13.07.2015 Views

Fire and Fuel Reduction Treatments in Riparian Areas:

Fire and Fuel Reduction Treatments in Riparian Areas:

Fire and Fuel Reduction Treatments in Riparian Areas:

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Fire</strong> <strong>and</strong> <strong>Fuel</strong> <strong>Reduction</strong><strong>Treatments</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>:Management <strong>in</strong> the Context ofClimate Change:Kate DwireUS Forest ServiceRocky Mounta<strong>in</strong> ResearchStation, Fort Coll<strong>in</strong>s, COkadwire@fs.fed.us


Presentation Overview:In the context of climate change,► <strong>Fire</strong> properties, behavior <strong>and</strong> history <strong>in</strong> riparianareas;► <strong>Riparian</strong> areas <strong>and</strong> local fire regimes;► Postfire processes <strong>and</strong> recovery <strong>in</strong> riparian areas;• <strong>Riparian</strong> functions: large wood recruitment tostreams; shade; habitat;• Role of <strong>in</strong>vasives & herbivory; importance ofspecies traits.► <strong>Fuel</strong> management treatments <strong>in</strong> riparian areas.


Alp<strong>in</strong>e tundraForestalp<strong>in</strong>eecotone<strong>Riparian</strong> <strong>Areas</strong>:Highly DiverseSubalp<strong>in</strong>e forestMixed conifer forestMontane forest<strong>Riparian</strong> Area L<strong>and</strong> Cover:1-2% <strong>in</strong> mounta<strong>in</strong>ous areas;0.5 % <strong>in</strong> sagebrush steppe.Shrubl<strong>and</strong>Major forest zones <strong>in</strong> the Colorado Front Range, provided by Laurie Huckaby


Properties <strong>and</strong> Behavior of <strong>Fire</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>Physical FeaturesMicroclimateBas<strong>in</strong> topographyBas<strong>in</strong> & channelgeomorphology<strong>Fuel</strong><strong>Fire</strong><strong>Fire</strong> Environment Triangle(Pyne et al. 1996)


Properties <strong>and</strong> Behavior of <strong>Fire</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>Physical FeaturesSurface WaterSaturated Soils<strong>Fuel</strong><strong>Fire</strong>


Properties <strong>and</strong> Behavior of <strong>Fire</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>Vegetation – <strong>Fuel</strong> CharacteristicsBiomass (“load<strong>in</strong>g” mass/area)Bulk Density (mass/volume)Size Distribution (SA/volume)Chemistry (volatiles vs. nonvolatiles)Ratio: live/deadShad<strong>in</strong>g/ exposureStrata (surface, understory, overstory)Cont<strong>in</strong>uity (horizontal & vertical)<strong>Fuel</strong><strong>Fire</strong>From: Ryan 2001. Global change <strong>and</strong> wildl<strong>and</strong> fire. pp 175-183. RMRS-GTR-42


Projections of Chang<strong>in</strong>g Climatic ConditionsRegionWestObserved 20 th CenturyClimateWarmer <strong>and</strong> generally wetter.• Increased T; up to 2-5 F (1-3 C).• Increased P; <strong>in</strong> much of region, up to50% <strong>in</strong> some areas.Highly variable climate withexceptionally wet & dry periods.Length of snow season decreased by16 days <strong>in</strong> CA & NV. Extreme pptevents have <strong>in</strong>creased.Projections for 21 stCenturyCont<strong>in</strong>ued warm<strong>in</strong>g & <strong>in</strong>creasedprecipitation.• Increased T: 3-4 F (2 C) by2030s, 8-11 F (4.5-6 C) by 2090s.• Increased P; <strong>in</strong> w<strong>in</strong>ter, esp. <strong>in</strong> CA.More extreme wet <strong>and</strong> dry years.PacificNorthwestWarmer <strong>and</strong> wetter.• Increased T: 1-3 F (0.5 – 1.5 C).• Increased P: 10% (on ave.); 30-40 % <strong>in</strong>eastern WA, no.ID.Significant recurr<strong>in</strong>g patterns of yearto-yearvariability.• Warm, dry years with light snowpack,low streamflows.• Cool, wet years with heavy snowpacks,high streamflowsMuch greater average warm<strong>in</strong>gover the region.• Increased T: 3 F (1.5 C) by2030s, 5 F (3 C) by 2050s.Wetter on ave. across region.• Increased ppt. <strong>in</strong> w<strong>in</strong>ter.• Same or decreased ppt. <strong>in</strong>summer.From: Furniss et al., 2010. Water, climate change, <strong>and</strong> forests. PNW-GTR-812


<strong>Fire</strong> History <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>Challenges of reconstruct<strong>in</strong>g riparian fire histories• Methodological constra<strong>in</strong>ts• Frequent natural disturbances affect<strong>in</strong>g streamsideareas (flood<strong>in</strong>g, debris flows)• Many riparian areas have been severely altered(graz<strong>in</strong>g, beaver removal, logg<strong>in</strong>g, m<strong>in</strong><strong>in</strong>g, flow alteration)• Limited underst<strong>and</strong><strong>in</strong>g of natural fire dynamics, referencefuel loads, historic range of variability; understudiedvegetation types <strong>and</strong> geographic regions• Discrepancies <strong>in</strong> published <strong>in</strong>formationTower <strong>Fire</strong> (1996), NE Oregon


<strong>Fire</strong> Return Intervals <strong>in</strong> Forested <strong>Riparian</strong> <strong>Areas</strong>LocationBlue Mounta<strong>in</strong>s,ORElkhornMounta<strong>in</strong>s, ORSalmon RiverMounta<strong>in</strong>s, IDCascade Range,WANo. SierraNevada Mtns, CAForest TypeDry, Douglas-fir <strong>and</strong>Gr<strong>and</strong> Fir seriesDry, Ponderosa P<strong>in</strong>e,Douglas-fir seriesDry, Ponderosa P<strong>in</strong>e<strong>and</strong> Douglas-fir seriesDry, Ponderosa P<strong>in</strong>e<strong>and</strong> Douglas-fir seriesDry, Ponderosa/Jeffrey P<strong>in</strong>e<strong>Riparian</strong> <strong>Fire</strong>Return Interval(yrs)Sideslope <strong>Fire</strong>Return Interval(yrs)Citation13-36 10-20 Olson 200013-14 9-32 Olson 200011-19 9-29 Barrett 200015-26 11-19 Everett et al.200310-87 10-56 Van De Water &North 2010Dry Forest Type Average 12-36 10-31Cascade Range,ORKlamathMounta<strong>in</strong>s, CAMesic, Douglas-firseriesMesic, Douglas-firseries35-39 27-36 Olson <strong>and</strong> Agee200516-42 7-13 Sk<strong>in</strong>ner 1997Mesic Forest Type Average 26-41 17-25Stone et al. 2010. <strong>Fuel</strong> reduction management practices <strong>in</strong> riparian areas of the westernUSA. Environmental Management 46:91-100.


<strong>Riparian</strong> <strong>Areas</strong> <strong>and</strong>Local <strong>Fire</strong> Regimes1. Burn like adjacent upl<strong>and</strong>s;i.e. wildfires burn with similarfrequency & severity;2. Burn less frequently <strong>and</strong>/ orless severely than adjacentupl<strong>and</strong>s;3. Burn more frequently <strong>and</strong>/orseverely than adjacentupl<strong>and</strong>s;4. <strong>Riparian</strong> serve as fire breaks.


Some <strong>Riparian</strong> <strong>Areas</strong> Burn Like Upl<strong>and</strong>sWhere similar upl<strong>and</strong>streamsidevegetation,moisture conditions, terra<strong>in</strong> &topography occur.• Small dra<strong>in</strong>ages, <strong>in</strong>termittentor ephemeral streams;• Headwaters; upper portionsof narrow dra<strong>in</strong>ages.When large fires burn<strong>in</strong>gunder severe fire weatherexceed the <strong>in</strong>fluence oflocal topography &riparian-upl<strong>and</strong> vegetationdifferences.


Some <strong>Riparian</strong> <strong>Areas</strong> Burn Like Upl<strong>and</strong>s<strong>Riparian</strong> vs. Upl<strong>and</strong> <strong>Fire</strong> SeverityBasal Area Mortality10080<strong>Riparian</strong>Upl<strong>and</strong>Percent6040aaaa200B & B<strong>Fire</strong>Biscuit<strong>Fire</strong>(Halofsky <strong>and</strong> Hibbs 2008; slide by Alan Tepley)


Some <strong>Riparian</strong> <strong>Areas</strong> Burn Less Frequently<strong>and</strong>/or Less Severely than Upl<strong>and</strong>s• Where riparianvegetation dist<strong>in</strong>ctlydifferent from upl<strong>and</strong>s;• Where saturated soilconditions, presence ofriparian wetl<strong>and</strong>s, orhydrologic <strong>in</strong>puts fromhillslopes <strong>in</strong>fluence firebehavior.


Variation <strong>in</strong> <strong>Fire</strong> Severity with<strong>in</strong> theStream Network100Biscuit <strong>Fire</strong>100B & B <strong>Fire</strong>Basal Area Mortality (%)80604020abbBasal Area Mortality (%)80604020abb0Stream Type0Plant AssociationSteady flow, fish-bear<strong>in</strong>gModerate flow, fish-bear<strong>in</strong>gLow flow, few fishPonderosa P<strong>in</strong>eDry Mixed ConiferWet Mixed Conifer(Halofsky <strong>and</strong> Hibbs 2008; slide by Alan Tepley)


<strong>Riparian</strong> Forests as <strong>Fire</strong> RefugiaEastern Cascades, Wash<strong>in</strong>gton(Camp et al. 1997)Oldest trees most common <strong>in</strong> areaswith high soil <strong>and</strong> fuel moisture,<strong>in</strong>clud<strong>in</strong>g stream confluences <strong>and</strong>valley bottoms.Mount Ra<strong>in</strong>ier (Hemstrom <strong>and</strong>Frankl<strong>in</strong> 1982)“Nearly every major river valleyconta<strong>in</strong>s a streamside old-growthcorridor.”Klamath Mounta<strong>in</strong>s (Sk<strong>in</strong>ner 2003)Median fire <strong>in</strong>tervals were nearlydouble <strong>in</strong> riparian areas compared toupl<strong>and</strong> sites.


<strong>Riparian</strong> <strong>Areas</strong> Burn More Severely than Upl<strong>and</strong>s•Where riparian areas serve as chimneys orcorridors for severe fire;•Little vegetative difference from adjacent upl<strong>and</strong>s;•Intermittent stream valleys;•Primarily south aspects;•Upper portions of dra<strong>in</strong>age networks.Pyne et al.1996. Introduction to Wildl<strong>and</strong> <strong>Fire</strong>


<strong>Riparian</strong> <strong>Areas</strong> Burn More Frequently <strong>and</strong>/or MoreSeverely than Adjacent Upl<strong>and</strong>s• Where fuel abundance /accumulation is higher <strong>in</strong>riparian areas than upl<strong>and</strong>s dueto management or naturalconditions;• Primarily south aspects;• Middle to upper part ofdra<strong>in</strong>age network.Upl<strong>and</strong> forest;spot fires did notspread<strong>Riparian</strong> forest, highfuel loads, burned witha crown fireAgee 1998. The l<strong>and</strong>scape ecology of westernfire regimes. NW Science 72, 24-34.Little French Creek, Payette NF, ID


Angora <strong>Fire</strong>, Tahoe Nat’l Forest, CA 2007“…dense st<strong>and</strong>s of trees <strong>in</strong> the Angora SEZ likely contributed to the rapidspread upslope to Angora Ridge <strong>and</strong> across the slope to the base ofTahoe Mounta<strong>in</strong>.” Murphy et al. 2007. USDA, R5-TO-025


<strong>Riparian</strong> <strong>Areas</strong> as <strong>Fire</strong> Breaks• Where perennial stream valleyscreate breaks <strong>in</strong> fuel characteristics& cont<strong>in</strong>uity;• Where saturated soil conditions,presence of riparian wetl<strong>and</strong>s, orhydrologic <strong>in</strong>puts from hillslopes<strong>in</strong>fluence fire behavior;• When fires burn with low <strong>in</strong>tensity.


Post-fire processes <strong>and</strong> recoveryWallowa Mounta<strong>in</strong>s, NE Oregon, 5 years after Teepee Butte <strong>Fire</strong>


Post-fire processes <strong>and</strong> recoveryBC41BC36BC46Little Granite CreekBridger-Teton NFElevation: 6500’ – 7000’Vegetation: Lodgepole P<strong>in</strong>ePrecipitation: 21”BC31Perimeterof BoulderCreek <strong>Fire</strong>(2000)BC26BC21BC1BC6BC11BC16


Each LW piece (n ≈ 900)was tagged <strong>and</strong> trackedover time.


Each LW piece (n ≈ 900 )was surveyed.


Post-fire Recruitment <strong>and</strong> Transport of Large WoodBoulder Creek Reach 41 (BC41)BC41BC46Severely burnedRelatively wide valley bottomForested riparian areaBC36BC31Perimeterof BoulderCreek <strong>Fire</strong>(2000)BC26BC21BC1BC6BC11BC16


Post-fire Recruitment <strong>and</strong> Transport of LWRyan <strong>and</strong> Dwire (<strong>in</strong> preparation)


Post-fire Recruitment <strong>and</strong> Transport of LWRyan <strong>and</strong> Dwire (<strong>in</strong> preparation)


LW Source Boulder Creek 2002 <strong>and</strong> 2008BC461601401202002Unknown<strong>Riparian</strong>HillslopeFloated100Perimeter ofBoulder Creek<strong>Fire</strong> (2000)BC41BC36BC31BC26BC21Pieces of wood (number/ 100 m)806040200160140120100806040202008BC1BC6BC11BC160BC1 BC6 BC11 BC16 BC21 BC26 BC31 xx BC36 BC41 BC46Downstream of Burn Moderately Burned Severely Burned


BC46BC41BC36BC31BC26oulder0)BC21BC16BC11BC6


Post-fire recovery of riparian shrubsstreamMeasured (3 sampl<strong>in</strong>g periods):• Shrub height, width (volume)• Basal <strong>and</strong> clonal resprout<strong>in</strong>g• Mortality2 mhillslope


Post-firerecovery ofriparian shrubsHeight (m)0.70.60.50.40.30.20.1ANDba aNDa babbabND0.0Influence ofherbivory onshrub growth(x + 1SE; height,crown area, crownvolume ).Dwire et al. 2006. JAWRA.Crown Area (m 2 )Crown Volume (m 3 )0.80.60.40.20.00.60.40.20.0BCa aba a bAMAL(35)NDNDNDSept 2002June 2003Sept 2003LOIN(17)NDSHCA(16)NDNDSABO(81)NDNDSADR(32)NDNDSAWO(10)


New sprouts observed <strong>in</strong> transects:CommonSeptJuneSeptSpeciesName200220032003Rosa woodsii Wood’s rose 13 22 12Pachistimamyrs<strong>in</strong>itiesMounta<strong>in</strong>boxwood16 4 13Ribes lacustreSymphoricarpusalbaBlackgooseberry37 8 4Snowberry 10 6 1Salix boothii Booth’s willow 81 1 9AmelanchieralnifoliaServiceberry 35 1 5All Species 332 381(+ 49)439(+58)


Sprout from Surviv<strong>in</strong>g Root CrownSalix wolfiiSalix boothiiSalix drummondiana


Sprout from Surviv<strong>in</strong>g Root CrownSheperdia canadensisDasiphora fruticosaLonicera <strong>in</strong>volucrataRibes lacustrePaxistima myrs<strong>in</strong>itesAmelanchier albnifolia


Clonal - sprout from rhizomes, stem base, <strong>and</strong>surviv<strong>in</strong>g root crownsSymphoricarpos albusRosa woodsii


Regenerate from seed follow<strong>in</strong>g fire:Wild hollyhocksIliamna rivularisCaribou National Forest, IdahoCeanothus velut<strong>in</strong>us


Herbaceous: sprout from rhizomes, stem base,<strong>and</strong> surviv<strong>in</strong>g root crownsCarex lenticularisCarex aquatilis


<strong>Fire</strong> <strong>and</strong> Invasive Plants <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong><strong>Riparian</strong> areas are susceptible to <strong>in</strong>vasion• Stream networks = corridors for movement of propagules• High resource availability• Periodic flow-related disturbance creates habitat heterogeneity• Human-caused disturbance (roads, flow alteration, graz<strong>in</strong>g,proximity to exist<strong>in</strong>g nonnative plant populations)Many riparian areas have been <strong>in</strong>vaded• Non-native woody species are as frequent <strong>and</strong> abundant asnatives (Tamarisk, Russian olive; Friedman et al, 2005)• Invasive herbaceous species are prevalent along many streams(Magee et al. 2008, R<strong>in</strong>gold et al. 2008)• Invasives <strong>in</strong>crease after fire (Jackson <strong>and</strong> Sullivan 2009)


L<strong>and</strong> Management Impacts on <strong>Fire</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong><strong>Fire</strong> Suppression


A Guide To <strong>Riparian</strong> <strong>Fuel</strong> <strong>Treatments</strong> <strong>in</strong>the Interior West (JFSP project)Kate Dwire, <strong>Riparian</strong> Ecologist, RMRS, Fort Coll<strong>in</strong>s, COKristen Meyer, Ecologist, BLM, Gr<strong>and</strong> Junction, COS<strong>and</strong>ra Ryan, Geomorphologist, RMRS, Fort Coll<strong>in</strong>s, COGregg Riegel, USFS Area Ecologist, Bend, ORTim Burton, <strong>Riparian</strong> Consultant, Boise, ID1. Literature review: effects of fire <strong>and</strong> fuels treatmentsissues <strong>in</strong> riparian areas;2. Survey: Completed <strong>and</strong> proposed riparian fuels projects;3. Case Studies: Challenges <strong>and</strong> opportunities – closer look at5 riparian fuel treatments;4. Guidel<strong>in</strong>es for pre-<strong>and</strong>-post treatment monitor<strong>in</strong>g.


<strong>Fuel</strong> <strong>Treatments</strong> <strong>in</strong> <strong>Riparian</strong> <strong>Areas</strong>: SurveyY= yes; N= noTreatment Size:< 100 acres 53%100-300 acres 40%> 300 acres 20%Treatment Target:<strong>Riparian</strong> areas 47%<strong>Riparian</strong> areas <strong>in</strong>cludedas part of larger project 59%Treatment Location:In wildl<strong>and</strong>-urban <strong>in</strong>terface 75%Not <strong>in</strong> WU <strong>in</strong>terface 22%Management Objectives:S<strong>in</strong>gle objective 44%Multiple objective 56%Primary objective = fuel reduction 81%Primary objective = restoration/habitat improvement 41%Stone et al. 2010. <strong>Fuel</strong> reduction management practices <strong>in</strong> riparian areas of the western USA.Environmental Management 46:91-100.


ProjectObjectives <strong>and</strong>EffectivenessNumber of Completed ProjectsNumber of Completed Projects100806040200100806040200a) Project Objectivesb) Effectiveness at Meet<strong>in</strong>gProject ObjectivesHazardous <strong>Fuel</strong><strong>Reduction</strong>Restore Historical<strong>Fire</strong> RegimeHabitatRestorationControl InvasivePlant SpeciesProtect Valuesat RiskOtherUSFSBLMUSFWSNPSnot at all effectivesomewhat <strong>in</strong>effectiveunsuresomewhat effectivevery effective


<strong>Riparian</strong> VegetationTypes<strong>Riparian</strong> Vegetation Types(% completed projects)50403020100a) Completed Projectswillowcottonwoodconiferupl<strong>and</strong> shrubmeadowb) Proposed Projects<strong>Riparian</strong> Vegetation Types(% proposed projects)50403020100dom<strong>in</strong>ant subdom<strong>in</strong>ant present not present


TreatmentMethodsNumber of Projects10080604020a) Treatment MethodsPost burn<strong>in</strong>g/ th<strong>in</strong>n<strong>in</strong>gUSFSBLMUSFWSNPS0Prescribed burnMechanical th<strong>in</strong>n<strong>in</strong>g(cha<strong>in</strong> saws)Mechanical th<strong>in</strong>n<strong>in</strong>g(heavy equipment)Scatter<strong>in</strong>gPile burn<strong>in</strong>gMasticationOther35b) Treatment Comb<strong>in</strong>ations30Number of Projects2520151050S<strong>in</strong>gle MethodTwo MethodsThree MethodsFour MethodsFive MethodsSix Methods


Constra<strong>in</strong>ts to <strong>Riparian</strong> <strong>Fuel</strong> <strong>Treatments</strong>Number of Respondents300250200150100500Potential LitigationT & E SpeciesCultural ResourcesAdm<strong>in</strong>istrative PoliciesResource ManagementPlan St<strong>and</strong>ardsLack of L<strong>in</strong>eOfficer SupportUSFSBLMUSFWSNPSLack of AgreementAmong SpecialistsOther


Summary:► <strong>Fire</strong> properties, behavior <strong>and</strong> history <strong>in</strong> riparianareas: depends on context;► <strong>Riparian</strong> areas <strong>and</strong> local fire regimes: depends oncontext;► Postfire processes <strong>and</strong> recovery <strong>in</strong> riparian areas;• Large wood recruitment to streams; depends on location <strong>in</strong>stream network;• Recovery rates depend on fire severity; generally fast;species traits important.► <strong>Fuel</strong> management treatments <strong>in</strong> riparian areas: bestviewed as restoration projects.


Thank You!Bambi fire`

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!