13.07.2015 Views

The neural network of the basal ganglia as revealed by the study of ...

The neural network of the basal ganglia as revealed by the study of ...

The neural network of the basal ganglia as revealed by the study of ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>neural</strong> <strong>network</strong> <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> <strong>as</strong> <strong>revealed</strong> <strong>by</strong> <strong>the</strong><strong>study</strong> <strong>of</strong> synaptic connections <strong>of</strong> identified neuronesA. David Smith and J. Paul Bolam<strong>The</strong> <strong>study</strong> <strong>of</strong> synaptic connections in <strong>the</strong> electronmicroscope h<strong>as</strong> established an 'elementary' circuit for<strong>the</strong> neostriatum which consists <strong>of</strong> a pathway fromcortical are<strong>as</strong> (neocortex, hippocampus, amygdala) tomedium spiny neurones <strong>of</strong> <strong>the</strong> striatum that also receiveconverging synaptic input from midbrain dopamineneurones. <strong>The</strong> striatal medium spiny neurones areprojection neurones and <strong>the</strong>y form synaptic contactswith output neurones in <strong>the</strong> globus pallidus andsubstantia nigra reticulata. In this way, dopaminergicafferents can directly modulate <strong>the</strong> flow <strong>of</strong> informationfrom cortical are<strong>as</strong> through <strong>the</strong> striatum to <strong>the</strong> 'premotor'are<strong>as</strong> <strong>of</strong> <strong>the</strong> brains/em and to <strong>the</strong> thalamus. It isproposed that certain parts <strong>of</strong> <strong>the</strong> striatum can <strong>the</strong>mselvescontrol <strong>the</strong> activity <strong>of</strong> midbrain dopamine neuronesand so one part <strong>of</strong> <strong>the</strong> striatum can 'gate' <strong>the</strong> flow<strong>of</strong> information through ano<strong>the</strong>r part.Studies <strong>of</strong> <strong>the</strong> fibre connections <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> 1 . lhave shown that <strong>the</strong> neostriatum (caudate nucleus,putamen, nucleus accumbens and olfactory tubercle)receives input from <strong>the</strong> entire cortical mantle, including<strong>the</strong> allocortex, but that its major output is to justtwo regions - <strong>the</strong> substantia nigra and pallidum. <strong>The</strong>recognition that information originating in differentparts <strong>of</strong> <strong>the</strong> cortex may remain segregated in severalparallel pathways that p<strong>as</strong>s through <strong>the</strong> striatum to<strong>the</strong> pallidum or substantia nigra 3 • 4 (see also article <strong>by</strong>G. Alexander and M. D. Crutcher, this issue) h<strong>as</strong>challenged <strong>the</strong> traditional view that <strong>the</strong> striatumserves <strong>as</strong> a kind <strong>of</strong> funnel through which infom1ationfrom <strong>the</strong> cortex converges onto a lin1ited number <strong>of</strong>output targets. Accordingly, when we consider <strong>the</strong>organization <strong>of</strong> connections at <strong>the</strong> synaptic level within<strong>the</strong> striatum, we no longer have to look for a <strong>network</strong>that leads to a high degree <strong>of</strong> convergence. Instead,we can <strong>as</strong>k <strong>the</strong> question, is <strong>the</strong>re a fundamental <strong>neural</strong><strong>network</strong> that occurs in each <strong>of</strong> <strong>the</strong> parallel channels?In o<strong>the</strong>r words, is <strong>the</strong> striatum organized <strong>as</strong> a number<strong>of</strong> parallel 'central processing units', each <strong>of</strong> whichcarries out essentially <strong>the</strong> same operations on informationfrom different parts <strong>of</strong> <strong>the</strong> cortex? We shallsee how far it is possible to answer this question fromultr<strong>as</strong>tructural studies on <strong>the</strong> synaptic connections <strong>of</strong>identified neurones and will go on to develop aworking hypo<strong>the</strong>sis that goes beyond current knowledge<strong>of</strong> synaptic connections.Importance <strong>of</strong> <strong>the</strong> <strong>study</strong> <strong>of</strong> identified neuronesI t is nearly two decades since <strong>the</strong> publication <strong>of</strong> <strong>as</strong>eries <strong>of</strong> papers <strong>by</strong> Kemp and Powell that havebecome a landmark in our knowledge about <strong>the</strong> <strong>b<strong>as</strong>al</strong><strong>ganglia</strong> s . In <strong>the</strong>se papers, <strong>the</strong> organization <strong>of</strong> <strong>the</strong>striatum w<strong>as</strong> described on <strong>the</strong> b<strong>as</strong>is <strong>of</strong> studies at <strong>the</strong>light microscopic level <strong>by</strong> <strong>the</strong> Golgi method and at <strong>the</strong>synaptic level <strong>by</strong> electron microscopy. <strong>The</strong> commonestcell type in cat striatum, also described <strong>by</strong>Raman y Cajal in 1911, w<strong>as</strong> a medium-sized neuronewhose dendrites were densely covered in spines(medium spiny neurone); this neurone comprised 96%<strong>of</strong> all Golgi-in1pregnated neurones in <strong>the</strong> caudatenucleus <strong>of</strong> <strong>the</strong> cat (Fig. 1). Because <strong>the</strong> Golgiprocedure led to in1pregnation <strong>of</strong> extensive local axonarbors <strong>of</strong> <strong>the</strong>se neurones but did not reveal any axonsleaving <strong>the</strong> striatum, Kemp and Powell consideredthat <strong>the</strong> medium spiny neurone w<strong>as</strong> a local-circuitneurone in <strong>the</strong> striatum and that <strong>the</strong> main projectingneurones were larger in size and comprised less than3% <strong>of</strong> <strong>the</strong> total population <strong>of</strong> impregnated neurones.On <strong>the</strong> o<strong>the</strong>r hand, <strong>the</strong>ir electron microscopic studies,in which anterograde degeneration w<strong>as</strong> used to,7J. Paul Bolam are at<strong>the</strong> MRC AnatomicalNeuropharmacologyUnit, UniversityDepartment <strong>of</strong>Pharmacology. SouthParks Road, OxfordOXI3QT. UK.A. David Smith and.. i\lFig. 1. A typical medium-sized, densely spiny neurone <strong>of</strong> <strong>the</strong> neostriatum <strong>as</strong><strong>revealed</strong> <strong>by</strong> Golgi impregnation in <strong>the</strong> rat. This example shows <strong>the</strong> morecommon type <strong>of</strong> very densely spiny neurone that h<strong>as</strong> been shown to project to<strong>the</strong> substantia nigra and to receive synaptic input from <strong>the</strong> cortex and fromdopaminergic terminals. A second type <strong>of</strong> less densely spiny neurone receivesinput from <strong>the</strong> paraf<strong>as</strong>cicular nucleus <strong>of</strong> <strong>the</strong> thalamus in <strong>the</strong> rat.Reprinred/romTrends in Neurosciences - July 1990Vo!. 13, No. 7 © 1990, Elsevler Science Publishers Ltd , (UK) 0166 - 2236/901102 .00 259


Spines 59 0 1035 0 10dopaminergicaxonSubstantia nigraFig. 2. <strong>The</strong> distribution <strong>of</strong> tyrosine hydroxyl<strong>as</strong>e·immunoreactivesynaptic boutons in contact with identifiedstriatonigral medium spiny neurones in <strong>the</strong> rat. It can be<strong>as</strong>sumed that <strong>the</strong>se terminals, which form symmetricalsynaptic contacts, originate from midbrain dopaminergicneurones, and so <strong>the</strong> results indicate that one <strong>of</strong> <strong>the</strong> mainfunctions <strong>of</strong> dopamine in <strong>the</strong> striatum is to influence <strong>the</strong>flow <strong>of</strong> information from neurones that terminate with<strong>as</strong>ymmetrical contacts on <strong>the</strong> same dendritic spines. It h<strong>as</strong>been shown that such terminals originate in corlical are<strong>as</strong>,including <strong>the</strong> neocorlex and hippocampus. (Data fromRef. 17.)detennine <strong>the</strong> origin <strong>of</strong> synaptic boutons, led <strong>the</strong>m toconclude that <strong>the</strong> medium spiny neurone w<strong>as</strong> <strong>the</strong>major target <strong>of</strong> inputs from <strong>the</strong> cortex and thalamus.Because <strong>the</strong> medium spiny neurones were consideredto be intemeurones, it w<strong>as</strong> <strong>as</strong>sumed that <strong>the</strong>y relayedthis input to <strong>the</strong> larger neurones that were believed tobe projecting neurones. Kemp and Powell concluded'consequently, <strong>the</strong> information p<strong>as</strong>sing to <strong>the</strong> globuspallidus and substantia nigra represents a highlyintegrated and modified version <strong>of</strong> <strong>the</strong> input to <strong>the</strong>[striatum],. This conclusion w<strong>as</strong> fully in agreementwith <strong>the</strong> authoritative view <strong>of</strong> C. and O. Vogtexpressed in <strong>the</strong>ir magnum opus <strong>of</strong> 1920 (for anexcellent historical review see Ref. 6). However, <strong>as</strong>we have already indicated, this view is difficult toreconcile with <strong>the</strong> new evidence <strong>of</strong> a series <strong>of</strong> parallelcorticostriato-pallidonigral pathways.<strong>The</strong> conclusion reached <strong>by</strong> Kemp and Powe1l 5 w<strong>as</strong>b<strong>as</strong>ed upon a comparison <strong>of</strong> <strong>the</strong> results <strong>of</strong> electronmicroscopic studies with <strong>the</strong> results <strong>of</strong> separate Golgistudies; at that time, it w<strong>as</strong> not possible to examineGolgi-impregnated neurones in <strong>the</strong> electron microscope.Ano<strong>the</strong>r problem, common to most contemporarystudies <strong>of</strong> synaptic contacts in <strong>the</strong> electronmicroscope, w<strong>as</strong> that <strong>the</strong> identity <strong>of</strong> <strong>the</strong> postsynaptictarget neurone could only be deduced <strong>by</strong> analogy with<strong>the</strong> appearance <strong>of</strong> neurones in <strong>the</strong> light microscope.Two technical advances have now made it possible toreveal which type <strong>of</strong> Golgi-impregnated neurone projectsfrom a brain area and to <strong>study</strong> <strong>the</strong>se identifiedneurones in <strong>the</strong> electron microscope (for reviews seeRefs 7,8). Application <strong>of</strong> <strong>the</strong>se methods h<strong>as</strong> establishedthat <strong>the</strong> medium spiny neurone is <strong>the</strong> major'projecting neurone <strong>of</strong> <strong>the</strong> striatum: a combination <strong>of</strong>retrograde transport <strong>of</strong> HRP and Golgi impregnationin <strong>the</strong> same material showed that almost all striatonigralneurones are <strong>of</strong> medium size and have dendritesdensely covered in spines 9 . 1O • A similar conclusionw<strong>as</strong> reached for <strong>the</strong> striatopallidal pathway <strong>by</strong> application<strong>of</strong> a different method - tracing individual axonsafter <strong>the</strong> intracellular injection <strong>of</strong> HRP into striatalneurones 11. <strong>The</strong> finding that <strong>the</strong> commonest cell typein <strong>the</strong> striatum is <strong>the</strong> major projecting neurone ismuch e<strong>as</strong>ier to reconcile with multiple parallel pathwaysand allows us to begin to formulate <strong>the</strong> b<strong>as</strong>iccircuit <strong>of</strong> <strong>the</strong> neostriatum.<strong>The</strong> medium spiny neurone <strong>as</strong> <strong>the</strong> target <strong>of</strong>striatal inputsKemp and Powell s showed that temMals in catstriatum that degenerated after placement <strong>of</strong> lesionsin <strong>the</strong> neocortex formed <strong>as</strong>ymmetric synaptic contactsmainly with dendritic spines, and <strong>the</strong>y suggested that<strong>the</strong>se spines belonged to <strong>the</strong> medium spiny neurone.Direct evidence <strong>of</strong> such an input w<strong>as</strong> provided <strong>by</strong> <strong>the</strong>demonstration <strong>of</strong> degenerating boutons in contactwith <strong>the</strong> dendritic spines <strong>of</strong> Golgi-impregnatedFig. 3. Topography <strong>of</strong> synaptic inputs to <strong>the</strong> medium spinyneurone. <strong>The</strong> distribution <strong>of</strong> inputs on <strong>the</strong> striatal mediumspiny neurone is far from being random. On <strong>the</strong> whole,inputs from outside <strong>the</strong> stria tum terminate on more distalparls <strong>of</strong> <strong>the</strong> dendritic tree and in parlicular on <strong>the</strong> dendriticspines, while inputs from local neurones (probably o<strong>the</strong>rmedium spiny neurones) that contain substance P andCA BA, terminate on proximal parls <strong>of</strong> <strong>the</strong> dendritic shaftand on <strong>the</strong> cell body. Inputs from <strong>the</strong> large cholinergicintemeurones terminate in an intermediate position.260TINS, Vol. 13, No. 7, 1990


medium spiny neurones in catstriatum after unilateral ablation <strong>of</strong><strong>the</strong> cortex l2 . Application <strong>of</strong> a combination<strong>of</strong> three procedures in<strong>the</strong> same material (anterogradedegeneration, Golgi impregnationand retrograde transport <strong>of</strong> HRP)made it possible to show synapticinput from rat sensorimotor cortexto <strong>the</strong> dendritic spines <strong>of</strong> identifiedmedium spiny neurones that projectto <strong>the</strong> substantia nigra 13. <strong>The</strong>latter result could only have beenobtained <strong>by</strong> using a procedure that<strong>revealed</strong> <strong>the</strong> distal dendrites <strong>of</strong> <strong>the</strong>projecting striatonigral neuronesbecause synaptic input from <strong>the</strong>cortex w<strong>as</strong> only found on distaldendrites. <strong>The</strong>se two examplesshow that input from <strong>the</strong> neocortexterminates mainly on <strong>the</strong> dendriticspines <strong>of</strong> medium spiny neuroneslocated in <strong>the</strong> dorsal striatum; <strong>the</strong>synaptic contacts are invariably <strong>of</strong><strong>the</strong> <strong>as</strong>ymmetric type. If such aconnection forms part <strong>of</strong> a b<strong>as</strong>icstriatal circuit, it should alsobe found in <strong>the</strong> ventral striatumthrough which p<strong>as</strong>s parallel pathwaysfrom limbic regions. Thistype <strong>of</strong> synaptic contact h<strong>as</strong> nowSensorimotor striatumlimbic striatumbeen demonstrated in rat medial nucleus accumbensafter destruction <strong>of</strong> hippocampal efferent fibres in <strong>the</strong>fimbria-fornix: degenerating boutons were found in<strong>as</strong>ymmetric synaptic contact with dendritic spines <strong>of</strong>Golgi-impregnated medium spiny neurones l4 .Kemp and Powe1l 5 described degenerating boutonsin <strong>as</strong>ymmetric synaptic contact with dendritic spinesin <strong>the</strong> striatum after placement <strong>of</strong> large lesions in catthalamus; <strong>the</strong>y also argued, on <strong>the</strong> b<strong>as</strong>is <strong>of</strong> Golgistudies, that such inputs converge on <strong>the</strong> samedendrites <strong>as</strong> cortical inputs. In <strong>the</strong> rat, a differentresult w<strong>as</strong> found after injection <strong>of</strong> HRP-WGA (wheatgerm agglutinin) in <strong>the</strong> paraf<strong>as</strong>cicular nucleus: anterogradelylabelled boutons were found in <strong>as</strong>ymmetriccontact with <strong>the</strong> dendritic shafts <strong>of</strong> a distinct type <strong>of</strong>Golgi-impregnated medium spiny striatal neurone thathad a lower density <strong>of</strong> spines than <strong>the</strong> more commontype l 5 . In <strong>the</strong> same <strong>study</strong>, anterograde degenerationw<strong>as</strong> used to identify boutons originating from neuronesin <strong>the</strong> sensorimotor cortex and <strong>the</strong>se were found toterminate on <strong>the</strong> more common type <strong>of</strong> densely spinyneurone; no evidence <strong>of</strong> convergence <strong>of</strong> cortical andthalamic input onto <strong>the</strong> same medium spiny neuronecould be found.<strong>The</strong>re is no direct evidence, <strong>by</strong> anterograde tracingfrom <strong>the</strong> substantia nigra or ventral tegmental area,about <strong>the</strong> nature <strong>of</strong> <strong>the</strong> target neurone <strong>of</strong> <strong>the</strong>semesencephalic inputs to <strong>the</strong> striatum. However, use<strong>of</strong> antibodies to tyrosine hydroxyl<strong>as</strong>e to revealcatecholaminergic boutons gives strong evidence thatsuch inputs terminate extensively on medium spinyneurones. A technique for combining Golgi impregnationwith immunocytochemistry h<strong>as</strong> been devised l 6 ,and application <strong>of</strong> this procedure reveals a strikingdistribution <strong>of</strong> tyrosine hydroxyl<strong>as</strong>e-immunoreactiveboutons on Golgi-impregnated medium spiny neur-1Globus pallidus1! dopamine neuronspallidonigral- - ---- - --- - - - 1Substantia nigraOmgrolhalam,c (VM) 1~----~~. • 1mgrotectal1- - - - - - - - - - - - I I 0 mgrolegme~la l I: Ventral pallidum ~ ; L - - - - - - - - - - - - - - - - - - IIpal/JdOlha~ Thalamus (MD)'-- __ _ __ _ __ ____ 1Fig. 4. Identified targets <strong>of</strong> striatal output neurones. <strong>The</strong> targets <strong>of</strong> <strong>the</strong> projection neurones <strong>of</strong> <strong>the</strong>neostriatum have been identified mainly <strong>by</strong> looking for degenerating terminals in synaptic contactwith characterized neurones in <strong>the</strong> target zones. In some c<strong>as</strong>es, anterograde transport <strong>of</strong> HRP h<strong>as</strong>been used (e.g. in <strong>the</strong> demonstration <strong>of</strong> a striato-nigrostriatalloop35). <strong>The</strong>re are four cl<strong>as</strong>ses <strong>of</strong>extrinsic neurone that receive input from <strong>the</strong> medium spiny neurones <strong>of</strong> <strong>the</strong> striatum: thoseprojecting to <strong>the</strong> thalamus; those projecting to subcortical 'pre-motor' are<strong>as</strong> such <strong>as</strong> <strong>the</strong> tectumand tegmentum; those projecting from <strong>the</strong> external segment <strong>of</strong> <strong>the</strong> pal/idum to <strong>the</strong> substantianigra ; and, l<strong>as</strong>tly, nigrostriatal dopaminergic neurones. Abbreviations: MD, mediodorsal nucleus <strong>of</strong><strong>the</strong> thalamus; VM, ventromedial nucleus <strong>of</strong> <strong>the</strong> thalamus.ones that have also been retrogradely labelled from<strong>the</strong> substantia nigra (Fig. 2). <strong>The</strong> major targets <strong>of</strong><strong>the</strong>se boutons, which form symmetrical synapticcontacts, are distal dendritic spines <strong>of</strong> striatonigralneurones, but only those spines that also receiveinput from ano<strong>the</strong>r, non-immunoreactive, boutonreceive dopaminergic input 17. Such an anatomicalarrangement implies that one <strong>of</strong> <strong>the</strong> main functions <strong>of</strong><strong>the</strong> dopaminergic input is to interact with <strong>the</strong> o<strong>the</strong>rinput received <strong>by</strong> <strong>the</strong> same spine. <strong>The</strong> nondopaminergicboutons form <strong>as</strong>ymmetrical synapticcontacts and so probably derive from neurones in <strong>the</strong>cortex. Evidence <strong>of</strong> convergence <strong>of</strong> input in <strong>the</strong>striatum from <strong>the</strong> cortex 18 or from <strong>the</strong> hippocampus 14onto dendritic spines that also receive dopaminergicsynaptic input h<strong>as</strong> been obtained. In <strong>the</strong> nucleusaccumbens, identified Golgi-impregnated mediumspiny neurones have been shown to receive hippocampalinput on spines arising from dendritic shaftsthat also receive doparninergic input l4 . It is likely,<strong>the</strong>refore, that circuits through <strong>the</strong> dorsal (sensorimotor)striatum and those through <strong>the</strong> ventral (limbic)striatum are b<strong>as</strong>ically similar with regard to <strong>the</strong>organization <strong>of</strong> dopaminergic input.We can conclude that a fundamental striatal circuitwill probably include a densely spiny medium-sizedneurone that projects from <strong>the</strong> striatum and thatreceives input on its distal dendritic spines from <strong>the</strong>cortex and input on its distal dendritic spines andshafts from dopaminergic terminals. A second cl<strong>as</strong>s <strong>of</strong>medium-sized spiny neurone, with a lower density <strong>of</strong>spine so, may form part <strong>of</strong> ano<strong>the</strong>r circuit; this type <strong>of</strong>neurone receives input on its dendritic shafts from <strong>the</strong>paraf<strong>as</strong>cicular nucleus <strong>of</strong> <strong>the</strong> thalamus and may also bea projecting neurone and also receive dopaminergicinput (see discussion in Ref. 15).11TINS. Vol. 13, No. 7, 1990261


StriatumCortical pyramidal neuronTransmitters <strong>of</strong> striatal medium spinyneurones<strong>The</strong> chemical nature <strong>of</strong> <strong>the</strong> transmitters used <strong>by</strong>medium spiny neurones h<strong>as</strong> been difficult to establish<strong>by</strong> rigorous techniques that include identification <strong>of</strong><strong>the</strong> neurone <strong>by</strong> a method that reveals its dendriticarbor. Combination <strong>of</strong> Golgi impregnation withimmunocytochemistry h<strong>as</strong> shown that medium spinyneurones contain substance P and enkephalin-likepeptides l 9 . <strong>The</strong>re is much evidence that GABA ispresent in striatal output pathways (see Ref. 20 forreview) and also in medium-sized neurones within <strong>the</strong>striatum 21 , and a preliminary report h<strong>as</strong> describedGABA immunoreactivity in Golgi-impregnatedmedium spiny striatonigral neurones 22 . On <strong>the</strong> o<strong>the</strong>rhand, uptake <strong>of</strong> radiolabelled taurine h<strong>as</strong> been demonstratedin identified striatonigral neurones 23 and inGolgi-impregnated medium spiny neurones 24 . We canconclude that likely transmitters <strong>of</strong> medium spinyneurones <strong>as</strong> a cl<strong>as</strong>s are a tachykinin, opiate peptides,GABA and taurine. <strong>The</strong>re is evidence that in individualstriatal neurones GABA co-exists with ei<strong>the</strong>rsubstance P or an opiate peptide 21 , but such coexistenceh<strong>as</strong> not yet been demonstrated in identifiedmedium spiny neurones. No distinction h<strong>as</strong> yet beenCortexmade between <strong>the</strong> transmitters <strong>of</strong> <strong>the</strong> commondensely spiny type <strong>of</strong> neurone and <strong>the</strong> less denselyspiny type that receives input from <strong>the</strong> thalamus.<strong>The</strong> striatal medium spiny neurone <strong>as</strong> a target<strong>of</strong> chemically defined local circuits<strong>The</strong> medium spiny neurone h<strong>as</strong> extensive localaxon collaterals within <strong>the</strong> striatum and, indeed, <strong>the</strong>sehave been directly demonstrated for identifiedmedium spiny striatonigral neurones that receivecortical input l 3 . Although <strong>the</strong> synaptic contacts (symmetrical)<strong>of</strong> local axon collaterals <strong>of</strong> medium spinyneurones have been demonstrated n 2 5, <strong>the</strong>re is nodirect evidence that o<strong>the</strong>r identified medium spinyneurones are one <strong>of</strong> <strong>the</strong> targets, although this is verylikely.Immunocytochemistry h<strong>as</strong> been used to characterize<strong>the</strong> synaptic inputs <strong>of</strong> Golgi-impregnated mediumspiny neurones: boutons immunoreactive for ei<strong>the</strong>rsubstance p 26 or glutamic acid decarboxyl<strong>as</strong>e (GAD j27have been found in symmetric synaptic contact with<strong>the</strong> proximal dendritic shaft. Although <strong>the</strong> majortarget is <strong>the</strong> dendritic shaft, occ<strong>as</strong>ional boutons arefound on cell bodies. Any, or all, <strong>of</strong> <strong>the</strong> above boutonscould originate from o<strong>the</strong>r medium spiny neurones butThalamusadditional sources are possible.Thus, <strong>the</strong> striatum contains a localGABAergic <strong>as</strong>piny interneuronethat h<strong>as</strong> an extensive axon field 27 • 28 ,and a small population <strong>of</strong> substanceP-containing neurones may beinterneurones 29 . Ano<strong>the</strong>r striatalinterneurone, <strong>the</strong> large <strong>as</strong>pinyneurone that contains choline acetyltransfer<strong>as</strong>e3u , is <strong>the</strong> likely source<strong>of</strong> <strong>the</strong> CM T -immunoreactiveboutons found 111 symmetricalsynaptic contact with <strong>the</strong> dendriticshafts and spines <strong>of</strong> Golgi-impregnatedmedium spiny neurones 31 .SNrentopeduncular n.(GPi) Ior ventral pallidumBrainstem}-__.-_________-'-___. 'premoto( are<strong>as</strong>I(e .g. tectumI -------Ipedunculopontine n.)Fig. 5. Th e fundamental circuit <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> is shown here in a highly simplified form. <strong>The</strong>key features are <strong>the</strong> monosynaptic link from cortical are<strong>as</strong> (neocortex, hippocampus and amygdala)through stria tal medium spiny neurones to <strong>the</strong> main output zones <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> (pallidumand substantia nigra). <strong>The</strong> operation <strong>of</strong> this monosynaptic link is likely to be strongly and specificallyinfluenced <strong>by</strong> <strong>the</strong> input from dopaminergic midbrain neurones that terminates on <strong>the</strong> samedendritic spines. Note that distinct medium spiny neurones project from <strong>the</strong> stria tum to <strong>the</strong>substantia nigra and to <strong>the</strong> external segment <strong>of</strong> <strong>the</strong> globus pallidus and that it is suggested that<strong>the</strong>se neurones are laterally connected through axon collaterals <strong>of</strong> medium spiny neurones. It is alsosuggested that <strong>the</strong> striatopallidal neurones receive input from <strong>the</strong> cortex and from midbraindopamine neurones. (<strong>The</strong>re is no evidence <strong>of</strong> <strong>the</strong>se connections <strong>as</strong> yet.) Note that output neuronesin <strong>the</strong> substantia nigra reticulata may receive converging input directly from <strong>the</strong> striatum andindirectly via <strong>the</strong> striato-pallidonigral loop. We have omitted from this scheme ano<strong>the</strong>r similarcircuit originating in <strong>the</strong> paraf<strong>as</strong>cicular nucleus <strong>of</strong> <strong>the</strong> thalamus that terminates on ano<strong>the</strong>r type <strong>of</strong>medium spiny neurone (see text). We have also omitted <strong>the</strong> subthalamic nucleus, which probablyplays an important role in <strong>the</strong> control <strong>of</strong> output neurones in <strong>the</strong> globus pallidus and substantianigra 49. Abbreviations: DA, dopaminergic; CPi, internal segment <strong>of</strong> <strong>the</strong> globus pallidus; SNr,substantia nigra pars reticulata.Topography <strong>of</strong> synaptic inputsto <strong>the</strong> medium spiny neuroneA notable feature <strong>of</strong> <strong>the</strong> distribution<strong>of</strong> synaptic inputs on differentparts <strong>of</strong> <strong>the</strong> medium spinyneurone is <strong>the</strong> preponderance <strong>of</strong>extrinsic inputs on <strong>the</strong> distal dendritesand <strong>the</strong> concentration <strong>of</strong>intrinsic inputs on <strong>the</strong> proximaldendrites and cell body (Fig. 3).Two types <strong>of</strong> local afferent inputcan be distinguished - that presumablyfrom o<strong>the</strong>r medium spinyneurones, which terminates proximallyon <strong>the</strong> cell body and proximaldendrites, and that from <strong>the</strong> largecholinergic interneurone, whichterminates ra<strong>the</strong>r more distally on<strong>the</strong> dendritic shaft and on somespines. <strong>The</strong> afferent synaptic'topography' <strong>of</strong> <strong>the</strong> medium spinyneurone provides an anatomicalb<strong>as</strong>is for several possible levels <strong>of</strong>interaction or integration <strong>of</strong> afferentinformation. Level one can bedefined <strong>as</strong> <strong>the</strong> distal dendritic262 TINS, Vo!. 13, No. 7, 1990


spine, <strong>of</strong> which two types havebeen identified, a spine that h<strong>as</strong> <strong>as</strong>ingle synaptic bouton in <strong>as</strong>ymmetriccontact, comprising 53% <strong>of</strong><strong>the</strong> total in <strong>the</strong> <strong>study</strong> <strong>of</strong> Freund etal. 17 and a second type that receivesdual input, i. e. from onebouton fonning an <strong>as</strong>ymmetriccontact and from ano<strong>the</strong>r formingsymmetric contact (47% <strong>of</strong> <strong>the</strong>total). <strong>The</strong> first type <strong>of</strong> spinepresumably allows input from <strong>the</strong>bouton to reach <strong>the</strong> dendritic shaftunimpeded, while <strong>the</strong> second type<strong>of</strong> spine, <strong>as</strong> pointed out <strong>by</strong> Kempand Powe 1l 5 , might form <strong>the</strong> anatomicalsubstrate for interactionbetween <strong>the</strong> two types <strong>of</strong> input.Since <strong>by</strong> far <strong>the</strong> largest proportion<strong>of</strong> such 'dual-input' spines receivesinput from dopaminergic terminals,<strong>the</strong>se spines provide a site for <strong>the</strong>interaction <strong>of</strong> dopaminergic inputwith that from cortical regions!7.<strong>The</strong> second level <strong>of</strong> interactionbetween inputs occurs on <strong>the</strong> distaldendritic shaft, where <strong>the</strong> changesin <strong>the</strong> electrical properties <strong>of</strong> <strong>the</strong>membrane induced <strong>by</strong> <strong>the</strong> inputsfrom both types <strong>of</strong> spine will interactwith each o<strong>the</strong>r and with synapticinput directly onto <strong>the</strong> shaft,such <strong>as</strong> that from dopaminergic orcholinergic afferents. <strong>The</strong> thirdlevel <strong>of</strong> interaction is <strong>the</strong> proximalpart <strong>of</strong> <strong>the</strong> dendritic shaft and <strong>the</strong>cell body, where <strong>the</strong> inputs originatingfrom within <strong>the</strong> striatum caninteract with each o<strong>the</strong>r and alsoinfluence <strong>the</strong> propagation <strong>of</strong> <strong>the</strong>information from <strong>the</strong> distal denclrites.In principle, it seems verylikely that <strong>the</strong> actions <strong>of</strong> transmittersrele<strong>as</strong>ed from boutons incontact with <strong>the</strong> proximal dendriticshafts and cell body will be modulatoryin character, setting <strong>the</strong>level <strong>of</strong> excitability <strong>of</strong> <strong>the</strong> neuroneand so altering its response toinputs arriving more distally on <strong>the</strong>dendritic tree.Many questions remain to beanswered about <strong>the</strong> significanceand <strong>the</strong> operation <strong>of</strong> <strong>the</strong> topographicallyspecific inputs to <strong>the</strong>medium spiny neurone. For example,we have not considered <strong>the</strong>functional significance <strong>of</strong> <strong>the</strong> lateralinteractions between mediumspiny neurones that involve synapticactions on <strong>the</strong> proximal part<strong>of</strong> <strong>the</strong> neurone: Groves 32 h<strong>as</strong>suggested that one function <strong>of</strong><strong>the</strong>se interactions is to providelateral inhibition. We have notconsidered <strong>the</strong> question <strong>of</strong> whatALimbic cortexLimbicstriatumBDA-neuronsStriatal patchor striosomeMidbrain dopamine neuronsNeocortexDA-neurons1---------,IIIIIIIIIIII1--------IIIIIIIIIIIIISensorimotorstriatumThalamusBrainstemSN r or'pre-motor' are<strong>as</strong>en topeduncular n. (GPi)Striatalmatrixfrom GPeFig. 6. Circuits that link one part <strong>of</strong> <strong>the</strong> striatum with ano<strong>the</strong>r through midbrain dopamineneurones. <strong>The</strong> right-hand sides <strong>of</strong> (A) and (8) are simplified versions <strong>of</strong> <strong>the</strong> circuit shown in Fig. 5,and <strong>the</strong> striato-pallidonigralloop is not shown in full. (A) <strong>The</strong> limbic striatum might be able to 'ga te '<strong>the</strong> flow <strong>of</strong> information through <strong>the</strong> semorimotor striatum because 50me <strong>of</strong> <strong>the</strong> output from <strong>the</strong>limbic striatum terminates on nigrostriatal neurones that innervate <strong>the</strong> sensorimotor striatum 35 . Inthis way, are<strong>as</strong> <strong>of</strong> <strong>the</strong> brain concerned with emotion and motivation could influence <strong>the</strong> motorfunctiom <strong>of</strong> <strong>the</strong> stria tum. (B) Illustrates a hypo<strong>the</strong>sis in which <strong>the</strong> scheme shown in (A) isgeneralized to show how information flow through <strong>the</strong> patch (striosome) compartment <strong>of</strong> <strong>the</strong>striatum can influence <strong>the</strong> flow <strong>of</strong> information through <strong>the</strong> matrix compartment via a dopaminergicpathway originating in <strong>the</strong> substantia nigra. In this way, particular striosomal compartments mightbe able to 'gate ' <strong>the</strong> flow <strong>of</strong> information through particular matrix compartments. Inputs to <strong>the</strong>respective patch and matrix compartments may ei<strong>the</strong>r originate in distinct parts <strong>of</strong> <strong>the</strong> cortex orfrom different layers <strong>of</strong> <strong>the</strong> same cortical area. Abbreviatiom: 0 , and O 2 , different cl<strong>as</strong>ses <strong>of</strong>dopamine receptor; GPe and GPi, external and internal segments <strong>of</strong> globus pallidus, respectively;SNc, substantia nigra pars compacta; SNr, substantia nigra pars reticulata ; VTA, ventral tegmentalarea.TINS, Vol. 13, No. 7, 1990263


controls <strong>the</strong> activity <strong>of</strong> <strong>the</strong> striatal interneurones thatinnervate <strong>the</strong> proximal region <strong>of</strong> <strong>the</strong> medium spinyneurone (see Ref. 20 for review). We will consider<strong>the</strong> important question <strong>of</strong> what controls <strong>the</strong> dopaminergicinfluence on <strong>the</strong> distal parts <strong>of</strong> <strong>the</strong> medium spinyneurone at <strong>the</strong> end <strong>of</strong> this article.Output function <strong>of</strong> <strong>the</strong> striatal medium spinyneuroneAs we have already indicated, <strong>the</strong>re is now directevidence that <strong>the</strong> medium spiny neurones carry <strong>the</strong>major output from <strong>the</strong> striatum to <strong>the</strong> substantia nigraand external segment <strong>of</strong> <strong>the</strong> globus pallidus. It is verylikely that medium spiny neurones will be found to be<strong>the</strong> origin <strong>of</strong> <strong>the</strong> striatopallidal output to <strong>the</strong> internalsegment <strong>of</strong> <strong>the</strong> globus pallidus <strong>as</strong> well. However, <strong>the</strong>chemical nature <strong>of</strong> some <strong>of</strong> <strong>the</strong> transmitters in <strong>the</strong>sedistinct output pathways appears to be different.Thus, <strong>the</strong> striatonigral pathway in <strong>the</strong> rat containsGABA, a tachykinin, and dynorphin, while <strong>the</strong> stria topallidalpathway contains GABA and enkephalin, and<strong>the</strong> striato-entopeduncular pathway contains GABAand a tachykinin 2o .If we are to define <strong>the</strong> output function <strong>of</strong> <strong>the</strong>striatum we must identify <strong>the</strong> nature <strong>of</strong> <strong>the</strong> neuronesthat are targets <strong>of</strong> <strong>the</strong> medium spiny neurone in <strong>the</strong>pallidum and substantia nigra. Ultr<strong>as</strong>tructural studieshave established that striatonigral neurones terminateon identified nigrothalamic 1o , nigrotectal·13 , nigrotegmental34 , and nigrostriataP5 neurones, and onidentified nigral dopaminergic neurones 36 . Stria topallidalneurones terminate on pallidonigral neurones:;7,while one target <strong>of</strong> striato-entopeduncular neuronesis <strong>the</strong> entopedunculo-thalamic neurone 38 . Finally,neurones in <strong>the</strong> striatal part <strong>of</strong> <strong>the</strong> olfactory tuberclehave been shown to form synaptic contacts withneurones in <strong>the</strong> ventral pallidum that project to <strong>the</strong>thalamus 39 (see also A. Parent, this issue). It can beseen that four distinct types <strong>of</strong> remote neuronereceive input from <strong>the</strong> medium spiny neurones <strong>of</strong> <strong>the</strong>striatum (Fig. 4): (1) those projecting to <strong>the</strong> thalamus,which presumably form part <strong>of</strong> <strong>the</strong> return loop to <strong>the</strong>cortex (see G. Alexander and M. O. Crutcher, thisissue); those projecting to subcortical premotor are<strong>as</strong>(tectum, tegmentum); those projecting from <strong>the</strong>external segment <strong>of</strong> <strong>the</strong> pallidum to <strong>the</strong> substantianigra; and <strong>the</strong> dopaminergic neurones that projectback to <strong>the</strong> striatum. It will clearly be crucial todetermine if different types <strong>of</strong> medium spiny neurone(defined chemically or morphologically) participate in<strong>the</strong>se different pathways and to identify <strong>the</strong> postsynapticresponses in <strong>the</strong> different target neurones.For example, <strong>the</strong> direct striatonigral pathway usingGABA <strong>as</strong> transmitter could mediate <strong>the</strong> inhibitoryresponse <strong>of</strong> nigrotectal neurones to striatal stimulation(see article <strong>by</strong> G. Chevalier and j. M. Oeniau,this issue), where<strong>as</strong> <strong>the</strong> indirect striato-pallidonigralpathway could mediate disinhibition <strong>of</strong> nigrotectalneurones, since it h<strong>as</strong> been shown that <strong>the</strong> pallidonigralpathway is GABAergic 40 .Towards <strong>the</strong> fundamental <strong>neural</strong> <strong>network</strong>We have shown how <strong>the</strong> <strong>study</strong> <strong>of</strong> <strong>the</strong> synapticconnections <strong>of</strong> identified neurones allows us topostulate a b<strong>as</strong>ic <strong>network</strong> for <strong>the</strong> operation <strong>of</strong> <strong>the</strong>striatum (Fig. 5). Such a <strong>network</strong> could operate ineach <strong>of</strong> <strong>the</strong> major subdivisions <strong>of</strong> <strong>the</strong> striatum, <strong>the</strong>limbic striatum and <strong>the</strong> sensorimotor striatum, and itcould operate for each <strong>of</strong> <strong>the</strong> many segregated parallelpathways that p<strong>as</strong>s through both parts <strong>of</strong> <strong>the</strong> striatum ..For each pathway <strong>the</strong> operation <strong>of</strong> <strong>the</strong> <strong>network</strong> will be<strong>the</strong> same: its functions appear to be to allowinformation from different parts <strong>of</strong> <strong>the</strong> cortex toinfluence subcortical premotor are<strong>as</strong> and also toreturn to <strong>the</strong> cortex in a loop circuit. However, <strong>the</strong>operation <strong>of</strong> this <strong>network</strong> is likely to be cruciallydependent upon <strong>the</strong> gating or modulation exerted <strong>by</strong><strong>the</strong> dopaminergic input from <strong>the</strong> midbrain 41 . 42 • It isthus particularly significant that output from <strong>the</strong>striatum can itself influence <strong>the</strong> dopaminergic neurones<strong>of</strong> <strong>the</strong> substantia nigra. We would like to conclude<strong>by</strong> suggesting that control <strong>of</strong> <strong>the</strong> dopaminergicneurones <strong>by</strong> <strong>the</strong> striatum is exerted <strong>by</strong> anatomically,and perhaps chemically, distinct parts <strong>of</strong> <strong>the</strong> striatum(Fig. 6).Nauta et al. 43 discovered that a prominent outputfrom <strong>the</strong> nucleus accumbens terminates in <strong>the</strong> medialpars compacta <strong>of</strong> <strong>the</strong> substantia nigra. Subsequently,this pathway w<strong>as</strong> confirmed at <strong>the</strong> ultr<strong>as</strong>tructural levelwhere it w<strong>as</strong> shown that terminals from neurones in<strong>the</strong> nucleus accumbens form symmetric synapticcontacts on identified nigrostriatal neurones 3S Since<strong>the</strong> nucleus accumbens is part <strong>of</strong> <strong>the</strong> limbic striatumand receives input from hippocampus, amygdala andprefrontal cortex, this monosynaptic pathway providesa way in which information p<strong>as</strong>sing through <strong>the</strong><strong>network</strong>s in <strong>the</strong> limbic striatum could influence <strong>the</strong>dopaminergic modulation <strong>of</strong> information p<strong>as</strong>singthrough <strong>the</strong> <strong>network</strong>s in <strong>the</strong> more dorsal, sensorimotorstriatum (Fig. 6A). As pointed out <strong>by</strong> Nauta and00mesick 44 , this pathway might provide an interfacebetween are<strong>as</strong> <strong>of</strong> <strong>the</strong> brain concerned with 'motivation'and those concerned with motor behaviour.<strong>The</strong> control <strong>of</strong> nigrostriatal neurones <strong>by</strong> <strong>the</strong> nucleusaccumbens could be just one example <strong>of</strong> a moregeneral type <strong>of</strong> control exerted <strong>by</strong> those striatonigralneurones that terminate on dopaminergic neurones(Fig. 6B). <strong>The</strong> striatonigral projection originating instriosomes (see article <strong>by</strong> A. M. Graybiel, this issue)preferentially innervates <strong>the</strong> pars compacta 45 : <strong>the</strong>medium spiny neurones in <strong>the</strong> striosomes, whichcontain a tachykinin <strong>as</strong> well <strong>as</strong> GABAl9, mightpreferentially terminate on nigrostriatal neuroneswhile <strong>the</strong> dynorphin-containing striatonigral neuronesin <strong>the</strong> matrix might preferentially terminate on outputneurones in <strong>the</strong> pars reticulata.It h<strong>as</strong> been reported that inputs to <strong>the</strong> striosomesand <strong>the</strong> matrix arise ei<strong>the</strong>r from different parts <strong>of</strong> <strong>the</strong>cortex or from different layers <strong>of</strong> <strong>the</strong> same corticalarea (see A. M. Graybiel, tlus issue and also Ref.46). <strong>The</strong> fundamental <strong>network</strong> <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong>might <strong>the</strong>refore be extended to include a striatonigrostriatalloopthat would permit particular corticalare<strong>as</strong> or layers to influence <strong>the</strong> flow <strong>of</strong> informationthrough <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> from o<strong>the</strong>r cortical are<strong>as</strong> orlayers (Fig. 6B). Such an arrangement means that <strong>the</strong>operations <strong>of</strong> <strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> nught be even moreintimately linked with those <strong>of</strong> <strong>the</strong> cortex than hi<strong>the</strong>rtosuspected. <strong>The</strong> proposed circuit also highlights <strong>the</strong>role <strong>of</strong> dopamine, which is involved at two stages in<strong>the</strong> circuit, and <strong>of</strong> <strong>the</strong> two major cl<strong>as</strong>ses <strong>of</strong> dopaminereceptor (0 1 and O 2 ; see article <strong>by</strong> G. Sedvall, thisissue). It is suggested that dopamine operates in <strong>the</strong>first stage within striosomes via O 2 receptors and in264TINS, Vol. 13, No. 7, 1990


<strong>the</strong> second stage within <strong>the</strong> matrix via DJ receptors.Such a complex role for dopamine in <strong>the</strong> functioning <strong>of</strong><strong>the</strong> <strong>b<strong>as</strong>al</strong> <strong>ganglia</strong> is consistent with many studiessuggesting that motor behaviour requires <strong>the</strong> synergisticactivation <strong>of</strong> both DJ and D2 receplors (see, forexample, reviews in Refs 47,48) and might provide ab<strong>as</strong>is for understanding why <strong>the</strong> type <strong>of</strong> movementmost affected in Parkinson's dise<strong>as</strong>e is that with amotivational or cognitive element.<strong>The</strong> circuit proposed in Fig. 6B, which provides amechanism for lateral interaction between <strong>the</strong> patch(striosome) and matrix compartments <strong>of</strong> <strong>the</strong> striatumvia a monosynaptic link in <strong>the</strong> substantia nigra, is putforward <strong>as</strong> a working hypo<strong>the</strong>sis; fur<strong>the</strong>r work will berequired to establish whe<strong>the</strong>r or not such synapticconnections exist.Selected referencesGraybiel, A M . and Ragsdale , C. W . (1979) Prog. Bra in Res.51 , 239-2832 Heimer, L., Alheid, G. F. and Zaborszky , L. (1985) in <strong>The</strong> RatNervous System, 1.- Forebra in and M idbrain (Paxinos, G.,ed .), pp. 37-86, Academic Press3 Heimer, L., Switzer, R. D. and Van Hoesen , G. W . (1982)Trends Neurosci. 5, 83-874 Alexander, G. E., DeLong, M . R. and Strick, P. L. (1986)Annu. Rev. Neurosci. 9, 357-3815 Kemp, J. M . and Powell , 1. P. S. (1971) Philos. Tra ns. R. soc.London ser. B 262, 383-4576 P<strong>as</strong>ik, P., P<strong>as</strong>ik, T. and DiFiglia, M . (1979) in <strong>The</strong> Neostriatum(Divac, I. and Oberg, R. G. E., eds) , pp. 5- 36, PergamonPress7 Somogyi , P. and Freund, T. (1989) in Neuroanatomlcal TracttracingMethods 2 (Heimer, L. and Zaborszky, L., ed s), pp.239-264, Plenum Press8 Bolam , J. P. and Ingham, C. (1990) in Handbook <strong>of</strong> ChemicalNeuroanatomy Vol. 8 (Bjiirklund, A., Hiikfelt, T., Wouterlood ,F. G. and van den Pol , A, eds), pp. 125-198, Elsevier9 Somogyi , P. and Smith , A D. (1979) Brain Res. 178,3-1510 Somogyi, P., Hodgson, A. J. and Smith. A D. (1979)Neuroscience 4, 1805- 185211 ( hang, H. T., Wilson , C. J. and Kit." S. T. (1981) Science 213,915-91812 Frotscher, M ., Rinne, U. , H<strong>as</strong>sler, R. and Wagner, A. (1981 )Exp. Bra in Res. 41 , 329-33713 Somogyi, P .. Bolam , J. P. and Smith, A D. (1981 ) 1. Comp.Neurol. 195, 567-58414 Totterdell, S. and Smith , A D. (1989) 1. Chem. Neuroanat. 2,285-29815 Dube, L., Smith , A D. and Bolam , J. P. (1988) 1. Comp.Neurol. 267, 455--47116 Freund, T. F. and Somogyi, P. (1989) in NeuroanatomicalTract-tracing Methods 2 (Heimer, L. and Zaborszky, L. , ed s),pp. 201 - 238, Plenum Press17 Freund , T. F., Powell, J. and Smith, A. D. (1984) Neuroscience13 , 1189-121518 Bouyer, J. J., Park, D. H., Joh, T. H. and Pickel , V. M . (1984)Brain Res. 302 , 267- 27519 Izzo, P. N., Graybiel, A. M . and Bolam, J. P. (1987) Neuroscience20, 577-58720 Bolam, J. P. and Smith, A D. in Handbook <strong>of</strong> ChemicalNeuroanatomy (Bjiirklund, A., H6kfelt, T. and Swanson,L. W. , eds), Elsevier (in press)21 Penny, G. R., Afsharpour, S. and Kitai, s. T. (1986) Neuroscience17,1011-104522 Dub", L. and Descarries, L. (1987) Neuroscience 22 , S79823 (Iarke, D. J., Smith , A D. and Bolam, J. P. (1983) Brain Res.289, 342-34824 Della (orte, L., (Iarke, D. J. , Bolam, J. P. and Smith, A D.(1987) in <strong>The</strong> Biology <strong>of</strong> Taurine (Huxtable, R. J., Franconi, F.and Giotti, A., eds), pp. 285-294, Plenum Press25 Wilson, C. J. and Groves, P. M. (1980) 1. Comp. Neurol. 194,599-61526 Bolam, J. P. and Izzo, P. N. (1988) Exp. Brain Res. 70,361-37727 Bolam , J. P., Powell, J. F .. Wu, J-Y. and Smith , A D. (1985)1. (omp. Neurol. 237, 1-2028 Bolam, J. P. , (Iarke, D. J. , Sm ith, A D. and Somogyi , P.(1983) 1. Comp. Neurol. 213, 121- 13429 Bolam , J. P., Somogyi, P., Takagi, H., Fodor, I. and Smith,A. D. (1983) 1. Neurocytol. 12, 325-34430 Bolam , J. P., Wainer, B. H. and Smith , A D. (1984) Neuroscience12 , 711-71831 Izzo, P. N. and Bolam, J. P. (1988) 1. Comp. Neurol. 269,219-23432 Groves, P. M . (1983) Bra in Res. Rev. 5, 109-13233 Williams, M . N. and Faull, R. L. M . (1985) Neuroscience 14,991-101034 Tokuno, H., Moriizumi, T., Kudo, M., Kitao, Y. andNakamura, Y. (1989) Brain Res. 485, 189-19235 Somogyi, P., Bolam , J. P. , Totterdell, s. and Smith, A D.(1981 ) Brain Res. 217, 245-26336 W<strong>as</strong>sef, M., Berod, A. and Sotelo, C. (1981) Neuroscience 6,2125-213937 Totterdell, 5. , Bolam, J. P. and Smith, AD. (1984) 1. Neurocytol.13, 593-61638 Moriizumi, T. , Nakamura, Y., Okoyama, s. and Kitao, Y.(1987) Neuroscience 20, 797-81639 Zahm, D. s. and Helmer, L. (1987) Brain Res. 404, 327-33140 Smith, Y. and Bolam, J. P. (1989) Bra in Res. 493, 160-16741 Steven s, J. R. (1973) Arch. Gen. Psychiatry 29,177-18942 Bjiirklund, A (1986) in Handbook <strong>of</strong> Physiology (Sect. 1: <strong>The</strong>Nervous System; Vol. IV: Intrinsic Regulatory Systems <strong>of</strong> <strong>the</strong>Brain) (Mountc<strong>as</strong>tle, V. B., Bloom, F. E. and Geiger, S. R.,eds), pp. 155-235, American Physiological Society43 Nauta, W. J. H., Smith, G. P., Faull, R. L. M. and Domesick,V. B. (1978) Neuroscience 3, 385--40144 Nauta, W . J. H. and Domesick, V. B. (1984) in Fun ctions <strong>of</strong><strong>the</strong> B<strong>as</strong>al Ganglia, Ciba Foundation Symposium 107 (Evered,D. and O '(onnor, M .. eds), pp. 3-23, Pitman45 Gerfen, C. R. (1985) 1. Comp. Neural. 236, 454-47646 Gerfen, C. R. (1989) Science 246, 385-38847 Clark, D. and White, F. J. (1987) synapse 1,347- 38848 Waddington, J. L. and Oboyle, K. M . (1989) Pharmacal <strong>The</strong>r.43 , 1-5249 Kita, H. and Kitai , S. T. (1987) 1. Comp. Neural. 260,435--452TINS, Vol. 13, No. 7, 1990265

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!