04.12.2012 Views

Platelet-rich plasma influence on human ... - Clauberth Oliveira

Platelet-rich plasma influence on human ... - Clauberth Oliveira

Platelet-rich plasma influence on human ... - Clauberth Oliveira

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Cimara Fortes Ferreira<br />

Márcia Cristina Carriel<br />

Gomes<br />

José Scarso Filho<br />

José Mauro Granjeiro<br />

Cláudia Maria <strong>Oliveira</strong><br />

Simões<br />

Ricardo de Souza Magini<br />

Authors’ affiliati<strong>on</strong>s:<br />

Cimara Fortes Ferreira, Department of Dental<br />

Implantology, University of Santa Catarina,<br />

Florianópolis, Brazil<br />

Márcia Cristina Carriel Gomes, Department of<br />

Biotechnology, University of Santa Catarina,<br />

Florianópolis, Brazil<br />

José Scarso Filho, Department of Oral Surgery,<br />

University of Araraquara, Araraquara, Brazil<br />

José Mauro Granjeiro, Department of Biochemistry,<br />

School of Dentistry, Bauru, Brazil<br />

Cláudia Maria <strong>Oliveira</strong> Simões, Department of<br />

Pharmaceutical Sciences, University of Santa<br />

Catarina, Florianópolis, Brazil<br />

Ricardo de Souza Magini, Department of<br />

Period<strong>on</strong>tology, University of Santa Catarina,<br />

Florianópolis, Brazil<br />

Corresp<strong>on</strong>dence:<br />

Dr Ricardo de Souza Magini<br />

Universidade Federal de Santa Catarina – Centro de<br />

Ensino e Pesquisa em Implantes Dentários<br />

(UFSC-CEPID)<br />

Centro de Ciências da Saúde–Campus<br />

Universitário Trindade<br />

88040-970<br />

Florianópolis, SC<br />

Brazil<br />

Tel.: þ 55 48 331 9077<br />

Fax: þ 55 48 234 1788<br />

e-mail: cimarafortes@hotmail.com<br />

Date:<br />

Accepted 18 October 2004<br />

To cite this article:<br />

Ferreira CF, Gomes MCC, Filho JS, Granjeiro JM,<br />

Simões CMO, Magini RS. <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g><br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> <strong>human</strong> osteoblasts growth.<br />

Clin. Oral Impl. Res. 16, 2005; 456–460<br />

doi: 10.1111/j.1600-0501.2005.01145.x<br />

Copyright r Blackwell Munksgaard 2005<br />

456<br />

<str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong><br />

<strong>human</strong> osteoblasts growth<br />

Key words: <strong>human</strong> osteoblasts; platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g>; proliferati<strong>on</strong><br />

Abstract<br />

Objective: The <str<strong>on</strong>g>influence</str<strong>on</strong>g> of progressively high c<strong>on</strong>centrati<strong>on</strong>s of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> (PRP)<br />

<strong>on</strong> <strong>human</strong> osteoblast hFOB1.19 proliferati<strong>on</strong> was evaluated.<br />

Material and methods: The PRP was obtained from a <strong>human</strong> source. Two experiments were<br />

c<strong>on</strong>ducted. In the first <strong>on</strong>e, PRP was diluted to 50%, 25%, 12.5% and 6.125% (v/v) with<br />

culture medium (Modified Eagle’s Medium (MEM) : Ham’s F12 Medium (HAM-F12%) and<br />

1% antibiotics–antimicotic) supplemented with 10% of fetal bovine serum (FBS). In the<br />

sec<strong>on</strong>d experiment, all c<strong>on</strong>diti<strong>on</strong>s were identical except for the absence of FBS in the<br />

culture medium.<br />

Results: The results of the osteoblast proliferati<strong>on</strong> test were higher when stimulated by the<br />

50% PRP diluti<strong>on</strong>, with or without FBS. A further study is suggested to determine if<br />

c<strong>on</strong>centrati<strong>on</strong>s above 50% could cause higher rates of osteoblast proliferati<strong>on</strong>. In this study,<br />

the results were not statistically different (Po0.05) with 12.5% and 6.125% PRP diluti<strong>on</strong>s.<br />

Additi<strong>on</strong>ally, it was shown that FBS is not necessary for PRP-mediated inducti<strong>on</strong> of<br />

osteoblast proliferati<strong>on</strong>.<br />

C<strong>on</strong>clusi<strong>on</strong>: This study c<strong>on</strong>cluded that PRP promotes osteoblast proliferati<strong>on</strong> and<br />

suggested its clinical applicati<strong>on</strong> to b<strong>on</strong>e graft procedures in implant dentistry.<br />

Scientific studies have established platelet<str<strong>on</strong>g>rich</str<strong>on</strong>g><br />

<str<strong>on</strong>g>plasma</str<strong>on</strong>g> (PRP) as a therapeutic strategy<br />

in orthopedics (Ganio et al. 1993), in implant<br />

dentistry (Anitua 1999; Kassolis et al.<br />

2000; Gruber et al. 2002), and as an aid for<br />

b<strong>on</strong>e graft compacti<strong>on</strong> as well as for hemostasis.<br />

PRP is a n<strong>on</strong>-toxic, autogenous<br />

material that does not cause immune reacti<strong>on</strong>s<br />

when applied to the original d<strong>on</strong>or.<br />

PRP possesses the advantage of being immediately<br />

available preoperatively, and<br />

c<strong>on</strong>sequently histocompatible, and being<br />

incapable of transmitting infectious diseases<br />

(Whitman et al. 1997). PRP also<br />

c<strong>on</strong>tains high amounts of mitogenic polypeptide<br />

proteins, platelet-derived growth<br />

factors (PDGFs), b-transforming growth<br />

factors (TGF-b’s) and I-insulin-like growth<br />

factors, which appear to accelerate the<br />

osteogenesis in oral and maxillofacial surgery,<br />

as well as platelets, which are a<br />

source of growth factors that induce b<strong>on</strong>e,<br />

epithelial and c<strong>on</strong>nective tissue repair. It<br />

has been successfully used since the 1970s.<br />

Matras (1970) used <str<strong>on</strong>g>plasma</str<strong>on</strong>g> to form fibrin<br />

‘glue’ preparati<strong>on</strong>s obtained from blood<br />

centrifugati<strong>on</strong> for skin graft procedures<br />

in mice. Studies showed the beneficial<br />

effects of PRP to repair cutaneous ulcers<br />

(Knight<strong>on</strong> et al. 1990; Lynch 1991). PRP<br />

promotes accelerati<strong>on</strong> of surgical wound<br />

repair by means of growth factors present<br />

in the platelets, which are the universal<br />

initiators of the healing process (Ganio


et al. 1993; Tayap<strong>on</strong>gsak et al. 1994; Anitua<br />

1999). Its benefits were also c<strong>on</strong>firmed<br />

in oral and maxillofacial surgeries, (Ganio<br />

et al. 1993; Kassolis et al. 2000). Lucarelli<br />

et al. (2003) investigated mesenchymal<br />

stem cell proliferati<strong>on</strong> in culture medium<br />

supplemented with PRP and verified that<br />

the use of 10% PRP was sufficient to<br />

accelerate mineralizati<strong>on</strong> in vitro. Clinicians<br />

and researchers have investigated<br />

the use of PRP in dentistry as a form of<br />

accelerating the natural healing process.<br />

Carls<strong>on</strong> & Roach (2002) showed that PRP<br />

and its growth factors are promising for<br />

surgical wound healing. The use of PRP,<br />

in associati<strong>on</strong> with autogenous b<strong>on</strong>e grafts<br />

in implant dentistry, was shown to optimize<br />

the quality and quantity of newly<br />

formed b<strong>on</strong>e (Scarso Filho 2002).<br />

A systematic review of maxillary sinus<br />

augmentati<strong>on</strong> procedures <strong>on</strong> the survival<br />

of endosseous dental implants was d<strong>on</strong>e<br />

when the efficacy of the sinus augmentati<strong>on</strong><br />

procedure was compared with various<br />

surgical grafting materials, including the<br />

use of PRP associated with b<strong>on</strong>e graft<br />

material. In spite of the favorable resp<strong>on</strong>ses<br />

shown in the literature in using<br />

PRP as an adjuvant for b<strong>on</strong>e-grafting<br />

procedures, the authors of this systematic<br />

review c<strong>on</strong>cluded that there are insufficient<br />

data to recommend the use of PRP<br />

in sinus graft surgery (Wallace & Froum<br />

2003).<br />

Another study <strong>on</strong> the use of PRP associated<br />

with autologous b<strong>on</strong>e as filling<br />

material for sinus lift procedures shows<br />

increased b<strong>on</strong>e maturati<strong>on</strong> rate and improved<br />

b<strong>on</strong>e density when PRP, or its<br />

recombinant growth factors, are added to<br />

small b<strong>on</strong>y defects or to larger defects that<br />

use autogenous b<strong>on</strong>e as the grafting material.<br />

Histomorphometric analysis indicated<br />

that the additi<strong>on</strong> of PRP to the grafts did<br />

not show significant difference either in<br />

vital b<strong>on</strong>e producti<strong>on</strong> or in interfacial<br />

b<strong>on</strong>e c<strong>on</strong>tact <strong>on</strong> implants placed in these<br />

sites (Froum et al. 2002). Other studies<br />

using animal models showed that PRP<br />

associated with autogenous b<strong>on</strong>e did not<br />

enhance b<strong>on</strong>e formati<strong>on</strong> (Roldan et al.<br />

2004; Schlegel et al. 2004; Wiltfang et al.<br />

2004).<br />

The effect of PRP <strong>on</strong> b<strong>on</strong>e regenerati<strong>on</strong>,<br />

when associated to autogenous b<strong>on</strong>e grafts<br />

was evaluated in vitro in a canine model<br />

(Choi et al. 2004). The findings suggested<br />

that the additi<strong>on</strong> of PRP does not appear to<br />

enhance new b<strong>on</strong>e formati<strong>on</strong>.<br />

The purpose of the present study was to<br />

evaluate progressively high c<strong>on</strong>centrati<strong>on</strong>s of<br />

PRP <strong>on</strong> proliferati<strong>on</strong> of <strong>human</strong> osteoblasts.<br />

Material and methods<br />

Cell culture<br />

Human osteoblasts (hFOB1.19, no. CRL<br />

11,372) were provided from the American<br />

Type Culture Collecti<strong>on</strong>. Those used in the<br />

experiment were derived from passages 5<br />

and 6. The cell m<strong>on</strong>olayers were cultured<br />

in Modified Eagle’s medium (MEM, Gibco,<br />

Invitrogen Corporati<strong>on</strong>, Carlsbad, CA,<br />

USA) and Ham’s F12 medium (HAM-<br />

F12) (Cultilab, Campinas, SP, Brazil) (1 : 1)<br />

supplemented with 10% of fetal bovine<br />

serum (FBS, Gibco BRL, Campinas, Brazil),<br />

and 1% of antibiotics–antimycotic (penicillin<br />

G sodium – 100 U/ml), streptomycin –<br />

100 mg/ml and amphotericin B – 0.025 mg/<br />

ml; Gibco BRL). The cells were maintained<br />

in a humidified incubator with 5% CO2 at<br />

371C. When cells reached c<strong>on</strong>fluency they<br />

were subcultivated using 0.1% of trypsin<br />

(Sigma, St. Louis, MO, USA; 5 mg/ml) and<br />

0.1% of calcium- and magnesium-free Dulbecco’s<br />

phosphate-buffer saline soluti<strong>on</strong><br />

(Gibco, Invitrogen Corporati<strong>on</strong>).<br />

<str<strong>on</strong>g>Platelet</str<strong>on</strong>g> collecti<strong>on</strong><br />

Plasma was obtained from the venous<br />

blood of a healthy male volunteer. Blood<br />

was drawn into a 5 ml Vacutainer s (BD,<br />

Curitiba, Paraná, Brazil) c<strong>on</strong>taining 500 ml<br />

of the anticoagulant sodium citrate. PRP<br />

was obtained following the protocol developed<br />

by Macedo et al. (2003). Briefly, blood<br />

was centrifuged twice at 120 g in an<br />

ALC centrifuge (Centrifugette 4206 ALC,<br />

ACE Surgical Supply Company Inc.,<br />

Brockt<strong>on</strong>, MA, USA) for 10 min at 201C<br />

to remove red blood cells (first time) to<br />

obtain the PRP (sec<strong>on</strong>d time). Three hours<br />

later, the PRP was diluted in the cell<br />

culture medium for proliferative assessment<br />

of the osteoblasts. A previous study<br />

revealed that the activity of growth factors<br />

present in PRP decreased 4 h after blood<br />

was drawn (Ledent et al. 1995). C<strong>on</strong>sequently,<br />

the PRP used here was obtained<br />

approximately 3 h after blood collecti<strong>on</strong>.<br />

This procedure was repeated three times,<br />

in a weekly interval, to obtain mean va-<br />

Ferreira et al . Human osteoblasts growth<br />

lues. Therefore, the blood was drawn three<br />

times from the same male volunteer.<br />

Evaluati<strong>on</strong> of <strong>human</strong> osteoblast<br />

proliferati<strong>on</strong> by 3-(4,5-dimethylthiazol-2yl)-2,5-diphenyl<br />

tetrazolium bromide<br />

(MTT) assay<br />

hFOB1.19 cell cultures (3 10 4 cells/well)<br />

were prepared in 96-well tissue culture<br />

plates (Corning, NY, USA). After a 24 h<br />

period of incubati<strong>on</strong>, the cell culture medium<br />

was replaced by <strong>on</strong>e c<strong>on</strong>taining 50%,<br />

25%, 12.5% and 6.125% of diluted PRP<br />

without or with 10% FBS.<br />

Next, platelet gel was obtained up<strong>on</strong><br />

additi<strong>on</strong> of 5% calcium chloride to the<br />

medium. Four days after replacing original<br />

culture medium with another <strong>on</strong>e c<strong>on</strong>taining<br />

PRP, the MTT method (Mossman 1983)<br />

was applied with modificati<strong>on</strong>s (Andrighetti-Fröhner<br />

et al. 2003). After 4 days, at<br />

371C inhumidified5%CO2atmosphere, 50 ml of MTT (Sigma, 1 mg/ml) soluti<strong>on</strong><br />

prepared in MEM : HAM-F12 (1 : 1) cell<br />

medium was added to each well and the<br />

plates were incubated for 4 h at 371C. Next,<br />

the medium was not removed with sucti<strong>on</strong>,<br />

and 100 ml of dimethyl sulfoxide (Merck<br />

Biosciences, Darmstadt, Germany) was<br />

added to each well to dissolve formazan<br />

crystals. After gently shaking the plates for<br />

5 min, whereby crystals were completely<br />

dissolved, the absorbance was read <strong>on</strong> a<br />

multiwell spectrophotometer (Bio-Tek, Elx<br />

800, Winooski, VT, USA) at 540 nm. The<br />

original MTT technique (Mossman 1983)<br />

was modified, the cell culture medium was<br />

not removed, for a gel clot was formed inside<br />

the wells, and, by means of light microscopy,<br />

the cells had migrated to the clot.<br />

Afterwards, the <str<strong>on</strong>g>influence</str<strong>on</strong>g> of the PRP was<br />

assessed by a scanning spectrophotometer<br />

(Ultrospec 3000-Pharmacia Bio-tek, Winooski,<br />

VT, USA) in the four c<strong>on</strong>centrati<strong>on</strong>s<br />

used in this research. This evaluati<strong>on</strong><br />

showed no <str<strong>on</strong>g>influence</str<strong>on</strong>g> of the PRP in the cell<br />

culture medium when read at 540 nm.<br />

Therefore, PRP did not <str<strong>on</strong>g>influence</str<strong>on</strong>g> the results<br />

obtained from the spectrophotometer (Bio-<br />

Tek, Elx 800) at 540 nm. The percentage of<br />

cell growth was calculated as [(A B)/<br />

A 100], where A and B are the absorbances<br />

of c<strong>on</strong>trol and treated cells, respectively.<br />

In this calculati<strong>on</strong>, B was subtracted<br />

from A and divided by the absorbance of the<br />

treated group multiplied by 100, resulting in<br />

the percentage of cell growth.<br />

457 | Clin. Oral Impl. Res. 16, 2005 / 456–460


Ferreira et al . Human osteoblasts growth<br />

The percentages of cell growth by the<br />

PRP in relati<strong>on</strong> to hFOB1.19 osteoblasts<br />

represent mean standard error of the<br />

mean values of three different experiments.<br />

Variance analysis and the Tukey test<br />

(Po0.05) were carried out as appropriate.<br />

Results<br />

Evaluati<strong>on</strong> of <strong>human</strong> osteoblast<br />

proliferati<strong>on</strong> by MTT assay<br />

The results of the <str<strong>on</strong>g>influence</str<strong>on</strong>g> of different<br />

c<strong>on</strong>centrati<strong>on</strong>s of PRP <strong>on</strong> hFOB1.19 osteoblast<br />

proliferati<strong>on</strong> in MEM : HAM-F12<br />

(1 : 1) without and with 10% FBS are expressed<br />

as percentages of cell growth that<br />

indicate mean values of three independent<br />

experiments. The results were evaluated<br />

statistically using analysis of variance and<br />

Tukey analysis (Fig. 1).<br />

A comparis<strong>on</strong> of the results of hFOB1.19<br />

osteoblast proliferati<strong>on</strong> by PRP with and<br />

without 10% FBS showed that cell growth<br />

increases as a functi<strong>on</strong> of the c<strong>on</strong>centrati<strong>on</strong><br />

of PRP. Cell growth is always higher in the<br />

groups receiving 10% FBS, showing the<br />

highest <str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> cell growth between<br />

675.7% and 824% with 695.7% as the<br />

median value for the groups receiving 50%<br />

PRP. Figure 1 shows the results of the<br />

variability c<strong>on</strong>sidered in this research for<br />

the groups receiving 10% FBS and those<br />

not receiving FBS.<br />

Discussi<strong>on</strong><br />

Past investigati<strong>on</strong>s have established the<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> of growth factors <strong>on</strong> cell prolif-<br />

Mean cell growth<br />

900<br />

800<br />

700<br />

600<br />

500<br />

400<br />

300<br />

200<br />

100<br />

0<br />

10%<br />

0%<br />

256.9 ± 26.9<br />

148.3 ± 20.7<br />

191.2 ± 20.6<br />

116.1 ± 10.4<br />

erati<strong>on</strong> (Gr<strong>on</strong>thos & Simm<strong>on</strong>s 1995; Kuznetov<br />

et al. 1997; Lind 1998; Tian et al.<br />

1999). PRP, which c<strong>on</strong>tains many growth<br />

factors, has been shown to stimulate cell<br />

proliferati<strong>on</strong> in vitro (Slater et al. 1995;<br />

Nakanishi et al. 1997; Weib<str<strong>on</strong>g>rich</str<strong>on</strong>g> et al.<br />

2002; Kawasa et al. 2003; Lucarelli et al.<br />

2003; Okuda et al. 2003). Whitman et al.<br />

(1997) described the preparati<strong>on</strong> of platelet<br />

gel showing its advantages in b<strong>on</strong>e graft<br />

procedures to accelerate the healing process.<br />

Literature <strong>on</strong> b<strong>on</strong>e cell physiology<br />

shows many instances where PRP was in<br />

associati<strong>on</strong> with b<strong>on</strong>e graft procedures. In<br />

these cases, PRP has dem<strong>on</strong>strated an accelerati<strong>on</strong><br />

of the formati<strong>on</strong> of mature b<strong>on</strong>e.<br />

In additi<strong>on</strong>, a greater formati<strong>on</strong> of cancellous<br />

b<strong>on</strong>e was noted when compared<br />

with b<strong>on</strong>e grafts that did not receive<br />

PRP when evaluated 4–6 m<strong>on</strong>ths after the<br />

procedure (Marx & Garg 2003). In vitro<br />

investigati<strong>on</strong>s have identified that the<br />

PDGF, a subcomp<strong>on</strong>ent of the PRP, has<br />

a significant effect <strong>on</strong> cell proliferati<strong>on</strong><br />

(Nakanishi et al. 1997; Weib<str<strong>on</strong>g>rich</str<strong>on</strong>g> et al.<br />

2002; Kawase et al. 2003; Okuda et al.<br />

2003).<br />

However, questi<strong>on</strong>s are raised about the<br />

efficacy of PRP in dental applicati<strong>on</strong>s.<br />

There are clinical studies where PRP was<br />

used for grafting the floor of the maxillary<br />

sinus in associati<strong>on</strong> with b<strong>on</strong>e graft material<br />

for increasing alveolar b<strong>on</strong>e height prior<br />

to the placement of endosseous dental<br />

implants in the posterior maxilla. To<br />

determine the efficacy of the sinus<br />

augmentati<strong>on</strong> procedure compared with<br />

the results achieved with various surgical<br />

techniques, grafting materials and im-<br />

444.1 ± 23.1<br />

433.5 ± 31.9<br />

731.8 ± 46.5<br />

666.4 ± 20.4<br />

6.125 12.5 25 50<br />

PRP c<strong>on</strong>centrati<strong>on</strong> (%)<br />

Fig. 1. The <str<strong>on</strong>g>influence</str<strong>on</strong>g> of different c<strong>on</strong>centrati<strong>on</strong>s of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> (PRP) <strong>on</strong> hFOB1.19 osteoblast<br />

proliferati<strong>on</strong> in MEM : HAM-F12 (1 : 1) medium without (0%) and with 10% of fetal bovine serum, expressed<br />

as cell growth percentages. The mean values are presented <strong>on</strong> top of the bars with the standard error value.<br />

458 | Clin. Oral Impl. Res. 16, 2005 / 456–460<br />

plants, a systematic review of clinical studies<br />

was c<strong>on</strong>ducted by Wallace & Froum<br />

(2003). In this investigati<strong>on</strong>, the authors<br />

verified the effect <strong>on</strong> implant survival of<br />

maxillary sinus augmentati<strong>on</strong> vs. implant<br />

placement in the n<strong>on</strong>-grafted posterior<br />

maxilla. The authors c<strong>on</strong>cluded that there<br />

were insufficient data to recommend the<br />

use of PRP in sinus graft surgery, a very<br />

comm<strong>on</strong> procedure used in implant<br />

dentistry.<br />

In another investigati<strong>on</strong>, the effect of<br />

PRP <strong>on</strong> b<strong>on</strong>e regenerati<strong>on</strong> associated with<br />

autogenous b<strong>on</strong>e graft was evaluated in<br />

animal models where b<strong>on</strong>e defects received<br />

autogenous b<strong>on</strong>e in associati<strong>on</strong> with PRP,<br />

and without PRP. Results of these studies<br />

showed that the additi<strong>on</strong> of PRP does not<br />

appear to enhance new b<strong>on</strong>e formati<strong>on</strong> in<br />

autogenous b<strong>on</strong>e grafts (Schlegel et al.<br />

2003, 2004; Choi et al. 2004; Wiltfang<br />

et al. 2004).<br />

Further, PRP was studied <strong>on</strong> b<strong>on</strong>e augmentati<strong>on</strong><br />

procedures in vitro and was<br />

compared with b<strong>on</strong>e morphogenetic protein<br />

when added to autologous b<strong>on</strong>e grafts.<br />

The authors c<strong>on</strong>cluded that, by means of<br />

a histomorphometric study, PRP failed<br />

to enhance b<strong>on</strong>e formati<strong>on</strong> (Roldan et al.<br />

2004).<br />

Froum et al. (2002) studied the efficacy<br />

of PRP <strong>on</strong> b<strong>on</strong>e growth and osseointegrati<strong>on</strong><br />

in <strong>human</strong> maxillary sinus grafts when<br />

associated with grafts of anorganic bovine<br />

b<strong>on</strong>e that c<strong>on</strong>tained minimal or no autogenous<br />

b<strong>on</strong>e. The results of their studies<br />

showed that the effect of PRP did not show<br />

a significant difference either in vital b<strong>on</strong>e<br />

producti<strong>on</strong> or in interfacial b<strong>on</strong>e c<strong>on</strong>tact <strong>on</strong><br />

the test implants.<br />

The studies enumerated above suggest<br />

uncertainty in recommending the use of<br />

PRP in b<strong>on</strong>e-regenerati<strong>on</strong> procedures.<br />

However, the present investigati<strong>on</strong> shows<br />

in vitro that PRP has a positive effect <strong>on</strong><br />

osteoblast proliferati<strong>on</strong>.<br />

The results of this investigati<strong>on</strong> are in<br />

accordance with the results obtained by<br />

Nakanishi et al. (1997) and Kawase et al.<br />

(2003) showing that PRP stimulates cell<br />

proliferati<strong>on</strong> when added to culture medium<br />

c<strong>on</strong>taining osteoblasts. In this study,<br />

we observed a positive correlati<strong>on</strong> between<br />

the increased c<strong>on</strong>centrati<strong>on</strong> of PRP in culture<br />

medium and the rate of osteoblasts<br />

proliferati<strong>on</strong>, c<strong>on</strong>sistent with the results<br />

published by Lucarelli et al. (2003), which


showed that 10% of PRP added to osteoblast<br />

culture medium was sufficient to<br />

induce evident cell proliferati<strong>on</strong>. The present<br />

study showed that 50% PRP caused<br />

the best proliferative results in osteoblast<br />

culture. Further studies are needed to establish<br />

if progressively higher c<strong>on</strong>centrati<strong>on</strong>s<br />

of PRP would have a corresp<strong>on</strong>ding<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> proliferati<strong>on</strong>. In additi<strong>on</strong>, our<br />

results showed that FBS is not necessary for<br />

PRP-mediated inducti<strong>on</strong> of hFOB1.19 osteoblast<br />

proliferati<strong>on</strong> as shown by Lucarelli<br />

et al. (2003).<br />

The c<strong>on</strong>tent of PDGF and TGF-b present<br />

in platelet gel was studied during the preparati<strong>on</strong><br />

and storage of PRP. The c<strong>on</strong>tent of<br />

PDGF and TGF-b decreases according to<br />

higher storage periods, showing less cell<br />

growth promoti<strong>on</strong> 4 h to 3 days after blood<br />

is drawn. In this study, the experimental<br />

use of blood to supplement the cell growth<br />

media did not exceed 3 h after blood was<br />

drawn (Ledent et al. 1995).<br />

Currently, cultivati<strong>on</strong> of <strong>human</strong> osteoblasts<br />

in vitro is challenging (Lind 1998),<br />

and PRP has dem<strong>on</strong>strated a significant<br />

<str<strong>on</strong>g>influence</str<strong>on</strong>g> <strong>on</strong> osteoblast reproducti<strong>on</strong>.<br />

The positive results of in vitro<br />

(Nakanishi et al. 1997; Weib<str<strong>on</strong>g>rich</str<strong>on</strong>g> et al.<br />

2002; Lucarelli et al. 2003) studies encourage<br />

research into further refinement<br />

of methods for osteoblast cultivati<strong>on</strong>.<br />

Methods c<strong>on</strong>ducive to high yields of<br />

osteoblast proliferati<strong>on</strong> may c<strong>on</strong>tribute<br />

ultimately to the development of processes<br />

that promote growth or replacement<br />

of substitute b<strong>on</strong>e material. They also<br />

could potentially have far-reaching benefits<br />

in orthopedics, maxillofacial surgery as<br />

well as implant dentistry by eliminating<br />

the need for surgically complex b<strong>on</strong>e harvesting<br />

as well as reducing associated<br />

pain and costs. However, the effects of<br />

PRP associated with autogenous b<strong>on</strong>e<br />

grafts in clinical situati<strong>on</strong>s require further<br />

investigati<strong>on</strong>.<br />

The purpose of the present study was<br />

to evaluate the <str<strong>on</strong>g>influence</str<strong>on</strong>g> of progressively<br />

higher c<strong>on</strong>centrati<strong>on</strong>s of PRP <strong>on</strong> cell<br />

growth medium. The maximum amount<br />

of PRP added to the growth medium was<br />

50%, showing the best proliferative results<br />

in <strong>human</strong> osteoblast culture. Therefore,<br />

further studies are suggested to answer<br />

if higher c<strong>on</strong>centrati<strong>on</strong>s of PRP would<br />

alter the proliferative rate of <strong>human</strong><br />

osteoblasts.<br />

Acknowledgements: The authors are<br />

grateful to Prof. Dr Zenilda Laurita<br />

Bouz<strong>on</strong> from the Department of Cell<br />

Biology, Embryology and Genetics of<br />

the University of Santa Catarina for her<br />

assistance during the experimental part<br />

of the research; to Esther Takamori,<br />

MSc (Faculty of Dentistry, Bauru, SP)<br />

for her assistance during laboratory<br />

training and to Kenneth Faulkner<br />

Weaver for his editorial assistance.<br />

Résumé<br />

Le but de cette étudeaété d’évaluer l’<str<strong>on</strong>g>influence</str<strong>on</strong>g> de<br />

c<strong>on</strong>centrati<strong>on</strong>s progressivement plus importantes de<br />

<str<strong>on</strong>g>plasma</str<strong>on</strong>g> <str<strong>on</strong>g>rich</str<strong>on</strong>g>e en plaquettes (PRP) sur la proliférati<strong>on</strong><br />

des ostéoblastes hFOB1.19 humain. Le PRP a été<br />

obtenu de source humaine. Deux expériences <strong>on</strong>t été<br />

c<strong>on</strong>duites. Dans la première, le PRP a été dilué à 50,<br />

25, 12,5 et 6,125 (v/v) avec un milieu de culture<br />

(MEM : HAM-F12 et 1% d’antibiotiques-antimicotique)<br />

avec 10% de sérum bovin foetal (FBS). Dans la<br />

sec<strong>on</strong>de expérience, toutes ces c<strong>on</strong>diti<strong>on</strong>s étaient<br />

identiques sauf qu’il n’y avait pas de FBS dans le<br />

milieu de culture. Les résultats du test de la proliférati<strong>on</strong><br />

des ostéoblastes étaient plus élevés quand ils<br />

étaient stimulés par une diluti<strong>on</strong> PRP de 50% avec<br />

ou sans FBS. Une étude supplémentaireaété suggérée<br />

pour déterminer si les c<strong>on</strong>centrati<strong>on</strong>s supérieures<br />

à 50% pouvaient apporter des taux plus élevés<br />

de proliférati<strong>on</strong> des ostéoblastes. Dans l’étude présente,<br />

les résultats n’étaient pas différents (Po0,05)<br />

avec des diluti<strong>on</strong>s de PRP à 12,5 et 6,125%. De plus,<br />

il était c<strong>on</strong>staté que le FBS n’était pas nécessaire<br />

pour l’inducti<strong>on</strong> de la proliférati<strong>on</strong> des ostéoblastes<br />

par PRP. Le PRP améliore d<strong>on</strong>c la proliférati<strong>on</strong> des<br />

ostéoblastes et propose s<strong>on</strong> applicati<strong>on</strong> clinique dans<br />

les processus de greffe osseuse en chirurgie buccale<br />

implantaire.<br />

Zusammenfassung<br />

Der Einfluss v<strong>on</strong> plättchenreichem Plasma auf das<br />

Wachstum v<strong>on</strong> menschlichen Osteoblasten<br />

Ziel: Es sollte der Einfluss v<strong>on</strong> progressiv erhöhten<br />

K<strong>on</strong>zentrati<strong>on</strong>en v<strong>on</strong> plättchenreichem Plasma<br />

(PRP) auf die Proliferati<strong>on</strong> v<strong>on</strong> menschlichen Osteoblsaten<br />

hfOB1.19 untersucht werden.<br />

Material und Methoden: Das PRP wurde bei<br />

Menschen gew<strong>on</strong>nen. Zwei Experimente wurden<br />

durchgeführt. Beim ersten wurde das PRP mit Kulturmedium<br />

(MEM:HAM-F12 und 1% Antibiotika-<br />

Antimykotika) auf 50, 25, 12.5 und 6.125 (v/v)<br />

verdünnt und mit 10% fetalem bovinem Serum<br />

(FBS) ergänzt. Beim zweiten Experiment waren alle<br />

Bedingungen identisch, nur das FBS fehlte im Kulturmedium.<br />

Resultate: Die Proliferati<strong>on</strong> der Osteoblasten war<br />

höher, wenn sie durch eine 50% PRP Verdünnung<br />

mit oder ohne FBS stimuliert wurde. Es wird eine<br />

weitere Studie vorgeschlagen, um zu bestimmen, ob<br />

K<strong>on</strong>zentrati<strong>on</strong>en über 50% höhere Proliferati<strong>on</strong>sraten<br />

der Osteoblasten zu Folge haben. In dieser<br />

Untersuchung waren die Resultate mit 12.5 und<br />

6.125% Verdünnungen nicht statistisch signifikant<br />

verschieden (Po0.05). Zusätzlich k<strong>on</strong>nte gezeigt<br />

werden, dass FBS für die PRP gesteuerte Indukti<strong>on</strong><br />

der Osteoblastenproliferati<strong>on</strong> nicht nötig ist.<br />

Schlussfolgerung: Diese Studie führt zur Schlussfolgerung,<br />

dass PRP die Osteoblastenproliferati<strong>on</strong><br />

fördert. Es wird die klinische Anwendung v<strong>on</strong> PRP<br />

bei Knochentransplantati<strong>on</strong>en in Zusammenhang<br />

mit dentalen Implantaten vorgeschlagen.<br />

Resumen<br />

Ferreira et al . Human osteoblasts growth<br />

Objetivo: Evaluar la influencia de altas c<strong>on</strong>centraci<strong>on</strong>es<br />

progresivamente de <str<strong>on</strong>g>plasma</str<strong>on</strong>g> rico en plaquetas<br />

(PRP) en la proliferación de osteoblastos <strong>human</strong>os<br />

hFOB1.19.<br />

Material y métodos: El PRP se obtuvo de fuentes<br />

<strong>human</strong>as. Se llevar<strong>on</strong> a cabo dos experimentos. En el<br />

primero, el PRP se diluyó a 50, 25, 12.5 y 6.125 (v/v)<br />

c<strong>on</strong> medio de cultivo (MEM : HAM-F12 y 1% antibióticos-antimicóticos)<br />

suplementado c<strong>on</strong> 10% de<br />

suero fetal bovino (FBS). En el segundo experimento,<br />

todas las c<strong>on</strong>dici<strong>on</strong>es fuer<strong>on</strong> idénticas salvo por la<br />

ausencia de FBS en el medio de cultivo.<br />

Resultados: Losresultadosdelapruebadeproliferación<br />

de los osteoblastos fuer<strong>on</strong> mayores cuando se<br />

estimular<strong>on</strong> c<strong>on</strong> la dilución de PRP al 50% c<strong>on</strong> o sin<br />

FBS. Se sugiere un estudio ulterior para determinar si<br />

c<strong>on</strong>centraci<strong>on</strong>es por encima del 50% pueden causar<br />

mayores índices de proliferación de osteoblastos. En<br />

este estudio, los resultados no fuer<strong>on</strong> estadísticamente<br />

diferentes (Po0.005) c<strong>on</strong> diluci<strong>on</strong>es de PRP<br />

de 12.5 y 6.125. Adici<strong>on</strong>almente, se mostró que el<br />

FBS no es necesario para la inducción mediada por<br />

PRPdelaproliferación de osteoblastos.<br />

C<strong>on</strong>clusión: Este estudio c<strong>on</strong>cluye que el PRP promueve<br />

la proliferación de osteoblastos y sugirió la su<br />

aplicación clínica para procedimientos de injerto<br />

óseo en od<strong>on</strong>tología deimplantes.<br />

459 | Clin. Oral Impl. Res. 16, 2005 / 456–460


Ferreira et al . Human osteoblasts growth<br />

References<br />

Andrighetti-Fröhner, C.R., Ant<strong>on</strong>io, R.V., Creczynski-Pasa,<br />

T.B., Barardi, C.R.M. & Simões,<br />

C.M.O. (2003) Cytotoxicity and potential antiviral<br />

evaluati<strong>on</strong> of violacein produced by Chromobacterium<br />

violaceum. Memórias do Instituto<br />

Oswaldo Cruz 98: 843–848.<br />

Anitua, E. (1999) Plasma <str<strong>on</strong>g>rich</str<strong>on</strong>g> in growth factors:<br />

preliminary results of use in the preparati<strong>on</strong> of<br />

future sites for implants. Internati<strong>on</strong>al Journal<br />

Oral & Maxillofacial Implants 14: 529–535.<br />

Carls<strong>on</strong>, N.E. & Roach, R.B. Jr (2002) <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-<str<strong>on</strong>g>rich</str<strong>on</strong>g><str<strong>on</strong>g>plasma</str<strong>on</strong>g>:<br />

clinical applicati<strong>on</strong>s in dentistry. Journal<br />

of the American Dental Associati<strong>on</strong> 133: 1383–<br />

1386.<br />

Choi, B.H., Im, C.J., Huh, J.Y., Suh, J.J. & Lee, S.H.<br />

(2004) Effect of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> <strong>on</strong> b<strong>on</strong>e<br />

regenerati<strong>on</strong> in autogenous b<strong>on</strong>e graft. Internati<strong>on</strong>al<br />

Journal of Oral and Maxillofacial Surgery<br />

33: 56–59.<br />

Froum, S.J., Wallace, S.S., Tarnow, D.P. & Cho,<br />

S.C. (2002) Effect of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> <strong>on</strong> b<strong>on</strong>e<br />

growth and osseointegrati<strong>on</strong> in <strong>human</strong> maxillary<br />

sinus grafts: three bilateral case reports. Internati<strong>on</strong>al<br />

Journal of Period<strong>on</strong>tics and Restorative<br />

Dentistry 22: 45–53.<br />

Ganio, C., Tenewitz, F.E., Wils<strong>on</strong>, R.C. & Moyles,<br />

B.G. (1993) The treatment of chr<strong>on</strong>ic n<strong>on</strong>leaking<br />

wounds using autologo platelet-derived growth<br />

factors. Journal of Foot and Ankle Surgery 32:<br />

263–267.<br />

Gr<strong>on</strong>thos, S. & Simm<strong>on</strong>s, P.J. (1995) The growth<br />

factor requirements of STRO-1-positive <strong>human</strong><br />

b<strong>on</strong>e marrow stromal precursors under serumdeprived<br />

c<strong>on</strong>diti<strong>on</strong>s in vitro. Blood 85: 929–940.<br />

Gruber, R., Varga, F., Fischer, M.B. & Watzek, G.<br />

(2002) <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>s stimulate proliferati<strong>on</strong> of b<strong>on</strong>e<br />

cells: involvement of platelet-derived growth factor,<br />

microparticles and membranes. Clinical Oral<br />

Implants Research 13: 529–535.<br />

Kassolis, J.D., Rosen, P.S. & Reynolds, S.A. (2000)<br />

Alveolar ridge and sinus augmentati<strong>on</strong> utilizing<br />

platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> in combinati<strong>on</strong> with freezedried<br />

b<strong>on</strong>e allograft: case series. Journal of Period<strong>on</strong>tology<br />

71: 1654–1661.<br />

Kawase, T., Okuda, K., Wolff, L.F. & Yoshie, H.<br />

(2003) <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g>-derived fibrin clot<br />

formati<strong>on</strong> stimulates collagen synthesis in period<strong>on</strong>tal<br />

ligament and osteoblastic cells in vitro.<br />

Journal of Period<strong>on</strong>tology 74: 856–874.<br />

Knight<strong>on</strong>, D.R., Ciresi, K., Fiegel, V.D., Schumerth,<br />

S., Butler, E. & Cerra, F. (1990) Stimulati<strong>on</strong> of<br />

repair in cutaneous ulcers using platelet-derived<br />

wound healing formula. Surgery, Gynecology &<br />

Obstetrics 170: 56–60.<br />

460 | Clin. Oral Impl. Res. 16, 2005 / 456–460<br />

Kuznetov, S.A., Friedenstein, K. & Robey, P.G.<br />

(1997) Factors required for b<strong>on</strong>e marrow stromal<br />

fibroblasts col<strong>on</strong>y formati<strong>on</strong> in vitro. British Journal<br />

of Haematology 97: 561–570.<br />

Ledent, E., Wastes<strong>on</strong>, A. & Berlin, G. (1995)<br />

Growth factor release during preparati<strong>on</strong> and storage<br />

of platelet c<strong>on</strong>centrates. Vox Sanguinis 64:<br />

205–209.<br />

Lind, M. (1998) Growth factor stimulati<strong>on</strong> of b<strong>on</strong>e<br />

healing. Effects <strong>on</strong> osteoblasts, osteomies, and<br />

implants fixati<strong>on</strong>. Acta Orthopaedica Scandinavica<br />

283 (Suppl.): 2–32.<br />

Lucarelli, E., Beccher<strong>on</strong>i, A., D<strong>on</strong>ati, D., Sangiorgi,<br />

L., Cenacchi, A., Del Vento, A.M., Meotti, C.,<br />

Bertoja, A.Z., Giardino, R., Fornasari, P.M., Mercuri,<br />

M. & Picci, P. (2003) <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-derived<br />

growth factors enhance proliferati<strong>on</strong> of <strong>human</strong><br />

stromal stem cells. Biomaterials 24: 3095–3100.<br />

Lynch, S.E. (1991) Interacti<strong>on</strong>s of growth factors in<br />

tissue repair. Progress in Clinical and Biological<br />

Research 365: 341–357.<br />

Macedo, A., Ferreira, C.F., Souza, D.C., Aldecoa,<br />

E.A., Coura, G.S., Castro, K.N.O., P<strong>on</strong>tual,<br />

M.A., Magini, R.S. & Magnani, O. (2003) Protocolo<br />

de obtenção e aplicações clínicas do PRP. In:<br />

P<strong>on</strong>tual, M.A.B. & Magini, R.S., eds. Plasma rico<br />

em plaquetas e fatores de crescimento. 1stediti<strong>on</strong>,<br />

189–230. São Paulo: Editora Santos.<br />

Marx, R.E. & Garg, A.K. (2003) Applicati<strong>on</strong>s of PRP<br />

in oral and maxillofacial surgery. Available in:<br />

http://perfusi<strong>on</strong>partners.com/platelegel/geljournal1.html<br />

Access in: Nov 2nd 2003.<br />

Matras, H. (1970) Effect of various fibrin preparati<strong>on</strong>s<br />

<strong>on</strong> reimplantati<strong>on</strong>s in the rat skin. Osterreichische<br />

Zeitschrift fur Stomatologie 67: 338–359.<br />

Mossman, T. (1983) Rapid colorimetric assay for<br />

cellular growth and survival: applicati<strong>on</strong> to proliferati<strong>on</strong><br />

and cytotoxicity assays. Journal of Immunological<br />

Methods 65: 55–63.<br />

Nakanishi,H.,Yamanouchi,K.,Gotoh,Y.&Nagayama,<br />

M. (1997) The associati<strong>on</strong> of platelet-derived<br />

growth factor (PDGF) receptor tyrosine<br />

phosphorylati<strong>on</strong> to mitogenic resp<strong>on</strong>se of <strong>human</strong><br />

osteoblastic cells in vitro. Oral Diseases 3:236–242.<br />

Okuda, K., Kawase, T., Momose, M., Murata, M.,<br />

Saito, Y., Suzuki, H., Wolfe, L.F. & Yoshie, H.<br />

(2003) <str<strong>on</strong>g>Platelet</str<strong>on</strong>g>-<str<strong>on</strong>g>rich</str<strong>on</strong>g>-<str<strong>on</strong>g>plasma</str<strong>on</strong>g> c<strong>on</strong>tains high levels of<br />

PDGF e TGF-b and modulates da proliferati<strong>on</strong> of<br />

period<strong>on</strong>tally related cells in vitro. Journal of<br />

Period<strong>on</strong>tology 74: 849–857.<br />

Roldan, J.C., Jepsen, S., Miller, J., Freitag, S., Rueger,<br />

D.C., Acil, Y. & Terheyden, H. (2004) B<strong>on</strong>e<br />

formati<strong>on</strong> in the presence of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g><br />

vs. b<strong>on</strong>e morphogenetic protein-7. B<strong>on</strong>e 34: 80–90.<br />

Scarso Filho, J. (2002) Avaliação do <str<strong>on</strong>g>plasma</str<strong>on</strong>g> rico em<br />

plaquetas na proliferação celular–Estudo ‘‘in vitro’’.<br />

75f. Thesis (Doctorate in Dentistry, Opti<strong>on</strong><br />

Implant Dentistry)–Graduate Programm in Dentistry,<br />

Federal University of Santa Catarina, Florianópolis.<br />

Schlegel, K.A., Kloss, F.R., Schultze-Mosgau, S.,<br />

Nenkam, F.W. & Wiltfang, J. (2003) Osseous<br />

defect regenerati<strong>on</strong> using autogenous b<strong>on</strong>e al<strong>on</strong>e<br />

or combined with Biogran or Algipore with and<br />

without added thrombocytes. A microradiologic<br />

evaluati<strong>on</strong>. Mund Kiefer Gesichtschir. 7:<br />

112–118.<br />

Schlegel, K.A., D<strong>on</strong>ath, K., Rupprecht, S., Falk, S.,<br />

Zimmermann, R., Felszeghy, E. & Wiltfang, J.<br />

(2004) De novo b<strong>on</strong>e formati<strong>on</strong> using bovine<br />

collagen and platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g>. Biomaterials<br />

25: 5387–5393.<br />

Slater, M., Patava, J., Kingham, K. & Mas<strong>on</strong>, R.S.<br />

(1995) Involvement of platelets in stimulating<br />

osteogenic activity. Journal of Orthopaedic Research<br />

13: 655–663.<br />

Tayap<strong>on</strong>gsak, P., O’Brien, D.A., M<strong>on</strong>teiro, C.B. &<br />

Arceo-Diaz, L.Y. (1994) Autologous fibrin adhesive<br />

in mandibular rec<strong>on</strong>structi<strong>on</strong> with particulate<br />

cancellous b<strong>on</strong>e and marrow. Journal of Oral and<br />

Maxillofacial Surgery 52: 161–165.<br />

Tian, W., Gao, X., Wang, D. & Chen, W. (1999)<br />

The effects of combined use of multiple growth<br />

factors <strong>on</strong> proliferati<strong>on</strong> and differentiati<strong>on</strong> of <strong>human</strong><br />

osteoblast-like cells. Hua Xi Yi Ke Da Xue<br />

Xue Bao 30: 271–273.<br />

Wallace, S.S. & Froum, S.J. (2003) Effect of maxillary<br />

sinus augmentati<strong>on</strong> <strong>on</strong> the survival of endosseous<br />

dental implants. A systematic review.<br />

Annals of Period<strong>on</strong>tology 8: 328–343.<br />

Weib<str<strong>on</strong>g>rich</str<strong>on</strong>g>, G., Gnoth, S.H., Otto, M., Reichert, T.E.<br />

& Wagner, W. (2002) Growth stimulati<strong>on</strong> of <strong>human</strong><br />

osteoblast-like cells by thrombocyte c<strong>on</strong>centrate<br />

in vitro. Mund Kiefer Gesichtschir 6:<br />

168–174.<br />

Whitman, D.H., Berry, R.L. & Green, D.M. (1997)<br />

<str<strong>on</strong>g>Platelet</str<strong>on</strong>g> gel: an autologous alternative to fibrin<br />

glue with applicati<strong>on</strong>s in oral and maxillofacial<br />

surgery. Journal of Oral and Maxillofacial Surgery<br />

55: 1294–1299.<br />

Wiltfang, J., Kloss, F.R., Kessler, P., Nkenke, E.,<br />

Schultze-Mosgau, S., Zimmermann, R. & Schlegel,<br />

K.A. (2004) Effects of platelet-<str<strong>on</strong>g>rich</str<strong>on</strong>g> <str<strong>on</strong>g>plasma</str<strong>on</strong>g> <strong>on</strong><br />

b<strong>on</strong>e healing in combinati<strong>on</strong> with autogenous<br />

b<strong>on</strong>e and b<strong>on</strong>e substitutes in critical-size defects.<br />

An animal experiment. Clinical Oral Implants<br />

Research 15: 187–193.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!