04.12.2012 Views

Dr. Patricia Gruber, Director of Research, Office of Naval ... - Isope

Dr. Patricia Gruber, Director of Research, Office of Naval ... - Isope

Dr. Patricia Gruber, Director of Research, Office of Naval ... - Isope

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

17th Annual ISOPE Conference<br />

Lisbon, Portugal, July 1 - 6, 2007<br />

Engineering Challenges <strong>Dr</strong>iven<br />

by the Navy, and the Navy After Next<br />

<strong>Dr</strong>. <strong>Patricia</strong> <strong>Gruber</strong>,<br />

<strong>Director</strong> <strong>of</strong> <strong>Research</strong>,<br />

<strong>Office</strong> <strong>of</strong> <strong>Naval</strong> <strong>Research</strong><br />

2 July 2007<br />

http://www.onr.navy.mil


ONR Mission<br />

<strong>Office</strong> <strong>of</strong> <strong>Naval</strong> <strong>Research</strong> (Public Law 588, 1946):<br />

“… plan, foster, and encourage scientific research in<br />

recognition <strong>of</strong> its paramount importance as related to<br />

the maintenance <strong>of</strong> future naval power, and the<br />

preservation <strong>of</strong> national security.… ”<br />

Transitioning S&T (Defense Authorization Act, 2001):<br />

“…manage the Navy’s basic, applied, and advanced<br />

research to foster transition from science and<br />

technology to higher levels <strong>of</strong> research,<br />

development, test, and evaluation.”<br />

Performers: Academia, Government Labs, Industry<br />

2


Expeditionary Warfare<br />

and Combating Terrorism<br />

Warfighter Performance<br />

Broad Investments across Departments<br />

Command, Control, Communications,<br />

Computers, Intelligence, Surveillance,<br />

and Reconnaissance (C4ISR)<br />

Air Warfare and Weapons<br />

Sea Warfare and Weapons Ocean Battlespace Sensing<br />

3


Navy Challenges<br />

• Platform design and <strong>Naval</strong> engineering<br />

Develop agile, fuel efficient, and modular platforms capable <strong>of</strong> operating in any<br />

environment using physics-based design tools<br />

• Life cycle affordability<br />

Reduce life cycle cost <strong>of</strong> <strong>Naval</strong> platforms through reduced maintenance, intelligent<br />

diagnostics, and automation<br />

• Operational Environments<br />

Exploit the environment by accurately predicting the ocean, air, littoral and riverine<br />

environments on tactical and strategic time scales<br />

• Power and Energy<br />

Increase <strong>Naval</strong> forces freedom <strong>of</strong> action through energy assurance and power efficient<br />

systems, to provide desired power at the platform and personal level<br />

4


Low-Speed Maneuvering<br />

Wakes<br />

Turbulence<br />

Hydromechanics<br />

Hydroacoustics<br />

Bubbles<br />

Quiet Propulsors Circulation Control Propulsor-Hull / Stealth<br />

Technical Challenges:<br />

Prediction and Control <strong>of</strong><br />

Non-linear Ship Motion<br />

Submarine Maneuvering<br />

Acoustic Noise<br />

Surface and Subsurface Wakes<br />

Cavitation<br />

Platform Design &<br />

<strong>Naval</strong> Engineering<br />

Seakeeping<br />

Nonlinear Motions<br />

Wave-Breaking<br />

<strong>Naval</strong> Impact:<br />

Design Guidance for<br />

Advanced Hulls and Propulsors<br />

Increased Stealth Speed<br />

Expand Operating Envelope<br />

Fast Ship Technology for Transport<br />

5


Relative core compressive strength (σ c /σ y )<br />

Cellular Structural Materials<br />

Relative density (ρ/ρ sheet )<br />

• Stronger than honeycomb at<br />

densities <strong>of</strong> interest<br />

• 10X stronger than stochastic foams<br />

• Interesting multifunctionality: use <strong>of</strong><br />

open space for fluids, other materials<br />

Platform Design &<br />

<strong>Naval</strong> Engineering<br />

Core Relative Density = 10%<br />

a) tetrahedral<br />

c) 3-D Kagomé<br />

e) hollow truss<br />

b) pyramidal<br />

d) diamond weave<br />

f) honeycomb<br />

6


Load [kips]<br />

30<br />

25<br />

20<br />

15<br />

10<br />

5<br />

0<br />

Hybrid Ship Construction<br />

Composite/Steel Hybrid Hull<br />

• Light weight, improved signature and dynamic performance<br />

• Long fatigue life, improved corrosion resistance, complex shapes<br />

• Hydo efficiency and 35% - 50% reduction in Whipping Loads<br />

• US/Japan Agreement<br />

LVDT 3 (on keel longeron)<br />

0.00 1.00 2.00 3.00 4.00 5.00<br />

Displacement [mm]<br />

Platform Design &<br />

<strong>Naval</strong> Engineering<br />

Hybrid Hull<br />

7


Impact <strong>of</strong> Corrosion on the Navy<br />

Life Cycle<br />

Affordability<br />

Corrosion: Navy’s No. 1 Maintenance Problem<br />

Aircraft<br />

$0.9B<br />

Ships*<br />

$2.44B<br />

Ground Vehicles<br />

& Others $1.1B<br />

$4.44B/Yr<br />

Landing Gear – Stress<br />

Corrosion Cracks<br />

HMMWV<br />

Suspension and Frame<br />

Fasteners – Exfoliation<br />

Ship Tank<br />

Koch, G. H., Brongers, M. P. H., Thompson, N. G., Virmani, Y. P. and Payer, J. H.,<br />

Corrosion Cost and Preventive Strategies in the United States, FHWA-RD-01-156,<br />

Federal Highway Administration, U.S. Department <strong>of</strong> Transportation, Washington<br />

D.C., 773 pp., March 2002<br />

*The Annual Cost <strong>of</strong> Corrosion for Army Ground Vehicles and Navy Ships, LMI<br />

Report, Apr., 2006<br />

8


Ceramic Nanocomposite Coatings<br />

• n-Al2O3-13TiO2 coatings<br />

fabricated by conventional<br />

plasma spray<br />

• 2X the bond strength and 4X<br />

the wear resistance<br />

• Extraordinary deformability<br />

without failure<br />

• Direct transition to fleet and<br />

industry (fully commercial)<br />

MCM shafts fail after 18months service<br />

Requiring dry docking for weld repair<br />

Uncoated shaft experiences<br />

Severe scoring damage<br />

Conventional Nano<br />

Life Cycle<br />

Affordability<br />

No failure even after<br />

Severe deformation<br />

No visible damage after<br />

Four years <strong>of</strong> service<br />

9


Structural Integrity <strong>of</strong><br />

Composites during Fire<br />

• Objectives<br />

Life Cycle<br />

Affordability<br />

Develop validated model <strong>of</strong> the<br />

structural integrity and failure<br />

<strong>of</strong> composites during fire<br />

• Major Deliverables /<br />

Transitions<br />

– Models to predict structural<br />

failure <strong>of</strong> specific<br />

composites due to fire<br />

– Expand capability to<br />

include additional materials<br />

– Incorporate composite<br />

model into the commercial<br />

finite element code<br />

ABAQUS<br />

– Intumescent coating for<br />

damage suppression<br />

10


Global NOGAPS:<br />

NOGAPS:<br />

(Fleet<br />

(Fleet<br />

Numerical)<br />

Global<br />

Numerical)<br />

• •<br />

Global<br />

Global<br />

coverage<br />

•<br />

Global<br />

Global<br />

coverage<br />

coverage with<br />

with<br />

no<br />

no<br />

gaps<br />

gaps<br />

• •<br />

1–10d<br />

1–10d<br />

forecaster<br />

forecaster<br />

guidance<br />

•<br />

1–10d<br />

1–10d<br />

forecaster<br />

forecaster<br />

guidance<br />

guidance<br />

Regional COAMPS:<br />

COAMPS:<br />

(Fleet<br />

(Fleet<br />

Numerical)<br />

Regional Numerical)<br />

• •<br />

High<br />

High<br />

resolution,<br />

resolution,<br />

nested<br />

nested<br />

regional<br />

•<br />

High<br />

High<br />

resolution,<br />

resolution,<br />

nested<br />

nested<br />

regional<br />

regional<br />

coverage<br />

coverage<br />

• •<br />

0-72h<br />

0-72h<br />

forecaster<br />

forecaster<br />

guidance<br />

•<br />

0-72h<br />

0-72h<br />

forecaster<br />

forecaster<br />

guidance<br />

guidance<br />

Meteorology Modeling & Prediction<br />

On-Scene COAMPS-OS:<br />

COAMPS-OS:<br />

(Theater<br />

(Theater<br />

Centers)<br />

On-Scene<br />

Centers)<br />

• •<br />

On-scene<br />

On-scene<br />

tactical-scale<br />

tactical-scale<br />

weather<br />

•<br />

On-scene<br />

On-scene<br />

tactical-scale<br />

tactical-scale<br />

weather<br />

weather<br />

• •<br />

0-48h<br />

0-48h<br />

forecaster<br />

forecaster<br />

guidance<br />

•<br />

0-48h<br />

0-48h<br />

forecaster<br />

forecaster<br />

guidance<br />

guidance<br />

Telescoping Systems<br />

Shipboard<br />

Shipboard<br />

•<br />

•<br />

Data<br />

Data<br />

fusion<br />

fusion<br />

engine<br />

engine<br />

to<br />

to<br />

blend<br />

blend<br />

available,<br />

available,<br />

perishable<br />

perishable<br />

data<br />

data<br />

including<br />

including<br />

target<br />

target<br />

area<br />

area<br />

assessment<br />

assessment<br />

•<br />

•<br />

0-6h,<br />

0-6h,<br />

automatically<br />

automatically<br />

updated<br />

updated<br />

•<br />

•<br />

Focus<br />

Focus<br />

on<br />

on<br />

warfighter<br />

warfighter<br />

requirements<br />

requirements<br />

in<br />

in<br />

space<br />

space<br />

and<br />

and<br />

time<br />

time<br />

resolution<br />

resolution<br />

•<br />

•<br />

Common<br />

Common<br />

situational<br />

situational<br />

awareness<br />

awareness<br />

BC, IC IC<br />

On-Scene Obs<br />

Observations<br />

Observations<br />

Battlespace<br />

Awareness<br />

Cube<br />

Local Model<br />

Output<br />

Data Fusion<br />

Nowcast<br />

Operational<br />

Environments<br />

On-Scene<br />

Observations<br />

11


Understanding the smaller scale<br />

processes & how they feed back to<br />

the larger scale<br />

Ocean Modeling<br />

R&D<br />

Forecasting Agencies<br />

Operational<br />

Environments<br />

Seconds Years<br />

12


Ship Design<br />

Pay<strong>of</strong>fs From Wave <strong>Research</strong> Operational<br />

Environments<br />

Interest in Individual Waves Not Just Spectra<br />

Radar Backscatter Wave Field Wave Prediction<br />

Models <strong>of</strong> Sea State Characteristics<br />

Safe Offloading<br />

Safe Off-loads<br />

13


Photovoltaic Conversion<br />

for small personal power applications<br />

UCLA<br />

Renewable Energy<br />

Basic <strong>Research</strong> in Organic/Hybrid<br />

Photovoltaic Polymers<br />

Ocean Thermal Systems<br />

for land-based power augmentation<br />

Power and<br />

Energy<br />

Wave Energy Conversion<br />

for land-based power augmentation,<br />

and small sea-based sensors<br />

Diego Garcia Power and Chilled Water Augmentation<br />

Marine Corps Base Hawaii<br />

Power Augmentation<br />

14


Simultaneous Multi-prong approach<br />

� Engine & Fuel Cell R&D<br />

� Logistics Fuel R&D<br />

� Increase Platform Efficiency<br />

� Logistics Fuel Management<br />

Future Fuels<br />

Power and<br />

Energy<br />

15


S&T<br />

Opportunities<br />

S&T Transition<br />

Industry<br />

Commercialization<br />

Navy Acquisition<br />

Programs<br />

<strong>Naval</strong> Unique Products<br />

http://www.onr.navy.mil<br />

Fleet<br />

&<br />

Force<br />

16

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!