13.07.2015 Views

The Method of Moments in Electromagnetics

The Method of Moments in Electromagnetics

The Method of Moments in Electromagnetics

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

<strong>The</strong> <strong>Method</strong><strong>of</strong> <strong>Moments</strong> <strong>in</strong><strong>Electromagnetics</strong>Walton C. Gibsonhttp://www.tripo<strong>in</strong>t<strong>in</strong>dustries.comkalla@tripo<strong>in</strong>t.org


Chapman & Hall/CRCTaylor & Francis Group6000 Broken Sound Parkway NW, Suite 300Boca Raton, FL 33487‐2742© 2008 by Taylor & Francis Group, LLCChapman & Hall/CRC is an impr<strong>in</strong>t <strong>of</strong> Taylor & Francis Group, an Informa bus<strong>in</strong>essNo claim to orig<strong>in</strong>al U.S. Government worksPr<strong>in</strong>ted <strong>in</strong> the United States <strong>of</strong> America on acid‐free paper10 9 8 7 6 5 4 3 2 1International Standard Book Number‐13: 978‐1‐4200‐6145‐1 (Hardcover)This book conta<strong>in</strong>s <strong>in</strong>formation obta<strong>in</strong>ed from authentic and highly regarded sources. Repr<strong>in</strong>tedmaterial is quoted with permission, and sources are <strong>in</strong>dicated. A wide variety <strong>of</strong> references arelisted. Reasonable efforts have been made to publish reliable data and <strong>in</strong>formation, but the authorand the publisher cannot assume responsibility for the validity <strong>of</strong> all materials or for the consequences<strong>of</strong> their use.Except as permitted under U.S. Copyright Law, no part <strong>of</strong> this book may be repr<strong>in</strong>ted, reproduced,transmitted, or utilized <strong>in</strong> any form by any electronic, mechanical, or other means, now known orhereafter <strong>in</strong>vented, <strong>in</strong>clud<strong>in</strong>g photocopy<strong>in</strong>g, micr<strong>of</strong>ilm<strong>in</strong>g, and record<strong>in</strong>g, or <strong>in</strong> any <strong>in</strong>formationstorage or retrieval system, without written permission from the publishers.For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC)222 Rosewood Drive, Danvers, MA 01923, 978‐750‐8400. CCC is a not‐for‐pr<strong>of</strong>it organization thatprovides licenses and registration for a variety <strong>of</strong> users. For organizations that have been granted aphotocopy license by the CCC, a separate system <strong>of</strong> payment has been arranged.Trademark Notice: Product or corporate names may be trademarks or registered trademarks, andare used only for identification and explanation without <strong>in</strong>tent to <strong>in</strong>fr<strong>in</strong>ge.Library <strong>of</strong> Congress Catalog<strong>in</strong>g‐<strong>in</strong>‐Publication DataGibson, Walton C.<strong>The</strong> method <strong>of</strong> moments <strong>in</strong> electromagnetics / Walton C. Gibson.p. cm.Includes bibliographical references and <strong>in</strong>dex.ISBN 978‐1‐4200‐6145‐1 (alk. paper)1. Electromagnetism‐‐Data process<strong>in</strong>g. 2. Electromagneticfields‐‐Mathematical models. 3. <strong>Moments</strong> method (Statistics) 4. Electromagnetictheory‐‐Data process<strong>in</strong>g. 5. Integral equations‐‐Numerical solutions. I. Title.QC665.E4.G43 2008530.14’1015118‐‐dc22 2007037311Visit the Taylor & Francis Web site athttp://www.taylorandfrancis.comand the CRC Press Web site athttp://www.crcpress.com


ContentsPrefaceAcknowledgmentsAbout the AuthorixxiiixvChapter 1 Computational <strong>Electromagnetics</strong> 11.1 Computational <strong>Electromagnetics</strong> Algorithms 11.1.1 Low-Frequency <strong>Method</strong>s 21.1.2 High-Frequency <strong>Method</strong>s 2References 4Chapter 2 A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 52.1 Maxwell’s Equations 52.2 Electromagnetic Boundary Conditions 62.3 Formulations for Radiation 62.3.1 Three-Dimensional Green’s Function 82.3.2 Two-Dimensional Green’s Function 92.4 Vector Potentials 102.4.1 Magnetic Vector Potential 112.4.2 Electric Vector Potential 122.4.3 Comparison <strong>of</strong> Radiation Formulas 132.5 Near and Far Fields 142.5.1 Near Field 152.5.2 Far Field 162.6 Equivalent Problems 182.6.1 Surface Equivalent 182.6.2 Physical Equivalent 202.7 Surface Integral Equations 252.7.1 Electric Field Integral Equation 252.7.2 Magnetic Field Integral Equation 262.7.3 Comb<strong>in</strong>ed Field Integral Equation 28iii


ivContentsReferences 30Chapter 3 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 333.1 Electrostatic Problems 333.1.1 Charged Wire 343.1.2 Charged Plate 393.2 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 433.2.1 Po<strong>in</strong>t Match<strong>in</strong>g 443.2.2 Galerk<strong>in</strong>’s <strong>Method</strong> 443.3 Common Two-Dimensional Basis Functions 453.3.1 Pulse Functions 453.3.2 Piecewise Triangular Functions 453.3.3 Piecewise S<strong>in</strong>usoidal Functions 463.3.4 Entire-Doma<strong>in</strong> Functions 473.3.5 Number <strong>of</strong> Basis Functions 473.4 Solution <strong>of</strong> Matrix Equations 483.4.1 Gaussian Elim<strong>in</strong>ation 483.4.2 LU Decompositon 503.4.3 Condition Number 523.4.4 Iterative <strong>Method</strong>s 533.4.5 Examples 573.4.6 Commonly Used Matrix Algebra S<strong>of</strong>tware 58References 61Chapter 4 Th<strong>in</strong> Wires 634.1 Th<strong>in</strong> Wire Approximation 634.2 Th<strong>in</strong> Wire Excitations 654.2.1 Delta-Gap Source 654.2.2 Magnetic Frill 664.2.3 Plane Wave 674.3 Solv<strong>in</strong>g Hallén’s Equation 684.3.1 Symmetric Problems 694.3.2 Asymmetric Problems 714.4 Solv<strong>in</strong>g Pockl<strong>in</strong>gton’s Equation 724.4.1 Solution by Pulse Functions and Po<strong>in</strong>t Match<strong>in</strong>g 734.5 Th<strong>in</strong> Wires <strong>of</strong> Arbitrary Shape 734.5.1 Redistribution <strong>of</strong> EFIE Differential Operators 744.5.2 Solution Us<strong>in</strong>g Triangle Basis and Test<strong>in</strong>g Functions 754.5.3 Solution Us<strong>in</strong>g S<strong>in</strong>usoidal Basis and Test<strong>in</strong>g Functions 774.5.4 Lumped and Distributed Impedances 784.6 Examples 794.6.1 Comparison <strong>of</strong> Th<strong>in</strong> Wire Models 794.6.2 Circular Loop Antenna 834.6.3 Folded Dipole Antenna 864.6.4 Two-Wire Transmission L<strong>in</strong>e 87


Contentsv4.6.5 Match<strong>in</strong>g a Yagi Antenna 89References 94Chapter 5 Two-Dimensional Problems 955.1 Two-Dimensional EFIE 955.1.1 EFIE for a Strip: TM Polarization 955.1.2 Generalized EFIE: TM Polarization 1005.1.3 EFIE for a Strip: TE Polariation 1025.1.4 Generalized EFIE: TE Polarization 1075.2 Two-Dimensional MFIE 1095.2.1 MFIE: TM Polarization 1095.2.2 MFIE: TE Polarization 1115.3 Examples 1135.3.1 Scatter<strong>in</strong>g by an Inf<strong>in</strong>ite Cyl<strong>in</strong>der: TM Polarization 1135.3.2 Scatter<strong>in</strong>g by an Inf<strong>in</strong>ite Cyl<strong>in</strong>der: TE Polarization 115References 124Chapter 6 Bodies <strong>of</strong> Revolution 1256.1 BOR Surface Description 1256.2 Surface Current Expansion on a BOR 1266.3 EFIE for a Conduct<strong>in</strong>g BOR 1276.3.1 EFIE Matrix Elements 1276.3.2 Excitation 1306.3.3 Scattered Field 1346.4 MFIE for a Conduct<strong>in</strong>g BOR 1366.4.1 MFIE Matrix Elements 1376.4.2 Excitation 1406.4.3 Scattered Field 1416.5 Notes on S<strong>of</strong>tware Implementation 1416.5.1 Parallelization 1416.5.2 Convergence 1426.6 Examples 1426.6.1 Galaxy 1426.6.2 Conduct<strong>in</strong>g Sphere 1426.6.3 EMCC Benchmark Targets 1456.6.4 Biconic Reentry Vehicle 1526.6.5 Summary <strong>of</strong> Examples 159References 159Chapter 7 Three-Dimensional Problems 1617.1 Representation <strong>of</strong> Three-Dimensional Surfaces 1617.2 Surface Currents on a Triangle 1647.2.1 Edge F<strong>in</strong>d<strong>in</strong>g Algorithm 1657.3 EFIE for Three-Dimensional Conduct<strong>in</strong>g Surfaces 1677.3.1 EFIE Matrix Elements 167


viContents7.3.2 S<strong>in</strong>gular Matrix Element Evaluation 1687.3.3 EFIE Excitation Vector Elements 1767.3.4 Radiated Field 1787.4 MFIE for Three-Dimensional Conduct<strong>in</strong>g Surfaces 1797.4.1 MFIE Matrix Elements 1797.4.2 MFIE Excitation Vector Elements 1847.4.3 Radiated Field 1847.4.4 Accuracy <strong>of</strong> RWG Functions <strong>in</strong> MFIE 1847.5 Notes on S<strong>of</strong>tware Implementation 1857.5.1 Memory Management 1857.5.2 Parallelization 1857.6 Considerations for Model<strong>in</strong>g with Triangles 1877.6.1 Triangle Aspect Ratios 1877.6.2 Watertight Meshes and T-Junctions 1887.7 Examples 1887.7.1 Serenity 1897.7.2 RCS <strong>of</strong> a Sphere 1897.7.3 EMCC Plate Benchmark Targets 1897.7.4 Strip Dipole Antenna 1987.7.5 Bowtie Antenna 1997.7.6 Archimedean Spiral Antenna 2017.7.7 Summary <strong>of</strong> Examples 204References 205Chapter 8 <strong>The</strong> Fast Multipole <strong>Method</strong> 2098.1 <strong>The</strong> Matrix-Vector Product 2108.2 Addition <strong>The</strong>orem 2108.2.1 Wave Translation 2128.3 FMM Matrix Elements 2138.3.1 EFIE Matrix Elements 2138.3.2 MFIE Matrix Elements 2148.3.3 CFIE Matrix Elements 2158.3.4 Matrix Transpose 2158.4 One-Level Fast Multipole Algorithm 2158.4.1 Group<strong>in</strong>g <strong>of</strong> Basis Functions 2158.4.2 Near and Far Groups 2168.4.3 Number <strong>of</strong> Multipoles 2168.4.4 Sampl<strong>in</strong>g Rates and Integration 2188.4.5 Transfer Functions 2198.4.6 Radiation and Receive Functions 2208.4.7 Near-Matrix Elements 2208.4.8 Matrix-Vector Product 2218.4.9 Computational Complexity 2228.5 Multi-Level Fast Multipole Algorithm (MLFMA) 2228.5.1 Group<strong>in</strong>g via Octree 222


Contentsvii8.5.2 Matrix-Vector Product 2238.5.3 Interpolation Algorithms 2278.5.4 Transfer Functions 2298.5.5 Radiation and Receive Functions 2308.5.6 Interpolation Steps <strong>in</strong> MLFMA 2308.5.7 Computational Complexity 2318.6 Notes on S<strong>of</strong>tware Implementation 2318.6.1 Initial Guess <strong>in</strong> Iterative Solution 2318.6.2 Memory Management 2328.6.3 Parallelization 2348.6.4 Vectorization 2348.7 Precondition<strong>in</strong>g 2358.7.1 Diagonal Preconditioner 2358.7.2 Block Diagonal Preconditioner 2368.7.3 Inverse LU Preconditioner 2368.7.4 Sparse Approximate Inverse 2378.8 Examples 2408.8.1 Bistatic RCS <strong>of</strong> a Sphere 2408.8.2 EMCC Benchmark Targets 2408.8.3 Summary <strong>of</strong> Examples 245References 252Chapter 9 Integration 2559.1 One-Dimensional Integration 2559.1.1 Centroidal Approximation 2559.1.2 Trapezoidal Rule 2569.1.3 Simpson’s Rule 2589.1.4 One-Dimensional Gaussian Quadrature 2599.2 Integration over Triangles 2609.2.1 Simplex Coord<strong>in</strong>ates 2609.2.2 Radiation Integrals with a Constant Source 2629.2.3 Radiation Integrals with a L<strong>in</strong>ear Source 2659.2.4 Gaussian Quadrature on Triangles 267References 269Index 271


Preface<strong>The</strong> method <strong>of</strong> moments for electromagnetic field problems was first describedat length <strong>in</strong> Harr<strong>in</strong>gton’s classic book, 1 and undoubtedly was <strong>in</strong> use long beforethat. S<strong>in</strong>ce that time computer technology has grown at a stagger<strong>in</strong>g pace, andcomputational electromagnetics and the moment method have followed closelybeh<strong>in</strong>d. Though numerous journal papers and graduate theses have been dedicatedto the MOM, few textbooks have been written for those who are unfamiliar with it.For a graduate student who is start<strong>in</strong>g <strong>in</strong>to computational electromagnetics, or thepr<strong>of</strong>essional who needs to apply the MOM to field problems, this sets the barrier toentry fairly high.This author feels that a new book describ<strong>in</strong>g the moment method <strong>in</strong> electromagneticsis necessary. <strong>The</strong> first reason is because <strong>of</strong> the lack <strong>of</strong> a good <strong>in</strong>troductorygraduate-level text on the moment method. Though many universities <strong>of</strong>fer courses<strong>in</strong> computational electromagnetics, the course material <strong>of</strong>ten comprises a disjo<strong>in</strong>tcollection <strong>of</strong> journal papers or copies <strong>of</strong> the <strong>in</strong>structor’s own notes. Many <strong>of</strong> thesematerials <strong>of</strong>ten omit key <strong>in</strong>formation or reference other papers, which forces thestudent to spend their time search<strong>in</strong>g for <strong>in</strong>formation <strong>in</strong>stead <strong>of</strong> focus<strong>in</strong>g on thecourse material. <strong>The</strong> second reason is the hope that a concise, up-to-date referencebook will significantly benefit researchers and practic<strong>in</strong>g pr<strong>of</strong>essionals <strong>in</strong> the field <strong>of</strong>CEM. This book has several key features that set it apart from others <strong>of</strong> its k<strong>in</strong>d:1. A straightfoward, systematic <strong>in</strong>troduction to the moment method. This bookbeg<strong>in</strong>s with a review <strong>of</strong> frequency-doma<strong>in</strong> electromagnetic theory and developsthe Green’s functions and <strong>in</strong>tegral equations <strong>of</strong> radiation and scatter<strong>in</strong>g.Subsequent chapters are dedicated to solv<strong>in</strong>g these <strong>in</strong>tegral equations for th<strong>in</strong>wires, bodies <strong>of</strong> revolution, and two and three-dimensional problems. Withthis material beh<strong>in</strong>d them, the student or researcher will be well equipped formore advanced MOM topics encountered <strong>in</strong> the literature.2. A clear, concise summary <strong>of</strong> equations. One <strong>of</strong> the fundamental problemsencountered by this author is that expressions for MOM matrix elements arealmost never found <strong>in</strong> the literature. Most <strong>of</strong>ten, a paper refers to another paperor to private communications, which is <strong>of</strong> no benefit to the learn<strong>in</strong>g student.This book derives or summarizes the matrix elements used <strong>in</strong> every MOMproblem, and examples are computed us<strong>in</strong>g the expressions summarized <strong>in</strong> thetext.1 R. F. Harr<strong>in</strong>gton, Field Computation by Moment <strong>Method</strong>s, Krieger Publish<strong>in</strong>g Co., Inc., 1968.ix


xPreface3. A focus on radiation and scatter<strong>in</strong>g problems. This book is primarily focusedon scatter<strong>in</strong>g and radiation problems. <strong>The</strong>refore, we will consider many practicalexamples such as antenna impedance calculation and radar cross sectionprediction. Each example is presented <strong>in</strong> a straightforward manner with a carefulexplanation <strong>of</strong> the approach as well as explanation <strong>of</strong> the results.4. An up-to-date reference. <strong>The</strong> material conta<strong>in</strong>ed with<strong>in</strong> is presented <strong>in</strong> thecontext <strong>of</strong> current-day comput<strong>in</strong>g technology and <strong>in</strong>cludes up-to-date materialsuch as the fast multipole method that is now f<strong>in</strong>d<strong>in</strong>g common use <strong>in</strong> CEM.This book is for a one- or two-semester course <strong>in</strong> computational electromagneticsand a reference for the practic<strong>in</strong>g eng<strong>in</strong>eer. It is expected that the reader will befamiliar with time-harmonic electromagnetic fields and vector calculus, as well asdifferential equations and l<strong>in</strong>ear algebra. <strong>The</strong> reader should also have some basicexperience with computer programm<strong>in</strong>g <strong>in</strong> a language such as C or FORTRAN ora mathematical environment such as MATLAB. Because some <strong>of</strong> the expressions <strong>in</strong>this book require the calculation <strong>of</strong> special functions, the reader at least should beaware <strong>of</strong> what they are and be able to calculate them.This book comprises n<strong>in</strong>e chapters:Chapter 1 presents a very brief overview <strong>of</strong> computational electromagneticsand some commonly used numerical techniques <strong>in</strong> this field.Chapter 2 beg<strong>in</strong>s by review<strong>in</strong>g some necessary background material on timeharmonicelectromagnetic fields. We next develop expressions for radiation andscatter<strong>in</strong>g, vector potentials, and the two- and three-dimensional Green’s functions.We then discuss surface equivalents and derive the electric and magnetic field <strong>in</strong>tegralequations for conduct<strong>in</strong>g surfaces.Chapter 3 <strong>in</strong>troduces the solution <strong>of</strong> <strong>in</strong>tegral equations by convert<strong>in</strong>g theproblem <strong>in</strong>to a l<strong>in</strong>ear system. <strong>The</strong> method <strong>of</strong> moments is formalized, and commonlyused two-dimensional basis functions are covered. We then discuss the solution<strong>of</strong> matrix equations, Gaussian elim<strong>in</strong>ation, LU decomposition, condition numbers,iterative solvers, and precondition<strong>in</strong>g.Chapter 4 is dedicated to scatter<strong>in</strong>g and radiation by th<strong>in</strong> wires. We derive theth<strong>in</strong> wire kernel and the Hallén and Pockl<strong>in</strong>gton th<strong>in</strong> wire <strong>in</strong>tegral equations, andshow how to solve them. We then apply the MOM to th<strong>in</strong> wires <strong>of</strong> arbitrary shape,and consider several practical th<strong>in</strong> wire problems.Chapter 5 applies the moment method to two-dimensional problems. <strong>The</strong>electric and magnetic field <strong>in</strong>tegral equations are applied to problems <strong>of</strong> TM andTE polarization, and expressions are summarized that can be applied to general twodimensionalboundaries.Chapter 6 considers three-dimensional objects that can described as bodies <strong>of</strong>revolution. <strong>The</strong> application <strong>of</strong> the MOM to this problem follows the treatment <strong>of</strong>Harr<strong>in</strong>gton and Mautz, with additional derivations and discussion. We then look atthe radar cross section predictions <strong>of</strong> rotationally symmetric objects and comparethem to measurements.


PrefacexiChapter 7 covers three-dimensional surfaces <strong>of</strong> arbitrary shape. We discussmodel<strong>in</strong>g <strong>of</strong> surfaces by triangular facets, and devote significant effort to summariz<strong>in</strong>gthe expressions used to evaluate s<strong>in</strong>gular potential <strong>in</strong>tegrals over triangularelements. We then consider several radar cross section problems and the <strong>in</strong>putimpedance calculations <strong>of</strong> some three-dimensional antennas.Chatper 8 <strong>in</strong>troduces the fast multipole method and its use with iterativesolvers and the moment method. We cover the addition theorem, wave translation,and s<strong>in</strong>gle- and multi-level fast multipole algorithms. <strong>The</strong> treatment is concise andconta<strong>in</strong>s all the <strong>in</strong>formation required to succesfully implement the FMM <strong>in</strong> a new orexist<strong>in</strong>g moment method code.Chapter 9 discusses some commonly used methods <strong>of</strong> numerical <strong>in</strong>tegration<strong>in</strong>clud<strong>in</strong>g the trapezoidal and Simpson’s rule, area coord<strong>in</strong>ates, and Gaussian quadrature<strong>in</strong> one dimension and over planar triangular elements.Throughout this text, an ÛØ time convention is assumed and suppressedthroughout. We use SI units except for some examples where the test articles havedimensions <strong>in</strong> <strong>in</strong>ches or feet. Numbers <strong>in</strong> parentheses ( ) refer to equations, andnumbers <strong>in</strong> brackets [ ] are citations. Scalar quantities are written <strong>in</strong> an italic font (),vectors and matrices <strong>in</strong> bold (a), and unit vectors written us<strong>in</strong>g caret notation (a).


AcknowledgmentsThis book is a result <strong>of</strong> my experience as a student <strong>of</strong> electromagnetics and as adeveloper <strong>of</strong> computational electromagnetics codes. My walk down this path beganearly with my <strong>in</strong>terest <strong>in</strong> the power <strong>of</strong> the computer, as well as the mysteries beh<strong>in</strong>dradio waves and antennas. I received my first real <strong>in</strong>troduction to electromagnetics asan undergraduate student at Auburn University, and my pr<strong>of</strong>essor Thomas Shumpertencouraged me to pursue the subject at the graduate level. At the University <strong>of</strong>Ill<strong>in</strong>ois, I learned a great deal about electromagnetics from Weng Chew and mygraduate advisor Jianm<strong>in</strong>g J<strong>in</strong>. Dur<strong>in</strong>g my subsequent work on the Tripo<strong>in</strong>t Industriescode suite lucernhammer, I encountered many different challenges <strong>in</strong> mathematicsas well as s<strong>of</strong>tware algorithms, programm<strong>in</strong>g and optimization. Without the help <strong>of</strong>my many friends and colleagues, it is possible I would not have completed this pathat all. <strong>The</strong>refore, I would like to thank the follow<strong>in</strong>g people who provided me withuseful assistance, advice and <strong>in</strong>formation when it was needed:Jason AmosMichael J. PerryJohn L. Griff<strong>in</strong>Scott KelleyPaul BurnsJay HigleyAndy HarrisonSally ColochoEnrico PoggioBassem R. MahafzaI would like to give extra special thanks to Sally Colocho and Andy Harrisonfor pro<strong>of</strong>read<strong>in</strong>g this manuscript prior to publication.xiii


About the AuthorWalton C. Gibson was born <strong>in</strong> Birm<strong>in</strong>gham, Alabama <strong>in</strong> 1975. He receivedthe bachelor <strong>of</strong> science degree <strong>in</strong> electrical eng<strong>in</strong>eer<strong>in</strong>g from Auburn University <strong>in</strong>1996, and the Master <strong>of</strong> Science degree from the University <strong>of</strong> Ill<strong>in</strong>ois at Urbana-Champaign <strong>in</strong> 1998. His pr<strong>of</strong>essional <strong>in</strong>terests <strong>in</strong>clude electromagnetic theory, computationalelectromagnetics, radar cross section prediction, numerical algorithmsand s<strong>of</strong>tware eng<strong>in</strong>eer<strong>in</strong>g. He is the owner <strong>of</strong> Tripo<strong>in</strong>t Industries, Inc., and the author<strong>of</strong> the <strong>in</strong>dustry-standard lucernhammmer electromagnetic signature predictions<strong>of</strong>tware. He is a licensed amateur radio operator (callsign K4LLA), with <strong>in</strong>terests<strong>in</strong> antenna build<strong>in</strong>g and low-frequency RF propagation. He currently resides<strong>in</strong> Huntsville, Alabama.xv


Chapter 1Computational <strong>Electromagnetics</strong>Before the digital computer was developed, the analysis and design <strong>of</strong> electromagneticdevices and structures were largely experimental. Once the computer and numericallanguages such as FORTRAN came along, people immediately began us<strong>in</strong>gthem to tackle electromagnetic problems that could not be solved analytically. Thisled to a flurry <strong>of</strong> development <strong>in</strong> a field now referred to as computational electromagnetics(CEM). Many powerful numerical analysis techniques have been developed<strong>in</strong> this area <strong>in</strong> the last 50 years. As the power <strong>of</strong> the computer cont<strong>in</strong>ues to grow,so do the nature <strong>of</strong> the algorithms applied as well as the complexity and size <strong>of</strong> theproblems that can be solved.While the data gleaned from experimental measurements are <strong>in</strong>valuable, theentire process can be costly <strong>in</strong> terms <strong>of</strong> money and the manpower required to dothe required mach<strong>in</strong>e work, assembly, and measurements at the range. One <strong>of</strong> thefundamental drives beh<strong>in</strong>d reliable computational electromagnetics algorithms is theability to simulate the behavior <strong>of</strong> devices and systems before they are actually built.This allows the eng<strong>in</strong>eer to engage <strong>in</strong> levels <strong>of</strong> customization and optimization thatwould be pa<strong>in</strong>stak<strong>in</strong>g or even impossible if done experimentally. CEM also helps toprovide fundamental <strong>in</strong>sights <strong>in</strong>to electromagnetic problems through the power <strong>of</strong>computation and computer visualization, mak<strong>in</strong>g it one <strong>of</strong> the most important areas<strong>of</strong> eng<strong>in</strong>eer<strong>in</strong>g today.1.1 COMPUTATIONAL ELECTROMAGNETICS ALGORITHMS<strong>The</strong> extremely wide range <strong>of</strong> electromagnetic problems has led to the development<strong>of</strong> many different CEM algorithms, each with its own benefits and limitations.<strong>The</strong>se algorithms are typically classified as so-called “exact” or “low-frequency” and“approximate” or “high-frequency” methods and further sub-classified <strong>in</strong>to time- orfrequency-doma<strong>in</strong> methods. We will quickly summarize some <strong>of</strong> the most commonlyused methods to provide some context <strong>in</strong> how the moment method fits <strong>in</strong> the CEMenvironment.1


2 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>1.1.1 Low-Frequency <strong>Method</strong>sLow-frequency (LF) methods are so-named because they solve Maxwell’s Equationswith no implicit approximations and are typically limited to problems <strong>of</strong> smallelectrical size due to limitations <strong>of</strong> computation time and system memory. Thoughcomputers cont<strong>in</strong>ue to grow more powerful and solve problems <strong>of</strong> ever <strong>in</strong>creas<strong>in</strong>gsize, this nomenclature will likely rema<strong>in</strong> common <strong>in</strong> the literature.1.1.1.1 F<strong>in</strong>ite Difference Time Doma<strong>in</strong> <strong>Method</strong><strong>The</strong> f<strong>in</strong>ite difference time-doma<strong>in</strong> (FDTD) method [1, 2] uses the method <strong>of</strong> f<strong>in</strong>itedifferences to solve Maxwell’s Equations <strong>in</strong> the time doma<strong>in</strong>. Application <strong>of</strong> theFDTD method is usually very straightforward: the solution doma<strong>in</strong> is typicallydiscretized <strong>in</strong>to small rectangular or curvil<strong>in</strong>ear elements, with a “leap frog” <strong>in</strong> timeused to compute the electric and magnetic fields from one another. FDTD excelsat analysis <strong>of</strong> <strong>in</strong>homogeneous and nonl<strong>in</strong>ear media, though its demands for systemmemory are high due to the discretization <strong>of</strong> the entire solution doma<strong>in</strong>, and itsuffers from dispersion issues as well and the need to artificially truncate the solutionboundary. FDTD f<strong>in</strong>ds applications <strong>in</strong> packag<strong>in</strong>g and waveguide problems, as wellas <strong>in</strong> the study <strong>of</strong> wave propagation <strong>in</strong> complex dielectrics.1.1.1.2 F<strong>in</strong>ite Element <strong>Method</strong><strong>The</strong> f<strong>in</strong>ite element method (FEM) [3, 4] is a method used to solve frequencydoma<strong>in</strong>boundary valued electromagnetic problems by us<strong>in</strong>g a variational form. Itcan be used with two- and three-dimensional canonical elements <strong>of</strong> differ<strong>in</strong>g shape,allow<strong>in</strong>g for a highly accurate discretization <strong>of</strong> the solution doma<strong>in</strong>. <strong>The</strong> FEM is<strong>of</strong>ten used <strong>in</strong> the frequency doma<strong>in</strong> for comput<strong>in</strong>g the frequency field distribution <strong>in</strong>complex, closed regions such as cavities and waveguides. As <strong>in</strong> the FDTD method,the solution doma<strong>in</strong> must be truncated, mak<strong>in</strong>g the FEM unsuitable for radiation orscatter<strong>in</strong>g problems unless comb<strong>in</strong>ed with a boundary <strong>in</strong>tegral equation approach[3].1.1.1.3 <strong>Method</strong> <strong>of</strong> <strong>Moments</strong><strong>The</strong> method <strong>of</strong> moments (MOM) is a technique used to solve electromagnetic boundaryor volume <strong>in</strong>tegral equations <strong>in</strong> the frequency doma<strong>in</strong>. Because the electromagneticsources are the quantities <strong>of</strong> <strong>in</strong>terest, the MOM is very useful <strong>in</strong> solv<strong>in</strong>g radiationand scatter<strong>in</strong>g problems. In this book, we focus on the practical solution <strong>of</strong>boundary <strong>in</strong>tegral equations <strong>of</strong> radiation and scatter<strong>in</strong>g us<strong>in</strong>g this method.1.1.2 High-Frequency <strong>Method</strong>sElectromagnetic problems <strong>of</strong> large size have existed long before the computers thatcould solve them. Common examples <strong>of</strong> larger problems are those <strong>of</strong> radar cross


Computational <strong>Electromagnetics</strong> 3section prediction and calculation <strong>of</strong> an antenna’s radiation pattern when mounted ona large structure. Many approximations have been made to the equations <strong>of</strong> radiationand scatter<strong>in</strong>g to make these problems tractable. Most <strong>of</strong> these treat the fields <strong>in</strong> theasymptotic or high-frequency (HF) limit and employ ray-optics and edge diffraction.When the problem is electrically large, many asymptotic methods produce resultsthat are accurate enough on their own or can be used as a “first pass” before a moreaccurate though computationally demand<strong>in</strong>g method is applied.1.1.2.1 Geometrical <strong>The</strong>ory <strong>of</strong> Diffaction<strong>The</strong> geometrical theory <strong>of</strong> diffraction (GTD) [5, 6] uses ray-optics to determ<strong>in</strong>eelectromagnetic wave propagation. <strong>The</strong> spread<strong>in</strong>g, amplitude <strong>in</strong>tensity and decay <strong>in</strong>a ray bundle are computed us<strong>in</strong>g from Fermat’s pr<strong>in</strong>ciple and the radius <strong>of</strong> curvatureat reflection po<strong>in</strong>ts. <strong>The</strong> GTD attempts to account for the fields diffracted by edges,allow<strong>in</strong>g for a calculation <strong>of</strong> the fields <strong>in</strong> shadow regions. <strong>The</strong> GTD is fast but <strong>of</strong>tenyields poor accuracy for more complex geometries.1.1.2.2 Physical OpticsPhysical optics (PO) [7] is a method for approximat<strong>in</strong>g the high-frequency surfacecurrents, allow<strong>in</strong>g a boundary <strong>in</strong>tegration to be performed to obta<strong>in</strong> the fields. Aswe will see, the PO and the MOM are used to solve the same <strong>in</strong>tegral equation,though the MOM calculates the surface currents directly <strong>in</strong>stead <strong>of</strong> approximat<strong>in</strong>gthem. While robust, PO does not account for the fields diffracted by edges or thosefrom multiple reflections, so supplemental corrections are usually added to it. <strong>The</strong>PO method is used extensively <strong>in</strong> high-frequency reflector antenna analyses, as wellas many radar cross section prediction codes.1.1.2.3 Physical <strong>The</strong>ory <strong>of</strong> Diffraction<strong>The</strong> physical theory <strong>of</strong> diffraction (PTD) [8, 9] is a means for supplement<strong>in</strong>g the POsolution by add<strong>in</strong>g the effects <strong>of</strong> nonuniform currents at the diffract<strong>in</strong>g edges <strong>of</strong> anobject. PTD is commonly used <strong>in</strong> high-frequency radar cross section and scatter<strong>in</strong>ganalyses.1.1.2.4 Shoot<strong>in</strong>g and Bounc<strong>in</strong>g Rays<strong>The</strong> shoot<strong>in</strong>g and bounc<strong>in</strong>g ray (SBR) method [10, 11] was developed to predictthe multiple-bounce backscatter from complex objects. It uses the ray-optics modelto determ<strong>in</strong>e the path and amplitude <strong>of</strong> a ray bundle, but uses a PO-based schemethat <strong>in</strong>tegrates surface currents deposited by the ray at each bounce po<strong>in</strong>t. <strong>The</strong> SBRmethod is <strong>of</strong>ten used <strong>in</strong> scatter<strong>in</strong>g codes to account for multiple reflections on asurface or that encountered <strong>in</strong>side a cavity, and as such it supplements PO and thePTD. <strong>The</strong> SBR method is also used to predict wave propagation and scatter<strong>in</strong>g


4 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong><strong>in</strong> complex urban environments to determ<strong>in</strong>e the coverage for cellular telephoneservice.REFERENCES[1] A. Taflove and S. C. Hagness, Computational Electrodynamics: <strong>The</strong> F<strong>in</strong>ite-Difference Time-Doma<strong>in</strong> <strong>Method</strong>. Artech House, 3rd ed., 2005.[2] K. Kunz and R. Luebbers, <strong>The</strong> F<strong>in</strong>ite Difference Time Doma<strong>in</strong> <strong>Method</strong> for<strong>Electromagnetics</strong>. CRC Press, 1993.[3] J. J<strong>in</strong>, <strong>The</strong> F<strong>in</strong>ite Element <strong>Method</strong> <strong>in</strong> <strong>Electromagnetics</strong>. John Wiley and Sons,1993.[4] J. L. Volakis, A. Chatterjee, and L. C. Kempel, F<strong>in</strong>ite Element <strong>Method</strong> for<strong>Electromagnetics</strong>. IEEE Press, 1998.[5] J. B. Keller, “Geometrical theory <strong>of</strong> diffraction,” J. Opt. Soc. Amer., vol. 52,116–130, February 1962.[6] R. G. Kouyoumjian and P. H. Pathak, “A uniform geometrical theory <strong>of</strong> diffractionfor and edge <strong>in</strong> a perfectly conduct<strong>in</strong>g surface,” Proc. IEEE, vol. 62,1448–1461, November 1974.[7] C. A. Balanis, Advanced Eng<strong>in</strong>eer<strong>in</strong>g <strong>Electromagnetics</strong>. John Wiley and Sons,1989.[8] P. Ufimtsev, “Approximate computation <strong>of</strong> the diffraction <strong>of</strong> plane electromagneticwaves at certa<strong>in</strong> metal bodies (i and ii),” Sov. Phys. Tech., vol. 27,1708–1718, August 1957.[9] A. Michaeli, “Equivalent edge currents for arbitrary aspects <strong>of</strong> observation,”IEEE Trans. Antennas Propagat., vol. 23, 252–258, March 1984.[10] S. L. H. L<strong>in</strong>g and R. Chou, “Shoot<strong>in</strong>g and bounc<strong>in</strong>g rays: Calculat<strong>in</strong>g theRCS <strong>of</strong> an arbitrarily shaped cavity,” IEEE Trans. Antennas Propagat., vol. 37,194–205, February 1989.[11] S. L. H. L<strong>in</strong>g and R. Chou, “High-frequency RCS <strong>of</strong> open cavities withrectangular and circular cross sections,” IEEE Trans. Antennas Propagat.,vol. 37, 648–652, May 1989.


Chapter 2A Brief Review <strong>of</strong> <strong>Electromagnetics</strong>Solv<strong>in</strong>g electromagnetic problems requires the application <strong>of</strong> Maxwell’s Equationswith the appropriate formulation and boundary conditions. In this chapter we presenta review <strong>of</strong> the electromagnetic theory pert<strong>in</strong>ent to moment method problems. Wewill summarize Maxwell’s Equations and formulations for radiation, and deriveGreen’s functions <strong>in</strong>troduced <strong>in</strong> those relationships. We will then discuss vectorpotentials, near and far radiated fields, and equivalent problems. We then derivethe surface <strong>in</strong>tegral equations <strong>of</strong> radiation and scatter<strong>in</strong>g, which we solve us<strong>in</strong>g themoment method <strong>in</strong> subsequent chapters.2.1 MAXWELL’S EQUATIONSGiven a homogeneous medium with constituent parameters ¯ and , the electric andmagnetic fields must satisfy the frequency-doma<strong>in</strong> Maxwell equationsÖ¢E M H (2.1)Ö¢H J · ¯E (2.2)Ö¡D Õ (2.3)Ö¡B Õ Ñ (2.4)where D ¯E, B H, and the time dependence ÛØ has been assumed andwill be suppressed throughout this text. Though the magnetic current M and chargeÕ Ñ are not physically realizable quantities, they are <strong>of</strong>ten employed as mathematicaltools to solve radiation and scatter<strong>in</strong>g problems, as discussed <strong>in</strong> Section 2.6.5


6 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>2.2 ELECTROMAGNETIC BOUNDARY CONDITIONSAt the <strong>in</strong>terface between regions <strong>of</strong> different dielectric parameters, the generalizedelectromagnetic boundary conditions are written asn ¢ ´E ¾ E ½ µM × (2.5)n ¢ ´H ¾ H ½ µJ × (2.6)n ¡ ´D ¾ D ½ µÕ (2.7)n ¡ ´B ¾ B ½ µÕ Ñ (2.8)where any <strong>of</strong> M JÕ or Õ Ñ may be present, and n is the normal vector on the<strong>in</strong>terface po<strong>in</strong>t<strong>in</strong>g from region 2 to 1. For the <strong>in</strong>terface between a dielectric (region2) and a perfect electric conductor (PEC, region 1), the boundary conditions becomen ¢ E ¾ ¼ (2.9)n ¢ H ¾ J × (2.10)n ¡ D ¾ Õ (2.11)n ¡ B ¾ ¼ (2.12)and between a dielectric and perfect magnetic conductor (PMC) they aren ¢ E ¾ M × (2.13)n ¢ H ¾ ¼ (2.14)n ¡ D ¾ ¼ (2.15)n ¡ B ¾ Õ Ñ (2.16)2.3 FORMULATIONS FOR RADIATION<strong>The</strong> electromagnetic radiation problem <strong>in</strong>volves obta<strong>in</strong><strong>in</strong>g the fields everywhere <strong>in</strong>space due to a set <strong>of</strong> electric and magnetic currents. Scatter<strong>in</strong>g problems can beconsidered as radiation problems where local currents are generated by a differentset <strong>of</strong> currents or an impressed field. Let us start from first pr<strong>in</strong>ciples and derivean <strong>in</strong>tegral equation <strong>of</strong> radiation when only electric current J and charge Õ exist(M Õ Ñ ¼). To beg<strong>in</strong>, we take the curl <strong>of</strong> (2.1) and comb<strong>in</strong>e it with (2.2) to getÖ¢Ö¢E Ö¢H ¾ ¯E J (2.17)orÖ¢Ö¢E ¾ ¯E J (2.18)Us<strong>in</strong>g the vector identityÖ¢Ö¢E Ö´Ö¡Eµ Ö ¾ E (2.19)


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 7we write this asÖ´Ö¡Eµ Ö ¾ E ¾ E J (2.20)where is the wavenumber, Û Ô ¯ ¾. Substitut<strong>in</strong>g (2.3) <strong>in</strong>to the abovewe getÖ ¾ E · ¾ E J ÖÕ · (2.21)¯Employ<strong>in</strong>g the equation <strong>of</strong> cont<strong>in</strong>uityallows us to obta<strong>in</strong>Ö¡J Õ (2.22)Ö ¾ E · ¾ E J½(2.23)¯Ö´Ö¡JµS<strong>in</strong>ce Maxwell’s Equations are l<strong>in</strong>ear, we can consider J to be a superposition <strong>of</strong>po<strong>in</strong>t sources distributed over some volume. <strong>The</strong>refore, if we know the response <strong>of</strong>a po<strong>in</strong>t source, we can solve the orig<strong>in</strong>al problem by <strong>in</strong>tegrat<strong>in</strong>g this response overthe volume. We now make use <strong>of</strong> this idea to convert (2.23) <strong>in</strong>to an <strong>in</strong>tegral equation.S<strong>in</strong>ce (2.23) comprises three separate scalar equations, let us consider just the xcomponent, which isÖ ¾ Ü · ¾ Ü ´Â Ü · ½ ¾ Ö¡Jµ (2.24)ÜWe now <strong>in</strong>troduce the Green’s function ´r r ¼ µ, which satisfies the scalar Helmholtzequation [1]Ö ¾ ´r r ¼ µ· ¾ ´r r ¼ µ Æ´r r ¼ µ (2.25)and assum<strong>in</strong>g that ´r r ¼ µ is known, we can obta<strong>in</strong> Ü via Ü´rµ δr r ¼ µÂ Ü´r ¼ µ· ½Generaliz<strong>in</strong>g to the full vector form, we writeE´rµ δr r ¼ µ ¾Ü Ö¼ ¡ J´r ¼ µJ´r ¼ µ· ½ ¾ Ö¼ Ö ¼ ¡ J´r ¼ µr ¼ (2.26)r ¼ (2.27)where the <strong>in</strong>tegral is performed over the support <strong>of</strong> J. By a similar derivation, theradiated magnetic field due to magnetic current M and charge Õ Ñ isH´rµ ¯Î´r r ¼ µM´r ¼ µ· ½ ¾ Ö¼ Ö ¼ ¡ M´r ¼ µr ¼ (2.28)To use these equations, we must now f<strong>in</strong>d the solution to (2.25) and obta<strong>in</strong>´r r ¼ µ.


8 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>2.3.1 Three-Dimensional Green’s FunctionTo solve the three-dimensional scalar Helmholtz equationÖ ¾ ´r r ¼ µ· ¾ ´r r ¼ µ Æ´r r ¼ µ (2.29)we will first consider the homogeneous version, and then match the boundaryconditions <strong>of</strong> the <strong>in</strong>homogeneous case to obta<strong>in</strong> a unique solution. S<strong>in</strong>ce ´r r ¼ µis the solution for a po<strong>in</strong>t electromagnetic source, it must exhibit spherical symmetry<strong>in</strong> three dimensions. <strong>The</strong>refore, we will reta<strong>in</strong> only the radial term <strong>of</strong> the Laplacianand writeNext, we observe thatÖ ¾ ½ Ö ¾½ ¾´ÖµÖ Ö ¾ ½ Ö ´Ö¾Ö Ö µ¾ Ö ¾Ö Ö Ö · ¾ Ö ¾· ¾ Ö Ö· ¾ Ö Öand if we substitute <strong>in</strong> the function Ö for Ö¼, we can writeVia <strong>in</strong>spection, we can now write(2.30)(2.31) ¾´ÖµÖ ¾ · ¾´Öµ ¼ (2.32) ÖÖ· ÖÖ(2.33)which comprises <strong>in</strong>com<strong>in</strong>g and outgo<strong>in</strong>g waves. Because the solution must conta<strong>in</strong>only outgo<strong>in</strong>g waves and we have used the time factor Ø , we will reta<strong>in</strong> only thefirst term, hence Ö(2.34)ÖS<strong>in</strong>ce the value <strong>of</strong> the Green’s function depends only on the relative distance Öbetween the source and observation po<strong>in</strong>ts r and r ¼ , we will use the notation ´r r ¼ µ,where Ö r r ¼ . We should po<strong>in</strong>t out that the phase convention <strong>of</strong> the exponential<strong>in</strong> the Green’s function is not standard throughout the literature. <strong>The</strong> phase asdef<strong>in</strong>ed <strong>in</strong> (2.34) is standard <strong>in</strong> most electrical eng<strong>in</strong>eer<strong>in</strong>g references, however otherreferences [2, 3] def<strong>in</strong>e the Green’s function with a positive exponent, assum<strong>in</strong>g thetime harmonic term Ø .We must now match the boundary conditions to determ<strong>in</strong>e a unique solutionsolution. S<strong>in</strong>ce the wave must decay to zero with <strong>in</strong>creas<strong>in</strong>g Ö, this requires that´r r ¼ µ ¼ as Ö ½. <strong>The</strong> expression for ´r r ¼ µ already satisfies this conditionas written. We must now match it at the location <strong>of</strong> the po<strong>in</strong>t source (Ö ¼), allow<strong>in</strong>gus to determ<strong>in</strong>e . To do so, let us <strong>in</strong>tegrate (2.25) over a spherical volume <strong>of</strong> radius


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 9 around the source. Substitut<strong>in</strong>g (2.34) for ´r r ¼ µ,weget Ö Ö¡Ö · ¾ ÖÎ ½ (2.35)Ö ÖÎTo evaluate the the first term, we use the divergence theorem to write Ö ÖÖ¡Ö Î n ¡Ö Ë (2.36)ÖÖOn the sphere, n r, thereforeÎËr ¡Ö´ Öµ Ë Öwhich is Ö ¾ Ö ÖTak<strong>in</strong>g the limit as ¼,weget ÖÐѼ ¾ Ö Ö<strong>The</strong> second term is ¾ ¼ ÖÖËËÖ´ Öµ Ë (2.37)ÖÖÖ(2.38) (2.39) Ö ¾ Ö ¾ Ö Ö Ö (2.40)By <strong>in</strong>spection, this <strong>in</strong>tegral tends to zero as ¼. <strong>The</strong>refore,¼and ½´r r ¼ µ r r¼ r r ¼ (2.41)(2.42)which is the electrodynamic Green’s function <strong>in</strong> three dimensions.2.3.2 Two-Dimensional Green’s Function<strong>The</strong> scalar Helmholtz equation <strong>in</strong> two dimensions can be written asÖ ¾ ´ ¼ µ· ¾ ´ ¼ µ Æ´ ¼ µ (2.43)<strong>The</strong> solutions to the above for the homogeneous case are the Hankel functions <strong>of</strong>the first and second k<strong>in</strong>ds <strong>of</strong> order zero. Because we know the solution comprises


10 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>outgo<strong>in</strong>g waves only, we write´ ¼ µÀ ´¾µ¼ ´ ¼ µ (2.44)To obta<strong>in</strong> , we use the small-argument approximation to the Hankel function [4]À ´¾µ¼ ´µ ½ ¾ ­¡ÐÓ¾ ¼ (2.45)and <strong>in</strong>tegrate (2.43) over a very small circle <strong>of</strong> radius centered at the orig<strong>in</strong>, yield<strong>in</strong>g­¡ÐÓ Ë ½ (2.46)¾ËÖ¡Ö· ¾ ½ ¾ Us<strong>in</strong>g the divergence theorem, the first term is converted to a l<strong>in</strong>e <strong>in</strong>tegral yield<strong>in</strong>g ¾ ¾¼ÖÐÓ­¾¡ (2.47)<strong>The</strong> second term is ½ ¾ ¾ ­¡ÐÓ ¾ (2.48)¼ ¾<strong>The</strong> first part <strong>of</strong> the <strong>in</strong>tegral goes to zero as ¼. Integrat<strong>in</strong>g the second part yields ¾ ÐÓ¼­ ¡ ¾¾¾ ÐÓ­ ¡ ¾¬ ¬¬¬¬¾ ¼(2.49)<strong>The</strong> above goes to zero s<strong>in</strong>ceÐѼ ¾ ÐÓ ¼ (2.50)<strong>The</strong>refore, and the two-dimensional electrodynamic Green’s function is then(2.51)´ ¼ µ À ´¾µ¼ ´ ¼ µ (2.52)2.4 VECTOR POTENTIALSIn Section 2.3 we derived expressions that allow us to determ<strong>in</strong>e the radiated fieldeverywhere <strong>in</strong> space from a electric or magnetic current distribution. In many cases


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 11<strong>of</strong> practical <strong>in</strong>terest, however, it may be difficult or impossible to directly solvethese equations for the fields. To remedy this, we derive a set <strong>of</strong> auxiliary vectorpotentials that can also be used to solve for the radiated fields. <strong>The</strong>se potentials areobta<strong>in</strong>ed via <strong>in</strong>tegrals <strong>of</strong> the currents, and the radiated fields are obta<strong>in</strong>ed directlyfrom the potentials. Vector potential formulations are used extensively <strong>in</strong> the analysis<strong>of</strong> antenna radiation and scatter<strong>in</strong>g problems, and we will use them frequentlythroughout this book. <strong>The</strong>se formulations are very similar to the <strong>in</strong>tegral equationsderived <strong>in</strong> Section 2.3, with slight differences that will be addressed.2.4.1 Magnetic Vector PotentialWe will first derive a magnetic vector potential for a homogeneous, source-freeregion. We beg<strong>in</strong> by observ<strong>in</strong>g that s<strong>in</strong>ce the magnetic field H is always solenoidal,it can be written as the curl <strong>of</strong> another vector A, which is arbitrary. <strong>The</strong>refore, wewriteH ½ Ö¢A (2.53)Substitut<strong>in</strong>g the above <strong>in</strong>to (2.1), we getwhich can be written asWe next use the identityÖ¢E Ö¢A (2.54)Ö¢´E · Aµ ¼ (2.55)Ö¢´ Ö¨µ ¼ (2.56)to writeE A Ö¨ (2.57)where ¨ is an arbitrary electric scalar potential. We next use the identityÖ¢Ö¢A Ö´Ö¡Aµ Ö ¾ A (2.58)and take the curl <strong>of</strong> both sides <strong>of</strong> (2.53), which allows us to writeand comb<strong>in</strong><strong>in</strong>g this with equation (2.2) leads toSubstitut<strong>in</strong>g (2.57) <strong>in</strong>to the above leads toÖ¢H Ö´Ö¡Aµ Ö ¾ A (2.59)J · ¯E Ö´Ö¡Aµ Ö ¾ A (2.60)J · ¯´ A Ö¨µ Ö´Ö¡Aµ Ö ¾ A (2.61)which isÖ ¾ A · ¾ A J · Ö´Ö¡A · ¯¨µ (2.62)


12 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>We have already def<strong>in</strong>ed the curl <strong>of</strong> A <strong>in</strong> (2.53), however we have not yetdef<strong>in</strong>ed its divergence. We are therefore free to set it to whatever we wish as long aswe rema<strong>in</strong> consistent with that def<strong>in</strong>ition <strong>in</strong> the future. <strong>The</strong>refore, we will choose thedivergence <strong>of</strong> A to beÖ¡A ¯¨ (2.63)which conveniently simplifies (2.62) toÖ ¾ A · ¾ A J (2.64)which is an <strong>in</strong>homogeneous vector Helmholtz equation for A. We can now obta<strong>in</strong> theelectric field everywhere <strong>in</strong> the source-free region via the expressionE A Ö¨ A(2.65)¯Ö´Ö¡Aµwhere A is written <strong>in</strong> terms <strong>of</strong> a convolution <strong>of</strong> the current J and the Green’s function´r r ¼ µ:A´rµ ´r r ¼ µ J´r ¼ µ r ¼ J´r ¼ r r¼ µÎÎ r r ¼ r¼ (2.66)2.4.1.1 Two-Dimensional Magnetic Vector Potential<strong>The</strong> correspond<strong>in</strong>g magnetic vector potential <strong>in</strong> two dimensions is obta<strong>in</strong>ed by way<strong>of</strong> (2.52) and isA´µ 2.4.2 Electric Vector PotentialËJ´ ¼ µÀ ´¾µ¼ ´ ¼ µ ¼ (2.67)By the symmetry <strong>of</strong> Maxwell’s Equations, we can derive similar expressions for theelectric vector potential F. We will not repeat the derivation, and simply summarizethe expressions below:E Ö¢F (2.68)½¯¨Ñ ½(2.69)¯Ö¡FÖ ¾ F · ¾ F ¯M (2.70)H F Ö¨Ñ F(2.71)¯Ö´Ö¡FµF´rµ ¯ M´r ¼ µ ´r r ¼ µ r ¼ ¯ M´r ¼ r r¼ µÎÎ r r ¼ r¼ (2.72)


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 132.4.2.1 Two-Dimensional Electric Vector PotentialSimilarly, the two-dimensional electric vector potential isF´µ ¯2.4.3 Comparison <strong>of</strong> Radiation FormulasËM´ ¼ µÀ ´¾µ¼ ´ ¼ µ ¼ (2.73)<strong>The</strong> expression for the electric field <strong>in</strong> (2.65) appears very similar to what was derived<strong>in</strong> (2.27). <strong>The</strong>se equations are generally equivalent, however the vector differentialoperators on the second term <strong>of</strong> (2.65) are outside the <strong>in</strong>tegral sign and operate onthe observation coord<strong>in</strong>ates, whereas <strong>in</strong> (2.27) they are <strong>in</strong>side the <strong>in</strong>tegral sign andoperate on the source coord<strong>in</strong>ates. To show their equivalence, we must demonstratethatI´rµ ÖÖ ¡Î´r r ¼ µ J´r ¼ µ r ¼ To beg<strong>in</strong>, we make use <strong>of</strong> the vector identityδr r ¼ µÖ ¼ Ö ¼ ¡ J´r ¼ µ r ¼ (2.74)Ö¡ ¢ ´r r ¼ µ J´r ¼ µ £ ¢ Ö´r r ¼ µ £ ¡ J´r ¼ µ·´r r ¼ µÖ¡J´r ¼ µ (2.75)and s<strong>in</strong>ce J´r ¼ µ is not a function <strong>of</strong> the unprimed coord<strong>in</strong>ates, we can writeI´rµ ÖÖ ¡ ´r r ¼ µ J´r ¼ µ r ¼ ÖÎ΢ִr r¼ µ£J´r¼ µ r¼(2.76)Because <strong>of</strong> the symmetry <strong>of</strong> the Green’s function,and the above becomesI´rµ ÖÖ´r r ¼ µ Ö ¼ ´r r ¼ µ (2.77)뢅 ¼ ´r r ¼ µ £ J´r ¼ µ r ¼ (2.78)By us<strong>in</strong>g the previous vector identity we can write the above as a sum <strong>of</strong> two<strong>in</strong>tegrals:I´rµ Öδr r ¼ µÖ ¼ ¡ J´r ¼ µ r ¼ ¢ £Ö Ö ¼ ¡ ´r r ¼ µ J´r ¼ µ r ¼ (2.79)ÎWe now make use <strong>of</strong> the divergence theorem to convert the second <strong>in</strong>tegral <strong>in</strong>to an<strong>in</strong>tegral over the surface Ë bound<strong>in</strong>g the volume Î :I´rµ Öδr r ¼ µÖ ¼ ¡ J´r ¼ µ r ¼ÖËn ¡ ¢ ´r r ¼ µ J´r ¼ µ £ r ¼ (2.80)


14 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and s<strong>in</strong>ce J´r ¼ µ is completely enclosed <strong>in</strong>side Î , it is zero on Ë. Hence the second<strong>in</strong>tegral is zero and we are left withI´rµ Öδr r ¼ µÖ ¼ ¡ J´r ¼ µ r ¼ (2.81)We must now move the rema<strong>in</strong><strong>in</strong>g gradient operator under the <strong>in</strong>tegral sign, whichresults <strong>in</strong>I´rµ Ö ¼ ´r r ¼ µÖ ¼ ¡ J´r ¼ µ r ¼ (2.82)Îwhere we have aga<strong>in</strong> employed the symmetry <strong>of</strong> the Green’s function. We must nowmove the gradient so that it operates on the Ö ¼ ¡J´r ¼ µ term.Todosoweusethevectoridentityto writeÖ ¼ ´r r ¼ µÖ ¼ ¡ J´r ¼ µÖ ¼¢ ´r r ¼ µÖ ¼ ¡ J´r ¼ µ £ ´r r ¼ µÖ ¼ Ö ¼ ¡ J´r ¼ µ (2.83)I´rµ δr r ¼ µÖ ¼ Ö ¼ ¡ J´r ¼ µ r ¼ÎÖ ¼¢ ´r r ¼ µÖ ¼ ¡ J´r ¼ µ £ r ¼ (2.84)Now we look at the second term, which we expect should equal zero. To show this,we apply the follow<strong>in</strong>g result <strong>of</strong> the divergence theorem:to write the above asI´rµ ÎÎÖ ¼ ´rµ Î ´r r ¼ µÖ ¼ Ö ¼ ¡ J´r ¼ µ r ¼ËË ´rµ Ë (2.85)´r r ¼ µÖ ¼ ¡ J´r ¼ µ r ¼ (2.86)<strong>The</strong> bound<strong>in</strong>g surface Ë can be made large enough so that J´r ¼ µ has zero value,leav<strong>in</strong>g onlyI´rµ δr r ¼ µÖ ¼ Ö ¼ ¡ J´r ¼ µ r ¼ (2.87)that is the desired result. This equivalence is valid everywhere except at po<strong>in</strong>ts where´r r ¼ µ exhibits a s<strong>in</strong>gularity, i.e., r r ¼ .2.5 NEAR AND FAR FIELDSIn practical situations one typically needs the value <strong>of</strong> the electromagnetic field atlocations close to or far away from the source <strong>of</strong> radiation. <strong>The</strong> value <strong>of</strong> the nearfield, or the field close to the radiat<strong>in</strong>g source, is desirable <strong>in</strong> applications such asantenna fuz<strong>in</strong>g and electronics packag<strong>in</strong>g. <strong>The</strong> far field, orthefieldveryfarawayfrom the radiat<strong>in</strong>g source, is most <strong>of</strong>ten desired <strong>in</strong> scatter<strong>in</strong>g and radar cross sectionproblems. In this section, we quickly summarize the relationships for near and farfield radiation, which we will refer to <strong>in</strong> later chapters.


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 15zSourcezSourcer-r’r-r’r’r’rOryOyxx(a) Near Field Geometry(b) Far Field GeometryFigure 2.1: Near and far field geometry.2.5.1 Near FieldLet us obta<strong>in</strong> expressions for the fields at a po<strong>in</strong>t close to a radiat<strong>in</strong>g source, asillustrated <strong>in</strong> Figure 2.1a. Recall that the magnetic field radiated by an electric currentcan be obta<strong>in</strong>ed from (2.53) and (2.66) and isH´rµ ½ Ö¢A´rµ Ö¢ J´r ¼ ÖµÖ r¼ (2.88)Îwhere Ö rvector identityr ¼ . Mov<strong>in</strong>g the curl operator under the <strong>in</strong>tegral sign and us<strong>in</strong>g theÖ¢ ¢ J´r ¼ µ £ Ö ¡ ¢ J´r ¼ µ· ¢ Ö¢J´r ¼ µ £ (2.89)we write the above asH´rµ ÎJ´r ¼ Öµ ¢ÖÖr ¼ (2.90)where Ö¢J´r ¼ µ¼. Tak<strong>in</strong>g the gradient <strong>of</strong> the Green’s function yields ÖÖ ´r r ¼ ½·ÖµÖÖ ¿(2.91)and us<strong>in</strong>g this result we can write the expression for the magnetic field asH´rµ ΢´r r¼ µ ¢ J´r¼ µ£ ½·ÖÖ ¿ r ¼ (2.92)


16 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Expand<strong>in</strong>g <strong>in</strong>to its rectangular components, the above can be written as [1]À Ü´rµ À Ý´rµ À Þ´rµ ÎÎÎ ´Þ Þ ¼ µÂ Ý ´Ý Ý ¼ ½·ÖµÂ Þ Ü ¼ Ý ¼ Þ ¼Ö ¿´Ü Ü ¼ µÂ Þ ´Þ Þ ¼ ½·ÖµÂ Ü Ü ¼ Ý ¼ Þ ¼ (2.93)Ö ¿ ´Ý Ý ¼ µÂ Ü ´Ü Ü ¼ ½·ÖµÂ Ý Ü ¼ Ý ¼ Þ ¼Ö ¿and us<strong>in</strong>g (2.2) we obta<strong>in</strong> the correspond<strong>in</strong>g electric field: Ü´rµ ½ Â Ü · ´Ü Ü ¼ µ ¾ Ö Ü ¼ Ý ¼ Þ ¼Î Ý´rµ ½ Â Ý · ´Ý Ý ¼ µ ¾ Ö Ü ¼ Ý ¼ Þ ¼ (2.94)Î Þ´rµ ½ Â Þ · ´Þ Þ ¼ µ ¾ Ö Ü ¼ Ý ¼ Þ ¼Îwhere ´Ü Ü ¼ µÂ Ü ·´Ý Ý ¼ µÂ Ý ·´Þ Þ ¼ µÂ Þ (2.95)and ½ ½ Ö · ¾ Ö ¾(2.96)Ö ¿and ¿·¿Ö¾ ¾ Ö ¾(2.97)Ö We can use (2.93) and (2.94) to numerically calculate the the radiated fields atany po<strong>in</strong>t close to a known electric current distribution. <strong>The</strong> fields due to a knownmagnetic current distribution can also be obta<strong>in</strong>ed via a derivation mirror<strong>in</strong>g theabove.2.5.2 Far FieldWhen the observation po<strong>in</strong>t is located very far away from the source (Ö ½),approximations can be made that greatly simplify the computation <strong>of</strong> the radiatedfield. In this case the vectors r and r r ¼ are virtually parallel, as shown <strong>in</strong> Figure2.1b. Under this assumption, we can reasonably approximate Ö as [1]Ö rÖ ¼ ¡ rÖfor phase variationsfor amplitude variations(2.98)Look<strong>in</strong>g at (2.65), we see that the first term on the right-hand side contributesto fields vary<strong>in</strong>g accord<strong>in</strong>g to ½Ö and the second term to fields that vary accord<strong>in</strong>g to


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 17½Ö ¾ ½Ö ¿ etc., because <strong>of</strong> the differential operators. In the far field we expect thatonly those fields vary<strong>in</strong>g accord<strong>in</strong>g to ½Ö will have significant amplitude. <strong>The</strong>secomponents behave like a plane wave with no components along the direction <strong>of</strong>propagation. <strong>The</strong> far electric field will therefore be computed asand the magnetic field obta<strong>in</strong>ed from the electric field asE´rµ A´rµ (2.99)H´rµ ½ r ¢ E´rµ (2.100)where we have assumed the field to be a plane wave propagat<strong>in</strong>g along the vector r.2.5.2.1 Three-Dimensional Far FieldWe can write the expression for the far-zone electric field by us<strong>in</strong>g (2.98) with (2.99),result<strong>in</strong>g <strong>in</strong> the well-known expressionE´rµ Ö ÖÎJ´r ¼ µ r¼ ¡r r ¼ (2.101)For scatter<strong>in</strong>g problems with an <strong>in</strong>cident field E and scattered far field E × , the threedimensionalradar cross section ¿ is def<strong>in</strong>ed as [1] ¿ Ö ¾ E× ¾E ¾ Ö¾ E × ¾ (2.102)where it is usually assumed that E ½for computational convenience.2.5.2.2 Two-Dimensional Far FieldIn two dimensions the radiated far electric field is given byE´µ A´µ J´ ¼ µÀ ´¾µ¼ ´ ¼ µ ¼ (2.103)Us<strong>in</strong>g the large-argument approximation <strong>of</strong> the Hankel function [4]×À Ò ´¾µ ´µ ¾ Ò ½ (2.104)and (2.98) we write×¾¼ ´µ ¼ ¡À ´¾µ(2.105)


18 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and the far electric field becomesÖE´µ Ô J´ ¼ µ ¼ ¡ ¼ (2.106)For scatter<strong>in</strong>g problems with an <strong>in</strong>cident field E and scattered far field E × , the twodimensionalradar cross section ¾ is def<strong>in</strong>ed as [1] ¾ ¾Ö E× ¾where it is usually assumed that E ½.E ¾ ¾Ö E× ¾ (2.107)2.6 EQUIVALENT PROBLEMSTo solve radiation and scatter<strong>in</strong>g problems, it is <strong>of</strong>ten useful to formulate the problem<strong>in</strong> terms <strong>of</strong> an equivalent one that may be easier or more convenient to solve <strong>in</strong> theregion <strong>of</strong> <strong>in</strong>terest. <strong>The</strong>se equivalents are <strong>of</strong>ten written <strong>in</strong> terms <strong>of</strong> surface currentsthat mathematically modify or elim<strong>in</strong>ate the presence <strong>of</strong> obstacles present <strong>in</strong> theorig<strong>in</strong>al problem. In this section we discuss various methods used to formulate theseequivalents. Our focus on surface equivalents is an important one as many <strong>in</strong>tegralequations are derived from equivalent problems, and we will spend the rest <strong>of</strong> thisbook discuss<strong>in</strong>g practical approaches to solv<strong>in</strong>g these equations via the momentmethod.2.6.1 Surface Equivalent<strong>The</strong> surface equivalence theorem (or Huygen’s Pr<strong>in</strong>ciple) states that every po<strong>in</strong>t onan advanc<strong>in</strong>g wavefront is itself a source <strong>of</strong> radiated waves. By this theorem, anactual radiat<strong>in</strong>g source can be replaced by a fictitious set <strong>of</strong> different but equivalentsources. <strong>The</strong>se currents are placed on an arbitrary closed surface enclos<strong>in</strong>g theorig<strong>in</strong>al sources. By match<strong>in</strong>g the appropriate boundary conditions, these currentswill generate the same radiated field outside the closed surface as the orig<strong>in</strong>alsources. <strong>The</strong> theorem allows us to determ<strong>in</strong>e the far field <strong>of</strong> a radiat<strong>in</strong>g structureif the near field is known, or to create a surface <strong>in</strong>tegral equation that can be solvedfor the currents <strong>in</strong>duced on an object by an <strong>in</strong>cident field (Section 2.7).To beg<strong>in</strong>, consider electric and magnetic currents J ½ and M ½ that radiate thefields E ½ and H ½ <strong>in</strong> a homogeneous space with properties ¯½ and ½ as shown <strong>in</strong>Figure 2.2a. To create a set <strong>of</strong> equivalent sources, we enclose J ½ and M ½ by afictitious surface Ë divid<strong>in</strong>g the space <strong>in</strong>to two regions, Ê ½ and Ê ¾ . We also assumethe values <strong>of</strong> E ½ and H ½ are known everywhere on Ë. We now place on Ë the surfacecurrents J × and M × subject to the boundary conditionsJ × n ¢ ´H ½ Hµ (2.108)


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 19E 1,H 1E 1,H 1R 1R 2 SJ 1 M 1(a) Orig<strong>in</strong>al Problemn^E 1,H 1E,HR 1R 2 SM s= -n ^ x (E 1- E)J s= n^x (H 1- H)(b) Equivalent ProblemFigure 2.2: Surface equivalence theorem.


20 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>M × n ¢ ´E ½ Eµ (2.109)where the fields E and H <strong>in</strong>side Ë rema<strong>in</strong> undef<strong>in</strong>ed for now. S<strong>in</strong>ce Ê ½ and Ê ¾ havethe same dielectric properties, J × and M × radiate <strong>in</strong> a homogeneous environment and(2.65) and (2.71) may be used to obta<strong>in</strong> the radiated fields everywhere <strong>in</strong> Ê ¾ .Thisiscalled the surface equivalent and is depicted <strong>in</strong> Figure 2.2b. It should be noted that<strong>in</strong> this case only E ½ or H ½ needs to be known on Ë, s<strong>in</strong>ce the other can be obta<strong>in</strong>edby the Maxwell Equations (2.1) or (2.2).Because the fields E and H <strong>in</strong>side Ë are totally arbitrary, let us furthergeneralize the surface equivalence theorem. Consider first the problem <strong>of</strong> Figure2.3a, where external currents J ½ and M ½ and <strong>in</strong>ternal currents J ¾ and M ¾ create thefields E and H everywhere. Next, consider the similar problem <strong>of</strong> Figure 2.3b,where external currents J and M and <strong>in</strong>ternal currents J ¿ and M ¿ create the fieldsE and H everywhere. Let us now create a problem that is externally equivalent toFigure 2.3a and <strong>in</strong>ternally equivalent to Figure 2.3b. To do so, the fields and sourcesoutside Ë should rema<strong>in</strong> the same as <strong>in</strong> Figure 2.3a and those <strong>in</strong>side Ë the same as <strong>in</strong>Figure 2.3b. <strong>The</strong> surface currents on Ë must satisfy the boundary conditions, henceJ × n ¢ ´H H µ (2.110)M × n ¢ ´E E µ (2.111)This is illustrated <strong>in</strong> Figure 2.4a. By similar arguments, we can create an equivalentthat is <strong>in</strong>ternally equivalent to Figure 2.3a and externally equivalent to Figure 2.3b.In this case, the currents satisfy the boundary conditionsJ × n ¢ ´H H µ (2.112)M × n ¢ ´E E µ (2.113)This is illustrated <strong>in</strong> Figure 2.4b.2.6.2 Physical EquivalentLet us consider a concept very important <strong>in</strong> the area <strong>of</strong> scatter<strong>in</strong>g and radiationproblems called the physical equivalent. Suppose that we have currents J ½ and M ½that generate the fields E ½ and H ½ <strong>in</strong> a homogeneous region with parameters ¯½and ½ . If we now <strong>in</strong>troduce a conduct<strong>in</strong>g object <strong>in</strong>to the region, the reflected (orscattered) fieldsE × and H × are created, as illustrated <strong>in</strong> Figure 2.5a. Our goal is toobta<strong>in</strong> these scattered fields, so we will create an equivalent problem that allows usto remove the conduct<strong>in</strong>g object and replace it with equivalent surface currents. Letus apply the boundary conditions on the electric and magnetic fields at the surface<strong>of</strong> the scatterer. Over the boundary, the total tangential electric field must be zero,hencen ¢ ´E E Ø µ n ¢ ´E ½ · E × µM × ¼ (2.114)and the total tangential magnetic field must equal the <strong>in</strong>duced electric current density:n ¢ ´H H Ø µn ¢ ´H ½ · H × µJ × (2.115)


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 21E a,H aJ 1 M 1E a,H aR 1R 2 SJ 2 M 2(a) Orig<strong>in</strong>al External ProblemE b,H bE b,H bJ 3 M 3J 4 M 4SR 1R 2 (b) Orig<strong>in</strong>al Internal ProblemFigure 2.3: Orig<strong>in</strong>al problems.


22 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>E a,H aE b,H bR 1R 2 J 3 M 3J 1 M 1J s= n x (H a- H b)S^M s= -n ^ x (E a- E b)(a) External Equivalent CurrentsE b,H bR 1R 2 SJ 2 M 2J4 M 4(b) Internal Equivalent Currents^E a,H aJ s= n x (H b- H a)M s= -n ^ x (E b- E a)Figure 2.4: Surface equivalent problems.


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 23E = E 1+ E sH = H 1+ H s =8R 1R 2n^E t = H t = 0SJ 1 M 1(a) Orig<strong>in</strong>al Problem E s ,H s R 2 R 1-E 1,-H 1n^SM s= 0J s= n^x H(b) Equivalent ProblemFigure 2.5: Physical equivalent.


24 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>8 8R 1-E 1,-H 1 SR 2n^E s ,H s J s= 2 n^x H 1Figure 2.6: Physical optics approximation.<strong>The</strong> above two equations form the equivalent problem shown <strong>in</strong> Figure 2.5b, whichwe refer to as the physical equivalent. Unfortunately, the <strong>in</strong>duced current J × dependson the known <strong>in</strong>cident field H ½ as well as the the unknown scattered field H × .InSection 2.7 we will use (2.114) and (2.115) to create a set <strong>of</strong> <strong>in</strong>tegral equations thatdepend only on the <strong>in</strong>cident field and the <strong>in</strong>duced currents, which we can then solveby the method <strong>of</strong> moments.If we assume the object to be an <strong>in</strong>f<strong>in</strong>itely large and flat conductor as <strong>in</strong> Figure2.6, the scattered magnetic field will be equal <strong>in</strong> amplitude and phase to the <strong>in</strong>cidentfield. <strong>The</strong> <strong>in</strong>duced current can then be written asJ × ¾n ¢ H ½ (2.116)This expression is known as the physical optics (PO) approximation, and because <strong>of</strong>its simplicity it has been widely used <strong>in</strong> the areas <strong>of</strong> radar cross section prediction andreflector antenna analysis. Because its accuracy is limited to near-specular angles, itsresults are usually improved by the addition <strong>of</strong> edge effects through other asymptoticmethods such as the physical theory <strong>of</strong> diffraction (PTD) [5, 6]. In Section 9.2.2.2,the PO approximation <strong>in</strong> (2.116) is used <strong>in</strong> the far-zone electric field <strong>in</strong>tegral (2.101)and evaluated analytically for planar triangles.


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 252.7 SURFACE INTEGRAL EQUATIONSScatter<strong>in</strong>g problems can be considered as radiation problems where the locally radiat<strong>in</strong>gcurrents are generated by other currents or fields. Antenna analysis is consequentlya scatter<strong>in</strong>g problem, where antenna currents are excited via an externallyapplied voltage source. Radar cross section (RCS) problems <strong>in</strong>volve <strong>in</strong>cident electromagneticradiation generated by external sources, creat<strong>in</strong>g currents on the scattererthat re-radiate a scattered field.Radiation problems require an <strong>in</strong>tegration <strong>of</strong> known currents J and M to obta<strong>in</strong>the fields by way <strong>of</strong> (2.27) or (2.28). In scatter<strong>in</strong>g problems, the currents <strong>of</strong> (2.27)and (2.28) are unknown quantities. <strong>The</strong>refore, solv<strong>in</strong>g a scatter<strong>in</strong>g problem <strong>in</strong>volvestwo steps:1. Solv<strong>in</strong>g an <strong>in</strong>tegral equation for unknown local currents J or M created by anexternal but known <strong>in</strong>cident field E or H 2. Integrat<strong>in</strong>g the <strong>in</strong>duced currents J or M to obta<strong>in</strong> the scattered fields E × andH ×In this section, we will derive the well-known electric and magnetic field <strong>in</strong>tegralequations <strong>of</strong> scatter<strong>in</strong>g for perfectly conduct<strong>in</strong>g objects, based on the physicalequivalent described <strong>in</strong> Section 2.6.2.2.7.1 Electric Field Integral Equation<strong>The</strong> radiated electric field is obta<strong>in</strong>ed from the <strong>in</strong>duced surface current viaE ×´rµ Ë´r r ¼ µJ´r ¼ µ· ½ ¾ Ö¼ Ö ¼ ¡ J´r ¼ µr ¼ (2.117)We can elim<strong>in</strong>ate the dependence on E ×´rµ <strong>in</strong> (2.117) by enforc<strong>in</strong>g the boundaryconditions on the tangential electric field:n´rµ ¢ E ×´rµ n´rµ ¢ E ´rµ (2.118)where n´rµ is the surface normal. This allows us to write the above <strong>in</strong> terms <strong>of</strong> theknown <strong>in</strong>cident electric field E ´rµ as n´rµ ¢ E´rµ n´rµ ¢Ë´r r ¼ µJ´r ¼ µ· ½ ¾ Ö¼ Ö ¼ ¡ J´r ¼ µ r ¼ (2.119)Equation (2.119) is known as the electric field <strong>in</strong>tegral equation (EFIE) for a perfectlyconduct<strong>in</strong>g surface. Once solved for the unknown current J´rµ, the radiated fieldeverywhere can be obta<strong>in</strong>ed via (2.65). <strong>The</strong> EFIE is also commonly written us<strong>in</strong>g themagnetic vector potential A´rµ as n´rµ ¢ E´rµ n´rµ ¢A´rµ · ½ ÖÖ ¡ ¾ A´rµ (2.120)


26 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong> t´rµ ¡ E ´rµ t´rµ ¡½ · ½Ë ÖÖ ¡ J´r ¼ µ´r r ¼ ¾ µ r ¼ (2.121)where the gradient and divergence operate on the observation coord<strong>in</strong>ates. Depend<strong>in</strong>gon the type <strong>of</strong> problem, it may be advantageous to use one form over the other,which we will do <strong>in</strong> later chapters.<strong>The</strong> EFIE is a Fredholm <strong>in</strong>tegral equation <strong>of</strong> the first k<strong>in</strong>d, where the currentappears <strong>in</strong>side the <strong>in</strong>tegral sign only. Because the derivation did not impose anyconstra<strong>in</strong>t on the shape <strong>of</strong> the scatterer, the EFIE may be applied to closed surfacesas well as open, th<strong>in</strong> objects. For th<strong>in</strong> surfaces, the current J´rµ represents the vectorsum <strong>of</strong> the current density on both sides <strong>of</strong> the scatterer [1].2.7.2 Magnetic Field Integral EquationA similar equation can also be derived by enforc<strong>in</strong>g the boundary conditions on themagnetic field on the surface <strong>of</strong> a conduct<strong>in</strong>g object. From the physical equivalent <strong>of</strong>(2.115), the <strong>in</strong>duced current J´rµ on the surface is given byn´rµ ¢ ¢ H ´rµ ·H ×´rµ £ J´rµ (2.122)<strong>The</strong> scattered magnetic field is obta<strong>in</strong>ed via (2.53), yield<strong>in</strong>gH ×´rµ ½ Ö¢A´rµ Ö¢ ´r r ¼ µ J´r ¼ µ r ¼ (2.123)If we now take the limit as r approaches Ë from the outside <strong>of</strong> the object (r Ë·),we can substitute the expression for H × from (2.123) <strong>in</strong>to (2.122), which yields J´rµ n´rµ ¢ H ´rµ · ÐÑ n´rµ ¢Ö¢ ´r r ¼ µ J´r ¼ µ r ¼ (2.124)rË·Let us now move the curl operator <strong>in</strong>side the <strong>in</strong>tegral sign by us<strong>in</strong>g the vector identityÖ¢ ¢ J´r ¼ µ´r r ¼ µ £ ´r r ¼ µÖ¢J´r ¼ µ J´r ¼ µ ¢Ö´r r ¼ µ (2.125)S<strong>in</strong>ce the curl operates on the observation coord<strong>in</strong>ates, Ö¢J´r ¼ µ¼, and we usethe fact that Ö´r r ¼ µ Ö ¼ ´r r ¼ µ to write (2.124) asn´rµ ¢ H ´rµ J´rµÐÑrË·n´rµ ¢ËËËJ´r ¼ µ ¢Ö ¼ ´r r ¼ µ r ¼ (2.126)To evaluat<strong>in</strong>g the radiation <strong>in</strong>tegral <strong>in</strong> (2.126), we must determ<strong>in</strong>e its value when rapproaches r ¼ from outside Ë. To do so, we break the <strong>in</strong>tegral <strong>in</strong>to two parts and


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 27rdSz^rar’Figure 2.7: Small area <strong>in</strong> Ë.compute the limit as r r ¼ follow<strong>in</strong>g [7]:n´rµ ¢ J´r ¼ µ ¢Ö ¼ ´r r ¼ µ r ¼ · J´r ¼ µ ¢Ö ¼ ´r r ¼ µ r ¼Ë ÆËÆË(2.127)where ÆË is a very small, circular region <strong>of</strong> radius <strong>in</strong> Ë located close to r,asshown<strong>in</strong> Figure 2.7. Choos<strong>in</strong>g the center <strong>of</strong> ÆË as the orig<strong>in</strong> <strong>of</strong> a local cyl<strong>in</strong>drical coord<strong>in</strong>atesystem, we can write Ôr r ¼ ´ ¼ µ ¾ ·´Þ Þ ¼ µ ¾ (2.128)and the Green’s function <strong>in</strong>side ÆË can be written approximately as´r r ¼ µ r r¼ r r ¼ ½ Ô´ ¼ µ ¾ ·´Þ Þ ¼ µ ¾ r r ¼ ½ (2.129)<strong>The</strong> gradient <strong>in</strong> cyl<strong>in</strong>drical coord<strong>in</strong>ates isÖ ¼ ¼ · ½ ¼ ¼ · zÞ¼ (2.130)and because n´rµ z <strong>in</strong>side ÆË and J´r ¼ µ is everywhere tangential to ÆË, we writez ¢ J´r ¼ µ ¢Ö ¼ ´r r ¼ µJ´r ¼ µÞ ¼ ´r r¼ µ(2.131)which isJ´r ¼ µÞ ¼ ´r r¼ µ J´r ¼ µÞ ¢´ ¼ µ ¾ ·´Þ Þ ¼ µ ¾£ ¿¾(2.132)Because ÆË is very small, we will assume that J´r ¼ µ is constant and approximatelyequal to J´rµ. We now write the <strong>in</strong>tegral over ÆË asn´rµ ¢ÆËJ´r ¼ µ ¢Ö ¼ ´r r ¼ µ r ¼ J´rµ¾ ¼Þ ¼¢´ ¼ µ¾ · Þ ¾£ ¿¾ ¼ (2.133)


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 29the boundary conditions with zero <strong>in</strong>cident field. <strong>The</strong>se spurious solutions correspondto <strong>in</strong>terior resonant modes <strong>of</strong> the object itself and radiate no field outsidethe object. This problem typically appears with<strong>in</strong> a small bandwidth about the resonantfrequency, where the results conta<strong>in</strong> the desired solution plus some amount<strong>of</strong> the unwanted resonant solution. <strong>The</strong> fundamental reason for this is the tangentialcomponents <strong>of</strong> a s<strong>in</strong>gle <strong>in</strong>cident field are not sufficient to uniquely determ<strong>in</strong>e thesurface currents at these resonant frequencies [9]. One method for elim<strong>in</strong>at<strong>in</strong>g thisproblem is the application <strong>of</strong> an extended boundary condition, where the orig<strong>in</strong>al<strong>in</strong>tegral equations are modified or augmented such that the value <strong>of</strong> the field <strong>in</strong>sidethe object is explicitly forced to be zero [7, 9]. <strong>The</strong> dual-surface electric and magnetic<strong>in</strong>tegral equations (DSEFIE, DSMFIE) [10] are examples <strong>of</strong> such extended boundaryconditions. In these formulations, a second surface is placed just <strong>in</strong>side the orig<strong>in</strong>alsurface. <strong>The</strong> appropriate boundary condition for the <strong>in</strong>ternal fields on this surfaceis used to generate an additional <strong>in</strong>tegral equation. <strong>The</strong> comb<strong>in</strong>ation <strong>of</strong> this newequation with the orig<strong>in</strong>al one results <strong>in</strong> a comb<strong>in</strong>ed equation that produces a uniquesolution for the current at all frequencies. This method, however, requires additionaleffort <strong>in</strong> generat<strong>in</strong>g the secondary surface, and the number <strong>of</strong> unknowns <strong>in</strong> the MOMmatrix system <strong>in</strong>creases by a factor <strong>of</strong> two, <strong>in</strong>creas<strong>in</strong>g processor time and demandsfor system memory.<strong>The</strong> de facto method <strong>of</strong> elim<strong>in</strong>at<strong>in</strong>g the resonance problem is a l<strong>in</strong>ear comb<strong>in</strong>ation<strong>of</strong> the EFIE and MFIE, referred to as the comb<strong>in</strong>ed field <strong>in</strong>tegral equation(CFIE). This new equation enforces the boundary conditions on the electric andmagnetic fields and is free <strong>of</strong> spurious solutions, as the null spaces <strong>of</strong> the EFIE andMFIE differ. <strong>The</strong> CFIE is [11]CFIE « ¡ EFIE · ´½ «µ ¡ MFIE (2.139)Condition Number4000300020001000EFIEMFIECFIE00.4 0.5 0.6 0.7 0.8 0.9 1Cube Side Length (Wavelength)Figure 2.8: EFIE, MFIE and CFIE condition numbers for cube.


30 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>where the constant « is chosen so that the spurious solution is elim<strong>in</strong>ated, with¼¾ « ¼ typically represent<strong>in</strong>g a good choice. <strong>The</strong> condition numbers <strong>of</strong>the EFIE, MFIE and CFIE are shown <strong>in</strong> Figure 2.8 for a perfectly conduct<strong>in</strong>g cube<strong>of</strong> vary<strong>in</strong>g side length. <strong>The</strong> MOM with RWG basis functions is used, as described <strong>in</strong>Chapter 7. <strong>The</strong> resonances occur at approximately ¼ and ¼ for both the EFIEand MFIE, however the CFIE is observed to be resonance-free. Note also that thecondition numbers are not <strong>of</strong> the same magnitude; this will be discussed <strong>in</strong> Section3.4.3.<strong>The</strong> CFIE is attractive as it does not require the generation <strong>of</strong> an auxiliarysurface or the sampl<strong>in</strong>g <strong>of</strong> po<strong>in</strong>ts <strong>in</strong>ternal to the surface. It also results <strong>in</strong> the samenumber <strong>of</strong> unknowns as the EFIE and MFIE by themselves. <strong>The</strong> downside <strong>of</strong> thismethod is that <strong>in</strong> cases where the surface has extremely narrow edges and tips, theMFIE cannot be relied on to produce accurate results [10].REFERENCES[1] C. A. Balanis, Advanced Eng<strong>in</strong>eer<strong>in</strong>g <strong>Electromagnetics</strong>. John Wiley and Sons,1989.[2] W. C. Chew, Waves and Fields In Inhomogeneous Media. IEEE Press, 1995.[3] P. M. Morse and H. Feshbach, <strong>Method</strong>s <strong>of</strong> <strong>The</strong>oretical Physics. McGraw-Hill,1953.[4] M. Abramowitz and I. Stegun, Handbook <strong>of</strong> Mathematical Functions. NationalBureau <strong>of</strong> Standards, 1966.[5] K. M. Mitzner, “Incremental length diffraction coefficients,” Tech. Rep.AFAL-TR-73-296, Northrop Corporation, Aircraft Division, April 1974.[6] A. Michaeli, “Equivalent edge currents for arbitrary aspects <strong>of</strong> observation,”IEEE Trans. Antennas Propagat., vol. 32, 252–257, March 1984.[7] N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation <strong>Method</strong>s for<strong>Electromagnetics</strong>. Artech House, 1990.[8] J. M. Rius, E. Úbeda, and J. Parrón, “On the test<strong>in</strong>g <strong>of</strong> the magnetic field<strong>in</strong>tegral equation with RWG basis functions <strong>in</strong> the method <strong>of</strong> moments,” IEEETrans. Antennas Propagat., vol. 49, 1550–1553, November 2001.[9] A. F. Peterson, S. L. Ray, and R. Mittra, Computational <strong>Method</strong>s for <strong>Electromagnetics</strong>.IEEE Press, 1998.[10] R. A. Shore and A. D. Yaghjian, “Dual-surface <strong>in</strong>tegral equations <strong>in</strong> electromagneticscatter<strong>in</strong>g,” IEEE Trans. Antennas Propagat., vol. 53, 1706–1709,May 2005.


A Brief Review <strong>of</strong> <strong>Electromagnetics</strong> 31[11] W. C. Chew, J. M. J<strong>in</strong>, E. Michielssen, and J. Song, Fast and Efficient Algorithms<strong>in</strong> Computational <strong>Electromagnetics</strong>. Artech House, 2001.


34 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>2aLx^Figure 3.1: Th<strong>in</strong> wire dimensions. xr mr mn^xr nx 1x 2x 3x N-1x NFigure 3.2: Th<strong>in</strong> wire segmentation.3.1.1 Charged WireConsider a th<strong>in</strong>, conduct<strong>in</strong>g wire <strong>of</strong> length Ä and radius oriented along the Ü axis,as shown <strong>in</strong> Figure 3.1. If the radius <strong>of</strong> the wire is very small compared to the length( Ä), the electric potential on the wire can be expressed via the <strong>in</strong>tegral Ä ´rµ ¼Õ ´Ü ¼ µ¯r r ¼ ܼ (3.2)whereÔr r ¼ ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ (3.3)With the <strong>in</strong>tent <strong>of</strong> convert<strong>in</strong>g (3.2) <strong>in</strong>to a l<strong>in</strong>ear system <strong>of</strong> equations, let us subdividethe wire <strong>in</strong>to Æ subsegments, each <strong>of</strong> length ¡ Ü , as shown <strong>in</strong> Figure 3.2. With<strong>in</strong> eachsubsegment, we assume that the charge density has a constant value so that Õ ´Ü ¼ µ ispiecewise constant over the length <strong>of</strong> the wire. Mathematically, we write this asÕ ´Ü ¼ µÆÒ½ Ò Ò´Ü ¼ µ (3.4)where Ò are unknown weight<strong>in</strong>g coefficients, and Ò´Ü ¼ µ is a set <strong>of</strong> pulse functionsthat are constant on one segment but zero on all other segments, i.e. Ò´Ü ¼ µ¼ Ü ¼ ´Ò ½µ¡ ܽ ´Ò ½µ¡ Ü Ü ¼ Ò¡ Ü(3.5)¼ Ü ¼ Ò¡ ÜLet us now assign the potential on the wire a value <strong>of</strong> ½V. Substitut<strong>in</strong>g (3.4)<strong>in</strong>to (3.2) then yields½ ļÆÒ½ Ò Ò´Ü ¼ ½µ¯r r ¼ ܼ (3.6)


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 35Us<strong>in</strong>g the above def<strong>in</strong>ition <strong>of</strong> the pulse function, we can rewrite this as½½¯ÆÒ½ Ò Ò¡ Ü´Ò ½µ¡Ü½r r ¼ ܼ (3.7)where we now have a sum <strong>of</strong> <strong>in</strong>tegrals, each over the doma<strong>in</strong> <strong>of</strong> a s<strong>in</strong>gle pulsefunction. Let us now fix the source po<strong>in</strong>ts so that they are on the wire axis, andthe observation po<strong>in</strong>t to be on the wire’s surface. This choice ensures that there is nos<strong>in</strong>gularity <strong>in</strong> the <strong>in</strong>tegrand. <strong>The</strong> denom<strong>in</strong>ator <strong>of</strong> the <strong>in</strong>tegrand now becomesÔr r ¼ ´Ü Ü ¼ µ· ¾ (3.8)and (3.7) can be written as¯ ½ ¡ Ü· Æ ½ ´Æ ½µ¡ ܼ´Æ ¾µ¡ÜÔ ¾¡ ܽ´Ü Ü ¼ µ· ܼ ½· ¾ Ô´Ü ¾ Ü ¼ µ· ܼ · ¡¡¡¾Ô¡Ü Æ¡ ܽ´Ü Ü ¼ µ· ¾ ܼ · Æ´Æ ½µ¡Ü½Ô´Ü Ü ¼ µ· ¾ ܼ(3.9)which comprises one equation <strong>in</strong> Æ unknowns. We can solve this equation bycommon matrix algebra rout<strong>in</strong>es if we can obta<strong>in</strong> Æ equations <strong>in</strong> Æ unknowns. Todo so, let us choose Æ <strong>in</strong>dependent observation po<strong>in</strong>ts Ü Ñ on the surface <strong>of</strong> the wire,each at the center <strong>of</strong> a wire segment. Do<strong>in</strong>g so yields¯ ½ ¡ ܼ¯ ½ ¡ ܼÔÔ Æ¡ ܽ´Ü ½ Ü ¼ µ· ܼ· ¡¡¡ · Æ ¾.´Æ ½µ¡Ü Æ¡ ܽ´Ü Æ Ü ¼ µ· ܼ· ¡¡¡ · Æ ¾´Æ ½µ¡Ü½Ô´Ü ½ Ü ¼ µ· ¾ ܼ½Ô´Ü Æ Ü ¼ µ· ¾ ܼ(3.10)that comprises the matrix system Za b,¾Þ ½½ Þ ½¾ Þ ½¿ Þ ½Æ¿Þ ¾½ Þ ¾¾ Þ ¾¿ Þ ¾ÆÞ ¿½ Þ ¿¾ Þ ¿¿ Þ ¿Æ. . . .. . . ... .Þ Æ½ Þ Æ¾ Þ Æ¿ Þ Æƾ ½¿ ¾ ¿.. ƾ ½¿ ¾ ¿ . . Æ(3.11)


36 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong><strong>The</strong> <strong>in</strong>dividual matrix elements Þ ÑÒ areÞ ÑÒ Ò¡ Ü´Ò ½µ¡Üand the right-hand side (RHS) vector elements Ñ are3.1.1.1 Matrix Element Evaluation½Ô´Ü Ñ Ü ¼ µ· ¾ ܼ (3.12) Ñ ¯ (3.13)<strong>The</strong> <strong>in</strong>tegral for the matrix elements for this problem can be evaluated <strong>in</strong> closed form.Perform<strong>in</strong>g this <strong>in</strong>tegration yields [1] (Equation 200.01)´Ü Ü Ñ µ·Ô´Ü Ü Ñ µÞ ¾ ¾ÑÒ ÐÓ Ô(3.14)´Ü Ü Ñ µ· ´Ü Ü Ñ µ ¾ ¾where Ü Ò¡ Ü and Ü ´Ò ½µ¡ Ü . Note that the l<strong>in</strong>ear geometry <strong>of</strong> this problemyields a matrix that is symmetric toeplitz, i.e.,¾Þ ½ Þ ¾ Þ ¿ Þ Æ¿Þ ¾ Þ ½ Þ ¾ Þ Æ ½Z Þ ¿ Þ ¾ Þ ½ Þ Æ ¾(3.15). . . . .. .Þ Æ Þ Æ ½ Þ Æ ¾ Þ ½where only the first row <strong>of</strong> the matrix needs to be computed.3.1.1.2 SolutionIn Figures 3.3a and 3.3b we show the computed charge density on the wire us<strong>in</strong>g 15and 100 segments, respectively. <strong>The</strong> representation <strong>of</strong> the charge at the lower level<strong>of</strong> discretization is somewhat crude, as expected. <strong>The</strong> <strong>in</strong>crease to 100 unknownsgreatly <strong>in</strong>creases the fidelity <strong>of</strong> the result. Us<strong>in</strong>g the computed charge density, wethen compute the potential at 100 po<strong>in</strong>ts along the wire via (3.2). <strong>The</strong> potentialus<strong>in</strong>g 15 charge segments is shown <strong>in</strong> Figure 3.4a. While the voltage is near theexpected value <strong>of</strong> 1V, it is not <strong>of</strong> constant value, especially near the ends <strong>of</strong> the wire.Figure 3.4b shows the potential obta<strong>in</strong>ed us<strong>in</strong>g 100 charge segments. <strong>The</strong> voltageis now nearly constant across the entire wire, except at the endpo<strong>in</strong>ts. Because weused a uniform segment size for the wire, the charge density tends to be somewhatoversampled <strong>in</strong> the middle <strong>of</strong> the wire and undersampled near the ends. As a result,the variation <strong>of</strong> the charge near the ends <strong>of</strong> the wire is not represented as accuratelyas <strong>in</strong> the center, and the computed voltage tends to diverge from the true value. Many


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 37Charge Density (pC/m)1514131211109870 0.2 0.4 0.6 0.8 1Length (m)(a) 15 SegmentsCharge Density (pC/m)1514131211109870 0.2 0.4 0.6 0.8 1Length (m)(b) 100 SegmentsFigure 3.3: Straight wire charge distribution.


38 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Electric Potential (V)1.61.41.210.80.60.40.200 0.2 0.4 0.6 0.8 1Length (m)(a) 15 SegmentsElectric Potential (V)1.61.41.210.80.60.40.200 0.2 0.4 0.6 0.8 1Length (m)(b) 100 SegmentsFigure 3.4: Straight wire potential.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 39realistic shapes have irregular surface features such as cracks, gaps and corners thatgive rise to a more rapid variation <strong>in</strong> the solution at those po<strong>in</strong>ts. In an attempt to<strong>in</strong>crease accuracy, it is <strong>of</strong>ten advantageous to employ a denser level <strong>of</strong> discretization<strong>in</strong> the areas we expect the most variation.3.1.2 Charged PlateWe next consider the similar problem <strong>of</strong> a th<strong>in</strong>, charged conduct<strong>in</strong>g square plate <strong>of</strong>side length Ä, as shown <strong>in</strong> Figure 3.5. <strong>The</strong> potential on the plate is given by the<strong>in</strong>tegral ´rµ ľľ Ä¾Ä¾Õ ´Ü ¼ Ý ¼ µ¯r r ¼ ܼ Ý ¼ (3.16)Fix<strong>in</strong>g the plate to a potential <strong>of</strong> 1V as before, (3.16) becomes¯ ľľ Ä¾Ä¾Õ ´Ü ¼ Ý ¼ µÔ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ ܼ Ý ¼ (3.17)We now subdivide the plate <strong>in</strong>to Æ square patches <strong>of</strong> side length ¾ and area¡ × ¾ , and assume the charge to be <strong>of</strong> constant value with<strong>in</strong> each patch. Wethen choose Æ <strong>in</strong>dependent observation po<strong>in</strong>ts, each at the center <strong>of</strong> a patch. Do<strong>in</strong>gso yields a matrix equation with elements Þ ÑÒ given byÞ ÑÒ Ë Ò½Ô´Ü Ñ Ü ¼ µ ¾ ·´Ý Ñ Ý ¼ µ ¾ ܼ Ý ¼ (3.18)where Ë Ò represents the area <strong>of</strong> patch Ò. Right-hand side vector elements rema<strong>in</strong> thesame as <strong>in</strong> (3.13).z^x^Ly^ sLFigure 3.5: Th<strong>in</strong> charged plate dimensions.


40 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>3.1.2.1 Matrix Element EvaluationWhen the observation and source patches are the same (Ñ Ò), the <strong>in</strong>tegrand hasa s<strong>in</strong>gularity and the <strong>in</strong>tegral must be evaluated analytically. <strong>The</strong>se matrix elementsare called self terms and represent the most dom<strong>in</strong>ant <strong>in</strong>teractions between elements.We will devote significant attention to the evaluation <strong>of</strong> self-term matrix elements <strong>in</strong>this book. <strong>The</strong> self-term <strong>in</strong>tegral for the charged plate is Þ ÑÑ ½Ô´Ü ¼ µ ¾ ·´Ý ¼ µ ¾ ܼ Ý ¼ (3.19)Perform<strong>in</strong>g the <strong>in</strong>nermost <strong>in</strong>tegration yields [1] (Equation 200.01) Þ ÑÑ ÐÓ Ô ¾ ·´Ý ¼ µ ¾ · Ô¾ ·´Ý ¼ Ý ¼ (3.20)µ ¾ and perform<strong>in</strong>g the second <strong>in</strong>tegration yields [2] Ô Þ ÑÑ ¾ ÐÓ Ý · ¾ · Ý ¾ · Ý ÐÓÝ ¾ ·¾´ ·Ô¾ · Ý ¾ µÝ ¾ ¬ ¬¬¬¬(3.21)which reduces toÞ ¾ ÔÑÑ ¯ ÐÓ´½ · ¾µ (3.22)For patches that do not overlap (Ñ Ò) we will use a simple centroidal approximationto the <strong>in</strong>tegral, result<strong>in</strong>g <strong>in</strong>Þ ÑÒ ¡ ×Ô´Ü Ñ Ü Ò µ ¾ ·´Ý Ñ Ý Ò µ ¾ (3.23)where Ü Ò and Ý Ò are chosen to be at the center <strong>of</strong> the source patch. This approximationis not very accurate for elements that are close together physically but notoverlapp<strong>in</strong>g, however it serves to illustrate the problem. In these cases, an analyticor adaptive numerical <strong>in</strong>tegration should be used <strong>in</strong>stead. <strong>The</strong>se elements are calledthe near terms, and we will also consider them <strong>in</strong> greater detail later.3.1.2.2 SolutionFigures 3.6a and 3.6b show the computed surface charge densities obta<strong>in</strong>ed us<strong>in</strong>g 15and 35 patches <strong>in</strong> the Ü and Ý directions, which result <strong>in</strong> 225 and 1225 unknowns,respectively. Figures 3.7a and 3.7b show the surface charge densities on the patchesalong the diagonal <strong>of</strong> the plate. As <strong>in</strong> the case <strong>of</strong> the th<strong>in</strong> wire, the electric chargeaccumulates near the corners and the edges <strong>of</strong> the plate, and our solution couldbenefit from additional discretization density <strong>in</strong> those areas.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 41(a) 225 Patches(b) 1225 PatchesFigure 3.6: Charge distribution on square plate.


42 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Charge Density (pC/m 2 )160140120100806040200 0.2 0.4 0.6 0.8 1 1.2 1.4Length (m)(a) 225 PatchesCharge Density (pC/m 2 )160140120100806040200 0.2 0.4 0.6 0.8 1 1.2 1.4Length (m)(b) 1225 PatchesFigure 3.7: Potential on square plate diagonal.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 433.2 THE METHOD OF MOMENTSIn the previous section, we considered the problem <strong>of</strong> comput<strong>in</strong>g an unknown chargedistribution on a th<strong>in</strong> wire or plate at a known potential. Our basic approach was toexpand the unknown quantity us<strong>in</strong>g a set <strong>of</strong> known functions with unknown coefficients.We then converted the result<strong>in</strong>g equation <strong>in</strong>to a l<strong>in</strong>ear system <strong>of</strong> equationsby enforc<strong>in</strong>g the boundary conditions, <strong>in</strong> this case the electric potential, at a number<strong>of</strong> po<strong>in</strong>ts on the object. <strong>The</strong> result<strong>in</strong>g l<strong>in</strong>ear system was then solved numerically forthe unknown coefficients. Let us formalize this process by <strong>in</strong>troduc<strong>in</strong>g a method <strong>of</strong>weighted residuals known as the method <strong>of</strong> moments (MOM). Consider the generalizedproblem [3]Ä´ µ (3.24)where Ä is a l<strong>in</strong>ear operator, is a known forc<strong>in</strong>g function, and is unknown. Inelectromagnetic problems, Ä is typically an <strong>in</strong>tegro-differential operator, is theunknown function (charge, current) and is a known excitation source (<strong>in</strong>cidentfield). Let us now expand <strong>in</strong>to a sum <strong>of</strong> Æ weighted basis functions, ÆÒ½ Ò Ò (3.25)where Ò are unknown weight<strong>in</strong>g coefficients. Because Ä is l<strong>in</strong>ear, substitution <strong>of</strong>the above <strong>in</strong>to (3.24) yieldswhere the residual isÆÒ½Ê Ò Ä´ Ò µ (3.26)ÆÒ½ Ò Ä´ Ò µ (3.27)<strong>The</strong> basis functions are chosen to model the expected behavior <strong>of</strong> the unknownfunction throughout its doma<strong>in</strong>, and can be scalars or vectors depend<strong>in</strong>g on theproblem. If the basis functions have local support <strong>in</strong> the doma<strong>in</strong>, they are called localor subsectional basis functions. If their support spans the entire problem doma<strong>in</strong>, theyare called global or entire-doma<strong>in</strong> basis functions. In this book we focus primarilyon local basis functions.Let us now generalize the method by which the boundary conditions werepreviously enforced. We def<strong>in</strong>e an <strong>in</strong>ner product or moment between a basis function Ò´r ¼ µ and a test<strong>in</strong>g or weight<strong>in</strong>g function Ñ´rµ as Ñ Ò Ñ Ñ´rµ ¡ Ò Ò´r ¼ µ r ¼ r (3.28)where the <strong>in</strong>tegrals are l<strong>in</strong>e, surface, or volume <strong>in</strong>tegrals depend<strong>in</strong>g on the basisand test<strong>in</strong>g functions. Requir<strong>in</strong>g the <strong>in</strong>ner product <strong>of</strong> each test<strong>in</strong>g function with the


44 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>residual function to be zero yieldsÆÒ½ Ò Ñ Ä´ Ò µ Ñ (3.29)which results <strong>in</strong> the Æ ¢ Æ matrix equation Za b with matrix elementsand right-hand side vector elementsÞ ÑÒ Ñ Ä´ Ò µ (3.30) Ñ Ñ (3.31)In the MOM, each basis function <strong>in</strong>teracts with all others by means <strong>of</strong> the Green’sfunction and the result<strong>in</strong>g system matrix is full. All the elements <strong>of</strong> the matrix musttherefore be explicitly stored <strong>in</strong> memory. This can be compared to other algorithmssuch as the f<strong>in</strong>ite element method, where the matrix is typically sparse, symmetricand banded, with many elements <strong>of</strong> each matrix row be<strong>in</strong>g zero [4].3.2.1 Po<strong>in</strong>t Match<strong>in</strong>gIn Sections 3.1.1 and 3.1.2, we enforced the boundary conditions by test<strong>in</strong>g the<strong>in</strong>tegral equation at a set <strong>of</strong> discrete po<strong>in</strong>ts on the object. This is equivalent to us<strong>in</strong>ga delta function as the weight<strong>in</strong>g function <strong>in</strong> (3.28):Û Ñ´rµ Æ´rµ (3.32)This method is referred to as po<strong>in</strong>t match<strong>in</strong>g or po<strong>in</strong>t collocation. <strong>The</strong>rearesignificantadvantages as well as disadvantages to this method. One benefit is that <strong>in</strong>evaluat<strong>in</strong>g the matrix elements, no <strong>in</strong>tegral is required over the range <strong>of</strong> the test<strong>in</strong>gfunction, only that <strong>of</strong> the source function. <strong>The</strong> primary disadvantage is that theboundary conditions are matched only at discrete locations throughout the solutiondoma<strong>in</strong>, allow<strong>in</strong>g them to assume a different value at po<strong>in</strong>ts other than those usedfor test<strong>in</strong>g. In many cases the results may still be quite good, and we will use po<strong>in</strong>tmatch<strong>in</strong>g to solve several <strong>of</strong> the two-dimensional problems <strong>in</strong> Chapter 5.3.2.2 Galerk<strong>in</strong>’s <strong>Method</strong>For test<strong>in</strong>g we are free to use whatever functions we wish, however for manyproblems the choice <strong>of</strong> test<strong>in</strong>g function is crucial to obta<strong>in</strong><strong>in</strong>g a good solution. One<strong>of</strong> the most commonly used is the method <strong>of</strong> Galerk<strong>in</strong>, where the basis functionsthemselves are used as the test<strong>in</strong>g functions. This has the advantage <strong>of</strong> enforc<strong>in</strong>g theboundary conditions throughout the solution doma<strong>in</strong>, <strong>in</strong>stead <strong>of</strong> at discrete po<strong>in</strong>ts aswith po<strong>in</strong>t match<strong>in</strong>g. We will solve many problems <strong>in</strong> this book us<strong>in</strong>g Galerk<strong>in</strong>-typetest<strong>in</strong>g.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 453.3 COMMON TWO-DIMENSIONAL BASIS FUNCTIONS<strong>The</strong> most important characteristic <strong>of</strong> a basis function is that it reasonably representsthe behavior <strong>of</strong> the unknown function throughout its doma<strong>in</strong>. If the solution has ahigh level <strong>of</strong> variation throughout a particular region, us<strong>in</strong>g pulse basis functionsmay not be as good a choice as a l<strong>in</strong>ear or higher-order function. <strong>The</strong> choice <strong>of</strong>basis function also determ<strong>in</strong>es the complexity encountered <strong>in</strong> evaluat<strong>in</strong>g the MOMmatrix elements, which can be very difficult <strong>in</strong> some cases. We will now brieflyconsider some two-dimensional local basis functions commonly used <strong>in</strong> momentmethod problems, as well as entire-doma<strong>in</strong> functions.3.3.1 Pulse Functionsa 1f 1(x)a 2f 2(x)a 3f 3(x)a N-1f N-1(x)x 1 x 2 x 3 x 4 x N-1 x NxFigure 3.8: Pulse functions.A set <strong>of</strong> pulse basis functions is depicted <strong>in</strong> Figure 3.8, where the doma<strong>in</strong>has been divided <strong>in</strong>to Æ po<strong>in</strong>ts with Æ ½ subsegments/pulses. In our figure thesegments all have equal lengths, however this is not required. <strong>The</strong> pulse function isdef<strong>in</strong>ed as Ҵܵ ½ Ü Ò Ü Ü Ò·½ (3.33) Ҵܵ ¼ elsewhere (3.34)Pulse functions comprise a simple and crude approximation to the solution over eachsegment, but they can greatly simplify the evaluation <strong>of</strong> MOM matrix elements. Notethat s<strong>in</strong>ce the derivative <strong>of</strong> pulse functions is impulsive, they cannot be used when Äconta<strong>in</strong>s a derivative with respect to Ü [5].3.3.2 Piecewise Triangular FunctionsWhere pulse functions are constant on a s<strong>in</strong>gle segment, a triangle function spanstwo segments and varies from zero at the outer po<strong>in</strong>ts to unity at the center. A set <strong>of</strong>triangle functions is shown <strong>in</strong> Figure 3.9. <strong>The</strong> doma<strong>in</strong> has been divided <strong>in</strong>to Æ po<strong>in</strong>tsand Æ ½ subsegments, result<strong>in</strong>g <strong>in</strong> Æ ¾ basis functions. We have aga<strong>in</strong> depictedthe segments as be<strong>in</strong>g <strong>of</strong> equal length, however this is not required. S<strong>in</strong>ce adjacent


46 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>a 1f 1(x)a 2f 2(x)a 3f 3(x)f N-2(x)x 1 x 2 x 3 x 4 x N-1 x NxFigure 3.9: Triangle functions (end condition 1).a 1f 1(x)a 2f 2(x)a 3f 3(x)a 4f 4(x)a N-1f N-1(x)a Nf N(x)x 1 x 2 x 3 x 4 x N-1 x NxFigure 3.10: Triangle functions (end condition 2).functions overlap by one segment, triangles provide a piecewise l<strong>in</strong>ear variation <strong>of</strong>the solution between segments. A triangle function is def<strong>in</strong>ed as Ҵܵ Ü Ü Ò ½Ü Ò Ü Ò ½Ü Ò ½ Ü Ü Ò (3.35) Ü Ò·½ ÜҴܵ Ü Ò Ü Ü Ò·½ (3.36)Ü Ò·½ Ü Ò<strong>The</strong>se functions may be used when Ä conta<strong>in</strong>s a derivative with respect to Ü [5]. Thisproperty is important when consider<strong>in</strong>g the redistribution <strong>of</strong> differential operators,such as the manipulation <strong>of</strong> the EFIE <strong>in</strong> Section 4.5.1.Note that the configuration <strong>of</strong> Figure 3.9 forces the solution to zero at Ü ½ andÜ Æ . This configuration may be desirable when the value <strong>of</strong> the solution at the ends <strong>of</strong>the doma<strong>in</strong> is known to be zero a priori, however it should not be used if the solutionmay be nonzero. If we <strong>in</strong>stead add a half triangle to the first and last segments, thesolution will no longer be forced to zero. This is illustrated <strong>in</strong> Figure 3.10, wherethere are now a total <strong>of</strong> Æ basis functions.3.3.3 Piecewise S<strong>in</strong>usoidal FunctionsPiecewise s<strong>in</strong>usoid functions are similar to triangle functions, as illustrated <strong>in</strong> Figure3.11. <strong>The</strong>y are <strong>of</strong>ten used <strong>in</strong> the analysis <strong>of</strong> wire antennas because <strong>of</strong> their ability to


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 47a 1f 1(x)a 2f 2(x)a 3f 3(x)a N-1f N-1(x)x 1 x 2 x 3 x 4 x N-1 x NxFigure 3.11: Piecewise s<strong>in</strong>usoidal functions.represent s<strong>in</strong>usoidal current distributions. <strong>The</strong>se functions are def<strong>in</strong>ed as Ҵܵ ×Ò ´Ü Ü Ò ½µ×Ò ´Ü Ò Ü Ò ½ µÜ Ò ½ Ü Ü Ò (3.37) Ҵܵ ×Ò ´Ü Ò·½ ܵ×Ò ´Ü Ò·½ Ü Ò µÜ Ò Ü Ü Ò·½ (3.38)where is the wavenumber, and the length <strong>of</strong> the segments is generally much lessthan the period <strong>of</strong> the s<strong>in</strong>usoid.3.3.4 Entire-Doma<strong>in</strong> FunctionsUnlike their local counterparts, entire-doma<strong>in</strong> functions are def<strong>in</strong>ed everywherethroughout the problem doma<strong>in</strong>. One might have reason to use entire-doma<strong>in</strong> functionsif certa<strong>in</strong> <strong>in</strong>formation about the solution is known a priori. <strong>The</strong> solution maybe faithfully modeled by a sum <strong>of</strong> weighted polynomials or s<strong>in</strong>es and cos<strong>in</strong>es, forexample. For example, the current Á´Üµ on a th<strong>in</strong> dipole antenna <strong>of</strong> length Ä mightbe represented by the sum [6]ÆÁ´Üµ Ò´½ Üĵ Ñ (3.39)Ò½where the test<strong>in</strong>g procedure is still performed as before. After solv<strong>in</strong>g the matrixequation, only the first few coefficients Ò may be required to accurately representthe current <strong>in</strong> the above sum.A disadvantage <strong>of</strong> entire-doma<strong>in</strong> functions is that it may not be feasible toapply them to a geometry <strong>of</strong> arbitrary shape. As a result, local basis functions aremost <strong>of</strong>ten applied to MOM problems <strong>in</strong> the literature.3.3.5 Number <strong>of</strong> Basis FunctionsIn a given problem, the number <strong>of</strong> basis functions (unknowns) must be chosen so theyadequately represent the solution. Because we are concerned with time-harmonic


52 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and then for elements <strong>of</strong> L below the diagonal,Ð ½ Ù ½½Ð Ù ·½ ·¾Æ (3.59)Follow<strong>in</strong>g this algorithm, the elements needed at each step will have already beencomputed when they are needed. <strong>The</strong> matrix A can therefore be factored <strong>in</strong> place,requir<strong>in</strong>g no additional storage for L and U. A practical LU decomposition algorithmwill also <strong>in</strong>corporate partial pivot<strong>in</strong>g to ensure numerical stability at each step <strong>of</strong> theprocess. <strong>The</strong> operation count for the LU decomposition and back substitution is <strong>of</strong>the same complexity as Gaussian elim<strong>in</strong>ation.Once the factorization is completed, it can then be reused for an arbitrarynumber <strong>of</strong> right-hand sides. <strong>The</strong> factored matrix can then be written to disk andread back <strong>in</strong> later if needed, negat<strong>in</strong>g the need to compute and factor the matrix asecond time.3.4.3 Condition NumberGiven the matrix system Ax b, it is desirable to know the impact on the solutionx given any <strong>in</strong>accuracies <strong>in</strong> the estimate <strong>of</strong> b. If after comput<strong>in</strong>g the s<strong>in</strong>gular valuedecomposition (SVD) <strong>of</strong> A we observe a large difference between the largest andsmallest s<strong>in</strong>gular values, we know that small changes <strong>in</strong> b may result <strong>in</strong> large changes<strong>in</strong> x. Let us now def<strong>in</strong>e the condition number <strong>of</strong> a matrix, which is´Aµ A ½ A (3.60)where ¡is a matrix norm. If we choose the 2-norm, then the condition number isgiven by ÑÜ´Aµ´Aµ (3.61) ÑÒ´Aµwhere ÑÒ´Aµ and ÑÜ´Aµ are the m<strong>in</strong>imum and maximum eigenvalues <strong>of</strong> A,respectively [10]. <strong>The</strong> condition number is important because many elements <strong>of</strong>the MOM matrix and right-hand side vectors are obta<strong>in</strong>ed by numerical <strong>in</strong>tegration.Small errors <strong>in</strong> these can be magnified by a matrix that is poorly conditioned. <strong>The</strong>condition number is also important to iterative methods such as those <strong>in</strong> the nextsection, as it has a direct impact on their relative rates <strong>of</strong> convergence.3.4.3.1 EFIE and MFIEBecause the EFIE and MFIE are the key <strong>in</strong>tegral equations used <strong>in</strong> this book, it isimportant we know how they impact the condition number <strong>of</strong> the result<strong>in</strong>g systemmatrix. <strong>The</strong> EFIE conta<strong>in</strong>s an unbounded operator [10] that causes its eigenvalues tobe large or <strong>in</strong>f<strong>in</strong>ite <strong>in</strong> many cases. As a result, the EFIE is well known for produc<strong>in</strong>ga poorly conditioned matrix. <strong>The</strong> MFIE comprises an identity-plus-compact operator


54 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Initial steps:Guess x ¼r ¼ b Ax ¼r ¼ A Ý r ¼z ¼ M ½ r ¼p ¼ z ¼For ½ ¾ until convergence, dow ½ Ap ½« ½ ´z £ ½ ¡ r ½µw ½ ¾ ¾x x ½ · « ½ p ½r r ½ « ½ w ½If r ¾ ¯b ¾ , stop iterationr A Ý r z M ½ r ¬ ½ ´z £ ¡ r µ´z £ ½ ¡ r ½µp z · ¬ ½ p ½endFigure 3.12: Preconditioned conjugate gradient (CGNR) algorithm.equations is summarized <strong>in</strong> Figure 3.12, where M is a preconditioner matrix. Thisalgorithm requires two matrix-vector products per iteration, one with A and one withA Ý .<strong>The</strong> CG method has been used extensively for electromagnetic field problems,and the relationship between the matrix eigenvalues and convergence <strong>of</strong> the CGstudied [13, 14, 15, 16]. For a matrix system with Æ unknowns, the CG theoreticallyconverges to the exact solution <strong>in</strong> at most Æ iterations, assum<strong>in</strong>g there are noround<strong>of</strong>f errors, and the residual error decreases at each step. For many practicalradiation and scatter<strong>in</strong>g problems, the CG performs extremely well. Due to the illcondition<strong>in</strong>g <strong>of</strong> some matrix systems however, the convergence rate <strong>of</strong> the CG maybe very slow and may effectively stagnate without any additional decrease <strong>in</strong> theresidual norm, suggest<strong>in</strong>g that a preconditioner may be needed.3.4.4.2 Biconjugate Gradient<strong>The</strong> biconjugate gradient (BiCG) method was developed by Lanczos [17] and isapplicable to general, nonsymmetric systems. BiCG approaches the problem bygenerat<strong>in</strong>g a pair <strong>of</strong> bi-orthogonal residual sequences us<strong>in</strong>g A and A Ì . An algorithm[18] for the preconditioned BiCG method is summarized <strong>in</strong> Figure 3.13. Thisalgorithm requires two matrix-vector products per iteration, one with A and one withA Ì . <strong>The</strong> residual error <strong>of</strong> the BiCG does not necessarily decrease at each step andconvergence may be observed to be erratic, but it does exhibit good performance formany problems.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 55Initial steps:Guess x ¼r ¼ b Ax ¼r ¼ r ¼For ½ ¾until convergence:z ½ M ½ r ½z ½ ´M Ì µ½ r ½ ½ z ½ ¡ r ½If ½ ¼method failsIf ½p z ½p z ½else¬ ½ ¾p z ½ · ¬ ½ p ½p z ½ · ¬ ½ p ½endifq Ap q A Ì p « ½ ´p ¡ q µx x ½ · « p r r ½ « q If r ¾ ¯b ¾ , stop iterationr r ½ « q endFigure 3.13: Preconditioned biconjugate gradient (BiCG) algorithm.3.4.4.3 Conjugate Gradient Squared<strong>The</strong> conjugate gradient squared (CGS) algorithm [19] is a method that avoids us<strong>in</strong>gthe transpose <strong>of</strong> A and attemps to obta<strong>in</strong> a faster rate <strong>of</strong> convergence than CG andBiCG. <strong>The</strong> method does converge faster <strong>in</strong> many cases, though because <strong>of</strong> its moreaggressive formulation it is also more sensitive to residual errors and may divergequickly if the system is ill-conditioned. An algorithm [18] for the preconditionedCGS method is summarized <strong>in</strong> Figure 3.14. This algorithm requires two matrixvectorproducts with A per iteration.3.4.4.4 Biconjugate Gradient Stabilized<strong>The</strong> biconjugate gradient stabilized (BiCG-Stab) algorithm is similar to the CGSbut attempts to avoid its irregular convergence patterns [18]. An algorithm for thepreconditioned BiCG-Stab method is summarized <strong>in</strong> Figure 3.15. This algorithm


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 57Initial steps:Guess x ¼r ¼ b Ax ¼r r ¼For ½ ¾until convergence: ½ r ½ ¡ rIf ½ ¼method failsIf ½p ½ r ¼else¬ ´ ½ ¾ µ´« ½ ½ µp r ½ · ¬ ½´p ½ ½ v ½ µendifp M ½ p v Ap« ½ ´r ¡ v µs r ½ « v Check norm <strong>of</strong> ×, if small enough set x x ½ · « p, stops M ½ st As ´t ¡ sµ´t ¡ tµx x ½ · « p · sr s tIf r ¾ ¯b ¾ , stop iterationendFigure 3.15: Preconditioned biconjugate gradient stabilized (BiCG-Stab) algorithm.<strong>of</strong> error, because [10]e Ò e ¼ ´Aµr Ò(3.67)r ¼ and if A is badly conditioned, x may not be a very accurate estimate <strong>of</strong> the solutionfor a given Æ . In a practical implementation, the iteration should be stopped afterthe desired residual norm is obta<strong>in</strong>ed or a maximum number <strong>of</strong> iterations is reached.3.4.5 ExamplesLet us compare the convergence behavior <strong>of</strong> the CGNR, BiCG, CGS and BiCG-Stab algorithms for a couple <strong>of</strong> practical cases. Figures 3.16a and 3.16b depict theconvergence history when solv<strong>in</strong>g for the currents <strong>in</strong>duced by a plane wave on asphere <strong>of</strong> diameter ¾ and cube <strong>of</strong> side length ¾. RWG basis functions (Chapter7) and CFIE are used, and the models comprise 7680 and 5952 edges (unknowns),respectively. Iteration is performed to a residual norm <strong>of</strong> ½¼ . For the sphere, the


58 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>CGS algorithm performs the best followed by BiCG-Stab and CGNR, with BiCGdemonstrat<strong>in</strong>g the slowest convergence. For the cube, the results are much different.CGS and BiCG-Stab have a very similar rate <strong>of</strong> convergence and converge quite fast,whereas CGNR and BiCG converge much slower.<strong>The</strong>se examples show that various iterative solvers will have different performance,depend<strong>in</strong>g on the type <strong>of</strong> problem. In some cases a solver can demonstratevery good convergence, however it might not converge <strong>in</strong> others. As a result, it is<strong>of</strong>ten advisable to try different solvers on a particular problem to determ<strong>in</strong>e whichone performs best.3.4.5.1 Precondition<strong>in</strong>gPrevious sections have emphasized the relationship between the condition number<strong>of</strong> a matrix and the convergence <strong>of</strong> iterative solvers. In many cases the solution maybe unobta<strong>in</strong>able because the iteration stagnates or diverges. In others, the solutionmay converge but only after many iterations and a long compute time. In these cases,especially <strong>in</strong> those where the solution does not converge, a method <strong>of</strong> improv<strong>in</strong>g theconvergence behavior <strong>of</strong> the solver is desirable. To <strong>in</strong>vestigate such a method, let usmodify the orig<strong>in</strong>al l<strong>in</strong>ear system to create the new systemM ½ Ax M ½ b (3.68)where M is a preconditioner matrix. IfM ½ resembles A ½ <strong>in</strong> some fashion, thenthe solution <strong>of</strong> the above matrix system rema<strong>in</strong>s the same, however the eigenvalues<strong>of</strong> M ½ A may be more attractive and allow for better performance <strong>in</strong> an iterativesolver. <strong>The</strong> algorithms summarized <strong>in</strong> Figures 3.12–3.15 solve the preconditionedsystem <strong>of</strong> (3.68) and require the solution <strong>of</strong> one or more auxiliary l<strong>in</strong>ear systems <strong>of</strong>the form Mz r at each iteration.<strong>The</strong> problem we now face is f<strong>in</strong>d<strong>in</strong>g the value <strong>of</strong> M ½ . Obviously, if M ½ isexactly equal to A ½ , we have not improved the situation s<strong>in</strong>ce this requires the completefactorization <strong>of</strong> A. <strong>The</strong> key is determ<strong>in</strong><strong>in</strong>g a value <strong>of</strong> M ½ that has a reasonablesetup time and memory demand, and that does not impose an unacceptable overheadwhen solv<strong>in</strong>g the auxiliary problem at each iteration. In some cases, the application<strong>of</strong> a preconditioner is absolutely necessary as the orig<strong>in</strong>al system does not convergeat all. In other cases, the hope is that the improved rate <strong>of</strong> convergence <strong>of</strong> the newsystem will result <strong>in</strong> a significantly reduced number <strong>of</strong> iterations and therefore anoverall sav<strong>in</strong>gs <strong>in</strong> compute time. This is particularly attractive when the calculations<strong>in</strong>volve multiple right-hand sides, as the preconditioner setup time can be amortizedquickly. Many effective precondition<strong>in</strong>g schemes are discussed at length <strong>in</strong> [12], andwe will discuss several <strong>of</strong> these <strong>in</strong> the context <strong>of</strong> the fast multipole method <strong>in</strong> Chapter8.3.4.6 Commonly Used Matrix Algebra S<strong>of</strong>twareIt is a significant advantage to have ready-made rout<strong>in</strong>es for solv<strong>in</strong>g matrix equationsavailable without one hav<strong>in</strong>g to “roll their own.” Fortunately, there is plenty <strong>of</strong>


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 59Residual Norm10 210 010 −2IterationsCGNRBiCGCGSBiCG−Stab10 −40 5 10 15 20 25 30 35(a) 2 Meter Sphere10 2 IterationsResidual Norm10 010 −2CGBiCGCGSBiCG−Stab10 −40 10 20 30 40 50 60(b) 2 Meter CubeFigure 3.16: Iteration on sphere and cube (CFIE).


60 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>reliable s<strong>of</strong>tware available for this task so the eng<strong>in</strong>eer does not have to worryabout this part <strong>of</strong> the problem. Many libraries are freely available through the Webvia universities and other organizations, and there are many commercial packagesavailable as well. <strong>The</strong> s<strong>of</strong>tware discussed <strong>in</strong> this section has been used extensivelyby this author for solv<strong>in</strong>g Moment <strong>Method</strong> problems and are highly recommended.3.4.6.1 BLAS<strong>The</strong> BLAS (Basic L<strong>in</strong>ear Algebra Subprograms) are set <strong>of</strong> FORTRAN 77 subrout<strong>in</strong>esthat act as build<strong>in</strong>g blocks for vector and matrix operations [20]. BLAS iscomposed <strong>of</strong> three subsets: BLAS 1 for scalar, vector and vector-vector operations;BLAS 2 for matrix-vector operations; and BLAS 3 for matrix-matrix operations.Separate rout<strong>in</strong>es are supplied for real and complex arithmetic (s<strong>in</strong>gle and doubleprecision). <strong>The</strong> BLAS source codes are freely available via the Netlib repositoryat http://www.netlib.org/blas, and may be compiled and <strong>in</strong>cluded <strong>in</strong> commericalapplications at not cost. A popular hand-optimized BLAS library known asGoto BLAS is available from the University <strong>of</strong> Texas Advanced Comput<strong>in</strong>g Centerat http://www.tacc.utexas.edu/resources/s<strong>of</strong>tware/. Mach<strong>in</strong>e optimized versions<strong>of</strong> BLAS are also available from various vendors such as Intel, Apple, IBM, Sunand Cray and are <strong>in</strong>cluded as part <strong>of</strong> their operat<strong>in</strong>g system or sold separately as aruntime library.3.4.6.2 LAPACKLAPACK is a FORTRAN 77 library for solv<strong>in</strong>g l<strong>in</strong>ear systems, least-squares solutions<strong>of</strong> l<strong>in</strong>ear systems <strong>of</strong> equations, eigenvalue problems, and s<strong>in</strong>gular value problems[21]. It freely available via the Netlib repository at http://www.netlib.org/lapack,and may be used <strong>in</strong> commercial applications. <strong>The</strong> rout<strong>in</strong>es are written to handle denseand banded matrices, but not sparse ones. LAPACK draws upon the BLAS rout<strong>in</strong>esand a BLAS library must be <strong>in</strong>stalled to use it. Like BLAS, separate versions <strong>of</strong> therout<strong>in</strong>es are supplied for real and complex variables. LAPACK may also be l<strong>in</strong>kedwith and called from programs written <strong>in</strong> C, provided that the programmer <strong>in</strong>terfacesbetween FORTRAN and C properly.3.4.6.3 MATLAB R­MATLAB is a popular numerical comput<strong>in</strong>g environment and programm<strong>in</strong>g languagecommercially available from the <strong>The</strong> Mathworks, Inc. It was orig<strong>in</strong>ally developedto aid <strong>in</strong> solv<strong>in</strong>g matrix problems, and many <strong>of</strong> its matrix functions use theBLAS and LAPACK libraries. <strong>The</strong> MATLAB script<strong>in</strong>g language is easy to learn,and fairly complex simulations can be written with it. Though its scripts are <strong>in</strong>terpretedand less efficient than compiled code, MATLAB is accurate and can be usedto reproduce many examples from this book us<strong>in</strong>g its built-<strong>in</strong> functions.


<strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> 61REFERENCES[1] H. Dwight, Tables <strong>of</strong> Integrals and Other Mathematical Data. <strong>The</strong> MacmillanCompany, 1961.[2] <strong>The</strong> Integrator. Wolfram Research, http://<strong>in</strong>tegrals.wolfram.com.[3] R. F. Harr<strong>in</strong>gton, Field Computation by Moment <strong>Method</strong>s. IEEE Press, 1993.[4] J. J<strong>in</strong>, <strong>The</strong> F<strong>in</strong>ite Element <strong>Method</strong> <strong>in</strong> <strong>Electromagnetics</strong>. John Wiley and Sons,1993.[5] N. Morita, N. Kumagai, and J. R. Mautz, Integral Equation <strong>Method</strong>s for<strong>Electromagnetics</strong>. Artech House, 1990.[6] B. D. Popovich, “Polynomial approximation <strong>of</strong> current along th<strong>in</strong> symmetricalcyl<strong>in</strong>drical dipoles,” Proc. IEE, vol. 117, 873–878, May 1970.[7] L. Greengard and V. Rokhl<strong>in</strong>, “A fast algorithm for particle simulations,” J.Comput. Phys., vol. 73, 325–348, 1987.[8] E. Bleszynski, M. Bleszynski, and T. Jaroszewicz, “AIM: Adaptive <strong>in</strong>tegralmethod for solv<strong>in</strong>g large-scale electromagnetic scatter<strong>in</strong>g and radiation problems,”Radio Sci., vol. 31, 1225–1251, 1996.[9] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterl<strong>in</strong>g, Numericalrecipes <strong>in</strong> C: <strong>The</strong> Art <strong>of</strong> Scientific Comput<strong>in</strong>g. Cambridge University Press,1992.[10] A. F. Peterson, S. L. Ray, and R. Mittra, Computational <strong>Method</strong>s for <strong>Electromagnetics</strong>.IEEE Press, 1998.[11] M. Hestenes and E. Steifel, “<strong>Method</strong>s <strong>of</strong> conjugate gradients for solv<strong>in</strong>g l<strong>in</strong>earsystems,” J. Res. Nat. Bur. Stand., vol. 49, 409–435, 1952.[12] Y. Saad, Iterative <strong>Method</strong>s for Sparse L<strong>in</strong>ear Systems. PWS, 1st ed., 1996.[13] T. K. Sarkar, K. R. Siarkiewicz, and R. F. Stratton, “Survey <strong>of</strong> numerical methodsfor solution <strong>of</strong> large systems <strong>of</strong> l<strong>in</strong>ear equations for electromagnetic fieldproblems,” IEEE Trans. Antennas Propagat., vol. 29, 847–856, November1981.[14] T. K. Sarkar, “<strong>The</strong> conjugate gradient method as applied to electromagneticfield problems,” IEEE Antennas Propagat. Soc. Newsletter, 5–14, August1986.[15] A. F. Peterson and R. Mittra, “Convergence <strong>of</strong> the conjugate gradient methodwhen applied to matrix equations represent<strong>in</strong>g electromagnetic scatter<strong>in</strong>g problems,”IEEE Trans. Antennas Propagat., vol. 34, 1447–1454, December1986.


62 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>[16] A. F. Peterson, C. F. Smith, and R. Mittra, “Eigenvalues <strong>of</strong> the moment-methodmatrix and their effect on the convergence <strong>of</strong> the conjugate gradient algorithm,”IEEE Trans. Antennas Propagat., vol. 36, 1177–1179, August 1988.[17] C. Lanczos, “Solution <strong>of</strong> systems <strong>of</strong> l<strong>in</strong>ear equations by m<strong>in</strong>imized iterations,”J. Res. Nat. Bur. Standards, vol. 49, 33–53, 1952.[18] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout,R. Pozo, C. Rom<strong>in</strong>e, and H. V. der Vorst, Templates for the Solution <strong>of</strong>L<strong>in</strong>ear Systems: Build<strong>in</strong>g Blocks for Iterative <strong>Method</strong>s. SIAM, 2nd ed., 1994.[19] P. Sonneveld, “Cgs, a fast lanczos-type solver for nonsymmetric l<strong>in</strong>ear systems,”SIAM J. Sci. Statist. Comput., vol. 10, 36–52, 1989.[20] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarl<strong>in</strong>g, G. Henry,M. Heroux, L. Kaufman, A. Lumsda<strong>in</strong>e, A. Petitet, R. Pozo, K. Rem<strong>in</strong>gton, andR. C. Whaley, “An updated set <strong>of</strong> Basic L<strong>in</strong>ear Algebra Subprograms (BLAS),”ACM Transactions on Mathematical S<strong>of</strong>tware, vol. 28, 135–151, June 2002.[21] E. Anderson, Z. Bai, C. Bisch<strong>of</strong>, S. Blackford, J. Demmel, J. Dongarra,J. Du Croz, A. Greenbaum, S. Hammarl<strong>in</strong>g, A. McKenney, and D. Sorensen,LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,3rd ed., 1999.


Chapter 4Th<strong>in</strong> WiresIn this chapter we will use the method <strong>of</strong> moments to analyze radiation and scatter<strong>in</strong>gby th<strong>in</strong> wires. This is an area <strong>of</strong> great practical <strong>in</strong>terest, as realistic antennas can bemodeled by wires whose radius is smaller than their length and the wavelength. Wewill first derive a th<strong>in</strong> wire approximation <strong>in</strong> the magnetic vector potential and thenlook at the well-known Hallén and Pockl<strong>in</strong>gton <strong>in</strong>tegral equations for th<strong>in</strong>, straightwires. We next discuss model<strong>in</strong>g <strong>of</strong> the feed system at the antenna term<strong>in</strong>als, a th<strong>in</strong>wire model for wires <strong>of</strong> arbitrary shape, and then compare the effectiveness <strong>of</strong> eachmodel us<strong>in</strong>g several examples.4.1 THIN WIRE APPROXIMATIONTo beg<strong>in</strong>, we first develop the th<strong>in</strong> wire kernel, an approximation we will use <strong>in</strong><strong>in</strong>tegral equation formulations for th<strong>in</strong> wires. Consider a perfectly conduct<strong>in</strong>g long,z-oriented th<strong>in</strong> wire <strong>of</strong> length Ä whose radius is much less than Ä and . An<strong>in</strong>cident electric field E ´rµ excites on this wire a surface current J´rµ. S<strong>in</strong>ce thewire is very th<strong>in</strong>, we will assume that J´rµ can be written <strong>in</strong> terms <strong>of</strong> a z-orientedfilamentary current Á Þ´rµ asÁ Þ´ÞµJ´rµ z (4.1)¾where there is no dependence on wire azimuthal angle . We also assume that thecurrent goes to zero at the ends <strong>of</strong> a wire without any current flow onto the wire endcaps.In cyl<strong>in</strong>drical coord<strong>in</strong>ates, we can write the correspond<strong>in</strong>g magnetic vectorpotential Þ <strong>in</strong> terms <strong>of</strong> the surface <strong>in</strong>tegral ľ ¾ Þ´ Þµ ľ ¼Á Þ´Þ ¼ µ Ö¾ Ö ¼ Þ ¼ (4.2)whereÖ r r ¼ Ô´Þ Þ ¼ µ ¾ · ¼ ¾ (4.3)63


64 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Us<strong>in</strong>g the fact that ¼ , we write ¼ ¾ · ¾ ¾ ¡ ¼ ¾ · ¾ ¾ Ó×´ ¼ µ (4.4)S<strong>in</strong>ce the above is a function <strong>of</strong> ¼ , the result is cyl<strong>in</strong>drically symmetric.<strong>The</strong>refore, we can replace ¼ by just ¼ and writewith Ö Þ´ Þµ ľľÁ Þ´Þ ¼ µ¾ ¾Ô´Þ Þ ¼ µ ¾ · ¾ · ¾ ¾ Ó× ¼ . <strong>The</strong> <strong>in</strong>tegral ¾¼¼ ÖÖ ¼ Þ ¼ (4.5) ÖÖ ¼ (4.6)is referred to as the cyl<strong>in</strong>drical wire kernel <strong>in</strong> the literature [1, 2]. If we assume tobe very small, Ö can be approximated asÔÖ ´Þ Þ ¼ µ ¾ · ¾ (4.7)and the <strong>in</strong>nermost <strong>in</strong>tegral is no longer a function <strong>of</strong> ¼ , result<strong>in</strong>g <strong>in</strong> Þ´ Þµ ľľÁ Þ´Þ ¼ µ ÖÖ Þ¼ (4.8)<strong>The</strong> above is <strong>of</strong>ten referred to as a th<strong>in</strong> wire approximation with reduced kernel. <strong>The</strong>orig<strong>in</strong>al surface <strong>in</strong>tegral has now been effectively replaced by a l<strong>in</strong>e <strong>in</strong>tegral alongthe axis <strong>of</strong> the wire. In cases where the dimensions <strong>of</strong> the problem <strong>in</strong>validates theassumptions <strong>of</strong> the reduced kernel, the cyl<strong>in</strong>drical wire kernel should be evaluatedby more exact means such as that <strong>of</strong> [3].<strong>The</strong> radiated field can be obta<strong>in</strong>ed via (2.65) and is × Þ Þ ¾¯ Þ ¾ Þ (4.9)By enforc<strong>in</strong>g the boundary condition <strong>of</strong> zero tangential electric field on the surface<strong>of</strong> the wire, we can now a write a th<strong>in</strong> wire EFIE <strong>in</strong> terms <strong>of</strong> the <strong>in</strong>cident field Þ : Þ ¯ ¾Þ ¾ · ¾ Þ (4.10)Ô´Þ Þ ¼ µ ¾ · ¾ .where the distance from the source to the observation po<strong>in</strong>t is Ö When solv<strong>in</strong>g the th<strong>in</strong> wire equations <strong>in</strong> this chapter, we will assume the test<strong>in</strong>gpo<strong>in</strong>ts to be located on the axis <strong>of</strong> the wire and the source po<strong>in</strong>ts to be on the surface.


Th<strong>in</strong> Wires 65<strong>The</strong>re are two common forms by which (4.10) is commonly written. <strong>The</strong> firstreta<strong>in</strong>s the differential operator outside the <strong>in</strong>tegral <strong>in</strong> (4.10), which is ¾ ¾ Þ´Þµ ¯Þ ¾ · ¾ Þ ¯Þ ¾ · ¾ ľľÁ Þ´Þ ¼ µ ÖÖ Þ¼ (4.11)which is called Hallén’s <strong>in</strong>tegral equation [4]. We may also move the differentialoperator under the <strong>in</strong>tegral sign, Þ´Þµ ¯ ľľÁ Þ´Þ ¼ ¾ ÖµÞ ¾ · ¾ Ö Þ¼ (4.12)which is called Pockl<strong>in</strong>gton’s <strong>in</strong>tegral equation [5]. Pockl<strong>in</strong>gton’s equation is notas well behaved as Hallén’s, s<strong>in</strong>ce the differential operator acts directly on theGreen’s function. As we will see, the results obta<strong>in</strong>ed by it typically exhibit slowerconvergence and less accuracy than those obta<strong>in</strong>ed from Hallén’s.4.2 THIN WIRE EXCITATIONSIn most antenna problems, the key variables <strong>of</strong> <strong>in</strong>terest are typically the <strong>in</strong>putimpedance at a particular feed location and the result<strong>in</strong>g radiation pattern, directivityand ga<strong>in</strong>. <strong>The</strong> easiest way to compute these is to consider the antenna <strong>in</strong> its transmitt<strong>in</strong>gmode, requir<strong>in</strong>g a reasonable model <strong>of</strong> the feed system at the <strong>in</strong>put term<strong>in</strong>als.In the real world, an antenna might be fed by an open-wire transmission l<strong>in</strong>e, orby a coaxial feed through a ground plane. <strong>The</strong>se various feed systems impact theantenna impedance characteristics <strong>in</strong> different ways. With this <strong>in</strong> m<strong>in</strong>d, we need away to effectively model a feed method without hav<strong>in</strong>g to model the feed itself. Inthis section we consider two common feed methods used <strong>in</strong> th<strong>in</strong> wire problems, thedelta-gap source and the magnetic frill. <strong>The</strong> delta-gap source treats the feed as if theelectric field impressed by the feedl<strong>in</strong>e exists only <strong>in</strong> the gap between the antennaterm<strong>in</strong>als and is zero outside, i.e., no fr<strong>in</strong>g<strong>in</strong>g. This method typically produces lessaccurate results for <strong>in</strong>put impedance though it still performs very well for comput<strong>in</strong>gradiation patterns. <strong>The</strong> magnetic frill models the feed as a coaxial l<strong>in</strong>e that term<strong>in</strong>ates<strong>in</strong>to a monopole over a ground plane. Use <strong>of</strong> the frill results <strong>in</strong> more accurate<strong>in</strong>put impedance values at the expense <strong>of</strong> <strong>in</strong>creased computations <strong>in</strong> comput<strong>in</strong>g theexcitation vector elements.4.2.1 Delta-Gap Source<strong>The</strong> delta-gap source model assumes that the impressed electric field <strong>in</strong> the th<strong>in</strong> gapbetween the antenna term<strong>in</strong>als can be expressed asE Î Ó¡ Þz (4.13)


66 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>2a2a zE zvE M b(a) Delta-Gap(b) Coaxial L<strong>in</strong>e Feed<strong>in</strong>g Monopole(c) FrillFigure 4.1: Th<strong>in</strong> wire excitation models.where ¡ Þ is the width <strong>of</strong> the gap, and Î Ó is usually set to unity. This is illustrated<strong>in</strong> Figure 4.1a. In our numerical simulation, we will assume that this field exists<strong>in</strong>side one wire segment and is zero outside. <strong>The</strong> result<strong>in</strong>g excitation vector willhave nonzero elements only for basis functions hav<strong>in</strong>g support on that segment.4.2.2 Magnetic FrillIn Figure 4.1b, we depict a coaxial l<strong>in</strong>e feed<strong>in</strong>g a monopole antenna over an <strong>in</strong>f<strong>in</strong>iteground plane. If we assume the field distribution <strong>in</strong> the aperture to be purely TEM,we can use the method <strong>of</strong> images and replace the ground plane and aperture with themagnetic frill shown <strong>in</strong> Figure 4.1c. With an aperture electric field given byE´µ the equivalent magnetic current density is½¾ ÐÓ´µ (4.14)½M´µ ¾n ¢ E´µ (4.15) ÐÓ´µThis current generates an electric field along the wire. For a frill centered at theorig<strong>in</strong>, the field <strong>in</strong>tensity on the axis <strong>of</strong> the wire ( ¼)is[6] Þ´Þµ ½ ʽ ʾ(4.16)¾ÐÓ´µÊ ½Ê ¾


Th<strong>in</strong> Wires 67300Electric Field (V/m)250200150100500−0.1 −0.05 0 0.05 0.1Position (m)Figure 4.2: Field <strong>in</strong>tensity due to frill.whereÊ ½ ÔÞ¾ · ¾ (4.17)Ê ¾ ÔÞ¾ · ¾ (4.18)<strong>The</strong> z-directed field <strong>of</strong> (4.16) becomes the new <strong>in</strong>cident field used as the excitation.Note that by us<strong>in</strong>g this model, we are effectively model<strong>in</strong>g a dipole with the feedsystem <strong>of</strong> a monopole. A true monopole will have an <strong>in</strong>put impedance only half that<strong>of</strong> the dipole as it only radiates <strong>in</strong>to the half space above the ground. A plot <strong>of</strong> theaxis electric field <strong>in</strong>tensity due to a frill with 1mm, =5mmand ½m isshown <strong>in</strong> Figure 4.2. Because <strong>of</strong> the sharp drop<strong>of</strong>f <strong>of</strong> the field, special care shouldbe given to the numerical <strong>in</strong>tegrations used to compute excitation vector elements toensure their accuracy.4.2.3 Plane Wave<strong>The</strong> tangential electric field <strong>in</strong>tensity on a filamentary wire is given by ØÒ´rµ t´rµ ¡ E´rµ (4.19)where t is tangent to the wire at r. Foraz-oriented wire illum<strong>in</strong>ated by a -orientedplane wave <strong>of</strong> unit amplitude, the above becomes ØÒ r ×Ò Þ Ó× (4.20)Because the th<strong>in</strong> wire approximation assumes there are no azimuthally-excitedcurrents, an <strong>in</strong>cident wave <strong>of</strong> -polarization wave will <strong>in</strong>duce no currents on thewire.


68 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>4.3 SOLVING HALLÉN’S EQUATIONHallén’s equation ¾ Þ ¾ · ¾ Þ´Þµ ¯Þ´Þµ (4.21)is an <strong>in</strong>homogeneous scalar Helmholtz equation for Þ´Þµ, which we can solve bythe Green’s function method. <strong>The</strong> general solution to the homogeneous equation ¾Þ ¾ · ¾ Þ´Þµ ¼ (4.22)is Þ´Þµ ½ Þ · ¾ Þ (4.23)To obta<strong>in</strong> a particular solution we must obta<strong>in</strong> the Green’s function ´Þµ that satisfiesthe equation ¾ · ¾Þ ¾ ´Þµ Æ´Þµ (4.24)Once ´Þµ is known, the solution for Þ´Þµ can be obta<strong>in</strong>ed by Þ´Þµ ½ Þ · ¾ Þ¯ ľľ ´ÞÞ ¼ µ Þ´Þ¼ µ Þ ¼ (4.25)To obta<strong>in</strong> the Green’s function let us use the trial function ´Þµ ×Ò´Þµ (4.26)which is cont<strong>in</strong>uous at Þ ¼with discont<strong>in</strong>uous derivative at Þ ¼as required fora Green’s function [7]. To determ<strong>in</strong>e the constant , let us <strong>in</strong>tegrate (4.24) from ¯to ¯, yield<strong>in</strong>g ¾ ¯¯×Ò´Þµ Þ Ó×´ Þµ℄¬ ¬ ¼¯ · ¬¯Ó×´Þµ℄ ½ (4.27)¼If <strong>in</strong> the above we allow ¯ to approach zero, the first term goes to zero and afterevaluat<strong>in</strong>g the rema<strong>in</strong><strong>in</strong>g terms we gethenceand the solution for Þ´Þµ is ´Þµ ½¾(4.28)½ ×Ò´Þµ (4.29)¾ Þ´Þµ ½ Þ · ¾ Þ Ä¾×Ò´Þ Þ ¼ µ ¾Þ´Þ¼ µ Þ ¼ (4.30)ľ


Th<strong>in</strong> Wires 69Substitut<strong>in</strong>g the orig<strong>in</strong>al expression for Þ on the left-hand side <strong>of</strong> the above yields ľ ľÁ Þ´Þ ¼ ֵľ Ö Þ¼ ½ Þ · ¾ Þ ×Ò´Þ Þ ¼ µ ¾Þ´Þ¼ µ Þ ¼Ä¾(4.31)By similar reason<strong>in</strong>g, a second solution for the Green’s Function is found to be Þ´Þµ which leads to a second expression for Þ¾ Þ (4.32) ľľÁ Þ´Þ ¼ µ ÖÖÞ¼ ½ Þ · ¾ Þ · ½¾ ľľ Þ Þ¼ Þ´Þ¼ µ Þ ¼(4.33)Note also that the two homogeneous terms <strong>in</strong> the above can also be written as ½ Þ · ¾ Þ ½ Ó×´Þµ · ¾ ×Ò´Þµ (4.34)where ½ and ¾ are complex. <strong>The</strong> form we use will depend on the symmetry <strong>of</strong>the problem.4.3.1 Symmetric ProblemsLet us solve Hallén’s equation for symmetric problems such as the <strong>in</strong>duced currentand <strong>in</strong>put impedance <strong>of</strong> a center-fed dipole antenna. We first expand the left-handside <strong>of</strong> (4.31) us<strong>in</strong>g Æ weighted subdoma<strong>in</strong> basis functions yield<strong>in</strong>gÆÒ½ Ò Ò Ò´Þ ¼ µ ÖÖ Þ¼ (4.35)Test<strong>in</strong>g by Æ functions Ñ yields matrix elements Þ ÑÒ given byÞ ÑÒ Ñ Ñ´Þµ Ò Ò´Þ ¼ µ ÖÖ Þ¼ Þ (4.36)<strong>The</strong> choice <strong>of</strong> the right-hand side depends on the symmetry <strong>of</strong> the problem be<strong>in</strong>gconsidered. S<strong>in</strong>ce we are feed<strong>in</strong>g the antenna at its center, we expect that the <strong>in</strong>ducedcurrent will be symmetric. <strong>The</strong>refore, let us reta<strong>in</strong> the right-hand side <strong>of</strong> (4.31) butrewrite the homogeneous terms follow<strong>in</strong>g (4.34): ½ Ó×´Þµ · ¾ ×Ò´Þµ¾ ľľ×Ò´Þ Þ ¼ µ Þ´Þ¼ µ Þ ¼ (4.37)


70 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>S<strong>in</strong>ce we expect the solution to be symmetric, we set ¾ <strong>in</strong> the above to zero.Apply<strong>in</strong>g the test<strong>in</strong>g functions yields ½ Ñ Ñ´Þµ Ó×´Þµ Þ¾ Ñ Ñ´Þµ ľľ<strong>The</strong> above expressions result <strong>in</strong> the follow<strong>in</strong>g matrix equation:×Ò´Þ Þ ¼ µ Þ´Þ¼ µ Þ ¼ Þ(4.38)Za ½ s · b (4.39)To obta<strong>in</strong> the solution vector a we must determ<strong>in</strong>e the constant ½ , which can bedone by enforc<strong>in</strong>g the boundary conditions at the ends <strong>of</strong> the wire, i.e., Á Þ´ ľµ Á ޴ľµ ¼. We will do this <strong>in</strong> our discretized version by forc<strong>in</strong>g the basis functioncoefficient at each end to be zero [8]. This can be expressed vectorially as u Ì a ¼,where u Ì ½ ¼¼ ½℄. Solv<strong>in</strong>g (4.39) for a we obta<strong>in</strong>a ½ Z℄½ s ·Z℄½ b (4.40)and multiply<strong>in</strong>g both sides by u Ì we obta<strong>in</strong>u Ì a ½ u Ì Z℄½ s · u Ì Z℄½ b ¼ (4.41)and solv<strong>in</strong>g for ½ yieldsu Ì Z℄½ b ½ u Ì (4.42)Z℄ ½ s<strong>The</strong> complete right-hand side vector can now be built from s and b us<strong>in</strong>g ½ .4.3.1.1 Solution by Pulse Functions and Po<strong>in</strong>t Match<strong>in</strong>gTo solve the symmetric Hallén’s equation with pulse basis functions and po<strong>in</strong>tmatch<strong>in</strong>g, we subdivide the wire <strong>in</strong>to Æ equally spaced segments <strong>of</strong> length ÄÆ.<strong>The</strong> matrix elements <strong>of</strong> (4.36) become ÞÒ·¡ Þ¾Þ ÑÒ Þ Ò ¡Þ¾ ÊÊ Þ¼ (4.43)Ôwhere match<strong>in</strong>g is done at the center <strong>of</strong> each segment Þ Ñ ,andÊ ´Þ Ñ Þ ¼ µ ¾ · ¾ .We will compute the non-self terms via an Å-po<strong>in</strong>t numerical quadrature yield<strong>in</strong>gÞ ÑÒ ÅÕ½Û Õ ÊÑÕÊ ÑÕ(4.44)where Ê Ô´Þ ÑÕ Ñ Þ Õ µ ¾ · ¾ . For the self terms (Ñ Ò), we will use a smallargumentapproximation to the Green’s function to write ¡ Þ¾ Ê¡ Þ¾Þ ÑÑ ¡Þ¾ Ê Þ¼ ½ Ê¡Þ¾ Ê Þ¼ (4.45)


Th<strong>in</strong> Wires 71which evaluates to [9] (Equation 200.01)ÔÞ ÑÑ ½ ½· ¾ ÐÓ ¡ ¾ ÞÔ·½½· ¾ ¡ ¾ Þ ½¡ Þ(4.46)We assume that the approximation <strong>in</strong> (4.46) will rema<strong>in</strong> valid if the segment is smallcompared to the wavelength. <strong>The</strong> right-hand side vector elements areand Ñ × Ñ Ó×´Þ Ñ µ (4.47) ľ¡ ×Ò Þ Ñ Þ ¼ ¾Þ´Þ¼ µ Þ ¼ (4.48)ľwhere we have not yet specified the excitation field Þ´Þ¼ µ. If we use a delta-gapsource located at the center <strong>of</strong> the wire, Þ´Þ¼ µÆ´Þ ¼ µ, the above simplifies to Ñ ¾ ×Ò´Þ Ñµ (4.49)If we use the magnetic frill <strong>of</strong> (4.16), the convolution <strong>in</strong> (4.48) must be performednumerically for each Þ Ñ . Because <strong>of</strong> the sharp drop<strong>of</strong>f <strong>of</strong> the frill field, special careshould be given to this <strong>in</strong>tegral to ensure its accuracy.4.3.2 Asymmetric ProblemsWhen the feedpo<strong>in</strong>t is not at the center <strong>of</strong> the antenna or the wire is excited by an<strong>in</strong>cident wave, we can no longer assume the solution to be symmetric. In this case,the elements <strong>of</strong> the impedance matrix rema<strong>in</strong> the same as <strong>in</strong> (4.36), however we willuse the more general right-hand side <strong>of</strong> (4.33). Apply<strong>in</strong>g the test<strong>in</strong>g function Ñ tothe right-hand side yields ½ Ñ´Þµ Þ Þ · ¾ Ñ´Þµ Þ Þ · Ñ Ñ½¾ Ñ Ñ´Þµ ľľ<strong>The</strong> result<strong>in</strong>g matrix equation is <strong>of</strong> the formwhich we can rewrite as ÞÑ Þ¼ Þ´Þ¼ µ Þ ¼ Þ (4.50)Za ½ s ½ · ¾ s ¾ · b (4.51)Za s ½ s ¾ ℄ ½ ¾ ℄ Ì · b (4.52)


72 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Solv<strong>in</strong>g for a, we obta<strong>in</strong>a Z℄½ s½ s ¾ ℄ ½ ¾ ℄ Ì ·A℄½ b (4.53)We must solve for the constants ½ and ¾ to obta<strong>in</strong> a, which can be done by amethod similar to the symmetric case [8]. Let us def<strong>in</strong>e the matrix U℄ u Ì ½ uÌ ¾ ℄,where the vectors u Ì ½ ½ ¼¼ ¼℄ and uÌ ¾ ¼ ¼¼ ½℄ select the elementson the end <strong>of</strong> the wire and enforce the conditionU℄ Ì a ¼ (4.54)Apply<strong>in</strong>g this to the above yieldsU℄ Ì a U℄ Ì Z℄½ s½ s ¾ ℄ ½ ¾ ℄ Ì ·U℄ Ì Z℄½ b ¼ (4.55)Solv<strong>in</strong>g for ½ ¾ ℄ Ì yields ½ ¾ ℄ Ì U℄ Ì Z℄½ s½ s ¾ ℄ ½U℄ Ì Z℄½ b (4.56)<strong>The</strong> asymmetric Hallén’s equation can be solved numerically by the samemethod used <strong>in</strong> the symmetric case, so we will not repeat the process here.4.4 SOLVING POCKLINGTON’S EQUATIONPockl<strong>in</strong>gton’s equation,¯ Þ´Þµ ľľÁ Þ´Þ ¼ ¾ ÖµÞ ¾ · ¾ Ö Þ¼ (4.57)can be solved by a straightforward application <strong>of</strong> the moment method, s<strong>in</strong>ce thedifferential operator is <strong>in</strong>side the <strong>in</strong>tegral and acts on the Green’s function only.Expand<strong>in</strong>g the current <strong>in</strong>to a sum <strong>of</strong> Æ weighted basis functions and apply<strong>in</strong>g Ætest<strong>in</strong>g functions we obta<strong>in</strong> a l<strong>in</strong>ear system with matrix elementsÞ ÑÒ Ñ Ñ´Þµand excitation vector elements Ñ given by Ñ ¯ Ò´Þ ¼ ¾ Öµ ÒÞ ¾ · ¾ Ö Þ¼ Þ (4.58) Ñ´Þµ Þ´Þµ Þ (4.59) Ñ


Th<strong>in</strong> Wires 734.4.1 Solution by Pulse Functions and Po<strong>in</strong>t Match<strong>in</strong>gUs<strong>in</strong>g pulse basis functions for the current and po<strong>in</strong>t match<strong>in</strong>g for test<strong>in</strong>g, we obta<strong>in</strong>the follow<strong>in</strong>g excitation vector elements:<strong>The</strong> impedance matrix elements can be written as ÞÒ·¡Þ ÑÒ ¾Þ¾ Ê Þ Ò ¡Þ¾ Ê Þ¼ · Ñ ¯ Þ´Þ Ñµ (4.60) ÊÞ ¼ ʬ ¬¬¬¬Þ ¼ Þ Ò·¡ Þ¾Þ¼ ÞÒ ¡Þ¾(4.61)Ôwhere Ê ´Þ Ñ Þ ¼ µ ¾ · ¾ ,andÞ has been replaced by Þ ¼ . Evaluat<strong>in</strong>gthe derivative <strong>in</strong> the second term yields ÊÞ ¼ Êallow<strong>in</strong>g us to write ÞÒ·¡Þ ÑÒ ¾Þ¾ Ê Þ Ò ¡Þ¾ Ê Þ¼ ·´Þ Ñ Þ ¼ µ ½·ÊÊ ¿ Ê (4.62)´Þ Ñ Þ ¼ µ ½·ÊÊ ¿ Ê ¬ ¬¬¬Þ ¼ Þ Ò·¡ Þ¾Þ¼ ÞÒ ¡Þ¾(4.63)<strong>The</strong> first term is <strong>of</strong> the same form as (4.43) and is computed the same way. <strong>The</strong>second term is analytic and may be used as-is for all matrix elements. Due to thestrongly s<strong>in</strong>gular ½Ê ¿ term, we will f<strong>in</strong>d our results to converge less quickly thanthose obta<strong>in</strong>ed us<strong>in</strong>g Hallén’s equation for the same problem.4.5 THIN WIRES OF ARBITRARY SHAPEBecause there are many antennas with bend and wire-to-wire junctions, we need toconsider the th<strong>in</strong> wire EFIE <strong>in</strong> a form appropriate for these geometries. In this form,the wire current will be a vector function <strong>of</strong> position; therefore, the basis and test<strong>in</strong>gfunctions will also be vectors. Let us reta<strong>in</strong> the th<strong>in</strong> wire kernel <strong>of</strong> (4.8) but make thel<strong>in</strong>e current a vector valued function <strong>of</strong> positionI´rµ Á´rµt´rµ (4.64)where t´rµ is the tangent to the wire at r. Substitut<strong>in</strong>g the above <strong>in</strong>to the EFIE <strong>of</strong>(2.120) results <strong>in</strong> ¢ £ t´rµ ¡ E´rµ ½· ½ ÖÖ ¡ Á´rļ µt´r ¼ µ´r r ¼ ¾ µ r ¼ (4.65)


74 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>which we will refer to as the EFIE for arbitrarily shaped th<strong>in</strong> wires (ATW). We nextapproximate the current as a sum <strong>of</strong> Æ weighted vector basis functions:Á´r ¼ µt´rµ ÆÒ½ Ò f Ò´rµ (4.66)where f´rµ is everywhere tangent to the wire. Substitut<strong>in</strong>g the above <strong>in</strong> the EFIEyields ¢ £ t´rµ ¡ E´rµ ½· ½Æ ÖÖ ¡ ¾ Ò f Ò´rÒ½f ¼ µ´r r ¼ µ r ¼ (4.67)ÒTest<strong>in</strong>g the above by Æ test<strong>in</strong>g functions f Ñ´rµ yields a l<strong>in</strong>ear system with matrixelements given byÞ ÑÒ f Ñ´rµ ¡ f Ò´r ¼ µ´r r ¼ µ r ¼ rf Ñ fÒ· ½ f Ñ´rµ ¡ ÖÖ ¡ f Ò´r ¾ f Ñf ¼ µ´r r ¼ µ r ¼ r (4.68)Òand excitation vector elements Ñ given by Ñ f Ñf Ñ´rµ ¡ E ´rµ r (4.69)Let us now focus on the second term on the right-hand side <strong>of</strong> (4.68). If we redistributethe differential operators so they operate on the basis and test<strong>in</strong>g functions, itwill simplify the calculation <strong>of</strong> the matrix elements.4.5.1 Redistribution <strong>of</strong> EFIE Differential OperatorsLet us focus on the termf Ñf Ñ´rµ ¡ÖÖ ¡ f Ò´rf ¼ µ´r r ¼ µ r ¼ r (4.70)ÒFollow<strong>in</strong>g the discussion <strong>in</strong> Section 2.4.3, this can be rewritten as f Ñ´rµ ¡ÖË´rµ r f Ñ´rµ ¡ Ö Öf Ñ f Ñf ¼ ¡ f´r ¼ µ ´r r ¼ µ r ¼ r (4.71)ÒUs<strong>in</strong>g the vector identityf´rµ ¡ÖË´rµ Ö¡ ¢ f´rµË´rµ £ ¢ Ö¡f´rµ £ Ë´rµ (4.72)


Th<strong>in</strong> Wires 75we can write the above asf Ñf Ñ´rµ ¡ÖË´rµ r f ÑÖ¡ ¢ f Ñ´rµË´rµ £ rf Ñ¢Ö¡fÑ´rµ £ Ë´rµ r (4.73)We convert the first term on the right-hand side to a surface <strong>in</strong>tegral us<strong>in</strong>g thedivergence theorem:ÎÖ¡ ¢ f Ñ´rµË´rµ £ r Ën ¡ ¢ f Ñ´rµË´rµ £ r (4.74)S<strong>in</strong>ce the bound<strong>in</strong>g surface can be made large enough that f Ñ´rµ vanishes, the abovegoes to zero leav<strong>in</strong>g only the second term which isf Ñf Ñ´rµ ¡ÖË´rµ r f ÑÖ¡f Ñ´rµÒÖ ¼ ¡ f´r ¼ µ ´r r ¼ µ r ¼ r (4.75)Substitut<strong>in</strong>g the above <strong>in</strong>to (4.68) results <strong>in</strong> the follow<strong>in</strong>g new expression for theEFIE matrix elements:Þ ÑÒ f Ñ´rµ ¡ f Ò´r ¼ µ´r r ¼ µ r ¼ rf Ñ fÒ½Ö¡f Ñ´rµ Ö ¼ ¡ f´r ¼ ¾ µ ´r r ¼ µ r ¼ r (4.76)f Ñ f Ò<strong>The</strong> above avoids the differential operators act<strong>in</strong>g on the Green’s function providedthat the basis and test<strong>in</strong>g functions have a well-behaved divergence. <strong>The</strong>refore, wewill use triangular or s<strong>in</strong>usoidal basis and test<strong>in</strong>g functions to solve the EFIE <strong>in</strong> thisform.4.5.2 Solution Us<strong>in</strong>g Triangle Basis and Test<strong>in</strong>g FunctionsTo solve the ATW EFIE us<strong>in</strong>g triangle functions, we use the configuration <strong>of</strong> Figure3.9 s<strong>in</strong>ce the current must go to zero at the ends <strong>of</strong> the wire. We subdivide the wire<strong>in</strong>to Æ segments <strong>of</strong> length ¡ Ð result<strong>in</strong>g <strong>in</strong> Æ ½ basis and test<strong>in</strong>g functions. <strong>The</strong>matrix elements areÞ ÑÒ f Ñ Ñ´Ðµ t´Ðµ ¡½ ¾f Ñ Ñ´Ðµf Òf Ò Ò´Ð ¼ µ t´Ð ¼ µ ´r r ¼ µ Ð ¼ Ð Ò´Ð ¼ µ ´r r ¼ µ Ð ¼ Ð (4.77)where Ѵе and Ò´Ð ¼ µ are the scalar triangle functions expressed <strong>in</strong> terms <strong>of</strong>parametrized wire location Ð, and t´Ðµ and t´Ð ¼ µ are the associated wire tangentvectors. For ascend<strong>in</strong>g and descend<strong>in</strong>g triangle functions <strong>of</strong> the form С Ð and´¡ Ре¡ Ð , the derivatives are ½¡ Ð and ½¡ Ð , respectively. When the source


76 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and test<strong>in</strong>g triangles have no overlapp<strong>in</strong>g segments, the elements can be computedvia an Å-po<strong>in</strong>t numerical quadrature yield<strong>in</strong>gÞ ÑÒ ½ÅÅÔ½ Õ½Û Ô´Ð Ô µÛ Õ´Ð ¼ Õ µ Ñ´Ð Ô µ Ò´Ð ¼ Õ µ t´Ð Ô µ ¡ t´Ð ¼ Õ µ½ Ñ´Ð ¾ Ô µ Ò´Ð ¼ Ê ÔÕÕ µ (4.78)Ê ÔÕFor segments that are not close together, we will use the distance between quadraturepo<strong>in</strong>ts along the wire axis, Ê ÔÕ r Ô r ¼ Õ. For segments close together, weÕwill reta<strong>in</strong> the orig<strong>in</strong>al expression Ê ÔÕ r Ô r ¼ Õ · ¾ . <strong>The</strong> excitation vectorelements Ñ are Ñ Ñ´Ðµ t´Ðµ ¡ E ´Ðµ Ð (4.79) f Ñ4.5.2.1 Self TermsFor overlapp<strong>in</strong>g segments we will evaluate the <strong>in</strong>nermost <strong>in</strong>tegral analytically andthe outermost <strong>in</strong>tegral numerically. To calculate the first term on the right <strong>in</strong> (4.77),consider the follow<strong>in</strong>g <strong>in</strong>nermost <strong>in</strong>tegral with the ascend<strong>in</strong>g triangle function Ü ¼ ¡ Ð : ¡ÐÜ ¼ ÖË ½´Üµ Ü ¼ (4.80)¼ ¡ Ð ÖÔwhere Ö ´Ü Ü ¼ µ ¾ · ¾ . Us<strong>in</strong>g the small-argument approximation to theGreen’s function this becomes ¡Ð¼Ü ¼¡ Ð ÖÖÜ ¼ ¡Ð¼Ü ¼½ ÖÜ ¼ (4.81)¡ Ð Öwhich is ¡ÐÜ ¼ ½ ÖÜ ¼ ½ ¡Ð¼ ¡ Ð Ö¡ Ð ¼<strong>The</strong> first term on the right then evaluates to [10]½ Ô¾ ·´Ü ¡ Ð µ ¾¡ Ðresult<strong>in</strong>g <strong>in</strong>½ Ô¾ · Ü Ü ¾ · ÐÓ¡ Ð ¡ ÐÜ ¼Ö Ü¼Ü ¡ Ð ·¡ Ð¾Ü · Ô ¾ · Ü ¾(4.82)Ô¾ ·´Ü ¡ Ð µ ¾ Ë ½´Üµ ½ ¡ ÐÔ¾ ·´Ü ¡ Ð µ ¾· Ü¡ ÐÐÓÜ ¡ Ð ·Ü ·Ô¾ · Ü ¾½ Ô¾ · Ü ¾¡ ÐÔ¾ ·´Ü ¡ Ð µ ¾ ¡ о(4.83)


Th<strong>in</strong> Wires 77<strong>The</strong> <strong>in</strong>tegral <strong>in</strong>volv<strong>in</strong>g the ascend<strong>in</strong>g triangle is sufficient to obta<strong>in</strong> all the self termsbecause <strong>of</strong> symmetry. We will compute the second term on the right <strong>in</strong> (4.77) thesame way as the first term. <strong>The</strong> <strong>in</strong>nermost <strong>in</strong>tegral is ¡ÐË ¾´Üµ ¦ ½ ½ ÖÜ ¼ (4.84)¡ ¾ Ð ¼ Öwhere we have aga<strong>in</strong> used the small-argument approximation to the Green’s function,and the sign <strong>of</strong> the <strong>in</strong>tegral depends on whether the derivatives <strong>of</strong> the source andtest<strong>in</strong>g functions are <strong>of</strong> oppos<strong>in</strong>g sign. <strong>The</strong> above evaluates to [10] Ô Ë ¾´Üµ ¦ ½ Ü · ¾ · Ü ¾¡ ¾ ÐÓ Ô ¡ Ð (4.85)Ð Ü ¡ Ð · ¾ ·´Ü ¡ Ð µ ¾<strong>The</strong> contributions from overlapp<strong>in</strong>g segments to (4.77) can then be obta<strong>in</strong>ed via thesum½ÅÔ½Û Ô´Ü Ô µ Ñ´Ü Ô µ Ë ½´Ü Ô µ½ Ë ¾´Ü ¾ Ô µ4.5.3 Solution Us<strong>in</strong>g S<strong>in</strong>usoidal Basis and Test<strong>in</strong>g Functions(4.86)Solv<strong>in</strong>g (4.76) us<strong>in</strong>g s<strong>in</strong>usoidal basis and test<strong>in</strong>g functions is virtually the same aswith triangle functions. <strong>The</strong> difference lies <strong>in</strong> the near and self terms, which wecompute us<strong>in</strong>g numerical outer and analytic <strong>in</strong>ner <strong>in</strong>tegrations as before.4.5.3.1 Self TermsTo calculate the first term on the right <strong>in</strong> (4.77), consider the follow<strong>in</strong>g <strong>in</strong>nermost<strong>in</strong>tegral with the ascend<strong>in</strong>g s<strong>in</strong>usoid function: ¡Ð×Ò´Ü ¼ Öµ½Ë ½´Ü Ô µÜ ¼ (4.87)×Ò´¡ Ð µ ¼ÖAga<strong>in</strong> us<strong>in</strong>g the small-argument approximation to the Green’s function, this becomes ¡Ð×Ò´Ü ¼ Ö¡Ð µ Ü ¼ ×Ò´Ü ¼ ½ Öµ Ü ¼ (4.88)¼Ö¼Öwhich is ¡Ð×Ò´Ü ¼ ½µ¼ Ö ¡ÐÜ ¼ ×Ò´Ü ¼ µ ¢ £Ü ¼ · Ó×´¡ Ð µ ½ (4.89)Ö¼ Ö<strong>The</strong> first term on the right is not tractable <strong>in</strong> its present form, so we will approximatethe s<strong>in</strong>e by its third-order polynomial approximation. This yields ¡Ð¼×Ò´Ü ¼ µÖÜ ¼ ¡Ð¼Ü ¼ ´Ü ¼ µ ¿ Ô´Ü ¼ Ü Ô µ ¾ · ¾ ܼ (4.90)


78 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Evaluat<strong>in</strong>g the above results <strong>in</strong> [10]Ë ½´Ü Ô µ Ü Ô½¾¡¿ ¿ ¾ ¾ ·¾Ü ¾ Ô ¾ ½¾ ¡ ÐÓ ¾ ¾ · ¾ ½½Ü ¾ Ô ·Ü¼ Ü Ô ¾´Ü ¼ µ ¾¡ ¿Õ ¾ ·´Ü Ô Ü ¼ µ ¾ ¬ ¬¬¬¬¡ Ð¼Ü Ô Ü ¼ ·Õ ¾ ·´Ü Ô Ü ¼ µ ¾· ¢ Ó×´¡ Ð µ ½ £ (4.91)where ½ ×Ò´¡ Ð µ. This result is lengthy but can be evaluated numerically <strong>in</strong> astraightforward manner. We compute the second term on the right <strong>of</strong> (4.77) the sameway. Under the small-argument approximation to the Green’s function, the <strong>in</strong>nermost<strong>in</strong>tegral <strong>in</strong> this case isË ¾´Ü Ô µ×Ò´¡ Ð µ ¡Ð¼Ó×´Ü ¼ µÖÜ ¼ (4.92)We approximate the cos<strong>in</strong>e by its second-order approximation, yield<strong>in</strong>g the <strong>in</strong>tegral ¡Ð¼Ó×´Ü ¼ µÖ<strong>The</strong> above evaluates to [10]Ë ¾´Ü Ô µ ¡ ÐÓÜ ¼ ¡Ð¼ ¾¢ ¿Ü Ô · Ü ¼£Õ ¾ ·´Ü Ô Ü ¼ µ ¾ ·´ ¾ ¾¬ ¬¬¬¬¡ ÐÜ Ô Ü ¼ ·Õ ¾ ·´Ü Ô Ü ¼ µ ¾½ ´Ü ¼ µ ¾ ¾Ô´Ü ¼ Ü Ô µ ¾ · ¾ ܼ (4.93)¼¾Ü ¾ Ô ¾ ·µ (4.94)<strong>The</strong> contributions to the self terms are then computed as½ÅÔ½Û Ô´Ü Ô µ Ñ´Ü Ô µË ½´Ü Ô µ½ Ñ´Ü ¾ Ô µË ¾´Ü Ô µ(4.95)4.5.4 Lumped and Distributed ImpedancesIn some cases it may be desirable to place an impedance on an antenna to change itscharacteristics. Feedpo<strong>in</strong>t match<strong>in</strong>g is one <strong>of</strong> the more common modifications, andcan be done by plac<strong>in</strong>g an impedance <strong>in</strong> parallel at the feedpo<strong>in</strong>t, or by <strong>in</strong>sert<strong>in</strong>g acoil or capacitor at a po<strong>in</strong>t along the wire. To model impedances <strong>in</strong> our th<strong>in</strong> wire<strong>in</strong>tegral equation, we must modify the boundary conditions on the segment(s) where


Th<strong>in</strong> Wires 79the load(s) exists. Given a complex impedance Ð on a segment <strong>of</strong> length ¡ Ð ,thenew condition on this segment is ØÒ · × ØÒ ÐÓ Î Ð¡ Ð ÐÁ ס Ð(4.96)<strong>The</strong> right-hand side <strong>of</strong> the EFIE now becomes Ð Á ÐØÒ ¡ Ð(4.97)where the current Á Ð on the segment is due to one or more basis functions. If weuse the th<strong>in</strong> wire formulation <strong>of</strong> Section 4.5 with triangle basis functions, the test<strong>in</strong>goperation with the basis function Ñ will create a “self term” on the right-hand side<strong>of</strong> the formÞ Ñ ¾ Ð (4.98)which would then be moved to the left-hand side and subtracted from the diagonalelement Þ ÑÑ . Any basis function hav<strong>in</strong>g support on the segment will have itsdiagonal term modified <strong>in</strong> a similar manner.4.6 EXAMPLESIn this section we consider several th<strong>in</strong> wire antenna problems. We will first comparethe performance <strong>of</strong> the Hallén, Pockl<strong>in</strong>gton and arbitrary th<strong>in</strong> wire models. We willthen compute the <strong>in</strong>put impedance <strong>of</strong> several common antenna types such as theloop, folded dipole, and Yagi. For each, we will apply the ATW formulation withtriangular basis functions.4.6.1 Comparison <strong>of</strong> Th<strong>in</strong> Wire ModelsFor our comparison, we will compute the <strong>in</strong>put impedance and <strong>in</strong>duced currentdistribution on center-fed dipole antennas. To judge the effectiveness <strong>of</strong> each method,we will compare the rates <strong>of</strong> convergence versus the number <strong>of</strong> wire segments used<strong>in</strong> the discretization. We use the delta-gap voltage source and an odd number <strong>of</strong> wiresegments so the source lies at the center <strong>of</strong> the antenna. For numerical <strong>in</strong>tegrations,a five-po<strong>in</strong>t Gaussian quadrature per segment is used. <strong>The</strong> dipoles are given a radius<strong>of</strong> ½¼¿ , and for <strong>in</strong>duced current distributions, the magnitude <strong>of</strong> the applied voltageis unity.4.6.1.1 Input ImpedanceWe first compare the convergence <strong>of</strong> the <strong>in</strong>put impedance versus the number <strong>of</strong> wiresegments used. Figure 4.3 shows the relative rates <strong>of</strong> convergence for a /2 dipole.Hallén’s equation is seen to converge somewhat faster than Pockl<strong>in</strong>gton’s equation


80 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Input Resistance (Ohms)17515012510075HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid500 25 50 75 100 125 150Segments(a) Input ResistanceInput Reactance (Ohms)2001751501251007550HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid2500 25 50 75 100 125 150Segments(b) Input ReactanceFigure 4.3: Input impedance <strong>of</strong> a /2 dipole.


Th<strong>in</strong> Wires 81Input Resistance (Ohms)20001750150012501000750500250HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid00 25 50 75 100 125 150 175 200 225 250Segments(a) Input ResistanceInput Reactance (Ohms)10007505002500−250−500HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid−750−10000 25 50 75 100 125 150 175 200 225 250Segments(b) Input ReactanceFigure 4.4: Input impedance <strong>of</strong> a 3/2 dipole.


82 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Input Resistance (Ohms)2500200015001000500HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid00 0.5 1 1.5 2 2.5 3Length (lambda)(a) Input ResistanceInput Reactance (Ohms)150010005000−500−1000−1500HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid−20000 0.5 1 1.5 2 2.5 3Length (lambda)(b) Input ReactanceFigure 4.5: Input impedance versus dipole length.


Th<strong>in</strong> Wires 83for this case, and fairly good convergence for each is seen at around 100 segments(200 segments per wavelength). <strong>The</strong> solutions obta<strong>in</strong>ed us<strong>in</strong>g the ATW model withtriangles and s<strong>in</strong>usoids appear converged and are nearly <strong>in</strong>dist<strong>in</strong>guishable. This isnot surpris<strong>in</strong>g s<strong>in</strong>ce these basis functions model the current distribution much betterthan pulses. Figure 4.4 shows the convergence for a ¿¾ dipole. <strong>The</strong> results fromHallén’s equation converge somewhat faster <strong>in</strong> this case. <strong>The</strong> results obta<strong>in</strong>ed byPockl<strong>in</strong>gton’s equation are aga<strong>in</strong> not very good, and demonstrate the undesirableconvergence properties <strong>of</strong> the ½Ê ¿ term <strong>in</strong> its <strong>in</strong>tegrand. <strong>The</strong> results obta<strong>in</strong>ed us<strong>in</strong>gtriangles and s<strong>in</strong>usoids are aga<strong>in</strong> excellent.We next fix the number <strong>of</strong> segments per wavelength at approximately 20 andvary the dipole length over the range 0.1 to 3. <strong>The</strong> results are shown <strong>in</strong> Figure 4.5.<strong>The</strong> ATW models agree very well at almost every data po<strong>in</strong>t, suggest<strong>in</strong>g that trianglesand s<strong>in</strong>usoids will perform much the same for th<strong>in</strong> wire problems. <strong>The</strong> impedancesobta<strong>in</strong>ed from Hallén’s and Pockl<strong>in</strong>gton’s equations do not compare very well forthis level <strong>of</strong> discretization, as expected.4.6.1.2 Current DistributionWe next compare the <strong>in</strong>duced current calculations. Hallén’s equation will be zeroon the end segments as it is set to that value explicitly. Figures 4.6a and 4.6bdepict the <strong>in</strong>duced current on a ¼ dipole computed us<strong>in</strong>g 31 and 81 wiresegments, respectively. <strong>The</strong> ATW models show practically no change between thetwo figures, <strong>in</strong>dicat<strong>in</strong>g excellent convergence. <strong>The</strong> current from Hallén’s equationchanges slightly between the two figures, <strong>in</strong>dicat<strong>in</strong>g a fair level <strong>of</strong> convergence,however that <strong>of</strong> Pockl<strong>in</strong>gton’s equation exhibits large variation. Results for a ¾dipole are shown <strong>in</strong> Figures 4.7a and 4.7b, computed us<strong>in</strong>g 81 and 181 segments,respectively. <strong>The</strong> convergence <strong>of</strong> the various methods is aga<strong>in</strong> very similar to theprevious case. <strong>The</strong> ATW methods aga<strong>in</strong> demonstrate superior performance, whereasPockl<strong>in</strong>gton’s equation performs the worst.4.6.2 Circular Loop AntennaWe next consider the <strong>in</strong>put impedance <strong>of</strong> a closed circular loop antenna. We vary thecircumference <strong>of</strong> the loop from a very small value up to ¾, and fix the radius <strong>of</strong> thewire to ½¼ at each step. At each po<strong>in</strong>t, we subdivide the loop <strong>in</strong>to approximately10 segments per wavelength, and use no fewer than 36 segments at the smallestelectrical length. This ensures that the model reta<strong>in</strong>s the shape <strong>of</strong> a circle at thelowest frequency. <strong>The</strong> real and imag<strong>in</strong>ary parts <strong>of</strong> the <strong>in</strong>put impedance are shown <strong>in</strong>Figure 4.8. For lengths below ¼, the loop presents a high <strong>in</strong>ductance with virtuallyno radiation resistance. At approximately ¾, the loop acts as an open circuit at theantenna term<strong>in</strong>als. We observe the first resonance is at a length just over ½, wherethe <strong>in</strong>put resistance is approximately ½¼ Å.


84 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Induced Current (mA)15105HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid0−0.2 −0.1 0 0.1 0.2Wire Position (lambda)(a) 31 SegmentsInduced Current (mA)15105HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid0−0.2 −0.1 0 0.1 0.2Wire Position (lambda)(b) 81 SegmentsFigure 4.6: Induced current on a 0.47 dipole.


Th<strong>in</strong> Wires 85Induced Current (mA)321HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid0−1 −0.5 0 0.5 1Wire Position (lambda)(a) 81 SegmentsInduced Current (mA)321HallenPockl<strong>in</strong>gtonATW/TriangleATW/S<strong>in</strong>usoid0−1 −0.5 0 0.5 1Wire Position (lambda)(b) 181 SegmentsFigure 4.7: Induced current on a 2 dipole.


86 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>50003750ResistanceReactanceImpedance (Ohms)250012500−1250−2500−3750−50000 0.5 1 1.5 2 2.5Circumference (lambda)Figure 4.8: Circular loop <strong>in</strong>put impedance.4.6.3 Folded Dipole Antenna<strong>The</strong> folded dipole is an antenna commonly used <strong>in</strong> HF and VHF systems. It takesthe name from a dipole antenna that is “folded over on itself,” and comprises asquare loop that is very short <strong>in</strong> one dimension. This is illustrated <strong>in</strong> Figure 4.9a,where the ma<strong>in</strong> conductors are <strong>of</strong>fset by a small distance ×. At DC, this antennais a short circuit, but with <strong>in</strong>creas<strong>in</strong>g length the current distribution changes andassumes the characteristics <strong>of</strong> Figure 4.9b when Ä approaches ¾. In this case, thecurrents on the secondary conductor take on the same magnitude and phase as thoseon the primary. Because the conductors are so closely spaced, the far-zone radiatedfield rema<strong>in</strong>s much the same, however the current is divided evenly between the twohalves. <strong>The</strong>refore, the <strong>in</strong>put impedance <strong>of</strong> the folded dipole will be four times that <strong>of</strong>an ord<strong>in</strong>ary dipole, or approximately ¡ ¾ ¾ Å. Folded dipoles are <strong>of</strong>ten usedbecause <strong>of</strong> this property, as they can be matched to open-wire feed l<strong>in</strong>es that usuallyhave a higher <strong>in</strong>tr<strong>in</strong>sic impedance than coaxial cable.In Figure 4.10 we plot the <strong>in</strong>put impedance <strong>of</strong> a folded dipole for lengthsÄ ½. At each step, the separation distance is × Ä¾¼ and the wire radiusis ½¼ . We use 30 segments for each long conductor and 5 segments forthe short ends. We see that when the dipole is electrically small it is similar to thecircular loop and has virtually no radiation resistance. It becomes an open circuitat the antenna term<strong>in</strong>als at approximately ¼¿. <strong>The</strong> first resonance occurs at about with an <strong>in</strong>put resistance <strong>of</strong> ¾¿ Å, very close to the expected value.


Th<strong>in</strong> Wires 87sL(a) Dipole Dimensions(b) Current Distribution at ¾Figure 4.9: Folded dipole antenna.50003750ResistanceReactanceImpedance (Ohms)250012500−1250−2500−3750−50000 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1Length (lambda)Figure 4.10: Folded dipole <strong>in</strong>put impedance.4.6.4 Two-Wire Transmission L<strong>in</strong>eAs transmission l<strong>in</strong>es are implicit to virtually all antenna problems, let us use theMOM to simulate the behavior <strong>of</strong> a common two-wire transmission l<strong>in</strong>e or “ladderl<strong>in</strong>e,” illustrated <strong>in</strong> Figure 4.11. For the purposes <strong>of</strong> our simulation, we treat thetransmission l<strong>in</strong>e <strong>in</strong> an identical manner to the folded dipole <strong>of</strong> Section 4.6.3, except


88 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>LvsZFigure 4.11: Two-wire transmission l<strong>in</strong>e.that the feedpo<strong>in</strong>t and load are placed at the short ends. We will analyze a two-wirel<strong>in</strong>e 2.5 meters long, constructed from wires 1mm <strong>in</strong> radius with a separation distance<strong>of</strong> 3 cm. Thirty segments are used for each <strong>of</strong> the ma<strong>in</strong> wires and 5 segments for eachend.Our first task is to determ<strong>in</strong>e the characteristic impedance <strong>of</strong> the l<strong>in</strong>e. <strong>The</strong>theoretical value for a two-wire l<strong>in</strong>e is obta<strong>in</strong>ed from transmission l<strong>in</strong>e theory and is Ó ÔÄ (4.99)where L is the <strong>in</strong>ductance per unit length,and C is the capacitance per unit length,Ä Ó× ½ ×¾ ´¯µ Ó× ½ ×¾(4.100)(4.101)Us<strong>in</strong>g (4.99)–(4.101), we f<strong>in</strong>d the impedance <strong>of</strong> the l<strong>in</strong>e to be approximately Ó ¼ Å. <strong>The</strong> true impedance can be determ<strong>in</strong>ed numerically via the expression Ó ÔÓ × (4.102)where Ó and × are the <strong>in</strong>put impedances with an opened and shorted load end,respectively. We must be careful, however, that we do not make the measurementat a frequency where the length <strong>of</strong> the l<strong>in</strong>e results <strong>in</strong> an extremely small or largeimpedance at the driv<strong>in</strong>g end, or numerical problems will result. We thereforemake the measurement at a frequency <strong>of</strong> 15 MHz, where the length <strong>of</strong> the l<strong>in</strong>eis approximately . This results <strong>in</strong> a value <strong>of</strong> Ó ¼ Å, very close to thetheoretical value.We next compare the <strong>in</strong>put impedance obta<strong>in</strong>ed from the MOM to that <strong>of</strong> theideal lossless transmission l<strong>in</strong>e, given by the well-known equation Ò Ó Ð · Ó ØҴе Ó · Ð ØҴе(4.103)where Ð is the load impedance and Ò is the impedance measured a distance Ðfrom the load. For this comparison we use a pure resistance <strong>of</strong> ¾¼¼ Å. <strong>The</strong> results


Th<strong>in</strong> Wires 891000800ComputedEquationRImpedance (Ohms)6004002000−200X−40010 5 10 6 10 7 10 8Frequency (Hz)Figure 4.12: Two-wire l<strong>in</strong>e <strong>in</strong>put impedance.are plotted <strong>in</strong> Figure 4.12 for frequencies between 100 kHz and 100 MHz. <strong>The</strong>comparison is quite good. At lower frequencies, the <strong>in</strong>put impedance tends towardsits DC value, as expected.4.6.5 Match<strong>in</strong>g a Yagi AntennaLet us use this method <strong>of</strong> load<strong>in</strong>g to match a th<strong>in</strong> wire Yagi antenna at its feedpo<strong>in</strong>t.We use the ATW formulation with triangular basis and test<strong>in</strong>g functions. <strong>The</strong>dimensions <strong>of</strong> a n<strong>in</strong>e-element th<strong>in</strong> wire Yagi antenna for the 2-meter amateur radioband (144–148 MHz) are summarized <strong>in</strong> Table 4.1 [11]. <strong>The</strong> diameter <strong>of</strong> all antennaelements is 1/4 <strong>in</strong>ch (0.635 cm). <strong>The</strong> <strong>in</strong>put resistance and reactance <strong>of</strong> the unmatchedantenna over the band are shown <strong>in</strong> Figures 4.14a and 4.14b, respectively. <strong>The</strong>antenna has a feedpo<strong>in</strong>t resistance between 15 and 35 Å over most <strong>of</strong> the frequencyrange, a typical value for parasitic Yagi antennas. This antenna can be matched toa ¼ Å coaxial feed us<strong>in</strong>g a lumped <strong>in</strong>ductive element at the feedpo<strong>in</strong>t (a coil) ora tun<strong>in</strong>g stub such as the hairp<strong>in</strong> match [12] and a 2:1 balun. We choose to matchthis antenna at about 146.5 MHz, where its reactance is approximately ½ Å.To achieve the match we will place an <strong>in</strong>ductance <strong>of</strong> about 20 nH at the feedpo<strong>in</strong>t toTable 4.1: 2 Meter Yagi DimensionsElement REF DE D1 D2 D3 D4 D5 D6 D7Length (mm) 1038 955 956 932 916 906 897 891 887Position (mm) 0 312 447 699 1050 1482 1986 2553 3168


90 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>R DE D 1 D 2 D 3 D 4 D 5 D 6 D 7LFigure 4.13: Yagi antenna for the two meter amateur radio band.tune out the capacitive reactance. <strong>The</strong> reactance after match<strong>in</strong>g is shown <strong>in</strong> Figure4.15a and the stand<strong>in</strong>g wave ratio (SWR) <strong>in</strong> Figure 4.15b. <strong>The</strong> front-to-back ratioand the forward ga<strong>in</strong> (<strong>in</strong> dBd) are shown <strong>in</strong> Figures 4.16a and 4.16b, respectively.


Th<strong>in</strong> Wires 9135Input Resistance (Ohms)30252015144 145 146 147 148Frequency (MHz)(a) Input Resistance−15Input Reactance (Ohms)−20−25−30−35−40144 145 146 147 148Frequency (MHz)(b) Input ReactanceFigure 4.14: Unmatched Yagi <strong>in</strong>put impedance.


92 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>5Input Reactance (Ohms)0−5−10−15−20144 145 146 147 148Frequency (MHz)(a) Matched Reactance2.52SWR1.51144 145 146 147 148Frequency (MHz)(b) Matched SWR ( Ó ¼Å)Figure 4.15: Matched reactance and SWR.


Th<strong>in</strong> Wires 93Front to back Ratio (dBd)222120191817161514144 145 146 147 148Frequency (MHz)(a) Front to Back Ratio18Forward Ga<strong>in</strong> (dBd)171615141312144 145 146 147 148Frequency (MHz)(b) Forward Ga<strong>in</strong>Figure 4.16: Matched front to back ratio and ga<strong>in</strong>.


94 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>REFERENCES[1] R. W. P. K<strong>in</strong>g, “<strong>The</strong> l<strong>in</strong>ear antenna–eighty years <strong>of</strong> progress,” Proc. IEEE,vol. 55, 2–26, January 1967.[2] W. Wang, “<strong>The</strong> exact kernel for cyl<strong>in</strong>drical antenna,” IEEE Trans. AntennasPropagat., vol. 39, 434–435, April 1991.[3] D. R. Wilton and N. J. Champagne, “Evaluation and <strong>in</strong>tegration <strong>of</strong> the th<strong>in</strong> wirekernel,” IEEE Trans. Antennas Propagat., vol. 54, 1200–1206, April 2006.[4] E. Hallen, “<strong>The</strong>oretical <strong>in</strong>vestigations <strong>in</strong>to the transmitt<strong>in</strong>g and receiv<strong>in</strong>g qualities<strong>of</strong> antennae,” Nova Acta (Uppsala), vol. 11, 1–44, 1938.[5] H. C. Pockl<strong>in</strong>gton, “Electrical oscillations <strong>in</strong> wires,” Proc. Camb. Phil. Soc.,vol. 9, 1897.[6] W. Stutzman and G. Thiele, Antenna <strong>The</strong>ory and Design. John Wiley and Sons,1981.[7] C. A. Balanis, Advanced Eng<strong>in</strong>eer<strong>in</strong>g <strong>Electromagnetics</strong>. John Wiley and Sons,1989.[8] S. J. Orfanidis, “Electromagnetic waves and antennas.” Electronic version:http://www.ece.rutgers.edu/ orfanidi/ewa/.[9] H. Dwight, Tables <strong>of</strong> Integrals and Other Mathematical Data. <strong>The</strong> MacmillanCompany, 1961.[10] <strong>The</strong> Integrator. Wolfram Research, http://<strong>in</strong>tegrals.wolfram.com.[11] <strong>The</strong> ARRL Antenna Book. <strong>The</strong> Amateur Radio Relay League, 17th ed., 1994.[12] W. Orr, Radio Handbook. Sams, 1992.


Chapter 5Two-Dimensional ProblemsNow hav<strong>in</strong>g covered the basics <strong>of</strong> the moment method, we apply it to some twodimensionalscatter<strong>in</strong>g and radiation problems. <strong>The</strong>se examples will further illustratethe manipulation <strong>of</strong> the EFIE and MFIE, mak<strong>in</strong>g them suitable for each problem, aswell as the proper evaluation <strong>of</strong> matrix elements given the choice <strong>of</strong> basis and test<strong>in</strong>gfunctions.5.1 TWO-DIMENSIONAL EFIEWe first apply the EFIE to two-dimensional problems <strong>of</strong> TM (perpendicular) and TE(parallel) polarization. We will consider the problem <strong>of</strong> scatter<strong>in</strong>g by a f<strong>in</strong>ite strip andthen present expressions for radiation and scatter<strong>in</strong>g by two-dimensional boundaries<strong>of</strong> arbitrary shape.5.1.1 EFIE for a Strip: TM PolarizationConsider a th<strong>in</strong>, perfectly conduct<strong>in</strong>g strip illum<strong>in</strong>ated by a uniform plane wave <strong>of</strong>TM polarization, illustrated <strong>in</strong> Figure 5.1. An <strong>in</strong>cident electric field <strong>of</strong> unit magnitudeis given byE ´µ ¡ z ´Ü Ó× ·Ý ×Ò µ z (5.1)and the correspond<strong>in</strong>g magnetic field isH ´µ ¢ E ½ ´ ×Ò x · Ó× yµ ´Ü Ó× ·Ý ×Ò µ(5.2)Ôwhere ¯ and r Ó× x · ×Ò y. S<strong>in</strong>ce the <strong>in</strong>cident field has acomponent only along z, we expect that the <strong>in</strong>duced surface current density J willhave only a z component. <strong>The</strong> EFIE <strong>of</strong> (2.119) can then be simplified to Ä Þ´Üµ ´ ¼ µ¼Â Þ´Ü ¼ µ· ½ ¾ Ö¼ Ö ¼ ¡ Â Þ´Ü ¼ µ Ü ¼ (5.3)95


96 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>y^sH i^iE iz s iLxFigure 5.1: Th<strong>in</strong> strip: perpendicular polarization.where the functions vary only along Ü because the strip is extremely th<strong>in</strong>. S<strong>in</strong>ce by<strong>in</strong>spection Ö ¼ ¡ Â Þ´Ü ¼ µ¼, the above reduces to Ä Þ´Üµ ´ ¼ µ Â Þ´Ü ¼ µ Ü ¼ (5.4)Substitut<strong>in</strong>g the two-dimensional Green’s function ´ ¼ µfrom (2.52) we get Ü Ó× Ä¼¼¡À ´¾µ ¼ Ü Ü ¼ Â Þ´Ü ¼ µ À ´¾µ¼ Ü Ü ¼ ¡ Ü ¼ (5.5)wherewehaveevaluatedE ´µ and ´ ¼ µ on the surface <strong>of</strong> the strip (y = 0). Afterwe solve this equation for the current Â Þ , the scattered electric field is given by × Þ ´µ ÄUs<strong>in</strong>g (2.106), the scattered far field can be written as × Þ´µ Ö Ô ¼ Ä¼Â Þ´Ü ¼ µ À ´¾µ¼ Ü Ü ¼ ¡ Ü ¼ (5.6)Â Þ´Ü ¼ µ ܼ Ó× × Ü ¼ Ö ½ (5.7)<strong>The</strong> correspond<strong>in</strong>g physical optics current density for this problem is J´µ ¾n´µ ¢ H ´µ, whichis J´µ ¾y ¢ ¢ E´µ ¾ ×Ò Ü Ó× z (5.8)which we will compare to the results <strong>of</strong> the EFIE.


Two-Dimensional Problems 975.1.1.1 Solution Us<strong>in</strong>g Pulse FunctionsLet us first solve this problem us<strong>in</strong>g pulse basis functions and po<strong>in</strong>t match<strong>in</strong>g fortest<strong>in</strong>g. We subdivide the strip <strong>in</strong>to Æ segments <strong>of</strong> width ¡ Ü ÄÆ, result<strong>in</strong>g <strong>in</strong> Æbasis functions. <strong>The</strong> matrix elements Þ ÑÒ are given byÞ ÑÒ ÜÒ·½Ü Òand the excitation vector elements Ñ are Ñ À ´¾µ¼ Ü Ñ Ü ¼ ¡ Ü ¼ (5.9) ÜÑ Ó× (5.10)We position the test<strong>in</strong>g and source po<strong>in</strong>ts Ü Ñ Ü Ò at the center <strong>of</strong> each segment. Toevaluate the non-self terms we will use a simple centroidal approximation to the<strong>in</strong>tegral, which is¡ Þ ÑÒ À ´¾µ¼ Ü Ñ Ü Ò ¡ Ü (5.11)For the self terms, we will use the small argument approximation to the HankelfunctionÀ ´¾µ¼ ´Üµ ½ ¾ ­Ü ÐÓ Ü ¼ (5.12)¾where ­ ½½. This results <strong>in</strong> the follow<strong>in</strong>g <strong>in</strong>tegral for the self terms:Á ¡ ܼ½ ¾ ÐÓ ­Ü Ü ¼ ¾Ü ¼ (5.13)<strong>The</strong> logarithmic part <strong>of</strong> this <strong>in</strong>tegral has a s<strong>in</strong>gularity, so we must <strong>in</strong>tegrate itcarefully. To do so we make use <strong>of</strong> [1], which summarizes the solution for potential<strong>in</strong>tegrals <strong>of</strong> the form ÐÓ Ü and Ü ÐÓ Ü. Perform<strong>in</strong>g the <strong>in</strong>tegration yieldsÁ ¡ Ü ¾ ¡ Ü ÐÓ­ ¡ Ü Ü¾· Ü ÐÓÜ¡ Ü Ü(5.14)and substitut<strong>in</strong>g the value Ü ¡ Ð ¾, the self terms Þ ÑÑ areÞ ÑÑ ¡ ܽ ¾ ÐÓ ­¡Ü(5.15)When the segments are adjacent but not overlapp<strong>in</strong>g, the <strong>in</strong>tegrand may still exhibita strong s<strong>in</strong>gular behavior that can lead to <strong>in</strong>accurate matrix elements if a centroidalapproximation is used. For these near terms (Ñ Ò ½), we will evaluate the<strong>in</strong>tegral analytically us<strong>in</strong>g the same method used for the self terms. <strong>The</strong> result isÞ ÑÒ ¡ Ü ¡ Ü¿ÐÓ ¿­¡ÜÐÓ ­¡Ü¾Ñ Ò ½ (5.16)


98 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Current Density (mA/m)30252015105EFIEPO00 0.5 1 1.5 2 2.5 3Position (Lambda)(a) Induced Surface Current ( ¾)2010EFIEPO2D RCS (dBsm)0−10−20−300 30 60 90 120 150 180Phi (Degrees)(b) Two-Dimensional Monostatic RCS (¼ )Figure 5.2: Strip with pulse functions: TM polarization.


Two-Dimensional Problems 99Note that the result<strong>in</strong>g matrix will be symmetric Toeplitz due to the choice <strong>of</strong> basisfunctions and the l<strong>in</strong>ear geometry <strong>of</strong> the strip.Consider a strip <strong>of</strong> width ¿, which we subdivide <strong>in</strong>to 300 segments. In Figure5.2a we plot the <strong>in</strong>duced surface current <strong>in</strong>tensity at broadside <strong>in</strong>cidence ( ¼ Æ ).<strong>The</strong> current is s<strong>in</strong>gular near the edges, however the magnitude falls <strong>of</strong>f quickly withdistance from each edge. <strong>The</strong> numerically computed EFIE current (solid l<strong>in</strong>e) iscompared to the PO current (dashed l<strong>in</strong>e). <strong>The</strong> PO current matches the EFIE fairlywell near the center <strong>of</strong> the strip, but badly near the edges. In Figure 5.2b is shownthe two-dimensional RCS for <strong>in</strong>cident angles rang<strong>in</strong>g from 0 to 180 degrees. <strong>The</strong> POcompares to the EFIE well at angles near broadside and with<strong>in</strong> the first ma<strong>in</strong>lobe,but does poorly beyond that.5.1.1.2 Solution Us<strong>in</strong>g Triangle FunctionsWe now solve this problem us<strong>in</strong>g triangle basis and test<strong>in</strong>g functions. S<strong>in</strong>ce we knowthe current will be nonzero at the ends <strong>of</strong> the strip, we use the configuration <strong>of</strong> Figure3.10. <strong>The</strong> strip is aga<strong>in</strong> divided <strong>in</strong>to Æ segments <strong>of</strong> width ¡ Ü ÄÆ, with Ætriangle functions (Æ ¾ whole triangles, ¾ half triangles). <strong>The</strong> matrix elementsÞ ÑÒ are given byÞ ÑÒ Ñ Ñ´Üµ ¡ Ò Ò´Ü ¼ µ À ´¾µ¼ Ü Ü ¼ ¡ Ü ¼ Ü (5.17)To evaluate the above <strong>in</strong>tegral we will use an Å-po<strong>in</strong>t quadrature rule over the sourceand test<strong>in</strong>g triangles, result<strong>in</strong>g <strong>in</strong>Þ ÑÒ ÅÔ½Û Ñ´Ü Ô µ Ñ´Ü Ô µÅÕ½Û Ò´Ü Ô µ Ò´Ü Õ µ À ´¾µ¼ Ü Ô Ü Õ ¡ (5.18)where Ô and Õ refer to the test<strong>in</strong>g and source locations, respectively. When the sourceand observation triangles have no overlapp<strong>in</strong>g segments, the above expression canbe implemented as written. If the triangles partially or completely overlap (<strong>in</strong> thiscase, whenever Ñ Ò ¾), the Hankel function will have s<strong>in</strong>gularities on theoverlapp<strong>in</strong>g segments. To solve this, we will evaluate the <strong>in</strong>nermost <strong>in</strong>tegral <strong>in</strong> (5.17)analytically and the outermost <strong>in</strong>tegral numerically. Aga<strong>in</strong> us<strong>in</strong>g the small-argumentapproximation to the Hankel function, the <strong>in</strong>nermost <strong>in</strong>tegral becomesÁ ¡ ܼ Ò´Ü ¼ µ½ ¾ ­ÜÔ Ü ¼ ÐÓ Ü ¼ (5.19)¾<strong>The</strong> observation po<strong>in</strong>t Ü Ô lies with<strong>in</strong> the limits <strong>of</strong> <strong>in</strong>tegration, and the function Ò´Ü ¼ µrepresents the ascend<strong>in</strong>g or descend<strong>in</strong>g half <strong>of</strong> the source triangle. This <strong>in</strong>tegral canbe decomposed <strong>in</strong>to a sum <strong>of</strong> <strong>in</strong>tegrals <strong>in</strong>volv<strong>in</strong>g Ü ÐÓ Ü and ÐÓ Ü, the solutions towhich are summarized <strong>in</strong> [1]. For the ascend<strong>in</strong>g triangle Ò´Ü ¼ µÜ ¼ ¡ Ü ,theresult


100 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>isÁ ¡ ܾ ¾ ܾÔÐÓ¾¡ ÜÜ Ô¡ Ü Ü Ô· ¡Ü¾ÐÓ ¡ Ü Ü Ô ℄ ÜÔ¾¡ Ü(5.20)where ­¾. <strong>The</strong> result for the ascend<strong>in</strong>g triangle is sufficient for comput<strong>in</strong>g alls<strong>in</strong>gular terms for itself and the descend<strong>in</strong>g triangle because <strong>of</strong> their symmetry. <strong>The</strong>s<strong>in</strong>gular portions <strong>of</strong> the matrix element Þ ÑÒ can then be obta<strong>in</strong>ed via the sumÈ ¡ ×Å Ô½ Ñ´Ü Ô µÁ´Ü Ô µ (5.21)When either <strong>of</strong> the triangles is the half-triangle at the ends <strong>of</strong> the strip, (5.18) shouldstill be used, however the sum over the half triangle is modified to take <strong>in</strong>to accountthe fact that it is over a s<strong>in</strong>gle segment only. <strong>The</strong> excitation vector elements arecomputed by numerical quadrature and are Ñ Ñ Ñ´Üµ Ü Ó× Ü ÅÔ½Û Ñ´Ü Ô µ Ñ´Ü Ô µ ÜÔ Ó× (5.22)We aga<strong>in</strong> subdivide the ¿ strip <strong>in</strong>to 300 segments. For <strong>in</strong>tegration overthe test<strong>in</strong>g segments, we use a five-po<strong>in</strong>t Gaussian quadrature. Figure 5.3a showsthe computed surface current <strong>in</strong>tensity at broadside <strong>in</strong>cidence. <strong>The</strong> EFIE currentis seen to take on a higher value at the edges than it did with pulse functions,however the difference is slight. Figure 5.3b depicts the two-dimensional RCS, whichappears identical to the RCS obta<strong>in</strong>ed us<strong>in</strong>g pulse functions. This suggests that pulsefunctions may be sufficient to accurately characterize this problem, though the largenumber <strong>of</strong> segments used is likely a contributor to the agreement.5.1.2 Generalized EFIE: TM PolarizationWe can easily generalize (5.4) to a two-dimensional contour <strong>of</strong> arbitrary shape.Do<strong>in</strong>g so yields Þ´µ  ޴ ¼ µ À ´¾µ¼ ¼ ¡ ¼ (5.23)Apply<strong>in</strong>g basis and test<strong>in</strong>g functions Ò and Ñ , respectively, yields an MOM matrixwith elements given byÞ ÑÒ Ñ´µ Ñand excitation vector elements Ñ Ò Ò´ ¼ µ À ´¾µ¼ ¼ ¡ ¼ (5.24) Ñ´µ Þ´µ Ñ(5.25)


Two-Dimensional Problems 1014035EFIEPOCurrent Density (mA/m)3025201510500 0.5 1 1.5 2 2.5 3Position (Lambda)(a) Induced Surface Current ( ¾)2010EFIEPO2D RCS (dBsm)0−10−20−300 30 60 90 120 150 180Phi (Degrees)(b) Two-Dimensional Monostatic RCS (¼ )Figure 5.3: Strip with triangle functions: TM polarization.


102 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>y^sH i^iz s iLE ixFigure 5.4: Th<strong>in</strong> strip: parallel polarization.5.1.3 EFIE for a Strip: TE PolariationWe next consider the TE polarized case, as illustrated <strong>in</strong> Figure 5.4. <strong>The</strong> <strong>in</strong>cidentelectric field <strong>of</strong> unit magnitude is given byE ´µ ´×Ò x Ó× yµ ´Ü Ó× ·Ý ×Ò µ(5.26)and the <strong>in</strong>cident magnetic field isH ´µ ¢ E ½ ´Ü Ó× ·Ý ×Ò µ z (5.27)On the surface <strong>of</strong> a conduct<strong>in</strong>g strip, the total tangential electric field must be zero,hencey ¢ ´E · E × µy ¢´Ü · × Ü µx ·´ Ý · × Ý µy ¼ (5.28)lead<strong>in</strong>g toor × Ü Ü ´Ý ¼µ (5.29) × Ü ×Ò Ü Ó× ´Ý ¼µ (5.30)where all observations are made on the strip (Ý ¼). S<strong>in</strong>ce the <strong>in</strong>cident field has xand y components, we expect that the <strong>in</strong>duced currents will as well. S<strong>in</strong>ce y-directedcurrents (normal to the strip) are not possible <strong>in</strong> this case, we are left with an <strong>in</strong>ducedcurrent with only an x component. Us<strong>in</strong>g the vector potential EFIE (2.120) we nowwrite ܴܵ × ¾ Ü Ü¯ Ü ¾ ¾ · ¾¯ Ü ¾ Ü (5.31)


Two-Dimensional Problems 103andwhere Ü isÔ Ü´Üµ × Ý´Üµ ļ ¾ ܯ ÜÝ(5.32)Â Ü´Ü ¼ µ À ´¾µ¼ ´µ ܼ (5.33)with ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ . Substitut<strong>in</strong>g <strong>in</strong> the above expression for Üyields Ä Ü´Üµ × ½ ¾ · ¾Â Ü´Ü ¼¯ Ü ¾ µ À ´¾µ¼ ´µ ܼ¼(5.34)and ݴܵ × ½ ¾ ÄÂ Ü´Ü ¼ µ À ´¾µ¼¯ Üݼ(5.35)Exchang<strong>in</strong>g the differentiation and <strong>in</strong>tegration operators, we get ܴܵ × Ä½Â Ü´Ü ¼ µ ¾ · ¾À ´¾µ¯ ¼Ü ¾ ¼ ´µ ܼ (5.36) Äand ݴܵ × ½Â Ü´Ü ¼ µ¯ ¼Let us evaluate the expression ¾ · ¾To beg<strong>in</strong>, we note that [2]Ü ¾ Ù À Ò´¾µ´¾µ´Ùµ À ¾À ´¾µ¼ÜÝ À ´¾µ¼ ´µ Ü ¼ (5.37)Ò·½´Ùµ ·Ò´µ (5.38)Ù À Ò ´¾µ ´Ùµ (5.39)andwhere Ù . <strong>The</strong>refore,Ü À ´¾µÒ ´µ Ù¢À ´¾µ ´Ùµ£ ÙÒÜ(5.40)ÙÜ ´µÜ ´Ü Ü ¼ µÔ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ (5.41)and soÜ À ´¾µ´¾µ ´Ü Ü ¼¼ ´µ À½ ´µ µÔ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ (5.42)µ ¾


104 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Differentiat<strong>in</strong>g a second time yields ¾Ü À ´¾µ´Ü Ü ¼¾ ¼ ´µ µÔ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ Ü À ´¾µ½ ´µ À ´¾µ ´Ü Ü ¼½ ´µ µÔÜ ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾(5.43)which is ¾Ü À ´¾µ ¾´Ü Ü ¼¾ ¼ ´µ µ ¾´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ À ´¾µµ ¾ ¾ ´µ · ½ À ´¾µ½´µ À ´¾µ ¾´Ü Ü ¼½ ´µ µ ¾ £´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ ℄ ¿¾<strong>The</strong> second and fourth terms cancel, leav<strong>in</strong>g ¾Ü À ´¾µ ¾´Ü Ü ¼¾ ¼ ´µ µ ¾´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ À ´¾µµ ¾ ¾ ´µ(5.44)´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ À ´¾µµ ¾ ½ ´µ (5.45)Us<strong>in</strong>g the recurrence relationship [3] ¢Ö À ´¾µ´¾µ´¾µ½ ´µ ¾ À¼ ´µ ·À ´µ£ ¾(5.46)¾we can write the f<strong>in</strong>al result as ¾ · ¾À ´¾µ¾´Ü Ü ¼ µ ¾Ü ¾ ¼ ´µ ¾¾ ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ ½ À ´¾µ¾ ´µ ·¾À ´¾µ¼¾ ´µ(5.47)We note from the geometry <strong>of</strong> Figure 5.4 thatÓ× ´Ü Ü ¼ µÔ´Ü Ü ¼ µ ¾ ·´Ý Ý ¼ µ ¾ (5.48)where the angle is measured <strong>in</strong> the right-hand sense from the positive Ü axis. Us<strong>in</strong>gthis we can simplify the previous expression to ¾ · ¾À ´¾µÜ ¾ ¼ ´µ ¾ Ó×´¾µÀ ´¾µ´¾µ¾ ´µ ·À¼¾´µ (5.49)By a similar derivation, we arrive at ¾ÜÝ À ´¾µ¼ ´µ ¾¾´¾µ×Ò´¾µÀ ¾ ´µ (5.50)


Two-Dimensional Problems 105<strong>The</strong> scattered electric field is thereforeand × Ü ¾¯ ļ × Ý Â Ü´Ü ¼ µ ¾¯ ļÓ×´¾µÀ ´¾µ¾´¾µ´µ ·À ´µ Ü ¼ (5.51)¼Â Ü´Ü ¼ µ×Ò´¾µÀ ´¾µ¾ ´µ ܼ (5.52)To obta<strong>in</strong> the scattered far field, we aga<strong>in</strong> use (2.104) and (2.106) to write the aboveasand × Ü × Ý Ö ¾ ¾ Ô¯ Ö¾ ¾ Ô¯ ļ Ä¼Â Ü´Ü ¼ µ ½ Ó×´¾µ ܼ Ó× × Ü ¼Ö ½(5.53)Â Ü´Ü ¼ µ ×Ò´¾µ ܼ Ó× × Ü ¼ Ö ½ (5.54)To solve for the <strong>in</strong>duced current on the strip, we will now enforce the boundaryconditions <strong>of</strong> (5.30). Insert<strong>in</strong>g this expression <strong>in</strong>to (5.51) we get¯ ¾×Ò Ü Ó× Ä¼Â Ü´Ü ¼ µ Ó×´¾µÀ ´¾µ´¾µ¾ ´µ ·À¼ ´µ Ü ¼ (5.55)where for observations on the strip, Ý ¼and Ü Ü ¼ . For any po<strong>in</strong>t Ü Ü ¼ ,thevalues for are ¼ and ¾, andÓ×´¾µ will have a value <strong>of</strong> unity. For <strong>in</strong>tegrationswhere we encounter Ü Ü ¼ , we will need to use (5.48) <strong>in</strong> evaluat<strong>in</strong>g the <strong>in</strong>tegral.<strong>The</strong> PO current on the strip is given byJ´µ ¾y ¢ H ´µ ¾y ¢ z ¾ Ü Ó× x (5.56)which is equivalent <strong>in</strong> magnitude to the PO current for the TM case at broadside<strong>in</strong>cidence.5.1.3.1 Pulse Function SolutionWe will approach this problem numerically as we did for the TM case. We subdividethe strip <strong>in</strong>to Æ segments with Æ pulse basis functions, and po<strong>in</strong>t match at the center<strong>of</strong> each segment. For segments that are not “close” (Ñ Ò ¾), we will computethe matrix elements us<strong>in</strong>g the centroidal approximationÀ ´¾µ½ Ü Ñ Ü Ò µÞ ÑÒ ¾¡ Ü ¡ Ñ Ò ¾ (5.57)Ü Ñ Ü Ò


106 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>where we have aga<strong>in</strong> used the recurrence relationship <strong>of</strong> (5.46). Elements that areadjacent or separated by one segment we will treat as near terms and perform the<strong>in</strong>tegration analytically. This <strong>in</strong>tegral is ¡ Ü¾Þ ÑÒ ¡Ü¾À ´¾µ½ Ü Ñ Ü Ò Ü ¼¡ Ü Ñ Ü Ò Ü ¼¡ ܼ Ñ Ò ½ ¾ (5.58)Us<strong>in</strong>g the small-argument approximation to the Hankel function À ´¾µ½ [3],À ´¾µ½´µ ¾ ·¾Ö ¼ (5.59)this <strong>in</strong>tegral can be written as ¡ Ü¾Þ ÑÒ ¡Ü¾½· ¾ Ü Ñ Ü Ò Ü ¼¡ ¾Ü ¼ (5.60)which evaluates toÞ ÑÒ ¡ ܽ· ¾½Ü Ñ Ü Ò ¾¡ ¾ Ü Ñ Ò ½ ¾ (5.61)For the self terms, we can aga<strong>in</strong> use (5.15) for the portion <strong>of</strong> the <strong>in</strong>tegral <strong>in</strong>volv<strong>in</strong>gÀ ´¾µ¼ ´µ, however we must be careful with the Hankel function <strong>of</strong> order 2 as it has anon <strong>in</strong>tegrable s<strong>in</strong>gularity. To overcome this problem, we will do the <strong>in</strong>tegration andthen apply a limit<strong>in</strong>g argument as the observation po<strong>in</strong>t approaches the strip. <strong>The</strong><strong>in</strong>tegral to be evaluated is ¡ ܾÁ À ´¾µ¾ ´µ Ó×´¾µ ܼ (5.62)¡Ü¾First we will employ the small-argument approximation to the Hankel function À ´¾µ¾[3]À ´¾µ ´µ¾¾ ´µ · Ö ´µ ¾ ¼ (5.63)We next fix the observation po<strong>in</strong>t at Ü ¼Ý Æ,whereÆ is very small. <strong>The</strong> distanceÖ is thenÔÖ ´Ü ¼ µ ¾ · Æ ¾ (5.64)and we can write the <strong>in</strong>tegral as ¡ Á ¾ ܾ´Ü ¼¾·Æ ¾Ü ¾ ¼¾ ¡ ܾµ ¼Ü ¼¾ · Æ ¾ ½ ܼ· ¾ ¼(5.65) ½ ¾Ü¼¾Ü ¼¾ · Æ ¾ Ü ¼¾ · Æ ¾ ½ Ü ¼


Two-Dimensional Problems 107where we have re<strong>in</strong>troduced the expression for Ó×´¾µ from (5.48). <strong>The</strong> above isthen ¡ Á ¾ ܾ´Ü ¼¾ Æ ¾ µ Ü ¼ ¡Ü¾¾Ü ¼¾½· Ü ¼ (5.66) ¾ ´Ü ¼¾ · Æ ¾ µ ¾ Ü ¼¾ · Æ ¾¼<strong>The</strong> first <strong>in</strong>tegral is evaluated easily and is¼Á ½ ¾ ¡ ¿ Ü Æ ¾ ¡ Ü(5.67) ¾ ¾<strong>The</strong> second <strong>in</strong>tegral is obta<strong>in</strong>ed by way <strong>of</strong> [4] (Eqns. 120.1 and 122.2) and is Á ½ ¡Ü¾ ¾ ØÒ½´Æ ¾Æ µ¡ Ü ¾ ½ ¡ÜÆ ¾ ·´¡ Ü ¾µ ¾ ØÒ½´Æ ¾Æ µ (5.68)which reduces to Á ¡ Ü ¾¾ (5.69) ¾ Æ ¾ ·´¡ Ü ¾µ ¾If we now take the limit as the observation po<strong>in</strong>t approaches the strip (Æ ¼), theresults areÁ ½ ¾ ¡¿ Ü(5.70)andÁ ½¾ (5.71) ¾ ¡ Üand the result<strong>in</strong>g self term isÞ ÑÑ ¡ Ü · ¾ ¡¿ Ü¡ Ü¡¾ÐÓ ­¡ Ü¡ ½· ´¡ Ü µ ¾(5.72)Figure 5.5a depicts the surface current <strong>in</strong>tensity Â Ü on the ¿ strip at broadside<strong>in</strong>cidence, with 300 segments as before. <strong>The</strong> EFIE current tends toward zero nearthe ends <strong>of</strong> the strip as expected. Figure 5.2b compares the two-dimensional RCSobta<strong>in</strong>ed us<strong>in</strong>g the EFIE and PO. Aga<strong>in</strong> the PO compares well to the EFIE nearnormal <strong>in</strong>cidence, but does does poorly beyond that.5.1.4 Generalized EFIE: TE PolarizationLet us start with (2.120) amd write a generalized EFIE <strong>in</strong> two dimensions. Do<strong>in</strong>g soyields n´µ ¢ E´µ n´µ ¢½· ½ ¾ ÖÖ ¡ J´ ¼ µÀ ´¾µ¼ ¼ ¡ ¼ (5.73)where the current J´ ¼ µ is everywhere tangent to . Choos<strong>in</strong>g basis and test<strong>in</strong>gfunctions that are tangent to allows us to create a l<strong>in</strong>ear system with matrix


108 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>10EFIEPOCurrent Density (mA/m)7.552.500 0.5 1 1.5 2 2.5 3Position (Lambda)(a) Induced Surface Current ( ¾)2010EFIEPO2D RCS (dBsm)0−10−20−300 30 60 90 120 150 180Phi (Degrees)(b) Two-Dimensional Monostatic RCS (¼ )Figure 5.5: Strip with pulse functions: TE polarization.


Two-Dimensional Problems 109elements given byÞ ÑÒ f Ñ´µ ¡f Ñ· ½ f Ñ´µ ¡ ¾ f Ñf ¼ Ò´ µÀ ´¾µ¼f Ò ¼ ¡ ¼ f ÒÖÖ ¡ f Ò´ ¼ µÀ ´¾µ¼ ¼ ¡ ¼ (5.74)As demonstrated <strong>in</strong> Section 5.1.3, solv<strong>in</strong>g the EFIE as written <strong>in</strong> (5.74) will be quitecomplicated, even for simple geometries. This difficulty orig<strong>in</strong>ates from the location<strong>of</strong> the differential operators. If we redistribute the operators follow<strong>in</strong>g Section 4.5.1,the TE problem will be greatly simplified. Us<strong>in</strong>g this method, the matrix elements <strong>of</strong>(5.74) can be rewritten asÞ ÑÒ f Ñ´µ ¡f ѽ֡f Ñ´µ ¡ ¾ f Ñf Òf Ò´ ¼ µÀ ´¾µ¼ ¼ ¡ ¼ Ö ¼ ¡ f ¼ Ò´ µÀ ´¾µ¼f Ò ¼ ¡ ¼ (5.75)where the basis and test<strong>in</strong>g functions must now have a nonzero divergence throughouttheir doma<strong>in</strong>. If we use triangle basis and test<strong>in</strong>g functions, this requirement willbe satisfield. <strong>The</strong> excitation vector elements are Ñ f Ñf Ñ´µ ¡ E ´µ (5.76)5.2 TWO-DIMENSIONAL MFIEAs the MFIE is valid only for closed surfaces, will consider two-dimensional MFIEproblems <strong>in</strong> the context <strong>of</strong> a closed, conduct<strong>in</strong>g boundary <strong>of</strong> arbitrary shape.5.2.1 MFIE: TM Polarization<strong>The</strong> geometry <strong>of</strong> a TM MFIE problem is illustrated <strong>in</strong> Figure 5.6, where the <strong>in</strong>cidentmagnetic field <strong>in</strong>duces the z-directed current  ޴µ. Us<strong>in</strong>g (2.136), we can write thetwo-dimensional MFIE asn´µ ¢ H ´µ J´µ¾ n´µ ¢¼ J´¼ µ ¢ÖÀ ´¾µ¼ ´µ ¼ (5.77)S<strong>in</strong>ce the <strong>in</strong>duced current has only z components on , the only portion <strong>of</strong> the<strong>in</strong>cident field that contributes to the current is that which is tangent to . <strong>The</strong>refore,


110 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>^iyC iH i E i R^^t’’zxn’ ^R^tn^Figure 5.6: Two-Dimensional MFIE geometry: perpendicular polarization.the above can be written ast´µ ¡ H ´µ  ޴µ¾ z ¡ n´µ ¢¼  ޴ ¼ µz ¢ÖÀ ´¾µ¼´µ ¼ where the tangent vector t´µ n´µ ¢ z. Apply<strong>in</strong>g the vector identity(5.78)we obta<strong>in</strong>A ¢ B ¢ C ´A ¡ CµB ´A ¡ BµC (5.79)n´µ ¢ z ¢ÖÀ ´¾µ¼ ´µ z n´µ ¡ÖÀ ´¾µ¼ ´µs<strong>in</strong>ce n ¡ z ¼everywhere on . Substitut<strong>in</strong>g this <strong>in</strong>to (5.78) yieldst´µ ¡ H ´µ  ޴µFurthermore, s<strong>in</strong>ceÖÀ ´¾µ¼¾t´µ ¡ H ´µ  ޴µ ·¾ (5.80)¼  ޴ ¼ µ ¢ n´µ ¡ÖÀ ´¾µ¼ ´µ£ ¼ (5.81) Ü Ü¼ Ý ´µ À´¾µ½ ´µ ݼx ·Ê Êy¼the two-dimensional MFIE for TM polarization can be written as n´µ ¡ R (5.82) ޴ ¼ µÀ ´¾µ½ ´µ ¼ (5.83)


Two-Dimensional Problems 111y^ iE iH iC i^t’’zxn’ ^RR^^tn^Figure 5.7: Two-Dimensional MFIE geometry: parallel polarization.whereR Ü Ü¼Êx · Ý Ý¼Ê ¼y ¼ (5.84)Once we have solved (5.83) for  ޴r ¼ µ, the scattered far field is obta<strong>in</strong>ed via (2.106).Apply<strong>in</strong>g a set <strong>of</strong> basis and test<strong>in</strong>g functions to (5.83) yields a l<strong>in</strong>ear system withmatrix elements given byÞ ÑÒ ½ ¾ Ñ Ò Ñ´µ Ò´µ · Ò Ò´ ¼ µn´µ ¡ RÀ ´¾µ Ñ Ñ´µ ¡½ ´µ ¼ (5.85)where the first <strong>in</strong>tegration is performed over portions <strong>of</strong> the boundary where Ñ and Ò overlap, and the second where they do not. <strong>The</strong> excitation vector elements are Ñ Ñ´µ t´µ ¡ H ´µ Ñ (5.86)5.2.2 MFIE: TE Polarization<strong>The</strong> geometry <strong>of</strong> the TE MFIE problem is illustrated <strong>in</strong> Figure 5.7. S<strong>in</strong>ce the <strong>in</strong>cidentmagnetic field is z-directed, we know that the <strong>in</strong>duced current must be aligned along


112 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>the tangent t to . <strong>The</strong>refore, we write the two-dimensional MFIE as t´µ¡ n´µ¢H  شµ ´µ ¾ ¼  ش ¼ µ t´µ¡n´µ¢ t´ ¼ µ¢ÖÀ ´¾µ¼ ´µ (5.87)Let us simplify the right hand side <strong>of</strong> the above equation. S<strong>in</strong>ce t´ ¼ µn´ ¼ µ ¢ z,we can write thatt´ ¼ µ ¢ÖÀ ´¾µ´¾µ¼ ´µ ÖÀ ¼n´ ´µ ¢ ¼ µ ¢ z ¼(5.88)Us<strong>in</strong>g the identity (5.79) and the fact that ÖÀ ´¾µ¼ ´µ has no component along z,thisreduces tot´ ¼ µ ¢ÖÀ ´¾µ¼ ´µ z¢ n´ ¼ µ ¡ÖÀ ´¾µ´µ£ ¼(5.89)and t´µ ¡ n´µ ¢ z n´ ¼ µ ¡ÖÀ ´¾µ¼ ´µ n´ ¼ µ ¡ÖÀ ´¾µ¼ ´µ (5.90)<strong>The</strong>refore,À Þ´µ  شµ¾¼  ش ¼ µ n´ ¼ µ ¡ÖÀ ´¾µ¼ ´µ ¼ (5.91)Comb<strong>in</strong><strong>in</strong>g the above with (5.82) yields the two-dimensional MFIE for TE polarizationÀ Þ´µ  شµ¾· ¼ n´ ¼ µ ¡ R  ¼ Ø´ µÀ ´¾µ½ ´µ ¼ (5.92)Apply<strong>in</strong>g a set <strong>of</strong> basis and test<strong>in</strong>g functions <strong>in</strong> the above yields a l<strong>in</strong>ear system withmatrix elements given byÞ ÑÒ ½ ¾ Ñ Ò Ñ´µ Ò´µ · Ò Ò´ ¼ µn´ ¼ µ ¡ RÀ ´¾µ Ñ Ñ´µ ¡½ ´µ ¼ (5.93)and excitation vector elements Ñ Ñ´µÀÞ´µ (5.94) ÑNote that even though we are solv<strong>in</strong>g for the scalar tangential current <strong>in</strong> (5.92), thecurrent is still a vector function <strong>of</strong> position and needs to be treated as such whencomput<strong>in</strong>g the scattered field, i.e., J´µ  شµ t´µ.


Two-Dimensional Problems 1135.3 EXAMPLESIn this section we will look at practical solutions <strong>of</strong> the generalized two-dimensionalEFIE and MFIE for TM and TE polarizations, and summarize expressions that can beused <strong>in</strong> comput<strong>in</strong>g the matrix and excitation vector elements. We will then considerexamples that illustrate the implementation <strong>of</strong> each formulation.5.3.1 Scatter<strong>in</strong>g by an Inf<strong>in</strong>ite Cyl<strong>in</strong>der: TM PolarizationWe first solve for the <strong>in</strong>duced currents and scattered field <strong>of</strong> a two-dimensionalcyl<strong>in</strong>der <strong>of</strong> radius illum<strong>in</strong>ated by an <strong>in</strong>cident plane wave. <strong>The</strong> exact solution forthe <strong>in</strong>duced current  ޴µ is [5] ޴µ ¾½Ò¼¯Ò´ µ Ò Ó× ÒÀ Ò´½µ ´µ(5.95)and the bistatic scattered far field for an <strong>in</strong>cident azimuthal angle observation angle × isÖ ×´ × ´ µ¾ ½µ Ô ¯Ò´ ½µ Ò Ó× Ò × Â Ò´µ À Ò´½µ ´µÒ¼ ¼ and(5.96)where ¯Ò ½for Ò ¼,and¯Ò ¾otherwise. For an MOM simulation, we dividethe boundary <strong>of</strong> the cyl<strong>in</strong>der <strong>in</strong>to Æ segments <strong>of</strong> length ¡ Ð ¾Æ. This results<strong>in</strong> Æ unknowns when us<strong>in</strong>g pulse basis functions, and Æ ·½unknowns when us<strong>in</strong>gtriangles.5.3.1.1 EFIE: Pulse Basis Functions and Po<strong>in</strong>t Match<strong>in</strong>gWe will use the centroidal approximation to evaluate (5.24). <strong>The</strong> result<strong>in</strong>g matrixelements areÞ ÑÒ À ´¾µ¼ Ñ ¼ ¡ Ò ¡ Ð (5.97)<strong>The</strong> correspond<strong>in</strong>g self terms Þ ÑÑ are summarized <strong>in</strong> (5.15). <strong>The</strong> excitation vectorelements are Ñ 5.3.1.2 EFIE: Triangle Basis and Test<strong>in</strong>g Functions ´ÜÑ Ó× ·ÝÑ ×Ò µ (5.98)Apply<strong>in</strong>g the basis and test<strong>in</strong>g functions to (5.24), the matrix elements are computedus<strong>in</strong>g an Å-po<strong>in</strong>t numerical quadrature and areÞ ÑÒ ÅÔ½Û Ñ´ Ô µ Ñ´ Ô µÅÕ½Û Ò´ Õ µ Ò´ Õ µ À ´¾µ¼ Ô Õ ¡ (5.99)


114 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong><strong>The</strong> s<strong>in</strong>gular portions <strong>of</strong> these elements are summarized <strong>in</strong> (5.20) and (5.21). Ingenerat<strong>in</strong>g the elements, the <strong>in</strong>tegrations should be performed via loops over segmentpairs and the result<strong>in</strong>g values placed <strong>in</strong>to the correspond<strong>in</strong>g matrix locations. As eachsegment supports two triangles, (5.99) contributes to a total <strong>of</strong> four matrix elements.<strong>The</strong> excitation vector elements (5.25) are also computed via quadrature and are Ñ ÅÔ½Û Ñ´ Ô µ Ñ´ Ô µ ´ÜÔ Ó× ·ÝÔ ×Ò µ (5.100)5.3.1.3 MFIE: Pulse Basis Functions and Po<strong>in</strong>t Match<strong>in</strong>gUs<strong>in</strong>g pulse basis functions and po<strong>in</strong>t match<strong>in</strong>g, only the first <strong>in</strong>tegral <strong>in</strong> (5.85)contributes to the matrix self terms. Evaluat<strong>in</strong>g this us<strong>in</strong>g po<strong>in</strong>t match<strong>in</strong>g yieldssimplyÞ ÑÑ ½ (5.101)¾<strong>The</strong> second <strong>in</strong>tegral contributes to the <strong>of</strong>f-diagonal terms, and us<strong>in</strong>g the centroidalapproximation these elements areÞ ÑÒ ´n Ñ ¡ R ÑÒ µ ¡ ÐÀ ´¾µ½ Ñ Ò ¡ (5.102)where for the cyl<strong>in</strong>der,n Ñ ¡ R ÑÒ Ñ¡ Ñ Ò Ñ Ò (5.103)Us<strong>in</strong>g the tangent vectort´µ ×Òx Ó× y (5.104)and the <strong>in</strong>cident magnetic field (5.2), the excitation vector elements from (5.86) are Ñ ½¢ ×Ò Ñ ×Ò · Ó× Ñ Ó× £ ´ÜÑ Ó× ·Ý Ñ ×Ò µ (5.105)5.3.1.4 MFIE: Triangle Basis and Test<strong>in</strong>g FunctionsUs<strong>in</strong>g triangle basis and test<strong>in</strong>g functions <strong>in</strong> (5.85), the matrix elements are computedvia numerical quadrature and areÅÅÞ ÑÒ ½ Û Ñ´ Ô µ Ñ´ Ô µ µ· Ò´ Ô¾Ô½Ô½ÅÕ½Û Ñ´ Ô µ Ñ´ Ô µ ¡Û Ò´ Õ µ Ò´ Õ µ´n Ô ¡ R ÔÕ µ À ´¾µ½ Ô Õ ¡ (5.106)


Two-Dimensional Problems 115<strong>The</strong> first term is computed only on segments where the basis functions overlap, andthe second on non-overlapp<strong>in</strong>g segments. As with the EFIE, the above calculationsare best performed by loop<strong>in</strong>g over boundary segments <strong>in</strong>stead <strong>of</strong> triangles, andplac<strong>in</strong>g the <strong>in</strong>tegrations <strong>in</strong>to the correct matrix locations. <strong>The</strong> excitation vectorelements are Ñ ½Å ¢ Û Ñ´ Ô µ Ñ´ Ô µ ×Ò Ô ×Ò ·Ó× Ô Ó× £ ´ÜÔ Ó× ·Ý Ô ×Ò µÔ½(5.107)5.3.1.5 ResultsWe compute the <strong>in</strong>duced current and bistatic radar cross section ( ¼) foracyl<strong>in</strong>der <strong>of</strong> radius ¾. For each case, we divide the perimeter <strong>of</strong> the cyl<strong>in</strong>der<strong>in</strong>to 180 segments <strong>of</strong> equal length. This choice results <strong>in</strong> just over 14 segments perwavelength. Numerical <strong>in</strong>tegration with triangle functions uses Gaussian quadraturewith six po<strong>in</strong>ts per segment. <strong>The</strong> modal solution is term<strong>in</strong>ated after 20 modes.<strong>The</strong> EFIE results us<strong>in</strong>g pulses and triangles are summarized <strong>in</strong> Figures 5.8 and5.9, respectively. <strong>The</strong> results from the triangle functions are seen to be better thanpulses, though the agreement with the modal solution is excellent <strong>in</strong> both cases. <strong>The</strong>correspond<strong>in</strong>g MFIE results are summarized <strong>in</strong> Figures 5.10 and 5.11, respectively.Triangles aga<strong>in</strong> perform better than pulses, though both solutions are still very good.5.3.2 Scatter<strong>in</strong>g by an Inf<strong>in</strong>ite Cyl<strong>in</strong>der: TE PolarizationFor TE-polarized waves, the exact solution for the <strong>in</strong>duced tangential current Â Ø as afunction <strong>of</strong> azimuthal angle is [5] شµ ¾½¯Ò´ µ Ò Ó× ÒÒ¼ À ´½µ¼Ò ´µ(5.108)and the far-zone bistatic scattered magnetic field for an <strong>in</strong>cident azimuthal angle ¼and observation angle × isÀ ×´Ö × µÖ½ ¾ ´ µÔ ½Ò¼¯Ò´ ½µ Ò Ó× Ò ×¼ Ò´µÀ ´½µ¼Ò ´µ(5.109)with ¼ Ò´µ Ò Ò´µ Ò·½´µ (5.110)where Ò´µ is either  Ҵµ or À ´½µÒ ´µ [3].


116 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>76EFIE (Pulse)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)2520EFIE (Pulse)Mode (max = 20)2D RCS (dBsm)1510500 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.8: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TM polarization (EFIE).


Two-Dimensional Problems 11776EFIE (Triangle)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)2520EFIE (Triangle)Mode (max = 20)2D RCS (dBsm)1510500 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.9: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TM polarization (EFIE).


118 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>76MFIE (Pulse)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)2520MFIE (Pulse)Mode (max = 20)2D RCS (dBsm)1510500 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.10: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TM polarization (MFIE).


Two-Dimensional Problems 11976MFIE (Triangle)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)2520MFIE (Triangle)Mode (max = 20)2D RCS (dBsm)1510500 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.11: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TM polarization (MFIE).


120 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>5.3.2.1 EFIE: Triangle Basis and Test<strong>in</strong>g FunctionsTriangle functions must be used to solve the TE EFIE (5.75), as the basis and test<strong>in</strong>gfunctions must have a well-behaved divergence. <strong>The</strong>se functions are vector valuedand are everywhere tangent to the boundary. Apply<strong>in</strong>g numerical quadrature, thematrix elements areÞ ÑÒ ÅÅÔ½ Õ½Û Ñ´ Ô µÛ Ò´ Õ µf Ñ´ Ô µ ¡ f Ò´ Õ µ ¦½ ¾ ¡ ¾ ÐÀ ´¾µ¼ Ô Õ ¡where we have used the fact that the divergence <strong>of</strong> each triangle function is(5.111)Ö¡f´µ ¦ ½ ¡ Ð(5.112)and the sign <strong>of</strong> the second term <strong>in</strong> (5.111) depends on the slope <strong>of</strong> the trianglefunctions on each segment. For overlapp<strong>in</strong>g segments, the portion <strong>of</strong> the self terms<strong>in</strong>volv<strong>in</strong>g the triangle functions may be computed via (5.20) and (5.21). This leavesus with the second <strong>in</strong>tegration <strong>of</strong> (5.75), which has the form ¡Ð ¡Ð¼¼À ´¾µ¼ Ü Ü ¼ ¡ Ü ¼ Ü (5.113)We will evaluate this <strong>in</strong>tegration us<strong>in</strong>g analytic <strong>in</strong>ner and numerical outer <strong>in</strong>tegrations,where the <strong>in</strong>nermost is summarized <strong>in</strong> (5.14). Us<strong>in</strong>g the <strong>in</strong>cident electric field(5.26) and tangent vector (5.104), the excitation vector elements are Ñ Å ¢ Û Ñ´ Ô µ Ñ´ Ô µ ×Ò Ô ×Ò ·Ó× Ô Ó× £ ´ÜÔ Ó× ·Ý Ô ×Ò µÔ½5.3.2.2 MFIE: Pulse Basis Functions and Po<strong>in</strong>t Match<strong>in</strong>g(5.114)<strong>The</strong> elements that result from (5.92) are very similar to those from the TM case, sowe will simply summarize the results. <strong>The</strong> matrix elements areÞ ÑÑ ½ ¾(5.115)andÞ ÑÒ ´n Ò ¡ R ÑÒ µ ¡ Ð<strong>The</strong> excitation vector elements are Ñ À ´¾µ½ ´ Ñ Ò µ (5.116)½ ´ÜÑ Ó× ·Ý Ñ ×Ò µ (5.117)


Two-Dimensional Problems 12176EFIE (Triangle)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)3020EFIE (Triangle)Mode (max = 20)2D RCS (dBsm)100−10−200 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.12: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TE polarization (EFIE).


122 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>76MFIE (Pulse)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)3020MFIE (Pulse)Mode (max = 20)2D RCS (dBsm)100−10−200 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.13: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TE polarization (MFIE).


Two-Dimensional Problems 12376MFIE (Triangle)Mode (max = 20)Current Density (mA/m)5432100 90 180 270 360Azimuthal Position (Degrees)(a) Induced Surface Current (Â Þ)3020MFIE (Triangle)Mode (max = 20)2D RCS (dBsm)100−10−200 60 120 180 240 300 360Observation Angle (Degrees)(b) Two-Dimensional Monostatic RCS (¼ × ¾)Figure 5.14: Inf<strong>in</strong>ite cyl<strong>in</strong>der ( ¾): TE polarization (MFIE).


124 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>5.3.2.3 MFIE: Triangle Basis and Test<strong>in</strong>g Functions<strong>The</strong> results <strong>in</strong> this case are also very similar to the TM case, so we will simplysummarize the results. <strong>The</strong> matrix elements areÅÅÞ ÑÒ ½ Û Ñ´ Ô µ Ñ´ Ô µ µ· Ò´ Ô¾Ô½Ô½ÅÕ½Û Ñ´ Ô µ Ñ´ Ô µ ¡Û Ò´ Õ µ Ò´ Õ µ´n Õ ¡ R ÔÕ µ À ´¾µ½ Ô Õ ¡ (5.118)<strong>The</strong> first term is computed only on segments where the basis functions overlap, andthe second on non-overlapp<strong>in</strong>g segments. <strong>The</strong> excitation vector elements are5.3.2.4 Results Ñ ½ÅÔ½Û Ñ´ Ô µ Ñ´ Ô µ ´ÜÔ Ó× ·Ý Ô ×Ò µ (5.119)We compute the same quantities as for the TM case, and aga<strong>in</strong> use 180 segmentsfor the circumference <strong>of</strong> the cyl<strong>in</strong>der. <strong>The</strong> EFIE results us<strong>in</strong>g triangles are shown <strong>in</strong>Figure 5.12 and compare very well to the exact solution. <strong>The</strong> correspond<strong>in</strong>g MFIEresults are summarized <strong>in</strong> Figures 5.10 and 5.11, respectively, and are also very good.REFERENCES[1] D. Wilton, S. Rao, A. Glisson, D. Schaubert, M. Al-Bundak, and C. M. Butler,“Potential <strong>in</strong>tegrals for uniform and l<strong>in</strong>ear source distributions on polygonal andpolyhedral doma<strong>in</strong>s,” IEEE Trans. Antennas Propagat., vol. 32, 276–281,March 1984.[2] C.A.Balanis,Advanced Eng<strong>in</strong>eer<strong>in</strong>g <strong>Electromagnetics</strong>. John Wiley and Sons,1989.[3] M. Abramowitz and I. Stegun, Handbook <strong>of</strong> Mathematical Functions. NationalBureau <strong>of</strong> Standards, 1966.[4] H. Dwight, Tables <strong>of</strong> Integrals and Other Mathematical Data. <strong>The</strong> MacmillanCompany, 1961.[5] G. T. Ruck, ed., Radar Cross Section Handbook. Plenum Press, 1970.


Chapter 6Bodies <strong>of</strong> RevolutionIn this chapter we apply the method <strong>of</strong> moments to problems <strong>in</strong>volv<strong>in</strong>g bodies <strong>of</strong>revolution (BOR). This is <strong>of</strong> great practical <strong>in</strong>terest, as scatter<strong>in</strong>g problems <strong>in</strong>volv<strong>in</strong>gspheres, ellipsoids and f<strong>in</strong>ite cyl<strong>in</strong>ders are <strong>of</strong>ten used to benchmark new computationalelectromagnetics techniques and codes, as well as to calibrate equipment usedto measure RCS. Furthermore, many real-world objects such as the conic reentryvehicle can be modeled as rotationally symmetric objects. <strong>The</strong> method discussed <strong>in</strong>this chapter is largely that <strong>of</strong> Harr<strong>in</strong>gton and Mautz [1], one <strong>of</strong> the most commonlyused methods <strong>of</strong> solv<strong>in</strong>g BOR problems us<strong>in</strong>g the MOM.<strong>The</strong> formulations <strong>in</strong> this chapter describe the surface currents on a BOR us<strong>in</strong>gbasis functions that are piecewise l<strong>in</strong>ear <strong>in</strong> the longitud<strong>in</strong>al direction and a f<strong>in</strong>iteFourier series <strong>in</strong> the azimuthal direction. <strong>The</strong> advantage <strong>of</strong> this method is that thebasis function coefficients exist only on the boundary curve that def<strong>in</strong>es the BOR,result<strong>in</strong>g <strong>in</strong> a matrix equation <strong>of</strong> compact size for each Fourier mode.6.1 BOR SURFACE DESCRIPTIONA general BOR can be specified completely by a bound<strong>in</strong>g curve revolved aroundan axis <strong>of</strong> symmetry. We represent this curve by a piecewise l<strong>in</strong>ear approximation,shown <strong>in</strong> Figure 6.1. We divide the curve <strong>in</strong>to Æ segments, each <strong>of</strong> which describesan annulus on the BOR surface. A po<strong>in</strong>t on the BOR can be specified by itscyl<strong>in</strong>drical coord<strong>in</strong>ates ´ Þµ, by its longitud<strong>in</strong>al distance on the curve and itsazimuthal location (Ø ), or by its cartesian coord<strong>in</strong>atesr Ó× x · ×Ò y · Þz (6.1)<strong>The</strong> longitud<strong>in</strong>al vector t´rµ and azimuthal vector ´rµ are everywhere tangent to thesurface and form the orthogonal set with the surface normal n´rµ:n´rµ ´rµ ¢ t´rµ (6.2)125


126 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>z^t^r’rOFigure 6.1: BOR surface outl<strong>in</strong>e.and the distance Ö between any two po<strong>in</strong>ts on the surface can be written asÔÖ r r ¼ ´ ¼ µ ¾ ·´Þ Þ ¼ µ ¾ ·¾ ¼´½ Ó× ¼ ℄µ (6.3)6.2 SURFACE CURRENT EXPANSION ON A BORLet us consider an efficient method <strong>of</strong> expand<strong>in</strong>g surface currents on a BOR. Because<strong>of</strong> the rotational symmetry, it is possible to represent the currents by a set <strong>of</strong> basisfunctions that are local <strong>in</strong> the longitud<strong>in</strong>al dimension and a Fourier series <strong>in</strong> theazimuthal dimension. This can be expressed as [1]½ ÆJ´rµ Ø «Ò f«Ò´rµ Ø · «Ò f«Ò´rµ (6.4)« ½ Ò½where Ø «Ò and «Ò are the longitud<strong>in</strong>al and azimuthal expansion coefficients formode « and basis function Ò, respectively, and the expansion functions f«Ò Ø ´rµ aref Ø «Ò´rµ Ҵص « t´rµf «Ò´rµ Ҵص « ´rµ (6.5)where Ҵص is the expansion function <strong>in</strong> the longitud<strong>in</strong>al direction. So that severalexpressions will simplify later, let us def<strong>in</strong>e Ѵص as Ѵص Ì Ñ´Øµ´Øµ(6.6)where Ì Ñ´Øµ is a standard one-dimensional local basis function. For these basisfunctions, Harr<strong>in</strong>gton and Mautz use pulse approximations to the one-dimensional


Bodies <strong>of</strong> Revolution 127triangle function <strong>of</strong> Section 3.3.2. Each full triangle spans ¾ boundary segmentswith segments per half triangle, and is assigned a constant value <strong>in</strong>side eachsegment. Integration <strong>in</strong> the longitud<strong>in</strong>al dimension is performed us<strong>in</strong>g a centroidalapproximation, and <strong>in</strong>tegrals <strong>in</strong>volv<strong>in</strong>g the Green’s function are performed <strong>in</strong> theazimuthal dimension. This results <strong>in</strong> a set <strong>of</strong> one-dimensional numerical <strong>in</strong>tegrationsfor all matrix elements. For an open BOR or a BOR that beg<strong>in</strong>s and ends on the Þaxis, we assign half triangles to the first and last segments. For closed curves thatexist entirely <strong>of</strong>f the Þ axis, an additional triangle is added to span the first and lastsegments so the boundary closes on itself.6.3 EFIE FOR A CONDUCTING BORLet us solve the EFIE for a conduct<strong>in</strong>g BOR. We first substitute the current from(6.4) <strong>in</strong>to the EFIE <strong>of</strong> (2.120), yield<strong>in</strong>g t´rµ ¡ E ´rµ Ø «Ò f«Ò´r¼ Ø µ· «Ò f«Ò´r¼ Öµ´½ · ½ ÆË ¾ ÖÖ¡µ Ör¼Ò½(6.7)<strong>The</strong> above comprises one equation <strong>in</strong> ¾Æ unknowns, so we will test with ¾Æ test<strong>in</strong>gfuctions f¬Ñ´rµ. Ø For the test<strong>in</strong>g we choose the complex conjugates <strong>of</strong> the basisfunctionsf Ø ¬Ñ´rµ Ѵص ¬ t´rµf ¬Ñ´rµ Ѵص ¬ ´rµ (6.8)Apply<strong>in</strong>g the test<strong>in</strong>g functions and redistribut<strong>in</strong>g the vector differential operatorsaccord<strong>in</strong>g to the method <strong>in</strong> Section 4.5.1, we obta<strong>in</strong> the matrix Z: ZØØZ ØZ Z Ø Z (6.9)where for modes « and ¬ the sub-matrix elements are <strong>of</strong> the formÞ ÔÕÑÒ f جÑf Ø «Òf¬Ñ´rµ¡f Ø Ø«Ò ´r¼ µ6.3.1 EFIE Matrix Elements ½Ö¡f Ø ¾ ¬Ñ´rµ Ö ¼ ¡f«Ò ØÖ´r¼ µÖ r¼ r(6.10)To compute the matrix elements we first calculate the divergence <strong>of</strong> the basis andtest<strong>in</strong>g functions, yield<strong>in</strong>gÖ¡f ¬Ñ´rµ Ø ½ ´Øµ Ø ´Øµ Ѵص ¬ (6.11)


128 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Ö ¼ ¡ f «Ò´r¼ Ø µ½´Ø ¼ µÖ¡f ¬Ñ´rµ Ѵص´Øµ Ø ¼ ´Ø ¼ µ Ò´Ø ¼ µ «¼ (6.12) ¬ ¬ Ѵص´Øµ ¬ (6.13)Ö ¼ ¡ f «Ò´r¼ Ò´Ø ¼ µ µ´Ø ¼ µ ¼ «¼ « Ò´Ø ¼ µ´Ø ¼ µ «¼ (6.14)Not<strong>in</strong>g thatt´rµ ×Ò ­ ·Ó×­z (6.15)where ­ Ó×t´rµ ½ ¡ z , we write the follow<strong>in</strong>g dot products:Ø Ñt´rµ ¡ t´r ¼ µ ×Ò ­ ×Ò ­ ¼ Ó×´ ¼ µ·Ó×­ Ó× ­ ¼ (6.16)t´rµ ¡ ´r ¼ µ ×Ò ­ ×Ò´ ¼ µ (6.17)´rµ ¡ t´r ¼ µ ×Ò ­ ¼ ×Ò´ ¼ µ (6.18)´rµ ¡ ´r ¼ µ Ó×´ ¼ µ (6.19)Us<strong>in</strong>g the above and not<strong>in</strong>g that the differential surface element <strong>in</strong> cyl<strong>in</strong>dricalcoord<strong>in</strong>ates is × Ø, the sub-matrix elements can be written as ¾ ÞÑÒ ØØ ´Øµ Ѵص ´Ø ¼ µ Ò´Ø ¼ µ t´rµ ¡ t´r ¼ ½ µ ¾ Ø¡Ø ¼Þ Ø ÑÒ ¡ ¾Ø Ò ¼¼´Ø ¼ µ Ò´Ø ¼ µØ ÑØÞ ØÑÒ ¡Ø Ñ ¾Ø Ò ¼´Øµ Ѵص ¾Ø Ò ¼ ´«¼ ¬µ Ö ¾¼ ´Øµ Ñ´ØµÞ ÑÒ Ø Ñ ¾¼Ø ¼ ´Øµ Ñ´ØµÖ ¼ Ø ¼ Ø (6.20) ´Øµ Ѵص ´Ø ¼ µ Ò´Ø ¼ µt´rµ ¡ ´r ¼ µ· ½´Ø ¼ µ Ò´Ø ¼ µ ¾ ¾Ø Ò ¼ ¼½ «¬ ¾ ´Øµ´Ø ¼ µ ´«¼ ¬µ Ö ¾ «´Ø ¼ µÖ ¼ Ø ¼ Ø (6.21) ´Øµ Ѵص ´Ø ¼ µ Ò´Ø ¼ µ ´rµ ¡ t´r ¼ µ´Ø ¼ µ Ò´Ø ¼ µ ´«¼ ¬µ Ö½ ¬ ¾ ´ØµÖ ¼ Ø ¼ Ø (6.22) ´Øµ Ѵص ´Ø ¼ µ Ò´Ø ¼ µ ´rµ ¡ ´r ¼ µ ´«¼ ¬µ ÖÖ ¼ Ø ¼ Ø (6.23)


Bodies <strong>of</strong> Revolution 129where the <strong>in</strong>tegrations are performed over the annuli spanned by the basis and test<strong>in</strong>gfunctions. We note that these <strong>in</strong>tegrals are periodic functions <strong>of</strong> ¼ with period ¾,therefore ¼ can be replaced by ¼ · without alter<strong>in</strong>g their values [1]. Mak<strong>in</strong>g thissubstitution allows us to write ¾¼ ´«¼ ¬µ «¼ ¾ ´« ¬µ (6.24)and not<strong>in</strong>g that ¾ ´« ¬µ ¼ « ¬ (6.25)¼¾ « ¬only those <strong>in</strong>tegrals where « ¬ rema<strong>in</strong>. Comb<strong>in</strong><strong>in</strong>g the above with (6.6) and(6.16)–(6.19) and us<strong>in</strong>g the pulse approximation to the triangle functions <strong>in</strong>side eachsegment, the sub matrix elements can be written asÞ ØØ ÑÒ Å ÔÅÕÔ½ Õ½Þ Ø ÑÒ Å ÔÞ ØÑÒ Å ÔÞ ÑÒ ÅÕÔ½ Õ½ÅÕÔ½ Õ½Å Ô Å ÕÔ½ Õ½¼¢ £ ½Ì Ô Ì Õ ×Ò ­Ô ×Ò ­ Õ ¾ · Ó× ­ Ô Ó× ­ Õ ½ Ì ¾ Ô ÌÕ ½×Ò ­ Ô Ì Ô Ì Õ ¿ · ½ ¾ « Õ Ì Ô Ì Õ ½×Ò ­ Õ Ì Ô Ì Õ ¿ · ½ «Ì ¾ Ô ÌÕ ½ Ô ¾(6.26)(6.27)(6.28)½ « ¾ ¾ ½ Ì Ô Ì Õ (6.29) Ô Õwhere the <strong>in</strong>dices Ô and Õ represent the segments on the BOR boundary for theobservation and source triangle functions Ì Ñ and Ì Ò , respectively, and Å Ô and Å Õare the numbers <strong>of</strong> segments per triangle. Ì ÔÕ and Ì ÔÕ refer to the triangle functionsand their derivatives evaluated at the center <strong>of</strong> each segment. <strong>The</strong> <strong>in</strong>tegrals Ò , Òand ×Ò are ½ ¡ Ô ¡ Õ Ó×´« ¼ ÊÔÕµ ¼ (6.30)Ê ÔÕ ¾ ¡ Ô ¡ Õ ¼ ¿ ¡ Ô ¡ Õ ¼¼Ó×´ ¼ µ Ó×´« ¼ µ ÊÔÕ×Ò´ ¼ µ×Ò´« ¼ µ ÊÔÕÊ ÔÕ ¼ (6.31)Ê ÔÕ ¼ (6.32)where ¡ Ô and ¡ Õ are the lengths <strong>of</strong> segments Ô and Õ, respectively. <strong>The</strong>se <strong>in</strong>tegralscan be evaluated by a one-dimensional numerical quadrature. When the source and


130 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>observation segments do not overlap we choose for Ê ÔÕÕÊ ÔÕ ´ Ô Õ µ ¾ ·´Þ Ô Þ Õ µ ¾ ·¾ Ô Õ´½ Ó× ¼ µ (6.33)and for overlapp<strong>in</strong>g source and test<strong>in</strong>g segments we choose [1]ÕÊ ÔÕ ´¡ Ô µ ¾ ·¾ ¾ Ô´½ Ó× ¼ µ (6.34)Inspect<strong>in</strong>g (6.26)–(6.29) we observe the follow<strong>in</strong>g relationship between positiveand negative modes <strong>in</strong> the EFIE matrix ZØØZ Ø ZØØZ ØZ Ø Z Z Ø Z (6.35)««<strong>The</strong> properties <strong>in</strong> (6.35) survive <strong>in</strong>version.6.3.2 ExcitationApply<strong>in</strong>g the test<strong>in</strong>g functions f«Ñ´rµ Ø to the left-hand side <strong>of</strong> (6.7) yields a columnvector <strong>of</strong> length ¾Æ <strong>of</strong> the formb bØb (6.36)<strong>The</strong> <strong>in</strong>dividual excitation vector elements are given by Ø ¾Ñ fØ «Ñ´rµ Ø ¡ E´rµ Ø (6.37)Ñ ¼Us<strong>in</strong>g the pulse approximation <strong>of</strong> the triangle functions, the above can be written asÅ Ô Ø Ñ Ô½ ¾Ì Ô ¡ Ô «´t µ ¡ E ´rµ (6.38)¼where E ´rµ is an arbitrary <strong>in</strong>cident field. In general, the above <strong>in</strong>tegral mustbe evaluated numerically, however for <strong>in</strong>cident plane waves it can be evaluatedanalytically.6.3.2.1 Plane Wave ExcitationA plane wave <strong>of</strong> unit magnitude <strong>in</strong>cident along a vector r at the spherical angles´ µ can be written <strong>in</strong> cartesian coord<strong>in</strong>ates as ´rµ r ¡r Þ Ó× ×Ò ´Ü Ó× ·Ý ×Ò µ(6.39)


Bodies <strong>of</strong> Revolution 131<strong>The</strong> above can be written <strong>in</strong> cyl<strong>in</strong>drical coord<strong>in</strong>ates ( Þ)as Þ Ó× ×Ò ´Ü Ó× ·Ý ×Ò µ Þ Ó× ×Ò Ó×´ µ(6.40)To obta<strong>in</strong> the complete scatter<strong>in</strong>g matrix we must consider and polarized <strong>in</strong>cidentwaves, so we must calculate the excitation vectorsandComput<strong>in</strong>g the dot productsb b b Øb b Ø b (6.41)(6.42)t ¡ Ó× ×Ò ­ Ó×´ µ ×Ò Ó× ­ (6.43) ¡ Ó× ×Ò´ µ (6.44)t ¡ ×Ò ­ ×Ò´ µ (6.45) ¡ Ó×´ µ (6.46)(6.47)allows us to write the excitation vector elements as ØÑ Å ÔÔ½ ¾Ì Ô ¡ Ô ÞÔ Ó× Ô ×Ò Ó× «Ó× ×Ò ­ Ô Ó× ¼×Ò Ó× ­ Ô (6.48) Ñ Å ÔÔ½ ¾Ì Ô ¡ Ô ÞÔ Ó× Ô ×Ò Ó× « Ó× ×Ò (6.49)¼ ØÑ Å ÔÔ½ ¾Ì Ô ¡ Ô ÞÔ Ó× Ô ×Ò Ó× « ×Ò ­Ô ×Ò (6.50)¼ Ñ Å ÔÔ½ ¾Ì Ô ¡ Ô ÞÔ Ó× Ô ×Ò Ó× « Ó× (6.51)¼


132 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Due to the rotational symmetry, we can set to zero <strong>in</strong> the above and later replace ×by × if we need to solve a bistatic problem. Let us now consider the follow<strong>in</strong>g<strong>in</strong>tegral for ØÑ :Us<strong>in</strong>g the relationship [2] ¾Á Ó× ×Ò ­ Ô Ó× ×Ò Ô Ó× «¼ ¾×Ò Ó× ­ Ô ×Ò Ô Ó× « (6.52)¼ ¾¼ ×Ò Ô Ó× « ¾ «  «´ Ô ×Ò µ (6.53)(6.52) becomes ¾Á Ó× ×Ò ­ Ô Ó× ×Ò Ô Ó× «¼¾ « ×Ò Ó× ­ Ô Â «´ Ô ×Ò µ (6.54)To evaluate the rema<strong>in</strong><strong>in</strong>g <strong>in</strong>tegral, we make the substitution ¾Ó× ×Ò Ô Ó× « ¾¼¼<strong>The</strong> first term can be evaluated as before, yield<strong>in</strong>g´ ×Ò µ ×Ò Ô Ó× «(6.55)¾ « ½  « ½´ Ô ×Ò µ ¾¼×Ò ×Ò Ô Ó× « (6.56)and the second term can be <strong>in</strong>tegrated by parts, yield<strong>in</strong>g¾ « ½  « ½´ Ô ×Ò µ·¾« Ô ×Ò «  «´ Ô ×Ò µ(6.57)Us<strong>in</strong>g the recurrence relationship [2]¾«Þ  «´Þµ  «·½´Þµ ·Â « ½´Þµ (6.58)the above can be rewritten as «  «·½´ Ô ×Ò µ  « ½´ Ô ×Ò µ(6.59)


Bodies <strong>of</strong> Revolution 133and ØÑ ØÑis « Å ÔÌ Ô ¡ Ô ¢ £ÞÔ Ó× Ó× ×Ò ­ Ô Â «·½  « ½Ô½<strong>The</strong> other elements follow similarly and are Ñ ØÑ « Å Ô Ñ¾×Ò Ó× ­ Ô Â «(6.60)Ì Ô ¡ Ô ÞÔ Ó× Â «·½ ·  « ½ Ó× (6.61)Ô½ «Å ÔÌ Ô ¡ Ô ÞÔ ×Ò Â «·½ ·  « ½ ×Ò ­ Ô (6.62)Ô½ «·½ Å ÔÌ Ô ¡ Ô ÞÔ ×Ò Â «·½Ô½Â « ½(6.63)where  «  «´ Ô ×Ò µ.Inspect<strong>in</strong>g (6.60)–(6.63), we observe the follow<strong>in</strong>g relationship between positiveand negative modes <strong>in</strong> the plane wave excitation vectors: b Ø b Øb (6.64)«b «and b Øb Øb b ««Us<strong>in</strong>g (6.35), (6.64) and (6.65), the solution vectors areandx Øx x Øx ««x Øx« ZØØ ZØØZ Ø ½Z Ø Z x Øx« Z Ø ½Z Ø Z «ZØØ ZØØZ Ø ½Z Ø Z «b Øb «Z Ø ½Z Ø Z ««b Øb «b Øb«b Øb«x Øx «x Øx «(6.65)(6.66)(6.67)(6.68)(6.69)


134 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong><strong>The</strong> -and -<strong>in</strong>duced currents for basis function Ò can now be written asandJ Ò ´rµ J Ò ´rµ ½« ½½ « ½Ü Ø«Ò Ò´Øµt´rµ ·Ü «Ò Ҵص ´rµ « (6.70)Ü Ø«Ò Ò´Øµt´rµ ·Ü «Ò Ҵص ´rµ « (6.71)In light <strong>of</strong> (6.66)–(6.69), the above can be written <strong>in</strong> terms <strong>of</strong> only positivemodes asJ Ò ´rµ ÜØ ¼Ò Ҵصt´rµ·¾andJ Ò ´rµ ÜØ ¼Ò Ҵصt´rµ·¾½«½½«½Ü Ø«Ò Ò´Øµ Ó×´«µt´rµ ·Ü «Ò Ҵص ×Ò´«µ ´rµ (6.72)Ü Ø«Ò Ò´Øµ×Ò´«µt´rµ·Ü «Ò ҴصÓ×´«µ ´rµ (6.73)<strong>The</strong>refore, a numerical implementation <strong>of</strong> the EFIE for a BOR only needs to performa loop over modes « ¼.6.3.3 Scattered Field<strong>The</strong> radiated far electric field due to the current <strong>of</strong> (6.4) is computed via (2.101) andisE × ×´rµ ÖÖ ´ × × Æ ¾µ ¡ JÒ½Ø Ò ´rµ r× ¡r ¼ Ø (6.74)Ñ ¼6.3.3.1 Plane Wave Scatter<strong>in</strong>gFollow<strong>in</strong>g (6.40), we can express the exponential <strong>in</strong> (6.74) as r× ¡r ¼ Þ Ó× × ×Ò × Ó×´ × µ(6.75)Apply<strong>in</strong>g the appropriate dot products, the × ×-polarized scattered field ´rµ fromJ Ò ´rµ for modes «¼ isÅ Ô ´rµ × Ì Ô ¡ Ô ÞÔ Ó× ×Ô½Ü Ø«Ò ¾¡ Ó× × ×Ò ­ Ñ Ó× ×Ò × Ó× ­ Ñ¡Ü «Ò ¾ Ô ×Ò × Ó× ×Ò¼¼ Ô ×Ò × Ó× Ó× « · «× ¡« · «× ¡ ×Ò Ó× × (6.76)


Bodies <strong>of</strong> Revolution 135where we have made the substitution · × ,and Ö ¾ ÖLet us consider the first <strong>in</strong>tegral <strong>in</strong> (6.76). Us<strong>in</strong>g the identity(6.77)Ó×´« · « × µÓ×´«µÓ×´« × µ ×Ò´«µ ×Ò´« × µ (6.78)this <strong>in</strong>tegral becomes ¾Á ½ Ó×´« × µ Ô ×Ò × Ó× Ó×´«µ´Ó× × ×Ò ­Ñ Ó× ×Ò × Ó× ­ Ñ µ ¼ ¾×Ò´« × µ Ô ×Ò × Ó× ×Ò´«µ´Ó× × ×Ò ­Ñ Ó× ×Ò × Ó× ­ Ñ µ ¼(6.79)<strong>The</strong> second term evaluates to zero as it is a product <strong>of</strong> orthogonal functions over therange ¼ ¾. Not<strong>in</strong>g that [2]the first term is¾ «  «´Þµ ¾Á ½ Ó×´« × µ « Ó× × ×Ò ­ Ñ ¢  «·½  « ½£where  «  «´ Ô ×Ò × µ. Us<strong>in</strong>g the identity¼ Þ Ó× Ó×´«µ (6.80)¾×Ò × Ó× ­ Ñ Â «(6.81)×Ò´« · « × µ ×Ò´«µ Ó×´« × µ · Ó×´«µ×Ò´« × µ (6.82)the second <strong>in</strong>tegral becomes ¾Á ¾ Ó×´« × µÓ× × Ô ×Ò × Ó× ×Ò´«µ×Ò¼ ¾· ×Ò´« × µ Ó× × Ô ×Ò × Ó× Ó×´«µ×Ò (6.83)¼<strong>The</strong> second term is a product <strong>of</strong> orthogonal functions <strong>in</strong> the range ¼ ¾ and is zero.<strong>The</strong> first term can be <strong>in</strong>tegrated by parts, yield<strong>in</strong>gÁ ¾ Ó×´« × µÓ× × « ¾« Ô ×Ò × Â « Ô ×Ò ×¡ (6.84)and aga<strong>in</strong> us<strong>in</strong>g (6.58) this becomesÁ ¾ Ó×´« × µ «¢  «·½ ·  « ½£Ó× ×(6.85)


136 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Comb<strong>in</strong><strong>in</strong>g the results and not<strong>in</strong>g that the above <strong>in</strong>tegrals are <strong>of</strong> the form Ø×Ò, the scattered field ×´rµ summed over all modes is ×Ò ´rµ × ¾ ÜØ ¼Ò Ø×¼· «½½«½andÜ Ø«Ò Ø׫ · Ü «Ò ׫ Ó×´« × µ (6.86)<strong>The</strong> other terms follow via similar calculations and are½Ü ´rµ × Ø«Ò Ø× « · Ü «Ò × « ×Ò´« × µ (6.87) × ´rµ ½ ´rµ × ¾ ÜØ ¼Ò Ø× ¼«½· Ü Ø«Ò Ø׫ · Ü «Ò ׫ ×Ò´« × µ (6.88)½«½Ü Ø«Ò Ø× « · Ü «Ò × « Ó×´« × µ (6.89)For monostatic calculations, the elements <strong>of</strong> the excitation vectors b and b onlyneed to be computed once per right-hand side, and can be used <strong>in</strong> the <strong>in</strong>duced currentand scattered field calculations.6.4 MFIE FOR A CONDUCTING BORLet us apply the MFIE to a conduct<strong>in</strong>g BOR. Comput<strong>in</strong>g the gradient <strong>of</strong> the Green’sfunction yieldsÖ ¼ ´r r ¼ µÖ ¼ ÖÖÖ ´r r¼ µ ½·Ö(6.90)Ö ¿Ôwith Ö r r ¼ ´Ü Ü ¼ µ ¾ ´Ý Ý ¼ µ ¾ ´Þ Þ ¼ µ ¾ . Substitution <strong>of</strong> the above<strong>in</strong>to (2.136) yieldsn´rµ ¢ H ´rµ J´rµ¾ · ½Ë ÆË n´rµ ¢ ´r r ¼ µ ¢ J´r ¼ Öµ ½·Ö(6.91)We will aga<strong>in</strong> use the representation <strong>of</strong> the surface current from (6.4). Substitut<strong>in</strong>gthis <strong>in</strong>to the above yields for mode «,n´rµ ¢ H ´rµ ½ ¾´r r ¼ µ ¢ÆÒ½ Ø «Òf Ø «Ò´rµ · «Òf «Ò´rµ · ½ Ø «Òf Ø «Ò´r¼ µ· «Òf «Ò´r¼ µÆ f Ø ÒÖ ¿n´rµ ¢r ¼Ò½ Ö½·Ö r ¼ (6.92)Ö ¿


Bodies <strong>of</strong> Revolution 137Test<strong>in</strong>g the right-hand side <strong>in</strong> the above by the functions f¬Ñ´rµ, Ø we obta<strong>in</strong> ZØØZ ØZ Z Ø Z (6.93)where for modes « and ¬ the sub-matrix elements are <strong>of</strong> the formÞ ÔÕÑÒ ½ ¾¢f جÑf ØØ ½¬Ñ´rµ ¡ f«Ò ´rµ r · f¬Ñ´rµ Ø ¡ n´rµfÑØ f«ÒØ Ö¡ ½·Ö r ¼ r (6.94)Ö ¿´r r ¼ µ ¢ f Ø«Ò ´r¼ µAccord<strong>in</strong>g to the def<strong>in</strong>ition <strong>of</strong> the MFIE, the first <strong>in</strong>tegral on the right-handside <strong>in</strong> (6.94) is computed only where the basis and test<strong>in</strong>g functions overlap. <strong>The</strong>second <strong>in</strong>tegral is computed only where they do not.6.4.1 MFIE Matrix ElementsTo evaluate the matrix elements we will first compute ´r r ¼ µ ¢ f«Ò Ø ´r¼ µ,whichrequires only the vector components t´r ¼ µ and ´r ¼ µ. We first def<strong>in</strong>e the vectorsr · Þz (6.95)r ¼ ¼ Ó×´ ¼ µ · ¼ ×Ò´ ¼ µ · Þ ¼ z (6.96)t´r ¼ µ×Ò­ ¼ Ó×´ ¼ µ ·×Ò´ ¼ µ · Ó× ­ ¼ z (6.97)´r ¼ µ ×Ò´ ¼ µ ·Ó×´ ¼ µ (6.98)Us<strong>in</strong>g the above to evaluate the cross products yieldsand´r r ¼ µ ¢ t´r ¼ µ ×Ò´ ¼ µ ´Þ ¼ Þµ×Ò­ ¼ ¼ Ó× ­ ¼ ¡ ¼ Ó×´¼µ Ó× ­ ¼ ·´Þ ¼ Þµ×Ò­ ¼ Ó×´ ¼ µ· ×Ò ­ ¼ ×Ò´ ¼ µz (6.99)´r r ¼ µ ¢ ´r ¼ µ´Þ ¼ ÞµÓ×´ ¼ µ ·´Þ ¼ Þµ×Ò´ ¼ µ · ¼ · Ó×´ ¼ µ z (6.100)Next we must evaluate the dot products <strong>of</strong> the above with the test<strong>in</strong>g functions. Us<strong>in</strong>g(6.15) and not<strong>in</strong>g thatt´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ f´r ¼ µ ´rµ ¡ ´r r ¼ µ ¢ f´r ¼ µ(6.101)


138 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and ´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ f´r ¼ µ t´rµ ¡ ´r r ¼ µ ¢ f´r ¼ µ(6.102)allows us to writet´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ t´r ¼ µ ´ ¼ µÓ×­ ¼ ´Þ ¼ Þµ ×Ò ­ ¼¡ Ó×´ ¼ µ ¾ Ó× ­ ¼ ×Ò ¾ ¢´ ¼ µ¾ £ (6.103) t´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ ´r ¼ µ ´Þ ¼ Þµ ×Ò´ ¼ µ (6.104)´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ t´r ¼ µ ¼ ×Ò ­ Ó× ­ ¼ ×Ò ­ ¼ Ó× ­´Þ ¼ Þµ×Ò­ ×Ò ­ ¼ ×Ò´ ¼ µ (6.105)´rµ ¡ n´rµ ¢ ´r r ¼ µ ¢ ´r ¼ µ ´ ¼ µÓ×­ ´Þ ¼ Þµ ×Ò ­¡ Ó×´ ¼ µ·¾ ¼ Ó× ­ ×Ò ¾ ¢´ ¼ µ¾ £ (6.106)Us<strong>in</strong>g the above, we can write each <strong>of</strong> the sub-matrix elements asØ Ñ ¾ÞÑÒ ØØ ½ Ѵص Ҵص ´« ¬µ ؾ ¼· ½¾ ¾ Ѵص Ò´ØµØ ÑØ ´«¼ ¬µÒ ¼ ¼´ ¼ µÓ×­ ¼´Þ ¼ Þµ×Ò­ ¼ Ó×´ ¼ µ ¾ Ó× ­ ¼ ×Ò´ ¾ ¼ µ¾ Ö¡ ½·Ö ¼ Ø ¼ ØÖ ¿(6.107)ÞÑÒ Ø ½¾ ¾ Ѵص Ò´ØµØ ÑØ ´«¼ ¼ ¬µ´Þ Þµ×Ò´ ¼ µÒ ¼ ¼ Ö¡ ½·Ö ¼ Ø ¼ Ø (6.108)Ö ¿


Bodies <strong>of</strong> Revolution 139Þ ØÑÒ ¡½ ¾ ¾Ø ÑØ Ò¼¼ Ѵص Ҵص ´«¼ ¬µ ¼ ×Ò ­ Ó× ­ ¼ ×Ò ­ ¼ Ó× ­ ´Þ ¼ Þµ×Ò­ ×Ò ­ ¼ ×Ò´ ¼ µ Ö½·ÖÖ ¿ ¼ Ø ¼ Ø(6.109)ÞÑÒ ½ ¾¾Ø Ñ· ½´Øµ Ѵص Ҵص ´« ¬µ ؼ ¾ ¾Ø ÑØ Ò Ñ´Øµ Ҵص ´«¼ ¬µ´ ¼ µ Ó× ­¼ ¼Ó×´ ¼ µ·¾ ¼ Ó× ­ ¢´ £×Ò ¾ ¼ µ¾´Þ ¼ Þµ ×Ò ­ Ö¡ ½·Ö ¼ Ø ¼ ØÖ ¿(6.110)As we did for the EFIE, we use a pulse approximation to the triangle functions<strong>in</strong>side each segment, and replace ¼ with ¼ because <strong>of</strong> ¾ periodicity. Thisaga<strong>in</strong> elim<strong>in</strong>ates all elements where « ¬. Us<strong>in</strong>g (6.24), we can write the follow<strong>in</strong>gexpressions for the sub-matrix elements for mode «:Å ÔÞÑÒ ØØ Ì ÑÔ Ì ÒÔ ¡ Ô Ô·Ô½Å Ô Å Õ Ì ÑÔ Ì ÒÕ ´ Õ Ô µÓ×­ Õ ´Þ Õ Þ Ô µ×Ò­ Õ Ô Ó× ­ Õ Ô½ Õ½(6.111)Þ ØÑÒ Å ÔÞ Ø ÑÒ Å ÔÅÕÔ½ Õ½ÅÕÔ½ Õ½Ì Ô Ì Õ´Þ Õ Þ Ô µ (6.112)Ì Ô Ì Õ Õ ×Ò ­ Ô Ó× ­ Õ Ô ×Ò ­ Õ Ó× ­ Ô´Þ Õ Þ Ô µ×Ò­ Ô ×Ò ­ Õ (6.113)


140 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Å ÔÞÑÒ Ì ÑÔ Ì ÒÔ ¡ Ô Ô·Ô½Å Ô Å Õ Ì ÑÔ Ì ÒÕ ´ Õ Ô µÓ×­ Ô ´Þ Õ Þ Ô µ×Ò­ Ô · Õ Ó× ­ Ô Ô½ Õ½<strong>The</strong> <strong>in</strong>tegrals , and are given by ¾¡ Ô ¡ Õ ¼×Ò ¾´ ¼ ¾µ Ó×´« ¼ Ê ÔÕµ½ ·Ê ÔÕÊ ÔÕ¿(6.114) ¼ (6.115) ¡ Ô ¡ Õ ¼Ó×´ ¼ µÓ×´« ¼ Ê ÔÕµ½ ·Ê ÔÕÊ ÔÕ¿ ¼ (6.116) ¡ Ô ¡ Õ ¼×Ò´ ¼ µ ×Ò´« ¼ Ê ÔÕµ½ ·Ê ÔÕÊ ÔÕ¿ ¼ (6.117)where Ê ÔÕ is given by (6.33). <strong>The</strong>se <strong>in</strong>tegrals can be evaluated via a one-dimensionalnumerical quadrature.Inspect<strong>in</strong>g (6.107)–(6.110) we observe the follow<strong>in</strong>g relationship betweenpositive and negative modes <strong>in</strong> the MFIE matrix: ZØØZ Ø ZØØZ ØZ Ø Z Z Ø Z (6.118)««<strong>The</strong> relationship <strong>in</strong> (6.118) is the same as was observed for the EFIE matrix.6.4.2 ExcitationApply<strong>in</strong>g the test<strong>in</strong>g functions f«Ñ´rµ Ø to the left hand side <strong>of</strong> 6.92 yields a columnvector <strong>of</strong> length ¾Æ <strong>of</strong> the formb bØb <strong>The</strong> <strong>in</strong>dividual excitation vector elements are given by ØÑ fn´rµ «Ñ´rµ Ø ¡ ¢ H ´rµ ¾Ø Ñ ¼(6.119)Ø (6.120)


Bodies <strong>of</strong> Revolution 141Us<strong>in</strong>g the pulse approximation <strong>of</strong> the triangle functions, the above can be written asÅ Ô ¾ Ì Ô ¡ Ô «´t µ ¡ n´rµ ¢ H ´rµ (6.121) ØÑÔ½¼where H ´rµ is an arbitrary <strong>in</strong>cident magnetic field. In general, the above <strong>in</strong>tegralmust be evaluated numerically, however for <strong>in</strong>cident plane waves it can be evaluatedanalytically.6.4.2.1 Plane Wave ExcitationTo obta<strong>in</strong> the complete scatter<strong>in</strong>g matrix we must consider waves with and polarized electric fields. <strong>The</strong> correspond<strong>in</strong>g magnetic fields areH ´rµ ½ r ¢ E ´rµ r ¢ (6.122)andH ´rµ ½ r ¢ E ´rµ r ¢ (6.123)S<strong>in</strong>ce n´rµ ¢ H ´rµ represents a vector tangent to the surface, the excitation vectorsb and b can be written <strong>in</strong> terms <strong>of</strong> the excitation vectors <strong>of</strong> the EFIE case: ½ b Øb (6.124) b and b ½ b Ø(6.125) b When apply<strong>in</strong>g the CFIE, the components <strong>of</strong> the EFIE excitation vector elements canbe used to obta<strong>in</strong> those for the MFIE, so only the EFIE terms need to be computedfor each <strong>in</strong>cident direction. Follow<strong>in</strong>g the discussion <strong>in</strong> Section 6.3.2.1, only a loopover modes «¼ is required for the MFIE as well.6.4.3 Scattered Field<strong>The</strong> scattered field for the MFIE is obta<strong>in</strong>ed <strong>in</strong> an identical manner to that <strong>of</strong> theEFIE <strong>in</strong> Section 6.3.3.6.5 NOTES ON SOFTWARE IMPLEMENTATION6.5.1 ParallelizationBecause <strong>of</strong> the relatively modest matrix size <strong>of</strong> the MOM-BOR formulation, it isgenereally convenient to allocate matrix storage space for each <strong>of</strong> the compute


142 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>threads <strong>in</strong> a multiprocessor configuration. An efficient parallelization scheme willthen divide calculations on a per-mode basis for each frequency, with each threadperform<strong>in</strong>g a matrix fill, factorization and calculation <strong>of</strong> the fields for all excitationsand scatter<strong>in</strong>g angles. <strong>The</strong> fields from each mode are then added to a master fieldarray. Because the calculation <strong>of</strong> one mode does not depend on the others, there ism<strong>in</strong>imal <strong>in</strong>ter-process communication between threads except for assign<strong>in</strong>g <strong>of</strong> modeand frequency and report<strong>in</strong>g <strong>of</strong> results. This scheme is equally well suited for sharedmemory and distributed memory (MPI) systems.6.5.2 ConvergenceWhile it is simple to set a maximum mode number and allow the code to calculatethe fields for each mode, it is likely that the calculation may converge to an accuratesolution at a lower mode number. One way to determ<strong>in</strong>e this convergence is to seta threshhold on the amplitude <strong>of</strong> the radiated/scattered field for each angle. <strong>The</strong>s<strong>of</strong>tware tracks the magnitude for each angle, and when this threshhold is reached,calculations are term<strong>in</strong>ated at that angle for all subsequent modes. If all anglesconverge before the highest mode number is reached, the sum over modes is stoppedand the code then moves on to the next frequency. This method is especially useful<strong>in</strong> monostatic RCS computations due to the many right-hand side operations that canbe skipped, <strong>in</strong>creas<strong>in</strong>g the efficiency <strong>of</strong> the code for larger problems.6.6 EXAMPLESIn this section we use the MOM-BOR technique to compute the radar cross section <strong>of</strong>several conduct<strong>in</strong>g test objects, such as the sphere and benchmark targets measuredby the Electromagnetic Code Consortium (EMCC) [3].6.6.1 Galaxy<strong>The</strong> numerical results <strong>in</strong> this section are computed us<strong>in</strong>g the Tripo<strong>in</strong>t Industries, Inc.code Galaxy, an MOM-BOR radar cross section code implement<strong>in</strong>g the proceduresdescribed <strong>in</strong> this chapter. This code is written <strong>in</strong> the C programm<strong>in</strong>g language anduses double precision complex for comput<strong>in</strong>g and stor<strong>in</strong>g the MOM matrix. Galaxyis part <strong>of</strong> Tripo<strong>in</strong>t Industries’ lucernhammer suite <strong>of</strong> radar cross section codes.6.6.2 Conduct<strong>in</strong>g Sphere<strong>The</strong> conduct<strong>in</strong>g sphere is an excellent test object as its scatter<strong>in</strong>g behavior is knownanalytically by Mie theory and comprises specular reflection as well as creep<strong>in</strong>gwaves. Assum<strong>in</strong>g an x-oriented electric field <strong>in</strong>cident along the z axis, the scatteredfar electric field is [4]E ×´ × × µ ÖÖÓ× × Ë ½´ × µ ×Ò × Ë ¾´ × µ (6.126)


Bodies <strong>of</strong> Revolution 143where½ Ë ½´µ ´ µ Ò·½ ½ÈÒ´Ó× µ Ò×Ò Ò½· Ò È ½ Ò´Ó× µ (6.127)and½ Ë ¾´µ ´ µ Ò·½ Ò ÈÒ´Ó× ½ ½ µ · ÈÒ´Ó× µÒ(6.128)×Ò Ò½½where ÈÒ´Ó× µ is the associated Legendre polynomial <strong>of</strong> degree ½ and order Ò.<strong>The</strong>coefficients Ò and Ò are given byÒ ¾Ò ·½ Ò ´ µÒ´Ò ·½µ Ò´µ´½µÒ ´µ(6.129)andÒ·½ ¾Ò ·½ Ò ´ µÒ´Ò ·½µ¢ £ ¼ Ò´µ¢ £ ¼(6.130)´½µÒ ´µwhere Ò´µ and ´½µÒ ´µ are spherical Bessel and Hankel functions <strong>of</strong> the firstk<strong>in</strong>d <strong>of</strong> order Ò, and the primes <strong>in</strong>dicate differentiation with respect to [4]. Inpractice, the sums <strong>in</strong> (6.127) and (6.128) are truncated after a f<strong>in</strong>ite number <strong>of</strong> modes.<strong>The</strong> recurrence relationships <strong>in</strong> [2] can be used to compute higher-order associatedLegendre polynomials and derivatives <strong>of</strong> Bessel functions.6.6.2.1 Monostatic RCS Versus FrequencyWe first compute the monostatic RCS versus frequency <strong>of</strong> a 1-meter sphere forfrequencies up to 2 GHz. For the Mie series <strong>of</strong> (6.126) we truncate the computationafter 50 modes. Figures 6.2a and 6.2b compare the RCS from the Mie series tothe EFIE and MFIE, respectively. <strong>The</strong> comparisons are good at lower frequencies,though at higher ones discrepancies beg<strong>in</strong> to appear. <strong>The</strong>se correspond to <strong>in</strong>ternalresonances <strong>of</strong> the discretized BOR, similar to what is observed for the cube <strong>in</strong> Figure2.8. Figure 6.3a depicts the results obta<strong>in</strong>ed us<strong>in</strong>g the CFIE (« ¼), and theresonance problems have been elim<strong>in</strong>ated.We next compare the range pr<strong>of</strong>iles <strong>of</strong> the CFIE and Mie series. <strong>The</strong> rangepr<strong>of</strong>ile is a time-doma<strong>in</strong> representation <strong>of</strong> the electromagnetic signature and can beused to localize the scatter<strong>in</strong>g centers <strong>of</strong> a target <strong>in</strong> the down-range dimension. Givenan array <strong>of</strong> complex-valued scattered electric fields S over a range <strong>of</strong> evenly spacedfrequencies ÑÒ to ÑÜ , the range pr<strong>of</strong>ile R can be computed asR IFFT´Sµ (6.131)which is also known as pulse compression or matched filter<strong>in</strong>g [5]. This method<strong>in</strong>creases the effective range resolution by l<strong>in</strong>early modulat<strong>in</strong>g the frequency <strong>of</strong> the


144 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>105EFIEMieRCS (dBsm)0−5−10−15−200.1 0.4 0.8 1.2 1.6 2Frequency (GHz)(a) EFIE vs. Mie: RCS vs. Frequency105MFIEMieRCS (dBsm)0−5−10−15−200.1 0.4 0.8 1.2 1.6 2Frequency (GHz)(b) MFIE vs. Mie: RCS vs. FrequencyFigure 6.2: 1-meter sphere: EFIE and MFIE.


Bodies <strong>of</strong> Revolution 145transmitted waveform, and is a key technique <strong>in</strong> radar signal process<strong>in</strong>g. <strong>The</strong> rangeresolution <strong>of</strong> a pulse-compressed waveform is¡ Ê ¾(6.132)where is the modulated bandwidth. A w<strong>in</strong>dow function is typically applied to thearray before perform<strong>in</strong>g the FFT to reduce the sidelobes <strong>in</strong> the range doma<strong>in</strong>. Acommonly used w<strong>in</strong>dow function is the Hamm<strong>in</strong>g w<strong>in</strong>dow, which comprises the Æ-element array w with elements given by ¾Û ·½ ¼ ¼ Ó× ¼Æ ½ (6.133)Æ ½<strong>The</strong> w<strong>in</strong>dow<strong>in</strong>g operation decreases the sidelobes at the expense <strong>of</strong> decreased rangeresolution.Figure 6.3b depicts the monostatic range pr<strong>of</strong>iles <strong>of</strong> the CFIE and Mie seriescomputed from 32 evenly spaced data po<strong>in</strong>ts from 1 to 2 GHz. <strong>The</strong> 1 GHz <strong>of</strong>bandwidth results <strong>in</strong> a range resolution <strong>of</strong> approximately 15 cm. A Hamm<strong>in</strong>gw<strong>in</strong>dow is applied to the data, which decreases the range resolution by approximately50 percent. Positive range <strong>in</strong> this figure represents the distance away from thetransmitter. Immediately seen at -0.5m is the very bright specular reflection <strong>of</strong> thesphere. Slightly further down-range is the well-known creep<strong>in</strong>g wave response,caused by electromagnetic energy that orig<strong>in</strong>ates from the shadow boundary andtravels around the shadowed side <strong>of</strong> the sphere, eventually com<strong>in</strong>g back toward thetransmitter. <strong>The</strong> comparison is excellent.6.6.2.2 Bistatic RCS<strong>The</strong> bistatic cross section <strong>of</strong> the sphere is another commonly used benchmark. Wereta<strong>in</strong> the same simulation parameters used <strong>in</strong> Section 6.6.2.1, but fix the frequencyat 2 GHz. <strong>The</strong> results from the CFIE are compared to the Mie series <strong>in</strong> Figures 6.4aand 6.4b for vertical and horizontal polarizations, respectively. <strong>The</strong> comparison isaga<strong>in</strong> very good.6.6.3 EMCC Benchmark TargetsWe next compute the RCS <strong>of</strong> several EMCC benchmark radar targets described andmeasured <strong>in</strong> [6]. <strong>The</strong> objects considered are the ogive, double ogive, cone-sphere andcone-sphere with gap, and are illustrated <strong>in</strong> Figure 6.5. <strong>The</strong> test articles used for themeasurements were fabricated from alum<strong>in</strong>um us<strong>in</strong>g a numerically-controlled mill.In the plots that follow, the measurement data are shifted slightly <strong>in</strong> angle to betteralign them with the computed results. <strong>The</strong> comparisons are made at 9.0 GHz, andGalaxy uses the CFIE (« ¼).


146 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>105CFIEMieRCS (dBsm)0−5−10−15−200.1 0.4 0.8 1.2 1.6 2Frequency (GHz)(a) CFIE vs. Mie: RCS vs. Frequency100−10CFIEMieRCS (dBsm)−20−30−40−50−60−70−80−2 −1 0 1 2Relative Range (m)(b) Range Pr<strong>of</strong>ileFigure 6.3: 1-meter sphere: CFIE.


Bodies <strong>of</strong> Revolution 1474030CFIEMieVV RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization4030CFIEMieHH RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 6.4: 1-meter sphere: bistatic RCS.


148 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>0 o 22.62 o22.62 o10.0(a) Ogive0 o (b) Double Ogive22.62 o46.4 o5.02.5r = 2.9477 o0 o (c) Cone-Sphere3.306 23.821Figure 6.5: EMCC BOR targets.


Bodies <strong>of</strong> Revolution 1496.6.3.1 EMCC Ogive<strong>The</strong> 10-<strong>in</strong>ch EMCC ogive <strong>of</strong> Figure 6.5a can be expressed for ¼ ¾ as [6]Ö ´Üµ ½ ܼ¡ ¾ ×Ò¾´¾¾¾ Æ µ Ó×´¾¾¾Æ µ(6.134) ´Üµ Ó× Ý´Üµ ½ Ó×´¾¾¾ Æ µ(6.135) ´Üµ ×Ò Þ´Üµ ½ Ó×´¾¾¾ Æ (6.136)µfor Ü <strong>in</strong>ches. <strong>The</strong> numerical results are compared to the EMCCmeasurements <strong>in</strong> Figures 6.6a and 6.6b for vertical and horizontal polarizations,respectively. <strong>The</strong> agreement is excellent, even at aspect angles near tip-on wherethe cross section is very low.6.6.3.2 EMCC Double Ogive<strong>The</strong> 7.5-<strong>in</strong>ch EMCC double ogive <strong>of</strong> Figure 6.5b can be expressed for ¼ ¾as [6]Ö Ü ¡¾´Üµ ½×Ò¾´ Æ µ Ó×´Æ µ (6.137)¾for ¾ ܼ <strong>in</strong>ches, andÖ ´Üµ ½´ÜµÓ×ݴܵ ½ Ó×´ Æ µ´Üµ×Ò޴ܵ ½ Ó×´ Æ µ ܼ¡ ¾ ×Ò¾´¾¾¾ Æ µ Ó×´¾¾¾Æ µ(6.138)(6.139)(6.140) ´Üµ Ó× Ý´Üµ ½ Ó×´¾¾¾ Æ µ(6.141) ´Üµ ×Ò Þ´Üµ ½ Ó×´¾¾¾ Æ µ(6.142)for ¼ Ü <strong>in</strong>ches. <strong>The</strong> numerical results are compared to the EMCC measurements<strong>in</strong> Figures 6.7a and 6.7b for vertical and horizontal polarizations, respectively.<strong>The</strong> agreement is aga<strong>in</strong> excellent.


150 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>0−10BOR/CFIEMeasurementVV RCS (dBsm)−20−30−40−50−60−700 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization0−10BOR/CFIEMeasurementHH RCS (dBsm)−20−30−40−50−60−700 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 6.6: EMCC ogive: BOR versus measurement at 9.0 GHz.


Bodies <strong>of</strong> Revolution 151−10−20BOR/CFIEMeasurementVV RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization−10−20BOR/CFIEMeasurementHH RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 6.7: EMCC double ogive: BOR versus measurement at 9.0 GHz.


152 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>6.6.3.3 EMCC Cone-Sphere<strong>The</strong> 27-<strong>in</strong>ch EMCC cone-sphere <strong>of</strong> Figure 6.5c can be expressed for ¼ ¾ as[6]ݴܵ ¼½´Ü ·¾¿¾½µ Ó× (6.143)for ¾¿¾½ ܼ <strong>in</strong>ches, and޴ܵ ¼½´Ü ·¾¿¾½µ ×Ò (6.144)ݴܵ ¾Þ´Üµ ¾××½½ Ü ¾ ¼¿Ó× (6.145)¾ ¾ Ü ¼¿×Ò (6.146)¾for ¼ Ü ¿¿¼ <strong>in</strong>ches. <strong>The</strong> numerical results are compared to the EMCCmeasurements <strong>in</strong> Figures 6.8a and 6.8b for vertical and horizontal polarizations,respectively. <strong>The</strong> agreement is quite good at all aspect angles.6.6.3.4 EMCC Cone-Sphere with Gap<strong>The</strong> EMCC cone-sphere with gap is identical to the cone-sphere <strong>of</strong> Section 6.6.3.3,except that a square groove ½ <strong>in</strong>ch deep is cut <strong>in</strong>to the target near the cone-spherejunction po<strong>in</strong>t. <strong>The</strong> gap can be expressed for ¼ ¾ as [6]ݴܵ ¾ Ó× (6.147)޴ܵ ¾ ×Ò (6.148)for ¼ ܼ¾ <strong>in</strong>ches. At 9.0 GHz, the dimensions <strong>of</strong> the gap are approximately. <strong>The</strong> numerical results are compared to the EMCC measurements <strong>in</strong> Figures6.9a and 6.9b for vertical and horizontal polarizations, respectively. <strong>The</strong> agreementis excellent. <strong>The</strong> presence <strong>of</strong> the gap has a significant effect on the backscatteredfield, especially for horizontal polarization.6.6.4 Biconic Reentry VehicleWe next compute the monostatic RCS <strong>of</strong> a biconic reentry vehicle (RV) whosedimensions are outl<strong>in</strong>ed <strong>in</strong> Figure 6.10a. <strong>The</strong> RV has a blunt nose as well as a deeplyrecessed rear cavity that are expected to be significant sources <strong>of</strong> backscatter. <strong>The</strong>three-dimensional shape <strong>of</strong> the RV is illustrated at forward and rear aspects <strong>in</strong> Figures6.10b and 6.10c, respectively. <strong>The</strong> length <strong>of</strong> the RV boundary curve is approximately3.2 m.


Bodies <strong>of</strong> Revolution 153100BOR/CFIEMeasurementVV RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(a) Vertical Polarization100BOR/CFIEMeasurementHH RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(b) Horizontal PolarizationFigure 6.8: EMCC cone-sphere: BOR versus measurement at 9.0 GHz.


154 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>100BOR/CFIEMeasurementVV RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(a) Vertical Polarization100BOR/CFIEMeasurementHH RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(b) Horizontal PolarizationFigure 6.9: EMCC cone-sphere with gap: BOR versus measurement at 9.0 GHz.


Bodies <strong>of</strong> Revolution 155(a) Biconic Reentry Vehicle Dimensions(b) Front View(c) Rear ViewFigure 6.10: Biconic reentry vehicle.


156 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>In study<strong>in</strong>g a target’s backscatter<strong>in</strong>g behavior, it is <strong>of</strong>ten useful to consider itsrange pr<strong>of</strong>ile over a wide range <strong>of</strong> <strong>in</strong>cident angles. This allows for the isolation <strong>of</strong>target scatter<strong>in</strong>g features over a wide range <strong>of</strong> view<strong>in</strong>g geometries. <strong>The</strong>refore, let uscompute the backscattered field <strong>of</strong> the RV for frequencies rang<strong>in</strong>g from 5 to 6 GHz(C-Band), for observation angles from 0 to 180 degrees. At 6 GHz, the perimeter <strong>of</strong>the RV is approximately 64 wavelengths <strong>in</strong> length. Our numerical model uses 944boundary segments, yield<strong>in</strong>g approximately 15 segments per wavelength.We compute the range pr<strong>of</strong>ile for each <strong>in</strong>cident angle and generate a twodimensionalfigure known as a range-aspect-<strong>in</strong>tensity (RAI) plot. Plots for verticaland horizontal polarizations are shown <strong>in</strong> Figures 6.11a and 6.11b, respectively.<strong>The</strong> choice <strong>of</strong> bandwidth results <strong>in</strong> a down-range resolution <strong>of</strong> approximately 15centimeters, and a Hamm<strong>in</strong>g w<strong>in</strong>dow is used to reduce the sidelobes. Clearly visible<strong>in</strong> the forward scatter<strong>in</strong>g angles are the large responses <strong>of</strong> the RV nose as well asits base edge. In rear aspects, the multi-bounce <strong>in</strong>side the cavity clearly dom<strong>in</strong>ates,giv<strong>in</strong>g rise to significant down-range returns.We can further isolate the scatter<strong>in</strong>g centers <strong>of</strong> the target by generat<strong>in</strong>g atwo-dimensional range-Doppler (ISAR) image. Such an image is generated bycomput<strong>in</strong>g the FFT <strong>of</strong> each range b<strong>in</strong> over a small range <strong>of</strong> angles. If we assume thatthe Doppler frequency <strong>of</strong> each b<strong>in</strong> rema<strong>in</strong>s constant across the <strong>in</strong>tegration <strong>in</strong>terval,then we can achieve a cross-range resolution given by [7]¡ Ö Ó¾¡ (6.149)where Ó is the center wavelength and ¡ is the angular extent <strong>of</strong> the <strong>in</strong>tegration<strong>in</strong>terval. If we <strong>in</strong>tegrate over approximately 6 degrees, the cross-range resolutionwill be approximately ¼¾ meter at 5.5 GHz. Range-Doppler images centeredat 3 and 138 degrees are shown <strong>in</strong> Figures 6.12a and 6.12b, respectively, forvertical polarization. A Hamm<strong>in</strong>g w<strong>in</strong>dow is used <strong>in</strong> the cross-range dimension toreduce sidelobes. Superimposed onto each image is the two-dimensional outl<strong>in</strong>e <strong>of</strong>the RV, allow<strong>in</strong>g us to register the scatter<strong>in</strong>g features. In the forward aspect, thescatter<strong>in</strong>g centers at the nose and stationary phase-po<strong>in</strong>ts <strong>of</strong> the base edge (sometimesreferred to as slipp<strong>in</strong>g scatterers) are clearly visible. <strong>The</strong> jo<strong>in</strong>t between the tw<strong>of</strong>rustums is also visible, as well as the fa<strong>in</strong>t double-diffraction term located slightlybeyond the target. At rear aspects, the delayed returns aga<strong>in</strong> dom<strong>in</strong>ate the image.<strong>The</strong>se scatter<strong>in</strong>g centers appear to orig<strong>in</strong>ate from <strong>of</strong>f-body locations, obscur<strong>in</strong>g thetrue shape <strong>of</strong> the target. Such features are <strong>of</strong>ten detrimental to automated targetrecognition (ATR) algorithms that use length as a discrim<strong>in</strong>ation feature. Real-worldreentry vehicles would have hoses, gas bottles, wir<strong>in</strong>g and assorted electronics <strong>in</strong>sidethe rear cavity that would create even greater multiple-bounce behavior. As a result,radar observations <strong>of</strong> such a target could result <strong>in</strong> an apparent wideband lengthseveral times that <strong>of</strong> the actual object.


Bodies <strong>of</strong> Revolution 157(a) Vertical Polarization(b) Horizontal PolarizationFigure 6.11: Biconic reentry vehicle: C-band range pr<strong>of</strong>iles (dBsm).


158 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>(a) Center Aspect = 3 Degrees(b) Center Aspect = 138 DegreesFigure 6.12: Biconic reentry vehicle: C-band range-Doppler images (dBsm).


Bodies <strong>of</strong> Revolution 159Table 6.1: Summary <strong>of</strong> ExamplesObject Segments Æ « ÑÜ RAMSphere 181 89 30 0.120Ogive 450 224 30 0.766Double Ogive 450 224 30 0.766Cone-Sphere 756 377 40 2.17Cone-Sphere with Gap 754 376 40 2.16Biconic RV 944 471 70 3.396.6.5 Summary <strong>of</strong> Examples<strong>The</strong> run metrics for each case are summarized <strong>in</strong> Table 6.1. Shown are the number<strong>of</strong> boundary segments, number <strong>of</strong> unknowns, maximum mode, and memory (<strong>in</strong> MB)required for the MOM-BOR matrix.REFERENCES[1] R. Mautz and R. Harr<strong>in</strong>gton, “H-field, e-field and comb<strong>in</strong>ed solutions for bodies<strong>of</strong> revolution,” Tech. Rep. Report RADC-TR-77-109, Rome Air DevelopmentCenter, Griffiss AFB, NY, March 1977.[2] M. Abramowitz and I. Stegun, Handbook <strong>of</strong> Mathematical Functions. NationalBureau <strong>of</strong> Standards, 1966.[3] K. Faison, “<strong>The</strong> electromagnetics code consortium,” IEEE Antennas Propagat.Magaz<strong>in</strong>e, vol. 30, 19–23, February 1990.[4] G. T. Ruck, ed., Radar Cross Section Handbook. Plenum Press, 1970.[5] B. R. Mahafza, Introduction to Radar Analysis. CRC Press, 1998.[6] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, “Benchmark radartargets for the validation <strong>of</strong> computational electromagnetics programs,” IEEEAntennas Propagat. Magaz<strong>in</strong>e, vol. 35, 84–89, February 1993.[7] A. Ausherman, A. Kozma, J. Waker, H. M. Jones, and E. C. Poggio, “Developments<strong>in</strong> radar imag<strong>in</strong>g,” IEEE Trans. Aerospace Electron. Syst, vol. 20,363–400, July 1984.


Chapter 7Three-Dimensional ProblemsIn this chapter we use the method <strong>of</strong> moments to analyze radiation and scatter<strong>in</strong>g bythree-dimensional surfaces <strong>of</strong> arbitrary shape. Problems <strong>of</strong> this k<strong>in</strong>d appear <strong>in</strong> manyareas <strong>of</strong> practical <strong>in</strong>terest such as electromagnetic <strong>in</strong>terference (EMI), electronicpackag<strong>in</strong>g, radar cross section, and antenna design. This area has received significantattention <strong>in</strong> the literature <strong>in</strong> the last thirty years, and many different methods <strong>of</strong>treat<strong>in</strong>g three-dimensional surfaces have been considered. Until recently, most threedimensionalproblems were limited to a relatively small electrical size, given thelimitations <strong>of</strong> commonly available computers and system memory. Solv<strong>in</strong>g largerproblems typically required access to supercomputer-class equipment, which was notreadily available to most people. With the advances <strong>in</strong> process<strong>in</strong>g speed, memory andoperat<strong>in</strong>g systems <strong>in</strong> the last 10 years, larger problems can now be solved on modestdesktop computers. This has opened up areas <strong>of</strong> study that were not attempted oreven considered before. <strong>The</strong> development <strong>of</strong> the fast multipole method has further<strong>in</strong>creased the tractability <strong>of</strong> the larger problems, and we discuss its application toMOM problems <strong>in</strong> detail <strong>in</strong> Chapter 8.7.1 REPRESENTATION OF THREE-DIMENSIONAL SURFACESWe first need to consider how to numerically represent three-dimensional objects<strong>in</strong> the computer. <strong>The</strong> basic approach is to first develop a detailed model <strong>of</strong> theobject us<strong>in</strong>g computer aided design (CAD) s<strong>of</strong>tware. Modern model<strong>in</strong>g programssuch as Rh<strong>in</strong>oceros 3D [1] represent free-form objects us<strong>in</strong>g a mathematically-exactdescription such as non uniform rational B-spl<strong>in</strong>es (NURBS) [2]. This approachpreserves necessary <strong>in</strong>formation such as the surface normal and radii <strong>of</strong> curvatureat every po<strong>in</strong>t. NURBS is a part <strong>of</strong> many <strong>in</strong>dustry-wide standard CAD file formatsand model<strong>in</strong>g eng<strong>in</strong>es such as IGES, STEP, ACIS and Parasolid. Once the curvedsurface model has been developed, it must be discretized or reduced to a set<strong>of</strong> geometric primitives that can be processed further. <strong>The</strong> most commonly usedprimitive for this purpose is the planar triangle, which has the ability to conform tothe surface curvature <strong>of</strong> virtually any realistic shape [3]. Highly efficient <strong>in</strong>tegrationrules have been developed for the triangle (Chapter 9) as well as analytic solutions to161


162 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>9-1.0 1.0 0.00.0 1.0 0.01.0 1.0 0.0-1.0 0.0 0.00.0 0.0 0.01.0 0.0 0.0-1.0 -1.0 0.00.0 -1.0 0.01.0 -1.0 0.084 2 14 5 25 3 25 6 37 5 47 8 58 6 58 9 6Figure 7.1: Example connectivity list.potential <strong>in</strong>tegrals over triangular doma<strong>in</strong>s [4, 5, 6, 7], mak<strong>in</strong>g them an attractivechoice for electromagnetic model<strong>in</strong>g. Triangles are also the de facto standard <strong>in</strong>computer graphics, and most CAD programs have the ability to generate meshes<strong>of</strong> exceptionally high quality.A common way to describe a surface us<strong>in</strong>g triangles is the f<strong>in</strong>ite elementconnectivity file [8], an example <strong>of</strong> which is illustrated <strong>in</strong> Figure 7.1. This filecomprises a node list conta<strong>in</strong><strong>in</strong>g the the cartesian positions <strong>of</strong> all triangle nodes,and a facet list that assembles <strong>in</strong>dividual triangles by referenc<strong>in</strong>g three vertexesfrom the node list. <strong>The</strong> example <strong>in</strong> Figure 7.1 conta<strong>in</strong>s 9 nodes and 8 facets. Manydifferent formats for stor<strong>in</strong>g these data have been developed, such as the popular3D Studio (.3ds), Stereolithography (.stl), and Lightwave (.obj) files. Because theseare used by computer graphics and animation tools, they <strong>of</strong>ten conta<strong>in</strong> <strong>in</strong>formationconcern<strong>in</strong>g camera placement, light<strong>in</strong>g and textures <strong>in</strong> addition to the geometry. Forour purposes, we will use the format described <strong>in</strong> Table 7.1, which we call a facetfile. Figures 7.2a, 7.2b and 7.2c depict a sphere, a missile and a ma<strong>in</strong> battle tankrepresented entirely by triangular facets. Because <strong>of</strong> the flexibility <strong>of</strong> this format,very complex shapes such as ground and air vehicles can be represented with greatprecision by a facet model, provided that enough triangles are used and sufficientcare is given to their construction.


Three-Dimensional Problems 163(a) Sphere(b) Simple Missile(c) Ma<strong>in</strong> Battle TankFigure 7.2: Example three-dimensional facet models.


164 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>7.2 SURFACE CURRENTS ON A TRIANGLEWe next <strong>in</strong>vestigate an efficient means <strong>of</strong> represent<strong>in</strong>g the currents on a surfacedescribed by planar triangles. As before, we expand the current J´rµ via a sum <strong>of</strong>weighted basis functions:ÆJ´rµ Ò f Ò´rµ (7.1)Ò½Undoubtedly the most successful basis function used <strong>in</strong> this role <strong>in</strong> the past 25years is the Rao-Wilton-Glisson (RWG) triangular basis function [9]. This functionis def<strong>in</strong>ed asf Ä Ò·Ò´rµ ·Ò ´rµ r <strong>in</strong> Ì Ò (7.2)¾·Òf Ò´rµ Ä Ò¾ Ò Ò ´rµ r <strong>in</strong> Ì Ò (7.3)f Ò´rµ ¼ otherwise (7.4)where Ì ·Ò and Ì Ò are the triangles that share edge Ò, andÄ Ò is the length <strong>of</strong> theedge. On Ì ·Ò , the vector ·Ò ´rµ po<strong>in</strong>ts toward the vertex v· opposite the edge and is·Ò ´rµ v·r r <strong>in</strong> Ì ·Ò (7.5)and on the Ì Ò , Ò ´rµ po<strong>in</strong>ts away from the opposite vertex vand is Ò ´rµ r v r <strong>in</strong> Ì Ò (7.6)<strong>The</strong> RWG basis function is illustrated <strong>in</strong> FIgure 7.3. By their def<strong>in</strong>ition, RWGfunctions are assigned only to <strong>in</strong>terior edges <strong>in</strong> the model, which are edges shared bytwo adjacent triangles. Boundary edges are not assigned basis functions. <strong>The</strong> RWGfunction has no component normal to any edge other than the one it is assignedT n-Edge nT n+ n- n+Figure 7.3: RWG basis function.


Three-Dimensional Problems 165to, and the component <strong>of</strong> function normal to this edge is unity. Tak<strong>in</strong>g the surfacedivergence <strong>of</strong> f Ò´rµ yieldsÖ × ¡ f Ò´rµ Ä Ò·Òr <strong>in</strong> Ì ·Ò (7.7)Ö × ¡ f Ò´rµ Ä Ò Òr <strong>in</strong> Ì Ò (7.8)Ö × ¡ f Ò´rµ ¼ otherwise (7.9)S<strong>in</strong>ce the divergence <strong>of</strong> the current is proportional to the surface charge densitythrough the equation <strong>of</strong> cont<strong>in</strong>uity, we see from (7.7)–(7.9) that the total chargedensity associated with adjacent triangle pairs is zero. As there is no accumulation<strong>of</strong> charges on an edge, the RWG function is said to be divergence conform<strong>in</strong>g. Curlconform<strong>in</strong>g as well as higher-order basis functions are also used <strong>in</strong> computationalelectromagnetic problems, and they are described further <strong>in</strong> [10].7.2.1 Edge F<strong>in</strong>d<strong>in</strong>g AlgorithmOnce we have the facet model, we need an algorithm for identify<strong>in</strong>g and register<strong>in</strong>gall unique edges. To illustrate an edge f<strong>in</strong>d<strong>in</strong>g algorithm, we use the geometryoutl<strong>in</strong>ed <strong>in</strong> Figure 7.1, which comprises a simple flat plate <strong>in</strong> the ÜÝ plane. <strong>The</strong>number<strong>in</strong>g <strong>of</strong> nodes and facets <strong>in</strong> this model is illustrated <strong>in</strong> Figures 7.4a, and 7.4b,respectively. Our first task is to identify the connections between each node andthe facet(s) it is part <strong>of</strong>. This will allow us to identify unique edges and determ<strong>in</strong>e1 2 34 5 67 8 91 325 7648(a) Node Number<strong>in</strong>g(b) Facet Number<strong>in</strong>gFigure 7.4: Simple flat plate geometry.


166 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Table 7.1: Node and Facet Connectivity ListsNode # Connected Nodes Connected Facets1 24 12 453 1233 56 344 57 1255 678 2345676 89 4787 8 568 9 6789 - 8what facets share each edge. To do this, we create two lists for each node, a nodeconnectivity list and a facet connectivity list. <strong>The</strong> node connectivity list conta<strong>in</strong>s allunique connections between a node and other nodes, and the facet connectivity listconta<strong>in</strong>s the facets a node is referenced by. We next loop over each <strong>in</strong>dividual triangleand identify the nodes that make up the triangle and sort them <strong>in</strong>to ascend<strong>in</strong>g order.We then add the <strong>in</strong>dex <strong>of</strong> the current facet to the facet connectivity list <strong>of</strong> each node.For the node <strong>of</strong> lowest <strong>in</strong>dex, we add to its list the two higher node <strong>in</strong>dexes if they arenot already <strong>in</strong> the list. For the second node, the <strong>in</strong>dex <strong>of</strong> the third node is added to itslist if not already present, and noth<strong>in</strong>g is done for the third node. After this operationis completed, the node and facet connectivity lists are as shown <strong>in</strong> Table 7.1. Notethat the node connectivity list conta<strong>in</strong>s no redundant l<strong>in</strong>ks; this results <strong>in</strong> an emptylist for node 9 s<strong>in</strong>ce it is already referenced <strong>in</strong> the list for nodes 6 and 8.At this po<strong>in</strong>t, the connectivity lists conta<strong>in</strong> all the <strong>in</strong>formation regard<strong>in</strong>g uniqueedges <strong>in</strong> the model. <strong>The</strong> rema<strong>in</strong><strong>in</strong>g task is to go through the connectivity list for eachnode and create an edge for each entry. <strong>The</strong> facets common to the endpo<strong>in</strong>ts <strong>of</strong> eachedge are recorded. If the edge belongs to only one triangle, it is a boundary edge andis not assigned a basis function. Edges touch<strong>in</strong>g two triangles are <strong>in</strong>terior edges, andthey will be assigned basis functions. We will not consider geometries with edgestouch<strong>in</strong>g three or more triangles. Additional <strong>in</strong>formation regard<strong>in</strong>g each edge can bestored by the programmer at this step, such as its length, the facets it touches, and itsendpo<strong>in</strong>ts. <strong>The</strong> vertex opposite the edge on each triangle might also be stored so thatbasis function vectors can be quickly computed later.7.2.1.1 Shared Nodes<strong>The</strong> algorithm <strong>of</strong> Section 7.2.1 requires that facets connected to each other usethe same node <strong>in</strong>dexes, otherwise no edges will be found. Some three-dimensionalmodel<strong>in</strong>g tools will generate separate nodes for each triangle, result<strong>in</strong>g <strong>in</strong> a loss <strong>of</strong>logical connectivity between triangles at an edge. <strong>The</strong> modeler should exert care thatthese redundant nodes are collapsed <strong>in</strong>to s<strong>in</strong>gle elements <strong>in</strong> their geometry file. Most


Three-Dimensional Problems 167packages have a function to jo<strong>in</strong> or weld meshes that will remove co<strong>in</strong>cident nodes;these functions should be exercised before sav<strong>in</strong>g the geometry to a disk file or othermedia.7.3 EFIE FOR THREE-DIMENSIONAL CONDUCTING SURFACESLet us now solve the EFIE for a conduct<strong>in</strong>g surface <strong>of</strong> arbitrary shape. Substitut<strong>in</strong>gthe current <strong>of</strong> (7.1) <strong>in</strong>to (2.120) yields t´rµ ¡ E ´rµ ´½ · ½ ÆË ¾ ÖÖ¡µ Ò f Ò´r ¼ ÖµÖ r¼ (7.10)Ò½which is one equation <strong>in</strong> Æ unknowns. Apply<strong>in</strong>g Æ test<strong>in</strong>g functions and redistribut<strong>in</strong>gthe vector differential operators follow<strong>in</strong>g Section 4.5.1, we obta<strong>in</strong> the matrix Zwith elements given byÞ ÑÒ f Ñf Òf Ñ´rµ ¡ f Ò´r ¼ µand excitation vector elements Ñ given by Ñ ½Ö¡f Ñ´rµ Ö ¼ ¡ f Ò´r ¼ Ö ¾ µÖr¼ r(7.11)f Ñf Ñ´rµ ¡ E ´rµ r (7.12)<strong>The</strong> source and test<strong>in</strong>g <strong>in</strong>tegrals <strong>in</strong> (7.11) are performed over two RWGfunctions, which span two triangles each. As each triangle supports at most threeRWG functions, <strong>in</strong>tegration over a source and observation triangle contributes to amaximum <strong>of</strong> n<strong>in</strong>e matrix elements. <strong>The</strong>refore, it is more efficient to perform outerloops over source and test<strong>in</strong>g triangles and <strong>in</strong>ner loops over basis functions, and addthe results to the appropriate matrix locations.7.3.1 EFIE Matrix ElementsUs<strong>in</strong>g (7.2), (7.3), (7.7) and (7.8) <strong>in</strong> (7.11) we write Á Ä ÑÄ Ò½ Ñ Ò Ì Ñ Ì Ò ¦ Ñ´rµ ¡ ¦ Ò ´r¼ µ ¦ ½ Ö ¾ Ö r¼ r (7.13)where we have restricted the <strong>in</strong>tegral to a s<strong>in</strong>gle source and test<strong>in</strong>g triangle forsimplicity. <strong>The</strong> variable sign depends on whether each triangle is Ì · or Ì for therespective basis function. Apply<strong>in</strong>g an Å-po<strong>in</strong>t numerical quadrature rule over thesource and test<strong>in</strong>g triangles yieldsÁ Ä ÑÄ ÒÅÅÔ½ Õ½Û Ô Û Õ½ ¦ Ñ´r Ôµ ¡ ¦ Ò ´r¼ Õ µ ¦ ½ ¾ ÊÔÕÊ ÔÕ(7.14)


168 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>where the quadrature weights Û Ô and Û Õ are normalized with respect to triangle area,andÕÊ ÔÕ ´Ü Ô Ü Õ µ ¾ ·´Ý Ô Ý Õ µ ¾ ·´Þ Ô Þ Õ µ ¾ (7.15)When the source and test<strong>in</strong>g triangles are separated by a sufficient distance, (7.14)can be implemented as written. When they are relatively close together or overlapp<strong>in</strong>g,the <strong>in</strong>tegration must be treated carefully to obta<strong>in</strong> accurate results.7.3.2 S<strong>in</strong>gular Matrix Element EvaluationOne <strong>of</strong> the more challeng<strong>in</strong>g aspects <strong>of</strong> comput<strong>in</strong>g (7.14) is when the source andtest<strong>in</strong>g triangles are close together or overlapp<strong>in</strong>g. One <strong>of</strong> the methods we used<strong>in</strong> previous chapters was to replace the Green’s function by a small-argumentapproximation and compute the result<strong>in</strong>g <strong>in</strong>tegral analytically. This method yieldedreasonable results because the small size <strong>of</strong> the <strong>in</strong>tegration doma<strong>in</strong> was small and<strong>in</strong>side the valid range <strong>of</strong> the approximation. On the other hand, triangular subdoma<strong>in</strong>smay be large enough to <strong>in</strong>validate such an approximation and we must apply adifferent method. <strong>The</strong> one most <strong>of</strong>ten used is the follow<strong>in</strong>g rewrite <strong>of</strong> the Green’sfunction: Ö ÖÖÖ½Ö· ½Ö(7.16)whichisreferredtoasas<strong>in</strong>gularity extraction. <strong>The</strong> first term on the right-hand sidecan be used <strong>in</strong> the numerical quadrature <strong>of</strong> (7.14) as it is well behaved for all values<strong>of</strong> Ö with the limit Ö½ÐÑ (7.17)Ö¼ Ö ÖInsert<strong>in</strong>g the second term on the right-hand side <strong>of</strong> (7.16) <strong>in</strong>to (7.13) yields <strong>in</strong>tegrals<strong>of</strong> the form Á ½ ¦ Ñ´rµ ¡Ì̼ ¦ Ò ´r¼ µ ½ Ö r¼ r (7.18)and½Á ¾ Ì Ì¼ Ö r¼ r (7.19)where Ì and Ì ¼ are close together or overlapp<strong>in</strong>g. We will now discuss severalmethods for comput<strong>in</strong>g these <strong>in</strong>tegrals.7.3.2.1 Analytic IntegrationWhen Ì and Ì ¼ overlap, we can compute the <strong>in</strong>ner and outer <strong>in</strong>tegrations analytically.We first convert the basis function vector ÑÒ´rµ to simplex coord<strong>in</strong>ates (Section9.2.1), yield<strong>in</strong>g ÑÒ´rµ ´½ ½ ¾ µv ½ · ½ v ¾ · ¾ v ¿ v ÑÒ (7.20)


Three-Dimensional Problems 169where v ½ v ¾ and v ¿ are the triangle vertices and v ÑÒ is the vertex opposite edgeÑ Ò on the triangle. <strong>The</strong> above represents the basis function ´rµ on Ì ,andtheresults that follow may be used by chang<strong>in</strong>g the sign <strong>of</strong> the vector appropriately.Substitut<strong>in</strong>g the above <strong>in</strong>to (7.18) yieldsÁ ½ ¡Ì̼´½ ½ ¾ µv ½ · ½ v ¾ · ¾ v ¿ v Ñ´½ ¼ ½ ¼ ¾ µv ½ · ¼ ½v ¾ · ¼ ¾v ¿ v Ò ½Ö ¼ ½ ¼ ¾ ½ ¾ (7.21)Multiply<strong>in</strong>g together all the above terms and perform<strong>in</strong>g some lengthy term collectionyields the <strong>in</strong>tegrand ½ ¼ ½´r ¿ ¡ v ¿ ¾v ¿ ¡ v ½ · v ½ ¡ v ½ µ· ½ ¼ ¾´v ¿ ¡ v ¾ v ¿ ¡ v ½ v ¾ ¡ v ½ · v ½ ¡ v ½ µ· ½´v ¿ ¡ v ½ v ¿ ¡ v Ò · v ½ ¡ v Ò v ½ ¡ v ½ µ· ¾ ¼ ½´v ¿ ¡ v ¾ v ¾ ¡ v ½ v ¿ ¡ v ½ ·v ½ ¡v ½ µ· ¾ ¼ ¾´v ¾ ¡ v ¾ ¾v ¾ ¡ v ½ · v ½ ¡ v ½ µ· ¾´v ¾ ¡ v ½ v ¾ ¡ v Ò · v ½ ¡ v Òv ½ ¡v ½ µ· ¼ ½´v ½ ¡ v Ñ · v ¿ ¡ v ½ r ¿ ¡ v Ñ v ½ ¡ v ½ µ· ¼ ¾´v ¾ ¡ v ½ v ¾ ¡ v Ñ ·v ½ ¡v Ñ v ½ ¡ v ½ µv ½ ¡ v Ò · v Ñ ¡ v Ò v ½ ¡ v Ñ · v ½ ¡ v ½ ½Ö(7.22)result<strong>in</strong>g <strong>in</strong> a set <strong>of</strong> <strong>in</strong>tegrals <strong>of</strong> the formÌ̼ ¼ ½r r ¼ ¼ ½ ¼ ¾ ½ ¾ (7.23)<strong>The</strong> various permutations <strong>of</strong> this <strong>in</strong>tegral have been evaluated analytically by Eibertand Hansen <strong>in</strong> [7] and are···½ ¾ ÌÐÓ ··Ô Ô ¾··Ô Ô ¼ Ô Ì¼ ½ ¼ ½½r r ¼ Ì Ì ¼ ÐÓ··Ô Ô ·Ô Ô ¾·¼ Ô Ô Ô ¾ · Ô Ô ¾ · ½¾¼´ ¾ · µ ¿ ¾´¾ ·¿µ ÐÓ ´ ·Ô Ô ¾·µ´ ·Ô Ô ¾·µ´ ·Ô Ô ¾·µ´ ·Ô Ô ¾·µÔ Ô · Ô Ô½¾¼ ¿ ¾½¾¼´¾ · ·¾ · µ ¿ ¾´¾ · µÐÓ ´·Ô Ô µ´ ·Ô Ô ¾·µ´ ·Ô Ô µ´ ··Ô Ô ¾·µ½¾¼ ¿ ¾(7.24)


170 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>·····½ ¾ ÌÐÓ ·Ô Ô ¾··Ô Ô ½¾¼ Ô Ì¼ ½ ¼ ½¾r r ¼ Ì Ì ¼ ÐÓ·´¾ ¿ · µÐÓ ·Ô Ô ¾· ·Ô Ô ¾·½¾¼´¾ · µ ¿ ¾´ ¿ ·¾µÐÓ ··Ô Ô ¾···Ô Ô ¾·½¾¼´ ¾ · µ ¿ ¾´¿ ·¾µÐÓ ··Ô Ô ¾··Ô Ô ´¾ ·¿µÐÓ··½Ì¾ ÐÓ½¾¼ ¿ ¾·Ô Ô ··Ô Ô ¾·½¾¼ ¿ ¾·Ô Ô ·Ô Ô ¾·½¾¼ Ô Ô Ô ¾ · · Ô Ô½¾¼´ ¾ · µ ¿ ¾·Ì¼ ¼ ½½r r ¼ Ì Ì ¼ ·Ô Ô ·Ô Ô ¾·´ · µ ÐÓÐÓ¾ Ô ··Ô Ô ··Ô Ô ¾·¾ ¿ ¾·Ô Ô ··Ô Ô ¾··¾ · Ô Ô ¾ · Ô Ô ¾ · ½¾¼´ ¾ · µ ¿ ¾· ¿Ô Ô ·¿ Ô Ô ¾ · ½¾¼ ¿ ¾· ¿Ô Ô ·¿ Ô Ô ¾ · ½¾¼ ¿ ¾ÐÓ·Ô Ô ·Ô Ô ¾·¾ Ô Ô Ô · Ô Ô ¾ · ·Ô Ô¾ ¿ ¾ÐÓ´ ·Ô Ô ¾· ·Ô Ô ¾· µ¾ Ô ¾ · ¾ · Ô Ô ¾ · (7.25)Ô ½¾ ¾´ ¾ · µ ¿ ¾Ô´ ¿ ·¾µÐÓ ··Ô ¾···Ô Ô ¾··(7.26)¾´ ¾ · µ ¿ ¾where ´v ½ v ¿ µ ¡ ´v ½ v ¿ µ ´v ½ v ¿ µ ¡ ´v ½ v ¾ µ(7.27) ´v ½ v ¾ µ ¡ ´v ½ v ¾ µAll <strong>in</strong>tegrals <strong>in</strong>volv<strong>in</strong>g terms <strong>in</strong> the <strong>in</strong>tegrand <strong>of</strong> (7.22) can be obta<strong>in</strong>ed via (7.24),(7.25) and (7.26) by permut<strong>in</strong>g the vertex <strong>in</strong>dices appropriately.Convert<strong>in</strong>g (7.19) to simplex coord<strong>in</strong>ates yields an <strong>in</strong>tegral <strong>of</strong> the form½ ¾ Ì̼½Ö ¼ ½ ¼ ¾ ½ ¾ (7.28)


Three-Dimensional Problems 171that when evaluated analytically yields [7]·½ ¾ ̼̽ r r ¼ Ì Ì ¼ ÐÓ ´·Ô Ô µ´ ··Ô Ô ¾·µ´ ·Ô Ô ¾·µ´ ·Ô Ô µ Ô ÐÓ ´ ·Ô Ô ¾·µ´ ··Ô Ô ¾·µ´ ·Ô Ô ¾·µ´ ··Ô Ô ¾·µÔ ÔÐÓ ´ ·Ô ¾·µ´·Ô µ´ ·Ô Ô µ´ ··Ô ÔÔ ¾·µ ·Ô (7.29) ¾ · where , and are def<strong>in</strong>ed <strong>in</strong> (7.27). Note that (7.29) does not depend on any basisfunction so it only needs to be calculated once per triangle.7.3.2.2 Analytic and Numerical IntegrationWhen Ì and Ì ¼ are close together or overlapp<strong>in</strong>g, we can evaluate (7.18) and (7.19)by comput<strong>in</strong>g the outermost <strong>in</strong>tegral numerically and the <strong>in</strong>nermost analyticallyfollow<strong>in</strong>g [4]. This method can be applied to Æ-sided planar polygons <strong>of</strong> arbitraryshape and is summarized <strong>in</strong> terms <strong>of</strong> <strong>in</strong>dividual polygon edges. <strong>The</strong>refore, let usconsider the l<strong>in</strong>e segment with endpo<strong>in</strong>ts r and r· located <strong>in</strong> Ë (the plane <strong>of</strong>the polygon) as illustrated <strong>in</strong> Figure 7.5. <strong>The</strong> projections <strong>of</strong> source and observationvectors r ¼ and r onto Ë are ¼ and , respectively. <strong>The</strong> quantities <strong>in</strong> the figure arecomputed as follows: ¦ r ¦ n´n ¡ r ¦ µ (7.30)l · · (7.31)u l ¢ n (7.32)Ð ¦ ´ ¦ µ ¡ l (7.33)È ¦ ´ ¦È ¼ ´ ¦ µ ¡ u (7.34)µ Ô´È ¼ µ ¾ ·´Ð ¦ µ ¾ (7.35)P ¼ ´¦ µ Ð ¦ l(7.36)È ¼ÔÊ ¼ ´È ¼ µ ¾ · ¾ (7.37)Ê ¦ Ô´È ¦ µ ¾ · ¾ (7.38)


172 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>OrdR o r’R - R R +O’’n^^lP oP +l +Pl’ P^P - R^l - u^^P oSSegment CFigure 7.5: Geometric quantities for polygon segment .<strong>The</strong> distance from the observation po<strong>in</strong>t to Ë isUs<strong>in</strong>g the above, <strong>in</strong>tegrals <strong>of</strong> the formÁ ½ n ¡ ´r r ¦ µ (7.39)can be evaluated via the follow<strong>in</strong>g sum over Æ polygon edges [4]:and the <strong>in</strong>tegralÆÁ ½ ½ ¾½Ì¼ ¼Ör ¼ (7.40)Ê·u ´Ê ¼ µ¾ · зÐÓ · з Ê· ÐÊ · Ð Ê Á ¾ ̼(7.41)½Ö r¼ (7.42)


Three-Dimensional Problems 173can be evaluated asÁ ¾ ƽP ¼ ¡ u È ¼ØÒ ½ È ¼ Ð Ê· · зÐÓ ØÒ ½ È ¼Ð·Ê · Ð ´Ê ¼ µ¾ · Ê·´Ê ¼ µ¾ · Ê (7.43)Note that if the observation po<strong>in</strong>t lies anywhere along an edge, the contributionfrom that edge to (7.41) is zero. In addition, (7.41) and (7.43) suffer from numericalproblems when r lies <strong>in</strong> Ë along the extension <strong>of</strong> an edge (ʼ ¼). In such casesone should move the observation po<strong>in</strong>t a very small distance away from the edge,i.e.,r r · ¯u (7.44)To evaluate the <strong>in</strong>nermost <strong>in</strong>tegral <strong>of</strong> (7.18), let us write the basis function Ò´r ¼ µ as Ò´r ¼ µ ¼ Ò (7.45)where Ò is the projection <strong>of</strong> v Ò on Ë and we have aga<strong>in</strong> restricted ourselves to Ò´r ¼ µ on Ì Ò for simplicity. Let us now writewhich leads to̼ Ò´r ¼ µÖr ¼ ¼ Ò ´ ¼ µ·´ Ò µ (7.46)̼ ¼Ör ¼ ·´ Ò µÌ¼½Ö r¼ (7.47)<strong>The</strong> two <strong>in</strong>tegrals on the right can now be evaluated via (7.41) and (7.43), and the<strong>in</strong>nermost <strong>in</strong>tegral <strong>of</strong> (7.19) can be computed directly via (7.43). Because this methodcan also be used for non overlapp<strong>in</strong>g triangles, it is highly recommended for all nearterm<strong>in</strong>tegrations to obta<strong>in</strong> maximum accuracy.7.3.2.3 Duffy Transform<strong>The</strong> Duffy transform [11, 12, 13, 14] is a method <strong>of</strong> regulariz<strong>in</strong>g <strong>in</strong>tegrals overa triangle with a ½Ö s<strong>in</strong>gularity at a vertex, allow<strong>in</strong>g numerical quadrature to beemployed. This technique converts the region <strong>of</strong> <strong>in</strong>tegration from a triangle to arectangle follow<strong>in</strong>g the transformationÌ ´r ¼ µÖ´r ¼ µ r¼ ½ ½¼¼ ´Ù ­µÂ´Ù ­µ Ù ­ (7.48)Ö´Ù ­µwhere ´٠­µ is the Jacobian. Given triangle vertices v ½ , v ¾ ,andv ¿ , the positionvector r ¼ on Ì becomesr ¼ ´½ Ùµ´½ ­µv ½ · Ùv ¾ · ­´½ Ùµv ¿ (7.49)


174 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Let us apply the transform to the <strong>in</strong>tegralÌ½Ö r¼ ½ ½¼¼Â´Ù ­µÖ´Ù ­µÙ ­ (7.50)where the triangle is def<strong>in</strong>ed by the po<strong>in</strong>ts v ½ ´Ü ½ Ý ½ µ, v ¾ ´Ü ¾ Ý ¾ µ,andv ¿ ´Ü ¿ Ý ¿ µ. <strong>The</strong> Jacobian is´٠­µ ´½ ٵܾ Ü ½ · ­Ü ½ Ü ¿ ℄ ¡ Ý ¿ Ý ½¡Ý ¾ Ý ½ · ­Ý ½ Ý ¿ ℄ ¡ Ü ¿ Ü ½¡and fix<strong>in</strong>g the observation (s<strong>in</strong>gular) po<strong>in</strong>t r at ´Ü ½ Ý ½ µ, Ö iswithÖ´Ü Ýµ (7.51)Ô´Ü ½ ܵ ¾ ·´Ý ½ ݵ ¾ Ô´Ù ­µ ·´Ù ­µ Ö´Ù ­µ (7.52)´Ù ­µ Ü ¾ ½ · ÙÜ ½Ü ¾ · Ù ¾ Ü ¾ ¾ ·¾´½ Ùµ´ÙÜ ¾ Ü ½ µ´½ ­µÜ ½ · ­Ü ¿· ´½ Ùµ ¾ ´½ ­µÜ ½ · ­Ü ¿ ¾(7.53)and´Ù ­µ ݽ ¾ · ÙÝ ½Ý ¾ · Ù ¾ ݾ ¾ ·¾´½ Ùµ´ÙÝ ¾ Ý ½ µ´½ ­µÝ ½ · ­Ý ¿· ´½ Ùµ ¾ ´½ ­µÝ ½ · ­Ý ¿ ¾(7.54)<strong>The</strong> result<strong>in</strong>g ´½ Ùµ term <strong>in</strong> the numerator acts to cancel the s<strong>in</strong>gularity <strong>in</strong> thedenom<strong>in</strong>ator, allow<strong>in</strong>g the <strong>in</strong>tegral to be performed us<strong>in</strong>g an Å-po<strong>in</strong>t quadrature rulefor a rectangle. When the observation po<strong>in</strong>t is located <strong>in</strong> the <strong>in</strong>terior <strong>of</strong> the triangle, itcan can be divided <strong>in</strong>to three sub-triangles with the new vertex placed at the s<strong>in</strong>gularpo<strong>in</strong>t.This method does suffer from some disadvantages. S<strong>in</strong>ce it is still a purelynumerical method, the compute time will be higher due to the number <strong>of</strong> numericalcomputations required at each quadrature po<strong>in</strong>t. <strong>The</strong> transformation is accurate onlyfor triangles with reasonably good aspect ratios, with th<strong>in</strong>ner triangles requir<strong>in</strong>g<strong>in</strong>creas<strong>in</strong>g numbers <strong>of</strong> quadrature po<strong>in</strong>ts to reta<strong>in</strong> the same level <strong>of</strong> accuracy [14]. Inspite <strong>of</strong> these drawbacks, the method rema<strong>in</strong>s attractive <strong>in</strong> cases where the function ´rµ is not <strong>in</strong>tegrable analytically.7.3.2.4 Alternative S<strong>in</strong>gularity ExtractionIt is suggested <strong>in</strong> [14] that because the first term <strong>in</strong> (7.16) has a discont<strong>in</strong>uousderivative at Ö ¼, its <strong>in</strong>tegration via standard Gaussian quadrature will produce


Three-Dimensional Problems 175<strong>in</strong>accurate results. <strong>The</strong>y suggest an alternative s<strong>in</strong>gularity extraction <strong>of</strong> the form Ö Ö½Ö Ö Ö · ¾ Ö· ½ ¾ Ö(7.55)¾ Ö ¾where the first term now has two cont<strong>in</strong>uous derivatives. <strong>The</strong>ir results conclude thatapply<strong>in</strong>g (7.55) results <strong>in</strong> more accurate results than (7.16) for the same number <strong>of</strong>quadrature po<strong>in</strong>ts. It is this author’s op<strong>in</strong>ion that the s<strong>in</strong>gularity extraction <strong>of</strong> (7.16)rema<strong>in</strong>s accurate enough for many three-dimensional problems, and we will use it forthe examples <strong>in</strong> this chapter and those <strong>in</strong> Chapter 8. It is worth not<strong>in</strong>g that expressionsto evaluate <strong>in</strong>tegrals <strong>of</strong> the formÌare summarized <strong>in</strong> the appendix <strong>of</strong> [14].7.3.2.5 Integration ExamplesÌÌÌÖ Ò r ¼ (7.56)Ö Ò¢ r ¼ q £ r ¼ (7.57)ÖÖ Ò r ¼ r ¾ Ì (7.58)¢ÖÖÒ £¢ r ¼ ¢ q £ r ¼ r ¾ Ì (7.59)Let us compute the value <strong>of</strong> (7.19) us<strong>in</strong>g the double <strong>in</strong>tegration formula <strong>of</strong> (7.29)and the s<strong>in</strong>gle <strong>in</strong>tegration formula (7.43). For the latter case we apply a Gaussianquadrature rule <strong>of</strong> order È (Section 9.2.4) to compute the outermost <strong>in</strong>tegral. <strong>The</strong><strong>in</strong>tegration doma<strong>in</strong> is an equilateral triangle with sides <strong>of</strong> length 1. <strong>The</strong> results aresummarized <strong>in</strong> Table 7.2. <strong>The</strong> comparison matches to two significant digits at higherquadrature orders, however the results demonstrate that for overlapp<strong>in</strong>g triangles(7.29) is the superior choice.We next calculate the double <strong>in</strong>tegration <strong>of</strong> ½Ö over a pair <strong>of</strong> co-planarequilateral triangles <strong>of</strong> side length 1 that share a common edge. For this task we useGaussian quadrature to compute both <strong>in</strong>ner and outer <strong>in</strong>tegrals, and then (7.43) tocompute the <strong>in</strong>nermost <strong>in</strong>tegral, leav<strong>in</strong>g the outer <strong>in</strong>tegration unchanged. <strong>The</strong> resultsTable 7.2: Overlapp<strong>in</strong>g Equilateral Triangle Double IntegrationOrder 1 Order 2 Order 3 Order 4 Order 5 Eqn. (7.29)0.98767 0.85005 0.84709 0.83107 0.82830 0.82392


176 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Table 7.3: Near Equilateral Triangle Double Integration (Co-planar)Integration <strong>Method</strong> Order 1 Order 2 Order 3 Order 4 Order 5All Quadrature 0.32475 0.34364 0.34724 0.35330 0.35794Quadrature + (7.43) 0.32922 0.34331 0.34553 0.34903 0.35009Table 7.4: Near Equilateral Triangle Double Integration (Non Co-planar)Integration <strong>Method</strong> Order 1 Order 2 Order 3 Order 4 Order 5All Quadrature 3.7357 2.1169 4.4860 1.5794 1.4878Quadrature + (7.43) 0.86129 0.73681 0.73302 0.72283 0.72166are summarized <strong>in</strong> Table 7.3. <strong>The</strong> comparison is fairly good, suggest<strong>in</strong>g that eithermethod may be sufficient <strong>in</strong> this case. Let us now make the <strong>in</strong>ternal angle betweentriangle faces much smaller. For this case we choose an angle <strong>of</strong> 10 degrees, theresults <strong>of</strong> which are summarized <strong>in</strong> Table 7.4. <strong>The</strong> results from quadrature alonecompare poorly to those us<strong>in</strong>g the analytic <strong>in</strong>ner <strong>in</strong>tegration. It is obvious from thisexample that analytic <strong>in</strong>ner <strong>in</strong>tegrations should be used to calculate all near matrixelements. To determ<strong>in</strong>e when to apply the near-<strong>in</strong>tegration formulas, the programmercan compare the distances between triangle centroids. A reasonable threshold mightbe some fraction <strong>of</strong> a wavelength, such as 0.1 to 0.2 .7.3.3 EFIE Excitation Vector Elements<strong>The</strong> calculation <strong>of</strong> the EFIE excitation vector should also be performed as a loop over<strong>in</strong>dividual triangles. Us<strong>in</strong>g numerical quadrature, the contribution from each triangleand basis function can be written asÁ Ñ Ä Ñ¾ Ñ ¦ Ñ´rµ ¡ E´rµ r Ä ÑÌ Ñ¾7.3.3.1 Excitation <strong>of</strong> Planar AntennasÅÔ½Û Ô ¦ Ñ´r Ôµ ¡ E ´r Ô µ (7.60)Because planar antennas are <strong>of</strong> great <strong>in</strong>terest <strong>in</strong> many applications, the excitationat the antenna term<strong>in</strong>als must be modeled. In certa<strong>in</strong> applications, a high fidelityfeed model may be needed to obta<strong>in</strong> accurate results. While such specialized modelsare beyond the scope <strong>of</strong> this text, the delta-gap model rema<strong>in</strong>s useful <strong>in</strong> comput<strong>in</strong>gimpedance and radiation patterns <strong>in</strong> many cases. To develop a delta-gap model,consider the planar bowtie antenna illustrated <strong>in</strong> Figure 7.6a. We partition the antenna<strong>in</strong>to two halves along edge Ñ and connect a voltage generator <strong>of</strong> amplitude Î Ò tothe triangles shar<strong>in</strong>g the edge, as shown <strong>in</strong> Figure 7.6b. If we assume a very smallgap between the two triangles <strong>of</strong> width , the electric field exists only <strong>in</strong> the gap and


Three-Dimensional Problems 177Edge mL mL(a) Bowtie AntennadE i m- m+v(b) Delta Gap at an EdgeFigure 7.6: Delta-gap feed model.


178 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>isE Î Ò u Ñ (7.61)where u Ñ is the vector normal to edge Ñ <strong>in</strong> the plane. Us<strong>in</strong>g the above and thefact that the normal component <strong>of</strong> the RWG function is unity along the edge, the<strong>in</strong>tegration <strong>of</strong> (7.12) reduces to the area <strong>of</strong> the gap and evaluates to Ñ Ä ÑÎ Ò (7.62)Once we have solved the matrix system Za b, we may wish to obta<strong>in</strong> the <strong>in</strong>putimpedance. As the current vector element Ñ represents the l<strong>in</strong>ear current densityflow<strong>in</strong>g across edge Ñ, the total <strong>in</strong>put current Á Ò isand the <strong>in</strong>put impedance can then be obta<strong>in</strong>ed asÁ Ò Ä Ñ Ñ (7.63) Î Ò Î ÒÒ (7.64)Á Ò Ä Ñ Ñwhere Î Ò is usually assigned a value <strong>of</strong> unity for convenience.7.3.4 Radiated FieldOnce the matrix system Za b has been solved for the coefficient vector a, thecontribution to the radiated electric far-field from each triangle and basis functioncan be written as Ö Ñ Ä ÑE Ñ´rµ ¦ Ö ¾ Ñ´r¼ µ r¼ ¡r r ¼ (7.65)Ñ Ì ÑThis can be evaluated analytically us<strong>in</strong>g (9.58) and isE Ñ´rµ Ö Ñ Ä Ñ¦ I´sµ (7.66) Ö ¾ Ñwhere s r and the triangle vertexes are permuted so that v Ñ v ½ <strong>in</strong> (9.59). Wecan also evaluate (7.65) via an Å-po<strong>in</strong>t quadrature, yield<strong>in</strong>gE Ñ´rµ Ö Ñ Ä Ñ Ö ¾ ÑÅÛ Ô ¦ Ñ´r¼ Ô µ r¼ Ô¡rÔ½(7.67)For triangles whose edges are only a fraction <strong>of</strong> a wavelength, the results <strong>of</strong> (7.66)and (7.67) should not differ significantly.


Three-Dimensional Problems 1797.3.4.1 Plane Wave IncidenceFor <strong>in</strong>cident plane waves <strong>of</strong> or polarization, the <strong>in</strong>tegral <strong>in</strong> (7.60) will be <strong>of</strong> theformI Ä Ñ ´ µ ¡ ¦¾ Ñ´r¼ µ r¼ ¡r r ¼ (7.68)Ñwhich can be evaluated analytically <strong>in</strong> a similar manner to (7.66) us<strong>in</strong>g (9.58). Formonostatic scatter<strong>in</strong>g, the × ×and components <strong>of</strong> (7.65) will be <strong>of</strong> the same form.<strong>The</strong>refore, the excitation vector elements can be stored and reused to compute thescattered field us<strong>in</strong>g a and the appropriate constants.7.4 MFIE FOR THREE-DIMENSIONAL CONDUCTING SURFACESTo solve the MFIE for a conduct<strong>in</strong>g surface <strong>of</strong> arbitrary shape, we substitute (7.1)<strong>in</strong>to (6.91) to yieldÆ ½ n´rµ ¢ Ë ÆËÆ Ò f Ò´r ¼ µn´rµ ¢ H ´rµ ½ Ò f Ò´rµ ·´r r ¼ µ ¢¾Ò½Ò½ Ö¡ ½·Ö r ¼ (7.69)Ö ¿Test<strong>in</strong>g the above by Æ functions f Ñ´rµ, we obta<strong>in</strong> a matrix Z with elements givenbyÞ ÑÒ ½ ¾¢f Ñ´rµ ¡ f Ò´rµ r ·½ f Ñ´rµ ¡ n´rµf Ñ fÒ f Ñ Ö½·Ö r ¼ r (7.70)Ö ¿f Ò´r r ¼ µ ¢ f Ò´r ¼ µ<strong>The</strong> first term <strong>in</strong> (7.70) above is computed when triangles overlap, and the secondterm when they do not. <strong>The</strong> excitation vector elements are given by Ñ f Ñ´rµ ¡ n´rµ ¢ H ´rµ r (7.71)f Ñ7.4.1 MFIE Matrix ElementsInsert<strong>in</strong>g the RWG basis function (7.2, 7.3) <strong>in</strong>to (7.70) allows us to writeÁ Ä ÑÄ Ò ¦ Ñ Ñ´rµ ¡ ¦ Ò ´rµ r ÄÑÄ Ò¦· Ñ´rµ ¡ n´rµÒ Ì Ñ½ Ñ Ò Ì Ñ ¢ ´r rÌ ¼ µ ¢ ¦ ÖÒ ´r¼ µ ½·Ö r ¼ r (7.72)ÒÖ ¿


180 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>where we have restricted the <strong>in</strong>tegral to a s<strong>in</strong>gle source and test<strong>in</strong>g triangle. Apply<strong>in</strong>gan Å-po<strong>in</strong>t numerical quadrature rule yieldsÁ Ä ÑÄ Ò Ñ¡Å Ô½Û Ô ¦ Ñ´r Ôµ ¡ ¦ Ò ´r Ôµ·ÄÑÄ Ò½ÅÅÔ½ Õ½n´r Ô µ ¢ ´r Ô r ¼ Õ µ ¢ ¦ Ò ´r¼ Õ µ ½ ·Ê ÔÕ Ê ÔÕÊ ¿ ÔÕÛ Ô Û Õ ¦ Ñ´r Ôµ(7.73)where Ê ÔÕ is given by (7.15) and we have assumed the quadrature weights tobe normalized with respect to the triangle area. For triangle pairs with adequateseparation distances, (7.73) can be implemented as written. For closer <strong>in</strong>teractions,the second term <strong>in</strong> the above can exhibit strongly s<strong>in</strong>gular behavior that results <strong>in</strong><strong>in</strong>accurate matrix elements if computed by quadrature alone. We will consider theevaluation <strong>of</strong> these near-MFIE terms <strong>in</strong> Section 7.4.1.1.Because we use planar triangles to model our geometry, the surface normaln´rµ <strong>in</strong> (7.72) is a constant and the second term is zero for all co-planar triangle pairs.This would not be the case if higher-order basis functions and curvil<strong>in</strong>ear elementswere used.7.4.1.1 MFIE Near-Matrix Element EvaluationTo improve the accuracy <strong>of</strong> MFIE near-<strong>in</strong>tegrations, we will apply a techniquesimilar to what was done for the EFIE. Follow<strong>in</strong>g [15], we rewrite the <strong>in</strong>nermost<strong>in</strong>tegral for each element, perform a s<strong>in</strong>gularity extraction and evaluate the s<strong>in</strong>gularterms analytically. In addition to the quantities def<strong>in</strong>ed <strong>in</strong> Figure 7.5, we def<strong>in</strong>eadditional quantities as shown <strong>in</strong> Figure 7.7. For basis function Ò´r ¼ µ,wedef<strong>in</strong>ethe vectorR Ò r v Ò (7.74)where v Ò is the vertex opposite edge Ò on triangle Ì Ò ¦ . Not<strong>in</strong>g thatr r ¼ R Ò Ò´r ¼ µ (7.75)we can write´r r ¼ µ ¢ Ò´r ¼ µR Ò ¢ Ò´r ¼ µ (7.76)and s<strong>in</strong>ce R Ò is a constant vector, we can write the <strong>in</strong>nermost <strong>in</strong>tegral <strong>in</strong> the secondpart <strong>of</strong> (7.72) as ´r rÌ ¼ µ¢ Ò´r ¼ Öµ ½·Ö r ¼ÒÖ ¿ R Ò ¢Ì Ò Ò´r ¼ µ Ö½·Ö r ¼Ö ¿(7.77)


Three-Dimensional Problems 181OrR nr’v nv pO p’r - r’d n ’T nFigure 7.7: Geometric quantities for MFIE s<strong>in</strong>gularity extraction.Accord<strong>in</strong>g to [15], we now perform the follow<strong>in</strong>g s<strong>in</strong>gularity extractionR Ò ¢¡Ì Ò Ò´r ¼ µ Ö½·Ö r ¼Ö ¿ R Ò ¢ Ì Ò Ò´r ¼ µ´½ · Öµ Ö ´½ · ½¾ ¾ Ö ¾ µÖ ¿· a ·¾Ò´rµ b Ò´rµ¾(7.78)wherea Ò´rµ ̼ Ò´r ¼ µÖ ¿ r ¼ (7.79)andb Ò´rµ Ò´r ¼ µr ¼ (7.80)̼ Ö<strong>The</strong> first term on the right-hand side <strong>in</strong> (7.78) is well behaved and can be evaluatedvia numerical quadrature. <strong>The</strong> rema<strong>in</strong><strong>in</strong>g two <strong>in</strong>tegrals a Ò´rµ and b Ò´rµ are thes<strong>in</strong>gular contributions and will be evaluated analytically. <strong>The</strong> <strong>in</strong>tegral b Ò´rµ can be


182 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>computed via (7.47). <strong>The</strong> <strong>in</strong>tegral a Ò´rµ can be computed by rewrit<strong>in</strong>g it accord<strong>in</strong>gto (7.46), lead<strong>in</strong>g to̼ Ò´r ¼ µÖ ¿r ¼ ̼ ¼ r ¼Ö ¿ ·´ Ò µÌ¼½Ö ¿ r¼ (7.81)<strong>The</strong>se <strong>in</strong>tegrals are [15]̼ ¼ Ö ¿r ¼ ƽʷ · зu ÐÓ (7.82)Ê · Ð and̼½Ö ¿ r¼ ƽP ¼ ½ ¡ u ØÒ ½ È ¼Ð· ´Ê ¼ µ¾ Ê·´Ê ¼ µ¾ Ê ØÒ ½ È ¼ Ð ´ ¼µ (7.83)̼½Ö ¿ r¼ ƽP ¼ ¡ u Ð·È ¼Ê·Ð È ¼ Ê ´ ¼µ (7.84)<strong>The</strong> sums <strong>in</strong> (7.82) and (7.84) may also have numerical problems when r lies <strong>in</strong> Ëalong the extension <strong>of</strong> an edge. In these cases, the observation po<strong>in</strong>t can aga<strong>in</strong> beslightly modified accord<strong>in</strong>g to (7.44).7.4.1.2 Integration ExamplesLet us evaluate the s<strong>in</strong>gular portion <strong>of</strong> (7.78) us<strong>in</strong>g a Gaussian quadrature rule <strong>of</strong>order È and the analytic method described <strong>in</strong> Section 7.4.1.1. For this comparison,we compute the scalar quantityÁ ¬¬a Ò´rµ ·¾¬b Ò´rµ ¬ (7.85)¾<strong>The</strong> <strong>in</strong>tegration is performed over an equilateral triangle with sides <strong>of</strong> length 1 .In Figure 7.8 we compare the results obta<strong>in</strong>ed from quadrature rules <strong>of</strong> orders 3,4 and 5 to the analytic expression. In Figure 7.8a, the observation po<strong>in</strong>t is placedover the center <strong>of</strong> the triangle and the separation distance is varied. Figure 7.8b issimilar, but the observation po<strong>in</strong>t is placed at the midpo<strong>in</strong>t <strong>of</strong> an edge. In both casesthe comparison is good at larger distances but <strong>in</strong>creas<strong>in</strong>gly poor at shorter ones, asexpected. <strong>The</strong>se results suggest that the s<strong>in</strong>gularity extraction method for the MFIEshould be applied for triangle pairs separated by 0.2–0.3 or less.


Three-Dimensional Problems 183Amplitude100908070605040302010Analytic3rd Order4th Order5th Order00 0.1 0.2 0.3 0.4 0.5Separation Distance (lambda)(a) Center <strong>of</strong> TriangleAmplitude100908070605040302010Analytic3rd Order4th Order5th Order00 0.1 0.2 0.3 0.4 0.5Separation Distance (lambda)(b) Center <strong>of</strong> EdgeFigure 7.8: MFIE s<strong>in</strong>gular <strong>in</strong>tegration.


184 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>7.4.2 MFIE Excitation Vector Elements<strong>The</strong> calculation <strong>of</strong> the MFIE excitation vector should also be performed as a loopover <strong>in</strong>dividual triangles. Us<strong>in</strong>g an Å-po<strong>in</strong>t numerical quadrature, the contributionfrom each triangle and basis function can be written asÁ Ä ÑÑ ¦¾ Ñ´rµ¡ n´rµ¢H ´rµÑ Ì Ñr Ä Ñ¾ÅÔ½ Û Ô ¦ Ñ´r Ôµ¡ n´r Ô µ¢H ´r Ô µ(7.86)7.4.2.1 Plane Wave IncidenceFor <strong>in</strong>cident plane waves <strong>of</strong> -or polarization, the <strong>in</strong>tegral <strong>in</strong> (7.86) will be <strong>of</strong>the formI Ä Ñ¾ Ñ ´ µ ¡ ¦ Ñ´r¼ µ r¼ ¡r r ¼ (7.87)which is <strong>of</strong> the same form as (7.68). Follow<strong>in</strong>g the discussion <strong>in</strong> Section 6.4.2.1,the expression for the and -polarized EFIE vectors can be comb<strong>in</strong>ed with theappropriate constants to obta<strong>in</strong> the MFIE vectors.7.4.3 Radiated Field<strong>The</strong> radiated field <strong>of</strong> the MFIE current is calculated <strong>in</strong> an identical manner to that <strong>of</strong>Section 7.3.4. <strong>The</strong> shortcut outl<strong>in</strong>ed <strong>in</strong> Section 7.3.4.1 rema<strong>in</strong>s valid as well.7.4.4 Accuracy <strong>of</strong> RWG Functions <strong>in</strong> MFIERWG functions have been used for many years to solve the EFIE and MFIE forthree-dimensional objects. We have also done so <strong>in</strong> this chapter because it presents aconsistent picture to the student who is new to these concepts. We should po<strong>in</strong>t outthat the MFIE as solved us<strong>in</strong>g RWG basis functions is known to possess <strong>in</strong>accuraciesthat render it somewhat less accurate than the EFIE for the same problem [16]. Thisstems from issues such as numerical <strong>in</strong>tegration [14, 17], the choice <strong>of</strong> the solidanglefactor (2.138) [18, 19], and the overall choice <strong>of</strong> basis and test<strong>in</strong>g functions. Ithas been shown that the RWG function itself is the cause <strong>of</strong> much <strong>of</strong> this <strong>in</strong>accuracy[20], and that this can be improved by mov<strong>in</strong>g to a more suitable basis function suchas the curl-conform<strong>in</strong>g type [21, 22], or the l<strong>in</strong>ear-l<strong>in</strong>ear basis functions <strong>in</strong>troduced<strong>in</strong> [23, 24].


Three-Dimensional Problems 185Object Edges/Unknowns Double Float/4 Cube 336 1764 kB 882 kB/2 Sphere 1920 56.25 MB 28.125 MB1 Almond 19848 5.86 2.93 GB2 Sphere 31260 16.56 GB 7.28 GB8.5 Almond 70476 74.0 GB 37.28 GBTable 7.5: Full Matrix Memory Requirements7.5 NOTES ON SOFTWARE IMPLEMENTATION7.5.1 Memory ManagementWhen apply<strong>in</strong>g the MOM to three-dimensional surfaces, the total number <strong>of</strong> unknownsis proportional to the square <strong>of</strong> the operat<strong>in</strong>g frequency. Because manyobjects <strong>of</strong> practical <strong>in</strong>terest are electrically large, the result<strong>in</strong>g demands on systemmemory can be quite high. In Table 7.5 we summarize the memory requirements<strong>of</strong> the full MOM matrix for several objects <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g size. <strong>The</strong> requirementsfor double and s<strong>in</strong>gle precision complex elements (16 and 8 bytes, respectively) areshown. <strong>The</strong> geometry <strong>of</strong> each object has at least 10 edges per wavelength, or approximately100 edges per square wavelength. We immediately see that the memorydemand <strong>in</strong>creases exponentially with problem size. <strong>The</strong> 8.5 almond (Æ=70476)presents a rather formidable challenge, with its requirement <strong>of</strong> 74 GB outstripp<strong>in</strong>gthe capabilities <strong>of</strong> virtually all consumer-level computer systems currently available.<strong>The</strong> result<strong>in</strong>g tendency is to reduce the complexity <strong>of</strong> the object, or to reduce thenumber <strong>of</strong> unknowns per wavelength used. This <strong>of</strong>ten forces one to strike a balancebetween model complexity and available comput<strong>in</strong>g resources. <strong>The</strong> scattered field<strong>of</strong> this 8.5 almond can be computed far more easily us<strong>in</strong>g the FMM, which isdiscussed<strong>in</strong>Section8.8.2.1.7.5.1.1 EFIEBecause the EFIE results <strong>in</strong> a symmetric matrix, only the upper triangle and diagonalmust be stored. This reduces the total number <strong>of</strong> matrix elements from Æ ¾ toÆ ´Æ ·½µ¾, effectively halv<strong>in</strong>g the memory requirements. If the upper triangle <strong>of</strong>the EFIE matrix is stored <strong>in</strong> a packed column format, the LAPACK functions csptrfand csptrs can be used to factor and solve the l<strong>in</strong>ear system [25].7.5.2 ParallelizationMany parts <strong>of</strong> a three-dimensional moment method program can be parallelizedeffectively. <strong>The</strong> subrout<strong>in</strong>es that compute the system matrix and right-hand sidevectors are obvious candidates. While some elements <strong>of</strong> the matrix factorization


186 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>can be parallelized, that is beyond the scope <strong>of</strong> this text and we will assume thisfactorization to be limited to a s<strong>in</strong>gle process<strong>in</strong>g thread.7.5.2.1 Shared Memory SystemsIn a shared memory system, all geometry <strong>in</strong>formation as well as system matrix andright-hand side vectors will be available to each thread. To parallelize the matrixfill, each process<strong>in</strong>g thread should be assigned a unique facet pair and the mutexprotectedmemory space for the matrix. One effective scheme would create a separatemutex for each matrix row. When a thread needs to add to matrix element Þ ÑÒ ,it locks mutex Ñ and prevents any access to that row until its writes are f<strong>in</strong>ished.Right-hand sides can be parallelized several ways. If there are many right-hand sidevectors, such as a monostatic radar cross section calculation with multiple <strong>in</strong>cidentangles, each thread can be allocated its own right-hand side vector space and workon unique angles <strong>in</strong>dependently. If that number is small, a s<strong>in</strong>gle right-hand sidevector can be used and each thread assigned a unique triangle list, aga<strong>in</strong> with mutexprotection on writes. If there are many observation angles for each right-hand side,the programmer could use either method depend<strong>in</strong>g on the overall number <strong>of</strong> righthandsides.7.5.2.2 Distributed Memory Systems<strong>The</strong> overall design and implementation <strong>of</strong> a moment method s<strong>of</strong>tware on distributedmemory systems will depend on several factors. <strong>The</strong> more important considerationsare the maximum size <strong>of</strong> the problem to be attempted, the type <strong>of</strong> processor andtotal memory <strong>in</strong>stalled on each node, and the speed and topology <strong>of</strong> the networkconnections. If the problem is small enough that it can be solved on a s<strong>in</strong>gle node,one could simply utilize all the available processors to decrease the matrix fill time. Inthis case, each node can load the geometry <strong>in</strong>to local memory and create the needededge list and any other <strong>in</strong>formation, then compute and transmit its system matrix andright-hand side vector contributions to the master node.If the geometry and system matrix are too large to be stored on a s<strong>in</strong>gle node,they must be efficiently divided among the available nodes. A mechanism must bedevised that allows each node to obta<strong>in</strong> portions <strong>of</strong> the geometry it needs but doesnot store locally. While it may not be difficult to store unique parts <strong>of</strong> the systemmatrix on different nodes, the required distributed matrix factorization may be moredifficult and is aga<strong>in</strong> beyond the scope <strong>of</strong> this text. A distributed iterative solveralgorithm may be a more attractive choice <strong>in</strong> this case, as each node only needs tocompute the portion <strong>of</strong> the matrix-vector product <strong>in</strong>volv<strong>in</strong>g what it stores locally.<strong>The</strong> results from each node can then be transmitted to a master node and added tothe global result vector at each iteration.


Three-Dimensional Problems 1877.6 CONSIDERATIONS FOR MODELING WITH TRIANGLESOne <strong>of</strong> the most important parts <strong>of</strong> any simulation is the model <strong>in</strong>put to the code. Wehave discussed several times the importance <strong>of</strong> the <strong>in</strong>tegrations that produce accuratematrix elements, however the model itself is also key to obta<strong>in</strong><strong>in</strong>g a good solution.Indeed, a significant amount <strong>of</strong> time may be spent generat<strong>in</strong>g a model that accuratelyrepresents the object be<strong>in</strong>g modeled, as well as generat<strong>in</strong>g a watertight mesh withreasonably shaped triangles free <strong>of</strong> t-junctions or other issues.7.6.1 Triangle Aspect RatiosMost geometry model<strong>in</strong>g tools have the capability to generate a triangular mesh on asurface, however the quality <strong>of</strong> these meshes can vary. Foremost when generat<strong>in</strong>g amesh is to ensure that all triangles have a reasonable aspect ratio and do not conta<strong>in</strong>small <strong>in</strong>ternal angles. An example <strong>of</strong> such a mesh is shown <strong>in</strong> Figure 7.9a, where acircular plate is meshed us<strong>in</strong>g a simple radial algorithm. <strong>The</strong> triangles <strong>in</strong> this meshgrow progressively smaller and th<strong>in</strong>ner as they grow closer to the center. It is wellknown that models conta<strong>in</strong><strong>in</strong>g triangles <strong>of</strong> poor aspect ratios will result <strong>in</strong> a morepoorly conditioned moment method matrix. While it is not always possible to createa model with equilateral triangles across the entire surface, many mesh<strong>in</strong>g tools allowthe user to analyze the distribution <strong>of</strong> aspect ratios <strong>in</strong> a mesh. In areas where thetriangles are deemed to be too th<strong>in</strong>, these tools allow for restructur<strong>in</strong>g the trianglesto improve their condition. A better mesh is illustrated <strong>in</strong> Figure 7.9b, where eachtriangle has a much better shape.(a) Triangles with Poor Aspect Ratio(b) Triangles with Better Aspect RatioFigure 7.9: Examples <strong>of</strong> triangle mesh aspect ratio.


188 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>(a) Properly Welded Mesh(b) Mesh with Several T-JunctionsFigure 7.10: Triangle mesh connectivities.7.6.2 Watertight Meshes and T-JunctionsWe have already discussed the importance <strong>of</strong> shared nodes between triangles. Ifnodes are not jo<strong>in</strong>ed together along an edge, the surface is not logically connected atthat edge and no current can flow across it. When a surface mesh encloses a volume, itmust be “watertight,” with no boundary edges anywhere. This is critically importantwhen apply<strong>in</strong>g the MFIE, as it is only valid for a closed surface.Some model<strong>in</strong>g tools may generate meshes where nodes <strong>of</strong> one triangle arenot co-located with those <strong>of</strong> adjacent triangles. Consider the meshes shown <strong>in</strong>Figure 7.10. <strong>The</strong> mesh <strong>of</strong> Figure 7.10a is properly aligned, however that <strong>of</strong> Figure7.10b conta<strong>in</strong>s many disjo<strong>in</strong>t <strong>in</strong>tersections called T-junctions. <strong>The</strong>se jo<strong>in</strong>ts cannotbe logically resolved through the connectivity list and represent a tear or hole <strong>in</strong> thesurface. It is imperative that the eng<strong>in</strong>eer ensure their model is free <strong>of</strong> these junctions.Many model<strong>in</strong>g packages will search for unjo<strong>in</strong>ed or naked edges, which may liealong these seams. When the number <strong>of</strong> triangles <strong>in</strong> the model grows to be quitehigh T-junctions can become difficult to f<strong>in</strong>d and elim<strong>in</strong>ate. While sometimes it maybe necessary to remove junctions manually, a good mesh<strong>in</strong>g tool can automaticallylocate and heal the junctions with little or no user <strong>in</strong>tervention.7.7 EXAMPLESIn this section we will demonstrate the efficacy <strong>of</strong> the three-dimensional MOMformulations <strong>of</strong> this chapter <strong>in</strong> solv<strong>in</strong>g several scatter<strong>in</strong>g and radiation problems. Weconsider the conduct<strong>in</strong>g sphere, several benchmark plate radar targets measured bythe EMCC, and the <strong>in</strong>put impedance <strong>of</strong> several antennas <strong>in</strong>clud<strong>in</strong>g the well-knownbowtie and archimedean spiral.


Three-Dimensional Problems 1897.7.1 Serenity<strong>The</strong> examples <strong>in</strong> this chapter are computed us<strong>in</strong>g the Tripo<strong>in</strong>t Industries code Serenity,a Moment <strong>Method</strong> s<strong>of</strong>tware for solv<strong>in</strong>g radar cross section problems <strong>of</strong> threedimensionalconduct<strong>in</strong>g objects. Serenity implements the EFIE and MFIE us<strong>in</strong>gRWG basis functions, and conta<strong>in</strong>s automatic edge f<strong>in</strong>d<strong>in</strong>g algorithms, adjustableGaussian quadrature <strong>in</strong>tegration density, and near and s<strong>in</strong>gular <strong>in</strong>tegration rout<strong>in</strong>esfollow<strong>in</strong>g Sections 7.3.2 and 7.4.1.1. It supports a full-matrix approach with directfactorization and iterative solvers, as well as an MLFMA-accelerated iterative solverus<strong>in</strong>g the techniques <strong>in</strong> Chapter 8. It is written <strong>in</strong> the C programm<strong>in</strong>g language anduses double precision complex for comput<strong>in</strong>g the MOM matrix and s<strong>in</strong>gle precisionfor its storage and factorization. Serenity is part <strong>of</strong> the Tripo<strong>in</strong>t Industries lucernhammersuite <strong>of</strong> radar cross section codes.7.7.2 RCS <strong>of</strong> a SphereWe first consider a conduct<strong>in</strong>g sphere with a diameter <strong>of</strong> 2 meters. CFIE is used with« ¼.7.7.2.1 Monostatic RCS versus FrequencyIn Figure 7.11a we compare the monostatic RCS from the CFIE and Mie series forfrequencies between 10 MHz and 500 MHz. <strong>The</strong> comparison is excellent, and itis difficult to differentiate the two results. In Figure 7.11b we plot the differencebetween the results. <strong>The</strong> overall difference is less than 0.1 dB, which is usuallyconsidered excellent for numerical RCS predictions.7.7.2.2 Bistatic RCSWe next compute the bistatic RCS <strong>of</strong> the sphere at 300 MHz. At this frequency, thesphere is 2 <strong>in</strong> diameter. <strong>The</strong> results are summarized <strong>in</strong> Figures 7.12a and 7.12b forvertical and horizontal polarizations, respectively. <strong>The</strong> comparison is aga<strong>in</strong> excellent,with the CFIE results nearly <strong>in</strong>dist<strong>in</strong>guishable from the Mie series.7.7.3 EMCC Plate Benchmark TargetsWe now compute the RCS <strong>of</strong> the EMCC benchmark plate radar targets measuredand described <strong>in</strong> [26]. Because edge and tip diffractions were <strong>of</strong> primary <strong>in</strong>terest <strong>in</strong>this article, the measurements were performed us<strong>in</strong>g a conical cut 10 degrees fromthe plane <strong>of</strong> each target. <strong>The</strong> test articles were fabricated from alum<strong>in</strong>um foil orth<strong>in</strong> pieces <strong>of</strong> high-density foam coated with conduct<strong>in</strong>g pa<strong>in</strong>t. Our facet modelscomprise flat faceted surfaces, and the EFIE is used. In the plots that follow, themeasurement data are shifted slightly <strong>in</strong> angle to align them with the numericalresults.


190 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>2015RWG/CFIEMie10RCS (dBsm)50−5−10−150.1 0.2 0.3 0.4 0.5Frequency (GHz)(a) Mie vs. CFIE0.1RCS (Mie M<strong>in</strong>us CFIE, dBsm)0.050−0.05−0.10.1 0.2 0.3 0.4 0.5Frequency (GHz)(b) Mie M<strong>in</strong>us CFIEFigure 7.11: 2 Meter sphere: monostatic RCS versus frequency.


Three-Dimensional Problems 1913020RWG/CFIEMieVV RCS (dBsm)100−10−200 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization3020RWG/CFIEMieHH RCS (dBsm)100−10−200 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 7.12: 2 Meter sphere: bistatic RCS.


192 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>0 o 2(a) Wedge Cyl<strong>in</strong>der60 o110 o 60 o 1l 12(b) Wedge-Plate Cyl<strong>in</strong>derFigure 7.13: EMCC plate benchmark targets.7.7.3.1 Wedge Cyl<strong>in</strong>der<strong>The</strong> geometry <strong>of</strong> the wedge-cyl<strong>in</strong>der is shown <strong>in</strong> Figure 7.13a. <strong>The</strong> RCS computedus<strong>in</strong>g Serenity is compared to the EMCC measurements <strong>in</strong> Figures 7.15a and 7.15bfor vertical and horizontal polarizations, respectively. <strong>The</strong> comparisons are very goodfor both polarizations, but are noticeably better <strong>in</strong> the horizontal case. In [26] themeasurements were adjusted by 2 dB dur<strong>in</strong>g plott<strong>in</strong>g; however, no adjustments aremade <strong>in</strong> these figures.7.7.3.2 Wedge-Plate Cyl<strong>in</strong>der<strong>The</strong> geometry <strong>of</strong> the wedge-plate cyl<strong>in</strong>der is shown <strong>in</strong> Figure 7.13b. <strong>The</strong> RCScomputed us<strong>in</strong>g Serenity is compared to the EMCC measurements <strong>in</strong> Figures 7.16aand 7.16b for vertical and horizontal polarizations, respectively. <strong>The</strong> comparisonsare very good for both polarizations, but are aga<strong>in</strong> slightly better <strong>in</strong> the horizontalcase.


Three-Dimensional Problems 1932.510 o 1(a) Plate Cyl<strong>in</strong>der3.50 o 2(b) Bus<strong>in</strong>ess CardFigure 7.14: EMCC plate benchmark targets.7.7.3.3 Plate Cyl<strong>in</strong>der<strong>The</strong> geometry <strong>of</strong> the plate cyl<strong>in</strong>der is shown <strong>in</strong> Figure 7.14a. <strong>The</strong> RCS computedus<strong>in</strong>g Serenity is compared to the EMCC measurements <strong>in</strong> Figures 7.17a and 7.17bfor vertical and horizontal polarizations, respectively. <strong>The</strong> overall comparison is quitegood, however measurement has a much higher magnitude than expected from 100to 160 degrees <strong>in</strong> Figure 7.17a, the cause <strong>of</strong> which is not known.7.7.3.4 Bus<strong>in</strong>ess Card<strong>The</strong> geometry <strong>of</strong> the “bus<strong>in</strong>ess card” target is shown <strong>in</strong> Figure 7.14b. <strong>The</strong> RCScomputed us<strong>in</strong>g Serenity is compared to the EMCC measurements <strong>in</strong> Figures 7.18aand 7.18b for vertical and horizontal polarizations, respectively. <strong>The</strong> comparison isvery good for horizontal polarization, though the computed results are lower than themeasurement for vertical polarization. A similar observation was made <strong>in</strong> [26].


194 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>−5−10RWG/EFIEMeasurementVV RCS (dBsw)−15−20−25−30−35−40−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(a) Vertical PolarizationHH RCS (dBsw)1050−5−10−15−20−25−30−35RWG/EFIEMeasurement−40−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(b) Horizontal PolarizationFigure 7.15: EMCC wedge cyl<strong>in</strong>der: EFIE versus measurement.


Three-Dimensional Problems 1950−5RWG/EFIEMeasurementVV RCS (dBsw)−10−15−20−25−30−35−40−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(a) Vertical Polarization105RWG/EFIEMeasurementHH RCS (dBsw)0−5−10−15−20−25−30−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(b) Horizontal PolarizationFigure 7.16: EMCC wedge-plate cyl<strong>in</strong>der: EFIE versus measurement.


196 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>50−5RWG/EFIEMeasurementVV RCS (dBsw)−10−15−20−25−30−35−40−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(a) Vertical Polarization105RWG/EFIEMeasurementHH RCS (dBsw)0−5−10−15−20−25−30−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(b) Horizontal PolarizationFigure 7.17: EMCC plate cyl<strong>in</strong>der: EFIE versus measurement.


Three-Dimensional Problems 19750−5RWG/EFIEMeasurementVV RCS (dBsw)−10−15−20−25−30−35−40−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(a) Vertical Polarization105RWG/EFIEMeasurementHH RCS (dBsw)0−5−10−15−20−25−30−180 −135 −90 −45 0 45 90 135 180Observation Angle (deg)(b) Horizontal PolarizationFigure 7.18: EMCC bus<strong>in</strong>ess card: EFIE versus measurement.


198 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>mwL(a) Strip Dipole Dimensions2500ResistanceReactanceImpedance (Ohms)12500−1250−25000 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1Frequency (GHz)(b) Input ImpedanceFigure 7.19: Th<strong>in</strong> strip dipole.7.7.4 Strip Dipole AntennaWe next consider the <strong>in</strong>put impedance <strong>of</strong> a th<strong>in</strong> strip dipole antenna as illustrated <strong>in</strong>Figure 7.19a. <strong>The</strong> dipole has a length Ä ½ meter and width Û ¿ mm, so thefigure is not drawn to scale. Such a strip is representative <strong>of</strong> th<strong>in</strong> foil chaff that mightbe used <strong>in</strong> a aircraft or space-vehicle radar countermeasure. <strong>The</strong> strip is center fedus<strong>in</strong>g the delta-gap model <strong>of</strong> Section 7.3.3.1. <strong>The</strong> <strong>in</strong>put resistance and reactance areshown <strong>in</strong> Figure 7.19b for 128 frequencies rang<strong>in</strong>g from 10 MHz to 1 GHz.


Three-Dimensional Problems 199ABowtiemonopole2.5 opolyethylene2.5 o RG-8U coax4.5 oFigure 7.20: Bowtie monopole measurement setup.7.7.5 Bowtie Antenna<strong>The</strong> bowtie-shaped planar antenna <strong>of</strong> Figure 7.6a is used extensively <strong>in</strong> widebandwidthradiation and receiv<strong>in</strong>g applications. A study <strong>of</strong> the <strong>in</strong>put impedance andradiation characteristics <strong>of</strong> the bowtie was presented <strong>in</strong> [27] for various flare anglesand lengths. <strong>The</strong>ir measurement setup is illustrated <strong>in</strong> Figure 7.20, where a bowtiemonopole was fed and measured aga<strong>in</strong>st a conduct<strong>in</strong>g disk 8 feet <strong>in</strong> diameter. <strong>The</strong>feed utilized an RG-8U coaxial cable that was trimmed and <strong>in</strong>serted through a smallhole <strong>in</strong> the disk. <strong>The</strong> fed end <strong>of</strong> the bowtie was truncated to facilitate attachment tothe center conductor <strong>of</strong> the coax. Measurements were obta<strong>in</strong>ed at a fixed frequency<strong>of</strong> 500 MHz us<strong>in</strong>g a slotted l<strong>in</strong>e with slid<strong>in</strong>g probe and transmission l<strong>in</strong>e charts. Eachantenna was fabricated to the maximum electrical length and physically cut down asthe measurements were made. <strong>The</strong>refore, the electrical dimensions at the feedpo<strong>in</strong>trema<strong>in</strong>ed constant.In Figures 7.21a and 7.21b we compare the <strong>in</strong>put resistance and reactanceobta<strong>in</strong>ed from the EFIE and a delta-gap feed to the measurements <strong>of</strong> [27] for flareangles <strong>of</strong> 10, 30, 50 and 90 degrees. Whereas the measurements were given <strong>in</strong>


200 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Input Resistance (Ohms)500400300200100MeasurementRWG/EFIE5030901000 50 100 150 200 250Electrical Length (Deg)(a) ResistanceInput Reactance (Ohms)25015050−50−15030MeasurementRWG/EFIE509010−2500 50 100 150Electrical Length (Deg)200 250(b) ReactanceFigure 7.21: Bowtie <strong>in</strong>put impedance: EFIE versus measurement.


Three-Dimensional Problems 201terms <strong>of</strong> the electrical length <strong>in</strong> degrees, we fix the dimensions <strong>of</strong> the antenna andsweep across frequency. Our model is <strong>of</strong> a dipole <strong>in</strong> free space, and we take <strong>in</strong>toaccount that the <strong>in</strong>put impedance will be twice that <strong>of</strong> a monopole over a groundplane. Each antenna is assigned a half-length <strong>of</strong> 1 meter and an edge length <strong>of</strong> 2 cmat the feedpo<strong>in</strong>t (Figure 7.6a). <strong>The</strong> comparison is fair, consider<strong>in</strong>g the differencesbetween the physical and computer models. <strong>The</strong> disparity between feedpo<strong>in</strong>t modelsis an obvious difference, and likely contributes to the observed <strong>of</strong>fset between theresonant frequencies as well as the impedance amplitudes. A similar observationwas noted <strong>in</strong> [28]. If we had <strong>in</strong>stead used the magnetic frill <strong>of</strong> Section 4.2.2 andreduced the physical length <strong>of</strong> the model rather than chang<strong>in</strong>g the frequency, thecomparison might be better, though it would be more time <strong>in</strong>tensive <strong>in</strong> terms <strong>of</strong> setupand execution. This illustrates the trade-<strong>of</strong>fs encountered between a “quick and dirty”result and a more accurate but time-consum<strong>in</strong>g one.7.7.6 Archimedean Spiral AntennaWe next consider the characteristics <strong>of</strong> the Archimedean spiral antenna [29, 30].This antenna is known to have desirable broadband performance <strong>in</strong> terms <strong>of</strong> <strong>in</strong>putimpedance as well as a circularly polarized radiation pattern. <strong>The</strong> dimensions <strong>of</strong> thisantenna are illustrated <strong>in</strong> Figure 7.22a. <strong>The</strong> radius <strong>of</strong> each arm is l<strong>in</strong>early proportionalto the angle and can be written asÖ · Ö ½ (7.88)andÖ ´ · µ ·Ö ½ (7.89)where Ö ½ is a start<strong>in</strong>g radius and is a constant that depends on the width Û andspac<strong>in</strong>g × <strong>of</strong> the arms <strong>of</strong> the antenna. If we choose a self-complementary spiral with× Û, then ¾Û (7.90)and if the spiral has an <strong>in</strong>f<strong>in</strong>ite number <strong>of</strong> turns, then by Bab<strong>in</strong>et’s Pr<strong>in</strong>ciple the<strong>in</strong>put impedance <strong>of</strong> the antenna should be approximately half that <strong>of</strong> the surround<strong>in</strong>gmedium. If the medium is free space, then Ò ¾ ½Å (7.91)When a voltage is applied to the center term<strong>in</strong>als <strong>of</strong> this antenna, it behaves <strong>in</strong>a manner similar to a two-wire transmission l<strong>in</strong>e and gradually transitions <strong>in</strong>to aradiat<strong>in</strong>g structure where the circumference <strong>of</strong> the spiral is one wavelength [30].In theory, an antenna with the largest number <strong>of</strong> turns should have the broadestbandwidth, however the available space and size will limit its maximum size. A wayto connect a feedl<strong>in</strong>e to the antenna must be devised as well. <strong>The</strong>se considerationswill determ<strong>in</strong>e the f<strong>in</strong>al <strong>in</strong>put impedance, which we do not expect will match the


202 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>(a) Spiral Antenna Dimensions(b) Example Spiral Antenna MeshFigure 7.22: Archimedean spiral antenna.


Three-Dimensional Problems 203Input Resistance (Ohms)5004003002001001 mm2.5mm4mm01 2 3 4 5Frequency (GHz)(a) Input ResistanceInput Reactance (Ohms)5002500−2501 mm2.5mm4mm−5001 2 3 4 5Frequency (GHz)(b) Input ReactanceFigure 7.23: Input impedances <strong>of</strong> spiral antennas versus frequency.


204 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>theoretical value <strong>of</strong> Ò . For our numerical model, we choose a start<strong>in</strong>g radiusÖ ½ Û and bridge the arms <strong>of</strong> the spiral at its center us<strong>in</strong>g a flat strip <strong>of</strong> width Û¾. So that the feed area <strong>of</strong> the antenna is accurately modeled, we applyheavier triangulation near the center and a lower density <strong>in</strong> the arms. This tessellationscheme is illustrated <strong>in</strong> Figure 7.22b.Let us determ<strong>in</strong>e the dimensions <strong>of</strong> a spiral antenna that has the best broadbandimpedance between 1 and 5 GHz. To do so, we construct three spiral antennas <strong>of</strong>widths Û <strong>of</strong> 1, 2.5 and 4 mm and a total <strong>of</strong> 16 turns each. <strong>The</strong> delta-gap voltagemodel is used to excite the edge at the center <strong>of</strong> the strip connect<strong>in</strong>g the arms.<strong>The</strong> <strong>in</strong>put resistance and reactance <strong>of</strong> each antenna are shown <strong>in</strong> Figures 7.23aand 7.23, respectively. <strong>The</strong> antenna with 1mm arms has a nearly constant <strong>in</strong>putresistance <strong>of</strong> approximately 210 Ohms between 2 and 5 GHz, and an <strong>in</strong>put reactance<strong>of</strong> around 20 Ohms. <strong>The</strong> other two antennas have a much wider variation throughoutthis range, though their performance appears to rema<strong>in</strong> smooth at lower frequencies.We expect that by add<strong>in</strong>g additional turns to the 1mm antenna, its flat impedancecurve could be extended down to 1 GHz with little impact on its higher frequencyperformance. Us<strong>in</strong>g the 1mm design as a start<strong>in</strong>g po<strong>in</strong>t, a laboratory model couldnow be fabricated and a more accurate estimate <strong>of</strong> the impedance measured us<strong>in</strong>g avector network analyzer (VNA).7.7.7 Summary <strong>of</strong> Examples<strong>The</strong> run metrics for the examples <strong>in</strong> this chapter are summarized <strong>in</strong> Table 7.6.Provided are the number <strong>of</strong> facets and unknowns, the number <strong>of</strong> right-hand sides,the memory requirements (<strong>in</strong> MB) and the compute time for each case. <strong>The</strong> computetimes comprise the entire runtime <strong>in</strong>clud<strong>in</strong>g matrix fill, factorization and scatteredfield calculation. For cases <strong>in</strong>volv<strong>in</strong>g multiple frequencies, the compute time shownTable 7.6: Summary <strong>of</strong> ExamplesObject Facets Æ NRHS RAM CPU2m Sphere 5120 7680 1 450.0 62mWedge Cyl<strong>in</strong>der 2997 4424 720 74.68 35mWedge-Plate Cyl<strong>in</strong>der 4864 7205 720 198.1 54mPlate Cyl<strong>in</strong>der 6002 8902 720 302.3 88mBus<strong>in</strong>ess Card 5600 8290 720 262.2 79mStrip Dipole 664 663 128 1.67 2.2m½¼ Æ Bowtie 260 335 1 0.43 1s¿¼ Æ Bowtie 630 879 1 2.95 6s¼ Æ Bowtie 1138 1627 1 10.1 27s¼ Æ Bowtie 2432 3527 1 47.47 3.5mSpirals 3176 3259 1 40.53 3.1m


Three-Dimensional Problems 205is the average time for a s<strong>in</strong>gle frequency po<strong>in</strong>t. Runs were performed on an AMDAthlon MP 2600 (at 2 GHz) with 2 GB memory under Red Hat L<strong>in</strong>ux 7.3.<strong>The</strong> number <strong>of</strong> unknowns used for our benchmark plate targets is higherthan what was used <strong>in</strong> [26]. This was done to ensure a reasonably dense level <strong>of</strong>facetization near the edges <strong>of</strong> each object. <strong>The</strong> spiral antennas <strong>in</strong> Section 7.7.6 haveslightly different dimensions with an identical facet and unknown count. Because theresult<strong>in</strong>g runtimes differ very little, the average <strong>of</strong> the three cases is shown.REFERENCES[1] Rh<strong>in</strong>oceros 3D. Robert McNeel and Associates, http://www.rh<strong>in</strong>o3d.com.[2] L. Piegl and W. Tiller, <strong>The</strong> NURBS Book. Spr<strong>in</strong>ger, 1995.[3] J. Foley, A. van Dam, S. Fe<strong>in</strong>er, and J. Hughes, Computer Graphics: Pr<strong>in</strong>ciplesand Practice. Addison-Wesley, 1996.[4] D. Wilton, S. Rao, A. Glisson, D. Schaubert, M. Al-Bundak, and C. M. Butler,“Potential <strong>in</strong>tegrals for uniform and l<strong>in</strong>ear source distributions on polygonaland polyhedral doma<strong>in</strong>s,” IEEE Trans. Antennas Propagat., vol. 32, 276–281, March 1984.[5] S. Caorsi, D. Moreno, and F. Sidoti, “<strong>The</strong>oretical and numerical treatment<strong>of</strong> surface <strong>in</strong>tegrals <strong>in</strong>volv<strong>in</strong>g the free-space green’s function,” IEEE Trans.Antennas Propagat., vol. 41, 1296–1301, September 1993.[6] R. D. Graglia, “On the numerical <strong>in</strong>tegration <strong>of</strong> the l<strong>in</strong>ear shape functionstimes the 3-d green’s function or its gradient on a plane triangle,” IEEE Trans.Antennas Propagat., vol. 41, 1448–1454, October 1993.[7] T. F. Eibert and V. Hansen, “On the calculation <strong>of</strong> potential <strong>in</strong>tegrals for l<strong>in</strong>earsource distributions on triangular doma<strong>in</strong>s,” IEEE Trans. Antennas Propagat.,vol. 43, 1499–1502, December 1995.[8] J. J<strong>in</strong>, <strong>The</strong> F<strong>in</strong>ite Element <strong>Method</strong> <strong>in</strong> <strong>Electromagnetics</strong>. John Wiley and Sons,1993.[9] S. Rao, D. Wilton, and A. Glisson, “Electromagnetic scatter<strong>in</strong>g by surfaces <strong>of</strong>arbitrary shape,” IEEE Trans. Antennas Propagat., vol. 30, 409–418, May1982.[10] R. D. Graglia, D. R. Wilton, and A. F. Peterson, “Higher order <strong>in</strong>terpolatoryvector bases for computational electromagnetics,” IEEE Trans. Antennas Propagat.,vol. 45, 329–342, March 1997.[11] M. G. Duffy, “Quadrature over a pyramide or cube <strong>of</strong> <strong>in</strong>tegrands with a s<strong>in</strong>gularityat a vertex,” SIAM J. Numer. Anal, vol. 19, 1260–1262, December1982.


206 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>[12] A. Tzoulis and T. Eibert, “Review <strong>of</strong> s<strong>in</strong>gular potential <strong>in</strong>tegrals for method <strong>of</strong>moments solutions <strong>of</strong> surface <strong>in</strong>tegral equations,” Advances <strong>in</strong> Radio Science,vol. 2, 97–99, 2004.[13] W. C. Chew, J. M. J<strong>in</strong>, E. Michielssen, and J. Song, Fast and Efficient Algorithms<strong>in</strong> Computational <strong>Electromagnetics</strong>. Artech House, 2001.[14] P. Ylä-Oijala and M. Task<strong>in</strong>en, “Calculation <strong>of</strong> CFIE impedance matrix elementswith RWG and n ¢ RWG functions,” IEEE Trans. Antennas Propagat.,vol. 51, 1837–1846, August 2003.[15] R. E. Hodges and Y. Rahmat-Samii, “<strong>The</strong> evaluation <strong>of</strong> MFIE <strong>in</strong>tegrals with theuse <strong>of</strong> vector triangle basis functions,” Micro. Opt. Tech. Lett., vol. 14, 9–14,January 1997.[16] O. Ergül and L. Gürel, “Investigation <strong>of</strong> the <strong>in</strong>accuracy <strong>of</strong> the MFIE discretizedwith the RWG basis functions,” Proc. IEEE Antennas and Propagation Soc.Int. Symp., vol. 3, 3393–3396, 2004.[17] L. Gürel and O. Ergül, “S<strong>in</strong>gularity <strong>of</strong> the magnetic-field <strong>in</strong>tegral equation andits extraction,” IEEE Antennas Wireless Propag. Lett, vol. 4, 229–232, 2005.[18] J. M. Rius, E. Úbeda, and J. Parrón, “On the test<strong>in</strong>g <strong>of</strong> the magnetic field<strong>in</strong>tegral equation with RWG basis functions <strong>in</strong> the method <strong>of</strong> moments,” IEEETrans. Antennas Propagat., vol. 49, 1550–1553, November 2001.[19] O. Ergül and L. Gürel, “Solid-angle factor <strong>in</strong> the magnetic-field <strong>in</strong>tegral equation,”Microw. Opt. Technol. Lett., vol. 45, 452–456, June 2005.[20] O. Ergül and L. Gürel, “Improv<strong>in</strong>g the accuracy <strong>of</strong> the MFIE with the choice <strong>of</strong>basis functions,” Proc. IEEE Antennas and Propagation Soc. Int. Symp.,vol.3,3389–2292, 2004.[21] O. Ergül and L. Gürel, “<strong>The</strong> use <strong>of</strong> curl-conform<strong>in</strong>g basis functions for themagnetic-field <strong>in</strong>tegral equation,” IEEE Trans. Antennas Propagat., vol. 54,1917–1926, July 2006.[22] E. Úbeda and J. M. Rius, “MFIE MoM-formulation with curl-conform<strong>in</strong>gbasis functions and accurate kernel <strong>in</strong>tegration <strong>in</strong> the analysis <strong>of</strong> perfectlyconduct<strong>in</strong>g sharp-edged objects,” Microw. Opt. Technol. Lett., vol. 44, 354–358, February 2005.[23] O. Ergül and L. Gürel, “Improv<strong>in</strong>g the accuracy <strong>of</strong> the magnetic field <strong>in</strong>tegralequation with the l<strong>in</strong>ear-l<strong>in</strong>ear basis function,” Radio Sci., vol. 41, 2006.[24] O. Ergül and L. Gürel, “L<strong>in</strong>ear-l<strong>in</strong>ear basis functions for MLFMA solutions <strong>of</strong>magnetic-field and comb<strong>in</strong>ed-field <strong>in</strong>tegral equations,” IEEE Trans. AntennasPropagat., vol. 55, 1103–1110, April 2007.


Three-Dimensional Problems 207[25] E. Anderson, Z. Bai, C. Bisch<strong>of</strong>, S. Blackford, J. Demmel, J. Dongarra,J. Du Croz, A. Greenbaum, S. Hammarl<strong>in</strong>g, A. McKenney, and D. Sorensen,LAPACK Users’ Guide. Society for Industrial and Applied Mathematics,3rd ed., 1999.[26] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, “Benchmark plateradar targets for the validation <strong>of</strong> computational electromagnetics programs,”IEEE Antennas Propagat. Magaz<strong>in</strong>e, vol. 34, 52–56, December 1992.[27] G. H. Brown and J. O. M. Woodward, “Experimentally determ<strong>in</strong>ed radiationcharacteristics <strong>of</strong> conical and triangular antennas,” RCA Review, 425–452,1952.[28] C. Leat, N. Shuley, and G. Stickley, “Triangular-patch model <strong>of</strong> bowtie antennas:validation aga<strong>in</strong>st Brown and Woodward,” IEE Proc.-Microw. AntennasPropag., vol. 145, 465–470, December 1998.[29] W. L. Curtis, “Spiral antennas,” IRE Trans. Antennas Propagat., vol. 8, 298–306, May 1960.[30] J. A. Kaiser, “<strong>The</strong> archimedean two-wire spiral antenna,” IRE Trans. AntennasPropagat., vol. 8, 312–323, May 1960.


Chapter 8<strong>The</strong> Fast Multipole <strong>Method</strong>In previous chapters we discussed the computational complexities encountered <strong>in</strong>apply<strong>in</strong>g the method <strong>of</strong> moments to large problems. Foremost among these arestorage <strong>of</strong> the MOM matrix and the potentially long compute time <strong>of</strong> the matrixfactorization. Application <strong>of</strong> the iterative solvers <strong>of</strong> Section 3.4.4 can yield a shortercompute time for a small number <strong>of</strong> right-hand sides, however the runtime may stillbe high due to the required number <strong>of</strong> matrix-vector products. If the matrix does notfit <strong>in</strong>to memory, one has few options besides modify<strong>in</strong>g the problem to reduce thenumber <strong>of</strong> unknowns or the use <strong>of</strong> virtual memory, which may make the problem<strong>in</strong>tractable because <strong>of</strong> the slow access time <strong>of</strong> swap space. This motivates the searchfor a technique that can reduce or elim<strong>in</strong>ate many <strong>of</strong> these difficulties.At its core, the MOM comprises the calculation <strong>of</strong> forces on a particle bymany other particles. This belongs to the class <strong>of</strong> Æ-body problems, which are <strong>of</strong>tenencountered <strong>in</strong> areas <strong>of</strong> applied physics. As an example, if the motion <strong>of</strong> a star <strong>in</strong>space is desired, the gravitational forces on it due to all other stars must be computedat each time step. In a similar fashion, all other stars are also <strong>in</strong> motion and theforces on them must also be computed, result<strong>in</strong>g <strong>in</strong> an Æ ¢ Æ problem at eachpo<strong>in</strong>t <strong>in</strong> time. When the relative number <strong>of</strong> objects is small, a brute-force pairwisecalculation can be carried out for all time steps. When the number <strong>of</strong> particles growsto be large, however, the required number <strong>of</strong> calculations may be so large that theycannot be carried out <strong>in</strong> the available time. <strong>The</strong> fast multipole method (FMM) isa numerical algorithm <strong>in</strong>troduced by Greengard and Rokhl<strong>in</strong> [1] for reduc<strong>in</strong>g thecomputational complexity <strong>of</strong> this problem. <strong>The</strong> FMM applies an error-controlledapproximation to the system Green’s function allow<strong>in</strong>g the force due to a group <strong>of</strong>particles to be computed as if they were a s<strong>in</strong>gle particle. When applied to vectorelectromagnetic problems, the <strong>in</strong>teractions between well-separated groups <strong>of</strong> basisfunctions can be evaluated very quickly. This allows for a rapid calculation <strong>of</strong> thematrix-vector product <strong>in</strong> an iterative solver without need<strong>in</strong>g to store many <strong>of</strong> thematrix elements. This <strong>in</strong>crease <strong>in</strong> speed and reduction <strong>in</strong> memory allows us to solveexist<strong>in</strong>g problems much faster, as well as solve problems that could not have beenattempted before.209


210 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>8.1 THE MATRIX-VECTOR PRODUCTTo show how the FMM works together with the moment method, we will first look atthe matrix-vector product <strong>in</strong>side an iterative solver. <strong>The</strong> MOM matrix Z representsthe <strong>in</strong>teractions between all basis functions <strong>in</strong> the system, and the right-hand sidevector b represents the excitation <strong>of</strong> each basis function. When we compute thematrix-vector product c Zb, we are effectively comput<strong>in</strong>g the field receivedby each basis function due to radiation from all other basis functions. While theorganization <strong>of</strong> basis functions <strong>in</strong> a given geometry is somewhat arbitrary, a pair <strong>of</strong>basis functions can be said to lie <strong>in</strong> each other’s near or far region, as shown <strong>in</strong>Figure 8.1a. <strong>The</strong> basis functions <strong>in</strong> region A are considered to be “near” to the one<strong>in</strong> the center whereas those <strong>in</strong> region B are considered to be “far.”Consider now row Ñ <strong>of</strong> Z, which we label z Ñ£ . <strong>The</strong> product <strong>of</strong> this row withvector b represents the field received by basis function Ñ from all basis functionsand can be written as Ñ z Ñ£ ¡ b Þ Ñ½ Þ Ñ¾ Þ Ñ¿ Þ ÑÆ ℄ ¡ ½ ¾ ¿ Æ ℄ (8.1)Because some <strong>of</strong> the basis functions are <strong>in</strong> the “near” region <strong>of</strong> basis function Ñ andothers are <strong>in</strong> the “far” region, this dot product can be rewritten asz Ñ£ ¡ b ¢ z ÒÖÑ£ z ÖÑ££¡¢b ÒÖ b Ö£ z ÒÖÑ£ ¡ b ÒÖ · z ÖÑ£ ¡ bÖ (8.2)where the elements <strong>in</strong> the sub-vectors z ÒÖ Ñ£ and b ÒÖ conta<strong>in</strong> only the sourcefunctions <strong>in</strong> the region near to basis function Ñ, andz Ö Ñ£ and b Ö conta<strong>in</strong> onlythose <strong>in</strong> the far region. What the fast multipole method allows us to do is grouptogether basis functions <strong>in</strong> the far region, and then quickly compute the value <strong>of</strong>z ÖÑ ¡ b Ö us<strong>in</strong>g multipole expansions <strong>of</strong> those groups. <strong>The</strong> value <strong>of</strong> z ÒÖ Ñ£ ¡ b ÒÖis still computed us<strong>in</strong>g a straightforward moment method technique. As a result,the matrix elements that normally comprise z Ö Ñ£ are no longer explicitly stored <strong>in</strong>memory, only those that lie <strong>in</strong> the z ÒÖ Ñ£ are actually computed and stored <strong>in</strong> theusual way. <strong>The</strong> matrix-vector product now comprises a near multiply step us<strong>in</strong>g thenear MOM matrix and a far multiply us<strong>in</strong>g the FMM. We will discuss the practicalimplementation <strong>of</strong> these steps <strong>in</strong> this chapter.8.2 ADDITION THEOREMConsider aga<strong>in</strong> the three dimensional Green’s function (without the ½´µ constant)´r r ¼ µ ÖÖ r r¼ r r ¼ (8.3)where r ¼ and r are the source and observation po<strong>in</strong>ts, respectively. Let us now modifythis expression by add<strong>in</strong>g a small <strong>of</strong>fset d to the source location. <strong>The</strong> expression now


<strong>The</strong> Fast Multipole <strong>Method</strong> 211rbAar abr ’B(a) Near and Far Basis Functions(b) Wave TranslationFigure 8.1: Basic FMM concepts.readsr r¼·d D·dr r ¼ · d D · d(8.4)where D r r ¼ . We now def<strong>in</strong>e the addition theorem for spherical waves [2, 3]: D·dD · d ½´ ½µ д¾Ð ¡ ¡ ¡ ·½µ ½ d ´¾µÐD È Ðd ¡ D (8.5)мwhere ½´Üµ is the spherical Bessel function <strong>of</strong> the first k<strong>in</strong>d, and È Ð´Üµ is a Legendrepolynomial <strong>of</strong> order Ð. ´¾µÐ ´Üµ is a spherical Hankel function <strong>of</strong> the second k<strong>in</strong>d, i.e.Ö ´¾µ Ð ´Üµ ¾Ü À з½¾´Üµ ´¾µ дܵ Ò Ð´Üµ (8.6)where дܵ and Ò Ð´Üµ are spherical Bessel functions <strong>of</strong> the first and second k<strong>in</strong>ds,respectively. If we look closely at (8.5), we see that it is a way <strong>of</strong> writ<strong>in</strong>g a waveradiat<strong>in</strong>g from a po<strong>in</strong>t as if it was radiat<strong>in</strong>g from a different po<strong>in</strong>t nearby. Thisexpansion rema<strong>in</strong>s valid provided that d D.Us<strong>in</strong>g Stratton [4], (8.5) can be converted to a surface <strong>in</strong>tegral on the unitsphere via the relationship´ Ð µ Ð d ¡ È Ðd ¡ D ¡ ½ k¡d È Ðk ¡ D ¡ Ë (8.7)


212 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>where k is the unit direction (radial) vector on the sphere. Us<strong>in</strong>g this expression wecan now write D·dD · d k¡d ½½´ µÐ·½´¾Ð ¡ ·½µ´¾µÐD È Ð´k ¡ Dµ Ë (8.8)мwhere the <strong>in</strong>tegration and summation have been exchanged. This exchange will belegitimate provided that we truncate the summation at some f<strong>in</strong>ite order Ä, whichwe will do later. This truncation will also limit the acceptable values for D and d.Apply<strong>in</strong>g this truncation, we then write D·dD · d½ k¡d Ì Ä´ k Dµ Ë (8.9)withÌ Ä´ k Dµ Ä´ µÐ·½´¾Ð ·½µ´¾µÐ´DµÈ дk ¡ Dµ (8.10)мwhich we refer to as as the transfer function. This allows us to convert outgo<strong>in</strong>gspherical waves emanat<strong>in</strong>g from a source po<strong>in</strong>t to a set <strong>of</strong> <strong>in</strong>com<strong>in</strong>g spherical wavesat an observation po<strong>in</strong>t.8.2.1 Wave TranslationLet us use the addition theorem to calculate the Green’s function between a sourcepo<strong>in</strong>t r ¼ and observation po<strong>in</strong>t r. Consider the vectorv r r ¼ (8.11)Let us now <strong>in</strong>troduce a pair <strong>of</strong> po<strong>in</strong>ts a and b that lie <strong>in</strong> close proximity to r and r ¼ ,respectively, as shown <strong>in</strong> Figure 8.1b. <strong>The</strong> above can now be written asv ´r aµ ·´a bµ ´r ¼ bµ (8.12)orv r Ö · r r Ö ¼ (8.13)Us<strong>in</strong>g the above, we can rewrite the Green’s function as r r¼ r r ¼ ½ k ס´r Ö r Ö ¼ µ Ì Ä´ k r µ Ë (8.14)whereÌ Ä´ k r µÄм´ µ Ð ·½´¾Ð ·½µ´¾µÐr ¡ È Ðk ¡ r ¡(8.15)


<strong>The</strong> Fast Multipole <strong>Method</strong> 213This is an important result as the transfer function depends only on r . If we decideto move r and r ¼ a small distance from their previous location, the transfer functionrema<strong>in</strong>s unchanged. This allows us to compute the <strong>in</strong>teraction between any twopo<strong>in</strong>ts near a and b us<strong>in</strong>g the same transfer function. If we now want to compute thesum <strong>of</strong> Green’s functions evaluated between observation po<strong>in</strong>t r and many sourcepo<strong>in</strong>ts r Ò located close to b, we can use the expressionÆÒ½r rÒr r Ò ½ k¡r ÖÌ Ä´ k r µÆÒ½ k¡r ÖÒË (8.16)<strong>The</strong> result <strong>in</strong> (8.16) is what allows us to quickly compute a matrix-vector product.For each source po<strong>in</strong>t we calculate the value <strong>of</strong> k¡r ÖÒ, which we call the radiationfunction. <strong>The</strong> radiation functions for all source po<strong>in</strong>ts are next added coherently oraggregated to create a local field at b. This field is then transmitted us<strong>in</strong>g the transferfunction, yield<strong>in</strong>g a local field at a. This local field is then multiplied with the receivefunction <strong>of</strong> the observation po<strong>in</strong>t and <strong>in</strong>tegrated on the sphere (disaggregation),yield<strong>in</strong>g the desired sum. In perform<strong>in</strong>g an FMM far multiply, we will sort all basisfunctions <strong>in</strong>to local groups. <strong>The</strong> radiation and receive functions for all basis functionsare precomputed, as well as the transfer functions l<strong>in</strong>k<strong>in</strong>g together all group pairs.<strong>The</strong> far multiply then comprises aggregations, transfers and disaggregations <strong>of</strong> thesefunctions between groups.8.3 FMM MATRIX ELEMENTSNow that we have covered the addition theorem and wave translation, we will usethese results to derive radiation and receive functions used to compute the far EFIEand MFIE matrix elements. It is important to note that the follow<strong>in</strong>g expressionsare used to compute <strong>in</strong>dividual radiation and receive functions. Because the FMMoperates on aggregations <strong>of</strong> these functions, the <strong>in</strong>dividual matrix elements are notexplicitly available <strong>in</strong> practice. We also leave the po<strong>in</strong>ts a and b undef<strong>in</strong>ed for now,and def<strong>in</strong>e them later when we discuss how the basis functions are sorted <strong>in</strong>to groups.8.3.1 EFIE Matrix ElementsConsider the EFIE matrix elements as written <strong>in</strong> (7.11). If we redistribute thedifferential operators so they work on the Green’s function (Section 2.4.3), theelements can be written asÞÑÒ ½ f Ñ´rµ ¡ f Ò´r ¼ ½µ ½ ÖÖ¼ Ör ¼ r (8.17) f Ñ f Ò ¾ ÖApply<strong>in</strong>g the vector differential operations to the Green’s function <strong>in</strong> (8.14) yields½½ ÖÖ¼ Ö ¾ I k kÖ k¡´r Ö r Ö ¼ µ Ì Ä´ k r µ Ë (8.18)½


214 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>and <strong>in</strong>sert<strong>in</strong>g the above <strong>in</strong>to (8.17) we can then writeÞ ÑÒ ½½R Ö´kµ ¡ Ì Ä´ k r µT Ö¼´kµ Ë (8.19)where the receive function for test<strong>in</strong>g function f Ñ´rµ is R Ö´kµ I k k ¡ k¡r Öf Ñ´rµ r (8.20)f Ñand the radiation function for basis function f Ò´r ¼ µ is T Ö¼ ´kµ I k k ¡ k¡r Ö ¼ f Ò´r ¼ µ r ¼ (8.21)f ÒIf RWG functions are used, the <strong>in</strong>tegrals <strong>in</strong> (8.20) and (8.21) can be evaluatedanalytically us<strong>in</strong>g (9.58). We next note that the expression I k k ¡ f ÑÒ´r r ¼ µ (8.22)removes the components <strong>of</strong> f ÑÒ along k, preserv<strong>in</strong>g only the components alongthe spherical vectors × and × . Only these two components need to be stored foreach quadrature po<strong>in</strong>t on the unit sphere. Because the radiation, receive and transferfunctions are uncoupled from one another, they can be computed separately.8.3.2 MFIE Matrix ElementsConsider next the MFIE as written <strong>in</strong> (6.91). Because the FMM is used for basisfunctions that are not close to each other, we only need to consider the second term<strong>in</strong> this expression. Before tak<strong>in</strong>g the gradient, this term can be written as ÞÑÒ À ½f Ñ´rµ ¡ n´rµ ¢ f Ò´r ¼ µ ¢ J´r ¼ µÖ ¼ Ör ¼ r (8.23) f Ñ f ÒÖComput<strong>in</strong>g the gradient <strong>of</strong> (8.14) yieldsÖ ¼ Ö k k¡´r Ö r Ö ¼ µ Ì Ä´ kÖ r µ Ë (8.24)½and substitut<strong>in</strong>g the above <strong>in</strong>to (8.23) allows us to writeÞÑÒ À R À Ö´kµ ¡ Ì Ä´ k r µT À Ö¼´kµ Ë (8.25)where the receive function for test<strong>in</strong>g function f Ñ isR À Ö´kµ k ¢½ f k¡r Öf Ñ´rµ ¢ n´rµÑr (8.26)


<strong>The</strong> Fast Multipole <strong>Method</strong> 215and the radiation function for basis function f Ò isT À Ö¼ ´kµ f Ò k¡r Ö ¼ f Ò´r ¼ µ r ¼ (8.27)Note that the cross product with k <strong>in</strong> (8.26) also has the effect <strong>of</strong> preserv<strong>in</strong>g only the and components <strong>of</strong> R À Ñ´kµ. <strong>The</strong>refore, only these components T À Ò´kµ need tobe computed, and, as a result, T À Ö¼´kµ T Ö¼ ´kµ, which we will refer to as simplyT Ö ¼´kµ.8.3.3 CFIE Matrix ElementsComb<strong>in</strong><strong>in</strong>g the radiation and receive functions for the EFIE and MFIE allows for astraightforward calculation <strong>of</strong> CFIE matrix elements via (2.139). <strong>The</strong>se areÞ ÑÒ ½½R Ö´kµ ¡ Ì Ä´ k r µT Ö ¼´kµ Ë (8.28)whereR Ö´kµ «R Ö´kµ ·´½ «µR À Ö´kµ (8.29)8.3.4 Matrix TransposeMany <strong>of</strong> the iterative solvers discussed <strong>in</strong> Section 3.4.4 require products us<strong>in</strong>g theorig<strong>in</strong>al matrix Z as well as its transpose. If us<strong>in</strong>g the MFIE or CFIE, it is necessaryto <strong>in</strong>terchange the radiation and receive functions to obta<strong>in</strong> the transpose. This is nottypically mentioned <strong>in</strong> the literature.8.4 ONE-LEVEL FAST MULTIPOLE ALGORITHMWe are now ready to look at how the FMM and the moment method can beused together. We consider a one-level fast multipole algorithm and the practicalissues <strong>in</strong>volved <strong>in</strong> its numerical implementation. While the FMM is not limited toa particular geometry or basis function, we will focus on facet geometry and RWGfunctions as these are commonly used <strong>in</strong> MOM applications. We will then use manyelements <strong>of</strong> the one-level FMM to develop the multi-level fast multipole algorithm<strong>in</strong> the next section.8.4.1 Group<strong>in</strong>g <strong>of</strong> Basis FunctionsOur first task is to group together basis functions, so we subdivide the object’sbound<strong>in</strong>g box <strong>in</strong>to Å small equally sized cubes with sides and diagonals <strong>of</strong> lengthÛ and Ô ¿Û, respectively. <strong>The</strong> length Û is usually set to some fraction <strong>of</strong> thewavelength, such as ¾ or . We next assign basis functions to <strong>in</strong>dividual cubes


216 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>by test<strong>in</strong>g the center <strong>of</strong> each edge aga<strong>in</strong>st the bound<strong>in</strong>g box <strong>of</strong> a cube, and any emptycubes that rema<strong>in</strong> are discarded. Once this process is complete, we are left with a set<strong>of</strong> groups as shown <strong>in</strong> Figure 8.2a (shown <strong>in</strong> two-dimensions Ô for simplicity), whereeach cube has a bound<strong>in</strong>g sphere <strong>of</strong> diameter ¿Û.8.4.2 Near and Far GroupsNow that we have created groups <strong>of</strong> basis functions, we can compute the Green’sfunction between po<strong>in</strong>ts <strong>in</strong> two groups via (8.14), assum<strong>in</strong>g these groups are farenough apart. To do this we now assign the po<strong>in</strong>ts a and b to be the center <strong>of</strong>each bound<strong>in</strong>g sphere. Whether two groups lie near or far from each other is nowa measure <strong>of</strong> the relative separation <strong>of</strong> these spheres. If we wish (8.5) to rema<strong>in</strong>valid, then strictly speak<strong>in</strong>g, the distance r between groups must be greater thanor equal to one diameter. If we use a grid <strong>of</strong> equally-sized bound<strong>in</strong>g cubes, thisrequirement is satisfied if the groups are separated by at least one box. If separated <strong>in</strong>one <strong>of</strong> the key directions as shown <strong>in</strong> Figure 8.2b, the m<strong>in</strong>imum separation distancebetween centers is ¾Û. <strong>The</strong>refore, for each group, we create a list <strong>of</strong> near and fargroups. <strong>The</strong> list <strong>of</strong> near groups references the group itself and all directly adjacentgroups, and the rema<strong>in</strong><strong>in</strong>g groups are added to the list <strong>of</strong> far groups.8.4.3 Number <strong>of</strong> MultipolesTo compute the transfer function (8.10) we must set the truncation limit Ä, referred toas the number <strong>of</strong> multipoles. It is a function <strong>of</strong> the diameter <strong>of</strong> the bound<strong>in</strong>g spheresas well as the wavenumber, and expressions for its computation have been determ<strong>in</strong>edempirically. For s<strong>in</strong>gle precision calculations, Rokhl<strong>in</strong> suggests the follow<strong>in</strong>gformula [2]:Ä ·ÐÓ´ · µ (8.30)and for double precision,Ä ·½¼ÐÓ´ · µ (8.31)<strong>The</strong> follow<strong>in</strong>g revised expression was later suggested by Chew and Song [5]:Ä · ¬´µ ½¿ (8.32)where ¬ is the number <strong>of</strong> digits <strong>of</strong> required accuracy. It is suggested that ¬ issufficient for reasonable accuracy.8.4.3.1 Limit<strong>in</strong>g the Number <strong>of</strong> MultipolesGroup<strong>in</strong>g by cubes results <strong>in</strong> variable distances r between groups. This leads tonumerical problems if we use (8.32) to obta<strong>in</strong> a s<strong>in</strong>gle value <strong>of</strong> Ä. This is becausethe spherical Hankel function ´¾µÐ ´Üµ becomes highly oscillatory for fixed Ü and<strong>in</strong>creas<strong>in</strong>g Ð. As a result, we cannot take Ä to be much larger than the argument <strong>of</strong>


<strong>The</strong> Fast Multipole <strong>Method</strong> 217r ab(a) Cubes and Bound<strong>in</strong>g Sphereswar abbd(b) Cube Dimensions and SeparationFigure 8.2: One-level FMM group<strong>in</strong>g.


218 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>the Hankel function, r . <strong>The</strong>refore, we suggest limit<strong>in</strong>g the value <strong>of</strong> Ä to them<strong>in</strong>imum <strong>of</strong> (8.32) and r . This has the effect <strong>of</strong> reduc<strong>in</strong>g the accuracy <strong>of</strong> theexpansion for the groups with smallest separations, but <strong>in</strong> practice this does not havea significant impact on the results.8.4.4 Sampl<strong>in</strong>g Rates and IntegrationFor numerical <strong>in</strong>tegration, the radiation, receive and transfer functions must becomputed and stored for a number <strong>of</strong> discrete directions on the unit sphere. We mustchoose the sampl<strong>in</strong>g rate to efficiently utilize the available system memory whilestill meet<strong>in</strong>g the Nyquist rate. Because these functions are <strong>of</strong> f<strong>in</strong>ite (or quasi-f<strong>in</strong>ite)bandwidth [6], we need to <strong>in</strong>vestigate an efficient means <strong>of</strong> <strong>in</strong>tegrat<strong>in</strong>g the products<strong>of</strong> these functions on the sphere.Consider a function ½´Üµ with bandwidth , which we sample at a rate Æ ½ .Consider a similar function ¾´Üµ <strong>of</strong> bandwidth sampled at rate Æ ¾ . To computethe <strong>in</strong>tegral <strong>of</strong> the product <strong>of</strong> these functions Ü¾Ü ½ ½´Üµ ¾´Üµ Ü (8.33)we use the quadrature formula Ü¾Ü ½ ½´Üµ ¾´Üµ Ü Æ ¿½Û´Ü µ ½´Ü µ ¾´Ü µ (8.34)where we have used a new sampl<strong>in</strong>g rate Æ ¿ . Because the bandwidth <strong>of</strong> the product ½´Üµ ¾´Üµ is the sum <strong>of</strong> the <strong>in</strong>dividual bandwidths, the sample rate Æ ¿ must besufficiently high to represent the bandwidth <strong>of</strong> the product. This presents us with adilemma, as the sampl<strong>in</strong>g rate required for <strong>in</strong>tegration on the sphere is greater thanwhat is needed to store the radiation, receive and transfer functions <strong>in</strong>dividually.While a brute-force approach would simply compute all functions at this highsampl<strong>in</strong>g rate, this is wasteful <strong>in</strong> terms <strong>of</strong> memory. It is more efficient to store the<strong>in</strong>dividual functions at a lower sampl<strong>in</strong>g rate and <strong>in</strong>terpolate or upsample them to thehigher sampl<strong>in</strong>g rate before comput<strong>in</strong>g the products. Interpolation has consequences<strong>in</strong> terms <strong>of</strong> additional compute time required to upsample functions, as well as errors<strong>in</strong>troduced by the <strong>in</strong>terpolation itself. To simplify the present discussion, we willassume that all functions are sampled at the rate required for <strong>in</strong>tegration. We willthen return to the subject <strong>of</strong> <strong>in</strong>terpolation <strong>in</strong> Section 8.5.8.4.4.1 Harmonic RepresentationTo determ<strong>in</strong>e the sampl<strong>in</strong>g rates required for numerical <strong>in</strong>tegration, let us writethe transfer and exponential functions as a sum <strong>of</strong> band-limited spherical harmonic


<strong>The</strong> Fast Multipole <strong>Method</strong> 219functions. We note first thatwhere ÑÐÈ Ð´a ¡ bµ¾Ð ·½are the spherical harmonicsÐÑ Ð Ñ£Ð ´aµÐ Ñ ´bµ (8.35)ÐÑ ´ µ È ÑÐ ´Ó× µ Ñ (8.36)ÈÐÑ ´Ó× µ is the normalized associated Legendre polynomial given byÈÐÑ ´Üµ ׾Р·½´Ð ѵ ´Ð · ѵ ´½ ܾ Ѿ ÑµÜ Ñ È Ð´Üµ (8.37)and a and b are functions <strong>of</strong> and . Us<strong>in</strong>g the the Gegenbauer theorem, a¡k ½Ð¼´ µ Ð ¾Ð ·½µ Ð ak ¡ È Ð´a ¡ kµ (8.38)we can then write the transfer and exponential functions asandÌ Ä´ k Dµ Äмз½´ µ ´¾µÐD ¡ н ¡ Ð a¡ k ´ µ Ð Ð aÐ¼Ñ ÐÑ Ð Ñ£Ð ´ Dµ Ð Ñ ´kµ (8.39) ѣР´aµÐ Ñ ´kµ (8.40)where the truncation <strong>of</strong> (8.32) can also be applied to (8.40) with low error [7].Apply<strong>in</strong>g (8.32), the transfer functions will have a bandwidth <strong>of</strong> Ä and theradiation and receive functions a bandwidth <strong>of</strong> ľ, as they are dependent on theradius <strong>of</strong> the bound<strong>in</strong>g spheres and not the diameter. <strong>The</strong> product <strong>of</strong> these functionshas a comb<strong>in</strong>ed bandwidth <strong>of</strong> ¾Ä. <strong>The</strong> present quadrature scheme is based on theexact <strong>in</strong>tegration <strong>of</strong> band-limited spherical harmonic functions ÐÑ ´ µ <strong>of</strong> orderÐ ¾Ä. <strong>The</strong> optimal choice <strong>in</strong> this case is an Ä- po<strong>in</strong>t Gauss-Legendre rule <strong>in</strong> anda ¾Ä ·½- po<strong>in</strong>t uniform Simpson’s rule <strong>in</strong> , which requires a total <strong>of</strong> ´¾Ä ·½µÄsamples on the sphere [3, 8]. In a practical FMM implementation these functions willundergo <strong>in</strong>terpolation, which impacts the actual sampl<strong>in</strong>g rate used. We discuss thisimpact <strong>in</strong> Section 8.5.3.8.4.5 Transfer Functions<strong>The</strong> transfer functions between far group pairs must be precomputed and stored. Asthese functions depend on the direction vector between group centers, they must be


220 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>computed for all unique vectors r . Group<strong>in</strong>g by cubes results <strong>in</strong> a set <strong>of</strong> thesevectors whose lengths are multiples <strong>of</strong> the box size Û <strong>in</strong> the card<strong>in</strong>al directions. Asa result, many <strong>of</strong> these vectors may be repeated among different group pairs, and <strong>in</strong>such cases only one transfer function is needed. When generat<strong>in</strong>g far groups, a list<strong>of</strong> unique transfer functions should be generated and each group pair assigned theappropriate transfer function from this list.8.4.6 Radiation and Receive Functions<strong>The</strong> radiation and receive functions (8.20), (8.21), (8.26) and (8.27) should alsobe precomputed and stored for each basis function. If us<strong>in</strong>g the EFIE, only theradiation functions need to be computed, as the correspond<strong>in</strong>g receive functions canbe obta<strong>in</strong>ed by tak<strong>in</strong>g the conjugate. If us<strong>in</strong>g the MFIE or CFIE, the radiation andreceive functions are stored separately.8.4.7 Near-Matrix ElementsMatrix elements between basis functions <strong>in</strong> near groups are computed the traditionalway. Loops over triangle pairs can be used to compute these near elements, however,the groups to which the basis functions belong are compared to determ<strong>in</strong>e if theyare near or far groups. Only if they are near groups are the matrix elements for thatbasis function pair computed. Instead <strong>of</strong> allocat<strong>in</strong>g space for a global system matrix,a standard sparse matrix storage scheme is used.8.4.7.1 Compressed Sparse Row FormatA sparse matrix storage scheme called the compressed sparse row format [9] is usedto store the near matrix. To illustrate the format, consider the follow<strong>in</strong>g sparse matrix:A ¾which is <strong>of</strong> rank Æ and has Æ Þ½ ¾¼ ¼ ¼¿ ¼ ¼¼ ¼¼ ¼½¼ ¼¼ ¼¼ ¼ ½½comprises three vectors a, j and i, which are <strong>in</strong> this casea ¢ ½¾¿½¼½½ £¿n ¢ ½¾½¾¿¾¿¿ £(8.41) ½½ nonzero entries. <strong>The</strong> CSR formatm ¢ ½¿½½½¾ £ (8.42)<strong>The</strong> array a is <strong>of</strong> length Æ Þ and conta<strong>in</strong>s the nonzero elements <strong>of</strong> A assembled rowby row. Array n is also <strong>of</strong> length Æ Þ and conta<strong>in</strong>s the column <strong>in</strong>dices <strong>of</strong> the matrix


<strong>The</strong> Fast Multipole <strong>Method</strong> 221elements ÑÒ as stored <strong>in</strong> a. Array m is <strong>of</strong> length Æ ·½, and conta<strong>in</strong>s <strong>of</strong>fsets thatpo<strong>in</strong>t to the beg<strong>in</strong>n<strong>in</strong>g <strong>of</strong> each row <strong>in</strong> a and n. Note that the last element <strong>of</strong> m conta<strong>in</strong>san <strong>of</strong>fset to the fictional row Ñ Æ ·½. <strong>The</strong> total storage requirement <strong>of</strong> the CSRformat <strong>in</strong> bytes is thereforeÆ ÝØ× Æ Þ × ·´Æ Þ · Æ ·½µ× (8.43)where × and × are the sizes <strong>of</strong> the float and <strong>in</strong>teger types, respectively.8.4.8 Matrix-Vector ProductWe are now ready to compute the matrix-vector product c Zb. <strong>The</strong> product vectorelements can be written Ñ ÒÖÑ· Ö Ñ (8.44)where ÒÖÑ and ÖÑ are the near and far multiply contributions, respectively. <strong>The</strong>product vector elements <strong>in</strong> the near multiply can be written as ÒÖÑ Ò¾Þ ÑÒ Ò (8.45)where basis function Ñ belongs to group and the groups are those near to ,<strong>in</strong>clud<strong>in</strong>g itself. <strong>The</strong> complete near-multiply step loops over all near-group pairscomput<strong>in</strong>g parts <strong>of</strong> the matrix-vector product between each pair. <strong>The</strong> product vectorelements computed <strong>in</strong> the far-multiply step can be written asà ÖÑ Û ×´k Ô µR Ñ´k Ô µ ¡Ô½Ì Ä´ k Ô r µÒ¾T Ò´k Ô µ (8.46)<strong>The</strong> <strong>in</strong>nermost part <strong>of</strong> (8.46) is an aggregation <strong>of</strong> radiation functions T Ò´kµ <strong>in</strong> groups that are far away from group and basis function Ñ. <strong>The</strong> aggregated field isthen transmitted to the local group via multiplication with the appropriate transferfunction Ì Ä´ k r µ. <strong>The</strong> received field is multiplied with the receive functionR Ñ´kµ and <strong>in</strong>tegrated on the sphere (disaggregated). To efficiently implement thefar-multiply step, storage space for aggregated and received fields first should beallocated for all groups. <strong>The</strong> radiation functions <strong>in</strong> each group are then aggregatedand stored <strong>in</strong> the local array. A loop is then performed over all groups, where eachaggregated field is transmitted via the correct transfer function to every far group.When this is complete, each group will have a local array that is a sum <strong>of</strong> fieldsreceived from all far groups. A loop is aga<strong>in</strong> performed over all groups, where thisreceived field is multiplied with the <strong>in</strong>dividual receive functions <strong>in</strong> that group and<strong>in</strong>tegrated on the sphere. <strong>The</strong> result is then added to the correspond<strong>in</strong>g product vectorelement.


222 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>8.4.9 Computational ComplexityLet us summarize the computational complexity <strong>of</strong> the matrix-vector product. If weassume there are Æ basis functions divided among groups, each group will haveabout Å Æ basis functions and near groups (<strong>in</strong>clud<strong>in</strong>g itself). <strong>The</strong> total cost<strong>of</strong> the near multiply is thenÌ ½ ½ ÆÅ (8.47)where ½ is platform and s<strong>of</strong>tware dependent. <strong>The</strong> cost <strong>of</strong> aggregat<strong>in</strong>g the radiationfunctions È Ò¾ T Ò´kµ for all basis functions is<strong>The</strong> cost for comput<strong>in</strong>g all transfers È Ì Ä´ k r µ isÌ ¾ ¾ ÃÆ (8.48)Ì ¿ ¿ ô µ (8.49)and the cost <strong>of</strong> disaggregations is similar to the aggregations and isÌ ÃÆ (8.50)Numerical analysis shows the total computational cost <strong>of</strong> the matrix-vector multiplyto be [3]Ì ½ Æ · ¾ Æ ¾ (8.51)Ôwhich is m<strong>in</strong>imized by choos<strong>in</strong>g ¾ Æ ½ . This results <strong>in</strong> an algorithmwhose complexity is Ç´Æ ¿¾ µ.8.5 MULTI-LEVEL FAST MULTIPOLE ALGORITHM (MLFMA)In the one-level algorithm, the number <strong>of</strong> transfers grows exponentially with thenumber <strong>of</strong> groups. While it <strong>of</strong>fers a potential Ç´Æ ¿¾ µ complexity and an overallmemory sav<strong>in</strong>gs, greater efficiency can be obta<strong>in</strong>ed by extend<strong>in</strong>g the one-levelalgorithm to a multi-level one. <strong>The</strong> multi-level fast multipole algorithm (MLFMA)applies the aspects <strong>of</strong> a one-level algorithm to groups arranged <strong>in</strong> a tiered hierarchy,reduc<strong>in</strong>g the total number <strong>of</strong> transfers and greatly accelerat<strong>in</strong>g the fast multiply part<strong>of</strong> the matrix-vector product.8.5.1 Group<strong>in</strong>g via OctreeFirst let us consider the impact <strong>of</strong> us<strong>in</strong>g larger cubes <strong>in</strong> the one-level FMM. Thisreduces the overall number <strong>of</strong> transfers at the expense <strong>of</strong> <strong>in</strong>creas<strong>in</strong>g the size <strong>of</strong>the near matrix, and shifts more <strong>of</strong> the compute time to the near-matrix product.<strong>The</strong> sampl<strong>in</strong>g rate on the unit sphere will also <strong>in</strong>crease, result<strong>in</strong>g <strong>in</strong> larger storagerequirements for the radiation and receive functions. If we can devise a way to


<strong>The</strong> Fast Multipole <strong>Method</strong> 223(a) Octree Level 1 (b) Octree Level 2 (c) Octree Level 3Figure 8.3: Octree levels 1–3.use large and small boxes simultaneously, we can reta<strong>in</strong> the storage benefits <strong>of</strong>smaller groups while reduc<strong>in</strong>g the transfer count. Subdivision <strong>of</strong> the geometry <strong>in</strong>to ahierarchy <strong>of</strong> progressively smaller cubes allows us to do this. By apply<strong>in</strong>g a treebasedsubdivision scheme, larger groups can be divided <strong>in</strong>to recursively smallergroups with a clear parent-child relationship. An excellent choice for this is the octree[10], a commonly used hierarchical bound<strong>in</strong>g box scheme <strong>in</strong> computer graphics.To generate an octree, the object is first enclosed <strong>in</strong> a s<strong>in</strong>gle large cube. This cubeis then divided <strong>in</strong>to eight smaller cubes, which are themselves divided <strong>in</strong>to eightsmaller cubes, and so on, as illustrated <strong>in</strong> Figure 8.3. Edges are sorted <strong>in</strong>to cubes ateach level by test<strong>in</strong>g them aga<strong>in</strong>st the bound<strong>in</strong>g box <strong>of</strong> each cube. This process isquite fast as only those edges belong<strong>in</strong>g to a parent node become candidates for itschildren. <strong>The</strong> subdivision is stopped when the size <strong>of</strong> the cubes reaches some fraction<strong>of</strong> a wavelength, such as ¾ or . <strong>The</strong> groups on this f<strong>in</strong>est level <strong>of</strong> the tree (levelÐ ÑÜ ) are called leaf boxes.Lists <strong>of</strong> near and far groups are constructed on all levels except the firsttwo. <strong>The</strong> boxes on these levels are all near groups, and will not be used <strong>in</strong> theMLFMA algorithm. Beg<strong>in</strong>n<strong>in</strong>g at the coarsest level (level 3), all near and far boxesare identified as usual. On the higher levels, only those child boxes that belong tocubes adjacent to a parent box (<strong>in</strong>clud<strong>in</strong>g itself) are considered as candidate near andfar groups for its children. This greatly reduces the average number <strong>of</strong> far groups andalso limits the number <strong>of</strong> unique transfer vectors to a maximum <strong>of</strong> 316 on each level.This is especially advantageous as the total number <strong>of</strong> transfers can be very high <strong>in</strong>larger problems.8.5.2 Matrix-Vector Product<strong>The</strong> matrix-vector product <strong>in</strong> the MLFMA operates on levels Ð ¾ <strong>in</strong> the tree.Because the radiation functions are stored on the f<strong>in</strong>est level, an upward pass throughthe tree must be made where the radiation functions <strong>of</strong> the children are aggregated


224 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Near nodesFar nodesLocal nodeFigure 8.4: Transfers on MLFMA level Å ¾.Far nodesNearnodesLocalnodeFar nodesNear nodesFigure 8.5: Transfers on MLFMA level Å ½.and passed up to their parents us<strong>in</strong>g <strong>in</strong>terpolation. A downward pass then beg<strong>in</strong>sat the coarsest level, where transfers are made between all far nodes, and then thereceived fields from all parent nodes are passed down to their children by comb<strong>in</strong><strong>in</strong>g<strong>in</strong>tegration on the sphere and “reverse <strong>in</strong>terpolation” (anterpolation). <strong>The</strong> transfer


<strong>The</strong> Fast Multipole <strong>Method</strong> 225Far nodesNearnodesFarnodesLocalnodeFigure 8.6: Transfers on MLFMA level Å.scheme <strong>in</strong> the MLFMA is illustrated <strong>in</strong> Figures 8.4–8.6. Figure 8.4 depicts thetransfers between groups on one <strong>of</strong> the coarser levels. On the next highest level <strong>in</strong>Figure 8.5, all the far groups are children <strong>of</strong> groups considered to be near on theprevious level. This is further emphasized on the f<strong>in</strong>est level <strong>in</strong> Figure 8.6, where thenumber <strong>of</strong> far transfers is now far less than it would be <strong>in</strong> a one-level algorithm. Wenow describe the upward and downward passes <strong>in</strong> detail.8.5.2.1 Upward Pass (Aggregation)<strong>The</strong> aggregation step comprises an upward sweep through the tree. We beg<strong>in</strong> at thef<strong>in</strong>est level Ð ÑÜ , where aggregated local fields C дkµ are computed <strong>in</strong> <strong>in</strong>dividualgroups us<strong>in</strong>g the radiation functions T Ò´kµ and excitation vector elements Ò correspond<strong>in</strong>gto basis functions <strong>in</strong> each group, i.e.,C дkµ ÒT Ò´k Ð µ Ò (8.52)<strong>The</strong> aggregated fields on the coarser levels are computed from phase shifted versions<strong>of</strong> the fields from children nodes, as illustrated <strong>in</strong> Figure 8.7. This can be written asC Ð ½´k´Ð ½µ µ k´Ð ½µ¡´r Ð r Ð ½ µ C дk´Ðµ µ (8.53)where ´r Ð r Ð ½µ is the vector from parent to child center. By apply<strong>in</strong>g the phaseshift, C Ð ½´k´Ð ½µ µ will have twice the bandwidth <strong>of</strong> C дk Ð µ and therefore requiresthe higher sampl<strong>in</strong>g rate à Р½ . Because C дk Ð µ was sampled at à Рpo<strong>in</strong>ts on thesphere, it must be upsampled to à Р½ po<strong>in</strong>ts before apply<strong>in</strong>g the phase shift. This


226 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Figure 8.7: Upward pass <strong>in</strong> MLFMA.<strong>in</strong>terpolation can be written as [3]C Ð ½k´Ð ½µÔ¡ k´Ð ½µÔ¡´r Ð r Ð ½ µ à ÐÕ½Û ÔÕ C Ðk ÐÕ¡(8.54)where W is a à Р½ ¢ à Р<strong>in</strong>terpolation matrix with elements Û ÔÕ , which allowsthe calculation <strong>of</strong> samples on the coarser level from those on the f<strong>in</strong>er level. Notethat the transpose ¡ <strong>of</strong> W can be used to “reverse <strong>in</strong>terpolate” the values <strong>of</strong> C дk Ð µ ifC Ð ½k´Ð ½µ is known, a key element <strong>of</strong> the downward pass.8.5.2.2 Downward Pass (Disaggregation)Consider a group on level Ð ½ <strong>in</strong> the tree. After all transfers on this level havebeen completed, this group conta<strong>in</strong>s a local field B´Ð ½µ´k´Ð ½µ µ compris<strong>in</strong>g a sum <strong>of</strong>transfers from all its far nodes. Disaggregation with the receive function R Ñ´k´Ð ½µ µcan be written asÁ ôР½µÔ½Û ×´k´Ð ½µÔ µR Ñ´Ð ½µ´k´Ð ½µÔ µ ¡ B Ð ½k´Ð ½µÔ¡(8.55)Because we store the receive function R Ñ´kµ on the f<strong>in</strong>est level, it must bepassed upward via <strong>in</strong>terpolations and phase shifts to the coarser level to obta<strong>in</strong>R Ñ´Ð ½µÔ´k´Ð ½µ µ. To do this for <strong>in</strong>dividual receive functions will be extremely <strong>in</strong>efficient,however, and another approach must be devised. To solve this problem,consider aga<strong>in</strong> the upsampl<strong>in</strong>g operation <strong>of</strong> (8.54). Substitut<strong>in</strong>g this expression <strong>in</strong>to


<strong>The</strong> Fast Multipole <strong>Method</strong> 227(8.55) and <strong>in</strong>terchang<strong>in</strong>g the order <strong>of</strong> the summations yieldsà ÐÁ Õ½R Ñдk ÐÕ µ ¡Ã´Ð ½µÔ½Û ÔÕ B´Ð ½µ´k´Ð ½µÔ µ k´Ð ½µÔ¡´r Ð r Ð ½ µ Û ×´k´Ð ½µÔ µ(8.56)which is called adjo<strong>in</strong>t <strong>in</strong>terpolation or anterpolation [3]. If we look closely, wesee that this expression still upsamples the receive function R Ñдk Ð µ and performs<strong>in</strong>tegration on the sphere us<strong>in</strong>g weights Û ×´k´Ð ½µ µ on the coarser level. Because the<strong>in</strong>nermost sum <strong>in</strong> (8.56) is now <strong>in</strong>dependent <strong>of</strong> the receive function, it can be usedto create a “filtered” or “downsampled” field at the lesser sampl<strong>in</strong>g rate on the f<strong>in</strong>erlevel, allow<strong>in</strong>g us to work with each receive function <strong>in</strong>dividually.We can now summarize the downward (disaggregation) pass as follows. Webeg<strong>in</strong> at the coarsest level (3) and perform transfers between all far groups. Becausethis is the lowest level, no anterpolations are required. We now move to the nexthigher level, and perform all transfers between far groups. To these fields we nowadd the anterpolated fields from the parent groups. This operation is then repeatedfor all higher levels until we reach the f<strong>in</strong>est level. After transfers and anterpolationsare done on this level, we can apply the outermost sum <strong>in</strong> (8.56) us<strong>in</strong>g the receivefunctions <strong>in</strong> each group, and add the results to the appropriate product vectorelements. This completes the matrix-vector multiply us<strong>in</strong>g the MLFMA.8.5.3 Interpolation AlgorithmsGiven a function ´ µ on the unit sphere, let us compute à ½ Æ ½ ¢Æ ½ samples<strong>of</strong> this function and store them <strong>in</strong> vector a. <strong>The</strong> <strong>in</strong>terpolation problem <strong>in</strong>volvescomput<strong>in</strong>g one or more new samples <strong>of</strong> ´ µ us<strong>in</strong>g only the values stored <strong>in</strong> a.If we now wish to compute Æ ¾ Æ ¾ ¢ Æ ¾ samples <strong>in</strong> a new vector b, this can beaccomplished mathematically asb Wa (8.57)where W is an Æ ¾ ¢ Æ ½ matrix <strong>of</strong> carefully chosen <strong>in</strong>terpolation coefficients.Individual elements can be written as Æ ½½Û (8.58)If Æ ¾ Æ ½ , this operation upsamples a,andifÆ ½ Æ ¾ it downsamples a.<strong>Method</strong>s for comput<strong>in</strong>g (8.57) fall <strong>in</strong>to two general categories, global andlocal. In a global <strong>in</strong>terpolation, the matrix W is dense and each new sample iscomputed us<strong>in</strong>g all the samples <strong>in</strong> a. For a band-limited function, this <strong>in</strong>terpolationcan be exact provided the function is sampled at or above the Nyquist rate. Ina local <strong>in</strong>terpolation, W is sparse and operates only on a subset <strong>of</strong> the orig<strong>in</strong>alsamples. Sparse <strong>in</strong>terpolations do not typically produce an exact result, however


228 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>they are usually much faster and their error can be controlled. In the MLFMA, the<strong>in</strong>terpolation and anterpolation steps must be fast, otherwise the performance <strong>of</strong> thematrix-vector multiply will suffer. <strong>The</strong>refore, our <strong>in</strong>terpolation scheme will use alocal <strong>in</strong>terpolation that atta<strong>in</strong>s a reasonable level <strong>of</strong> accuracy.8.5.3.1 Global Interpolation by Spherical HarmonicsA band-limited function on the sphere can be <strong>in</strong>terpolated us<strong>in</strong>g the sphericalharmonic transform. In this, a function is said be band-limited with bandwidth Äif it can be written as [11] ´ µ ÄÐм Ñ Ð Ñ Ð ÑÐ ´ µ (8.59)where Ñ Ðare the spherical harmonic coefficients, and ÐÑ are the spherical harmonics<strong>of</strong> (8.36). <strong>The</strong> coefficients Ñ Ð are obta<strong>in</strong>ed via the <strong>in</strong>tegral over the unit sphere Ñ Ð½ ÑÐ ´ µ ´ µ ×Ò (8.60)which can be evaluated via a Gauss-Legendre quadrature <strong>in</strong> and Simpson’s rule <strong>in</strong>. Once the coefficients have been calculated, an <strong>in</strong>terpolated value can be evaluatedat any angle pair ´ ¼ ¼ µ as ´ ¼ ¼ µÄÐм Ñ Ðand substitution <strong>of</strong> (8.60) <strong>in</strong>to the above yields ´ ¼ ¼ µÄÐм Ñ Ð Ñ£Ð ´ ¼ ¼ µÃ ½½ Ñ Ð Ñ£Ð ´ ¼ ¼ µ (8.61)Û ÑÐ ´ µ ´ µ (8.62)where ´ µ has been sampled at à ½ po<strong>in</strong>ts and Û is the quadrature weight on thesphere. <strong>The</strong> summations can next be exchanged, yield<strong>in</strong>g ´ ¼ ¼ µÃ ½ÄÛ ½ мThis leads to the <strong>in</strong>terpolation matrix W with elements given byÛ Û ÐÑ ÐÄм Ñ Ð Ñ£Ð ´ ¼ ¼ µÐ Ñ ´ µ ´ µ (8.63)РѣР´ µÐ Ñ ´ µ (8.64)Under this method, the matrix W is full. To obta<strong>in</strong> an efficient <strong>in</strong>terpolation, thismethod can be modified to utilize only those coefficients <strong>in</strong> the range <strong>of</strong> the <strong>in</strong>terpolatedvalue ´ µ. A method <strong>of</strong> sparsify<strong>in</strong>g the coefficients <strong>of</strong> (8.64) is discussedextensively <strong>in</strong> [8].


<strong>The</strong> Fast Multipole <strong>Method</strong> 2298.5.3.2 Global Interpolation By FFTFor a band-limited function, the fast fourier transform (FFT) can be used <strong>in</strong> theFMM to produce an upsampled version <strong>of</strong> ´ µ that is free from error. This can beaccomplished by perform<strong>in</strong>g the forward FFT <strong>in</strong> each dimension, zero padd<strong>in</strong>g bythe appropriate amount, and tak<strong>in</strong>g the <strong>in</strong>verse FFT [12]. Because the FFT requiresequally spaced samples <strong>in</strong> each dimension, the <strong>in</strong>tegration <strong>in</strong> must be changedto a uniformly spaced quadrature rule. Because this would require more samplepo<strong>in</strong>ts <strong>in</strong> than the Gauss-Legendre quadrature, one could <strong>in</strong>stead use the Fourier<strong>in</strong>terpolation <strong>in</strong> and the dense <strong>in</strong>terpolation <strong>of</strong> Section (8.5.3.1) along . <strong>The</strong> dense<strong>in</strong>terpolation could then be improved via the spectral truncation method <strong>of</strong> [11].8.5.3.3 Local Interpolation By Lagrange PolynomialsLagrange polynomials are an effective means <strong>of</strong> creat<strong>in</strong>g an <strong>in</strong>terpolator with localsupport. Given Æ samples <strong>of</strong> a function ´Üµ, this method generates a uniquepolynomial <strong>of</strong> order Æ ½ to <strong>in</strong>terpolate the samples. New values ´Ü ¼ µ can then bewritten as ´Ü ¼ µwhere the weights can be written asÆ½Û ´Ü ¼ µ ´Ü µ (8.65)Û ´Ü ¼ µ ´Ü¼ Ü ½ µ ¡¡¡´Ü ¼ Ü ½ µ´Ü ¼ Ü ·½ µ ¡¡¡´Ü ¼ Ü Æ·½ µ´Ü Ü ½ µ ¡¡¡´Ü Ü ½ µ´Ü Ü ·½ µ ¡¡¡´Ü Ü Æ·½ µ(8.66)orÛ ´Ü ¼ µÆ½Ü ¼Ü Ü Ü (8.67)Interpolation on the sphere employs an Æ ¢ Æ <strong>in</strong>terpolation stencil as illustrated <strong>in</strong>Figure 8.8 for Æ = 3. In this case, W will have n<strong>in</strong>e nonzero entries per row. <strong>The</strong>choice <strong>of</strong> a quadratic or cubic <strong>in</strong>terpolator (Æ =3,Æ = 4) can provide reasonableresults with small error provided that oversampl<strong>in</strong>g is applied. An error analysis<strong>of</strong> this method is discussed <strong>in</strong> [13]. This method could also be comb<strong>in</strong>ed with theFFT <strong>in</strong>terpolation outl<strong>in</strong>ed <strong>in</strong> Section 8.5.3.2. We use the Lagrange stencil method<strong>in</strong> Serenity with Æ = 3 and an oversampl<strong>in</strong>g factor <strong>of</strong> ¾ at each step with verygood results.8.5.4 Transfer FunctionsIn the octree, boxes on level Ð have a width and bound<strong>in</strong>g sphere diameter <strong>of</strong> Û Ð and Ð , respectively. A set <strong>of</strong> transfer functions should be computed for all unique transfervectors on each level (potentially 316). <strong>The</strong> number <strong>of</strong> multipoles Ä is determ<strong>in</strong>edvia (8.32) us<strong>in</strong>g the values <strong>of</strong> Û Ð and Ð on each level, and should be limited for


230 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong> ( ’ , ’ ) Figure 8.8: Interpolation stencil.the closer groups as before. Because the maximum number <strong>of</strong> transfer functionsis limited, they can be precomputed and stored at the sampl<strong>in</strong>g rate required for<strong>in</strong>tegration on each level. This elim<strong>in</strong>ates the need to upsample the transfer functionswhen needed. If the Lagrange <strong>in</strong>terpolator <strong>of</strong> Section 8.5.3.3 is used <strong>in</strong> the MLFMA,the transfer functions should be oversampled by a factor <strong>of</strong> , result<strong>in</strong>g <strong>in</strong> a total <strong>of</strong>(Æ Ä Æ ´¾Ä ·½µ) samples for each function.For very large problems, the time required to compute the transfer functionson the coarser levels can grow very large. Because they depend only on the value k ¡ D, the functions on each level can be computed via <strong>in</strong>terpolation us<strong>in</strong>gan array <strong>of</strong> samples computed from (8.10) <strong>in</strong> the range ¼ . This can beaccomplished us<strong>in</strong>g a Lagrange polynomial <strong>in</strong>terpolation with oversampl<strong>in</strong>g [3]. Itis also suggested <strong>in</strong> [14] that the various symmetries <strong>in</strong>volved <strong>in</strong> the term k ¡ D canbe exploited to reduce the required storage <strong>of</strong> the transfer functions even further.8.5.5 Radiation and Receive FunctionsRadiation and receive functions should be computed and stored on the f<strong>in</strong>est level,where the required sampl<strong>in</strong>g rate is smallest. If the Lagrange <strong>in</strong>terpolator <strong>of</strong> Section8.5.3.3 is used, the radiation functions should be oversampled by a factor <strong>of</strong> ,result<strong>in</strong>g <strong>in</strong> a total <strong>of</strong> (Æ ÄÆ ´¾Ä ·½µ) samples for each function.8.5.6 Interpolation Steps <strong>in</strong> MLFMAWe now need to implement <strong>in</strong>terpolation and anterpolation at the various stages <strong>of</strong>the MLFMA far multiply. <strong>The</strong> scheme described here is what we have implemented<strong>in</strong> Serenity.


<strong>The</strong> Fast Multipole <strong>Method</strong> 2318.5.6.1 Upward PassStart<strong>in</strong>g at the f<strong>in</strong>est level, <strong>in</strong>terpolators are built to upsample radiation patterns betweenall levels up to the coarsest level (3). For po<strong>in</strong>ts on each level, the <strong>in</strong>terpolatorconta<strong>in</strong>s <strong>in</strong>terpolation weights and <strong>in</strong>dexes po<strong>in</strong>t<strong>in</strong>g to samples on the nextf<strong>in</strong>est level. Aggregated radiation patterns are stored us<strong>in</strong>g (Æ ÄÆ ´¾Ä ·½µ) samples on each level, where is the oversampl<strong>in</strong>g factor. This choicem<strong>in</strong>imizes the memory required to store all aggregated fields dur<strong>in</strong>g the upward pass,however it requires an additional <strong>in</strong>terpolation before the fields are multiplied with atransfer function.8.5.6.2 Transfer Step<strong>The</strong> aggregated radiation patterns must be upsampled aga<strong>in</strong> before they are transmittedbetween far groups. Because the transmitted fields will be immediately multipliedwith the <strong>in</strong>tegration weights on the sphere, they must be at the rate requiredfor <strong>in</strong>tegration when this is done. <strong>The</strong>refore, <strong>in</strong>terpolators are built to upsample theaggregated radiation patterns to ´Æ Ä Æ ´¾Ä ·½µpo<strong>in</strong>ts before thetransfers are performed.8.5.6.3 Downward PassBecause the anterpolators “reverse <strong>in</strong>terpolate” the received fields between levels <strong>in</strong>the downward pass, they are functionally equivalent to the <strong>in</strong>terpolators <strong>in</strong> the upwardpass but generate samples on the f<strong>in</strong>er level from the coarser level. Anterpolatorsbetween levels 3 and Ð ÑÜ ½ operate between the sampl<strong>in</strong>g rates for <strong>in</strong>tegration.<strong>The</strong> <strong>in</strong>terpolator between levels Ð ÑÜ ½ and Ð ÑÜ is slightly different, as it convertsfrom the sampl<strong>in</strong>g rate <strong>of</strong> <strong>in</strong>tegration to that <strong>of</strong> the stored receive pattern.8.5.7 Computational ComplexityMov<strong>in</strong>g from the one-level FMM to the MLFMA reduces the computational complexity<strong>of</strong> the matrix-vector multiply <strong>in</strong> surface-scatter<strong>in</strong>g problems from Ç´Æ ¿¾ µto Ç´Æ ÐÓ Æ µ. It has also been demonstrated through numerical simulations that theoverall memory requirement <strong>of</strong> the MLFMA is also Ç´Æ ÐÓ Æ µ [3]. This reduction<strong>in</strong> memory and compute time is what makes the MLFMA such a powerful tool <strong>in</strong> thesolution <strong>of</strong> very large MOM problems.8.6 NOTES ON SOFTWARE IMPLEMENTATION8.6.1 Initial Guess <strong>in</strong> Iterative SolutionWhen apply<strong>in</strong>g an iterative solver to a problem, there is usually little <strong>in</strong> the way <strong>of</strong>a priori knowledge about the solution vector. <strong>The</strong>refore, for the first right-hand side


232 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>it usually makes sense to use a vector <strong>of</strong> zeros for the <strong>in</strong>itial guess. If the excitationsource is then slightly changed, the number <strong>of</strong> iterations can be greatly reduced ifthe previous solution is reused as the <strong>in</strong>itial guess. This is especially advantageous <strong>in</strong>radar cross section calculations, where the RCS is usually computed over a range <strong>of</strong>closely spaced angles. It it suggested <strong>in</strong> [3] that for RCS problems, the improvementfrom reuse <strong>of</strong> the previous solution can be improved by adjust<strong>in</strong>g its phase betweenangles. Given an <strong>in</strong>cident vector r ½ , the <strong>in</strong>cident phase will be <strong>of</strong> the form ½´rµ r½¡r (8.68)Between angles, the follow<strong>in</strong>g adjustment can then be made to the solution vector:¡´rµ ´r¾ r½µ¡r (8.69)As an example, consider the number <strong>of</strong> iterations required to compute themonostatic RCS <strong>of</strong> the ogive <strong>in</strong> Section 8.8.2.2 <strong>in</strong> 1-degree steps. In Figure 8.9, wecompare the results for three different <strong>in</strong>itial guesses: a zero right-hand side, previoussolution with no phase adjustment, and previous solution with phase adjustmentaccord<strong>in</strong>g to (8.69). It is seen that reuse <strong>of</strong> the previous solution vector without phaseadjustment <strong>of</strong>fers little to no improvement over the zero <strong>in</strong>itial guess. With the phaseadjustment, however, the iteration count drops significantly for almost all <strong>in</strong>cidentangles.8.6.1.1 Physical Optics for Initial GuessIf no previous solution vector is available, the physical optics approximation (2.116)can be used to obta<strong>in</strong> a reasonable first-order approximation to the solution vector.To obta<strong>in</strong> the coefficient vector element for each RWG function, consider edge Ñshared by triangles Ì ·Ñ and Ì Ñ . <strong>The</strong> coefficient Ñ can then be estimated as Ñ Ù´r· µf Ñ´r· µ ¡ ¾n· ¢ H ´r· µ · Ù´r µf Ñ´r µ ¡¾n ¢ H ´r µ(8.70)where r· and r are the centroids <strong>of</strong> triangles Ì ·Ñ and Ì Ñ, respectively. <strong>The</strong>function Ù´rµ becomes zero or one when the centroids are illum<strong>in</strong>ated or shadowed,respectively.8.6.2 Memory Management<strong>The</strong> local fields generated dur<strong>in</strong>g aggregation are required dur<strong>in</strong>g each transfer step.<strong>The</strong>refore, the aggregated field arrays should be allocated dur<strong>in</strong>g setup and rema<strong>in</strong>static, or at least be allocated and deallocated before and after each iteration. Storage<strong>of</strong> the fields dur<strong>in</strong>g disaggregation is more costly than that <strong>of</strong> the aggregation step,and should be managed to reduce the overall memory burden. Storage must bema<strong>in</strong>ta<strong>in</strong>ed for the fields on each level as well as the those on the previous level until


<strong>The</strong> Fast Multipole <strong>Method</strong> 23310080zerow/o phasew/phaseIterations60402000 15 30 45 60 75 90Observation Angle (deg)(a) Vertical Polarization10080zerow/o phasew/phaseIterations60402000 15 30 45 60 75 90Observation Angle (deg)(b) Horizontal PolarizationFigure 8.9: Iteration counts for different <strong>in</strong>itial guesses.


234 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>anterpolations have been performed. At that po<strong>in</strong>t, the field arrays for the previouslevel are no longer required and can be deallocated.Because the near-matrix, transfer and radiation vector elements do not changebetween iterations, their memory space should be allocated dur<strong>in</strong>g setup and rema<strong>in</strong>static dur<strong>in</strong>g the entire run.8.6.3 ParallelizationParallelization <strong>of</strong> an FMM algorithm is a challeng<strong>in</strong>g problem. In this section, wesummarize the approach used to parallelize the MLFMA algorithms <strong>in</strong> Serenity forshared-memory systems. Parallelization on distributed-memory systems is a problemcurrently receiv<strong>in</strong>g considerable attention at the academic level, and is beyond thescope <strong>of</strong> this text. <strong>The</strong> reader is referred to several approaches discussed <strong>in</strong> theliterature [7, 15, 16, 17, 18, 19] for additional <strong>in</strong>formation.8.6.3.1 Shared-Memory SystemsWhen calculat<strong>in</strong>g the radiation and receive functions, the array space for each basisfunction may be accessed by different threads. Because the number <strong>of</strong> unknowns <strong>in</strong>an FMM problem is typically much greater than a full-matrix approach, assign<strong>in</strong>ga mutex to each basis function is not practical. We <strong>in</strong>stead assign a mutex to eachleaf node, and lock the mutex <strong>of</strong> the node to which a basis function belongs. Thisapproach is also used dur<strong>in</strong>g the near-matrix calculation to protect elements <strong>in</strong> thenear-matrix array.<strong>The</strong> aggregation stage <strong>in</strong> the MLFMA can be parallelized by assign<strong>in</strong>g <strong>in</strong>dividualoctree nodes to a process<strong>in</strong>g thread. Because the aggregated field <strong>in</strong> a nodeonly depends on the fields <strong>of</strong> its child nodes, contention dur<strong>in</strong>g this stage is avoidedprovided that all threads are synchronized before mov<strong>in</strong>g to the next coarsest level.<strong>The</strong> disaggregation stage is also parallelized by <strong>in</strong>dividual node, with threadsynchronization at several po<strong>in</strong>ts. On each level, each thread first performs a transfer<strong>of</strong> the local field <strong>in</strong> its node to all far nodes. Dur<strong>in</strong>g the transfer, the mutex associatedwith each far node must be locked to ensure one thread at a time accesses its receivedfield. A synchronization is done at the end <strong>of</strong> the transfer step. Anterpolationsare performed next, and threads are synchronized when complete. Because basisfunctions are assigned to unique nodes, no contention is encountered on the f<strong>in</strong>estlevel when generat<strong>in</strong>g result vector elements. When each thread f<strong>in</strong>ishes on the f<strong>in</strong>estlevel, the disaggregation is complete.8.6.4 VectorizationA section <strong>of</strong> code that performs multiplication and addition <strong>of</strong> long arrays is a goodcandidate for vectorization. In the past, most supercomputer processors were <strong>of</strong>the vector type, designed to operate on many data elements at once. Most <strong>of</strong> theconsumer-level CPU architectures <strong>in</strong> the last 15 years have <strong>in</strong>stead been largely


<strong>The</strong> Fast Multipole <strong>Method</strong> 235scalar, with registers operat<strong>in</strong>g on s<strong>in</strong>gle data elements. Subsequent processor releasesby manufacturers such as Intel, AMD and IBM have <strong>in</strong>troduced new registersand <strong>in</strong>structions <strong>in</strong>tended to operate on multiple data elements (typically four at atime). <strong>The</strong>se new operations are commonly referred to as s<strong>in</strong>gle <strong>in</strong>struction, multipledata (SIMD). <strong>The</strong> stream<strong>in</strong>g SIMD extensions (SSE) present <strong>in</strong> Intel Pentium IIIand later processors can operate on arrays <strong>of</strong> four 32-bit floats (128 bits). <strong>The</strong> AMDAthlon processors also support these SSE <strong>in</strong>structions. <strong>The</strong> AltiVec <strong>in</strong>struction set<strong>in</strong> the PowerPC processor is very similar to SSE, and also operates on four floats atonce.In the FMM, the aggregation and transfer operations are composed <strong>of</strong> additionsand multiplications that can be optimized us<strong>in</strong>g these SIMD <strong>in</strong>structions. If us<strong>in</strong>gSSE <strong>in</strong>structions, for example, the radiation and transfer functions must be stored <strong>in</strong>16-byte aligned arrays, allow<strong>in</strong>g for efficient transfers to and from the SSE registers.<strong>The</strong> complex additions and multiplications can then be performed us<strong>in</strong>g the addps,subps and mulps <strong>in</strong>structions. Though some compilers will attempt to optimizesections <strong>of</strong> code given the appropriate directives, these portions <strong>of</strong> the code shouldbe written <strong>in</strong> assembly language for maximum performance.8.7 PRECONDITIONINGWe briefly discussed the concepts <strong>of</strong> precondition<strong>in</strong>g <strong>in</strong> Section 3.4.5.1. <strong>The</strong> aim <strong>in</strong>precondition<strong>in</strong>g the iterations is to lessen the overall compute time per right-handside, or to improve the overall convergence <strong>in</strong> ill-conditioned problems. Because theprecondition<strong>in</strong>g step adds to the overall compute time per iteration, it should have atleast the same general computational cost as the FMM, or less if possible.Build<strong>in</strong>g a preconditioner that works with the FMM is somewhat different thana full-matrix solver, because many <strong>of</strong> the matrix elements are no longer explicitlyavailable. <strong>The</strong>refore, the preconditioner must be built from the near-matrix elementsonly. With this <strong>in</strong> m<strong>in</strong>d, we will now briefly discuss some commonly used precondition<strong>in</strong>gschemes.8.7.1 Diagonal Preconditioner<strong>The</strong> diagonal or Jacobi preconditioner is the simplest form <strong>of</strong> preconditioner and isuseful for illustrat<strong>in</strong>g the concept, however <strong>in</strong> practice it typically results <strong>in</strong> a verypoor approximation for A ½ and is not recommended for general use. <strong>The</strong> elements<strong>of</strong> the diagonal preconditioner matrix M are def<strong>in</strong>ed asÑ (8.71)Ñ ¼ (8.72)<strong>The</strong> diagonal preconditioner requires no extra storage as the elements <strong>in</strong> M ½can be computed on the fly dur<strong>in</strong>g the precondition<strong>in</strong>g step. For computationalefficiency, the diagonal elements would be precomputed and stored <strong>in</strong> their own


236 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Figure 8.10: Block diagonal matrix.vector, however this vector is <strong>of</strong> length Æ and does not appreciably <strong>in</strong>crease thememory requirements.8.7.2 Block Diagonal PreconditionerAnother conceptually simple preconditioner is the block diagonal preconditioner.In this case, M ½ is constructed from blocks <strong>of</strong> A compris<strong>in</strong>g the larger-valueelements close to the matrix diagonal, as illustrated <strong>in</strong> Figure 8.10. As a result,M ½ will have the same block structure as A and the LU factorization <strong>of</strong> each blockcan be computed <strong>in</strong>dependently <strong>of</strong> the others. If each block is relatively small, theprecondition<strong>in</strong>g operation z M ½ r can be performed relatively quickly, result<strong>in</strong>g<strong>in</strong> a small overhead. To implement this preconditioner <strong>in</strong> the FMM, consider the<strong>in</strong>teractions between a group and all near groups (<strong>in</strong>clud<strong>in</strong>g itself). We expect thatthe strongest near-matrix elements are those between basis functions located closetogether. <strong>The</strong>refore, it is reasonable to assume that most <strong>of</strong> these elements exist <strong>in</strong> thepart <strong>of</strong> the matrix compris<strong>in</strong>g the iteractions <strong>of</strong> each group with itself. If we then useonly the near-matrix elements <strong>in</strong> each group to generate the preconditioner, we willhave the block diagonal structure <strong>of</strong> Figure 8.10. This preconditioner was previouslyreported <strong>in</strong> [3, 20].8.7.3 Inverse LU PreconditionerAn <strong>in</strong>complete LU (ILU) factorization computes an upper and lower triangularsparse matrix pair L and U such that the residual matrix R A LU satisfiescerta<strong>in</strong> criteria, such as a particular sparsity pattern. <strong>The</strong> simplest form <strong>of</strong> the ILUpreconditioner is the <strong>in</strong>complete LU factorization with no fill <strong>in</strong>, denoted as ILU(0).In this factorization, the factor L has the same pattern as the lower part <strong>of</strong> A andthe factor U has the same pattern as the upper part <strong>of</strong> A. <strong>The</strong> problem with this


<strong>The</strong> Fast Multipole <strong>Method</strong> 237factorization is that the product LU will have nonzero diagonals that are not present<strong>in</strong> A [9]. As we will see <strong>in</strong> Section 8.7.4.1, the ILU(0) factorization can perform welldespite this limitation. Because its sparsity pattern is def<strong>in</strong>ed to be that <strong>of</strong> the FMMnear matrix, its memory requirements will be identical.Improvements on this scheme, such as the <strong>in</strong>complete LU factorization withthreshhold<strong>in</strong>g (ILUT), are also useful. <strong>The</strong> ILUT algorithm generates the zero pattern<strong>of</strong> the factors on the fly by dropp<strong>in</strong>g elements based on their magnitudes <strong>in</strong>stead <strong>of</strong>their location. As a result, the memory demands <strong>of</strong> ILUT may vary depend<strong>in</strong>g on theamount <strong>of</strong> fill-<strong>in</strong>, and may exceed the storage <strong>of</strong> the orig<strong>in</strong>al near-matrix depend<strong>in</strong>gon the chosen fill-<strong>in</strong> parameters. For more detailed <strong>in</strong>formation on ILUT, the readeris referred to [9].8.7.4 Sparse Approximate InverseAnother method <strong>of</strong> f<strong>in</strong>d<strong>in</strong>g an <strong>in</strong>verse to a sparse matrix is to m<strong>in</strong>imize the Frobeniusnorm <strong>of</strong> the residual matrix I AM: ´Mµ I AM ¾ (8.73)where M is an approximate <strong>in</strong>verse [9]. <strong>The</strong> expression <strong>in</strong> (8.73) can be rewritten asI AM ¾ Æ Ò½e Ò Am Ò ¾ ¾ (8.74)which is the sum <strong>of</strong> the squares <strong>of</strong> the 2-norms <strong>of</strong> the columns <strong>of</strong> the residualmatrix. In [9], Saad discusses a global m<strong>in</strong>imum residual iteration algorithm forsolv<strong>in</strong>g (8.73), as well as column-oriented algorithms for solv<strong>in</strong>g the Æ <strong>in</strong>dependentsubproblems <strong>in</strong> (8.74). In both algorithms, the current estimate <strong>of</strong> M can be used toprecondition subsequent iterations.8.7.4.1 Comparison <strong>of</strong> PreconditionersLet us consider the performance <strong>of</strong> several preconditioners <strong>in</strong> this section by comput<strong>in</strong>gthe monostatic RCS <strong>of</strong> the ogive <strong>in</strong> Section 8.8.2.2. <strong>The</strong> CFIE formulationis used, and CGS iteration is applied to a residual norm <strong>of</strong> ½¼ . We first comparethe rate <strong>of</strong> convergence <strong>of</strong> the diagonal, block diagonal, ILU(0) and ILUT preconditioners.<strong>The</strong> calculation is made at 0 degrees elevation and 20 degrees azimuth, andthe <strong>in</strong>itial guess is set to zero for both polarizations. For the ILUT preconditioner, 2percent fill-<strong>in</strong> is allowed and a drop tolerance <strong>of</strong> ½¼¿ is used. <strong>The</strong> results are shown<strong>in</strong> Figures 8.11a and 8.11b for vertical and horizontal polarizations, respectively.<strong>The</strong> diagonal preconditioner yields a surpris<strong>in</strong>g improvement <strong>in</strong> the overall iterationcount. <strong>The</strong> block diagonal preconditioner reduces the iterations by two thirds comparedto no precondition<strong>in</strong>g. <strong>The</strong> ILU(0) and ILUT preconditioners yield the mostdramatic improvement to the iteration count, and reach the desired residual norm<strong>in</strong> under ten iterations. We next consider the performance across multiple <strong>in</strong>cident


238 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>10 2 IterationsResidual Norm10 010 −2NoneDiagBlock−DiagILU(0)ILUT10 −40 10 20 30 40 50 60 70 80(a) Vertical Polarization10 2 IterationsResidual Norm10 010 −2NoneDiagBlock−DiagILU(0)ILUT10 −40 10 20 30 40 50 60 70 80(b) Horizontal PolarizationFigure 8.11: Preconditioner performance on Ogive at ¾¼ Æ azimuth.


<strong>The</strong> Fast Multipole <strong>Method</strong> 2398060NoneDiagonalBlock DiagonalILU(0)Iterations402000 15 30 45 60 75 90Observation Angle (deg)(a) Vertical Polarization8060NoneDiagonalBlock DiagonalILU(0)Iterations402000 15 30 45 60 75 90Observation Angle (deg)(b) Horizontal PolarizationFigure 8.12: Preconditioner performance on Ogive across multiple angles.


240 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Table 8.1: Preconditioner SummaryPreconditioner Near MB Prec. MB Æ ØÖ (V) Æ ØÖ (H)None 330.5 N/A 77 84Diagonal 330.5 0.5 40 47Block Diagonal 330.5 20.0 25 31ILU(0) 330.5 330.5 8 9ILUT 330.5 327.5 9 9angles. We compute the RCS for azimuth angles between 0 and 90 degrees <strong>in</strong> 1-degree <strong>in</strong>crements, and reuse the previous solution with phase correction accord<strong>in</strong>gto (8.69). <strong>The</strong> iteration counts are shown <strong>in</strong> Figures 8.12a and 8.12b for verticaland horizontal polarizations, respectively. <strong>The</strong> results are consistent with those <strong>in</strong>Figures 8.11a and 8.11b. Because the results <strong>of</strong> the ILU(0) and ILUT preconditionersare almost identical, only the ILU(0) results are shown. <strong>The</strong> preconditioner memoryrequirements and iteration counts are summarized <strong>in</strong> Table 8.1.8.8 EXAMPLESIn this section we look at some three-dimensional scatter<strong>in</strong>g problems that wouldbe too large to solve us<strong>in</strong>g the full-matrix approach. In each example, we usethe MLFMA-accelerated portion <strong>of</strong> our code Serenity with CFIE (« =0.5)andCGS iterations to a m<strong>in</strong>imum residual <strong>of</strong> ½¼ . For each case, we use the ILUTpreconditioner with 5 percent maximum fill-<strong>in</strong> and a drop tolerance <strong>of</strong> ½¼ ¿ .8.8.1 Bistatic RCS <strong>of</strong> a SphereWe first compute the bistatic RCS <strong>of</strong> the 2-meter sphere at 750 and 1500 MHz. <strong>The</strong>numerical results are compared to those <strong>of</strong> the Mie series <strong>in</strong> Figures 8.13 and 8.14.<strong>The</strong> comparison is excellent for both polarizations.8.8.2 EMCC Benchmark TargetsWe next compute the RCS <strong>of</strong> the EMCC benchmark radar targets described <strong>in</strong> [21].8.8.2.1 NASA Almond<strong>The</strong> 9.936-<strong>in</strong>ch NASA almond described <strong>in</strong> Figure 8.15 is a scatter<strong>in</strong>g-rich targetcomposed <strong>of</strong> a smooth surface that supports travel<strong>in</strong>g waves and a po<strong>in</strong>ted endresult<strong>in</strong>g <strong>in</strong> tip diffraction effects. It can be expressed for ¼ ¾ as [21]Ü Ø (8.75)


<strong>The</strong> Fast Multipole <strong>Method</strong> 2414030MLFMAMieVV RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization4030MLFMAMieHH RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.13: 2-Meter sphere: bistatic RCS at 750 MHz.


242 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>4030MLFMAMieVV RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization4030MLFMAMieHH RCS (dBsm)20100−10−200 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.14: 2-Meter sphere: bistatic RCS at 1.5 GHz.


<strong>The</strong> Fast Multipole <strong>Method</strong> 243y1.92x0 o9.936(a) Pr<strong>of</strong>ile <strong>in</strong> ÜÝ Planezx.640 o9.936(b) Pr<strong>of</strong>ile <strong>in</strong> ÜÞ PlaneFigure 8.15: NASA almond.for ¼½ ؼ,andݴص ¼½¿¿¿¿Þ´Øµ ¼Ý´Øµ ¿¿Þ´Øµ ½½½½××½½××½½ ¾ØÓ× (8.76)¼½ ¾Ø×Ò (8.77)¼½Ü Ø (8.78)ؾ¼¿¿Ø¾¼¿¿ ¾¼ ¾¼Ó× (8.79)×Ò (8.80)for ¼ ؼ¿¿¿. In our three-dimensional model we have attempted to create afacetization with the best possible aspect ratio. Surface detail <strong>of</strong> the model at 7 GHz isshown for the po<strong>in</strong>ted and rounded regions <strong>in</strong> Figures 8.16a and 8.16b, respectively.


244 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>(a) Po<strong>in</strong>ted End(b) Rounded EndFigure 8.16: Almond facetization detail at 7 GHz.


<strong>The</strong> Fast Multipole <strong>Method</strong> 245<strong>The</strong> numerical results are compared to the EMCC measurements at 7 GHz<strong>in</strong> Figures 8.17a and 8.17b for vertical and horizontal polarizations, respectively.<strong>The</strong> computed results were lower than the measurements by approximately 1.5 dBacross a large range <strong>of</strong> angles, and are adjusted <strong>in</strong> each plot. With this adjustment, thecomparison is very good. Results at 9.92 GHz are shown <strong>in</strong> Figures 8.18a and 8.18bfor vertical and horizontal polarizations, respectively. A similar bias was observed<strong>in</strong> this case as well, and after adjustment, the comparison is aga<strong>in</strong> very good. <strong>The</strong>reason for the bias <strong>in</strong> both cases is not known.8.8.2.2 EMCC Ogive<strong>The</strong> EMCC ogive was previously described <strong>in</strong> Section 6.6.3.1. <strong>The</strong> numerical resultsare compared to the EMCC measurements at 9.0 GHz <strong>in</strong> Figures 8.19a and 8.19b forvertical and horizontal polarizations, respectively. <strong>The</strong> agreement is very good.8.8.2.3 EMCC Double Ogive<strong>The</strong> EMCC double ogive was previously described <strong>in</strong> Section 6.6.3.2. <strong>The</strong> numericalresults are compared to the EMCC measurements at 9.0 GHz <strong>in</strong> Figures 8.20a and8.20b for vertical and horizontal polarizations, respectively. <strong>The</strong> agreement is verygood, with some differences observed at end-on aspect angles.8.8.2.4 EMCC Cone-Sphere<strong>The</strong> EMCC cone-sphere was previously described <strong>in</strong> Section 6.6.3.3. <strong>The</strong> numericalresults are compared to the EMCC measurements at 9.0 GHz <strong>in</strong> Figures 8.21a and8.21b for vertical and horizontal polarizations, respectively. <strong>The</strong> agreement is fairlygood, with the greatest differences observed <strong>in</strong> aspect angles near the tip. Becausethis is a region <strong>of</strong> very low backscatter<strong>in</strong>g <strong>in</strong>tensity, the results are expected tocompare less favorably.8.8.2.5 EMCC Cone-Sphere with Gap<strong>The</strong> EMCC cone-sphere with gap was previously described <strong>in</strong> Section 6.6.3.4.<strong>The</strong> numerical results are compared to the EMCC measurements at 9.0 GHz <strong>in</strong>Figures 8.22a and 8.22b for vertical and horizontal polarizations, respectively. <strong>The</strong>comparison is quite good at all aspect angles.8.8.3 Summary <strong>of</strong> Examples<strong>The</strong> run metrics for the examples <strong>in</strong> this chapter are summarized <strong>in</strong> Table 8.2. Listedfor each case are the number <strong>of</strong> unknowns, number <strong>of</strong> MLFMA levels Ð ÑÜ ,storagerequirements for the near matrix and radiation and receive functions, number <strong>of</strong>right-hand sides and total compute time. <strong>The</strong> compute time comprises the entire


246 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>−20MLFMA/CFIEMeasurementVV RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization−10−20MLFMA/CFIEMeasurementHH RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.17: NASA almond: MLFMA versus measurement at 7.0 GHz.


<strong>The</strong> Fast Multipole <strong>Method</strong> 247−20MLFMA/CFIEMeasurementVV RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization−10−20MLFMA/CFIEMeasurementHH RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.18: NASA almond: MLFMA versus measurement at 9.92 GHz.


248 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>0−10MLFMA/CFIEMeasurementVV RCS (dBsm)−20−30−40−50−60−70−800 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization0−10MLFMA/CFIEMeasurementHH RCS (dBsm)−20−30−40−50−60−70−800 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.19: EMCC ogive: MLFMA versus measurement at 9.0 GHz.


<strong>The</strong> Fast Multipole <strong>Method</strong> 249−10−20MLFMA/CFIEMeasurementVV RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(a) Vertical Polarization−10−20MLFMA/CFIEMeasurementHH RCS (dBsm)−30−40−50−600 30 60 90 120 150 180Observation Angle (deg)(b) Horizontal PolarizationFigure 8.20: EMCC double ogive: MLFMA versus measurement at 9.0 GHz.


250 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>100MLFMA/CFIEMeasurementVV RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(a) Vertical Polarization100MLFMA/CFIEMeasurementHH RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(b) Horizontal PolarizationFigure 8.21: EMCC cone-sphere: MLFMA versus measurement at 9.0 GHz.


<strong>The</strong> Fast Multipole <strong>Method</strong> 251100MLFMA/CFIEMeasurementVV RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(a) Vertical Polarization100MLFMA/CFIEMeasurementHH RCS (dBsm)−10−20−30−40−50−60−70−180 −150 −120 −90 −60 −30 0Observation Angle (deg)(b) Horizontal PolarizationFigure 8.22: EMCC cone-sphere with gap: MLFMA versus measurement at 9.0 GHz.


252 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Table 8.2: Summary <strong>of</strong> FMM ExamplesObject Æ Ð ÑÜ Near MB FMM MB NRHS CPU2-m Sphere (0.75) 30720 5 143.4 60.9 1 11 m2-m Sphere (1.5) 122880 6 570.9 243.7 1 68 mAlmond (7.0) 70476 6 916.05 79.6 360 30.1 hrAlmond (9.92) 70476 6 916.05 131.2 360 33.9 hrOgive 32640 6 330.5 49.8 360 12.1 hrDouble Ogive 54360 6 578.25 61.38 360 22.6 hrCone-Sphere 116112 8 247.8 131.1 360 104 hrCone-Sphere/Gap 141000 8 391.5 159.2 360 125 hrrun <strong>in</strong>clud<strong>in</strong>g the near-matrix and radiation and receive function fills, MLFMAacceleratediteration, and scattered field calculation. Runs are performed on an AMDAthlon MP 2600 at 2 GHz with 2GB memory under Red Hat L<strong>in</strong>ux 7.3.REFERENCES[1] L. Greengard and V. Rokhl<strong>in</strong>, “A fast algorithm for particle simulations,” J.Comput. Phys., vol. 73, 325–348, 1987.[2] R. Coifman, V. Rokhl<strong>in</strong>, and S. Wandzura, “<strong>The</strong> fast multipole method for thewave equation: A pedestrian prescription,” IEEE Antennas Propagat. Magaz<strong>in</strong>e,vol. 35, 7–12, June 1993.[3] W. C. Chew, J. M. J<strong>in</strong>, E. Michielssen, and J. Song, Fast and Efficient Algorithms<strong>in</strong> Computational <strong>Electromagnetics</strong>. Artech House, 2001.[4] J. Stratton, Electromagnetic <strong>The</strong>ory. McGraw-Hill, 1941.[5] J. M. Song and W. C. Chew, “Error analysis for the truncation <strong>of</strong> multipoleexpansion <strong>of</strong> vector green’s functions,” IEEE Microwave Wireless ComponentsLett., vol. 11, no. 7, 311–313, 2001.[6] O. M. Bucci, C. Gennarelli, and C. Savarese, “Optimal <strong>in</strong>terpolation <strong>of</strong> radiatedfields over a sphere,” IEEE Trans. Antennas Propagat., vol. 39, 1633–1643,November 1991.[7] P. Havé, “A parallel implementation <strong>of</strong> the fast multipole method for maxwell’sequations,” 2002.[8] E. Darve, “<strong>The</strong> fast multipole method: Numerical implementation,” J. Comput.Phys., vol. 160, 195–240, 2000.[9] Y. Saad, Iterative <strong>Method</strong>s for Sparse L<strong>in</strong>ear Systems. PWS, 1st ed., 1996.


<strong>The</strong> Fast Multipole <strong>Method</strong> 253[10] J. Foley, A. van Dam, S. Fe<strong>in</strong>er, and J. Hughes, Computer Graphics: Pr<strong>in</strong>ciplesand Practice. Addison-Wesley, 1996.[11] R. Jakob-Chien and B. Alpert, “A fast spherical filter with uniform resolution,”J. Comput. Phys., vol. 136, 580–584, 1997.[12] J. Sarvas, “Perform<strong>in</strong>g <strong>in</strong>terpolation and anterpolation entirely by fast fouriertransform <strong>in</strong> the 3-d multilevel fast multipole algorithm,” SIAM J. Numer. Anal.,vol. 41, no. 6, 2180–2196, 2003.[13] S. Koc, J. M. Song, and W. C. Chew, “Error analysis for the numericalevaluation <strong>of</strong> the diagonal forms <strong>of</strong> the spherical addition theorem,” SIAM J.Numer. Anal., vol. 36, no. 3, 906–921, 1999.[14] M. Nilsson, “A parallel shared memory implementation <strong>of</strong> the fast multipolemethod for electromagnetics,” Tech. Rep. Technical Report 2003-049, Department<strong>of</strong> Information Technology, Scientific Comput<strong>in</strong>g, Uppsala University,October 2003.[15] B. Hariharan, S. Aluru, and B. Shanker, “A scalable parallel fast multipolemethod for analysis <strong>of</strong> scatter<strong>in</strong>g from perfect electrically conduct<strong>in</strong>g surfaces,”<strong>in</strong> Supercomput<strong>in</strong>g ’02: Proceed<strong>in</strong>gs <strong>of</strong> the 2002 ACM/IEEE conference onSupercomput<strong>in</strong>g, 1–17, IEEE Computer Society Press, 2002.[16] K. Donepudi, J. J<strong>in</strong>, S. Velamparambil, J. Song, and W. Chew, “A higher-orderparallelized multilevel fast multipole algorithm for 3-d scatter<strong>in</strong>g,” IEEE Trans.Antennas Propagat., vol. 49, 1069–1078, July 2001.[17] S. Velamparambil and W. C. Chew, “Parallelization <strong>of</strong> multilevel fast multipolealgorithm on distributed memory computers,” Tech. Rep. 13-01, Center forComputational <strong>Electromagnetics</strong>, University <strong>of</strong> Ill<strong>in</strong>ois at Urbana–Champaign,2001.[18] S. Velamparambil and W. C. Chew, “Analysis and performance <strong>of</strong> a distributedmemory multilevel fast multipole algorithm,” IEEE Trans. Antennas Propagat.,vol. 53, 2719–2727, August 2005.[19] S. Velamparambil, W. C. Chew, and J. Song, “10 million unknowns: Is it thatbig?,” IEEE Antennas Propagat. Mag., vol. 45, no. 2, 43–58, 2003.[20] J. M. Song, C. C. Lu, and W. C. Chew, “Multilevel fast multipole algorithm forelectromagnetic scatter<strong>in</strong>g by large complex objects,” IEEE Trans. AntennasPropagat., vol. 45, 1488–1493, October 1997.[21] A. C. Woo, H. T. G. Wang, M. J. Schuh, and M. L. Sanders, “Benchmark radartargets for the validation <strong>of</strong> computational electromagnetics programs,” IEEEAntennas Propagat. Magaz<strong>in</strong>e, vol. 35, 84–89, February 1993.


Chapter 9IntegrationThroughout this book we have considered many one- and two-dimensional <strong>in</strong>tegrals.While some <strong>of</strong> these <strong>in</strong>tegrals can be evaluated analytically, <strong>of</strong>ten we must employ anumerical <strong>in</strong>tegration (quadrature) scheme to obta<strong>in</strong> the results. Because the quality<strong>of</strong> the results obta<strong>in</strong>ed from the moment method depends on the accuracy <strong>of</strong> thematrix elements, a reliable and computationally efficient quadrature scheme is vitalto any s<strong>of</strong>tware implementation.Numerical <strong>in</strong>tegration is a method for approximat<strong>in</strong>g a def<strong>in</strong>ite <strong>in</strong>tegral by asummation. A one-dimensional quadrature approximates an <strong>in</strong>tegral accord<strong>in</strong>g tothe formula ÆÁ ´Üµ Ü Û´Ü µ ´Ü µ (9.1)½where we have evaluated the function ´Üµ at Æ unique locations Ü and employedquadrature weights Û . <strong>The</strong> weights and abscissas are dependent on the type andorder <strong>of</strong> quadrature be<strong>in</strong>g employed, and choices for these will be discussed <strong>in</strong> thefollow<strong>in</strong>g sections. <strong>The</strong> expression for a two-dimensional quadrature follows from(9.1) and isÁ Ë ´Ü ݵ Ü Ý Æ½Û´Ü Ý µ ´Ü Ý µ (9.2)In Chapter 7, we applied the MOM to surfaces described by triangular elements.In this chapter, we will consider analytic as well as numerical <strong>in</strong>tegration formulasdesigned specifically for these triangular regions.9.1 ONE-DIMENSIONAL INTEGRATION9.1.1 Centroidal ApproximationMany <strong>in</strong>tegrations <strong>in</strong> this book used a centroidal approximation. This method simplyevaluates the function once and assumes that its value is constant throughout theentire doma<strong>in</strong>. <strong>The</strong> function is typically evaluated at the center <strong>of</strong> the doma<strong>in</strong>,255


256 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>result<strong>in</strong>g <strong>in</strong> the expressionÁ ´Üµ Ü ´ µ ¡ · ℄¾ ¡ (9.3)This centroidal or “one-po<strong>in</strong>t” <strong>in</strong>tegration rule is actually quite useful for smalldoma<strong>in</strong>s where the <strong>in</strong>tegrand varies slowly. A good example is when comput<strong>in</strong>gmoment method matrix elements for basis function pairs located far away from oneanother. <strong>The</strong> results obta<strong>in</strong>ed us<strong>in</strong>g a one-po<strong>in</strong>t rule <strong>of</strong>ten differ very little fromthe results <strong>of</strong> a more accurate rule. <strong>The</strong> <strong>in</strong>accuracy is <strong>of</strong>ten acceptable s<strong>in</strong>ce themagnitude <strong>of</strong> these elements are usually very small compared to those much closerto the matrix diagonal.9.1.2 Trapezoidal Rule<strong>The</strong> classic trapezoidal rule applies a piecewise l<strong>in</strong>ear approximation to ´Üµthroughout the range <strong>of</strong> <strong>in</strong>tegration. We subdivide the <strong>in</strong>terval ℄ <strong>in</strong>to Æ ¾ Ò ½ Ò ½ small segments <strong>of</strong> equal length ´ µÆ and compute the values ´Ü ½ µ, ´Ü ¾ µ, ¡¡¡, ´Ü Æ ½ µ, ´Ü Æ µ, as shown <strong>in</strong> Figure 9.1. We compute the value<strong>of</strong> the <strong>in</strong>tegral <strong>in</strong>side each segment as Ü·½ ½ ´Üµ Ü · ½ ·½(9.4)¾ ¾Ü x 1=a x 2x 3x 4x 5x N-1 x N=bf 1f 2f 3f 4f 5f N-1f Nf(x)Figure 9.1: Piecewise l<strong>in</strong>ear approximation <strong>of</strong> ´Üµ.


Integration 257Summ<strong>in</strong>g (9.4) across the entire <strong>in</strong>terval, we derive the follow<strong>in</strong>g expression for the<strong>in</strong>tegral, which we call the trapezoidal rule: Á ¾ · ¾ · ¡¡¡· Æ ½ · Æ · Ì (9.5)¾where the term Ì is the error. If ¼¼´Üµ is cont<strong>in</strong>uous and has upper bound Å on ℄, then the bound on the error is [1] ´Üµ Ü ½ Ì ½¾ ¾ Å (9.6)If additional accuracy is desired, the number <strong>of</strong> segments may be doubled and theprevious Æ samples reused, requir<strong>in</strong>g only Æ ½ new evaluations <strong>of</strong> ´Üµ for thenew quadrature rule. This process may be repeated as necessary until the desiredaccuracy is reached.9.1.2.1 Romberg IntegrationRepeated applications <strong>of</strong> the trapezoidal rule results <strong>in</strong> an error compris<strong>in</strong>g evenpowers <strong>of</strong> ½Æ [2], which can be written asÁ Á Ò½ ·Æ ¾ · Æ · · ¡¡¡ (9.7)ÆWe note that the second-order term <strong>in</strong> the above decreases by a factor <strong>of</strong> four if wedouble the number <strong>of</strong> quadrature po<strong>in</strong>ts. Us<strong>in</strong>g two applications <strong>of</strong> the rule, we cantherefore writeÁ Á ÃÒ½ · (9.8)Æ ¾andÁ Á ÃÒ·½½ ·(9.9)Æ ¾If we solve the above two equations for à we can elim<strong>in</strong>ate the second order termand improve the previous solution to at least an Ç´Æ µ error. Do<strong>in</strong>g so yieldsÁ Á Ò·½¾ ¿ Á Ò·½½½¿ Á Ò½ (9.10)which is a Richardson’s extrapolation. Comb<strong>in</strong><strong>in</strong>g successive applications <strong>of</strong> the rulewith higher and higher orders <strong>of</strong> extrapolation can greatly <strong>in</strong>crease the accuracy<strong>of</strong> the solution and is known as Romberg <strong>in</strong>tegration. In this method, higher orderextrapolates have the formÁ ÒÑ Á Ò·½Ñ ½ · ÁÒ·½Ñ ½ Á ÒÑ ½ Ñ (9.11)½ ½An example heirarchy <strong>of</strong> extrapolates is illustrated <strong>in</strong> Figure 9.2 for Ò . Apppy<strong>in</strong>gRomberg <strong>in</strong>tegration us<strong>in</strong>g this heirarchy requires the results <strong>of</strong> the trapezoidal ruleus<strong>in</strong>g1,2,4,and8segments.


258 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>N1248O(N -6 )O(N -2 ) O(N -4 ) O(N -8 )I 2,2I 1,1I 4,1I 1,2I 2,1I 3,1I 2,2I 1,3I 2,3I 1,4Figure 9.2: Heirarchy <strong>of</strong> Romberg extrapolates.9.1.3 Simpson’s RuleSimpson’s rule approximates ´Üµ by a series <strong>of</strong> quadratic <strong>in</strong>stead <strong>of</strong> l<strong>in</strong>ear polynomials,as shown <strong>in</strong> Figure 9.3. <strong>The</strong> <strong>in</strong>terval ℄ is divided <strong>in</strong>to Æ segments <strong>of</strong> equallength ´ µÆ, whereÆ ¾ and even. Start<strong>in</strong>g with the equation for aparabola, ´Üµ Ü ¾ · Ü · (9.12)we perform an <strong>in</strong>tegration over the two-segment <strong>in</strong>terval [- ], yield<strong>in</strong>g Ü ¾ · Ü · ¡ Ü Ü¿¿ · ܾ¾ · Ü ¬ ¬¬¬ ¿ ¾¾ · ¡ (9.13)S<strong>in</strong>ce the parabola passes through the po<strong>in</strong>ts ´ Ý ½ µ, ´¼Ý ¾ µ,and´ Ý ¿ µ, we cancompute the values ½ ¾ · (9.14) ¾ (9.15)and ¿ ¾ · · (9.16)from which we derive¾ ¾ ½ · ¿ ¾ ¾ (9.17)Insert<strong>in</strong>g (9.15) and (9.17) <strong>in</strong>to (9.13) yields ¡ Ü ¾ · Ü · Ü ½ · ¾ · ¿¿(9.18)


Integration 259x 1=a x 2x 3x 4x 5x N-1 x N=bf 1f 2f 3f 4f 5f N-1f Nf(x)Figure 9.3: Piecewise parabolic approximation <strong>of</strong> ´Üµ.Summ<strong>in</strong>g (9.18) across the entire <strong>in</strong>terval, we derive the follow<strong>in</strong>g expression whichwe call Simsons’s rule: ´Üµ Ü ½ · ¾ ·¾ ¿ · ·¡¡¡·¾ Æ ¾ · Æ ½ · Æ · Ë (9.19)¿where the term Ë is the error. If ´µ´Üµ is cont<strong>in</strong>uous and has upper bound Å on ℄, then the bound on the error is [1] Ë ½¼ Å (9.20)Note that the result <strong>of</strong> (9.18) is equal to that obta<strong>in</strong>ed by the extrapolation <strong>of</strong> thetrapezoidal rule <strong>in</strong> (9.10).9.1.4 One-Dimensional Gaussian QuadratureUs<strong>in</strong>g the trapezoidal or Simpson’s rule, the nnterval ℄ is subdivided <strong>in</strong>to equallyspaced segments with fixed abscissas Ü . A more efficient <strong>in</strong>tegration rule can bedeveloped if we allow the freedom to choose the optimal abscissas for <strong>in</strong>tegrat<strong>in</strong>g ´Üµ. Giventhe<strong>in</strong>tegral Ï ´Üµ ´Üµ Ü (9.21)


260 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>an Æ-po<strong>in</strong>t Gaussian quadrature <strong>in</strong>tegrates exactly a polynomial ´Üµ <strong>of</strong> degree¾Æ ½ if the abscissas are chosen as the roots <strong>of</strong> the orthogonal polynomial forthe same <strong>in</strong>terval and weight<strong>in</strong>g function Ï ´Üµ. <strong>The</strong> most commonly used Gaussianquadrature is the Gauss-Legendre quadrature, <strong>of</strong> the form ½ ´Üµ Ü ½Æ½Û´Ü µ ´Ü µ (9.22)where Ï ´Üµ ½.<strong>The</strong>Ü for this rule are the roots <strong>of</strong> the Legendre polynomial <strong>of</strong>order Æ. <strong>The</strong> weights Û are [3]Û ¾´½ Ü µ ¾¢ È ¼ Æ ´Ü µ £ ¾(9.23)A rout<strong>in</strong>e for comput<strong>in</strong>g an Æ-po<strong>in</strong>t Gauss-Legendre rule determ<strong>in</strong>es the locations<strong>of</strong> the zeros <strong>of</strong> È Ñ´Üµ by Newton-Raphson iteration, and then the associated weightsvia (9.23). <strong>The</strong>re are many short s<strong>of</strong>tware rout<strong>in</strong>es for this available <strong>in</strong> books andthrough the Internet. Many <strong>of</strong> these reta<strong>in</strong> the above range ½ ½℄, while some<strong>in</strong>stead perform a mapp<strong>in</strong>g to ¼ ½℄. To use the rule, a change <strong>of</strong> variable shouldbe used to map the <strong>in</strong>terval ℄ to ½ ½℄ or ¼ ½℄.9.2 INTEGRATION OVER TRIANGLESMany <strong>of</strong> the <strong>in</strong>tegrals <strong>in</strong> this book are performed over triangular subdoma<strong>in</strong>s, andtherefore efficient analytic and numerical <strong>in</strong>tegration techniques for triangular elementsare essential. In this section, we consider these <strong>in</strong>tegrals <strong>in</strong> terms <strong>of</strong> simplexcoord<strong>in</strong>ates, also called area coord<strong>in</strong>ates or barycentric coord<strong>in</strong>ates. <strong>The</strong>se coord<strong>in</strong>atescomprise the transformation <strong>of</strong> a triangle <strong>of</strong> arbitrary shape to a canonicalcoord<strong>in</strong>ate system. Analytic <strong>in</strong>tegrals are <strong>of</strong>ten easier to perform <strong>in</strong> simplex coord<strong>in</strong>ates,and numerical quadrature rules are usually summarized us<strong>in</strong>g them as well.9.2.1 Simplex Coord<strong>in</strong>atesTo develop the simplex coord<strong>in</strong>ate transformation, consider triangle Ì def<strong>in</strong>ed by thevertices v ½ , v ¾ ,andv ¿ and the edges e ½ v ¾ v ½ , e ¾ v ¿ v ¾ ,ande ¿ v ¿ v ½ .Any po<strong>in</strong>t r located on the triangle can be written as a weighted sum <strong>of</strong> these threenodes viar ­v ½ · «v ¾ · ¬v ¿ (9.24)where «, ¬, and­ are the simplex coord<strong>in</strong>ates« ½ ¬ ¾ ­ ¿(9.25)


Integration 261(0,1,0)v 3A 1A 3A 2v 1v 2(0,0,1) (1,0,0)(0,1)(0,0) (1,0)(a) Orig<strong>in</strong>al Triangle(b) Transformed TriangleFigure 9.4: Simplex coord<strong>in</strong>ates for a triangle.and is the area <strong>of</strong> Ì . <strong>The</strong>se coord<strong>in</strong>ates are subject to the constra<strong>in</strong>ttherefore,and« · ¬ · ­ ½ (9.26)­ ½ « ¬ (9.27)r ´½ « ¬µv ½ · «v ¾ · ¬v ¿ (9.28)Note that (9.24) has the form <strong>of</strong> a l<strong>in</strong>ear <strong>in</strong>terpolation. Indeed, simplex coord<strong>in</strong>ateswill also allow us to perform a l<strong>in</strong>ear <strong>in</strong>terpolation <strong>of</strong> a function ´Ü ݵ at po<strong>in</strong>ts<strong>in</strong>side the triangle if its values are known at the vertices. <strong>The</strong> result<strong>in</strong>g transformation<strong>of</strong> the <strong>in</strong>tegral to simplex coord<strong>in</strong>ates isÌ ´rµ r ̼ ´« ¬µÂ´« ¬µ « ¬ ¾ ½¼ ½ «¼ ´« ¬µ ¬ «(9.29)This transformation is illustrated <strong>in</strong> Figure 9.4.Given a po<strong>in</strong>t r <strong>in</strong>side a triangle, it is also desirable to obta<strong>in</strong> the simplexcoord<strong>in</strong>ates ´« ¬ ­µ. We can write the barycentric expansion <strong>of</strong> r ´Ü Ý Þµ <strong>in</strong>terms <strong>of</strong> the components <strong>of</strong> the triangle vertices asÜ ­Ü ½ · «Ü ¾ · ¬Ü ¿Ý ­Ý ½ · «Ý ¾ · ¬Ý ¿Þ ­Þ ½ · «Þ ¾ · ¬Þ ¿(9.30)


262 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>substitut<strong>in</strong>g ­ ½ « ¬ <strong>in</strong>to the above givesRearrang<strong>in</strong>g, these areÜ ´½ « ¬µÜ ½ · «Ü ¾ · ¬Ü ¿Ý ´½ « ¬µÝ ½ · «Ý ¾ · ¬Ý ¿Þ ´½ « ¬µÞ ½ · «Þ ¾ · ¬Þ ¿(9.31)«´Ü ¾ Ü ½ µ·¬´Ü ¿ Ü ½ µ·Ü ½ Ü ¼«´Ý ¾ Ý ½ µ·¬´Ý ¿ Ý ½ µ·Ý ½ Ý ¼«´Þ ¾ Þ ½ µ·¬´Þ ¿ Þ ½ µ·Þ ½ Þ ¼(9.32)and solv<strong>in</strong>g for « and ¬ gives usandwhere« ¬ ´ · Áµ ´ · Àµ´ · Àµ ´ · µ´ · Áµ ´ · µ´ · µ ´ · Àµ Ü ¾ Ü ½ Ü ¿ Ü ½ Ü ½ Ü Ý ¾ Ý ½ Ý ¿ Ý ½ Ý ½ Ý Þ ¾ Þ ½À Þ ¿ Þ ½Á Þ ½ Þ(9.33)(9.34)(9.35)9.2.2 Radiation Integrals with a Constant SourceFar-field radiation <strong>in</strong>tegrals with a constant-valued source can be written asÁ s¡r¼ r ¼ (9.36)Let us evaluate Á over a triangular element <strong>of</strong> arbitrary shape. Us<strong>in</strong>g (9.29), this<strong>in</strong>tegral becomesÁ ½ ½ « s¡r¼ r ¼ ¾Ì¼ ¼Us<strong>in</strong>g (9.28) for r ¼´« ¬µ, we can write the above asÁ ¾ s¡v½ ½¼ ½ «¼ s´«¬µ¡r¼´«¬µ ¬ « (9.37) s¡e½« s¡e¿¬ ¬ « (9.38)


Integration 263or ½ ½ «Á ¾ ×½ ×¾« ׿¬ ¬ « (9.39)¼where × ½ s ¡ v ½ , × ¾ s ¡ e ½ ,and× ¿ s ¡ e ¿ . Evaluat<strong>in</strong>g the <strong>in</strong>tegral over ¬ yields ½½Á ¾ ×½ «× ¿ × ¿which can be rewritten asIntegrat<strong>in</strong>g over « yields¼ ×¾« × ¿¬ ¬ ¬¬½ «½ « ¾ ×½ ×¾« × ¿´½ «µ× ¿ ¼¼Á ¾ ×½× ¿ ½¼¼(9.40) ׿ «´×¾ ׿µ «×¾ « (9.41)Á ¾ ×½ × ¿ «´×¾ ׿µ× ¿ ´× ¾ × ¿ µÁ ¾ ×½× ¿ × ¾´× ¾ × ¿ µ «×¾× ¾¬ ¬¬¬½ ×¾× ¾ ׿´× ¾ × ¿ µ · ½× ¾and after some tedious but straightforward algebra, we obta<strong>in</strong>Á ¾ ×½´× ¾ × ¿ µ½ × ¿× ¿½ ×¾× ¾¼(9.42)(9.43)(9.44)Let us now def<strong>in</strong>e the quantities ½ s ¡ v ½ , ¾ s ¡ v ¾ ,and ¿ s ¡ v ¿ . <strong>The</strong>refore,× ½ ½ , × ¾ ¾ ½ ,and× ¿ ¿ ½ . Mak<strong>in</strong>g these substitutions <strong>in</strong>to the aboveequation yields¾½´ ¾ ¿ µ½ ¾ ½ ¾ ½½ ¿ ½ ¿ ½(9.45)yield<strong>in</strong>gÁ ¾ ½ ¾ ½ ¿´ ¿ ¾ µ ½ ¾ ½ ¿(9.46)9.2.2.1 Special CasesWhen s is perpendicular to any <strong>of</strong> the three edges, (9.46) has a s<strong>in</strong>gularity and mustbe rewritten. When s ¡ e ½ ¾ ½ ¼,weusetheformula¾ ½ ¿Á ½(9.47)´ ¿ ¾ µ ½ ¿


264 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>Likewise, when s ¡ e ¿ ¿ ½ ¼,¾ ½ ¾Á ´ ¿ ¾ µ ½ ¾ ½ (9.48)and when s ¡ e ¾ ¿ ¾ ¼,¾Á ¿´ ½ ¾ µ ½ ¿ ½ ¿(9.49)When s is normal to the triangle, we are left with9.2.2.2 Radar Cross Section by Physical OpticsÁ ½ (9.50)We can use the results <strong>of</strong> Section 9.2.2 to compute the scattered field <strong>of</strong> a triangleus<strong>in</strong>g the physical optics approximation (2.116). Given an <strong>in</strong>cident electromagneticplanewavewith (vertical) and (horizontal) components, the <strong>in</strong>cident electricfield can be written asE ´rµ ¢ · £ r ¡r(9.51)and the <strong>in</strong>cident magnetic field asH ´rµ ½ r ¢ E´rµ ½ ¢ £ r ¡r(9.52)and us<strong>in</strong>g (2.116), the scattered far electric field <strong>of</strong> (2.101) becomesE ×´rµ ¾ ÖÖn ¢ ¢ £ Ì ´r×·r µ¡r ¼ r ¼ (9.53)where the region <strong>of</strong> <strong>in</strong>tegration is the triangle Ì whose surface normal n is constant.<strong>The</strong> complete polarimetric response <strong>of</strong> an object can be represented by the scatter<strong>in</strong>gmatrix, compris<strong>in</strong>g a set <strong>of</strong> co-polarized and cross-polarized scattered fields. This canbe written as × Á (9.54) × Á Á Á where the <strong>in</strong>dentity A ¡ ´B ¢ Cµ B ¡ ´C ¢ Aµ allows us to writeÁ n ¡ ´× ¢ µ ¡ ÁÁ n ¡ ´ × ¢ µ ¡ ÁÁ n ¡ ´ ¢ ×µ ¡ ÁÁ n ¡ ´ ¢ × µ ¡ Á(9.55)


Integration 265withÁ Ì ´r×·r µ¡r ¼ r ¼ (9.56)and Ö (9.57)¾ Ö<strong>The</strong> <strong>in</strong>tegral (9.56) is evaluated via (9.46) with s ´r × ·r µ. This result is similar toother PO-type <strong>in</strong>tegrals such as those evaluted <strong>in</strong> [4, 5, 6]. It can be used to computethe scattered field <strong>of</strong> an object composed <strong>of</strong> planar triangles if the shadow<strong>in</strong>g <strong>of</strong><strong>in</strong>dividual triangles can be determ<strong>in</strong>ed. A polygon ray tracer is commonly used forthis task, and forms the basis <strong>of</strong> high-frequency radar cross section codes such asTripo<strong>in</strong>t Industries’ lucernhammer MT.9.2.3 Radiation Integrals with a L<strong>in</strong>ear SourceWe next consider the far-field radiation <strong>in</strong>tegral with a l<strong>in</strong>early vary<strong>in</strong>g source, suchas the RWG function <strong>of</strong> (7.1). This <strong>in</strong>tegral can be written asI´sµ where the source function is def<strong>in</strong>ed asÌ´r ¼ µ s¡r¼ r ¼ (9.58)´r ¼ µr ¼ v ½ (9.59)This corresponds to the RWG function def<strong>in</strong>ed on the edge opposite vertex v ½ on Ì .Us<strong>in</strong>g (9.29), (9.58) becomes ½ ½ «I´sµ ¾ s´«¬µ¡r¼´«¬µ ¬ « (9.60)¼ ¼and us<strong>in</strong>g (9.28) for r ¼´« ¬µ, we can write the above asorI´sµ ¾ s¡v½ ½¼I´sµ ¾ ×½ ½¼ ½ «¼ ½ «¼´«e ½ · ¬e ¿ µ s¡e½« s¡e¿¬ ¬ « (9.61)´«e ½ · ¬e ¿ µ ×¾« ׿¬ ¬ « (9.62)As <strong>in</strong> Section 9.2.2, this expression will have s<strong>in</strong>gularities when s is perpendicular toany <strong>of</strong> the three edges. <strong>The</strong>refore, we must consider the general form as well as thespecial cases.


266 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>9.2.3.1 General CaseFor the general case, (9.62) evaluates toI´sµ ½ ´×¾ × ×¾ ¿ µ × ¾ ½× ¿ ´× ¾ × ¿ µ ¾ ·× ¾ ¾ ½ ´×¿ × ×¿ ¾ µ × ¿ ½× ¾ ´× ¿ × ¾ µ ¾ ·× ¾ ¿ ׿´× ¾ × ¿ µ ¾ · ½ ×¾´× ¿ × ¾ µ ¾ · ½× ¾ ¿× ¾ ¾e ½e ¿(9.63)where ¾ ×½ (9.64)9.2.3.2 Special CasesWhen s is perpendicular to e ½ (× ¾ ¼), we can write (9.62) aswhich evaluates toI´sµ ½ ×¿× ¿ ¿I´sµ ¾ ×½ ½¼ ½ « · ½· ׿e¾× ¿ × ¿ ½ · ¿¼´«e ½ · ¬e ¿ µ ׿¬ ¬ « (9.65) ׿ ׿ ¾× ¿ ¿When s is perpendicular to e ¿ (× ¿ ¼), we can write (9.62) aswhich evaluates toI´sµ I´sµ ¾ ×½ ½ ×¾ ×¾ ¾× ¿ ¾· ¾¼ ½ «When × ¾ × ¿ × × ¼, we can write (9.62) as× ¿ ¾I´sµ ¾ ×½ ½¼¼· ¾× ¿ ¿ · e× ¾ ¿ (9.66)¿´«e ½ · ¬e ¿ µ ×¾« ¬ « (9.67) · e× ¾ ½ ·½ ×¾¾× ¿ · ½· ×¾e ¿· (9.68)¾ ¾× ¾ × ¿ ¾ ½ «¼´«e ½ · ¬e ¿ µ ×´«·¬µ ¬ « (9.69)which evaluates toI´sµ × ½× ¿ ½¾×× ¾ ½× ¿ e ½ · e ¿(9.70)


Integration 267When s is normal to the triangle, (9.62) becomesI´sµ ¾ s¡v½ ½¼ ¼ ½ «´«e ½ · ¬e ¿ µ¬ « (9.71)which evaluates toI´sµ ¿ ×½ e ½ · e ¿¡(9.72)9.2.3.3 Comparison with Gaussian Quadrature<strong>The</strong> formulas <strong>in</strong> Sections 9.2.3.1 and 9.2.3.2 are especially advantageous becausethey are valid for all frequencies. By comparison, an accurate numerical quadraturerequires <strong>in</strong>creas<strong>in</strong>g numbers <strong>of</strong> <strong>in</strong>tegration po<strong>in</strong>ts as the frequency <strong>in</strong>creases, whichis undesirable. Let us compare the analytical results to those obta<strong>in</strong>ed us<strong>in</strong>g a sevenpo<strong>in</strong>tGaussian quadrature rule (Section 9.2.4). <strong>The</strong> source triangle is equilateral andlies <strong>in</strong> the ÜÝ plane with vertices v ½ ´¼ ¼µ, v ¾ ´Ð ¼µ, andv ¿ ´Ð¾Ð Ô ¿¾µ.<strong>The</strong> direction <strong>of</strong> radiation is ´ µ ´¾µ. In Figure 9.5a we comparethe magnitude <strong>of</strong> the x components <strong>of</strong> (9.62) versus the triangle edge length Ð <strong>in</strong>wavelengths. In Figure 9.5b we plot the difference between the results. We see thatthe analytical and numerical results compare very well to just over Ð ½, atwhichpo<strong>in</strong>t the numerical results start to diverge.9.2.4 Gaussian Quadrature on Triangles<strong>The</strong> most commonly referenced Gauss-Legendre locations and weights for trianglesare the symmetric quadrature rules <strong>of</strong> [7]. This reference provides tables vary<strong>in</strong>gfrom degrees 1 to 20 (79 quadrature po<strong>in</strong>ts). Tables for orders 2–5 are reproduced <strong>in</strong>Tables 9.1, 9.2, 9.3, and 9.4, respectively. <strong>The</strong> weights <strong>in</strong> these tables are normalizedwith respect to triangle area, i.e.,Ë ´Ü ݵ Ü Ý Æ½Û´« ¬ µ ´« ¬ µ (9.73)It is this author’s experience that four- and seven-po<strong>in</strong>t quadrature rules work quitewell for the MOM problems described <strong>in</strong> Chapters 7 and 8.Table 9.1: Three-Po<strong>in</strong>t Quadrature Rule (Ò ¾)i « ¬ ­ Û1 0.66666667 0.16666667 0.16666667 0.333333332 0.16666667 0.66666667 0.16666667 0.333333333 0.16666667 0.16666667 0.66666667 0.33333333


268 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>0.250.125RealImagEquationQuadratureX Magnitude0−0.125−0.250.5 1 1.5 2 2.5 3Edge Length (lambda)(a) x-component0.25RealImag<strong>in</strong>ary0.125X Difference0−0.125−0.250.5 1 1.5 2 2.5 3Edge Length (lambda)(b) x-differenceFigure 9.5: L<strong>in</strong>ear source radiation <strong>in</strong>tegral: equation versus quadrature.


Integration 269Table 9.2: Four-Po<strong>in</strong>t Quadrature Rule (Ò ¿)i « ¬ ­ Û1 0.33333333 0.33333333 0.33333333 -0.562500002 0.60000000 0.20000000 0.20000000 0.520833333 0.20000000 0.60000000 0.20000000 0.520833334 0.20000000 0.20000000 0.60000000 0.52083333Table 9.3: Six-Po<strong>in</strong>t Quadrature Rule (Ò )i « ¬ ­ Û1 0.10810301 0.44594849 0.44594849 0.223381582 0.44594849 0.10810301 0.44594849 0.223381583 0.44594849 0.44594849 0.10810301 0.223381584 0.81684757 0.09157621 0.09157621 0.109951745 0.09157621 0.81684757 0.09157621 0.109951746 0.09157621 0.09157621 0.81684757 0.10995174Table 9.4: Seven-Po<strong>in</strong>t Quadrature Rule (Ò )i « ¬ ­ Û1 0.33333333 0.33333333 0.33333333 0.225000002 0.05971587 0.47014206 0.47014206 0.132394153 0.47014206 0.05971587 0.47014206 0.132394154 0.47014206 0.47014206 0.05971587 0.132394155 0.79742698 0.10128650 0.10128650 0.125939186 0.10128650 0.79742698 0.10128650 0.125939187 0.10128650 0.10128650 0.79742698 0.12593918REFERENCES[1] G. Thomas and R. F<strong>in</strong>ney, Calculus and Analytic Geometry. Addison-Wesley,1992.[2] A. F. Peterson, S. L. Ray, and R. Mittra, Computational <strong>Method</strong>s for <strong>Electromagnetics</strong>.IEEE Press, 1998.[3] W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterl<strong>in</strong>g, Numericalrecipes <strong>in</strong> C: <strong>The</strong> Art <strong>of</strong> Scientific Comput<strong>in</strong>g. Cambridge University Press,1992.


270 <strong>The</strong> <strong>Method</strong> <strong>of</strong> <strong>Moments</strong> <strong>in</strong> <strong>Electromagnetics</strong>[4] W. B. Gordon, “Far-field approximations to the kirch<strong>of</strong>f-helmholtz representations<strong>of</strong> scattered fields,” IEEE Trans. Antennas Propagat., vol. 23, 590–592,July 1975.[5] W. B. Gordon, “High frequency approximations to the physical optics scatter<strong>in</strong>g<strong>in</strong>tegral,” IEEE Trans. Antennas Propagat., vol. 42, 427–432, March 1994.[6] S. Lee and R. Mittra, “Fourier transform <strong>of</strong> a polygonal shape function andits application <strong>in</strong> electromagnetics,” IEEE Trans. Antennas Propagat., vol. 31,99–103, January 1983.[7] D. Dunavant, “High degree efficient symmetrical gaussian quadrature rules forthe triangle,” Internat. J. Numer. <strong>Method</strong>s Engrg., vol. 21, 1129–1148, 1985.


IndexAntennasArchimedean spiral, 53, 201bowtie, 199circular loop, 83folded dipole, 86strip dipole, 198th<strong>in</strong> wire dipole, 79–83th<strong>in</strong> wire Yagi, 89Basis functions, 45–48entire-doma<strong>in</strong>, 47subdoma<strong>in</strong>piecewise s<strong>in</strong>usoidal, 46, 77piecewise triangular, 45, 75, 99, 113,114, 120, 124, 126pulse, 45, 70, 73, 97, 105, 114, 120RWG, 164BLAS, 60Centroidal approximation, 255Comb<strong>in</strong>ed field <strong>in</strong>tegral equation, 28–30, 141,143, 215Compressed sparse row format, 220Condition number, 30, 52EFIE and MFIE, 52Delta-gap sourceth<strong>in</strong> wire, 65triangle, 178Dual surface <strong>in</strong>tegral equation, 29Duffy transform, 173Edge f<strong>in</strong>d<strong>in</strong>g algorithm, 165Electric field <strong>in</strong>tegral equationthree-dimensionalbodies <strong>of</strong> revolution, 127–136FMM, 213–214generalized, 25–26us<strong>in</strong>g RWG functions, 167–179two-dimensionalTE polarization, 102–109, 120TM polarization, 100, 113TM polarization, 95Electromagnetic boundary conditions, 6Far fieldthree-dimensional, 17two-dimensional, 17Fast multipole method, 48addition theorem, 211EFIE matrix elements, 213matrix-vector product, 210MFIE matrix elements, 214radiation function, 213transfer function, 212wave translation, 212–213Gaussian quadratureone-dimensional, 259two-dimensional, 267Green’s functionthree-dimensional, 9two-dimensional, 10Hallén’s equation, 65, 68–72Huygen’s pr<strong>in</strong>ciple, see Surface equivalentImpedance match<strong>in</strong>g, 78, 89LAPACK, 60Magnetic field <strong>in</strong>tegral equationthree-dimensionalbodies <strong>of</strong> revolution, 136–141FMM, 214–215generalized, 26–28us<strong>in</strong>g RWG functions, 179–184two-dimensionalTE polarization, 111–112, 120, 124TM polarization, 109–111, 114Magnetic frill, 66MATLAB R­, 60Matrix-vector product, 48271


272 IndexMaxwell’s equations, 5<strong>Method</strong> <strong>of</strong> moments, 43–44basis function, 43Galerk<strong>in</strong>’s method, 44po<strong>in</strong>t match<strong>in</strong>g, 44test<strong>in</strong>g function, 43MLFMA, see Multi-level FMMMulti-level FMM, 222–231aggregation, 225anterpolation, 227, 231computational complexity, 231disggregation, 226group<strong>in</strong>g via octree, 222<strong>in</strong>terpolation, 227–230via FFT, 229via Lagrange polynomials, 229via spherical harmonics, 228matrix-vector product, 223Near field, 15One-level FMM, 215–222computational complexity, 222matrix-vector product, 221number <strong>of</strong> multipoles, 216radiation function, 220sampl<strong>in</strong>g rates, 218transfer function, 219Parallelization, 141, 185–186, 234Physical equivalent, 20Physical opticsapproximation, 24us<strong>in</strong>g for <strong>in</strong>itial guess, 232Pockl<strong>in</strong>gton’s equation, 65, 72–73Potential <strong>in</strong>tegrals, 40, 70–71, 76–78, 168–176,180–182Precondition<strong>in</strong>g, 58, 235–240block diagonal, 236diagonal, 235<strong>in</strong>verse LU, 236sparse approximate <strong>in</strong>verse, 237sphere, 142, 189, 240two-dimensional cyl<strong>in</strong>der, 113–124wedge cyl<strong>in</strong>der, 189wedge-plate cyl<strong>in</strong>der, 192three-dimensional, 17two-dimensional, 18Radiation <strong>in</strong>tegrals on trianglesconstant source, 262l<strong>in</strong>ear source, 265Range pr<strong>of</strong>ile, 143Range-Doppler image, 156Resonance problem, 28Richardson’s extrapolation, 257Romberg <strong>in</strong>tegration, 257Simplex coord<strong>in</strong>ates, 260–262Simpson’s rule, 258S<strong>in</strong>gularity extraction, 168, 174, 181Solution <strong>of</strong> matrix equations, 48–57, 60directGaussian elim<strong>in</strong>ation, 48LU decomposition, 50iterativebiconjugate gradient, 54biconjugate gradient stabilized, 55conjugate gradient, 53conjugate gradient squared, 55stopp<strong>in</strong>g criteria, 56Surface equivalent, 18Th<strong>in</strong> wire kernel, 64Trapezoidal rule, 256Triangular surface model, 161–162Vector potentialelectric, 12magnetic, 11, 64, 103Radar cross sectionby physical optics, 264examplesbus<strong>in</strong>ess card, 193cone-sphere, 152, 245cone-sphere with gap, 152, 245double ogive, 149, 245NASA almond, 240ogive, 149, 245plate cyl<strong>in</strong>der, 192reentry vehicle, 152

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!