13.07.2015 Views

Smart Inverter Controls and Microgrid Interoperation at DECC

Smart Inverter Controls and Microgrid Interoperation at DECC

Smart Inverter Controls and Microgrid Interoperation at DECC

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Technical Innov<strong>at</strong>ion vs. St<strong>at</strong>e of the ArtORNL research is c<strong>at</strong>alyzing the transform<strong>at</strong>ion of the electric distribution grid <strong>at</strong>the supply <strong>and</strong> consumer level.TECHNOLOGY ORNL FOCUS EXISTING TECHNOLOGYDER CompositionHigh penetr<strong>at</strong>ion inverter‐based for both ongrid<strong>and</strong> isl<strong>and</strong>ing.Adaptive “on the fly” control: self‐tuningparameters for flexibility <strong>and</strong> adaptability.Multi‐layer: (1) communic<strong>at</strong>ion‐capable localDER layer <strong>and</strong> (2) central management layer.Hybrid control: local droop control (P‐f, Q‐V)with secondary frequency <strong>and</strong> voltage controlbased on central MG‐wide management.Cost vs. performance evalu<strong>at</strong>ion of MG controlfor different communic<strong>at</strong>ions.iEconomic DER disp<strong>at</strong>ch (P, Q) with responsiveload <strong>and</strong> energy storage management.Low penetr<strong>at</strong>ion inverter‐based for on‐ grid;Rot<strong>at</strong>ing gener<strong>at</strong>ion for MG frequency.Non‐adaptive control parameters preset <strong>and</strong>fixed (based on studies).Single local DER layer.<strong>Smart</strong> t<strong>Inverter</strong> ControlAd ti “ th fl ” t l lf t i N d ti t l t t d<strong>Microgrid</strong> (MG)ArchitectureMG ControlHbid l l ld l (P f Q V) Local open loop droop control (P‐f, Q‐V) with ihsteady‐st<strong>at</strong>e frequency <strong>and</strong> voltage controlerrorMG communic<strong>at</strong>ionsLiter<strong>at</strong>ure review has not revealed similarwork.MG energyLiter<strong>at</strong>ure review has not revealed similarmanagement systemwork.MG protectionCurrent magnitudes <strong>and</strong> direction change withOvercurrent methods designed foron‐grid vs. isl<strong>and</strong>ing modes: ORNL developedadaptive methods (leveraging another project).unidirectional flow in distribution systems.Directional protection currently used intransmission systems. December 200888


Technical Accomplishments<strong>Smart</strong> <strong>Inverter</strong> (SI) <strong>Controls</strong>DER Connectedto DistributionSystem<strong>Smart</strong> <strong>Inverter</strong> ControllerCurrent FY12 Developed PV inverter model <strong>and</strong>control algorithms (Nov’11) Develop secondary frequency <strong>and</strong>voltage control for microgrid inverterPrior FYsoper<strong>at</strong>ion (Sep’12). Developed adaptive controls for single Work with vendor inverter on controlsinverter (FY06 to FY11).(Sep’12). Extended adaptive control methodologyto support multiple inverters connected Out Yearsto distribution system/circuit (FY11). SI mode switching (i.e., P2030) SI controls for microgrid applic<strong>at</strong>ions for Prior year accomplishmentfrequency <strong>and</strong> voltage transition <strong>and</strong> FY12 focussmooth transition from grid to microgridDecember 2008 Out Years 9


Prior FYs Established <strong>DECC</strong> for invertercontrols testing (FY06) Completed second inverter testsystem <strong>at</strong> <strong>DECC</strong> (FY11). Multiple (Two) inverters testedtogether on-grid <strong>at</strong> <strong>DECC</strong> undervoltage control (FY11). Designed <strong>and</strong> beganconstructing plug-<strong>and</strong>-play,flexible <strong>and</strong> reconfigurable lowvoltage<strong>and</strong> low-power test bed(FY11).Current FY12Technical AccomplishmentsTesting & Tech Transfer<strong>DECC</strong> Lab Completed new test bed <strong>and</strong>installed third inverter (Mar’12) Out Years Partnered with major inverter Install MG communic<strong>at</strong>ionsmanufacturer (Feb’12) Install cables to form radial-loop MG. Prior year accomplishment Test inverter controls in new Test MG in isl<strong>and</strong>ing mode. FY12 focus Out Yearstest bed (Jun’12) Install MG transition hardware Test MG mode transitionsDecember 200811


Project Team CapabilitiesORNL Team has key domain experts from industry, academia, <strong>and</strong> otherN<strong>at</strong>ional Labs needed to advance the R&D of the future electric grid.TEAM CAPABILITIESORNL, UTK, <strong>and</strong> Industry Partners <strong>Smart</strong> inverter (SI) controls (>7 yrs) expertiseadvancing in self-healing microgrids (MGs). Power systems, protection, power electronics<strong>and</strong> control expertise. Chair task force on volt/var control with highpenetr<strong>at</strong>ion renewables. Member of IEEE PES WG in smart distribution<strong>and</strong> DER integr<strong>at</strong>ion Support SI st<strong>and</strong>ards development (SCC21,1547, NIST, <strong>and</strong> EPRI). <strong>DECC</strong> Lab provides “in-the field” SI <strong>and</strong> MGtesting with actual distribution system. SPIDERS leveraging ORNL inverter controlsexpertise for military MGs. ORNL partnership with UTK’s DOE/NSFsponsored CURENT center. Industry team (TVA, EPRI, SCE, TVPPA,LCUB, …) provides technical input <strong>and</strong>guidance <strong>Inverter</strong> companies provide technical support<strong>and</strong> m<strong>at</strong>erials. December 200812


Funding LeverageORNL plays a unique role in both providing innov<strong>at</strong>ive SI <strong>and</strong> MG development(controls, communic<strong>at</strong>ions & protection) <strong>and</strong> a testing pl<strong>at</strong>form on an actualdistribution ib ti system.December 200813These figures above do not reflect the leverage value of a PV inverter, an automobile b<strong>at</strong>teryassembly , <strong>and</strong> MG equipment to be provided by industry.


Contact Inform<strong>at</strong>ionD. Tom Rizyrizydt@ornl.gov865-574.5203 office, 207.6769 cellYan Xuxuy3@ornl.gov865-574-7734 office, 929.4219 cellOak Ridge N<strong>at</strong>ional Labor<strong>at</strong>ory1 Bethel Valley Road, Oak Ridge, TN 37831Power & Energy Systems (PES) Group:http://www.ornl.gov/sci/ees/etsd/pes/Energy & Transport<strong>at</strong>ion Science Division (ETSD)http://www.ornl.gov/sci/ees/etsd/Electric Deliveries Technology (EDT) Programhttp://www.ornl.gov/sci/electricdelivery/December 200814


BACK‐UP SLIDESDecember 200815


Distributed EnergyCommunic<strong>at</strong>ions & <strong>Controls</strong>(<strong>DECC</strong>) Labor<strong>at</strong>oryDecember 200816


<strong>DECC</strong> Labor<strong>at</strong>ory is loc<strong>at</strong>ed onNorth ORNL Campus<strong>DECC</strong> Lab<strong>DECC</strong> AnnexLoadBanksDecember 200817


NWE<strong>DECC</strong> Lab LayoutS3147EXIT6’ Door WaySG - INVERTERSG –SynchronousCondenserDoorsSG – A/C STALL& FREQ RESPLOAD<strong>DECC</strong> LAB TESTINGSG – PVINVERTERRestroomFire Ext.EXITIPAC - IntelligentPower Autom<strong>at</strong>ionCenterGRIDEYE8’ Door WayMainPowerPanelSG – TEST BEDAED & Fire Ext.Microturbines December & 2008Associ<strong>at</strong>ed Equipment 18


<strong>DECC</strong> Lab AssetsDecember 200819


Technical Approach –<strong>Microgrid</strong> Demonstr<strong>at</strong>ionLeverage <strong>DECC</strong> assets to demonstr<strong>at</strong>e microgridperformance <strong>and</strong> B2G from vendor for energy storage.Distribution System Sources LoadsDecember 200820


<strong>DECC</strong> Lab’s Test SystemsDecember 200821


<strong>DECC</strong> Lab Flexible Test BedCompleted Electrical Infrastructure Lower Voltage <strong>and</strong> Power Plug <strong>and</strong> Play AC <strong>and</strong> DC Reconfigurable test rack Acceler<strong>at</strong>ed smart inverter testing Bridges design, development <strong>and</strong>simul<strong>at</strong>ion with higher voltage<strong>and</strong> power testingDC120/208ACDecember 200822


<strong>DECC</strong> Lab PV Test System• PV Arrays & Conventional<strong>Inverter</strong>Overhead DCLine toConventional<strong>Inverter</strong>• DC Bus for Research <strong>Inverter</strong>DC Bus in Room 2 forResearch h<strong>Inverter</strong>50kW PV Array across Bethel ValleyRoad supply 400‐600Vdc, 135AdcLoc<strong>at</strong>ion of DCTransfer Switch insideIsol<strong>at</strong>ion RoomDecember 200823


<strong>Smart</strong> <strong>Inverter</strong> (SI) <strong>Controls</strong>December 200824


<strong>Smart</strong> <strong>Inverter</strong> (SI) Adaptive Control Fixed control:DE: Distributed Energy ResourceControl variable: PCC voltageReference: Desired PCC voltagevalueError: Difference between reference<strong>and</strong> measured PCC voltage‣ PI control with fixed K p <strong>and</strong> K i‣ K p <strong>and</strong> K i determined typically bytrial & errorIncorrect gains result in underperformance,oscill<strong>at</strong>ion, or instability Adaptive control:K p <strong>and</strong> K i are initially conserv<strong>at</strong>ive butadjusted in real-time to achievedesired system response timeDecember 200825


SI Controllable VariablesReactive powerrel<strong>at</strong>ed variablesActive powerrel<strong>at</strong>ed variablesActivepowerActivecurrentPowerfactorFrequencyReactive power Yes Yes Yes YesReactive current Yes Yes Yes YesPower factor Yes Yes NA YesLocal voltage Yes Yes Yes YesDecember 200826


SI Voltage Regul<strong>at</strong>ionwith Fixed vs. Adaptive SI Control(a) Load current (rms) during load change(b) PCC voltage (rms) without regul<strong>at</strong>ion(c) PCC voltage (rms) with non-adaptivevoltage regul<strong>at</strong>ion(d) PCC voltage (rms)with adaptive voltage regul<strong>at</strong>ion.December 200827


SI Active (P) & Non‐Active (Q) ControlIncrease P, Q Fixed• Complete eventon left.• Zoomed in to 10to 20 kW changeon right.• Active powerreference (P ref )P ref changed from 10 kW to 50 kWfrom 10 to 50kW.• Nonactive powerreference (Q ref )set to10 kVar.• P does not reach50 kW <strong>and</strong> Qdrops because ofthe invertercurrent limit(60A).P ref change from 10 to 20kWDecember 2008Q ref set to10kVar Q ref set to10kVar. 28


SI Active (P) & Non‐Active (Q) ControlDecrease P on Left, Decrease Q on RightP ref changed from 50 to 10kWQ ref set to 10kVar• Active power(P ref ) changewhile keepingnon-active power(Q ref ) constant onleft.• Nonactive power(Q P ref set to 20kWref ) changewhile keepingactive power(P ref) constant onright.• Plots display theindependentcontrol of P & Qth<strong>at</strong> has beenachievedQ ref changed from 50 December to 20 kVar 2008.29


PV <strong>Inverter</strong> Active <strong>and</strong> ReactivePower ControlP(W)250T=25 o C 1200 w/m 21000 w/m 2200150100800 w/m 25000 10 20 30 40V (V)Output (P vs. V) <strong>at</strong> different solar irradi<strong>at</strong>ionsP (W)25020015010010 o CG=1000 w/m 2 25 o C75 o CGrid-connected three-phase5000 10 20 30 40V (V)Output (P vs. V) <strong>at</strong> different temper<strong>at</strong>uressingle-stage inverter PV systemNo DC-to-DC converter for lower cost <strong>and</strong> higher efficiency.P (MPPT or fixed P) <strong>and</strong> Q (PCC voltage or fixed Q) controlled by inverter.PV array DC voltage stability maintained by inverter control - resistant toDecember 2008disturbances caused by changing we<strong>at</strong>her or system. 30


PV <strong>Inverter</strong> Active <strong>and</strong> ReactivePower Control Simul<strong>at</strong>ion ResultsCase 1: Maximum power point tracking (MPPT) & PCC voltage control with varyingsolar irradi<strong>at</strong>ion (worst case)1200351100100030G(W/m2)900800P(kW)257002060010 15 20 25 30 35 40 45 50 55 60time(s)700650Solar Irradiance155 10 15 20 25 30 35 40 45 50 55time(s)275PV array active power outputtage(V)PV array DC volt600550500450400350V(V)274273272271PCC voltageVoltage reference3005 10 15 20 25 30 35 40 45 50time(s)2705 10 15 20 25 30 35 40 45 50 55time(s)PV array output DC voltage December 200831PCC voltage <strong>and</strong> reference (rms)


PV <strong>Inverter</strong> Active <strong>and</strong> ReactivePower Control Simul<strong>at</strong>ion ResultsCase 2: MPPT & Fixed reactive power control with varying solar irradi<strong>at</strong>ion(worst case) 351200110030G(W W/m2)1000900800P(kW)2520PVarray DC voltag ge(V)70060010 15 20 25 30 35 40 45 50 55 60time(s)700650600550500450400350Solar Irradiance30010 20 30 40 50 60time(s)Q(kVAr)1510 15 20 25 30 35 40 45 50 55 60time(s)252015PV array active power outputPV inverter Q injectionQ reference10 20 30 40 50time(s)December 2008PV array output DC voltage32Fixed reactive power control1


PV <strong>Inverter</strong> Active <strong>and</strong> ReactivePower Control Simul<strong>at</strong>ion ResultsCase 3: Autom<strong>at</strong>ic smooth transition between fixed active power controlto MPPT <strong>and</strong> then back120035110030G(W/m2)1000900800700P(kW)262015P referencePV inverter injection60010 15 20 25 30 35 40 45 50 55 60time(s)Solar Irradiance1015 21.5 25 30 35 40 43.5 50time(s)Switching between fixed realpower control <strong>and</strong> MPPT controlDecember 2008 33


Adaptive Multiple <strong>Inverter</strong>s Voltage ControlApplicable to radial with or without meshed distribution system with multiple DERs;simul<strong>at</strong>ed <strong>and</strong> proved with three in this case.Multiple l inverters for coordin<strong>at</strong>ed d voltage control to prevent hunting.Self-adjusted control parameters to achieve fast response performance.Primarily local voltage control by invertersOnly limited communic<strong>at</strong>ion needed: initially, for large disturbance or for network changeAdaptability to radial distribution feeder or looped distribution systemsPlug <strong>and</strong> play fe<strong>at</strong>ure without need for network parametersDecember 200834


Adaptive Multiple <strong>Inverter</strong>s Voltage ControlSimul<strong>at</strong>ion ResultsCase 1: Voltage responses of DER with ideal communic<strong>at</strong>ion (No l<strong>at</strong>ency)282 282280280oltage(V)v278276274desired voltage responseactual voltage responsevoltage reference2720 0.1 0.2 0.3 0.4 0.5 0.6 0.7time(s)Voltage response of DER1282v oltage(V)278276274desired voltage responseactual voltage responsevoltage reference2720 0.1 0.2 0.3 0.4 0.5 0.6 0.7time(s)Voltage response of DER2280voltage(V)278276274desired voltage responseactual voltage responsevoltage reference2720 0.1 0.2 0.3 0.4 0.5 0.6 0.7time(s)December 2008Voltage response of DER3 35


Adaptive Multiple <strong>Inverter</strong>s Voltage ControlSimul<strong>at</strong>ion ResultsCase 2: Voltage responses of DER with communic<strong>at</strong>ion l<strong>at</strong>ency (worst case)282 282280280vo oltage(V)278276274desired voltage responseactual voltage responsevoltage referencevo oltage(V)278276274desired voltage responseactual voltage responsevoltage reference2722820.05 0.2 0.35 0.5 0.6 0.7time(s)Voltage response of DER12720.05 0.2 0.35 0.5 0.6 0.7time(s)Voltage response of DER3voltage(V)280278276274272desired voltage responseactual voltage responsevoltage reference0.05 0.2 0.35 0.5 0.6 0.7time(s)Voltage response of DER2A9cycle 9-cycle l<strong>at</strong>ency is assumed, whichis typical to wide-area-monitoringbased on paper by Anjan Bose(WSU) <strong>and</strong> should be much higherthan the l<strong>at</strong>ency in a distributionsystem.December 200836


Multiple <strong>Inverter</strong> Testing <strong>at</strong> <strong>DECC</strong> Lab<strong>DECC</strong> Lab physicalconfigur<strong>at</strong>ion formultiple DERtesting. Two <strong>Inverter</strong>-based DERs (150Aeach) on same circuit.Electrically connected via theprimary conductor of circuit #2. One DER is loc<strong>at</strong>ed <strong>at</strong> building 3114. Second DER is loc<strong>at</strong>ed <strong>at</strong> building3129 which about 700ft away.December 200837


Multiple <strong>Inverter</strong> <strong>Controls</strong> DevelopmentTesting ResultsTwo inverters oper<strong>at</strong>ed simultaneously on the same 480V circuit in ORNLdistribution ib ti system.<strong>Inverter</strong>s performing voltage regul<strong>at</strong>ion with different reference settings.<strong>Inverter</strong> current limited to 60Arms.Current vs. TimeVoltage vs. TimeDecember 200838


<strong>Microgrid</strong> (MG) Architecture &<strong>Interoper<strong>at</strong>ion</strong>December 200839


Multi‐layer <strong>Microgrid</strong> ArchitechtureDecember 200840


<strong>Microgrid</strong> ControlReactive Power <strong>and</strong> Voltage Regul<strong>at</strong>ion (Q‐V)• Voltage is a local variable• Droop control is applicable• Challenges:• DER Q output sharing errors due tothe impedances <strong>and</strong> local loads• Q circul<strong>at</strong>ion because of impropervoltage references• Voltage Regul<strong>at</strong>ion Approaches• Ideally system model & monitoring• Preset local PCC voltage reference<strong>and</strong> use droop control withoutcommunic<strong>at</strong>ion‣ Stti Setting local lPCC voltage referencevia central disp<strong>at</strong>ch or scheduleEffective Reactive Power<strong>at</strong> PCCTotal:DER1:DER2:December 200841


<strong>Microgrid</strong> Control Str<strong>at</strong>egiesExistingPP2maxP1maxP3maxQ (kVar)Q1maxQ3maxQ2max0Q2min09 0.9 1.01.11V(pu)Q3minf1 f2 fnorm f3 f4fQ1minDER P‐f Droop factorDER Q‐V Droop factor• Droop control with artificial droop curves• Different slopes to have different responses• Applicable to P‐f <strong>and</strong> Q‐V control• Steady‐st<strong>at</strong>e tt error• No communic<strong>at</strong>ion or central control required42December 200842


<strong>Microgrid</strong> Control Str<strong>at</strong>egiesORNL Innov<strong>at</strong>ionFrequency droop <strong>and</strong> secondary controlEnhanced Droop ControlVoltage droop <strong>and</strong> secondary control• Secondary control in addition to droop control for frequency <strong>and</strong> voltagecontrol to minimize steady‐st<strong>at</strong>e error• Optimal power disp<strong>at</strong>ch• Only low‐speed <strong>and</strong> infrequent communic<strong>at</strong>ion neededDecember 200843


<strong>Microgrid</strong> Control for RenewablesOn‐grid ModeOngrid vs. Isl<strong>and</strong>ing Modes• MPPT is the default• Or disp<strong>at</strong>ch P based schedule• Adjust P if high or low frequency ifnot all oper<strong>at</strong>ing <strong>at</strong> MPPTIsl<strong>and</strong>ing Mode• Frequency control is top priority• If multiple DE: one DE providessecondary while the others providedroop control• Frequency within normal b<strong>and</strong> (f2 tof3): DEs only use droop control• Frequency outside of normal:December 2008secondary control is kicked 44


<strong>Microgrid</strong> Time Sequence <strong>and</strong>Low‐Voltage Ride‐ThroughThe German low-voltage ridethroughst<strong>and</strong>ards for mediumvoltageenergy resourcesinterconnection (BDEW)recommend 7.5 cycles ridethrough time if the voltage isbelow 0.3 pu, 35 cycles if thevoltage is between 0.3 pu <strong>and</strong>0.7 pu, <strong>and</strong> 75 cycles if thevoltage is between 0.7 pu <strong>and</strong>0.9 pu.Coordin<strong>at</strong>ion with Protection <strong>and</strong> DER LVR <strong>and</strong> Tripping• <strong>Microgrid</strong> switch is coordin<strong>at</strong>ed to be slower than grid relay protection•<strong>Microgrid</strong> switch is coordin<strong>at</strong>ed to be faster than Individual device tripping• <strong>Microgrid</strong> switch needs to be high speed to meet the individual inverterlow-voltage ride-through setting.December 200845


<strong>Microgrid</strong>Low‐Volt Ride‐Through <strong>and</strong> Multi‐Input PI Control<strong>Smart</strong> <strong>Inverter</strong> Control for <strong>Microgrid</strong>• Decoupled PQ control• Multiple l control modes• Hierarchical control coordin<strong>at</strong>ion to determine mode selection• Multi-mode PI controller ensures smooth transition between modesDecember 200846


<strong>Microgrid</strong> Simul<strong>at</strong>ionDiagram of ORNL <strong>Microgrid</strong>December 200847


Public<strong>at</strong>ionsDecember 200848


FY12 Public<strong>at</strong>ions• Lakshmi Gopi Reddy, Leon M. Tolbert, Burak Ozpineci, Yan Xu, D. Tom Rizy, “Reliability of IGBTin a STATCOM for harmonic compens<strong>at</strong>ion <strong>and</strong> power factor correction”, presented <strong>at</strong> IEEEApplied Power Electronics Conference <strong>and</strong> Exposition, Orl<strong>and</strong>o FL, February 2012.• Philip Irminger, D. Tom Rizy, Huijuan Li, Travis Smith, Keith Rice, Fangxing Li, Sarina Adhikari,“Air Conditioning Stall Phenomenon – Testing, Model Development, <strong>and</strong> Simul<strong>at</strong>ion”, presented<strong>at</strong> the IEEE PES T&D Meeting & Exposition, Orl<strong>and</strong>o FL, May 2012.• Huijuan Li, Yan Xu, Sarina Adhikari, D. Tom Rizy, Fangxing Li, Philip Irminger, “Real <strong>and</strong> reactivepower control of a three-phase single-stage PV system <strong>and</strong> PV voltage stability”, to be presented<strong>at</strong> IEEE Power Engineering Society (PES) Annual Meeting 2012, San Diego CA, July 2012.• Yan Xu, Huijuan Li, Leon M. Tolbert, “<strong>Inverter</strong>-based microgrid control <strong>and</strong> stable isl<strong>and</strong>ingtransition”, to be presented <strong>at</strong> IEEE Energy Conversion Congress <strong>and</strong> Exposition, Raleigh NC,September 2012.• Rukun Mao, Huijuan Li, Husheng Li, Yan Xu, “Wireless communic<strong>at</strong>ion for controlling microgrids:co-simul<strong>at</strong>ion <strong>and</strong> performance evalu<strong>at</strong>ion”, submitted to 3 rd IEEE Intern<strong>at</strong>ional Conference on<strong>Smart</strong> Grid Communic<strong>at</strong>ions, Tainan City, Taiwan, November 2012.• Huijuan Li, Fangxing Li, Yan Xu <strong>and</strong> D. Tom Rizy, “Autonomous <strong>and</strong> Adaptive Voltage Controlusing Multiple Distributed Energy Resources”. Under review, submitted to IEEE Trans. PowerSystemsDecember 200849


FY11 Public<strong>at</strong>ions• “<strong>Microgrid</strong>s <strong>and</strong> Distributed Energy Resources (DER)” , Poster, 8th Intern<strong>at</strong>ionalConference on Power & Electronics (ECCE Asia), Jeju, South Korea, May 30‐Jun 3, 2011.• “Impacts of Varying Penetr<strong>at</strong>ion of Distributed Resources with & without Volt/VarControl: Case Study of Varying Load Types”, 2011 IEEE PES General Meeting, Jul.2011, pp.1‐7, 24‐29 July 2011.• “Volt/Var Control Using <strong>Inverter</strong>‐based Distributed Energy Resources”, 2011 IEEE PESGeneral Meeting, Jul. 2011, pp.1‐8, 24‐29 July 2011.• "Adaptive voltage control with distributed energy resources: Algorithm, theoreticalanalysis, simul<strong>at</strong>ion, <strong>and</strong> field test verific<strong>at</strong>ion," 2011 IEEE PES General Meeting, pp.1,24‐29 July 2011.• “Impact of Power Factor Correction <strong>and</strong> Harmonic Compens<strong>at</strong>ion by STATCOM onConverter Temper<strong>at</strong>ure <strong>and</strong> Reliability”, Paper No EC‐0736, 2011 IEEE EnergyConversion Congress & Exposition, Phoenix, AZ, Sept. 2011.December 200850


FY10 Public<strong>at</strong>ions• "An adaptive voltage control algorithm with multiple distributed energy resources,"North thAmerican Power Symposium (NAPS), 2009 , pp.1‐6, Ot2009 Oct. 2009.• "Local Voltage Support From Distributed Energy Resources To Prevent Air ConditionerMotor Stalling," Innov<strong>at</strong>ive <strong>Smart</strong> Grid Technologies (ISGT), 2010 , pp.1‐6, Jan. 2010.• "Properly underst<strong>and</strong>ing the impacts of distributed resources on distributionsystems," 2010 IEEE Power <strong>and</strong> Energy Society General Meeting, pp.1‐5, Jul. 2010.• "Adaptive Voltage Control With Distributed Energy Resources: Algorithm, TheoreticalAnalysis, Simul<strong>at</strong>ion, <strong>and</strong> Field Test Verific<strong>at</strong>ion," IEEE Trans. Power Systems, vol.25,no.3, pp.1638‐1647, Aug. 2010.• "Instantaneous active <strong>and</strong> nonactive power control of distributed energy resourceswith a current limiter," 2010 IEEE Energy Conversion Congress <strong>and</strong> Exposition (ECCE),pp. 3855‐3861, Sept. 2010.• "Voltage <strong>and</strong> current unbalance compens<strong>at</strong>ion using a st<strong>at</strong>ic var compens<strong>at</strong>or," IETPower Electronics, vol.3, l3 no.6, pp.977‐988, 988 Nov. 2010.December 200851


FY09 Public<strong>at</strong>ions• "Using Distributed Energy Resources to Supply Reactive Power for Dynamic VoltageRegul<strong>at</strong>ion," "Intern<strong>at</strong>ional ti lReview of Electrical l Engineering, i vol. 3, no. 5, pp. 795‐802,October 2008.• "Local Dynamic Reactive Power for Correction of System Voltage Problems,"ORNL/TM‐2008/174, Oak Ridge N<strong>at</strong>ional Labor<strong>at</strong>ory, TN, November 2008.• "A Framework to Quantit<strong>at</strong>ively Evalu<strong>at</strong>e the Economic Benefits from Reactive PowerCompens<strong>at</strong>ion," Intern<strong>at</strong>ional Review of Electrical Engineering, vol. 3, no. 6, pp. 989‐998, December 2008.• "Preventing delayed voltage recovery with voltage‐regul<strong>at</strong>ing distributed energyresources," IEEE PowerTech2009, Bucharest, pp.1‐6, June‐July 2009.December 200852


FY08 Public<strong>at</strong>ions• "The applic<strong>at</strong>ion of droop‐control in distributed energy resources to extend thevoltage collapse margin," "IEEE IAS Industrial <strong>and</strong> Commercial lPower Systems TechnicalConference 2008 (ICPS 2008), May 4‐8, 2008.• "Voltage regul<strong>at</strong>ion with multiple distributed energy resources," (invited) IEEE PESGeneral Meeting 2008, Pittsburgh, PA, July 20‐24, 24 2008.• "Interaction of multiple distributed energy resources in voltage regul<strong>at</strong>ion", IEEE PESGeneral Meeting 2008, Pittsburgh, PA, July 20‐24, 2008.• “Active power <strong>and</strong> nonactive power control of distributed energy resources”, The 40thNorth American Power Symposium, , Calgary Canada, September 28 – 30, 2008December 200853


FY07 Public<strong>at</strong>ions• "Assessment of the Economic Benefits from Reactive Power Compens<strong>at</strong>ion,"Proceeding of the IEEE Power Systems Conference <strong>and</strong> Exposition 2006, pp. 1767‐1773, Atlanta, GA, October 2006.• "Reactive Power from Distributed Energy," The Electricity Journal, vol. 19, no. 10, pp.27‐38, December 2006.• “Dynamic Voltage Regul<strong>at</strong>ion Using Distributed Energy Resources,” Proceedings ofCIRED 2007, Vienna, Austria, May 20‐24, 2007.• “Nonactive‐power‐rel<strong>at</strong>ed ancillary services provided by distributed energyresources,” IEEE Power Engineering Society General Meeting, June 24‐28, 2007,Tampa, Florida.• “Experiment <strong>and</strong> Simul<strong>at</strong>ion of Dynamic Voltage Regul<strong>at</strong>ion with Multiple DistributedEnergy Resources,” IREP Symposium 2007 ‐ Bulk Power System Dynamics <strong>and</strong> Control,Charleston, SC, August 2007.December 200854

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!