13.07.2015 Views

Effect of ultrasound application on fat mobilization - Narl-Lipo.Com

Effect of ultrasound application on fat mobilization - Narl-Lipo.Com

Effect of ultrasound application on fat mobilization - Narl-Lipo.Com

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Pathophysiology 9 (2002) 13/19www.elsevier.com/locate/pathophys<str<strong>on</strong>g>Effect</str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> <strong>fat</strong> mobilizati<strong>on</strong>Hirohide Miwa a , Masato Kino a , Li-Kun Han b , Kunihiro Takaoka c ,Takahiro Tsujita c , Hiroshi Furuhata d , Masahiro Sugiyama e , Hiromasa Seno f ,Yusuke Morita f , Yoshiyuki Kimura g , Hiromichi Okuda b, *a Miwa Science Laboratory Inc., 6-7-10 Miyazaki, Miyamae-ku, Kawasaki, Kanagawa 216-0033, Japanb Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Envir<strong>on</strong>mental and Symbiotic Sciences, Prefectural University <str<strong>on</strong>g>of</str<strong>on</strong>g> Kumamoto,Tsukide 3-1-100, Kumamoto 862/8502, Japanc Central Research Laboratory, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Ehime University, Shigenobu-cho, Onsen-gun, Ehime 791-0295, Japand Medical Electr<strong>on</strong>ics Laboratory, Jikei Medical College, Minato-ku, Nishishinbashi, Tokyo 105-8461, Japane Laboratory <str<strong>on</strong>g>of</str<strong>on</strong>g> Exercise Physiology, Faculty <str<strong>on</strong>g>of</str<strong>on</strong>g> Educati<strong>on</strong>, Ehime University, Bunkyou-cho, Matsuyama, Ehime 790-0855, Japanf Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Physiology, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Tokushima University, Kuramoto-cho, Tokushima 770-8503, Japang Sec<strong>on</strong>d Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Medical Biochemistry, School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, Ehime University, Shigenobu-cho, Onsen-gun, Ehime 791-0295, JapanReceived 25 December 2000; received in revised form 22 February 2001; accepted 8 March 2001AbstractThe aim <str<strong>on</strong>g>of</str<strong>on</strong>g> this experimental trial was to study the effect <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <strong>on</strong> the lipolysis in adipose tissue. Rats wereadministered to pentobarbital (Nembutal) anesthesia and their abdomens were shaved. Rat abdomen was subjected to 24 kHz/1MHz <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> for 10 min to investigate frequency and power-intensity dependency for <strong>fat</strong> mobilizati<strong>on</strong>. Blood was taken from thetail vein to estimate plasma free <strong>fat</strong>ty acids (FFA). For frequency dependency two regi<strong>on</strong>s around 100 kHz and 300/500 kHz wereeffective for <strong>fat</strong> mobilizati<strong>on</strong>. For power-intensity dependency, effective regi<strong>on</strong>s were found to be from 24 to 1090 kHz. In theeffective regi<strong>on</strong>s <strong>on</strong> frequency and power-intensity, <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> caused increases in plasma FFA and norepinephrinec<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> extra-cellular fluid <str<strong>on</strong>g>of</str<strong>on</strong>g> perirenal adipose tissue. These results suggest that <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> stimulates <strong>fat</strong>mobilizati<strong>on</strong> through a local increase in norepinephrine secreti<strong>on</strong> under the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> effective frequency and intensity. # 2002Elsevier Science Ireland Ltd. All rights reserved.Keywords: Ultrasound frequency; Power-intensity; Fat mobilizati<strong>on</strong>1. Introducti<strong>on</strong>It is well known that obesity predisposes to thedevelopment <str<strong>on</strong>g>of</str<strong>on</strong>g> chr<strong>on</strong>ic illness such as n<strong>on</strong>-insulindependent diabetes mellitus (NIDDM), hypertensi<strong>on</strong>,hyperlipidemia, cor<strong>on</strong>ary heart diseases and arteriosclerosis.Tokunaga et al. [1] classified obesity into twotype, a visceral type and a subcutaneous type, usingcomputed tomography (CT). They measured areas <str<strong>on</strong>g>of</str<strong>on</strong>g>visceral <strong>fat</strong> tissue and subcutaneous <strong>fat</strong> tissue <strong>on</strong> an axialCT secti<strong>on</strong> at the level <str<strong>on</strong>g>of</str<strong>on</strong>g> the umbilicus and calculatedthe ratio <str<strong>on</strong>g>of</str<strong>on</strong>g> visceral <strong>fat</strong> area to subcutaneous <strong>fat</strong> area.Recently, Tadokoro et al. [2] reported that the amount* Corresp<strong>on</strong>ding author. Tel.: /81-96-383-2929; fax: /81-96-384-6765E-mail addresses: okuda@pu-Kumamoto.ac.jp;okuda2001@hotmail.com. (H. Okuda).<str<strong>on</strong>g>of</str<strong>on</strong>g> visceral and subcutaneous <strong>fat</strong>ty tissues <str<strong>on</strong>g>of</str<strong>on</strong>g> obesesubjects was measured using ultras<strong>on</strong>ography, andthat preperit<strong>on</strong>eal and subcutaneous <strong>fat</strong> thickness hadpositive correlati<strong>on</strong>s with serum total cholesterol andLDL-cholesterol and a negative correlati<strong>on</strong> with serumHDL-cholesterol. Total body multi-slices magneticres<strong>on</strong>ance imaging (MRI) also gives valid estimates <str<strong>on</strong>g>of</str<strong>on</strong>g>the amount and distributi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> body <strong>fat</strong> [3]. Thus, CT,MRI and ultras<strong>on</strong>ography are used as the n<strong>on</strong>-invasivediagnosis <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity. There are a number <str<strong>on</strong>g>of</str<strong>on</strong>g> reports thatthe development <str<strong>on</strong>g>of</str<strong>on</strong>g> obesity is prevented by the inhibiti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> dietary <strong>fat</strong> absorpti<strong>on</strong> from small intestine, theenhancement <str<strong>on</strong>g>of</str<strong>on</strong>g> lipolysis in adipose tissue and exerciseetc. [4/7]. We previously reported that chitin-chitosan[6], caffeine and sap<strong>on</strong>ins <str<strong>on</strong>g>of</str<strong>on</strong>g> ool<strong>on</strong>g tea [7] and sap<strong>on</strong>ins<str<strong>on</strong>g>of</str<strong>on</strong>g> Platycodi radix [8] prevented the high-<strong>fat</strong> diet-inducedobesity mice through the inhibiti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> dietary <strong>fat</strong>absorpti<strong>on</strong> from small intestine and the enhancement0928-4680/02/$ - see fr<strong>on</strong>t matter # 2002 Elsevier Science Ireland Ltd. All rights reserved.PII: S 0 9 2 8 - 4 6 8 0 ( 0 2 ) 0 0 0 1 7 - 2


14H. Miwa et al. / Pathophysiology 9 (2002) 13/19<str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrine-induced lipolysis in <strong>fat</strong> cells. The<str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> machine is mainly used asthe diagnostic machine, but it has not been used astherapeutic machine for obesity. It is well known thatcatecholamines such as epinephrine and norepinephrinestimulate lipolysis in <strong>fat</strong> cells. Thus, hydrolysis <str<strong>on</strong>g>of</str<strong>on</strong>g>triglyceride in <strong>fat</strong> cells and the successive <strong>fat</strong> mobilizati<strong>on</strong>stimulated by catecholamines are essential forreducti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> stored triglyceride in adipose tissues, andc<strong>on</strong>sequently obesity should be improved. Therefore, wespeculate that <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> stimulateslipolysis in adipose tissue through increase in secreti<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrine from sympathetic nerve and the partirradiated by <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency may be causedlipolysis, and c<strong>on</strong>sequently the irradiated part <str<strong>on</strong>g>of</str<strong>on</strong>g> bodymay be thinned. To clarify whether or not irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> to rat abdominal area caused <strong>fat</strong> mobilizati<strong>on</strong>,we examine the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma Free FattyAcids (FFA), epinephrine and norepinephrine, and thesecreti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrine from sympathetic nerve inperipheral adipose tissues after <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>under the various c<strong>on</strong>diti<strong>on</strong>s (bathing at 36 8C water <str<strong>on</strong>g>of</str<strong>on</strong>g>rat and irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency).2. Materials and methods2.1. AnimalsYoung male Crj: Wistar rats, weighing between 175and 260 g, were given a standard laboratory diet(Oriental Yeast, Tokyo, Japan) and water ad libitum.They were cared for in the Laboratory Animal Center atEhime University. In the experiments <strong>on</strong> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g><str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> (likewise throughout), rats were administeredgeneral anesthesia with nembutal and theirabdominal hair was removed. NEFA C test kitspurchased from Wako Pure Chemical Industries.(Osaka, Japan). Other chemicals were <str<strong>on</strong>g>of</str<strong>on</strong>g> reagent grade.Injecti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> pentobarbital sodium (Nembutal) wasobtained from Dainipp<strong>on</strong> Pharmacy Co. Ltd. (Osaka,Japan).2.2. C<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>Specificati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> the transducers are listed in Table 1.Sound field <str<strong>on</strong>g>of</str<strong>on</strong>g> a disc transducer extends a cylinder-likenear-field and adjacent c<strong>on</strong>e-like far-field. In the nearfield, the sound field is very locally irregular, and showsa speckle-like pattern <str<strong>on</strong>g>of</str<strong>on</strong>g> intensity distributi<strong>on</strong>. In the farfield, the sound field is uniform. Around the transiti<strong>on</strong>area from the near field to far field, sound intensityreaches maximum and is called as ‘Last maximum’. Itsdistance ‘R’ from the transducer (TD) is given by thefollowing equati<strong>on</strong>, and listed in Table 1.R last max: D2D : a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> the transducer;4ll : a wave lengthAll <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> should be made in this farfield, and the effective area <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> should begreater than the abdominal area. The actual irradiati<strong>on</strong>distance from the TD are also listed in Table 1.Ultrasound <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> was performed in a water bathmeasuring 750 mm (width)/450 mm (depth)/450 mm(height), and the inner wall side was covered with n<strong>on</strong>reflectingsheet (Fig. 1). Its reflecting coefficient at a 458incident angle was 6/29% in 100 kHz/1 MHz and /70% in 24/36 kHz. Furthermore, an oblique sound patharrangement to the wall and free water surface as shownin Fig. 1 was employed to eliminate error from interferencewith the reflected waves. Sound intensity wasmeasured by a lead zircotitanate sound pressure sensor(0.5/10 mm). Its output (in mv) is proporti<strong>on</strong>al to thesquare root <str<strong>on</strong>g>of</str<strong>on</strong>g> the power density or intensity: W/cm 2 .The proporti<strong>on</strong>al c<strong>on</strong>stant was determined by the totalwatt meter, the revised UPM-DT-1 (Ohmic InstrumentsCo, USA) <str<strong>on</strong>g>of</str<strong>on</strong>g> which assures the accuracy in frequencyranges over 100 kHz is guaranteed. A pressure distributi<strong>on</strong>was measured at a distance in far field, and itsreadings are squared and integrated over the wholebeam cross secti<strong>on</strong>al area at the distance and comparedwith the measured total watt. Thus, the proporti<strong>on</strong>alc<strong>on</strong>stant was determined. Finally, a calibrati<strong>on</strong> curvebetween sensor reading (mv) and mW/cm 2 was obtainedin wide frequency range <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 kHz-1 MHz and usedthroughout this experiment. However, the calibrati<strong>on</strong> inthe range <str<strong>on</strong>g>of</str<strong>on</strong>g> 24 and 36 kHz might be ambiguous,because the accuracy <str<strong>on</strong>g>of</str<strong>on</strong>g> the Watt meter is not assuredin these frequency ranges, and wall reflecti<strong>on</strong> stillremains in the bath.2.3. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> rat plasma FFA, epinephrine andnorepinephrine after irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> various <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>frequency to ratsRats were washed with a detergent to allow formaximum c<strong>on</strong>tact <str<strong>on</strong>g>of</str<strong>on</strong>g> water and fur, and to remove airbubbles. Then the rat was inserted into a rat holder andimmersed in 36 8C water which was previously boiled toexpel air. Various <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency shown in Table1 was irradiated for 10 min. A 0.2 ml <str<strong>on</strong>g>of</str<strong>on</strong>g> blood weretaken from the rat tail vein for estimati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmaFFA before <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> and 10 min after theend <str<strong>on</strong>g>of</str<strong>on</strong>g> the <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>. Plasma FFA was measured usingNEFA C test kits. Moreover, whole blood was taken toestimate plasma epinephrine and norepinephrine fromvenus puncture <str<strong>on</strong>g>of</str<strong>on</strong>g> rats after <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>under various c<strong>on</strong>diti<strong>on</strong>s, and then blood was chilledin ice-cold tube c<strong>on</strong>taining 200 mM EDTA soluti<strong>on</strong> (50


H. Miwa et al. / Pathophysiology 9 (2002) 13/19 15Table 1Transducers (TD) and their specificatiosnsTD frequency (kHz) 24.1 37.0 91.1 162.0 311.1 411.5 517.0 616.5 723.0 820.0 1090.0Wave length 62.5 41.7 14.5 9.5 4.8 3.6 2.9 2.4 2.1 1.8 1.4TD type L L L C C C C C C C CTD diameter (mm) (f) 45 45 15 45 50 50 50 50 50 50 20Window diameter (mm) 60 60 60 60 60 60 60 60 60 60 20Meterial Thickness (mm) s.s. 3 s.s. 3 s.s. 0.5 s.s. 3 C C C C C C Ta.Last max (mm) 14 23 62 95 130 174 216 260 298 347 71Ultrasound <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g> dist (mm) 54 64 66 104 160 200 250 275 300 350 256L, langevin; C, ceramic; s.s. stainless steel, Ta., Tantalum.ml) and centrifuged at 4 8C togive plasma. The plasma(1 ml) was treated by adding 2.5% perchloric acid(PCA), and then the PCA-soluble fracti<strong>on</strong> was analyzedusing catecholamine analyzer (HLC-825CA, ToyosozaIndustry Co. Ltd., Tokyo, Japan) and the c<strong>on</strong>tents <str<strong>on</strong>g>of</str<strong>on</strong>g>plasma epinephrine and norepinephrine were measured.collected dialysate was applied to the pre and analyticalcolumns to determine the norepinephrine c<strong>on</strong>centrati<strong>on</strong>.Microdialysate norepinephrine c<strong>on</strong>centrati<strong>on</strong> was correctedfor its diluti<strong>on</strong>. Ultrasound was applied to theabdomen <str<strong>on</strong>g>of</str<strong>on</strong>g> rat for 10 min under the c<strong>on</strong>diti<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> 517kHz and 100 mW/cm 2 .2.4. Determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> epinephrine and norepinephrinesecreted from sympathetic nerve in peripheral adiposetissue using microdialysis procedureMicrodialysis and norepinephrine determinati<strong>on</strong> inthe dialysate were carried out with DAA 300 microdialysis-liquidchromatography with electrochemicaldetector (EICOM Ltd., Kyoto, Japan). For microdialysis,OP-100-01 probe was used. The polycarb<strong>on</strong>atedialysis membrane <str<strong>on</strong>g>of</str<strong>on</strong>g> this probe has a length <str<strong>on</strong>g>of</str<strong>on</strong>g> 10 minand a diameter <str<strong>on</strong>g>of</str<strong>on</strong>g> 0.2 mm. The microdialysis probe wasinserted into left perirenal adipose tissue <str<strong>on</strong>g>of</str<strong>on</strong>g> rats undergeneral anesthesia with nembutal through a guidecannula and c<strong>on</strong>tinuously perfused with Ringer’s soluti<strong>on</strong>at a flow rate <str<strong>on</strong>g>of</str<strong>on</strong>g> 2 ml/min using ESP32 microinjecti<strong>on</strong>pump. Dialysate volume <str<strong>on</strong>g>of</str<strong>on</strong>g> 30 ml (sampling time 15min) were collected in microvials. Ten microliter <str<strong>on</strong>g>of</str<strong>on</strong>g> the2.5. Preliminary clinical studyThirteen adult men were divided into three groupsand performed under the c<strong>on</strong>diti<strong>on</strong>s as follows; A group(five men): 10 min irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 MHz frequency and10 min walking, B group (five men): 10 min irradiati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> 500 kHz frequency and 10 min walking, and C group(three men): 10 min walking without irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency. Walking speed with a treadmillwas determined to be 100 m/min. The irradiati<strong>on</strong> andwalking were performed <strong>on</strong>ce a day for 10 days. The site<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> was the inner thigh <str<strong>on</strong>g>of</str<strong>on</strong>g> the rightleg with the left side being used as the c<strong>on</strong>trol side. Afterthe period <str<strong>on</strong>g>of</str<strong>on</strong>g> walking and <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>, thesubcutaneous <strong>fat</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> right and left thighs weremeasured using ultras<strong>on</strong>ography (SSD 500B, AlokaCo., Tokyo, Japan) (Fig. 2).Fig. 1. Water bath for <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>.


16H. Miwa et al. / Pathophysiology 9 (2002) 13/19Fig. 2. Measurement <str<strong>on</strong>g>of</str<strong>on</strong>g> subcutaneous <strong>fat</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> thigh in human.2.6. Statistical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> dataValues are expressed as mean9/standard deviati<strong>on</strong>(S.D.). Student’s t-test was used to determine thesignificance <str<strong>on</strong>g>of</str<strong>on</strong>g> differences. A P value <str<strong>on</strong>g>of</str<strong>on</strong>g> B/0.05 wasc<strong>on</strong>sidered statistically significant.3. Results3.1. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bathing in 36 8C water <strong>on</strong> the changes <str<strong>on</strong>g>of</str<strong>on</strong>g>plasma FFA level with or without <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>under pentobarbital-treated anesthetized ratsAnesthetized rats with pentobarbital (Nembutal)(c<strong>on</strong>trol groups) were bathed in 36 8C water for 10min without <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <str<strong>on</strong>g>applicati<strong>on</strong></str<strong>on</strong>g>. Plasma FFA levels<str<strong>on</strong>g>of</str<strong>on</strong>g> rats were slightly increased by bathing for 10 min(Fig. 3). It seems likely that the elevati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma FFArats may be caused by stress during bathing at 36 8C for10 min. However, irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency(500 kHz and 100 mW/cm 2 ) in bathing rats wasincreased plasma FFA more than those <str<strong>on</strong>g>of</str<strong>on</strong>g> bathing rats(Fig. 3).3.2. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> various frequency or intensity <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> <strong>on</strong> the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma FFA level underpentobarbital-treated anesthetized ratsAs shown in Figs. 4 and 5, the increases <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>frequency (kHz) and intensity (mW/cm 2 ) significantlycaused the elevati<strong>on</strong>s <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma FFA in <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>irradiated-rats, <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequent- or intensive-dependently.Maximum level for <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> usedin this study was c<strong>on</strong>fined under 1 W/cm 2 , which is theFig. 3. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> bathing in 36 8C water <strong>on</strong> the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> plasmaFFA level with or without <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> under Nembutaltreatedanesthetized rats. k, C<strong>on</strong>trol group (bathing). m, Ultrasoundirradiati<strong>on</strong> (526 kHz 110 mW/cm 2 ). *, P B/0.05, vs. c<strong>on</strong>trol group.maximum level for <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> diagnosis recommendedby WFUMB and FDA <str<strong>on</strong>g>of</str<strong>on</strong>g> the USA, even though ahigher level than 1 W/cm 2 can be used for treatment <str<strong>on</strong>g>of</str<strong>on</strong>g>ill patients under strict administrati<strong>on</strong> by a medicaldoctor. From these results, the irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 300/500kHz <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency and 100/500 mW/cm 2 <str<strong>on</strong>g>of</str<strong>on</strong>g><str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> intensity was selected and used. Next, weexamined the effects <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> with theabove c<strong>on</strong>diti<strong>on</strong>s <strong>on</strong> the changes <str<strong>on</strong>g>of</str<strong>on</strong>g> rat plasma catecholaminelevels after <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> for 10 min.The levels <str<strong>on</strong>g>of</str<strong>on</strong>g> plasma epinephrine and norepinephrinehad no effect after <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> to rats (datanot shown). Ultrasound frequency irradiati<strong>on</strong> at 500KHz and 100 mW/cm 2 was reached at 320 mm deep andpermeated through rat body. However, liver and kidneyinjuries and hemolysis did not cause under this c<strong>on</strong>diti<strong>on</strong>from the results <str<strong>on</strong>g>of</str<strong>on</strong>g> biochemical analysis <str<strong>on</strong>g>of</str<strong>on</strong>g> rat blood(data not shown). In additi<strong>on</strong>, when adipose and muscletissues isolated from rat were directly irradiated by the<str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency at 500 KHz and 100 mW/cm 2 , therelease <str<strong>on</strong>g>of</str<strong>on</strong>g> lactate dehydrogenase (LDH) was not caused,(data not shown). These results suggest that the irradiati<strong>on</strong><str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> frequency at 500 KHz and 100 mW/cm 2 did not cause the destructi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> adipose and muscletissues.


18H. Miwa et al. / Pathophysiology 9 (2002) 13/19Based <strong>on</strong> these results, next, we examined the effects<str<strong>on</strong>g>of</str<strong>on</strong>g> the combinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> andexercise <strong>on</strong> the subcutaneous <strong>fat</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> thighs inhuman. Adult men were divided into three groups;[group A] 10 min irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 1 MHz frequency and 10min walking, [group B] 10 min irradiati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> 500 kHzfrequency and 10 min walking, and [group C] 10 minwalking without <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>. The irradiati<strong>on</strong>and walking were carried out <strong>on</strong>ce a day for 10 days.The site <str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> was the inner thigh <str<strong>on</strong>g>of</str<strong>on</strong>g>the right leg with the left side being used as c<strong>on</strong>trol side.We found that the subcutaneous <strong>fat</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> theirradiated (right) thighs significantly decreased comparedwith that <str<strong>on</strong>g>of</str<strong>on</strong>g> the n<strong>on</strong>-irradiated (left) thighs afterirradiati<strong>on</strong> (Table 2). Body weight between before andafter exercise and <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> was notchanged (data not shown).Experiments are now in progress to increase theclinical experimental data and to clarify the mechanism<str<strong>on</strong>g>of</str<strong>on</strong>g> <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>-induced secreti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> norepinephrinefrom the sympathetic nerves.Fig. 6. <str<strong>on</strong>g>Effect</str<strong>on</strong>g>s <str<strong>on</strong>g>of</str<strong>on</strong>g> ultras<strong>on</strong>ic irradiati<strong>on</strong> <strong>on</strong> norepinephrine c<strong>on</strong>centrati<strong>on</strong>in extracellular fluid <str<strong>on</strong>g>of</str<strong>on</strong>g> rat perirenal adipose tissue. Ultrasoundirradiated at 517 kHz and 100 mW/mc 2 . *, P B/0.05, vs. beforeirradiati<strong>on</strong>.Table 2<strong>Com</strong>parisi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the difference <str<strong>on</strong>g>of</str<strong>on</strong>g> subcutaneous <strong>fat</strong> thickness inultasound irradiated legs with that <str<strong>on</strong>g>of</str<strong>on</strong>g> n<strong>on</strong>-irradiated legsUltrasound irradiati<strong>on</strong>Mean difference (mm) aC<strong>on</strong>trol (n<strong>on</strong>-irradiated left leg) 0.3690.51500 kHz 500 mW/cm 2 2.0290.51 b1 M kHz 500 mW/cm 2 2.7990.85 ba The mean difference <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fat</strong> thickness <str<strong>on</strong>g>of</str<strong>on</strong>g> legs was determined by thedifferences before and after the exericse with or without <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>irradiati<strong>on</strong>. Values are expressed as mean9S.D.b P B0.05, vs. c<strong>on</strong>trol group.AcknowledgementsAuthors sincerely thanks to Sigemasa Hosoki, Presidentand Sumi Ikemoto, Adviser <str<strong>on</strong>g>of</str<strong>on</strong>g> Nido Internati<strong>on</strong>alCo. Ltd. for the financial support in early stage andanother corporati<strong>on</strong> for the financial support in laterstage. Authors also appreciate Toshiaki Miyamoto,executive director, and Hideo Kohsaka, H<strong>on</strong>da Electr<strong>on</strong>icsCo. Ltd. for developing specific <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> equipment.Thanks are also given to Dr Atsuko Sasaki,Department <str<strong>on</strong>g>of</str<strong>on</strong>g> Preventive Medicine, Jikei University,School <str<strong>on</strong>g>of</str<strong>on</strong>g> Medicine, and Dr Tetsuo Shuu, President <str<strong>on</strong>g>of</str<strong>on</strong>g>Tokyo Obesity Research Lab. for valuable suggesti<strong>on</strong>sand discussi<strong>on</strong>s.References<str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>-irradiated rats. After <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> was appliedto rat abdomen, the plasma FFA was increased byintensity below 1 W/cm 2 and frequency <str<strong>on</strong>g>of</str<strong>on</strong>g> 100 and/or300/500 kHz (Figs. 3/5). When, in vitro, <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g>was applied to the epididymal adipose tissue or <strong>fat</strong> cellsfrom rat, no <strong>fat</strong> mobilizati<strong>on</strong> was observed at anyintensity (data not shown). Moreover, <str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong>was proved to increase significantly norepinephrinec<strong>on</strong>centrati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> the dialysate whichcorresp<strong>on</strong>ded to extracellular fluid <str<strong>on</strong>g>of</str<strong>on</strong>g> the perirenaladipose tissue (Fig. 6). These results suggest that<str<strong>on</strong>g>ultrasound</str<strong>on</strong>g> irradiati<strong>on</strong> induces <strong>fat</strong> mobilizati<strong>on</strong> throughincrease in norepinephrine secreti<strong>on</strong> from sympatheticnerves in the white adipose tissue.[1] K. Tokunaga, Y. Matsuzawa, K. Ishikawa, S. Tarui, Anoveltechnique for the determinati<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> <strong>fat</strong> by computed tomography,Int. J. Obes. 7 (1983) 437/445.[2] N. Tadokora, S. Murano, T. Nishide, R. Suzuki, S. Watanabe, H.Murayama, N. Morisaki, Y. Saito, Preperit<strong>on</strong>eal <strong>fat</strong> thicknessdetermined by ultras<strong>on</strong>ography is correlated with cor<strong>on</strong>ary stenosisand lipid disorders in n<strong>on</strong>-obese male subjects, Int. J. Obes. 224(2000) 502/507.[3] L. Busetto, A. Tregnaghi, M. Bussolotto, G. Sergi, P. Benicà, A.Cecc<strong>on</strong>, V. Giantin, D. Fiore, G. Enzi, Visceral <strong>fat</strong> loss evaluatedby total body magnetic res<strong>on</strong>ance imaging in obese womenoperated with laparascopic adjustable silic<strong>on</strong>e gastric banding,Int. J. Obes. 24 (2000) 60/69.[4] T. Abe, T. Sakurai, J. Kurata, Y. Kawakami, T. Fukunaga,Subcutaneous and visceral <strong>fat</strong> distributi<strong>on</strong> and daily physicalactivity: comparis<strong>on</strong> between young and middle aged women, Br.J. Sprts. Med. 30 (1996) 297/300.


H. Miwa et al. / Pathophysiology 9 (2002) 13/19 19[5] M.K. Wendy, M.T. Kohrt, G.P. Malley, P.D. Gail, O.H. Jophn,Body compositi<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> healthy sedentary and trained, young andolder men and women, Med. Sci. Sports Exerc. 24 (1992) 832/837.[6] L.-K. Han, Y. Kimura, H. Okuda, Reducti<strong>on</strong> in <strong>fat</strong> storage duringchitin-chitosan treatment in mice fed a high-<strong>fat</strong> diet, Int. J. Obes.23 (1999) 174/179.[7] L.-K. Han, T. Takaku, J. Li, Y. Kimura, H. Okuda, Anti-obesityacti<strong>on</strong> <str<strong>on</strong>g>of</str<strong>on</strong>g> ool<strong>on</strong>g tea, Int. J. Obes. 23 (1999) 98/105.[8] L.-K. Han, B.-J. Xu, Y. Kimura, Y.-N. Zheng, H.Okuda, Platycodi radix affects lipid metabolism inmice with high <strong>fat</strong> diet-induced obesity, J. Nutr. 130 (2000)2760/2764.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!