04.12.2012 Views

Drazen Svehla_Vision.pdf - Quantum Optics and Relativity

Drazen Svehla_Vision.pdf - Quantum Optics and Relativity

Drazen Svehla_Vision.pdf - Quantum Optics and Relativity

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Satellite Geodesy <strong>and</strong> Navigation<br />

Present <strong>and</strong> Future<br />

<strong>Drazen</strong> <strong>Svehla</strong><br />

Institute of Astronomical <strong>and</strong> Physical Geodesy<br />

Technical University of Munich, Germany<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


� Clocks for navigation<br />

Content<br />

� Relativistic geodesy on the ground<br />

� Planetary relativistic geodesy<br />

� Clocks for GPS radio-occultation <strong>and</strong> GPS altimetry<br />

� Can clock improve the GPS receiver performance?<br />

� Master clock in the Molniya type orbit<br />

� Pioneer anomaly – two master clocks in the planetary mission<br />

� Master clocks in Lagrange points: Planetary Navigation System<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


GPS Satellite Clocks<br />

• GPS satellite clock variations can easily reach several nanoseconds!<br />

• For the real time GPS applications we need a possibility to predict clock variation with an<br />

accuracy below 1 cm for a period of 1 hour (


(Colorado Springs – USNO)<br />

Root<br />

drift 1/ f<br />

Ground Phase Clocks<br />

≈ 200 s<br />

≈ 200 s<br />

white noise<br />

Only phase clocks estimated.<br />

Troposphere (TZD), station coord., EOPs,<br />

etc., fixed to IGS<br />

Clear white noise up to 200 s<br />

<strong>and</strong> frequency drift with 1/f<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

(2.9×10 -16 /day)<br />

≈ 7 mm<br />

Stability of GPS<br />

receiver <strong>and</strong><br />

H-maser<br />

iapg


A<br />

E A<br />

B<br />

B<br />

Relativistic Geodesy on the Ground<br />

B’<br />

B’’<br />

geoid<br />

ellipsoid<br />

B C E<br />

... ...<br />

C = C + gdn + gdn + gap + gdn<br />

∫<br />

H = gdn<br />

spirit leveling<br />

∫ ∫ ∫<br />

A B D<br />

r<strong>and</strong>om walk effect<br />

50 m<br />

ACES<br />

MW-link<br />

C D<br />

B<br />

B′<br />

Ellipsoid: Geometry measured with GPS<br />

HGeoid:<br />

Gravity measured with gravimetry (clocks)<br />

ACES to help in the:<br />

→ realization of the World height system<br />

→ combination of space/ground gravimetry<br />

Clocks can be used to determine in situ geopotential numbers globaly<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg<br />

E


Degree St<strong>and</strong>ard Deviations in Geoid Heights [m]<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10<br />

10<br />

20<br />

20<br />

CHAMP & GRACE Gravity Field Models<br />

CHAMP Mean Fields<br />

30<br />

1cm ≈ 0.1m 2 /s 2<br />

30<br />

Degree<br />

Error degree variances<br />

for CHAMP <strong>and</strong> GRACE gravity fields<br />

40<br />

40<br />

50<br />

EIGEN-3P error un-calibrated<br />

TUM2S error un-calibrated<br />

EIGEN-3P minus TUM2S<br />

EIGEN-3P minus ITG-CHAMP01S<br />

TUM2S minus ITG-CHAMP01S<br />

CHAMP prediction<br />

2<br />

m<br />

1 cm /1000km → 0.1 /1000km<br />

2<br />

s<br />

50<br />

60<br />

60<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

Degree<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

Degree St<strong>and</strong>ard Deviations in Geoid Heights [m]<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5<br />

GRACE Combined Mean Fields<br />

50<br />

1cm ≈ 0.1m 2 /s 2<br />

50<br />

100<br />

100<br />

150<br />

(Gruber 2005)<br />

GGM2C error calibrated<br />

EIGEN-CG03C error calibrated<br />

GGM2C minus EIGEN-CG03C<br />

GRACE prediction<br />

150<br />

2<br />

m<br />

1 cm / 400km → 0.1 / 400km<br />

2<br />

s<br />

iapg<br />

10 -1<br />

10 -2<br />

10 -3<br />

10 -4<br />

10 -5


spherical<br />

harmonics<br />

degree/order<br />

=100<br />

EGM96<br />

(Gruber 2005)<br />

Latitude<br />

Comparison with GPS-levelling geoid heights<br />

Latitude<br />

0<br />

0<br />

10<br />

10<br />

20<br />

20<br />

Longitude<br />

30<br />

30<br />

39.9999<br />

70 70<br />

60 60<br />

50 50<br />

40 40<br />

39.9999<br />

-1.29 -1.09 -0.89 -0.69 -0.49 -0.29 -0.09 0.11 0.31 0.51 0.71<br />

230 240 250 260 270 280 290 300<br />

60 60<br />

50 50<br />

40 40<br />

30 30<br />

20 20<br />

230 240 250 260 270 280 290 300<br />

Longitude<br />

-0.95 -0.75 -0.55 -0.35 -0.15 0.05 0.25 0.45 0.65 0.85 1.05<br />

1 m ≈ ∆f/f=1·10 -16<br />

20<br />

Longitude<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

Latitude<br />

Latitude<br />

0<br />

0<br />

10<br />

10<br />

20<br />

30<br />

30<br />

39.9999<br />

70 70<br />

60 60<br />

50 50<br />

40 40<br />

39.9999<br />

-1.29 -1.09 -0.89 -0.69 -0.49 -0.29 -0.09 0.11 0.31 0.51 0.71<br />

GRACE<br />

EIGEN-CG03C<br />

230 240 250 260 270 280 290 300<br />

60 60<br />

50 50<br />

40 40<br />

30 30<br />

20<br />

230 240 250 260 270 280 290<br />

20<br />

300<br />

Longitude<br />

-0.95 -0.75 -0.55 -0.35 -0.15 0.05 0.25 0.45 0.65 0.85 1.05<br />

iapg


GPS-<br />

Levelling<br />

Data Set<br />

Comparison with GPS-Levelling Geoid Heights<br />

• Model up to d/o 60<br />

• Omission error from d/o 61 to d/o 720 estimated from GPM98 model<br />

(Wenzel)<br />

• GRACE models: GGM02S, GGM02C, EIGEN-GRACE02S, EIGEN-CG03C,<br />

Monthly models for 2004-03.<br />

• Editing criteria: 3*sigma<br />

0.5 m ≈∆f/f=5·10 RMS [m]<br />

-17<br />

Num.<br />

Points<br />

EGM96 TUM2S<br />

(CHAMP)<br />

EIGEN-<br />

3P<br />

GRACE<br />

Models<br />

USA 5139 0.400 0.441 0.401 0.400<br />

Canada 1564 0.477 0.515 0.474 0.467<br />

Europe 177 0.372 0.298 0.250 0.237<br />

Germany 660 0.255 0.173 0.124 0.155<br />

Australia 195 0.495 0.524 0.500 0.469<br />

Japan 828 0.512 0.482 0.476 0.491<br />

* GPS-Levelling Data for Australia, Japan <strong>and</strong> Germany provided by AUSLIG, Japanese Geographical<br />

Survey Institute <strong>and</strong> BKG respectively. Contributions are gratefully acknowledged.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

(Gruber 2005)<br />

iapg


Planetary Relativistic Geodesy<br />

Too high requirements for the clock stability over short time inerval<br />

Gravity Frequency Shift measurements<br />

between space & ground clocks<br />

Gravity Frequency Shift measurements<br />

between space clocks<br />

relative clock stability over short time<br />

(e.g. 10 -18 /10 min) is essential !!!<br />

GRACE concept (intersatellite laser link) is much more accurate<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


Doppler:<br />

St<strong>and</strong>ard IGS<br />

corrections:<br />

f<br />

f<br />

r<br />

r<br />

Relativistic Geodesy in Space<br />

−<br />

−<br />

f<br />

f<br />

0<br />

0<br />

=<br />

=<br />

−V<br />

r<br />

r<br />

+ v<br />

2<br />

r<br />

/ 2 + Φ<br />

2<br />

c<br />

rr<br />

2GM<br />

⎛ 1 1 ⎞1<br />

− Nvr<br />

2 ⎜ − ⎟ rr<br />

c ⎝ a r ⎠1<br />

− Nv<br />

0<br />

+ 2GM<br />

/ a + 2V<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

j<br />

/ c<br />

/ c<br />

constant periodic<br />

Correction in the GPS<br />

satellite clock<br />

frequency:<br />

38.575008 µs/day<br />

nominal semi-major<br />

axis ≈26 561km<br />

j<br />

rr<br />

1−<br />

Nvr<br />

rr<br />

1−<br />

Nv<br />

j<br />

/ c<br />

/ c<br />

Eccentricity correction:<br />

-2(a·GM) 0.5 /c 2 ·e·sinE<br />

iapg


Improved Relativistic GPS Clock Corrections<br />

constant periodic<br />

GPS Satellite Phase Clocks<br />

Phase clocks for GPS (PRN 14) STD=0.120 ns<br />

additional constant <strong>and</strong> periodic<br />

correction due to<br />

variable semi-major axis <strong>and</strong> J 2<br />

Relativistic model accurate to ≈15ps<br />

periodic constant<br />

estimated 6h signal<br />

6h periodic correct.<br />

0 24<br />

Value computed without<br />

correction<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

excellent<br />

agreement with<br />

real data<br />

iapg


Relativistic Geodesy in Space<br />

Assumption: GPS satellite in<br />

the Molniya type orbit<br />

(orbit eccentricity increased)<br />

How accurately we could estimate e.g. semi-major axis of the Earth?<br />

GPS altitude: a=26 550 km e=0.7 + clock (10 -16 /day) → RMS(a)=9 m<br />

+ clock (10 -18 /day) → RMS(a)=0.09 m<br />

GM<br />

ISS altitude: a=6770 km e=0.7 + clock (10 -16 /day) → RMS(a)=4 m<br />

+ clock (10 -18 /day) → RMS(a)=0.04 m (today ±0.10 m)<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

da<br />

=<br />

a<br />

c<br />

e<br />

2<br />

dt<br />

iapg


Clocks for GPS radio-occultation<br />

• improving performances of the GPS tracking (weak signal, cycle-slips)<br />

• use of the zero-difference approach → no need for the “slave” GPS satellite to<br />

remove receiver clock parameter<br />

•clocks of high stability over short periods (< 5 min are essential!)<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


Atmosphere sounding using GPS<br />

Profiles of the atmosphere temperature <strong>and</strong> specific humidity derived from radio-occultation technique.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


GPS<br />

reflectometry<br />

Clocks for GPS altimetry<br />

CHAMP<br />

Jason-1 nadir observations at Dec. 26,<br />

2004 between 02:15 <strong>and</strong> 02:40 UTC<br />

predicted GPS reflection events<br />

as seen by a fictious GPS<br />

receiver onboard Jason-1<br />

GPS precise orbit<br />

determination<br />

radar<br />

altimetry<br />

Jason-1<br />

GPS altimetry is not limited to nadir<br />

observations (e.g. JASON-1)<br />

Slide taken from (Helm et al 2006)<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


Clocks for GPS reflectometry (altimetry)<br />

TEC map 200/2002 <strong>and</strong> ISS Orbit<br />

52°<br />

-52°<br />

•determination of the ocean heights, wind speed (scatterometry) <strong>and</strong> tsunami detection<br />

•Extreme Earth’s events (tsunami, hurricanes) are taking place in the equator region.<br />

•reflected signal could be tracked in open-loop mode without the need of the direct signal<br />

(zero-difference approach)<br />

• improving performances of the GPS tracking (weak signal, cycle-slips)<br />

•clocks of high stability over short periods (< 5 min are essential!)<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


σ<br />

PLL<br />

Can clock improve GPS receiver performance?<br />

360<br />

=<br />

2π<br />

thermal noise<br />

Bn c / n<br />

0<br />

( 1<br />

1<br />

+<br />

2Tc<br />

/ n<br />

B n = carrier loop b<strong>and</strong>width<br />

0<br />

)<br />

oscillator phase noise<br />

σ ( τ ) f<br />

144<br />

dynamic stress error<br />

(signal line of sight<br />

acceleration)<br />

dR<br />

= 0.<br />

2809<br />

A L<br />

θ A2<br />

= e2<br />

2<br />

B<br />

B<br />

n<br />

n<br />

•Tracking thresholds <strong>and</strong> GPS measurements errors are closely related, because the<br />

receiver loses lock when the measurement errors exceed a certain boundary.<br />

•Narrowing the loop b<strong>and</strong>width decreases the thermal noise <strong>and</strong> oscillator phase noise,<br />

however dynamic stress error is increased, but signal dynamics can be predicted.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

θ<br />

2<br />

/ dt<br />

2<br />

iapg


Can clock improve GPS receiver performance?<br />

Kinematic POD GRACE-A<br />

GRACE GPS Baseline<br />

with FIXED ambiguities<br />

RMS= 2.8 mm<br />

Time in hours<br />

(Status 2003-2004)<br />

Compared to CHAMP results are by at least<br />

factor of 2 better (ultra-stable clock)<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


Pioneer Anomaly – clocks in the<br />

planetary mission?<br />

Pioneer 10 & 11 discovered the “gravity” anomaly in the solar system.<br />

Several groups try to resolve the problem.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

link<br />

iapg


Master clock in the<br />

Molniya type orbit?<br />

Highly eccentric orbit. Clock stays over two positions for several hours.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg


Master clocks in Lagrange Points<br />

Planetary Navigation System<br />

link<br />

Sun<br />

L1 (Earth-Sun)<br />

International Cometary Explorer<br />

Genesis<br />

WIND<br />

The Solar <strong>and</strong> Heliospheric Observatory (SOHO)<br />

The Advanced Composition Explorer (ACE)<br />

LISA Pathfinder<br />

Earth<br />

L2 (Earth-Sun)<br />

Wilkinson Microwave Anisotropy Probe (WMAP)<br />

James Webb Space Telescope (JWST)<br />

The ESA Herschel Space Observatory<br />

The ESA Planck Surveyor<br />

The ESA Gaia probe<br />

The NASA Terrestrial Planet Finder mission<br />

The ESA Darwin mission<br />

5 stable Lagrange points in<br />

the two-body system<br />

(Earth-Moon or Earth-Sun)<br />

By just one clocks in e.g. L1 or<br />

L2 the max. Earth baseline of<br />

some 12 000 km can be<br />

extended up to 1 500 000 km<br />

for Earth-Sun system or<br />

300 000 km for Earth-Moon<br />

system<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

L2 (Earth-Moon)<br />

TDRS<br />

iapg


Conclusions<br />

1. The main applications of clocks in geodesy is precise navigation <strong>and</strong> timing.<br />

2. Relativistic geodesy on the ground is a very promising method to bridge the gap<br />

between geometrical navigation <strong>and</strong> gravity field determination in establishing<br />

homogeneous World height system.<br />

3. For relativistic planetary geodesy a highly stable clocks over a short period of<br />

time would be essential. The GRACE concept is much more accurate.<br />

4. ACES + GPS radio-occultation + GPS altimetry are new applications<br />

5. Clocks can improve GPS receiver performance<br />

6. Master clock in the Molniya type orbit<br />

7. Two clocks in the PIONEER 10&11 orbit?<br />

8. Planetary Navigation System is proposed based on clocks in the Lagrange<br />

points. This could cover geodesy part of the mission.<br />

Workshop on an Optical Clock Mission in ESA's Cosmic <strong>Vision</strong> Program, Düsseldorf, March 8 - 9, 2007<br />

iapg

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!