13.07.2015 Views

Effective Temperature of High Pressure Torsion in Zr-Nb Alloys

Effective Temperature of High Pressure Torsion in Zr-Nb Alloys

Effective Temperature of High Pressure Torsion in Zr-Nb Alloys

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Effective</strong> <strong>Temperature</strong> <strong>of</strong> <strong>High</strong> <strong>Pressure</strong> <strong>Torsion</strong> <strong>in</strong> <strong>Zr</strong>-<strong>Nb</strong> <strong>Alloys</strong>345Figure 6. The schematic b<strong>in</strong>ary phase diagram show<strong>in</strong>gthe po<strong>in</strong>ts <strong>of</strong> HPT deformation or other thermal treatments(stars) and respective configuration po<strong>in</strong>ts at the(<strong>in</strong>creased) effective temperatures. Other explanations are<strong>in</strong> the text.der irradiation, but at T eff <strong>in</strong>stead <strong>of</strong> the actual temperatureT . For example, if the liquid phase is present <strong>in</strong> the phasediagram at T eff , the amorphous phase would appear underirradiation [1, 92].For check<strong>in</strong>g <strong>of</strong> the applicability <strong>of</strong> the Mart<strong>in</strong>’s law (1)to the forced diffusion driven by pure shear deformation(D HPT / <strong>in</strong>stead <strong>of</strong> irradiation (D ball / the experiments whereHPT led to the phase transformations have to be analyzed.We chosen for the comparison the data where (i) the HPTdrivenatomic movements are comparable with each other,i.e. HPT was performed at 4–6 GPa with 4–6 torsions and(ii) the phases appeared after HPT can be easily localized <strong>in</strong>the phase diagrams and are different from those present <strong>in</strong>the samples before HPT.The composition <strong>of</strong> the phases after SPD allows to localizethose phases <strong>in</strong> the respective equilibrium phase diagramand to estimate the effective temperature T eff .Sucha schematic diagram is shown <strong>in</strong> Figure 6. In Figure 6 thedashed vertical l<strong>in</strong>es denote compositions <strong>of</strong> various alloys.Figurative po<strong>in</strong>ts correspond<strong>in</strong>g to the effective temperature<strong>of</strong> the alloys are <strong>in</strong>dicated by an open circle and numbered.Each star with a letter <strong>in</strong>dicates the composition and temperature<strong>of</strong> an alloy’s treatment (normal cool<strong>in</strong>g, SPD orrapid quench<strong>in</strong>g).The results <strong>of</strong> the work on HPT <strong>of</strong> Co-Cu alloys areschematically shown by the po<strong>in</strong>ts a, b and 2 (Figure 6) [2].The composition <strong>of</strong> the supersaturated solid solution <strong>of</strong> thecomponent B <strong>in</strong> -phase <strong>of</strong> A corresponds to the po<strong>in</strong>tb. This undercooled supersaturated solid solution <strong>in</strong> themetastable -phase is HPT-treated <strong>in</strong> the po<strong>in</strong>t a. AfterHPTthe almost pure ˛-phase <strong>of</strong> A is formed as a consequence <strong>of</strong>-˛ transition. It corresponds to the po<strong>in</strong>t 2. The respectiveT eff D 400 ı C for the Co-Cu system.The supersaturated solid solution <strong>in</strong> the as-cast Al-30mass% Zn alloy conta<strong>in</strong>ed about 15 mass% Zn [13, 14].It corresponds to the po<strong>in</strong>t b <strong>in</strong> Figure 6. The HPT atroom temperature (po<strong>in</strong>t a/ produced nanogra<strong>in</strong>ed pure Al(po<strong>in</strong>t 1) and pure Zn particles simultaneously lead<strong>in</strong>g tothe unusual s<strong>of</strong>ten<strong>in</strong>g [13, 14]. The respective T eff D 30 ı C.The homogenized one-phase solid solutions <strong>in</strong> the Cu-Ni alloyswith 42 and 77 mass% Ni (po<strong>in</strong>t 3) decomposed afterHPT at room temperature (po<strong>in</strong>t a/ <strong>in</strong>to Cu-rich and Ni-richphases [15]. The composition <strong>of</strong> resulted phases permittedto estimate T eff D 200 ı C for the Cu-77 mass% Ni alloy andT eff D 270 ı C for the Cu-42 mass% Ni alloy [15].The Fe-20 mass% (Nd,Pr)-5 mass% B-1.5 mass% Cualloy conta<strong>in</strong><strong>in</strong>g crystall<strong>in</strong>e phases [(Nd,Pr) 2 Fe 14 BandPrrichphase] transforms after HPT (po<strong>in</strong>t c/ <strong>in</strong>to a mixture <strong>of</strong>the amorphous phase and (Nd,Pr) 2 Fe 14 B nanogra<strong>in</strong>s [16].Accord<strong>in</strong>g to the Mart<strong>in</strong>’s model this means that the T eff isso high that the configurative po<strong>in</strong>t for the treated alloy is<strong>in</strong> the two-phase area where both solid and liquid phasesare present (po<strong>in</strong>t 4, Figure 6). The melt appears <strong>in</strong> the Nd-Fe-B system above eutectic temperature T e D 665 ı C [17].It means that the effective temperature is slightly aboveT e D 665 ı C and can be estimated as T eff D 700 ı C.The coarse-gra<strong>in</strong>ed as-cast Ni-20 mass% <strong>Nb</strong>-30 mass%Y and Ni-18 mass% <strong>Nb</strong>-22 mass% Y alloys conta<strong>in</strong>ed beforeHPT the NiY, <strong>Nb</strong>Ni 3 ,Ni 2 Y, Ni 7 Y 2 and Ni 3 Y phases(po<strong>in</strong>t g/ [36, 39]. After HPT these alloys transformed<strong>in</strong>to a mixture <strong>of</strong> two nanocrystall<strong>in</strong>e NiY and <strong>Nb</strong> 15 Ni 2phases and two different amorphous phases (one was Y-rich and another <strong>Nb</strong>-rich) (po<strong>in</strong>t 6). The Ni-<strong>Nb</strong>-Y phasediagram conta<strong>in</strong>s two immiscible melts above 1440 ı C [93].Therefore, the effective temperature is slightly above T e D1440 ı C and can be estimated as T eff D 1450 ı C. It is remarkablethat the rapid solidification <strong>of</strong> these alloys fromthe liquid state (po<strong>in</strong>t f/also allows obta<strong>in</strong><strong>in</strong>g the mixture<strong>of</strong> two amorphous phases.Especially valuable data on the effective temperature <strong>of</strong>SPD can be extracted from the work on HPT <strong>of</strong> Ti-48.5 at%Ni, Ti-50.0 at% Ni and Ti-50.7 at% Ni alloys [33]. TheHPT <strong>of</strong> equiatomic Ti-50.0 at% Ni alloy at room temperature(po<strong>in</strong>t e/ resulted <strong>in</strong> the fully amorphous state (po<strong>in</strong>t5, T eff D 1350 ı C, respectively). The HPT <strong>of</strong> the nonequiatomicTi-48.5 at% Ni alloy at 270 ı C (po<strong>in</strong>t h/ producedthe mixture <strong>of</strong> amorphous and nanocrystall<strong>in</strong>e phases(po<strong>in</strong>t 7, T eff D 1050 ı C). When the HPT temperature <strong>of</strong> theTi-48.5 at% Ni alloy <strong>in</strong>creased up to 350 ı C (po<strong>in</strong>t h/, onlythe mixture <strong>of</strong> nanocrystal<strong>in</strong>e phases formed, without amorphousphase. It means that the correspond<strong>in</strong>g po<strong>in</strong>t movedfrom the position 7 <strong>in</strong> the Œı C L region <strong>in</strong>to position 8<strong>in</strong> the two-phase [ı C ] region and the effective tempera-Bereitgestellt von | Karlsruher Institut für Technologie (KIT)Angemeldet | 141.52.94.125Heruntergeladen am | 12.11.12 15:54

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!