13.07.2015 Views

No-till only increases N 2 O emissions in poorly-aerated soils

No-till only increases N 2 O emissions in poorly-aerated soils

No-till only increases N 2 O emissions in poorly-aerated soils

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Soil & Tillage Research 101 (2008) 97–100Contents lists available at ScienceDirectSoil & Tillage Researchjournal homepage: www.elsevier.com/locate/s<strong>till</strong>Short communication<strong>No</strong>-<strong>till</strong> <strong>only</strong> <strong><strong>in</strong>creases</strong> N 2 O <strong>emissions</strong> <strong>in</strong> <strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong>Philippe Rochette *Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd, Québec City, QC, Canada G1V 2J3ARTICLEINFOABSTRACTArticle history:Received 10 March 2008Received <strong>in</strong> revised form 22 May 2008Accepted 21 July 2008Keywords:<strong>No</strong>-<strong>till</strong>N 2 ODra<strong>in</strong>age classSoil aerationGreenhouse gasesDenitrification rates are often greater <strong>in</strong> no-<strong>till</strong> than <strong>in</strong> <strong>till</strong>ed <strong>soils</strong> and net soil-surface greenhouse gas<strong>emissions</strong> could be <strong>in</strong>creased by enhanced soil N 2 O <strong>emissions</strong> follow<strong>in</strong>g adoption of no-<strong>till</strong>. The objectiveof this study was to summarize published experimental results to assess whether the response of soil N 2 Ofluxes to the adoption of no-<strong>till</strong> is <strong>in</strong>fluenced by soil aeration. A total of 25 field studies present<strong>in</strong>g directcomparisons between conventional <strong>till</strong>age and no-<strong>till</strong> (approximately 45 site-years of data) werereviewed and grouped accord<strong>in</strong>g to soil aeration status estimated us<strong>in</strong>g dra<strong>in</strong>age class and precipitationdur<strong>in</strong>g the grow<strong>in</strong>g season. The summary showed that no-<strong>till</strong> generally <strong>in</strong>creased N 2 O <strong>emissions</strong> <strong>in</strong><strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong> but was neutral <strong>in</strong> <strong>soils</strong> with good and medium aeration. On average, soil N 2 O<strong>emissions</strong> under no-<strong>till</strong> were 0.06 kg N ha 1 lower, 0.12 kg N ha 1 higher and 2.00 kg N ha 1 higher thanunder <strong>till</strong>ed <strong>soils</strong> with good, medium and poor aeration, respectively. Our results therefore suggest thatthe impact of no-<strong>till</strong> on N 2 O <strong>emissions</strong> is small <strong>in</strong> well-<strong>aerated</strong> <strong>soils</strong> but most often positive <strong>in</strong> <strong>soils</strong> whereaeration is reduced by conditions or properties restrict<strong>in</strong>g dra<strong>in</strong>age. Consider<strong>in</strong>g typical soil C ga<strong>in</strong>sfollow<strong>in</strong>g adoption of no-<strong>till</strong>, we conclude that <strong>in</strong>creased N 2 O losses may result <strong>in</strong> a negative greenhousegas balance for many <strong>poorly</strong>-dra<strong>in</strong>ed f<strong>in</strong>e-textured agricultural <strong>soils</strong> under no-<strong>till</strong> located <strong>in</strong> regions witha humid climate.Crown Copyright ß 2008 Published by Elsevier B.V. All rights reserved.1. Introduction<strong>No</strong>-<strong>till</strong> has been proposed to <strong>in</strong>crease stocks of soil organicmatter and mitigate greenhouse gas <strong>emissions</strong> (Gregorich et al.,2005). However, denitrification is usually greater <strong>in</strong> <strong>soils</strong> under no<strong>till</strong>than under conventional <strong>till</strong>age as a result of higher bulkdensity and water content (Doran, 1980; Groffman, 1984; Arahet al., 1991; Palma et al., 1997). Denitrification is often the ma<strong>in</strong>source of N 2 O <strong>in</strong> agricultural <strong>soils</strong> and the benefits of the adoptionof no-<strong>till</strong> on atmospheric CO 2 sequestration could be offset by<strong>in</strong>creased N 2 O <strong>emissions</strong> (Six et al., 2002).The impact of no-<strong>till</strong> on soil N 2 O emission is variable. Higher(Ball et al., 1999; Rochette et al., 2008) and lower (Chatskikh andOlesen, 2007; Gregorich et al., 2008) N 2 O–N losses have beenmeasured <strong>in</strong> no-<strong>till</strong> compared to <strong>till</strong>ed <strong>soils</strong>. Predictions bymathematical models also <strong>in</strong>dicated that the <strong>in</strong>fluence of no-<strong>till</strong>on N 2 O <strong>emissions</strong> could be either positive (Mummey et al., 1998; Liet al., 2005) or negative (Li et al., 1996). Six et al. (2004) concludedthat soil N 2 O <strong>emissions</strong> are <strong>in</strong>creased under no-<strong>till</strong> but that thisimpact decreases with time. However, an explanation of the high* Tel.: +1 418 210 5042; fax: +1 418 648 2402.E-mail address: rochettep@agr.gc.ca.<strong>in</strong>ter-site variability of the <strong>in</strong>fluence of no-<strong>till</strong> on soil N 2 O<strong>emissions</strong> is s<strong>till</strong> lack<strong>in</strong>g. In this study, we hypothesized thatadoption of no-<strong>till</strong> <strong>only</strong> <strong><strong>in</strong>creases</strong> N 2 O <strong>emissions</strong> <strong>in</strong> <strong>poorly</strong>-<strong>aerated</strong><strong>soils</strong>.2. Materials and methodsWe summarized reports of field N 2 O <strong>emissions</strong> from 25 studies(approximately 45 site-years of data) with same-site comparisonsof no-<strong>till</strong> and <strong>till</strong>ed <strong>soils</strong>. Soil aeration is closely related to watercontent (L<strong>in</strong>n and Doran, 1984). Therefore, each situation wasclassified under either ‘‘good’’, ‘‘medium’’ or ‘‘poor’’ soil aerationclass based on soil dra<strong>in</strong>age and precipitation dur<strong>in</strong>g the grow<strong>in</strong>gseason. Soil aeration was estimated to be ‘‘poor’’ if dra<strong>in</strong>age was‘‘poor’’ irrespective of precipitation. When not present <strong>in</strong> the citeddocument, <strong>in</strong>formation on dra<strong>in</strong>age class for a given soil series wasobta<strong>in</strong>ed from soil survey publications. Situations with poordra<strong>in</strong>age and aeration were also mostly characterised by f<strong>in</strong>etextured<strong>soils</strong> under cool humid climates (Table 1). Soils with goodor medium dra<strong>in</strong>age were assigned to a ‘‘good’’ or ‘‘medium’’aeration class depend<strong>in</strong>g if precipitation (<strong>in</strong>clud<strong>in</strong>g irrigation)dur<strong>in</strong>g the grow<strong>in</strong>g season was 400 mm, respectively.At most sites characterized by a semi-arid climate,precipitation was


98P. Rochette / Soil & Tillage Research 101 (2008) 97–100Table 1Cumulative field N 2 O <strong>emissions</strong> and other ancillary parameters <strong>in</strong> <strong>till</strong>ed (T) and no-<strong>till</strong> (NT) agricultural <strong>soils</strong>AerationstatusDra<strong>in</strong>ageGrow<strong>in</strong>g seasonprecipitations a(mm)Soil texture Climate Tillage btype(depth)Measurementperiod (d yr 1 )Cumulated N 2 O <strong>emissions</strong>(kg N 2 O–N ha 1 )ReferenceNT T NT–TGood High 384 Loam Cool MP (30) 365 1.32 0.80 0.52 Oorts et al., 2007High 305 Loam Semi-arid MP (15) 365 0.25 0.31 0.06 Kessavalou et al. (1998)Medium 271 Sandy cl. loam Semi-arid R (10) 110 0.12 0.25 0.12 Malhi et al. (2006)Medium 270 Sandy cl. loam Semi-arid R (10) 130 0.34 0.40 0.06 Malhi and Lemke (2007)Medium 320 Loam Semi-arid R (10) 170 0.30 0.29 0.01 Lemke et al. (1999)Medium 242 Clay loam Semi-arid R (10) 170 0.97 1.46 0.49 Lemke et al. (1999)Medium 291 Silt loam Semi-arid D (10) 365 0.38 0.38 0.0 Dusenbury et al. (2008)Mean 298 239 0.39 c 0.45 c 0.06Medium ns 694 Volcanic ash Cool humid MP (25) 365 0.83 d 0.27 0.56 Koga et al. (2004)High 640 Sandy loam Cool humid MP (20) 215 1.11 0.99 0.12 Rochette et al. (2008)High 622 Loam Cool humid MP (ns) 365 1.32 1.20 0.12 Grandy et al. (2006)High 429 Loamy sand Cool MP (20) 113 0.43 0.89 0.46 Chatskikh and Olesen(2007)Medium 410 Loam Cool humid ns (25) 65–79 1.97 0.46 1.51 Baggs et al. (2003)High 620 Loam Cool humid C + RT 150 1.84 1.88 0.04 Jac<strong>in</strong>the and Dick (1997)High 560 Loam Cool humid MP (20) 180 1.00 1.34 0.34 Gregorich et al. (2008)Medium 552 Clay loam Semi-arid + Ir. MP (ns) 365 1.19 1.51 0.32 Liu et al. (2005)Medium 552 Clay loam Semi-arid + Ir. MP (ns) 365 0.99 1.29 0.30 Mosier et al. (2006)High 574 Loam Cool humid MP (20) 225 2.10 1.80 0.30 Larouche (2006)High 1200 Clay Sub-tropical D (20) 365 0.87 0.70 0.17 Jantilia et al. (2008)High 1000 Clay loam Sub-tropical D (15) 180 0.31 0.35 0.04 Metay et al. (2007)Mean 654 247 1.02 c 0.90 c 0.12Poor Poor 430 Clay loam Cool humid MP (15) 215 3.35 3.82 0.47 Drury et al. (2006)Poor 430 Clay loam Cool humid MP (15) 215 1.00 1.15 0.15 Kaharabata et al. (2003)Poor 590 Loam Cool humid C (18) 365 7.74 7.58 0.16 Park<strong>in</strong> and Kaspar (2006)Poor 400 Heavy clay Cool humid MP (ns) 200 4.40 2.00 2.40 Burford et al. (1981)Poor e 377 Clay loam Cool humid MP (20) 77 13.0 f 3.80 f 9.20 Ball et al. (1999)Poor 680 Silty loam Cool humid MP (25) 260 12.0 9.20 2.80 Choudhary et al. (2002)Poor 574 Heavy clay Cool humid MP (20) 240 2.79 1.99 0.80 MacKenzie et al. (1997)Poor 640 Heavy clay Cool humid MP (20) 215 32.7 13.3 19.34 Rochette et al. (2008)Mean 515 223 5.97 c 3.97 c 2.00a Includ<strong>in</strong>g irrigation.b MP = moldboard plow<strong>in</strong>g; R = rotovator; C = Chizel; RT = ridge <strong>till</strong>age; D = disk<strong>in</strong>g; ns = not specified.c Geometric mean.d Reduced <strong>till</strong>age.e Gleysol.fEstimated us<strong>in</strong>g values <strong>in</strong> Fig. 3 of Ball et al. (1999).threshold above which soil water content can restrict aeration.When emission data were reported for several years <strong>in</strong> a givenstudy, all cumulative N 2 O <strong>emissions</strong> dur<strong>in</strong>g the measurementperiod were averaged. F<strong>in</strong>ally, to account for the skeweddistribution of soil N 2 O fluxes, the mean cumulated N 2 O for eachsoil aeration class was estimated as the geometric mean of valuesreported for each <strong>till</strong>age practice.3. Results and discussionMost studies conducted <strong>in</strong> <strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong> had greater N 2 O<strong>emissions</strong> under no-<strong>till</strong> than under conventional <strong>till</strong>age while bothpositive and negative responses of <strong>emissions</strong> to no-<strong>till</strong> wereobserved on <strong>soils</strong> with good or medium aeration (Table 1).Cumulative <strong>emissions</strong> <strong>in</strong> <strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong> were greater underno-<strong>till</strong> <strong>in</strong> 6 out of 8 studies and differences were >2kgNha 1 onfour occasions. In addition, the distribution of differences <strong>in</strong> N 2 O<strong>emissions</strong> between <strong>till</strong>ed and no-<strong>till</strong> situations was skewedtowards positive values, <strong>in</strong>dicat<strong>in</strong>g that the impact of no-<strong>till</strong> onN 2 O <strong>emissions</strong> can be exceptionally high at a few <strong>poorly</strong>-dra<strong>in</strong>edlocations. In contrast, <strong>in</strong> <strong>soils</strong> with good and medium aeration,differences <strong>in</strong> <strong>emissions</strong> between <strong>till</strong>age practices were small andequally distributed between positive and negative values. Onaverage, soil N 2 O <strong>emissions</strong> under no-<strong>till</strong> were 0.06 kg N ha 1lower, 0.12 kg N ha 1 higher and 2.00 kg N ha 1 higher than under<strong>till</strong>ed <strong>soils</strong> with good, medium and poor aeration, respectively. Theratio of mean cumulative <strong>emissions</strong> from no-<strong>till</strong> to <strong>till</strong>ed <strong>soils</strong> <strong>in</strong> thesame three aeration classes was 0.87, 1.13 and 1.50 (Fig. 1). Thissummary therefore suggests that the mean impact of no-<strong>till</strong> onN 2 O <strong>emissions</strong> is small <strong>in</strong> well-<strong>aerated</strong> <strong>soils</strong> but most often positiveon <strong>soils</strong> where aeration is restricted.The response of N 2 O <strong>emissions</strong> to conversion from conventional<strong>till</strong>age to no-<strong>till</strong> was variable <strong>in</strong> all soil aeration classes butvariability was greatest <strong>in</strong> <strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong> (Table 1). Thegroup<strong>in</strong>g of situations based on soil dra<strong>in</strong>age class may expla<strong>in</strong>part of this variability. Soil dra<strong>in</strong>age classes <strong>in</strong> soil classificationsystems do not necessarily reflect the current dra<strong>in</strong>age level butrather reflect the conditions that prevailed dur<strong>in</strong>g soil development.Especially, several <strong>poorly</strong>-dra<strong>in</strong>ed agricultural <strong>soils</strong> areartificially dra<strong>in</strong>ed and therefore have a better aeration status than<strong>in</strong>dicated by their dra<strong>in</strong>age class. Also, the structure of surface soilwas shown to improve with time after conversion to no-<strong>till</strong> andthis evolution of soil properties likely impacts on N 2 O productionand emission (Six et al., 2004). Therefore, group<strong>in</strong>g <strong>soils</strong> withdifferent <strong>till</strong>age history has likely contributed to <strong>in</strong>creasevariability.Increased <strong>emissions</strong> associated with <strong>poorly</strong>-<strong>aerated</strong> conditionsstrongly suggest that the additional N 2 O orig<strong>in</strong>ates from enhanceddenitrification <strong>in</strong> no-<strong>till</strong> <strong>soils</strong>. Oxygen often limits denitrification <strong>in</strong>agricultural <strong>soils</strong> (Smith and Tiedje, 1979) and higher soil watercontent <strong>in</strong> no-<strong>till</strong> <strong>soils</strong> usually results <strong>in</strong> lower aeration and greaterdenitrification rates than <strong>in</strong> <strong>till</strong>ed <strong>soils</strong> (Doran, 1980; Groffman,


P. Rochette / Soil & Tillage Research 101 (2008) 97–100 99ReferencesFig. 1. Mean ratio of cumulated N 2 O <strong>emissions</strong> from no-<strong>till</strong> (NT) to <strong>till</strong>ed (T) <strong>soils</strong>with poor, medium and good aeration.1984; Arah et al., 1991; Palma et al., 1997). Accord<strong>in</strong>gly, Rochetteet al. (2008) observed that N 2 O <strong>emissions</strong> were <strong>in</strong>creased <strong>in</strong> aheavy clay under no-<strong>till</strong> <strong>only</strong> when water-filled pore space (WFPS)was 0.6 m 3 m 3 , the threshold above which denitrification isfavoured (L<strong>in</strong>n and Doran, 1984). In a well-dra<strong>in</strong>ed gravely loam,WFPS rema<strong>in</strong>ed below 0.6 m 3 m 3 and <strong>emissions</strong> were similar <strong>in</strong>no-<strong>till</strong> and moldboard plowed <strong>soils</strong> (Rochette et al., 2008). Wehypothesize that the <strong>in</strong>fluence of soil aeration on the response ofN 2 O <strong>emissions</strong> to no-<strong>till</strong> (Table 1) is <strong>in</strong> part expla<strong>in</strong>ed by the factthat, even though no-<strong>till</strong> <strong><strong>in</strong>creases</strong> soil density and water content<strong>in</strong> most <strong>soils</strong>, WFPS values reach 0.6 m 3 m 3 more often <strong>in</strong> <strong>poorly</strong><strong>aerated</strong><strong>soils</strong> than <strong>in</strong> well-<strong>aerated</strong> <strong>soils</strong>.A relationship between N 2 O <strong>emissions</strong> and soil aeration suggeststhat disaggregat<strong>in</strong>g agricultural land <strong>in</strong>to sub-categories based onsoil and climate characteristics may provide an opportunity forimprov<strong>in</strong>g our estimates of the response of soil N 2 O emission to no<strong>till</strong>.Soil aeration level and water content are highly variable <strong>in</strong> spaceand time. However, their mean value under given climaticconditions are closely related to soil texture. Strong relationshipswere found between particle size distribution and water content orair-filled porosity (da Sylva and Kay, 1997; M<strong>in</strong>asny et al., 1999).Accord<strong>in</strong>gly, soil texture-related variables (sand or clay content)often correlate with N 2 O <strong>emissions</strong> from agricultural <strong>soils</strong> (Hénaultet al., 1998; Corre et al., 1999; Chadwick et al., 1999; Bouwman et al.,2002; Freibauer, 2003) and results summarized <strong>in</strong> Table 1 suggestthat soil texture and climate might also be used to estimate theresponse of soil N 2 O <strong>emissions</strong> to no-<strong>till</strong>.4. ConclusionsIncreases <strong>in</strong> soil organic matter content are often observedfollow<strong>in</strong>g the adoption of no-<strong>till</strong>. For example, it was estimatedthat conversion of conventionally-<strong>till</strong>ed <strong>soils</strong> to no-<strong>till</strong> <strong>in</strong> Canadaresults <strong>in</strong> a mean ga<strong>in</strong> of 60–160 kg C ha 1 yr 1 dur<strong>in</strong>g the first20 yr follow<strong>in</strong>g conversion (VandenBygaart et al., 2008). Inaddition to improve soil quality, this change <strong>in</strong> soil C stocks is as<strong>in</strong>k for atmospheric CO 2 , the most abundant greenhouse gas. <strong>No</strong><strong>till</strong>is therefore often suggested as a mean for reduc<strong>in</strong>g netgreenhouse gas <strong>emissions</strong> from farms. In this study, we estimatedthat N 2 O <strong>emissions</strong> on <strong>poorly</strong>-<strong>aerated</strong> <strong>soils</strong> are on average2kgN 2 O–N ha 1 higher under no-<strong>till</strong> than under conventional<strong>till</strong>age. Consider<strong>in</strong>g that the global warm<strong>in</strong>g potential of 1 kg ofemitted N 2 O–N ha 1 is equivalent to a loss <strong>in</strong> soil C ofapproximately 125 kg C ha 1 , we conclude that no-<strong>till</strong> may<strong>in</strong>crease net greenhouse gas <strong>emissions</strong> from many <strong>poorly</strong>-dra<strong>in</strong>ed(f<strong>in</strong>e-textured) agricultural <strong>soils</strong> located <strong>in</strong> regions with a humidclimate.Arah, J.R.M., Smith, K.A., Crichton, I.J., Li, H.S., 1991. Nitrous oxide production anddenitrification <strong>in</strong> Scottish arable <strong>soils</strong>. J. Soil Sci. 42, 351–367.Baggs, E.M., Stevenson, M., Pihlatie, M., Regar, A., Cook, H., Cadisch, G., 2003. Nitrousoxide <strong>emissions</strong> follow<strong>in</strong>g application of residues and fertiliser under zero andconventional <strong>till</strong>age. Plant Soil 254, 361–370.Ball, B.C., Scott, A., Parker, J.P., 1999. Field N 2 O, CO 2 and CH 4 fluxes <strong>in</strong> relation to<strong>till</strong>age, compaction and soil quality <strong>in</strong> Scotland. Soil Till. Res. 53, 29–39.Bouwman, A.F., Boumans, L.J.M., Batjes, N.H., 2002. Emissions of N 2 O and NO fromfertilized fields: summary of available data. Global Biogeochem. Cycl. 16 ,doi:10.1029/2001GB001811.Burford, J.R., Dowdell, R.J., Crees, R., 1981. Emission of nitrous oxide to the atmospherefrom direct-drilled and ploughed clay <strong>soils</strong>. J. Sci. Food Agric. 32, 219–223.Chadwick, D.R., Sneath, R.W., Phillips, V.R., Pa<strong>in</strong>, B.F., 1999. A UK <strong>in</strong>ventory of nitrousoxide <strong>emissions</strong> from farmed livestock. Atmos. Environ. 33, 3345–3354.Chatskikh, D., Olesen, J.E., 2007. Soil <strong>till</strong>age enhanced CO 2 and N 2 O <strong>emissions</strong> fromloamy sand soil under spr<strong>in</strong>g barley. Soil Till. Res. 97, 5–18.Choudhary, M.A., Akramkhanov, A., Saggar, S., 2002. Nitrous oxide <strong>emissions</strong> from aNew Zealand cropped soil: <strong>till</strong>age effects, spatial and seasonal variability. Agric.Ecosyst. Environ. 93, 33–43.Corre, M.D., Pennock, D.J., Van Kessel, C., Elliot, D.K., 1999. Estimation of annualnitrous oxide <strong>emissions</strong> from a transitional grassland–forest region <strong>in</strong> Saskatchewan,Canada. Biogeochemistry 44, 29–49.da Sylva, A.P., Kay, B.D., 1997. Estimat<strong>in</strong>g the least limit<strong>in</strong>g water range of <strong>soils</strong> fromproperties and management. Soil Sci. Soc. Am. J. 61, 877–883.Doran, J.W., 1980. Soil microbial and biochemical changes associated with reduced<strong>till</strong>age. Soil Sci. Soc. Am. J. 44, 765–771.Drury, C.F., Reynolds, W.D., Tan, C.S., Welacky, T.W., Calder, W., McLaughl<strong>in</strong>, N.B.,2006. Emissions of nitrous oxide and carbon dioxide: <strong>in</strong>fluence of <strong>till</strong>age typeand nitrogen placement depth. Soil Sci. Soc. Am. J. 70, 570–581.Dusenbury, M.P., Engel, R.E., Miller, P.R., Lemke, R.L., Wallander, R., 2008. Nitrousoxide <strong>emissions</strong> from a northern Great Pla<strong>in</strong>s soil as <strong>in</strong>fluenced by nitrogenmanagement and cropp<strong>in</strong>g systems. J. Environ. Qual. 37, 542–550.Freibauer, A., 2003. Regionalized <strong>in</strong>ventory of biogenic greenhouse gas <strong>emissions</strong>from European agriculture. Europ. J. Agron. 19, 135–160.Grandy, A.S., Loecke, T.D., Parr, S., Robertson, G.P., 2006. Long-term trends <strong>in</strong> nitrousoxide <strong>emissions</strong>, soil nitrogen, and crop yields of <strong>till</strong> and no-<strong>till</strong> cropp<strong>in</strong>gsystems. J. Environ. Qual. 35, 1487–1495.Gregorich, E.G., Rochette, P., St-Georges, P., McKim, U.F., Chan, C., 2008. Tillageeffects on N 2 O <strong>emissions</strong> from <strong>soils</strong> under corn and soybeans <strong>in</strong> eastern Canada.Can. J. Soil Sci. 88, 153–161.Gregorich, E.G., Rochette, P., VandenBygaart, A.J., Angers, D.A., 2005. Greenhousesgas contributions of agricultural <strong>soils</strong> and potential mitigation practices <strong>in</strong>eastern Canada. Soil Till. Res. 83, 53–72.Groffman, P.M., 1984. Nitrification and denitrification <strong>in</strong> conventional and no<strong>till</strong>age<strong>soils</strong>. Soil Sci. Soc. Am. J. 49, 329–334.Hénault, C., Devis, X., Page, S., Justes, E., Reau, R., Germon, J.-C., 1998. Nitrous oxide<strong>emissions</strong> under different soil and land management conditions. Biol. Fertil.Soils 26, 199–207.Jac<strong>in</strong>the, P., Dick, W.A., 1997. Soil management and nitrous oxide <strong>emissions</strong> fromcultivated fields <strong>in</strong> southern Ohio. Soil Till. Res. 41, 221–235.Jantilia, C.P., dos Santos, H.P., Urquiaga, S., Boddey, R.M., Alves, B.J.R., 2008. Fluxes ofnitrous oxide from soil under different crop rotations and <strong>till</strong>age systems <strong>in</strong> thesouth of Brazil. Nutr. Cycl. Agroecosyst., doi:10.1007/s10705-008-9178-y.Kaharabata, S.K., Drury, C.F., Priesack, E., Desjard<strong>in</strong>s, R.L., McKenney, D.J., Tan, C.S.,Reynolds, W.D., 2003. Compar<strong>in</strong>g measured and Expert-N predicted N 2 O <strong>emissions</strong>from conventional <strong>till</strong> and no <strong>till</strong> corn treatments. Nutr. Cycl. Agroecosyst.66, 107–118.Kessavalou,A.,Mosier,A.R.,Doran,J.W.,Drijber,R.A.,Lyon,D.J.,He<strong>in</strong>emeyer,O.,1998. Fluxes of carbon dioxide, nitrous oxide, and methane <strong>in</strong> grass sodand w<strong>in</strong>ter wheat-fallow <strong>till</strong>age management. J. Environ. Qual. 27, 1094–1104.Koga,N.,Tsuruta,H.,Sawamoto,T.,Nishimura,S.,Yagi,K.,2004.N 2 O emissionand CH 4 uptake <strong>in</strong> arable fields managed under conventional and reduced<strong>till</strong>age cropp<strong>in</strong>g systems <strong>in</strong> northern Japan. Global Biogeochem. Cycl. 18,1–11.Larouche, F., 2006. Émissions de protoxyde d’azote dans une rotation ma¸is/sojatelles qu’<strong>in</strong>fluencées par le travail du sol et la fertilisation azotée. M.Sc. Thesis,Laval University, Québec city, Canada, 226 pp.Lemke, R.L., Izaurralde, R.C., Nyborg, M., Solberg, E.D., 1999. Tillage and N source<strong>in</strong>fluence soil-emitted nitrous oxide <strong>in</strong> the Alberta Parkland region. Can. J. SoilSci. 79, 15–24.Li, C., Frolk<strong>in</strong>g, S., Butterbach-Bahl, K., 2005. Carbon sequestration <strong>in</strong> arable <strong>soils</strong> islikely to <strong>in</strong>crease nitrous oxide <strong>emissions</strong>, offsett<strong>in</strong>g reductions <strong>in</strong> climateradiative forc<strong>in</strong>g. Clim. Change 72, 321–328.Li, C., Narayanan, V., Harriss, R., 1996. Model estimates of nitrous oxide <strong>emissions</strong>from agricultural lands <strong>in</strong> the United States. Global Biogeochem. Cycl. 10, 297–306.L<strong>in</strong>n, D.M., Doran, J.W., 1984. Aerobic and anaerobic microbial populations <strong>in</strong> no-<strong>till</strong>and plowed <strong>soils</strong>. Soil Sci. Soc. Am. J. 48, 794–799.Liu, X.J., Mosier, A.R., Halvorson, A.D., Zhang, F.S., 2005. Tillage and nitrogenapplication effects on nitrous and nitric oxide <strong>emissions</strong> from irrigated cornfields. Plant Soil 276, 235–249.


100P. Rochette / Soil & Tillage Research 101 (2008) 97–100MacKenzie, A.F., Fan, M.X., Cadr<strong>in</strong>, F., 1997. Nitrous oxide emission as affected by<strong>till</strong>age, corn–soybean–alfalfa rotations and nitrogen fertilization. Can. J. Soil Sci.77, 145–152.Malhi, S.S., Lemke, R.L., Wang, Z., Chhabra, B., 2006. Tillage, nitrogen and cropresidue effects on crop yield, nutrient uptake, soil quality, and greenhouse gas<strong>emissions</strong>. Soil Till. Res. 90, 171–183.Malhi, S.S., Lemke, R.L., 2007. Tillage, crop residue and N fertilizer effects on cropyield, nutrient uptake, soil quality and nitrous oxide gas <strong>emissions</strong> <strong>in</strong> a second4-yr rotation cycle. Soil Till. Res. 96, 269–283.Metay, A., Oliver, R., Scopel, E., Douzet, J.-M., Alves Moreira, J.A., Maraux, F., Feigl, B.J.,Feller, C., 2007. N 2 O and CH 4 <strong>emissions</strong> from <strong>soils</strong> under conventional and no<strong>till</strong>management practices <strong>in</strong> Goiânia (Cerrados, Brazil). Geoderma 141, 78–88.M<strong>in</strong>asny, B., McBratney, A.B., Bristow, K.L., 1999. Comparison of differentapproaches to the development of pedotransfer functions for water-retentioncurves. Geoderma 93, 225–253.Mosier, A.R., Halvorson, A.D., Reule, C., Liu, X., 2006. Net global warm<strong>in</strong>g potentialand greenhouse gas <strong>in</strong>tensity <strong>in</strong> irrigated cropp<strong>in</strong>g systems <strong>in</strong> northeasternColorado. J. Environ. Qual. 35, 1584–1598.Mummey, D.L., Smith, J.L., Bluhm, G., 1998. Assessment of alternative soil managementpractices on N 2 O <strong>emissions</strong> from US agriculture. Agric. Ecosyst. Environ.70, 79–87.Oorts, K., Merckx, R., Gréhan, E., Labreuche, J., Nicolardot, B., 2007. Determ<strong>in</strong>ants ofannual fluxes of CO 2 and N 2 O <strong>in</strong> long-term no-<strong>till</strong>age and conventional <strong>till</strong>agesystems <strong>in</strong> northern France. Soil Till. Res. 95, 133–148.Palma, R.M., Rimolo, M., Saubidet, M.I., Conti, M.E., 1997. Influence of <strong>till</strong>age systemon denitrification <strong>in</strong> maize-cropped <strong>soils</strong>. Biol. Fertil. Soils 25, 142–146.Park<strong>in</strong>, T.B., Kaspar, T.C., 2006. Nitrous oxide <strong>emissions</strong> from corn–soybean systems<strong>in</strong> the midwest. J. Environ. Qual. 35, 1496–1506.Rochette, P., Angers, D.A., Chantigny, M.H., Bertrand, N., 2008. N 2 O <strong>emissions</strong>respond differently to no-<strong>till</strong> <strong>in</strong> a loam and a heavy clay soil. Soil Sci. Soc.Am. J. 72, 1363–1369.Six, J., Feller, C., Denef, K., Ogle, S.M., de Moraes Sa, J.C., Albrecht, A., 2002. Soilorganic matter, biota and aggregation <strong>in</strong> temperate and tropical <strong>soils</strong>—effects ofno-<strong>till</strong>age. Agronomie 22, 755–775.Six, J., Ogle, S.M., Breidt, F.J., Conant, R.T., Mosier, A.R., Paustian, K., 2004.The potential to mitigate global warm<strong>in</strong>g with no-<strong>till</strong>age management is <strong>only</strong>realized when practised <strong>in</strong> the long term. Global Change Biol. 10, 155–160.Smith, M.S., Tiedje, J.M., 1979. Phases of denitrification follow<strong>in</strong>g oxygen depletion<strong>in</strong> soil. Soil Biol. Biochem. 11, 261–267.VandenBygaart, A.J., McConkey, B.G., Angers, D.A., Smith, W., de Gooijer, H., Bentham,M., Mart<strong>in</strong>, T., 2008, <strong>in</strong> press. Soil carbon change factors for the CanadianAgriculture National Greenhouse Gas Inventory. Can. J. Soil Sci.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!