13.07.2015 Views

2. Amniote Tree of Life - Todd Jackman at Villanova

2. Amniote Tree of Life - Todd Jackman at Villanova

2. Amniote Tree of Life - Todd Jackman at Villanova

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>Amniote</strong>s (Amniota)Andrew M. Shedlock* and Scott V. EdwardsDepartment <strong>of</strong> Organismic and Evolutionary Biology, Museum<strong>of</strong> Compar<strong>at</strong>ive Zoology, 26 Oxford Street, Harvard University,Cambridge, MA 02138, USA*To whom correspondence should be addressed (shedlock@oeb.harvard.edu)AbstractAmniota is a remarkably diverse clade <strong>of</strong> tetrapod vertebr<strong>at</strong>escomprising more than 23,000 living species <strong>of</strong>mammals, non-avian reptiles, and birds adapted to a widevariety <strong>of</strong> primarily terrestrial habit<strong>at</strong>s. Our most recentcommon amniote ancestor probably lived ~325 millionyears ago (Ma), and molecular d<strong>at</strong>a suggest th<strong>at</strong> the majorlineages <strong>of</strong> living reptiles arose in the Permian and Triassic(299–200 Ma), when land areas were coalesced into a singlesupercontinent, Pangaea. Conflicting morphological andmolecular results for the origin <strong>of</strong> turtles has been particularlychallenging to resolve, although most recent analysesplace turtles with birds and crocodilians.Amniota is a clade noted for the extraordinary ecologicaland taxonomic diversity <strong>of</strong> its more than 23,000 livingspecies, comprising mammals and reptiles, includingbirds. The taxon is named for the characteristic eggstructure in which the amnion membrane forms a fluidfilledcavity th<strong>at</strong> surrounds the developing embryo. Theamniote egg is considered one <strong>of</strong> the key adapt<strong>at</strong>ions inthe evolution <strong>of</strong> vertebr<strong>at</strong>e terrestrial life history (Fig. 1).This shared-derived character is generally accepted to beone <strong>of</strong> several key adapt<strong>at</strong>ions for enduring the terrestriallife adopted by our amniote ancestors, thereby facilit<strong>at</strong>ingthe remarkable evolutionary success <strong>of</strong> the group.Considerable deb<strong>at</strong>e has been focused on precisely whenour most recent common amniote ancestor lived (1).Tightly constrained radiometric analysis <strong>of</strong> fossils placesthe divergence between the first undisputed synapsids(mammals which have only one temporal fenestr<strong>at</strong>ionin the skull) and diapsids (reptiles with two temporalfenestr<strong>at</strong>ions) <strong>at</strong> 306.1 ± 8.5 Ma. This d<strong>at</strong>ing techniquegenerally exhibits about 1% error (2). The upper bound<strong>of</strong> this narrow estim<strong>at</strong>e for bird–mammal divergenceoverlaps with a widely cited value <strong>of</strong> 310 Ma, based onthe approxim<strong>at</strong>e methods <strong>of</strong> Benton (3) and employedby Kumar and Hedges (4) to calibr<strong>at</strong>e a comprehensivemolecular timescale for vertebr<strong>at</strong>e evolution. The amniotetimetree considered here includes six terminal taxa:Mammalia (mammals), Sphenodontia (the tu<strong>at</strong>ara),Squam<strong>at</strong>a (lizards and snakes), Testudines (turtles),Crocodylia (allig<strong>at</strong>ors and crocodiles), and Aves (birds).A combin<strong>at</strong>ion <strong>of</strong> molecular and fossil evidence suggeststh<strong>at</strong> the major lineages <strong>of</strong> living reptiles likely origin<strong>at</strong>edin the Permian and Triassic (3–5) although exact divergencetime estim<strong>at</strong>es vary among the molecular studiesused in the present synthesis.Conflicting phylogenetic results from different morphologicaland molecular d<strong>at</strong>a sets have clouded thepicture <strong>of</strong> amniote macroevolution and have slowed theprocess <strong>of</strong> establishing a clear consensus <strong>of</strong> views betweenpaleontologists and molecular system<strong>at</strong>ists. Synapsids(mammals) are accepted to be the closest rel<strong>at</strong>ives <strong>of</strong>diapsid reptiles. Turtles lack temporal holes in the skull,however, and have been viewed as the only surviving anapsidamniotes. Based on this and other characters, theyFig. 1 An amniote, the Rough Greensnake (Opheodrys aestivus),h<strong>at</strong>ching from an egg. Photo credit: S. B. Hedges.A. M. Shedlock and S. V. Edwards. <strong>Amniote</strong>s (Amniota). Pp. 375–379 in The Timetree <strong>of</strong> <strong>Life</strong>, S. B. Hedges and S. Kumar, Eds. (OxfordUniversity Press, 2009).


376 THE TIMETREE OF LIFE12345TestudinesCrocodyliaAvesSquam<strong>at</strong>aSphenodontiaMammaliaLepidosauriaArchosauriaC PPALEOZOIC300 250Tr J CretaceousMESOZOICPgCZNg200 150 100 50 0Million years agoFig. 2 A timetree <strong>of</strong> amniotes. The divergence times are from Table 1. Abbrevi<strong>at</strong>ions: C (Carboniferous), CZ (Cenozoic), J (Jurassic),Ng (Neogene), P (Permian), Pg (Paleogene), and Tr (Triassic).are traditionally placed as the closest rel<strong>at</strong>ives <strong>of</strong> all otherliving reptiles (5, 7, 8). However, a recent morphologicalreevalu<strong>at</strong>ion <strong>of</strong> skull characters (9), and essentially allmolecular genetic studies, indic<strong>at</strong>es th<strong>at</strong> turtles shouldbe nested within diapsids despite their apparent anapsidskull morphology. Based on a growing body <strong>of</strong> genomicevidence (6, 10–14), it appears th<strong>at</strong> turtles exhibit a secondaryloss <strong>of</strong> skull fenestr<strong>at</strong>ion or reversal to an ancestralcondition.Molecular d<strong>at</strong>a sets have not completely clarified theamniote picture, however, since different genes andsampling schemes have in some cases placed turtleswithin archosaurs, as the closest rel<strong>at</strong>ive <strong>of</strong> crocodilians(6, 10, 13, 15), and in other cases, as the closestrel<strong>at</strong>ive <strong>of</strong> an archosaur clade th<strong>at</strong> includes crocodiliansand birds (11, 12, 14, 16). St<strong>at</strong>istical evalu<strong>at</strong>ion <strong>of</strong> phylogeneticsignal in these studies (10) has revealed th<strong>at</strong>mitochondrial genome d<strong>at</strong>a have tended to separ<strong>at</strong>eturtles from archosaurs, whereas conc<strong>at</strong>en<strong>at</strong>ed nucleargene sequences under potentially strong selection suchas globin genes, lact<strong>at</strong>e dehydrogenase (LDH), and ribosomalRNAs have tended to group turtles with crocodilians.The affi nity <strong>of</strong> turtles and crocodilians has alsobeen observed in evalu<strong>at</strong>ing short DNA word motifsembedded in more than 84 million basepairs (Mbp) <strong>of</strong>genomic sequence for amniotes (13). The earliest turtlesappear ~223 Ma in the fossil record (3), which is withinthe interval <strong>of</strong> both older and younger molecular clockestim<strong>at</strong>es for the time <strong>of</strong> their origin. The most recentcomprehensive effort to resolve the rel<strong>at</strong>ionships <strong>of</strong> themajor groups <strong>of</strong> amniotes used more than 5100 aminoacids from mostly single-copy nuclear DPLA andGAG genes within a maximum likelihood framework,and presented strong st<strong>at</strong>istical support for a closerel<strong>at</strong>ionship <strong>of</strong> crocodilians and birds to the exclusion<strong>of</strong> turtles (11).Despite considerable deb<strong>at</strong>e on the subject, few studieshave presented average divergence time estim<strong>at</strong>ionsacross major branches <strong>of</strong> the amniote tree based on acalibr<strong>at</strong>ed clock analysis <strong>of</strong> numerous genes. Two highlyvisible studies within the last decade have set the found<strong>at</strong>ionfor an ongoing deb<strong>at</strong>e about integr<strong>at</strong>ing fossilsand genes to estim<strong>at</strong>e divergence times among majoramniote clades. Kumar and Hedges (4) published theirlandmark comprehensive molecular timescale for vertebr<strong>at</strong>eevolution based on protein clock calibr<strong>at</strong>ions <strong>of</strong>658 nuclear genes and 207 vertebr<strong>at</strong>e species. A pointestim<strong>at</strong>e <strong>of</strong> 310 Ma for the bird–mammal divergence,derived from radiometric d<strong>at</strong>ing <strong>of</strong> fossil evidence, wasemployed to externally calibr<strong>at</strong>e the protein clock. Timeestim<strong>at</strong>es based on st<strong>at</strong>istical tests <strong>of</strong> r<strong>at</strong>e constancy(17, 18) were averaged across multiple genes and taxonomicgroups and presented with 95% confidence intervals.Published d<strong>at</strong>es relevant for the amniote timetreeincluded a Permian average estim<strong>at</strong>e for the origin <strong>of</strong>Lepidosaria <strong>at</strong> ~276 ± 54.4 Ma, and a bird–crocodiliansplit <strong>at</strong> ~222 ± 5<strong>2.</strong>5 Ma.Less than a year l<strong>at</strong>er, similar methods were focusedspecifically on the Reptilia. Hedges and Poling (6)analyzed combin<strong>at</strong>ions <strong>of</strong> 23 nuclear and two mitochondrialgenes, including globulins, LDH, rRNAs, alphacr y s t a l l in e , alpha-enolase, and cyt b, to infer a molecularphylogeny <strong>of</strong> reptiles. As with previous analyses, the310 synapsid–diapsid split d<strong>at</strong>e was used to anchor themolecular clock. The paper unconventionally joinedturtles with crocodilians and suggested a more distantrel<strong>at</strong>ionship between the tu<strong>at</strong>ara and squam<strong>at</strong>es basedon a subset <strong>of</strong> amino acid d<strong>at</strong>a available for Sphenodon.


Eukaryota; Metazoa; Vertebr<strong>at</strong>a; Amniota 377Table 1. Divergence times (Ma) and their confidence/credibility intervals (CI) among amniotes (Amniota).TimetreeEstim<strong>at</strong>esNode Time Refs. (4, 25) Refs. (6, 27) Refs. (12, 21, 23) Ref. (15) Ref. (20)(a)Time CI Time CI Time CI Time CI Time CI1 324.5 – – 323(27) 343–305 326(21) 354–311 – – – –2 274.9 276 383–169 245 269–221 285 – 250 267–233 285 296–2743 271.5 – – – – – – – – 268 280–2564 230.7 225(25) 238–205 – – – – 152 176–128 265 278–2525 219.2 222 325–119 258(27) 279–238 196(23) 294–98 214 259–169 201 216–186Timetree Estim<strong>at</strong>es (Continued)Node Time Ref. (20)(b) Ref. (22)Ref. (24)Ref. (26) Ref. (27)Time CI Time Time Time CI Time CI1 324.5 – – – – – – – –2 274.9 289 302–276 – 294 – – – –3 271.5 275 292–258 – – – – – –4 230.7 273 291–255 191 278 – – – –5 219.2 194 218–170 175 254 259 282–236 258 279–238Note: Node times in the timetree represent the mean <strong>of</strong> time estim<strong>at</strong>es from different studies. Estim<strong>at</strong>es are presented from an analysis <strong>of</strong> nine nucleargenes examined within a comprehensive analysis <strong>of</strong> 658 nuclear genes (4); 23 nuclear and nine mitochondrial protein-coding genes (6), 11 nuclear proteincodinggenes (23); nuclear LDH-A, LDH-B, and alpha-enolase genes (15); 11 mitochondrial protein-coding genes (24); 12 protein-coding genes, two rRNAgenes, and 19 tRNAs from mitochondria (25); 11 protein-coding genes and 19 tRNAs from mitochondria (12), 11 protein-coding genes and unspecifi ed RNAgenes from mitochondria (22); 325 protein-coding genes (21), mitochondrial genomes (26, 27), and the nucleotide (a) and amino acid sequences (b) <strong>of</strong> thenuclear RAG1 gene (20).Squam<strong>at</strong>es were estim<strong>at</strong>ed to have diverged from otherreptiles ~245 ± 1<strong>2.</strong>2 Ma, birds from the crocodilian +turtle clade ~228 ± 10.3 Ma, and turtles from crocodilians~207 ± 20.5 Ma. These results differ from previousaverage d<strong>at</strong>es published for the vertebr<strong>at</strong>e timescale (4)by suggesting a younger Triassic vs. Permian time framefor the origin <strong>of</strong> squam<strong>at</strong>e lizards, and a slightly oldertime for the bird–crocodilian split. These divergence timeestim<strong>at</strong>es cannot be reconciled with fossil evidence th<strong>at</strong>provides a minimum age estim<strong>at</strong>e <strong>of</strong> <strong>at</strong> least ~223 Ma forthe oldest known turtles (3), but suggest th<strong>at</strong> a number<strong>of</strong> key innov<strong>at</strong>ions during amniote evolution occurredwithin a roughly 40 million period <strong>of</strong> the Triassic. Thestudy also posed a challenge for paleontologists to reconcilethe derived position <strong>of</strong> turtles among amniotes andset a methodological framework for expanded applic<strong>at</strong>ion<strong>of</strong> molecular clock analyses to a variety <strong>of</strong> questionsregarding vertebr<strong>at</strong>e evolution.Several additional studies warrant summary here fortheir contributions to establishing the amniote timetree.The first is specifically aimed <strong>at</strong> <strong>at</strong>tempting to resolvethe phylogenetic position <strong>of</strong> turtles (15). The study addsconsiderable additional LDH-A, LDH-B, and alphaenolaseprotein sequences to the available d<strong>at</strong>a m<strong>at</strong>rixand employs the average distance methods and 310 Masynapsid–diapsid clock calibr<strong>at</strong>ion <strong>of</strong> Kumar and Hedges(4). Strong st<strong>at</strong>istical support was provided for a turtle–crocodilian rel<strong>at</strong>ionship to the exclusion <strong>of</strong> birds, with anexceptionally recent Upper Jurassic average divergencetime estim<strong>at</strong>e for turtles from crocodilians <strong>of</strong> only 152Ma, some 71 million years younger than the oldest fossilturtle. No d<strong>at</strong>a were presented for Sphenodon, highlightingthe overall lack <strong>of</strong> published divergence time estim<strong>at</strong>esfor this unique “living fossil.”Rest et al. (12) examined 11 protein-coding genes and19 tRNAs from the mitochondrial genomes <strong>of</strong> all majoramniote lineages, emphasizing the importance <strong>of</strong> samplingthe tu<strong>at</strong>ara to accur<strong>at</strong>ely reconstructing reptilephylogeny. The study employed advances in Bayesianmodel-based methods <strong>of</strong> inference and resolved turtlesas the sister group to archosaurs with 100% st<strong>at</strong>isticalsupport. Adopting a maximum likelihood approach to


378 THE TIMETREE OF LIFEestim<strong>at</strong>ing divergence times under a relaxed molecularclock assumption and multiple fossil calibr<strong>at</strong>ion points(19), the authors reported a divergence time well into thePermian for the origin <strong>of</strong> Lepidosauria.Most recently, Hugall et al. (20) analyzed the nucleargene RAG1 across 88 taxa spanning all major tetrapodclades. The study supported the close rel<strong>at</strong>ionship <strong>of</strong>turtles to a monophyletic Archosauria and employedmodel-based r<strong>at</strong>e-smoothing methods to estim<strong>at</strong>e divergencetimes in amniotes. Results highlighted an ancientPermian origin for the tu<strong>at</strong>ara estim<strong>at</strong>ed <strong>at</strong> ~268–275Ma and revealed slower molecular evolutionary r<strong>at</strong>es inarchosaurs and especially turtles th<strong>at</strong> tend to underestim<strong>at</strong>edivergence times for these groups without usingappropri<strong>at</strong>e fossil calibr<strong>at</strong>ion points. Comparison withother molecular clock studies underscored the biastoward infl<strong>at</strong>ed divergence time estim<strong>at</strong>es cre<strong>at</strong>ed by s<strong>at</strong>ur<strong>at</strong>edmitochondrial gene sequence d<strong>at</strong>a.Seven other studies also present molecular time estim<strong>at</strong>esfor <strong>at</strong> least one node in the amniote tree <strong>of</strong> life(21–27). The genes examined in each <strong>of</strong> these studiesare listed in the caption for Table 1 and the average timeestim<strong>at</strong>es from all 12 investig<strong>at</strong>ions considered here arereflected by the topology in Fig. <strong>2.</strong> Based on this liter<strong>at</strong>uresynthesis, the amniote common ancestor is d<strong>at</strong>ed<strong>at</strong> 325 Ma, with the origin <strong>of</strong> lepidosaurs taking place inthe mid-Permian ~275 Ma, and the divergence <strong>of</strong> sphenodontidsfrom squam<strong>at</strong>es <strong>at</strong> 272 Ma, distinguishing theliving tu<strong>at</strong>ara as a remarkably ancient evolutionary relict.Turtles are estim<strong>at</strong>ed to have diverged from archosaursin the early Triassic some 231 Ma, whereas crocodylianssubsequently split from birds as recently as 219 Ma. Itmust be noted th<strong>at</strong> confidence intervals on the estim<strong>at</strong>essummarized in Table 1 are not available for several studies(12, 22, 24) or vary widely among studies dependingon the number <strong>of</strong> genes investig<strong>at</strong>ed, the n<strong>at</strong>ure <strong>of</strong> thegene sequence d<strong>at</strong>a analyzed, and taxonomic sampling(e.g., 4 vs. 20). The results in Fig. 2 should therefore beinterpreted cautiously within narrow time frames <strong>of</strong>amniote evolutionary history.In summary, the amniote timetree paints a mixedportrait <strong>of</strong> organismal evolution among major tetrapodlineages th<strong>at</strong> underwent a number <strong>of</strong> key vertebr<strong>at</strong>e innov<strong>at</strong>ionsadapted for the rigors <strong>of</strong> terrestrial life. The l<strong>at</strong>ePermian mass extinction was due presumably to widespreadstressful environmental conditions produced byunfavorable ocean–<strong>at</strong>mosphere chemical interactions(28). Fossil diversity indic<strong>at</strong>es a protracted biologicalrecovery through the lower Triassic ~250 Ma (29) th<strong>at</strong>falls between molecular time estim<strong>at</strong>es for two majorperiods <strong>of</strong> amniote cladogenesis: (1) the divergence andearly diversific<strong>at</strong>ion <strong>of</strong> lepidosaurs between ~270 and275 Ma and (2) the origin <strong>of</strong> turtles and subsequentdivergence <strong>of</strong> crocodilians and birds between roughly~230 and 220 Ma. Young amniote lineages would haveemerged into a rel<strong>at</strong>ively unconstrained evolutionarylandscape before extensive Pangean supercontinentalbreakup. A combin<strong>at</strong>ion <strong>of</strong> favorable environmental andbiogeographic forces likely facilit<strong>at</strong>ed successful tetrapodinvasion into a variety <strong>of</strong> open terrestrial niches duringthe Triassic, exemplified today by the extraordinaryecological, phenotypic, and taxonomic diversity <strong>of</strong> livingamniotes.AcknowledgmentsSupport for the prepar<strong>at</strong>ion <strong>of</strong> this manuscript wasprovided by Harvard University and in part by a U.S.N<strong>at</strong>ional Science Found<strong>at</strong>ion grant to S.V.E.References1. S. B. Hedges, S. Kumar, Trends Genet. 20, 242 (2004).<strong>2.</strong> J. Remane et. al., Eds., Intern<strong>at</strong>ional Str<strong>at</strong>igraphic Chart(Intern<strong>at</strong>ional Union <strong>of</strong> Geological Sciences: Intern<strong>at</strong>ionalCommission on Str<strong>at</strong>igraphy, Paris, 2002).3. M. J. Benton, Vertebr<strong>at</strong>e Paleontology (Chapman & Hall,New York, 1997).4. S. Kumar, S. B. Hedges, N<strong>at</strong>ure 392, 917 (1998).5. R. R. Reisz, Trends Ecol. Evol. 12, 218 (1997).6. S. B. Hedges, L. L. Poling, Science 283, 998 (1999).7. J. Gauthier, A. G. Kluge, T. Rowe, Cladistics 4, 105 (1988).8. M. S. Y. Lee, Zool. J. Linn. Soc. 120, 197 (1997).9. O. Rieppel, R. R. Reisz, Ann. Rev. Ecol. Syst. 30, 1 (1999).10. Y. Cao, M. D. Sorenson, Y. Kumazawa, D. P. Mindel l,M. Hasegawa, Gene 259, 139 (2000).11. N. Iwabe et al., Mol. Biol. Evol. 22, 810 (2005).12 . J. R . Re s t et al., Mol. Phylogenet. Evol. 29, 289 (2003).13. A. M. Shed lock et al., Proc. N<strong>at</strong>l. Acad. Sci. U.S.A. 104,2767 (2007).14. R . Zardoya, A. Meyer, Proc. N<strong>at</strong>l. Acad. Sci. U.S.A. 95,14226 (1998).15. H. Ma nnen, S. S.-L . Li, Mol. Phylogenet. Evol. 13, 144(1999).16. Y. Kumazawa, M. Nishida, Mol. Biol. Evol. 16, 784 (1999).17. F. Tajima, Genetics 135, 599 (1993).18. N. Ta keza k i, A. R zhetsk y, M. Nei, Mol. Biol. Evol. 12, 823(1995).19. M. J. Sanderson, Mol. Biol. Evol. 14, 1218 (1997).20. A. F. Hugall, R. Foster, M. S. Lee, Syst. Biol. 56, 543(2007).21. J. E. Blair, S. B. Hedges, Mol. Biol. Evol. 22, 2275 (2005).


Eukaryota; Metazoa; Vertebr<strong>at</strong>a; Amniota 3792 2 . G . L . H a r r i s on et al., Mol. Biol. Evol. 21, 974 (2004).23. S . Hug hes , D. Z elus , D. Mouch i roud , Mol. Biol. Evol. 16,1521 (1999).2 4 . A . Ja n k e , D. E r p e nb e c k , M . Nie l s s on , U. A r n a s on , Proc.Roy. Soc. Lond. B 268, 623 (2001).25. T. P<strong>at</strong>on, O. Hadd r<strong>at</strong> h, A . J. Ba ker, Proc. Roy. Soc. Lond.B. 269, 839 (2002).2 6 . P. Z h a n g , H . Z hou , Y.- Q. C hen, Y.-F. L iu , L .-H . Q u , Syst.Biol. 54, 391 (2005).27. S. L. Pereira, A. J. Baker, Mol. Biol. Evol. 23, 1731 (2006).28. D. H. Erwin, Extinction. How <strong>Life</strong> on Earth Nearly Ended250 Million Years Ago (Princeton University Press,Princeton, NJ, 2006).29. J. L. Payne et al., Science 305, 506 (2004).

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!