13.07.2015 Views

Proceedings of National Conference on Hydrology with Special ...

Proceedings of National Conference on Hydrology with Special ...

Proceedings of National Conference on Hydrology with Special ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting(NCHRWH - 2013)EditorsPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Pankaj DhemlaDr. A. K. JainDr. P. N. DadhichPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur


© 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAny part <str<strong>on</strong>g>of</str<strong>on</strong>g> these proceedings can be reproduced in any manner <strong>with</strong>the written permissi<strong>on</strong> from the editors or the Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g>Instituti<strong>on</strong>s, Jaipur.These proceedings represent informati<strong>on</strong> obtained from authenticand highly regarded sources. The authors have duly indicated thereferences used in the articles and have made reas<strong>on</strong>able efforts togive reliable data and informati<strong>on</strong>. The editors and the publishers d<strong>on</strong>ot assume resp<strong>on</strong>sibility for the validity <str<strong>on</strong>g>of</str<strong>on</strong>g> all materials or for thec<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> their use.


Dedicated to …………All those who are working forthe cause <str<strong>on</strong>g>of</str<strong>on</strong>g> Water : its Quantityand Quality in India.


Patr<strong>on</strong>Dr. S. M. SethChairman, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Colleges,Chairpers<strong>on</strong>, Poornima University andFormer Director, NIH, RoorkeeChairmanMr. Shashikant SinghiDirector General, Poornima Foundati<strong>on</strong>C<strong>on</strong>venorPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Pankaj DhemlaAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Civil Engg. Deptt.Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurCo-C<strong>on</strong>venorDr. Pran Nath DadhichHead, Civil Engg. Department, Poornima Group<str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAdvisory CommitteeDr. Alok Sikka DDG, ICAR, New DelhiPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. R.P. Kashyap Former Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, MNIT,JaipurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S.A. Abbasi Sr. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>., P<strong>on</strong>dicherryUniversityMr. R.D. Singh Director, NIH, RoorkeeDr. N.K. Goel Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>., <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Chair, MOWR,IIT, RoorkeePr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Deepak Khare DWRD, IIT, RoorkeePGC Advisory CommitteeDr. R. P. Rajoria Director, PCEDr. K.K.S. Bhatia Director, PGIDr. Rakesh Duggal Director (Academics), PGCDr. Om Prakash Sharma Principal, PCEDr. Manoj Gupta Dean, SET, PUPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Ajay Kr. Bansal Director, PIETMr. H.S. Shekhawat Director, Infra., PGCMrs. Renu Singhi Advisor, PGC AlumniMr. M K M Shah Director (Admin & Fin.),PGCMr. Rahul Singhi OSD, PFTechnical CommitteePr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Brij Gopal Former Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>., JNU, DelhiPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Surjit Singh IDS, JaipurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. M.S. Rathore CEDS, JaipurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. K. S. Raju BITS, Hyderabad CampusPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. A.B. Gupta MNIT, JaipurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Rohit Goyal MNIT, JaipurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. R.C. Purohit Sukhadia Univ., UdaipurMr. P.K. Parchure RD, CGWB, JaipurDr. Sanjay K. Jain Sc. F, NIH, RoorkeeDr. Zakir Hussain Director, CWC, DelhiDr. Pran Dadhich Co-C<strong>on</strong>venorOrganizing CommitteeDr. A.K. Jain Dean, PGIPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Pankaj Dhemla C<strong>on</strong>venorDr. Pran Nath Dadhich PGI, JaipurDr. Ankita Dadhich PIET, JaipurMr. Jagendra Singh PCE, JaipurMr. Abhishek Arya JIET, JodhpurPr<str<strong>on</strong>g>of</str<strong>on</strong>g>. T.L. Rajawat PGI, JaipurMr. N.K. Jain PGI, JaipurMr. Bhanwarveer Singh PGI, JaipurMr. Ajay Maurya PGI, JaipurMr. G.K. Panda PGI, Jaipur.Mr. Rajeev David Proctor-in-Chief, PGCMr. Ashwini Lata Warden-in-Chief, PGCMr. Aditya Sharma Chief Proctor, PGIMr. Praveen Singhvi Mess Manager, PGCMr. B.P. Yadav Transport Incharge, PGCDr. Vikal Gupta Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, J.N.V.U.,JodhpurDr. Manisha Sharma Associate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,JIET, JodhpurDr. Sushmita Sharma PU, Jaipur


PREFACEWater is a vital resource gifted by nature to living beings <strong>on</strong> the earth. Wateris not <strong>on</strong>ly essential to sustain life, but also to support ecosystems, ec<strong>on</strong>omicdevelopment, community well-being, and cultural values. Water no l<strong>on</strong>ger can betaken for granted. It is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most challenging tasks to ensure adequatewater <str<strong>on</strong>g>of</str<strong>on</strong>g> good quality and food to our present and future generati<strong>on</strong>s. Theavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources in our country is highly variable both in space andtime. Occurrences <str<strong>on</strong>g>of</str<strong>on</strong>g> droughts and floods <str<strong>on</strong>g>of</str<strong>on</strong>g>ten cause depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wateravailability and excess <str<strong>on</strong>g>of</str<strong>on</strong>g> water leading to significant water stress to regi<strong>on</strong>alec<strong>on</strong>omic activities and society and heavy damage to human life and againec<strong>on</strong>omic losses.It is important to note that cities meet their needs for water by <strong>with</strong>drawing it fromthe nearest river, lake or reservoir. Ground water pumped from beneath theearth’s surface is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten cheaper, more c<strong>on</strong>venient and less vulnerable to polluti<strong>on</strong>than surface water. Therefore, it is comm<strong>on</strong>ly used for public water suppliesthroughout the world. Underground reservoirs c<strong>on</strong>tain far more water than thecapacity <str<strong>on</strong>g>of</str<strong>on</strong>g> all surface reservoirs and lakes. In some areas, ground water may bethe <strong>on</strong>ly opti<strong>on</strong>.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the most useful techniques to augment ground water table is to utilizerainwater harvesting technique. It is the accumulati<strong>on</strong> and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwaterfor reuse before it reaches the aquifer. Implementing rainwater harvesting isbeneficial because it reduces demand <strong>on</strong> existing water supply, and reduces run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,erosi<strong>on</strong> and c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water.Similarly the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water is extremely important for various uses like drinkingwater, irrigati<strong>on</strong> water, household uses, gardening etc. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water,river water, well water, lake water, spring water etc. also vary greatly. Hence, it isvery important to discuss and deliberate to arrive at appropriate methods to treat,model and forecast the quality.Various tools, technologies have been developed to address a wide spectrum <str<strong>on</strong>g>of</str<strong>on</strong>g>water resource problems. Models are being used for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> waterresources, water availability and reservoir system operati<strong>on</strong>s etc. With morepowerful and modern computing systems and tools, a greater number <str<strong>on</strong>g>of</str<strong>on</strong>g>ec<strong>on</strong>omical remote sensing tools, radar and satellite imaging, isotopictechniques, hydrological models enable water resources managers to movebey<strong>on</strong>d the c<strong>on</strong>venti<strong>on</strong>al techniques. The goal <str<strong>on</strong>g>of</str<strong>on</strong>g> this <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> is todiscuss and improve knowledge <strong>on</strong> water resources management including rain


water harvesting and water quality and other related areas through collaborativeinformati<strong>on</strong> sharing and capability building.The principle objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> is to bring togetherwater resources pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essi<strong>on</strong>als, practicing field engineers, decisi<strong>on</strong> makers,faculty & students including stakeholders <str<strong>on</strong>g>of</str<strong>on</strong>g> the different water resources andhydrology enterprises from various parts <str<strong>on</strong>g>of</str<strong>on</strong>g> India, to a single platform toexchange their views and share knowledge. This would help in building aroadmap for achieving improved availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water to cope <strong>with</strong> the waterscarcity and to maintain the sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems.On behalf <str<strong>on</strong>g>of</str<strong>on</strong>g> Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s I thank the <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Hydrology</strong> for technical collaborati<strong>on</strong> and the Indian Council <str<strong>on</strong>g>of</str<strong>on</strong>g> AgriculturalResearch, New Delhi for liberal sp<strong>on</strong>sorship.I express my heartfelt gratitude to Dr. S. M. Seth, Chairman, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g>Colleges for c<strong>on</strong>tinuous encouragement and motivati<strong>on</strong>. We are also grateful toDr. K. K. S. Bhatia, President, Poornima University for his c<strong>on</strong>tinuous support andguidance. Mr. Shashikant Singhi, Director General, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Collegesand Mr. M. K. M. Shah, Director (Admin & Finance) deserve many-many thanks fortheir kind support.I c<strong>on</strong>gratulate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. Pankaj Dhemla, Dr. Pran Nath Dadhich and Dr. A. K. Jain whohave worked tirelessly to organize the <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>. I am also thankful to members<str<strong>on</strong>g>of</str<strong>on</strong>g> various committees. I am sure that the deliberati<strong>on</strong> at this <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> willcome out <strong>with</strong> the proposal <str<strong>on</strong>g>of</str<strong>on</strong>g> easy and cheaper ways to augment waterresources having good quality.Lastly I would like to say –Harvesting rain water – Harnessing lifeCatch the water – where it dropsCare for ground water – before it becomes rareDr. N. C. BhandariDirectorPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s


TABLE OF CONTENTSPREFACETheme - I : <strong>Hydrology</strong> and Watershed ManagementHydrological Design Practices in a Changing ClimateN. K. GoelIntegrated Flood ManagementRakesh Kumar, Jagadish P. Patra, Pankaj K. Mani and Manohar AroraDevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> a Flood Forecasting Model Using ANN and Fuzzy LogicAnil Kumar Lohani , A.K. Kar, N.K. Goel and R.D. SinghAn In-Depth Study <strong>on</strong> Two Adjoining Ungauged Sub-Catchments in Semi-Arid Regi<strong>on</strong>(Kumudavathy River Catchment, Karnataka State)S.G. Ramachandraiah, M. Inayathulla, P.S. Nagaraj, R.Druvashree and G. RangannaApplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS Based Distributed SWAT Hydrological Model in Large MountainousCatchments <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti Levu Island, FijiAnkita P. Dadhich and Kazuo NadaokaIntegrated Catchment Management Approach for Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lakes and Reservoirs (A casestudy for Irrigati<strong>on</strong> tanks <str<strong>on</strong>g>of</str<strong>on</strong>g> Anekal taluk, Bangalore Urban district, Karnataka)H. Chandrashekar, K.V. Lokesh, Joythi Roopa and G.RangannaDetermining The Temporal Trend in Annual Stream Flow Series in Wainganga Sub-Basin, IndiaArun Kumar TaxakDevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall-Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Models for Gauged Micro Agricultural Watershed in BhilwaraDistrictRagini Dashora, Yogita Dashora, Upma Sharma, Pratibha Katara and Mangal PatilC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Warming and Wetland Degradati<strong>on</strong> by Sequestering Carb<strong>on</strong> C<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g>Ipomoea ViaD. Banupriya, Tasneem Abbasi and S. A. AbbasiDevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> Regi<strong>on</strong>al Flood Frequency Relati<strong>on</strong>ships for Gauged Catchments <str<strong>on</strong>g>of</str<strong>on</strong>g> UpperIndo-Ganga Plains Subz<strong>on</strong>e 1 (E)Digambar Singh and Rakesh KumarInvestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Larva Infected Water Logged Area in Jaipur cityRavi Kumar Sharma, Sanjay Shekhawat, Rajveer Singh and Rohini Saini19133741454951676971


Land Use / Cover Change Detecti<strong>on</strong>: A Case Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Satluj River Basin Himachal Pradesh,IndiaBiswajit Das, Sanjay K. Jain and Sharad Kumar JainRole <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehri Dam in Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FloodNiraj Agrawal and N.K. GoelTraditi<strong>on</strong>al Water C<strong>on</strong>servati<strong>on</strong> in RajasthanKirti Sharma and Mahesh KumawatA Theoretical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> The Live Storage Capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> Hirakud ReservoirKrishna Kumar Gupta, Joy Gopal Jena, Anil Kumar Kar and Gopal Prasad RoyHydrological Issues in Alaknanda Basin <str<strong>on</strong>g>of</str<strong>on</strong>g> Uttarakhand, North IndiaY.K.Goel and N.K.GoelModeling Techniques to Assess the Hydrological Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate ChangeArun Bhagat, Mangal Patil, Ragini Dashora and Yogita Dashora,A Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Variable Parameter Muskingum MethodsMelvin B.D. ScottTrend Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> Saurashtra Regi<strong>on</strong>, GujaratLitan Kumar Ray and N. K. GoelDifferent Methods for Spatial Interpolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall Data for Operati<strong>on</strong>al <strong>Hydrology</strong> andHydro Logical Modelling at Watershed CaleAashish Tiwari and Lokesh Kumar PrajapatFlood C<strong>on</strong>trol and Ground Water Recharging by Using Street Catchment AreaSandeep MundelMethodology to Integrate GIS-based Techniques for Watershed ManagementMangal A. Patil and Arun D. BhagatDepleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> The Ground Water, its C<strong>on</strong>taminati<strong>on</strong>Rajvir SinghApplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing and GIS in Watershed ManagementBasamma K.A.Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> Urbanizati<strong>on</strong> <strong>on</strong> Water Resources in Jaipur, IndiaNidhi Gupta and Rita Gupta75798185878991939599103111113115


Theme - 2 : Rain Water HarvestingGIS and Remote Sensing Applicati<strong>on</strong>s for Rainwater Harvesting in RajasthanRenu DhupperHarvest the Rainwater Wherever it pours: Every Drop CountsSaif Ullah KhanRole <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing and GIS in Rainwater HarvestingTanvear Ahmad, Sanjay Kumar Jain and P.K.AgarwalModern Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater HarvestingDipti MathurStatus <str<strong>on</strong>g>of</str<strong>on</strong>g> Rain Water Harvesting in Sitapura Industrial AreaAnup Bundela, Bhawani Singh, Deepak Sen, Dinesh Saini, and Kamlesh SainiQuality <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvested from The Ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top <str<strong>on</strong>g>of</str<strong>on</strong>g> A Typical Residential BuildingTabassum Abbasi, Tasneem Abbasi and S. A. AbbasiTraditi<strong>on</strong>al Water C<strong>on</strong>servati<strong>on</strong> Techniques in RajasthanAnamika AgnihotriRain Water Harvesting and Artificial RechargeBhawana Mathur, Priyanka Mathur and Abhishek Kr. ChoudharyRo<str<strong>on</strong>g>of</str<strong>on</strong>g>top Water Harvesting in Rural Areas for Waning Water ScarcityRagini Dashora, Yogita Dashora, Upma Sharma, Pratibha Katara, Mangal Patil and ArunBhagatFresh Water Springs <str<strong>on</strong>g>of</str<strong>on</strong>g> Garhwali Himayas: A Natural Rain Water Harvesting and Operati<strong>on</strong>System for Local HabitatsNeeraj Kumar Bhatnagar and R K NemaCapturing Rainwater A Way to Augment Jaipur’s Water ResourcesBharti Naithani, Surendra Kumar and Usha JainHydrological Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Rain Water HarvestingNeha Jain, Parvind Agarwal and Shivani SharmaStudy <strong>on</strong> Rainwater Harvesting Systems for Multi-storey Residential Buildings (Jaipur)Mahesh Kr. Lamba, Gaurav Khatri and Avakash Caloria119121123125127131133137141149151153155


Rain Water Harvesting for Climatic Change Adaptati<strong>on</strong>s and Energy SavingAnmol Jain and Arpit GuptaRainwater Harvesting: A Lifeline for Human Well – Being and Eco SystemMangal Patil, Arun Bhagat, Yogita Dashora and Ragini DashoraNew C<strong>on</strong>structi<strong>on</strong> C<strong>on</strong>cepts in Green Highways for Rain Water HarvestingSmita Kumari159161175Theme - 3 : Water QualityMultivariate Statistical Analysis for Water quality interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer Tehsil <str<strong>on</strong>g>of</str<strong>on</strong>g> JaipurKartik JainStudy <str<strong>on</strong>g>of</str<strong>on</strong>g> Innovative Biological System for the Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Pulp and Paper Industry WastewaterIzharul Haq FarooqiA Collective C<strong>on</strong>scientiousness for Water C<strong>on</strong>servati<strong>on</strong> and Safe WaterBina RaniUse <str<strong>on</strong>g>of</str<strong>on</strong>g> The Amphibious Weed Ipomoea (Ipomoea Carnea) in Generating NanoparticlesS<strong>on</strong>am Priyadarshani, S. U. Ganae, Tasneem Abbasi and S. A. AbbasiNew Generati<strong>on</strong> Sorbents for the Removal <str<strong>on</strong>g>of</str<strong>on</strong>g> Heavy Metal I<strong>on</strong> from Waste WaterShivani Goyal and Dinesh KumarEc<strong>on</strong>omic Effluent Treatment Methods for Dyeing and Printing Industry.Sunil SharmaC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Amphibious Weed Ipomoea (Ipomoea Carnea) by Utilizing it for the Extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Volatile Fatty Acids as Energy PrecursorsM. Rafiq Kumar, S. M. Tauseef, Tasneem Abbasi and S. A. AbbasiCorrelati<strong>on</strong> and Regressi<strong>on</strong> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Groundwater Quality Data <str<strong>on</strong>g>of</str<strong>on</strong>g> T<strong>on</strong>k District, Rajasthan,IndiaSharma Pradeep Kumar, Vijay Ritu and Punia M PAssessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Macrophyte Eichhornia Crassipes (Water Hyacinth) as aBioagent for Rapid Wastewater Treatment in an Embodiment <str<strong>on</strong>g>of</str<strong>on</strong>g> SHEFROL ® BioreactorRanjan Rahi, Gunaseelan S., Tasneem Abbasi and S. A. AbbasiWater Quality Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Jodhpur City, RajasthanAnkita P. Dadhich, Atishaya Jain, Abhishek M. Mathur, Arvind Swami, Chandra PrakashPareek, Deepak Sachdeva, and Kishan kumar Verma177181185189191193199201207209


Wastewater Treatment by the Use <str<strong>on</strong>g>of</str<strong>on</strong>g> Advanced Oxidati<strong>on</strong> ProcessesAmarpreet Kaur HuraWaste Water Treatment using Clay Soil Filter for Irrigati<strong>on</strong>Khushi Ram Meena, Mastram Meena, Mayank Gupta and Jitendra KumawatSHEFROL ® : A New Bioreactor for Clean-Green and Rapid Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Sewage and otherBiodegradable WastewaterTasneem Abbasi, U. Priyanka and S.A. AbbasiPhysico-Chemical and Microbial Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Water <str<strong>on</strong>g>of</str<strong>on</strong>g> various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> RajasthanrevisitedRakesh Duggal, Susmita Sharma, Anurika Mehta and Nupur JainA Rapid and Ultrasensitive Sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Heavy Metal I<strong>on</strong> from Waste WaterPriyanka Joshi and Dinesh KumarIndustrializati<strong>on</strong> and Urbanizati<strong>on</strong> Impacts <strong>on</strong> the Aquatic Ecosystem: Problem and Preventi<strong>on</strong>Jakir Hussain, Rajesh Kumar and Iqbal HusainAdsorptive Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluoride from Water Using Fe-Al-Mg Hydroxide as AdsorbentAnkita Dhill<strong>on</strong> and Dinesh kumarC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Weed Salvinia Through VermicompostingChanngam Khamrang, S. Gajalakshmi and S.A. AbbasiModern Techniques for Waste Water ManagementManisha Sharma, Chetna Gomber and Shahnaz KhanSalvinia (Salvinia Molesta, Mitchell): A Promising Bioagent for Very Rapid Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g>Domestic Wastewater in the SHEFROL ® BioreactorDeepak Kumar, M. Ashraf Bhat, Tasneem Abbasi and S.A. AbbasiAssement <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Drinking Water in Parts <str<strong>on</strong>g>of</str<strong>on</strong>g> JaipurAsha Gurjar, Kshitij Bhargava, Deependra Bagra and Hamid KhanDetecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia Coli (E. Coli) Bacteria by Using Different NanoparticlesJ. Boken, S. Dalela and D. KumarA New Index for Assessing the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Water in Puducherry Based <strong>on</strong> Fuzzy LogicTabassum--Abbasi, S. M. Tauseef, Tasneem Abbasi and S.A. AbbasiPhysico-Chemical and Microbial Studies <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Water <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan Regi<strong>on</strong> and Comparis<strong>on</strong><strong>with</strong> oher Regi<strong>on</strong>sNupur Jain, Anurika Mehta, Susmita Sharma and Rakesh Duggal213215219221223225227229231233235237239241


Wastewater Treatment in Rural Areas: Old Problems, New Soluti<strong>on</strong>sChirag Jain and Deepak MalavBi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms- Treatment for Chemical C<strong>on</strong>taminants in Rain WaterAbha Mathur and Saurabh MathurAnalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Amber Fort and JalmahalAbhishek Chouhan and Akshay MalikHydro Chemical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the Surface Water <str<strong>on</strong>g>of</str<strong>on</strong>g> Aravali Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Amber Regi<strong>on</strong> Jaipur,RajasthanImtiyaz Ali and Ankur GautamM<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Quality in Mining Areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Makrana Tehsil, Nagaur DistrictAnkita P. Dadhich, Mahipal, Ankit Malik, Balveer Manda, Manidutt sharmaGround Water Quality Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur CityAnkita P. Dadhich, Sumit Kumar, Ravi Kumar Singh, Rashmi Lata, Shad Ahmad, andSukul KumarStudies <strong>on</strong> Water Polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Textile Industries by Photo Catalytic ProcessNeelakshi, Himakshi, Shiv Ram and R.C.Meena243247249251255259263Authors’ Index


Theme – I<strong>Hydrology</strong> and Watershed Management


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Hydrological Design Practices in aChanging ClimateINTRODUCTION AND THE NEEDN. K. GoelBharat Singh Chair Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor for Water ResourcesDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>,Indian institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology RoorkeeRoorkee – 247667Email: goelhy@gmail.comHydrological estimates are required for the design and operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various hydraulicstructures such as dams, weirs, barrages, city drains etc. and for various types <str<strong>on</strong>g>of</str<strong>on</strong>g> powergenerati<strong>on</strong> schemes ( hydro- power, thermal power, nuclear power, wind mills etc.). Over theyears hydrological design procedures for a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s have been developed theworld over. The design practices assume that the hydro-meteorological data such asprecipitati<strong>on</strong> (rainfall as well as snowfall), temperatures (minimum, maximum, average etc.),wind speeds, and stream flows (minimum, maximum, average etc.) are stati<strong>on</strong>ary.Stati<strong>on</strong>arity is a fundamental assumpti<strong>on</strong> and c<strong>on</strong>cept that permeates all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> trainingand practice in water-resource engineering. However, there are many physical processes orfactors that could lead to n<strong>on</strong>- stati<strong>on</strong>arity in the hydro-meteorological data. Humandisturbances in the catchment area, such as urbanizati<strong>on</strong>, channel modificati<strong>on</strong>s, drainageworks, and land-cover and land-use changes could be expected to lead to changes in the meanand variance <str<strong>on</strong>g>of</str<strong>on</strong>g> the flood series, flood risk, water supply, and water quality. The substantialanthropogenic changes in Earth‘s climate have been reported to be altering the means andextremes <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>, evapo-transpirati<strong>on</strong>, and rates <str<strong>on</strong>g>of</str<strong>on</strong>g> discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> rivers(Intergovernmental Panel <strong>on</strong> Climate Change (IPCC), 2007). Many studies have noted theimpacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> hydrological processes and further changes are projected (fordetails please see IPCC, 2007; Fowler et al, 2007 and references therein). Current watersupply infrastructure has been designed assuming that the past is representative <str<strong>on</strong>g>of</str<strong>on</strong>g> the future.The Intergovernmental Panel <strong>on</strong> Climate Change (IPCC) states that ―Climate changechallenges the traditi<strong>on</strong>al assumpti<strong>on</strong> that past hydrological experience provides a goodguide to future c<strong>on</strong>diti<strong>on</strong>s‖ (Bates et al., 2008). Thus, existing hydrological designpractices need review and necessary modificati<strong>on</strong>s are required to be incorporated, to1


account for the climate change and other n<strong>on</strong>-stati<strong>on</strong>ary impacts <strong>on</strong> hydrologicalprocesses.Most hydrological issues including estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental flows, predicti<strong>on</strong>s inungauged basins, ground water resources estimati<strong>on</strong>, urban flood modeling, operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>single and multi- purpose multi- reservoirs, envir<strong>on</strong>mental planning, etc. are complex issueseven under stati<strong>on</strong>ary c<strong>on</strong>diti<strong>on</strong>s. However, these issues become even more complex underclimate and land use change.THE ISSUESThere are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> unresolved issues in the area <str<strong>on</strong>g>of</str<strong>on</strong>g> climate and land use change,particularly <strong>with</strong> reference to India, where the hydro-meteorological data network is verysparse. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the basins are either ungauged or are having data <str<strong>on</strong>g>of</str<strong>on</strong>g> very limited length. Thisbecomes extremely important <strong>with</strong> reference to Himalayan eco-systems, where the waterresources and hydro-power potential is in abundance but the hydro-meteorological dataavailability is almost NIL in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> hydro-meteorological stati<strong>on</strong>s, and lengthand quality <str<strong>on</strong>g>of</str<strong>on</strong>g> streamflow data. DST‘s initiative ‗UPROBE‘ which began in 2003 was awelcome step in this directi<strong>on</strong>. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the unresolved issues, which are required to beaddressed, are listed below al<strong>on</strong>g <strong>with</strong> the broad framework <str<strong>on</strong>g>of</str<strong>on</strong>g> the possible approaches al<strong>on</strong>gwhich the attempts will be made.1. Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>- stati<strong>on</strong>arity in hydro- meteorological records: Whether thehydro-meteorological data sets pertaining to India (or selected basins and parts <str<strong>on</strong>g>of</str<strong>on</strong>g>India depending up<strong>on</strong> the level <str<strong>on</strong>g>of</str<strong>on</strong>g> funding and instituti<strong>on</strong>al arrangements) arestati<strong>on</strong>ary or not, is a questi<strong>on</strong> that needs to be carefully assessed. This would requiretesting <str<strong>on</strong>g>of</str<strong>on</strong>g> the power and efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g> existing statistical tests and development <str<strong>on</strong>g>of</str<strong>on</strong>g> newtests <strong>on</strong> synthetic data sets followed by applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> those new tests <strong>on</strong> actual datasets. Since large data sets will be required to be analysed, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> asecured data base management system and the user friendly s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware will be required.As l<strong>on</strong>g time series data at point locati<strong>on</strong>s are limited in length and highly variable innature, procedures for pooling datasets which effectively replaces space for time willbe used and new regi<strong>on</strong>al assessments will be made.In the Indian c<strong>on</strong>text, numerous trend detecti<strong>on</strong> studies were initiated by IITMgroup in early 1980‘s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies in recent time are carried out by Arora etal., (2005; 2006; 2007); Basistha et al. (2007; 2008; 2009); and Singh et al. (2006). A


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)good review <str<strong>on</strong>g>of</str<strong>on</strong>g> the studies has been given by Arora, (2006); and Basistha, (2009).These efforts need to be further strengthened by incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more recent findingsfrom studies elsewhere, <strong>with</strong>in the Indian c<strong>on</strong>text. For example, many trend studiesare implemented incorrectly because they have ignored the important impact <str<strong>on</strong>g>of</str<strong>on</strong>g> bothspatial and temporal correlati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydro-meteorological records. Recent research<strong>on</strong> this topic are required to be reviewed and incorporated into the futurecomprehensive studies <strong>with</strong>in the Indian c<strong>on</strong>text (see for example Douglas et al,2000).2. Investigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>- stati<strong>on</strong>arity : If some <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydro-meteorologicaldata sets are found to be n<strong>on</strong>-stati<strong>on</strong>ary, the type and the reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>- stati<strong>on</strong>arityin such data sets are required to be investigated. Climate change may be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> thereas<strong>on</strong>s but there could be number <str<strong>on</strong>g>of</str<strong>on</strong>g> other reas<strong>on</strong>s such as change in the exposurec<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the equipment, change <str<strong>on</strong>g>of</str<strong>on</strong>g> instrument, change in observati<strong>on</strong> practices,urbanizati<strong>on</strong>, deforestati<strong>on</strong>, changes in land use patterns, change in irrigati<strong>on</strong> practice,inadequate length <str<strong>on</strong>g>of</str<strong>on</strong>g> data, and due to impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> the operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water infrastructuresuch as dams, weirs and canals. . Statistical attributi<strong>on</strong> techniques that identify thecauses <str<strong>on</strong>g>of</str<strong>on</strong>g> the noted changes are required to be developed and used.3. What to do if data sets are n<strong>on</strong>- stati<strong>on</strong>ary?: If a series does not pass the prescribedhypothesis tests for stati<strong>on</strong>arity, little guidance is now available as to how to proceed.For example, if there is trend or persistence in the annual flood series, then how does<strong>on</strong>e estimate the design flood quantiles in flood frequency analysis or in multivariatestochastic modeling <str<strong>on</strong>g>of</str<strong>on</strong>g> flood flows proposed by Goel et al. (1998). At present thereare few soluti<strong>on</strong>s available for such situati<strong>on</strong>s. Some efforts in the area were initiatedby Burn and Goel (2001), <strong>with</strong> a focus <strong>on</strong> rising trends in annual flood series and l<strong>on</strong>gterm persistence. C<strong>on</strong>sidering the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> the issue, recently a Workshop <strong>on</strong>‗N<strong>on</strong>-stati<strong>on</strong>arity, Hydrologic Frequency Analysis, and Water Management‘ wasorganized in Boulder, Colorado, USA, to present and discuss possible operati<strong>on</strong>alalternatives to the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong>arity in hydrologic frequency analysis (Olsenet. al, 2010). It is expected to provide a good base for further work in the area.Similarly, the general expectati<strong>on</strong> is that the intensity and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g>extreme events (floods as well as droughts) have changed in the recent past. Giventhat this is the case, then should the hydrological estimates (design floods and designdischarges for the projects, and the operati<strong>on</strong> policies for the reservoirs) be revised? If3


yes, then how? And if no, then why? A recent paper by a group <str<strong>on</strong>g>of</str<strong>on</strong>g> prominentresearchers (Milly et al., 2008) aptly sums up the dilemma that faces water plannersand managers today.The world over, efforts are being made to develop the design flood estimati<strong>on</strong>methods under n<strong>on</strong>-stati<strong>on</strong>ary c<strong>on</strong>diti<strong>on</strong>s. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the prominent <strong>on</strong>es are Obeysekeraand Salas (2013); Cooley(2013); Katz (2013); Lopez and Frances (2013); and Vogelet al. (2011).4. Directi<strong>on</strong>s in which soluti<strong>on</strong>s have been tried: The soluti<strong>on</strong>s for point 3 have beentried in the past through generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> future scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall and temperature at abasin level using down-scaling <str<strong>on</strong>g>of</str<strong>on</strong>g> GCM outputs and catchment modeling by a number<str<strong>on</strong>g>of</str<strong>on</strong>g> researchers. However, in India very limited work has been reported in literatureand such studies are required to be undertaken for large number <str<strong>on</strong>g>of</str<strong>on</strong>g> basins. Theissues related to the type <str<strong>on</strong>g>of</str<strong>on</strong>g> GCM output to be adopted, type <str<strong>on</strong>g>of</str<strong>on</strong>g> downscalingtechnique to be used etc. need to be investigated in great detail. Additi<strong>on</strong>ally, theimportant issue <str<strong>on</strong>g>of</str<strong>on</strong>g> bias correcti<strong>on</strong> in GCM simulati<strong>on</strong>s needs careful assessment. Usewill need to be made <str<strong>on</strong>g>of</str<strong>on</strong>g> sophisticated statistical and dynamical (and mixed)downscaling techniques that take into account any biases that are apparent in modelsimulati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the current climate (Folwer et al., 2007; Johns<strong>on</strong> and Sharma, 2009;Mehrotra and Sharma 2010). These approaches can also be generalized usinganalytical approaches analogous to the use <str<strong>on</strong>g>of</str<strong>on</strong>g> derived flood frequency distributi<strong>on</strong>sintroduced by Kurothe et al., 1997; 2001 and Goel, et al., 2000 and others.5. Quality issues: In the past, few studies have assessed the potential effect <str<strong>on</strong>g>of</str<strong>on</strong>g> climatechange <strong>on</strong> water quality and most <str<strong>on</strong>g>of</str<strong>on</strong>g> them refer to developed countries and do notaddress notable differences in water quality problems between developed anddeveloping countries (Jimennez, 2003). It is clear that an increase in watertemperature alters the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> some key chemical processes in waterbodies. Also, changes in intense precipitati<strong>on</strong> events impact the rate at whichmaterials are flushed into rivers and groundwater, and associated changes in flowvolumes will also affect diluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> loads. Key c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> declining waterquality due to climate change include increasing water <strong>with</strong>drawals from low-qualitysources; greater pollutant loads from diffuse sources due to heavy precipitati<strong>on</strong> (viahigher run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and infiltrati<strong>on</strong>); water infrastructure malfuncti<strong>on</strong>ing during floods; andoverloading the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> water and wastewater treatment plants during extreme


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)rainfall. (Kundzewicz et al., 2008). In Indian c<strong>on</strong>diti<strong>on</strong>s, the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality isvery pertinent, because <str<strong>on</strong>g>of</str<strong>on</strong>g> almost NO or very limited availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water qualitydata.6. Other issues: The issue <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>- stati<strong>on</strong>arity/ climate change in reservoir operati<strong>on</strong>,ground water resource estimati<strong>on</strong>, hydro-power studies, geology <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong>sparticularlyHimalayan regi<strong>on</strong>, estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental flows, envir<strong>on</strong>mental andecological planning, is <str<strong>on</strong>g>of</str<strong>on</strong>g> prime importance from climate change mitigati<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g>view. Similarly the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> agriculture produce and <strong>on</strong> livelihood<str<strong>on</strong>g>of</str<strong>on</strong>g> marginalized communities is very important from adaptati<strong>on</strong> point <str<strong>on</strong>g>of</str<strong>on</strong>g> view. Thisbecomes extremely important <strong>with</strong> reference to Himalayan eco-systems, where thewater resources and hydro-power potential is in abundance but the hydrometeorologicaldata availability is almost NIL in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrometeorologicalstati<strong>on</strong>s, and length and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> data. The incorporati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> currentclimate variability into water-related management would make adaptati<strong>on</strong> to futureclimate change easier. Uncertainty and error analysis will play a major role in thehandling <str<strong>on</strong>g>of</str<strong>on</strong>g> these issues. Uncertainty has been reported to have two implicati<strong>on</strong>s foradaptati<strong>on</strong> practices. First, adaptati<strong>on</strong> procedures need to be developed which do notrely <strong>on</strong> precise projecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> changes in river discharge, groundwater, etc. Sec<strong>on</strong>d,based <strong>on</strong> the studies d<strong>on</strong>e so far, it is difficult to assess water-related c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g>climate policies and emissi<strong>on</strong> pathways <strong>with</strong> a high degree <str<strong>on</strong>g>of</str<strong>on</strong>g> credibility and/oraccuracy. (Kundzewicz et al., 2008). These issues are required to be addressed.References :Arora, M.,(2006), ‘Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> surface hydrological estimates ‗, Ph.D.dissertati<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, IIT Roorkee.Arora, M., Goel, N.K. and Singh, P. (2005),‘ Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> temperature trends over India‘,Hydrological Sciences journal, Vol. 50/1, pp.81-93.Arora,M., Singh, P., Goel, N.K. and Singh, R.D.( 2006),‘ Spatial Distributi<strong>on</strong> and Seas<strong>on</strong>alVariability <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall in a Mountainous Basin in the Himalayan Regi<strong>on</strong>‘. WaterResources management, Vol. 20/4, pp. 489-508.Arora, M., Singh, P., Goel, N.K. and Singh, R.D.( 2007),‘ Climate variability influences <strong>on</strong>hydrological resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> a large Himalayan basin‘, Water Resources Management,Vo. 22/10, pp. 1461-1475.5


Basistha, A. (2009), ‗Climate change studies: spatio-temporal studies over part <str<strong>on</strong>g>of</str<strong>on</strong>g> India‗,Ph.D. dissertati<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, IIT Roorkee.Basistha, A., Goel, N.K., Arya, D.S. and Gangwar, S.K. (2007), ‗Spatial Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> Trends inIndian Sub-divisi<strong>on</strong>al Rainfall‘, special issue <str<strong>on</strong>g>of</str<strong>on</strong>g> Jal Vigyan Samiksha <strong>on</strong> 'climatechange'.Basistha, A., Arya, D.S., and Goel, N.K. (2008), ‗Spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall in IndianHimalayas- a case study <str<strong>on</strong>g>of</str<strong>on</strong>g> uttarakhand regi<strong>on</strong>‘, Water Resources Management, Vol.22/10, pp. 1325-1346.Basistha, A., Arya, D.S., and Goel, N.K. (2009), ‗Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> historical changes in rainfall inthe Indian Himalayas‘, Internati<strong>on</strong>al journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatology, Doi:10,1002/joc. 1706;Vo. 29/4, pp. 555- 572.Bates, B.C., Kundzewicz, Z.W., Wu, S., and Palutik<str<strong>on</strong>g>of</str<strong>on</strong>g>, J.P., eds., 2008, Climate change andwater: Technical Paper <str<strong>on</strong>g>of</str<strong>on</strong>g> the Intergovernmental Panel <strong>on</strong> Climate Change, IPCCSecretariat, Geneva, Switzerland.Burn, D.H. and Goel, N.K. (2001),' Flood frequency analysis for Red River at Winnipeg',Canadian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Vol. 28, pp. 355-362.Cooley, D. (2013). ―Return periods and return levels under climate change.‖ Chapter 4 inExtremes in a Changing Climate: Detecti<strong>on</strong>, Analysis and Uncertainty, A.AghaKouchak et al. eds., Springer Science + Business mediaDouglas, E.M., R.M. Vogel, and C.N. Kroll, Trends in Flood and Low Flows in the UnitedStates, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, (240)1-2, pp. 90-105, 2000.Goel, N.K. and Burn, D.H. and Jigajinni, R.B. (2010), ' Frequency analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a n<strong>on</strong>stati<strong>on</strong>aryflood series.', (theme paper under preparati<strong>on</strong>)Goel, N.K., Seth, S.M. and Chandra Satish (1998), 'Multivariate modelling <str<strong>on</strong>g>of</str<strong>on</strong>g> flood flows',ASCE, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydraulic Engineering, Vol. 124/2, pp. 146-155.Goel, N.K., Kurothe, R.S., Mathur, B.S. and Vogel, R.M. (2000),' A derived flood frequencydistributi<strong>on</strong> for correlated rainfall intensity and durati<strong>on</strong>', Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Vol.228, pp. 56-67.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Fowler, H.J., Blenkinsop, S. and Tebaldi, C. (2007), Linking climate change modelling toimpacts studies: recent advances in downscaling techniques for hydrologicalmodelling. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climatology, 27(12), 1547-1578Intergovernmental Panel <strong>on</strong> Climate Change (IPCC), in Climate Change 2007: The PhysicalScience Basis, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group (WG) 1 to the Fourth AssessmentReport <str<strong>on</strong>g>of</str<strong>on</strong>g> the IPCC (AR4), S. Solom<strong>on</strong> et al., Eds. (Cambridge Univ. Press, NewYork, 2007), pp. 1–18; www.ipcc.ch/press/index.htm.Jiménez, B. (2003) Health risks in aquifer recharge <strong>with</strong> recycled water. In: State <str<strong>on</strong>g>of</str<strong>on</strong>g> the ArtReport—Health Risks in Aquifer Recharge Using Reclaimed Water (ed. by R.Aertgeerts & A. Angelakis), 16–122. WHO Geneva and WHO Regi<strong>on</strong>al Office forEurope, Copenhagen, Denmark. WHO/SDE/WSH/03.08.Johns<strong>on</strong>, F. and Sharma, A. (2009), Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> GCM Skill in Predicting VariablesRelevant for Hydroclimatological Assessments. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate, 22(16): 4373-4382.Katz, R. W. (2013). ―Statistical Methods for N<strong>on</strong>stati<strong>on</strong>ary Extremes.‖ Chapter 2 in Extremesin a Changing Climate: Detecti<strong>on</strong>, Analysis and Uncertainty, A. AghaKouchak et al.eds., Springer Science + Business media Dordrecht.Kundzewicz, Z.W., Mata, L.J. , Arnell, N.W. , Doll,L. P. , Jimenez, B. , Miller,, K. , Oki, T. ,Şen, Z. and Shiklomanov, I.(2008) 'The implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> projected climate change forfreshwater resources and their management', Hydrological Sciences Journal, 53: 1, 3— 10Kurothe, R.S., Goel, N.K. and Mathur, B.S. (1997), 'Derived flood frequency Distributi<strong>on</strong> fornegatively correlated rainfall intensity and durati<strong>on</strong>', Water Resources Research, Vol.33, pp. 2103-2107.Kurothe, R.S., Goel, N.K. and Mathur, B.S. (2001),' Derivati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> curve number andkinematic wave based flood frequency distributi<strong>on</strong>', Hydrological Sciences Journal,Vol. 46(4), pp. 571-584.Lopez, J. and Frances, F. (2013). ―N<strong>on</strong>-stati<strong>on</strong>ary flood frequency analysis in c<strong>on</strong>tinentalSpanish rivers, using climate and reservoir indices as external covariates‖, Hydrol.Earth Syst. Sc., 10, 3103-3142.7


Mehrotra R., Sharma A. (2010) Development and Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a Multisite RainfallStochastic Downscaling Framework for Climate Change Impact Assessment. WaterResources Research. VOL. 46, W07526, 17 PP., doi:10.1029/2009WR008423.Milly, P.C.D. et al., 2008. Climate change - Stati<strong>on</strong>arity is dead: Whither water management?Science, 319(5863): 573-574.Olsen, J. Rolf, Julie Kiang and Reagan Waskom, (editors). 2010. Workshop <strong>on</strong> N<strong>on</strong>stati<strong>on</strong>arity,Hydrologic Frequency Analysis, and Water Management. ColoradoWater Institute Informati<strong>on</strong> Series No. 109. www.cwi.colostate.eduSingh, P., Arora, M. and Goel, N.K. (2006),‘Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> aglaciarized Himalayan basin‘, Hydrological Processes Journal, vol. 20.Vogel, R. M., Yaindl, C., and Walter, M. (2011). ―N<strong>on</strong>stati<strong>on</strong>arity: flood magnificati<strong>on</strong> andrecurrence reducti<strong>on</strong> factors in the United States.‖ J. AWRA47(3), 464-474.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Integrated Flood ManagementByRakesh Kumar, Jagadish P. Patra, Pankaj K. Mani and Manohar AroraScientists<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, RoorkeeFlood is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most damage causing natural disasters in the world. Every year floodsexert a heavy toll <strong>on</strong> human life and property in many parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world. Flooding is not justc<strong>on</strong>fined to certain regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the world but is a globally pervasive hazard. India experiences<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the highest frequencies <str<strong>on</strong>g>of</str<strong>on</strong>g> flood and the flood pr<strong>on</strong>e area in India has been increasingsignificantly. The annual average area affected by floods in India is 7.563 Mha. Thisobservati<strong>on</strong> is based <strong>on</strong> flood data for the period 1953 to 2000, <strong>with</strong> variability ranging from1.46 Mha in 1965 to 17.5 Mha in 1978. The average annual direct damage due to flood isestimated to be US$ 240 milli<strong>on</strong> (Ec<strong>on</strong>omic and Social Commissi<strong>on</strong> for Asia and the Pacific ,1995). The draft <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Water Policy <str<strong>on</strong>g>of</str<strong>on</strong>g> our country (2012) states that protecting all areaspr<strong>on</strong>e to floods and droughts may not be practicable; hence, methods for coping <strong>with</strong> floodsand droughts have to be encouraged. Frequency based flood inundati<strong>on</strong> maps should beprepared to evolve coping strategies, including preparedness to supply safe water during andimmediately after flood events. Communities need to be involved in preparing an acti<strong>on</strong> planfor dealing <strong>with</strong> the flood/drought situati<strong>on</strong>s. The <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Water Missi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g>Acti<strong>on</strong> Plan <strong>on</strong> Climate Change (NAPCC) stress a need to develop flood managementstartigies for the country and for these to include plans for community based adapti<strong>on</strong>.For mitigati<strong>on</strong> and management <str<strong>on</strong>g>of</str<strong>on</strong>g> flood hazard, two types <str<strong>on</strong>g>of</str<strong>on</strong>g> measures, i.e. structural andn<strong>on</strong>-structural measures are generally adopted. While the structural measures c<strong>on</strong>tinue to benecessary, increased emphasis should be laid <strong>on</strong> n<strong>on</strong>-structural measures, which allowflooding, but ensure that damages are minimized. Traditi<strong>on</strong>ally, c<strong>on</strong>trolling floods has alwaysbeen the main focus <str<strong>on</strong>g>of</str<strong>on</strong>g> flood management, <strong>with</strong> the emphasis <strong>on</strong> draining flood water asquickly as possible, or storing it temporarily, and separating the river from the populati<strong>on</strong>through structural measures such as dams and levees. Emergency management as a necessaryresp<strong>on</strong>se to the floods, as well as recovery measures, have been put as main challenges whichneed to be explored and implemented.9


The Integrated Flood Management was first introduced in a c<strong>on</strong>cept paper in 2003 by WorldMeterological Organisati<strong>on</strong> (WMO). The ‗IFM C<strong>on</strong>cept Paper‘ was revised in 2009 inc<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> emerging issues, such as risk management, urbanizati<strong>on</strong>, climate variabilityand change, and adaptive management. The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrated Flood Management has ledto a paradigm shift: absolute protecti<strong>on</strong> from floods is a myth, and we should aim atmaximizing net benefits from the use <str<strong>on</strong>g>of</str<strong>on</strong>g> flood plains, rather than trying to fully c<strong>on</strong>trolfloods. A proactive approach towards the management <str<strong>on</strong>g>of</str<strong>on</strong>g> floods over a traditi<strong>on</strong>ally reactiveapproach is rapidly gaining recogniti<strong>on</strong> am<strong>on</strong>g flood managers. The proactive approach doesnot treat floods <strong>on</strong>ly as an emergency or an engineering problem, but as an issue <strong>with</strong> social,ec<strong>on</strong>omic, envir<strong>on</strong>mental legal and instituti<strong>on</strong>al aspects. The proactive approach is notlimited to a post-event reacti<strong>on</strong>, but includes preparedness, including flood risk awarenessand resp<strong>on</strong>se measures to flood management at different stakeholders‘ levels.Integrated Flood Management (IFM) integrates land and water resources development in ariver basin, <strong>with</strong>in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Integrated Water Resources Management, <strong>with</strong> a view tomaximizing the efficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> floodplains and to minimizing loss <str<strong>on</strong>g>of</str<strong>on</strong>g> life and property.Integrated Flood Management, like Integrated Water Resources Management, shouldencourage the participati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> users, planners and policymakers at all levels. The approachshould be open, transparent, inclusive and communicative; should require the decentralizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> decisi<strong>on</strong>-making; and should include public c<strong>on</strong>sultati<strong>on</strong> and the involvement <str<strong>on</strong>g>of</str<strong>on</strong>g>stakeholders in planning and implementati<strong>on</strong>. A holistic approach to emergency planningand management is preferable to a hazard-specific approach, and IFM should be part <str<strong>on</strong>g>of</str<strong>on</strong>g> awider risk management system. This approach fosters structured informati<strong>on</strong> exchange andformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> effective organizati<strong>on</strong>al relati<strong>on</strong>ships. In integrated flood management planning,achieving the comm<strong>on</strong> goal <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainable development requires that the decisi<strong>on</strong>-makingprocesses <str<strong>on</strong>g>of</str<strong>on</strong>g> any number <str<strong>on</strong>g>of</str<strong>on</strong>g> separate development authorities be coordinated. Every decisi<strong>on</strong>that influences the hydrological resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin must take into account every othersimilar decisi<strong>on</strong> (WMO, 2009). An Integrated Flood Management plan should address the sixkey elements viz. (i) manage the water cycle as a whole; (ii) integrate land and watermanagement, (iii) manage risk and uncertainty; (iv) adopt a best mix <str<strong>on</strong>g>of</str<strong>on</strong>g> strategies; (v) ensurea participatory approach; and (vi) adopt integrated hazard management approaches thatfollow logically for managing floods in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> an IWRM approach.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)In this paper, probabilistic and deterministic approaches <str<strong>on</strong>g>of</str<strong>on</strong>g> flood estimati<strong>on</strong> for taking upstructural and n<strong>on</strong>-structural measures <str<strong>on</strong>g>of</str<strong>on</strong>g> flood management are described. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> thestudies, which are pre-requisite for IFM such as preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> digital elevati<strong>on</strong> model fromthe levels and c<strong>on</strong>tours and extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> terrain from Cartosat-1 data; water availabilityanalyses and development <str<strong>on</strong>g>of</str<strong>on</strong>g> flow durati<strong>on</strong> curves; development <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al flood frequencyrelati<strong>on</strong>ships for gauged and ungauged catchments using L-moments approach; estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>Probable Maximum Flood (PMF) and Standard Project Flood (SPF); dam beak floodinundati<strong>on</strong> modeling; preparati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flood hazard maps showing flood inundati<strong>on</strong> and flooddepth for various returns periods for a river reach using coupled 1-D and 2-D hydrodynamicflow modelling; assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> impact <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> design floods under hypotheticalscenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change and estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> safe grade elevati<strong>on</strong> for the design flood forimportant establishments are presented. Further, scenario analyses for inundati<strong>on</strong> at theproject site simulated by coupled 1-D and 2-D hydrodynamic modelling c<strong>on</strong>sidering theflooding due to upstream catchments floods, back water effect <str<strong>on</strong>g>of</str<strong>on</strong>g> a dam, local site rainfall andfailure <str<strong>on</strong>g>of</str<strong>on</strong>g> upstream dams has been explained.11


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Development <str<strong>on</strong>g>of</str<strong>on</strong>g> a Flood Forecasting ModelUsing ANN and Fuzzy LogicAnil Kumar LohaniScientist F, <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Roorkee-247667A.K. KarAssistant Engineer,Water Resources Department, OdisaN.K. GoelPr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor,Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Roorkee-247667R.D. SinghDirector, <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Roorkee-247667Floods are am<strong>on</strong>g <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most destructive acts <str<strong>on</strong>g>of</str<strong>on</strong>g> nature. Worldwide flood damages toagriculture, house and public utilities amount to enormous amount in additi<strong>on</strong> to loss <str<strong>on</strong>g>of</str<strong>on</strong>g>precious human and cattle lives. They present risks which can be high especially if they areignored or proper precauti<strong>on</strong>s are not taken. Though human influence nature more and morein the present world, nature is still able to surprises us through these hazards.Flood forecasting is used to provide warning to people residing in flood plains and canalleviate a lot <str<strong>on</strong>g>of</str<strong>on</strong>g> distress and damage. Flood forecasting is an important n<strong>on</strong> structuralsoluti<strong>on</strong> for reducing flood damages and is used to provide warning to people residing inflood plains. C<strong>on</strong>venti<strong>on</strong>al methods <str<strong>on</strong>g>of</str<strong>on</strong>g> flood forecasting are based <strong>on</strong> either simple empiricalblack box which do not try to mimic the physical processes involved or uses complex modelswhich aim to recreate the physical processes and the c<strong>on</strong>cept about the behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> a basinin complex mathematical expressi<strong>on</strong>s (Lohani, 2005). Recently there has been a growinginterest in s<str<strong>on</strong>g>of</str<strong>on</strong>g>t computing techniques viz. Artificial neural networks (ANN) and fuzzy logic.These models are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> adopting the n<strong>on</strong>-linear relati<strong>on</strong>ship between rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>fas compared to c<strong>on</strong>venti<strong>on</strong>al techniques, which assume a linear relati<strong>on</strong>ship between rainfalland run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. In this paper s<str<strong>on</strong>g>of</str<strong>on</strong>g>t computing based techniques for flood forecasting have beendiscussed. Further, ANN and Fuzzy inference system based techniques have been attemptedin Mahanadi river system to dem<strong>on</strong>strate their capabilities in flood forecasting modeling.INTRODUCTIONFlood is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most comm<strong>on</strong> hydrologic extremes which are frequently experienced byour country. The flood problem faced by India is unique in several respects due to variedclimate and rainfall patterns in different parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the country. Generally it is found that when13


part <str<strong>on</strong>g>of</str<strong>on</strong>g> the country is experiencing floods while another is in the grip <str<strong>on</strong>g>of</str<strong>on</strong>g> a severe drought.Excessive run<str<strong>on</strong>g>of</str<strong>on</strong>g>f resulting due to heavy rain <str<strong>on</strong>g>of</str<strong>on</strong>g> high intensity results in the flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> theriver flood plains. However, the heavy and intense rainfall is not <strong>on</strong>ly factor c<strong>on</strong>tributing thefloods. The floods may be caused due to many other factors which include failure <str<strong>on</strong>g>of</str<strong>on</strong>g> the floodc<strong>on</strong>trol structures, drainage c<strong>on</strong>gesti<strong>on</strong>s, sudden release <str<strong>on</strong>g>of</str<strong>on</strong>g> water due to removal <str<strong>on</strong>g>of</str<strong>on</strong>g> ice jamsor land slides in the mountainous streams and coastal flooding due to high tides etc. Inspite <str<strong>on</strong>g>of</str<strong>on</strong>g>various short term and l<strong>on</strong>g term measures adopted to prevent and mitigate the c<strong>on</strong>sequences<str<strong>on</strong>g>of</str<strong>on</strong>g> floods, there has been c<strong>on</strong>siderable damages and losses due to greater interference by manin natural processes and encroachment <str<strong>on</strong>g>of</str<strong>on</strong>g> flood plain z<strong>on</strong>es and even riverbeds by humanbeings.During the last decade the artificial neural networks and fuzzy logic techniques have becomepopular in hydrological modeling, particularly in those applicati<strong>on</strong>s in which thedeterministic approach presents serious drawbacks, due to the noisy or random nature <str<strong>on</strong>g>of</str<strong>on</strong>g> thedata. The research in Artificial Neural Networks (ANNs) started <strong>with</strong> attempts to model thebio-physiology <str<strong>on</strong>g>of</str<strong>on</strong>g> the brain, creating models which would be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> mimicking humanthought processes <strong>on</strong> a computati<strong>on</strong>al or even hardware level. Humans are able to docomplex tasks like percepti<strong>on</strong>, pattern recogniti<strong>on</strong>, or reas<strong>on</strong>ing much more efficiently thanstate-<str<strong>on</strong>g>of</str<strong>on</strong>g>-the-art computers. They are also able to learn from examples and human neuralsystems are to some extent fault tolerant.Recently use <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy set theory has been introduced to inter-relate variables in hydrologicprocess calculati<strong>on</strong>s and modeling the aggregate behavior. Further, the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzydecisi<strong>on</strong> making and fuzzy mathematical programming have great potential <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong> inwater resources management models to provide meaningful decisi<strong>on</strong>s in the face <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>flicting objectives. Fuzzy Logic based procedures may be used, when c<strong>on</strong>venti<strong>on</strong>alprocedures are getting rather complex and expensive or vague and imprecise informati<strong>on</strong>flows directly into the modeling process. With Fuzzy Logic it is possible to describe availableknowledge directly in linguistic terms and according rules. Quantitative and qualitativefeatures can be combined directly in a fuzzy model. This leads to a modeling process whichis <str<strong>on</strong>g>of</str<strong>on</strong>g>ten simpler, more easily manageable and closer to the human way <str<strong>on</strong>g>of</str<strong>on</strong>g> thinking compared<strong>with</strong> c<strong>on</strong>venti<strong>on</strong>al approaches.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)The present paper describes the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> ANN and fuzzy logic. Furthermore, this paperalso presents a general review <str<strong>on</strong>g>of</str<strong>on</strong>g> the applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ANN and fuzzy logic in hydrologicalmodelling and its popular applicati<strong>on</strong>s in flood forecasting.BIOLOGICAL NEURONIt is claimed that the human central nervous system is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> about 1,3x1010 neur<strong>on</strong>sand that about 1x1010 <str<strong>on</strong>g>of</str<strong>on</strong>g> them takes place in the brain. At any time, some <str<strong>on</strong>g>of</str<strong>on</strong>g> these neur<strong>on</strong>sare firing and the power dissipati<strong>on</strong> due this electrical activity is estimated to be in the order<str<strong>on</strong>g>of</str<strong>on</strong>g> 10 watts. A neur<strong>on</strong> has a roughly spherical cell body called soma (Figure 1). The signalsgenerated in soma are transmitted to other neur<strong>on</strong>s through an extensi<strong>on</strong> <strong>on</strong> the cell bodycalled ax<strong>on</strong> or nerve fibres. Another kind <str<strong>on</strong>g>of</str<strong>on</strong>g> extensi<strong>on</strong>s around the cell body like bushy tree isthe dendrites, which are resp<strong>on</strong>sible from receiving the incoming signals generated by otherneur<strong>on</strong>s.Figure 1: Typical Neur<strong>on</strong>As it is menti<strong>on</strong>ed in the previous secti<strong>on</strong>, the transmissi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a signal from <strong>on</strong>e neur<strong>on</strong> toanother through synapses is a complex chemical process in which specific transmittersubstances are released from the sending side <str<strong>on</strong>g>of</str<strong>on</strong>g> the juncti<strong>on</strong>. The effect is to raise or lowerthe electrical potential inside the body <str<strong>on</strong>g>of</str<strong>on</strong>g> the receiving cell. If this graded potential reaches athreshold, the neur<strong>on</strong> fires. It is this characteristic that the artificial neur<strong>on</strong> model proposed byMcCulloch and Pitts, (McCulloch and Pitts 1943) attempt to reproduce.Research into models <str<strong>on</strong>g>of</str<strong>on</strong>g> the human brain already started in the 19th century (James, 1890). Ittook until 1943 before McCulloch and Pitts (1943) formulated the first ideas in amathematical model called the McCulloch-Pitts neur<strong>on</strong>. In 1957, a first multilayer neuralnetwork model called the perceptr<strong>on</strong> was proposed. However, significant progress in neuralnetwork research was <strong>on</strong>ly possible after the introducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the back propagati<strong>on</strong> method(Rumelhart, et al., 1986), which can train multi-layered networks.ARTIFICIAL NEURON15


Mathematical models <str<strong>on</strong>g>of</str<strong>on</strong>g> biological neur<strong>on</strong>s (called artificial neur<strong>on</strong>s) mimic the functi<strong>on</strong>ality<str<strong>on</strong>g>of</str<strong>on</strong>g> biological neur<strong>on</strong>s at various levels <str<strong>on</strong>g>of</str<strong>on</strong>g> detail. A typical model is basically a static functi<strong>on</strong><strong>with</strong> several inputs (representing the dendrites) and <strong>on</strong>e output (the ax<strong>on</strong>). Each input isassociated <strong>with</strong> a weight factor (synaptic strength). The weighted inputs are added up andpassed through a n<strong>on</strong>linear functi<strong>on</strong>, which is called the activati<strong>on</strong> functi<strong>on</strong> (ASCE, 2000a).The value <str<strong>on</strong>g>of</str<strong>on</strong>g> this functi<strong>on</strong> is the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the neur<strong>on</strong> (Figure 2).NEURAL NETWORK ARCHITECTUREA typical ANN model c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> number <str<strong>on</strong>g>of</str<strong>on</strong>g> layers and nodes that are organised to aparticular structure. There are various ways to classify a neural network. Neur<strong>on</strong>s are usuallyarranged in several layers and this arrangement is referred to as the architecture <str<strong>on</strong>g>of</str<strong>on</strong>g> a neuralnet. Networks <strong>with</strong> several layers are called multi-layer networks, as opposed to single-layernetworks that <strong>on</strong>ly have <strong>on</strong>e layer. The classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neural networks is d<strong>on</strong>e by thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> layers, c<strong>on</strong>necti<strong>on</strong> between the nodes <str<strong>on</strong>g>of</str<strong>on</strong>g> the layers, the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> informati<strong>on</strong>flow, the n<strong>on</strong> linear equati<strong>on</strong> used to get the output from theX 1X 2X 3Inputsw 1w 2w 3w 4 w nOutputYX 4...X nPropagati<strong>on</strong> Functi<strong>on</strong>f =ni=0w .x + O-iiActivati<strong>on</strong> Functi<strong>on</strong>Yf.Figure 2: Processing Element <str<strong>on</strong>g>of</str<strong>on</strong>g> ANNnodes, and the method <str<strong>on</strong>g>of</str<strong>on</strong>g> determining the weights between the nodes <str<strong>on</strong>g>of</str<strong>on</strong>g> different layers.Within and am<strong>on</strong>g the layers, neur<strong>on</strong>s can be interc<strong>on</strong>nected in two basic ways: (1)


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Feedforward networks in which neur<strong>on</strong>s are arranged in several layers. Informati<strong>on</strong> flows<strong>on</strong>ly in <strong>on</strong>e directi<strong>on</strong>, from the input layer to the output layer, and (2) Recurrent networks inwhich neur<strong>on</strong>s are arranged in <strong>on</strong>e or more layers and feedback is introduced either internallyin the neur<strong>on</strong>s, to other neur<strong>on</strong>s in the same layer or to neur<strong>on</strong>s in preceding layers. Thecomm<strong>on</strong>ly used neural network is three-layered feed forward network due to its generalapplicability to a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> different problems and is presented in Figure 3I 1I 2INPUTLAYERV ijHIDDEN LAYERW ijOUTPUT LAYEROI 3Figure 3: A Typical Three-Layer Feed Forward ANN (ASCE, 2000a)LEARNINGThe learning process in biological neural networks is based <strong>on</strong> the change <str<strong>on</strong>g>of</str<strong>on</strong>g> theinterc<strong>on</strong>necti<strong>on</strong> strength am<strong>on</strong>g neur<strong>on</strong>s. Synaptic c<strong>on</strong>necti<strong>on</strong>s am<strong>on</strong>g neur<strong>on</strong>s thatsimultaneously exhibit high activity are strengthened. In artificial neural networks, variousc<strong>on</strong>cepts are used. A mathematical approximati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> biological learning, called Hebbianlearning is used, for instance, in the Hopfield network. Multi-layer nets, however, typicallyuse some kind <str<strong>on</strong>g>of</str<strong>on</strong>g> optimizati<strong>on</strong> strategy whose aim is to minimize the difference between thedesired and actual behavior (output) <str<strong>on</strong>g>of</str<strong>on</strong>g> the net. Two different learning methods can berecognized: supervised and unsupervised learning:Supervised learning: the network is supplied <strong>with</strong> both the input values and the correct outputvalues, and the weight adjustments performed by the network are based up<strong>on</strong> the error <str<strong>on</strong>g>of</str<strong>on</strong>g> thecomputed output.17


Unsupervised learning: the network is <strong>on</strong>ly provided <strong>with</strong> the input values, and the weightadjustments are based <strong>on</strong>ly <strong>on</strong> the input values and the current network output. Unsupervisedlearning methods are quite similar to clustering approaches.MULTI-LAYER NEURAL NETWORKA multi-layer neural network (MNN) has <strong>on</strong>e input layer, <strong>on</strong>e output layer and a number <str<strong>on</strong>g>of</str<strong>on</strong>g>hidden layers between them. In a MNN, two computati<strong>on</strong>al phases are distinguished:1. Feedforward computati<strong>on</strong>. From the network inputs (xi, i = 1, . . . , n), the outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> thefirst hidden layer are first computed. Then using these values as inputs to the sec<strong>on</strong>d hiddenlayer, the outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> this layer are computed, etc. Finally, the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the network isobtained.2. Weight adaptati<strong>on</strong>. The output <str<strong>on</strong>g>of</str<strong>on</strong>g> the network is compared to the desired output. Thedifference <str<strong>on</strong>g>of</str<strong>on</strong>g> these two values called the error, is then used to adjust the weights first in theoutput layer, then in the layer before, etc., in order to decrease the error. This backwardcomputati<strong>on</strong> is called error backpropagati<strong>on</strong>. The error backpropagati<strong>on</strong> algorithm wasproposed by and Rumelhart, et al. (1986) and it is briefly presented in the following secti<strong>on</strong>.Feed forward Computati<strong>on</strong>In a multi layer neural network <strong>with</strong> <strong>on</strong>e hidden layer, step wise the feed forwardcomputati<strong>on</strong> proceeds as:I. Forward PassComputati<strong>on</strong>s at Input LayerC<strong>on</strong>sidering linear activati<strong>on</strong> functi<strong>on</strong>, the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the input layer is input <str<strong>on</strong>g>of</str<strong>on</strong>g> input layer:Ol I l(1)where,Olis the l th output <str<strong>on</strong>g>of</str<strong>on</strong>g> the input layer and Ilis the l th input <str<strong>on</strong>g>of</str<strong>on</strong>g> the input layer.Computati<strong>on</strong>s at Hidden LayerThe input to the hidden neur<strong>on</strong> is the weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> the outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> the input neur<strong>on</strong>s:Ihp u O uO .....u1p12 p2lpOl(2)


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)for p = 1,2,3,…..mwhere, Ihpis the input to the p th hidden neur<strong>on</strong>, ulpis the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the arc between l th inputneur<strong>on</strong> to p th hidden neur<strong>on</strong> and m is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes in the hidden layer.Now c<strong>on</strong>sidering the sigmoidal functi<strong>on</strong> the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the p th hidden neur<strong>on</strong> is given by:Ohp(1 e1( hp )I hp)(3)whereOhpis the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the p th hidden neur<strong>on</strong>, Ihpis the input <str<strong>on</strong>g>of</str<strong>on</strong>g> the p th hidden neur<strong>on</strong>, hpis the threshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the p th neur<strong>on</strong> and is known as sigmoidal gain. A n<strong>on</strong>-zero thresholdneur<strong>on</strong> is computati<strong>on</strong>ally equivalent to an input that is always held at -1 and the n<strong>on</strong>-zerothreshold becomes the c<strong>on</strong>necting weight values.Computati<strong>on</strong>s at Output Layer: The input to the output neur<strong>on</strong>s is the weighted sum <str<strong>on</strong>g>of</str<strong>on</strong>g> theoutputs <str<strong>on</strong>g>of</str<strong>on</strong>g> the hidden neur<strong>on</strong>s:IOq w O w O ..... w1qh12qh2mqOhm(4)for q = 1,2,3,….nwhere, IOqis the input to the q th output neur<strong>on</strong>, wmqis the weight <str<strong>on</strong>g>of</str<strong>on</strong>g> the arc between m thhidden neur<strong>on</strong> to q th output neur<strong>on</strong>.C<strong>on</strong>sidering sigmoidal functi<strong>on</strong>, the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the q th output neur<strong>on</strong> is given by:OOq(1 e1( Oq )I Oq)(5)where,OOqis the output <str<strong>on</strong>g>of</str<strong>on</strong>g> the q th output neur<strong>on</strong>, is known as sigmoidal gain, Oqis thethreshold <str<strong>on</strong>g>of</str<strong>on</strong>g> the q th neur<strong>on</strong>. This threshold may also be tackled again c<strong>on</strong>sidering extra 0 thneur<strong>on</strong> in the hidden layer <strong>with</strong> output <str<strong>on</strong>g>of</str<strong>on</strong>g> -1 and the threshold valuec<strong>on</strong>necting weight value.Computati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ErrorOqbecomes the19


The error in output for the r th output neur<strong>on</strong> is given by:l 1 2nr1( TOrOor)2(6)WhereOOris the computed output from the r th neur<strong>on</strong> and TOris the target output.Equati<strong>on</strong> (6) gives the error functi<strong>on</strong> in <strong>on</strong>e training pattern. Using the same technique for allthe training patterns the j1where, N is the number <str<strong>on</strong>g>of</str<strong>on</strong>g> input-output data sets.Njerror functi<strong>on</strong> become(7)Training <str<strong>on</strong>g>of</str<strong>on</strong>g> Neural NetworkTraining is the adaptati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> weights in a multi-layer network such that the error between thedesired output and the network output is minimized.II. Backword PassFor k th output neur<strong>on</strong>, E k is given by1k ( TkO2ok)2(8)where, Tkis the target output <str<strong>on</strong>g>of</str<strong>on</strong>g> the k th output neur<strong>on</strong> andoutput neur<strong>on</strong>. The output <str<strong>on</strong>g>of</str<strong>on</strong>g> the k th output neur<strong>on</strong> is given byOOk(1 e1( I Ok Ok))Ookis the computed output <str<strong>on</strong>g>of</str<strong>on</strong>g> the k th(9)The change <str<strong>on</strong>g>of</str<strong>on</strong>g> weight for weight adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> synapses c<strong>on</strong>necting hidden neur<strong>on</strong>s andoutput neur<strong>on</strong>s is expressed as:wikk wwhere, d T O ) O(1 O ) and is learning rate c<strong>on</strong>stantkik Ohid(K Ok k Okk(10)


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Learning rate coefficient determines the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the weight adjustment made at each iterati<strong>on</strong>and hence influences the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence. Poor choice <str<strong>on</strong>g>of</str<strong>on</strong>g> the learning coefficient canresult in a failure in c<strong>on</strong>vergence. For a too large learning rate coefficient the search path willoscillate and jump past the minimum. For a very small learning rate coefficient the descentwill progress in a small steps and thus significantly increase the time <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence.Therefore, change <str<strong>on</strong>g>of</str<strong>on</strong>g> weight for weight adjustment <str<strong>on</strong>g>of</str<strong>on</strong>g> synapses c<strong>on</strong>necting input neur<strong>on</strong>s andhidden neur<strong>on</strong>s is expressed as:kuij [{ wikdk}{(Ohi)(1Ohi)}{Iij}]uij(11)The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the back propagati<strong>on</strong> algorithm depends <strong>on</strong> the initial setting <str<strong>on</strong>g>of</str<strong>on</strong>g> theweights, learning rate, output functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the units (sigmoidal, hyperbolic tangent etc.) andthe presentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> training data. The initial weights should be randomized and uniformlydistributed in a small range <str<strong>on</strong>g>of</str<strong>on</strong>g> values. Learning rate is important for the speed <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>vergence. Small values <str<strong>on</strong>g>of</str<strong>on</strong>g> learning parameter may result in smooth trajectory in theweight space but takes l<strong>on</strong>g time to c<strong>on</strong>verge. On the other hand large values may increasethe learning speed but result in large random fluctuati<strong>on</strong>s in the weight space. It is desirableto adjust the weights in such a way that all the units learn nearly at the same rate. The trainingdata should be selected so that it represents all data and the process adequately. The majorlimitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the back propagati<strong>on</strong> algorithm is its slow c<strong>on</strong>vergence. Moreover, there is nopro<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>vergence, although it seems to perform well in practice. Sometimes it is possiblethat result may c<strong>on</strong>verge to local minimum and there is no way to reduce its possibility.Another problem is that <str<strong>on</strong>g>of</str<strong>on</strong>g> scaling, which may be handled using modular architectures andprior informati<strong>on</strong> about the problem.ANN: MODEL DESIGN & TRAININGBefore applying ANN, the input data need to be standardized so as to fall in the range [0,1].A typical hydrological variable, say river discharge (Q), which can vary between Qmin tosome maximum value Q max can be standardized by the following formula:Q sQ QQ Qmaxminmin(12)21


where Q s is the standardized discharge.For a specific modeling problem, an ANN is designed in such a way to obtain a simplearchitecture which yields the desired performance. As there is no analytical soluti<strong>on</strong> todetermine an optimal ANN architecture and therefore, a unique soluti<strong>on</strong> cannot beguaranteed. The numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> input and output nodes are decided from the modeling problem.Further, the number <str<strong>on</strong>g>of</str<strong>on</strong>g> hidden layers and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes in each hidden layer aredetermined to produce most suitable ANN model architecture. Generally, a trial-and-errorapproach is used to find out the number <str<strong>on</strong>g>of</str<strong>on</strong>g> hidden layers and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes in eachhidden layer. The number <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes should be chosen carefully since the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> anetwork critically depends <strong>on</strong> it. A network <strong>with</strong> too few nodes gives poor results, while itoverfits the training data if too many nodes are present.The primary goal <str<strong>on</strong>g>of</str<strong>on</strong>g> training is to minimize the error functi<strong>on</strong> by searching for a set <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>necti<strong>on</strong> strengths and threshold values that cause the ANN to produce outputs that areequal or close to targets. There are different types <str<strong>on</strong>g>of</str<strong>on</strong>g> learning algorithms that are quitesuitable for specific problems. The supervised training algorithm uses a large number <str<strong>on</strong>g>of</str<strong>on</strong>g>inputs and outputs patterns. The inputs are cause variables <str<strong>on</strong>g>of</str<strong>on</strong>g> a system and the outputs are theeffect variables. This training procedure involves the iterative adjustment and optimizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>necti<strong>on</strong> weights and threshold values for each <str<strong>on</strong>g>of</str<strong>on</strong>g> nodes. In c<strong>on</strong>trast, an unsupervisedtraining algorithm uses <strong>on</strong>ly an input data set. The ANN adapts its c<strong>on</strong>necti<strong>on</strong> weights tocluster input patterns into classes <strong>with</strong> similar properties. Supervised training is mostcomm<strong>on</strong> in water resources applicati<strong>on</strong>s.WHAT IS FUZZY LOGIC ?Fuzzy logic is a powerful problem-solving methodology <strong>with</strong> a myriad <str<strong>on</strong>g>of</str<strong>on</strong>g> applicati<strong>on</strong>s inembedded c<strong>on</strong>trol and informati<strong>on</strong> processing. Fuzzy provides a remarkably simple way todraw definite c<strong>on</strong>clusi<strong>on</strong>s from vague, ambiguous or imprecise informati<strong>on</strong>. In a sense, fuzzylogic resembles human decisi<strong>on</strong> making <strong>with</strong> its ability to work from approximate data andfind precise soluti<strong>on</strong>s.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Unlike classical logic which requires a deep understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> a system, exact equati<strong>on</strong>s, andprecise numeric values, Fuzzy logic incorporates an alternative way <str<strong>on</strong>g>of</str<strong>on</strong>g> thinking, which allowsmodeling complex systems using a higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> abstracti<strong>on</strong> originating from ourknowledge and experience. Fuzzy Logic allows expressing this knowledge <strong>with</strong> subjectivec<strong>on</strong>cepts such as very hot, bright red, and a l<strong>on</strong>g time which are mapped into exact numericranges.xbij1C b1Fuzzy Logic has been gaining increasing acceptance during the past few years. There areover two thousand commercially available products using Fuzzy Logic, ranging fromwashing machines to high speed trains. Nearly every applicati<strong>on</strong> can potentially realize some<str<strong>on</strong>g>of</str<strong>on</strong>g> the benefits <str<strong>on</strong>g>of</str<strong>on</strong>g> Fuzzy Logic, such as performance, simplicity, lower cost, and productivity.ijx1CFuzzy Logic has been found to be very suitable for embedded c<strong>on</strong>trol applicati<strong>on</strong>s. Severalmanufacturers in the automotive industry are using fuzzy technology to improve quality andreduce development time. In aerospace, fuzzy enables very complex real time problems to betackled using a simple approach. In c<strong>on</strong>sumer electr<strong>on</strong>ics, fuzzy improves time to market andhelps reduce costs. In manufacturing, fuzzy is proven to be invaluable in increasingequipment efficiency and diagnosing malfuncti<strong>on</strong>s. Usefulness <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy rule based modelingin hydrological modeling and forecasting is also dem<strong>on</strong>strated by various researchers.FUZZY SETSIn ordinary (n<strong>on</strong> fuzzy) set theory, elements either fully bel<strong>on</strong>g to a set or are fully excludedfrom it. Recall, that the membership µ (x)<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> a classical set A, as a subset <str<strong>on</strong>g>of</str<strong>on</strong>g> theuniverse x, is defined by:1,A(x) 0,iff x A iff x AThis means that an element is either a member <str<strong>on</strong>g>of</str<strong>on</strong>g> set A(µ (x)=1) or not (µ (x)=0). Thisstrict classificati<strong>on</strong> is useful in the mathematics and other sciences. Figure 4 presentsdifference between boolean logic and fuzzy logic.23


MEMBERSHIP FUNCTION ASSIGNMENT AND RULE GENERATIONFirst, partiti<strong>on</strong> the input and output space as small, medium, large etc. After partiti<strong>on</strong>, the nextstep is to assign a membership functi<strong>on</strong>. First the data points whose membership gradesare am<strong>on</strong>g the highest are chosen. The mid-point <str<strong>on</strong>g>of</str<strong>on</strong>g> these data points is assigned grade <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>e, which is the index <str<strong>on</strong>g>of</str<strong>on</strong>g> membership functi<strong>on</strong>. Then a membership grade C (0


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Figure 4: Boolean Logic Vs Fuzzy Logic. Define the model objectives and criteria: What am I trying to model? What do I have to do tomodel the system? What kind <str<strong>on</strong>g>of</str<strong>on</strong>g> resp<strong>on</strong>se do I need? What are the possible (probable)system failure modes? Determine the input and output relati<strong>on</strong>ships and choose a minimum number <str<strong>on</strong>g>of</str<strong>on</strong>g> variables forinput to the Fuzzy Logic (FL) system.Figure 6: Steps for developing fuzzy model Using the rule-based structure <str<strong>on</strong>g>of</str<strong>on</strong>g> FL, break the modelling problem down into a series <str<strong>on</strong>g>of</str<strong>on</strong>g> IF XAND Y THEN Z rules that define the desired system output resp<strong>on</strong>se for given system inputc<strong>on</strong>diti<strong>on</strong>s. The number and complexity <str<strong>on</strong>g>of</str<strong>on</strong>g> rules depends <strong>on</strong> the number <str<strong>on</strong>g>of</str<strong>on</strong>g> input parametersthat are to be processed and the number <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy variables associated <strong>with</strong> each parameter. Ifpossible, use at least <strong>on</strong>e variable and its time derivative. Although it is possible to use asingle, instantaneous error parameter <strong>with</strong>out knowing its rate <str<strong>on</strong>g>of</str<strong>on</strong>g> change, this cripples thesystem's ability to minimize overshoot for a step inputs. Create FL membership functi<strong>on</strong>s that define the meaning (values) <str<strong>on</strong>g>of</str<strong>on</strong>g> Input/Output terms usedin the rules.25


Create the necessary pre- and post-processing FL Test the system, evaluate the results, tune the rules and membership functi<strong>on</strong>s, and retestuntil satisfactory results are obtained. Figure 6 presents steps involved for developing <str<strong>on</strong>g>of</str<strong>on</strong>g>fuzzy model.RULE-BASED FUZZY SYSTEMSIn rule-based fuzzy systems, the relati<strong>on</strong>ships between variables are represented by means <str<strong>on</strong>g>of</str<strong>on</strong>g>fuzzy if–then rules in the following general form:If antecedent propositi<strong>on</strong> then c<strong>on</strong>sequent propositi<strong>on</strong>.Fuzzy propositi<strong>on</strong>s are statements like ―x is big‖, where ―big‖ is a linguistic label, defined bya fuzzy set <strong>on</strong> the universe <str<strong>on</strong>g>of</str<strong>on</strong>g> discourse <str<strong>on</strong>g>of</str<strong>on</strong>g> variable x. Linguistic labels are also referred to asfuzzy c<strong>on</strong>stants, fuzzy terms or fuzzy noti<strong>on</strong>s. Linguistic modifiers (hedges) can be used tomodify the meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> linguistic labels. For example, the linguistic modifier very can be usedto change ―x is big‖ to ―x is very big‖.The antecedent propositi<strong>on</strong> is always a fuzzy propositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the type ―x is A‖ where x is alinguistic variable and A is a linguistic c<strong>on</strong>stant (term). On the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> structure <str<strong>on</strong>g>of</str<strong>on</strong>g> thec<strong>on</strong>sequent propositi<strong>on</strong>, different fuzzy rule based models are defined. In a Linguistic fuzzymodel (Zadeh, 1973; Mamdani, 1977) both the antecedent and c<strong>on</strong>sequent are fuzzypropositi<strong>on</strong>s. Singlet<strong>on</strong> fuzzy model is a special case where the c<strong>on</strong>sequents are singlet<strong>on</strong> sets(real c<strong>on</strong>stants).GENERAL LINGUISTIC FUZZY MODELThe general Linguistic Fuzzy Model <str<strong>on</strong>g>of</str<strong>on</strong>g> a Multi-Input Single-Output system isinterpreted by rules <strong>with</strong> multi-antecedent and single-c<strong>on</strong>sequent variables such as thefollowing:Rule l: IF I 1 is B l1 AND I 2 is B l2 AND I r is B lrTHEN O is D l , l = 1,2,.,n (14)


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Where I 1 , I 2 ,.., I r are input variables and O is the output, B ij (i=1, ...,n, j=1,...,r) and D i(i=1, ...,n) are fuzzy sets <str<strong>on</strong>g>of</str<strong>on</strong>g> the universes <str<strong>on</strong>g>of</str<strong>on</strong>g> discourse X 1 , X 2 ,., X r , and Y <str<strong>on</strong>g>of</str<strong>on</strong>g> I 1 , I 2 ,.., I r and Orespectively. The above rule can be interpreted as a fuzzy implicati<strong>on</strong> relati<strong>on</strong>B l = B l1 x B l2 x.x B lr D l in (X = X 1 x X 2 x.x X r )xY:R l (x,y) = T(B l (x),D l (y)),B l (x)=T′ (B l1 (x),B l2 (x),….B lr (x))(15)Where T and T' are the t-norm operators and may be different from each other. Let thefuzzy set A in the universe <str<strong>on</strong>g>of</str<strong>on</strong>g> discourse X be the input to the fuzzy system <str<strong>on</strong>g>of</str<strong>on</strong>g> (14). Then, eachfuzzy IF-THEN rule determines a fuzzy set F l in Y:F l (y) = T(R l (x,y),A(x)) (16)A i( x)1, if0, ifxxii*i x*i xFor a crisp input x* = (x 1 * , x 2 * ,….x r * )(17)= T(B il (x), A(x), D i (y))ThenF l (y) = T(R l (x,y), A(x))(18)= T(B il (x * ),D i (y))where Bl (x) is called the Degree Of Firing (DOF) <str<strong>on</strong>g>of</str<strong>on</strong>g> rule l.To obtain a crisp value <str<strong>on</strong>g>of</str<strong>on</strong>g> the output, the comm<strong>on</strong>ly used Center <str<strong>on</strong>g>of</str<strong>on</strong>g> Area (COA) method, maybe used.y*yiy0yiy0yF ( y)dyF(y)dy27(21)


Where, the real interval Y = [y 0 ,y 1 ] is the universe <str<strong>on</strong>g>of</str<strong>on</strong>g> discourse for the output.The fuzzy system is usually not analytical, but analytical formulati<strong>on</strong> is essential forthe use <str<strong>on</strong>g>of</str<strong>on</strong>g> training algorithms like Back Propagati<strong>on</strong> (BP) and Least Mean Squared(LMS). We, therefore, use the following simplified fuzzy inference system: First, T-norm andT-c<strong>on</strong>orm operators are chosen to be the multiplicati<strong>on</strong> and additi<strong>on</strong> operators, respectively.Then equati<strong>on</strong> (20) becomes,nF(y) Fi( y)nl1 i1B ( xl*) D ( y)l(22)Obviously, the summati<strong>on</strong> brings the output fuzzy set F(y) out <str<strong>on</strong>g>of</str<strong>on</strong>g> the unit interval. However,it does not have an effect <strong>on</strong> the defuzzified value. By substituting for F(y) in (21) we get theCOA defuzzified value:y*y1 yy0yl1nn1y l10B ( xB ( xll**) D ( y)dy) D ( y)dyllnl1* Bl( x ) nl1yy10lyyyDl( y)dy Dl( y)dy10*B ( x )nl1nl1*B ( x ) yl*B ( x )l*l


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)(23)Where the y * l ’s are the centroids <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuzzy sets D l .The defuzzified value y * is determined by the weighted average <str<strong>on</strong>g>of</str<strong>on</strong>g> the centroids <str<strong>on</strong>g>of</str<strong>on</strong>g> theindividual c<strong>on</strong>sequent fuzzy sets. Using a symmetric triangular membership functi<strong>on</strong>, thefuzzy system becomes,*y f ( x)n* yll1nr(l1(r xlcli1)bli, cli bli xi cli blixlcli1)bllli(24)Where, c li and b li are the center and the half-width <str<strong>on</strong>g>of</str<strong>on</strong>g> the triangular membership functi<strong>on</strong>respectively.FLOOD FORECASTINGThere are many ANN architectures and algorithms developed for different applicati<strong>on</strong>s. Out<str<strong>on</strong>g>of</str<strong>on</strong>g> them most comm<strong>on</strong> are Multi layer feed forward, Hoppfield networks, Radial basisfuncti<strong>on</strong> network, Recurrent network, Self organizati<strong>on</strong> feature maps, Counter propagati<strong>on</strong>networks. Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular network is applicati<strong>on</strong> oriented. However, the multi layerfeed forward networks are most comm<strong>on</strong>ly used for hydrological applicati<strong>on</strong>s (Daws<strong>on</strong> andWilby, 2001).Various researchers have investigated the use <str<strong>on</strong>g>of</str<strong>on</strong>g> multi-layer perceptr<strong>on</strong> NN forrainfall- run<str<strong>on</strong>g>of</str<strong>on</strong>g>f modeling, flood forecasting successfully. Earlier the works <str<strong>on</strong>g>of</str<strong>on</strong>g> Bruen andYang (2005), Campolo et al. (1999, 2003), Coulibaly et al. (2000), Lekkas et al. (2004),Minns and Hall (1996), Solomantine and Xue (2004), Solomantine and Price (2004), Zealandet al. (1999) emphasized the applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial neural networks over other methods.In <strong>on</strong>e study ANN is applied in forecasting the flood <str<strong>on</strong>g>of</str<strong>on</strong>g> downstream catchment <str<strong>on</strong>g>of</str<strong>on</strong>g> Mahanadibasin. Here peak values recorded over 10 years (2001-2010) are c<strong>on</strong>sidered for development<str<strong>on</strong>g>of</str<strong>on</strong>g> the model. A total 101 flood peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> different magnitudes are being observed at 3 stati<strong>on</strong>sal<strong>on</strong>g <strong>with</strong> their corresp<strong>on</strong>ding flood peaks. Initial 50 peaks are c<strong>on</strong>sidered for calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>the fuzzy Mamdani model and rest 51 for validati<strong>on</strong>.The Fig.7 shows Khairmal as base stati<strong>on</strong> (BS), Barmul as intermediate stati<strong>on</strong> (IS) andMundali as forecast stati<strong>on</strong> (FS). The peak values are put into ANN architecture usingMATLAB codes. The trial has been taken <strong>with</strong> a 3-layer feed forward network. Different29


combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> feed forward network <strong>with</strong> changing transfer functi<strong>on</strong>, number <str<strong>on</strong>g>of</str<strong>on</strong>g> neur<strong>on</strong>sand epochs varying at an increment <str<strong>on</strong>g>of</str<strong>on</strong>g> 50 are trailed. The combinati<strong>on</strong>s which are mostly asper performance criteria fixed are noted (Table 1). The Cascade feed forward network hasbeen most successful for Khairmal-Barmul and Khairmal-Barmul-Mundali and other twocases are <strong>with</strong> Feed forward network. The results are compared <strong>with</strong> statistical method andANN shows improvement over c<strong>on</strong>venti<strong>on</strong>al method.Figure 7. Showing catchment details <strong>with</strong> different z<strong>on</strong>es <str<strong>on</strong>g>of</str<strong>on</strong>g> Mahanadi basin.Table 1. Relati<strong>on</strong>ship between discharges using ANN architecture.Between stati<strong>on</strong>sANNarchitectureEpochsRMSE(m 3 /s) R 2 EfficiencyTrai Testing Training Testing Training TestingningKhairmal-Mundali FF,7,1 3000 2211.21843.7 0.918 0.938 0.930 0.958Between stati<strong>on</strong>s Fuzzy MF MF/RulesRMSE(m 3 /s) R 2 EfficiencyTrainin Testing Trainin Testing Trainin Testing


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)g g gKhairmal-Mundali Triangular 5 2264.9 1898.5 0.901 0.907 0.904 0.905Khairmal-Mundali Trapezoidal 5 2256.2 1889.1 0.904 0.912 0.911 0.908Khairmal-Mundali gauss2 5 2182.9 1749.6 0.951 0.948 0.963 0.961The classical fuzzy set theory introduced by Zadeh in 1965. Besides ANN in the field <str<strong>on</strong>g>of</str<strong>on</strong>g>hydrology fuzzy logic is being used invariably in the field <str<strong>on</strong>g>of</str<strong>on</strong>g> clustering, rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>fmodeling, flood forecasting and other related fields. In the applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuzzy system inc<strong>on</strong>trol and forecasting, there are mainly two approaches, the first <strong>on</strong>e being the Mamdaniapproach and the other the Takagi–Sugeno approach (Kruse et al., 1994). The T.S model hasbeen applied successfully by Lohani et.al (2005a, 2005b, 2006, 2007, 2010), Nayak et.al(2005). For the Mamdani approach (Mamdani and Assilian, 1975), which has been used insome hydrological applicati<strong>on</strong>s (Schulz and Huwe (1997) and Schulz et al. (1999). Tareghianand Kashefipour (2007) have applied ANN and fuzzy logic models for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dailyreservoir inflow in Dez reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> south-west Iran. They had found the superiority <str<strong>on</strong>g>of</str<strong>on</strong>g>Mamdani model over Takegi-Sugeno fuzzy model.A total 101 flood peaks <str<strong>on</strong>g>of</str<strong>on</strong>g> different magnitudes are being observed at 3 stati<strong>on</strong>s al<strong>on</strong>g <strong>with</strong>their corresp<strong>on</strong>ding flood peaks. Initial 50 peaks are c<strong>on</strong>sidered for calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the fuzzyMamdani model and rest 51 for validati<strong>on</strong>.Different membership functi<strong>on</strong>s (Fig 7) are trialed and finally gauss2 membership functi<strong>on</strong>has been selected. To describe the relati<strong>on</strong> between the magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> the peaks there are 9rules formed. Basing <strong>on</strong> the inputs, membership functi<strong>on</strong>s and rules associated a fuzzy outputis computed. The input and fuzzy output is defuzzified to crisp output by using centroidmethod. The c<strong>on</strong>ceptual crisp outputs provide the flood forecast at forecasting site. Therelati<strong>on</strong> between the inputs and output is also represented by the 3-dimensi<strong>on</strong>al plot named assurface view (Fig.9). It shows the variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> output <strong>with</strong> respect to inputs. The defuzzified31


esults are compared <strong>with</strong> observed values and seen that the higher peaks are modeled moreprominently than low or medium peaks (Fig.10).Figure 8. Membership functi<strong>on</strong> plots for 2 inputs and <strong>on</strong>e outputFigure 9. Showing the surface view <str<strong>on</strong>g>of</str<strong>on</strong>g> inputs and output <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy modelFigure10. Fuzzy flood forecasting model results at Mundali G&D siteREMARKS


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)The computing world has a lot to gain from neural networks. Their ability to learn byexample makes them very flexible and powerful. Furthermore there is no need to devise analgorithm in order to perform a specific task; i.e. there is no need to understand the internalmechanisms <str<strong>on</strong>g>of</str<strong>on</strong>g> that task. They are also very well suited for real time systems because <str<strong>on</strong>g>of</str<strong>on</strong>g> theirfast resp<strong>on</strong>se and computati<strong>on</strong>al times which are due to their parallel architecture. Neuralnetworks also c<strong>on</strong>tribute to hydrological modeling and forecasting. They are successfullyused to model various hydrological processes. Even though neural networks have a hugepotential <strong>on</strong>e will <strong>on</strong>ly get the best <str<strong>on</strong>g>of</str<strong>on</strong>g> them when they are integrated <strong>with</strong> computing, AI,fuzzy logic and related subjects.REFERENCESASCE Task Committee <strong>on</strong> Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Artificial. Neural Networks in <strong>Hydrology</strong> (2000a).Artificial Neural Networks in hydrology, I: Preliminary C<strong>on</strong>cepts. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> HydrologicEngineering, ASCE, Vol. 5(2), 115-123.ASCE Task Committee <strong>on</strong> Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Artificial Neural Networks in <strong>Hydrology</strong> (2000b).Artificial Neurill Networks in hydrology, 11: Hydrological Applicati<strong>on</strong>s. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Hydrologic Engineering, ASCE, Vol. 5(2), 124-137.Bruen,M and Yang, J. (2005) ―Functi<strong>on</strong>al Networks in Real- Time Flood Forecasting - ANovel Applicati<strong>on</strong>,‖ Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Advances in Water Resources, vol. 28, no. 9, pp. 899-909.Campolo, M., Andreeussi,P. and Soldati, A. (1999) ―River Flood Forecasting <strong>with</strong> a NeuralNetwork Model,‖ Water Resources Research, Vol. 35(4), pp. 1191-1197.Campolo, M., Soldati, A. and Andreeussi, P. (2003) ―Artificial neural network approach t<str<strong>on</strong>g>of</str<strong>on</strong>g>lood forecasting in the River Arno‖. Hydrological Sciences Journal, Vol.48(4), pp.381-398.Coulibaly, P., Anctil,F. and Bobee, B. (2000) ―Daily reservoir forecasting using artificialneural network <strong>with</strong> stopped training approach‖, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Vol.230(3-4), pp.244-257.Daws<strong>on</strong>, C.W. and Wilby, R.L. (2001)―Hydrological modeling using ANN‖, Progress inphysical geography, Vol.25(1), pp.80-108.James, W. (1890). Psychology (Briefer Course). New York: Holt.Lekkas, D.F., On<str<strong>on</strong>g>of</str<strong>on</strong>g>, C., Lee,M.J. and Baltas, E.A. (2004) ―Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> neural networksfor flood forecasting‖, Global Nest: the Int. Journal. Vol.6(3), pp. 205-211.Lohani, A.K., Goel, N.K. and Bhatia, K.K.S. (2006) Takagi-Sugeno fuzzy inference systemfor modeling stage-discharge relati<strong>on</strong>ship, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Vol.331, 146–160.33


Lohani,A.K., Goel, N.K. and Bhatia, K.K.S. (2007a) Deriving stage—discharge—sedimentc<strong>on</strong>centrati<strong>on</strong> relati<strong>on</strong>ships using fuzzy logic, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrological Sciences, Vol.52(4),793–807.Lohani, A.K., Goel, N.K. and Bhatia, K.K.S. (2007) Deriving stage—discharge—sedimentc<strong>on</strong>centrati<strong>on</strong> relati<strong>on</strong>ships using fuzzy logic, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Hydrological Sciences, Vol.52(4),793–807.Lohani, A.K., Goel, N.K. and Bhatia, K.K.S. (2010) Comparative study <str<strong>on</strong>g>of</str<strong>on</strong>g> neural network,fuzzy logic and linear transfer functi<strong>on</strong> techniques in daily rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f modeling underdifferent input domains, Hydrological processes, Doi:10.1002/hyp. 7831.Lohani, A.K., Goel, N.K. and Bhatia, K.K.S. (2005a) Real time flood forecasting using fuzzylogic, Hydrological Perspectives for Sustainable Development, vol. 1, Perumal M (ed). AlliedPublishers Pvt. Ltd, New Delhi, 168–176.Lohani, A.K., Goel, N.K. and Bhatia, K.K.S. (2005b) Development <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy logic based realtime flood forecasting system for river Narmada in Central India, In Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g><strong>on</strong> Innovati<strong>on</strong> Advances and Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Flood Forecasting Technology, ACTIF/Floodman / Flood Relief, October, 2005. Tromso, Norway, www. Actif. cc.net / c<strong>on</strong>ference2005 / proceedings.Mamdani, E.H., Assilian, S. (1975) An experiment in linguistic synthesis <strong>with</strong> a fuzzy logicc<strong>on</strong>troller. Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Man–Machine Studies, Vol.7(1), 1–13.Mamdani, E.H. (1977) Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fuzzy logic to approximate reas<strong>on</strong>ing using linguisticsystems. Fuzzy Sets and Systems, Vol.26, 1182-1191.Nayak,P.C., Sudheer,K.P., Rangan,D.M. and Ramashastri, K.S. (2005) Short term floodforecasting <strong>with</strong> a neuro-fuzzy model, Water Resources Research,Vol.41, w04004, doi: 10,1029/ 2004WR003562.Panigrahi, D.P. and Mujumdar, P.P. (2000) Reservoir operati<strong>on</strong> modelling <strong>with</strong> fuzzy logic,Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Resources Management, Vol.14(2), 89-109.McCulloch, W. S. and W. Pitts (1943). A logical calculus <str<strong>on</strong>g>of</str<strong>on</strong>g> the ideas immanent in nervousactivity. Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Mathematical Biophysics 5, 115 – 133.Minns,A.W. and Hall, M.J. (1996) ―Artificial neural networks as rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models‖,Hydrological Sciences Journal, Vol. 41 (3), pp. 399-417Rumelhart,D.E., McLelland,J.L. and the PDP Research Group, (1986). Parallel DistributedProcessing, Explorati<strong>on</strong>s in the Micro Structure <str<strong>on</strong>g>of</str<strong>on</strong>g> Cogniti<strong>on</strong>, Vo1. I: Foundati<strong>on</strong>s, The MITPress, Cambridge.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Schulz, K. and Huwe, B. (1997) Water flow modeling in the unsaturated z<strong>on</strong>e <strong>with</strong> impreciseparameters using a fuzzy approach, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, 201, 211–229.Schulz, K., Huwe,B. and Peiffer, S. (1999) Parameter uncertainty in chemical equilibrium calculati<strong>on</strong>s usingfuzzy set theory. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, 217, 119–134.Zadeh, L.A. (1965) Fuzzy Sets. Informati<strong>on</strong> and c<strong>on</strong>trol, 8, 338-353.Zadeh, L.A. (1973) Outline <str<strong>on</strong>g>of</str<strong>on</strong>g> a new approach to the analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> complex systems anddecisi<strong>on</strong> processes. IEEE Transacti<strong>on</strong>s <strong>on</strong> Systems, Man and Cybernetics, 1, 28-44.Zealand, C.M., Burn, D.H. and Sim<strong>on</strong>ovic, S.P. (1999) ―Short term streamflow forecastingusing artificial neural network‖, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, vol.21, no.4, pp.32-48.35


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)An In-Depth Study <strong>on</strong> Two AdjoiningUngauged Sub-Catchments in Semi-AridRegi<strong>on</strong> (Kumudavathy River Catchment,Karnataka State)S.G. Ramachandraiah 1* , M. Inayathulla 2 , P.S. Nagaraj 2 , R.Druvashree 3 , G. Ranganna 41 Faculty in Civil Engineering, Dr. Ambedkar Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Bangalore,2 Faculty in Civil Engineering University Visvesvaraya College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering. Bangalore3 P.G.Scholar University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture Sciences, Bangalore4 Visiting pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor UGC-CAS in fluid mechanics Bangalore* E mail: sgr_dl@yahoo.co.inThere is no place <strong>on</strong> Earth that is so much dependent <strong>on</strong> rain as India in general and Karnataka inparticular. The life <str<strong>on</strong>g>of</str<strong>on</strong>g> farmers living in rural areas and cattle depend <strong>on</strong> this heavenly bounty yearafter year. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> our rainfall comes in three short m<strong>on</strong>ths (i.e, 98 days) and falls unevenly overthe land. If care is not taken to preserve/store it, water is lost. The rapid growth in water demandis due to the increasing reliance <strong>on</strong> irrigati<strong>on</strong> to <str<strong>on</strong>g>of</str<strong>on</strong>g>fset food security and increasing use fordomestic purposes. Unlike water stored in tanks (reservoirs) which gets reduced throughevaporati<strong>on</strong>, ground water is available throughout the year, making it available to meet the dailyneeds. More recent studies <strong>on</strong> small watersheds, particularly in low rainfall regi<strong>on</strong>s, revealed thatslopes remaining the same, the larger the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the catchments the less run<str<strong>on</strong>g>of</str<strong>on</strong>g>f can be collected.Small catchments give maximum water. For the past several decades watershed management isc<strong>on</strong>sidered as a strategy for agricultural and rural development in rainfed areas. Thus a thoroughinvestigati<strong>on</strong> has been made <strong>on</strong> two adjoining sub-catchments, viz., Melekote-Rajaghattta fallingin semi-arid regi<strong>on</strong>, covering 70.44 sqkm, in Dodballapur taluk <str<strong>on</strong>g>of</str<strong>on</strong>g> Bangalore rural district. Thesesub-catchments fall between: 13 0 77‘41‘‘ and 13 0 23‘15‘‘ north latitude; 77 0 40‘20‘‘ and77 0 40‘20‘‘east l<strong>on</strong>gitude.III. Study areaKarnataka state is covered by hard rocks which <strong>on</strong> the face <str<strong>on</strong>g>of</str<strong>on</strong>g> it appears to be unsuitable forgroundwater storage and development. In most places, however, hard rock is weathered anddecomposed and can hold an appreciable quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater as is evidenced by aninnumerable number <str<strong>on</strong>g>of</str<strong>on</strong>g> open wells across the state.37


The state is not badly <str<strong>on</strong>g>of</str<strong>on</strong>g>f in respect <str<strong>on</strong>g>of</str<strong>on</strong>g> the benefits received through rainfall, compared to manyother states. The average annual rainfall received over the state is 1170 mm. Rainfall as we knowis seas<strong>on</strong>al and c<strong>on</strong>fined to just about 58 rainy days in a water year. More than 80% <str<strong>on</strong>g>of</str<strong>on</strong>g> the annualrainfall occurs during the m<strong>on</strong>so<strong>on</strong> period, runs <str<strong>on</strong>g>of</str<strong>on</strong>g>f the surface, <strong>with</strong> little penetrating into theground, thereby causing floods and much soil erosi<strong>on</strong>.The two sub-catchments fall <strong>with</strong>in the Kumudavathy river catchment coming under Arkavatiriver basin and receive an annual rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g> 976 mm. There are no perinneal rivers. Within thestudy area, there are 22 water bodies and the village community solely depend up<strong>on</strong> them for theirdaily need. There is <strong>on</strong>e shallow open dugwell, the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water being fairly good. There are52 villages <strong>with</strong>in the catchment boundaries having a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 45,928 according to latestcensus.II. Details <str<strong>on</strong>g>of</str<strong>on</strong>g> investigati<strong>on</strong>(i)Morphometric analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a catchment is <str<strong>on</strong>g>of</str<strong>on</strong>g> great help in understanding its charecteristics interms <str<strong>on</strong>g>of</str<strong>on</strong>g> slope, topography, soil c<strong>on</strong>diti<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f charecteristics, surface water potential andothers.The following relati<strong>on</strong>ships are presented in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> graphs:Log mean stream length vs stream order, andLog <str<strong>on</strong>g>of</str<strong>on</strong>g> numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> stream segments vs stream order.(ii)Infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water into the soil becomes soil moisture, unsaturated flow through thesoil and saturated flow or ground water flow through rock strata. We have followed Hort<strong>on</strong>sequati<strong>on</strong> (1933, 39), f t = f c + (f o -f c )e -kt and in the field, double-ring infiltrometer is used. Six testshave been carried out and the value <str<strong>on</strong>g>of</str<strong>on</strong>g> k varies from 5.81 to 15.7 depending up<strong>on</strong> the soilcompactness.(iii)Soil quality is usually expressed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> its degradati<strong>on</strong>. Quality aspects include-physicaland chemical (micro and macro) <strong>on</strong> sixteen samples. Soil quality index- is also worked out forthree seas<strong>on</strong>s. The results are presented in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> tables.(iv)Surface waters reflect the envir<strong>on</strong>ment. Ground water c<strong>on</strong>tains mostly dissolved impuritiesunlike surface waters which are rich in suspended matter. The results <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis are furnished inthe form <str<strong>on</strong>g>of</str<strong>on</strong>g> tables.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS Based DistributedSWAT Hydrological Model in LargeMountainous Catchments <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti LevuIsland, FijiAnkita P. Dadhich 1 , Kazuo Nadaoka 21 Poornima Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and TechnologyDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, ISI-2, RIICO Instituti<strong>on</strong>al Area, Sitapura, Jaipur-302022Jaipur, Rajasthan (India) E- Mail- ankita.dadhich@poornima.org2 W8-13, Nadaoka Laboratory, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Mechanical and Envir<strong>on</strong>mentalInformatics,Tokyo Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, 2-12-1, O-okayama, Meguro-Ku,Tokyo -152-8552 (Japan)INTRODUCTIONUnderstanding the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate and land-use changes <strong>on</strong> stream flow can facilitate thedevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> sustainable water resources strategies. Physically based, distributedhydrological models (PDHMs), whose input parameters have a physical interpretati<strong>on</strong> andexplicit representati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> spatial variability[1], are increasingly being used to assess theenvir<strong>on</strong>mental impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> land-use changes, effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> water resources, andwater planning and management in a catchment. In this study a GIS based hydrologic model,SWAT (Soil and Water Assessment Tool) was applied for modelling the large mountainouscatchments <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti Levu island Fiji. The water balance modeling was performed <strong>on</strong> dailybasis using spatial and temporal data. The two large catchments <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti levu namely Ba(western side) and Rewa (eastern side) were analyzed to examine the applicability <str<strong>on</strong>g>of</str<strong>on</strong>g> SWATmodel for modeling the mountainous catchments.MATERIALS AND METHODSStudy Area Background- Fiji c<strong>on</strong>sists more than 300 islands scattered over 1.3 milli<strong>on</strong>square kilometers <str<strong>on</strong>g>of</str<strong>on</strong>g> the South Pacific Ocean, lying between latitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 degrees and 22degrees South and between l<strong>on</strong>gitude 175 degrees East and 178 degrees West. The largestisland is Viti Levu island (10,389 km 2 ) which covers 57 % <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area. The centralmountain range named Nandrau plateau generally dividing Viti Levu into the leeward drywestern and windward wet eastern area. The annual rainfall varies from 2,500 mm – 4,50041


mm in the eastern side and from 1,550 mm – 3,500 mm in the western side divided bymountains in the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the island.The Soil and Water assessment Tool (SWAT)- As a physically-based model, SWAT usehydrologic resp<strong>on</strong>se units (HRUs) to describe spatial heterogeneity in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> land cover,soil type and slope <strong>with</strong>in a watershed.Data preparati<strong>on</strong> and collecti<strong>on</strong> - The digital elevati<strong>on</strong> model (cell size 25m by 25 m) <str<strong>on</strong>g>of</str<strong>on</strong>g> Vitilevu island was developed using digitized c<strong>on</strong>tours to delineate the large mountainouswatersheds, Ba (western side) and Rewa (eastern side) to analyze the drainage patterns <str<strong>on</strong>g>of</str<strong>on</strong>g> theland surface terrain. Two major mountainous watersheds (Ba and Rewa) were delineatedusing DEM. Rewa watershed covers drainage area 2944.513 km 2 whereas Ba watershedcovers 908.119 km 2 drainage area. The soil type and physico-chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> soil wereacquired from Land Resource Planning Divisi<strong>on</strong>, Fiji. The land use/land cover map for theyear 1992, 1999, 2003 and 2007 is derived from Landsat TM/ETM + data and classified intoeight land use/cover classes: forest land, shrub/grass land, agriculture land, barren land, builtup,pine plantati<strong>on</strong>, mangrove forest and inland water body. For the period <str<strong>on</strong>g>of</str<strong>on</strong>g> 1993-2008,daily values for precipitati<strong>on</strong>, temperature and wind speed, average m<strong>on</strong>thly solar radiati<strong>on</strong>and relative humidity are acquired from Fiji Meteorological service. Daily stream flow datafor both the watersheds (Ba and Rewa) is acquired from Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Energy, Fiji for theperiod 1993 to 2007.RESULTS AND DISCUSSIONSimulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f - The SWAT model was calibrated and validated for both thewatersheds <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti Levu <strong>on</strong> a daily time step for comparing the calculated stream flow <strong>with</strong>the measured stream flow. Sensitivity analysis was performed to evaluate the effect <str<strong>on</strong>g>of</str<strong>on</strong>g>parameters <strong>on</strong> the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the SWAT model in simulating discharge and to limit thenumber <str<strong>on</strong>g>of</str<strong>on</strong>g> parameters for calibrati<strong>on</strong> [2]. For Ba watershed the river discharge was calibratedand validated for the year 1999 to 2002 and 2005 to 2006, based <strong>on</strong> the minimum data gapsin the observed data (figure 1). For Rewa watershed the river discharge was calibrated andvalidated for the year 1994 to 2000. The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the model for simulating discharge isevaluated graphically by linear regressi<strong>on</strong> (coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong>) and Nash-SutcliffeEfficiency coefficient (E NS ). The results <str<strong>on</strong>g>of</str<strong>on</strong>g> statistical tests performed <strong>on</strong> the agreementbetween measured and simulated daily run<str<strong>on</strong>g>of</str<strong>on</strong>g>f reveals that for Ba watershed the r 2 (0.84-


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)calibrati<strong>on</strong> 0.82- validati<strong>on</strong>) and E NS (0.79- calibrati<strong>on</strong> 0.75- validati<strong>on</strong>) values are higherthan the Rewa watershed r 2 (0.64- calibrati<strong>on</strong> 0.47 - validati<strong>on</strong>) and E NS (0.46 - calibrati<strong>on</strong>0.29 - validati<strong>on</strong>).Figure 1: Stream flow calibrati<strong>on</strong> and validati<strong>on</strong> for Ba watershedCONCLUSIONSIn this study, we integrated the spatial and temporal datasets using hydrologic simulati<strong>on</strong>model, coupled <strong>with</strong> remote sensing techniques and geographic informati<strong>on</strong> system. Theresults showed that the SWAT model could be successfully used to simulate the run<str<strong>on</strong>g>of</str<strong>on</strong>g>f fortwo major watersheds <str<strong>on</strong>g>of</str<strong>on</strong>g> Viti Levu, Fiji. The model performance <str<strong>on</strong>g>of</str<strong>on</strong>g> both the watershedsindicates that distributed rain gauge data helps to better predict the run<str<strong>on</strong>g>of</str<strong>on</strong>g>f through the SWATmodel and the calibrated model may be employed for further analysis in the area.REFERENCES1. Abbott M.B., Bathurst J.C., Cunge J.A., O‘C<strong>on</strong>nell P.E. and Rasmussen J., ―AnIntroducti<strong>on</strong> to the European Hydrological System – Systeme HydrologiqueEuropeen, ‖SHE‖, 2 : History and Philosophy <str<strong>on</strong>g>of</str<strong>on</strong>g> a Physically-based, DistributedModelling System‖, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, 87, 45-59, (1986)2. Van Griensven A., Francos A. and Bauwens W., Sensitivity Analysis and Autocalibrati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> an Integral Dynamic Model for water quality. Water Science andTechnology 43 (5), 321-328, (2002)43


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Integrated Catchment ManagementApproach for Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Lakes AndReservoirs (A Case Study for Irrigati<strong>on</strong>Tanks <str<strong>on</strong>g>of</str<strong>on</strong>g> Anekal Taluk, BangaloreH. Chandrashekar 1 K.V. Lokesh 2 Jyothi Roopa 3 G.Ranganna 41. Research Scholar, Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engg, Dr. Ambedkar Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology,Bangalore560056.&Senior Lecturer, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, MEI Polytechnic, Rajajinagar,Bangalore-560010chandru_mei2001@yahoo.co.in2. Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engg. Dr. Ambedkar Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Bangalore 560056.kvlokesh_2004@yahoo.co.in3. Research Scholar, Dept <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engg, Dr. Ambedkar Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology.Bangalore - 560056.Jyothi_roopa_hp@yahoo.co.in4. Visiting Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, CAS in Fluid Mechanics, Bangalore University, Bangalore.560001.granganna@yahoo.comAccess to safe drinking water remains an urgent necessity, as 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> urban and 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> ruralhouseholds still depend completely <strong>on</strong> untreated surface water or ground water [1]. In the lastfew decades, there has been a tremendous increase in the demand for fresh water due to rapidgrowth <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> and accelerated pace <str<strong>on</strong>g>of</str<strong>on</strong>g> industrializati<strong>on</strong>. Human health is threatened bymost <str<strong>on</strong>g>of</str<strong>on</strong>g> the agricultural development activities particularly in relati<strong>on</strong> to excessiveapplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> fertilizers and unsanitary c<strong>on</strong>diti<strong>on</strong>s. Rapid urbanizati<strong>on</strong>, especially indeveloping country like India, has affected the availability and quality surface water andground water due to over exploitati<strong>on</strong> and improper waste disposal, especially in urban areas[2].Lakes and reservoirs are vital parts <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water ecosystems <str<strong>on</strong>g>of</str<strong>on</strong>g> any country. The waterquality <str<strong>on</strong>g>of</str<strong>on</strong>g> a lake is a reflecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> its catchment. Rapid populati<strong>on</strong> growth incatchment z<strong>on</strong>es has resulted in intensive use <str<strong>on</strong>g>of</str<strong>on</strong>g> land for farming, deforestati<strong>on</strong>, industrialgrowth and land use changes due to expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban centers has resulted in degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>lakes and reservoirs. Lakes and reservoirs serve as an important life support system byhelping in recharging <str<strong>on</strong>g>of</str<strong>on</strong>g> aquifers and regulating hydrological regimes. The lakes andreservoirs also act as natural traps for sediments and nutrients thereby helps to regulate water45


quality and sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the river systems from the catchment area. The pollutantsentering from point and n<strong>on</strong>-point sources, euthrophicati<strong>on</strong> are the main cause fordegradati<strong>on</strong>.The study area viz., Muthanallur lake catchment has an areal extent <str<strong>on</strong>g>of</str<strong>on</strong>g> 182 sqkm. The area isbound by East L<strong>on</strong>gitude 77º 34' 39"- 77º 44' 22" and North Latitude 12º 45' 00" – 12º 52'59" <str<strong>on</strong>g>of</str<strong>on</strong>g> Survey <str<strong>on</strong>g>of</str<strong>on</strong>g> India topographic map No 57H/9. The area forms a part <str<strong>on</strong>g>of</str<strong>on</strong>g> Anekal Taluk <str<strong>on</strong>g>of</str<strong>on</strong>g>Bangalore South District. It is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-arid tract and falls under the agro-climaticenvir<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Eastern Dry Z<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> Karnataka. Jigani lake, Hennagara lake and Mutthanallurlake form a series <str<strong>on</strong>g>of</str<strong>on</strong>g> lake system in P<strong>on</strong>nayar river basin. The Jigani lake is located in Jiganihobli, Hennagara located in Haragadde hobli and Muttanallur lake is located in semi urbanregi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Anekal taluk , Bangalore urban district. The catchment areas <str<strong>on</strong>g>of</str<strong>on</strong>g> these lakes includerapidly developing industrial area <str<strong>on</strong>g>of</str<strong>on</strong>g> Jigani, and Bommasandra.The Land use map andDrainage map is shown in Fig 1 and 2 respectively. The urban settlement has increasedrapidly in these areas <strong>with</strong> poor urban infrastructure. The domestic and industrial sewage arebeing directly disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> into these lake systems. The natural drainage network is alsodisturbed <strong>with</strong> the c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new layouts across the natural streams. The encroachmentsal<strong>on</strong>g the natural valley have resulted in decreased inflow into these lakes. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g>water is also polluted due to the inflow <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic sewage and industrial sewage. The lakeshave been used as waste disposal sites.FIG 1.LANDUSE MAPFIG 2.DRAINAGE MAPThe paper discusses the integrated catchment studies for better management <str<strong>on</strong>g>of</str<strong>on</strong>g> the citedlakes. The physico-chemical and bacteriological analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> surface and ground watersamples in the reservoir and their catchments reveal that water is polluted at certain locati<strong>on</strong>s.Water samples were analyzed for irrigati<strong>on</strong> requirements and USSL diagram, Piper trilineardiagram were plotted for classificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water samples and spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waterquality parameters is carried out using GIS Arc-Info s<str<strong>on</strong>g>of</str<strong>on</strong>g>tware. Remote sensing data are used


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)for mapping land use and land cover. Physical and chemical analyses <str<strong>on</strong>g>of</str<strong>on</strong>g> soil samples in thecatchment area reveal low fertility index in certain locati<strong>on</strong>s. Morphometric analyses werecarried out for all the catchments to determine the linear, areal and relief aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> thecatchments. Double- ring infiltrometer is used for field infiltrati<strong>on</strong> measurements[3].Evapotranspirati<strong>on</strong> studies were also carried out using Penmen-M<strong>on</strong>teth method[4], soilerosi<strong>on</strong> potential z<strong>on</strong>e mapping is d<strong>on</strong>e using Universal Soil Loss Equati<strong>on</strong> (USLE) [5]which shows severe erosi<strong>on</strong> at certain locati<strong>on</strong>s in the catchments. Estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f iscarried out using SCS-Curve number method using GIS. The Integrated ReservoirManagement approach will be an effective tool for sustainable management <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes andreservoirs. The paper also discusses various management plans for effective management <str<strong>on</strong>g>of</str<strong>on</strong>g>reservoirs through integrated reservoir catchment management approach.II .REFERENCES1. R.Srikanth, ‗Challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainable water quality management in rural India‘ Currentscience, Vol.97, NO.3, 10 August 2009.2. Ramakrishanaiah et., al ‗Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Water quality Index for ground water in TumkurTaluk, Karnataka‘ E-Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry 2009,6(2), p523-530.3. Ranganna..et.,al ‗Studies <strong>on</strong> infiltrati<strong>on</strong> characteristics in soils <str<strong>on</strong>g>of</str<strong>on</strong>g> Pavanje river basin <str<strong>on</strong>g>of</str<strong>on</strong>g>Dakshina Kannada district (Karnataka State)‘. <strong>Hydrology</strong> Jnl. <str<strong>on</strong>g>of</str<strong>on</strong>g> IAH, Vol XIV, No.1.,pp. 33-40.4. Richard Allen et al., ‗Crop evapotranspirati<strong>on</strong>-Guidelines for computing cropwaterrequirement‘-FAO Irrigati<strong>on</strong> and drainage paper 56,19985. P.K.Gupta and S.Panigrahy ‗ Predicting the spatio-temporal variati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run-<str<strong>on</strong>g>of</str<strong>on</strong>g>fgenerati<strong>on</strong> in India using remotely sensed input and Soil C<strong>on</strong>servati<strong>on</strong> Service curvenumber model‘ Current science, Vol.95,No11,10 th December 200847


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Determining the Temporal Trend inAnnual Stream flow Series in WaingangāSub-Basin, IndiaArun Kumar TaxakM.Tech. student, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, IIT RoorkeeE-mail - aruntaxak@gmail.comRecords <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> carb<strong>on</strong> dioxide indicate a dramatic increase sincethe beginning <str<strong>on</strong>g>of</str<strong>on</strong>g> the industrial revoluti<strong>on</strong>. C<strong>on</strong>siderable scientific attenti<strong>on</strong> has been focused<strong>on</strong> a measured increase in atmospheric C0 2 and a suspected corresp<strong>on</strong>ding change in climate.Such a change in climate is be expected to have a magnified effect <strong>on</strong> hydrologic time seriesThis paper presents trends for the last half century <str<strong>on</strong>g>of</str<strong>on</strong>g> stream flows obtained from 10 stati<strong>on</strong>sin Wainganga sub-basin, India. From 10 stati<strong>on</strong>s stati<strong>on</strong> <strong>on</strong>ly Ashti (1965-2012) and Pauni(1964-2005) has l<strong>on</strong>g range <str<strong>on</strong>g>of</str<strong>on</strong>g> stream flow records. Other stati<strong>on</strong>s in the new in the basin andtheir data ranges from 80's. The procedure utilized the Mann -Kendall (MK) n<strong>on</strong>-parametrictest for m<strong>on</strong>ot<strong>on</strong>ic trend detecti<strong>on</strong> ( Modified Mann Kendall (MMK) where there issignificant autocorrelati<strong>on</strong> is present in the series) and Sen's slope estimator test formagnitude <str<strong>on</strong>g>of</str<strong>on</strong>g> change over time. Change in percentage was discussed in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> percentagechange over mean. There is a decreasing trend in the stream flow <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin although notsignificant for all stati<strong>on</strong>s. Ashti and Pauni stati<strong>on</strong>s has showed decrease <str<strong>on</strong>g>of</str<strong>on</strong>g> (-14.8%) and (-49.0%) in their mean discharge. It is c<strong>on</strong>cluded that this decreasing trend in streamflowshould be associated <strong>with</strong> decrease in precipitati<strong>on</strong> in the Godavari basin (-24.6%) (Kumarand Jain, 2004 ) <str<strong>on</strong>g>of</str<strong>on</strong>g> which Wainganga is a sub-basin. The temperature in Godavari basin isincreasing ( Jhajharia et al, 2013) . This is impacting the hydrological regime <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin.The results are expected to assist water resources managers and policy makers in makingbetter planning decisi<strong>on</strong>s in Wainganga basin.Keywords: climate change, Wainganga basin, streamflow, Mann-Kendall Test, Sen' slopeestimater test49


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall-Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f Models forGauged Micro Agricultural Watershed inBhilwara DistrictRagini Dashora 1 , Yogita Dashora 2 , Upma Sharma 3 ,Pratibha Katara 4 , Mangal Patil 51-5, Research Scholars, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water Engineering,College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology &Engineering, Maharana Pratap University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture & Technology, Udaipur, Rajasthan– 313001 Email-ID: raginidashora@gmail.comA field experiment was c<strong>on</strong>ducted at dry land farming research stati<strong>on</strong>, Arjia, Bhilwara todevelop water yield models for a micro agricultural watershed. For the study,rainfall andrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f data <str<strong>on</strong>g>of</str<strong>on</strong>g> selected 10 years(1994, 1996, 1997, 2004, 2006, 2007, 2008, 2009, 2010 and2011)were used. Linear regressi<strong>on</strong> model was found best under gauged c<strong>on</strong>diti<strong>on</strong>. Similarly,for different m<strong>on</strong>so<strong>on</strong> m<strong>on</strong>th‘s rainfall – run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models were developed. Results revealed thatIII order polynomial model was best for June and linear regressi<strong>on</strong> model was best for July,August and September m<strong>on</strong>ths. II order polynomial model was best for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> annualrun<str<strong>on</strong>g>of</str<strong>on</strong>g>f series.Keywords: Gauged watershed, Rainfall – Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f model.INTRODUCTIONAgriculture is primarily rain dependent in the Bhilwara district. A small deviati<strong>on</strong> from thenormal rainfall promote drought like c<strong>on</strong>diti<strong>on</strong>s in thedistrict. Maize is the principal crop <str<strong>on</strong>g>of</str<strong>on</strong>g>Bhilwara district (Rajasthan) grown during the kharif seas<strong>on</strong> <strong>with</strong> very low (


epresenting physical c<strong>on</strong>diti<strong>on</strong>s (Grays<strong>on</strong> et al., 1992; Chiew et al., 1993; Sorooshian et al.,1993; Hughes and Sani, 1994; Beven, 1997; Moore, 2007; McIntyre and Ai-Qurashi,2009).However, the problem resolving issues in many cases, particularly for smallwatersheds, are restrained by limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> data required for calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> model parameters.MATERIAL & METHODOLOGYDescripti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Study AreaBhilwara district <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan state falls under agro climatic z<strong>on</strong>e IV.A <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan state. Afield experiment was c<strong>on</strong>ducted at Dry Land Farming Research Stati<strong>on</strong>, Arjia, Bhilwara(Rajasthan), which is situated at 24°20‘ N latitude and 74°20‘ E l<strong>on</strong>gitude and at an elevati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> 100 m from mean sea level (Fig.1). Bhilwara district <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan state is draught pr<strong>on</strong>e insouthern Rajasthan. This district also falls under the disadvantaged districts identified by theplanning commissi<strong>on</strong>. The agriculture in this district is characterized by recurrent draught,sloppy lands, dominance <str<strong>on</strong>g>of</str<strong>on</strong>g> low value and holding, poor irrigati<strong>on</strong> sources, poor livestockproductivity, lack <str<strong>on</strong>g>of</str<strong>on</strong>g> farm employment opportunities, poor market support, and n<strong>on</strong>availability<str<strong>on</strong>g>of</str<strong>on</strong>g> credit and high rate <str<strong>on</strong>g>of</str<strong>on</strong>g> illiteracy. The major crops <str<strong>on</strong>g>of</str<strong>on</strong>g> the Kharif seas<strong>on</strong> aremaize, pulses, sorghum, sesame and cott<strong>on</strong> while major crops <str<strong>on</strong>g>of</str<strong>on</strong>g> the rabi seas<strong>on</strong> are wheat,gram and mustard.Fig 1: Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Study Area


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Development <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall – Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f ModelsRainfall-Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f model has been developed analytically as suggested by (Shakir, 2009;Shakir et al., 2010 and Shakir, 2011). The basis <str<strong>on</strong>g>of</str<strong>on</strong>g> model was a water balance between: (1)Input the catchment as rain fall, (2) Out puts from the catchment as run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and losses. Thewater balance equati<strong>on</strong> may be expressed as,Q = P − L . . . (1)Eq. (1) can be rewritten as:Q= 1 − L P PWhere,P = Rainfall over a watershed for a specific time period, (mm),Q = Surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f corresp<strong>on</strong>ding to the rainfall (P), (mm), and. . . (2)L = Losses from the rainfall P due to intercepti<strong>on</strong>, initial abstracti<strong>on</strong> and infiltrati<strong>on</strong>.All variable are measured in unit <str<strong>on</strong>g>of</str<strong>on</strong>g> length.However, losses are c<strong>on</strong>sidered as negligible orzero for simple estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The Equati<strong>on</strong> (2) was reduced as,Q= 1 P . . . (3)The different types <str<strong>on</strong>g>of</str<strong>on</strong>g> model such as linear, exp<strong>on</strong>ential, power, II order polynomial and IIIorder polynomial models were used to develop water yield (rainfall run<str<strong>on</strong>g>of</str<strong>on</strong>g>f) models for studyarea. The mathematical expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different models is given in Table 1.Table 1: Mathematical expressi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different water yield modelsS. No. Model name Mathematical Expressi<strong>on</strong> Eq. No.1 Linear model Q r = (a 1 )r +a 2 . . . (4)2 Exp<strong>on</strong>ential model Q r = (a 1 ) e b (r) . . . (5)3 Power model Q r = a 1 (r) b . . . (6)4 II order polynomial Q r = a 1 (r) 2 + a 2 (r) + a 3 . . . (7)5 III order polynomial Q r = a 1 (r) 3 + a 2 (r) 2 + a 3 (r) + a 4 . . . (8)Where,Q r = Observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f depth, (mm),r = Observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall, (mm), andb, a 1 , a 2 , a 3 , a 4 = C<strong>on</strong>stants.53


The water yield models were also developed based <strong>on</strong> gauged micro agricultural watershedc<strong>on</strong>diti<strong>on</strong>s. The different water yield models were developed for different m<strong>on</strong>so<strong>on</strong> m<strong>on</strong>thsand annual rainfall.Validati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modelsValidati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted run<str<strong>on</strong>g>of</str<strong>on</strong>g>f yields by developed water yield models for the study area wasmade by comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> predicted and the observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f series. A linear correlati<strong>on</strong> betweenpredicted and observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f series indicates better closeness between predicted andobserved run<str<strong>on</strong>g>of</str<strong>on</strong>g>f series. The values <str<strong>on</strong>g>of</str<strong>on</strong>g> correlati<strong>on</strong> coefficient (R) between predicted andobserved run<str<strong>on</strong>g>of</str<strong>on</strong>g>f was determined which should be closer to <strong>on</strong>e for better closeness.Performance evaluati<strong>on</strong> criteria for developed RR modelThis study employed two quantitative evaluati<strong>on</strong> criteria to assess the predictive efficiency <str<strong>on</strong>g>of</str<strong>on</strong>g>rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f model. The first criteri<strong>on</strong> was coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> that measures thecloseness between the observed and predicted value <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The sec<strong>on</strong>d criteri<strong>on</strong> was theerrors <str<strong>on</strong>g>of</str<strong>on</strong>g> measures that represent root mean square error between the pair <str<strong>on</strong>g>of</str<strong>on</strong>g> the data values.The first evaluati<strong>on</strong> criteria was the coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> (R 2 ), which is expressed as,R 2 =O i 2 −{O i P i −[O i P i ] 2NO 2i } P 2 Ni −{P 2i }N. . . (9)Where,O i = Observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, (mm),P i = Predicted run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, (mm), andN = Number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s.The value <str<strong>on</strong>g>of</str<strong>on</strong>g> R 2 will lie between 0 and 1 and will indicate how closely the observed andpredicted run<str<strong>on</strong>g>of</str<strong>on</strong>g>f related. If coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> is closer to <strong>on</strong>e it indicate bettercloseness.The sec<strong>on</strong>d evaluati<strong>on</strong> criteria was the root mean square error (RSME), which indicates thedifference between a pair <str<strong>on</strong>g>of</str<strong>on</strong>g> data values and is expressed as,RSME =N j =1 O i −P 2 iN. . . (10)Where,O i = Observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, (mm),P i = Predicted run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, (mm), andN = Number <str<strong>on</strong>g>of</str<strong>on</strong>g> observati<strong>on</strong>s.The value <str<strong>on</strong>g>of</str<strong>on</strong>g> RSME should be close to Zero for better predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)RESULTS AND DISCUSSIONRainfall – run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models were developed to predict run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from a micro agriculturalwatershed under gauged.Rainfall – Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models for gauged watershedM<strong>on</strong>thly rainfall, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f data were collected forselected ten years (1994, 1996, 1997, 2004, 2006, 2007, 2008, 2009, 2010 and 2011) in microagricultural watershed and are given in Table 2 & 3. Mean m<strong>on</strong>thly rainfall, mean run<str<strong>on</strong>g>of</str<strong>on</strong>g>fproducing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f observed were calculated from daily data and are shown inTable 4. Results revealed that the highest mean rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall wasrecorded in the m<strong>on</strong>th <str<strong>on</strong>g>of</str<strong>on</strong>g> August <strong>with</strong> the highest run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> 441.21 m 3 . The total mean run<str<strong>on</strong>g>of</str<strong>on</strong>g>fproducing rainfall produced run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> 1004.37 m 3 from 1.99 ha micro agricultural watershed.55


Table 2: Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from the micro agricultural watershed in selected ten years at D.F.R.S., Arjia, Bhilwara.S.M<strong>on</strong>thsNo.Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f (m 3 ) MeanRun<str<strong>on</strong>g>of</str<strong>on</strong>g>f1994 1996 1997 2004 2006 2007 2008 2009 2010 2011(m 3 )1 June 386.02 0 0 0 197.76 0 155.8 0 149.65 111.52 100.072 July 1201.09 390.48 501.23 311 438.58 232.19 71.96 150.57 32.08 227.61 355.683 Aug 150.1 687.45 71.42 1157.95 969.856 20.38 126.58 0 662.77 565.58 441.214 Sep 63.96 158.46 54.53 0 88.15 0 234.64 0 0 174.25 77.405 Oct 0 0 0 0 0 0 0 0 0 0 0.006 Nov 0 0 0 0 0 0 0 0 300.119 0 30.017 Dec 0 0 0 0 0 0 0 0 0 0 0.00Total 1801.17 1236.4 627.18 1468.95 1694.34 252.57 588.98 150.57 1144.619 1078.96Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f,Table90.51 62.13 31.51 73.82 85.14 12.69 29.59 7.57 57.51 54.23(mm)3:Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Producing rainfall for micro agricultural watershed in selected ten years at D.F.R.S., Arjia, Bhilwara.Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall (mm) Mean Run<str<strong>on</strong>g>of</str<strong>on</strong>g>fS.M<strong>on</strong>thNo.1994 1996 1997 2004 2006 2007 2008 2009 2010 2011Producingrainfall(mm)1 June 179.8 0 163 0 89 0 76 0 73 68 64.882 July 401.6 162.4 46.8 140 210 168.8 65 146 49 147 153.663 Aug 61 267.4 46.8 469.4 348 28.4 95 0 202 218.4 173.644 Sep 26 103 38 0 43 0 118.4 0 0 65 39.345 Oct 0 0 0 0 0 0 0 0 0 0 0.006 Nov 0 0 0 0 0 0 0 0 126 0 12.607 Dec 0 0 0 0 0 0 0 0 0 0 0.00Total 668.4 532.8 294.6 609.4 690 197.2 354.4 146 450 498.457


Table 4: Mean m<strong>on</strong>thly rainfall, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f <str<strong>on</strong>g>of</str<strong>on</strong>g> selected tenyears from micro agricultural watershed D.F.R.S., Arjia, BhilwaraMean Run<str<strong>on</strong>g>of</str<strong>on</strong>g>fMean M<strong>on</strong>thlyProducingS.No. M<strong>on</strong>ths rainfall,rainfall,mmmmMeanRun<str<strong>on</strong>g>of</str<strong>on</strong>g>f,1 June 100.48 64.88 100.072 July 268.92 153.66 355.683 Aug 269.20 173.64 441.214 Sep 80.38 39.34 77.405 Oct 2.14 0.00 0.006 Nov 18.62 12.60 30.017 Dec 3.82 0.00 0.00743.56 444.12 1004.37Developed models (RR)The five different models have been developed between observed daily rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>fbased <strong>on</strong> selected ten years data. The five different models namely linear model, II orderpolynomial model,III order polynomial model, exp<strong>on</strong>ential model, and power model weredeveloped. Similarly, rainfall – run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models for different m<strong>on</strong>ths <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong> seas<strong>on</strong> weredeveloped and are shown in Table 5 and 6. Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f predicti<strong>on</strong> models were also developedbased <strong>on</strong> annual rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f for selected ten years and are shown in Table 7.Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> best modelThe different models were developed under gauged c<strong>on</strong>diti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micro agricultural watershedin the Bhilwara regi<strong>on</strong> based <strong>on</strong> selected ten years. The simple model based <strong>on</strong> rainfall <strong>on</strong>lyhas been developed for micro agricultural watershed <str<strong>on</strong>g>of</str<strong>on</strong>g> Bhilwara district using linear model,II order polynomial model, III order polynomial model, exp<strong>on</strong>ential model, power model andtested for suitability. The run<str<strong>on</strong>g>of</str<strong>on</strong>g>f estimated by developed models and observed run<str<strong>on</strong>g>of</str<strong>on</strong>g>f hasbeen compared using root mean square error (RMSE) and coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> (R 2 ).Value <str<strong>on</strong>g>of</str<strong>on</strong>g> R 2 and RSME <str<strong>on</strong>g>of</str<strong>on</strong>g> the developed models are shown in Table 5, Table 6 and Table 7.Results revealed that linear regressi<strong>on</strong> model has lesser value <str<strong>on</strong>g>of</str<strong>on</strong>g> RMSE and higher value <str<strong>on</strong>g>of</str<strong>on</strong>g>R 2 as compared to rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the models (Table 5). Thus, linear regressi<strong>on</strong> model has been foundthe best model for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from a micro agricultural watershed in the Bhilwara(Fig.2).The model structure <str<strong>on</strong>g>of</str<strong>on</strong>g> developed model is expressed as,m 3


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Q r= 0.138(r) - 0.001 (R² = 0.821) . . . (11)Table 5: Developed rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models, coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> (R 2 ) and rootmean square error (RMSE) for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from gauged microagricultural watershed at D.F.R.S. Arjia, Bhilwara.Model a 1 a 2 a 3 a 4 b R 2 RMSELinear 0.138 -0.001 - - - 0.821 2.73II poly 0.00 0.079 0.801 - - 0.855 3.86III poly 2E-06 -0.00 0.137 -0.434 - 0.858 4.13Exp 2.046 - - - 0.016 0.559 10.49Power 0.077 - - - 1.08 0.626 2.77Similarly, III order polynomial model was found best for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in June m<strong>on</strong>th.Whereas, linear regressi<strong>on</strong> model was found best model in July, September and Augustm<strong>on</strong>ths. II order polynomial model was found best model for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> annual run<str<strong>on</strong>g>of</str<strong>on</strong>g>ffrom micro agricultural watershed.The model structure <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall – run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models for different m<strong>on</strong>ths were expressed as,i) JuneQ r= -3E-05(r) 3 + 0.009(r) 2 - 0.672(r) + 19.89 (R² = 0.834) . . . (12)ii) JulyQ r= 0.171(r) - 3.922 (R² = 0.887) . . . (13)iii) AugustQ r= 0.13(r) + 0.188 (R² = 0.775) . . . (14)iv) SeptemberQ r= 0.102(r) + 0.025 (R² = 0.939) . . . (15)Similarly, the model structure for annual rainfall - run<str<strong>on</strong>g>of</str<strong>on</strong>g>f model was expressed as,Q a= 3E-05(X 1) 2 + 0.077(X 1) - 24.64 (R² = 0.956) . . . (16)59


Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f depth, mm5040Q r = 0.138(r) - 0.001R² = 0.82130201000 50 100 150 200 250 300Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall, mmFig.2: Relati<strong>on</strong>ship between run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f for selected 10 yearsFig. 3: Relati<strong>on</strong>ship between run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in June m<strong>on</strong>th forselected 10 years


Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f depth, mmRun<str<strong>on</strong>g>of</str<strong>on</strong>g>f depth, mm<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)50454035302520151050Q r = 0.171(r) - 3.922R² = 0.8870 50 100 150 200 250 300Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall, mmFig. 4: Relati<strong>on</strong>ship between run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in July m<strong>on</strong>th forselected 10 years2520Q r = 0.13(r) + 0.188R² = 0.7751510500 20 40 60 80 100 120 140 160Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall, mmFig. 5: Relati<strong>on</strong>ship between run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in August m<strong>on</strong>th forselected 10 years61


Fig.6: Best model for run<str<strong>on</strong>g>of</str<strong>on</strong>g>f producing rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f in September m<strong>on</strong>th forselected 10 yearsFig. 7: Relati<strong>on</strong>ship between annual rainfall – run<str<strong>on</strong>g>of</str<strong>on</strong>g>f for selected 10 yearsTable 6: Developed rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models, coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> (R 2 ) and rootmean square error (RMSE) in different m<strong>on</strong>ths for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f fromgauged micro agricultural watershed at D.F.R.S. Arjia, Bhilwara.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurModelJunea 1 a 2 a 3 a 4 b R 2 RMSELinear 0.100 0.536 - - - 0.706 0.82II poly 0.002 -0.219 +10.55 - - 0.833 2.42III poly -3E-05 0.009 -0.672 19.89 - 0.834 0.785Exp 2.-45 - - - 0.013 0.716 0.79Power 0.271 - - - 0.782 0.647 0.865ModelJulya 1 a 2 a 3 a 4 b R 2 RMSELinear 0.171 -3.92 - - - 0.887 2.92II poly 0.00 0.067 0.404 - - 0.918 6.36III poly 2E-06 -0.0 0.145 -1.437 - 0.920 6.47Exp 1.956 - - - 0.014 0.582 7.00Power 0.024 - - - 1.323 0.691 2.92ModelAugusta 1 a 2 a 3 a 4 b R 2 RMSELinear 0.13 0.188 - - - 0.775 1.99II poly 1E-05 0.128 0.229 - - 0.775 1.99III poly -6E-06 0.001 0.044 1.568 - 0.778 2.81Exp 2.191 - - - 0.018 0.587 2.82Power 0.140 - - - 0.970 0.611 2.07ModelSeptembera 1 a 2 a 3 a 4 b R 2 RMSELinear 0.102 0.025 - - - 0.939 0.713II poly 0.00 0.070 0.699 - - 0.942 1.25III poly 1E-06 4E-06 0.080 0.598 - 0.942 3.37Exp 1.606 - - - 0.018 0.783 0.846Power 0.133 - - - 0.921 0.801 0.842Table 7: Developed rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f, coefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> determinati<strong>on</strong> (R 2 ) and root meansquare error (RMSE) for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> annual run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from micro agriculturalwatershed at D.F.R.S. Arjia, Bhilwara.63


Model a 1 a 2 a 3 a 4 b R 2 RMSELinear 0.117 -37.76 - - - 0.953 6.25II poly 3E-05 0.077 -24.64 - - 0.956 2.20III poly 2E-07 1E-05 0.181 62.45 - 0.959 29.58Exp 3.682 - - - 0.003 0.910 11.64Power 2E-05 - - - 2.177 0.965 12.28CONCLUSIONSThe rainfall run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models were also developed for gauged micro agriculturalwatershed.Linear model gave best results <strong>with</strong> daily rainfall data and II order polynomialmodel gave best results <strong>with</strong> annual rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g> gauged micro agricultural watershed. III orderpolynomial model was found best for June and Julyand linear model was found best forAugust and September m<strong>on</strong>th. The model structure <str<strong>on</strong>g>of</str<strong>on</strong>g> linear model(for daily rainfall data) isas under:Q r= 0.138(r) - 0.001 (R² = 0.821)REFERENCESBeran, M.A. and Redier, J.A. 1985. Hydrological aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> drought. UNESCO-WMO.Studies and Reports in <strong>Hydrology</strong>, 39:149.Beven, K.J. 1997. TOPMODEL: a Critique. Hydrological process, 11(9): 1069-1086.Chiew, F.H.S., Stewards<strong>on</strong>, M.J. and McMoh<strong>on</strong>, T.A. 1993. Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> six rainfallrun<str<strong>on</strong>g>of</str<strong>on</strong>g>fmodelling approaches. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, 147:1-36.Grays<strong>on</strong>, R.B., Moore, I.D. and McMoh<strong>on</strong>, T.A. 1992. Physically based hydrologicmodeling-2 Is the c<strong>on</strong>cept realistic? Water Resource Res., 28(10): 2659-2666.Hughes, D.A., and Sani, K. 1994. A semi-distributed, variable time interval model <str<strong>on</strong>g>of</str<strong>on</strong>g>catchment hydrology- structure and parameter estimati<strong>on</strong> procedure. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>Hydrology</strong>, 155: 265-291.Kar, G., James, B.K., Singh, R. and Mahapatru, I.C. 2004. Agro-climate and extreme weatheranalysis for successful crop producti<strong>on</strong> in Orissa Water Technology Centre forEastern Regi<strong>on</strong>, Bhubaneswar- Orissa, India. Research Bulletin 22/2004, pp: 1-76.McIntyre, N. and Ai-Qurashi A. 2009. Performance <str<strong>on</strong>g>of</str<strong>on</strong>g> ten rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models applied toan arid catchment in Oman. Envir<strong>on</strong>mental DOI:10.1016/ J. ens<str<strong>on</strong>g>of</str<strong>on</strong>g>t. 2008.11.001.Moore, R.J. 2007. The PDM rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f model. <strong>Hydrology</strong> and Earth Sciences, 11(1):483-499.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurShakir, A. 2009. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial ground water recharge from a p<strong>on</strong>d in a small watershed.PhD Thesis. Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Roorkee, India, pp: 173.Shakir, A. 2011. A mathematical model for estimating surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from small watersheds.Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil C<strong>on</strong>servati<strong>on</strong>, 39 (3):188-194.Shakir, A., Gosh, N.C. and Singh, R. 2010. Rainfall - run<str<strong>on</strong>g>of</str<strong>on</strong>g>f simulati<strong>on</strong> using normalizedantecedent precipitati<strong>on</strong> index. Hydrol. Sciences Journal, 55(2): 266-274.Sorooshian, S., Danun. Q. and Gupta, V.K. 1993. Calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall-run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models:Applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> global optimizati<strong>on</strong> to the Sacramento soil moisture accountingmodel. Water Resour. Res., 29(4): 1185-1194.65


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Global Warming and WetlandDegradati<strong>on</strong> by Sequestering Carb<strong>on</strong>C<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> Ipomoea ViaD. Banupriya, Tasneem Abbasi, S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014Ipomoea (Ipomoea carnea, also called I.fistulosa), an amphibious shrub, is am<strong>on</strong>g the mostdominant and harmful <str<strong>on</strong>g>of</str<strong>on</strong>g> the weeds that have infested the world‘s tropical and sub-tropicalregi<strong>on</strong>s. It is an evergreen, flowering, exotic plant which was initially used to make fencesbut has become very widespread owing to its hardiness, high reproductive success, and veryfast rate <str<strong>on</strong>g>of</str<strong>on</strong>g> growth. Its rampant col<strong>on</strong>izati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> landmasses and shallow wetlands has proveddisastrous in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> loss <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity, loss <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients, and other forms <str<strong>on</strong>g>of</str<strong>on</strong>g>ecodegradati<strong>on</strong>. It is a particularly serious scourge <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources as it first col<strong>on</strong>izes thandestroys wetlands.The degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dead leaves and plants <str<strong>on</strong>g>of</str<strong>on</strong>g> ipomoea, which occurs both aerobically andanaerobically in the nature, release enormous quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> global warming gases CO 2 andCH 4 . Hence we have made attempts to vermicompost ipomoea so that most its carb<strong>on</strong> c<strong>on</strong>tentcan be returned to the soil. This paper describes these efforts.KG C<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> global warming Banu 23.10.1367


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurDevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> Regi<strong>on</strong>al Flood FrequencyRelati<strong>on</strong>ships for Gauged Catchments <str<strong>on</strong>g>of</str<strong>on</strong>g>Upper Indo-Ganga Plains Subz<strong>on</strong>e 1 (E)Digambar Singh, Scientist B and Rakesh Kumar, Scientist F<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, RoorkeeE.Mail: dsingh26903@gmail.comPredicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> magnitudes <str<strong>on</strong>g>of</str<strong>on</strong>g> likely occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> floods is <str<strong>on</strong>g>of</str<strong>on</strong>g> a great importance for soluti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> a variety <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources problems. As per the Indian hydrologic design criteria,frequency based floods find their applicati<strong>on</strong>s in estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> design floods for almost all thetypes <str<strong>on</strong>g>of</str<strong>on</strong>g> hydraulic structures viz. small size dams, barrages, weirs, road and railway bridges,cross drainage structures, flood c<strong>on</strong>trol structures etc., excluding the large and intermediatesize dams. However, for design <str<strong>on</strong>g>of</str<strong>on</strong>g> large and intermediate size dams probable maximum flood(PMF) and standard project flood (SPF) are adopted, respectively. Whenever, rainfall or riverflow records are not available at or near the site <str<strong>on</strong>g>of</str<strong>on</strong>g> interest, it is difficult for hydrologists orengineers to derive reliable flood estimates, directly. In such a situati<strong>on</strong>, flood formulaedeveloped for the regi<strong>on</strong> are <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the alternative methods for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> design floods,especially for small to medium catchments. The c<strong>on</strong>venti<strong>on</strong>al flood formulae developed fordifferent regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> India are empirical in nature and do not provide estimates for desiredreturn periods; and thus do not meet the requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the Indian hydrologic design criteria. Further, in a developing country like India a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> small to medium sizecatchments are ungauged and many water resources projects are being planned in suchcatchments. Hence, there is a need for development <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>al flood frequency relati<strong>on</strong>shipsbased <strong>on</strong> the state <str<strong>on</strong>g>of</str<strong>on</strong>g> art technique <str<strong>on</strong>g>of</str<strong>on</strong>g> L-moments for predicti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> floods <str<strong>on</strong>g>of</str<strong>on</strong>g> various returnperiods for the gauged and ungauged catchments <str<strong>on</strong>g>of</str<strong>on</strong>g> the various regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> our country.L-moments are a recent development <strong>with</strong>in statistics. The L-moments <str<strong>on</strong>g>of</str<strong>on</strong>g>fer significantadvantages over ordinary product moments. This paper explains screening <str<strong>on</strong>g>of</str<strong>on</strong>g> the annualmaximum peak flood data employing the L-moments based discordancy measure (D i ) andtesting <str<strong>on</strong>g>of</str<strong>on</strong>g> homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> a regi<strong>on</strong> using heterogeneity measure (H). The paper alsoillustrates procedure <str<strong>on</strong>g>of</str<strong>on</strong>g> identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the robust frequency distributi<strong>on</strong> am<strong>on</strong>gst the variousdistributi<strong>on</strong>s, based <strong>on</strong> L-moment ratio diagram and Z dist -statistic criteria.69


In this study, the annual maximum peak flow data <str<strong>on</strong>g>of</str<strong>on</strong>g> 21 stream flow gauging sites <str<strong>on</strong>g>of</str<strong>on</strong>g> smallcatchments <str<strong>on</strong>g>of</str<strong>on</strong>g> the Upper Indo-Ganga plains Subz<strong>on</strong>e-1 (e) <str<strong>on</strong>g>of</str<strong>on</strong>g> India are screened using the discordancymeasure (D i ) and homogeneity <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> is then tested employing the L-moments basedheterogeneity measure (H). For computing heterogeneity measure H, 500 simulati<strong>on</strong>s are performedusing the Kappa distributi<strong>on</strong>. Comparative regi<strong>on</strong>al flood frequency analysis studies are c<strong>on</strong>ductedusing the L-moments based twelve frequency distributi<strong>on</strong>s namely Extreme value (EV1), Generalizedextreme value (GEV), Logistic (LOS), Generalized logistic (GLO), Normal (NOR), Generalizednormal (GNO), Uniform (UNF), Pears<strong>on</strong> Type-III (PE3), Exp<strong>on</strong>ential (EXP), Generalized Pareto(GPA), Kappa (KAP) and five parameter Wakeby (WAK). Based <strong>on</strong> the L-moments ratio diagramand |Z dist i | -statistic criteria, the robust frequency distributi<strong>on</strong> has been identified for the study area.Regi<strong>on</strong>al flood frequency relati<strong>on</strong>ships are developed for gauged catchments using the L-momentsbased robust identified frequency distributi<strong>on</strong>.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurInvestigati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Larva Infected WaterLogged Area in Jaipur cityRavi Kumar Sharma 1 , Sanjay Shekhawat 2 , Rajveer Singh 3 , Rohini Saini 4Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s,BT-1, Bio-Technology Park, RIICO Industrial Area, Sitapura, Jaipur1 ravipgi145@poornima.org, 2 sanjaypgi96@poornima.org,3 rajveerpgi81@poornima.org, 4 rohinipgi89@poornima.orgIntroducti<strong>on</strong> - Malaria is an infectious disease that is caused by mosquito-borne plasmodiumparasite which infects the red blood cells. It‘s <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the deadliest diseases in India. There‘sno vaccine for malaria yet and immunity occurs naturally through repeated infecti<strong>on</strong>.Comm<strong>on</strong> symptoms are fever, chills, vomiting, nausea, body ache, headache, cough andDiarrhea. If untreated, it can lead to complicati<strong>on</strong>s like jaundice, dehydrati<strong>on</strong>, anemia, brainmalaria, liver failure and kidney failure. Children, pregnant women, and the elderly – any<strong>on</strong>e<strong>with</strong> decreased immunity is at a greater risk [1].Causes <str<strong>on</strong>g>of</str<strong>on</strong>g> Malaria[1] Malaria is caused by the Plasmodium parasite. The parasite can be spread to humans inparasite, but <strong>on</strong>ly five types cause malaria in humans. These are listed below.Plasmodium falciparum: mainly found in Africa and resp<strong>on</strong>sible for most malariadeaths worldwide.Plasmodium vivax: mainly found in Asia and Latin America. This parasite producesless severe symptoms than Plasmodium falciparum, but it can stay in the liver for upto three years, which can result in relapses.Plasmodium ovale: fairly uncomm<strong>on</strong> and usually found in West Africa. It can remainin your liver for several years <strong>with</strong>out producing symptoms.Plasmodium malariae: this is quite rare and usually <strong>on</strong>ly found in Africa.Plasmodium knowlesi: this is very rare and found in parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Southeast Asia.The Plasmodium parasite is spread by female Anopheles mosquitoes, known as night-bitingmosquitoes, because they usually bite between dusk and dawn. If a mosquito bites a pers<strong>on</strong>infected <strong>with</strong> malaria, it can also become infected and spread the parasite <strong>on</strong> to others. The71


parasite enters the bloodstream and travels to the liver. The infecti<strong>on</strong> develops in the liverbefore re-entering the bloodstream and invading the red blood cells. The parasites grow andmultiply in the red blood cells. At regular intervals, the infected blood cells burst, releasingmore parasites into the blood. Infected blood cells usually burst every 48 to 72 hours. Eachtime they burst, will have a bout <str<strong>on</strong>g>of</str<strong>on</strong>g> fever, chills and sweating [1].MethodologySamples are collected from different locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pratap Nagar (ward no.32) and Jhotwara(ward no. 10) <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan. GPS (Global Positi<strong>on</strong>ing System) is used to acquirelatitude, l<strong>on</strong>gitude and elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground. Different tests are performed <strong>on</strong> these samplessuch as total solid (TS), total dissolved solid (TDS), pH, hardness and turbidity.Result and Discussi<strong>on</strong>Samples are collected from different locati<strong>on</strong>s and tests are performed <strong>on</strong> these samplesshowed in Table 1. Total Solid (TS) have somehow similar value <str<strong>on</strong>g>of</str<strong>on</strong>g> all samples instead <str<strong>on</strong>g>of</str<strong>on</strong>g>three samples same as for total dissolved solids (TDS). pH values <str<strong>on</strong>g>of</str<strong>on</strong>g> all samples have almostsame values, which indicated that all water samples are fresh water. Hardness test indicatethat water samples have value less than 600 mg/l (standard for drinking water), which showsthat all samples had fresh water. Turbidity values for samples are not showing muchvariati<strong>on</strong> except few samples, these values also indicated that samples had fresh water.Samples collected from all locati<strong>on</strong> have seen visibly carefully and found that all sampleshave larva formati<strong>on</strong>. As it has known that for larva development they require fresh andstagnant water bodies. The tests especially pH, hardness and turbidity showed that water isfresh in these waterlogged bodies. Therefore it is necessary to clean and remove larvadevelopment from these waterlogged areas.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurTable 1 Water Quality Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> Waterlogged AreaSAMPLEElevati<strong>on</strong>LatitudeL<strong>on</strong>gitudeTSTDSpHHardneTurbidity(Meter )(Degree(Degree(mg/L)(mg/L)ssNTUDecimal)Decimal)(mg/l)1. 1117 26.79955 75.81557 250000 150000 6.89 350 672. 1167 26.79946 75.81559 200000 150000 6.76 406 953. 1174 26.80170 75.81315 150000 100000 6.62 386 834. 1193 26.80817 75.80990 200000 150000 6.78 401 1585. 1411 26.80734 75.80605 100000 50000 6.88 396 1346. 1425 26.80744 75.80605 250000 200000 6.94 378 437. 1436 26.93331 75.73464 200000 150000 6.92 302 1708. 1440 26.93405 75.73615 150000 100000 6.65 298 2029. 1603 26.93405 75.73615 250000 200000 6.85 354 7710. 1446 26.94180 75.73334 300000 250000 6.82 346 84References1. http://www.webmd.com/a-to-z-guides/malaria-directory73


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurLand Use / Cover Change Detecti<strong>on</strong>:A Case Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Satluj River BasinHimachal Pradesh, IndiaBiswajit Das, Sanjay K. Jain, Sharad K. Jain<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Roorkeebiswajitdasrs@gmail.com, sanjay.nih@gmail.com, s_k_jain@yahoo.comLand use/ cover mapping is essential comp<strong>on</strong>ent where in other parameters are integrated <strong>on</strong>the requirement basis to drive various developmental index for land and water resource. Indiais facing a serious problem <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resource, especially that <str<strong>on</strong>g>of</str<strong>on</strong>g> water in view <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong>growth and ec<strong>on</strong>omic development. As a result land use land cover change has become atopic <str<strong>on</strong>g>of</str<strong>on</strong>g> tremendous interest <strong>with</strong>in the human dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>mental changeresearch community. Land Cover, defined as the assemblage <str<strong>on</strong>g>of</str<strong>on</strong>g>biotic and abiotic comp<strong>on</strong>ents <strong>on</strong> the earth‘s surface is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most crucial properties <str<strong>on</strong>g>of</str<strong>on</strong>g>the earth system. Land cover is that which covers the surface <str<strong>on</strong>g>of</str<strong>on</strong>g> the earth and land usedescribes how the land cover is modified. Land cover includes: water, snow, grassland,forest, and Land Use includes agricultural land, built up land, recreati<strong>on</strong> area, andwildlife management area etc, Developed through human interacti<strong>on</strong>s.The study area comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> the Satluj River basin up to the Kol dam, lies between 31º 13´ to32º 33´ North and 76º 50´ to 79º 00´ East, located in the Western Himalayan mountain range.The Satluj River rises in the lakes <str<strong>on</strong>g>of</str<strong>on</strong>g> Mansarovar and Rakastal in the Tibetan Plateau at anelevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> about 4572m and is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the main tributaries <str<strong>on</strong>g>of</str<strong>on</strong>g> the Indus River. The elevati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the catchment varies from 500 to 7000 m, although <strong>on</strong>ly a very small area exists above6000 m. Annual rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin varies from 384 mm to 2683 mm. Minimum andmaximum temperatures <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin ranges from 0.7° C to 17°C and 19°C to 31°Crespectively.The main objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the present study is to analyses the natureand extent land use/land cover changes. The study investigates the land use land coverchange in the last ten years. Traditi<strong>on</strong>al data from topographical map and other sources arealthough useful but can‘t completely provide the changes occurred during this period.75


Remote Sensing and Geographical Informati<strong>on</strong> System are recent techniques which are beingused for detecting land use and land cover change. Accordingly multi­temporal cloud freesatellite data set procured from (NRSC, Hyderabad). The satellite data <str<strong>on</strong>g>of</str<strong>on</strong>g> IRS LISS for datesi.e. 2000 and 2011 have been used in the present study.The images have been rectified and corrected for distorti<strong>on</strong> before further image processing.Land use/land cover change detecti<strong>on</strong> has been d<strong>on</strong>e through supervised classificati<strong>on</strong>method using maximum likelihood algorithm. In the supervised classificati<strong>on</strong>, minimumdistances to mean and nearest neighborhood classifiers were run <strong>on</strong> the LISS – III images.This approach is totally dependent <strong>on</strong> the spectral pattern recogniti<strong>on</strong> (Lillesend, kiffer 1994).This classificati<strong>on</strong> is performed based <strong>on</strong> the classificati<strong>on</strong> scheme <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> RemoteSensing Centre (NRSC), Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Space (Govt. <str<strong>on</strong>g>of</str<strong>on</strong>g> India) and indices like NormalizedDifference Vegetati<strong>on</strong> Index (NDVI), Normalized Difference Water Index (NDWI), andNormalized Difference Snow Index (NDSI) have been used.Satluj River Basin is a hilly area <strong>with</strong> forest cover as the main natural resource. LISS IIIImages <str<strong>on</strong>g>of</str<strong>on</strong>g> different dates i.e. October 2000 and 2011have been identified. The total studyarea is 18,419 km 2 . Seven land use classes are identified for change detecti<strong>on</strong> studies. Asrevealed from the study the land use in the regi<strong>on</strong> has changed significantly. In the year 2000,the regi<strong>on</strong> is dominated by barren land (53.39 %) followed by dense forest (21.24 %), snow(10.23 %), and open forest (7.37 %). Barren land is becoming dominant (mostly in upper part<str<strong>on</strong>g>of</str<strong>on</strong>g> the basin) due to the melting <str<strong>on</strong>g>of</str<strong>on</strong>g> snow during October which exposes the barren land andgreen part. Water bodies coverage is insignificant. Shadow areas <strong>with</strong> coverage <str<strong>on</strong>g>of</str<strong>on</strong>g> 8.18 % <str<strong>on</strong>g>of</str<strong>on</strong>g>total area have been found in the entire image analyzed. This shadow category is the lee-wardside <str<strong>on</strong>g>of</str<strong>on</strong>g> the mountain, and is mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> forest. In the year <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011, the land use percentages arebarren land (51.34%), dense forest (21.24%), snow (10.135), shadow (8.26%), open forest(6.26%), open land (2.33%), water body (0.41%). Water is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most indispensableresources and is the elixir <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Water bodies included streams and river. Water bodiescover <strong>on</strong>ly 0.29% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total area in the year 2000 which increases to 0.41% in 2011probably due to seas<strong>on</strong>al variati<strong>on</strong>. This is a good sign in view <str<strong>on</strong>g>of</str<strong>on</strong>g> the drinking waterresources. During the last ten years, the forest coverage increased by 2%, due to the CAT(Catchment Area Treatment) plan by the Himachal Pradesh State Forest Department.Different types <str<strong>on</strong>g>of</str<strong>on</strong>g> plantati<strong>on</strong>s approved for providing adequate vegetative cover to the basin,which were either barren, landslide inflicted or scrubby. Looking at the result <str<strong>on</strong>g>of</str<strong>on</strong>g> this research,


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important findings is that the forest cover is changed dramatically during theten year. This phenomen<strong>on</strong> could be attributed to two reas<strong>on</strong>s: firstly, the Satluj River Basinis very sensitive to seas<strong>on</strong>al effects and sec<strong>on</strong>dly, different types <str<strong>on</strong>g>of</str<strong>on</strong>g> plantati<strong>on</strong>s approved forproviding adequate vegetative cover to the basin <strong>on</strong> the other hand; the decrease in barrenland is a welcoming trend.Finally, it is expected that further similar kind <str<strong>on</strong>g>of</str<strong>on</strong>g> work would lead to better understanding<str<strong>on</strong>g>of</str<strong>on</strong>g> image processing for change detecti<strong>on</strong> purposes. However, it is recommended to derivechange detecti<strong>on</strong> <strong>on</strong> regular interval, so that the informati<strong>on</strong> can be updated through time.77


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurRole <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehri Dam in Preventi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> FloodNiraj Agrawal 1 and N.K. Goel 21 Sr. Manager, THDCIL, Rishikesh, India and presently Research Scholar, Department<str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee, Roorkee-247667Email: niraj1144@gmail.com2 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee,Roorkee-247667 Email: goelhy@gmail.comTehri Dam Project is a storage dam located downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>fluence <str<strong>on</strong>g>of</str<strong>on</strong>g> riversBhagirathi and Bhilangana. Tehri hydro power complex is a multipurpose scheme c<strong>on</strong>sisting<str<strong>on</strong>g>of</str<strong>on</strong>g> Tehri HPP (4X250 MW), Tehri PSP HPP (4X250 MW) and Koteshwar HEP (4X100 MW)designed for storing surplus water <str<strong>on</strong>g>of</str<strong>on</strong>g> floods during m<strong>on</strong>so<strong>on</strong> and there by moderate thefloods. The water stored is utilized for irrigati<strong>on</strong> and drinking throughout the year whilegenerating 2400MW <str<strong>on</strong>g>of</str<strong>on</strong>g> peaking power. At Tehri turbines run round the clock duringm<strong>on</strong>so<strong>on</strong> while <strong>on</strong>ly peaking power (3-6 hrs) is generated during rest <str<strong>on</strong>g>of</str<strong>on</strong>g> the lean period. TehriDam is designed to cater Probable Maximum Flood (PMF) <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the important roles <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehri dam is to store flood water in the reservoir andsafeguarding the downstream populati<strong>on</strong> from its devastating effect. Tehri dam, even in theworst scenario is capable to store the peak <str<strong>on</strong>g>of</str<strong>on</strong>g> flood and thereafter passing the same to thedownstream in a regulated manner to mitigate the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> flood. During the floods <str<strong>on</strong>g>of</str<strong>on</strong>g> 2010and 2011, Tehri dam played a crucial role in averting the flood <str<strong>on</strong>g>of</str<strong>on</strong>g> higher order in the riverGanga and mitigated havoc, had the high flood inflows in Bhagirathi not been stored.In the years 2010, when all the major rivers were running at their highest level <strong>on</strong> 19-20 Sep., the discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> river Bhagirathi went above 3500 Cumecs (122500 Cusecs) at Tehriwhereas <strong>on</strong>ly 800-900 cumecs (28000-31500 Cusecs) was released from the Tehri dam at thetime <str<strong>on</strong>g>of</str<strong>on</strong>g> peak discharge. At this point <str<strong>on</strong>g>of</str<strong>on</strong>g> time discharge from Alaknanda and other tributaries<str<strong>on</strong>g>of</str<strong>on</strong>g> Ganga were also heavy and flood situati<strong>on</strong> at Rishikesh and Hardwar was grim and waterwas much above danger level. Tehri dam by storing the most <str<strong>on</strong>g>of</str<strong>on</strong>g> the flood water <str<strong>on</strong>g>of</str<strong>on</strong>g> riverBhagirathi in its reservoir, mitigated the flood discharge in the river Ganges which otherwisewould have further increased the water level <str<strong>on</strong>g>of</str<strong>on</strong>g> at Rishikesh and Hardwar 1.5-2.0m.79


In the year 2011 <strong>on</strong> 16th Aug. also, Bhagirathi discharge went above 3600 Cumecs(126000 Cusecs) but <strong>on</strong>ly 900 Cumecs (31500 Cusecs) was released. Thus Tehri dam againmitigated impact <str<strong>on</strong>g>of</str<strong>on</strong>g> flood at Rishikesh and Haridwar towns which were already facing havoc<str<strong>on</strong>g>of</str<strong>on</strong>g> highly flowing river Ganges.Even in the recent flood <str<strong>on</strong>g>of</str<strong>on</strong>g> river Ganga during 16 th & 17 th June, 2013, discharge atHaridwar rose up to around 15000 Cumecs and water level reached 295.90 m in the evening<str<strong>on</strong>g>of</str<strong>on</strong>g> 17 th (i.e. 1.90 m above danger mark <str<strong>on</strong>g>of</str<strong>on</strong>g> 294.00m). In fact this flood was the c<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>river Alaknanda and tributaries <str<strong>on</strong>g>of</str<strong>on</strong>g> river Ganga in between Devprayag and Haridwar <strong>on</strong>ly asthe flood <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> about 7500Cumecs (262500 Cusecs) peak discharge in riverBhagirathi had been stored in the Tehri reservoir by releasing <strong>on</strong>ly 500Cumecs (17500Cusecs). Had the Bhagirathi flood not been stored in Tehri dam, the peak discharge wouldhave g<strong>on</strong>e up to around 22000 Cumecs (770000 Cusecs) and devastati<strong>on</strong> by this flood, not<strong>on</strong>ly at Haridwar but above and below Haridwar also, would have been bey<strong>on</strong>d imaginati<strong>on</strong><strong>with</strong> anticipated rise <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.5 to 3.0m in water level above the observed highest level. It isgathered from the available records that recent flood in Ganges would have been <str<strong>on</strong>g>of</str<strong>on</strong>g> the orderor even higher which had happened in the year 1924, had Bhagirathi flood not been hold byTehri dam. This paper presents the details <str<strong>on</strong>g>of</str<strong>on</strong>g> Tehri and N<strong>on</strong>-Tehri flood scenarios.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurTraditi<strong>on</strong>al Water C<strong>on</strong>servati<strong>on</strong> inRajasthanKirti Sharma 1 , Mahesh Kumawat 2Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil EngineeringPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s,BT-1, BioTechnology Park, RIICO Industrial Area, Sitapura, JaipurEmail-kirtipgi48@poornima.org, maheshpgi115@poornima.orgINTRODUCTIONIndia is blessed <strong>with</strong> vivid geographical regi<strong>on</strong>, climates, religi<strong>on</strong>s, thus have variousm<strong>on</strong>uments from different corners <str<strong>on</strong>g>of</str<strong>on</strong>g> ancient culture. As the new era approached India hasbecome a developing country <strong>with</strong> various problem <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanizati<strong>on</strong>. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the majorproblem we are facing now a day is water crisis and the proper soluti<strong>on</strong> is unknown but stillwe can go for new approach where we can save ancient m<strong>on</strong>ument as well solve waterproblem. Rainwater harvesting can be answer to this since India has good rainfall records andwe can redirect it to our benefits. Rainwater harvesting is the accumulati<strong>on</strong> and storage <str<strong>on</strong>g>of</str<strong>on</strong>g>rainwater. It has been used to provide water for drinking and livestock. There is lots <str<strong>on</strong>g>of</str<strong>on</strong>g>technique used for rain water harvesting and we have selected Galtaji which is anancient Hindu pilgrimage site in the town <str<strong>on</strong>g>of</str<strong>on</strong>g> Khania-Balaji, about 10km away from Jaipur, inthe Indian state <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan. The site c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> several temples and sacred kunds (watertanks) in which pilgrims bathe. The temple was built by Diwan Rao Kriparam, a courtier <str<strong>on</strong>g>of</str<strong>on</strong>g>Sawai Jai Singh II, in the 18th Century.[1] The main temple is the Temple <str<strong>on</strong>g>of</str<strong>on</strong>g> Galtaji, built inpink st<strong>on</strong>e. The temple features a number <str<strong>on</strong>g>of</str<strong>on</strong>g> pavili<strong>on</strong>s <strong>with</strong> rounded ro<str<strong>on</strong>g>of</str<strong>on</strong>g>s, carved pillars, andpainted walls. The complex is set around a natural spring and the waterfalls that create twotiered pools, the upper and lower pool, used for bathing by pilgrims. The temple is famous forits natural water springs. Which draw special attenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the visitors. The water <str<strong>on</strong>g>of</str<strong>on</strong>g> thesesprings is accumulated in the tanks (kunds). There are seven tanks, the holiest being theGaltaKund, which never goes dry. The water overflowing through the kund goes waste andthus we can utilize this resource for daily purpose likeirrigati<strong>on</strong> cleaning and even drinking for cattle‘s. SinceRajasthan is in hot arid z<strong>on</strong>e, there is lack <str<strong>on</strong>g>of</str<strong>on</strong>g> water.81


Purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> project: Water Harvesting and Restorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heritage. Use the waste water <str<strong>on</strong>g>of</str<strong>on</strong>g>GALTA JI which comes out from the lower kund means JANNANA KUND. So thatwaterutilized by making short reservoir <str<strong>on</strong>g>of</str<strong>on</strong>g> 15*15*15feet. So by few modificati<strong>on</strong>s in the structure<str<strong>on</strong>g>of</str<strong>on</strong>g> the temple we can supply the water to the nearby villages as well as maintain the hygienicc<strong>on</strong>diti<strong>on</strong> in the temple by daily cleaning <str<strong>on</strong>g>of</str<strong>on</strong>g> steep steps which may cause accident [2].METHODOLOGYWater quality Testing: samples are collected from the kund to determine the quality <str<strong>on</strong>g>of</str<strong>on</strong>g>water and decide the need <str<strong>on</strong>g>of</str<strong>on</strong>g> treatment plant. There are numerous processes that can be usedto clean up that wastewater. The basic parameters have been checked for the water qualityassessment: pH Test, C<strong>on</strong>ductivity Test, Total Dissolved Solids, Total Solids and Turbidity.Table 1 Test result <str<strong>on</strong>g>of</str<strong>on</strong>g> Gomukh SampleTest PerformedSample Locati<strong>on</strong>sGomukhJanana KundpH 7 8.2C<strong>on</strong>ductivity 0.7 70 msTotal Solid 0.001 ms(Pure Water) .01Total Dissolved 0.0002 (Pure Water) .033SolidsTurbidity 5.5 NTU 105 NTUAfter performing various test it is found that water directly from Gomukh( spring) is pure andcan be used directly for daily use but the water in the Janana kund have c<strong>on</strong>taminati<strong>on</strong> due tohuman activities and thus need treatment. Therefore it is require o modify the structure <str<strong>on</strong>g>of</str<strong>on</strong>g>Janana kund and c<strong>on</strong>nect <strong>with</strong> a pipeline system. Since the Kund is at higher elevati<strong>on</strong> we canachieve gravity distributi<strong>on</strong> system to supply water.Result and C<strong>on</strong>clusi<strong>on</strong>: To Use The Water which got wasted in JANNANA KUND, Firstlywe have to provide a separate channel for water by making adjustments in its structure.Through this Channel we‘ll have to collect water in the water treatment plant where a simplecharcoal filter and sand filter will be used. In plant we have to process the water to make itsuitable for its domestic use. After completi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> purificati<strong>on</strong> we can deliver it in nearbyvillages through pipelines.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThe Holy Places like JANNANA KUND can be made best use by harvesting the waste waterso that water needs <str<strong>on</strong>g>of</str<strong>on</strong>g> nearby village can be served better. It provides an excellent example <str<strong>on</strong>g>of</str<strong>on</strong>g>harvesting Water in a way it‘ll enlighten all the temple m<strong>on</strong>ks to create such system all overthe country to reduce water loss.ReferencesVibhuti Sachdev; Giles Henry Rupert Tillots<strong>on</strong> (2002). Building Jaipur: The Making <str<strong>on</strong>g>of</str<strong>on</strong>g> anIndian City. Reakti<strong>on</strong> Books. pp. 39–. ISBN 978-1-86189-137-2. Retrieved 29 August 2013.1. AnnGrodzins Gold (1990). Fruitful Journeys: The Ways <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthani Pilgrims.University <str<strong>on</strong>g>of</str<strong>on</strong>g> California Press. pp. 278–.ISBN 978-0-520-06959-6. Retrieved 29August 2013.83


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurA Theoretical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the Live StorageCapacity <str<strong>on</strong>g>of</str<strong>on</strong>g> Hirakud ReservoirKrishna Kumar Gupta 1 , Joy Gopal Jena 1 , Anil Kumar Kar 2 , Gopal Prasad Roy 21 Siksha O‘ Anusandhan University, 2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Resources, Govt.<str<strong>on</strong>g>of</str<strong>on</strong>g> Odisha.Hirakud reservoir in the Mahanadi system <str<strong>on</strong>g>of</str<strong>on</strong>g> Odisha, since its incepti<strong>on</strong> to commissi<strong>on</strong>ingduring the period from 1951 to 1957 has been c<strong>on</strong>sidered as a major flood c<strong>on</strong>trol tool for thedown stream delta comprising fertile lands <strong>with</strong> a high populati<strong>on</strong> density. With no dedicatedflood cushi<strong>on</strong>, the live storage capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir in comparis<strong>on</strong> to it‘s c<strong>on</strong>tributingcatchment looks meager for flood moderati<strong>on</strong> purpose. A statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> last two decades showsthat the m<strong>on</strong>so<strong>on</strong> inflow is more than six times the live storage capacity in a good year to atleast three times in an average m<strong>on</strong>so<strong>on</strong>. The capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir is decreasingc<strong>on</strong>tinuously over time due to siltati<strong>on</strong> caused by de-forestati<strong>on</strong> in the catchment area andvarious such reas<strong>on</strong>s. Further, change in rainfall pattern resulted in short term high intenseflow into the reservoir, which makes the flood moderati<strong>on</strong> task still difficult <strong>with</strong> theminimum storage space available particularly in the latter part <str<strong>on</strong>g>of</str<strong>on</strong>g> m<strong>on</strong>so<strong>on</strong>. C<strong>on</strong>sidering this,it is thought to have a c<strong>on</strong>tinuous m<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> the live storage capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir forc<strong>on</strong>servati<strong>on</strong> as well as for flood moderati<strong>on</strong>. Various attempts have been made to carryoutsuch studies <strong>with</strong> actual reservoir survey also by using techniques <str<strong>on</strong>g>of</str<strong>on</strong>g> remote sensing whichare not cost effective as well as time c<strong>on</strong>suming. Attempts have been made in this paper toestablish a theoretical relati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the simple c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> reservoir routing and reservoircapacity, so as to m<strong>on</strong>itor the live storage capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir more frequently. Tocarryout this study the inflow, outflow and the corresp<strong>on</strong>ding storage have been accountedfor. The observed data set for the period from 2001 to 2011 have been c<strong>on</strong>sidered in theanalyses. The existing Elevati<strong>on</strong>- Area- Capacity data set <str<strong>on</strong>g>of</str<strong>on</strong>g> the year 2000 has been taken asthe datum. The food event <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011 has been c<strong>on</strong>sidered for analysis. During flood <str<strong>on</strong>g>of</str<strong>on</strong>g> 2011,the reservoir started building since 19th July <strong>with</strong> reservoir level at 596.15 ft <strong>on</strong> the day andthe 2 peak flood has occurred <strong>on</strong> 29th September. The reservoir attended the maximum <str<strong>on</strong>g>of</str<strong>on</strong>g>630 ft. level <strong>on</strong> 29th September. On analysis, it is observed that the maximum volumereached during peak observed level <str<strong>on</strong>g>of</str<strong>on</strong>g> 629.27ft. and at Full Reservoir Level (630 ft.) are3.440 and 3.549 MAc.ft respectively against a capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.91 M.Ac.ft at 630 ft level as perthe observed Elevati<strong>on</strong> Area Capacity (EAC) curve <str<strong>on</strong>g>of</str<strong>on</strong>g> the year 2000. Also, the loss in gross85


storage capacity has been derived as shown in Table.1. It is seen that the cumulative loss at625-630 ft. level is around 9.43% <str<strong>on</strong>g>of</str<strong>on</strong>g> live capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 2000 (Fig.1). The study also reveals thatthe reservoir has almost lost its total capacity <strong>with</strong>in 590-595 ft level and around 58% lost<strong>with</strong>in 595-600 ft. level.Table 1Cumulative loss in reservoir capacity in MAc.Ft.= Milli<strong>on</strong> Acre Feet and CumulativeVolume in Lakh Cubic ft. Reservoir Level(ft.) As per EAC‘2000 Observati<strong>on</strong> 2011 % Loss involume590-595 112550 0 100595-600 246387 102060.8 58.58600-605 403697 257313 36.26605-610 587172 444499.6 24.30610-615 803536 661941.7 17.62615-620 1060599 924402.7 12.84620-625 1358443 1223408 9.94625-630 1701034 1544028 9.23The study reveals the following c<strong>on</strong>cluding remarks:1. The reservoir has lost almost 9.43% <str<strong>on</strong>g>of</str<strong>on</strong>g> its live storage between DSL and FSL in last11 years (2000-2011).2. Complete volume has lost in the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 590 to 595 ft levels and around 58% is lostin the range <str<strong>on</strong>g>of</str<strong>on</strong>g> 595 to 600 ft. levels.And finally as a recommendati<strong>on</strong> <strong>on</strong> these, this may be treated as a c<strong>on</strong>cern for the plannerand other stake holders <str<strong>on</strong>g>of</str<strong>on</strong>g> Hirakud reservoir. A new demand - supply policy to be initiatedfor managing the critical situati<strong>on</strong>s especially during high flood. Steps may be taken forcatchment treatment in order to reduce the sedimentati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reservoir.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurHydrological Issues in Alaknanda basin <str<strong>on</strong>g>of</str<strong>on</strong>g>Uttarakhand, North IndiaY.K.Goel 1 and N.K.Goel 21 Trainee Officer, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee,Roorkee- 247667 E-mail: ykg_klprke@hotmail.com2 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee, Roorkee-247667 E-mail:goelhy@gmail.comThis paper examines the hydrological issues <str<strong>on</strong>g>of</str<strong>on</strong>g> Alaknanda Basin <str<strong>on</strong>g>of</str<strong>on</strong>g> Garhwal Himalaya <str<strong>on</strong>g>of</str<strong>on</strong>g>Uttarakhand state. The basin came into lime light after June 16-17, 2013 Kedarnath flooddisaster. In this disaster, Kedarnath temple was damaged and more than 10,000 human liveswere lost. Apart from this road network <str<strong>on</strong>g>of</str<strong>on</strong>g> entire Alaknanda and Bhagirathi basins also gotdamaged.The Alaknanda is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the two headstreams <str<strong>on</strong>g>of</str<strong>on</strong>g> the River Ganges. The otherheadstream is Bhagirathi which is l<strong>on</strong>ger and is the source stream, originating from Gangotri.The Alaknanda basin is extended between 30 o 0‘ N-31 o 0‘ N and 78 o 45‘ E - 80 o 0‘ E,representing the eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> the Garhwal Himalaya. The total catchment area <str<strong>on</strong>g>of</str<strong>on</strong>g> theAlaknanda basin upto Devprayag is 12587.23 Km 2 .The Alaknanda basin is endowed <strong>with</strong>bounty <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources accounting for about 8% <str<strong>on</strong>g>of</str<strong>on</strong>g> the total water resources in the country.N the basin there are 06 commissi<strong>on</strong>ed Hydro Electric Projects. 08 projects are in theadvanced stage <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong> and 24 projects are in different stages <str<strong>on</strong>g>of</str<strong>on</strong>g> planning.The hydro-power projects <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin have been c<strong>on</strong>troversial from the beginningand a number <str<strong>on</strong>g>of</str<strong>on</strong>g> studies have been c<strong>on</strong>ducted in the past to assess the cumulative impact <str<strong>on</strong>g>of</str<strong>on</strong>g>these projects. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> the reports are available <strong>on</strong> the MoEF website (www.moef.nic.in).In order to understand the hydrological issues <str<strong>on</strong>g>of</str<strong>on</strong>g> the basin, as a first step, entireAlaknanda basin right from Devprayag to Mana was visited from May 23-26, 2013.In June 2013, a multi-day (June 15-17) cloudburst centered <strong>on</strong> Uttarakhand causeddevastating floods in the Alaknanda Basin. On 16 and 17 June 2013, heavy rains together<strong>with</strong> moraine dammed lake (Chorabari Lake) burst caused flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> Saraswati andMandakini Rivers in the Alaknanda basin. The paper presents the detailed analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> June87


15-17, 2013 rainfall event gathered from different sources. The paper also discusses possiblecauses <str<strong>on</strong>g>of</str<strong>on</strong>g> the disaster at the Kedarnath temple.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurModeling Techniques to Assess theHydrological Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate ChangeArun Bhagat 1 , Mangal Patil 2 , Ragini Dashora 3 and Yogita Dashora 41 Research Scholar, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Irrigati<strong>on</strong> and Drainage Engineering, Mahatma PhuleKrishi Vidyapeeth, Rahuri, Ahmednagar- 413722 (Maharashtra)2,3,4 Research Scholar, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water Engineering, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology andEngineering, Maharana Pratap University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology, Udaipur-313 001Email ID: mangalpatil43@gmail.comClimate Change refers to any systematic change in the l<strong>on</strong>g-term statistics <str<strong>on</strong>g>of</str<strong>on</strong>g> climateelements (such as temperature, pressure, or winds) sustained over several decades or l<strong>on</strong>gertime periods. General Circulati<strong>on</strong> Models (GCMs) are tools designed to simulate time series<str<strong>on</strong>g>of</str<strong>on</strong>g> climate variables globally, accounting for effects <str<strong>on</strong>g>of</str<strong>on</strong>g> greenhouse gases in the atmosphereand resulting global climate change. They are currently the most important tools available forsimulating the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the global climate system to increasing greenhouse gasc<strong>on</strong>centrati<strong>on</strong>s, and to provide estimates <str<strong>on</strong>g>of</str<strong>on</strong>g> climate variables <strong>on</strong> a global scale. The spatialscale <strong>on</strong> which a GCM can operate is very coarse compared to that <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrologic process <str<strong>on</strong>g>of</str<strong>on</strong>g>interest in the climate change impact assessment studies. Moreover, accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> GCMs, ingeneral, decreases from climate related variables, such as wind, temperature, humidity and airpressure to hydrologic variables such as precipitati<strong>on</strong>, evapotranspirati<strong>on</strong>, run<str<strong>on</strong>g>of</str<strong>on</strong>g>f and soilmoisture, which are also simulated by GCMs. These limitati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the GCMs restrict thedirect use <str<strong>on</strong>g>of</str<strong>on</strong>g> their output in hydrology. Hydrologic implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> global climate change areusually assessed by downscaling appropriate predictors simulated by General Circulati<strong>on</strong>Models (GCMs). C<strong>on</strong>venti<strong>on</strong>ally rainfall is first downscaled <strong>with</strong> dynamic or statisticaldownscaling and then the predicted rainfall is used in hydrologic models to forecasthydrologic scenarios <str<strong>on</strong>g>of</str<strong>on</strong>g> future.Key Words: Climate Change, Downscaling, hydrologic scenarios.REFERENCESCalifornia Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Resources. 2008. Managing an uncertain future: climatechange adaptati<strong>on</strong> strategies for California's water. White Paper for State <str<strong>on</strong>g>of</str<strong>on</strong>g>California.89


Christensen, J. H., B. Hewits<strong>on</strong>. And Busuioc. 2007. Regi<strong>on</strong>al Climate Projecti<strong>on</strong>s, in:Climate Change. The Physical Science Basis. Cambridge University Press,Cambridge, United Kingdom and New York, NY, USA.Ghosh S, Mujumdar PP. 2008. Statistical downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g> GCM simulati<strong>on</strong>s to streamflowusing relevance vector machine. Adv Water Res; 31(1): 132-46Ghosh S. and C. Misra. 2010. Assessing Hydrological Impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> Climate Change: ModelingTechniques and Challenges, The Open <strong>Hydrology</strong> Journal, 4, 115-121Ghosh S, Mujumdar PP. 2009. Climate Change Impact Assessment- Uncertainty Modeling<strong>with</strong> Imprecise Probability. J Geophys Res Atmos; 114: D18113.Giorgi, F., Hewits<strong>on</strong>, and C. Fu. 2001. Regi<strong>on</strong>al Climate Informati<strong>on</strong>- Evaluati<strong>on</strong> andProjecti<strong>on</strong>s, in: Climate Change: The Scientific Basis. Cambridge University Press,Cambridge, UK, 583-638Gosain AK, Rao S, Basuray D. 2006. Climate change impact assessment <strong>on</strong> hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g>Indian river basins. Curr Sci; 90 (3): 346-53.Govindaraju RS. 2005.Bayesian learning and relevance vector machines for hydrologicapplicati<strong>on</strong>s, In: 2nd Indian Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> Artificial Intelligence(IICAI-05), Pune, India.Huth R. Sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> local daily temperature change estimates to the selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>downscaling models and predictors. J Climate 2004; 17: 640-51Harpham, C., and R. L. Wilby. 2005. Multi-site downscaling <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy daily precipitati<strong>on</strong>occurrence and amounts, J. Hydrol., 312, 235–255Hought<strong>on</strong> JT, Ding Y, Griggs DJ, Noguer M, van der and Linden PJ.2001.The scientificbasis, C<strong>on</strong>tributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Working Group I to the ThirdAssessment Report <str<strong>on</strong>g>of</str<strong>on</strong>g> theIntergovernmental Panel <strong>on</strong> ClimateChange. Cambridge: Cambridge University PressUK.MacCracken, M. C., Barr<strong>on</strong>, E. J., Easterling, D. R., Felzer, B. S., and Karl, T. R.2003.Climate change scenarios for the U.S. nati<strong>on</strong>al assessment, Bull. Am. Met. Soc.,84, 1711-1723, DOI: 1710.1175/BAMS-1784-1712-1711,Mujumdar PP, Ghosh S. 2008. Modeling GCM and scenario uncertaintyusing a possibilisticapproach: Applicati<strong>on</strong> to the Mahanadi RiverIndia, Water Resour Res; 44: W06407.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurA Review <str<strong>on</strong>g>of</str<strong>on</strong>g> Variable ParameterMuskingum MethodMelvin B.D. ScottCivil Engineer, Sierra Le<strong>on</strong>e Roads Authority, P.M.B. 1324, Kissy, Freetown, Sierra Le<strong>on</strong>e,West Africa. Presently M. Tech. Student, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>,Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee,E-mail: melm<strong>on</strong>dscott@hotmail.comIt is impracticable in the world and India in particular to collect discharge informati<strong>on</strong> for allits streams c<strong>on</strong>sidering their lengths. Even if such discharge informati<strong>on</strong> were collected, itwill be <str<strong>on</strong>g>of</str<strong>on</strong>g> infinitesimal use as the locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the gauges utilized in such tedious work maynot be the intended locati<strong>on</strong> for any particular project. Hence the development <str<strong>on</strong>g>of</str<strong>on</strong>g>hydrological models to simulate water movement through streams was initiated. Routing inchannels has also been a vital c<strong>on</strong>cern to man to determine the characteristic features <str<strong>on</strong>g>of</str<strong>on</strong>g> apropagating flood wave in his efforts to improve the transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water through manmadeor natural waterways and also for flood forecasting for protecting life and propertiesfrom the adverse effects <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding. In extreme cases discharge informati<strong>on</strong> are not sufficeor absolutely unavailable in developing and underdeveloped countries like Sierra Le<strong>on</strong>e.Flood routing methods are broadly classified as hydrologic and hydraulic methods and dueto the n<strong>on</strong>-availability <str<strong>on</strong>g>of</str<strong>on</strong>g> morphometric and hydrometric data at smaller spatial scale, thehydraulic routing methods are not widely used in practice. Therefore, simplified hydraulicmethods are used in practices which are categorized into linear simplified channel routingmethods and variable parameter simplified channel routing methods. The linear simplifiedrouting methods are based <strong>on</strong> the assumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> linearity which is in c<strong>on</strong>tradicti<strong>on</strong> <strong>with</strong> then<strong>on</strong>linear behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> flood wave movement in river and channel. This gives the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g>the variable parameter simplified channel routing methods over the linear simplified channelrouting methods to mimic real flood wave propagati<strong>on</strong> in rivers and channels. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> thewidely used variable parameter methods are derivative <str<strong>on</strong>g>of</str<strong>on</strong>g> the Muskingum method and has theability to mimic real flood situati<strong>on</strong> which makes it an important topic <str<strong>on</strong>g>of</str<strong>on</strong>g> discussi<strong>on</strong> over thedecade and recent time.The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is to compile different variable parameter Muskingum methodsavailable in literature for the critical review <str<strong>on</strong>g>of</str<strong>on</strong>g> the theories behind these methods from thec<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>sistency <strong>with</strong> the hydrodynamic theory <str<strong>on</strong>g>of</str<strong>on</strong>g> unsteady flow in open91


channels. The five variable parameter Muskingum methods selected for discussi<strong>on</strong>s areMultilinear Muskingum flood routing method, the variable parameter Muskingum-Cungemethod, the variable parameter Muskingum-Cunge-Todini method, the variable parameterMuskingum-Price method and the variable parameter McCarthy-Muskingum method. Thesemethods were selected <strong>on</strong> the basis that they are less cumbersome in understanding therati<strong>on</strong>ale behind the Muskingum method, they have variable parameters, they should have nodeficiency in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> mass c<strong>on</strong>servati<strong>on</strong> and they should be capable <str<strong>on</strong>g>of</str<strong>on</strong>g> reproducing thebenchmark soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Saint-Venant equati<strong>on</strong>s.The findings based <strong>on</strong> review <str<strong>on</strong>g>of</str<strong>on</strong>g> literature shows that the multilinear Muskingum floodrouting method can account for n<strong>on</strong>linearity in the flow wave movement better than anothermultilinear models and <strong>on</strong>ly the variable parameter Muskingum-Cunge method that is notfully mass c<strong>on</strong>servative <strong>with</strong> a mass balance error that can reach a value <str<strong>on</strong>g>of</str<strong>on</strong>g> 3 to 10 percent.All the five variable parameter Muskingum methods selected cannot be used for routing inrivers or channels in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> backwater effects and also in rivers and channelscharacterized by bottom slope less than 0.0002. The variable parameter Muskingum-Cunge-Todini and Muskingum-Price Methods are both fully mass c<strong>on</strong>servative, cumbersome andyield the same end results, though the approaches followed in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> thesemethods are different. The variable parameter McCarthy-Muskingum method is fully volumec<strong>on</strong>servative, less cumbersome in understanding the rati<strong>on</strong>ale behind the Muskingum methodand enables the estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the stage hydrograph corresp<strong>on</strong>ding to the routed dischargehydrograph at the outlet, unlike the variable parameter Muskingum-Cunge-Todini methodswhich estimates the stage hydrograph at the mid-secti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the sub-reach. The prism andwedge storages c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> the classical Muskingum method is theoretically verified by thevariable parameter McCarthy-Muskingum method and the efficacy <str<strong>on</strong>g>of</str<strong>on</strong>g> the variable parameterMcCarthy-Muskingum method over the popular Muskingum-Cunge method I clarifying theattenuati<strong>on</strong> introduced in the classical Muskingum method was attributed to the reach storageeffect. Thus there is no need to interpret it based <strong>on</strong> the matched diffusivity theory proposedby Cunge in 1969.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurTrend Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g>Saurashtra Regi<strong>on</strong>, GujaratLitan Kumar Ray 1 and N. K. Goel 21Research Scholar, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee,Roorkee- 247667 Email: litan663@gmail.com2 Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Indian Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology Roorkee, Roorkee-247667 Email: goelhy@gmail.comThe paper presents the trend detecti<strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> seas<strong>on</strong>al and annual rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g>Saurashtra regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Gujarat State. Saurashtra regi<strong>on</strong> is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most water scare regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>India. The topography <str<strong>on</strong>g>of</str<strong>on</strong>g> this regi<strong>on</strong> is inverse bowl type which makes the water collecti<strong>on</strong>further difficult. Saurashtra regi<strong>on</strong> faces various hydrological problems like inequitable wateravailability and erratic rainfall, salinity ingress in coastal areas and ground water depleti<strong>on</strong>.The seas<strong>on</strong>al and annual rainfall data <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 raingauge stati<strong>on</strong>s namely Ranpur (1906-1990), Dhandhuka (1901-2003), Dholera (1901-1978), Dhari (1960-2003), Botad (1960-2003), Babra (1960-2003), Bhavnagar (1952-2006), Lathi ( 1960-2006), Amreli (1974-2006)and Lilia (1960-2003) have been analysed. These raingauge stati<strong>on</strong>s are located in seven riverbasins namely Wadhwan Bhogavo, Limbdi Bhogavo, Sukhbhadar, Utavli, Keri, Ghelo andKalubhar <str<strong>on</strong>g>of</str<strong>on</strong>g> Saurashtra regi<strong>on</strong>. These river basins are located <strong>on</strong> the north-eastern side <str<strong>on</strong>g>of</str<strong>on</strong>g> theSaurashtra regi<strong>on</strong> <strong>with</strong> their mouth north <str<strong>on</strong>g>of</str<strong>on</strong>g> Bhavnagar, and drain into the Gulf <str<strong>on</strong>g>of</str<strong>on</strong>g> Khambhat.Three statistical tests namely Mann Kendall (MK) trend test, Spearman Rho (SR) testsand Theil–Sen trend slope estimator have been used. MK test is a widely used trenddetecti<strong>on</strong> test. The SR test is used to know the statistical significance <str<strong>on</strong>g>of</str<strong>on</strong>g> trend in data series,whereas MK test checks the null hypothesis <str<strong>on</strong>g>of</str<strong>on</strong>g> no trend versus increasing or decreasingtrends. The Theil–Sen approach is used to know the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> trend and evaluate itsstrength. The study was c<strong>on</strong>ducted at 5% significance level.The analysis <strong>on</strong> grided rainfall data (1 0 * 1 0 and 0.5 0 * 0.5 0 ) has also been c<strong>on</strong>ducted.The daily gridded rainfall data have been collected from different sources c<strong>on</strong>ducted. Theresults <str<strong>on</strong>g>of</str<strong>on</strong>g> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> stati<strong>on</strong> rainfall data and gridded rainfall data have been compared.93


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurDifferent Methods for Spatial Interpolati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfall Data for Operati<strong>on</strong>al <strong>Hydrology</strong>and Hydrological Modelling at WatershedScaleAashish Tiwari 1 Lokesh Kumar Prajapat 2Poornima College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Sitapura, Jaipur, RajasthanEmail:-aashishpce044@poornima.orgHydrological modelling and watershed management requires a data which is related to theprecipitati<strong>on</strong>, which can be usually measured by rain gauges or weather stati<strong>on</strong>s.Hydrological models generally require a primary spatial interpolati<strong>on</strong> which is a part <str<strong>on</strong>g>of</str<strong>on</strong>g>modelling process. The success <str<strong>on</strong>g>of</str<strong>on</strong>g> a result can be determined by the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>tinuousspatial rainfall, <strong>with</strong> the help <str<strong>on</strong>g>of</str<strong>on</strong>g> used interpolati<strong>on</strong> method. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> comm<strong>on</strong> methods andgeo-statistical approaches are discussed here.1 .Deterministic interpolati<strong>on</strong> methods:--Thiessen polyg<strong>on</strong> method-Inverse distance weighting-Polynomial interpolati<strong>on</strong>-Spline interpolati<strong>on</strong>-Moving window regressi<strong>on</strong>2 .Geo-statistical interpolati<strong>on</strong> methods:--krigingExcept these methods computer hydrological models are very essential for describinghydrological system. For a large watershed scale spatial rainfall needs to be taken instead <str<strong>on</strong>g>of</str<strong>on</strong>g>areal average rainfall. For this purpose it is essential to take day-to-day spatial variability <str<strong>on</strong>g>of</str<strong>on</strong>g>watershed discharge, ground water level and soil-moisture c<strong>on</strong>tent. Spatial variability <str<strong>on</strong>g>of</str<strong>on</strong>g>rainfall affects the catchment resp<strong>on</strong>se, the timing <str<strong>on</strong>g>of</str<strong>on</strong>g> peak run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f, the estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> modelparameters and the hydrological model outputs95


The formula for deterministic interpolati<strong>on</strong> is as follows:-nsZg = Σ λiZsi (1)I=1The formula for geo-statistical interpolati<strong>on</strong> is as follows:-N(h)γ(h) = 1 Σ (Zsi - Z(si + h))2 (2)2N(h) i=1Spherical model exp<strong>on</strong>entialThese methods gives predicti<strong>on</strong>s <strong>with</strong> minimum variance and describe the spatial co-relati<strong>on</strong>between the recorded at different rain stati<strong>on</strong>s. for annual and m<strong>on</strong>thly rainfall, geo-statisticalinterpolati<strong>on</strong> methods are preferable to deterministic methods. for daily rainfall, geostatisticalmethods and IDW have proved to be comparable approaches, in particular forhydrological modelling.Quantificati<strong>on</strong> and awareness <str<strong>on</strong>g>of</str<strong>on</strong>g> the uncertainties associated <strong>with</strong> hydrological data are thusessential for the correct interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the modelling. The precise evaluati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> the spatiotemporal variability <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall <strong>on</strong> the watershed scale presents a complexproblem because <str<strong>on</strong>g>of</str<strong>on</strong>g> the small number <str<strong>on</strong>g>of</str<strong>on</strong>g> rain gauges in most cases and because rainfall isextremely varied in space and time. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> interpolati<strong>on</strong> method for measuring rainfalldepends <strong>on</strong> the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> valid measures, the nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the rain in the regi<strong>on</strong>s under studyand the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the observati<strong>on</strong>s. The choice <str<strong>on</strong>g>of</str<strong>on</strong>g> method is therefore crucial. Furthermore, asensitivity analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> a hydrological model can be a complementary indicator <str<strong>on</strong>g>of</str<strong>on</strong>g> the quality


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur<str<strong>on</strong>g>of</str<strong>on</strong>g> the interpolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall and <str<strong>on</strong>g>of</str<strong>on</strong>g> other meteorological parameters. Thus, strategies for theacquisiti<strong>on</strong> and the pre-treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> data can be better realized so as to achieve a moreefficient hydrological modelling. the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interpolati<strong>on</strong> methods differfrom <strong>on</strong>e study to another. The successful performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the methods depends <strong>on</strong> severalfactors, in particular, temporal and spatial resoluti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the data, and the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> themodels, such as the semi-variogram in the case <str<strong>on</strong>g>of</str<strong>on</strong>g> kriging. No <strong>on</strong>e interpolati<strong>on</strong> methodstands out as being universally the best. Some authors recommend a particular method asbeing the best according to their judgment as to what is the most practicalReferences:-1. Abtew W., Obeysekera J. & Shih G., 1993. Spatial analysis for m<strong>on</strong>thly rainfall in SouthFlorida. J. Am. Water Resour. Assoc., 29(2), 179-188.2. Basistha A., Arya D.S. & Goel N.K., 2008. Spatial distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall in IndianHimalayas - a case study <str<strong>on</strong>g>of</str<strong>on</strong>g> Uttarakhand regi<strong>on</strong>. Water Resour. Manage., 22(10), 1325-1346.3. Beek E.G., Stein A. & Janssen L.L.F., 1992. Spatial variability and interpolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dailyprecipitati<strong>on</strong> amount. Stochastic Hydrol. Hydraul., 6(4), 304-320.4. Bell V.A. & Moore R.J., 2000. The sensitivity <str<strong>on</strong>g>of</str<strong>on</strong>g> catchment run<str<strong>on</strong>g>of</str<strong>on</strong>g>f models to rainfall dataat different spatial scales. Hydrol. Earth Syst. Sci., 4(4), 653-667.5. Borga M. & Vizzaccaro A., 1997. On the interpolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrologic variables: formalequivalence <str<strong>on</strong>g>of</str<strong>on</strong>g> multiquadratic surface fitting and kriging. J. Hydrol., 195(1-4), 160-171.6. Shah S.M.S., O‘C<strong>on</strong>nell P.E. & Hosking J.R.M., 1996a. Modelling the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> spatialvariability in rainfall <strong>on</strong> catchment resp<strong>on</strong>se. 1. Formulati<strong>on</strong> and calibrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> astochastic rainfall field model. J. Hydrol., 175(1-4), 67-88.7. Shah S.M.S., O‘C<strong>on</strong>nell P.E. & Hosking J.R.M., 1996b. Modelling the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> spatialvariability in rainfall <strong>on</strong> catchment resp<strong>on</strong>se. 2. Experiments <strong>with</strong> distributed and lumpedmodels. J. Hydrol., 175(1-4), 89-111.97


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurFlood C<strong>on</strong>trol and Ground WaterRecharging Using Street Catchment AreaSandeep Mundel, Tiyasha DasDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil EngineeringPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurEmail-sandeepmundel0@gmail.comINTRODUCTIONOnce it was called that air is the basic comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> life but now a day‘s water has become<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the essential comp<strong>on</strong>ent. As per the review till 2050 water requirement will notfulfilled as per the demand, thus now is the time to take measures. In big cities water due t<strong>on</strong>ormal rainfall get collected <strong>on</strong> roads and create flood like situati<strong>on</strong>, cause traffic jam,because water cannot be absorbed by soil or earth and drainage system is least effective inthese cases. Artificial recharge can be answer to it as it is achieved by putting surface water inbasins, furrows, ditches, or other facilities where it infiltrates into the soil and movesdownward to recharge aquifers.My Project‘s target is to collect the water from road area through a piping system to rechargethe underground aquifer and avoid the flood like situati<strong>on</strong> and traffic jam in citiesIn this system at required distance holes <str<strong>on</strong>g>of</str<strong>on</strong>g> various diameter as per the requirement areprovided at the outer edge <str<strong>on</strong>g>of</str<strong>on</strong>g> road which is c<strong>on</strong>nected to separate drainage piping system.Through this system water is sent to a reservoir site <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial ground water recharge. Atthis site water sends to underground aquifer.Artificial recharge systems are engineered systems where surface water is put <strong>on</strong> or in theground for infiltrati<strong>on</strong> and subsequent movement to aquifers to augment groundwaterresources. Other objectives <str<strong>on</strong>g>of</str<strong>on</strong>g> artificial recharge are to reduce seawater intrusi<strong>on</strong> or landsubsidence, to store water, to improve the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the water through soil-aquifer treatmentor geo-purificati<strong>on</strong>, to use aquifers as water c<strong>on</strong>veyance systems, and to make groundwaterout <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water where groundwater is traditi<strong>on</strong>ally preferred over surface water fordrinking. Infiltrati<strong>on</strong> and artificial recharge are achieved by placing it in wells for directinjecti<strong>on</strong> into the aquifer. A report by the state groundwater department says water level this99


year has g<strong>on</strong>e down by 4.76 meter and has been depleting at an average rate <str<strong>on</strong>g>of</str<strong>on</strong>g> minimum 6meach year for the past three years. Scientists at the water department have been warning thatwater table in Jaipur has been declining at a rate <str<strong>on</strong>g>of</str<strong>on</strong>g> about minimum 6 meter every year since2008.It is a very serious problem. They have warned that at this rate, the city will be left <strong>with</strong>no water by 2016, if no proper m<strong>on</strong>so<strong>on</strong> comes and proper method to recharge thegroundwater is taken.METHODOLOGYAccording to the data available, last year, the groundwater recharge after the m<strong>on</strong>so<strong>on</strong> was 93milli<strong>on</strong> cubic meter and the extracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> it in the city was 700 milli<strong>on</strong> cubic meter. Incomparis<strong>on</strong> to the water recharge, extracti<strong>on</strong> was more than 607 milli<strong>on</strong> cubic meter .In citiesmost <str<strong>on</strong>g>of</str<strong>on</strong>g> area is covered ,so natural ground water recharge is not possible and water run<str<strong>on</strong>g>of</str<strong>on</strong>g>f aswaste water. It is very necessary to artificially recharge the underground water bodies tomaintain ground water level. In big cities water due to normal rainfall get collected <strong>on</strong> roadsand create flood like situati<strong>on</strong>, cause traffic jam, because water can‘t be absorbed bypavement <str<strong>on</strong>g>of</str<strong>on</strong>g> road and drainage system is clog by waste materials e.g. Polythene, twigs, andsometimes water logging occurs. If water due to rainfall <strong>on</strong>ly <strong>on</strong> roads is collected througha piping system and properly drained to a site <str<strong>on</strong>g>of</str<strong>on</strong>g> artificially ground water recharge system,not <strong>on</strong>ly the flood like situati<strong>on</strong> can be avoided but also the ground water level increases forfuture use. The Rati<strong>on</strong>al equati<strong>on</strong> is the simplest method to determine peak discharge fromdrainage basin run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. It is not as sophisticated as the SCS TR-55 method, but is the mostcomm<strong>on</strong> method used for sizing sewer systems.Rati<strong>on</strong>al Equati<strong>on</strong>: Q = CIAWhere, Q = Peak discharge in cubic feet per sec<strong>on</strong>d; C = Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f coefficientI = Rainfall intensity in inch/hour;A = Drainage area in acreIn Jaipur if ring road made as c<strong>on</strong>crete road <strong>with</strong> a piping system to collect total amount <str<strong>on</strong>g>of</str<strong>on</strong>g>water which fall <strong>on</strong> it, approximate total recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water is calculated as followAverage rainfall in Jaipur =597.9mm (annually)Intensity <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall (I) =(597.9)/(2.54*365*24)=2.6945*10^-3 inch per hour


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurCoefficient <str<strong>on</strong>g>of</str<strong>on</strong>g> run<str<strong>on</strong>g>of</str<strong>on</strong>g>f for c<strong>on</strong>crete (c) =0.7 to 0.95Total length <str<strong>on</strong>g>of</str<strong>on</strong>g> ring road=144.75kmStandard width <str<strong>on</strong>g>of</str<strong>on</strong>g> road= 4*3.7 mDrainage area=144.75*1000*4*3.7 =2142300 sq. M=529.4 acrePeak discharge Q= c i AQ=0.95*2.6945*10^-3*529.4 =1.3352cfs=1.5*10^9 cubic meter per yearTo equalize the total extracti<strong>on</strong> to total rechargereq. peak discharge=222068cfsfor this discharge area req.=88020756 acre=3.56*10^11 sq. meterBy this area total quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water is given byQ=0.95*2.6945*10^-3*88020756 = 700*10^10 cubic meterit mean if 3.56*10^11 sq. m area <str<strong>on</strong>g>of</str<strong>on</strong>g> road is used for artificial ground water rechargethen total extracti<strong>on</strong> will be equal to total recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water.RESULT AND CONCLUTION:By catchment area <str<strong>on</strong>g>of</str<strong>on</strong>g> ring road 1.5*10^9 cubic meter water can be saved annually and88020756 acre area is required to equalize the total extracti<strong>on</strong> to total recharge <str<strong>on</strong>g>of</str<strong>on</strong>g>groundwater.REFERENCES:1) Punmia. B.C, ―Waste water engineering‖ pp. 30-31, 1988.2) Kerby, W .S.(1959).Time <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>centrati<strong>on</strong> for overland flow. Civil Engineering29(3),60 Kerby‘s work is based <strong>on</strong> Hathaways‘s(1945) data.3) http://www.webcrawler.com4)https://www.google.co.in101


Fig.=system <str<strong>on</strong>g>of</str<strong>on</strong>g> recharging groundwater by street catchment area


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurMethodology to Integrate GIS-BasedTechnique to Watershed ManagementArun D. Bhagat 1 and Mangal A. Patil 21 Research Scholars, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Irrigati<strong>on</strong> and Drainage Engineering, Mahatma PhuleKrishi Vidyapeeth, Rahuri, Ahmednagar- 413722 (Maharashtra)2 Research Scholars, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water Engineering, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology andEngineering, Maharana Pratap University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology, Udaipur (RJ)Email ID: arunbhagat02@gmail.comDue to the changing weather c<strong>on</strong>diti<strong>on</strong>s as well as the spatial variability <str<strong>on</strong>g>of</str<strong>on</strong>g> land mass result inn<strong>on</strong>linear behaviour <str<strong>on</strong>g>of</str<strong>on</strong>g> the resp<strong>on</strong>se <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed. In a place like India, where emphasis isbeing placed <strong>on</strong> making the local-level users participate in the management <str<strong>on</strong>g>of</str<strong>on</strong>g> naturalresources at the watershed level, it is imperative that these local-level organizati<strong>on</strong>s bestrengthened by providing the integrated watershed management tools which are userfriendly,but still use all the scientific knowledge to arrive at the appropriate decisi<strong>on</strong>s. Thisarticle dem<strong>on</strong>strates the use <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS-based modelling framework for local-level planning,incorporating the sustainability aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> watershed development. This applicati<strong>on</strong> is usefulto help the watershed managers in objectively prioritizing the watersheds <strong>with</strong> respect to thestipulated norms and for m<strong>on</strong>itoring and evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed programmes which is animportant comp<strong>on</strong>ent, but is invariably missing.Keywords: Soil and Water Assessment Tool (SWAT) Model, Geographic Informati<strong>on</strong>System (GIS) and Digital Elevati<strong>on</strong> Model (DEM)INTRODUCTIONWater is a precious natural resource and at the same time complex to manage. There is nodoubt that India has d<strong>on</strong>e well in the sector <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources development in the form <str<strong>on</strong>g>of</str<strong>on</strong>g>major, medium and minor irrigati<strong>on</strong> projects, in the last fifty years, which has in turn playedan important role in the progress <str<strong>on</strong>g>of</str<strong>on</strong>g> the country. Water resources development is a c<strong>on</strong>tinuousprocess which has to be resorted <strong>on</strong> account <str<strong>on</strong>g>of</str<strong>on</strong>g> ever-increasing demands. The major irrigati<strong>on</strong>projects cater to milli<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> hectares <str<strong>on</strong>g>of</str<strong>on</strong>g> land, whereas at the other extreme, local-levelprojects such as small p<strong>on</strong>ds/tanks involving small structures may also be used to fulfill therequirements <str<strong>on</strong>g>of</str<strong>on</strong>g> a small community at the village level. It has been noticed that <strong>on</strong>ce these103


projects have been created, their proper operati<strong>on</strong> and maintenance is invariably ignored.There have been many instances where implemented projects have been found to beresp<strong>on</strong>sible for creating envir<strong>on</strong>mental problems in the society. Those c<strong>on</strong>cerned <strong>with</strong> thewater sector have shared the above c<strong>on</strong>cerns. Policies are being made and a number <str<strong>on</strong>g>of</str<strong>on</strong>g> newprogrammes are floated to address the water-resources problem. A comm<strong>on</strong> framework thatcan be used for effective planning, development and management <str<strong>on</strong>g>of</str<strong>on</strong>g> these programmes in anintegrated manner is invariably missing. The Integrated Watershed Management (IWM)approach has been globally accepted as the best for natural resource management, but israrely or partially implemented because <str<strong>on</strong>g>of</str<strong>on</strong>g> the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> required framework and/or technicalknow-how. This article puts forward a scientific approach to handle the IWM strategy. Allthe other requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> IWM can also be fulfilled using the same framework.INTEGRATED WATERSHED MANAGEMENT STRATEGYIWM planning is a comprehensive multi-resource management planning process, involvingall stakeholders <strong>with</strong>in the watershed, who together as a group, cooperatively work towardsidentifying the resource issues and c<strong>on</strong>cerns <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed, as well as develop andimplement a watershed plan <strong>with</strong> soluti<strong>on</strong>s that are envir<strong>on</strong>mentally, socially andec<strong>on</strong>omically sustainable. In India, IWM efforts go back to 1970. There have been manychanges in the implementati<strong>on</strong> strategies during the following years. Until 1995, watersheddevelopment projects were <str<strong>on</strong>g>of</str<strong>on</strong>g>ficially coordinated by multi-sectoral programmes (<strong>with</strong>differing objectives) launched by the Government <str<strong>on</strong>g>of</str<strong>on</strong>g> India. After review in 1999 by theMinistry <str<strong>on</strong>g>of</str<strong>on</strong>g> Rural Development and the Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture, a comm<strong>on</strong> set <str<strong>on</strong>g>of</str<strong>on</strong>g> operati<strong>on</strong>alguidelines, objectives, strategies and expenditure norms were established for watersheddevelopment programmes in 2001. These are implemented through programmes such asDPAP (Drought-Pr<strong>on</strong>e Area Programme), DDP (Desert Development Programme) andIWDP (Integrated Watershed Development Programme). The guidelines encourage the activeinvolvement <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-governmental organizati<strong>on</strong>s, semi-governmental instituti<strong>on</strong>s and privateenterprises, universities and training instituti<strong>on</strong>s. However, c<strong>on</strong>cerns are being raised thatemphasis in watershed development programmes is still firmly based <strong>on</strong> the belief that wateris an infinite resource, through development <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater abstracti<strong>on</strong> and water harvestingtechniques. IWM does not merely imply the amalgamati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different activities to beundertaken <strong>with</strong>in a hydrological unit. It also requires the collati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> relevant informati<strong>on</strong> soas to evaluate the cause and effect <str<strong>on</strong>g>of</str<strong>on</strong>g> all the proposed acti<strong>on</strong>s. The watershed is the smallestunit where the evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> human-induced impacts up<strong>on</strong> natural resources becomes


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurpossible. Therefore, although the ‗Panchayat‘ remains the preferred implementati<strong>on</strong> unit, thewatershed should be the evaluati<strong>on</strong> unit used in assessing impacts.The impacts resulting from acti<strong>on</strong>s taken at the Panchayat/watershed level will beexperienced at a higher level <strong>with</strong>in the drainage basin, the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> these impacts willrequire the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> a framework which enables the mapping <str<strong>on</strong>g>of</str<strong>on</strong>g> such units and theirentities, and the interc<strong>on</strong>necti<strong>on</strong>s at the Panchayat level and at the higher catchment level.Such a framework will need regular maintenance and updating to reflect fully the mostaccurate ground-truth data or the infrastructure requirements for planning and management <str<strong>on</strong>g>of</str<strong>on</strong>g>natural resources collected by the relevant departments. This framework, <strong>on</strong>ce available,could be used by all the line departments and updated by the relevant departments, whichhave designated areas <str<strong>on</strong>g>of</str<strong>on</strong>g> jurisdicti<strong>on</strong> over the data entry. The format should be madec<strong>on</strong>sistent <strong>with</strong> local to State and nati<strong>on</strong>al level structures as well as the corresp<strong>on</strong>dingwatershed, sub-basin and basin-level structures.All the informati<strong>on</strong> which is required for integrated planning and management is not readilyavailable at the desired scale <str<strong>on</strong>g>of</str<strong>on</strong>g> a watershed. This is true <strong>with</strong> respect to the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water,both surface and ground. Although the informati<strong>on</strong> <strong>on</strong> local water availability as well as itsvariability in time is essential for proper planning and management, measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> thesequantities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> flows is not financially viable at such scales. Hydrological simulati<strong>on</strong>modelling is an effective tool to take care <str<strong>on</strong>g>of</str<strong>on</strong>g> this essential requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> IWM. In the presentstudy <strong>on</strong>e such model presented to simulate the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water and sediment erosi<strong>on</strong> in thesub watersheds.SWAT HYDROLOGICAL MODELThe SWAT (Soil and Water Assessment Tool) model, developed by the USDA AgriculturalResearch Service, simulates the land phase <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrologic cycle in daily time steps.Routines are also included for simulating the detachment <str<strong>on</strong>g>of</str<strong>on</strong>g> sediments from the watershedsand their transport through the drainage systems. The SWAT model is designed to routewater and sediments from individual watersheds, through the river systems. It can incorporatethe tanks and the reservoirs/check dams <str<strong>on</strong>g>of</str<strong>on</strong>g>f-stream as well as <strong>on</strong>-stream. The agriculturalareas can also be integrated <strong>with</strong> respect to its management practices. The major advantage <str<strong>on</strong>g>of</str<strong>on</strong>g>the model is that unlike the other c<strong>on</strong>venti<strong>on</strong>al c<strong>on</strong>ceptual simulati<strong>on</strong> models, it does notrequire much calibrati<strong>on</strong> and therefore can be used <strong>on</strong> ungauged watersheds. The model canbe used for the assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> existing and anticipated water uses and water shortages. The105


model provides a complete accounting <str<strong>on</strong>g>of</str<strong>on</strong>g> the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water that is supplied to the land byprecipitati<strong>on</strong>; enters the streams as surface run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f; is used and returned to the atmosphere bynatural vegetati<strong>on</strong>, agricultural crops and evaporati<strong>on</strong>, and that percolates through the rootz<strong>on</strong>e and a part returns as groundwater c<strong>on</strong>tributi<strong>on</strong>.For modelling purposes, a watershed is partiti<strong>on</strong>ed into a number <str<strong>on</strong>g>of</str<strong>on</strong>g> subwatersheds. The use<str<strong>on</strong>g>of</str<strong>on</strong>g> subwatersheds in a simulati<strong>on</strong> is particularly beneficial when different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> thewatershed are dominated by land uses or soils different enough in properties to impacthydrology. Input informati<strong>on</strong> for each subwatershed is grouped <strong>with</strong> respect to unique areas<str<strong>on</strong>g>of</str<strong>on</strong>g> land cover and soil, which are known as Hydrologic Resp<strong>on</strong>se Units or HRUs. TheseHRUs behave in a hydrologically similar manner to the inputs <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>. Model outputsinclude all water-balance comp<strong>on</strong>ents (surface run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f, evapotranspirati<strong>on</strong>, lateral flow,recharge, percolati<strong>on</strong>, sediment yield, etc.) at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> each subwatershed and at daily,m<strong>on</strong>thly or annual intervals. Wherein micro-watershed prioritizati<strong>on</strong> can be carry out usingcriteria cutting across hydrological, demographic and socio-ec<strong>on</strong>omic parameters. Collati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> scientific informati<strong>on</strong> generated through modelling <strong>with</strong> other required informati<strong>on</strong> such asdemographic, socio-ec<strong>on</strong>omic, etc. is required for taking local-level decisi<strong>on</strong>s.MODELLING OF WATERSHED WITH SWATGIS (Geographic Informati<strong>on</strong> System) can be use as a preprocessor to the SWAT Model.Digital Elevati<strong>on</strong> Model (DEM) is generated using the digitized c<strong>on</strong>tours. DEM al<strong>on</strong>g <strong>with</strong>the digitized drainage can use to automatically delineate (using GIS-based terrain analysisalgorithm) the subwatersheds. The subwatershed layer can overlay <strong>with</strong> the land use and soillayer to derive the HRUs. Model inputs, including soil, weather, groundwater andmanagement required for each HRU were automatically derived using the GIS interface. Theentire area, including the upstream watershed can divide into subwatersheds and HRUs. Theupstream watersheds have also been modelled for assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> water and sedimentgenerati<strong>on</strong> to be used in c<strong>on</strong>juncti<strong>on</strong> <strong>with</strong> the downstream watersheds <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area. Thedaily weather data can use for rainfall and temperature. The outputs <str<strong>on</strong>g>of</str<strong>on</strong>g> the model, namely thewater availability (mm/yr) and sediment yield (t/ha) for each subwatershed <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area.These are two <str<strong>on</strong>g>of</str<strong>on</strong>g> the many elements required for the watershed prioritizati<strong>on</strong>. The watershedmanagement involves a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> guiding principles such as c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> naturalresources, integrated development <str<strong>on</strong>g>of</str<strong>on</strong>g> natural as well as social resources, in situ moisturec<strong>on</strong>servati<strong>on</strong>, sustainable farming system, adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ridge-to-valley approach, livelihoodsupport for landless families, democratic decentralizati<strong>on</strong> in decisi<strong>on</strong> making, equity for


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurresource poor families and empowerment <str<strong>on</strong>g>of</str<strong>on</strong>g> women, etc. Though the priority given to theseelements varies from State to State, NWDPRA (<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Watershed Development Project forRainfed Areas) guidelines have been invariably accepted. These guidelines recommendcombining physical and socio-ec<strong>on</strong>omic criteria. Under the physical criteria, the priority-wiseentities that should be followed include: head-water watersheds <strong>with</strong> erodibility, landdegradati<strong>on</strong>, water scarcity problem, rainfall less than 750 mm, net cultivated area not morethan 20%, irrigated area not exceeding the State average or 30%, and <strong>with</strong> no l<strong>on</strong>g durati<strong>on</strong>crop or water-intensive crops. Since the financial allocati<strong>on</strong> is d<strong>on</strong>e <strong>with</strong> respect to theadministrative boundaries, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the criteria is to take watersheds that cover majority area <str<strong>on</strong>g>of</str<strong>on</strong>g>the villages. With respect to socio-ec<strong>on</strong>omic criteria, priority is given to villages/watershedshaving large ec<strong>on</strong>omically weaker populati<strong>on</strong>, SC/ST populati<strong>on</strong>, uniform land holdings andmany others depending <strong>on</strong> local priorities. Each element <str<strong>on</strong>g>of</str<strong>on</strong>g> the prioritizati<strong>on</strong> criteria (physicaland socio-ec<strong>on</strong>omic) was created as GIS layers taking a subwatershed (<strong>with</strong> alphanumericnomenclature for ease <str<strong>on</strong>g>of</str<strong>on</strong>g> depicti<strong>on</strong>) or village as the mapping unit. The overlay analyses canperform to satisfy the laid-down criteria in the sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> priority. The first level <str<strong>on</strong>g>of</str<strong>on</strong>g> physicalcriteria <str<strong>on</strong>g>of</str<strong>on</strong>g> extent <str<strong>on</strong>g>of</str<strong>on</strong>g> average annual rainfall, head-water watersheds and watersheds <strong>with</strong>maximum soil erosi<strong>on</strong> and minimum water availability, were implemented <strong>on</strong> the study area.This analysis resulted in identifying a cluster <str<strong>on</strong>g>of</str<strong>on</strong>g> seven subwatersheds for further analysis. Itmay be menti<strong>on</strong>ed that <strong>with</strong>out the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> the two crucial elements <str<strong>on</strong>g>of</str<strong>on</strong>g> wateravailability and sediment yield at the subwatershed level, which has been made possiblethrough hydrological modelling, such delineati<strong>on</strong> would not have been possible. In order toimplement the next criteri<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> taking up watersheds which are covered by maximum part <str<strong>on</strong>g>of</str<strong>on</strong>g>the village(s), the overlay <str<strong>on</strong>g>of</str<strong>on</strong>g> the selected subwatersheds <strong>with</strong> the village boundaries canperform. The other analysis pertaining to the socio-ec<strong>on</strong>omic aspects such as number <str<strong>on</strong>g>of</str<strong>on</strong>g>people below the poverty line, SC/ST populati<strong>on</strong>, size <str<strong>on</strong>g>of</str<strong>on</strong>g> the land holding, etc. can alsoperform in a similar manner. The subwatersheds, qualified all these criteria as well. Thus thisc<strong>on</strong>tiguous set <str<strong>on</strong>g>of</str<strong>on</strong>g> subwatersheds can recommend to be taken as the priority area for furtheranalysis and treatment.STRATEGIES FOR WATERSHED DEVELOPMENTTo identify the priority watersheds, the next acti<strong>on</strong> to generate detailed informati<strong>on</strong>commensurate <strong>with</strong> the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies and subsequent c<strong>on</strong>trol andoperati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> generated resources. A detailed survey can c<strong>on</strong>duct over these subwatersheds to107


generate the detailed terrain informati<strong>on</strong>. The detailed survey is essential to generate areas<strong>on</strong>ably accurate DEM for making use <str<strong>on</strong>g>of</str<strong>on</strong>g> the latest technologies <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS to help in handlingthe water resources development at the local level. This DEM has been used to generate thelocal drainage which in turn is used to identify the possible locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the water-harvestingstructures. Selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> a suitable site is important in planning and c<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> harvestingstructure. Dem<strong>on</strong>strati<strong>on</strong> can make through interface <strong>on</strong> Arc-View <strong>with</strong> Spatial Analystextensi<strong>on</strong> for site selecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water-resources structure (Arc-View). Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>iles drawn <strong>on</strong> theDEM would give the hydraulic characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the terrain such as spread area and volume<str<strong>on</strong>g>of</str<strong>on</strong>g> storage, <strong>with</strong> respect to the crest level <str<strong>on</strong>g>of</str<strong>on</strong>g> the barrier created across the drainage. This,when superimposed <strong>on</strong> the plot/village maps, provides the inundated area. This kind <str<strong>on</strong>g>of</str<strong>on</strong>g>applicati<strong>on</strong> can rapidly provide the first-level feasible sites which can then be field-tested forimplementati<strong>on</strong>. Dem<strong>on</strong>strati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> latest tools to derive the appropriate informati<strong>on</strong> throughanalysis and modelling to help in the local-level planning for IWM. This also the strength <str<strong>on</strong>g>of</str<strong>on</strong>g>making these decisi<strong>on</strong>s highly understandable to all the stakeholders and thereby enhancesthe local-level participati<strong>on</strong>.CONCLUSIONWatershed prioritizati<strong>on</strong> is an important aspect <str<strong>on</strong>g>of</str<strong>on</strong>g> planning for implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thewatershed management programme. First <str<strong>on</strong>g>of</str<strong>on</strong>g> all, dem<strong>on</strong>strati<strong>on</strong> has been made aboutimplementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the hydrological model to generate water and sediment yield at the microwatershedlevel which is useful for planning process. Some peripheral interfaces have beendesigned to help the planners <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed programme. Two such applicati<strong>on</strong>s, <strong>on</strong>e forfinding the interacti<strong>on</strong> between the administrative and watershed boundaries that shall help inallocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> financial resources <strong>with</strong> respect to the watershed boundaries and the other tolocate the water-harvesting structures, which is a comm<strong>on</strong> feature in the watershedmanagement programme, have been formulated and dem<strong>on</strong>strated. Besides helping in siting<str<strong>on</strong>g>of</str<strong>on</strong>g> the structures, the spatial tool also helps in estimating the related parameters like the waterspread area and available water storage capacity at that locati<strong>on</strong>. These applicati<strong>on</strong>s not <strong>on</strong>lysuffice the general requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the end-users, but also go much further in ensuring that ascientific character is brought about in this crucial sector <str<strong>on</strong>g>of</str<strong>on</strong>g> watershed management. Thisapplicati<strong>on</strong> is also useful to help the watershed managers in objectively prioritizing thewatersheds <strong>with</strong> respect to the stipulated norms. The applicati<strong>on</strong> can also be used form<strong>on</strong>itoring and evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed programmes which is an important comp<strong>on</strong>ent,but is invariably missing.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurREFERENCES1. Gosain A. K. and S. Rao. 2004. GIS-based technologies for watershed management.Current Science, Vol. 87, No. 7, Pp-948-9532. Kawad, A. 2001. Fine balance: Managing Karnataka‘s scarce water resources. KarnatakaWatershed Development Society, Bangalore, p. 18.3. Arnold, J. G., J. R. Williams., A. D. Nicks and N. B. Samm<strong>on</strong>s. 1990. SWRRB – A BasinScale Simulati<strong>on</strong> Model for Soil and Water Resources Management, Texas A&M Press,College Stati<strong>on</strong>, p. 255.4. CEE, 2001. Prioritizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> micro watersheds for management in Bijapur district <str<strong>on</strong>g>of</str<strong>on</strong>g>Karnataka, Centre for Envir<strong>on</strong>ment Educati<strong>on</strong>, Bangalore, p. 89.109


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurDepleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the Ground Water, itsC<strong>on</strong>taminati<strong>on</strong>Rajvir SinghDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Botany, K.K. Degree College, Etawah (UP)Water is essential for the existence <str<strong>on</strong>g>of</str<strong>on</strong>g> the biotic world and is required nearly for all activities<str<strong>on</strong>g>of</str<strong>on</strong>g> man. Ground water is an important resource. In recent years, an increasing threat to groundwater quality is due to human activities. The intensive use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources and the largeproducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wastes in modern society <str<strong>on</strong>g>of</str<strong>on</strong>g>ten pose a threat to ground water quality and haveresulted in many incident <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water c<strong>on</strong>taminati<strong>on</strong>. A vast majority <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waterproblems are caused by c<strong>on</strong>taminati<strong>on</strong> and overexploitati<strong>on</strong>. Depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water levelsis a global phenomen<strong>on</strong> and is associated <strong>with</strong> sub surface pumping in many countries. Some<str<strong>on</strong>g>of</str<strong>on</strong>g> the heavy metals are extremely essential to humans for example, cobalt, copper etc. Butlarge quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> them may cause physiological disorders. The c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater by heavy metals and pesticides have also assumed great significance during recentyears due to their toxicity and accumulative behavior. The serious implicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> thisproblem necessitate an integrated approach in explicit terms to undertake ground waterpolluti<strong>on</strong> m<strong>on</strong>itoring and abatement programmers.111


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurApplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing and GISin Watershed ManagementBasamma. K. A.Department Of Soil and Water Engineering, AEC & RI, TNAU, Coimbatorebasammaka@gmail.comRemote sensing and GIS prove to be very comprehensive in the study <str<strong>on</strong>g>of</str<strong>on</strong>g> large areas likewatershed where integrated and simultaneous activities have to be executed. Watershed isdefined as the land area from which water drains to a given point. Since water is drained <str<strong>on</strong>g>of</str<strong>on</strong>g>fto a given point, the management <str<strong>on</strong>g>of</str<strong>on</strong>g> watershed in point <str<strong>on</strong>g>of</str<strong>on</strong>g> view <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrology is easilypossible. Hence, we can say ―watershed is a manageable Hydrological Unit‖. Broadly,watershed management implies the proper use <str<strong>on</strong>g>of</str<strong>on</strong>g> all land and water resource <str<strong>on</strong>g>of</str<strong>on</strong>g> a watershedfor optimum producti<strong>on</strong> <strong>with</strong> minimum hazard to natural resources.Analysis and assessment tools like GIS al<strong>on</strong>g <strong>with</strong> Remote Sensing have proved to be veryefficient and effective and hence useful for management <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources. Remote sensingtechniques can be effectively used for agriculture, forests, range land, wetland and urbanvegetati<strong>on</strong> assessment. Watershed areas are pr<strong>on</strong>e to degradati<strong>on</strong> accelerated by humaninterventi<strong>on</strong>s. Wastelands like gullied or ravenous land, upland <strong>with</strong> or <strong>with</strong>out scrub,degraded pasture, degraded land under plantati<strong>on</strong>; industrial wastelands are found prevalentlyin watershed areas. Effectual Management tools can be designed <strong>on</strong>ly <strong>with</strong> backup fromextensive Remote sensing data and various GIS tools. Wasteland development in thewatershed areas can be mitigated substantially by the proper and wide-ranging use <str<strong>on</strong>g>of</str<strong>on</strong>g> remotesensing and GIS. The management tools like leveling <str<strong>on</strong>g>of</str<strong>on</strong>g> gullies or ravines, gully plugging,c<strong>on</strong>tour bunding, c<strong>on</strong>tour trenching can be implemented as per the characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g>wasteland. Thus, wastelands can be managed and c<strong>on</strong>verted to arable land by the use <str<strong>on</strong>g>of</str<strong>on</strong>g> thisrefined method.Remote sensing and GIS can be effectively used in agricultural applicati<strong>on</strong>s like crop typeclassificati<strong>on</strong>, crop area estimati<strong>on</strong>, crop yield predicti<strong>on</strong> and also crop c<strong>on</strong>diti<strong>on</strong> assessment.Advancements in the remote sensing technology and the Geographic Informati<strong>on</strong> Systems113


(GIS) help in real time m<strong>on</strong>itoring, early warning and quick damage assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> flooddisasters.A Geographic Informati<strong>on</strong> System is a tool that can assist floodplain managers in identifyingflood pr<strong>on</strong>e areas in their community. With a GIS, geographical informati<strong>on</strong> is stored in adatabase that can be queried and graphically displayed for analysis. By overlaying orintersecting different geographical layers, flood pr<strong>on</strong>e areas can be identified and targeted formitigati<strong>on</strong> or stricter floodplain management practices. So, RS and GIS techniques should beexplored and implemented appropriately. The natural resources are our Comm<strong>on</strong> Property sowe should brainstorm and work hand in hand towards their c<strong>on</strong>servati<strong>on</strong> and preservati<strong>on</strong>.Key words: watershed management, natural recourses, assessment tools, wastelands andflood m<strong>on</strong>itoring.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurEffect <str<strong>on</strong>g>of</str<strong>on</strong>g> Urbanizati<strong>on</strong> <strong>on</strong> Water Resourcesin JaipurNidhi Gupta 1 and Rita Gupta 21 Sr. Lecturer Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil, Amity University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, Jaipur2 Research Awardee, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, Jaipur1 er.nidhigupta85@yahoo.com, 2 ritagupta16@rediffmail.comUrbanizati<strong>on</strong> has led to immense pressure <strong>on</strong> ground water resources and has resulted inquality deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water as well. Jaipur, the capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan is facing rapidurbanizati<strong>on</strong> resulting in rapid depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water level. Unc<strong>on</strong>trolled urbanizati<strong>on</strong> andthe growing populati<strong>on</strong> pressure are the essential challenges for water management inurbanized regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the emerging and developing countries. This paper analyses the growthin populati<strong>on</strong> and urbanizati<strong>on</strong> resulting in lowering <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water table. Further changes inland use pattern due to urbanizati<strong>on</strong> also risks ground water recharging. Significant WaterTable Depleti<strong>on</strong> has raised serious c<strong>on</strong>cerns over the future development and sustainabledevelopment. The status <str<strong>on</strong>g>of</str<strong>on</strong>g> the water in the envir<strong>on</strong>ment is unique. Ever since the birth <str<strong>on</strong>g>of</str<strong>on</strong>g>earth from day <strong>on</strong>e, the need for water is always <strong>on</strong> the increase, not just because <str<strong>on</strong>g>of</str<strong>on</strong>g> increasein human populati<strong>on</strong> but because all living beings are multiplying at a fast rate.Keywords: Ground water table, Water, Depleti<strong>on</strong> and Urbanizati<strong>on</strong>Introducti<strong>on</strong>Jaipur District is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the 32 districts in the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan in western India. The city <str<strong>on</strong>g>of</str<strong>on</strong>g>jaipur which is Rajasthan‘s capital and largest city is also the district headquarters. Thedistrict is situated in the north eastern part <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan state. It is located between the northlatitude <str<strong>on</strong>g>of</str<strong>on</strong>g> 26°23‘N to 27°51‘N and east l<strong>on</strong>gitude 74°55‘E to76°50‘E.It is bounded by sikardistrict in north west, alwar district in the north east, dausa in east, t<strong>on</strong>k in south, Ajmer insouth west and nagaur in west. The district has an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 11151sq Km and occupies 3.3%area <str<strong>on</strong>g>of</str<strong>on</strong>g> the state. It ranks ninth in comparis<strong>on</strong> to the other district <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rajasthan in term <str<strong>on</strong>g>of</str<strong>on</strong>g>the area. The district imbibes 2131 villages <str<strong>on</strong>g>of</str<strong>on</strong>g> which 2077 are inhabited and 57 areuninhabited.115


Jaipur is probably the first planned city <str<strong>on</strong>g>of</str<strong>on</strong>g> modern India. Its features <str<strong>on</strong>g>of</str<strong>on</strong>g> beautiful architecture,planned growth and cosmopolitan character have endowed it <strong>with</strong> uniqueness in India‘s urbansetting. Jaipur, being capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan is the focus <str<strong>on</strong>g>of</str<strong>on</strong>g> socio-ec<strong>on</strong>omic and political life <str<strong>on</strong>g>of</str<strong>on</strong>g>state.The slope land in the jaipur district varies from less than 10metres/kilometer to 300 meters/kilometer. The district is distinctively divided diag<strong>on</strong>ally. The lower part <str<strong>on</strong>g>of</str<strong>on</strong>g> it has a slopeless than 10 meters /kilometer and the higher part has 10-20 meters /kilometer. The top mostpart <str<strong>on</strong>g>of</str<strong>on</strong>g> the district has a slope again below10 meters/kilometerAccelerated groundwater exploitati<strong>on</strong> over the past few decades has resulted in great socialand ec<strong>on</strong>omic benefits by providing low-cost, drought-reliable and high quality watersupplies for urban areas, rural populati<strong>on</strong>s and crop irrigati<strong>on</strong>. The rapidly increasing largecities in semiarid and semi-humid regi<strong>on</strong>s raise many problems in water resourcesmanagement.Results and Discussi<strong>on</strong>sJaipur district has shown an increase in the populati<strong>on</strong> over the past decades. The populati<strong>on</strong>growth <str<strong>on</strong>g>of</str<strong>on</strong>g> jaipur district was 15, 22,591 in the year 1961 which has increased to 52, 51,071 inthe year 2001. This has led to tremendous pressure <strong>on</strong> the available limited resources. Thedecadal growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> ranges between almost from 30.9% to 39.8% <strong>with</strong> anaverage annual growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.6%.The growth rate for rural populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaipur district was 15, 22,591 in the year 1961 whichhas increased to 52, 51,071 in the year 2001. This has led to tremendous pressure <strong>on</strong> theavailable limited resources. The decadal growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> ranges between almostfrom 23.77 % to 25.82 % between the years 1961 to 2001. However the growth rate for urbanpopulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> jaipur district was 4, 88,677 in the year 1961 which has increased to 25, 92,067in the year 2001. There is significant decadal growth in urban populati<strong>on</strong> which rangesbetween almost from 46.07 % to 65.32% signifying that there is tremendous pressure <strong>on</strong> theurban envir<strong>on</strong>ment.The rural- urban decadal percentage <str<strong>on</strong>g>of</str<strong>on</strong>g> growth shows that the ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> Rural to the Urban isc<strong>on</strong>tinuously changing. There has been increased urbanizati<strong>on</strong> over the decades <strong>with</strong>agriculture <strong>on</strong> the decline and increase in service sector.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurIn 1961, the level <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanizati<strong>on</strong> was almost from 32% which has increased to 49% in 2001.The nati<strong>on</strong>al average <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanizati<strong>on</strong> is almost 32%.The increased level <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanizati<strong>on</strong> in thedistrict is <strong>on</strong> account <str<strong>on</strong>g>of</str<strong>on</strong>g> the jaipur city which is a primate city and also the major employmentprovider for the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, besides the jaipur regi<strong>on</strong> covers almost 1/3 part <str<strong>on</strong>g>of</str<strong>on</strong>g> thedistrict.The Water Level Depleti<strong>on</strong> Due to Increase Level <str<strong>on</strong>g>of</str<strong>on</strong>g> Urbanizati<strong>on</strong> in JaipurFrom the above results and discussi<strong>on</strong>s, it can be c<strong>on</strong>cluded/ stated that the urbanizati<strong>on</strong> insome way has resulted in the Water level depleti<strong>on</strong> and high value <str<strong>on</strong>g>of</str<strong>on</strong>g> water depleti<strong>on</strong> in densepopulati<strong>on</strong> area are found. This is clearly that the rapidly increasing large cities in semiaridand semi-humid regi<strong>on</strong>s raise many problems in water resources management. The paperfocuses <strong>on</strong> the water table level in Jhotwara, sanganer and Bassi blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur district. Thewater table level has also resulted in significant depleti<strong>on</strong> raises serious c<strong>on</strong>cerns over thefuture development.C<strong>on</strong>clusi<strong>on</strong>sThis study shows that ground water table and quantity in the urban areas have changedgreatly. Rapid urban and industrial developments and extensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigated farmland havedoubled the water demand. This raises questi<strong>on</strong>s <strong>on</strong> our urban planning practices where food,water and air form the basic requirements and we are not able to provide good ambient airquality to a significant proporti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> our populati<strong>on</strong>. There is significant increase in urbanpopulati<strong>on</strong> and rapid urbanizati<strong>on</strong> and industrializati<strong>on</strong> has further led to depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> watertable. Further research and resource mapping is required for proper planning and resourcemapping.These types <str<strong>on</strong>g>of</str<strong>on</strong>g> study will impact-1. Planning and layout <str<strong>on</strong>g>of</str<strong>on</strong>g> residential, commercial and industrial locati<strong>on</strong>;2. Pricing <str<strong>on</strong>g>of</str<strong>on</strong>g> real estate.Acknowledgements: Dr. Rita Gupta is thankful to UGC, New Delhi for financial assistant asresearch awardees.117


References1. Data collected from Ground water department, Jaipur (Rajasthan)2. www.unfpa.org (2010 September 08)3. Master Plan, JDA4. Our cities, our health, our future, Report <str<strong>on</strong>g>of</str<strong>on</strong>g> the WHO commissi<strong>on</strong> for health equity inurban settings, WHO5. Urbanizati<strong>on</strong> and sustainability in Asia, BRIAN ROBERTS and TREVOR KANALEY,2009.


Theme – IIRain Water Harvesting


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)GIS and Remote Sensing Applicati<strong>on</strong>s forRainwater Harvesting in RajasthanRenu Dhupper and S. SomvanshiAmity Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science, Amity University, NoidaEmail: renu.dhupper@gmail.comOften, as a frantic resp<strong>on</strong>se to problems <str<strong>on</strong>g>of</str<strong>on</strong>g> water scarcity and c<strong>on</strong>sequent hardships faced byboth urban and rural communities, Rajasthan has invested heavily in rainwater harvesting.Unlike investment in large water resource systems, these efforts by and large, lackhydrological planning and socio ec<strong>on</strong>omic analysis: research <strong>on</strong> the impact <str<strong>on</strong>g>of</str<strong>on</strong>g> local waterharvesting/ groundwater recharge activities in Rajasthan is very sparse. Rainwater harvestingis <strong>on</strong>e such interventi<strong>on</strong> that involves harnessing <str<strong>on</strong>g>of</str<strong>on</strong>g> water in the upstream catchment. Lastcouple <str<strong>on</strong>g>of</str<strong>on</strong>g> years has been particularly bad for Rajasthan in general and Western Rajasthan inspecific. Lack <str<strong>on</strong>g>of</str<strong>on</strong>g> adequate m<strong>on</strong>so<strong>on</strong> forced the villagers to migrate to nearby towns forsurvival. In the absence <str<strong>on</strong>g>of</str<strong>on</strong>g> fodder and water livestock also had become a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the migrati<strong>on</strong>process. To address this problem a technique was developed for small scale farmers <strong>with</strong> theobjective <str<strong>on</strong>g>of</str<strong>on</strong>g> harnessing rainwater for crop producti<strong>on</strong>. This paper attempts to describe thestate <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvesting technique and the c<strong>on</strong>tributi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS and Remote Sensingtechnologies for RWH in the Rajasthan regi<strong>on</strong>. Studies were c<strong>on</strong>ducted using physiographicfactors <str<strong>on</strong>g>of</str<strong>on</strong>g> the Rajasthan regi<strong>on</strong>. This technique was used to study the watershed network inthe Rajasthan, and to identify areas generally suitable for water harvesting in order todetermine water harvesting techniques for those drought affected sites.Keywords: Scarcity, Watershed, Recharge, Harvesting, Catchment119


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Harvest the Rainwater Wherever it Pours:Every Drop CountsSaif Ullah KhanResearch Scholar, Dept. <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, MNIT, JaipurE-mail: saif07amu.nitjaipur@gmail.comWater is essential for survival <str<strong>on</strong>g>of</str<strong>on</strong>g> life and plays a vital role in maintaining earth's climate. Theavailability <str<strong>on</strong>g>of</str<strong>on</strong>g> water totally depends <strong>on</strong> rain; however, the spatial and temporal distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>rain is highly variable and is dependent <strong>on</strong> climatic factors that are bey<strong>on</strong>d human c<strong>on</strong>trol.The average annual rainfall over India is about 1170 mm. However, it occurs during shortintervals <str<strong>on</strong>g>of</str<strong>on</strong>g> high intensity. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> such high intensity and short durati<strong>on</strong> most <str<strong>on</strong>g>of</str<strong>on</strong>g> the rainfalling <strong>on</strong> earth's surface flows away fast leaving little scope for recharging <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater.Till about thirty years back, the areas around our homes and <str<strong>on</strong>g>of</str<strong>on</strong>g>fices used to be unpaved andthe rain falling <strong>on</strong> these areas would percolate into the soil and remain there for being drawnthrough shallow open wells. With the proliferati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flat complexes, not <strong>on</strong>ly have theseareas been paved and percolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater into the soil almost totally stopped, thequantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water drawn from the soil below has increased manifold. C<strong>on</strong>sequently openwells and not co - deep bore wells started drying up. The reas<strong>on</strong> is that no sincere attempt ismade to replenish the ground water table <strong>with</strong> rainwater during the m<strong>on</strong>so<strong>on</strong>. The Rainwaterharvesting is the simple collecti<strong>on</strong> or storing <str<strong>on</strong>g>of</str<strong>on</strong>g> water through scientific techniques from theareas where the rain fall. It involves utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water for the domestic or theagricultural purpose. The method <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water harvesting has been into practice since ancienttimes. It is as far the best possible way to c<strong>on</strong>serve water and awaken the society towards theimportance <str<strong>on</strong>g>of</str<strong>on</strong>g> water. The method is simple and cost effective too. It is especially beneficial inthe areas, which faces the scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> water. During the m<strong>on</strong>so<strong>on</strong>s lots <str<strong>on</strong>g>of</str<strong>on</strong>g> water goes wasteinto the gutters, and this is where Rain water Harvesting proves to be the most effective wayto c<strong>on</strong>serve water. We can collect the rain water into the tanks and prevent it from flowinginto drains and being wasted.Keywords: Rainwater harvesting, populati<strong>on</strong>, recharge, management, ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top, etc121


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing and GISin Rainwater HarvestingTanvear Ahmad, Sanjay Kumar Jain and P.K.Agarwal<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Roorkee, India,Email: tanvear56@gmail.comWater is very essential for all substance <str<strong>on</strong>g>of</str<strong>on</strong>g> all form <str<strong>on</strong>g>of</str<strong>on</strong>g> life, food producti<strong>on</strong> industrial andec<strong>on</strong>omic development and for other general being. Now days the present requirement <str<strong>on</strong>g>of</str<strong>on</strong>g>water for domestic agricultural and industrial needs are met mainly by the subsurface waterresources which are increasingly under great stress due to exp<strong>on</strong>ential growth in populati<strong>on</strong>,urbanisati<strong>on</strong>, industrialisati<strong>on</strong> and modernisati<strong>on</strong> in agriculture and irrigati<strong>on</strong> practices. Inthis situati<strong>on</strong> there is a need to c<strong>on</strong>serve and meet our daily demand <str<strong>on</strong>g>of</str<strong>on</strong>g> water requirement;there is a need to think for other cost effective and relatively easier technological methods <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>serving water. Rain water harvesting is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the easy and best techniques for fulfillingthose requirements. The Identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potential sites for Rainwater Harvesting is animportant step towards maximizing water availability and land productivity.Remote sensing and GIS techniques have a wide role for identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> potentialsites/locati<strong>on</strong> for rainwater harvesting.With advent <str<strong>on</strong>g>of</str<strong>on</strong>g> modern technology <str<strong>on</strong>g>of</str<strong>on</strong>g> GIS; the process<str<strong>on</strong>g>of</str<strong>on</strong>g> delineati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> channel network and basins has become automated and easy. Recently GIStools are being widely used for delineati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> catchments and identifying stream network.Remote Sensing data interpretati<strong>on</strong> and GIS technology provides a correct, reliable, accurateand updated data base <strong>on</strong> land use/land cover, and water resources which is also aprerequisite for an integrated approach in identifying surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f or stream flow <str<strong>on</strong>g>of</str<strong>on</strong>g>potential areas and to identify the suitable sites for rainwater harvesting. Topography is also<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the major criteria for Rainwater harvesting sites selecti<strong>on</strong> and digital elevati<strong>on</strong> model(DEM) data can be utilised for this purpose. Now a days, the DEM is available from thedifferent sources, e.g. Global Land One- kilometer Base Elevati<strong>on</strong> (GLOBE), SRTM,ASTER etc. These data are available over the internet. In this paper an attempt has made forillustrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> how we can benefit from remote sensing and GIS technologies in RainwaterHarvesting techniques and site selecti<strong>on</strong> etc. It is discussed that suitability mapping using GISis a flexible, time-efficient and cost-effective method to screen large areas for RWHsuitability facilitating decisi<strong>on</strong>-making.Keyword: DEM,GIS,RS123


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Modern Methods <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater HarvestingDipti MathurAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Poornima University, JaipurThe numbers <str<strong>on</strong>g>of</str<strong>on</strong>g> water stressed regi<strong>on</strong>s at various part <str<strong>on</strong>g>of</str<strong>on</strong>g> the world are increasing due to rapidgrowth <str<strong>on</strong>g>of</str<strong>on</strong>g> real estate. The urban areas are facing twin challenges <str<strong>on</strong>g>of</str<strong>on</strong>g> water scarcity andinadequate capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater disposal systems. The rapid growth <str<strong>on</strong>g>of</str<strong>on</strong>g> urban populati<strong>on</strong>leads escalati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water demand. Meeting these increasing water demands <strong>with</strong> ageographically c<strong>on</strong>strained water supply system is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a very difficult task.C<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water is important because it takes years to be replenished. In areaswhere ground water is used, care must be taken to minimize the quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>with</strong>drawnand bring it <strong>on</strong> per <strong>with</strong> quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water being replenished.Modern methods <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting include:1. Storage <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water <strong>on</strong> surface for future use2. Recharge to ground water The storage <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water <strong>on</strong> surface is a traditi<strong>on</strong>altechnique and structures used were tanks, p<strong>on</strong>ds, check dams, weirs etc. recharge toground water is a new c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water harvesting and the structures generallyused are:• Pits: Recharge pits are c<strong>on</strong>structed for recharging the shallow aquifer.• Aquifer: The aquifer is porous, water saturated layers <str<strong>on</strong>g>of</str<strong>on</strong>g> sand, gravel or bedrock that can yield significant or usable amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water. These arec<strong>on</strong>structed 1 to 2 m wide, 1 to 1.5 m deep which are back filled <strong>with</strong>boulders, gravels, coarse sand.• Trenches: These are c<strong>on</strong>structed when the permeable rock is available atshallow depth. Trench may be 0.5 to 1 m wide, 1 to 1.5 m deep and 10 to 20 ml<strong>on</strong>g depending up<strong>on</strong> the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water. These are back filled <strong>with</strong> filtermaterials.• Dug wells: Existing dug wells may be utilized as recharge structure and watershould pass through filter media before putting into dug well.• Hand pumps: The existing hand pumps may be used for recharging theshallow/deep aquifers, if the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water is limited. Water should passthrough filter media to avoid chocking <str<strong>on</strong>g>of</str<strong>on</strong>g> recharge wells.125


• Recharge wells: Recharge wells <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 to 300 mm diameter are generallyc<strong>on</strong>structed for recharging the deeper aquifers and water is passed throughfilter media to avoid choking <str<strong>on</strong>g>of</str<strong>on</strong>g> recharge wells.• Recharge Shafts: For recharging the shallow aquifer which is located belowclayey surface, recharge shafts <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.5 to 3 m diameter and 10 to 25 m deep arec<strong>on</strong>structed and back filled <strong>with</strong> boulders, gravels and coarse sand.• Lateral shafts <strong>with</strong> bore wells: For recharging the upper as well as deeperaquifers lateral shafts <str<strong>on</strong>g>of</str<strong>on</strong>g> 1.5 to 2 m wide and 10 to 30 m l<strong>on</strong>g depending up<strong>on</strong>availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>with</strong> <strong>on</strong>e or two bore wells is c<strong>on</strong>structed. The lateralshaft is back filled <strong>with</strong> boulders, gravels and coarse sand.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Rain Water Harvesting inSitapura Industrial AreaAnup Bundela 1 , Bhawani Singh 2 , Deepak Sen 3 , Dinesh Saini 4 and Kamlesh Saini 5Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s,BT-1, Bio-Technology, RIICO Industrial Area, Sitapura, Jaipur1 anuppgi032@poornima.org, 2 bhawanipgi061@poornima.org, 3 deepakpgi040@poornima.org,4 dineshpgi047@poornima.org, 5 kamleshpgi029@poornima.orgINTRODUCTIONRainwater harvesting is a technology used for collecting and storing rainwater from ro<str<strong>on</strong>g>of</str<strong>on</strong>g>tops,the land surface or rock catchments using simple techniques such as jars and pots as well asmore complex techniques such as underground check dams. Uses <str<strong>on</strong>g>of</str<strong>on</strong>g> RWH include water forgarden, water for livestock water for irrigati<strong>on</strong>, etc. Rainwater harvesting provides anindependent water supply during regi<strong>on</strong>al water restricti<strong>on</strong>s and in developed countries is<str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to supplement the main supply.Currently in China and Brazil ro<str<strong>on</strong>g>of</str<strong>on</strong>g>toprainwater harvesting is being practiced for providing drinking water, domestic water, waterfor livestock, water for small irrigati<strong>on</strong> and a way to replenish ground water levels.InRajasthan rainwater harvesting has traditi<strong>on</strong>ally been practiced by the people <str<strong>on</strong>g>of</str<strong>on</strong>g> the TharDesert. There are many ancient water harvesting systems in Rajasthan, which have now beenrevived . In industries were the requirement <str<strong>on</strong>g>of</str<strong>on</strong>g> water is too high RWH plays a significant role.METHODA questi<strong>on</strong>naire format comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> different parameters such as the current scenario <str<strong>on</strong>g>of</str<strong>on</strong>g>RWH (rain water harvesting), willingness <str<strong>on</strong>g>of</str<strong>on</strong>g> having RWH. It also included the details <str<strong>on</strong>g>of</str<strong>on</strong>g>water storage tank and also the time <str<strong>on</strong>g>of</str<strong>on</strong>g> utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stored water. Thus different sampleswere collected from the study area i.e. RIICO Industrial Area, Sitapura, Jaipur.A total 49 number <str<strong>on</strong>g>of</str<strong>on</strong>g> samples were collected from different industries like A-grade industriessuch as Infosys, Genpact, Bosch etc and mediocre industries such as Shree Industries, KD127


Associates etc, The questi<strong>on</strong>naire is summarized in Table1.Table 1:- Format <str<strong>on</strong>g>of</str<strong>on</strong>g> questi<strong>on</strong>naireRESULTSDifferent factors were analysed <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> existing and not existing and if not therewillingness and support required from govt.N<strong>on</strong>existance<str<strong>on</strong>g>of</str<strong>on</strong>g> RWH90%Current scenario <str<strong>on</strong>g>of</str<strong>on</strong>g> RWHExistance<str<strong>on</strong>g>of</str<strong>on</strong>g> RWH10%Willingness to have RWHAgainst<str<strong>on</strong>g>of</str<strong>on</strong>g> RWH54%Infavour<str<strong>on</strong>g>of</str<strong>on</strong>g> RWH46%Out <str<strong>on</strong>g>of</str<strong>on</strong>g> 49 samples 90%<str<strong>on</strong>g>of</str<strong>on</strong>g> industries do not have RWH where as merely 10 % <str<strong>on</strong>g>of</str<strong>on</strong>g> them dohave shown in fig1. And out <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong> existence i.e. 90% <strong>on</strong>ly 46% are in favor or willing tohave RWH and remaining 54% are against <str<strong>on</strong>g>of</str<strong>on</strong>g> RWH


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> tank>4000Ltr40%


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvested from theRo<str<strong>on</strong>g>of</str<strong>on</strong>g>top <str<strong>on</strong>g>of</str<strong>on</strong>g> a Typical Residential BuildingTabassum-Abbasi, Tasneem Abbasi and S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014E-mail - tasneem.abbasi@gmail.comQuality <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater falling <strong>on</strong> the 35 m 2 ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top <str<strong>on</strong>g>of</str<strong>on</strong>g> a residential building was assessed interms <str<strong>on</strong>g>of</str<strong>on</strong>g> several physical, chemical, physico-chemical and biological parameters. Thebuilding is located in a rapidly urbanizing suburb in southern P<strong>on</strong>dicherry and has a cementedro<str<strong>on</strong>g>of</str<strong>on</strong>g>top leading the rainwater to drainage pipes made <str<strong>on</strong>g>of</str<strong>on</strong>g> corrugated cement. The water qualitywas assessed by sampling the water exiting from four pipes located at four corners <str<strong>on</strong>g>of</str<strong>on</strong>g> thero<str<strong>on</strong>g>of</str<strong>on</strong>g>. The samples were taken simultaneously and pooled for each discrete time interval.When the assessment was d<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the seas<strong>on</strong>‟s very first rain, the water quality was at itsworst during the first 60 sec<strong>on</strong>ds <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling and remained quite bad for the next 4 minutesas well. It then improved rapidly and c<strong>on</strong>sistently till it attained a steady compositi<strong>on</strong> by the15 th minute.A similar pattern was observed in the subsequent assessments. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the „first flush‟seemed to inversely correlate <strong>with</strong> the durati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dry spell preceding the assessed rainwaterharvest. When this dry spell interval was very short, <str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> a few minutes, or 2-3hours, the first flush quality was almost indistinguishable from the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> subsequentharvests. Higher intensities <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall led to lower durati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the first flush.131


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Traditi<strong>on</strong>al Water C<strong>on</strong>servati<strong>on</strong>Techniques in Rajasthan1 Anamika Agnihotri and 2 Deependar SinghPoornima Inst. <str<strong>on</strong>g>of</str<strong>on</strong>g> Engg. & Tech., anamikaagnihotri01@gmail.comPoornima Inst. <str<strong>on</strong>g>of</str<strong>on</strong>g> Engg. & Tech., deependar2014@gmail.comINTRODUCTION:The c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>servati<strong>on</strong>/harvesting being practiced since ages in form <str<strong>on</strong>g>of</str<strong>on</strong>g> Tankasin the homes, Bawaries in the mohallas, Khadins , Johads and Tank in every village forstorage <str<strong>on</strong>g>of</str<strong>on</strong>g> the precious water for drinking as well as agriculture purposes will be revived andencouraged. <strong>Special</strong> attenti<strong>on</strong> to it is being given and the more efforts for c<strong>on</strong>tinuing theprocess and mobilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> funds will be made. Possibility <str<strong>on</strong>g>of</str<strong>on</strong>g> participati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NGOs andprivate sector will also be explored and implemented.Traditi<strong>on</strong>al water c<strong>on</strong>servati<strong>on</strong> has largely cast the issue in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> 'for-or-against'. Muchintellectual energy has been spent <strong>on</strong> dem<strong>on</strong>strating whether a traditi<strong>on</strong>al water c<strong>on</strong>servati<strong>on</strong>technique works or not. Yet, we know very little about how it works in specific localities.This paper seeks to address this analytical questi<strong>on</strong>. Taking the case <str<strong>on</strong>g>of</str<strong>on</strong>g> a Gandhian activistorganizati<strong>on</strong>, Tarun Bharat Sangh (TBS), which has received internati<strong>on</strong>al recogniti<strong>on</strong> forpromoting traditi<strong>on</strong>al rainwater harvesting by means <str<strong>on</strong>g>of</str<strong>on</strong>g> small earthen dams (locally known asjohads) in Rajasthani villages <strong>with</strong> the help <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajendra Singh, known as “Water-Man” <str<strong>on</strong>g>of</str<strong>on</strong>g>Rajasthan, this paper explains how a grassroots organizati<strong>on</strong>, while advocating the cause <str<strong>on</strong>g>of</str<strong>on</strong>g>people‟s c<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> their local natural resources, uses and manipulates the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g>'traditi<strong>on</strong>al' for creating a niche for itself in the arena <str<strong>on</strong>g>of</str<strong>on</strong>g> soil and water c<strong>on</strong>servati<strong>on</strong>. Thepaper problematises 'traditi<strong>on</strong>al' water c<strong>on</strong>servati<strong>on</strong> techniques and the various positivec<strong>on</strong>notati<strong>on</strong>s associated <strong>with</strong> it in the narrative <str<strong>on</strong>g>of</str<strong>on</strong>g> the TBS, and highlight the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> attenti<strong>on</strong>given to issues <str<strong>on</strong>g>of</str<strong>on</strong>g> equity in its interventi<strong>on</strong>s. It is suggested that deliberate efforts <strong>on</strong> the part<str<strong>on</strong>g>of</str<strong>on</strong>g> grassroots organizati<strong>on</strong>s are required to address the issues <str<strong>on</strong>g>of</str<strong>on</strong>g> equity if the goals <str<strong>on</strong>g>of</str<strong>on</strong>g>sustainable ecological practices are to be achieved in any meaningful sense.This in short, is the history <str<strong>on</strong>g>of</str<strong>on</strong>g> our glorious traditi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>servati<strong>on</strong> by the villagecommunities and individuals <strong>with</strong> str<strong>on</strong>g support and encouragement from the state. More133


importantly this history reflects the ingenuity and wisdom <str<strong>on</strong>g>of</str<strong>on</strong>g> our forefathers who madec<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water and its management an integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> the native culture andcommunity life. This meant that these practices were perceived by the comm<strong>on</strong> man. Let usrevive and expand this old wisdom for the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> all our people especially in the ruralareas.MATERIALS & METHODS:1. Paar system: - It is a comm<strong>on</strong> water harvesting practice in the western Rajasthanregi<strong>on</strong>. It is a comm<strong>on</strong> place where rainwater flows from the agar (catchment) and inthe process percolates into the sandy soil. Fodder and Rabi crops can be grown inadjoining land, which can be irrigated perennially by the paar system.2. Nadis (Village p<strong>on</strong>ds): - Village p<strong>on</strong>ds, found near Jodhpur and Barmer in Rajasthanused for storing water from adjoining natural catchment during the rainy seas<strong>on</strong>. Siteis selected by the villagers based <strong>on</strong> an available natural catchments and its wateryield potential. Ec<strong>on</strong>omic life <str<strong>on</strong>g>of</str<strong>on</strong>g> a nadi is 25 years, however <strong>with</strong> due care in repair,maintenance and de-silting, a nadi may functi<strong>on</strong> for a much l<strong>on</strong>ger life.3. Khadin: - A khadin, also called a dhora, is an ingenious c<strong>on</strong>structi<strong>on</strong> designed toharvest surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f water for agriculture. It is popular in hyper arid part <str<strong>on</strong>g>of</str<strong>on</strong>g>Rajasthan. The perched subsurface water is extracted through bore-wells developed inthe khadin or in the immediate vicinity downstream.4. Tankas (small tank): - Underground tanks, found traditi<strong>on</strong>ally in most Bikaner houses,Dwarka and old houses <str<strong>on</strong>g>of</str<strong>on</strong>g> Ahmedabad cities in Pol area, Built in main house or in thecourtyard.5. Kunds / Kundis: - Covered underground tanks, Developed for tackling drinking waterproblems, Looks like an upturned cup nestling in a saucer. They Harvests rainwaterfor drinking, and dot the sandier tracts <str<strong>on</strong>g>of</str<strong>on</strong>g> the Thar Desert in western Rajasthan (alsoin Gujarat and Uttar Pradesh) and in areas where the limited groundwater available ismoderate to highly saline.6. Baoris / Bers: - Baoris or bers are community wells, found in Rajasthan, that are usedmainly for drinking. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> them are very old and were built by banjaras (mobiletrading communities) for their drinking water needs.7. Vav / vavdi / Baoli / Bavadi:- Traditi<strong>on</strong>al step-wells are called vav or vavadi inGujarat, or baolis or bavadis in Rajasthan and northern India, Designed to bring thepeople and Gods together, these wells attempted to entice Gods to leave their abodesfor a cool drink <str<strong>on</strong>g>of</str<strong>on</strong>g> water.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)8. Jhalaras: - Jhalaras were human-made tanks, found in Rajasthan and Gujarat,essentially meant for community use and for religious rites. They were c<strong>on</strong>structed atexorbitant cost and were <str<strong>on</strong>g>of</str<strong>on</strong>g>ten m<strong>on</strong>umental, beautiful mansi<strong>on</strong>s <strong>with</strong> fine embroideryst<strong>on</strong>e works covering large area sand were associated <strong>with</strong> religi<strong>on</strong> and culture.RESULTS & DISCUSSIONRather than being dismissed at first, expert understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> hydrology can help us inquesti<strong>on</strong>ing the linkages between drought-pro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing and rainwater harvesting that isuncritically presented by the TBS. Two studies prove particularly useful for verifying theclaims made by the TBS. It is suggested that there is no logical correlati<strong>on</strong> between 'droughtpro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing'and increased availability <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater, as claimed by the TBS. This means thatall the extra water stored by the water harvesting structures during seas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> high rainfall isquickly utilized in the first seas<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> drought.In a study <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater recharge in two villages – Bha<strong>on</strong>ta-Kolyala (upstream) and Samara(downstream), separated by a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> approximately 20 km in Arvari basin, Ray andBijarnia (2006) c<strong>on</strong>clude that there are several factors (including average annual rainfall, rockstructure and drainage system) resp<strong>on</strong>sible for the recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater when rainwater isharvested simultaneously in both locati<strong>on</strong>s. However, the most significant factor determiningthe availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water <strong>on</strong> a sustainable basis is the mismatch between producti<strong>on</strong> (recharge)and c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater. In the Bha<strong>on</strong>ta village, located upstream, after therainwater harvesting work d<strong>on</strong>e by the TBS, "the c<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater far exceededits recharge in the late 1990s, which again pushes it into an unsustainable or dark z<strong>on</strong>e"(ibid).The author witnessed that <strong>on</strong>ly relatively well-<str<strong>on</strong>g>of</str<strong>on</strong>g>f farmers are able to invest in waterextracti<strong>on</strong> and till the lands that have previously remained uncultivable due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> wateravailability. Many <str<strong>on</strong>g>of</str<strong>on</strong>g> them start cropping more water-thirsty but pr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable crops (like sugarcane). The TBS does motivate farmers to make ec<strong>on</strong>omical use <str<strong>on</strong>g>of</str<strong>on</strong>g> water and refrain from theuse <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical fertilizers but these suggesti<strong>on</strong>s are rarely followed. This may be due t<str<strong>on</strong>g>of</str<strong>on</strong>g>armers’ need <str<strong>on</strong>g>of</str<strong>on</strong>g> higher crop yields and better incomes, which is sometimes incompatible<strong>with</strong> the goals <str<strong>on</strong>g>of</str<strong>on</strong>g> equity and sustainability. Thus, it is difficult to support the claim that smallrainwater harvesting structures <strong>on</strong> their own could provide l<strong>on</strong>g-term water-security insemiarid regi<strong>on</strong>s <strong>with</strong> highly uneven rainfall.135


CONCLUSIONSIt is not fruitful to c<strong>on</strong>tinue debating traditi<strong>on</strong>al rainwater harvesting as a for-or-against issue.Presenting traditi<strong>on</strong>al/modern or state/community as binary oppositi<strong>on</strong>s will simply notadvance the debate. Rather than asserting whether 'traditi<strong>on</strong>al' is good or bad, this paper hasexplained how traditi<strong>on</strong>al rainwater harvesting is used by the people and organizati<strong>on</strong>s whopromote it as an alternative to top-down and state-led development. It is cauti<strong>on</strong>ed thatcritical approaches to 'development' should not lead to uncritical acceptance <str<strong>on</strong>g>of</str<strong>on</strong>g> alternatives toit, and that the new-traditi<strong>on</strong>alist discourse should be problematised for the political andideological premises. While big dams have come under heavy criticism for right reas<strong>on</strong>s, weshould not accept small-scale 'traditi<strong>on</strong>al' rainwater harvesting as an alternative to it.Moreover, it is important to uncover the hidden complexities in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> power relati<strong>on</strong>s andagendas <str<strong>on</strong>g>of</str<strong>on</strong>g> the different actors <strong>with</strong>in the 'local' and 'traditi<strong>on</strong>al'. In the story <str<strong>on</strong>g>of</str<strong>on</strong>g> the TBS, wesee that poorer villagers <strong>with</strong>in the local communities are required to accept lower wages forupholding the 'traditi<strong>on</strong>' <str<strong>on</strong>g>of</str<strong>on</strong>g> shramdaan. Traditi<strong>on</strong>al is not always benign, nor is it alwaysdesirable by the local communities if it does not lead to better access to resources orincreased benefits in terms <str<strong>on</strong>g>of</str<strong>on</strong>g> harvest or wage employment, issues that are largely ignored byTBS as an organizati<strong>on</strong> focusing <strong>on</strong> the discursive dimensi<strong>on</strong> <strong>on</strong> development.REFERENCE: Gupta, S. 2011. Demystifying 'traditi<strong>on</strong>': The politics <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting in ruralRajasthan, India. Maps <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan and its districts Tarun Bharat Sangh (TBS) Rajendra Singh, Avari - The river - A peoples movement (Rajasthan rainwaterharvest) http://www.wmf-iei.org/index.php/1


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong> <strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong>Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur (Rajasthan)Rain Water Harvesting and ArtificialRechargeBhawana Mathur 1 , Priyanka Mathur 2 , Abhishek Kumar Choudhary 31 Lecturer, Sri Balaji Technical Campus, Jaipur2 Research Scholar, Rajasthan University, Jaipur3 B.Tech Student, Sri Balaji Technical Campus,JaipurE-mail:- bhawanamathur19@gmail.com & choudharyab143@gmail.comRainwater harvesting is the accumulati<strong>on</strong> and depositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater for reuse before itreaches theaquifer. Rainwater harvesting provides an independent water supply duringregi<strong>on</strong>al water restricti<strong>on</strong>s and in developed countries is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used to supplement the mainsupply. It provides water when there is a drought, prevents flooding <str<strong>on</strong>g>of</str<strong>on</strong>g> low-lying areas,replenishes the ground water table, and enables dug wells and bore wells to yield in asustained manner. It also helps in the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> clean water by reducing the salinity andthe presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ir<strong>on</strong> salts. Today many countries harvest rain to deal <strong>with</strong> their water scarcity.The rising cost <str<strong>on</strong>g>of</str<strong>on</strong>g> water as well as ecological c<strong>on</strong>cerns, have resulted in rainwater beingaccepted as a soluti<strong>on</strong> for water related problems. Growth <str<strong>on</strong>g>of</str<strong>on</strong>g> the city al<strong>on</strong>g <strong>with</strong> increase inpopulati<strong>on</strong> has resulted in rapid depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater around the world. Rainwaterharvesting can meet potable and n<strong>on</strong>-potable water demands and also c<strong>on</strong>trol flooding. Thusit has become necessary for the water authorities across different countries to adopt rainwaterharvesting and c<strong>on</strong>servati<strong>on</strong> techniques.Key Words-Aquifier, low-lying areas, bore wells, Rainwater harvesting,History Around the third century BC, the farming communities in Baluchistan and Kutch(India) used rainwater harvesting for irrigati<strong>on</strong>. In ancient Tamil Nadu (India), rainwater harvesting was d<strong>on</strong>e by Chola kings.Rainwater from the Brihadeeswarar temple was collected in Sivaganga tank. Duringthe later Chola period, the Vīrānam tank was built (1011 to 1037 CE) in Cuddaloredistrict <str<strong>on</strong>g>of</str<strong>on</strong>g> Tamil Nadu to store water for drinking and irrigati<strong>on</strong> purposes. Vīrānam isa 16-kilometre (9.9 mi) l<strong>on</strong>g tank <strong>with</strong> a storage capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> 1,465,000,000 cubic feet(41,500,000 m 3 ).137


Rainwater harvesting was d<strong>on</strong>e in the Indian states <str<strong>on</strong>g>of</str<strong>on</strong>g> Madhya Pradesh, Maharashtra,and Chhattisgarh in the olden days. Ratanpur, in the state <str<strong>on</strong>g>of</str<strong>on</strong>g> Chhattisgarh, had around150 p<strong>on</strong>ds. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the tanks or p<strong>on</strong>ds were utilised in agriculture work.Comm<strong>on</strong>ly used systems are c<strong>on</strong>structed <str<strong>on</strong>g>of</str<strong>on</strong>g> three principal comp<strong>on</strong>ents; namely, thecatchment area, the collecti<strong>on</strong> device, and the c<strong>on</strong>veyance system.Catchment AreaRo<str<strong>on</strong>g>of</str<strong>on</strong>g>top catchments Land surface catchmentsCollecti<strong>on</strong> Devices: Storage tanks and Rainfall water c<strong>on</strong>tainers ---C<strong>on</strong>veyance SystemsTable1 --Ground Water Resources Availability, Utilizati<strong>on</strong> and Stage <str<strong>on</strong>g>of</str<strong>on</strong>g> Development inRajasthanStates /Uni<strong>on</strong>TerritoriesAnnualReplenishable GroundWaterNaturalDischargeduringnoNetAnnualGroundWaterAnnualGroundStage <str<strong>on</strong>g>of</str<strong>on</strong>g>GroundWaterDevelopmentCategorizati<strong>on</strong>Of assessmentUnits(numbers)Resources m<strong>on</strong>so<strong>on</strong>seas<strong>on</strong>AvailabilityWaterDraft(%)OverexploiteCriticaldRajasthan 11.56 1.18 10.38 12.99 125 140 50


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurC<strong>on</strong>clusi<strong>on</strong>:The effective management <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources demands a holistic approach linking social andec<strong>on</strong>omic development <strong>with</strong> protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural ecosystem. Water development andManagement should be based <strong>on</strong> a participatory approach involving users, planners, andpolicy makers at all levels. Both women and women play a vital part in providing, managing,and safeguarding water. Day by day due to over exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> underground water, scarcityand c<strong>on</strong>taminati<strong>on</strong> by various pollutants is increasing over the world. So day by day peopleare undertaken many initiatives to use water for their c<strong>on</strong>sumpti<strong>on</strong> in a proper way.Rainwater harvesting is a milest<strong>on</strong>e in this pace <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>sumpti<strong>on</strong> in a proper way. In thestudy area rainwater harvesting is running over from l<strong>on</strong>g period but not in a proper andhygienic way. So people are facing various waterborne diseases in each seas<strong>on</strong>. The situati<strong>on</strong>is alarming and calls for judicious planning and executi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> projects that utilize the abundantrainwater.References:1. People for Rain Water, 2003, Sky Water, Rain in Japan and Around the World, Japan.2. Sarker, PC, 2003, Social Evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvesting Project, in Bagha andCharghat Upazila. NGO Forum Dhaka;3. Hussein, M.D. and Ziauddin, A.T. M. 1992: Rainwater Harvesting and StorageTechniques from Bangladesh. Waterlines, Dhaka4. IDE, 2002, Rain Water Harvesting System-Innovati<strong>on</strong> in Rainwater Harvesting, IDE,Dhaka5. IDE, 2002, C<strong>on</strong>structi<strong>on</strong> Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvesting System, IDE, Dhaka139


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurRo<str<strong>on</strong>g>of</str<strong>on</strong>g>top Water Harvesting in Rural Areasfor Waning Water ScarcityRagini Dashora 1 , Yogita Dashora 2 , Upma Sharma 3 , Pratibha Katara 4 ,Mangal Patil 5 , Arun Bhagat 61,2,3,4,5 Research Scholars, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water Engineering, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology& Engineering, Maharana Pratap University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology, Udaipur,Rajasthan6 Research Scholar, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Irrigati<strong>on</strong> and Drainage Engineering, Dr. AS College <str<strong>on</strong>g>of</str<strong>on</strong>g>Agricultural Engineering, Mahatma Phule Krishi Vidyapeeth, Rahuri, Maharashtra,Email – ID: raginidashora@gmail.comRainwater harvesting (RWH) is a simple low-cost technique that requires minimum specificexpertise or knowledge and <str<strong>on</strong>g>of</str<strong>on</strong>g>fers many benefits.In those communities where access to freshwater is limited and watershed health is <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern, <strong>on</strong>e viable “low tech” soluti<strong>on</strong> is to builda ro<str<strong>on</strong>g>of</str<strong>on</strong>g> water harvesting system. Ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top rainwater harvesting (RTRWH) is the most comm<strong>on</strong>technique <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting (RWH) for domestic c<strong>on</strong>sumpti<strong>on</strong>. In rural areas, this ismost <str<strong>on</strong>g>of</str<strong>on</strong>g>ten d<strong>on</strong>e at small-scale. It is a simple, low-cost technique that requires minimumspecific expertise or knowledge and <str<strong>on</strong>g>of</str<strong>on</strong>g>fers many benefits. Rainwater is collected <strong>on</strong> the ro<str<strong>on</strong>g>of</str<strong>on</strong>g>and transported <strong>with</strong> gutters to a storage reservoir, where it provides water at the point <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sumpti<strong>on</strong> or can be used for recharging a well or the aquifer. Rainwater harvesting cansupplement water sources when they become scarce or are <str<strong>on</strong>g>of</str<strong>on</strong>g> low quality like brackishgroundwater or polluted surface water in the rainy seas<strong>on</strong>. This paper represents ruraloperati<strong>on</strong>s for ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top water harvesting to overcome the water scarcity.Keywords: Ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top water harvesting, water scarcityINTRODUCTIONFresh water is a precious and limited resource that nourishes innumerable life forms. Aspopulati<strong>on</strong> pressures increase, the majority <str<strong>on</strong>g>of</str<strong>on</strong>g> communities around the world are facingdecreasing supplies <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water in general and many lack access to potable water at all.This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> access impacts human health around the globe as many die from water bornediseases and related illnesses every year. For drinking water purposes in rural areas, the mostcomm<strong>on</strong> technique is small-scale ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top rainwater harvesting: rainwater is collected <strong>on</strong> thero<str<strong>on</strong>g>of</str<strong>on</strong>g> and transported <strong>with</strong> gutters to a storage reservoir, where it provides water at the point <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>sumpti<strong>on</strong>. Collected rainwater can supplement other water sources when they becomescarce or are <str<strong>on</strong>g>of</str<strong>on</strong>g> low quality like brackish groundwater or polluted surface water in the rainy141


seas<strong>on</strong>. It also provides a good alternative and replacement in times <str<strong>on</strong>g>of</str<strong>on</strong>g> drought or whenthe water table drops and wells go dry. The technology is flexible and adaptable to a verywide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. It is used in the richest and the poorest societies, as well as in thewettest and the driest regi<strong>on</strong>s <strong>on</strong> our planet (Hatum & Worm, 2006).Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top rainwater harvesting SystemEach rainwater harvesting system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> at least the following comp<strong>on</strong>ents:Fig. Basic comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> a rainwater harvesting system.1] Rainfall - The rainfall pattern over the year plays a key role in determining whether RWHcan compete <strong>with</strong> other water supply systems. Tropical climates <strong>with</strong> short (<strong>on</strong>e to fourm<strong>on</strong>th) dry seas<strong>on</strong>s and multiple high-intensity rainstorms provide the most suitablec<strong>on</strong>diti<strong>on</strong>s for water harvesting. In additi<strong>on</strong>, rainwater harvesting may also be valuable inwet tropical climates (e.g. Bangladesh), where the water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water may varygreatly throughout the year. As a general rule, rainfall should be over 50 mm/m<strong>on</strong>th for atleast half a year or 300 mm/year (unless other sources are extremely scarce) to make RWHenvir<strong>on</strong>mentally feasible (HATUM & WORM 2006).2] A catchment area or ro<str<strong>on</strong>g>of</str<strong>on</strong>g> surface to collect rainwater - To be „suitable‟, the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> shouldbe made <str<strong>on</strong>g>of</str<strong>on</strong>g> some hard material that does not absorb the rain or pollute the run-<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Thus, tiles,metal sheets and most plastics are suitable, while grass and palm-leaf ro<str<strong>on</strong>g>of</str<strong>on</strong>g>s are generally notsuitable (THOMAS & MARTINSON 2007). If a ro<str<strong>on</strong>g>of</str<strong>on</strong>g> does not provide enough catchmentareas, plastic sheets can be used to enlarge the catchment surface.3] Delivery systemsFig. A variety <str<strong>on</strong>g>of</str<strong>on</strong>g> guttering types.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThe delivery system from rural ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top catchment usually c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> gutters hanging fromthe sides <str<strong>on</strong>g>of</str<strong>on</strong>g> the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> sloping towards a down pipe and tank. Guttering is used to transportrainwater from the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> to the storage vessel. Guttering comes in a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> shapes andforms, ranging from the factory made PVC type similar as the pipes used in water distributi<strong>on</strong>systems to home made guttering using bamboo or folded metal sheet. Guttering is usuallyfixed to the building just below the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> and catches the water as it falls from the ro<str<strong>on</strong>g>of</str<strong>on</strong>g>(Hatum& Worm, 2006).4] First Flushing - A first flush device is a valve that ensures that run<str<strong>on</strong>g>of</str<strong>on</strong>g>f from the first spell<str<strong>on</strong>g>of</str<strong>on</strong>g> rain is flushed out and does not enter the system. This needs to be d<strong>on</strong>e since the first spell<str<strong>on</strong>g>of</str<strong>on</strong>g> rain carries a relatively larger amount <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants from the air and catchment surface.5] Filters - The filter is used to remove suspended pollutants from rainwater collected overro<str<strong>on</strong>g>of</str<strong>on</strong>g>. A filter unit is a chamber filled <strong>with</strong> filtering media such as fibre, coarse sand andgravel layers to remove debris and dirt from water before it enters the storage tank orrecharge structure. Charcoal can be added for additi<strong>on</strong>al filtrati<strong>on</strong>.i) Charcoal water filter - A simple charcoal filter can be made in a drum or an earthen pot.The filter is made <str<strong>on</strong>g>of</str<strong>on</strong>g> gravel, sand and charcoal, all <str<strong>on</strong>g>of</str<strong>on</strong>g> which are easily available.(ii) Sand filters - Sand filters have comm<strong>on</strong>ly available sand as filter media. Sand filters areeasy and inexpensive to c<strong>on</strong>struct. These filters can be employed for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> water toeffectively remove turbidity (suspended particles like silt and clay), colour andmicroorganisms. In a simple sand filter that can be c<strong>on</strong>structed domestically, the top layercomprises coarse sand followed by a 5-10 mm layer <str<strong>on</strong>g>of</str<strong>on</strong>g> gravel followed by another 5-25 cmlayer <str<strong>on</strong>g>of</str<strong>on</strong>g> gravel and boulders.143


6] Storage reservoirs or a tank - There are almost unlimited opti<strong>on</strong>s for storing rainwater.Comm<strong>on</strong> vessels used for very small-scale water storage in developing countries include suchexamples as plastic bowls and buckets, jerry cans, clay or ceramic jars, cement jars, old oildrums, empty food c<strong>on</strong>tainers, etc. For storing larger quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> water, the system willusually require a tank above or below ground. There are various opti<strong>on</strong>s available for thec<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> these tanks <strong>with</strong> respect to the shape, size and the material <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>.Shape: Cylindrical, rectangular and square.Material <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>structi<strong>on</strong>: Reinforced cement c<strong>on</strong>crete, (RCC), ferro-cement, mas<strong>on</strong>ry,plastic (polyethylene) or metal (galvanised ir<strong>on</strong>) sheets are comm<strong>on</strong>ly used.Positi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> tank: Depending <strong>on</strong> space availability these tanks could be c<strong>on</strong>structed aboveground, partly underground or fully underground. Some maintenance measures like cleaningand disinfecti<strong>on</strong> are required to ensure the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water stored in the c<strong>on</strong>tainer.7] An extracti<strong>on</strong> device - Depending <strong>on</strong> the locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the tank - may be a tap, rope andbucket, or a pump (Hatum& Worm, 2006), or infiltrati<strong>on</strong> device in the case the collectedwater is used for well or groundwater recharge. Collected water can also be used forreplenishing a well or the aquifer . Excess rainwater during the rainy seas<strong>on</strong> is used torecharge a dug well, as well as the groundwater. In this case rechargingthe groundwater even improved the water quality in the dug well (Shreshta, 2010).Basic Design PrinciplesFig. Process diagram <str<strong>on</strong>g>of</str<strong>on</strong>g> a RWH system.User Behaviour - Depending <strong>on</strong> the user behaviour the storage and treatment (water quality)infrastructure is probably different. In some parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world, RWH is <strong>on</strong>ly used to collectenough water during a storm to save a trip or two to the main water source (open well orpump). In this case <strong>on</strong>ly a small storage c<strong>on</strong>tainer is required. In arid areas, however, peoplestrive to create sufficient catchment surface area and storage capacity to provide enough


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurwater to meet all the needs <str<strong>on</strong>g>of</str<strong>on</strong>g> the users (Hatum& Worm, 2006). Four types <str<strong>on</strong>g>of</str<strong>on</strong>g> user regimescan be discerned:Occasi<strong>on</strong>al - Water is stored for <strong>on</strong>ly a few days in a small c<strong>on</strong>tainer. This is suitable whenthere is a uniform rainfall pattern and very few days <strong>with</strong>out rain and there is a reliablealternative water source nearby.Intermittent - There is <strong>on</strong>e l<strong>on</strong>g rainy seas<strong>on</strong> when all water demands are met by rainwater,however, during the dry seas<strong>on</strong> water is collected from n<strong>on</strong>-rainwater sources. RWH can thenbe used to bridge the dry period <strong>with</strong> the stored water when other sources are dry.Partial - Rainwater is used throughout the year but the „harvest‟ is not sufficient for alldomestic demands. For instance, rainwater is used for drinking and cooking, while for otherdomestic uses (e.g. bathing and laundry) water from other sources is used.Full - Only rainwater is used throughout the year for all domestic purposes. In such cases,there is usually no alternative water source other than rainwater, and the available watershould be well managed, <strong>with</strong> enough storage capacity to bridge the dry period.Health AspectsRainwater itself is <str<strong>on</strong>g>of</str<strong>on</strong>g> excellent quality, <strong>on</strong>ly surpassed by distilled water – it has very littlec<strong>on</strong>taminati<strong>on</strong>, even in urban or industrial areas, so it is clear, s<str<strong>on</strong>g>of</str<strong>on</strong>g>t and tastes good.C<strong>on</strong>taminants can however be introduced into the system after the water has fallen <strong>on</strong>to asurface.Firstly, there is the issue <str<strong>on</strong>g>of</str<strong>on</strong>g> bacteriological water quality. Rainwater can becomec<strong>on</strong>taminated by pathogenic bacteria (e.g. form animal or human faeces) entering the tankfrom the catchment area. It is advised that the catchment surface always be kept very clean.Rainwater tanks should be designed to protect the water from c<strong>on</strong>taminati<strong>on</strong> by leaves, dust,insects, vermin, and other industrial or agricultural pollutants. Tanks should be sited awayfrom trees, <strong>with</strong> good fitting lids and kept in good c<strong>on</strong>diti<strong>on</strong>. Incoming water should befiltered or screened, or allowed to settle to take out foreign matter. Water, which is relativelyclean <strong>on</strong> entry to the tank, will usually improve in quality if allowed to sit for some timeinside the tank.Bacteria entering the tank will die <str<strong>on</strong>g>of</str<strong>on</strong>g>f rapidly if the water is relatively clean.Algae will grow inside a tank if sufficient sunlight is available for photosynthesis. Keeping atank dark and sited in a shady spot will prevent algae growth and also keep the water cool. Asmenti<strong>on</strong>ed above, first flush devices help to prevent the dirty „first flush‟ water from enteringthe storage tank. The area surrounding a RWH should be kept in good sanitary c<strong>on</strong>diti<strong>on</strong>,fenced <str<strong>on</strong>g>of</str<strong>on</strong>g>f to prevent animals fouling the area or children playing around the tank. Any pools<str<strong>on</strong>g>of</str<strong>on</strong>g> water gathering around the tank should be drained and filled (Practical Acti<strong>on</strong>, 2008).145


Sec<strong>on</strong>dly, there is a need to prevent insect vectors from breeding inside the tank. In areaswhere malaria is present, providing water tanks <strong>with</strong>out any care for preventing insectbreeding can cause more problems than it solves. All tanks should be sealed to preventinsects from entering. Mosquito pro<str<strong>on</strong>g>of</str<strong>on</strong>g> screens should be fitted to all openings (PracticalActi<strong>on</strong> 2008)ApplicabilitySmall-scale ro<str<strong>on</strong>g>of</str<strong>on</strong>g>top rainwater harvesting in rural areas can be applied everywhere: thetechnology is flexible and adaptable to a very wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>diti<strong>on</strong>s. It is used in therichest and the poorest societies, as well as in the wettest and the driest regi<strong>on</strong>s <strong>on</strong> our planet.Collected rainwater can supplement other water sources when they become scarce or are <str<strong>on</strong>g>of</str<strong>on</strong>g>low quality like brackish groundwater or polluted surface water in the rainy seas<strong>on</strong>. It alsoprovides a good alternative and replacement in times <str<strong>on</strong>g>of</str<strong>on</strong>g> drought or when the water tabledropsand wells go dry (Hatum&Worm,2006).AdvantagesUsers can maintain and c<strong>on</strong>trol themselves their systems <strong>with</strong>out the need to rely <strong>on</strong>other members <str<strong>on</strong>g>of</str<strong>on</strong>g> the community.Local people can easily be trained to build RWH systems themselves. This reducescosts and encourages more participati<strong>on</strong>, ownership and sustainability at communitylevel.Rainwater is better than other available or traditi<strong>on</strong>al sources (groundwater may beunusable due to fluoride, salinity or arsenic).Costs for buying water and time to extract from the city water supply can be saved.Costs for buying water and time to extract from the city water supply can be saved.Not affected by local geology or topography.Almost all ro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing material is acceptable for collecting water for household purposes.DisadvantagesLimited by the amount <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall and the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the catchment area and storagereservoir.Supply is sensitive to droughts: Occurrence <str<strong>on</strong>g>of</str<strong>on</strong>g> l<strong>on</strong>g dry spells and droughts can causewater supply problems.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThe cost <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater catchment systems is almost fully incurred during initialc<strong>on</strong>structi<strong>on</strong>.Proper operati<strong>on</strong> and regular maintenance is a very important factor that is <str<strong>on</strong>g>of</str<strong>on</strong>g>tenneglected.Rainwater quality may be affected by air polluti<strong>on</strong>, animal or bird droppings, insects,dirt and organic matter.REFERENCESCSE (Editor). Filters developed by WISY. New Delhi: Centre for Science and Envir<strong>on</strong>ment(CSE).Enpho (Editor). Plastic sheets for additi<strong>on</strong>al catchment area. Kathmandu: Envir<strong>on</strong>ment andPublic Health Organisati<strong>on</strong> (ENPHO).Hatum, T.; Worm, J. 2006. Rainwater Harvesting for Domestic USE. Wageningen: Agrosimaand CTA.Practical Acti<strong>on</strong> (Editor). 2008. Rainwater Harvesting. Bourt<strong>on</strong> <strong>on</strong> Dunsmore: PracticalActi<strong>on</strong>, Schumacher Centre for Technology & Development.KSCST (Editor). Rainwater Harvesting Filter – “PopUp Filter” – Karnataka. Bangalore:Karnataka State Council for Science and Technology (KSCST).RainwaterClub (Editor). Rainwater Harvesting: Rain barrel. Bangalore:RAINWATERCLUB.Shrestha, R.R. 2010. Eco Home for Sustainable Water Management- A Case Study inKathmandu. Kathmandu: United Nati<strong>on</strong> Development Program (UNDP).Thomas, T.H.; Martins<strong>on</strong>, D.B. 2007. Ro<str<strong>on</strong>g>of</str<strong>on</strong>g>water Harvesting: A Handbook for Practiti<strong>on</strong>ers.Delft: IRC Internati<strong>on</strong>al Water and Sanitati<strong>on</strong> Centre.Dolman, B.; Lundquist, K. 2008. Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> Water Harvesting for a low Impact Water Supply:Featuring the Brazilian Ball Pre-Filter System: A Case Study. Occidental: TheWATER Institute Occidental Arts and Ecology Center (OAEC).147


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurFresh Water Springs <str<strong>on</strong>g>of</str<strong>on</strong>g> Garhwal Himayas: ANatural Rain Water Harvesting and Operati<strong>on</strong>System for Local HabitatsNeeraj Kumar Bhatnagar 1 and R K Nema 2<str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>Hydrology</strong>, Roorkee1 neeraj@nih.ernet.in, neeraj_bgr@yahoo.com2 nema.akanksha@gmail.comFresh water springs <str<strong>on</strong>g>of</str<strong>on</strong>g> Garhwal regi<strong>on</strong> receive the input from the rainfall in middleHimalayas where the spring flows are directly affected <str<strong>on</strong>g>of</str<strong>on</strong>g> many hydro meteorological andother factors, some <str<strong>on</strong>g>of</str<strong>on</strong>g> these are precipitati<strong>on</strong> and global warming as well as regi<strong>on</strong>alwarming. Study <str<strong>on</strong>g>of</str<strong>on</strong>g> natural spring flow is very much important as this is an integral part <str<strong>on</strong>g>of</str<strong>on</strong>g>mountainous water resources and is back b<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> all agricultural, social and financialactivities <str<strong>on</strong>g>of</str<strong>on</strong>g> the habitat settled in the mountainous regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> middle Himalayas. In this study,It was found that the discharges <str<strong>on</strong>g>of</str<strong>on</strong>g> springs <str<strong>on</strong>g>of</str<strong>on</strong>g> Chandrabhaga watersheds are very sensitiveand resp<strong>on</strong>ds to precipitati<strong>on</strong> and to the watershed characteristics. Rainfall patterns in therecharge areas <str<strong>on</strong>g>of</str<strong>on</strong>g> springs and behavior <str<strong>on</strong>g>of</str<strong>on</strong>g> spring flows work as the rain water harvesting andoperati<strong>on</strong>al pattern. Transfer <str<strong>on</strong>g>of</str<strong>on</strong>g> surplus spring water from “water surplus” to “water deficit”springs under gravity flow has been evaluated while c<strong>on</strong>sidering spring wise wateravailability and demand.149


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurCapturing Rain Water A Way to AugmentJaipur’s Water ResourcesBharti Naithani, Surendra Kumar and Usha JainDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Geography, University <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, Jaipur.E- mail - bharti.naithani@gmail.comRequirement <str<strong>on</strong>g>of</str<strong>on</strong>g> water has been rising in the urban agglomerates due to populati<strong>on</strong> explosi<strong>on</strong> andgrowth in commercial activities al<strong>on</strong>g <strong>with</strong> social needs and comfort resulting in crumbling <str<strong>on</strong>g>of</str<strong>on</strong>g>existing systems <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply and sanitati<strong>on</strong>. In Jaipur urban agglomerate, surface water sourceslike Ramgarh Lake are generally empty and groundwater c<strong>on</strong>tributes over 95% <str<strong>on</strong>g>of</str<strong>on</strong>g> urban water supply.Present aerial dimensi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the urban area lies between north latitudes 26°47‟-27°02‟ and eastl<strong>on</strong>gitudes 75°36‟-75°55‟ located almost in the centre <str<strong>on</strong>g>of</str<strong>on</strong>g> the district and covers an area <str<strong>on</strong>g>of</str<strong>on</strong>g> about 470km2. The Jaipur urban area occupies in parts <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer (45.5 %), Jhotwara (42.5%) and Amer(12%) blocks <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur district. With the increase in rate <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanizati<strong>on</strong>, populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the city hasalso increased many folds i.e. about 16 times during the period 1931-2006. Old walled city area is themost populated part and has mainly c<strong>on</strong>tributed high salinity and nitrate polluti<strong>on</strong> in groundwater.Geomorphologically, the urban agglomerate is occupied by landforms including sandy-plains, hillsand intermountain valleys, pediments etc. Streamlet originating from Nahargarh hills namelyAmanishah Nalla (ephemeral) flows southerly up to Sanganer area where it takes easterly flowdirecti<strong>on</strong>. Surface water in extreme western part <str<strong>on</strong>g>of</str<strong>on</strong>g> the urban area flows in westerly directi<strong>on</strong> anddischarges through Bandi river. Jaipur city experiences semi-arid climatic c<strong>on</strong>diti<strong>on</strong>s. Mean annualrainfall recorded at Sanganer, Amer and Jaipur (irrigati<strong>on</strong>) rain gauge stati<strong>on</strong>s is 622.7 mm, 676.6 mmand 619.5 mm respectively (average mean annual rainfall 640 mm). As a characteristic <str<strong>on</strong>g>of</str<strong>on</strong>g> semi-aridclimate, rate <str<strong>on</strong>g>of</str<strong>on</strong>g> potential evapotranspirati<strong>on</strong> is high (1744mm).Rocks <str<strong>on</strong>g>of</str<strong>on</strong>g> Bhilwara Super Group comprising mainly <str<strong>on</strong>g>of</str<strong>on</strong>g> gneisses and schists (Achaean age) are overlainby quartzite <strong>with</strong> inter-bedded phyllite and schist sequence <str<strong>on</strong>g>of</str<strong>on</strong>g> Alwar Group (Delhi Super Group)mostly covered under Quaternary deposits in major parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the urban area. Quaternaryunc<strong>on</strong>solidated fluvial and aeolian sediments are mainly composed <str<strong>on</strong>g>of</str<strong>on</strong>g> sand, silt, gravel and clay <strong>with</strong>kankar form the principal aquifer system, saturated thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> which varies c<strong>on</strong>siderably. Depth towater level varies from 11m to 50m. Depth to water level in the central part <str<strong>on</strong>g>of</str<strong>on</strong>g> the area coveringwalled city, Amer, Jal Mahal is shallower i.e. below 20m and forms a mound. Groundwater flows ingeneral from north to south directi<strong>on</strong> i.e. al<strong>on</strong>g the directi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flow <str<strong>on</strong>g>of</str<strong>on</strong>g> Amanisha Nalla. Decline inwater level during the last five years varies from 4.08m to 16.45m and rate <str<strong>on</strong>g>of</str<strong>on</strong>g> decline from 0.82m to3.29m/year in Sukhpuria area and MES, Bani Park area respectively. Permeable formati<strong>on</strong>s, shallow151


groundwater level in walled city area especially during ancient times coupled <strong>with</strong> lack <str<strong>on</strong>g>of</str<strong>on</strong>g> propersewerage system might have caused rapid nitrate polluti<strong>on</strong>.Urban centers in India are facing an ir<strong>on</strong>ical situati<strong>on</strong> today. On <strong>on</strong>e hand there is the acute waterscarcity and <strong>on</strong> the other hand the streets are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten flooded during the m<strong>on</strong>so<strong>on</strong>s. This is despite thefact that all these cities receive good rainfall. However, this rainfall occurs during short spells <str<strong>on</strong>g>of</str<strong>on</strong>g> highintensity. (Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the rain falls in just 100 hours out <str<strong>on</strong>g>of</str<strong>on</strong>g> 8,760 hours in a year). Because <str<strong>on</strong>g>of</str<strong>on</strong>g> such shortdurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy rain, most <str<strong>on</strong>g>of</str<strong>on</strong>g> the rain falling <strong>on</strong> the surface tends to flow away rapidly leaving verylittle for recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the traditi<strong>on</strong>al water harvesting systems in cities have beenneglected and fallen into disuse, worsening the urban water scenario. One <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong>s to the urbanwater crisis is RAINWATER HARVESTING - capturing the run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.The 2012 rainfall caused flooding in Jaipur as the drainage system <str<strong>on</strong>g>of</str<strong>on</strong>g> the city had fallen to neglectafter the 1981 floods. Had Jaipur residents c<strong>on</strong>structed rainwater harvesting structures, a lot <str<strong>on</strong>g>of</str<strong>on</strong>g>neighborhoods could have been saved from flooding. Water experts believe that water logging afterthe 170mm-rain was enough to raise the groundwater level <str<strong>on</strong>g>of</str<strong>on</strong>g> the city and would have significantlyimproved the regi<strong>on</strong>‟s groundwater table.This paper attempts to emphasize <strong>on</strong> the need <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting in Jaipur city by highlightingthe groundwater problems <str<strong>on</strong>g>of</str<strong>on</strong>g> the city. It further shows the various methods <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvestingsuitable for different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the city. The paper c<strong>on</strong>cludes about the importance <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwaterharvesting in Jaipur not <strong>on</strong>ly to solve water scarcity but also to solve urban flooding problem aswitnessed this year.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurHydrological Aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> Rain WaterHarvestingNeha Jain 1 , Parvind Agarwal 2 ,Shivani Sharma 3M.Tech. Student 1 , B.Tech Student 2 , B.Tech Student 3Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical EngineeringPoornima College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Jaipur, India.Email.id- nehajain919@gmail.com, nehajain@opornima.orgparvindpce139@poornima.orgRainwater harvesting (RWH) is syn<strong>on</strong>ymous <strong>with</strong> many cities in developing countries asmajority <str<strong>on</strong>g>of</str<strong>on</strong>g> them reel under severe groundwater exploitati<strong>on</strong>. This is due to the increaseddemands <str<strong>on</strong>g>of</str<strong>on</strong>g> water for domestic and industrial uses and unplanned development works. Thedesign <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting structures in any locality requires a thorough understanding <str<strong>on</strong>g>of</str<strong>on</strong>g>surface water (rainfall and run<str<strong>on</strong>g>of</str<strong>on</strong>g>f characteristics) hydrology and groundwater movement andstorage <str<strong>on</strong>g>of</str<strong>on</strong>g> water below the earth surface) hydrology <str<strong>on</strong>g>of</str<strong>on</strong>g> the area. Any lack <str<strong>on</strong>g>of</str<strong>on</strong>g> available orcollected data in the above menti<strong>on</strong>ed hydrologic aspects will reflect in the reduced resp<strong>on</strong>se<str<strong>on</strong>g>of</str<strong>on</strong>g> the designed and implemented rainwater harvesting system. Rain water harvesting isessential because: - Surface water is inadequate to meet our demand and we have to depend<strong>on</strong> ground water. Due to rapid urbanizati<strong>on</strong>, infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rain water into the sub-soil hasdecreased drastically and recharging <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water has diminished.153


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurStudy <strong>on</strong> Rainwater Harvesting Systems forMulti-storey Residential Buildings (Jaipur)Mahesh Kr. Lamba 1 , Gaurav Khatri 2 , Avakash Caloria 3Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, BT-1, Bio-TechnologyPark, RIICO Industrial Area, Sitapura, JaipurE-mail:- 1 maheshpgi148@poornima.org, 2 gauravpgi32@poornima.org,3 avaskashpgi22@poornima.orgIntroducti<strong>on</strong>Rajasthan state is suffering from drought like c<strong>on</strong>diti<strong>on</strong>s because 99% <str<strong>on</strong>g>of</str<strong>on</strong>g> dams are at theverge <str<strong>on</strong>g>of</str<strong>on</strong>g> drying. So, the city <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur is taken into light for harvesting rainwater in multistoreybuildings. Bisalpur Dam is the main source <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply to the city. But the water isover c<strong>on</strong>sumed due to increase in populati<strong>on</strong> and industrial area. As a result <str<strong>on</strong>g>of</str<strong>on</strong>g> which thegiven source is highly stressed [1]. In order to have a sustainable urban growth there must besome alternatives <str<strong>on</strong>g>of</str<strong>on</strong>g> water source like rainwater tanks, waste water management etc. There isnot much details are available related to rainwater harvesting (RWH) in multi-storeybuilding.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the best ways <str<strong>on</strong>g>of</str<strong>on</strong>g> harvesting the rainwater is to establish a rainwater tank <str<strong>on</strong>g>of</str<strong>on</strong>g> desiredcapacity [2]. By developing such a tank in detached houses, <strong>on</strong>e can satisfy the dailyhousehold demand to a large extent. The average rainfall <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur is 650mm and daily waterc<strong>on</strong>sumpti<strong>on</strong> is 135 liters per capita per day (LPCD). The whole system <str<strong>on</strong>g>of</str<strong>on</strong>g> RWH is designed<strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> these parameters [3]. The main objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to find out the currentscenario <str<strong>on</strong>g>of</str<strong>on</strong>g> RWH in multi-storey buildings in Jaipur city. Estimate <str<strong>on</strong>g>of</str<strong>on</strong>g> the water demand <str<strong>on</strong>g>of</str<strong>on</strong>g>individual households in a multi-storey building and assess stress <strong>on</strong> water supply system in amulti-storey building i.e. ground water.MethodologyThe whole mechanism starts from ro<str<strong>on</strong>g>of</str<strong>on</strong>g> which acts as a catchment area which receivesrainwater directly and from the ro<str<strong>on</strong>g>of</str<strong>on</strong>g>, the water will be diverted to the rainwater tank throughthe pipelines system. This stored water will be taken into use in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> toilet flushing,cloth washing, dish washing and other outside uses.Following are the comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> system [2]:-1. Leaf eater 6.First flush2. Tank top up 7.Tank screen3. Downpipes 8.Plumbing cost155


4. Electrician cost 9.Maintenance cost5. Fittings 10.Water tank costThe annual water c<strong>on</strong>sumpti<strong>on</strong> and water harvested amount is calculated using followingequati<strong>on</strong> [2].Annual Water C<strong>on</strong>sumpti<strong>on</strong> for multi-story building is calculated by equati<strong>on</strong> (1).V 1 =V´*N*Nº (1)Where V 1 - Amount <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>sumpti<strong>on</strong> per year (Litres)V´-Water Demand in LPCDN - No <str<strong>on</strong>g>of</str<strong>on</strong>g> pers<strong>on</strong>Nº- No <str<strong>on</strong>g>of</str<strong>on</strong>g> FlatsAmount <str<strong>on</strong>g>of</str<strong>on</strong>g> water harvested annually is calculated by below equati<strong>on</strong> (2).V 2 = A*h (2)Where: -V 2 -Harvested water annually (Litres)A- Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> Area (M²)h- Annual rain fall (M)Result and Discussi<strong>on</strong>On the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> study <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>sumpti<strong>on</strong>, a typical household uses over 540 liters <str<strong>on</strong>g>of</str<strong>on</strong>g> waterevery day. This equates to around 1, 97,100 liters (average 4 pers<strong>on</strong>s in a family @ 135LPCD) ever year [3].Table 1 Water C<strong>on</strong>sumpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> HouseholdS. No. Purpose <str<strong>on</strong>g>of</str<strong>on</strong>g> use Percentagec<strong>on</strong>sumpti<strong>on</strong>Water C<strong>on</strong>sumpti<strong>on</strong> in Liter PerYear1. Toilet Flushing 20% 39,420.002. Bathing 20% 39,420.003. Washing Cloths 15% 29,565.004. Dish washing & Kitchen 10% 19,710.005. Gardening & Otheroutside uses35% 68,985.00


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThe selected 8 buildings which are situated in different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur and data are collectedfrom these buildings. Following are the results <str<strong>on</strong>g>of</str<strong>on</strong>g> survey and calculati<strong>on</strong>:-SrNo.Table 2 Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Rain Water Harvested System in Multi Story BuildingsName <str<strong>on</strong>g>of</str<strong>on</strong>g> Building No Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> Water Water % reducti<strong>on</strong>flats Area C<strong>on</strong>sumed Harvested <str<strong>on</strong>g>of</str<strong>on</strong>g> ground(M²) per per Year wateryear(Litres) (Litres) c<strong>on</strong>sumpti<strong>on</strong>1 Dhanuka,Sikar Road (G+7) 24 557.70 4730400 362505 7.67%2 Sunshine, Sikar Road(G+8) 36 952.74 7095600 619281 8.72%3 Balaji Tower, VidhyadharNagar(G+7)4 UDB skyway,Murlipura(G+9)5 Grand Residency, SirsiRoad (G+8)6 GanpatiDarshan, TrimurtiCircle (G+7)7 ManglamAroma,Mansovor(G+8)8 Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g>Instituti<strong>on</strong>s,Sitapura(B+G+1)32 892.32 6307200 580008 9.19%50 1305.95 9855000 848868 8.61%45 1130.27 8869500 734676 8.28%32 697.12 6307200 453128 7.81%45 1254.83 8869500 815639 9.19%- 3899.51 3180600 2534682 79.69%C<strong>on</strong>clusi<strong>on</strong>On the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> results obtained, it can be c<strong>on</strong>cluded that larger the ro<str<strong>on</strong>g>of</str<strong>on</strong>g> area <str<strong>on</strong>g>of</str<strong>on</strong>g> building,more quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water will be collected. It is examined that 8.50% <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water157


c<strong>on</strong>sumpti<strong>on</strong> can be reduced. Number <str<strong>on</strong>g>of</str<strong>on</strong>g> family members also affects the daily waterc<strong>on</strong>sumpti<strong>on</strong>.Reference[1] Jethoo, A. S. and Po<strong>on</strong>ia , M.P “Water C<strong>on</strong>sumpti<strong>on</strong> Pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur City (India)”Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science and Development, Vol. 2, No. 2, April2011\[2] Rahman, J. Dbais and M. Imteaz “Sustainability <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater Harvesting Systems inMultistory Residential Buildings” American J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and Applied Sciences 3(1): 73-82, 2010[3] http://rainharvesting.com.au/rainwater-knowledge-centre/water-c<strong>on</strong>servati<strong>on</strong>/ourmain-uses-<str<strong>on</strong>g>of</str<strong>on</strong>g>-water


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurRain Water Harvesting for ClimaticChange Adaptati<strong>on</strong>s and Energy SavingAnmol Jain 1 , Arpit Gupta 2Poornima College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, JaipurEmail:- 1 anmolpce024@poornima.org2 guptaarpit525@gmail.comClimate change is an additi<strong>on</strong>al threat that puts increased pressure <strong>on</strong> already stressedhydrological systems and water resources. The impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change are already visiblegiven that temperature and rainfall variabilities have increased and intensified over the lasttwo decades. Recent studies indicate the extreme vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g> India to the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>climate change and recommend that appropriate adaptati<strong>on</strong> measures be put in place.Rainwater harvesting is listed am<strong>on</strong>g the specific adaptati<strong>on</strong> measures that the water sector inIndia needs to undertake to cope <strong>with</strong> future climate change. At present, there is limitedapplicati<strong>on</strong> , despite its high potential for alleviating the impacts <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change <strong>on</strong> watersecurity in many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> India.Water is as important for survival <str<strong>on</strong>g>of</str<strong>on</strong>g> human being as much as food, air etc, but hardly anyattenti<strong>on</strong> is paid for its ec<strong>on</strong>omical use and c<strong>on</strong>servati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> this precious resource fordomestic power generati<strong>on</strong> through Ro<str<strong>on</strong>g>of</str<strong>on</strong>g> top Rain water harvesting. However, in this workan attempt will be made to examine the feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> designing a micro hydel powergenerati<strong>on</strong> utilizing the harvested rain water for a multi storey tall buildings by design astorage system for storing <str<strong>on</strong>g>of</str<strong>on</strong>g> the harvested rain water at the top storey <str<strong>on</strong>g>of</str<strong>on</strong>g> the building ananother as the underground storage tank for collecting the water after power generati<strong>on</strong> forother uses. The design <str<strong>on</strong>g>of</str<strong>on</strong>g> storage tanks, pipe network and flow c<strong>on</strong>trol valves etc. will bed<strong>on</strong>e for the optimum utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the harvested rain water.159


ReferencesR. Gunn and G. D. Kinzer, "The Terminal Velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> Fall for Water Droplets inStagnant Air," J.Atmosph. Sci. 6, 243 (1949). P. F. Krause and K. L. Flood "WeatherAnd Climate Extremes," US Army Corps <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineers, Technical Report TEC-0099,September 1997.R. Farnsworth and E. Thomps<strong>on</strong>, "Mean M<strong>on</strong>thly, Seas<strong>on</strong>al, and Annual Pan Evaporati<strong>on</strong>for the United States," U.S. nati<strong>on</strong>al Oceanic and Atmospheric Administrati<strong>on</strong>, NOAATechnical Report NWS 34, December 1982. L. Ortolano and K. Kao Cushing, "Grand CouleeDam and the Columbia Basin Project, USA," World Commissi<strong>on</strong> <strong>on</strong> Dams, November 2000.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurRainwater Harvesting: A Lifeline forHuman Wellbeing and Eco System1 Mangal Patil, 2 Arun Bhagat, 3 Yogita Dashora and 4 Ragini Dashora1,3,4 Research Scholars, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water Engineering, College <str<strong>on</strong>g>of</str<strong>on</strong>g> Technologyand Engineering, Maharana Pratap University <str<strong>on</strong>g>of</str<strong>on</strong>g> Agriculture and Technology, Udaipur (RJ)2 Research Scholar, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Irrigati<strong>on</strong> and Drainage Engineering, Dr. AS College <str<strong>on</strong>g>of</str<strong>on</strong>g>Agricultural Engineering, Mahatma Phule Krishi Vidyapeeth, Rahuri (MH)Email-ID: mangalpatil43@gmail.comRainwater harvesting (RWH) is the ancient practice <str<strong>on</strong>g>of</str<strong>on</strong>g> collecting rainwater and storing it forlater use and is composed <str<strong>on</strong>g>of</str<strong>on</strong>g> a ro<str<strong>on</strong>g>of</str<strong>on</strong>g> catchment, a c<strong>on</strong>veyance network, a rainwater storagetank, a pump and fixtures where rainwater is utilized. Most systems also incorporatetreatment technologies to improve the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater before and/or after storage, andinclude provisi<strong>on</strong>s for periods <str<strong>on</strong>g>of</str<strong>on</strong>g> insufficient rainfall (a make-up water supply) and periods <str<strong>on</strong>g>of</str<strong>on</strong>g>excessive rainfall (overflow provisi<strong>on</strong>s). The biggest challenge <strong>with</strong> using rainwaterharvesting is that it is not included in water policies in many countries and in many caseswater management is based <strong>on</strong> renewable water, which is surface and groundwater <strong>with</strong> littlec<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater. Rainwater is taken as a free for all resource and have seen anincrease in its use. This has resulted in over abstracting, drastically reducing waterdownstream users including ecosystems. This has introduced water c<strong>on</strong>flicts in some regi<strong>on</strong>s<str<strong>on</strong>g>of</str<strong>on</strong>g> the world. For the sustainable use <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources, it is critical that rainwater harvestingis included as a water sources as is the case for ground wand surface water. This paperhighlights the link between rainwater harvesting, ecosystems and human well-being anddraws the attenti<strong>on</strong> to both the negative and positive aspects <str<strong>on</strong>g>of</str<strong>on</strong>g> using rainwater harvestingtechnology and how the negative benefits can be minimized and positive capitalized.Keywords: Rainwater, Rainwater Harvesting, Human well – being, Eco System.INTRODUCTIONIn 2008 the world witnessed multiple crises including a food <strong>on</strong>e which resulted in unrest inmany areas <str<strong>on</strong>g>of</str<strong>on</strong>g> the world. These tensi<strong>on</strong>s may well foreshadow future challenges as they relateto providing sufficient food for six, rising to nine billi<strong>on</strong> people. Unless we get moreintelligent in the way we manage agriculture, the world is likely to head into deeply161


challenging times. Water and the good and services provided by ecosystems are part <str<strong>on</strong>g>of</str<strong>on</strong>g> thisurgent need for an intelligent management resp<strong>on</strong>se not least in relati<strong>on</strong> to food producti<strong>on</strong>.Water is the lifeblood <str<strong>on</strong>g>of</str<strong>on</strong>g> the planet, and the state <str<strong>on</strong>g>of</str<strong>on</strong>g> this resource affects all natural, social andec<strong>on</strong>omic systems. Water serves as the fundamental link between the climate system, humansociety and the envir<strong>on</strong>ment. Climate change is severely impacting the hydrological cycleand c<strong>on</strong>sequently, water management. This will in turn have significant effects <strong>on</strong> humandevelopment and security. Climate change has substantial impacts <strong>on</strong> both water resourcesdemand and availability. It is critical to understand the processes driving these changes, thesequences <str<strong>on</strong>g>of</str<strong>on</strong>g> the changes and their manifestati<strong>on</strong> at different spatial and temporal levels.These changes are likely to be an increasingly powerful driver <str<strong>on</strong>g>of</str<strong>on</strong>g> water availability, acting<strong>with</strong> other drivers that are already having a serious impact <strong>on</strong> its quality and availability.Increased water related risks associated <strong>with</strong> the changes in frequency and intensity <str<strong>on</strong>g>of</str<strong>on</strong>g>extreme events, such as droughts, floods, storm surges, and landslides, will put additi<strong>on</strong>alstrain <strong>on</strong> water resources management and increase uncertainty about quantity and quality <str<strong>on</strong>g>of</str<strong>on</strong>g>water supplies. Though, the rainwater harvesting c<strong>on</strong>ceptualized for all time source <str<strong>on</strong>g>of</str<strong>on</strong>g> water.1] A way to Support Eco System ServicesEcosystem services are fundamental for human wellbeing. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> water is critical forecosystem health and productivity, ensuring supply <str<strong>on</strong>g>of</str<strong>on</strong>g> a range <str<strong>on</strong>g>of</str<strong>on</strong>g> products and services, tobenefit human well-being. With growing multiple demands <str<strong>on</strong>g>of</str<strong>on</strong>g> water, the ecosystemssupporting and regulating the structure and functi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural ecosystems may be eroding.There is an urgent need to find opportunities to enable development and promote humanwell-being <strong>with</strong>out undermining ecosystem health and Opportunities can rainwater harvesting<str<strong>on</strong>g>of</str<strong>on</strong>g>fer to enable sustainable development, increase human well-being, and envir<strong>on</strong>mentalprotecti<strong>on</strong>. Rainwater harvesting locally collects and stores rainfall through differenttechnologies, for future use to meet the demands <str<strong>on</strong>g>of</str<strong>on</strong>g> human c<strong>on</strong>sumpti<strong>on</strong> or human activities.However, rainwater harvesting has much wider perspectives, in particular if it is c<strong>on</strong>sideredin relati<strong>on</strong> to its role in supporting ecosystem goods and services.2] Water Comp<strong>on</strong>ents <str<strong>on</strong>g>of</str<strong>on</strong>g> Eco System ServicesProvisi<strong>on</strong>ing ecosystem services and rainwater harvestingWater is essential for all living beings, for c<strong>on</strong>sumptive use. Plants and vegetati<strong>on</strong> are by farthe largest water c<strong>on</strong>sumers, but they also provide direct livelihood and ec<strong>on</strong>omic returns to


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurhumans as food, fodder, fibres and timber, in additi<strong>on</strong> to products for pharmaceutical use,diverse genetic resources and fresh water.Regulating ecosystem services and rainwater harvestingThe regulating services are in additi<strong>on</strong> to the supporting services, are essential for humanwell-being as they c<strong>on</strong>trol the type and provisi<strong>on</strong>ing capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystems in specificlocati<strong>on</strong>s. Water flows across the landscape play a role in a range <str<strong>on</strong>g>of</str<strong>on</strong>g> regulati<strong>on</strong> services aswater is primarily involved in many <str<strong>on</strong>g>of</str<strong>on</strong>g> them.Cultural ecosystem services and rainwater harvestingWater has str<strong>on</strong>g cultural and religious values. These values are critical for human spiritualwell-being, and are recognised as having an essential role in societal interacti<strong>on</strong>s, <strong>on</strong>ceprimary resources are provided.Supporting ecosystem servicesThe supporting services pre-determine the c<strong>on</strong>diti<strong>on</strong>s for all other services. Water flows playan essential role as a medium for the transport <str<strong>on</strong>g>of</str<strong>on</strong>g> nutrients and c<strong>on</strong>taminants, in the shaping<str<strong>on</strong>g>of</str<strong>on</strong>g> soils, and in photosynthesis. Together <strong>with</strong> soil c<strong>on</strong>diti<strong>on</strong>s and climate c<strong>on</strong>diti<strong>on</strong>s the waterbalance will determine the net primary producti<strong>on</strong> level at a given locati<strong>on</strong>. To c<strong>on</strong>clude,rainwater harvesting is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten implemented to improve local provisi<strong>on</strong>ing capacity byecosystems for human well-being.3] Current and Potential Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater HarvestingMany cultures have developed their societies <strong>with</strong> the primary management <str<strong>on</strong>g>of</str<strong>on</strong>g> waterresources as a corner st<strong>on</strong>e, developing more sophisticated ways <str<strong>on</strong>g>of</str<strong>on</strong>g> supplying water both forc<strong>on</strong>sumpti<strong>on</strong> and agriculture. At the global level, there is no comprehensive assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> theextent <str<strong>on</strong>g>of</str<strong>on</strong>g> implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting technologies for specific uses.Unfortunately, the informati<strong>on</strong> <strong>on</strong> irrigati<strong>on</strong> cannot directly be associated <strong>with</strong> rainwaterharvesting systems for irrigati<strong>on</strong> purposes as it differentiates between surface water andgroundwater, which does not allow the separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> shallow groundwater from deepgroundwater, nor surface water <strong>with</strong>drawn from blue water sources (lakes, water ways, largedams) from smaller scale systems. This lack <str<strong>on</strong>g>of</str<strong>on</strong>g> global informati<strong>on</strong> <strong>on</strong> where and how muchrainwater harvesting is currently in use makes it impossible to say how many people actually163


enefit from rainwater harvesting today (Fig). It also becomes challenging to summarize theglobal and/or regi<strong>on</strong>al benefits and costs in specific locati<strong>on</strong>s, countries or regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>rainwater harvesting for human well-being or ecosystem impacts arising from rainwaterharvesting.Rainwater Harvesting for Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Watershed Ecosystem1] The Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Watershed ManagementWatershed management and development refers to the c<strong>on</strong>servati<strong>on</strong>, regenerati<strong>on</strong> and thejudicious use <str<strong>on</strong>g>of</str<strong>on</strong>g> the natural (land, water, plants, and animals) and human habitat <strong>with</strong>in ashared ecosystem (geological hydrological- aquatic and ecological) located <strong>with</strong>in a comm<strong>on</strong>drainage system.Fig. Schematic <str<strong>on</strong>g>of</str<strong>on</strong>g> RWH technologies based <strong>on</strong> source <str<strong>on</strong>g>of</str<strong>on</strong>g> water and water storage typeApart from the purely envir<strong>on</strong>mental c<strong>on</strong>cerns, i.e., restoring ecosystem functi<strong>on</strong>s, thewatershed framework <str<strong>on</strong>g>of</str<strong>on</strong>g>ten focuses <strong>on</strong> livelihood improvements, poverty alleviati<strong>on</strong> and ageneral increase in human well-being. Watershed management is a strategy which resp<strong>on</strong>dsto the challenges posed by a rainfed agro-ecosystem and human demands. Typically thesechallenges include water scarcity, rapid depleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground water table and fragileecosystems, land degradati<strong>on</strong> due to soil erosi<strong>on</strong> by wind and water, low rainwater useefficiency, high populati<strong>on</strong> pressure, acute fodder shortage and poor livestock productivity,mismanagement <str<strong>on</strong>g>of</str<strong>on</strong>g> water sources, and lack <str<strong>on</strong>g>of</str<strong>on</strong>g> assured and remunerative livelihood


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipuropportunities. Therefore, the watershed management approach seeks to ensure human wellbeingand progress toward sustainable development through improved ecosystem services.The framework <str<strong>on</strong>g>of</str<strong>on</strong>g> watershed management acknowledges the dynamic interrelati<strong>on</strong>shipbetween people and ecosystems. The water management comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> watershedmanagement in rainfed areas largely depends <strong>on</strong> rainwater to initiate the local developmentprocesses.2] Potential <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater HarvestingImpact <strong>on</strong> Downstream FlowsThe strategy for drought pro<str<strong>on</strong>g>of</str<strong>on</strong>g>ing would be to ensure that every village captures all <str<strong>on</strong>g>of</str<strong>on</strong>g> therun<str<strong>on</strong>g>of</str<strong>on</strong>g>f from the rain falling over its entire land and the associated government revenue andforest lands, especially during years when the rainfall is normal, and stores it in tanks orp<strong>on</strong>ds or uses it to recharge depleted groundwater reserves. In this case the negativeexternality would be the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting <strong>on</strong> downstream water availability.Run<str<strong>on</strong>g>of</str<strong>on</strong>g>f out <str<strong>on</strong>g>of</str<strong>on</strong>g> the watershed may be c<strong>on</strong>sidered as a waste from a local point <str<strong>on</strong>g>of</str<strong>on</strong>g> view, but itmay be a key resource for surface <strong>with</strong>drawals or recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater for downstreamusers.Decentralized Approach to Access More WaterThe fact that rainfall is unevenly distributed between years, as well as <strong>with</strong>in rainy seas<strong>on</strong>s,storing rainwater is a key comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> water management. The water can be stored instorages <str<strong>on</strong>g>of</str<strong>on</strong>g> different c<strong>on</strong>structi<strong>on</strong> and dimensi<strong>on</strong>s; for example, large reservoirs <strong>with</strong> largecatchments and small tanks and p<strong>on</strong>ds <strong>with</strong> small catchments, or use <str<strong>on</strong>g>of</str<strong>on</strong>g> natural or artificialgroundwater recharge to store water in the soil.Increasing Infiltrati<strong>on</strong> and Groundwater RechargeGroundwater recharge in watershed management can be induced through different structures;for instance, through dug shallow wells and percolati<strong>on</strong> tanks. Percolati<strong>on</strong> tanks alternativelyare another recharge structure which is generally c<strong>on</strong>structed <strong>on</strong> small streams and used forcollecting the surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f.Reducing Soil Erosi<strong>on</strong>165


Rainfed areas are also c<strong>on</strong>fr<strong>on</strong>ted <strong>with</strong> problems <str<strong>on</strong>g>of</str<strong>on</strong>g> land degradati<strong>on</strong> through soil erosi<strong>on</strong>.Watershed management interventi<strong>on</strong>s through water harvesting are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten syn<strong>on</strong>ymous <strong>with</strong>soil and water c<strong>on</strong>servati<strong>on</strong>. They act both to harvest rainfall and to c<strong>on</strong>serve soil and water,as a mean <str<strong>on</strong>g>of</str<strong>on</strong>g> increasing farm productivity.Intensificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Crop Producti<strong>on</strong>Reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f was used to augment both surface and shallow groundwaterreserves through in situ rain water harvesting interventi<strong>on</strong>s. This had a direct benefit byexpanding the irrigated area and increasing cropping intensity. As part <str<strong>on</strong>g>of</str<strong>on</strong>g> land developmentactivities, several farmers have built small field bunds to retain water in the fields that areflooded during the m<strong>on</strong>so<strong>on</strong> for producti<strong>on</strong> during the subsequent dry seas<strong>on</strong>.Improving Food Security and Ec<strong>on</strong>omical SecurityRainwater harvesting can be instrumental to decentralized water supplies and local foodsecurity. This typically has led to a reducti<strong>on</strong> in dependency and debt, to a decrease in thereliance <strong>on</strong> m<strong>on</strong>eylenders, and to an increase in savings and investment in new assets(primarily agriculture related assets) or improvement in existing assets.Rainwater Harvesting in the Management <str<strong>on</strong>g>of</str<strong>on</strong>g> Agro – Eco System1] Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainfed Farming for Ecosystem ServicesDevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> agriculture is the main land use change that has affected and depleted manyecosystem services in favour <str<strong>on</strong>g>of</str<strong>on</strong>g> increased agricultural biomass producti<strong>on</strong>. The soil andclimate sets the parameters for agro-ecosystems. Increasingly, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> a healthy soilsystem is recognised as a key ecosystem service in sustaining agro-ecosystem producti<strong>on</strong>.Water flows in the soil system depend up<strong>on</strong> two principal factors; infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainfall, andwater holding capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. Rainwater harvesting for crops is therefore closely relatedto soil system management; namely, the acti<strong>on</strong>s taken to improve infiltrati<strong>on</strong> into the soil andto increase water holding capacity and fertility functi<strong>on</strong>s in the soil. More efficient rainwaterharvesting systems have a great role to play, especially in developing countries struggling toprovide water and affordable food.2] Water Security to Ensure Human Well-Being in Rainfed Farming Systems


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThe large yield gap between attainable yields and farmers‟ practice, as well as betweenattainable and potential yields, shows that there is a large potential to improve yields inrainfed agriculture that remains to be tapped. They opted to replace traditi<strong>on</strong>al low valuecereals <strong>with</strong> high value <strong>on</strong>es (but <strong>on</strong>es more vulnerable to dry spells and droughts), andintroduce intensive crops through borrowing but <strong>with</strong> little success. In particular, degradedsoils <strong>with</strong> low productivity can send the relati<strong>on</strong>ship between the ecosystem and human wellbeinginto a downward spiral, <strong>with</strong> diminishing yields, affecting farmers‟ livelihoods, andreduced capacity to restore and enhance the soil system‟s health to a more productive state.Forests Working as Rainwater Harvesting1] Global Trends in Forest CoverNotably, the range and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> deforestati<strong>on</strong> is very variable in different regi<strong>on</strong>s andcountries. In many cases, <strong>with</strong> intensifying cultivati<strong>on</strong> and c<strong>on</strong>versi<strong>on</strong> to pasture orpermanent low-input agriculture, the result is not <strong>on</strong>ly loss <str<strong>on</strong>g>of</str<strong>on</strong>g> biodiversity and its relatedecosystem services, but landscapes are at risk <str<strong>on</strong>g>of</str<strong>on</strong>g> erosi<strong>on</strong>, water polluti<strong>on</strong>, flooding anddecreasing soil productivity. These land use and land quality developments are veryundesirable from the perspective <str<strong>on</strong>g>of</str<strong>on</strong>g> meeting the needs for increased biomass producti<strong>on</strong> forfood and energy, as well as for ensuring a supply <str<strong>on</strong>g>of</str<strong>on</strong>g> clean water. Also to emphasise the needfor development <str<strong>on</strong>g>of</str<strong>on</strong>g> more varied plantati<strong>on</strong> practices and better understanding <str<strong>on</strong>g>of</str<strong>on</strong>g> the waterrelatedvalues <str<strong>on</strong>g>of</str<strong>on</strong>g> planted forests in the wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> settings where they are used.2] Forest Ecosystems as Water Harvest Interventi<strong>on</strong>It is now an empirically and theoretically well-established general scientific paradigm thatforests use more water than lower vegetati<strong>on</strong> and annual crops in rainfed agriculture.Typically, when forest cover is regenerated, more rainfall tends to (<strong>on</strong>ce again) be partiti<strong>on</strong>edthrough soil infiltrati<strong>on</strong> and to green water (used for food and fibre producti<strong>on</strong>), reducing itsavailability as blue water (available for human c<strong>on</strong>sumpti<strong>on</strong>) downstream (Farley et al.,2005; Scott et al., 2005). Forest water use is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten a significant factor in landscape waterflows, including surface, subsurface and downstream.Rainwater Harvesting for Water Security in Rural and Urban Area167


Though <strong>on</strong>ly <strong>on</strong>e target addresses water, it plays a critical role in meeting the goals,particularly those c<strong>on</strong>cerning hunger, poverty, health and biodiversity. Available freshwaterc<strong>on</strong>tinues to decline due to over-abstracti<strong>on</strong>, polluti<strong>on</strong> and reduced precipitati<strong>on</strong>, resulting ina decrease in run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. Freshwater ecosystems link directly and indirectly <strong>with</strong> human wellbeing,especially the well-being <str<strong>on</strong>g>of</str<strong>on</strong>g> poor communities and households. There is a closeinterdependency between freshwater ecosystems and human well-being. Though it is not easyto put an ec<strong>on</strong>omic value <strong>on</strong> ecosystem services, some attempts have been made. Rainwaterharvesting can be used to improve ecosystem functi<strong>on</strong>, particularly the water supply aspect,and regulati<strong>on</strong> (c<strong>on</strong>trolling flood and erosi<strong>on</strong>).Rainwater Harvesting, Ecosystems and Rural Water SupplyTypical rural ecosystem services that support human livelihoods include water supply,agriculture including livestock management, fisheries, and forest and tree products (timber,h<strong>on</strong>ey, fruit, vegetables, fibres, fuel etc.). Rainwater harvesting is highly decentralized andenables individuals and communities to manage their own water for these purposes. This isparticularly suitable in rural areas <strong>with</strong> a dispersed populati<strong>on</strong> and where a reticulated watersupply is not feasible or extremely costly for investment. The low cost <str<strong>on</strong>g>of</str<strong>on</strong>g> the rainwaterharvesting technologies can be a more attractive investment opti<strong>on</strong> in rural areas. In essence,it can supply water to accelerate social and ec<strong>on</strong>omic development, to alleviate poverty andgenerate income for rural farmers by enhancing the crop yield, modifying the method <str<strong>on</strong>g>of</str<strong>on</strong>g>producti<strong>on</strong>, as well as to promoting envir<strong>on</strong>mental c<strong>on</strong>servati<strong>on</strong>.Urban Water Security and Cost Reducti<strong>on</strong>1] Impacts <strong>on</strong> Urban <strong>Hydrology</strong> <strong>on</strong> EcosystemIn urban areas rainwater is disposed <str<strong>on</strong>g>of</str<strong>on</strong>g> most comm<strong>on</strong>ly as storm flows, in underground pipes,and as quickly as possible. If climate change brings higher peaks and intensities in thevolume <str<strong>on</strong>g>of</str<strong>on</strong>g> precipitati<strong>on</strong>, current storm water drainages will be too small to cope and moreincidences <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding may occur. The problem <str<strong>on</strong>g>of</str<strong>on</strong>g> financing the water supply and wastewaterinfrastructure will increase as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> demographic changes and urban-rural settlementshifts. However, we have to adapt our technologies <str<strong>on</strong>g>of</str<strong>on</strong>g> urban hydrology to this change indemography and climate. This is our chance to modernize these very important infrastructureelements for the benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> the ec<strong>on</strong>omy and society, by making them decentralised, and thusmore affordable.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur2] Water Quality and HealthThe challenge <strong>with</strong> rainwater is to keep the collecti<strong>on</strong> surfaces (ro<str<strong>on</strong>g>of</str<strong>on</strong>g> tops) and the storagefacilities free from c<strong>on</strong>taminati<strong>on</strong> and free from mosquito breeding. With the adequateoperati<strong>on</strong> and maintenance <str<strong>on</strong>g>of</str<strong>on</strong>g> the collecti<strong>on</strong> areas, filter and tank systems, good quality watermay be obtained by collecting rainwater from ro<str<strong>on</strong>g>of</str<strong>on</strong>g>tops. While high-quality source water mayrequire little or no treatment, it is still recommended that any water used for drinking bedisinfected to ensure microbiological safety.3] Two sided coin, Synergy AdvantagesUrbanisati<strong>on</strong> puts the surrounding water resources under pressure, challenging ecosystemservices in two principal ways. Firstly, the c<strong>on</strong>centrated urban populati<strong>on</strong> demands adequatewater for c<strong>on</strong>sumpti<strong>on</strong> and sanitati<strong>on</strong> needs, which requires stable and large supplies <str<strong>on</strong>g>of</str<strong>on</strong>g>water, <str<strong>on</strong>g>of</str<strong>on</strong>g>ten through the use <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water/dams or groundwater. These extracti<strong>on</strong>s canthreaten other landscape habitats and functi<strong>on</strong>s, reducing the ecosystem‟s capacity to supplythings such as water downstream, habitat for biodiversity, and livelihood support. Sec<strong>on</strong>dly,the reduced infiltrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> urban landscapes alters the flow downstream, and can increase theincidence <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding. Rainwater harvesting in urban areas can address both these negativeeffects. Rainwater harvesting tanks c<strong>on</strong>tribute to the redistributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> flows over l<strong>on</strong>gertemporal scales, thus reducing the incidence <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding downstream.RWH Providing Adapti<strong>on</strong> Opportunities to Climate ChangeDegradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ecosystem services in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> the demands <str<strong>on</strong>g>of</str<strong>on</strong>g> an increasing populati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g>ten results in difficult trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs, sometimes developing into c<strong>on</strong>flicts. Sometimes, too, itforces people to migrate to even more degraded areas, which further c<strong>on</strong>tributes toincreasingly unsustainable utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> natural resources.1] Role <str<strong>on</strong>g>of</str<strong>on</strong>g> Rainwater HarvestingRainwater harvesting is <strong>on</strong>e effective water technology for adaptati<strong>on</strong> to increased variabilityin water supply and rainfall. Its decentralized nature allows the owners to benefit from directmanagement <str<strong>on</strong>g>of</str<strong>on</strong>g> demand as well as supply. With support technologies (modern andindigenous), rainwater harvesting is cost effective, and can release capital needed in times <str<strong>on</strong>g>of</str<strong>on</strong>g>169


disasters <str<strong>on</strong>g>of</str<strong>on</strong>g> surprising magnitudes. This also reduces greenhouse gas emissi<strong>on</strong>s related towater supplies.2] Reducing CO 2 Emissi<strong>on</strong>The system <str<strong>on</strong>g>of</str<strong>on</strong>g> water delivery in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> current infrastructure development is part <str<strong>on</strong>g>of</str<strong>on</strong>g>the c<strong>on</strong>tributing system for greenhouse gas emissi<strong>on</strong>s. Different combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> tanks <strong>with</strong>demand management affects the size <str<strong>on</strong>g>of</str<strong>on</strong>g> the CO 2 equivalent emissi<strong>on</strong>s related to the rainwaterharvesting system used. In additi<strong>on</strong>, substantial greenhouse gas savings could be made byaddressing wastewater management, in additi<strong>on</strong> to the rainwater harvesting interventi<strong>on</strong>.3] Current adaptati<strong>on</strong> strategies to climate variability and ecosystem managementThe increasing risk <str<strong>on</strong>g>of</str<strong>on</strong>g> natural and man-made catastrophic events has been a growing nichefor water provisi<strong>on</strong> in a decentralised manner <strong>with</strong> limited costs. People‟s priority wasc<strong>on</strong>structi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater tanks after the immediate need for food was satisfied. When projectfund was exhausted, the community started building st<strong>on</strong>e lines and grass strips to catchwater. Rainwater harvesting tanks, more than modern water equipment, are necessary lifesupport systems in new settlements for the refugees (Bart<strong>on</strong>, 2009).4] Climate Change Adaptati<strong>on</strong> in Domestic Water SupplyWater reservoirs were vulnerable to prol<strong>on</strong>ged drought and climate change which reducesrainfall amounts in catchments. The c<strong>on</strong>sequences <str<strong>on</strong>g>of</str<strong>on</strong>g> such occurrences for a large urban areacould be catastrophic. The study arrived at the c<strong>on</strong>clusi<strong>on</strong> that ro<str<strong>on</strong>g>of</str<strong>on</strong>g>-water harvesting canmake a substantial c<strong>on</strong>tributi<strong>on</strong> as an adaptati<strong>on</strong> technology and reduce the vulnerability <str<strong>on</strong>g>of</str<strong>on</strong>g>water supply in urban areas. The analysis str<strong>on</strong>gly suggested that there is a significantdifference in the resp<strong>on</strong>se to climate change <str<strong>on</strong>g>of</str<strong>on</strong>g> the two systems for collecting water fromro<str<strong>on</strong>g>of</str<strong>on</strong>g>tops or from catchments. A number <str<strong>on</strong>g>of</str<strong>on</strong>g> cases <strong>on</strong> rainwater harvesting illustrate rainwaterharvesting as an effective strategy to reduce vulnerability am<strong>on</strong>gst local users to anunexpected lack <str<strong>on</strong>g>of</str<strong>on</strong>g> water. This suggests that <strong>on</strong>e adaptati<strong>on</strong> strategy to both short- and l<strong>on</strong>gtermvariability in rainfall should be to actively work <strong>on</strong> decentralized water storagetechnologies, flexible to adopt and adapt in multiple user c<strong>on</strong>texts. The technology hasmatured and the world c<strong>on</strong>diti<strong>on</strong> is in such state that it needs this technology to heal itself, toprotect what natural assets that have remained, and to start anew, beginning <strong>with</strong> thesimplicity and appropriateness <str<strong>on</strong>g>of</str<strong>on</strong>g> this humble technology.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurSummary and C<strong>on</strong>clusi<strong>on</strong>s1] Positive Effects Rainwater Harvesting and Ecosystem ServicesHealthy ecosystems provide a range <str<strong>on</strong>g>of</str<strong>on</strong>g> essential human well-being products and services. Inthis paper, rainwater harvesting has been discussed from an ecosystem perspective. Theemerging picture is that different rainwater harvesting interventi<strong>on</strong>s can have positive effectsboth <strong>on</strong> ecosystem services and human wellbeing, thereby creating synergies in desired andpositive development paths. The positive effects <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting are related to theincreased provisi<strong>on</strong>ing capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> the ecosystem services. The primary services are theprovisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more water <str<strong>on</strong>g>of</str<strong>on</strong>g> better quality for domestic supply and for increased cropproducti<strong>on</strong>. Sec<strong>on</strong>dary benefits relate to the regulating and supporting ecosystem servicesThe three key services menti<strong>on</strong>ed are: (1) reduced soil erosi<strong>on</strong> improved infiltrati<strong>on</strong> capacityinto the soil, and reduced incidences <str<strong>on</strong>g>of</str<strong>on</strong>g> flash floods/downstream flooding (2) recharge <str<strong>on</strong>g>of</str<strong>on</strong>g>shallow groundwater, springs and stream flows, and (3) increased species diversity am<strong>on</strong>gstflora and fauna. Especially provisi<strong>on</strong>ing capacity improves, both through access to harvestedwater, but also through the different in situ interventi<strong>on</strong>s that recharge the soil and shallowgroundwater systems.A sec<strong>on</strong>d area <str<strong>on</strong>g>of</str<strong>on</strong>g> positive benefit <str<strong>on</strong>g>of</str<strong>on</strong>g> rainwater harvesting <strong>on</strong> ecosystem services and humanwell-being is in urban areas. Here, the effects <strong>on</strong> ecosystem services are mainly related toreduce pressures for <strong>with</strong>drawals from groundwater and surface water, and reducedincidences <str<strong>on</strong>g>of</str<strong>on</strong>g> flooding downstream. The key human well-being effects are related to directincome gains (reduced costs for public or private water supply, and also reduced CO2emissi<strong>on</strong>s as rainwater harvesting reduces energy demands).2] Human Well-Being Improving With Gains in Ecosystem ServicesHuman well-being gains are evident as the ecosystem services improve in resp<strong>on</strong>se tochanges in ecosystem provisi<strong>on</strong>ing and supporting capacities. However, more negativeimpacts were menti<strong>on</strong>ed especially relating to health, gender and equity <str<strong>on</strong>g>of</str<strong>on</strong>g> labour andincreased income generated from the rainwater harvesting. An additi<strong>on</strong>al positive effectespecially menti<strong>on</strong>ed in the rainwater harvesting interventi<strong>on</strong>s for rural domestic andagricultural purposes at the farm scale and watershed-scale was the building <str<strong>on</strong>g>of</str<strong>on</strong>g> human andsocial capital to undertake other development activities. When rainwater harvesting wasimplemented in a community, it also strengthened community coherence through the171


formati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> interest groups, working groups or micro finance groups. It is also used asmeans <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing vulnerability to interrupted water supply, especially in regi<strong>on</strong>s pr<strong>on</strong>e toearthquakes or other natural hazards that can disrupt public water supplies.Suggesti<strong>on</strong>s1] Rainwater harvesting interventi<strong>on</strong>s can be included as potential opti<strong>on</strong>s in land and waterresource management activities for human well-being and ecosystem productivity.2] Rainwater harvesting can be effective as a complementary and viable alternative to largescalewater <strong>with</strong>drawals, and as a way <str<strong>on</strong>g>of</str<strong>on</strong>g> reducing the negative impacts <strong>on</strong> ecosystemservices, not least in emerging water stressed basins.3] Rainwater harvesting is a local interventi<strong>on</strong>, <strong>with</strong> primarily local benefits <strong>on</strong> ecosystemsand human livelihoods. Stakeholder c<strong>on</strong>sultati<strong>on</strong>s and public participati<strong>on</strong> are key to enablingthe negotiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the positive and negative trade-<str<strong>on</strong>g>of</str<strong>on</strong>g>fs that may emerge. Rainwater harvestinginterventi<strong>on</strong>s should always be compared <strong>with</strong> alternative water management interventi<strong>on</strong>sand infrastructure investments.4] Access and the right to land can be a first step toward implementing rainwater harvesting.<strong>Special</strong> measures should be in place so rainwater harvesting benefits the land-poor and thelandless in communities.5] Establish enabling policies and cost–sharing strategies (including subsides) to be providedtogether <strong>with</strong> technical know-how and capacity building.ReferencesArya, S. L. and J. S. Samra. 2001. Revisiting watershed management instituti<strong>on</strong>s in HaryanaShivaliks, India. Central soil and Water C<strong>on</strong>servati<strong>on</strong> Research and Training Institute,Chandigarh, India, pp. 329.Bart<strong>on</strong>, T. Rainwater Harvesting in Turkana: water case study. Practical Acti<strong>on</strong> c<strong>on</strong>sultingwebsite last accessed January 2009.Blunt, S. and P. Holt. 2007. Climate Neutral Water Saving Schemes. Rainwater and UrbanDesign <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>, IRCSA XIII <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g>. Sydney, Australia.Farley, K.A., Jobbagy, G. and R. B. Jacks<strong>on</strong>. 2005. Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> afforestati<strong>on</strong> <strong>on</strong> water yield: aglobal synthesis <strong>with</strong> implicati<strong>on</strong>s for policy. Glob Ch. Biol, 11, 1565–1576.GEO4. 2007. Global Envir<strong>on</strong>mental Outlook 4: Envir<strong>on</strong>ment for development. UnitedNati<strong>on</strong>s Envir<strong>on</strong>ment Programme, Nairobi/ Progress Press, Malta.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurHurni H, and K. Tato. 1992. Erosi<strong>on</strong>, c<strong>on</strong>servati<strong>on</strong> and small-scale farming. Internati<strong>on</strong>al SoilC<strong>on</strong>servati<strong>on</strong> Organisati<strong>on</strong> and World Associati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Soil and Water C<strong>on</strong>servati<strong>on</strong>,Bern.Millennium Ecosystems Assessment (MA). 2005. Ecosystems and human well-being:synthesis. Island Press, Washingt<strong>on</strong> D.C.Rockstrom, J., and M. Falkenmark. 2000. Semi-arid crop producti<strong>on</strong> from a hydrologicalperspective- Gap between potential and actual yields. Critical Reviews in PlantSciences, 19(4): 319-346.Scott, D.F., Bruijnzeel, L.A. and J. Mackensen. 2005. The hydrological and soil impacts <str<strong>on</strong>g>of</str<strong>on</strong>g>forestati<strong>on</strong> in the tropics. In Forest-water-people in the humid tropics. pp. 622–651.Cambridge University Press, Cambridge.SIWI. 2001. Water harvesting for upgrading rainfed agriculture: Problem analysis andresearch needs. SIWI Report 11, Stockholm (101p).World Resources Institute (WRI) <strong>with</strong> United Nati<strong>on</strong>s Development Programme, UnitedNati<strong>on</strong>s Envir<strong>on</strong>ment Programme, World Bank. 2008. World Resources 2008: Roots <str<strong>on</strong>g>of</str<strong>on</strong>g>Resilience - Growing the Wealth <str<strong>on</strong>g>of</str<strong>on</strong>g> the Poor. Washingt<strong>on</strong> D.C.173


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurNew C<strong>on</strong>structi<strong>on</strong> C<strong>on</strong>cepts in GreenHighways For Rain Water Harvesting - ARoad To Green FutureSmita kumariPost Graduate Student, Transportati<strong>on</strong> EngineeringL.D college <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Gujarat Technological UniversityAhmedabadcsmitaleo@gmail.comIndia has a road network <str<strong>on</strong>g>of</str<strong>on</strong>g> 4.109 milli<strong>on</strong> km length spread across diverse geographicallocati<strong>on</strong>s & climatic c<strong>on</strong>diti<strong>on</strong>s and managed by different entities. According to AASHTO,the transportati<strong>on</strong> sector worldwide is resp<strong>on</strong>sible for 22% <str<strong>on</strong>g>of</str<strong>on</strong>g> global energy c<strong>on</strong>sumpti<strong>on</strong>,25% <str<strong>on</strong>g>of</str<strong>on</strong>g> fossil fuel use, and 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> global air polluti<strong>on</strong> al<strong>on</strong>g <strong>with</strong> greenhouse gases. It alsoaccounts for 10% <str<strong>on</strong>g>of</str<strong>on</strong>g> the world‟s gross domestic product (GDP).With such significant sharesin energy use, and both natural and ec<strong>on</strong>omic resources, small adjustments to reduce each <str<strong>on</strong>g>of</str<strong>on</strong>g>these impacts from the transportati<strong>on</strong> sector could lead to important benefits (FHWA, 2011).The Green Highways Watershed Approach to storm water management recognizes thathighways coexist <strong>with</strong> other land uses <strong>with</strong>in watersheds, and a collaborative approachprovides an opportunity for highway agencies to plan and deliver the most cost-effectiveprotecti<strong>on</strong>, even improvement, to watersheds. To aid in watershed recovery, addresswatershed impairments, and to be prepared to address future potential water quality standardrequirements, designers must begin thinking outside <str<strong>on</strong>g>of</str<strong>on</strong>g> the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way. Applying stormwater management techniques to address water quality and water quantity c<strong>on</strong>cerns is nowcomm<strong>on</strong> practice in highway projects. Best management practices (BMP) are typicallydesigned to meet regulatory requirements, and are focused <strong>on</strong> treating and managing run<str<strong>on</strong>g>of</str<strong>on</strong>g>f<strong>with</strong>in the rights-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way (row) <str<strong>on</strong>g>of</str<strong>on</strong>g> highways. Whereas, the GHP approach focuses <strong>on</strong> activitiesbey<strong>on</strong>d the right-<str<strong>on</strong>g>of</str<strong>on</strong>g>-way and <strong>with</strong>in the watershed for better-than-before results.175


Theme – IIIWater Quality


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurMultivariate Statistical Analysis for WaterQuality interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer Tehsil<str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur1. Introducti<strong>on</strong>Kartik JainCivil Engg. Department, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>sBT-1 Bio Technology Park, Sitapura, Jaipur (302022)e-mail: kartikpgi46@poornima.orgQuality <str<strong>on</strong>g>of</str<strong>on</strong>g> water is an important factor in development and use <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water as resources.Due to pressure <str<strong>on</strong>g>of</str<strong>on</strong>g> human activity, urbanizati<strong>on</strong> and industrializati<strong>on</strong>, the groundwatersources are degraded gradually; therefore pure, safe, healthy and odourless drinking water isa matter <str<strong>on</strong>g>of</str<strong>on</strong>g> deep c<strong>on</strong>cern. There are many pollutants in groundwater due to seepage viz.organic and inorganic pollutants, heavy metals, pesticides, fluorides [1] etc. In Rajasthanstate, all 32 districts are affected <strong>with</strong> high fluoride c<strong>on</strong>centrati<strong>on</strong> in groundwater and am<strong>on</strong>gthese Jaipur ranks sec<strong>on</strong>d. The applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> different multivariate statistical techniques suchas Cluster Analysis (CA) and Principal Comp<strong>on</strong>ent Analysis (PCA) helps in the interpretati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> complex water quality data matrix [2]. These techniques have been applied by manyresearchers to characterize and evaluate groundwater and surface water quality. In thispresent study, water quality data matrix, obtained from 50 villages <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanagner Tehsil, JaipurDistrict, Rajasthan [4] is attached <strong>with</strong> the main city <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur. It lies between 26° 49‘ to 26°51‘ N latitude and 75° 46‘ to 75° 51‘ E l<strong>on</strong>gitude. It covers an area <str<strong>on</strong>g>of</str<strong>on</strong>g> 635.5 sq. km. All 32districts <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan are affected <strong>with</strong> high fluoride c<strong>on</strong>centrati<strong>on</strong> in groundwater and am<strong>on</strong>gthese Jaipur ranks sec<strong>on</strong>d.2. Materials and MethodsThe drinking water samples were collected in clean polyethylene plastic c<strong>on</strong>tainers fromvillages (Code No. 51-100) <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer Tehsil <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur District Samples <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking waterwere collected in clean polyethylene bottles from different sources viz. Hand pumps, openwells, tube wells and PHED supply from villages <str<strong>on</strong>g>of</str<strong>on</strong>g> study area [3] Using Multivariatestatistical technique we analyzed the data. Sanganer, the Tehsil <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur District, such as pH,177


Fluoride (F-), Electrical C<strong>on</strong>ductivity (EC), Total Dissolved Solid (TDS), Calcium (Ca),Magnesium (Mg), Total Hardness (TH), Chloride (Cl-), Carb<strong>on</strong>ate (CO3-2), Bicarb<strong>on</strong>ate(HCO3-), Alkalinity, Sodium (Na+), Potassium (K+) and Nitrate (NO3-using standardtechniques in laboratory (APHA, 1985) Factor analysis and Principal Comp<strong>on</strong>ent Analysis(PCA).3. Results and Discussi<strong>on</strong>The results revealed that most <str<strong>on</strong>g>of</str<strong>on</strong>g> the water samples were below or above permissible limit;according to the WHO standards (1996). The fluoride c<strong>on</strong>centrati<strong>on</strong> ranged from 0.4 to 5.4ppm, where 42% samples showed fluoride less than permissible limit and 48% water sampleswere <strong>with</strong>in optimum limit i.e. 1-1.5 ppm while 10% samples c<strong>on</strong>tained Fluoride higher thanpermissible limit. pH <str<strong>on</strong>g>of</str<strong>on</strong>g> all the samples were <strong>with</strong>in limit (6 to 9.2), while EC <str<strong>on</strong>g>of</str<strong>on</strong>g> all the watersamples were out <str<strong>on</strong>g>of</str<strong>on</strong>g> limit i.e. 300 μmhos/cm. The alkalinity was greater than permissiblelimit (200 mg/l) in 98% villages and <strong>on</strong>ly 2% villages had below than optimum limit. TheNO3- c<strong>on</strong>centrati<strong>on</strong> was less than permissible limit (45 mg/l) in 64% villages whereas 26%samples showed higher c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> NO3-. However <strong>on</strong>ly 10% samples c<strong>on</strong>tain optimumlevel <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate. Moreover Na c<strong>on</strong>centrati<strong>on</strong> was greater than permissible (50 to 60 mg/l) limitin 98% water samples whereas K+ c<strong>on</strong>centrati<strong>on</strong> was below the optimum (20 mg/l) level inall the samples studied.4. C<strong>on</strong>clusi<strong>on</strong>sThe data indicate that the groundwater <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer Tehsil is highly deteriorated as it ispolluted <strong>with</strong> high amount <str<strong>on</strong>g>of</str<strong>on</strong>g> fluoride, nitrate and alkalinity. Most <str<strong>on</strong>g>of</str<strong>on</strong>g> the water qualityparameters are above the permissible limit. PCA <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality data for Sanganer Tehsilshows that the main variati<strong>on</strong> in water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sanganer Tehsil <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city is due toanthropogenic sources and organic sources.5. References[1] A. Sarga<strong>on</strong>kar and V. Deshpande, ―Development <str<strong>on</strong>g>of</str<strong>on</strong>g> an Overall Index <str<strong>on</strong>g>of</str<strong>on</strong>g> Polluti<strong>on</strong> forSurface Water Based <strong>on</strong> a General Classificati<strong>on</strong> Scheme in Indian C<strong>on</strong>text,‖ Envir<strong>on</strong>mentalM<strong>on</strong>itoring and Assessment, Vol. 89, No. 1, 2003, pp. 43-67.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur[2] K. Saffran, ―Canadian Water Quality Guidelines for the Protecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Life,‖CCME Water Quality Index 1.0: User‘s Manual, Excerpt from Publicati<strong>on</strong> No. 1299, 2001.[3] J. D. Sharma, P. Sharma, P. Jain and D. Sohu, ―Chemical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Drinking Water <str<strong>on</strong>g>of</str<strong>on</strong>g>Sanganer Tehsil, Jaipur District,‖ Internati<strong>on</strong>al Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science andTechnology, Vol. 2, No. 4, 2005, pp. 373-379.[4] S. Ahmed, M. Hussain and W. Abderrahman, ―Using Multivariate Factor Analysis toAssess Surface/Logged Water Quality and Source <str<strong>on</strong>g>of</str<strong>on</strong>g> C<strong>on</strong>taminati<strong>on</strong> at a Large Irrigati<strong>on</strong>Project at Al-Fadhli, Eastern Province, Saudi Arabia,‖ Bulletin <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Geology andthe Envir<strong>on</strong>ment, Vol. 64, 2005, pp. 315-232.179


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurStudy <str<strong>on</strong>g>of</str<strong>on</strong>g> Innovative Biological Systemfor the Treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Pulp and PaperIndustry WastewaterIzharul Haq FarooqiAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor and Incharge Envir<strong>on</strong>mental EngineeringSecti<strong>on</strong>, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering,Z.H. College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engg. &Tech., Aligarh Muslim University, AligarhStudies were performed for the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> pulp and paper mill wastewater using a uniquesequential arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic hybrid reactor and column type sequential batch reactorsystem. The anaerobic hybrid reactor c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a UASB at the bottom and an anaerobicfilter <strong>on</strong> the upper side. The effluent form anaerobic hybrid reactor was passed through acolumn type sequencing batch reactor (SBR) operated in a c<strong>on</strong>tinuously automatic modeunder aerobic c<strong>on</strong>diti<strong>on</strong>s using timers and solenoid valves. The anaerobic reactor was seeded<strong>with</strong> digestor sludge obtained from a sewage treatment plant while SBR was seeded <strong>with</strong>activated sludge. The influent from Naini Tissue Mill, Kashipur, India was fed to theanaerobic hybrid reactor. The anaerobic hybrid reactor was operated at HRT <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 hours andSBR was operated <strong>with</strong> a 24 hour cycle which was reduced to 18 hours. The overall BOD andCOD removal efficiency from the reactor systems was found to be 90% and 85%respectively. The overall AOX removal efficiency was found to be 80%. The study revealedthat the reactor systems employed in the present investigati<strong>on</strong> was found effective forremoving AOX and organics from the pulp and paper Mill wastewater.Introducti<strong>on</strong>The pulp and paper mill is a major industrial sector utilizing a huge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> lignocellulosicmaterials and water during the manufacturing process, and releases chlorinatedlignosulph<strong>on</strong>ic acids, chlorinated resin acids, chlorinated phenols and chlorinatedhydrocarb<strong>on</strong>s in the effluent. About 500 different chlorinated organic compounds have beenidentified including chlor<str<strong>on</strong>g>of</str<strong>on</strong>g>orm, chlorate, resin acids, chlorinated hydrocarb<strong>on</strong>s, phenols,catechols, guaiacols, furans, dioxins, syringols, vanillins, etc. These compounds are formedas a result <str<strong>on</strong>g>of</str<strong>on</strong>g> reacti<strong>on</strong> between residual lignin from wood fibres and chlorine/chlorinecompounds used for bleaching. Colored compounds and Adsorbable Organic Halogens181


(AOX) released from pulp and paper mills into the envir<strong>on</strong>ment poses numerous problemsPhysical, chemical and biological treatments systems have been used in the past for thetreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> pulp and paper mill wastewater. Biological treatment is generally preferredowing to complete mineralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> organics. However, sometimes intermediate products <str<strong>on</strong>g>of</str<strong>on</strong>g>biological treatment are more toxic than the parent compounds and needs to be handledcarefully. In order to treat the intermediate compounds sequential anaerobic aerobic treatmenthas been proposed in the present investigati<strong>on</strong>. The products <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic decompositi<strong>on</strong>shall be degraded aerobically in a SBR which may result in complete mineralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> toxiccompounds. Sequencing batch reactor (SBR) has gained importance over other reactors forthe treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewaters. The SBR process is characterized by a series <str<strong>on</strong>g>of</str<strong>on</strong>g> five processphases. The five phases <str<strong>on</strong>g>of</str<strong>on</strong>g> a SBR system are the Fill, React, and Settle, Decant and IdlePhases.Sequential batch reactors have advantages <str<strong>on</strong>g>of</str<strong>on</strong>g> low operating costs, no sludge settler andrecycling pumps requirement, good c<strong>on</strong>trol over filamentous bulking, tolerance to shockloads and peak flow denitrificati<strong>on</strong> during anoxic fill and settle stage.Materials and MethodsThe anaerobic hybrid reactor used in this study, was fabricated <strong>with</strong> Perspex materialand has an internal diameter 0.05 m. the total height <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactor was 1450mm and the filtermedia used was a cutting <str<strong>on</strong>g>of</str<strong>on</strong>g> PVC pipe in the reactor. The effective volume <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactor iswas 2.50 liters.The anaerobic hybrid reactor c<strong>on</strong>sisted <str<strong>on</strong>g>of</str<strong>on</strong>g> a UASB at the bottom and an anaerobicfilter at the top. Anaerobic filter provides effective gas liquid solid separati<strong>on</strong>. The height <str<strong>on</strong>g>of</str<strong>on</strong>g>the UASB rector was 450mm and that <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic filter was 780mm. This was due tomaintained equal HRT in both the reactor. Freeboard <str<strong>on</strong>g>of</str<strong>on</strong>g> 220mm was also provided. Themedia used for anaerobic filter was PVC pipe <str<strong>on</strong>g>of</str<strong>on</strong>g> inner diameter 25mm which has been cutinto pieces nearly <str<strong>on</strong>g>of</str<strong>on</strong>g> length 1 inch.The effluent <str<strong>on</strong>g>of</str<strong>on</strong>g> the anaerobic hybrid reactor was treated in a column type sequencing batchreactor (SBR). Laboratory scale Sequencing Batch Reactor System (SBR) was fabricated<strong>with</strong> Perspex material and had a total volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 3.46-liter. The dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactorwere 7 cm in diameter and 90 cm in height. One air pump system, model EK- 8000, 6.0 W,


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurwas used for supplying diffused air to the reactors. The entire experimental setup wasautomated <strong>with</strong> Solenoid valve, Gate valves followed by automatic <strong>on</strong>-<str<strong>on</strong>g>of</str<strong>on</strong>g>f timers <strong>with</strong>different time-dependent cycles. A tank <str<strong>on</strong>g>of</str<strong>on</strong>g> 12 liter capacity was provided for the influent tothe SBRResults and C<strong>on</strong>clusi<strong>on</strong>sThe reactor system used for the study was found effective for the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> pulp andpaper Mill wastewater especially for the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> AOX from the effluent. It has beenobserved that the COD removal efficiency increased <strong>with</strong> time and attained a c<strong>on</strong>stant valueSimilar trend was seen for the removal <str<strong>on</strong>g>of</str<strong>on</strong>g> BOD and AOX. The experiments were stoppedwhen the reactor system achieved steady state c<strong>on</strong>diti<strong>on</strong>s. pH and alkalinity were alsom<strong>on</strong>itored and were <strong>with</strong>in the permissible range. The build up <str<strong>on</strong>g>of</str<strong>on</strong>g> biomass in the reactorswere also significant. The overall BOD and COD removal efficiency from the reactorsystems was found to be 90% and 85% respectively. The overall AOX removal efficiencywas found to be 80%. The effluents from anaerobic as well as aerobic reactors were analysedby GC MS for the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic intermediate products <str<strong>on</strong>g>of</str<strong>on</strong>g> biodegradati<strong>on</strong>. It was observedthat the effluent from anaerobic reactor showed the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> certain toxic compounds.However, these compounds were removed in the aerobic SBR as its effluent showed theabsence <str<strong>on</strong>g>of</str<strong>on</strong>g> toxic compounds through analysis by GC MS. It can be c<strong>on</strong>cluded form thepresent study that the sequential arrangement <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic followed by aerobic reactor systemresulted in complete mineralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pulp and paper mill wastewater and AOXcompounds have been removed to a significant level.183


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurA Collective C<strong>on</strong>scientiousness for WaterC<strong>on</strong>servati<strong>on</strong> & Safe WaterBina RaniAssociate Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>essor, Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering Chemistry & Envir<strong>on</strong>mental Engineering,Poornima College <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, Jaipur, RajasthanEven today in rural India we see hundreds <str<strong>on</strong>g>of</str<strong>on</strong>g> community managed water initiatives from verysmall p<strong>on</strong>ds and wells to small reservoirs active in increasing water availability, recharginggroundwater, and boosting local efficiency as well as productivity. Tarun Bharat Sangh anNGO in Rajasthan has succeeded in building more than 5,000 water harvesting structures(johads) in 1,058 villages <strong>with</strong> the help <str<strong>on</strong>g>of</str<strong>on</strong>g> villagers <str<strong>on</strong>g>of</str<strong>on</strong>g> Alwar district. The initiative it isclaimed has made a marked difference by transforming a dark z<strong>on</strong>e regi<strong>on</strong> into white z<strong>on</strong>e.The Indian c<strong>on</strong>stituti<strong>on</strong> is am<strong>on</strong>g the few in the world that c<strong>on</strong>tains provisi<strong>on</strong> forenvir<strong>on</strong>mental protecti<strong>on</strong>, being explicitly stated in the 76 th185amendment stipulating thec<strong>on</strong>servati<strong>on</strong>, protecti<strong>on</strong> and improvement <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment. Article 51 (a) (g) entitledfundamental duties – imposes resp<strong>on</strong>sibility <strong>on</strong> every citizen to protect and improve thenatural envir<strong>on</strong>ment including forests, rivers, lakes, tanks, wild life and to have compassi<strong>on</strong>for living creatures.There is no resource more precious than water. As our water supply is put under greater andgreater stress, the abuse <str<strong>on</strong>g>of</str<strong>on</strong>g> this precious resource and its holding envir<strong>on</strong>ment is increasinglybeing realized. Availability <str<strong>on</strong>g>of</str<strong>on</strong>g> safe drinking water, healthy and intact natural ecosystems andhumanity‘s ability to feed itself are at threat as demand for water outstrips availability.C<strong>on</strong>serving water is the new bulli<strong>on</strong>. Investing efforts <str<strong>on</strong>g>of</str<strong>on</strong>g> this valuable resource will ensureour future security. Referred to as ‗blue gold‘, the value <str<strong>on</strong>g>of</str<strong>on</strong>g> water is immense in all aspects <str<strong>on</strong>g>of</str<strong>on</strong>g>life – whether for household, industrial or agricultural need. It plays a critical role in thenatural envir<strong>on</strong>ment, in our ec<strong>on</strong>omies, in producti<strong>on</strong> and in producti<strong>on</strong> and in politics. Iteven goes bey<strong>on</strong>d nati<strong>on</strong>al boundaries to create debate <strong>on</strong> its importance, scarcity as well asc<strong>on</strong>servati<strong>on</strong>. Water c<strong>on</strong>servati<strong>on</strong> is not new in South Asia. Rainwater harvesting structuresare the oldest recorded hydrological activities used 8000 years ago in South Asia. India isknown for its traditi<strong>on</strong>al rainwater harvesting structures - tanks and simple village p<strong>on</strong>dsdeveloped by Vijayangar Kings <str<strong>on</strong>g>of</str<strong>on</strong>g> South India in the 14 th century. Some <str<strong>on</strong>g>of</str<strong>on</strong>g> these c<strong>on</strong>tinue tosupport local producti<strong>on</strong> and domestic activities till today. Water is a part <str<strong>on</strong>g>of</str<strong>on</strong>g> larger ecological


system. Realizing the importance and scarcity attached to the fresh water, it has to be treatedas an essential envir<strong>on</strong>ment for sustaining all forms <str<strong>on</strong>g>of</str<strong>on</strong>g> life.With the <strong>on</strong>slaught <str<strong>on</strong>g>of</str<strong>on</strong>g> rapid and unchecked industrializati<strong>on</strong> and urbanizati<strong>on</strong> thisc<strong>on</strong>stituti<strong>on</strong>al resp<strong>on</strong>sibility has l<strong>on</strong>g been breached. The exp<strong>on</strong>ential growth in water use andabuse, deforestati<strong>on</strong> and change in land use patterns, has meant these water bodies aredestroyed, affecting groundwater recharge and resulting in groundwater depleti<strong>on</strong> andc<strong>on</strong>taminati<strong>on</strong>. Historically, industries were extracting groundwater and using tankers toovercome the lack <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply in cities. But now as groundwater slowly inches towardsdangerous mark and industry demand c<strong>on</strong>tinues to increase, effective and efficient use,management and governance <str<strong>on</strong>g>of</str<strong>on</strong>g> water is gaining greater and greater importance. Totalgroundwater use according to government estimati<strong>on</strong> will be over 240 billi<strong>on</strong> cubic meters(BCM) in 2012. The Central Ground Water Board (CGWB) has revealed that 30% <str<strong>on</strong>g>of</str<strong>on</strong>g> India isoverusing groundwater resource. News <str<strong>on</strong>g>of</str<strong>on</strong>g> the groundwater table dropping from 30-40 feetjust after independence is now even at 1,000ft (it is difficult to get water in some areas <str<strong>on</strong>g>of</str<strong>on</strong>g>Bangalore) is worrying news. Daily news <str<strong>on</strong>g>of</str<strong>on</strong>g> farmer suicide is a sign <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern <str<strong>on</strong>g>of</str<strong>on</strong>g>inadequate water supply in India to meet even the basic need <str<strong>on</strong>g>of</str<strong>on</strong>g> its citizens. On the other handgovernment‘s promise <str<strong>on</strong>g>of</str<strong>on</strong>g> water supply for 24/7 to industries smacks in the face <str<strong>on</strong>g>of</str<strong>on</strong>g> our beliefin justice. Report 2006 c<strong>on</strong>cluded that ―Scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> water at the heart <str<strong>on</strong>g>of</str<strong>on</strong>g> the global water crisisis rooted in power, poverty and inequality, not in physical availability‖. Also in accordance<strong>with</strong> the World Bank report in 2003 – This crisis is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> water governance, essentiallycaused by the ways in which we mismanage our water. Both reports articulate the need for anintegrated management <str<strong>on</strong>g>of</str<strong>on</strong>g> water and its envir<strong>on</strong>ment to ensure that there is more than enoughwater in the world for domestic, agriculture and industry needs.In this article we look at the wider meaning <str<strong>on</strong>g>of</str<strong>on</strong>g> water c<strong>on</strong>servati<strong>on</strong> and the importance <str<strong>on</strong>g>of</str<strong>on</strong>g>industry to c<strong>on</strong>serve, protect and be prudent in its use. We will also point out to someexamples <str<strong>on</strong>g>of</str<strong>on</strong>g> where and how it can be accomplished. Water c<strong>on</strong>servati<strong>on</strong> encompasses a range<str<strong>on</strong>g>of</str<strong>on</strong>g> acti<strong>on</strong>s by individuals, community as well as legal requirements. It includes harvestingrainwater in small tanks for domestic use, c<strong>on</strong>structing small dams and reservoirs foragriculture and industry use, as well as helping to recharge groundwater. It now increasinglyincludes using lower quality water whenever possible in order to save fresh water, reducingthe demand for water and stopping wasteful uses. There also technological advancements andimproved management techniques available for use in industry, agriculture and in homes all


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurleading to efficient use <str<strong>on</strong>g>of</str<strong>on</strong>g> water, recycling and harvesting water. In short, water c<strong>on</strong>servati<strong>on</strong>means efficient water use through its protecti<strong>on</strong>, up keep, maintenance, management andpreservati<strong>on</strong>.Keywords: Groundwater; Hydrological system; Water audit; Polluti<strong>on</strong>; RWH; RO; CEDI;Water governance; Water crisisReferences1. Comm<strong>on</strong> Effluent Treatment Plants – Technology & Treatment Process: the alternativestrategies . Ms Sangeeth Aiyappa Research Officer Svaraj working paper no. 2 www.Svaraj.in2. Patel, B. 2007. ― Water C<strong>on</strong>servati<strong>on</strong>- A Shared Resp<strong>on</strong>sibility‖, Water Digest, 6-7, pp.28-34.3. Splash, February 2007 – Arati Davis, Manager Research and Policy, Svaraj.4. UNDP Human Development Report 2006, Bey<strong>on</strong>d Scarcity.5. Water Digest issue 6 Jan-Feb 2007 – Water C<strong>on</strong>servati<strong>on</strong> – Rajendra Singh, TarunBharat Sangh.187


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurUse <str<strong>on</strong>g>of</str<strong>on</strong>g> the Amphibious Weed Ipomoea(Ipomoea Carnea) in GeneratingNanoparticlesS<strong>on</strong>am Priyadarshani, S. U. Ganae, Tasneem Abbas, S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014Ipomoea (Ipomoea carnea) is <strong>on</strong>e the most widespread <str<strong>on</strong>g>of</str<strong>on</strong>g> the weeds in India, col<strong>on</strong>izing wasttracts <str<strong>on</strong>g>of</str<strong>on</strong>g> landmass, including wetlands. It is resp<strong>on</strong>sible for the eutrophicati<strong>on</strong>,ecodegradati<strong>on</strong>, and even demise <str<strong>on</strong>g>of</str<strong>on</strong>g> innumerable water-bodies besides, also, causingenoromous harm to land envir<strong>on</strong>ments.We have made attempts to find ways <str<strong>on</strong>g>of</str<strong>on</strong>g> gainfully utilizing ipomoea so that it can becomepr<str<strong>on</strong>g>of</str<strong>on</strong>g>itable to mechanically remove it. Using the weed as a source <str<strong>on</strong>g>of</str<strong>on</strong>g> silver nanoparticles hasbeen a part <str<strong>on</strong>g>of</str<strong>on</strong>g> these initiatives. This paper addresses our current work in this directi<strong>on</strong>.189


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurNew Generati<strong>on</strong> Sorbents for the Removal<str<strong>on</strong>g>of</str<strong>on</strong>g> Heavy Metal I<strong>on</strong> from Waste WaterShivani Goyal and Dinesh KumarDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> chemistryBanasthali Vidyapith, 304022, IndiaE-mail: dschoudhary2002@yahoo.comNanoscale SiO 2 @Ag particles are increasingly attracting interest as efficient sorbents forremoving heavy metal from waste water. In the present study, nanoparticles have beenprepared by a sol-gel method and characterized by X-ray diffracti<strong>on</strong>, transmissi<strong>on</strong> electr<strong>on</strong>microscopy, Fourier transformati<strong>on</strong>, IR spectroscopy, atomic absorpti<strong>on</strong> spectroscopy. Theadditi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> SiO 2 @Ag NPs into the aqueous soluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Pb 2+ had an effective removal. Thecore-shell nanoparticle exhibited high removal efficiency towards Pb 2+ (97 %). In this work,we provided an easy and efficient route to detect Pb 2+ and simultaneously remove Pb 2+.191


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurEc<strong>on</strong>omic Effluent Treatment Methods forDyeing and Printing Industry1 Sunil Sharma and 2 Neetu Sharma1 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry and Envir<strong>on</strong>ment Engineering. Jagannath University, Jaipur, India2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry .Global Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, Jaipur, 302004, IndiaEmail: sharma.chem@gmail.comThe textile dyeing industry c<strong>on</strong>sumes large quantities <str<strong>on</strong>g>of</str<strong>on</strong>g> water and produces large volumes <str<strong>on</strong>g>of</str<strong>on</strong>g>wastewater from different steps in the dyeing and finishing processes. Wastewater fromprinting and dyeing units is <str<strong>on</strong>g>of</str<strong>on</strong>g>ten rich in color, c<strong>on</strong>taining residues <str<strong>on</strong>g>of</str<strong>on</strong>g> reactive dyes andchemicals, such as complex comp<strong>on</strong>ents, many aerosols, high chroma, high COD and BODc<strong>on</strong>centrati<strong>on</strong> as well as much more hard-degradati<strong>on</strong> materials. The toxic effects <str<strong>on</strong>g>of</str<strong>on</strong>g> dyestuffsand other organic compounds, as well as acidic and alkaline c<strong>on</strong>taminants, from industrialestablishments <strong>on</strong> the general public are widely accepted. At present, the dyes are mainlyaromatic and heterocyclic compounds, <strong>with</strong> color-display groups and polar groups. Thestructure is more complicated and stable, resulting in greater difficulty to degrade the printingand dyeing wastewater. Therefore, understanding and developing effective printing-dyeindustrial wastewater treatment technology is envir<strong>on</strong>mentally important.Keywords: dyeing industry, waste water, treatment methods, textile pollutants.1. Introducti<strong>on</strong> - Textile is an important industry for Rajasthan, representing over 20 percent <str<strong>on</strong>g>of</str<strong>on</strong>g> the investment made in the state. Sanganer is located about 15 km south <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur, thestate capital that has a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than two milli<strong>on</strong> people. The famous art <str<strong>on</strong>g>of</str<strong>on</strong>g> printingdeveloped in Sanganer during the 18th century and attained its peak in the 19 thcentury.Sanganer town lies about 16 Km south <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city, the Rajasthan state capital inIndia that has a populati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> more than two milli<strong>on</strong> people. The total area <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer isabout 635.5 Sq. km out <str<strong>on</strong>g>of</str<strong>on</strong>g> which 12.9 Sq. km comprises the urban area.2. Textile dyeing wastewater treatment methods - The textile dyeing wastewater has alarge amount <str<strong>on</strong>g>of</str<strong>on</strong>g> complex comp<strong>on</strong>ents <strong>with</strong> high c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> organic, high-color andchanging greatly characteristics. Owing to their high BOD/COD, their colorati<strong>on</strong> and theirsalt load, the wastewater resulting from dyeing cott<strong>on</strong> <strong>with</strong> reactive dyes are seriously193


polluted. As aquatic organisms need light in order to develop, any deficit in this respectcaused by colored water leads to an imbalance <str<strong>on</strong>g>of</str<strong>on</strong>g> the ecosystem. Moreover, the water <str<strong>on</strong>g>of</str<strong>on</strong>g>rivers that are used for drinking water must not be colored, as otherwise the treatment costswill be increased. Obviously, when legal limits exist these should be taken as justificati<strong>on</strong>.Studies c<strong>on</strong>cerning the feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> treating dyeing wastewater are very important. In thepast several decades, many techniques have been developed to find an ec<strong>on</strong>omic and efficientway to treat the textile dyeing wastewater, including physicochemical, biochemical,combined treatment processes and other technologies. These technologies are usually highlyefficient for the textile dyeing wastewater.2.1 Physicochemical wastewater treatment - Wastewater treatment is a mixture <str<strong>on</strong>g>of</str<strong>on</strong>g> unitprocesses, some physical, others chemical or biological in their acti<strong>on</strong>. A c<strong>on</strong>venti<strong>on</strong>altreatment process is comprised <str<strong>on</strong>g>of</str<strong>on</strong>g> a series <str<strong>on</strong>g>of</str<strong>on</strong>g> individual unit processes, <strong>with</strong> the output (oreffluent) <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>e process becoming the input (influent) <str<strong>on</strong>g>of</str<strong>on</strong>g> the next process. The first stage willusually be made up <str<strong>on</strong>g>of</str<strong>on</strong>g> physical processes. Physicochemical wastewater treatment has beenwidely used in the sewage treatment plant which has a high removal <str<strong>on</strong>g>of</str<strong>on</strong>g> chroma andsuspended substances, while it has a low removal <str<strong>on</strong>g>of</str<strong>on</strong>g> COD. The comm<strong>on</strong> physicochemicalmethods are shown as followed.2.1.1 Membrane separati<strong>on</strong> process - Membrane separati<strong>on</strong> process is the method that usesthe membrane‘s micro pores to filter and makes use <str<strong>on</strong>g>of</str<strong>on</strong>g> membrane‘s selective permeability toseparate certain substances in wastewater. Currently, the membrane separati<strong>on</strong> process is<str<strong>on</strong>g>of</str<strong>on</strong>g>ten used for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> dyeing wastewater mainly based <strong>on</strong> membrane pressure, such asreverse osmosis, ultra filtrati<strong>on</strong>, nan<str<strong>on</strong>g>of</str<strong>on</strong>g>iltrati<strong>on</strong> and micr<str<strong>on</strong>g>of</str<strong>on</strong>g>iltrati<strong>on</strong>. Membrane separati<strong>on</strong>process is a new separati<strong>on</strong> technology, <strong>with</strong> high separati<strong>on</strong> efficiency, low energyc<strong>on</strong>sumpti<strong>on</strong>, easy operati<strong>on</strong>, no polluti<strong>on</strong> and so <strong>on</strong>. However, this technology is still notlarge-scale promoted because it has the limitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> requiring special equipment, and havinghigh investment and the membrane fouling and so<strong>on</strong>.2.1.2 Chemical oxidati<strong>on</strong> - Chemical operati<strong>on</strong>s, as the name suggests, are those in whichstrictly chemical reacti<strong>on</strong>s occur, such as precipitati<strong>on</strong>. Chemical treatment relies up<strong>on</strong> thechemical interacti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>taminants we wish to remove from water, and the applicati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> chemicals that either aid in the separati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>taminants from water, or assist in thedestructi<strong>on</strong> or neutralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> harmful effects associated <strong>with</strong> c<strong>on</strong>taminants. Chemicaltreatment methods are applied both as stand-al<strong>on</strong>e technologies and as an integral part <str<strong>on</strong>g>of</str<strong>on</strong>g> the


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurtreatment process <strong>with</strong> physical methods .Chemical operati<strong>on</strong>s can oxidize the pigment in theprinting and dyeing wastewater as well as bleaching the effluent. Currently, Fent<strong>on</strong> oxidati<strong>on</strong>and oz<strong>on</strong>e oxidati<strong>on</strong> are <str<strong>on</strong>g>of</str<strong>on</strong>g>ten used in the wastewater treatment.2.2 Biological wastewater treatment method - The biological process removes dissolvedmatter in a way similar to the self depurati<strong>on</strong> but in a further and more efficient way thanclariflocculati<strong>on</strong>. The removal efficiency depends up<strong>on</strong> the ratio between organic load andthe bio mass present in the oxidati<strong>on</strong> tank, its temperature, and oxygen c<strong>on</strong>centrati<strong>on</strong>. The biomass c<strong>on</strong>centrati<strong>on</strong> can increase, by aerati<strong>on</strong> the suspensi<strong>on</strong> effect but it is important not toreach a mixing energy that can destroy the flocks, because it can inhibit the followingsettling. Normally, the biomass c<strong>on</strong>centrati<strong>on</strong> ranges between 2500-4500 mg/l, oxygen about2 mg/l. With aerati<strong>on</strong> time till 24 hours the oxygen demand can be reduced till 99%.According to the different oxygen demand, biological treatment methods can be divided intoaerobic and anaerobic treatment. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> high efficiency and wide applicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theAerobic biological treatment, it naturally becomes the mainstream <str<strong>on</strong>g>of</str<strong>on</strong>g> biological treatment2.2.1 Aerobic biological treatment - According to the oxygen requirements <str<strong>on</strong>g>of</str<strong>on</strong>g> the differentbacteria, the bacteria can be divided into aerobic bacteria, anaerobic bacteria and facultativebacteria. Aerobic biological treatment can purify the water <strong>with</strong> the help <str<strong>on</strong>g>of</str<strong>on</strong>g> aerobic bacteriaand facultative bacteria in the aerobic envir<strong>on</strong>ment. Aerobic biological treatment can bedivided into two major categories: activated sludge process and bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilm process.2.2.2 Anaerobic biological treatment - Anaerobic biological treatment process is methodsthat make use <str<strong>on</strong>g>of</str<strong>on</strong>g> the anaerobic bacteria decompose organic matter in anaerobic c<strong>on</strong>diti<strong>on</strong>s.This method was first used for sludge digesti<strong>on</strong>. In recent years it was gradually used in highc<strong>on</strong>centrati<strong>on</strong> and low c<strong>on</strong>centrati<strong>on</strong> organic wastewater treatment. In textile industry, thereare many types <str<strong>on</strong>g>of</str<strong>on</strong>g> high c<strong>on</strong>centrati<strong>on</strong> organic wastewater, such as wool washing sewage,textile printing and dyeing wastewater etc., which the organic matter c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> it is as highas 1000 mg/L or more, the anaerobic wastewater treatment process can achieve good results.The anaerobic aerobic treatment process is usually adopted in actual project that is usinganaerobic treatment to treat high c<strong>on</strong>centrati<strong>on</strong> wastewater, and using aerobic treatment totreat low c<strong>on</strong>centrati<strong>on</strong> wastewater. Currently, the hydrolysis acidificati<strong>on</strong> process is the mainanaerobic treatment process, which can increases the biodegradability <str<strong>on</strong>g>of</str<strong>on</strong>g> the sewage t<str<strong>on</strong>g>of</str<strong>on</strong>g>acilitate the following biological treatment process.195


2.3 Biochemical and physicochemical combinati<strong>on</strong> processes - In recent years, as theapplicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> new technologies in textile and dyeing industry, a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> difficultbiodegradable organic matter such as PVA slurry, surface active agents and new additivesenter into the dyeing wastewater, which result in the high c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the organic matter,complex and changeable compositi<strong>on</strong> and the obvious reducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the biodegradability. TheCOD removal rate <str<strong>on</strong>g>of</str<strong>on</strong>g> the simple aerobic activated sludge process which was used to treat thetextile dyeing wastewater has decreased from 70% to 50%, and the effluent cannot meet thedischarge standards. More seriously, quite a number <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage treatment facilities can‘tnormally operate even stop running. Therefore, the biochemical and physicochemicalcombinati<strong>on</strong> processes has been gradually developed. And its applicati<strong>on</strong> is increasinglywidespread. The types <str<strong>on</strong>g>of</str<strong>on</strong>g> the combinati<strong>on</strong> process are various, and the main adopti<strong>on</strong>scurrently are as following:2.3.1 Hydrolytic acidificati<strong>on</strong>-c<strong>on</strong>tact oxidati<strong>on</strong>-air floatati<strong>on</strong> process - This combinati<strong>on</strong>process is a typical treatment process <str<strong>on</strong>g>of</str<strong>on</strong>g> the textile dyeing wastewater, which is widely used.The wastewater firstly flows through the bar screen, in order to remove a part <str<strong>on</strong>g>of</str<strong>on</strong>g> the largerfibers and particles, and Then flows into the regulating tank. After well-distributed through acertain amount <str<strong>on</strong>g>of</str<strong>on</strong>g> time, the sewage flows into the hydrolysis acidificati<strong>on</strong> tank to carry outthe anaerobic hydrolysis reacti<strong>on</strong>. The reacti<strong>on</strong> mechanism is making use <str<strong>on</strong>g>of</str<strong>on</strong>g> the anaerobichydrolysis and acidificati<strong>on</strong> reacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the anaerobic fermentati<strong>on</strong> to degrade the insolubleorganic matter into the soluble organic matter by c<strong>on</strong>trolling the hydraulic retenti<strong>on</strong> time. Atthe same time, through cooperating <strong>with</strong> the acid bacteria, the macromolecules and difficultbiodegradable organic matter would be turned into biodegradable small molecules, whichprovide a good c<strong>on</strong>diti<strong>on</strong> for the subsequent biological treatmentFig. 1. The process flow diagram


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur2.3.3 Coagulati<strong>on</strong>-ABR-oxidati<strong>on</strong> ditch process - The treatment has been adopted widelycurrently, such as a textile dyeing wastewater treatment plant. The characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> thetextile dyeing plantFig. 2. The process flow diagrameffluent are the variati<strong>on</strong> in water, the higher <str<strong>on</strong>g>of</str<strong>on</strong>g> the alkaline, color and organic matterc<strong>on</strong>centrati<strong>on</strong>, and the difficulty <str<strong>on</strong>g>of</str<strong>on</strong>g> the degradati<strong>on</strong> (BOD/COD value is about 0.25). Theworkshop wastewater enter into the regulating tank by pipe network to balance the quantityand quality, after wiping <str<strong>on</strong>g>of</str<strong>on</strong>g>f the large debris by the bar screen before the regulating tank. Theadjusted wastewater flow into the coagulati<strong>on</strong> reacti<strong>on</strong> tank, at the same time, the FeSO4soluti<strong>on</strong> was added into it to carry out chemical reacti<strong>on</strong>. Finally, the effluent flows into theprimary sedimentati<strong>on</strong> tank for spate separati<strong>on</strong>, meanwhile enhancing the BOD/COD ratio.4. C<strong>on</strong>clusi<strong>on</strong>Textile companies are facing problems in some instances <str<strong>on</strong>g>of</str<strong>on</strong>g> crisis proporti<strong>on</strong>s, in dealing<strong>with</strong> the effluent that they generate. If being directly discharged <strong>with</strong>out being treated, it willbring serious harm to the ecological envir<strong>on</strong>ment. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> the dangers <str<strong>on</strong>g>of</str<strong>on</strong>g> dyeingwastewater, many countries have enacted strict emissi<strong>on</strong>s standards, but there is no uniformstandard currently. The soluti<strong>on</strong> to the problem will vary from company to companydepending <strong>on</strong> many variables such as the volume and nature <str<strong>on</strong>g>of</str<strong>on</strong>g> the effluent, locati<strong>on</strong>, sitegeography and finance available. Unfortunately for some companies, the inevitablec<strong>on</strong>clusi<strong>on</strong> will be that there is no viable soluti<strong>on</strong>. There will be in-house debates but thereshould also be frank discussi<strong>on</strong>s <strong>with</strong> all those c<strong>on</strong>cerned and those who can help,particularly from water service companies, suppliers <str<strong>on</strong>g>of</str<strong>on</strong>g> plant and equipment for effluenttreatment and also chemical suppliers. Traditi<strong>on</strong>al technologies to treat textile wastewaterinclude various combinati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> biological, Physical, and chemical methods, but these197


methods require high capital and operating costs. A combinati<strong>on</strong> methods appears that anideal treatment process for satisfactory recycling and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> textile effluent.References:1. B. Ramesh Babu; A.K. Parande; S. Raghu; and T. Prem Kumar (2007). TextileTechnology- Cott<strong>on</strong> Textile Processing: Waste Generati<strong>on</strong> and Effluent Treatment. TheJournal <str<strong>on</strong>g>of</str<strong>on</strong>g> Cott<strong>on</strong> Science 11( 2007) 141–1532. Bartram J. and Balance R. (1996), Water Quality M<strong>on</strong>itoring - A Practical Guide to theDesign and Implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Freshwater Quality Studies and M<strong>on</strong>itoring ProgrammesUNEP/WHO.3. C. All`egre; P. Moulin; M. Maisseu; F. Charbit (2006). Treatment and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> reactivedyeing effluents. Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Membrane Science 269 (2006) 15-344. Compilers. ―Discharge standard <str<strong>on</strong>g>of</str<strong>on</strong>g> water pollutants for dyeing and finishing <str<strong>on</strong>g>of</str<strong>on</strong>g> textileindustry‖. State bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> envir<strong>on</strong>mental protecti<strong>on</strong> 4(2008)5. CPCB (Central Polluti<strong>on</strong> C<strong>on</strong>trol Board).:Minimal nati<strong>on</strong>al standards: Dye and dyeintermediate industry. Comprehensive Industry Document Series: COINDS /34/1990(1990).6. K. Ranganathan; K. Karunagaran; D.C. Sharma (2007).Recycling <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewaters <str<strong>on</strong>g>of</str<strong>on</strong>g>textile dyeing industries using advanced treatment technology and cost analysis—Casestudies. Resources, C<strong>on</strong>servati<strong>on</strong> and Recycling 50 (2007) 306–3187. Khan, T.I., N. Kaur and P.C. Vyas: Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial effluents <strong>on</strong> physicochemicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Amani Shah Nallah-A case study. J. Env. Poll., 2(3),147-150(1995).8. Singer P.C. and Reckhow D.A. (1999), Chemical oxidati<strong>on</strong>, chapter 12, In: R. D.letterman (editor), Water quality and treatment: a handbook <str<strong>on</strong>g>of</str<strong>on</strong>g> community watersupplies, 5 ed., American Water Works Associati<strong>on</strong> , McGraw-Hill, New York.9. Singh Vijendra and C.P. Singh Chandel (2006): Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Wastewater <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur City forAgricultural Use. – Research Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry and Envir<strong>on</strong>ment. 10(1): 30–33.10. Sharma Surendra Kumar, Vijendra Singh and C.P. Singh Chandel (2004): ground waterpolluti<strong>on</strong> problem and evaluati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Physico-Chemical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Water. –Envir<strong>on</strong>ment and Ecology, 22 (spl-2): 319-324.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Amphibious Weed ipomoea(Ipomoea Carnea) by Utilizing it for theExtracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Volatile Fatty Acids as EnergyPrecursorsM. Rafiq Kumar, S. M. Tauseef, Tasneem Abbasi and S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014E- mail - tasneem.abbasi@gmail.comVolatile fatty acids are the substrates which anaerobic bacteria readily utilize to generateflammable methane-carb<strong>on</strong> dioxide mixtures called ‗biogas‘. This manner <str<strong>on</strong>g>of</str<strong>on</strong>g> VFA utilizati<strong>on</strong>for generating relatively clean energy can be easily accomplished in c<strong>on</strong>venti<strong>on</strong>al biogasplants as well as higher-rate anaerobic digesters. In this paper we present results <str<strong>on</strong>g>of</str<strong>on</strong>g> the studieswhich have aimed to generate VFAs from the pernicious weed ipomoea (Ipomoea carnea).Even though ipomoea, like any other phytomass, can be directly fermented to generatebiogas, it is not possible to achieve sustainable or net energy positive system performance inipomoea-fed reactors due to the problems <str<strong>on</strong>g>of</str<strong>on</strong>g> reactor clogging and low energy density <str<strong>on</strong>g>of</str<strong>on</strong>g> thefeed. But <strong>on</strong>ce VFAs are extracted in the form <str<strong>on</strong>g>of</str<strong>on</strong>g> aqueous soluti<strong>on</strong> they can be used as energyprecursors in any and all forms <str<strong>on</strong>g>of</str<strong>on</strong>g> anaerobic digesters.In the present work VFA extracti<strong>on</strong> was accomplished by a simple yet effective technology,appropriate for use even by laypers<strong>on</strong>s. For it acid-phase reactors were set, <str<strong>on</strong>g>of</str<strong>on</strong>g> 15 litrecapacities each, to which measured quantities (1.5 Kg, dry wt basis) <str<strong>on</strong>g>of</str<strong>on</strong>g> ipomoea were chargedal<strong>on</strong>g <strong>with</strong> 12 litre water inoculated <strong>with</strong> cowdung to the extent <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.15%, 0.38%, or 0.75%(dry wt basis). The reactors were stirred intermittently and the VFA c<strong>on</strong>tent <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactorliquid was assessed daily.It was found that VFA producti<strong>on</strong> peaked by 10 th or 11 th day in all the reactors, giving a yield<str<strong>on</strong>g>of</str<strong>on</strong>g> the order <str<strong>on</strong>g>of</str<strong>on</strong>g> 112±12 g VFA/Kg ipomoea, representing a little above 10% c<strong>on</strong>versi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thebiomass into energy precursors. As close to 90% <str<strong>on</strong>g>of</str<strong>on</strong>g> peak extracti<strong>on</strong> had occurred by the 5 thday we explored another opti<strong>on</strong> for increasing reactor efficiency by draining <str<strong>on</strong>g>of</str<strong>on</strong>g>f all theextract at the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the 5 th day and introducing a fresh charge <str<strong>on</strong>g>of</str<strong>on</strong>g> cow-dung inoculated water.199


This enhanced the overall VFA extracti<strong>on</strong> to 140±3 g VFA/Kg <str<strong>on</strong>g>of</str<strong>on</strong>g> ipomoea in 10 days.Running the reactor to another 5-day cycle took the VFA extracti<strong>on</strong> to about 155 g/Kg <str<strong>on</strong>g>of</str<strong>on</strong>g>ipomoea. The simplicity, inexpensiveness, and frugality <str<strong>on</strong>g>of</str<strong>on</strong>g> this process holds promise forlarge-scale utilizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ipomoea.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurCorrelati<strong>on</strong> and Regressi<strong>on</strong> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>Groundwater Quality Data <str<strong>on</strong>g>of</str<strong>on</strong>g> T<strong>on</strong>kDistrict, Rajasthan, IndiaSharma Pradeep Kumar 1 , Vijay Ritu 2 and Punia MP 31 Deptt <str<strong>on</strong>g>of</str<strong>on</strong>g> Computer Science, 2 Deptt <str<strong>on</strong>g>of</str<strong>on</strong>g> Electr<strong>on</strong>ics, Banasthali University, Rajasthan3 Deptt <str<strong>on</strong>g>of</str<strong>on</strong>g> Remote Sensing, Birla Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, JaipurE-mail: pksrajotia@rediffmail.com, rituvijay1975@yahoo.co.in, punia.rsd@gmail.comThe ground water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> T<strong>on</strong>k District, Rajasthan was analyzed using hydro-chemicaldata samples collected from 26 dug wells. These samples were analyzed for variousparameters i.e., Electrical C<strong>on</strong>ductivity (EC), Total Hardness (TH), Total Dissolved Solids(TDS), Calcium (Ca 2+ ), Magnesium (Mg 2+ ), Sodium (Na + ), Potassium (K + ), Chloride(Cl - ),Nitrate (NO 3 - ), Fluoride (F - ). Pears<strong>on</strong>‘s correlati<strong>on</strong> coefficients were determined for theseparameters and found a str<strong>on</strong>g positive correlati<strong>on</strong> between various parameters. Regressi<strong>on</strong>equati<strong>on</strong>s were also formulated for those parameters which has str<strong>on</strong>g correlati<strong>on</strong>s.Comparing observed and predicted values <str<strong>on</strong>g>of</str<strong>on</strong>g> various parameters reveals that these equati<strong>on</strong>scan be used for making water quality m<strong>on</strong>itoring by observing <strong>on</strong>ly few parameters al<strong>on</strong>e.The study results were compared <strong>with</strong> standards <str<strong>on</strong>g>of</str<strong>on</strong>g> BIS and WHO respectively.Results:Sr.No.Parameters Min Max Range Mean1 EC 390 4650 42601771.3StandardDeviati<strong>on</strong>StandardErrorCoefficient <str<strong>on</strong>g>of</str<strong>on</strong>g>Variance5 1195.52 234.46 67.492 TH 100 1160 1060 299.92 214.19 42.01 71.423 TDS 253.53022.5 27691151.38 777.09 152.40 67.494 CA 15 112 97 44.92 27.10 5.31 60.325 MG 12 220 208 46.85 41.99 8.24 89.646 NA 33 840 807 331.62 264.75 51.92 79.847 K 0 102 102 15.05 27.29 5.35 181.34201


8 Cl 14 1186 1172 306.35 320.39 62.83 104.599 NO3 2 114 112 38.65 33.63 6.59 87.0110 F 0.38 9.16 8.78 2.46 2.30 0.45 93.28Table 1: Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Groundwater SamplesStandards% <str<strong>on</strong>g>of</str<strong>on</strong>g> SamplesExceedingSr.Present Study Desirable LimitsBIS WHONo. ParametersReport <str<strong>on</strong>g>of</str<strong>on</strong>g> Standards1 EC 1500-3000 - 390 - 4650 502 TH 300 - 600 500 100 - 1160 30.773 TDS 500 - 2000 500 253.5 - 3022.5 84.624 CA 75 - 200 75 15 - 112 15.385 MG 30 - 75 30 - 75 12 - 220 506 NA 100 100 33 - 840 697 K 10 10 0 - 102 26.928 Cl 250 - 1000 250 14 - 1186 30.779 NO3 45 - 100 45 2 - 114 26.9210 F 1 - 1.5 1 - 1.5 0.38 - 9.16 69.23Table 2: Comparis<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the results <str<strong>on</strong>g>of</str<strong>on</strong>g> the study <strong>with</strong> the Drinking Water StandardsParameters EC TH TDS Ca Mg Na K Cl NO3 FEC 1TH 0.605 1TDS 1 0.605 1Ca 0.297 0.739 0.297 1Mg 0.635 0.944 0.635 0.519 1Na 0.952 0.355 0.952 0.035 0.428 1K 0.433 0.546 0.433 0.361 0.523 0.288 1Cl 0.949 0.741 0.949 0.483 0.721 0.845 0.466 1NO3 0.194 0.624 0.194 0.551 0.528 0.017 0.33 0.313 1F 0.309-0.221 0.309 -0.383-0.151 0.471 0.16 0.119-0.223 1


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurTable 3: Correlati<strong>on</strong> coefficients between various water quality parametersSr.No.Pairs <str<strong>on</strong>g>of</str<strong>on</strong>g>ParametersrRegressi<strong>on</strong>Equati<strong>on</strong> y = a+ bxa bObservedValuesPredictedValues1 TH - Ca 0.739 37.381 5.844 160 1542 TH - Mg 0.944 74.319 4.816 205 2003 TH - Cl 0.741 148.148 0.495 200 2014 EC - Na 0.952 345.183 4.301 590 5865 EC - Cl 0.949 686.892 3.54 1070 10056 TDS - Na 0.952 224.369 2.795 384 3817 TDS - Cl 0.949 446.479 2.301 939 9148 Mg - Cl 0.721 17.896 0.095 23 239 Na - Cl 0.845 117.751 0.698 181 181C<strong>on</strong>clusi<strong>on</strong> - We found that ground water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area is not suitable fordrinking and agriculture purpose since most samples <str<strong>on</strong>g>of</str<strong>on</strong>g> TDS, Mg, Na, and Fluoride showhigher c<strong>on</strong>centrati<strong>on</strong> in the ground water. The major problem <strong>with</strong> the ground water is that<strong>on</strong>ce c<strong>on</strong>taminated, it is difficult to purify it in the aquifer itself. Hence, there is a need forprotecti<strong>on</strong> and proper management <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water quality. This study brings awarenessam<strong>on</strong>g the people <str<strong>on</strong>g>of</str<strong>on</strong>g> the study area about the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water, so that they can takesome preventive measures.Acknowledgements - We were very thankful to the Central Ground Water Board, Jaipur forproviding the required data to pursue this research activity.References1. Batheja Kavita, Sinha A K, Seth Gita and Garg Jaipal, Physico-chemicalCharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Groundwater at Churu Tehsil, Rajasthan, India, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>Envir<strong>on</strong>ment Science & Engg., July 2007, 49(3), 203-206.2. Bathusha M. I., Saseetharan M K, Statistical study <str<strong>on</strong>g>of</str<strong>on</strong>g> Physio-chemical characteristics<str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater <str<strong>on</strong>g>of</str<strong>on</strong>g> Coimbatore South Z<strong>on</strong>e,, Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mentProtecti<strong>on</strong>, June 2006, 26(6), 508-515.203


3. Bhandari N S, Nayal K, E-Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, 2008, 5(2), 342-3464. BIS. (1993). Specificati<strong>on</strong>s for Drinking Water (IS: 10500:1993). Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> IndianStandards, New Delhi.5. Boyle, D.R. (1992). Effects <str<strong>on</strong>g>of</str<strong>on</strong>g> Base Exchange s<str<strong>on</strong>g>of</str<strong>on</strong>g>tening <strong>on</strong> fluoride in groundwater <str<strong>on</strong>g>of</str<strong>on</strong>g>the M<strong>on</strong>ckt<strong>on</strong> Sub-Basin, New Brunkswi ck, Canada. In Water–Rock Interacti<strong>on</strong>(Eds.: Y.K. Kharaka and A.S. Maest). <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> the 7 th Internati<strong>on</strong>al Symposium<strong>on</strong> Water–Rock Interacti<strong>on</strong>. A.A. Balkema, Rotterdam. pp. 771-7746. Dewangan S, Vaishnav M and Chandrakar P L, Pre-M<strong>on</strong>so<strong>on</strong> Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>Physicochemical Parameters and Heavy Metals in Different Water Bodies <str<strong>on</strong>g>of</str<strong>on</strong>g> BalcoArea, Korba (C.G.), Rasâyan Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, 2010, 3(4), 710-720.7. Groundwater Scenario T<strong>on</strong>k District, Rajasthan, www.cgwb.gov.in , Ministry <str<strong>on</strong>g>of</str<strong>on</strong>g>Water Resources, 20098. Gupta Jaya, Chandrawat M P S, The study <str<strong>on</strong>g>of</str<strong>on</strong>g> nitrate c<strong>on</strong>centrati<strong>on</strong> in drinking waterin Alwar city, Rajasthan, Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> IPHE, India, Vol- 2007-08, No. 4, 15-19.9. Gupta S.P., Statistical Methods, Sultan Chand & S<strong>on</strong>s, 28 th Editi<strong>on</strong> (1999)10. Jothivenkatachalam K, Nithya A and Chandra Mohan S, Correlati<strong>on</strong> Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g>Drinking Water Quality in and around Perur Block <str<strong>on</strong>g>of</str<strong>on</strong>g> Coimbatore District,Tamilnadu, India, Rasâyan Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, 2010, 3(4), 649-654.11. Kumar A Ramesh, Riyazuddin P, Multivariate Statistical Techniques in the Analysis<str<strong>on</strong>g>of</str<strong>on</strong>g> Groundwater quality Data – A Case Study, 3 rd Internati<strong>on</strong>al <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> WaterQuality Management, 6-8 February 2008, Nagpur, India, 40-50.12. Pathak J K, Alam Mohd and Sharma Shikha, Interpretati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Groundwater QualityUsing Multivariate Statistical Technique in Moradabad City, Western Uttar PradeshState, India, E-Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, July 2008, 5(3), 607-619.13. P<strong>on</strong>dhe G M, Pawar N J and Patil S F, C<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Water Due to SugarMill Effluent from S<strong>on</strong>ai area, Ahmednagar District, Maharastra, <str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Symposium <strong>on</strong> Envir<strong>on</strong>ment, BARC, Mumbai, 1992.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipur14. Raju, Janardhana N., Sangita Dey and Kaushik Das (2009). Fluoride c<strong>on</strong>taminati<strong>on</strong> ingroundwaters <str<strong>on</strong>g>of</str<strong>on</strong>g> S<strong>on</strong>bhadra District, Uttar Pradesh. India Current Science, 96(7) 975-985.15. Sarga<strong>on</strong>kar Aabha P, Gupta A, Devotta S, multivariate analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaterresources in Ganga – Yamuna Basin (India), Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>ment Science andEngg, July 2008, 50(3), 215-222.16. Sharma M K and Choubey V K, Groundwater Quality Status <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur District,Rajasthan, The IUP Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Sciences, Nov 2007.17. Shrivastava, V.S. and P.R. Patil: Tapti River water polluti<strong>on</strong> by industrial wastes: Astatistical approach - <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Envir<strong>on</strong>ment Polluti<strong>on</strong> Tech., 1(3), 279-283 (2002).18. WHO: Guidelines for Drinking Water Quality First Addendum to 3 rd Edn. (I)recommendati<strong>on</strong>s (2006).19. Yadav A K, Khan P and Sharma Sanjay K, Water Quality Index Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g>Groundwater in Todaraisingh Tehsil <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan State, India-A Greener Approach,E-Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Vol -7 (2010), S428-S432.205


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAssessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the role <str<strong>on</strong>g>of</str<strong>on</strong>g> aquaticmacrophyte Eichhornia crassipes (Waterhyacinth) as a bioagent for rapidwastewater treatment in an embodiment <str<strong>on</strong>g>of</str<strong>on</strong>g>SHEFROL ® bioreactorRanjan Rahi, Gunaseelan S., Tasneem Abbasi and S. A. AbbasiCentre for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014One <str<strong>on</strong>g>of</str<strong>on</strong>g> the versi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> a novel, low cost and clean/green SHEFROL ® (SHEet Flow ROotLevel) bioreactor developed and patented earlier at Centre for Polluti<strong>on</strong> C<strong>on</strong>trol andEnvir<strong>on</strong>mental Engineering by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g>. S. A. Abbasi and coworkers (Official Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> thePatent Office 20 7611 2012) has been explored for wastewater treatment at a pilot scale.The embodiment c<strong>on</strong>tains seven trenches set in series <str<strong>on</strong>g>of</str<strong>on</strong>g> which first six have dimensi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>15m (length) × 0.5m (width) × 0.1m (depth) and the seventh is 1m wide but <str<strong>on</strong>g>of</str<strong>on</strong>g> same lengthand depth as other six trenches. The reactor treats 150 m 3 /day <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater originating fromtwo canteens <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>on</strong>dicherry University. In the present study the performance <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactor isassessed when the aquatic macrophyte water hyacinth (Eichhornia crassipes) is used as thebioagent.It is seen that at an HRT <str<strong>on</strong>g>of</str<strong>on</strong>g> 2.4 hrs, the reactor is capable <str<strong>on</strong>g>of</str<strong>on</strong>g> treating the influent COD, BOD 5,TS, TSS, TDS, TKN and P to an extent that is adequate to meet the standards for discharge<strong>on</strong> land set by Central Polluti<strong>on</strong> C<strong>on</strong>trol Board.207


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurWater Quality Assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Jodhpur City,RajasthanAnkita P. Dadhich, Atishaya Jain, Abhishek M. Mathur, Arvind Swami,Chandra Prakash Pareek, Deepak Sachdeva and Kishan kumar VermaPoornima Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and TechnologyDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, ISI-2, RIICO Instituti<strong>on</strong>al Area,Sitapura, Jaipur- 302022, Rajasthan (India)E-mail - ankita.dadhich@poornima.orgIntroducti<strong>on</strong>Water is an essential comp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> life. Any change in its compositi<strong>on</strong> leads to waterpolluti<strong>on</strong>. So the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water should be checked periodically. Jodhpur, the Sun city is,situated in western part <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan <strong>on</strong> the geographical coordinates <str<strong>on</strong>g>of</str<strong>on</strong>g> 26.2800° N,73.0200° E. Main water resources <str<strong>on</strong>g>of</str<strong>on</strong>g> Jodhpur for drinking water are some reservoirs viz.Kaylana lake, Takhat sagar and Umead Sagar etc. All these reservoirs receive water throughRajiv Gandhi Lift Canal, which is originated from Indira Gandhi Canal. Due to expansi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>urban areas and industrializati<strong>on</strong> the water is getting polluted day by day. The wide range <str<strong>on</strong>g>of</str<strong>on</strong>g>c<strong>on</strong>taminati<strong>on</strong> sources is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the main factors c<strong>on</strong>tributing to the need <str<strong>on</strong>g>of</str<strong>on</strong>g> water qualityassessment. Therefore, the physico-chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> some <str<strong>on</strong>g>of</str<strong>on</strong>g> the main water resources <str<strong>on</strong>g>of</str<strong>on</strong>g>the Jodhpur city was carried out to assess the water quality and for the identificati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>impurities.Materials And MethodsThe sampling points were selected <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> their importance. The analysis was carriedout for the 12 parameters namely temperature, pH, c<strong>on</strong>ductivity, total solids, total dissolvedsolids, dissolved oxygen (DO), turbidity, chloride, residual chlorine, temporary hardness,permanent hardness and total hardness. In total six water samples from six different siteswere collected from different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Jodhpur regi<strong>on</strong>. These water sources are extensivelyused for drinking and other domestic purpose. The samples were collected in BOD bottlesand plastic canes. All samples were labeled properly and measured by standard methods [1]like wrinkler`s method (DO), EDTA method (hardness),Titrati<strong>on</strong>s for other aspects. The209


esults were compared <strong>with</strong> BIS standards [2] and evaluated for drinking and other domesticpurposes.Results and Discussi<strong>on</strong>The results were examined from different sampling locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Jodhpur city viz. Kaylanalake, Takhat Sagar, Umead Sagar, Chopasani Fiter House and Chopasani Housing Board(Table 1). These results indicate that DO very less at Chopasani Fiter House in comparis<strong>on</strong> toother sites while c<strong>on</strong>ductivity is higher at Takhat Sagar. Total solids, total dissolved solids,turbidity and hardness also indicating wide variati<strong>on</strong>s in different sampling sites.Table 1: Physico-Chemical Characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> Different Water Sources at Jodhpur inYear 2013LOCATIONTemp(oC) DO pHCOND(µs/cm) TS TDSTURBIDITY(NTU)TOTALHARDNESSPERM.HARDNESSTEMP.RES.HARDNESS Cl - ClKAYLANA LAKE 30 4.5 7.0 457.8 350 220 3 390.62 156.25 234.37 124.96 0.3KAYLANA LAKE 28 4 7.5 490 310 220 1.5 286.45 104.16 182.29 112.46 0.2TAKHAT SAGAR 30 5 7.3 2190.9 500 300 2.5 338.54 208.3 130.24 137.45 0.4CHOPASNIFILTER HOUSE 25 1.2 6.8 43.9 150 120 0.5 156.25 88.47 67.79 49.98 0.1UMEAD SAGAR 30 6 7.6 512.3 730 380 11 364.58 241.15 123.43 129.95 0.3CHOPASNIHOUSINGBOARD 28 5 7.2 163.5 210 170 0.8 120.79 52.08 67.99 68.48 0.2Values <str<strong>on</strong>g>of</str<strong>on</strong>g> all parameters are in mg/L.C<strong>on</strong>clusi<strong>on</strong>The water quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> jodhpur city shows that in most <str<strong>on</strong>g>of</str<strong>on</strong>g> the cases the parametersare outside the Indian standards <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water. Electrical c<strong>on</strong>ductivity, turbidity & totalsolids parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> Takhat sagar and Umead sagar are far above the permissible limits. DO,Hardness & Residual Chlorine parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> Kaylana, Takhat sagar, Umead sagar &Chopasani Housing Board (except hardness) are above the permissible limits. This can poseserious threat to the human life. Therefore proper treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> water should be d<strong>on</strong>e toprevent the various diseases.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurReferences1. APHA (American Public Health Associati<strong>on</strong>) Standard method for examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>water and wastewater, NW, DC 20036, 1994.2. BIS (Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Standards) 10500, Indian standard drinking water specificati<strong>on</strong>,First revisi<strong>on</strong>, 1991, pp 1-8.211


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurWastewater Treatment by the Use <str<strong>on</strong>g>of</str<strong>on</strong>g>Advanced Oxidati<strong>on</strong> ProcessesAmarpreet Kaur HuraDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil EngineeringManipal UniversityJaipurWastewaters from different industries are generated <strong>with</strong> significant amount <str<strong>on</strong>g>of</str<strong>on</strong>g> auxiliarycompound. The discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> these wastewaters introduces intensive colour and toxicity toaquatic envir<strong>on</strong>ment causing serious envir<strong>on</strong>mental problems. These compounds are widelyused in the pulp & paper, distillery, petroleum, textile industries and c<strong>on</strong>sist<str<strong>on</strong>g>of</str<strong>on</strong>g> high intensitycolor and harmful chemicals in water which is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important sources <str<strong>on</strong>g>of</str<strong>on</strong>g>envir<strong>on</strong>mental polluti<strong>on</strong>. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> their visibility and bearing toxic chemicals, it is veryimportant that these are treated before being released into the envir<strong>on</strong>ment. Due to thecomplex aromatic structure and stability <str<strong>on</strong>g>of</str<strong>on</strong>g> these types <str<strong>on</strong>g>of</str<strong>on</strong>g> compounds, c<strong>on</strong>venti<strong>on</strong>albiological treatment methods are ineffective for degradati<strong>on</strong>. Hence, the c<strong>on</strong>centrati<strong>on</strong>remains c<strong>on</strong>stant in the envir<strong>on</strong>mentor these techniques transfer the toxic chemicals from <strong>on</strong>emedium to the other <strong>with</strong>out c<strong>on</strong>verting them to harmless n<strong>on</strong>-toxic substances. A number <str<strong>on</strong>g>of</str<strong>on</strong>g>physical and chemical techniques have been reported for the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial effluents.Inthis directi<strong>on</strong>, Advanced Oxidati<strong>on</strong> Processes (AOPs), based<strong>on</strong> the generati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> highlyreactive hydroxyl radicals(HO*) as primaryoxidant, appear as the emerging alternatives forthe organicpollutants abatement. These, the advanced oxidati<strong>on</strong> processes are more efficientas they are capable <str<strong>on</strong>g>of</str<strong>on</strong>g> mineralizing a wide range <str<strong>on</strong>g>of</str<strong>on</strong>g> organic pollutants ranging fromaromatics, pesticides, petroleum c<strong>on</strong>stituents and volatile organic compounds.Am<strong>on</strong>g various AOP‘s, fent<strong>on</strong>‘s reacti<strong>on</strong>s, reacti<strong>on</strong>s in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> titanium oxide ascatalyst, oz<strong>on</strong>e type reacti<strong>on</strong> in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> ultra-violet light or ultras<strong>on</strong>icati<strong>on</strong>are verypromising since they achievehigh reacti<strong>on</strong> yields <strong>with</strong> a low treatment cost. These AOPshavebeen successfully applied to treat different chemicals from various industries.213


It is evaluated that AOP‘s is particularly useful for oxidative degradati<strong>on</strong> anddecolourizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> many compounds which cannot be degraded by biological treatment and inmany cases AOP‘s may be applied as tertiary treatment for the treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water.As a part <str<strong>on</strong>g>of</str<strong>on</strong>g> experimental investigati<strong>on</strong>, batch runs were carried out to investigate theprocess‘s optimal operati<strong>on</strong>al c<strong>on</strong>diti<strong>on</strong>s: to obtain the best results at low cost. AOP‘sarecompetitive <strong>with</strong> other processes and ensure the rapid and complete transformati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> thetoxic organic compounds to benign chemicals.Key words:processes.Industrial effluent, Fent<strong>on</strong>, Oz<strong>on</strong>e, Titanium oxide, Advanced oxidati<strong>on</strong>


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurWaste Water Treatment using Clay SoilFilter for Irrigati<strong>on</strong>Khushi Ram Meena 1 , Mastram Meena 2 , Mayank Gupta 3 and Jitendra Kumawat 4Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil EngineeringPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, BT-1 Biotechnology Park,RIICO Industrial Area, Sitapura, Jaipur1 khushipgi47@poornima.org, 2 Mastpgi57@poornima.org3 Mayankpgi58@poornima.org, 4 Jitendrapgi44@poornima.orgIntroducti<strong>on</strong>In present scenario the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> natural ground water is low in poor rain fall area inIndia. Populati<strong>on</strong> growth, especially in the developing countries, has increased the demandfor a huge quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> water for domestic, municipal, and industrial sectors. With theincreasing scarcity <str<strong>on</strong>g>of</str<strong>on</strong>g> freshwater resources that are available to agriculture, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> urbanwaste water for irrigati<strong>on</strong> is increasing, especially in the arid and semi-arid regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> theworld. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> untreated waste water is particularly intense in areas where there is pooraccess to other sources <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> water. The use <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water for irrigating agriculturalsoil has been shown to be associated <strong>with</strong> a number <str<strong>on</strong>g>of</str<strong>on</strong>g> potential beneficial changes such as anincrease in organic carb<strong>on</strong>, available nitrogen, phosphorus, potassium, and magnesiumc<strong>on</strong>tents in soil as compared to the clean ground water-irrigated soil. Waste water is avaluable source <str<strong>on</strong>g>of</str<strong>on</strong>g> plant nutrients and organic matter needed for maintaining fertility andproductivity levels <str<strong>on</strong>g>of</str<strong>on</strong>g> the soil. Irrigati<strong>on</strong> <strong>with</strong> waste water has been shown to result inincrease in growth, yield, and plant c<strong>on</strong>stituents [1].In the present scenario waste water is c<strong>on</strong>taining heavy & very toxic material. This canc<strong>on</strong>taminate and pollute ground water. In many areas farmers use this water for irrigati<strong>on</strong>purpose that‘s effects the human health. [2]This waste water c<strong>on</strong>tains solids in a very highamount that‘s not good for irrigati<strong>on</strong> and ground water table. Therefore it is necessary toremove the toxic & solid materials from waste water before use for irrigati<strong>on</strong>. The waterquality used for irrigati<strong>on</strong> is affect the yield and quantity <str<strong>on</strong>g>of</str<strong>on</strong>g> crops, soil productivity, andprotecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the envir<strong>on</strong>ment. For example, the physical and mechanical properties <str<strong>on</strong>g>of</str<strong>on</strong>g> thesoil, ex. soil structure (stability <str<strong>on</strong>g>of</str<strong>on</strong>g> aggregates) and permeability are very sensitive to the type215


<str<strong>on</strong>g>of</str<strong>on</strong>g> exchangeable i<strong>on</strong>s present in irrigati<strong>on</strong> waters. Aim <str<strong>on</strong>g>of</str<strong>on</strong>g> the research is to remove bacteriaand organic impurities <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water for re-use for the irrigati<strong>on</strong>.MethodIn this method at first pipe sand filter was prepared by filling a plastic pipe <str<strong>on</strong>g>of</str<strong>on</strong>g> size 2.5 feet inlength and 2 inch in diameter <strong>with</strong> clay. Pipe filter was closed by providing the filter paper atthe both ends <str<strong>on</strong>g>of</str<strong>on</strong>g> pipe. Before passing the waste water from this filter test were performedsuch as Total Solid (TS), Biochemical Oxygen Demand (BOD), Chemical Oxygen Demand(COD), Turbidity, Chlorine Residual, pH and Dissolved Oxygen (DO).After passing the water from the pipe sand filter same tests were performed. These tests werealso performed <strong>on</strong> the water samples which was treated by the treatment plant located at theJawahar circle jaipur.Result and Discussi<strong>on</strong>Significance <str<strong>on</strong>g>of</str<strong>on</strong>g> all tests performed <strong>on</strong> waste water to recycle water for irrigati<strong>on</strong> purpose ismenti<strong>on</strong>ed in Table 1. Total suspended solids 70 mg/l <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water and 39.8mg/l <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater treated <strong>with</strong> sand pipe filter where as water sample from treated plant have 37.5mg/l.Turbidity <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste water 75NTU and after treated by sand pipe filter is 40NTU but27NTU for treated plant water. pH <str<strong>on</strong>g>of</str<strong>on</strong>g> water sample before filtering was 9.28 whereas afterpassing through the sand filter was 8.92 and pH <str<strong>on</strong>g>of</str<strong>on</strong>g> treated water plant is 6.92. BOD <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater sample is 130mg/l and after passing through sand pipe filter it is 90mg/l whereas75mg/l <str<strong>on</strong>g>of</str<strong>on</strong>g> treated plant water. COD <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water sample is 250mg/l and after passing sandpipe filter 200mg/l but 180mg/l for treated plant water.Table1. Parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water <strong>with</strong> agr<strong>on</strong>omic significanceParameterSignificance for irrigati<strong>on</strong>WaterWaterWaterWater<strong>with</strong> recycled waterqualityparameterparameterparameterparameterbeforeafterfor treatedforfilteringfilteringplantirrigati<strong>on</strong>waterTotalSuspendedMeasures <str<strong>on</strong>g>of</str<strong>on</strong>g> particles can berelated to microbial5-50 mg/L 70mg/L 39.8 mg/L 37.5mg/l1-30 NTU 75NTU 40 NTU 27NTU


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurSolids polluti<strong>on</strong>; it can interfere<strong>with</strong> disinfecti<strong>on</strong>; cloggingTurbidity <str<strong>on</strong>g>of</str<strong>on</strong>g> irrigati<strong>on</strong> systems;depositi<strong>on</strong>BOD Organic substrate for 10-30mg/L 130mg/L 90mg/L 75mg/lmicrobial growth; can bringbacterial re-growth in 50-200mg/L 250mg/l 200mg/L 180mg/lCOD distributi<strong>on</strong> systems.PH 9.28 8.92 6.93Reference1.Brissoud F, Residence time distributi<strong>on</strong> and disinfecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sec<strong>on</strong>dary effluents byInfiltrati<strong>on</strong> and Percolati<strong>on</strong>, Water Science and Technology, Vol-40 (4-5), 215-222.2. Jalali M, Merikhpour H, Kaledh<strong>on</strong>kar MJ, Seatm VDZ (2007) Nickel in a tropical soiltreated <strong>with</strong> sewage sludge and cropped <strong>with</strong> maize in a l<strong>on</strong>g-term field study. Agric WaterManag 95:143–153.217


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurSHEFROL ® : A new bioreactor for cleangreenand rapid treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> sewage andother biodegradable wastewaterTasneem Abbasi, U. Priyanka and S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014E-mail - pr<str<strong>on</strong>g>of</str<strong>on</strong>g>.s.a.abbasi@gmail.comThis paper recapitulates the new bioreactor named SHEFROL ® developed by Pr<str<strong>on</strong>g>of</str<strong>on</strong>g> S. A.Abbasi and coworkers at Centre for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental Engineering,P<strong>on</strong>dicherry University.SHEFROL stands for ‗SHEet Flow-ROot-Level‘ pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater movement in thebioreactor that has been designed to maximize c<strong>on</strong>tact between wastewater and severaldensely packed plants (botanical species) derived from terrestrial, aquatic, or transiti<strong>on</strong>alhabitats. The distinguishing features <str<strong>on</strong>g>of</str<strong>on</strong>g> SHEFROL ® which have become the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> thepatent claim are:1) SHEFROL ® is several times faster than the other plant-based systems employed thusfar, and is comparable to; in some instances even quicker than, other processes used forsewage treatment (eg activated sludge process/fluidized bed reactor systems).SHEFROL ® also requires <strong>on</strong>ly a fracti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the c<strong>on</strong>structi<strong>on</strong> and operating costs neededby other processes, and has n<strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> their other disadvantages such as excusive sludgegenerati<strong>on</strong>, process sensitivity etc.2) The unique c<strong>on</strong>figurati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the reactor and its comp<strong>on</strong>ents ensure optimal spaceutilizati<strong>on</strong> and ease <str<strong>on</strong>g>of</str<strong>on</strong>g> expansi<strong>on</strong>. The total space requirement for the entire system islesser than that <str<strong>on</strong>g>of</str<strong>on</strong>g> a c<strong>on</strong>venti<strong>on</strong>al treatment plant <str<strong>on</strong>g>of</str<strong>on</strong>g> the same capacity.3) The comp<strong>on</strong>ents needed to build this system entail very low cost, and low maintenance.In rural situati<strong>on</strong>s, or in the course <str<strong>on</strong>g>of</str<strong>on</strong>g> camps, the trenches employed for the treatmentcan be made simply by digging channels in the ground and covering <strong>with</strong> a plasticimpermeable sheet. All the various embodiments <str<strong>on</strong>g>of</str<strong>on</strong>g> the SHEFROL ® system are simpleto c<strong>on</strong>struct and operate <strong>with</strong>, too.219


4) The heart <str<strong>on</strong>g>of</str<strong>on</strong>g> the wastewater treatment system SHEFROL ® employs comm<strong>on</strong> plants(botanical species) which are easy to culture and many <str<strong>on</strong>g>of</str<strong>on</strong>g> which have not been used s<str<strong>on</strong>g>of</str<strong>on</strong>g>ar for wastewater treatment. These include terrestrial, amphibious, as well as aquaticspecies.5) No support system <str<strong>on</strong>g>of</str<strong>on</strong>g> any kind, no gravel/sand/st<strong>on</strong>e layer, is used to support the plantsas it is in other (reported) hydrop<strong>on</strong>ic/thin film wastewater treatment systems. Thisdoes away <strong>with</strong> the need to invest in such support media, reduces carb<strong>on</strong> footprints,makes the system more easy and quicker to set up and operate, and ensures that theavailable area is put to maximum use.6) Unlike other plant-based systems reported so far, the SHEFROL ® unit requires noauxiliary aerati<strong>on</strong> device. Nor is external mixing/agitati<strong>on</strong> etc needed as in the otherplant-based systems.7) The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water maintained in the SHEFROL ® units, and the velocity <str<strong>on</strong>g>of</str<strong>on</strong>g> the waterensures that the DO levels are maximized and are near c<strong>on</strong>stant throughout the depth <str<strong>on</strong>g>of</str<strong>on</strong>g>the unit; thus ensuring uniform and fast treatment.8) The system is a zero waste generating <strong>on</strong>e; in additi<strong>on</strong>, useful byproducts such asvermicast for use as fertilizer and methane for energy generati<strong>on</strong> are obtained.Pilot plants based <strong>on</strong> the SHEFROL ® technology have been set up which have beensuccessfully treating sewage generated from different clusters <str<strong>on</strong>g>of</str<strong>on</strong>g> buildings in P<strong>on</strong>dicherryUniversity since several years. The systems have proved exceedingly inexpensive andefficient. After the recently completed registrati<strong>on</strong> claim (Abbasi et al., 2012) we wish toextend the technology to industrial wastewaters, especially high-volume-low-strengtheffluents such as those generated by dairy industries and some <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste-streams(especially wash-waters) <str<strong>on</strong>g>of</str<strong>on</strong>g> distillery, food processing, and other industries. Such wastestreamsare highly problematic because, <strong>on</strong> <strong>on</strong>e hand, they are too lean in organic carb<strong>on</strong> ornutrients to make resource recovery feasible; <strong>on</strong> the other hand they are ‗thick‘ enough andvoluminous enough to seriously pollute receiving land or water..


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurPhysico-Chemical and Microbial Studies <str<strong>on</strong>g>of</str<strong>on</strong>g>Ground Water <str<strong>on</strong>g>of</str<strong>on</strong>g> Various Regi<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g>Rajasthan RevisitedRakesh Duggal 1 , Susmita Sharma 2 , Anurika Mehta 3 and Nupur Jain 4Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Colleges, Jaipur1 rakesh@poornima.org; 2 susmita@poornima.org; 3 anurikamehta@poornima.org;4jain_nupur2010@yahoo.inNo <strong>on</strong>e can think <str<strong>on</strong>g>of</str<strong>on</strong>g> survival <str<strong>on</strong>g>of</str<strong>on</strong>g> flora and fauna as well as human race <strong>with</strong>out water. Inrecent years, water resource shortage and polluti<strong>on</strong> has seriously threatened their existence.The progress <str<strong>on</strong>g>of</str<strong>on</strong>g> developing countries is being hampered due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> adequateinfrastructure and mismanagement <str<strong>on</strong>g>of</str<strong>on</strong>g> collected waste, its proper treatment and disposal,thereby leading to accumulati<strong>on</strong> and infiltrati<strong>on</strong> causing groundwater c<strong>on</strong>taminati<strong>on</strong> inalarming proporti<strong>on</strong>s. It is a worldwide phenomen<strong>on</strong> and area <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>cern. The scenario inIndia is quite devastating. India needs to develop strategies and technologies for c<strong>on</strong>trollingpolluti<strong>on</strong> as well as to ensure envir<strong>on</strong>mental remediati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> industrial and municipal wastesin the sources <str<strong>on</strong>g>of</str<strong>on</strong>g> water, and. It appears to be specific need to battle the water resource menace<str<strong>on</strong>g>of</str<strong>on</strong>g> the country. Literature survey <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water for general physico-chemical, microbial andheavy metals analysis reveals that no systematic study has been carried out. In fact, manygaps are there in existing approaches and technologies for problem areas in studyinggroundwater quality status. In c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, all 32 districts are affected <strong>with</strong> highfluoride c<strong>on</strong>centrati<strong>on</strong> in groundwater and am<strong>on</strong>g these Jaipur ranks sec<strong>on</strong>d. The reviewreveals that the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water <str<strong>on</strong>g>of</str<strong>on</strong>g> Sanganer is very poor, which can be used <strong>on</strong>lyafter prior treatment for drinking and cooking purposes. C<strong>on</strong>sidering never ending demand <strong>on</strong>this scarce natural resource, the proposed work highlights the judicious use <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaterand explores various remedial measures.Key words: Water polluti<strong>on</strong>, ground water, physico-chemical parameters, heavy metals,pollutants, prior treatment.221


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurA Rapid and Ultrasensitive Sensing<str<strong>on</strong>g>of</str<strong>on</strong>g> Heavy Metal i<strong>on</strong> from Waste WaterPriyanka Joshi and Dinesh KumarDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Banasthali Vidyapith, 304022, IndiaE-mail: dschoudhary2002@yahoo.comIn recent years, the development <str<strong>on</strong>g>of</str<strong>on</strong>g> optical probes to analytetrace Cd 2+ has attracted greatattenti<strong>on</strong> becausecadmium i<strong>on</strong>s may cause potential health hazards. Silver nanoparticlescapped <strong>with</strong> citrate i<strong>on</strong>,which act as both reducing and stabilizing agentwere preparedbyTurkevich method in aqueous soluti<strong>on</strong> for m<strong>on</strong>itoring a range <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metal i<strong>on</strong>s. Themode <str<strong>on</strong>g>of</str<strong>on</strong>g> transducti<strong>on</strong> is optical, based <strong>on</strong> the change in aggregati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the nanoparticles insoluti<strong>on</strong>, because <str<strong>on</strong>g>of</str<strong>on</strong>g> the different i<strong>on</strong>ic interacti<strong>on</strong>s between the modified nanoparticles. In thepresent work,nanoparticle sensors used to detect Cd 2+. The Cd 2+ induced aggregati<strong>on</strong> in AgNP soluti<strong>on</strong> is m<strong>on</strong>itored by both colorimetricresp<strong>on</strong>se and UV-Vis spectroscopy.The methodwas applied,<strong>with</strong> satisfying results, to the sensing <str<strong>on</strong>g>of</str<strong>on</strong>g> Cd 2+ in waste water. Citrate cappedsilver nanoparticles show an efficient sensing at ppm level.223


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurIndustrializati<strong>on</strong> and Urbanizati<strong>on</strong> Impacts<strong>on</strong> the Aquatic Ecosystem: Problem andPreventi<strong>on</strong>Jakir Hussain 1 , Rajesh Kumar 2 and Iqbal Husain 31,2 <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> River Water Quality Laboratory, Central Water Commissi<strong>on</strong>, New Delhi3 Public Health Engineering Department Laboratories, Bhilwara, RajasthanRiver Yamuna, <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most important and sacred rivers <str<strong>on</strong>g>of</str<strong>on</strong>g> the northern plains <str<strong>on</strong>g>of</str<strong>on</strong>g>India is now c<strong>on</strong>sidered as <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the most polluted rivers in India. River Yamuna, a majortributary <str<strong>on</strong>g>of</str<strong>on</strong>g> River Ganga, originates from Yamunotri Glacier near Banderpunch peaks andc<strong>on</strong>fluences <strong>with</strong> holy river Ganga River at Allahabad after traversing a distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 1376 km.At estimated 57 milli<strong>on</strong> people are dependent <strong>on</strong> the waters <str<strong>on</strong>g>of</str<strong>on</strong>g> the river Yamuna. It is themain source <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water for the most <str<strong>on</strong>g>of</str<strong>on</strong>g> the town al<strong>on</strong>g its course. During its journey itreceives heavy load <str<strong>on</strong>g>of</str<strong>on</strong>g> pollutants, especially in Delhi and its downstream stretch. Rapidurbanizati<strong>on</strong> and industrializati<strong>on</strong> in the cities located by the side <str<strong>on</strong>g>of</str<strong>on</strong>g> the river Yamuna haveincreased the load <strong>on</strong> the stream flow in terms <strong>with</strong>drawal <str<strong>on</strong>g>of</str<strong>on</strong>g> fresh water (for domestic,industrial and commercial uses) and disposal <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater as a result <str<strong>on</strong>g>of</str<strong>on</strong>g> which the polluti<strong>on</strong>level <str<strong>on</strong>g>of</str<strong>on</strong>g> the river had g<strong>on</strong>e up significantly. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> river water has deteriorated due tothe c<strong>on</strong>tinuous discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> municipal and industrial effluents from various drains inYamuna.About 1,800 milli<strong>on</strong> liters per day (mld) <str<strong>on</strong>g>of</str<strong>on</strong>g> untreated sewage finds its way through 19notorious drains into the river Yamuna at various points al<strong>on</strong>g its 22 km stretch in Delhi.Dissolved Oxygen drops to alarming levels at middle and downstream <str<strong>on</strong>g>of</str<strong>on</strong>g> the river Yamuna.Very low DO may results in anaerobic c<strong>on</strong>diti<strong>on</strong>s that cause bad odors. Out <str<strong>on</strong>g>of</str<strong>on</strong>g> the 25 kmselected stretch <str<strong>on</strong>g>of</str<strong>on</strong>g> the Yamuna nearly 15 km <str<strong>on</strong>g>of</str<strong>on</strong>g> the river was found to be septic (DO = 0mg/l). Enormous organic loads in river water are unsuitable for any use to humans, animals,industries, etc. Bacteriological analysis clearly indicates the microbial c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> theriver. According to Central Polluti<strong>on</strong> C<strong>on</strong>trol Board (CPCB) classificati<strong>on</strong> the river fallsunder Class E, suggesting that its water cannot be used for drinking, fisheries, bathing andswimming. In river Yamuna different metal i<strong>on</strong>s show different trends depending up<strong>on</strong> the225


discharge <str<strong>on</strong>g>of</str<strong>on</strong>g> different drains. The c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g> metals i<strong>on</strong>s were higher during post-m<strong>on</strong>so<strong>on</strong>seas<strong>on</strong>. This may be due to flushing out the effluent discharge from various industrial unitsthrough surface run<str<strong>on</strong>g>of</str<strong>on</strong>g>f. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metals i<strong>on</strong>s in Yamuna river water was foundmuch higher than the permissible limit except for copper and zinc. Therefore, the use <str<strong>on</strong>g>of</str<strong>on</strong>g> theYamuna water for domestic supply is not safe <strong>with</strong>out the proper treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Thisstudy shows that there is a dire need to allocate highest treatment efficiency for some majordrains to remove Biochemical Oxygen demand <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater before its disposal into theriver. Acti<strong>on</strong> is immediately required to trap the drain through a trunk sewer line near itsoutfall and c<strong>on</strong>vey the wastewater to suitable wastewater treatment facilities, which wouldproduce effluent c<strong>on</strong>forming to an acceptable quality for discharge into the river Yamuna<strong>with</strong>out causing under deteriorati<strong>on</strong>.Key Words: Yamuna River, Water quality, DO, BOD, Trace metals


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAdsorptive Study <str<strong>on</strong>g>of</str<strong>on</strong>g> Fluoride from WaterUsing Fe-Al-Mg Hydroxide as AdsorbentAnkita Dhill<strong>on</strong> and Dinesh kumarDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Banasthali Vidyapith, BanasthaliE-mail: dschoudhary2002@yahoo.comIndia is am<strong>on</strong>g 23 nati<strong>on</strong>s wherein a large populati<strong>on</strong> suffers from dental and skeletalfluorosis due to high fluoride c<strong>on</strong>centrati<strong>on</strong> in ground water. Fluoride bey<strong>on</strong>d desirableamount (0.6 to 1.5 mg/L) in ground water is a major problem in many part <str<strong>on</strong>g>of</str<strong>on</strong>g> world. Thepresent day study include role <str<strong>on</strong>g>of</str<strong>on</strong>g> Fe-Al-Mg hydroxide adsorbent in fluoride removal. Batchadsorpti<strong>on</strong> study is carried out. Batch adsorpti<strong>on</strong> studies dem<strong>on</strong>strate that the adsorbent hassignificant capacity to adsorb the fluoride from water. Fluoride i<strong>on</strong>s were transferred to theadsorbent surface by columbic attracti<strong>on</strong> and/or thermal moti<strong>on</strong>, forming a temporaryadsorpti<strong>on</strong>. The enriched fluoride reacted <strong>with</strong> the hydroxyl groups <strong>on</strong> the adsorbent surfaceforming stable adsorpti<strong>on</strong>. This i<strong>on</strong> exchange results in a stable and specific adsorpti<strong>on</strong>,which corresp<strong>on</strong>ds to the inner–sphere adsorpti<strong>on</strong>. 0.1 g/100 mL adsorbent dose was addedto the 0.001M sodium fluoride soluti<strong>on</strong>. The fluoride i<strong>on</strong> c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the soluti<strong>on</strong> wasmeasured by fluoride selective electrode c<strong>on</strong>nected to an i<strong>on</strong> meter. The fluoride i<strong>on</strong>c<strong>on</strong>centrati<strong>on</strong> decreased from 25 mg/L to 10 mg/L and 10 mg/L to 0.8 mg/L. FTIR analysisalso supports fluoride adsorpti<strong>on</strong> by Fe-Al-Mg hydroxide adsorbent.227


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurC<strong>on</strong>trol <str<strong>on</strong>g>of</str<strong>on</strong>g> Aquatic Weed SalviniaThrough VermicompostingChanngam Khamrang, S. Gajalakshmi and S.A. AbbasiCentre for Polluti<strong>on</strong> C<strong>on</strong>trol & Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605 014Salvinia (Salvinia molesta Mitchell) is a free-floating perennial aquatic fern. It is c<strong>on</strong>sideredto be <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> the world‘s worst weeds. It tends to cover water surfaces from end to end,preventing most <str<strong>on</strong>g>of</str<strong>on</strong>g> sunlight from reaching the underlying water. This seriously hampers thegrowth <str<strong>on</strong>g>of</str<strong>on</strong>g> other plants and adversely effects water quality. The habitat rapidly loosesbiodiversity, becomes eutrophic, and putrid. Dense mats <str<strong>on</strong>g>of</str<strong>on</strong>g> salvinia impede water-basedtransport, deface spots <str<strong>on</strong>g>of</str<strong>on</strong>g> scenic value, clog irrigati<strong>on</strong> canals, and choke water intakes pipes.The weed mats harbor mosquitoes, snails, and other disease vectors.At Centre for Polluti<strong>on</strong> C<strong>on</strong>trol we have used the c<strong>on</strong>cept <str<strong>on</strong>g>of</str<strong>on</strong>g> high-rate vermicompostingdeveloped earlier by this paper‘s senior author to successfully vermicompost salvinia <strong>with</strong>outthe need <str<strong>on</strong>g>of</str<strong>on</strong>g> cowdung supplementati<strong>on</strong>. The resulting vermicompost has good fertilizer value.In the present work, which is an extenti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> studies completed earlier at this centre <strong>with</strong> fourearthworm species, we have explored the feasibility <str<strong>on</strong>g>of</str<strong>on</strong>g> using four new species Lumbricusrubillus, Eisenia andrei, Drawida willsi and Peri<strong>on</strong>yx sansibaricus for vermicompostingSalvinia. The results have been encouraging, as detailed in this paper and substantiallyenhance the reach <str<strong>on</strong>g>of</str<strong>on</strong>g> the high-rate vermicomposting process developed earlier at this centreas an envir<strong>on</strong>ment-friendly means <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>trolling salvinia.229


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurModern Techniques for WasteWater ManagementManisha Sharma, Chetna Gomber and Shahnaz KhanJIET School <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering, JIET Universe, JodhpurE- mail - manisha.sharma@jietjodhpur.comThe management <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water had become a major envir<strong>on</strong>mental issue now a day. WasteWater Management means: Efficient management, cheap building and operating, newmethods for repairing and replacement <str<strong>on</strong>g>of</str<strong>on</strong>g> Sewage pipes, Sewage pipes cleaning by c<strong>on</strong>trolledfloods, recovering the heat from the waste water sewage. This paper gives an idea aboutfollowing modern technologies for water and wastewater Treatment:Filtrati<strong>on</strong> System: Filtrati<strong>on</strong> systems can be divided into several categories depending <strong>on</strong>the type <str<strong>on</strong>g>of</str<strong>on</strong>g> the media used for Filtrati<strong>on</strong> Media, Filtrati<strong>on</strong> Membrane, Filtrati<strong>on</strong> Cartridges,Hybrid Filtrati<strong>on</strong> SystemDisinfecti<strong>on</strong> Systems: Combined Filtrati<strong>on</strong> and Disinfecti<strong>on</strong> Systems, Disinfecti<strong>on</strong> Systems,Dechlorinati<strong>on</strong> SystemNanotechnology: Nanotechnology c<strong>on</strong>cepts are being investigated for higher performingmembranes <strong>with</strong> fewer fouling characteristics, improved hydraulic c<strong>on</strong>ductivity, and moreselective rejecti<strong>on</strong>/transport characteristicsMicrobial Fuel Cells: With microbial fuel cells, a potential breakthrough technology,electrical energy could be extracted directly from organic matter present in the waste streamby using electr<strong>on</strong> transfer to capture the energy produced by microorganisms for metabolicprocesses.Electrochemical techniques: Applicati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> electrochemical technologies in water andwastewater treatment, particular focus to electrode positi<strong>on</strong>, electro coagulati<strong>on</strong> (EC), electr<str<strong>on</strong>g>of</str<strong>on</strong>g>lotati<strong>on</strong> (EF) and electro oxidati<strong>on</strong>. Electrode positi<strong>on</strong> is effective in recovering heavymetals from wastewater streams.231


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurSalvinia (Salvinia Molesta, Mitchell): aPromising Bioagent for Very RapidTreatment <str<strong>on</strong>g>of</str<strong>on</strong>g> Domestic Wastewater in theSHEFROL ® BioreactorDeepak Kumar, M. Ashraf Bhat, Tasneem Abbasi and S. A. AbbasiCenter for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental EngineeringP<strong>on</strong>dicherry University, P<strong>on</strong>dicherry 605014Email: tasneem.abbasi@gmail.comIn pursuit <str<strong>on</strong>g>of</str<strong>on</strong>g> a system which can be a promising greener and cheaper alternative toc<strong>on</strong>venti<strong>on</strong>al treatment systems treating the domestic wastewater, the SHEFROL ® (SHEetFlow ROot level) bioreactor was developed by Abbasi and co-workers (Official Journal <str<strong>on</strong>g>of</str<strong>on</strong>g>the Patent Office, 20 7611, 2012) at the Center for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mentalEngineering. The distinguishing attributes <str<strong>on</strong>g>of</str<strong>on</strong>g> this system are its low installati<strong>on</strong>, operati<strong>on</strong>and maintenance costs, high efficiency, and negligible ecological footprint. SHEFROL ® iscapable <str<strong>on</strong>g>of</str<strong>on</strong>g> using a wide variety <str<strong>on</strong>g>of</str<strong>on</strong>g> vascular plants – terrestrial, amphibious, and aquatic –depending <strong>on</strong> the type <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater to be treated.The performance <str<strong>on</strong>g>of</str<strong>on</strong>g> salvinia (Salvinia molesta, Mitchell) has been assessed as a bioagent in apilot-scale SHEFROL ® bioreactor plant, treating real-life inflows <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater ranging from30,000 to 60,000 liters <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic effluents per day, at an HRT (hydraulic retenti<strong>on</strong> time) <str<strong>on</strong>g>of</str<strong>on</strong>g>9 hrs.The system was found to reduce the c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the pollutants to the acceptable limitsprescribed by India‘s central polluti<strong>on</strong> c<strong>on</strong>trol board for discharge <strong>on</strong> land for irrigati<strong>on</strong>. Withthis embodiment <str<strong>on</strong>g>of</str<strong>on</strong>g> SHEFROL ® system the COD was reduced to 80%; BOD 5 was reduced to45%; TKN and TP were reduced to 30% and TS was removed to 85%.Key words: SHEFROL ® , Salvinia molesta, domestic effluents233


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAssessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> DrinkingWater in Parts <str<strong>on</strong>g>of</str<strong>on</strong>g> JaipurAsha Gurjar, Kshitij Bhargava, Deependra Bagra and Hamid KhanPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurThis particular abstract <strong>on</strong> water quality and management highlights the basic factors <strong>on</strong>which we should focus while determining the standards for the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic waterusage in various localities <str<strong>on</strong>g>of</str<strong>on</strong>g> a particular city or town.By examining the various parameters in distinct water samples, we shall be able to commentup<strong>on</strong> as to what type <str<strong>on</strong>g>of</str<strong>on</strong>g> standard we should set for our water usage and also we will be able totell which elements pose a negative impact <strong>on</strong> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water which we have.In this report the envir<strong>on</strong>mental factors are also c<strong>on</strong>sidered which effects the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> waterand its portability. The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water sample will also rely <strong>on</strong> the envir<strong>on</strong>mental agentssuch as industries, human impact, polluti<strong>on</strong> etc.‣ A brief report <strong>on</strong> analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> water samples <str<strong>on</strong>g>of</str<strong>on</strong>g> various Localities <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur City is:-Locality pH* TDS(Total dissolved Flouride (mg/L)^solids)#1. Jawahar Nagar 7.2 902 1.42. Malviya Nagar 6.9 850 1.73. Pratap Nagar 8.0 1400 2.24. Sitapura Industrial 8.4 1980 3.6* If the reading is less than 7, it is acidic.If the reading is more than 7, it is alkaline# If the reading is between 700 and 1000, it is absolutely potable. A reading up to 2000 ispermissible to be c<strong>on</strong>sidered as potable.Any reading more than 2000 is n<strong>on</strong> portable235


^ If the colour stays yellow, the sample is n<strong>on</strong>-potable and the Fluoride level is around 3.5mg/litre.If the colour changes to light pink, then the sample is potable and the Fluoride level is around1.5mg/litre.This is what the brief report says and we will work up<strong>on</strong> the various criteri<strong>on</strong>s which we havefound out and also manipulate the measurements which will help us improve the quality <str<strong>on</strong>g>of</str<strong>on</strong>g>water.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurDetecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Escherichia coli (E. coli)Bacteria by Using Different NanoparticlesJ. Boken 1 , D. Kumar 2 and S. Dalela 31 Deparment <str<strong>on</strong>g>of</str<strong>on</strong>g> Physics,Banasthali Vidyapith-304022, Rajasthan2 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Pure and Applied Physics,University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kota, Kota, Rajasthan3 Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Chemistry, Banasthali Vidyapith-304022, RajasthanIn this paper, we have synthesized different nanoparticles by using chemical synthesismethod for the detecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> E. coli in water sample. The reacti<strong>on</strong>s have been completed usingaqueous metal salt soluti<strong>on</strong> and tri-sodium capping agents. Silver and gold nanoparticlesexhibited a str<strong>on</strong>g surface plasm<strong>on</strong> res<strong>on</strong>ance peak at 433 nm and 529 nm respectively. Avery small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> E.coli adds in the nanoparticles soluti<strong>on</strong> results in to marked shift insurface plasm<strong>on</strong> res<strong>on</strong>ance. The sizes and shapes were tuned by selecting the reducing andcapping agents. The nanoparticles were characterized by UV-Vis spectroscopy andTransmissi<strong>on</strong> electr<strong>on</strong> microscopy. For morphological details transmissi<strong>on</strong> electr<strong>on</strong>microscopy was carried out. The effects <str<strong>on</strong>g>of</str<strong>on</strong>g> these nanoparticles against microorganisms werecharacterized by TEM and UV-Vis spectroscopy. Remarkable shift can be noticed in surfaceplasma res<strong>on</strong>ance peaks for small amount <str<strong>on</strong>g>of</str<strong>on</strong>g> E. coli added in the soluti<strong>on</strong>.Keywords: E. coli bacteria, Metal Nanoparticles, Silver and Gold nanoparticles, SurfacePlasm<strong>on</strong> Res<strong>on</strong>ance.237


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurA New Index for Assessing the Quality <str<strong>on</strong>g>of</str<strong>on</strong>g>Water in P<strong>on</strong>dicherry based <strong>on</strong> Fuzzy LogicTabassum Abbasi, S. M. Tauseef, Tasneem Abbasi and S.A. AbbasiCentre for Polluti<strong>on</strong> C<strong>on</strong>trol and Envir<strong>on</strong>mental Engineering,P<strong>on</strong>dicherry University, Kalapet, Puducherry-605014, IndiaE-mail - tasneem.abbasi@gmail.comWater has always been the most essential and precious <str<strong>on</strong>g>of</str<strong>on</strong>g> all natural resources, but theimportance <str<strong>on</strong>g>of</str<strong>on</strong>g> water is now being felt more than ever before as water demand is increasinglyoutpacing water supply in most parts <str<strong>on</strong>g>of</str<strong>on</strong>g> the world. Of particular c<strong>on</strong>cern is the fact that thequality <str<strong>on</strong>g>of</str<strong>on</strong>g> whatever water that is available is becoming increasingly bad. This has now madeit necessary for even a laypers<strong>on</strong> to have an idea <str<strong>on</strong>g>of</str<strong>on</strong>g> the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water he or she is using.Whereas water quantity can be determined by a single parameter―the water mass―waterquality is an aggregate <str<strong>on</strong>g>of</str<strong>on</strong>g> very many physical, chemical, and biological parameters. Thismakes it hard to compute water quality and still harder to communicate it. Water qualityindices (WQIs) aim at giving a single value to the water quality <str<strong>on</strong>g>of</str<strong>on</strong>g> a source <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>e or the other system which translates the list <str<strong>on</strong>g>of</str<strong>on</strong>g> c<strong>on</strong>stituents and their c<strong>on</strong>centrati<strong>on</strong>spresent in a sample into a single value. One can then compare different samples for quality <strong>on</strong>the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the index value <str<strong>on</strong>g>of</str<strong>on</strong>g> each sample.A great deal <str<strong>on</strong>g>of</str<strong>on</strong>g> subjectivity and uncertainty is involved in the development <str<strong>on</strong>g>of</str<strong>on</strong>g> water qualityindices based <strong>on</strong> the c<strong>on</strong>venti<strong>on</strong>al statistical methods. Applying Fuzzy logic to indexdevelopment may help reduce these infirmities. Accordingly, a fuzzy logic based WQI hasbeen developed for assessing the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water in the town <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>on</strong>dicherry. This town-citylies al<strong>on</strong>g the coast <str<strong>on</strong>g>of</str<strong>on</strong>g> the Indian Ocean and has been witnessing a runaway growth.Urbanizati<strong>on</strong> and Industrializati<strong>on</strong> in additi<strong>on</strong> to saline water intrusi<strong>on</strong> is threatening todrastically pollute the water resources <str<strong>on</strong>g>of</str<strong>on</strong>g> P<strong>on</strong>dicherry. Hence, regular assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> the city‘swater quality, and development <str<strong>on</strong>g>of</str<strong>on</strong>g> a means by which informati<strong>on</strong> about it can becommunicated and comprehended easily―as <strong>on</strong>e comprehends the status <str<strong>on</strong>g>of</str<strong>on</strong>g> the entire Indianshare market <strong>on</strong> the basis <str<strong>on</strong>g>of</str<strong>on</strong>g> the value <str<strong>on</strong>g>of</str<strong>on</strong>g> the Sensex―has become crucial.239


The fuzzy logic based WQI for P<strong>on</strong>dicherry has been developed using membership functi<strong>on</strong>sfor key water quality variables. The general IF-THEN rules have been framed using the fuzzysets associated <strong>with</strong> each variable and the water-quality standards <str<strong>on</strong>g>of</str<strong>on</strong>g> the World HealthOrganizati<strong>on</strong> (WHO) and Indian Council <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Research (ICMR). These rules werethen incorporated in the final index development process. Details are presented.Keywords: Water quality index, Fuzzy logic, Water quality assessment


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurPhysico-Chemical and Microbial Studies<str<strong>on</strong>g>of</str<strong>on</strong>g> Ground Water <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan Regi<strong>on</strong>and Comparis<strong>on</strong> <strong>with</strong> other Regi<strong>on</strong>sNupur Jain, Anurika Mehta, Susmita Sharma and Rakesh DuggalPoornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Colleges, Jaipur* E Mail Id:-jain_nupur2010@yahoo.co.inWater resources storage and polluti<strong>on</strong> has seriously threatened the survival and development<str<strong>on</strong>g>of</str<strong>on</strong>g> developing countries. Because <str<strong>on</strong>g>of</str<strong>on</strong>g> India‘s specific ec<strong>on</strong>omical and social circumstance ,complete adopti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> developed countries experience is unrealistic . At present , Indianeeds to develop strategies and technologies in source water polluti<strong>on</strong> c<strong>on</strong>trol andindustrial and municipal envir<strong>on</strong>ment remediati<strong>on</strong> that embrace the country ‗s specificneed to battle the water resource problem . Ground water is an important resourcefor mankind‘s existence and ec<strong>on</strong>omic development . Due to less availablity and n<strong>on</strong>acceptance<str<strong>on</strong>g>of</str<strong>on</strong>g> surface water in Rajasthan. People have to depend up<strong>on</strong> ground waterresources to a large extent. In many areas <str<strong>on</strong>g>of</str<strong>on</strong>g> state , ground water is the <strong>on</strong>ly acceptedsources for drinking water . The depth <str<strong>on</strong>g>of</str<strong>on</strong>g> water varies widely throughout the state. Thispaper reviewed physicochemical and microbial analysis particular reference to parameterslike p H , TDS, alkanity, nitrate ,fluorides, heavy metals & some microbes endangered bymixed effluents <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic as well as industries . The results <str<strong>on</strong>g>of</str<strong>on</strong>g> study c<strong>on</strong>clude that most<str<strong>on</strong>g>of</str<strong>on</strong>g> the parameters <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan are above permissible limit. The values <str<strong>on</strong>g>of</str<strong>on</strong>g>parameters such as p H , EC, alkanity (R. K. Tatawat et al, 2008), sulphate, chloride, Phosphate(Bharat Singh Meena et al, 2012), TDS (Ranjana Agrawal, 2012-13) are higher than thestandard. Especially nitrate (Ruchi Mathur et al, 2012) & fluoride (Ranjana Agrawal, 2012-13) are those parameters which are highest in most <str<strong>on</strong>g>of</str<strong>on</strong>g> the regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan which arereviewed in this report.Key words:-water polluti<strong>on</strong>, ground water, physicochemical analysis.241


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurWaste Water Treatment in Rural Areas:Old Problems, New Soluti<strong>on</strong>sChirag Jain 1 and Deepak Malav 21. 100/161, sector-10, Kumbha Marg, Pratap-Nagar, Jaipur (Raj.)E-Mail: chiragpgi28@poornima.org2. 7-D-12, Mahaveer-Nagar III, Kota (Raj.)E-Mail: Deepakpgi29@poornima.orgSince the end <str<strong>on</strong>g>of</str<strong>on</strong>g> the 19th century wastewater has been a known risk for public health due topresence <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens. During the 20th century it became clear that wastewater alsoc<strong>on</strong>stituted a threat to the envir<strong>on</strong>ment, because <str<strong>on</strong>g>of</str<strong>on</strong>g> discharging <str<strong>on</strong>g>of</str<strong>on</strong>g> effluents leads to oxygendepleti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> surface water. To overcome from this problem we have to work <strong>with</strong> anintegrated approach for waste water management <strong>with</strong> a strategy that will result in thereducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> pathogens in surface and groundwater to improve public health. Waste watermanagement can be attained by recycling and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> the waste water. The recycled water isused in irrigati<strong>on</strong> purpose, flushing, recharge <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water and industrial process. Waterrecycling and reuse decreases the dependency <strong>on</strong> ground water and surface water sources.Since India is a country <str<strong>on</strong>g>of</str<strong>on</strong>g> villages and the sewage c<strong>on</strong>taminati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> lakes, p<strong>on</strong>ds, rives anddomestic water bodies in rural areas have been reached at its saturati<strong>on</strong> level. The sanitati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> rural areas is also not sustainable in c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water treatment. The study area forthis case study is the villages nearer to Sanganer (Jaipur, Rajasthan) Due to Excess <str<strong>on</strong>g>of</str<strong>on</strong>g>Different Industries. So the objective <str<strong>on</strong>g>of</str<strong>on</strong>g> this paper is reducti<strong>on</strong> in sewage c<strong>on</strong>taminati<strong>on</strong> andto c<strong>on</strong>sider the appropriate technology for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> wastewater. It also discussessustainable wastewater treatment systems in the c<strong>on</strong>text <str<strong>on</strong>g>of</str<strong>on</strong>g> rural areas <str<strong>on</strong>g>of</str<strong>on</strong>g> India <strong>with</strong>c<strong>on</strong>siderati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> feasibility studies, life cycle cost analyses and realizati<strong>on</strong>. The maincompositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water is-243


Energywaterwastewaterpolluta-ntsNutrientsThe greatest challenge before us over the next two decades is the implementati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> low costtreatment that will at the same time permit selective reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> treated effluents for agriculturaland industrial purposes. Wastewater treatment has three primary functi<strong>on</strong>s- To prevent spreading <str<strong>on</strong>g>of</str<strong>on</strong>g> diseases To reduce the nutrients and other pollutants released to recipient waters, and To recycle nutrient resources into agriculture or other producti<strong>on</strong>.Appropriate technology processes must be envir<strong>on</strong>ment-friendly <strong>with</strong> less energyc<strong>on</strong>sumpti<strong>on</strong> and a positive impact <strong>on</strong> efforts to mitigate the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> climate change. TheClosed Loop Treatment System <strong>with</strong> modern design is appropriate technology since it causesless envir<strong>on</strong>mental nuisance than c<strong>on</strong>venti<strong>on</strong>al processes—for example they produce loweramounts <str<strong>on</strong>g>of</str<strong>on</strong>g> excess sludge and their odour problems can be more effectively c<strong>on</strong>trolled. Ifnutrients are to be recycled to agriculture, they must be kept free from c<strong>on</strong>taminants likeheavy metals and organic toxins. Regardless <str<strong>on</strong>g>of</str<strong>on</strong>g> whether the wastewater is sorted at the sourceor mixed in the c<strong>on</strong>venti<strong>on</strong>al way, it is important that the users be aware <str<strong>on</strong>g>of</str<strong>on</strong>g> the importance <str<strong>on</strong>g>of</str<strong>on</strong>g>adding <strong>on</strong>ly natural and eco-friendly substances to the wastewater system.[1] The possiblemeasures and principle <str<strong>on</strong>g>of</str<strong>on</strong>g> soluti<strong>on</strong>s can be taken at the following two stages— At the source At the end <str<strong>on</strong>g>of</str<strong>on</strong>g> pipeRecycling and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water provides increased efficiency and cost savings inwater use because the same water can be used several times before being discharged into thenatural envir<strong>on</strong>ment. Of course, recycling is not a feasible opti<strong>on</strong> for all types <str<strong>on</strong>g>of</str<strong>on</strong>g> water use soBefore recycling the eco-friendly collecti<strong>on</strong> and transportati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> waste water is <str<strong>on</strong>g>of</str<strong>on</strong>g> veryimportance so that sustainability can be attained, as- Sustainable techniques for centralized treatment (Energy, Sludge, and Mineralizednutrients)


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurSeparate collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> both human and animal excreta (Black water).Separate collecti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> domestic and industrial waste water, possibly together <strong>with</strong>organic kitchen waste.Local treatment and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> grey water.[2]Since the area <str<strong>on</strong>g>of</str<strong>on</strong>g> village/town is not more so <strong>on</strong>e approach to sustainability is throughcentralizati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the wastewater management system. This system c<strong>on</strong>sists <str<strong>on</strong>g>of</str<strong>on</strong>g> a single unit forall the houses. Black and gray water is treated or reused separately from the hygienicallymore dangerous excreta. This approach leads to treatment and reuse <str<strong>on</strong>g>of</str<strong>on</strong>g> water, nutrients, andby-products <str<strong>on</strong>g>of</str<strong>on</strong>g> the technology (i.e. energy, sludge, and mineralized nutrients) in the directlocati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the settlement. Therefore, more emphasis is being placed <strong>on</strong> the need to separatedomestic and industrial waste and to treat them individually to make recovery and reuse moresustainable. The system must be able to isolate industrial toxins, pathogens, carb<strong>on</strong>, andnutrients.REFERENCES1. Jhansi & Mishra (2013): Wastewater Treatment and Reuse:Sustainability Opti<strong>on</strong>s;C<strong>on</strong>silience: The Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Sustainable Development Vol. 10, Iss. 1 (2013), Pp. 1 –152. Gu A. (2005). Endocrine Disruptors: What Are We Facing. Waterscapes, Technicalpublicati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the water group <str<strong>on</strong>g>of</str<strong>on</strong>g> HDR, Vol. 16., No. 1, pp. 8-9, Omaha, NE.245


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurBi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms-Treatment for ChemicalC<strong>on</strong>taminants in Rain WaterAbha Mathur 1 and Saurabh Mathur 21 R P Govt College, Lalsot, Dausa2 Student, <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Technology, HamirpurRainwater harvesting is becoming increasingly popular as the availability <str<strong>on</strong>g>of</str<strong>on</strong>g> good qualitywater decreases. Rainwater harvesting is acknowledged as a sustainable source <str<strong>on</strong>g>of</str<strong>on</strong>g> water thathas less impact <strong>on</strong> the envir<strong>on</strong>ment. Rainwater is nowadays used as a source for numerousdomestic applicati<strong>on</strong>s like drinking, bathing, laundry, toilet flushing, hot water supply and forgardening purposes.While rainwater is c<strong>on</strong>sidered pure, there are a large number <str<strong>on</strong>g>of</str<strong>on</strong>g> atmospheric pollutants suchas sulphur dioxide, nitrogen oxides and hydrocarb<strong>on</strong>s, which together are the principal causes<str<strong>on</strong>g>of</str<strong>on</strong>g> anthropogenic acid rain. Apart from causing acid rain, this water can be unsafe to drink,especially in areas <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy polluti<strong>on</strong> such as industrialized urban areas. Numerous manmadeatmospheric pollutants exist, <str<strong>on</strong>g>of</str<strong>on</strong>g> which the most prevalent and damaging to rainwaterquality are sulphur dioxide, nitrogen dioxide and various hydrocarb<strong>on</strong>s. Although mostserious c<strong>on</strong>taminants are normally limited to urban and industrial locati<strong>on</strong>s, pollutants can betransported over great distances before being washed out in the rain. The potential chemicalc<strong>on</strong>taminants include pesticides through agricultural spray drift, aromatic hydrocarb<strong>on</strong>sthrough wood smoke emissi<strong>on</strong>s and deposits from urban and industrial emissi<strong>on</strong>s.One <str<strong>on</strong>g>of</str<strong>on</strong>g> the dominant processes in the rainwater treatment train appears to be flocculati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>organic, metallic and chemical parameters at the tank water surface <strong>with</strong> subsequentsettlement <str<strong>on</strong>g>of</str<strong>on</strong>g> flocs to the sludge at the bottom <str<strong>on</strong>g>of</str<strong>on</strong>g> the tank or attachment to the walls <str<strong>on</strong>g>of</str<strong>on</strong>g> thetank. These flocs form bio films at the interface between tank surfaces and stored rainwaterpotentially improving the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> stored rainwater by removing c<strong>on</strong>taminants. Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms areformed when microorganisms bind together <strong>with</strong> sticky polysaccharide fibers to maximizetheir ability to extract nutrients and accumulate microbes from surrounding water bodies.Coli forms and Pseudom<strong>on</strong>as Spp. bacteria are comm<strong>on</strong>ly found in bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms.247


Bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms have been shown to increase the adsorpti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> heavy metals, nitrogen andphosphorus. Their resistance to such toxic metals, organic toxins, and chlorine, have meantthat these substances which are toxic to humans can be actively removed fromwater.Elemental analysis using high resoluti<strong>on</strong> ICP-MS revealed accumulati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> metalsincluding lead, zinc, copper, manganese, chromium, mercury and arsenic in the bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms in alltanks. Significant c<strong>on</strong>centrati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> metals were not found in the tank water indicating thatthe acti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> bi<str<strong>on</strong>g>of</str<strong>on</strong>g>ilms may be removing metals from the tank water.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurAnalysis <str<strong>on</strong>g>of</str<strong>on</strong>g> Water Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> AmberFort and JalmahalAbhishek Chouhan 1 and Akshay Malik 2Civil Engg. Department,Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, BT-1 Bio Technology Park, Sitapura, JaipurE-mail: abhishekpgi06@poornima.orgE-mail: akshaymalik10@poornima.orgIntroducti<strong>on</strong> - Water quality is referred by the physical, chemical and biologicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the water. It is very important to study the quality as it is related to ourecosystem and is in direct c<strong>on</strong>tact <strong>with</strong> humans. For a water to be in drinking c<strong>on</strong>diti<strong>on</strong> it hasto fulfill many tests as the pH, turbidity, color, odor, dissolved salts, dissolved oxygen etc[1].Our study mainly emphasis <strong>on</strong> the water <str<strong>on</strong>g>of</str<strong>on</strong>g> Jalmahal and amber fort as they have ahistoric importance for Jaipur. In recent years due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> care, the water being pollutedabove the permissible limits and something should be d<strong>on</strong>e for enhancing the water quality.The main reas<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> polluti<strong>on</strong> are food thrown by people for fishes, water discharge fromdrainage pipes [1].Study Area - The Jalmahal palace <strong>with</strong>in the Shan Sagar Lake is accessible from the Jaipur-Delhi <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Highway No 8, over a road distance <str<strong>on</strong>g>of</str<strong>on</strong>g> 4 Km from Jaipur. Delhi is a further273 Km away. Jaipur city being centrally located in Rajasthan, the <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> Highway No.8not <strong>on</strong>ly links to Delhi but also to Mumbai. NH No.11 is a road link <str<strong>on</strong>g>of</str<strong>on</strong>g> 366 Km from Bikanerto Agra via Jaipur. The lake is 8Km from Amber palace <strong>on</strong> the Amber – Man Sagar Damroad to the north [1].Materials and Methods - The collected water is from amber and Jalmahal Palace and it iscollected it in plastic bottles. The test shows that the water quality is not good. We performedpH test (Digital pH Meter), Turbidity (Nephelometer), Suspended Solids, Total DissolvedSolids and Dissolved Solids (by Oven Drying Method) <str<strong>on</strong>g>of</str<strong>on</strong>g> the water samples [2]. Therainwater combined <strong>with</strong> sewage water flow from the city resulted in the lake water giving<str<strong>on</strong>g>of</str<strong>on</strong>g>f a foul smell. The water is taken from the middle <str<strong>on</strong>g>of</str<strong>on</strong>g> the area for maximum impurities andit is also less susceptible to soil impurities.249


Results and Disscusi<strong>on</strong>s - The tests results were not up to the mark as they have a higherlevel <str<strong>on</strong>g>of</str<strong>on</strong>g> dissolved impurities in them. Due to lack <str<strong>on</strong>g>of</str<strong>on</strong>g> care, the water is not fit for use and isalso harmful for the aquatic life [3]. Due to the acid rain, the pH <str<strong>on</strong>g>of</str<strong>on</strong>g> the water is also low.Higher level <str<strong>on</strong>g>of</str<strong>on</strong>g> turbidity shows the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong> setting impurities. [4] If the impuritieskeep <strong>on</strong> increasing, the oxygen dissolved for the fisheries will decrease. The alkaline nature<str<strong>on</strong>g>of</str<strong>on</strong>g> water due to high pH values can be attributed to high productivity <str<strong>on</strong>g>of</str<strong>on</strong>g> water as evidencedby high growth rate <str<strong>on</strong>g>of</str<strong>on</strong>g> algal populati<strong>on</strong> which utilized CO2 through photosynthetic activity[5]. The Jalmahal lake water was most polluted and unfit for drinking and fishing andpropagati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> wild life. Amber fort‘s water was less polluted as can be c<strong>on</strong>cluded from theabove results [6].Results <str<strong>on</strong>g>of</str<strong>on</strong>g> Water <str<strong>on</strong>g>of</str<strong>on</strong>g> Amber FortS. NO. EXPERIMENT NAME RESULT1 Total solids 2500mg/lit2 Total dissolved solids 2500mg/lit3 Turbidity 1324 pH 6.585 Suspended solids 2000mg/litResults <str<strong>on</strong>g>of</str<strong>on</strong>g> Water <str<strong>on</strong>g>of</str<strong>on</strong>g> JalmahalS. NO. EXPERIMENT NAME RESULT1 Total solids 2000mg/lit2 Total dissolved solids 2500 mg/lit3 Turbidity 584 pH 6.805 Suspended solids 2000 mg/litReferences1. en.wikipedia.org/wiki/Jal_Mahal2. www.jaipurjda.org/page.aspx?pid=93. Preeti Gupta, Sunita Agarwal, and Ira Gupta Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Zoology, Vedic Kanya PGCollege,Raja Park, Jaipur, Rajasthan, India4. WHO, World Health Organisati<strong>on</strong>. 1984, Vol. 1, 2 and 3 WHO, Geneva.5. BIS, Standard <str<strong>on</strong>g>of</str<strong>on</strong>g> water for drinking and other purposes, BIS Publicati<strong>on</strong>., 19936. P.Singh, N.Fahemi and R.V.Singh Indian Journal <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental Science., 2009,13(2),175-177.


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurHydro Chemical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the SurfaceWater <str<strong>on</strong>g>of</str<strong>on</strong>g> Aravali Hills <str<strong>on</strong>g>of</str<strong>on</strong>g> Amber Regi<strong>on</strong>Jaipur, RajasthanImtiyaz Ali 1 and Ankur Gautam 2Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, Poornima College <str<strong>on</strong>g>of</str<strong>on</strong>g> EngineeringISI-6, RIICO Instituti<strong>on</strong>al Area Sitapura, Jaipur1 imtiyazpce067@poornima.org2 Ankurpce064@poornima.orgIntroducti<strong>on</strong> - A sharp decline in the water level in Jaipur city and its hinterland regi<strong>on</strong>in NW India has been observed during the last decades. Such a drop can be correlated<strong>with</strong> a widening gap between groundwater draft and recharge resulting from poor anderratic rainfall and over-exploitati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater resources [1, 4]. Drying up <str<strong>on</strong>g>of</str<strong>on</strong>g> thesurface water bodies has further led to a total dependence <strong>on</strong> groundwater resources tomeet the rising domestic and industrial demand for water [2, 3, and 5].Water being an excellent solvent tends to dissolve the minerals in the geological system.The quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water resources is a subject <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>going c<strong>on</strong>cern. The chemical nature <str<strong>on</strong>g>of</str<strong>on</strong>g>the ground water is influenced by several factors such as chemical weathering <str<strong>on</strong>g>of</str<strong>on</strong>g> thecountry rocks and interacti<strong>on</strong> <strong>with</strong> the country rocks [2, 3, 8 9]. The importance <str<strong>on</strong>g>of</str<strong>on</strong>g> thehydro chemical analysis underlies the fact that the chemistry <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water candirectly be rated <strong>with</strong> the source <str<strong>on</strong>g>of</str<strong>on</strong>g> water, climate and geology <str<strong>on</strong>g>of</str<strong>on</strong>g> regi<strong>on</strong>. In this paperchemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground water has been carried out for Mavatha p<strong>on</strong>d andJalmahal p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> amber hilly regi<strong>on</strong>. There are eight water quality variables (Sulphatei<strong>on</strong>s, NA i<strong>on</strong>s. K i<strong>on</strong>s, Mg i<strong>on</strong>s, Ca i<strong>on</strong>s, Nitrate i<strong>on</strong>s, Total Hardness, SpecificC<strong>on</strong>ductance, Total Dissolved Solids, pH). The value <str<strong>on</strong>g>of</str<strong>on</strong>g> water quality parameters wereanalyzed using statistical methods[6,11,12].Rajasthan is a state where low available drinking water is a major problem <strong>with</strong> respectto its populati<strong>on</strong>, rain water harvesting is the best c<strong>on</strong>cept to utilize the rain water comingfrom clouds and also to fulfill the demand <str<strong>on</strong>g>of</str<strong>on</strong>g> drinking water .Rajasthan is a desert areawhere rain fall is quite low or not sufficient in comparis<strong>on</strong> to demand. So moderntechnique to preserve the rain water is essential in Rajasthan and hilly areas are the most251


suitable locati<strong>on</strong> for installing a big reservoir to collect the rain water .But the problem <str<strong>on</strong>g>of</str<strong>on</strong>g>drinking cannot resolve by <strong>on</strong>ly collecting the rain water but also maintain the quality <str<strong>on</strong>g>of</str<strong>on</strong>g>collected water for human, cattle and irrigati<strong>on</strong> purposes [5, 7, and 10].Whenever rain comes and run <str<strong>on</strong>g>of</str<strong>on</strong>g>f through hills to get collected in the reservoir then theouter most Exposed <str<strong>on</strong>g>of</str<strong>on</strong>g> rock layers get weathered due to running <str<strong>on</strong>g>of</str<strong>on</strong>g> water. Therefore thechemical compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rocks dissolved in water and changes the quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water.Hence it is very necessary to analyze the chemical impurities <str<strong>on</strong>g>of</str<strong>on</strong>g> collected water and theninstall a proper plant as per type <str<strong>on</strong>g>of</str<strong>on</strong>g> chemical impurities [2, 3, 4, 10, and 12].Study AreaThe study area is situated in Aravali hills <str<strong>on</strong>g>of</str<strong>on</strong>g> amber regi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur .The study area hasvaried morphology. The typical land forms compromises <str<strong>on</strong>g>of</str<strong>on</strong>g> granitic, gneissic andquartzite. The area has a tropical climate receiving rainfall during middle <str<strong>on</strong>g>of</str<strong>on</strong>g> June to theend <str<strong>on</strong>g>of</str<strong>on</strong>g> September. The humidity is less compared to the western coast .during thesummer time the temperature goes up to 40°C. The area is densely vegetated by hillyshrubs.Result and Discussi<strong>on</strong>Color in ground water may be due to the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> mineral or organic matter. Turbidityis a measure <str<strong>on</strong>g>of</str<strong>on</strong>g> suspended materials in water such as clay, silt and microscopic organism.Taste and odor may be derived from bacterial and dissolved gases. Water samples werecollected from the study area and in general found to be colorless, odorless and free fromturbidity. The brief chemical analysis data <str<strong>on</strong>g>of</str<strong>on</strong>g> the collected water samples are given infollowing table:TABLE 1. Analytical Data for the Water SampleLocality pH Total Total dissolved EChardness solids(seim<strong>on</strong>s/c(ppm) (ppm)m)Mavatah p<strong>on</strong>d <str<strong>on</strong>g>of</str<strong>on</strong>g> 7.46 282.60 3333.34 70AmberJalmahal p<strong>on</strong>d 7.59 308.69 6666.67 190


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurReferences[1] APHA. Standard methods for the examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water and waste water, 19 th ed.American Public Health Associati<strong>on</strong> 1995[2] Hem JD. Study and interpolati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> natural water. USGeol Survey Water Supply Paper 1959; 1473:261-68[3]. Jain CK, Bhatia KKS. Physio-chemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> water and waste water. User‘smanual UM-26, Roorkee: Nat Inst Hydrol 1987[4] Ravindrakumar, fundamentals <str<strong>on</strong>g>of</str<strong>on</strong>g> historical geology and stratigraphy <str<strong>on</strong>g>of</str<strong>on</strong>g> India .NewDelhi: Wiley Eastern Limited 1988[5] ICMR. Manual <str<strong>on</strong>g>of</str<strong>on</strong>g> standards <str<strong>on</strong>g>of</str<strong>on</strong>g> quality for drinking water supplies Indian CouncilMed Res 1979(44):21-27[6] Seuss MJ. Examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water for polluti<strong>on</strong> studies. Karad : Envir<strong>on</strong>mentPublicati<strong>on</strong> 1986[7] Olaijire AA, Imeokparia FE. Water quality assessment <str<strong>on</strong>g>of</str<strong>on</strong>g> Osum River: Studies <strong>on</strong>inorganic nutrients. Envir<strong>on</strong> M<strong>on</strong>it Assess 2000; 69:17-28[8] Thomps<strong>on</strong> RD. Sketch <str<strong>on</strong>g>of</str<strong>on</strong>g> the Geology <str<strong>on</strong>g>of</str<strong>on</strong>g> Bombay islands: Madras J Lit Sei 1836;5:159-75.[9] Cater HJ. Geology <str<strong>on</strong>g>of</str<strong>on</strong>g> the Island <str<strong>on</strong>g>of</str<strong>on</strong>g> Bombay. J Bombay Branch R Asiatic Soc 1852;4:1-53.[10] Carroll D. Rainwater as a chemical agent <str<strong>on</strong>g>of</str<strong>on</strong>g> geologic processes: a review, USGSWater Supply Paper 1962; 1535p[11] WHO (World Health Organizati<strong>on</strong>), Internati<strong>on</strong>al standards for Drinking water, 3rded. World Health Organizati<strong>on</strong> 1971.[12] Bhatia KS, Sharma M K, JAIN CK. Statistical Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water quality data<str<strong>on</strong>g>of</str<strong>on</strong>g> Do<strong>on</strong> Valley, Dehradun. J Apply Hydrol 1999; XII (283):27-33.253


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurM<strong>on</strong>itoring <str<strong>on</strong>g>of</str<strong>on</strong>g> Water quality in MiningAreas <str<strong>on</strong>g>of</str<strong>on</strong>g> Makrana Tehsil, Nagaur DistrictAnkita P. Dadhich, Mahipal, Ankit Malik, Balveer Manda and Manidutt SharmaPoornima Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and TechnologyDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, ISI-2, RIICO Instituti<strong>on</strong>al Area, Sitapura, JaipurE-mail - ankita.dadhich@poornima.orgINTRODUCTIONMakrana (27°02‘25‖ N latitude, 74°43‘44‖E l<strong>on</strong>gitude) is situated at the eastern margin <str<strong>on</strong>g>of</str<strong>on</strong>g>the Thar Desert and has an ancient marble mining history. Makrana is about 6km far fromManglana Chauraha in Nagaur district in Rajasthan. In this area about approx. 550 marblemines are exploiting the Marble St<strong>on</strong>e c<strong>on</strong>tinuously from seven centuries and affecting thewater, soil and nearby vegetati<strong>on</strong>. Water is <strong>on</strong>e <str<strong>on</strong>g>of</str<strong>on</strong>g> our most important natural resources, andthere are many c<strong>on</strong>flicting demands up<strong>on</strong> it [1]. Quality <str<strong>on</strong>g>of</str<strong>on</strong>g> water is an important factor indevelopment and use <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water as resources [2]. The aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this study is to m<strong>on</strong>itor thewater quality from different locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> mining and n<strong>on</strong>-miming areas.MATERIALS AND METHODSThirty water samples were collected from different areas <str<strong>on</strong>g>of</str<strong>on</strong>g> Makrana to determine the impact<str<strong>on</strong>g>of</str<strong>on</strong>g> mining <strong>on</strong> water quality. The samples were collected in high grade plastic bottles <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>on</strong>eliter capacity after rinsing <strong>with</strong> Distilled water. The standard techniques and methods werefollowed for collecti<strong>on</strong>, preservati<strong>on</strong>, analysis and interpretati<strong>on</strong>. The physic-chemicalcharacteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground water samples were determined by using standard methods.Total eight parameters viz. pH, total dissolved solids, c<strong>on</strong>ductivity, turbidity, total hardness,total solid, fluoride and Chloride test were determined by following standard techniques andcompared <strong>with</strong> standard limit recommended by the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Standards (BIS).Locati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> sampling stati<strong>on</strong>sThe samples were collected from different mining & n<strong>on</strong>-mining areas namely –Mining area255


Ghati Chouraha Main (N1-1), Keshavg Marble Industry(N1-2), Diam<strong>on</strong>d Marble Ltd.(N1-3),Vivekanand Col<strong>on</strong>y(N2-1), Rajput Samiti(N2-2), Capt. Ladhu Singh TW(N2-3), Jawan JiTW(N3-1),Khanna Ji TW(N3-2), Gunawati P<strong>on</strong>d(N3-3), Bidiyad Main Road(N4-1),Masjid(N4-2), Charbhuja Marble Factory(N4-3), Snow St<strong>on</strong>e Limited(N5-1), UnpurnaRiico(N5-2), Tanki Chouraha Bidiyad(N5-3).N<strong>on</strong>-mining areaKalwa Bada Bas(A1-1), Kalwa P<strong>on</strong>d-01(A1-2), Kalwa P<strong>on</strong>d-02(A1-3),Ffr<strong>on</strong>t <str<strong>on</strong>g>of</str<strong>on</strong>g> GramPanchayat(A2-1), kalwa tanki(A2-2), kalwa harijan basti(A2-3), kalwa chota(A3-1), neartemple kalwa(A3-2), Out Side Of Kalwa(A3-3), Karma Bai Mandir Kalwa(A4-1), BorawadRoad(A4-2), Bajiya ki Dhani(A4-3), Near Of Borawad(A5-1), Borawad RrailwayStati<strong>on</strong>(A5-2), Borawad Main(A5-3).RESULTS AND DISCUSSIONThe results <str<strong>on</strong>g>of</str<strong>on</strong>g> different physico-chemical parameters are shown in Table 1 and Table 2 formining and n<strong>on</strong>-mining areas respectively.Table-1: Groundwater quality in relati<strong>on</strong> to physico-chemical parameter at Makrana, Nagaur.Locati<strong>on</strong> Lat L<strong>on</strong>g Source pHEC(mho/cm)TurbidityNTUTS(mg/l)TDS(mg/l)Cl -(mg/l)TotalHardnessF -(mg/l)N1-1 27.02 74.71 TW 6.96 2071 0.5 2.7 0.74 245.61 789.21 4.9N1-2 27.02 74.71 TW 7.42 2561.5 0.4 1.7 0.89 453.64 485.29 6.7N1-3 27.03 74.72 TW 7.26 4240.1 0.3 2.5 0.98 957.41 1186.27 8.3N2-1 27.02 74.72 TW 6.46 1558.7 0.1 1.9 1.32 403.51 1081.3 4.3N2-2 27.02 74.71 WELL 6.72 359.7 8.2 0.3 0.04 55.13 200.98 15.3N2-3 27.02 74.71 TW 6.18 3062.9 1.1 2.45 2.2 631.59 759.8 37N3-1 27.02 74.71 WELL 7.4 446.9 21.2 2.2 1.93 50.12 147.05 14.7N3-2 27.02 74.71 TW 7.4 2180 0.2 1.4 0.81 140.35 529.41 45N3-3 27.02 74.71 POND 7.2 1907.5 0.3 1.3 0.01 228.22 294.11 10.1N4-1 27.00 74.70 POND 7.37 773.5 0.3 0.65 0.31 87.7 240.19 8.3N4-2 27.01 74.71 TW 6.42 4283.7 0.2 2.8 1.5 761.91 892.15 9.8N4-3 26.99 74.70 HP 7.7 2866.7 0.4 2.25 1.02 568.93 598.03 15.1N5-1 26.99 74.69 TW 6.48 2681.4 0.3 1.85 0.63 370.93 460.78 32N5-2 26.99 74.69 TW 7.19 1722.2 0.1 0.85 0.05 265.66 279.41 4.3N5-3 26.99 74.70 TW 6.81 1744 0.3 1.5 0.6 225.56 676.47 9.8


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurTable-2: Groundwater quality in relati<strong>on</strong> to physico-chemical parameter at Makrana, Nagaur.Locati<strong>on</strong>A1-1A1-2A1-3A2-1A2-2A2-3A3-1A3-2A3-3A4-1A4-2A4-3A5-1A5-2A5-3Lat27.0427.0327.0327.0427.0427.0427.0427.0427.0427.0327.0327.0227.0227.0227.05L<strong>on</strong>gSource pHEC(mho/cm)Turbidity(NTU)TS(mg/l)TDS(mg/l)Cl(mg/l)TotalHardness F74.6 7.4185.42 TW 1 2278.1 0.4 1.58 0.38 6 303.92 1274.6 PON 7.41 D 8 239.8 118.8 1.25 0.08 52.63 122.54 9.374.6 PON 8.31 D 3 130.8 23 0.45 0.22 67.67 98.03 6.574.6 7.3340.82 TW 8 3041.1 0.6 2.25 1.04 5 294.91 3874.6 8.0368.41 TW 6 4022.1 0.3 2.15 1.09 2 455.88 4.274.6 8.0428.51 TW 7 4043.9 0.4 2.55 0.14 7 495.09 8.374.6 8.2185.41 TW 9 1765.8 4.1 0.9 0.6 6 299.01 1374.6 9.01 TW 7 1188.1 4.8 0.9 0.1 60.15 176.47 6.874.6 7.4656.61 TW 5 3324.5 0.1 2.15 0.99 5 294.11 2274.6 PON 7.9679.214.3 D 7 3607.9 0.6 1.8 1.5 1 328.43 774.6899.75 TW 7.3 4578 0.1 2.2 1.15 6 799.01 4.574.6 7.7315.714.6 TW 9 2703.2 0.1 1.2 0.6 9 549.01 374.6 8.2177.912.7 TW 4 1558.7 2.1 1 0.02 2 357.84 274.6877.27 TW 7.3 4632.5 0.1 2.6 1.4 1 848.3 6.574.61POND 7.1 2430.7 0.1 1.15 0.05363.41 357.84 5.4*TW- Tube Well, HP-Hand PumpCONCLUSIONThe analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> ground water shows higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> fluoride in the drinking water samples<str<strong>on</strong>g>of</str<strong>on</strong>g> almost all locati<strong>on</strong>s, some places have higher values <str<strong>on</strong>g>of</str<strong>on</strong>g> alkalinity and chloride whileremaining parameters are <strong>with</strong>in the permissible limits. While, n<strong>on</strong>-mining lower value <str<strong>on</strong>g>of</str<strong>on</strong>g>TDS, Hardness, Chloride and fluoride as compare to mining area. In mining areas, thetreatment technologies must be implemented to ensure good health <str<strong>on</strong>g>of</str<strong>on</strong>g> the community.257


REFERENCES1. J.Rathore,S. Jain, S.Sharma,V. Choudhary,A. Sharma; Groundwater quality assessment atPali, Rajasthan(India); J. <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir. Science and Engg; 2009. 51, 4 269.2. BIS 1991.IS:10500 Specificati<strong>on</strong> for drinking water, Indian Standards Instituti<strong>on</strong>, NewDelhi


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurGround Water Quality Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> JaipurCityAnkita P. Dadhich, Sumit Kumar, Ravi Kumar Singh, Rashmi Lata,Shad Ahmad and Sukul KumarPoornima Institute <str<strong>on</strong>g>of</str<strong>on</strong>g> Engineering and TechnologyDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> Civil Engineering, ISI-2, RIICO Instituti<strong>on</strong>al Area, Sitapura, JaipurE-mail - ankita.dadhich@poornima.orgINTRODUCTIONIn the last few decades, there has been a tremendous increase in the demand for fresh waterdue to rapid growth <str<strong>on</strong>g>of</str<strong>on</strong>g> populati<strong>on</strong> and the accelerated pace <str<strong>on</strong>g>of</str<strong>on</strong>g> industrializati<strong>on</strong>. Rapidurbanizati<strong>on</strong>, has affected the availability and quality <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwater due to itsoverexploitati<strong>on</strong> and improper waste disposal, especially in urban areas. Jaipur city (26.9260°N, 75.8235° E) the capital <str<strong>on</strong>g>of</str<strong>on</strong>g> Rajasthan, is also experiencing the degradati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> groundwaterquality due to rapid urbanizati<strong>on</strong> and industrializati<strong>on</strong>. Urbanizati<strong>on</strong> has led to immensepressure <strong>on</strong> ground water resources and has resulted in quality deteriorati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ground waterresources <str<strong>on</strong>g>of</str<strong>on</strong>g> the city. The objective <str<strong>on</strong>g>of</str<strong>on</strong>g> the scientific investigati<strong>on</strong>s is to determine thephysico-chemical characteristics <str<strong>on</strong>g>of</str<strong>on</strong>g> the ground water to evaluate the water suitability fordrinking, domestic and irrigati<strong>on</strong> purposes.MATERIALS AND METHODSThe ground water samples were collected from eighteen sampling points during postm<strong>on</strong>so<strong>on</strong> seas<strong>on</strong> (September 2013). Samples were collected in good quality plastic bottles <str<strong>on</strong>g>of</str<strong>on</strong>g><strong>on</strong>e-litre capacity from different locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city viz. Sitapura, Pratap Nagar,Mansarovar, Ajmeri Gate, Jhotwara, Vaishali Nagar. Sampling has been carried out <strong>with</strong>outadding any preservatives in well-rinsed bottles. Various physical parameters like pH,C<strong>on</strong>ductivity, Total Hardness and Chloride test were determined by following APHA [1](American Public Health Associati<strong>on</strong>) standard techniques and compared <strong>with</strong> standard limitrecommended by the Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Standards (BIS) [2] and World Health Organizati<strong>on</strong>[3] (WHO).259


Figure 1: Different Sampling locati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city for ground water analysisRESULTS AND DISCUSSIONThe data revealed that pH ranged from 6.98 to 8.00. pH is the negative exp<strong>on</strong>ent <str<strong>on</strong>g>of</str<strong>on</strong>g> H+c<strong>on</strong>centrati<strong>on</strong>. According to WHO (1992) standards, best and ideal pH value for humanc<strong>on</strong>sumpti<strong>on</strong> is 7.0, but it may vary from 6.9-9.2. Thus, all the samples tested were slightlyalkaline except at Vaishali Nagar (S3). EC is the capacity <str<strong>on</strong>g>of</str<strong>on</strong>g> water to carry i<strong>on</strong>s, so it depends<strong>on</strong> the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> i<strong>on</strong>s and their c<strong>on</strong>centrati<strong>on</strong>. Minimum and Maximum values <str<strong>on</strong>g>of</str<strong>on</strong>g> EC wererecorded in Mansarovar (S1) i.e. 0.58 mmhos/cm. and Pratap Nagar (S1) i.e. 2.40 mmhos/cm.respectively. Thus variati<strong>on</strong> in EC was observed in all the samples. EC signifies the amount<str<strong>on</strong>g>of</str<strong>on</strong>g> total dissolved salts, which indicates inorganic polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> water. In ground waterhardness is mainly due to carb<strong>on</strong>ates, bicarb<strong>on</strong>ates, sulphates, chloride <str<strong>on</strong>g>of</str<strong>on</strong>g> Ca and Mg. Datarevealed that the values <str<strong>on</strong>g>of</str<strong>on</strong>g> hardness ranged between 110 to 620 mg/l Pratap Nagar (S2) fromand Ajmeri Gate (S2) respectively. The permissible limit <str<strong>on</strong>g>of</str<strong>on</strong>g> total hardness is 100-500 mg/l.Thus Ajmeri Gate have total hardness more than the permissible limit. The c<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>chloride varied between 70.920 to386.514 mg/l. The minimum value was observed inVaishali Nagra (S1, S3) and maximum c<strong>on</strong>centrati<strong>on</strong> in Sitapura (S3). According to WHO(1984) the permissible limit for chloride is 200-600 ppm, which indicate that drinking water<str<strong>on</strong>g>of</str<strong>on</strong>g> Jaipur city c<strong>on</strong>tained chloride c<strong>on</strong>centrati<strong>on</strong> <strong>with</strong>in permissible limit.CONCLUSIONThe data suggests that the water samples were slightly alkaline in nature and c<strong>on</strong>tained highamount <str<strong>on</strong>g>of</str<strong>on</strong>g> Electrical c<strong>on</strong>ductance. The other parameters viz., Cl, pH, and total hardnessshowed wide variati<strong>on</strong>s. Analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> water samples indicate that the drinking water, used by


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, Jaipurthe people residing in Ajmeri Gate and Sitapura area, is not potable. It should be treatedbefore using for drinking purpose.REFERENCES1. APHA (American Public Health Associati<strong>on</strong>) Standard method for examinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g>water and wastewater, NW, DC 20036, 1994.2. BIS (Bureau <str<strong>on</strong>g>of</str<strong>on</strong>g> Indian Standards) 10500, Indian standard drinking water specificati<strong>on</strong>,First revisi<strong>on</strong>, 1991, pp 1-8.3. WHO (World Health Organizati<strong>on</strong>) Guidelines for drinking water quality, 2ndEd.,1993, Vol 1, p 188.261


<str<strong>on</strong>g>Proceedings</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>Nati<strong>on</strong>al</str<strong>on</strong>g> <str<strong>on</strong>g>C<strong>on</strong>ference</str<strong>on</strong>g> <strong>on</strong> <strong>Hydrology</strong><strong>with</strong> <strong>Special</strong> Emphasis <strong>on</strong> Rain Water Harvesting (NCHRWH-2013)November15-16, 2013, Poornima Group <str<strong>on</strong>g>of</str<strong>on</strong>g> Instituti<strong>on</strong>s, JaipurStudies <strong>on</strong> Water Polluti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> TextileIndustries by Photo Catalytic ProcessNeelakshi, Himakshi, ShivRam and R.C.MeenaDepartment <str<strong>on</strong>g>of</str<strong>on</strong>g> ChemistryJNV University, JodhpurE-mail- rcmeena007@rediffmail.comOrganic dyes mostly Azo dyes polluted wastewater <str<strong>on</strong>g>of</str<strong>on</strong>g> textile industries cannot be treatedsuccessfully by c<strong>on</strong>venti<strong>on</strong>al treatment methods and presently used methods give low quality<str<strong>on</strong>g>of</str<strong>on</strong>g> water, which is not suitable to use for domestic utilizati<strong>on</strong>. The presence <str<strong>on</strong>g>of</str<strong>on</strong>g> organic dyes intextile waste due to n<strong>on</strong>-biodegradability <str<strong>on</strong>g>of</str<strong>on</strong>g> synthetic organic dyes, biological treatment <str<strong>on</strong>g>of</str<strong>on</strong>g>wastewater al<strong>on</strong>e is usually not effective, may result in poor water quality.In this study a photo catalyst immobilized by Methylene blue has been used for decolorizati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> Acid Yellow 23 dye, which is being used in textile industries. This is aphoto-activated process which has been promisingly used to remove n<strong>on</strong>-biodegradable andhazardous dye pollutants from effluents <str<strong>on</strong>g>of</str<strong>on</strong>g> textile industries. Effect <str<strong>on</strong>g>of</str<strong>on</strong>g> different operati<strong>on</strong>alparameters like varied amount <str<strong>on</strong>g>of</str<strong>on</strong>g> catalyst, variati<strong>on</strong> in dye c<strong>on</strong>centrati<strong>on</strong>, light intensitiesand pH have been investigated <strong>on</strong> the rate <str<strong>on</strong>g>of</str<strong>on</strong>g> de-colorizati<strong>on</strong>. Using UV/Visiblespectrophotometer at λmax = 426.00nm and optimum pH=7.5, the color removal efficiency<str<strong>on</strong>g>of</str<strong>on</strong>g> Acid Yellow 23 was observed 98.81% after 150min.The study shows that the photocatalyst is more effective in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> light. De-colorizati<strong>on</strong> treatment <str<strong>on</strong>g>of</str<strong>on</strong>g> textileeffluent is more promising in the presence <str<strong>on</strong>g>of</str<strong>on</strong>g> light <strong>with</strong> photo catalyst. The result <str<strong>on</strong>g>of</str<strong>on</strong>g>experiment is exciting and we recover almost 100% transparent water <str<strong>on</strong>g>of</str<strong>on</strong>g> dye soluti<strong>on</strong>.Reference1. Heller A., Acc. Chem. Res. 14,1981,1542. Frank S.N, Bard. A. J. ,J. Am. Chem.Soc., 99, 1977,3033. Frank S.N, Bard. A. J , J. Phys.Chem., 8263


AAUTHORS’ INDEXAbbasi S.A. 67, 131, 189, 199, 207, 219, 229, 233, 239Abbasi Tabassum131, 239Abbasi Tasneem67, 131, 189, 199, 207, 218, 233, 239Agarwal P.K. 123Agarwal Parvind 153Agnihotri Anamika133Agrawal Niraj 79Ahmad Shad 259Ahmad Tanveer 123Ali Imtiyaz 251BBagra Deependra 235Banupriya D. 67Bhagat Arun89, 103, 141, 161Bhargava Kshitij235Bhatnagar Neeraj Kumar149Bhat M. Ashraf233Bina Rani185Boken J. 237Bundela Anup 127CCaloria Avakash 155Chandrashekhar H. 45Choudhary Abhishek KumarChouhan AbhishekD137249Dadhich Ankita P 255, 259Dalela S. 237Das Biswajit 75Dashora Ragini51, 89, 141, 161Dashora Yogita51, 89, 141, 161Dhill<strong>on</strong> Ankita227Dhupper Renu 119Druvashree R. 37Duggal RakeshFFarooqi Izharul Haq 181G221, 241Gajalakshmi S.Ganae S.U.229189265


Gautam Ankur251Goel N.K.1, 13, 87,Goel Y.K. 87Gomber Chetna 231Goyal Shivani 191Gunaseelan S. 207Gupta Arpit159Gupta Krishna Kumar85Gupta Mayank 215Gupta Nidhi 115Gupta Rita 115Gurjar AshaH266235Himakshi 263Hura Amarpreet Kaur 213Husain Ikbal 225Hussain Jakir 225IInayathulla M. 37JJain Anmol 159Jain Atishaya209Jain Chirag243Jain Kartik 177Jain Neha153Jain Nupur221, 241Jain Sanjay K. 75Jain Sanjay Kumar 123Jain Sharad K. 75Jain Usha 151Jena Joy Gopal85Joshi Priyanka 223KK.A. Basamma 113Kar Anil Kumar13, 85Katara Pratibha 51, 141Khamrang Channgam229Khan Hamid235Khan Saif Ullah 121Khan Shahnaz 231Khatri Gaurav 155Kumar DeepakKumar Dinesh233191, 223, 227


Kumar M. Raffiq 199Kumar Rajesh 225Kumar Rakesh 9, 69Kumar Sukul 259Kumar Sumit 259Kumar Surendra 151Kumari Smita 175Kumawat Jitendra 215Kumawat Mahesh 81LLamba Mahesh Kumar 155Lata Rashmi 259Lohani Anil Kumar 13Lokesh K.V. 45MMahipal 255Malav Deepak243Malik Akshay249Malik Ankit255Manda Balveer255Mani Pankaj K.9Mathur Abha247Mathur Bhawana137Mathur Dipti 125Mathur M.Abhishek209Mathur Priyanka137Mathur Saurabh247Meena Khushi Ram 215Meena Mastram 215Meena R. C.263Mehta Anurika221, 241Mundel Sandeep 99NNadaoka Kazuo41Nagaraj P.S. 37Naithani Bharti151Neelakshi 263Nema R.K. 149PPareek Chandar Prakash 209Patil Mangal 51, 89, 141, 161Patra Jagadish P.9Prajapt Lokeah Kumar 95267


Priyadarshini S<strong>on</strong>am189Priyanka U. 219Punia M. P. 201RRahi Ranjan 207Ramachandraiah S.G. 37Ranganna G. 37, 45Ray Litan Kumar 93Roopa Joythi 45Roy Gopal PrasadSSachdeva Deepak 209Saini Dinesh 127Saini Kamlesh 127Saini Rohini 71Scott Melvin B.D. 91Sen Deepak 127Sharma Kirti 81Sharma Manidutt 255Sharma Manisha 231Sharma Neetu193Sharma Pradeep Kumar 201Sharma Ravi Kumar 71Sharma Shivani 153Sharma Sunil 193Sharma Sushmita221, 241Sharma Upma51, 141Shekhawat Sanjay 71Shiv Ram263Singh Bhawani 127Singh Digambar 69Singh R.D.13Singh Rajvir 111Singh Ravi Kumar 259Swami ArvindT85209Tauseef S.M 199, 239Taxak Arun Kumar 49Tiwari Ashish 95VVerma Kishan Kumar 209Vijay Ritu 201268

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!