VOC</strong>s <strong>in</strong> below-foundation samplesis not sufficient to conclude that <strong>VOC</strong>s are migrat<strong>in</strong>g from the subsurface towards a build<strong>in</strong>g.In some c<strong>as</strong>es, <strong>VOC</strong>s detected <strong>in</strong> below-foundation samples may have orig<strong>in</strong>ated from<strong>in</strong>door sources and are migrat<strong>in</strong>g downward through the build<strong>in</strong>g foundation by diffusionor advection.Commonly referenced conceptual models <strong>of</strong> vapor <strong>in</strong>trusion address <strong>VOC</strong> migrationfrom the subsurface <strong>in</strong>to build<strong>in</strong>gs but do not consider the potential for <strong>VOC</strong> migration frombuild<strong>in</strong>gs <strong>in</strong>to the subsurface (US EPA, 2002; Johnson and Ett<strong>in</strong>ger, 1991; Parker, 2003).However, the advective and diffusive forces that lead to the migration <strong>of</strong> <strong>VOC</strong>s from thesubsurface <strong>in</strong>to build<strong>in</strong>gs are equally capable <strong>of</strong> caus<strong>in</strong>g migration <strong>of</strong> <strong>VOC</strong>s from build<strong>in</strong>gs


Table 1Average background <strong>in</strong>door air <strong>VOC</strong> concentration ug/m 3US EPA (2002)ChemicalBrown et al.(1994)Sheldon(1992)EPA IAQ(1991)Shah andS<strong>in</strong>gh (1988)Stolwijk(1990)Foster et al.(2002)Kurtz andFolkes (2002)Sexton et al.(2004)Benzene 8 2.2 14 16.5 10 4.1 — 5.8Ethylbenzene 5 — 14 12.5 10 — — 3.9Toluene 37 — 61 27.8 80 — — 22.4Xylenes 24 — 14 — 30 — — 19.2Carbon Tetrachloride — 0.5 5 2.5 20 — — 0.60Dichlorobenzene, 1,4- 8 1.0 58 23.8 5 — — 1.2Dichloroethane, 1,2- — — — — — 0.07 0.05 —Dichloroethene, 1,1- — — — — — —


106 T. E. McHugh et al.Figure 1. Conceptual model <strong>of</strong> cross-foundation <strong>VOC</strong> transport.<strong>in</strong>to the subsurface under conditions where pressure or concentration gradients support suchmigration (see Figure 1).In this paper we present: i) pressure gradient me<strong>as</strong>urements <strong>in</strong>dicat<strong>in</strong>g bi-directionaladvective flow across build<strong>in</strong>g foundations, ii) simple analytical model<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g that<strong>in</strong>door sources <strong>of</strong> <strong>VOC</strong>s may cause subsurface impacts through advection across the build<strong>in</strong>gfoundation, and iii) field data from a site where <strong>in</strong>door sources rather than subsurfacecontam<strong>in</strong>ation were the source <strong>of</strong> <strong>VOC</strong>s detected <strong>in</strong> below-foundation vapor samples.Pressure Gradients across Build<strong>in</strong>g FoundationsVapor migration between the <strong>in</strong>door air <strong>of</strong> a build<strong>in</strong>g and the subsurface soil g<strong>as</strong> can occurby advection when there is a pressure differential between the build<strong>in</strong>g <strong>in</strong>terior and thesubsurface. S<strong>in</strong>gle family residential build<strong>in</strong>gs are <strong>of</strong>ten under negative pressure due to avariety <strong>of</strong> factors that cause exfiltration <strong>of</strong> <strong>in</strong>door air such <strong>as</strong> combustion sources, kitchen andbathroom ventilation, and the stack effect <strong>as</strong>sociated with <strong>in</strong>door heat<strong>in</strong>g (US EPA, 2001b).However, current residential build<strong>in</strong>g design standards require the ma<strong>in</strong>tenance <strong>of</strong> a slightlypositive build<strong>in</strong>g pressure by controlled outdoor air <strong>in</strong>take when dehumidification is required(ASHRAE, 2004). As a result, newer residences are more likely than older residences tooperate with positive build<strong>in</strong>g pressures. In addition, larger build<strong>in</strong>gs with central Heat<strong>in</strong>g,Ventilation, and <strong>Air</strong>-Condition<strong>in</strong>g (HVAC) systems are typically designed to operate underpositive pressure (Bearg, 1993). In both c<strong>as</strong>es, the pressure differential can vary over timeunder the <strong>in</strong>fluence <strong>of</strong> the build<strong>in</strong>g HVAC system, build<strong>in</strong>g temperature, w<strong>in</strong>d conditions,


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 107barometric pressure changes, and other factors, result<strong>in</strong>g <strong>in</strong> changes between positive ornegative build<strong>in</strong>g pressures with respect to the below-foundation pressure. Negative build<strong>in</strong>gpressure supports advection from the subsurface <strong>in</strong>to the build<strong>in</strong>g while positive build<strong>in</strong>gpressure supports advection from the build<strong>in</strong>g <strong>in</strong>to the subsurface. Larger build<strong>in</strong>gs may bemore likely to experience pressure gradient reversals because environmental factors such<strong>as</strong> high w<strong>in</strong>d or low ambient temperatures <strong>of</strong>ten decre<strong>as</strong>e pressures lead<strong>in</strong>g to temporarynegative pressure conditions <strong>in</strong> build<strong>in</strong>gs that are typically operated under positive pressure.To characterize pressure gradients that can occur across build<strong>in</strong>g foundations betweenthe subsurface and <strong>in</strong>door air, cross-foundation pressure gradients were characterized <strong>in</strong>three build<strong>in</strong>gs <strong>in</strong> the Houston, Tex<strong>as</strong> area: one commercial warehouse build<strong>in</strong>g and twos<strong>in</strong>gle-family residential build<strong>in</strong>gs. All three build<strong>in</strong>gs were slab-on-grade construction.Build<strong>in</strong>g to below-foundation pressure gradients were me<strong>as</strong>ured us<strong>in</strong>g an Omega PX-274-01DI differential pressure transducer with a range <strong>of</strong> −125 to 125 Pa ± 1%. The pressuregradient across the build<strong>in</strong>g foundations w<strong>as</strong> me<strong>as</strong>ured by connect<strong>in</strong>g the low pressure portto a sealed hole penetrat<strong>in</strong>g the slab and keep<strong>in</strong>g the high pressure port open to the build<strong>in</strong>gatmosphere. In all three build<strong>in</strong>gs, pressure gradient reversals between negative and positivebuild<strong>in</strong>g pressure were observed to occur with<strong>in</strong> a s<strong>in</strong>gle 24-hour monitor<strong>in</strong>g period.Typical 24-hour periods for a residential build<strong>in</strong>g and a commercial warehouse build<strong>in</strong>gare shown <strong>in</strong> Figure 2. The observed cross-foundation pressure gradients recorded at thecommercial warehouse build<strong>in</strong>g ranged from +25 Pa to −30 Pa, with lower pressure gradientsgenerally observed <strong>in</strong> the two residential build<strong>in</strong>gs. Although this is a limited dat<strong>as</strong>et,the pressure gradient me<strong>as</strong>urements <strong>in</strong>dicate that both advective flow from the subsurface<strong>in</strong>to a build<strong>in</strong>g and advective flow from a build<strong>in</strong>g <strong>in</strong>to the subsurface can occur with<strong>in</strong>a s<strong>in</strong>gle 24-hour period <strong>in</strong> either residential or commercial build<strong>in</strong>gs. Additional researchwould be required to determ<strong>in</strong>e the prevalence <strong>of</strong> these pressure reversals <strong>in</strong> residential andcommercial build<strong>in</strong>gs.Development <strong>of</strong> Advective Transport ModelTo evaluate the impact <strong>of</strong> variable pressure gradients on the transport <strong>of</strong> <strong>VOC</strong>s between <strong>as</strong>lab-on-grade build<strong>in</strong>g and the soil g<strong>as</strong> immediately below the build<strong>in</strong>g, we have developeda simple transient mix<strong>in</strong>g model. For the purpose <strong>of</strong> simulat<strong>in</strong>g build<strong>in</strong>g/below-foundationair exchange, the model <strong>in</strong>corporates periodic oscillations between positive and negativebuild<strong>in</strong>g pressure. The advection model simulates vapor migration between two compartments<strong>as</strong> a result <strong>of</strong> this pressure oscillation: i) the build<strong>in</strong>g air space, and ii) subsurface soilg<strong>as</strong> immediately underly<strong>in</strong>g the foundation slab. The model h<strong>as</strong> been used to evaluate theimpact <strong>of</strong> transient <strong>in</strong>door <strong>VOC</strong> sources on the below-foundation air quality.The variables <strong>in</strong> the advection model are shown <strong>in</strong> Figure 3. When the <strong>in</strong>door air pressureis greater than the subsurface soil air pressure (a positive pressure condition), air flows fromthe build<strong>in</strong>g <strong>in</strong>to the subsurface soil through the build<strong>in</strong>g foundation. Alternatively, whenthe <strong>in</strong>door air pressure is less than the subsurface soil air pressure (a negative pressurecondition), vapor flows <strong>in</strong>to the build<strong>in</strong>g from the subsurface soil.Key <strong>as</strong>sumptions <strong>of</strong> the model are: Cont<strong>in</strong>uous and constant exchange occurs between the build<strong>in</strong>g and the ambient air(Q ab and Q ba are always greater than 0). Vapor exchange between the sub-foundation soils and adjacent soils is driven onlyby advective flow between the build<strong>in</strong>g and the sub-foundation (i.e., Q bg = Q ga andQ gb = Q ag ).


108 T. E. McHugh et al.Figure 2. Me<strong>as</strong>ured cross-foundation pressure gradients: A) s<strong>in</strong>gle-family residence, B) commercialwarehouse build<strong>in</strong>g. The air is <strong>in</strong>compressible (a valid <strong>as</strong>sumption for small pressure gradients). Adsorption and degradation <strong>of</strong> <strong>VOC</strong>s are negligible. <strong>Air</strong> <strong>in</strong> both the build<strong>in</strong>g and the sub-foundation soil is <strong>as</strong>sumed to be perfectly and<strong>in</strong>stantaneously mixed.Advective rather than diffusive <strong>VOC</strong> transport w<strong>as</strong> modeled because the limited literatureavailable suggests that <strong>VOC</strong> exchange through the build<strong>in</strong>g foundation is commonly


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 109Figure 3. Advection model <strong>in</strong>put parameters.controlled by advective flow rather than diffusion (Nazar<strong>of</strong>f et al., 1985, 1987). In addition,Johnson and Ett<strong>in</strong>ger (1991) <strong>in</strong>dicate that <strong>in</strong> a sandy soil, the ratio <strong>of</strong> advective to diffusivetransport rates (expressed <strong>as</strong> a Peclet number) for typical pressure gradients <strong>of</strong> 1 to 10Pa ranges from 10 to 100, <strong>in</strong>dicat<strong>in</strong>g advection–dom<strong>in</strong>ated transport through the build<strong>in</strong>gfoundation.Adsorption h<strong>as</strong> been neglected <strong>in</strong> the model because the typical slab-on-grade build<strong>in</strong>gis underla<strong>in</strong> by clean sand backfill that is very low <strong>in</strong> organic carbon content and, therefore,the adsorption capacity <strong>of</strong> this type <strong>of</strong> sand is expected to be very low. However, <strong>in</strong>clusion<strong>of</strong> equilibrium partition<strong>in</strong>g to account for adsorption to subsurface soils would simply havethe effect <strong>of</strong> <strong>in</strong>cre<strong>as</strong><strong>in</strong>g the effective volume <strong>of</strong> the subsurface soil compartment <strong>in</strong> themodel.Avolume balance results <strong>in</strong> the follow<strong>in</strong>g relationship between the volumetric flowrates <strong>in</strong> the build<strong>in</strong>g and subsurface, respectively:where:Q ab + Q gb = Q bg + Q ba (1)Q bg + Q ag = Q gb + Q ga (2)Q ab = Volumetric flow rate <strong>of</strong> air <strong>in</strong>to the build<strong>in</strong>g from the ambient air (L 3 T −1 ).Q ba = Volumetric flow rate <strong>of</strong> air out <strong>of</strong> the build<strong>in</strong>g <strong>in</strong>to the ambient air (L 3 T −1 ).Q ga = Volumetric flow rate <strong>of</strong> air from the subsurface below the foundation <strong>in</strong>to thesurround<strong>in</strong>g soil (L 3 T −1 ).Q ag = Volumetric flow rate <strong>of</strong> air from the surround<strong>in</strong>g soil <strong>in</strong>to the subsurface belowthe foundation (L 3 T −1 ).


110 T. E. McHugh et al.Q gb = Volumetric flow rate <strong>of</strong> air from the soil underly<strong>in</strong>g the foundation <strong>in</strong>to thebuild<strong>in</strong>g (L 3 T −1 ).Q bg = Volumetric flow rate <strong>of</strong> air from the build<strong>in</strong>g <strong>in</strong>to the soil underly<strong>in</strong>g the foundation(L 3 T −1 ).Under positive pressure conditions, air flows from the build<strong>in</strong>g to the subsurface soil,and Q gb and Q ag are 0. A m<strong>as</strong>s balance on the build<strong>in</strong>g <strong>in</strong>door air and subsurface soil yieldsa set <strong>of</strong> two ord<strong>in</strong>ary differential equations:M<strong>as</strong>s balance on build<strong>in</strong>g (positive pressure):dC bV b = Q ab C a − Q ba C b − Q bg C b + ṁ b (3)dtM<strong>as</strong>s balance on subsurface soil (positive pressure):dC gV gdtWith <strong>in</strong>itial conditions specified <strong>as</strong>:= Q bg C b − Q ga C g (4)C b,0 = 0 and C g,0 = 0 at t = t 0 (5)where:V b = <strong>Air</strong> volume <strong>of</strong> build<strong>in</strong>g (L 3 ).V g = <strong>Air</strong> volume <strong>of</strong> subsurface soil beneath foundation (L 3 ).C a = Concentration <strong>in</strong> ambient air and subsurface soil surround<strong>in</strong>g the build<strong>in</strong>g (butnot beneath the foundation), usually <strong>as</strong>sumed to be constant (ML −3 ).C b = Concentration <strong>in</strong> build<strong>in</strong>g <strong>in</strong>door air (ML −3 ).C g = Concentration <strong>in</strong> subsurface soil beneath the foundation (ML −3 ).ṁ b = Transient m<strong>as</strong>s rele<strong>as</strong>e rate <strong>of</strong> <strong>VOC</strong> from an <strong>in</strong>door source (MT −1 ).The <strong>VOC</strong> m<strong>as</strong>s rele<strong>as</strong>e rate, ṁ b ,isatime-dependent variable that can be used to describethe transient rele<strong>as</strong>e <strong>of</strong> <strong>VOC</strong>s from a variety <strong>of</strong> <strong>in</strong>door sources. For example, a first-orderdecay function could be used for the rele<strong>as</strong>e <strong>of</strong> <strong>VOC</strong>s from dry<strong>in</strong>g pa<strong>in</strong>t, or a step functioncould be used to describe the sublimation <strong>of</strong> a volatile solid (see “Simulation <strong>of</strong> <strong>Indoor</strong><strong>VOC</strong> <strong>Source</strong>s” below).Under negative pressure conditions, air flows from below the foundation <strong>in</strong>to the build<strong>in</strong>g,and Q bg and Q ga are 0. A m<strong>as</strong>s balance on the build<strong>in</strong>g <strong>in</strong>door air and subsurface soilyields a similar set <strong>of</strong> equations:M<strong>as</strong>s balance on build<strong>in</strong>g (negative pressure):dC bV b = Q ab C a − Q ba C b + Q gb C g + ṁ b (6)dtM<strong>as</strong>s balance on subsurface soil (negative pressure):dC gV g =−Q gb C g + Q ag C a (7)dtKey model variables are illustrated <strong>in</strong> Figure 3. The foundation pore space is <strong>as</strong>sumed tooccupy a negligible volume relative to the build<strong>in</strong>g and sub-foundation soil, so that theconcentration <strong>of</strong> <strong>VOC</strong>s with<strong>in</strong> the foundation is <strong>as</strong>sumed to be at a pseudo steady state. Theconcentration <strong>of</strong> <strong>VOC</strong>s with<strong>in</strong> the cracks <strong>in</strong> the foundation is equal to the build<strong>in</strong>g concentrationunder positive pressure conditions and equal to the subsurface vapor concentration


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 111under negative pressure conditions. The volumetric flow rate <strong>of</strong> air through the build<strong>in</strong>gfoundation is calculated us<strong>in</strong>g the method <strong>of</strong> Johnson and Ett<strong>in</strong>ger (1991):Q bg (or Q gb ) = 2πP(t)k v X crackµ a ln(2Zcrackr crack) (8)where:P(t) = Time-dependent function represent<strong>in</strong>g the pressure difference between thebuild<strong>in</strong>g and the soil underly<strong>in</strong>g the foundation (ML −1 T −2 ).k v = Permeability <strong>of</strong> soil to air (L 2 ).X crack = Floor-wall seam perimeter (L).µ a = <strong>Air</strong> viscosity (ML −1 T −1 ).Z crack = Crack depth below grade (L).r crack = Equivalent crack radius (L).andX crack = 4 √ A s (9)r crack = η(A s / X crack ) (10)where:η = Ratio <strong>of</strong> foundation crack area to total foundation area.A s = Total foundation area (L 2 ).Johnson (2002) and others have suggested that Equation 8 does not provide a reliableprediction <strong>of</strong> Q bg and Q gb .Asdiscussed below, alternative methods for specify<strong>in</strong>g Q bg andQ gb yield similar results.The advection model consists <strong>of</strong> Equations 1, 2, 3, 4, 5, and 8 for positive pressureconditions and Equations 1, 2, 5, 6, 7, and 8 for negative pressure conditions. The system <strong>of</strong>equations is solved at each time step <strong>in</strong> a spreadsheet accord<strong>in</strong>g to the follow<strong>in</strong>g sequence: The value <strong>of</strong> P(t) iscalculated or specified accord<strong>in</strong>g to the pressure differencefunction for the simulation. The value <strong>of</strong> ṁb is calculated or specified accord<strong>in</strong>g to the m<strong>as</strong>s rele<strong>as</strong>e function forthe simulation. Qbg is calculated us<strong>in</strong>g Equation 8. The other volumetric flow rates are calculated from Equations 1 and 2. Equations 3 and 4 or 6 and 7 are then solved us<strong>in</strong>g a fourth-order Runge-Kuttamethod (Chapra and Canale, 2001).The spreadsheet solution method yielded a work<strong>in</strong>g model that could be used to explorethe impact <strong>of</strong> <strong>in</strong>door <strong>VOC</strong> sources on below-foundation soil g<strong>as</strong>.Model Input Parameter ValuesIn order to obta<strong>in</strong> model simulation results comparable to other commonly used vapor<strong>in</strong>trusion models, <strong>in</strong>put parameters representative <strong>of</strong> a residential build<strong>in</strong>g were selectedfrom US EPA guidance (US EPA, 2003). Ambient <strong>VOC</strong> concentrations were <strong>as</strong>sumed tobe zero at all times (i.e., C a = 0) and <strong>in</strong>itial <strong>in</strong>door and below-foundation concentrationswere <strong>as</strong>sumed to be zero (i.e., C b,0 = 0 and C g,0 = 0att = 0).


112 T. E. McHugh et al.To represent periodic pressure gradient reversals, the pressure gradient w<strong>as</strong> varieds<strong>in</strong>usoidally accord<strong>in</strong>g to the follow<strong>in</strong>g function:P(t) = P max cos(2π tυ p ) (11)where:P max = Maximum pressure gradient.υ p = Frequency <strong>of</strong> pressure cycles (T −1 ).t = Time(T).A maximum pressure gradient (P max )<strong>of</strong>4Pa w<strong>as</strong> used. This pressure gradient is the USEPA (2003) default value. The pressure difference w<strong>as</strong> <strong>as</strong>sumed to vary with a frequency<strong>of</strong> 12 d −1 (i.e., the pressure difference varied from +4 Pato−4 Pathen back to +4 Paevery 2 hours). The period <strong>of</strong> the fluctuations does not have a large effect on the simulationresults. Shorter pressure fluctuation periods cause the concentration response curves toapproach a smooth l<strong>in</strong>e, while longer pressure fluctuation periods cause greater short-termvariation <strong>in</strong> <strong>VOC</strong> concentration, but do not change the long-term average concentrations.The mathematical function used to vary the pressure also h<strong>as</strong> little effect on the results.Either a step function result<strong>in</strong>g <strong>in</strong> <strong>in</strong>stantaneous switch from maximum positive pressureto maximum negative pressure or a random variation between the maximum positive andmaximum negative pressures yields results similar to the s<strong>in</strong>usoidal pressure variation.Other model <strong>in</strong>put parameters used for the model simulations are provided <strong>in</strong> Table 2.Simulation <strong>of</strong> <strong>Indoor</strong> <strong>VOC</strong> <strong>Source</strong>sTo evaluate the impact <strong>of</strong> bi-directional <strong>VOC</strong> transport between <strong>in</strong>door air and subsurfacesoils, the advection model w<strong>as</strong> used to simulate <strong>in</strong>door and below-foundation <strong>VOC</strong>concentrations over a 5-day period under two different source types: i) a transient <strong>in</strong>door<strong>VOC</strong> source <strong>of</strong> constant m<strong>as</strong>s rele<strong>as</strong>e rate for 24 hours followed by no <strong>VOC</strong> rele<strong>as</strong>e for therema<strong>in</strong>der <strong>of</strong> the simulation (constant source), and ii) a transient source with an exponentiallydecre<strong>as</strong><strong>in</strong>g m<strong>as</strong>s rele<strong>as</strong>e rate (first-order source). The constant source approximatesthe rele<strong>as</strong>e <strong>of</strong> a volatile solid or liquid such <strong>as</strong> an <strong>in</strong>door pesticide application. The firstordersource represents the rele<strong>as</strong>e <strong>of</strong> <strong>VOC</strong>s from sources where the <strong>VOC</strong> emission ratedecre<strong>as</strong>es <strong>as</strong> the product cures or ages (e.g., fresh pa<strong>in</strong>t or new carpet). In both scenarios,the <strong>VOC</strong> m<strong>as</strong>s rele<strong>as</strong>e rate w<strong>as</strong> set to achieve a maximum <strong>in</strong>door air concentration equalto approximately 100 ug/m 3 , well below the maximum <strong>in</strong>door concentration <strong>of</strong> common<strong>VOC</strong>s reported <strong>in</strong> the literature (e.g., 1500 ug/m 3 for 1,4-dichlorobenzene and 2200 ug/m 3for toluene; Samfield, 1992).In the first scenario (constant-source), an <strong>in</strong>door <strong>VOC</strong> m<strong>as</strong>s rele<strong>as</strong>e rate <strong>of</strong> 140 mg/dayw<strong>as</strong> <strong>as</strong>sumed for the first 24 hours <strong>of</strong> the simulation, with no <strong>VOC</strong> rele<strong>as</strong>e thereafter. Theresults <strong>of</strong> the simulation are shown <strong>in</strong> Figure 4. The <strong>in</strong>door air <strong>VOC</strong> concentration reachesavalue <strong>of</strong> approximately 100 ug/m 3 with<strong>in</strong> one day, then starts to decre<strong>as</strong>e when the sourceis removed. The below-foundation concentration <strong>in</strong>cre<strong>as</strong>es to approximately 30 ug/m 3 ,then also beg<strong>in</strong>s to decre<strong>as</strong>e, but at a much slower rate because <strong>of</strong> the resistance to subfoundationand <strong>in</strong>door air exchange imposed by the build<strong>in</strong>g foundation. While the build<strong>in</strong>g<strong>VOC</strong> concentration can be detected for less than 2 days (<strong>as</strong>sum<strong>in</strong>g a detection limit <strong>of</strong> 0.5ug/m 3 ), the below-foundation <strong>VOC</strong>s persist at detectable concentrations for nearly 5 days.In the second scenario (first-order source), an <strong>in</strong>itial <strong>in</strong>door <strong>VOC</strong> m<strong>as</strong>s rele<strong>as</strong>e rate <strong>of</strong>240 mg/day w<strong>as</strong> specified, and the m<strong>as</strong>s rele<strong>as</strong>e rate decre<strong>as</strong>ed exponentially accord<strong>in</strong>g to


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 113Table 2Advection model <strong>in</strong>put parametersParameter Symbol Units Value <strong>Source</strong> <strong>of</strong> value ∗Model parameters and constants<strong>Air</strong> exchange ratio AER hr −1 0.25 1Total build<strong>in</strong>g foundation area A s m 2 100 1Concentration <strong>of</strong> constituent <strong>in</strong> C a ug/m 3 0 2ambient airPermeability <strong>of</strong> soil to air k v m 2 3 × 10 −11 1Build<strong>in</strong>g ceil<strong>in</strong>g height L b m 2.44 1Below-foundation soil thickness L g m 0.3 2Maximum build<strong>in</strong>g/subsurface soil P max Pa 4 1pressure gradientCrack depth below grade Z crack m 0.15 1Soil porosity φ — 0.43 1Ratio <strong>of</strong> foundation crack area to η — 0.00038 1total foundation area<strong>Air</strong> viscosity µ a kg/m-d 1.56 1Pressure reversal frequency υ p d −1 12 2Calculated valuesEquivalent crack radius r crack m 0.00095 Equation 10<strong>Air</strong> volume <strong>of</strong> build<strong>in</strong>g V b m 3 244 3<strong>Air</strong> volume <strong>of</strong> subsurface soil V g m 3 12.9 4beneath build<strong>in</strong>gFloor-wall seam perimeter X crack m 40 Equation 9Notes:1 US EPA Guide default value (US EPA, 2003).2 Assumed.3 V b = L b A s .4 V g = L g A s φ.the follow<strong>in</strong>g expression:ṁ b = ṁ b,0 e −k sourcet(12)where:ṁ b,0 = Initial m<strong>as</strong>s rele<strong>as</strong>e rate <strong>of</strong> <strong>in</strong>door source (MT −1 ).k source = <strong>Source</strong> m<strong>as</strong>s rele<strong>as</strong>e rate first-order rate constant (T −1 ).The source decay constant w<strong>as</strong> set at 2.3 d −1 , which results <strong>in</strong> a m<strong>as</strong>s rele<strong>as</strong>e ratedecre<strong>as</strong>e <strong>of</strong> approximately one order <strong>of</strong> magnitude per day. The maximum build<strong>in</strong>g concentrationreaches a value <strong>of</strong> approximately 100 ug/m 3 at a time approximately 8 hours afterthe beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> the simulated rele<strong>as</strong>e while the subsurface concentration reaches a maximumconcentration <strong>of</strong> 20 ug/m 3 after 20 hours (see Figure 4). As with the constant sourcescenario, the <strong>VOC</strong>s persist <strong>in</strong> the subsurface at detectable concentrations after decre<strong>as</strong><strong>in</strong>gbelow detection limits <strong>in</strong>doors.In both model scenarios, <strong>VOC</strong>s orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong> the build<strong>in</strong>g migrate to the sub-foundationat concentrations above typical analytical detection limits. In both c<strong>as</strong>es, the relationship


114 T. E. McHugh et al.Figure 4. Predicted <strong>in</strong>door and subsurface <strong>VOC</strong> concentrations follow<strong>in</strong>g transient <strong>in</strong>door <strong>VOC</strong>rele<strong>as</strong>e. Detection limit represents typical detection limit for <strong>VOC</strong> analysis <strong>of</strong> bulk air samples. Ph<strong>as</strong>e1—<strong>VOC</strong>s detectable <strong>in</strong> <strong>in</strong>door air and subsurface with higher concentration <strong>in</strong> <strong>in</strong>door air; Ph<strong>as</strong>e2—<strong>VOC</strong>s detectable <strong>in</strong> <strong>in</strong>door air and subsurface with higher concentration <strong>in</strong> subsurface; Ph<strong>as</strong>e3—<strong>VOC</strong>s detectable <strong>in</strong> subsurface but not <strong>in</strong>door air; Ph<strong>as</strong>e 4—<strong>VOC</strong>s not detectable <strong>in</strong> <strong>in</strong>door air orsubsurface.between the <strong>in</strong>door air <strong>VOC</strong> concentration and the below-foundation <strong>VOC</strong> concentrationcan be described <strong>in</strong> four ph<strong>as</strong>es: 1) <strong>VOC</strong>s detectable <strong>in</strong> both compartments with <strong>in</strong>door airconcentrations greater than below-foundation concentrations, 2) <strong>VOC</strong>s detectable <strong>in</strong> bothcompartments with <strong>in</strong>door air concentrations less than below-foundation concentrations, 3)<strong>VOC</strong>s detectable below the foundation but not detectable <strong>in</strong> <strong>in</strong>door air, and 4) <strong>VOC</strong>s notdetectable <strong>in</strong> either compartment.


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 115For the purpose <strong>of</strong> evaluat<strong>in</strong>g subsurface vapor <strong>in</strong>trusion, ph<strong>as</strong>es 2 and 3 are <strong>of</strong> particularconcern. Sampl<strong>in</strong>g conducted dur<strong>in</strong>g these two ph<strong>as</strong>es would <strong>in</strong>dicate a <strong>VOC</strong> concentrationgradient from below the foundation <strong>in</strong>to the build<strong>in</strong>g even though the orig<strong>in</strong>al <strong>VOC</strong> sourcew<strong>as</strong> <strong>in</strong>doors. In both model scenarios, ph<strong>as</strong>es 2 and 3 cover more than 60% <strong>of</strong> the 5-daysimulation period, <strong>in</strong>dicat<strong>in</strong>g a significant potential for me<strong>as</strong>ur<strong>in</strong>g a higher <strong>VOC</strong> concentration<strong>in</strong> the subsurface than <strong>in</strong> the build<strong>in</strong>g follow<strong>in</strong>g the rele<strong>as</strong>e <strong>of</strong> a transient <strong>in</strong>door<strong>VOC</strong> source. These me<strong>as</strong>urement results could e<strong>as</strong>ily be mis<strong>in</strong>terpreted <strong>as</strong> an <strong>in</strong>dication <strong>of</strong>subsurface <strong>VOC</strong> vapor <strong>in</strong>trusion.Model Sensitivity AnalysisTwokey sources <strong>of</strong> uncerta<strong>in</strong>ty <strong>in</strong> the model <strong>in</strong>puts are: i) the advective air flow rate throughthe build<strong>in</strong>g foundation under positive and negative build<strong>in</strong>g pressure conditions (Q bg andQ gb ), and ii) the prevalence <strong>of</strong> positive versus negative build<strong>in</strong>g pressure conditions. Inorder to evaluate the applicability <strong>of</strong> the model results to a variety <strong>of</strong> build<strong>in</strong>g conditions, <strong>as</strong>ensitivity analysis w<strong>as</strong> performed for these two model <strong>in</strong>puts.The model <strong>in</strong>put values used for the b<strong>as</strong>e model simulations yield values <strong>of</strong> Q bg andQ gb , which vary from 0 to 14 L/m<strong>in</strong> over the range <strong>of</strong> build<strong>in</strong>g pressures specified. Forcomparison, Ett<strong>in</strong>ger (2005) suggests that advective flow through the build<strong>in</strong>g foundationtypically ranges between 1 and 10 L/m<strong>in</strong> for s<strong>in</strong>gle-family residences, while Johnson (2002)suggests that advective flow through the build<strong>in</strong>g foundation can be estimated <strong>as</strong> 0.0001to 0.05 times Q ab , correspond<strong>in</strong>g to a range <strong>of</strong> 0.1 to 50 L/m<strong>in</strong> for a typical s<strong>in</strong>gle-familyresidence. In order to evaluate the effect <strong>of</strong> variations <strong>in</strong> Q bg and Q gb on the model results, themaximum pressure gradient (P max )w<strong>as</strong> varied to achieve maximum Q bg and Q gb valuesrang<strong>in</strong>g from 0.5 to 50 L/m<strong>in</strong>. For low advective flow rates, the maximum subsurface <strong>VOC</strong>concentration (C g,max )w<strong>as</strong> lower than the b<strong>as</strong>e c<strong>as</strong>e, but the time period over which the<strong>VOC</strong> persisted below the build<strong>in</strong>g foundation above detectable concentrations w<strong>as</strong> greater.For high advective flow rates, C g,max w<strong>as</strong> higher than the b<strong>as</strong>e c<strong>as</strong>e, but the time period overwhich the <strong>VOC</strong> persisted below the build<strong>in</strong>g foundation above detectable concentrations w<strong>as</strong>lower. In all c<strong>as</strong>es, there were periods <strong>of</strong> time dur<strong>in</strong>g which subsurface <strong>VOC</strong> concentrationswere higher than <strong>in</strong>door <strong>VOC</strong> concentrations.Although the b<strong>as</strong>e model scenarios <strong>as</strong>sumed equal frequency <strong>of</strong> positive and negativebuild<strong>in</strong>g pressure conditions, the prevalence <strong>of</strong> positive versus negative build<strong>in</strong>gpressures will vary from build<strong>in</strong>g to build<strong>in</strong>g. To evaluate the impact <strong>of</strong> predom<strong>in</strong>atelypositive or negative build<strong>in</strong>g pressures on the model results, build<strong>in</strong>g pressure w<strong>as</strong> variedfrom +4 Pato−4 Pa<strong>in</strong><strong>as</strong>tep-wise f<strong>as</strong>hion rather than the s<strong>in</strong>usoidal variation <strong>of</strong> theb<strong>as</strong>e c<strong>as</strong>e. The prevalence <strong>of</strong> positive pressure conditions w<strong>as</strong> varied from 5% to 95%.In other words, positive pressure conditions were simulated for a period <strong>of</strong> 6 m<strong>in</strong>utesout <strong>of</strong> every 2 hours to 114 m<strong>in</strong>utes out <strong>of</strong> every 2 hours. As the prevalence <strong>of</strong> positivepressure conditions <strong>in</strong>cre<strong>as</strong>es, both the maximum subsurface <strong>VOC</strong> concentration (C g,max )and the percentage <strong>of</strong> the simulation time for which the subsurface <strong>VOC</strong> concentrationis greater than the <strong>in</strong>door <strong>VOC</strong> concentration <strong>in</strong>cre<strong>as</strong>es. C g,max is directly proportionalto the prevalence <strong>of</strong> positive pressure conditions, so for a positive pressure prevalence<strong>of</strong> 75%, C g,max is 50% higher than the b<strong>as</strong>e c<strong>as</strong>e and for a positive pressure prevalence<strong>of</strong> 25%, C g,max is 50% lower than the b<strong>as</strong>e c<strong>as</strong>e. The sensitivity analysis also <strong>in</strong>dicatedthat transient <strong>in</strong>door <strong>VOC</strong> sources can result <strong>in</strong> subsurface <strong>VOC</strong> concentrationsthat are higher than <strong>in</strong>door <strong>VOC</strong> concentrations under a wide variety <strong>of</strong> pressure scenarios.When positive build<strong>in</strong>g pressure conditions occurred less than 15% <strong>of</strong> the time, subsurface<strong>VOC</strong> concentrations were never higher than <strong>in</strong>door <strong>VOC</strong> concentrations. However, when


116 T. E. McHugh et al.positive pressure conditions occurred more than 30% <strong>of</strong> the time, subsurface <strong>VOC</strong> concentrationsexceeded <strong>in</strong>door <strong>VOC</strong> concentrations for at le<strong>as</strong>t 50% <strong>of</strong> the 5-day simulationperiod.In addition to the pressure <strong>as</strong>sumptions described above, other model <strong>in</strong>put parameterscan significantly affect the results. A lower below-foundation soil permeability greatly<strong>in</strong>cre<strong>as</strong>es the persistence <strong>of</strong> <strong>VOC</strong>s <strong>in</strong> the subsurface follow<strong>in</strong>g removal <strong>of</strong> the <strong>in</strong>door <strong>VOC</strong>source. For example, a soil permeability representative <strong>of</strong> a f<strong>in</strong>e-gra<strong>in</strong>ed sand (i.e., 1 ×10 −12 m 2 ) results <strong>in</strong> the presence <strong>of</strong> detectable <strong>VOC</strong> concentrations <strong>in</strong> the subsurface formore than 30 days follow<strong>in</strong>g the rele<strong>as</strong>e <strong>of</strong> a transient <strong>in</strong>door <strong>VOC</strong> source. In contr<strong>as</strong>t,although not considered <strong>in</strong> the model, w<strong>in</strong>d-driven advection <strong>of</strong> outdoor air through thebelow-foundation soils (Fischer et al., 1996) could serve to reduce the magnitude andduration <strong>of</strong> subsurface <strong>VOC</strong> impacts from <strong>in</strong>door sources.The sensitivity analysis <strong>in</strong>dicates that the advection model presented here providesqualitatively similar results over a broad range <strong>of</strong> build<strong>in</strong>g pressure conditions. However,the quantitative model results vary significantly depend<strong>in</strong>g on the selection <strong>of</strong> model <strong>in</strong>putparameters. As a result, the model should be considered a qualitative tool for the evaluation<strong>of</strong> potential <strong>VOC</strong> exchange between a build<strong>in</strong>g <strong>in</strong>terior and the subsurface. <strong>Indoor</strong> <strong>VOC</strong>sources <strong>of</strong> higher m<strong>as</strong>s flux or longer duration result <strong>in</strong> higher below-foundation <strong>VOC</strong>concentrations. The specific model results presented for the b<strong>as</strong>e c<strong>as</strong>e scenarios are <strong>in</strong>tendedto illustrate the types <strong>of</strong> <strong>VOC</strong> concentration gradients that may be observed between <strong>in</strong>doorair and subsurface vapors follow<strong>in</strong>g the rele<strong>as</strong>e <strong>of</strong> a transient <strong>in</strong>door <strong>VOC</strong> source. Theresults are not <strong>in</strong>tended to quantify the magnitude or duration <strong>of</strong> these relationships <strong>in</strong>specific build<strong>in</strong>gs.Field Evaluation <strong>of</strong> Below-Foundation <strong>VOC</strong> ImpactsIndependent <strong>of</strong> model simulations, field me<strong>as</strong>urements <strong>of</strong> <strong>in</strong>door and below-foundation<strong>VOC</strong> concentrations have also <strong>in</strong>dicated the migration <strong>of</strong> <strong>VOC</strong>s from <strong>in</strong>door air <strong>in</strong>to thesubsurface. <strong>Indoor</strong> air and below-foundation samples collected from three apartments ata complex <strong>in</strong> Fort Worth, Tex<strong>as</strong>, show that <strong>VOC</strong>s orig<strong>in</strong>at<strong>in</strong>g <strong>in</strong>doors have migrated <strong>in</strong>tothe subsurface and are present at detectable concentrations. Although this is a limited dat<strong>as</strong>et from a s<strong>in</strong>gle site, the results provide a prelim<strong>in</strong>ary <strong>in</strong>dication that <strong>VOC</strong> transport from<strong>in</strong>door to the subsurface can occur.Sample Collection and AnalysisAn <strong>in</strong>door air and below-foundation vapor sampl<strong>in</strong>g program w<strong>as</strong> conducted <strong>in</strong> three vacantapartments with<strong>in</strong> an apartment complex <strong>in</strong> Forth Worth, Tex<strong>as</strong>. The <strong>in</strong>itial purpose <strong>of</strong> thesampl<strong>in</strong>g program w<strong>as</strong> to evaluate the potential for vapor <strong>in</strong>trusion impacts <strong>as</strong>sociated withmethyl-tertiary butyl ether (MTBE) detected <strong>in</strong> a groundwater monitor<strong>in</strong>g well upgradient<strong>of</strong> the property at an adjacent former g<strong>as</strong> station. Groundwater samples from the adjacentproperty have been analyzed for benzene (16 to 4,800 ug/L), ethylbenzene (3 to 490 ug/L),toluene (


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 117apartment units. Sampl<strong>in</strong>g locations were positioned away from visible cracks <strong>in</strong> the slabto maximize the collection <strong>of</strong> soil vapors held beneath the slabs. With<strong>in</strong> each sampledapartment unit, the slab w<strong>as</strong> cored at two locations. The first hole w<strong>as</strong> used for geotechnicalsampl<strong>in</strong>g and the second hole w<strong>as</strong> used for the actual soil vapor sampl<strong>in</strong>g. Dur<strong>in</strong>gthe cor<strong>in</strong>g procedure, the volume <strong>of</strong> fresh water used to lubricate the core barrel w<strong>as</strong> m<strong>in</strong>imized<strong>in</strong> order to avoid <strong>in</strong>hibition <strong>of</strong> vapor flow from the <strong>in</strong>troduction <strong>of</strong> water <strong>in</strong>to the subfoundationlayer. A wet vacuum w<strong>as</strong> used to remove lubricat<strong>in</strong>g water throughout the cor<strong>in</strong>gprocess.With<strong>in</strong> each sampled apartment unit, an <strong>in</strong>itial 4-<strong>in</strong>ch diameter hole w<strong>as</strong> cored to: 1)determ<strong>in</strong>e the slab thickness, 2) determ<strong>in</strong>e the presence and thickness <strong>of</strong> a backfilled sub-slablayer, and 3) collect a sample from the sub-slab layer for field cl<strong>as</strong>sification. Samples werecollected with a hand auger and visually logged by the on-site geologist. Field observations<strong>in</strong>dicated that the sub-slab sand bed w<strong>as</strong> present beneath each <strong>of</strong> the three sampled apartmentunits. Apparent moisture content <strong>of</strong> the sub-slab sand bed across the site ranged from noneto slightly moist.Foundation penetrations used for geotechnical sampl<strong>in</strong>g were patched follow<strong>in</strong>g completion<strong>of</strong> the geotechnical sampl<strong>in</strong>g to prevent the possible exchange <strong>of</strong> <strong>in</strong>door air andsubsurface soil vapors through the slab. Clean sand (i.e., filter pack sand commonly used<strong>in</strong> monitor<strong>in</strong>g well <strong>in</strong>stallations) w<strong>as</strong> placed with<strong>in</strong> the cored hole and compacted by hand.A th<strong>in</strong> layer <strong>of</strong> hydrated powdered bentonite (approximately 1-<strong>in</strong>ch thick) w<strong>as</strong> placed atopthe sand at the b<strong>as</strong>e <strong>of</strong> the slab to function <strong>as</strong> a seal. The rema<strong>in</strong><strong>in</strong>g void space through theslab w<strong>as</strong> filled with concrete and f<strong>in</strong>ished flush with the surround<strong>in</strong>g slab surface.One day after collection <strong>of</strong> the geotechnical samples, below-foundation soil vaporsamples were collected through a 1.25-<strong>in</strong>ch diameter hole cored with<strong>in</strong> 2 feet <strong>of</strong> eachgeotechnical sampl<strong>in</strong>g location. To prevent water used dur<strong>in</strong>g the cor<strong>in</strong>g process fromenter<strong>in</strong>g the sub-foundation layer, cor<strong>in</strong>g w<strong>as</strong> stopped approximately 0.25 <strong>in</strong>ches above theb<strong>as</strong>e <strong>of</strong> the slab. Water with<strong>in</strong> the partial slab penetration w<strong>as</strong> removed with a wet vacuumbefore the rema<strong>in</strong>der <strong>of</strong> the hole w<strong>as</strong> drilled with a rotary impact drill that does not requirethe use <strong>of</strong> water. Below-foundation soil vapor samples were collected from the approximatemid-po<strong>in</strong>t <strong>of</strong> the sand bed us<strong>in</strong>g perforated Teflon ○Rtub<strong>in</strong>g connected to dedicated 6-literSumma canisters. Immediately prior to sample collection, the sampl<strong>in</strong>g tra<strong>in</strong> w<strong>as</strong> purgedwith a separate Summa canister to remove air present with<strong>in</strong> the system, s<strong>in</strong>ce this air wouldnot be representative <strong>of</strong> actual subsurface vapor conditions. The purged volume equaledone to two times the calculated volume <strong>of</strong> air conta<strong>in</strong>ed with<strong>in</strong> the tub<strong>in</strong>g and the slabpenetration.Below-foundation vapor samples were collected cont<strong>in</strong>uously over a 2-hour period atan approximate flow rate <strong>of</strong> 0.05 liters per m<strong>in</strong>ute to m<strong>in</strong>imize vacuum effects created dur<strong>in</strong>gthe sampl<strong>in</strong>g process. An outdoor ambient air sample w<strong>as</strong> collected adjacent to the formerg<strong>as</strong> station property. An <strong>in</strong>door air sample w<strong>as</strong> collected with<strong>in</strong> each <strong>of</strong> the three sampledapartment units. Both the <strong>in</strong>door air and outdoor ambient air samples were collected directly<strong>in</strong>to dedicated 6-liter Summa canisters over a 2-hour period at an approximate flow rate <strong>of</strong>0.05 liters per m<strong>in</strong>ute concurrent with the below-foundation vapor sampl<strong>in</strong>g. All sampleswere analyzed for <strong>VOC</strong>s at a commercial laboratory by US EPA Method TO-14A.Sample Results and DiscussionOne or more <strong>VOC</strong>s were detected <strong>in</strong> five <strong>of</strong> the seven samples collected from the site. No<strong>VOC</strong>s were detected <strong>in</strong> the one outdoor ambient air sample; however, <strong>VOC</strong>s were detected<strong>in</strong> two <strong>of</strong> three <strong>in</strong>door air samples and <strong>in</strong> three <strong>of</strong> three below-foundation samples. A total


118 T. E. McHugh et al.Table 3<strong>VOC</strong> analyses <strong>of</strong> air and vapor samples at a Tex<strong>as</strong> apartment complex (ug/m 3 )Apt. 113 Apt. 123 Apt. 163Chemical IA SS IA SS IA SSOutdoorairDichlorobenzene, 1,4- 35 62


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 119As shown on Table 3, concentrations <strong>of</strong> methylene chloride and toluene <strong>in</strong> Apt. 123 and1,4-dichlorobenzene <strong>in</strong> Apt. 113 were higher <strong>in</strong> below-foundation samples than <strong>in</strong> <strong>in</strong>doorsamples, <strong>in</strong>dicat<strong>in</strong>g that the migration <strong>of</strong> <strong>VOC</strong>s from <strong>in</strong>door air to below-foundation soilvapors occurred prior to penetration <strong>of</strong> the foundation for the sample collection. Theseresults are consistent with the model simulations <strong>in</strong>dicat<strong>in</strong>g that elevated concentrations <strong>of</strong><strong>VOC</strong>s can persist <strong>in</strong> the subsurface follow<strong>in</strong>g a transient <strong>in</strong>door rele<strong>as</strong>e even after the <strong>VOC</strong>shave dissipated from <strong>in</strong>door air. Because the orig<strong>in</strong>al goal <strong>of</strong> the sampl<strong>in</strong>g program w<strong>as</strong> todeterm<strong>in</strong>e the presence or absence <strong>of</strong> a subsurface vapor <strong>in</strong>trusion impact at the apartmentcomplex, no additional sampl<strong>in</strong>g w<strong>as</strong> conducted to further evaluate the transport <strong>of</strong> <strong>VOC</strong>sfrom <strong>in</strong>doors to the below-foundation soils.Discussion and RecommendationThe model simulations and field data presented above support the conclusion that <strong>in</strong>door airsources <strong>of</strong> <strong>VOC</strong>s can impact the below-foundation soil g<strong>as</strong>, complicat<strong>in</strong>g the field evaluation<strong>of</strong> vapor <strong>in</strong>trusion at corrective action sites. A simple advection model h<strong>as</strong> been developedthat allows for both positive and negative build<strong>in</strong>g pressures relative to below the foundation.The model provides for the simulation <strong>of</strong> reversible air exchange between the <strong>in</strong>door air andthe sub-foundation soil g<strong>as</strong> allow<strong>in</strong>g an evaluation <strong>of</strong> the impact <strong>of</strong> <strong>in</strong>door <strong>VOC</strong> sources onbelow-foundation soil g<strong>as</strong>. This model <strong>in</strong>dicates that transient <strong>in</strong>door <strong>VOC</strong> sources can result<strong>in</strong> significant concentrations <strong>of</strong> <strong>VOC</strong>s below the build<strong>in</strong>g foundation. Transient simulations<strong>of</strong> a constant source and a first-order source yielded below-foundation concentrations <strong>of</strong>30% and 20% <strong>of</strong> the peak <strong>in</strong>door air concentrations, respectively. As a result, a build<strong>in</strong>g thathad recently experienced a peak benzene concentration result<strong>in</strong>g from a transient <strong>in</strong>doorsource equal to the 90% percentile <strong>in</strong>door air benzene concentration (15.3 ug/m 3 ;Sextonet al., 2004) could also have a below-foundation benzene concentration <strong>of</strong> 4.6 ug/m 3 , greaterthan the US EPA benzene screen<strong>in</strong>g value for below-foundation samples (3.1 ug/m 3 ;USEPA, 2002). The model simulations further <strong>in</strong>dicate that the below-foundation benzenecould persist at concentrations above the US EPA screen<strong>in</strong>g values even after the <strong>in</strong>door airconcentration falls below the analytical detection limit (0.5 ug/m 3 ). As a result, application<strong>of</strong> the US EPA screen<strong>in</strong>g values to below-foundation sample results could erroneously<strong>in</strong>dicate a potential for subsurface vapor <strong>in</strong>trusion impacts even at sites where <strong>in</strong>door rele<strong>as</strong>esrepresent the only source <strong>of</strong> <strong>VOC</strong>s at the site.Field data collected from an apartment complex <strong>in</strong> Tex<strong>as</strong> confirm model predictionsthat <strong>in</strong>door <strong>VOC</strong>s can impact the below-foundation soil g<strong>as</strong>. Four <strong>VOC</strong>s commonly <strong>as</strong>sociatedwith <strong>in</strong>door sources (1,4-dichlorobenzene, methylene chloride, toluene, and xylene)were detected <strong>in</strong> <strong>in</strong>door and below-foundation samples collected from three vacant apartments.<strong>Indoor</strong> sources were identified <strong>as</strong> the most likely source <strong>of</strong> these <strong>VOC</strong>s at this site.In two <strong>of</strong> three apartments sampled, the below-foundation <strong>VOC</strong> concentration w<strong>as</strong> higherthan the <strong>in</strong>door <strong>VOC</strong> concentration, confirm<strong>in</strong>g that <strong>VOC</strong>s orig<strong>in</strong>at<strong>in</strong>g from <strong>in</strong>doors canpersist <strong>in</strong> the subsurface after dissipat<strong>in</strong>g from <strong>in</strong>door air. These results <strong>in</strong>dicate that <strong>in</strong>doorsources can result <strong>in</strong> a mislead<strong>in</strong>g concentration gradient between below-foundationsamples and <strong>in</strong>door samples, with below-foundation <strong>VOC</strong> concentrations exceed<strong>in</strong>g <strong>in</strong>doorconcentrations <strong>in</strong> some c<strong>as</strong>es. These f<strong>in</strong>d<strong>in</strong>gs should be used to update the conceptual modelfor vapor <strong>in</strong>trusion <strong>in</strong> order to account for bi-directional vapor exchange across build<strong>in</strong>gfoundations.B<strong>as</strong>ed on the f<strong>in</strong>d<strong>in</strong>g that bi-directional transport <strong>of</strong> <strong>VOC</strong>s can occur between <strong>in</strong>doorair and the subsurface, the conceptual model <strong>of</strong> vapor <strong>in</strong>trusion and <strong>as</strong>sociated regulatoryguidance should <strong>in</strong>clude the follow<strong>in</strong>g considerations:


120 T. E. McHugh et al. The use <strong>of</strong> a wide variety <strong>of</strong> volatile chemicals <strong>in</strong>doors commonly results <strong>in</strong> <strong>in</strong>door<strong>VOC</strong> concentrations above US EPA screen<strong>in</strong>g guidance levels (see Table 1). Transient<strong>in</strong>door sources can result <strong>in</strong> peak <strong>in</strong>door <strong>VOC</strong> concentrations far higher than theselevels. Some build<strong>in</strong>gs are expected to experience both positive and negative build<strong>in</strong>g pressuresrelative to the subsurface with<strong>in</strong> a typical 24-hour period. This pressure fluctuationcan result <strong>in</strong> bi-directional exchange <strong>of</strong> air across the build<strong>in</strong>g foundation,creat<strong>in</strong>g a mechanism for <strong>VOC</strong>s that orig<strong>in</strong>ate <strong>in</strong>doors to migrate <strong>in</strong>to the subsurface.In addition, some build<strong>in</strong>gs may typically operate under positive pressure conditions(Bearg, 1993), result<strong>in</strong>g <strong>in</strong> cont<strong>in</strong>uous transport <strong>of</strong> <strong>in</strong>door air through the build<strong>in</strong>gfoundation. <strong>VOC</strong>s orig<strong>in</strong>at<strong>in</strong>g from <strong>in</strong>door sources can persist <strong>in</strong> the subsurface longer than theypersist <strong>in</strong> <strong>in</strong>door air. This persistence can result <strong>in</strong> subsurface <strong>VOC</strong> concentrationsgreater than those detected <strong>in</strong> <strong>in</strong>door air even <strong>in</strong> situations where the <strong>in</strong>door air is theonly source <strong>of</strong> the <strong>VOC</strong>s.Although <strong>in</strong>door and below-foundation <strong>VOC</strong> me<strong>as</strong>urements represent one l<strong>in</strong>e <strong>of</strong> evidencefor the evaluation <strong>of</strong> potential vapor <strong>in</strong>trusion impacts, ignor<strong>in</strong>g the potential forbi-directional transport <strong>of</strong> <strong>VOC</strong>s through the build<strong>in</strong>g foundation can result <strong>in</strong> a mis<strong>in</strong>terpretation<strong>of</strong> <strong>in</strong>door and subsurface <strong>VOC</strong> sampl<strong>in</strong>g results, with concomitant <strong>in</strong>correctconclusions regard<strong>in</strong>g the presence or absence <strong>of</strong> vapor <strong>in</strong>trusion impacts at build<strong>in</strong>gs located<strong>in</strong> the vic<strong>in</strong>ity <strong>of</strong> subsurface <strong>VOC</strong> contam<strong>in</strong>ation. Although the detection <strong>of</strong> <strong>VOC</strong>sdirectly below a build<strong>in</strong>g foundation may <strong>in</strong>dicate the migration <strong>of</strong> <strong>VOC</strong>s from subsurfacesoils, these results may also <strong>in</strong>dicate the migration <strong>of</strong> <strong>VOC</strong>s from <strong>in</strong>door sources. Therefore,an accurate understand<strong>in</strong>g <strong>of</strong> pressure and <strong>VOC</strong> concentration gradients around the build<strong>in</strong>gis required <strong>in</strong> order to properly <strong>in</strong>terpret the <strong>VOC</strong> concentration results.AcknowledgementsThis research w<strong>as</strong> supported <strong>in</strong> part by the U.S. Department <strong>of</strong> Defense, through the EnvironmentalSecurity Technology Certification Program (ESTCP). This manuscript h<strong>as</strong> benefitedfrom the helpful comments provided by three anonymous reviewers.ReferencesAmerican Society <strong>of</strong> Heat<strong>in</strong>g, Refrigerat<strong>in</strong>g and <strong>Air</strong>-Condition<strong>in</strong>g Eng<strong>in</strong>eers, Inc. (ASHRAE). 2004.ANSI/ASHRAE Standard 62.1-2004, Ventilation for Acceptable <strong>Indoor</strong> <strong>Air</strong> Quality.Bearg, D.W. 1993. <strong>Indoor</strong> <strong>Air</strong> Quality and HVAC Systems, CRC Press, Boca Raton, FL.Chapra, S.C. and Canale, R. 2001. Numerical Methods for Eng<strong>in</strong>eers: With S<strong>of</strong>tware and Programm<strong>in</strong>gApplications, 4th Ed., McGraw-Hill, New York.Ett<strong>in</strong>ger, R.A. 2005. Current Practices and Developments <strong>in</strong> Vapor Intrusion Model<strong>in</strong>g, From SevernTrent Laboratories sem<strong>in</strong>ar, “Technical Guidance for <strong>Indoor</strong> <strong>Air</strong> Vapor Intrusion,” San Pedroand Alamo, California, February 2005.Fischer, M.L., Bentley, A.J., Dunk<strong>in</strong>, K.A., Hodgson, A.T., Nazar<strong>of</strong>f, W.W., Sextro, R.G., andDaisey, J.M. 1996. Factors Affect<strong>in</strong>g <strong>Indoor</strong> <strong>Air</strong> Concentrations <strong>of</strong> Volatile Organic Compoundsat a Site <strong>of</strong> Subsurface G<strong>as</strong>ol<strong>in</strong>e <strong>Contam<strong>in</strong>ation</strong>. Environ. Sci. Technol. 30(10), 2948–2957.Foster, S.J., Kurtz, J.P., and Woodland, A.K. 2002. Background <strong>in</strong>door air risks at selected residences<strong>in</strong> Denver, Colorado, Available at http://www.envirogroup.com/publications.htm. (accessedDecember 10, 2003).


<strong>Indoor</strong> <strong>Air</strong> <strong>as</strong> a <strong>Source</strong> <strong>of</strong> <strong>VOC</strong> <strong>Contam<strong>in</strong>ation</strong> 121Johnson, P.C. and Ett<strong>in</strong>ger R.A. 1991. Heuristic model for the <strong>in</strong>trusion rate <strong>of</strong> contam<strong>in</strong>ant vapors<strong>in</strong>to build<strong>in</strong>gs. Environ. Sci. Technol. 25(8), 1445–1452.Johnson, P.C. 2002. Identification <strong>of</strong> Critical Parameters for the Johnson and Ett<strong>in</strong>ger (1991) VaporIntrusion Model, American Petroleum Institute, Technical Bullet<strong>in</strong> No. 17, Available at http://apiep.api.org/filelibrary/Bullet<strong>in</strong>17.pdf(accessed June 23, 2005).Kurtz, J.P. and Folkes, D.J. 2002. Background Concentrations <strong>of</strong> Selected Chlor<strong>in</strong>ated Hydrocarbons<strong>in</strong> Residential <strong>Indoor</strong> <strong>Air</strong>. Available at http://www.envirogroup.com/publications.htm (accessedDecember 10, 2003).McHugh, T.E., Connor, J.A., and Ahmad, F. 2004. An empirical analysis <strong>of</strong> the groundwater-to-<strong>in</strong>doorairexposure pathway: The role <strong>of</strong> background concentrations <strong>in</strong> <strong>in</strong>door air. Env. Forensics. 5(1),33–44.McHugh, T.E., Connor, J.A., Ahmad, F., and Newell, C.J. 2003. A Groundwater M<strong>as</strong>s Flux Model forGroundwater-to-<strong>Indoor</strong>-<strong>Air</strong> Vapor Intrusion. Paper H-09, <strong>in</strong>: V.S. Magar and M.E. Kelley (Eds.),In Situ and On-Site Bioremediation—2003. Proceed<strong>in</strong>gs <strong>of</strong> the Seventh International In Situand On-Site Bioremediation Symposium (Orlando, FL, June 2003). Battelle Press, Columbus,OH.Nazar<strong>of</strong>f, W.W., Feustel, H., Nero, A.V., Revzan, K.L., and Grimsrund, D.T. 1985. Radon transport<strong>in</strong>to a detached one-story house with a b<strong>as</strong>ement. Atmos. Environ. 19(1), 31–46.Nazar<strong>of</strong>f, W.W., Lewis, S.R., Doyle, S.M., Moed, B.A., and Nero, A.V. 1987. Experiments on pollutanttransport from soil <strong>in</strong>to residential b<strong>as</strong>ements by pressure-driven airflow. Environ. Sci. Technol.21(5), 459–466.PADEP (Pennsylvania Department <strong>of</strong> Environmental Protection). 2004. Land Recycl<strong>in</strong>g ProgramTechnical Guidance Manual-Section IV.A.4. Vapor Intrusion <strong>in</strong>to Build<strong>in</strong>gs from Groundwaterand Soil under Act 2 Statewide Health Standard. Document Number 253-0300-100.http://www.dep.state.pa.us/eps/default.<strong>as</strong>p (accessed June 20, 2004).Parker, J.C. 2003. Model<strong>in</strong>g volatile chemical transport, biodecay, and emission to <strong>in</strong>door air. GroundWater Mon. Remed. 23(1), 107–120.Renner, R. 2002. A c<strong>as</strong>e <strong>of</strong> the vapors. Sci. Am. 287(1), 27.Samfield, M.M. 1992. <strong>Indoor</strong> <strong>Air</strong> Quality Data B<strong>as</strong>e for Organic Compounds, U.S. EnvironmentalProtection Agency Office <strong>of</strong> Research and Development, EPA-600-R-92-025, February1992.San Diego County Department <strong>of</strong> Environmental Health. 2004. Site Assessment and Mitigation (SAM)Manual. http://www.sdcounty.ca.gov/deh/lwq/sam/vapor risk <strong>as</strong>sessment 2000.html (accessedJune 20, 2004).Schuver, H.J. 2003. Overview <strong>of</strong> the Science Beh<strong>in</strong>d US EPA’s Guidance for the Vapor Intrusion to<strong>Indoor</strong> <strong>Air</strong> Pathway. From U.S.EPA Sem<strong>in</strong>ar on Vapor Intrusion, Dall<strong>as</strong>, TX, January 14–15,2003.Sexton, K., Adgate, J.L., Ramachandran, G., Pratt, G.C., Mong<strong>in</strong>, S.J., Stock, T.H., and Morandi,M.T. 2004. Comparison <strong>of</strong> personal, <strong>in</strong>door, and outdoor exposures to hazardous air pollutants<strong>in</strong> three urban communities. Environ. Sci. Technol. 38(2), 423–430.Shah, J.J. and S<strong>in</strong>gh, H.B. 1988. Distribution <strong>of</strong> volatile organic chemicals <strong>in</strong> outdoor and <strong>in</strong>door air.Environ. Sci. Technol. 22(12).Stolwijk, J.A.J. 1990. Assessment <strong>of</strong> population exposure and carc<strong>in</strong>ogenic risk posed by volatileorganic compounds <strong>in</strong> <strong>in</strong>door air. Risk Analysis. 10(1).US EPA (U. S. Environmental Protection Agency). 2003. User’s Guide For Evaluat<strong>in</strong>g SubsurfaceVapor Intrusion Into Build<strong>in</strong>gs, Office <strong>of</strong> Emergency and Remedial Response, June 19, 2003.Available at http://www.epa.gov/oswer/risk<strong>as</strong>sessment/airmodel/johnson ett<strong>in</strong>ger.htm (accessedJune 20, 2004).US EPA (U.S. Environmental Protection Agency). 2002. Draft Guidance for Evaluat<strong>in</strong>g the VaporIntrusion to <strong>Indoor</strong> <strong>Air</strong> Pathway from Groundwater and <strong>Soils</strong> (Subsurface Vapor Intrusion Guidance).November 2002.US EPA (U.S. Environmental Protection Agency). 2001a. Supplemental Guidance for Evaluat<strong>in</strong>g theVapor Intrusion to <strong>Indoor</strong> <strong>Air</strong> Pathways. Office <strong>of</strong> Solid W<strong>as</strong>te. October 23, 2001.


122 T. E. McHugh et al.US EPA (U.S. Environmental Protection Agency). 2001b. Build<strong>in</strong>g Radon Out, A Step-by-Step Guide On How to Build Radon-Resistant Homes. Office <strong>of</strong> <strong>Air</strong> and Radiation, April2001.WIDHFS (Wiscons<strong>in</strong> Department <strong>of</strong> Health and Family Services). 2003. Chemical VaporIntrusion and Residential <strong>Indoor</strong> <strong>Air</strong>, Guidance for Environmental Consultants andContractors. Available at http://dhfs.wiscons<strong>in</strong>.gov/eh/<strong>Air</strong>/fs/VI pr<strong>of</strong>.htm (accessed June 20,2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!