13.07.2015 Views

JAK2-V617F mutation in a patient with Philadelphia - Mannheimer ...

JAK2-V617F mutation in a patient with Philadelphia - Mannheimer ...

JAK2-V617F mutation in a patient with Philadelphia - Mannheimer ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

Case Report<strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> <strong>in</strong> a <strong>patient</strong> <strong>with</strong> <strong>Philadelphia</strong>chromosome-positivechronic myeloid leukaemiaAlw<strong>in</strong> Krämer, Andreas Reiter, Jens Kruth, Philipp Erben, Andreas Hochhaus, Mart<strong>in</strong> Müller, Nicholas C P Cross, Amy V Jones, Anthony D Ho,Manfred HenselLancet Oncol 2007; 8: 658–60Department of InternalMedic<strong>in</strong>e V, University ofHeidelberg, HeidelbergGermany (Prof A Krämer MD,Prof AD Ho MD, M Hensel MD);Department of InternalMedic<strong>in</strong>e III, Faculty of Cl<strong>in</strong>icalMedic<strong>in</strong>e Mannheim, Universityof Heidelberg, Mannheim,Germany (Prof A Reiter MD,J Kruth MD, P Erben MD,Prof A Hochhaus MD,M Müller MD); Wessex RegionalGenetics Laboratory, Salisbury,UK (Prof NCP Cross PhD,AV Jones PhD)Correspondence to:Prof Alw<strong>in</strong> Krämer, Cl<strong>in</strong>icalCooperation Unit MolecularHaematology/Oncology, GermanCancer Research Centre andDepartment of Internal Medic<strong>in</strong>eV, University of Heidelberg,69120 Heidelberg, Germanya.kraemer@dkfz-heidelberg.deLeucocytes (/nL) and metamyelocytes <strong>in</strong> peripheral blood (%)100806040200Spleen 21·3 cmIn July, 2000, a 50-year-old man presented <strong>with</strong> leukocytosisand splenomegaly (21 cm). Leucocyte concentrationwas 93×10 9 /L, haemoglob<strong>in</strong> 150 g/L, and platelets345×10 9 /L (figure 1). A differential blood count showed54% neutrophils, 2% lymphocytes, 13% myelocytes, 7%metamyelocytes, 2% promyelocytes, 1% blasts, and7% basophils. Lactate dehydrogenase (LDH) concentrationwas <strong>in</strong>creased at 484 U/L. 17 months previously,the blood count had been <strong>in</strong> the normal range. Bonemarrowaspiration was dry and bone-marrow biopsyshowed marked myeloid hyperplasia, <strong>in</strong>creased megakaryopoiesis,and the beg<strong>in</strong>n<strong>in</strong>g of fibrosis. Cytogeneticanalysis revealed a chromosome translocation(t[9;22][q34;q11]) <strong>in</strong> all ten metaphases exam<strong>in</strong>ed. Expressionof B3A2 BCR-ABL mRNA was detected by reversetranscriptase polymerase cha<strong>in</strong> reaction (RT-PCR) <strong>in</strong>peripheral-blood leucocytes. A diagnosis of BCR-ABLpositivechronic myeloid leukaemia (CML) was madeand treatment <strong>with</strong> hydroxycarbamide was started,result<strong>in</strong>g <strong>in</strong> rapid normalisation of peripheral-bloodleucocytes. After 3 weeks, treatment was changed toimat<strong>in</strong>ib (400 mg/day). With<strong>in</strong> 1 month, a completehaem atological response was recorded. Cytogenetic and<strong>in</strong>terphase fluorescence <strong>in</strong>-situ hybridisation at6 months after the start of imat<strong>in</strong>ib showed a completecytogenetic response. The BCR-ABL:ABL ratio droppedfrom 90% at diagnosis to 0·021% after 6 months.16 months after start<strong>in</strong>g imat<strong>in</strong>ib, BCR-ABL transcriptsbecame undetectable by real-time and nested RT-PCRLeucocytesMetamyelocytes and myelocytes<strong>in</strong> peripheral bloodPlateletsLactate dehydrogenaseSpleen 17·7 cm7/00 8/00 10/00 7/01 6/02 12/03 3/04 8/05 11/05 5/06 8/06Time (month/year)Figure 1: Course of peripheral-blood parameters dur<strong>in</strong>g treatment <strong>with</strong> imat<strong>in</strong>ib <strong>in</strong> a <strong>patient</strong> <strong>with</strong> BCR-ABLpositivechronic myeloid leukaemia8006004002000Platelets (/nL) and lactate dehydrogenase (U/L)(figure 2). 1 Repeated cytogenetic and quantitative BCR-ABL RT-PCR analyses showed a cont<strong>in</strong>u<strong>in</strong>g completecytogenetic and molecular response, as shown <strong>in</strong>figure 2. However, <strong>in</strong> 2003, an unexpected decrease <strong>in</strong>platelet count and a cont<strong>in</strong>uous <strong>in</strong>crease <strong>in</strong> serum LDHconcentration was noted (figure 1). In 2004, immaturemyeloid cells began to appear <strong>in</strong> the peripheral bloodand a bone-marrow biopsy <strong>in</strong> May, 2004, revealedadvanced fibrosis. In 2005, leucocyte concentrationcont<strong>in</strong>ually rose above the upper normal limit. Thespleen was enlarged to 18 cm. Cytogenetic analysisidentified a normal karyotype and BCR-ABL transcriptswere still undetectable. Therefore, a <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>alanalysis was done, which highlighted the presenceof a heterozygous <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>, lead<strong>in</strong>g to thediagnosis of idiopathic myelofibrosis (IMF) accord<strong>in</strong>gto the WHO diagnostic criteria. For <strong>JAK2</strong> genotyp<strong>in</strong>g,DNA was amplified and PCR products were directlysequenced us<strong>in</strong>g the PCR primers <strong>JAK2</strong>-1F(5’-TGCTGAAAGTAGGAGAAAGTGCAT-3’) and <strong>JAK2</strong>-1R (5’-TCCTACAGTGTTTTCAGTTTCAA-3’).The proportion of mutant <strong>JAK2</strong>-<strong>V617F</strong> alleles wasquantified us<strong>in</strong>g pyrosequenc<strong>in</strong>g as described. 2 Additionally,the allelic ratio of <strong>JAK2</strong>-<strong>V617F</strong> was confirmed bya newly established quantitative real-time (RQ) PCRassay based on LightCycler technology (Roche Diagnostics,Mannheim, Germany). DNA was extracted fromperipheral blood leucocytes after red-cell lysis by standardprocedures. Total <strong>JAK2</strong> was established us<strong>in</strong>g aforward primer, 5’-AGGCTACATCCATCTACCTCAG-3’,a reverse primer, 5’-CCTAGCTGTGATCCTGAAACTG-3’(MWG Biotech, Ebersberg, Germany), and thehybridisation probes 5’-ACAGGCTTGA CCCATAA-CACCT GAAATA GAG-3’ and 5’-GAGTGGTACAGGAA-TCATGAATAATGCCAGTCA-3’ (Tib Molbiol, Berl<strong>in</strong>,Germany). Mutant <strong>JAK2</strong>-<strong>V617F</strong> alleles were quantifiedus<strong>in</strong>g the same forward primer and probes <strong>in</strong>comb<strong>in</strong>ation <strong>with</strong> a <strong>mutation</strong>-specific reverse primer,5’-TTTTACTTACTCTCGTCTCCACAGAA-3’ (MWG Bio -tech, Ebersberg, Germany). The allele copy number wasidentified us<strong>in</strong>g a plasmid standard curve. <strong>JAK2</strong>-<strong>V617F</strong>positivity was expressed as the ratio between mutant<strong>JAK2</strong>-<strong>V617F</strong> and total <strong>JAK2</strong>. Dilution experimentsshowed an assay sensitivity of 1%.Retrospective analysis of frozen samples of peripheralbloodleucocytes showed that the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>was already present at <strong>in</strong>itial diagnosis of BCR-ABLpositiveCML (figure 3). Consistent <strong>with</strong> the presence ofan acquired somatic <strong>mutation</strong>, the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>was absent <strong>in</strong> purified CD3+ T lymphocytes (figure 3)658 http://oncology.thelancet.com Vol 8 July 2007


Case Reportand buccal cells (data not shown). As demonstrated bytwo <strong>in</strong>dependent methods—<strong>JAK2</strong>-<strong>V617F</strong> pyrosequenc<strong>in</strong>gand PCR—the proportion of the mutant allele stayedroughly constant from diagnosis of CML <strong>in</strong> July, 2000, toFebruary, 2006 (figure 2). Repeated cytogenetic analysis<strong>in</strong> May, 2006 aga<strong>in</strong> showed a normal karyotype.<strong>JAK2</strong> is a tyros<strong>in</strong>e k<strong>in</strong>ase that has an important role <strong>in</strong>the signall<strong>in</strong>g pathways of many haemopoietic growthfactorreceptors. The s<strong>in</strong>gle acquired po<strong>in</strong>t <strong>mutation</strong><strong>V617F</strong> (1849G>T) <strong>in</strong> <strong>JAK2</strong> occurs <strong>in</strong> 50–97% of <strong>patient</strong>s<strong>with</strong> IMF, essential thrombocytosis, and polycythemiavera. 2–6 By contrast, the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> has neverbeen identified <strong>in</strong> a <strong>patient</strong> <strong>with</strong> BCR-ABL-positiveCML. 7 This is the first description of a <strong>patient</strong>, to ourknowledge, <strong>in</strong> whom the BCR-ABL fusion gene and anacquired somatic <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> could bedetected contemporaneously, <strong>with</strong> IMF becom<strong>in</strong>gcl<strong>in</strong>ically relevant after successful treatment of CML byimat<strong>in</strong>ib.Several conclusions can be drawn from these data.First, bone-marrow fibrosis was not a consequence ofprogressive CML. Rather, myelofibrosis developed as asecond myeloproliferative disorder (MPD) dur<strong>in</strong>gcomplete cytogenetic and molecular remission of CML.Although the BCR-ABL fusion gene might represent the<strong>in</strong>itiat<strong>in</strong>g lesion <strong>in</strong> most cases of CML, cl<strong>in</strong>icalmanifestations of the disease can be variable. Specifically,bone-marrow fibrosis can occur, sometimes vary<strong>in</strong>ggreatly dur<strong>in</strong>g the course of the disease, and has beenused to categorise <strong>patient</strong>s <strong>in</strong>to different groups <strong>with</strong>dist<strong>in</strong>ctive survival caracter istics. 8 Fibrogenesis <strong>in</strong> MPDis generally assumed to be mediated by the abnormalrelease of transform<strong>in</strong>g growth factor-β and plateletderivedgrowth factor (PDGF). Imat<strong>in</strong>ib, a selective<strong>in</strong>hibitor of ABL, KIT, and PDGF receptor tyros<strong>in</strong>ek<strong>in</strong>ases, and which is not active aga<strong>in</strong>st <strong>JAK2</strong>, has beenseen to reduce the content of bone-marrow fibre <strong>in</strong><strong>patient</strong>s <strong>with</strong> CML. 9 Regression of myelofibrosis byimat<strong>in</strong>ib is thought to be caused either by a direct PDGFantagonisticeffect or by normalisation of megakaryopoiesisfrom which abnormal concentrations of PDGFare released. How ever, expression of <strong>JAK2</strong>-<strong>V617F</strong> <strong>in</strong>mur<strong>in</strong>e haematopoietic cells leads to MPD associated<strong>with</strong> myelofibrosis. 10 Moreover, expression of a BCR-<strong>JAK2</strong>fusion gene has been described <strong>in</strong> a <strong>patient</strong> <strong>with</strong> atypicalCML and bone-marrow fibrosis, 11 and the PCM1-<strong>JAK2</strong>fusion is associated <strong>with</strong> the development of myelofibrosis<strong>in</strong> <strong>patient</strong>s <strong>with</strong> chronic and acute leukaemias. 12 Thesef<strong>in</strong>d<strong>in</strong>gs suggest that <strong>JAK2</strong>-<strong>V617F</strong> contributes to thedevelopment of myelofibrosis <strong>in</strong> MPD, 3,10 and might havebeen responsible for the <strong>in</strong>duction of myelofibrosis <strong>in</strong>our <strong>patient</strong> which, consequently, was <strong>in</strong>dependent of thepresence of BCR-ABL and did not respond to imat<strong>in</strong>ibtreatment. This assumption is supported by the absenceof cl<strong>in</strong>ical and molecular responses of <strong>patient</strong>s <strong>with</strong> IMFand polycythemia vera treated <strong>with</strong> imat<strong>in</strong>ib. 13,14 Iftreatment <strong>with</strong> imat<strong>in</strong>ib had not been <strong>in</strong>itiated, thecl<strong>in</strong>ical course of the <strong>patient</strong> could only have beenspeculated upon. Treatment and response to imat<strong>in</strong>ibmight have accelerated the outgrowth of the IMF.Second, our data suggest that <strong>in</strong> our <strong>patient</strong>, the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> had occurred before the acquisition ofthe <strong>Philadelphia</strong> (Ph)-chromosome. Development of aPh-positive CML has rarely been reported <strong>in</strong> <strong>patient</strong>s<strong>with</strong> MPD. 15 In the few cases that have been reported,ACPercentage of tumour cells100958075605540352015Figure 2: BCR-ABL:ABL ratio and <strong>JAK2</strong>-<strong>V617F</strong> allele frequency dur<strong>in</strong>g treatment <strong>with</strong> imat<strong>in</strong>ib <strong>in</strong> a <strong>patient</strong><strong>with</strong> BCR-ABL-positive chronic myeloid leukaemiaParameters established by pyrosequenc<strong>in</strong>g and PCR.A0T G TA T G TTGTGT C T GT C T GTime (month/year)BDA T G T G T C T GA T G TBCR-ABL:ABL<strong>JAK2</strong>/<strong>V617F</strong>-pyrosequenc<strong>in</strong>g<strong>JAK2</strong>/<strong>V617F</strong>-PCR7/00 7/01 7/02 7/03 7/04 7/05 7/06TGT C T GFigure 3: Presence of the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> <strong>in</strong> a <strong>patient</strong> <strong>with</strong> BCR-ABL-positive chronic myeloid leukaemiaA heterozygous G→T transversion <strong>in</strong> <strong>JAK2</strong> (arrows) is present <strong>in</strong> DNA from leucocytes (A,C,D) at different timepo<strong>in</strong>ts (A: July, 2000; C: November, 2001; D: May, 2006) dur<strong>in</strong>g the course of the disease, but absent <strong>in</strong> T cells(B; May, 2006), consistent <strong>with</strong> the existence of an acquired somatic orig<strong>in</strong> of the <strong>mutation</strong>.http://oncology.thelancet.com Vol 8 July 2007 659


Case Reportthere is a debate as to whether MPD and CML ariseseparately from each other, represent<strong>in</strong>g <strong>in</strong>dependenttransformation of a normal stem cell, or whether the Phchromosomearises <strong>in</strong> a stem cell that was part of theMPD clone. In our <strong>patient</strong>, <strong>JAK2</strong>-<strong>V617F</strong> was detectable atan almost constant allele frequency <strong>in</strong> all peripheralbloodsamples exam<strong>in</strong>ed (figure 2). The most likelyexplanation for this f<strong>in</strong>d<strong>in</strong>g is the presence of aheterozygous <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> <strong>in</strong> most of theperipheral-blood leucocytes, implicat<strong>in</strong>g the simultaneouspresence of the BCR-ABL fusion gene and the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> <strong>in</strong> white blood cells. Because BCR-ABLbecame undetectable after treatment <strong>with</strong> imat<strong>in</strong>ib, butthe <strong>JAK2</strong>-<strong>V617F</strong> allele frequency rema<strong>in</strong>ed virtuallyunchanged, the conclusion can be drawn that the Phchromosomewas acquired from a haematopoietic cellcarry<strong>in</strong>g the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>. Several f<strong>in</strong>d<strong>in</strong>gssuggest that MPD are caused by a <strong>mutation</strong> <strong>in</strong> an, as yet,unknown gene that precedes the acquisition of either a<strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> or a BCR-ABL fusion gene. 3,16 Themost reasonable explanation for the f<strong>in</strong>d<strong>in</strong>gs presentedhere is that BCR-ABL can, <strong>in</strong> rare cases, occur on thebackground of the <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong>, possiblyaugmented by an elusive <strong>in</strong>itial <strong>mutation</strong> predispos<strong>in</strong>g tothe acquisition of both a <strong>JAK2</strong>-<strong>V617F</strong> <strong>mutation</strong> and aBCR-ABL translocation.Conflicts of <strong>in</strong>terestThe authors declared no conflicts of <strong>in</strong>terest.AcknowledgmentsWe thank Brigitte Schreiter for excellent technical assistance. This workwas supported by a grant from the German José Carreras LeukemiaFoundation (DJCLS R 06/04).References1 Emig M, Saussele S, Wittor H, et al. Accurate and rapid analysis ofresidual disease <strong>in</strong> <strong>patient</strong>s <strong>with</strong> CML us<strong>in</strong>g specific fluorescenthybridization probes for real time quantitative RT-PCR. Leukemia1999; 13: 1825–32.2 Jones AV, Kreil S, Zoi K, et al. Widespread occurrence of the <strong>JAK2</strong><strong>V617F</strong> <strong>mutation</strong> <strong>in</strong> chronic myeloproliferative disorders. Blood 2005;106: 2162–68.3 Kralovics R, Passamonti F, Buser AS, et al. A ga<strong>in</strong>-of-function<strong>mutation</strong> of <strong>JAK2</strong> <strong>in</strong> myeloproliferative disorders. N Engl J Med2005; 352: 1779–90.4 Baxter EJ, Scott LM, Campbell PJ, et al. Acquired <strong>mutation</strong> of thetyros<strong>in</strong>e k<strong>in</strong>ase <strong>JAK2</strong> <strong>in</strong> human myeloproliferative disorders.Lancet 2005; 365: 1054–61.5 James C, Ugo V, Le Couedic JP, et al. A unique clonal <strong>JAK2</strong><strong>mutation</strong> lead<strong>in</strong>g to constitutive signall<strong>in</strong>g causes polycythaemiavera. Nature 2005; 434: 1144–48.6 Lev<strong>in</strong>e RL, Wadleigh M, Cools J, et al. Activat<strong>in</strong>g <strong>mutation</strong> <strong>in</strong> thetyros<strong>in</strong>e k<strong>in</strong>ase <strong>JAK2</strong> <strong>in</strong> polycythemia vera, essentialthrombocythemia, and myeloid metaplasia <strong>with</strong> myelofibrosis.Cancer Cell 2005; 7: 387–97.7 Jel<strong>in</strong>ek J, Oki Y, Gharibyan V, et al. <strong>JAK2</strong> <strong>mutation</strong> 1849G>T is rare<strong>in</strong> acute leukemias but can be found <strong>in</strong> CMML, <strong>Philadelphia</strong>chromosome-negative CML, and megakaryocytic leukemia.Blood 2005; 106: 3370–73.8 Kvasnicka HM, Thiele J, Schmitt-Graeff A, et al. Bone marrowfeatures improve prognostic efficiency <strong>in</strong> multivariate riskclassification of chronic-phase Ph(1+) chronic myelogenousleukemia: a multicenter trial. J Cl<strong>in</strong> Oncol 2001; 19: 2994–3009.9 Beham-Schmid C, Apfelbeck U, Sill H, et al. Treatment of chronicmyelogenous leukemia <strong>with</strong> the tyros<strong>in</strong>e k<strong>in</strong>ase <strong>in</strong>hibitor STI571results <strong>in</strong> marked regression of bone marrow fibrosis. Blood 2002;99: 381–83.10 Lacout C, Pisani DF, Tulliez M, Moreau Gachel<strong>in</strong> F, Va<strong>in</strong>chenker W,Villeval JL. <strong>JAK2</strong><strong>V617F</strong> expression <strong>in</strong> mur<strong>in</strong>e hematopoietic cellsleads to MPD mimick<strong>in</strong>g human PV <strong>with</strong> secondary myelofibrosis.Blood 2006; 108: 1652–60.11 Gries<strong>in</strong>ger F, Hennig H, Hillmer F, et al. A BCR-<strong>JAK2</strong> fusion geneas the result of a t(9;22)(p24;q11.2) translocation <strong>in</strong> a <strong>patient</strong> <strong>with</strong> acl<strong>in</strong>ically typical chronic myeloid leukemia. Genes ChromosomesCancer 2005; 44: 329–33.12 Reiter A, Walz C, Watmore A, et al. The t(8;9)(p22;p24) is arecurrent abnormality <strong>in</strong> chronic and acute leukemia that fusesPCM1 to <strong>JAK2</strong>. Cancer Res 2005; 65: 2662–67.13 Tefferi A, Mesa RA, Gray LA, et al. Phase 2 trial of imat<strong>in</strong>ibmesylate <strong>in</strong> myelofibrosis <strong>with</strong> myeloid metaplasia. Blood 2002;99: 3854–56.14 Jones AV, Silver RT, Waghorn K, et al. M<strong>in</strong>imal molecular response<strong>in</strong> polycythemia vera <strong>patient</strong>s treated <strong>with</strong> imat<strong>in</strong>ib or <strong>in</strong>terferonalpha. Blood 2006; 107: 3339–41.15 Curt<strong>in</strong> NJ, Campbell PJ, Green AR. The <strong>Philadelphia</strong> translocationand pre-exist<strong>in</strong>g myeloproliferative disorders. Br J Haematol 2005;128: 734–36.16 Kralovics R, Teo SS, Li S, et al. Acquisition of the <strong>V617F</strong> <strong>mutation</strong>of <strong>JAK2</strong> is a late genetic event <strong>in</strong> a subset of <strong>patient</strong>s <strong>with</strong>myeloproliferative disorders. Blood 2006; 108: 1377–80.660 http://oncology.thelancet.com Vol 8 July 2007

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!