13.07.2015 Views

Ispitivanje hrapavosti površine glazirane Y-TZP zubne keramike ...

Ispitivanje hrapavosti površine glazirane Y-TZP zubne keramike ...

Ispitivanje hrapavosti površine glazirane Y-TZP zubne keramike ...

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

164Štefančić i sur.Površinska hrapavost <strong>zubne</strong> <strong>keramike</strong> Y–<strong>TZP</strong>hafnij – koji omogućuju zadržavanje kubične (i/ili djelomicetetragonalne) strukture na sobnoj temperaturi. Potvrđenoje da oksidi povoljno djeluju na mehanička svojstva i toY 2O 3, HfO 2, CeO 2, CaO, MgO, ErO 2, EuO 2, Gd 2O 3, Sc 2O 3,La 2O 3, i Yb 2O 3a Fe 2O 3i CuO (7,8). Tetragonalna cirkonijevaoksidna zubna keramika (Y–<strong>TZP</strong>), djelomice stabiliziranaitrijem, postala je popularna kao zamjenski materijal (metalnimlegurama) za izradu osnovne konstrukcije ili za monolitičkekonstrukcije izrađene uz pomoć tehnologije računalnogoblikovanja i izrade nadomjestaka (CAD/CAM) (9,10). Danasse cirkonijev oksid stabiliziran itrijem često primjenjujeu stomatologiji, posebice ako se sanira distalna regija zubnogniza. Ima izvrsna mehanička svojstva (čvrstoća i lomnažilavost). Također može transformirati male pukotine unutarmaterijala nastale zbog cikličkog naprezanja u materijalu ilikorozije u vlažnoj oralnoj sredini. Takve transformacije poznatesu u literaturi pod nazivom naprezanjem izazvana faza.Slina (sastavni dio vlažnog oralnog medija) može varirati količinom(kserostomija koja se ponekad, ako nema kompleksnijukliničku pozadinu, liječi konzumacijom kiselih otopinaili hipersalivacija) i / ili pH vrijednostima od 5,5 do 6,4.Ostali vanjski pasivni čimbenici su iatrogeni, poput konzumacijekiselih, lužnatih, vrućih napitaka i sl. Cirkonijev oksidnestabilan je već na temperaturi od 65°C.Plak, kao posljedica loše higijene, također može pridonijetikemijskoj degradaciji gradivnih materijala. Aktivni sudionicisu mišići. Stalnim radom potiču cikličko naprezanjematerijala preko posrednika, antagonista (prirodni zubi ilinadomjesci). Funkcija mišića može biti fiziološka, s napomenomda se zubi u danu dotaknu oko 2 000 puta i to oko 500puta noću dok se guta slina. Patološka funkcija očituje se pristiskanju i škripanju zuba (bruksizam i bruksomanija) (11).Glavni problem monolitičkih keramičkih nadomjestakajest postupak završne obrade <strong>površine</strong> – glaziranja ilipoliranja. Općenito, glaziranje je postupak koji smanjujeporoznost, smanjuje površinsku hrapavost, a poliranje je postupakkoji je pod kontrolom brzine okretaja rotirajućim instrumentom(13).Svrha ovog istraživanja bila je ispitati kemijsku stabilnost<strong>keramike</strong> Y–<strong>TZP</strong> u 4-postotnoj vodenoj otopini octene kiselinena 80 ° C i to 768 sati, mjerenjem parametara <strong>hrapavosti</strong><strong>površine</strong> prije i poslije korozije.Chevalier stated that in some zirconia based ceramics containingthe tetragonal phase, high fracture toughness is associatedwith ferroelastic domain switching. The additionof varying amounts of stabilizers allows the formation ofpartially or fully stabilized zirconia which, when combinedwith changes in processes, may result in ceramics with exceptionalproperties such as high flexural strength and fracturetoughness, high hardness, excellent chemical resistanceand good conductivity ions. Yttrium partially stabilized tetragonalzirconium (Y-<strong>TZP</strong>), has become popular as an alternativehigh-toughness dental material for solid core structure(bridge construction with or without attachment on theends) or monolithic crown produced by computer-aided design/computer-assistedmanufacture (CAD/CAM) (9, 10).Compared to other dental ceramics, Y-<strong>TZP</strong> ceramics havesuperior strength, fracture toughness, and damage tolerancedue to a stress-induced transformation toughening mechanism,which operates in this particular class of ceramics.Y-<strong>TZP</strong> ceramic material has been seen to possess ageingeffects, which is facilitated by physical and chemical factors.Exposure to chemical agents results in creating superficialmicro cracks. The changes also known as corrosion or chemicaldegradation depend on different values of pH in the oralmedia. Physical agents act under mechanical stress (musclefunction can be physiological and pathological), temperaturefluctuations (combining hot and cold food or beverages) orduring surface treatments of fixed partial denture (FPD).This is known as low temperature ageing (LTD) (11).The major problem with monolith all-ceramics is the finishingprocedure (techniques), which can be: glazing andhigh polishing. Generally, glazing is a procedure that increasesthe overall mechanical strength of all ceramics restorationswith a three-fold effect: reduces porosity, reduces the depthand/or sharpness of surface flaws, and blunts the flaw tips.Besides, the polishing process, under controlled speed, is amore commonly used surface finishing method and is thusrecommended in clinical settings where a less smooth surfacewould not cause major functional and/or aesthetic problems(13).The aim of this study was to investigate chemical stabilityof Y-<strong>TZP</strong> dental ceramics exposed to 4 % acetic acid at 80°C for 768 h by measuring surface roughness before and afterthe corrosion process.www.ascro.hrMaterijali i postupciIspitivanja su provedena na uzorcima cirkonij-oksidne<strong>zubne</strong> <strong>keramike</strong> stabilizirane itrijem (Y–<strong>TZP</strong>) tvorničkog nazivaBruxZir, s dodatkom pigmenta A 3 koji se odnosi na primjesuboje po VITA-ključu za odabir nijanse (14). BruxZir seproizvodi za kliničku uporabu i patentirani je proizvod GlidewellLaboratoriesa. Uzorci su sinterirani i polirani. Glazuraje standardna (glinična). Strojnim postupkom glodanja proizvođačje, koristeći se CAD/CAM tehnologijom, napraviopločice dimenzija 10 mm × 10 mm × 2 mm. Postupak sinteriranjaobavljen je prema standardima za uobičajenu proizvodnjukeramičkih nadomjestaka Glidewell Laboratoriesa.Uzorci su oprani destiliranom vodom u ultrazvučnoj kupeljiMaterials and methodsFive samples of Y-<strong>TZP</strong> material (BruxZir, Glidewell Laboratories)with the addition of pigment A3 were sintered,polished and glazed over the whole surface to imitate thefinishing process by producing monolithic crowns, accordingto the manufacturer’s instructions. A3 pigment refers tothe admixture of a colour that corresponds to the key of VI-TA classic guide (14). The glaze was feldspathic. The sampleswere made by the manufacturer, with dimensions of 10 × 10× 2 mm. Sintering procedure was carried out by the usualstandards of production of ceramic restorations by GlidewellLaboratories. Samples were washed in distilled water in an ultrasonicbath (UltraSonic Bath Model 1510 DTH, Electron


Štefančić et al.Surface Roughness Measurement after Corrosion of Y-<strong>TZP</strong> 165(Bransonic 220, Branson Cleaning Eqipment, Kanada) premastandardu ISO 3696, sušeni u sušioniku (Instrumentaria,Zagreb, Hrvatska) na sobnoj temperaturi te im je izmjerenaukupna površina u cm 2 . Masa uzoraka određena je na preciznojanalitičkoj vagi s točnošću mjerenja od 10 -5 g (Ohaus,Analytical plus, SAD). Za određivanje <strong>hrapavosti</strong> korišten jeuređaj profilometar (Perthometer S&P, Njemačka). Snimljenisu profili <strong>hrapavosti</strong> prije izlaganja agresivnom mediju (768sati) i nakon toga postupka. Iz snimljenih profila određeni susljedeći parametri: R a-srednja hrapavost, R max-maksimalna dubina<strong>hrapavosti</strong> i R z-prosječna maksimalna visina profila. Svakiuzorak prenesen je u polipropilensku (PP) epruvetu volumena13 mL, te im je dodano po 10 mL otopine korozivnogmedija tako da je uzorak bio posve okružen korozivnim medijem.Radi određivanja brzine korozije modificirana je standardnametoda produženjem vremenskog izlaganja uzoraka(768 sati) jer se htjelo ustanoviti prodiranje korozivnog medijau strukturu materijala. Rezultati su opisani deskriptivnomstatistikom i Mann-Whitneyevim testom, izračunom prosječnevrijednosti i standardnom pogreškom mjerenja.RezultatiZa ocjenu korozijske reaktivnosti uzoraka <strong>zubne</strong> <strong>keramike</strong>Y–<strong>TZP</strong> primijenjena je metoda praćenja promjene <strong>hrapavosti</strong><strong>površine</strong> kao posljedice djelovanja 4-postotne otopineoctene kiseline. Dijagrami profila <strong>hrapavosti</strong> pokazuju značajnijeveću dubinu prodiranja korozije (maksimalna dubina<strong>hrapavosti</strong>) s <strong>površine</strong> uzorka A3G u određenim područjimanakon izlaganja korozivnom mediju (slika 1.b) u usporedbis početnim stanjem <strong>površine</strong> uzorka A3G (slika 1.a). Toje vidljivo i u vrijednostima parametara <strong>hrapavosti</strong> (slike 2 –4.) te se iz dobivenih rezultata može uočiti da se vrijednostisvih parametara <strong>hrapavosti</strong>, na mikroljestvici za uzorak A3G,povećavaju nakon 768 sati izlaganja 4-postotnoj otopini octenekiseline. Dobivene su vrijednosti sljedećih parametara:R a, R maxi R z. prije korozije i poslije nje (slike 2 –2). Dobivenirezultati pokazuju da su nakon korozije znatno porasli svi izmjereniparametri u odnosu na početne vrijednosti. Gubitakmase nakon korozije iznosio je 2,45 mg/cm 2 ± 0,026.Microscopy Sciences, Hatfield, USA) (ISO 3696) and dried.After determining the mass of the samples with the accuracyof ±10 -5 g (analytic scale, Ohous, Analytical), each samplewas immersed in 10 ml of 4 wt. % CH 3COOH solution ina polypropilene bottle. The bottles were placed in a thermostaticshaker (Innova 4080 Incubator-shaker, Herisau, Switzerland)at 80 °C with 200 rpm for 768 hours. The reason forextending the time of corrosion was to determine whetherdeeper penetration of corrosive agents in the structure of theY-<strong>TZP</strong> would occur. The roughness of each sample was measuredin tree spots by means of Perthometer S&P 4.5 (FeinprutPerthen GmbH, GOETTINGEN, Deutschland). Theroughness was measured five times before and after immersion.The research was done according to ISO 6872 protocol(International Organization for Standardization. ISO 6872:2008.: Dentistry-ceramic materials). The results were describedby descriptive statistics and Mann-Whitney test. Themean (average value) and standard error of measurements(SEM) for all the roughness parameters are presented.ResultsTo assess the corrosion reactivity of Y-<strong>TZP</strong> dental ceramicssamples, the method of monitoring changes in surfaceroughness as a consequence of 4% solution of acetic acidis used. Diagrams of the roughness profile of glazed Y-<strong>TZP</strong>dental ceramics before and after exposure to corrosive environmentof 4 wt. % CH 3COOH aqueous solution are shownin Figure 1. Diagrams of the roughness profile show higherpenetration depth in all surface areas after exposure to 4 wt.% CH 3COOH aqueous solution (Figure 1 B) compared tothe starting condition (Figure 1A). The resulting values offollowing roughness parameters: arithmetic mean deviation(R a), average maximum height of the profile (R z) and maximumroughness depth (R max) before and after immersion in 4wt. % CH 3COOH aqueous solution are presented in Figures2-4, respectively. The obtained results show that all measuredroughness parameters have significantly increased after immersionin 4 wt. % CH 3COOH aqueous solution comparedto the initial values. Weight loss, after immersion in 10 ml of4 wt. % CH 3COOH at 80 °C for 768 hours, of investigateddental ceramics samples was 2.45 mg/cm 2 ± 0.026.Slika 1. A: Profil <strong>hrapavosti</strong> <strong>zubne</strong><strong>keramike</strong> uzorka A3Gprije izlaganja 4-postotnojotopini octene kiseline;B: Profil <strong>hrapavosti</strong> <strong>zubne</strong><strong>keramike</strong> uzorka A3Gposlije izlaganja 4-postotnojotopini octene kiselineFigure 1 The roughness profileof glazed Y-<strong>TZP</strong> dentalceramics sample before (A)and after (B) immersion in4 wt. % CH 3COOH aqueoussolution.www.ascro.hr


166Štefančić i sur.Površinska hrapavost <strong>zubne</strong> <strong>keramike</strong> Y–<strong>TZP</strong>PRIJE KOROZIJEPOSLIJE KOROZIJEPRIJE KOROZIJEPOSLIJE KOROZIJER max , µm25201510501.365PRIJE KOROZIJEBefore corrosion23.64POSLIJE KOROZIJEAfter corrosionSlika 2. Vrijednosti u odstupanju od aritmetičke sredine (R a)<strong>glazirane</strong> <strong>zubne</strong> <strong>keramike</strong> Y–<strong>TZP</strong> u uzorku prije i poslijekorozije u 4-postotnoj otopini octene kiselineFigure 2 Values (mean±SEM) of the arithmetic mean deviation (R a)of glazed Y-<strong>TZP</strong> dental ceramics sample before and aftercorrosion in 4 wt. % CH 3COOH aqueous solution.Slika 3. Vrijednosti u odstupanju od aritmetičke sredine (R z)<strong>glazirane</strong> <strong>zubne</strong> <strong>keramike</strong> Y–<strong>TZP</strong> u uzorku prije i poslijekorozije u 4-postotnoj otopini octene kiselineFigure 3 Values (mean±SEM) of the average maximum height tof the profile (R z) of glazed Y-<strong>TZP</strong> dental ceramics samplebefore and after corrosion in 4 wt. % CH 3COOH aqueoussolution.Slika 4. Vrijednosti u odstupanju od aritmetičke sredine (R max)<strong>glazirane</strong> <strong>zubne</strong> <strong>keramike</strong> Y–<strong>TZP</strong> u uzorku prije i poslijekorozije u 4-postotnoj otopini octene kiselineFigure 4 Values of the maximum roughness depth (R max) of glazedyttria partially tetragonal zirconia (Y-<strong>TZP</strong>) dental ceramicssample before and after corrosion in 4 wt. % CH 3COOHaqueous solution.www.ascro.hrRaspravaKemijska degradacija materijala jest promjena strukturematerijala uvjetovana okolišem, što mu može promijenitisvojstava. Degradacija se također može shvatiti kao processtarenja materijala jer je uvjetovana vremenom. U tom vremenurazličiti mehanizmi (kemijski i fizikalni) djeluju paralelno,brže ili sporije. U ovom je radu za ocjenu korozijskogponašanja cirkonij-oksidne <strong>keramike</strong> primijenjena metodapraćenja promjene <strong>hrapavosti</strong> <strong>površine</strong> kao posljedice djelovanjaagresivnog medija. Mehanizam odgovoran za korozijskeprocese izlučivanja iona jest kongruentno otapanje uzjednostavnu disocijaciju.Y–<strong>TZP</strong> je monolitički keramički materijal za dentalnuuporabu. Izvorno je namijenjen za osiguranje dugotrajnog iestetski prihvatljivog terapijskog rješenja koje bi zamijenilometalnu konstrukciju, pogotovo za stražnje dijelove zubnogniza i u ograničenim interokluzijskim prostorima.Transformacija u strukturi <strong>keramike</strong> Y–<strong>TZP</strong> događa sezbog naprezanja u materijalu. No, vodeni medij također pridonosipromjeni strukture. Kobayashiet je 1981. godine (15)prvi zapazio da transformaciju može potaknuti i niska temperaturau vlažnom okolišu.Milleding je ustvrdio da se hrapavost <strong>površine</strong> tradicionalneleucitne <strong>keramike</strong> povećava u odnosu na početne uvjetenakon 18 sati izlaganja 4-postotnoj octenoj kiselini na 80° C (16).DiscussionChemical degradation of materials is changing the structureof the material, caused by the environment which canlead to changes in properties of the material. Degradationcan also be seen as a process of material aging, because it isdetermined by time. During that time, different mechanisms(chemical and physical) act simultaneously, at a faster or aslower pace. In this study, to assess the corrosion of behaviourof zirconium, the method of monitoring changes in surfaceroughness as a result of the aggressive media was used.The mechanism responsible for the corrosion processes elutionis congruent melting with simple dissociation.Solid Y-<strong>TZP</strong> is a monolithic material for dental applications.The material was originally intended to provide a durable,more aesthetic alternative to posterior porcelain fusedto metal restorations or cast gold restorations for demandingsituations such as bruxers and areas with limited occlusalspace.The transformation in the structure of the Y-<strong>TZP</strong> occursdue to stress in the material; however, an aqueous mediumalso contributes to the change.In 1981, Kobayashiet (15) first noticed that the t-mtransformation can also be initiated by ageing at low temperaturein humid environment. It is important to understandthe interaction of water vapour or some solid saliva with thenatural defects of the material. One simple way to study this


Štefančić et al.Surface Roughness Measurement after Corrosion of Y-<strong>TZP</strong> 167Jakovac i suradnici (17) proučavali su brzinu korozije<strong>zubne</strong> silikatne <strong>keramike</strong>. <strong>Ispitivanje</strong> je provedeno mjerenjemkoličine izlučenih iona Na + , K + , Mg 2+ , Si 4+ i Al 3+ iz zubnihgliničnih keramika (kalijev aluminosilikat KAlSi 3O 8) istaklokeramičkih materijala (apatitne i litij- disilikatne <strong>keramike</strong>)nakon 16 sati izloženosti otopini octene kiseline. Zbognedostatka staklene matrice, polikristalinične oksidne <strong>keramike</strong>pokazuju bolju kemijsku stabilnost nego silikatne.Kukuattakoon je obavio istraživanje slično našem na silikatnimkeramikama i u upola kraćem vremenu (18) te jedobio veliko povećanje parametara <strong>hrapavosti</strong> i značajnu količinuizlučenih alkalnih iona na uzorcima fluoroapatitnihkeramika.Asai je zaključio kako nema značajne razlike u mjerenjusavojne čvrstoće između poliranih i glaziranih skupina uzorakarazličitih silikatnih keramika. Ti rezultati podudaraju se sranijim studijama u kojima glazura nadomjeska nije poboljšalačvrstoću keramičkih materijala (19).Anusavice navodi da je gubitak mase kod triju različitihstaklokeramičkih sustava mjeren pri pH-vrijednostima od 1,9 i 11, bio najviši kod pH-vrijednosti 11 (20).U ovom radu izmjeren je gubitak mase od 2,45 ± 0,026mg/cm 2 i to se može pripisati otapanju glazure.Mehulić uspoređuje hrapavost <strong>površine</strong> <strong>glazirane</strong> i ne<strong>glazirane</strong>glinične <strong>keramike</strong> nakon izlaganja korozivnom medijukoristeći se mikroskopom atomarnih sila (AFM-a) i ističe daje površina <strong>glazirane</strong> <strong>keramike</strong> u odnosu na neglaziranu znatnopostojanija u korozivnom mediju. Vrijednosti površinske<strong>hrapavosti</strong> ispitivane <strong>keramike</strong> visoke su i značajno varirajuza različite načine obrade <strong>površine</strong>. Glazirana površina glinične<strong>keramike</strong> znatno je manje hrapava nego neglazirana. Uusporedbi s glaziranjem, poliranje ne<strong>glazirane</strong> <strong>površine</strong> nijesmanjilo hrapavost do zadovoljavajuće razine (21,22).ZaključakPovršinska hrapavost <strong>glazirane</strong> Y–<strong>TZP</strong> <strong>keramike</strong> značajnose povećala nakon izlaganja 4-postotnoj vodenoj otopinioctene kiseline. Ta promjena u vrlo kiselim uvjetima u usnojšupljini može nepovoljno utjecati na antagonistički zub ilinadomjestak.is by producing artificial changes in the ceramics by exposingit to water or to an acidic environment, both of whichstrongly affect the stability of the surface area.Milleding found that traditional leucite-containing porcelainsdisplayed an increase in surface roughness comparedto baseline conditions when kept in 4% acetic acid at 80°Cfor 18 h (16). Jakovac et al. found that the highest leachingof the ions was shown for the feldspathic ceramics and thelowest for the glass ceramics specimens (17).Our samples were exposed about three and a half timeslonger to acidic medium, as opposed to Kukiattrakoon’s fluorapatite–leuciteporcelain. It exhibits significant leaching ofvarious ions to varying degrees and an increase in roughnessafter being immersed in acidic agents (18).Asai found no significant differences in compressive fracturestrengths between the overglazed and polished groups.These results correspond to previous studies where glazingdid not improve the strength of ceramic materials (19).Anusavice found that weight loss for the three glass-ceramicsystems was highest in pH 11 buffer solution, whichrepresents an unlikely in vivo environment (20).We found that weight loss of 2.45 mg/cm 2 ± 0.026 couldbe ascribed to the dissolution of glaze. Mehulić found thatthe pre- and post-corrosion AFM images of the surfaces ofthe feldspathic ceramics samples clearly showed that theglazed surfaces are much less prone to deterioration by corrosionthan the unglazed ones (21, 22).ConclusionDue to the corrosion of the glazed Y-<strong>TZP</strong> ceramics afterexposure to 4 wt. % CH 3COOH aqueous solution, allmeasured surface roughness parameters have increased. Theobtained measurements of weight loss indicate that the depositedglaze on Y-<strong>TZP</strong> ceramics surface dissolves due to thecorrosion process in the investigated media. This change, inhighly acidic conditions in the oral cavity may be unfavourablefor antagonistic wear. Because of the lack of glass matrix,polycrystalline oxide ceramics show better chemical stabilitythan feldsphatic and glass ceramics.ZahvaleRad je pripremljen u sklopu znanstveno-istraživačkihprojekata Istraživanje keramičkih materijala i alergija u stomatološkojprotetici (065-0650446-0435) i Istraživanje strukturei svojstava tehničke <strong>keramike</strong> i keramičkih prevlaka (120-1201833-1789) koje je financiralo Ministarstvo znanosti,obrazovanja i sporta Republike Hrvatske.Posebno zahvaljujemo dr. Josefu Rothautu iz BruxZirGlidewell Laboratoriesa na donaciji uzoraka <strong>keramike</strong>.Acknowledgements:The presented research results were achieved within thescientific project “Research of ceramic materials and allergiesin prosthodontics” (065-0650446-0435) and “Structureand properties of engineering ceramics and ceramic coatings”(120-1201833-1789) supported by the Croatian Ministry ofScience, Education and Sports.We thank Josef Rothaut from BruxZir, Glidewell Laboratoriesfor providing dental ceramics samples.www.ascro.hr

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!