13.07.2015 Views

On LP-Sasakian Manifolds - Mathematical Sciences

On LP-Sasakian Manifolds - Mathematical Sciences

On LP-Sasakian Manifolds - Mathematical Sciences

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BULLETIN of theMALAYSIANMATHEMATICALSCIENCESSOCIETYBull. Malaysian Math. Sc. Soc. (Second Series) 27 (2004) 17−26<strong>On</strong> <strong>LP</strong>-<strong>Sasakian</strong> <strong>Manifolds</strong>A.A. SHAIKH AND SUDIPTA BISWASDepartment of Mathematics, University of North Bengal, P.O. NBU – 734430, Darjeeling, West Bengal, Indiae-mail: aask@epatra.com or aask2003@yahoo.co.inAbstract. The object of the present paper is to study <strong>LP</strong>-<strong>Sasakian</strong> manifolds satisfying certainconditions.2000 Mathematics Subject Classification: 53C15, 53C50.1. IntroductionIn 1989 K. Matsumoto [1] introduced the notion of <strong>LP</strong>-<strong>Sasakian</strong> manifold. ThenI. Mihai and R. Rosca [2] introduced the same notion independently and they obtainedseveral results in this manifold. <strong>LP</strong>-<strong>Sasakian</strong> manifolds have also been studied byK. Matsumoto and I. Mihai [3]; U.C. De, K. Matsumoto and A.A. Shaikh [4].In [5] Yano and Sawaki defined and studied a tensor field W on a Riemannianmanifold of dimension n which includes both the conformal curvature tensor C and theconcircular curvature tensor C ~ as special cases. This tensor field W is known as quasiconformalcurvature tensor. The quasi-conformally flat Riemannian manifold has beenstudied in [6]. The present paper deals with a study of <strong>LP</strong>-<strong>Sasakian</strong> manifolds satisfyingcertain conditions. After preliminaries, in section 3 we study an <strong>LP</strong>-<strong>Sasakian</strong> manifoldsatisfying the condition R ( X , Y ) ⋅W = 0,where R ( X , Y ) is considered as a derivationof the tensor algebra at each point of the manifold for tangent vectors X, Y and it is shownthat such a manifold is an Einstein manifold. Also in such a manifold we obtain anecessary and sufficient condition for the characteristic vector field ξ to be a harmonicvector field. Section 4 is devoted to the study of quasi-conformally recurrent<strong>LP</strong>-<strong>Sasakian</strong> manifolds. The last section deals with an <strong>LP</strong>-<strong>Sasakian</strong> manifold satisfyingthe condition S( X , ξ ) ⋅ R = 0 and it is proved that such a manifold is η-Einstein.2. PreliminariesAn n-dimensional differentiable manifold M is called an <strong>LP</strong>-<strong>Sasakian</strong> manifold [1], [3] ifit admits a ( 1, 1)tensor field φ , a contravariant vector field ξ , a 1-form η and aLorentzian metric g which satisfy


18A.A. Shaikh and Sudipta Biswasη ( ξ ) = −1,(2.1)2φ X = X + η(X ) ξ ,(2.2)g( φ X , φY) = g(X , Y ) + η(X ) η(Y )(2.3)g( X , ξ ) = η(X ), ∇ Xξ= φ X ,(2.4)( ∇ φ)(Y ) = g(X , Y ) ξ + η(Y ) X 2η( X ) η(Y ) ξ ,(2.5)X +where ∇ denotes the operator of covariant differentiation with respect to the Lorentzianmetric g.It can be easily seen that in an <strong>LP</strong>-<strong>Sasakian</strong> manifold, the following relations hold:Again if we putφξ = 0 , η(φX) = 0,(2.6)rank φ = n − 1.(2.7)Ω ( X , Y ) = g(X , φY)(2.8)for any vector fields X and Y, then the tensor field Ω ( X , Y ) is a symmetric ( 0, 2)tensorfield [1]. Also since the vector field η is closed in an <strong>LP</strong>-<strong>Sasakian</strong> manifold, we have[1] [4](i) ( ∇ η )( Y ) = Ω ( X , Y ),(ii) Ω ( X , ξ ) = 0(2.9)Xfor any vector fields X and Y.An <strong>LP</strong>-<strong>Sasakian</strong> manifold M is said to be η-Einstein if its Ricci tensor S is of theformS( X , Y ) = α g(X , Y ) + β η(X ) η(Y )(2.10)for any vector fields X, Y where α, β are functions on M. Let M be an n-dimensional<strong>LP</strong>-<strong>Sasakian</strong> manifold with structure ( φ , ξ,η,g). Then we have [3] [4]:g( R(X , Y ) Z , ξ ) = η(R(X , Y ) Z)= g(Y,Z)η(X ) − g(X , Z)η(Y ), (2.11)R( ξ,X ) Y = g(X , Y ) ξ − η(Y ) X ,(2.12)R( X , Y ) ξ = η(Y ) X − η(X ) Y ,(2.13)R ( ξ,X ) ξ = X + η(X ) ξ ,(2.14)S( X , ξ ) = ( n − 1) η(X ),(2.15)S( φX, φY) = S(X , Y ) + ( n − 1) η(X ) η(Y )(2.16)for any vector fields X, Y, Z whereR ( X , Y ) Z is the Riemannian curvature tensor.


<strong>On</strong> <strong>LP</strong>-<strong>Sasakian</strong> <strong>Manifolds</strong> 19The quasi-conformal curvature tensor W on a manifold M of dimension n is definedby [5]~W ( X , Y ) Z = −(n − 2) b C(X , Y ) Z + [ a + ( n − 2) b]C(X , Y ) Z , (2.17)where a, b are arbitrary constants such that a and b are not zero simultaneously, C and C ~are conformal curvature tensor and concircular curvature tensor respectively, given by1C ( X , Y ) Z = R(X , Y ) Z − [ S(Y,Z)X − S(X , Z)Y + g(Y,Z)QX (2.18)n − 2r− g( X , Z)QY ] +[ g(Y,Z)X − g(X , Z)Y ],( n − 1) ( n − 2)C~ ( X , Y)Zr= R(X , Y)Z − [ g(Y,Z)X − g(X , Z)Y ], (2.19)n(n − 1)Q is the Ricci-operator i.e., g ( QX , Y ) = S(X , Y ) and r is the scalar curvature of themanifold. Using (2.18) and (2.19) in (2.17) we getW ( X , Y)Z = a R(X , Y)Z + b[ S(Y,Z)X − S(X , Z)Y + g(Y,Z)QXr ⎡ a ⎤− g( X , Z)QY ] − 2b{ g(Y,Z)X − g(X , Z)Y}.n ⎢+⎣n− 1 ⎥(2.20)⎦The above results will be used in the next sections.3. <strong>LP</strong>-<strong>Sasakian</strong> manifolds satisfying R ( X,Y ) ⋅W = 0Let us consider an <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)M nsatisfying the conditionR ( X , Y ) ⋅ W = 0 . (3.1)Now,( R ( X , Y ) ⋅ W ) ( U,V ) Z = R(X , Y ) W ( U,V ) Z − W ( R(X , Y ) U,V ) Z− W ( U,R(X , Y ) V ) Z − W ( U,V ) R(X , Y ) Z . (3.2)From (3.1) and (3.2) we haveg ( R( ξ,Y ) W ( U,V ) Z , ξ ) − g(W ( R(ξ,Y ) U , V ) Z,ξ ) −(3.3)g ( W ( U,R(ξ,Y ) V ) Z,ξ ) − g(W ( U,V ) R(ξ,Y ) Z,ξ ) = 0 .


22A.A. Shaikh and Sudipta BiswasR ( X , Y ) ⋅ C = 0. Again, <strong>LP</strong>-<strong>Sasakian</strong> manifolds satisfying the conditionR ( X , Y ) ⋅ C = 0 has been studied in [4].This leads to the following:Corollary 3.2. An <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)satisfying the conditionR ( X , Y ) ⋅ W = 0 is a space of constant curvature if a + ( n − 2) b = 0.Let us now consider an <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)satisfying thecondition R ( X , Y ) ⋅ W = 0 which is not an Einstein one. Then (3.11) holds good.Differentiating (3.11) covariantly along X and then using (2.9) (i) we get( a − b)( ∇ X S)(V , Z)= −bdr(X ) [ g(V , Z)+ η ( V ) η ( Z)]+b[ n(n − 1) − r][ Ω(X , V ) η(Z)+ Ω(X , Z)η(V )].(3.13)Putting X = Z = eiin (3.13) and then taking summation for 1 ≤ i ≤ n we obtain byvirtue of (2.9) (ii)where ψ =n∑ ii = 1M n1( a + b)dr(V ) = b{[n(n − 1) − r]ψ − dr(ξ )} η(V ),(3.14)2ε Ω ( e , e ) = tr ⋅ φ .Replacing V by ξ in (3.14) we getBy virtue of (3.14) and (3.15) we obtainiiM n2bdr ( ξ ) = [ r − n(n − 1) ] ψ , if a − b ≠ 0.(3.15)a − b2bdr( V ) = [ n(n − 1) − r] ψ η ( V ),if a + b ≠ 0.(3.16)a − bIf r is constant then for b ≠ 0,(3.16) yields either r = n( n − 1) , or ψ = 0.If r = n( n − 1) , then from (3.12), it follows that the manifold is Einstein. Hence if themanifold is not Einstein then we must have ψ = 0,which means that the vector field ξis harmonic. Again, if ψ = 0,then from (3.16), it follows that r is constant.Thus we can state the following:


<strong>On</strong> <strong>LP</strong>-<strong>Sasakian</strong> <strong>Manifolds</strong> 23Theorem 3.3. Let ( , g)( n > 3)be an <strong>LP</strong>-<strong>Sasakian</strong> manifold satisfying thecondition R ( X , Y ) ⋅ W = 0 which is not an Einstein one. Then the scalar curvature ofthe manifold is constant if and only if the timelike vector field ξ is harmonic providedthat a ± b ≠ 0 and b ≠ 0.In particular, ifM na = b then we have the following:Corollary 3.3. Let ( , g)( n > 3)be an <strong>LP</strong>-<strong>Sasakian</strong> manifold satisfying thecondition R ( X , Y ) ⋅ W = 0 which is not an Einstein one. If a = b then the manifold isof constant scalar curvature.M n4. Quasi-conformally recurrent <strong>LP</strong>-<strong>Sasakian</strong> manifoldsA non-flat Riemannian manifold M is said to be quasi-conformally recurrent [7] if thequasi-conformal curvature tensor W satisfies the condition ∇ W = A ⊗ W , where A is aneverywhere non-zero 1-form. We now define a function f on M by f = g(W , W ),where the metric g is extended to the inner product between the tensor fields in thestandard fashion.2Then we know that f ( Yf ) = f A(Y ).So from this we haveYf = f A(Y ) (because f ≠ 0 ). (4.1)From (4.1) we have1X ( Yf ) = ( Xf ) ( Yf ) + ( XA(Y )) f .f2HenceX ( Yf ) − Y ( Xf ) = { XA(Y ) − YA(X )} f .Therefore we get( ∇ ∇ − ∇ ∇ − ∇ ) f = { XA(Y ) − YA(X ) − A([X , Y ])} .XYYX[ X , Y ]fSince the left hand side of the above equation is identically zero and f ≠ 0 on M by ourassumption we obtainthat is, the 1-form A is closed.dA ( X , Y ) = 0,(4.2)


24A.A. Shaikh and Sudipta BiswasNow, from ( ∇ W ) ( U,V ) Z A(X ) W ( U,V ) Z , we getX =Hence from (4.2) we get( ∇ U ∇VW) ( X , Y ) Z = { UA(V ) + A(U ) A(V )} W ( X , Y ) Z .( R ( X , Y ) ⋅ W ) ( U,V ) Z = [ 2dA(X , Y )] W ( U,V ) Z = 0.Therefore, for a quasi-conformally recurrent manifold, we haveThus we can state the following:R ( X , Y ) ⋅ W = 0 for all X ,Y .Theorem 4.1. A quasi-conformally recurrent <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)is an Einstein manifold provided that a − b ≠ 0 and a + ( n − 2) b ≠ 0.Corollary 4.1. A quasi-conformally recurrent <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)is of constant scalar curvature for a = b and is a space of constant curvature ifa + ( n − 2) b = 0.Since for a quasi-conformally symmetric <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3) ,we have ( ∇U W ) ( X , Y ) Z = 0 which implies R ( X , Y ) ⋅ W = 0,we can state thefollowing:Corollary 4.2. A quasi-conformally symmetric <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)is an Einstein manifold provided that a − b ≠ 0 and a + ( n − 2) b ≠ 0.M nM nM nM n5. <strong>LP</strong>-<strong>Sasakian</strong> manifolds satisfying the condition S ( X,ξ)⋅ R = 0We now consider an <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)M nsatisfying the condition( S(X , ξ ) ⋅ R)( U,V ) Z = 0.(5.1)By definition we have( S(X , ξ ) ⋅ R) ( U,V ) Z = (( X ∧ S ξ ) ⋅ R) ( U,V ) Z= ( X ∧ S ξ ) R(U,V ) Z + R((X ∧ S ξ ) U,V ) Z+ R( U,( X ∧ ξ ) V ) Z + R(U,V ) ( X ∧ ξ ) Z , (5.2)SS


where the endomorphismX<strong>On</strong> <strong>LP</strong>-<strong>Sasakian</strong> <strong>Manifolds</strong> 25∧ Y is defined byS( X ∧ S Y ) Z = S(Y,Z)X − S(X , Z)Y .(5.3)Using the definition of (5.3) in (5.2) we get by virtue of (2.15)( S ( X , ξ ) ⋅ R) ( U,V ) Z = ( n − 1)[ η(R(U,V ) Z)X + η(U ) R(X , V ) Z+ η ( V ) R(U,X ) Z + η(Z)R(U,V ) X ]− S ( X , R(U , V ) Z)ξ − S(X , U ) R(ξ,V ) Z− S( X , V ) R(U,ξ ) Z − S(X , Z)R(U,V ) ξ . (5.4)In view of (5.1) and (5.4) we have[ η ( R(U,V ) Z)X + η(U ) R(X , V ) Z + η(V ) R(U,X ) Z + ( Z)R(U,V X ]( n − 1)η )− S ( X , R(U , V ) Z)ξ − S(X , U ) R(ξ,V ) Z− S ( X , V ) R(U,ξ ) Z − S(X , Z)R(U,V ) ξ = 0. (5.5)Taking the inner product on both sides of (5.5) by ξ we obtain( n − 1) [ η ( R(U,V ) Z)η(X ) + η(U ) η(R(X , V ) Z)+ η(V ) η(R(U,X ) Z)+ η ( Z)η(R(U,V ) X ) ] + S(X , R(U,V ) Z)− S(X , U ) η(R(ξ,V ) Z)− S ( X , V ) η(R(U,ξ ) Z)− S(X , Z)η(R(U,V ) ξ ) = 0.(5.6)Putting U = Z = ξ in (5.6) and using ( 2.11) − (2.15)we getS( X , V ) = (1 − n)g(X , V ) + 2(1 − n)η(X ) η(V ),(5.7)which means that the manifold is η-Einstein. This leads to the following:Theorem 5.1. An <strong>LP</strong>-<strong>Sasakian</strong> manifold ( , g)( n > 3)S( X , ξ ) ⋅ R = 0 is an η-Einstein manifold.M nsatisfying the conditionAgain, differentiating (5.7) covariantly along Y and using (2.9) we get( ∇ S) ( X , V ) = 2(1 − n)[ Ω(X , Y ) η(V ) + Ω(Y,V ) η(X )].(5.8)YTaking an orthonormal frame field and contracting (5.8) over Y and V we obtaindr( X ) = 4(1 − n)ψ η ( X ),(5.9)


26A.A. Shaikh and Sudipta Biswaswhere ψ = tr.φ . From (5.9), it follows thatdr ( X ) = 0 if and only if ψ = 0.Thus we have the following:Theorem 5.2. Let ( , g)( n > 3)be an <strong>LP</strong>-<strong>Sasakian</strong> manifold satisfying thecondition S( X , ξ ) ⋅ R = 0.Then the scalar curvature of the manifold is constant if andonly if the vector field ξ is harmonic.M nAcknowledgement. The authors are grateful to the referee for his valuable suggestionsin the improvement of the paper.References1. K. Matsumoto, <strong>On</strong> Lorentzian paracontact manifolds, Bull. of Yamagata Univ., Nat. Sci.12 (1989), 151−156.2. I. Mihai and R. Rosca, <strong>On</strong> Lorentzian P-<strong>Sasakian</strong> manifolds, Classical Analysis, WorldScientific Publi. (1992), 155−169.3. K. Matsumoto and I. Mihai, <strong>On</strong> a certain transformation in a Lorentzian para <strong>Sasakian</strong>manifold, Tensor, N.S. 47 (1988), 189−197.4. U.C. De, K. Matsumoto and A.A. Shaikh, <strong>On</strong> Lorentzian para-<strong>Sasakian</strong> manifolds, Rendicontidel Seminario Matematico di Messina, Serie II, Supplemento al n. 3 (1999), 149−158.5. K. Yano and S. Sawaki, Riemannian manifolds admitting a conformal transformation group,J. Diff. Geom. 2 (1968), 161−184.6. K. Amur and Y. B. Maralabhavi, <strong>On</strong> quasi-conformally flat spaces, Tensor, N.S. 31 (1977),194−198.7. T. Adati and T. Miyazawa, <strong>On</strong> a Riemannian space with recurrent conformal curvature,Tensor, N.S. 18 (1967), 348−354.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!