13.07.2015 Views

The SOR method for infinite systems of linear equations (III)

The SOR method for infinite systems of linear equations (III)

The SOR method for infinite systems of linear equations (III)

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

52 Béla Finta5. THE <strong>SOR</strong> METHOD FOR INFINITE SYSTEMS OF LINEAR EQUATIONSLet us consider the <strong>infinite</strong> system <strong>of</strong> <strong>linear</strong> <strong>equations</strong> Ax = b, where A ∈ Mand x, b ∈ s.Definition 5.2. For a given A ∈ M and b ∈ s we will say that x ∗ ∈ s is a solution<strong>of</strong> the <strong>infinite</strong> system <strong>of</strong> <strong>linear</strong> <strong>equations</strong> Ax = b if we have Ax ∗ = b.∞∑∞∑This means that the series a ij x ∗ j is convergent and we have a ij x ∗ j = b i ,j=0<strong>for</strong> every i ∈ N.Let us suppose that a ii ≠0<strong>for</strong> every i ∈ N and let us consider the constantsω i ∈ R \{0} <strong>for</strong> every i ∈ N. <strong>The</strong> initial system <strong>of</strong> <strong>linear</strong> <strong>equations</strong> Ax = b isequivalent to the following iterative system <strong>of</strong> <strong>linear</strong> <strong>equations</strong>:⎧∑∞ a 0j b 0x 0 =(1− ω 0 )x 0 − ω 0 x j + ω 0a 00⎪⎨⎪⎩.j=1x 1 = −ω 1a 10a 11x 0 +(1− ω 1 )x 1 − ω 1a 00∑∞j=2a 1ja 11x j + ω 1b 1x 2 = −ω 2a 20a 22x 0 − ω 2a 21a 22x 1 +(1− ω 2 )x 2 − ω 2.∑i−1a ijx i = −ω i x j +(1− ω i )x i − ω ia iij=0∞ ∑j=i+1a 11∑∞j=3a ija iix j + ω ib ia iij=0a 2ja 22x j + ω 2b 2a 22Using this system <strong>of</strong> <strong>linear</strong> <strong>equations</strong>, let us choose x 0 ∈ s and we generate thesequence (x k ) k∈N ⊂ s by the following iterative <strong>for</strong>mula:⎧∞∑x k+10 =(1− ω 0 )x k 0 − ω a 0j0 x k ja + ω b 0000(5.1)⎪⎨⎪⎩.j=1a 00x k+1 a 10∑∞1 = −ω 1 x k+10 +(1− ω 1 )x k a 1j1 − ω 1 x k b 1j + ω 1a 11 a 11 a 11x k+12 = −ω 2a 20a 22x k+10 −ω 2a 21a 22tx k+1.x k+1i∑i−1a ij= −ω i x k+1ja iij=0j=21 +(1−ω 2 )x k 2 −ω 2 ∞ ∑+(1− ω i )x k i − ω i∞∑j=i+1a ijj=3a iix k j + ω ia 2ja 22x k j +ω 2b 2a 22Consequently, starting from the vector x k , we generate the vector x k+1 by therecursion <strong>for</strong>mula x k+1 = B ω · x k + c.b ia ii

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!