20.07.2015 Views

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

VAAM-Jahrestagung 2012 18.–21. März in Tübingen

SHOW MORE
SHOW LESS

Create successful ePaper yourself

Turn your PDF publications into a flip-book with our unique Google optimized e-Paper software.

Instruments that are music to your hands.FINE SURGICAL INSTRUMENTS FOR RESEARCH SHIPPING GLOBALLY SINCE 1974Request a catalog at f<strong>in</strong>escience.de or call +49 (0) 62 21 – 90 50 50.


6 WELCOME ADDRESSESWelcome Address of the Organiz<strong>in</strong>g Committeeó It is our pleasure to welcome you <strong>in</strong>Tüb<strong>in</strong>gen for the <strong>2012</strong> Annual Conference ofthe Association for General and AppliedMicrobiology (<strong>VAAM</strong>). The Eberhard KarlsUniversity of Tüb<strong>in</strong>gen, which hosts this conference,is one of Germany’s oldest universities,founded <strong>in</strong> 1477. Microbiological researchis strongly represented <strong>in</strong> this university, aswell as <strong>in</strong> Tüb<strong>in</strong>gen’s renowned Max PlanckInstitute, <strong>in</strong> research <strong>in</strong>stitutes operated <strong>in</strong>public/private partnership and <strong>in</strong> smallbiotech companies around Tüb<strong>in</strong>gen. Theimportance placed on microbiology is illustratede.g. by the DFG-sponsored collaborativeresearch center 766 (“The Bacterial CellEnvelope”), by the participation of Tüb<strong>in</strong>gen<strong>in</strong> the German Center for Infectious DiseaseResearch (DZIF) and by the establishment ofthe Interfaculty Institute of Microbiology andInfection Medic<strong>in</strong>e Tüb<strong>in</strong>gen (IMIT) at theuniversity.The program of the <strong>VAAM</strong> conference <strong>in</strong>Tüb<strong>in</strong>gen comprises key topics like bacterialdifferentiation, cell envelope, metabolic re -gulation and signal<strong>in</strong>g, microbial pathogenicity,microbial survival strategies, se -condary metabolites and soil microbiology,as well as specialized m<strong>in</strong>isymposia. 16 plenarylectures, 168 short lectures and about600 posters will reflect the excit<strong>in</strong>g recentadvances of microbiological research <strong>in</strong> thegenomic and post-genomic era. All lectureswill take place at the University Campus“Morgenstelle” (Hörsaalzentrum Morgenstelle),allow<strong>in</strong>g close <strong>in</strong>teractions betweenthe participants as well as easy access to thescientific posters and to the exhibitions. Theneighbor<strong>in</strong>g Botanical Garden, with itsimpressive greenhouses and its beautiful viewto the hills of the Swabian Alb, <strong>in</strong>vites for avisit between the lectures, while the universitycafeteria offers food and refreshments.The center of Tüb<strong>in</strong>gen, with its wood-framehouses, its narrow old streets and its magnificentfacades to the Neckar river, belongsto the most beautiful late medieval towns <strong>in</strong>Germany. In the even<strong>in</strong>g, lively student pubs,traditional w<strong>in</strong>e bars, beer halls and restaurantsoffer enterta<strong>in</strong>ment for many tastes.Do not miss a visit to the castle, which do -m<strong>in</strong>ates the old town of Tüb<strong>in</strong>gen. It belongsto the University, and its museum displaysthe most ancient pieces of art of mank<strong>in</strong>d:wonderful small ivory sculptures of animals,unearthed <strong>in</strong> the vic<strong>in</strong>ity of Tüb<strong>in</strong>gen and da -ted to the early stone age (35000 – 40000B.C.). In the courtyard at the castle, look forthe sign which marks the laboratory of Hoppe-Seyler, where DNA (“Nucle<strong>in</strong>”) was dis coveredby Friedrich Miescher <strong>in</strong> 1869. Furthermore,consider a visit to the enchant<strong>in</strong>g oldmonastery of Bebenhausen, just a few kilometersfrom the conference venue.We s<strong>in</strong>cerely hope that you will enjoy yourstay <strong>in</strong> Tüb<strong>in</strong>gen, that you will f<strong>in</strong>d the scientificprogram of the conference stimulat<strong>in</strong>g,and that this meet<strong>in</strong>g will contribute tothe advancement and recognition of microbiologicalsciences!óWolfgang Wohlleben, Ingo Autenrieth,Volkmar Braun, Karl Forchhammer,Friedrich Götz, Rüdiger Hampp, Lutz Heide,Andreas Kappler, Andrei Lupas,Andreas PeschelBIOspektrum | Tagungsband <strong>2012</strong>


General Information<strong>2012</strong> Annual Conferenceof the <strong>VAAM</strong>VenueEberhard Karls Universität Tüb<strong>in</strong>genHörsaalzentrum MorgenstelleAuf der Morgenstelle 1672076 Tüb<strong>in</strong>gen, GermanyAddress for correspondenceConventus Congressmanagement &Market<strong>in</strong>g GmbHIsabelle LärzCarl-Pulfrich-Strasse 107745 Jena, GermanyTel.: +49 (0)3641 311 63 20Fax: +49 (0)3641 311 62 43www.vaam-kongress.deFrom south via motor-way A81:Leave the motor-way via exit #28 Herrenberg,then turn right to Tüb<strong>in</strong>genon federal road B28. Cont<strong>in</strong>ue alongB28 for about 14 km until reach<strong>in</strong>gTüb<strong>in</strong>gen.Address for navigation systems:Auf der Morgenstelle 16, Tüb<strong>in</strong>gen.From north via motor-way A8 orStuttgart Airport:Leave the motor-way via exit #53 andcon t<strong>in</strong>ue onto federal road B27.Address for navigation systems:Auf der Morgenstelle 16, Tüb<strong>in</strong>gen.Solutionsfor yourworkOpen<strong>in</strong>g hoursSunday 18.03. 13:30 – 18:30Monday 19.03. 07:30 – 19:30Tuesday 20.03. 07:30 – 19:30Wednesday 21.03. 09:00 – 13:30Travell<strong>in</strong>g to Tüb<strong>in</strong>genBy tra<strong>in</strong>The ma<strong>in</strong> tra<strong>in</strong> station <strong>in</strong> Tüb<strong>in</strong>gen islocated south of the city centre andapproximately 4km from the conferencevenue.From there you can take the bus.By public transport <strong>in</strong> Tüb<strong>in</strong>genConference tickets can be ordered atwww.vaam-congress.de until 9 March<strong>2012</strong>. Purchase may also be availableon-site but not guaranteed.There are three bus stations near theMorgenstelle.• Botanischer Garten – with the routes5, 13, or 17 towards WaldhäuserOst, Wanne Kunsthalle or Kl<strong>in</strong>ikenrespectively• BG Unfallkl<strong>in</strong>ik – with the routes 5,13, or 17• Auf der Morgenstelle – with route18 (towards Hagelloch)For detailed directions on how to get tothe Morgenstelle (or anywhere <strong>in</strong> thecity), call +49 (0)7471 93 01 96 96 orvisit www.svtue.de.Car parkThe lecture hall build<strong>in</strong>g of Morgenstelleoffers free for conference attendersat the “Südparkplatz”. Near theMorgenstelle you can also f<strong>in</strong>d the carparkEbenhalde.Car park Ebenhalde fees:0.50 EUR per hour or part thereof4.00 EUR daily maximum1.00 EUR even<strong>in</strong>gs(19.00–8.00 follow<strong>in</strong>g day)1.00 EUR Sundays and holidays(8.00-8.00 follow<strong>in</strong>g day)Address for navigation systems:Schnarrenbergstraße 158,Tüb<strong>in</strong>gen.Hotel reservationUnfortunately, the room allocation <strong>in</strong>Tüb<strong>in</strong>gen has been exhausted as faras possible. However, rooms can stillbe arranged on an <strong>in</strong>dividual basisthrough the Tourist and Ticket CenterTüb<strong>in</strong>gen.Neither the Tourist and TicketCenter nor Conventus GmbH canguarantee accommodation directly <strong>in</strong>Tüb<strong>in</strong>gen. Please organize youraccommodation as soon as possible.We also suggest mak<strong>in</strong>g use of privatelodg<strong>in</strong>gs and guesthouses <strong>in</strong> andaround Tüb<strong>in</strong>gen or hotels <strong>in</strong> Reutl<strong>in</strong>genand Rottenburg with easyaccess to Tüb<strong>in</strong>gen.www.mobitec.comBIOspektrum | Tagungsband <strong>2012</strong>


8 GENERAL INFORMATIONContactBürger und Verkehrsvere<strong>in</strong>Tourist and Information CenterMarco SchubertAn der Neckarbrücke 172072 Tüb<strong>in</strong>genTel. +49 (0)7071 91 36 14marco.schubert@tourist-ticket- center.dewww.tueb<strong>in</strong>gen-<strong>in</strong>fo.deRegistration and conference feesOnl<strong>in</strong>e registration is possible till 15 March<strong>2012</strong> on the conference homepage atwww.vaam-kongress.de. Registration afterthis date is possible on-site only. Beside cashpayments we also accept credit cards at theconference reception desk (Master/ Euro,VISA, American Express and JBC) as well asEC-Cards.Should you transfer your <strong>in</strong>voice amountwith<strong>in</strong> 10 days of the start of the event, pleasepresent your transfer remittance slip atthe Check-In desk as proof of payment.MixerThe Mixer will take place on Tuesday, 20March <strong>2012</strong> at 19:30 at the Mensa of the EberhardKarls Universität near the Morgenstelle.Accompany<strong>in</strong>g persons may purchase a ticketfor the mixer at the conference receptiondesk.PostersPosters should be displayed dur<strong>in</strong>g the wholeconference and are divided accord<strong>in</strong>g number<strong>in</strong>to two poster sessions. All odd posternumbers are <strong>in</strong> the poster session on Monday,19 March <strong>2012</strong>, 15:15-17:30. Even posternumbers are <strong>in</strong> the poster session on Tuesday,20 March <strong>2012</strong>, 15:30-17:30.Posters are to be presented <strong>in</strong> English and<strong>in</strong> the format DIN A0 (84.1 cm x 118.9 cm)and no lam<strong>in</strong>ation. Authors are asked toattach to the posters the time when they willbe available for discussion. The posters willhave to be fixed by p<strong>in</strong>s. Materials will be provided.The posters may be attached from 14:00 onSunday, 18.03.<strong>2012</strong> and should be removedbefore 12:00 on Wednesday, 21.03.<strong>2012</strong>.Presentation of the HonoraryAward, PhD Awards, and PosterPrizesThe presentation of the Honorary Award willtake place on 19.03.<strong>2012</strong> at 11:00.The presentation of the PhD thesis prizeswill take place on 20.03.<strong>2012</strong> at 17:30.The presentation of the poster prizes willtake place on 21.03.<strong>2012</strong> at 13:00.All awards will be presented <strong>in</strong> the lecturehall N6.Short lecturesThe length of short lectures has been fixed toa max. of 10 m<strong>in</strong>utes plus 5 m<strong>in</strong>utes for discussion(some variation may apply). Due tothe fact that there will be up to 7 parallel sessionsplease adhere to the total time allottedto you. Each lecture will have a countdown. Atthe end of your speak<strong>in</strong>g time the screen willturn black.Short lectures are to be held <strong>in</strong> English.Data projectors are available <strong>in</strong> each of thelecture halls. In each lecture hall there will bean assistant for technical support. We ask alllecturers to make use of the computer facilitieslocated at our presentation submissionto check their presentations <strong>in</strong> advance.General Tips for Authors andPresentersPresentation Submission deskFollow the signs or ask at the Check-In deskhow to f<strong>in</strong>d the presentation submission.Time AllotmentTo ensure smooth runn<strong>in</strong>g of the entireprogramme, all speakers are advised toadhere to their allocated speak<strong>in</strong>g time. TheRegistration fees (all days)<strong>VAAM</strong>-MembersRegularStudent*Industry Representatives**RetireeNon-membersRegularStudent*Industry Representatives**Retireechair persons of the sessions are urged tocancel discussions <strong>in</strong> delay. Contact yourchair person before your session beg<strong>in</strong>s andadvise of any changes or special wishes.Presentation Form and Submissionof PresentationPlease submit your presentation at least 120m<strong>in</strong>utes before your lecture will start. You areasked to clearly label your CD/memory stickand the file with your short lecture code numberand the name of the person giv<strong>in</strong>g thetalk. All presentations will be loaded onto ourcomputers and will be deleted after the talks.PDF and PowerPo<strong>in</strong>t presentations are permitted.Open Office formats may also be used.Required technical equipment will be avai -lable at the congress.The use of Mac<strong>in</strong>tosh or Open Office formatsas well as the use of a personal laptop fora presentation is not planned, but possible.If necessary, please contact us by 15 February<strong>2012</strong> at vaam-kongress@conventus.de.For video and audio files please submit AVI,WMV and MPG files only as a separate file.Please make sure that any required CODECfiles for any videos are also submitted.Your presentation and any additional filesshould be handed over at least two hours be -fore your presentation time.Please note: If you use a USB stick to saveyour files, do not protect it with software.210 N85 N300 N100 N280 N110 N145 N370 NFee for day tickets (Monday, Tuesday, Wednesday) 100 N** Please provide confirmation and quote <strong>VAAM</strong> <strong>2012</strong> as the reference.** This fee is not for <strong>in</strong>dustry representatives tak<strong>in</strong>g part <strong>in</strong> the <strong>in</strong>dustrial exhibition. Special rates will beprovided for booth personnel.Social programmeWelcome reception*** (18.03.<strong>2012</strong>)Mixer*** (20.03.<strong>2012</strong>)*** Registration required.<strong>in</strong>cluded<strong>in</strong>cludedBIOspektrum | Tagungsband <strong>2012</strong>


SPONSORS & EXHIBITORS9Sponsoren und Aussteller der <strong>Jahrestagung</strong> der <strong>VAAM</strong> <strong>2012</strong>/Sponsors and Exhibitors of the Annual Meet<strong>in</strong>g of the <strong>VAAM</strong> <strong>2012</strong>(Stand: 17.02.<strong>2012</strong>/as of: 17.02.<strong>2012</strong>)Sponsoren/SponsorsBoehr<strong>in</strong>ger Ingelheim Pharma KG (Biberach a.d. Riss)Caister Academic Press Ltd (Norwich/UK)Partec GmbH (Münster)Wacker Chemie AG (München)Sponsor Posterpreise/Sponsor posterprizesMorphoSys AG (Planegg-Mart<strong>in</strong>sried)Förderungen/Fund<strong>in</strong>gFederation of European Microbiological Societies (FEMS)www.fems-microbiology.orgUniversitätsbund Tüb<strong>in</strong>genVere<strong>in</strong>igung der Freunde der Eberhard Karls Universität e.V.http://homepages.uni-tueb<strong>in</strong>gen.de/Unibund/Aussteller/ExhibitorsAlphabetische Reihenfolge/Alphabetical orderAbbott GmbH & Co. KG, Ibis Biosciences (Wiesbaden) 17Analytik Jena AG (Jena) 3Andreas Hettich GmbH & Co. KG (Tuttl<strong>in</strong>gen) 10Applied Maths NV (S<strong>in</strong>t-Martens-Latem/BE) 14BD Accuri (Heidelberg) 53Beckman Coulter Genomics GmbH (Bernried) 22Biozym Scientific GmbH (Hess. Oldendorf) 35Bruker Daltonik GmbH (Bremen) 34CeCo Labs (Tüb<strong>in</strong>gen) 1Deutsche Forschungsgeme<strong>in</strong>schaft (Bonn) 25Dornier - LTF GmbH (L<strong>in</strong>dau) 21ELGA Labwater (Celle) 38Eppendorf AG (Hamburg) 51Eurof<strong>in</strong>s MWG Operon (Ebersberg) 37GATC Biotech AG (Konstanz) 27HYGLOS GmbH (Bernried am Starnberger See) 30IBA GmbH (Gött<strong>in</strong>gen) 43Immundiagnostik AG (Bensheim) 15Infors GmbH (Stuttgart) 29Keyence Deutschland GmbH (Neu-Isenburg) 52Leibniz Institut, Deutsche Sammlung von Mikroorganismenund Zellkulturen GmbH (Braunschweig) 4LGC Standards GmbH/LGC Genomics GmbH (Berl<strong>in</strong>) 12MACHEREY-NAGEL GmbH & Co. KG (Düren) 16metabion <strong>in</strong>ternational AG (Planegg/Matr<strong>in</strong>sried) 45MoBiTec GmbH (Gött<strong>in</strong>gen) 7MP Biomedicals (Illkirch/FR) 50New England Biolabs GmbH (Frankfurt a.M.) 6Nippon Genetics Europe GmbH (Düren) 19QIAGEN GmbH (Hilden) 20SARSTEDT AG & Co. (Nümbrecht) 18SERVA Electrophoresis GmbH (Heidelberg) 23SEQLAB Sequence Laboratories Gött<strong>in</strong>gen GmbH (Gött<strong>in</strong>gen) 24Sigma-Aldrich Chemie GmbH (Buchs/CH) 8/9Source BioScience c/o imaGenes GmbH (Berl<strong>in</strong>) 42Spr<strong>in</strong>ger Fachmedien Wiesbaden GmbH (Wiesbaden) 28Süd-Laborbedarf GmbH (Gaut<strong>in</strong>g) 5TIB MOLBIOL Syntheselabor GmbH (Berl<strong>in</strong>) 44Wiley-Blackwell (We<strong>in</strong>heim) 11Zymo Research Europe GmbH (Freiburg) 49Numerische Reihenfolge/Numerical orderCeCo Labs (Tüb<strong>in</strong>gen) 1Analytik Jena AG (Jena) 3Leibniz Institut, Deutsche Sammlung von Mikroorganismenund Zellkulturen GmbH (Braunschweig) 4Süd-Laborbedarf GmbH (Gaut<strong>in</strong>g) 5New England Biolabs GmbH (Frankfurt a.M.) 6MoBiTec GmbH (Gött<strong>in</strong>gen) 7Sigma-Aldrich Chemie GmbH (Buchs/CH) 8/9Andreas Hettich GmbH & Co. KG (Tuttl<strong>in</strong>gen) 10Wiley-Blackwell (We<strong>in</strong>heim) 11LGC Standards GmbH/LGC Genomics GmbH (Berl<strong>in</strong>) 12Applied Maths NV (S<strong>in</strong>t-Martens-Latem/BE) 14Immundiagnostik AG (Bensheim) 15MACHEREY-NAGEL GmbH & Co. KG (Düren) 16Abbott GmbH & Co. KG, Ibis Biosciences (Wiesbaden) 17SARSTEDT AG & Co. (Nümbrecht) 18Nippon Genetics Europe GmbH (Düren) 19QIAGEN GmbH (Hilden) 20Dornier - LTF GmbH (L<strong>in</strong>dau) 21Beckman Coulter Genomics GmbH (Bernried) 22SERVA Electrophoresis GmbH (Heidelberg) 23SEQLAB Sequence Laboratories Gött<strong>in</strong>gen GmbH (Gött<strong>in</strong>gen) 24Deutsche Forschungsgeme<strong>in</strong>schaft (Bonn) 25GATC Biotech AG (Konstanz) 27Spr<strong>in</strong>ger Fachmedien Wiesbaden GmbH (Wiesbaden) 28Infors GmbH (Stuttgart) 29HYGLOS GmbH (Bernried am Starnberger See) 30Bruker Daltonik GmbH (Bremen) 34Biozym Scientific GmbH (Hess. Oldendorf) 35Eurof<strong>in</strong>s MWG Operon (Ebersberg) 37ELGA Labwater (Celle) 38Source BioScience c/o imaGenes GmbH (Berl<strong>in</strong>) 42IBA GmbH (Gött<strong>in</strong>gen) 43TIB MOLBIOL Syntheselabor GmbH (Berl<strong>in</strong>) 44metabion <strong>in</strong>ternational AG (Planegg/Matr<strong>in</strong>sried) 45Zymo Research Europe GmbH (Freiburg) 49MP Biomedicals (Illkirch/FR) 50Eppendorf AG (Hamburg) 51Keyence Deutschland GmbH (Neu-Isenburg) 52BD Accuri (Heidelberg) 53BIOspektrum | Tagungsband <strong>2012</strong>


10 SPONSORS, EXHIBITORS & POSTERS BIOspektrum | Tagungsband <strong>2012</strong>


11BIOspektrum | Tagungsband <strong>2012</strong>


12 SPONSORS, EXHIBITORS & POSTERSBIOspektrum | Tagungsband <strong>2012</strong>


13BIOspektrum | Tagungsband <strong>2012</strong>


14 GENERAL INFORMATIONE<strong>in</strong>ladung zur Mitgliederversammlung der <strong>VAAM</strong>ó Hiermit lade ich alle Mitglieder der <strong>VAAM</strong>zur Mitgliederversammlung e<strong>in</strong>. Sie wird amDienstag, den 20. März <strong>2012</strong>, um 17.30 Uhr imHörsaalkomplex Morgenstelle der Eberhard-Karls-Universität Tüb<strong>in</strong>gen (Hörsaal N6) stattf<strong>in</strong>den.Vorläufige Tagesordnung:1. Festlegung der Tagesordnung und Genehmigungder Niederschrift der Mitgliederversammlungvom 5. April 2011 <strong>in</strong> Karlsruhe(siehe BIOspektrum 4/11, Seiten 447und 448)2. Bericht aus dem Vorstand, u.a. Haushalt2011 und Haushaltsplan <strong>2012</strong>, Ort undZeit der nächsten <strong>Jahrestagung</strong>, Aktivitätender Fachgruppen, VBIO, Öffentlichkeitsarbeit3. Bericht der Kassenprüfer4. Entlastung des Vorstandes5. Änderung der Geschäftsordnung (Fachgruppen),s.u.6. Wahl e<strong>in</strong>es Ehrenmitglieds7. VerschiedenesIm Anschluss:– Verleihung der Ehrenmitgliedschaft anGerhard Gottschalk– Verleihung der <strong>VAAM</strong>-Promotionspreise<strong>2012</strong>Reisekostenzuschüsse für studentischeMitglieder können bei fristgerecht e<strong>in</strong>gegangenenAnträgen und bei Vorliegen dersonstigen Voraussetzungen nur persönlicham Dienstag, den 20. März <strong>2012</strong> zwischen14.00 Uhr und 16.00 Uhr sowieam Mittwoch, den 21. März <strong>2012</strong>, zwischen10.00 Uhr und 12.00 Uhr imTagungsbüro abgeholt werden. óHubert BahlSchriftführerÄnderung der <strong>VAAM</strong>-Geschäftsordnung, Punkt V.Neuerungen s<strong>in</strong>d farblich hervorgehobenE<strong>in</strong>richtung von Fachgruppenó Mitglieder der Gesellschaft mit besondersspezialisiertem fachlichen Interesse könnensich <strong>in</strong>nerhalb der Gesellschaft zu Fachgruppenzusammenschließen. Der Antrag auf E<strong>in</strong>richtunge<strong>in</strong>er Fachgruppe muss von m<strong>in</strong>destens25 ordentlichen Mitgliedern unterstütztwerden und ist an den Präsidenten zurichten. Die Mitgliederversammlungbeschließt die E<strong>in</strong>richtung von Fachgruppenfür vier Jahre mit e<strong>in</strong>facher Mehrheit.E<strong>in</strong>e Verlängerung der Dauer für jeweilsweitere vier Jahre ist auf begründetemAntrag durch den Vorstand möglich. DieFachgruppen können Symposien abhaltenund <strong>in</strong>nerhalb von Tagungen der <strong>VAAM</strong> ihrSpezialgebiet vertreten. Die Vertretung derFachgruppen nach außen ist Angelegenheitder <strong>VAAM</strong> bzw. ihres Präsidiums. Den Fachgruppenwird jeweils e<strong>in</strong> vom Präsidium festgesetzterfester Betrag für ihre Aktivitätenzur Verfügung gestellt, der mit Zustimmungdes Schatzmeisters <strong>in</strong> das jeweils nachfolgendeJahr übertragen werden kann. Die Mitgliederder Fachgruppen wählen auf e<strong>in</strong>erMitgliederversammlung aus ihrer Mitte –jeweils auf 2 Jahre – e<strong>in</strong>en Sprecher der Gruppeund se<strong>in</strong>en Stellvertreter, was durch dasPräsidium der <strong>VAAM</strong> zu bestätigen ist.Wiederwahl ist zulässig. Die Sprecher derFachgruppen berichten über deren Aktivitä-ten im Vorstand und <strong>in</strong> der Mitgliederzeitschriftoder im Tagungsband der <strong>Jahrestagung</strong>der <strong>VAAM</strong>.KarrieresymposiumVorstellung vielfältiger Berufsbilder <strong>in</strong> den BiowissenschaftenAnregungen und Tipps zur KarriereplanungMontag, 19. 03. <strong>2012</strong>15.45 – 17.15 UhrHörsaal N6Das zurzeit amtierende Präsidium regeltden Übergang von der bisherigen auf dieneue Geschäftsordnung.óMarion Karrasch, Forschungszentrum Jülich„Karrieremöglichkeiten <strong>in</strong> der Forschungsförderung“Meike Kammler, Universität Tüb<strong>in</strong>gen„Perspektiven <strong>in</strong> der Wirtschaftsförderung – als Netzwerker<strong>in</strong> zwischen Wirtschaft,Wissenschaft und Politik“Oliver Müller, Capgem<strong>in</strong>i Consult<strong>in</strong>g„Vom Forscher zum Berater – als Naturwissenschaftler <strong>in</strong> der StrategieundManagementberatung“Die Veranstaltung wird unterstützt und gefördert durch das BMBF im Rahmendes ESIT-Projekts„Erfolgreich studieren <strong>in</strong> Tüb<strong>in</strong>gen“.BIOspektrum | Tagungsband <strong>2012</strong>


16 AUS DEN FACHGRUPPEN DER <strong>VAAM</strong>Fachgruppe: ArchaeaAnpassung an die extremen Umweltbed<strong>in</strong>gungenist häufig sehr spezifisch, und dieHandhabung dieser Organismen im Laborerfordert spezielle Adaptionen. Neben der Kultivierungist dies bei allen physiologischen,biochemischen oder molekulargenetischenUntersuchungen der Fall; gängige Gelsystemefunktionieren beispielsweise nicht bei5 M NaCl oder 90°C.Die Fachgruppe Archaea schafft e<strong>in</strong> Forum,<strong>in</strong> dem neben Präsentation und Diskussionwissenschaftlicher Daten auch Erfahrungenbei der Entwicklung von Untersuchungs -methoden ausgetauscht werden. Mitgliederder Fachgruppe beschäftigen sich mit e<strong>in</strong>embreiten Spektrum zur Ökologie, Physiologie,Molekularbiologie und den Zellstrukturenvon Archaea und können immer wieder spanóArchaea bilden die dritte Domäne desLebens und werden häufig mit extrem heißen,sauren oder salzigen Standorten auf Kont<strong>in</strong>entenoder <strong>in</strong> der Tiefsee <strong>in</strong> Verb<strong>in</strong>dunggebracht. Sie s<strong>in</strong>d zwar charakteristischeBewohner dieser Habitate, die methanogenenArchaea kommen aber auch <strong>in</strong> weniger exotischenStandorten wie dem Pansen vonWiederkäuern vor. Die Bedeutung derArchaea hat <strong>in</strong> den letzten Jahren stark zugenommen,da über genetische Methoden vieleVertreter dieser Organismengruppe im Bodenoder Süßwasser entdeckt wurden, die nochnicht kultiviert wurden, aber am N-Kreislaufstärker beteiligt s<strong>in</strong>d als bislang vermutet.Aufgrund der phylogenetischen Stellung s<strong>in</strong>dsie spannende Forschungsobjekte im H<strong>in</strong>blickauf Evolution von Enzymen; auch ihrenende Erkenntnisse oder neue Entdeckungenpräsentieren. Geme<strong>in</strong>samer Treffpunkt ist diejährlich im Herbst von Jörg Soppa organisierteTagung <strong>in</strong> Schmitten bei Frankfurt, bei dervor allem Doktoranden ihre Daten zur Diskussionstellen und e<strong>in</strong> bis zwei <strong>in</strong>ternationaleSprecher zum Vortrag e<strong>in</strong>geladen werden.óSprecher<strong>in</strong>: Felicitas Pfeifer,Universität DarmstadtEmail: pfeifer@bio.tu-darmstadt.deFachgruppe: Mikrobielle Pathogenität – geme<strong>in</strong>sam mit derDeutschen Gesellschaft für Hygiene und Mikrobiologie(DGHM)ó Die Fachgruppe bildet e<strong>in</strong> Forum für dieerregerorientierte bakterielle Infektionsforschung<strong>in</strong> Deutschland und ist gleichermaßen<strong>in</strong> der <strong>VAAM</strong> und der DGHM vertreten.Wie schon <strong>in</strong> den vergangenen Jahren gestaltetenwir 2011 die <strong>Jahrestagung</strong>en der beidenDachgesellschaften aktiv mit. Bei der <strong>VAAM</strong>-Tagung <strong>in</strong> Karlsruhe wurden zwei Sessionszu den Themen ‚Pathogen metabolism andphysiology’ und ‚Virulence factors’ sowiee<strong>in</strong>e geme<strong>in</strong>same Session mit der FachgruppeRegulation und Signaltransduktionmit dem Thema ‚Second messengers <strong>in</strong> bacteria’ausgerichtet. Im Rahmen der DGHM-Tagung <strong>in</strong> Essen fanden Sessions mit Titelnwie ‚Microbial pathogenicity and gastro<strong>in</strong>test<strong>in</strong>al<strong>in</strong>fections’, ‚Microbial pathogenicityand eukaryotic pathogens’, ‚Intracellularpathogens’, und ‚Interaction of pathogenswith host cells and matrix prote<strong>in</strong>s’ statt.E<strong>in</strong> gut besuchtes <strong>in</strong>ternationales Symposiumzum Thema ‚How dead is dead?’, organisiertvon Ralf Bertram und Friedrich Götz,fand mit Unterstützung der Fachgruppe imJuni <strong>in</strong> Tüb<strong>in</strong>gen statt.Im Jahr <strong>2012</strong> stehen wichtige Entscheidungenund Aktivitäten an. Anfang des Jahreswerden die Mitglieder der Fachgruppe dieSprecher für die <strong>VAAM</strong>-Fachgruppe neu wählen.Gleiches gilt auch für den Vorstand derDGHM-Fachgruppe, aus dem Volkard Kempfausscheiden wird. Bei der <strong>VAAM</strong>-<strong>Jahrestagung</strong><strong>in</strong> Tüb<strong>in</strong>gen wird das Thema MikrobiellePathogenität e<strong>in</strong>e große Rolle spielen,mit der Chance, Sitzungen zu verschiedenenThemen der Fachgruppe organisieren zu können.Vom 18. bis 20. Juni <strong>2012</strong> wird zumsechs ten Mal die traditionell alle zwei Jahrestattf<strong>in</strong>dende Tagung der Fachgruppe <strong>in</strong> BadUrach stattf<strong>in</strong>den. Bei dieser haben vor allemjüngeren Mitgliedern die Gelegenheit, ihrewissenschaftlichen Arbeiten zu präsentierenund sich auszutauschen. In diesem Jahr wirdauch die 3. Nationale Yers<strong>in</strong>ia-Tagung <strong>in</strong>Tüb<strong>in</strong>gen stattf<strong>in</strong>den, die Ingo Autenriethorganisiert und die ebenfalls von der Fachgruppeunterstützt wird. Schließlich wird dieFachgruppe auch bei der DGHM-<strong>Jahrestagung</strong><strong>in</strong> Hamburg präsent se<strong>in</strong> und aktiv mehrere‚Sessions’ organisieren.Der Vorstand wünscht den Mitgliedern derFachgruppe e<strong>in</strong> gesundes und erfolgreichesJahr <strong>2012</strong>.óSprecher <strong>VAAM</strong>:Andreas Peschel,Universität Tüb<strong>in</strong>genEmail: andreas.peschel@uni-tueb<strong>in</strong>gen.dePetra Dersch,Helmholtz-Zentrumfür InfektionsforschungEmail: petra.dersch@helmholtz-hzi.deSprecher DGHM:Volkhard Kempf, Sven Hammerschmidt,Holger RohdeBIOspektrum | Tagungsband <strong>2012</strong>


19Fachgruppe: Qualitätssicherung und Diagnostikstimmung von Bakterien ohne zeitraubendeKultivierungsschritte. In naher Zukunft kanne<strong>in</strong>e Bestimmung von Bakterien statt mehrererTage durch Koch’sche Verfahren <strong>in</strong>nerhalbe<strong>in</strong>es Tages oder sogar weniger Stundenmöglich werden. In Folge erlaubt dies e<strong>in</strong>eschnellere Freigabe von Wirkstoffen und e<strong>in</strong>ezeitnahe Kontrolle von Produktionsprozessen.Die Forschung und Entwicklung derMikrobiologie wird weiter nach neuen undbesseren Methoden suchen, um <strong>in</strong> das Reichdes kle<strong>in</strong>sten Lebens vorzudr<strong>in</strong>gen. WeitereVortragsthemen waren die EHEC-Epidemieim Frühjahr 2011, die Bewertung neuer Richtl<strong>in</strong>ienfür die Verwendung mikrobiologischerNährmedien, unterschiedliche Identifizierungsmethodensowie die Zuverlässigkeit vonDatenbanken, auf Basis derer z. B. molekularbiologischerzielte Identifizierungsergebnisse<strong>in</strong>terpretiert werden. E<strong>in</strong>e Führungdurch das berühmte Industriedenkmal Peter-Behrens-Bau, das ehemalige Verwaltungsgebäudeder Hoechst AG, lockerte den Tag auf.Das nächste Treffen wird begleitendzur <strong>VAAM</strong>-Frühjahrstagung <strong>in</strong> Tüb<strong>in</strong>gen(20.03.<strong>2012</strong>) stattf<strong>in</strong>den. Dort werden wiranhand fachlicher Präsentationen durch Sprecheraus verschiedenen Karrierestufen dasBerufsbild des „Industrie-Mikrobiologen“erhellen und wollen <strong>in</strong> e<strong>in</strong>er anschließendenDiskussion jungen Mikrobiologen Berufs -perspektiven im Bereich Qualität und Diagnostikaufzeigen. Auch unser regelmäßigesJahrestreffen im Herbst <strong>2012</strong> ist <strong>in</strong> Planung,es wird am Freitag 28. September <strong>2012</strong> <strong>in</strong>Köln <strong>in</strong> Anschluss an e<strong>in</strong>e Pharmakonferenz(www.aseptikon.de) stattf<strong>in</strong>den. Wir werdenó Was haben Lebensmittel, Wandfarbe, Arzneimittelund Chemikalien geme<strong>in</strong>sam? Inihnen können Mikroorganismen vorkommen– erwünscht oder notwendig, aber auch alsunerwünschte Kontam<strong>in</strong>ation. Und wenn sieabsichtlich dar<strong>in</strong> vorkommen, s<strong>in</strong>d es auchdie richtigen? Stimmt ihre Anzahl? Falls sienicht erwünscht s<strong>in</strong>d, wie wird man sie wiederlos?Die Aufgabe der Mitglieder der FachgruppeQualitätssicherung und Diagnostik ist es, diesenFragen nachzugehen. Unsere Mitgliederetablieren Methoden zur Detektion und Identifizierungoder verbessern diese, um relevanteBakterien nachzuweisen und ihreAnzahl zu bestimmen. Dieses Wissen ermöglichtes, Maßnahmen für e<strong>in</strong>e sichere Herstellungauszuarbeiten und unerwünschteMikroorganismen e<strong>in</strong>zudämmen.Die Fachgruppe versteht sich als e<strong>in</strong> Forumfür Mikrobiologen, die vor allem <strong>in</strong> Industrieunternehmen<strong>in</strong> der Forschung & Entwicklung,der Qualitätskontrolle oder derMarktversorgung tätig s<strong>in</strong>d oder <strong>in</strong> diesemBerufsfeld e<strong>in</strong>e Aufgabe nach dem Studiumsuchen. Wir treffen uns m<strong>in</strong>destens e<strong>in</strong>maljährlich an wechselnden Orten <strong>in</strong> Deutschlandzu Vortrags- und Diskussionsveranstaltungen.Bei unserem Jahrestreffen am 30. September2011 bei Provadis im Industriepark Höchst<strong>in</strong> Frankfurt/Ma<strong>in</strong> kamen rund 40 aktive Mitgliederder FG zusammen. Hier wurden beispielsweiseschnelle Methoden der Mikrobiologie,die „Rapid Microbiological Methods“,vorgestellt und diskutiert. Diese ermöglichene<strong>in</strong>e schnelle molekularbiologische Artbehierbeiauch von thematischen Schnittmengender Sprecher und Aussteller profitierenkönnen.Die Fachgruppe wird den Austausch mitweiteren Gruppen und Organisationen aufihrem Gebiet verstärken und für ihre Mitgliederüber Internet-basierende Plattformenden Austausch zwischen den Treffen ermöglichen.So ist <strong>in</strong> XING bereits e<strong>in</strong>e sich stetsum weitere Interessenten erweiternde Netzwerkmöglichkeitetabliert (https:// www. x<strong>in</strong>g.com/ net/pricdf8f4x/mikrobiologie). Nebender Fachgruppe ist hier auch die offizielle Präsentationder <strong>VAAM</strong> angesiedelt. Dadurchkann e<strong>in</strong> Austausch über mikrobiologischeFachthemen unserer Fachgruppen –und vielleichtbald weiterer Fachgruppen– sowie der<strong>VAAM</strong> im Gesamten <strong>in</strong>nerhalb von Fachkreisenerfolgen.óSprecher:Steffen Prowe,Beuth Hochschule, Berl<strong>in</strong>Email: steffen.prowe@beuth-hochschule.deAndreas Seiffert-Störiko,SanofiEmail: Andreas.Seiffert-Stoeriko@sanofi.comFachgruppe: Umweltmikrobiologieó Nachdem die Fachgruppe 2011 das „InternationalSymposium on Subsurface Microbiology“mit geplant und durchgeführt hat,wird Barbara Morasch, Universität Tüb<strong>in</strong>genfür diese <strong>VAAM</strong>-<strong>Jahrestagung</strong> e<strong>in</strong> M<strong>in</strong>isymposiummit dem Thema „What makes carbonsources difficult for microbes to degrade?“organisieren. E<strong>in</strong>geladene Sprecher s<strong>in</strong>d Prof.Dr. Friedrich Widdel, Max-Planck-Institut fürMar<strong>in</strong>e Mikrobiologie, Bremen, mit dem Vortragstitel:„Degradation of organic carbon bymicroorganisms – do we know the ‘rules’ andlimits?“ sowie Dr. Frederik Hammes, EAWAGDübendorf, CH zu dem Thema: „Characteris<strong>in</strong>goligotrophic bacterial growth with flowcytometry“. Die weiteren Vorträge werden ausden Abstracts ausgewählt.E<strong>in</strong>ladung zur Mitgliederversammlung:Im Rahmen des M<strong>in</strong>isymposiums wird dieFachgruppe auch ihre Mitgliederversammlungabhalten. Ich würde mich freuen, wennes Interessenten gäbe, die gerne e<strong>in</strong>en Work -shop mit Unterstützung der Fachgruppe organisierenmöchten. Vorschläge können entwederper Mail an mich geschickt werden (ra<strong>in</strong>er.meckenstock@helmholtz-muenchen.de)oder <strong>in</strong> der Fachgruppensitzung diskutiertwerden.óSprecher: Ra<strong>in</strong>er Meckenstock,Helmholtz-Zentrum MünchenEmail: ra<strong>in</strong>er.meckenstock@helmholtzmuenchen.deBIOspektrum | Tagungsband <strong>2012</strong>


20 AUS DEN FACHGRUPPEN DER <strong>VAAM</strong>Fachgruppe: Identifizierung und Systematikó A session entitled “From Genes to Cells”was organised at the ICSEB/GfBS conferenceBioSystematics 2011, 21. bis 27.02.2011, Berl<strong>in</strong>.Funds were <strong>in</strong>itially made available forthe travel of <strong>in</strong>vited speakers <strong>in</strong> the session toattend the meet<strong>in</strong>g from the <strong>VAAM</strong> Fachgruppe“Identifizierung und Systematik”,however, the meet<strong>in</strong>g was f<strong>in</strong>ancially successfuland these funds were returned to the<strong>VAAM</strong>. The topics covered <strong>in</strong> the session were:1. Microbial Genomics.2. Molecular control of bacterial growth andform.3. Physiological and biochemical diversity ofprokaryotes.4. The chemical diversity of prokaryotes.5. Standards <strong>in</strong> Genomic Sciences: A standardscompliant open-access journal forthe ‘omics community.6. Explor<strong>in</strong>g niche specialisation <strong>in</strong> mar<strong>in</strong>emicrobes by context enabled comparativegenomics.The session held at the <strong>VAAM</strong>-<strong>Jahrestagung</strong>,3. bis 6.04.2011 <strong>in</strong> Karlsruhe centred onvarious aspects of microbial lipids, which aretraditionally only poorly covered <strong>in</strong> microbiologicaltext books. The session was wellattended and covered the topics of:1) Lipids – The fourth cornerstone <strong>in</strong> biologicalchemistry2) Biosynthesis and remodell<strong>in</strong>g of bacterialmembrane lipids3) Regulation of membrane homeostasis <strong>in</strong>Pseudomonas aerug<strong>in</strong>osa4) Fatty acid synthesis <strong>in</strong> fungal type I prote<strong>in</strong>complexes5) Structural analysis of the polar lipids ofSph<strong>in</strong>gobacterium spiritivorum and Pedobacterhepar<strong>in</strong>usThere was <strong>in</strong>put <strong>in</strong>to another session at the<strong>VAAM</strong>-<strong>Jahrestagung</strong>, 3. bis 6.04.2011 on“Science and Infrastructure” deal<strong>in</strong>g with thetopic of the reliability of published data andthe significance of both the use of authenticstra<strong>in</strong>s as well as the ability to verify datapublished/deposited <strong>in</strong> databases based onthe orig<strong>in</strong>al biological material used. Thismessage was also conveyed to a meet<strong>in</strong>g ofthe Society for General Microbiology at itsSpr<strong>in</strong>g meet<strong>in</strong>g <strong>in</strong> Harrogate, 11. bis 14.04.2011, the 4 th FEMS Congress of EuropeanMicrobiologists <strong>in</strong> Geneva, Switzerland, 26.bis 30.06.2011 and also the meet<strong>in</strong>g of the<strong>VAAM</strong> Fachgruppe “Qualitätssicherung undDiagnostik” 30.09.2011 <strong>in</strong> Frankfurt-Höchst.Concern has been expressed <strong>in</strong> the Ausschussfür Biologische Arbeitsstoffe – ABASthat identification methods used to identifyorganisms for the purpose of Risk Group classificationwould need to be exam<strong>in</strong>ed carefully,s<strong>in</strong>ce some of the methods used do notcover more than just a small spectrum of organisms.This is also l<strong>in</strong>ked with a lack ofexperts tra<strong>in</strong>ed <strong>in</strong> this area, a topic also discussedwith the <strong>VAAM</strong> Fachgruppe “Qualitätssicherungund Diagnostik”. With<strong>in</strong> theABAS Expertenpool concerns were also raisedabout the reliable identification and taxonomyof a genome sequenced stra<strong>in</strong> of Pseudomonasputida which has also been used asthe basis for the safety level evaluation <strong>in</strong> theZKBS.Systematics is affected by the Conventionon Biological Diversity and the recently draftedNagoya Protocol on Access and BenefitShar<strong>in</strong>g. The EU and many EU member stateshave not only signed the Nagoya Protocol, butare actively <strong>in</strong>volved <strong>in</strong> the process lead<strong>in</strong>gto the ratification of the protocol. This willlead to additional laws and regulations thatwill potentially affect many areas of biologicalresearch, especially areas relat<strong>in</strong>g to “bioprospect<strong>in</strong>g”(screen<strong>in</strong>g for new drugs/enzymes).A number of conferences/meet<strong>in</strong>gshave already been held <strong>in</strong> Germany and theprocess of public consultation is well underway at the EU level.The next meet<strong>in</strong>g of the <strong>VAAM</strong> Fachgruppe“Identifizierung und Systematik” will takeplace <strong>in</strong> Tüb<strong>in</strong>gen where it is hoped that onewill be able to further emphasise the fact thatmicrobial systematic is a significant part ofmicrobiology and that it is more than justnam<strong>in</strong>g as many species as possible <strong>in</strong> theshortest possible time us<strong>in</strong>g the m<strong>in</strong>imalamount of data.óSprecher: Brian T<strong>in</strong>dall,DSMZ BraunschweigEmail: bti@dsmz.deStellvertreter:Hans-Jürgen Busse, Universität WienEmail: Hans-Juergen.Busse@vetmeduni.ac.atFachgruppe: Hefeó Hefen haben e<strong>in</strong>e große Bedeutung <strong>in</strong> derBiotechnologie, und sie s<strong>in</strong>d als Eukaryotenwichtige Modellorganismen der Zellbiologie.Darüber h<strong>in</strong>aus nimmt die Bedeutung e<strong>in</strong>igerHefen als human- und pflanzenpathogeneInfektionskeime stetig zu. Die FachgruppeHefe fasst die Mitglieder der <strong>VAAM</strong> zusammen,die mit Hefen als Mikroorganismus andiesen Fragestellungen arbeiten und umfasstzurzeit 69 Mitglieder.Aufgrund der großen Hefetagung „YeastGenetics and Molecular Biology“ im Sommer2011 <strong>in</strong> Olsztyn, Polen, fand ke<strong>in</strong> gesondertesTreffen der Fachgruppe Hefe <strong>in</strong> 2011 statt.Bei der Tagung <strong>in</strong> Tüb<strong>in</strong>gen wird die Fachgruppee<strong>in</strong> M<strong>in</strong>i-Symposium mit acht Referentendurchführen. Schwerpunktthemens<strong>in</strong>d dabei: Membranen und Endozytose,RNA und Ribosomen, Biotechnologie undandere Hefen.Für 2013 wird unter Mitwirkung der FachgruppeHefe erstmalig seit 1976 die <strong>in</strong>ternationaleHefekonferenz wieder <strong>in</strong> Deutschland(Frankfurt/Ma<strong>in</strong>) stattf<strong>in</strong>den.óSprecher: Karl-Dieter Entian,Universität Frankfurt a. M.Email: entian@bio.uni-frankfurt.deBIOspektrum | Tagungsband <strong>2012</strong>


21Fachgruppe: Regulation und Signaltransduktion <strong>in</strong> Prokaryotendung neuer Forscherverbünde. Der neue DFG-Schwerpunkt „Phenotypic heterogeneity andsociobiology of bacterial populations“ ist dafüre<strong>in</strong> gutes Beispiel.Für das Symposium während der <strong>VAAM</strong>-Tagung <strong>2012</strong> <strong>in</strong> Tüb<strong>in</strong>gen haben wir das Thema„Bacterial receptors and signal<strong>in</strong>g“gewählt. Das Symposium, das zusammen mitder Fachgruppe „Mikrobielle Pathogenität“organisiert wird, wird <strong>in</strong> diesem Jahr sechsNachwuchswissenschaftlerInnen die Möglichkeitgeben, ihre neuesten Daten zu dieserThematik vorzustellen.E<strong>in</strong>e weitere wichtige Aktivität der Forschergruppes<strong>in</strong>d die im zweijährigen Turnusstattf<strong>in</strong>denden Sommerschulen zum Thema„Mechanismen der Genregulation“. Die<strong>in</strong>teraktive Diskussion der NachwuchswissenschaftlerInnensteht im Vordergrund dieserVeranstaltungen. Diese Sommerschulenó Stressantwort und Stressanpassung s<strong>in</strong>dessentiell für das Überleben e<strong>in</strong>zelliger Organismen.Im Laufe der Evolution haben sichausgeklügelte Signalnetzwerke entwickelt,die Sensorik sowie nachfolgende transkriptionelle,translationale, posttranslationaleRegulationsmechanismen umfassen undniedermolekulare Signalmoleküle e<strong>in</strong>beziehen.Die Fachgruppe trägt dieser Breite derRegulationsmechanismen Rechnung, <strong>in</strong>demjährlich während der <strong>VAAM</strong>-Tagung Symposienorganisiert werden, die verschiedeneAspekte der Regulation und Signaltransduktionbeleuchten. Die Themenbreite reicht vonder Bakteriellen Zellbiologie (2007), Signaltransduktionund Prote<strong>in</strong>phosphorylierung(2008), zu den Triggerenzymen (2009), derZell-Zell-Kommunikation (2010) bis zu denSecond Messengern (2011). Gleichzeitig unterstützendiese Symposien Initiativen zur Grüns<strong>in</strong>de<strong>in</strong>e direkte Fortsetzung des traditionellen„Plasmidsymposiums“. Die 29. Sommerschulef<strong>in</strong>det vom 3. bis 5. Oktober <strong>2012</strong><strong>in</strong> Wartaweil am Ammersee (<strong>in</strong> der Nähe vonMünchen) statt und wird dankenswerterWeise von Thorsten Mascher, München, organisiert.Auf diesem Wege möchte ich Sie herzlichzur nächsten Mitgliederversammlung e<strong>in</strong>laden,die im direkten Anschluss an das Fachgruppensymposium<strong>in</strong> Tüb<strong>in</strong>gen stattf<strong>in</strong>denwird.óSprecher<strong>in</strong>: Kirsten Jung,Universität MünchenEmail: jung@lmu.de BIOspektrum | Tagungsband <strong>2012</strong>


22 AUS DEN FACHGRUPPEN DER <strong>VAAM</strong>Mitgliederversammlungen der FachgruppenGeneral Meet<strong>in</strong>gs of the Special GroupsMontag, 19.03.<strong>2012</strong>, 17:00Struktur und MikroskopieSymbiotische InteraktionenMontag, 19.03.<strong>2012</strong>, 19:00Identifizierung und SystematikMontag, 19.03.<strong>2012</strong>, 19:30Mikrobielle PathogenitätRegulation und SignaltransduktionFungal Biology and BiotechnologyUmweltmikrobiologieDienstag, 20.03.<strong>2012</strong>, 16:30Funktionelle GenomanalyseHörsaal N8Hörsaal N4Hörsaal N1Hörsaal N7Hörsaal N5Hörsaal N2Hörsaal N3Hörsaal N8Industrial session: Microbiology <strong>in</strong> <strong>in</strong>dustrial applicationTuesday, 20.03.<strong>2012</strong>13:00–14:30Lecture hall N513:00–13:10Dr. Gerhard SchmidWacker Chemie AG, MunichMicrobiology <strong>in</strong> <strong>in</strong>dustrial application – An Overview13:10–13:30Dr. Oskar ZelderBASF, LudwigshafenFermentation Products – Employ<strong>in</strong>g Nature’s Biosynthetic Power13:30–13:50Dr. Jochen FörsterDTU Biosusta<strong>in</strong>, Technical University of Denmark, Kgs. LyngbyTowards bio-based production of chemicals13:50–14:10Dr. Jürgen EckB.R.A.I.N., Zw<strong>in</strong>genbergFrom Biodiversity to Designer Bugs: Bio-<strong>in</strong>spired eng<strong>in</strong>eer<strong>in</strong>g of producer microorganisms14:10–14:30Dr. Günter WichWacker Chemie AG, MunichWacker’s cyste<strong>in</strong>e process – rational design based on systems biologyBIOspektrum | Tagungsband <strong>2012</strong>


INSTITUTSPORTRAIT23Microbiology at the University of Tüb<strong>in</strong>genó Today, Microbiology and Infection Biologyis one of the five research priorities of theUniversity of Tüb<strong>in</strong>gen, a result of steadily<strong>in</strong>creas<strong>in</strong>g activities <strong>in</strong> the past 50 years.Around 1960, the German Research Council(Wissenschaftsrat) advised the government toexpand university education, which <strong>in</strong> 1964resulted <strong>in</strong> the foundation of the first chair ofMicrobiology at the University of Tüb<strong>in</strong>gen.Hans Zähner, who led a group engaged <strong>in</strong>screen<strong>in</strong>g for new antibiotics at the SwissFederal Institute of Technology of Zürich (ETHZurich), was appo<strong>in</strong>ted Professor. He establisheda large group, which worked on theisolation of biologically active secondarymetabolites from bacteria and fungi. He wasfor most of the time speaker of two CollaborativeResearch Centres (SFBs), “ChemicalBiology of Microorganisms“ and ”MicrobialFundamentals of Biotechnology”, which lastedfor 30 years. Scientists from different discipl<strong>in</strong>es– microbiology, biochemistry, organicchemistry, pharmaceutical biochemistry,and botany – worked together on related subjects.In 1974, Volkmar Braun was appo<strong>in</strong>tedto a newly established second chair of microbiology,named “Microbiology/MembranePhysiology”. In 1987, Friedrich Götz wasappo<strong>in</strong>ted to a newly founded chair of “MicrobialGenetics” and Bernhard Sch<strong>in</strong>k becamesuccessor to Hans Zähner, who cont<strong>in</strong>ued towork as Fiebiger Professor until he retired<strong>in</strong> 1994. In 1994, Wolfgang Wohlleben followedBernhard Sch<strong>in</strong>k on the chair of“Microbiology/Biotechnology”. The chair of“Medical Microbiology” was filled <strong>in</strong> 2000with Ingo Autenrieth and 2003 AndreasPeschel was appo<strong>in</strong>ted Professor of “Cellularand Molecular Microbiology” <strong>in</strong> the Departmentof Medical Microbiology and Hygiene.In 2007, Volkmar Braun retired and took overa position as Max Planck Fellow at the MPIfor Developmental Biology. Karl Forchhammerbecame his follower on the chair nownamed “Microbiology/Organismic Interactions”.In 2008, Andreas Kappler wasappo<strong>in</strong>ted Professor for Geomicrobiology, afoundation of the Stifterverband <strong>in</strong> the GeosciencesDepartment. The close cooperationbetween the Natural Science Microbiologyand the Medical Microbiology led to the establishmentof the Interfaculty Institute of Microbiologyand Infection Medic<strong>in</strong>e (IMIT) <strong>in</strong>2009. Rüdiger Hampp, chair of “PhysiologicalEcology of Plants” and engaged <strong>in</strong> rhizo -sphere bacteria research, and Dom<strong>in</strong>ik Hartl,A view accross the conference location “Morgenstelle” towards the “Schwäbische Alb”head<strong>in</strong>g the Pediatric Infections Deseasesand Immunology Section and explor<strong>in</strong>g <strong>in</strong>fections<strong>in</strong> cystic fibrosis patients, jo<strong>in</strong>ed theIMIT .Actually the SFB 766 “The Bacterial CellEnvelope: Structure, Function and InfectionInterface” and the Transregio TRR34 “Pathophysiologyof Staphylococci <strong>in</strong> the PostgenomicEra” jo<strong>in</strong> groups from the IMIT withgroups from the Max-Plank-Institute for DevelopmentalBiology (Andrei Lupas, Dirk L<strong>in</strong>ke),groups from the departments of Chemistry,Pharmacy and Biochemistry and the UniversityHospital. Recently, a new research-tra<strong>in</strong><strong>in</strong>ggroup (GRK1708) on “Molecular Pr<strong>in</strong>ciplesof Bacterial Survival Strategies” wasgranted and will start <strong>in</strong> April <strong>2012</strong>. In addition,numerous projects funded by the DFG,the BMBF, the State of Baden-Württemberg,and the EU are established <strong>in</strong> the area ofMicrobiology.Prof. Dr. Wolfgang WohllebenIMIT, Department of Microbiology/BiotechnologyThe major aim of the groups work<strong>in</strong>g <strong>in</strong> theMicrobiology/Biotechnology section is tounderstand the secondary metabolism (<strong>in</strong> particularthe antibiotic biosynthesis and resis -tance) <strong>in</strong> act<strong>in</strong>omycetes and its <strong>in</strong>tegration <strong>in</strong>the general metabolism and biology of thesefilamentous soil bacteria. To achieve this goal,we are concentrat<strong>in</strong>g on the follow<strong>in</strong>g topics:Glycopeptides (vancomyc<strong>in</strong>, teicoplan<strong>in</strong>)are used as drugs of last resort to combat lifethreaten<strong>in</strong>g<strong>in</strong>fections caused by multiresistantGram-positive bacteria. We have elucidatedthe glycopeptide biosynthesis, selfresistance and precursor supply <strong>in</strong> the producerAmycolatopsis balhimyc<strong>in</strong>a <strong>in</strong> order togenerate novel derivatives and to devisestrategies for yield optimisation (EviStegmann).For the development of novel anti-<strong>in</strong>fectiveswe employ the „Tüb<strong>in</strong>ger Stammsammlung“(<strong>in</strong>itially built up by Prof. Zähner), which conta<strong>in</strong>spotent secondary metabolite producers.Us<strong>in</strong>g this collection we have solved thebiosynthesis of complex antibiotics such askirromyc<strong>in</strong> and lysolip<strong>in</strong> <strong>in</strong> order to modifythese compounds to make them potentialdrugs. In addition, a bio<strong>in</strong>formatic pipel<strong>in</strong>ewas developed which allows the identificationof biosynthetic pathways <strong>in</strong> wholegenome sequences and their use for predictionof the enzymatic reactions and the structuresof the compounds (Tilmann Weber).As a model system to study the evolution ofsecondary metabolite specific functions thephosph<strong>in</strong>othric<strong>in</strong>-tripeptide producer Streptomycesviridochromogenes is used. Its biosynthesis<strong>in</strong>cludes steps which greatly resemblereactions of the primary metabolism such asan aconitase. These <strong>in</strong>vestigations revealedthat the aconitase has – <strong>in</strong> addition to its catalyticfunction – an important regulatory roleBIOspektrum | Tagungsband <strong>2012</strong>


24 INSTITUTSPORTRAIT<strong>in</strong> the differentiation of act<strong>in</strong>omycetes byb<strong>in</strong>d<strong>in</strong>g to specific mRNAs (Yvonne Mast).Secondary metabolite production stronglydepends on precursor supply from the primarymetabolism. One of the limit<strong>in</strong>g nutrientsis nitrogen. We are, therefore, <strong>in</strong>vestigat<strong>in</strong>ghow the nitrogen metabolism <strong>in</strong> Streptomycesis transcriptionally regulated by theorphan response regulator GlnR, which controlsboth, ammonium supply and assimilation(Agnieszka Bera).Dur<strong>in</strong>g their life cycle the bacteria undergoa complex morphological and physiologicaldifferentiation. We <strong>in</strong>vestigate cytoskeletalelements (such as Mre-prote<strong>in</strong>s), which playan important role <strong>in</strong> spore formation <strong>in</strong> Streptomyces,but not <strong>in</strong> vegetative growth. Animportant parameter <strong>in</strong> the evolution of secondarymetabolite pathways is the acquisitionand rearrangement of biosynthetic genes.Thereby gene transfer is a crucial step. Wecould show that this process <strong>in</strong> Streptomycesis completely different to transfer processes <strong>in</strong>other bacteria. Gene transfer is mediated byonly one prote<strong>in</strong> which transfers doublestrandedDNA from a donor <strong>in</strong>to a recipient(Günther Muth).New act<strong>in</strong>omycetes stra<strong>in</strong>s are isolated andtaxonomically characterized <strong>in</strong> the group ofProf. Hans-Peter Fiedler. These stra<strong>in</strong>s arescreened for the presence of novel secondarymetabolites by HPLC-DAD-MS. After fermentationscale-up and isolation of the compoundsthey are tested for their biological activities.The Junior Research Group of ChristophMayer analyses the bacterial sugar metabolismwith an emphasis on cell wall metabolism.The research aims to understand howthe cell wall is reshaped dur<strong>in</strong>g growth anddifferentiation.Prof. Dr. Friedrich GötzIMIT, Department of Microbial GeneticsFriedrich Götz was appo<strong>in</strong>ted Professor for„Microbial Genetics“ at the University Tüb<strong>in</strong>gen<strong>in</strong> 1987. He has a broad <strong>in</strong>terest <strong>in</strong> staphylococci,particularly <strong>in</strong> study<strong>in</strong>g molecularprocesses <strong>in</strong>volved <strong>in</strong> virulence and survivalstrategies. Areas of research are: Biosynthesisof lantibiotics; biofilm-formation, whichplays a crucial role <strong>in</strong> chronic and implantassociated<strong>in</strong>fections; unravel<strong>in</strong>g physiologicalalterations <strong>in</strong> a biofilm community contribut<strong>in</strong>gto antibiotic tolerance; activationof the <strong>in</strong>nate immunity and staphylococcalresistance mechanisms to immune response(lysozyme and defens<strong>in</strong>s) – we demonstratedby us<strong>in</strong>g def<strong>in</strong>ed mutants that lipoprote<strong>in</strong>sand peptidoglycan are <strong>in</strong> Staphylococcusaureus the major players; f<strong>in</strong>ally, we arestudy<strong>in</strong>g the cell separation, which is <strong>in</strong>staphylococci catalyzed by the majorautolys<strong>in</strong> (Atl).The group of Ralph Bertram aims at elucidat<strong>in</strong>gmolecular mechanisms of dormant bacteria,such as staphylococcal persister cells.These are characterized by a temporarily conf<strong>in</strong>edgrowth cessation despite nutritionalabundance. Methods to select for S. aureuspersisters by antibiotic challenge were recentlyestablished and respective cells are currentlysubject to comprehensive transcriptional,metabolic and morphological characterization.We are particularly <strong>in</strong>terested <strong>in</strong>def<strong>in</strong><strong>in</strong>g the roles of tox<strong>in</strong>-antitox<strong>in</strong> (TA) systems<strong>in</strong> bacterial growth control or cell deathand <strong>in</strong> dissect<strong>in</strong>g their regulatory mechanisms,some of which are controlled by smallnon-cod<strong>in</strong>g RNAs. The development of moleculargenetic tools to facilitate recomb<strong>in</strong>ationand <strong>in</strong>ducible gene expression <strong>in</strong> firmicutesis another focus of our group.The junior research group of Ute Bertschestudies biosynthesis of the peptidoglycan sacculus,the stress bear<strong>in</strong>g layer of the bacterialcell envelope, which consists of glycanstrands cross-l<strong>in</strong>ked by short peptides. It is amajor target for antibacterial treatment, butthe knowledge about its synthesis and the<strong>in</strong>terplay of the <strong>in</strong>volved prote<strong>in</strong>s is still verylimited, especially <strong>in</strong> Gram-positive cocci. Thepenicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s (PBPs), which catalyzethe last steps <strong>in</strong> peptidoglycan polymerization,as well as prote<strong>in</strong>s of the SEDSfamily(shape, elongation, division, sporulation)which are thought to flip the precursoracross the cytoplasmic membrane, are theenzymes of <strong>in</strong>terest. In addition the peptidoglycancomposition of various antibiotic nonsusceptiblestra<strong>in</strong>s is characterized to unraveltheir resistance mechanism.Prof. Dr. Karl ForchhammerIMIT, Department of Micorbiology/Organismic InteractionsThis research unit focuses on the molecularbiology of cyanobacteria and on nitrogenstressacclimation responses <strong>in</strong> bacteria <strong>in</strong>general. Cyanobacteria are dom<strong>in</strong>at<strong>in</strong>g bacteria<strong>in</strong> the biosphere, <strong>in</strong>habit<strong>in</strong>g almost allillum<strong>in</strong>ated ecosystems, where they play pivo -tal roles <strong>in</strong> the global cycles of C, N and O.Furthermore, they have a widely unexploredpotential for biotechnological applications.We use unicellular cyanobacteria for fundamentalresearch address<strong>in</strong>g questions ofmetabolic regulation and signal<strong>in</strong>g. The P IIsignal transduction prote<strong>in</strong>s coord<strong>in</strong>ate C/Nmetabolism with the energy status of the cells.How the P IIprote<strong>in</strong>s work and function at themolecular level is our primary research goal,which goes beyond cyanobacteria and whichhas led to milestone discoveries. Furthermore,we are <strong>in</strong>terested <strong>in</strong> the physiological responsesof cyanobacteria towards nutrient deprivationand other conditions of imbalancedmetabolism, which cause fundamental reprogramm<strong>in</strong>gof cellular processes with biotechnologicalimpact.A second focus is on cellular differentiation<strong>in</strong> multicellular cyanobacteria of theorder Nostocales. Their filaments are composedof hundreds of mutually dependent vegetativecells and regularly spaced N 2-fix<strong>in</strong>gheterocysts, exchang<strong>in</strong>g metabolites and signal<strong>in</strong>gmolecules. Furthermore, they can differentiatespore-like cells and motile filaments.In one l<strong>in</strong>e of research, the synthesisof the heterocyst-specific cell-wall isaddressed, where we have identified the firstATP-driven efflux pump for glycolipids. In asecond project, cell-wall amidases, which weidentified to play a key role <strong>in</strong> morphogenesisand development of Nostoc stra<strong>in</strong>s, are <strong>in</strong>vestigatedas a model system for multicellulardevelopment <strong>in</strong> prokaryotes.Prof. Dr. Rüdiger HamppIMIT, Department of PhysiologicalEcology of PlantsThe release of organic compounds from plantroots <strong>in</strong>to the surround<strong>in</strong>g soil forms the basisfor a versatile community of microorganismsthat dist<strong>in</strong>ctly <strong>in</strong>fluences the productivity ofplants. Fungi and bacteria are a major constituentof this ecosystem, which has beentermed “rhizosphere”. They modify growthand distribution of symbiotic and patho genicorganisms or improve vitality and resistanceof plants aga<strong>in</strong>st pathogen attacks.Soil bacteria belong<strong>in</strong>g to the act<strong>in</strong>omycetes,especially the streptomycetes, arecommonly found <strong>in</strong> the rhizosphere of plants.Due to the release of secondary metabolites,they are capable of exhibit<strong>in</strong>g beneficial aswell as detrimental effects towards plants,<strong>in</strong>clud<strong>in</strong>g promotion of symbiosis, improvedgrowth and biotic and abiotic stress resistancebut also enhanced disease susceptibilityand repressed defence responses.We <strong>in</strong>vestigate the specific and selectiveeffects of soil streptomycetes towards thedevelopment of symbiosis between plants andfungi (mycorrhiza) but also with respect toBIOspektrum | Tagungsband <strong>2012</strong>


25plant disease resistance aga<strong>in</strong>st pathogenicmicro-organisms such as root rot produc<strong>in</strong>gfungi (Heterobasidion sp. on Norway spruce),seed decompos<strong>in</strong>g fungi (Neofusicoccum sp.on Araucariaceae; co-operation with Brazilianand Australian research groups) as well asleaf pathogenic fungi (Alteranaria brassicicolaon Arabidopsis thaliana). We focus on bothmolecular responses of target organisms andbacterial and fungal effector molecules(collaboration with Hans-Peter Fiedler, IMIT)which contribute to the observed <strong>in</strong>teractionpatterns.Prof. Dr. Ingo AutenriethIMIT, Department of MedicalMicrobiology and HygieneThe Department of Medical Microbiology andHygiene is <strong>in</strong>volved <strong>in</strong> research, teach<strong>in</strong>g ofstudents (human and dental medic<strong>in</strong>e, molecularmedic<strong>in</strong>e, biology etc.) and is runn<strong>in</strong>gthe <strong>in</strong>fectious disease laboratory diagnosticunit of the University Hospital Tüb<strong>in</strong>gen.The question addressed by the variousresearch groups is how bacterial pathogens bymeans of virulence factors and how microbialproducts act on host cells and the hostimmune system, particularly how virulencefactors contribute to immune evasion.The research focus is host-microbe <strong>in</strong>teractionsparticular at mucosal surfaces andthe role of the microbiota <strong>in</strong>mucosal immune responsesand <strong>in</strong>flammation. The aimis to unravel basic mechanismsof pathogenesis of bacterial<strong>in</strong>fections and bacteria-triggered<strong>in</strong>flammatoryprocesses <strong>in</strong> order to understandthe pr<strong>in</strong>ciples of hostsusceptibility for and resistanceto <strong>in</strong>fections, respectively,and <strong>in</strong> consequence tof<strong>in</strong>d novel approaches oftherapeutic <strong>in</strong>tervention. Theapproach <strong>in</strong>cludes ma<strong>in</strong>lycellular microbiology andmolecular biology methodsSchütz); others address Staphylococcus <strong>in</strong>fections(Weidenmaier, Wolz, Liese) and <strong>in</strong>fections<strong>in</strong> cystic fibrosis patients (Dör<strong>in</strong>g). Furthermore,the role of commensal bacteria ofthe <strong>in</strong>test<strong>in</strong>al tract <strong>in</strong> <strong>in</strong>test<strong>in</strong>al immunehomeostasis, <strong>in</strong>flammatory bowel diseasesand susceptibility to gastro<strong>in</strong>test<strong>in</strong>al <strong>in</strong>fectionsis under <strong>in</strong>vestigation (Frick).Prof. Dr. Andreas PeschelIMIT, Department of Cellular andMolecular Microbiology SectionAndreas Peschel’s lab <strong>in</strong>vestigates the biologyand pathogenicity of Staphylococcusaureus, a bacterial species capable of two profoundlydifferent life styles – as an unremarkableconstituent of the human nasalmicrobiota or as a major pathogen caus<strong>in</strong>gsevere dissem<strong>in</strong>ated <strong>in</strong>fections along withhigh mortality. The processes govern<strong>in</strong>g thesuccessful colonization of the nose and subsequent<strong>in</strong>fection of sterile tissues representmajor topics of the lab’s four research teams.Cell wall teichoic acids, complex glycopolymersat the staphylococcal cell surface andtheir role <strong>in</strong> mediat<strong>in</strong>g adhesion to hostepithelial cells and lect<strong>in</strong>s are <strong>in</strong> the focus ofGuoq<strong>in</strong>g Xia’s team. Bernhard Krismer andcolleagues study the metabolic adaptation ofS. aureus to life <strong>in</strong> the nose and the staphylococcal<strong>in</strong>terference with compet<strong>in</strong>g microbes.as well as experimental animal<strong>in</strong>fection models.University Hospital, Department of Medical MicrobiologyWhile some of theresearch groups are work<strong>in</strong>g on the pathogenesisof Yers<strong>in</strong>ia enterocolitica <strong>in</strong>fectionsfocus<strong>in</strong>g on the type three secretion systemand outer membrane prote<strong>in</strong>s of Y. enterocolitica,and analyze how bacterial prote<strong>in</strong>s affectthe host immune response, particularly dendriticcells (Autenrieth I., Autenrieth S., Bohn,The modulation of local and systemic <strong>in</strong>flammationby S. aureus peptide tox<strong>in</strong>s, the ‘phenol-solublemodul<strong>in</strong>s’, is <strong>in</strong>vestigated by theteam headed by Dorothee Kretschmer. Thefourth team (Christoph Ernst et al) exploreshow S. aureus copes with antimicrobial peptidesreleased by host leukocytes and epithelialcells and how the correspond<strong>in</strong>g mechanismscontribute to S. aureus antibiotic resistance.Prof. Dr. Andreas KapplerCenter for Applied Geosciences,Department of GeomicrobiologyThe Geomicrobiology Group at the Center ofApplied Geosciences focuses on the <strong>in</strong>teractionsof microorganisms and m<strong>in</strong>erals <strong>in</strong> modernand ancient environments. Iron m<strong>in</strong>eralslargely determ<strong>in</strong>e the fate of many nutrients(e.g. trace metals, phosphate) as well as theenvironmental behaviour of harmful(<strong>in</strong>)organic pollutants. Microbial Fe(II)-oxidiz<strong>in</strong>gand Fe(III)-reduc<strong>in</strong>g communities playa key role <strong>in</strong> iron-m<strong>in</strong>eral formation and transformation.Study<strong>in</strong>g both biological molecularmechanisms and geochemical conditions arecrucial to the identification, localization andquantification of these biogeochemicalprocesses. Therefore, together with the associatedjunior research groups of MolecularMicrobial Ecology (S. Behrens), Microsensorsand Biogeochemical Modell<strong>in</strong>g (C. Schmidt)and the affiliated Emmy-Noether researchgroup for Analytical Microscopy (M. Obst),we comb<strong>in</strong>e microscopic, spectroscopic andmolecular techniques with geochemical analysis<strong>in</strong> order to understand modern and ancientiron biogeochemistry and its environmentalimpact. In more detail, ourprojects comprise i) biogeochemistryand molecularecology of microbial Fecycl<strong>in</strong>g, ii) physiology, genetics,high-resolution imag<strong>in</strong>gand spectroscopic analysis ofmicrobial Fe(II) oxidationand Fe biom<strong>in</strong>eralization, iii)microbial magnetite formation,iv) humic substances aselectron shuttles <strong>in</strong> biogeochemicalredox processes, v)mechanisms of depositionand diagenesis of Fe m<strong>in</strong>erals<strong>in</strong> Precambrian BandedIron Formations, vi) consequencesof microbial Fe(II)oxidation and Fe(III) reductionfor the environmentalfate of Cd and As <strong>in</strong> soil-plant-microbe systemsand <strong>in</strong> As dr<strong>in</strong>k<strong>in</strong>g water filters, vii)microbial formation and degradation of halogenatedorganic compounds, viii) impact ofbiochar addition on soil microbial communitycomposition, microbial N-cycl<strong>in</strong>g and contam<strong>in</strong>anttransformation.BIOspektrum | Tagungsband <strong>2012</strong>


26 INSTITUTSPORTRAITProf. Dr. Lutz HeidePharmaceutical Institute, Department ofPharmaceutical BiologyThe Department of Pharmaceutical Biology,headed by Prof. L. Heide, works on the discoveryand development of new antibioticsfrom act<strong>in</strong>omycetes. Am<strong>in</strong>ocoumar<strong>in</strong> antibioticslike novobioc<strong>in</strong> are potent <strong>in</strong>hibitors ofbacterial gyrase and topoisomerase IV, andnovobioc<strong>in</strong> has been <strong>in</strong>troduced <strong>in</strong>to humantherapy (Albamyc<strong>in</strong>). The group of L. Heidehas identified the biosynthetic gene clustersof several am<strong>in</strong>ocoumar<strong>in</strong> antibiotics and elucidatedthe functions of nearly all of the genesconta<strong>in</strong>ed there<strong>in</strong>. This knowledge is used forthe production of new antibiotics by targetedgenetic manipulation of the gene clustersfollowed by heterologous expression <strong>in</strong> eng<strong>in</strong>eeredhost stra<strong>in</strong>s. New antibiotics are alsogenerated by mutasynthesis, chemoenzymaticsynthesis and methods of synthetic biology.The Heide group also works on prenylatedphenaz<strong>in</strong>es and naphthoqu<strong>in</strong>ones from act<strong>in</strong>omycetesand carries out biochemical andstructural studies on a new class of microbialprenyltransferases with aromatic substrates(ABBA prenyltransferases).PD Dr. Bertolt Gust has established an <strong>in</strong>dependentresearch area focus<strong>in</strong>g on MraYtranslocase <strong>in</strong>hibitors, i.e. <strong>in</strong>hibitors of thefirst step <strong>in</strong> the membrane cycle of reactionsdur<strong>in</strong>g peptidoglycan biosynthesis. The Gustgroup has sequenced and analyzed thebiosynthetic gene clusters of caprazamyc<strong>in</strong>s,liposidomyc<strong>in</strong>s, napsamyc<strong>in</strong>s and pacidamyc<strong>in</strong>sand is now utiliz<strong>in</strong>g them for theproduction of new antibiotics.Dr. Kristian Apel establishes a research programon the regulation of secondary metabolism<strong>in</strong> Streptomyces, focuss<strong>in</strong>g on their regulationdur<strong>in</strong>g heterologous expression <strong>in</strong>Streptomyces coelicolor. Further projects<strong>in</strong>clude the use of <strong>in</strong>ducible promoters to activatesilent gene clusters, as well as comb<strong>in</strong>atorialbiosynthesis us<strong>in</strong>g artificial gene operonswhich are be<strong>in</strong>g comb<strong>in</strong>ed <strong>in</strong> a newSuperCos-based vector.pensable step to make molecular biochemical<strong>in</strong>vestigations even possible. A primarygoal of our natural product research is to getprofound knowledge of the character of compoundsfrom the secondary metabolism ofmicroorganisms. Our <strong>in</strong>terest is to developnew natural chemical structures towards biochemicaltools. Our current focus is on streptomycetesand fungi. Methods of chemistry,microbiology, and molecular biology comprisecultivation, chemical analysis, spectroscopy(MS, NMR), and chemical syntheses.Prof. Dr. Volkmar Braun,Prof. Dr. Andrei Lupas, PD Dr. Dirk L<strong>in</strong>keMax-Planck Institute for DevelopmentalBiology, Department I and AssociatedResearch GroupsThe Department of Prof. Andrei Lupas studiesProte<strong>in</strong> Evolution. Prote<strong>in</strong> fold<strong>in</strong>g is too complexto have arisen de novo. We are pursu<strong>in</strong>gthe hypothesis that folded prote<strong>in</strong>s evolvedby fusion and recomb<strong>in</strong>ation from an ancestralset of peptides, which emerged as cofactors<strong>in</strong> the context of RNA dependent replicationand catalysis (the ’RNA world’). Thesepeptides were <strong>in</strong>itially optimized to becomestructured on RNA scaffolds and their assembly<strong>in</strong>to longer polypeptide cha<strong>in</strong>s led to scaffold-<strong>in</strong>dependentfold<strong>in</strong>g as an emerg<strong>in</strong>g property.Systematic studies should allow adescription of this peptide set <strong>in</strong> the sameway <strong>in</strong> which ancient vocabularies have beenreconstructed from the comparative study ofmodern languages. To this end we apply cutt<strong>in</strong>g-edgebio<strong>in</strong>formatic tools (availablethrough toolkit.tueb<strong>in</strong>gen.mpg.de), as well asa range of experimental techniques, <strong>in</strong>clud<strong>in</strong>gprote<strong>in</strong> biochemistry, spectroscopy, and structuralbiology. Our model organisms are typicallybacteria and archaea. We also focus ona number of other questions relat<strong>in</strong>g to theevolution of prote<strong>in</strong>s. We would like to understandhow changes <strong>in</strong> prote<strong>in</strong> structure canlead to the emergence of new biological functionality.Here we study primarily the mechanismsby which type I receptors transducesignals across membranes and AAA ATPasesdisassemble, unfold and translocate prote<strong>in</strong>s.We also explore the genetic processes thatlead to changes <strong>in</strong> the topology of prote<strong>in</strong> foldsor the evolution of entirely new folded prote<strong>in</strong>s.Here, a particularly powerful phenomenonis the repetition of polypeptide segments,from short peptides that lead to fibrousfolds, such as coiled coils, over supersecondarystructures that lead to solenoidal ortoroidal folds, such as propellers, to entireProf. Dr. Stephanie GrondInstitute of Organic Chemistry,Department of Natural Product Analysis/Biomolecular ChemistryMicrobial natural products act as <strong>in</strong>dispensabledrugs <strong>in</strong> human medic<strong>in</strong>e, researchagents <strong>in</strong> biochemistry, and as important compounds<strong>in</strong> agricultural applications. Theyfunction as regulators of prote<strong>in</strong>s or cell mechanisms,and often they are the first <strong>in</strong>disdoma<strong>in</strong>sthat lead to segmented structures,such as trimeric autotransporter adhes<strong>in</strong>s <strong>in</strong>Gram-negative bacteria.The associated microbiology researchgroups <strong>in</strong> the department study differentaspects of bacterial transporters, adhes<strong>in</strong>s,and tox<strong>in</strong>s.The L<strong>in</strong>ke group is <strong>in</strong>terested <strong>in</strong> the onsetof <strong>in</strong>fection, which is mostly determ<strong>in</strong>ed bythe ability of pathogens to adhere to host cells.How are adhes<strong>in</strong>s synthesized and exportedto the cell surface? How is the synthesis regulated?What are the host cell b<strong>in</strong>d<strong>in</strong>g partnersof different adhes<strong>in</strong>s? Pathogens protectthemselves from the environment by capsuleand biofilm formation, by b<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>activationof components of the host immunesystem, or by variable expression of surfacemolecules to evade detection. What surfacemolecules are produced, how and when arethey synthesized, and what are their protectiveadvantages?The Braun group currently focuses on animported tox<strong>in</strong> that requires a helper prote<strong>in</strong>(chaperone, prolyl cis-trans isomerase) to killcells. The tox<strong>in</strong> is imported by an energycoupledprocess which <strong>in</strong>volves energy transferfrom the cytoplasmic membrane <strong>in</strong>to theouter membrane. The energy-transferr<strong>in</strong>g prote<strong>in</strong>complex is studied to understand theenergy harvest<strong>in</strong>g and transfer mechanisms.In addition, export of a prote<strong>in</strong> cytotox<strong>in</strong> is<strong>in</strong>vestigated which is coupled to activation ofthe tox<strong>in</strong>. Export across the outer membranebelongs to the two-partner secretion systems.The export and activation doma<strong>in</strong>s <strong>in</strong> theexport<strong>in</strong>g prote<strong>in</strong> and the mechanism of activationof the exported tox<strong>in</strong> are characterized.Prof. Dr. Joachim Schulz andProf. Dr. Klaus HantkePharmaceutical Institute, Department ofPharmaceutical IndustryThe Schultz/Hantke group has a last<strong>in</strong>g <strong>in</strong>terest<strong>in</strong> the global second messenger cyclicAMP. Most bacteria possess adenylyl cyclaseswhich are similar to mammalian congeners;many of them are membrane delimited. Forthe most part, the regulation of their activity<strong>in</strong> the cytoplasm rema<strong>in</strong>s enigmatic. Intracellularcyclic AMP b<strong>in</strong>ds to regulator prote<strong>in</strong>sgovern<strong>in</strong>g gene transcription. Our majorgoal is to mechanistically elucidate transmembranesignal transduction. Bacterialmembrane-anchored adenylyl cyclases have 2to 6 transmembrane spans which carry moreor less pronounced periplasmic doma<strong>in</strong>s,probably orphan receptors. The C-term<strong>in</strong>alBIOspektrum | Tagungsband <strong>2012</strong>


27transmembrane span connects via dist<strong>in</strong>ctl<strong>in</strong>ker regions to the catalytic doma<strong>in</strong>. Similardesigns of signal<strong>in</strong>g prote<strong>in</strong>s are histid<strong>in</strong>ek<strong>in</strong>ases of the two component systems andmethyl accept<strong>in</strong>g chemotaxis prote<strong>in</strong>s. Thechemotaxis receptor Tsr of E. coli is anchoredby two transmembrane spans. It has aperiplasmic doma<strong>in</strong> which senses ser<strong>in</strong>e. Onthe cytoplasmic side a ubiquitous signaltransduc<strong>in</strong>gelement (HAMP doma<strong>in</strong>; >14,000data base entries) connects to the outputdoma<strong>in</strong>. In chimeras with the Tsr receptorand various adenylyl cyclases ser<strong>in</strong>e regulatescyclase activity. Such chimeras are suitablefor exam<strong>in</strong>ation of <strong>in</strong>dividual doma<strong>in</strong>sand their <strong>in</strong>terplay <strong>in</strong> <strong>in</strong>tramolecular signall<strong>in</strong>g.Thus, we <strong>in</strong>vestigate <strong>in</strong> vitro and <strong>in</strong>vivo the mechanism of signal<strong>in</strong>g through theHAMP doma<strong>in</strong> and through a subsequentl<strong>in</strong>ker, termed S-helix, which connects to theoutput cyclase. The sign of the cytoplasmicsignal, cyclase <strong>in</strong>hibition or activation, may becontrolled by the S-helix. In an experimentalextension, we attempt to understand the work<strong>in</strong>gsof str<strong>in</strong>gs of HAMP doma<strong>in</strong>s, e.g. a tandemHAMP from Natronomonas pharaoni.SFB 766: The Bacterial Cell Envelope:Structure, Function and InfectionInterfaceSpeaker: Wolfgang Wohlleben, Tüb<strong>in</strong>genThe Collaborative Research Center 766 (SFB766) was <strong>in</strong>itiated <strong>in</strong> 2007 and was recentlyextended until 2015. In 21 projects the <strong>in</strong>terdiscipl<strong>in</strong>arynetwork of researchers aims toga<strong>in</strong> a more <strong>in</strong>-depth understand<strong>in</strong>g of thestructure and biosynthesis of the bacterial cellenvelope and its <strong>in</strong>teractions with the en -vironment. The projects are carried out at va -rious departments of the Faculty of Sciences,the University Hospital and at the Max-Planck-Institute of Developmental Bio logy.The bacterial cell envelope has a decisivefunction <strong>in</strong> basic bacterial processes such asmorphogenesis, uptake and secretion, sensitivityor resistance towards antimicrobialagents, as well as <strong>in</strong> microbe-host <strong>in</strong>teractions<strong>in</strong>clud<strong>in</strong>g bacterial adherence, immune recognitionand evasion. Research <strong>in</strong> the SFB766 isdedicated to expand<strong>in</strong>g our understand<strong>in</strong>g ofthe structure, function, and the biosynthesisof the bacterial cell envelope and its <strong>in</strong>teractionwith mammalian or plant hosts or withbacteriophages.The <strong>in</strong>vestigation of these questions isorganized <strong>in</strong> two tightly <strong>in</strong>tegrated SectionsA and B. Central subject <strong>in</strong> Section A is thesynthesis, turnover and chemical composi-Scheme of the enhanced concept of the SFB766.tion of peptidoglycan, lipids, and polysaccharides<strong>in</strong> Gram-positive bacteria. In addition,transport of molecules (such as DNAand antibiotics) and transduction of signalsacross the cell wall are studied. Moreover,the <strong>in</strong>teractions of the cell envelope with theenvironment are <strong>in</strong>vestigated. These studiesprovide crucial <strong>in</strong>sights <strong>in</strong>to the structureand function of the bacterial cell wall. SectionB addresses the role of <strong>in</strong>dividual componentsof the bacterial cell envelope <strong>in</strong>microbe-host <strong>in</strong>teraction <strong>in</strong> bacterial colonizationand <strong>in</strong>fection. A particular emphasisis put on prote<strong>in</strong>s of the bacterial surface that<strong>in</strong>teract with eukaryotic host cells as well ason the recognition of envelope components bythe immune systems of human, mur<strong>in</strong>e andplant cells.The <strong>in</strong>terdiscipl<strong>in</strong>ary consortium characterizesthe cell wall with a comb<strong>in</strong>ation ofmethods <strong>in</strong>clud<strong>in</strong>g cellular microbiology,structural biology, molecular genetics, biochemistryand bio<strong>in</strong>formatics. The results willenhance our understand<strong>in</strong>g of bacterial physiologyand pathogenicity and contribute tothe identification of new antimicrobial agents,vacc<strong>in</strong>es and diagnostics aim<strong>in</strong>g to the developmentof new preventive and curative healthcare strategies.Research Tra<strong>in</strong><strong>in</strong>g Group (Graduiertenkolleg)1708: Molecular pr<strong>in</strong>ciples ofbacterial survival strategiesSpeaker: Karl Forchhammer, Tüb<strong>in</strong>genThe new research tra<strong>in</strong><strong>in</strong>g group “Molecularpr<strong>in</strong>ciples of bacterial survival strategies”,granted by the DFG <strong>in</strong> 2011, will be launched<strong>in</strong> April <strong>2012</strong>. It addresses the question, howbacteria ma<strong>in</strong>ta<strong>in</strong> viability <strong>in</strong> a hostile environment.Bacteria grow exponentially onlyunder optimal conditions. But <strong>in</strong> many habitats,they are exposed to adverse conditions,arrest<strong>in</strong>g their growth or challeng<strong>in</strong>g theirviability. This selective pressure throughoutevolution resulted <strong>in</strong> the acquisition of elaboratedstrategies to withstand and overcomeunfavourable conditions. These processes aretherefore fundamental for bacteria to protecttheir niches and colonize new habitats, anissue of highest relevance <strong>in</strong> bacterial ecology,physiology and medic<strong>in</strong>e, e.g. for understand<strong>in</strong>gthe dispersal of bacterial pathogensand for the development of new antimicrobialdrugs. 13 projects are devoted to the <strong>in</strong>vestigationof bacterial survival strategies <strong>in</strong>volv<strong>in</strong>gma<strong>in</strong>tenance-metabolism, detoxification,repair pathways and protective substancesand structures. The research tra<strong>in</strong><strong>in</strong>g groupprovides a new <strong>in</strong>terdiscipl<strong>in</strong>ary researchplatform for fundamental microbiolocialresearch <strong>in</strong> Tüb<strong>in</strong>gen. Groups from the IMIT(Interfaculty Institute for Microbiology andInfection Medic<strong>in</strong>e Tüb<strong>in</strong>gen), from Geo -microbiology, from the Organic Chemistryand the Max-Planck Institute for DevelopmentalBiology contribute to the program. Anaccompany<strong>in</strong>g study program shall mediateexpert knowledge as well as professionalskills, establish<strong>in</strong>g the research tra<strong>in</strong><strong>in</strong>ggroup as a central part of the PhD tra<strong>in</strong><strong>in</strong>gwith<strong>in</strong> the priority cluster “Microbiology andInfection Biology” of the University Tüb<strong>in</strong>genand the University Medical Centre.Transregional Collaborative ResearchCentre 34Pathophysiology of staphylococci <strong>in</strong> thepost-genomic eraSpeaker: Michael Hecker, GreifswaldDeputy Coord<strong>in</strong>ator: Friedrich Götz, Tüb<strong>in</strong>genFive microbiologists and biochemists fromTüb<strong>in</strong>gen (Götz, Peschel, Stehle,Weidenmaier,and Wolz) are members of the TransregionalCollaborative Research Centre 34: „Pathophysiologyof staphylococci <strong>in</strong> the post-genomicera“. Coord<strong>in</strong>ator: Prof. Dr. Michael Hecker,Institut für Mikrobiologie, Universität Greifs -wald. Besides Greifswald and Tüb<strong>in</strong>gen,groups of the Universities Münster andWürzburg are also <strong>in</strong>volved. While the knowledgeof bacterial genomes is rapidly <strong>in</strong>creas<strong>in</strong>g,the <strong>in</strong>creas<strong>in</strong>g gap <strong>in</strong> understand<strong>in</strong>g ofphysiology, virulence or host-pathogen <strong>in</strong>teractionis lagg<strong>in</strong>g. The aim of the TR-SFB is tofill this gap of knowledge by transferr<strong>in</strong>g theexpertise <strong>in</strong> proteomics, metabolomics, structuralgenomics and bio<strong>in</strong>formatics to thegroups more specialized <strong>in</strong> physiology, geneticsand <strong>in</strong>fection biology of staphylococci. In aconcerted effort we want to breath more life<strong>in</strong>to the genome sequences.óBIOspektrum | Tagungsband <strong>2012</strong>


28 CONFERENCE PROGRAMME | OVERVIEWSunday, 18 March <strong>2012</strong>Lecture hall N6Lecture hall N7 Lecture hall N5 Lecture hall N3 Lecture hall N2 Lecture hall N4 Lecture hall N9 Lecture hall N1 Lecture hall N8WelcomeAddresses15:30–16:00p. 32Public Lecture16:00–17:00p. 32Coffee break/Industrial exhibitionPlenarySession ISoilMicrobiology17:30–18:30p. 32BIOspektrum | Tagungsband <strong>2012</strong>


29Monday, 19 March <strong>2012</strong>Lecture hall N6 Lecture hall N7 Lecture hall N5 Lecture hall N3 Lecture hall N2 Lecture hall N4 Lecture hall N9 Lecture hall N1MolecularStructure andBiochemistryp. 42Bacterial cellsurface, anti -biotics andnovel therapyapproachesp. 42Microbialprocesses<strong>in</strong>volved <strong>in</strong>carbon andnitrogen cycl<strong>in</strong>gp. 42MetabolicRegulation andSignall<strong>in</strong>g:Signals andPerceptionp. 43MolecularBiologyp. 43From theGenome to theProductp. 44Adaptation ofmicroorganismsto chemicaland physicalstressorsp. 4408:30–10:30Coffee break/Industrial exhibition<strong>VAAM</strong> HonoraryAwardPlenary Session IIMicrobialPathogenicity11:00–12:45p. 32Lunch break/ Industrial exhibition 13:00–14:30Berufsbilderim BereichQualität undDiagnostikLunch break/ Industrial exhibition15:15–17:3012:45–14:15p. 35PlenarySession IIICell Envelope15:45–17:15Karriere-Symposium Poster Session I (odd poster numbers)/Coffee break/Industrial exhibitionCell walls,membranes,and lipids <strong>in</strong>microbialpathogenesisBacterialreceptors andsignal<strong>in</strong>gWhat makescarbon sourcesdifficult formicrobes todegrade?Fungi go omics –Fungal systemsbiology approaches<strong>in</strong> thepost genomics eraSymbioticInteractions17:30–19:3014:15–15:15p. 34p. 14p. 37 p. 38 p. 35 p. 36 p. 39MembranesandEndocytosisp. 40Systematics –Quo vadis?p. 40■ Short Lecture ■ Special Group M<strong>in</strong>i-SymposiaLecture hall N817:00–17:30Annual Meet<strong>in</strong>gSpecial GroupStruktur undMikroskopiep. 35BIOspektrum | Tagungsband <strong>2012</strong>


30 CONFERENCE PROGRAMME | OVERVIEWTuesday, 20 March <strong>2012</strong>Lecture hall N6Lecture hall N7Enzymology/Biotechnologyp. 4511:00–12:0008:30–10:30PlenarySession IVBacterialDifferentiationp. 33PlenarySession VMetabolicRegulationp. 3313:00–14:3012:00–13:00Lunch break/Industrial exhibitionPlenarySession VISecondaryMetabolitesp. 34■ Short LectureIndustrialSessionLunch break/ Industrial exhibitionp. 22Poster Session II (even poster numbers)/Coffee break/Industrial exhibition16:30–17:00Annual Meet<strong>in</strong>gSpecial GroupFunktionelleGenomanalyse15:30–17:3014:30–15:30<strong>VAAM</strong> AnnualGeneralMeet<strong>in</strong>g/PhDAwards (18:30)Lecture hall N5 Lecture hall N3 Lecture hall N2 Lecture hall N4 Lecture hall N9Bacteria hostcell <strong>in</strong>teractionand hostresponseStructural andRegulatoryAspectsResponses andPathwaysGeomicrobiologyandEnvironmentalMicrobiologyVirulencefactors,function andregulationp. 45p. 45p. 46p. 46p. 47Coffee break/Industrial exhibitionMensa MorgenstelleMixerLecture hall N1Membranetransport anddynamicsp. 47Lecture hall N819:3017:30–19:30BIOspektrum | Tagungsband <strong>2012</strong>


31Wednesday, 21 March <strong>2012</strong>Lecture hall N6Lecture hall N7EnviromentalMicrobiologyCoffee break/Industrial exhibition11:30–11:4509:00–11:00p. 48Poster AwardsPlenary SessionVIIMicrobial Survival/MicrobiotaStrategies11:45–13:15p. 34Clos<strong>in</strong>gRemarks13:15–13:30■ Short LectureLecture hall N5MicrobialPathogenicity IV/Human Microbiotap. 48Lecture hall N3Lecture hall N2Physiology:Redox systems andcytochormesFermentationStudies/MicrobialSurvival Strategiesp. 48p. 49Lecture hall N4New aspects ofbacterial celldifferentiationp. 49Lecture hall N9Cell wall synthesisand ma<strong>in</strong>tenancep. 50Lecture hall N1FungalGenetics andPhysiologyp. 50BIOspektrum | Tagungsband <strong>2012</strong>


32 CONFERENCE PROGRAMMECONFERENCE PROGRAMME<strong>VAAM</strong> <strong>2012</strong> <strong>Jahrestagung</strong> Tüb<strong>in</strong>gen (18.03.–21.03.<strong>2012</strong>)˘Sunday, 18.03.<strong>2012</strong>15:30–16:00 Welcome Addresses Lecture hall N6W. WohllebenEberhard Karls Universität Tüb<strong>in</strong>gen, Department of Microbiology/Biotechnology,Tüb<strong>in</strong>gen, GermanyH. MütherEberhard Karls Universität Tüb<strong>in</strong>gen, Department of Physics, Tüb<strong>in</strong>gen, GermanyPUBLIC LECTUREChair: Friedrich GötzLecture hall N616:00–17:00 ISV01: K.-H. SchleiferTechnische Universität München, Mikrobiologie, München, GermanyDie verborgene Welt der Bakterien und ihre Bedeutung für das Leben auf der Erde17:00–17:30 Coffee break/Industrial exhibitionPLENARY SESSION: SOIL MICROBIOLOGYChair: Bernhard Sch<strong>in</strong>kLecture hall N617:30 ISV02: R. ConradMax-Planck-Institut für terrestrische Mikrobiologie, Biogeochemie, Marburg, GermanyFrom microorganisms to the atmosphere: flooded soils and the methane cycle18:00 ISV03: A. KapplerEberhard Karls Universität, Geomicrobiology, Center for Applied Geosciences,Tüb<strong>in</strong>gen, GermanyPhysiology, mechanisms and habitats of microbial Fe(II) oxidation˘Monday, 19.03.<strong>2012</strong>08:00–19:30 Industrial exhibition Ground/1st floor08:30–10:30 Short lectures (see page 42) various10:30–11:00 Coffee break/Industrial exhibition Ground/1st floor11:00 <strong>VAAM</strong> Honorary Award SessionISV04: S. AlbersMax-Planck-Institut für terrestrische Mikrobiologie, Marburg, GermanyAssembly and function of archaeal surface structuresPLENARY SESSION: MICROBIAL PATHOGENICITYChair: Andreas PeschelLecture hall N611:45 ISV05: T. F. MeyerMax-Planck-Institut für Infektionsbiologie, Molekulare Biologie, Berl<strong>in</strong>, GermanyCurrent views on the role as well as the fate of host cells dur<strong>in</strong>g <strong>in</strong>fection12:15 ISV06: R. RappuoliNovartis Vacc<strong>in</strong>es and Diagnostics Srl, Siena, ItalyVacc<strong>in</strong>es to address the needs of a 21st century society12:45–14:15 Lunch break/Industrial exhibition Cafeteria/Ground &1st floor13:00–14:30 Fachgruppe Qualitätssicherung und Diagnostik (see page 35) Lecture hall N3Berufsbilder im Bereich Qualität und DiagnostikBIOspektrum | Tagungsband <strong>2012</strong>


33CONFERENCE PROGRAMME<strong>VAAM</strong> <strong>2012</strong> <strong>Jahrestagung</strong> Tüb<strong>in</strong>gen (18.03.–21.03.<strong>2012</strong>)PLENARY SESSION: CELL ENVELOPEChair: Volkmar BraunLecture hall N614:15 ISV07: A. PeschelUniversitätskl<strong>in</strong>ikum Tüb<strong>in</strong>gen, Medical Microbiology and Hygiene Department,Tüb<strong>in</strong>gen, GermanyTeichoic acids <strong>in</strong> Gram-positive cell wall function and host <strong>in</strong>teraction14:45 ISV08: J. TommassenUtrecht University, Molecular Microbiology, Utrecht, NetherlandsOut of the iron age: the battle for z<strong>in</strong>c15:15–17:30 Coffee break/Industrial exhibition Ground/1st floor15:15–17:30 Poster Session I (odd poster numbers) Ground/1st floor &cafeteria15:45–17:15 Karrieresymposium (see page 14) Lecture hall N6Vorstellung vielfältiger Berufsbilder <strong>in</strong> den Biowissenschaften17:30–19:30 Special Groups M<strong>in</strong>i Symposia (see page 35) variousvarious General Meet<strong>in</strong>gs of the Special Groups (see page 22) various˘Tuesday, 20.03.<strong>2012</strong>08:00–19:00 Industrial exhibition Ground/1st floor08:30–10:30 Short lectures (see page 45) various10:30–11:00 Coffee break/Industrial exhibition Ground/1st floorvarious General Meet<strong>in</strong>gs of the Special Groups (see page 22) variousPLENARY SESSION: BACTERIAL DIFFERENTIATIONChair: Andreas KapplerLecture hall N611:00 ISV09: J. Err<strong>in</strong>gtonNewcastle University, Centre for Bacterial Cell Biology, Institute for Cell andMolecular Biosciences, Newcastle upon Tyne, United K<strong>in</strong>gdomOrig<strong>in</strong>s and proliferation of L-form (cell-wall deficient) Bacillus subtilis11:30 ISV10: L. Søgaard–AndersenMax-Planck-Institut für terrestrische Mikrobiologie, Marburg, GermanyPositive regulation of cell division site position<strong>in</strong>g <strong>in</strong> bacteria by a ParA prote<strong>in</strong>PLENARY SESSION: METABOLIC REGULATIONChair: Karl ForchhammerLecture hall N612:00 ISV11: A. N<strong>in</strong>faUniversity of Michigan Medical School, Department of Biological Chemistry, Ann Arbor, MI, USAIntegration of signals <strong>in</strong> the regulation of bacterial nitrogen assimilation12:30 ISV12: J. StülkeGeorg-August-Universität, Allgeme<strong>in</strong>e Mikrobiologie, Gött<strong>in</strong>gen, GermanySignall<strong>in</strong>g <strong>in</strong> biofilm formation of Bacillus subtilis13:00–14:30 Lunch break/Industrial exhibition Cafeteria/Ground &1st floor13:00–14:30 Industrial session (see page 22) Lecture hall N5Microbiology <strong>in</strong> <strong>in</strong>dustrial applicationBIOspektrum | Tagungsband <strong>2012</strong>


34 CONFERENCE PROGRAMMECONFERENCE PROGRAMME<strong>VAAM</strong> <strong>2012</strong> <strong>Jahrestagung</strong> Tüb<strong>in</strong>gen (18.03.–21.03.<strong>2012</strong>)PLENARY SESSION: SECONDARY METABOLITESChair: Lutz HeideLecture hall N614:30 ISV13: W. WohllebenEberhard Karls Universität Tüb<strong>in</strong>gen, Department of Microbiology/Biotechnology, Tüb<strong>in</strong>gen, GermanyGlycopeptide Antibiotics: Biosynthesis, Resistance, Evolution15:00 ISV14: P. LeadlayUniversity of Cambridge, Department of Biochemistry, Cambridge, United K<strong>in</strong>gdomThe biosynthetic eng<strong>in</strong>eer<strong>in</strong>g of polyketide drugs15:30–17:30 Coffee break/Industrial exhibition Ground/1st floor15:30–17:30 Poster Session II (even poster numbers) Ground/1st floor &Cafeteria17:30–18:30 <strong>VAAM</strong> Annual General Meet<strong>in</strong>g (see page 14) Lecture hall N6ca. 18:30 PhD Awards Lecture hall N6Sponsored by BASF SE, Sanofi Aventis Deutschland GmbH, Bayer Scher<strong>in</strong>g Pharma,New England Biolabs GmbH, Evonik Degussa GmbHca. 19:30 Mixer Mensa/CafeteriaMorgenstelle˘Wednesday, 21.03.<strong>2012</strong>08:30–12:00 Industrial exhibition Ground/1st floor09:00–11:00 Short lectures (see page 48) various11:00–11:30 Coffee break/Industrial exhibition Ground/1st floor11:30–11:45 Poster Awards Lecture hall N6Sponsored by MorphoSys AGChair: Rüdiger HamppPLENARY SESSION: MICROBIAL SURVIVAL STRATEGIESChair: Ingo AutenriethLecture hall N611:45 ISV15: A. WalkerWellcome Trust Sanger Institute, Pathogen Genomics Group, H<strong>in</strong>xton, UKSuppression of Clostridium difficile disease and transmission by the <strong>in</strong>test<strong>in</strong>almicrobiota12:15 ISV16: D. OesterheltMax-Planck-Institut für Biochemie, Membranbiochemie, Mart<strong>in</strong>sried, GermanySystems biology of halophilic archaea12:45 ISV17: R. ProctorEmeritus Professor of Medical Microbiology/ Immunology and Medic<strong>in</strong>e,University of Wiscons<strong>in</strong> School of Medic<strong>in</strong>e and Public Health, Madison, WI, USAMicrobial survival strategies: Staphylococcus aureus as a highly effective surviver13:15–13:30 Clos<strong>in</strong>g Remarks Lecture hall N6BIOspektrum | Tagungsband <strong>2012</strong>


SPECIAL GROUPS35ACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 13:00–14:30˘Special Group: Quality Assurance & Diagnostics (Qualitätssicherung & Diagnostik)Topic: Berufsbilder im Bereich Qualität und Diagnostik – E<strong>in</strong>stiegs- undKarrieremöglichkeitenOrganisation: S. Prowe, Beuth Hochschule für Technik, Fachbereich V – Studiengang Biotechnologie, Berl<strong>in</strong>,Germany; A. Seiffert-Störiko, Sanofi-Aventis Deutschland GmbH, Frankfurt-Höchst, GermanyLecture hall N3QDV1-FG 13:00QDV2-FG 13:15S. Per<strong>in</strong>g*, B. GertenMerck KGaA, Merck Millipore Biomonitor<strong>in</strong>g, Darmstadt, GermanyDevelopment of hygiene monitor<strong>in</strong>g media with non-animal orig<strong>in</strong> – bachelor thesis written <strong>in</strong> <strong>in</strong>dustryS. WickertBeuth Hochschule für Technik Berl<strong>in</strong>, FB V „Life Sciences and Technology“ Studiengang Biotechnologie, AGProf. Dr. Prowe, Berl<strong>in</strong>, GermanyErfahrungen als EMbaRC-Stipendiat<strong>in</strong> bei der BCCM/LMG <strong>in</strong> Gent – Nutzen für das eigeneForschungsprojektQDV3-FG 13:30 A. Kolk* 1 , U. Jäckel 2 , E. Mart<strong>in</strong> 2 , J. Schäfer 2 , G. Schneider 11 Institut für Arbeitsschutz (IFA) der Deutschen Gesetzlichen Unfallversicherung (DGUV), Sankt August<strong>in</strong>,Germany2 Bundesanstalt für Arbeitsschutz und Arbeitsmediz<strong>in</strong> (BAuA), Berl<strong>in</strong>, GermanyDas Berufsfeld des Mikrobiologen <strong>in</strong> e<strong>in</strong>er Behörde – Diagnostik im Rahmen der biologischenArbeitssicherheitQDV4-FG 13:45M. EgertHochschule Furtwangen University, Department of Mechanical and Process Eng<strong>in</strong>eer<strong>in</strong>g, Vill<strong>in</strong>gen-Schwenn<strong>in</strong>gen, GermanyFrom academia to <strong>in</strong>dustry, and back: Microbiological research to make life easier, better and morebeautifulDiskussionM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30˘Special Group: Structure and Microscopy (Struktur und Mikroskopie)Organisation: H. Engelhardt, Max-Planck-Institut für Biochemie, Mart<strong>in</strong>sried, GermanyLecture hall N817:00 Annual Meet<strong>in</strong>g of the Special Group Struktur und Mikroskopie˘Special Group: Environmental Microbiology (Umweltmikrobiologie)Topic: What makes carbon sources difficult for microbes to degrade?Organisation: R. Meckenstock, Helmholtz Zentrum München, Institut für Grundwasserökologie, Neuherberg,Germany; B. Morasch, University of Tüb<strong>in</strong>gen, Center for Applied Geoscience (ZAG), Environmental M<strong>in</strong>eralogyand Chemistry, Tüb<strong>in</strong>gen, GermanyLecture hall N3EMV1-FG 17:30EMV2-FG 18:00Invited Speaker: F. WiddelMax Planck Institute for Mar<strong>in</strong>e Microbiology, Bremen, GermanyDegradation of organic carbon by microorganisms – do we know the ‘rules’ and limits?Invited Speaker: F. HammesEawag, Microbiology, Dübendorf, SwitzerlandCharacteris<strong>in</strong>g oligotrophic bacterial growth with flow cytometryBIOspektrum | Tagungsband <strong>2012</strong>


36 SPECIAL GROUPSACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30EMV3-FG 18:30 A. Schwedt* 1 , M. Seidel 1,2 , T. Dittmar 1,2 , M. Simon 2 , V. Bondarev 1 , S. Romano 1 , G. Lavik 1 ,H.N. Schulz-Vogt 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Microbiology, Ecophysiology Group, Bremen, Germany2 Carl von Ossietzky University of Oldenburg, Institute of Chemistry and Biology of the Mar<strong>in</strong>e Environment,Oldenburg, GermanySubstrate use of extremely oligotrophic bacteriaEMV4-FG 18:42EMV5-FG 18:54M. Kästner*, A. MiltnerHelmholtz-Centre for Environmental Research, Environmental Biotechnology, Leipzig, GermanyMicrobial degradation of organic compounds (natural compounds, xenobiotics, and pesticides) and theformation of soil organic matter and biogenic non-extractable (or bound) residuesB. Morasch*, S.B. Haderle<strong>in</strong>University of Tueb<strong>in</strong>gen, Center for Applied Geoscience (ZAG), Tueb<strong>in</strong>gen, GermanyWhat keeps microorganisms from eat<strong>in</strong>g emerg<strong>in</strong>g contam<strong>in</strong>ants? – A study on the corrosion <strong>in</strong>hibitorbenzotriazoleEMV6-FG 19:06 Y. Liu 1,2 , S.-J. Liu 2 , H.L. Drake 1 , M. Horn* 11 University of Bayreuth, Ecological Microbiology, Bayreuth, Germany2 Ch<strong>in</strong>ese Academy of Sciences, State Key Laboratory of Microbial Resources, Institute of Microbiology,Beij<strong>in</strong>g, Ch<strong>in</strong>aPhenoxyacetic acids – what soil microbes can handle ether-l<strong>in</strong>kages <strong>in</strong> soil?EMV7-FG 19:18 C. Eberle<strong>in</strong>* 1 , H. Mouttaki 2 , R. Meckenstock 2 , M. Boll 11 University of Leipzig, Institute of Biochemistry, Leipzig, Germany2 Helmholtz Center Munich, German Research Center for Environmental Health, Institute of GroundwaterEcology, Munich, GermanyA new function for an old yellow enzyme: dearomatiz<strong>in</strong>g naphthoyl-CoA reductase, a key enzyme <strong>in</strong>anaerobic naphthalene degradation˘Special Group: Fungal Biology and Biotechnology (Experimentelle Mykologie)Topic: Fungi go omics – Fungal systems biology approaches <strong>in</strong> the postgenomics eraOrganisation: S. Krappmann, University of Würzburg, Research Center for Infectious Diseases, Würzburg,Germany; V. Meyer, Technische Universität Berl<strong>in</strong>, Institute for Biotechnology, Dept. of Applied and MolecularMicrobiology, Berl<strong>in</strong>, GermanyLecture hall N2FBV1-FG 17:30Invited Speaker: C. SagtDSM Biotechnology Center, Beijer<strong>in</strong>ck Laboratory, Delft, NetherlandsApplied genomics <strong>in</strong> an <strong>in</strong>dustrial sett<strong>in</strong>gFBV2-FG 18:00 B.M. Nitsche* 1 , T.R. Jrgensen 1,2 , V. Meyer 2,3 , A.F.J. Ram 1,21 Leiden University, Institute of Biotechnology, Leiden, Netherlands2 Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands3 Berl<strong>in</strong> University of Technology, Institute of Biotechnology, Berl<strong>in</strong>, GermanyThe carbon depletion response of Aspergillus niger dur<strong>in</strong>g submerged cultivationFBV3-FG 18:15 P. Olbermann* 1 , S. Tarazona 2 , H. Irmer 3 , C. Jöchl 4 , D. Turras 5 , A. Di Pietro 5 , H. Haas 4 ,G.H. Braus 3 , A. Conesa 2 , S. Krappmann 11 Universität Würzburg, Zentrum für Infektionsforschung, Würzburg, Germany2 Centro de Investigacion Príncipe Felipe, Bio<strong>in</strong>formatics and Genomics Department, Valencia, Spa<strong>in</strong>3 University of Gött<strong>in</strong>gen, Institute for Microbiology and Genetics, Gött<strong>in</strong>gen, Germany4 Innsbruck Medical University, Division of Molecular Biology, Innsbruck, Austria5 University of Cordoba, Department of Genetics, Cordoba, Spa<strong>in</strong>Blood is a very special fluid – the transcriptome of Aspergillus fumigatus <strong>in</strong> response to human bloodBIOspektrum | Tagungsband <strong>2012</strong>


37ACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30FBV4-FG 18:30 K. Kroll* 1,2 , M. Vödisch 1,2 , M. Roth 3 , A.A. Brakhage 1,2 , O. Kniemeyer 1,21 Hans-Knöll-Institute, Department of Molecular and Applied Microbiology, Jena, Germany2 Friedrich-Schiller-University Jena, Jena, Germany3 Hans-Knöll-Institute, Department of Bio Pilot Plant, Leibniz Institute for Natural Product Research andInfection Biology, Jena, GermanyProteomic profil<strong>in</strong>g of the short-term response of Aspergillus fumigatus to hypoxic growth conditionsFBV5-FG 18:45 A. Kühn* 1 , H. Kusch 1 , C. Hoppenau 1 , K. Michels 2 , I. Feussner 2 , B. Voigt 3 , D. Becher 3 , M. Hecker 3 ,S.A. Braus-Stromeyer 1 , G.H. Braus 11 Georg-August Universität Gött<strong>in</strong>gen, Institut für Mikrobiologie und Genetik, Gött<strong>in</strong>gen, Germany2 Georg-August Universität Gött<strong>in</strong>gen, Abteilung Biochemie der Pflanze, Albrecht-von-Haller-Institut fürPflanzenwissenschaften, Gött<strong>in</strong>gen, Germany3 Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie, Greifswald, GermanyDifferential analysis of <strong>in</strong>tra- and extra-cellular proteomes of Verticillium longisporum dur<strong>in</strong>g biotrophicand saprophytic growthFBV6-FG 19:00FBV7-FG 19:15Followed byM. Navarro-Gonzalez*, M. Arndt, M. Zomorrodi, A. Majcherczyk, U. KüesGeorg-August-Universität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie und technische Mykologie, Gött<strong>in</strong>gen,GermanyRegulation of fruit<strong>in</strong>g body formation <strong>in</strong> Copr<strong>in</strong>opsis c<strong>in</strong>ereaJ. Bormann*, N. Van Thuat, W. SchäferUniversity of Hamburg, Biocenter Kle<strong>in</strong> Flottbek, Department of Molecular Phytopathology and Genetics,Hamburg, GermanyThe stress-activated prote<strong>in</strong> k<strong>in</strong>ase FgOS-2 is a key regulator <strong>in</strong> the life cycle of the cereal pathogenFusarium gram<strong>in</strong>earumAnnual Meet<strong>in</strong>g of the Special Group Experimentelle Mykologie˘Special Group: Microbial Pathogenicity (Mikrobielle Pathogenität)Topic: Cell walls, membranes, and lipids <strong>in</strong> microbial pathogenesisOrganisation: A. Peschel, Universitätskl<strong>in</strong>ikum, Medical Microbiology and Hygiene Department, Tüb<strong>in</strong>gen,GermanyLecture hall N7MPV1-FG 17:30MPV2-FG 17:50S. Weber*, S. Dol<strong>in</strong>sky, I. Haneburger, H. HilbiMax von Pettenkofer Institute, Bacteriology, Munich, GermanyModulation of phospho<strong>in</strong>ositide metabolism by Legionella spp.M. Türck*, G. BierbaumUniversity of Bonn, Institute of Medical Microbiology, Immunology and Parasitology (IMMIP), Bonn, GermanyThe YycFG (WalRK/VicRK) two-component regulatory system of Staphylococcus aureus and its capabilityto sense changes <strong>in</strong> membrane fluidityMPV3-FG 18:10 K. Zeth* 1 , V. Kozjak-Pavlovic 2 , M. Faulstich 2 , O. Kepp 2 , T. Rudel 21 University of Tüb<strong>in</strong>gen, ZMBP, Tüb<strong>in</strong>gen, Germany2 University of Würzburg, Department of Microbiology, Würzburg, GermanyStructure and function of the PorB por<strong>in</strong> from dissem<strong>in</strong>at<strong>in</strong>g N. gonorrhoeaeMPV4-FG 18:30 S. Brown 1 , G. Xia* 2 , L. G. Luhachack 3 , J. Campbell 1 , T. Meredith 1 , C. Chen 1 , V. W<strong>in</strong>stel 2 , C.Gekeler 2 , J. E. Irazoqui 3 , A. Peschel 2 , S. Walker 11 Department of Microbiology and Immunobiology, Harvard Medical School, Boston MA, USA2 Cellular and Molecular Microbiology Section, Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e,University of Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen. Germany3 Department of Pediatrics, Massachusetts General Hospital, Harvard Medical School, Boston, USAMethicill<strong>in</strong> Resistance <strong>in</strong> Staphylococcus aureus depends on β-O-GlcNAcylation of Wall Teichoic AcidsBIOspektrum | Tagungsband <strong>2012</strong>


38 SPECIAL GROUPSACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30MPV5-FG 18:50 D. Asam* 1 , S. Mauerer 1 , E. Walheim 2 , B. Spellerberg 11 University Hospital Ulm, Institute for Medical Microbiology and Hygiene, Ulm, Germany2 University Ulm, Ulm, GermanyIdentification of β-haemolys<strong>in</strong> encod<strong>in</strong>g genes <strong>in</strong> Streptococcus ang<strong>in</strong>osusMPV6-FG 19:10 F. Glow<strong>in</strong>ski 1 , K. Paprotka 2 , M. Grosz 3 , B. S<strong>in</strong>ha 3 , M. Fraunholz* 21 Max Planck Institute for Infection Biology, Dept. Molecular Biology, Berl<strong>in</strong>, Germany2 University of Würzburg , Chair of Microbiology, Biocenter, Würzburg, Germany3 Univeristy of Würzburg, Institute of Hygiene and Microbiology, Würzburg, GermanyAlternative pathways of phagosomal escape of Staphylococcus aureusFollowed byAnnual Meet<strong>in</strong>g of the Special Group Mikrobielle Pathogenität˘Special Group: Regulation and Signal Transduction (Regulation und Signaltransduktion)Topic: Bacterial receptors and signal<strong>in</strong>gOrganisation: K. Jung, Ludwig-Maximilians Universität München, Biozentrum, Department Biologie I, BereichMikrobiologie, Mart<strong>in</strong>sried, GermanyLecture hall N5RSV1-FG 17:30 S. Hunke* 1 , V.S. Müller 1 , K. Tschauner 1 , P. Scheerer 1,21 Universität Osnabrück, Molekulare Mikrobiologie, Osnabrück, Germany2 Charité – Universitätsmediz<strong>in</strong> Berl<strong>in</strong>, Institut für Mediz<strong>in</strong>ische Physik und Biophysik (CC2), Berl<strong>in</strong>, GermanySignal recognition and transmission by the CpxAR-two component systemRSV2-FG 17:50J. Natarajan*, J. SchultzUniversity of Tüb<strong>in</strong>gen, Department of Pharmaceutical Biochemistry, Tüb<strong>in</strong>gen, GermanyMechanism of signal transfer by the tandem hamp doma<strong>in</strong> from Natronomonas pharaonisRSV3-FG 18:10 D.J. Leslie 1 , S. D<strong>in</strong>tner 2 , A. Starón 2 , T. Petri 3 , F. Kalamorz 1 , G.M. Cook 1 , T. Mascher 2 , S. Gebhard* 21 University of Otago, Department of Microbiology and Immunology, Duned<strong>in</strong>, New Zealand2 Ludwig-Maximilians-Universität München, Department of Biology I, Microbiology, Planegg-Mart<strong>in</strong>sried,Germany3 Ludwig-Maximilians-Universität München, Department of Informatics, Research and Teach<strong>in</strong>g UnitBio<strong>in</strong>formatics, München, GermanySignall<strong>in</strong>g with<strong>in</strong> resistance modules aga<strong>in</strong>st peptide antibiotics – regulatory <strong>in</strong>terplay between ABCtransportersand two-component systemsRSV4-FG 18:30J. Lassak*, S. Ude, T. Kraxenberger, K. JungLudwig-Maximilians-University Munich, Munich Center for <strong>in</strong>tegrated Prote<strong>in</strong> Science (CiPSM) at theDepartment of Biology I, Microbiology, Mart<strong>in</strong>sried, GermanyThe one-component regulator CadC of E. coli is a targetof the elongation factor PRSV5-FG 18:50 F. Zähriger 1 , E. Lacanna 2 , U. Jenal 1 , T. Schirmer 1 , A. Böhm* 21 University of Basel, Biozentrum, Basel, Germany2 University of Würzburg, Institute for Molecular Infection Biology, Würzburg, GermanyA Zn 2+ -sensory diguanylate-cyclase from Escherichia coliRSV6-FG 19:10 N. Masloboeva* 1 , L. Reutimann 1 , P. Stiefel 1 , H. Hennecke 1 , S. Mesa 2 , H.-M. Fischer 11 ETH Zurich, Institute of Microbiology, Zurich, Switzerland2 Estación Experimental del Zaidín, Department of Soil Microbiology and Symbiotic Systems, Granada, Spa<strong>in</strong>Reactive oxygen species-<strong>in</strong>ducible ECF s factors of Bradyrhizobium japonicumFollowed byAnnual Meet<strong>in</strong>g of the Special Group Regulation und SignaltransduktionBIOspektrum | Tagungsband <strong>2012</strong>


39ACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30˘Special Group: Symbiotic Interactions (Symbiotische Interaktionen)Topic: Symbiotic InteractionsOrganisation: U. Hentschel Humeida, Julius-Maximilians-Universität Würzburg, Lehrstuhl Botanik II, Julius-von-Sachs-Institut für Biowissenschaften, Würzburg, Germany; A. Schwiertz, Institut für Mikroökologie, Herborn,GermanyLecture hall N417:00 Annual Meet<strong>in</strong>g of the Special Group Symbiotische InteraktionenTheme I: Lower Metazoan SymbiosesSIV1-FG 17:30 Invited Speaker: V. WeisOregon State University, Department of Zoology, Corvallis, USAThe regulation of cnidarian-d<strong>in</strong>oflagellate mutalisms: <strong>in</strong> sickness and <strong>in</strong> healthSIV2-FG 18:00 V. Gloeckner* 1 , S. Schmitt 1 , N. L<strong>in</strong>dquist 2 , U. Hentschel 1University of Wuerzburg, Julius von Sachs Institute for Biological Sciences, Wuerzburg, GermanyUniversity of North Carol<strong>in</strong>a at Chapel Hill, Institute of Mar<strong>in</strong>e Sciences, Chapel Hill, USAAmount, activity and mode of transmission of microbial symbionts associated with the Caribbean spongeEctyoplasia feroxTheme II: Low versus High Microbial Diversity SymbiosesSIV3-FG 18:15 J. Zimmermann* 1 , J.M. Petersen 1 , J. Ott 2,3 , N. Musat 1 , N. Dubilier 1Max Planck Institute for Mar<strong>in</strong>e Microbiology, Molecular Ecology, Symbiosis Group, Bremen, GermanyUniversity of Vienna, Department of Molecular Ecology, Vienna, AustriaUniversity of Vienna, Department of Mar<strong>in</strong>e Biology, Vienna, AustriaHighly specific nematode symbioses from the North Sea and the benefits of harbour<strong>in</strong>g ectosymbiontsSIV4-FG 18:30 T. Köhler*, C. Dietrich, A. BruneMax Planck Institute for Terrestrial Microbiology, Department of Biogeochemistry, Marburg, GermanyDigest<strong>in</strong>g the diversity – evolutionary patterns <strong>in</strong> the gut microbiota of termites and cockroachesTheme III: Symbiont Metabolism and EcologySIV5-FG 18:45 A. Siegl* 1 , B.S. Sixt 1 , C. Müller 2 , M. Watzka 3 , A. Richter 3 , P. Schmitt-Koppl<strong>in</strong> 2 , M. Horn 1University of Vienna, Department of Microbial Ecology, Vienna, AustriaHelmholtz-Zentrum Muenchen – German Research Center for Environmental Health, Institute of EcologicalChemistry, Department of Molecular BioGeoChemistry and Analytics, Neuherberg, GermanyUniversity of Vienna, Department of Chemical Ecology and Ecosystem Research, ViennaMetabolic activity of the obligate <strong>in</strong>tracellular amoeba symbiont Protochlamydia amoebophila <strong>in</strong> a host-freeenvironmentSIV6-FG 19:00 H.-P. Grossart* 1,2 , C. Dziallas 1 , K.T. Tang 1,3Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechl<strong>in</strong>, GermanyUniversity of Potsdam, Institute for Biochemistry and Biology , Potsdam, GermanyCollege of William & Mary, Virg<strong>in</strong>ia Institute of Mar<strong>in</strong>e Science, Gloucester, USABacteria-zooplankton <strong>in</strong>teractions: a key to understand<strong>in</strong>g bacterial dynamics and biogeochemicalprocesses <strong>in</strong> lakes?Theme IV: Symbioses FactorsSIV7-FG 19:15 B. Kranzusch 1 , S. Albert 1 , K. Kunze 1 , M. Kunke 1 , A. Weiss 1 , E. Szentgyörgyi 1 , O. Walser 2 ,M. Göttfert 1 , S. Rossbach* 1Technische Universität Dresden, Institut für Genetik, Dresden, GermanyWestern Michigan University, Department of Biological Sciences, Kalamazoo, USAEfflux pumps and TetR-like regulators <strong>in</strong> rhizobial <strong>in</strong>teractions with plantsSIV8-FG 19:30 D. Zhur<strong>in</strong>a, M. Gleisner, C. Westermann, J. Schützner, C.U. Riedel*University of Ulm, Institute of Microbiology and Biotechnology, Ulm, GermanyHost colonization of bifidobacteria – from genome sequence to prote<strong>in</strong> functionBIOspektrum | Tagungsband <strong>2012</strong>


40 SPECIAL GROUPSACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30˘Special Group: Systematics (Systematik)Topic: Quo vadis?Organisation: B. T<strong>in</strong>dall, Leibniz-Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH,Braunschweig, GermanyLecture hall N1SYV1-FG 17:30SYV2-FG 18:00Invited Speaker: I.C. SutcliffeNorthumbria University, School of Life Sciences, Newcastle upon Tyne, United K<strong>in</strong>gdomThe road ahead for microbial systematics: rais<strong>in</strong>g our game <strong>in</strong> the post-genomic eraInvited Speaker: B.J. T<strong>in</strong>dallLeibniz Institut DSMZ – Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig,GermanyThe purpose of prokaryote systematics; clarify<strong>in</strong>g muddy watersSYV3-FG 18:30 V. Salman* 1 , R. Amann 1 , A.-C. Girnth 1 , L. Polerecky 1 , J. Bailey 2 , S. Høgslund 3 , G. Jessen 4 ,S. Pantoja 4 , H.N. Schulz-Vogt 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Bremen, Germany2 University of M<strong>in</strong>nesota – Tw<strong>in</strong> Cities, Department of Geology and Geophysics, M<strong>in</strong>neapolis, MN, USA3 Aarhus University, Department of Biological Sciences, Aarhus, Denmark4 University of Concepción, Department of Oceanography and Center for Oceanographic Research <strong>in</strong> theEastern South Pacific, Concepción, ChileA s<strong>in</strong>gle-cell sequenc<strong>in</strong>g approach to the classification of large, vacuolated sulfur bacteriaSYV4-FG 18:45 K. Voigt* 1,2 , P. M. Kirk 31 Leibniz Institute for Natural Product Research and Infection Biology, Jena Microbial Resource Collection,Jena, Germany2 University of Jena, Dept. Microbiology and Molecular Biology, Jena, Germany3 CABI UK Centre, Surrey, United K<strong>in</strong>gdomA phylogeny-compliant revision of the systematics for the basal fungal l<strong>in</strong>eages: Chytridiomycota andZygomycota19:00 DiscussionFollowed byAnnual Meet<strong>in</strong>g of the Special Group Systematik˘Special Group: Yeast (Hefe)Topic: Membranes and endocytosisOrganisation: K.-D. Entian, Biozentrum Niederursel, Institut für Mikrobiologie, Frankfurt a.M., GermanyLecture hall N9YEV1-FG 17:30YEV2-FG 17:45YEV3-FG 18:00D. RapaportUniversity of Tueb<strong>in</strong>gen, Interfaculty Institute of Biochemistry, Tüb<strong>in</strong>gen, GermanyNew and old tricks <strong>in</strong> the biogenesis of mitochondrial outer membrane prote<strong>in</strong>sE. Gießelmann, J. Dausend, B. Becker, M.J. Schmitt*Saarland University, Department of Biosciences (FR 8.3), Molecular & Cell Biology, Saarbrücken, GermanyMechanistic <strong>in</strong>sight <strong>in</strong>to receptor endocytosis and endosomal A/B tox<strong>in</strong> traffick<strong>in</strong>g <strong>in</strong> yeastA. Hackmann, T. Gross, C. Baierle<strong>in</strong>, H. Krebber*University of Gött<strong>in</strong>gen, Institute for Microbiology and Genetics, Department Molecular Genetics, Gött<strong>in</strong>gen,GermanyThe conjunction of mRNA export and translationYEV4-FG 18:15 J. Fundakowski 1 , M. Schmid 2 , C. Genz 1 , S. Lange 2 , R.-P. Jansen* 11 Eberhard-Karls-Universität Tüb<strong>in</strong>gen, Interfaculty Institute for Biochemistry, Tüb<strong>in</strong>gen, Germany2 Ludwig-Maximilians-Universität München, GeneCenter, Munich, GermanyLocalization of mRNAs and endoplasmic reticulum <strong>in</strong> budd<strong>in</strong>g yeastBIOspektrum | Tagungsband <strong>2012</strong>


41ACTIVITIES OF THE SPECIAL GROUPSM<strong>in</strong>i-Symposia of the Special Groups: Monday, March 19, 17:30–19:30YEV5-FG 18:30YEV6-FG 18:45K.-D. Entian*, B. MeyerJohann Wolfgang Goethe University, Cluster of Excellence: Macromolecular Complexes and Institute forMolecular Biosciences, Frankfurt a.M., GermanyEukaryotic Ribosome Biogenesis: Analysis of the Nucleolar Essential Yeast Nep1 Prote<strong>in</strong> and MutationsCaus<strong>in</strong>g the Human Bowen-Conradi SyndromeC. Schorsch, E. Boles*Johann Wolfgang Goethe University, Institute of Molecular Biosciences, Frankfurt a.M., GermanyHigh-level production of tetraacetyl phytosph<strong>in</strong>gos<strong>in</strong>e (TAPS) by comb<strong>in</strong>ed genetic eng<strong>in</strong>eer<strong>in</strong>g of sph<strong>in</strong>goidbase biosynthesis and L-ser<strong>in</strong>e availability <strong>in</strong> the non-conventional yeast Pichia ciferriiYEV7-FG 19:00 S. Fischer 1 , E. Sieber 2 , Z. Zhang 2 , J. He<strong>in</strong>isch 3 , C. von Wallbrunn* 11 Geisenheim Research Center, Department of Microbiology and Biochemistry, Geisenheim, Germany2 Hochschule Rhe<strong>in</strong>Ma<strong>in</strong>, Fachbereich Geisenheim, Geisenheim, Germany3 University of Osnabrück, Department of Genetics, Faculty of Biology, Osnabrück, GermanyThe genetics of ester synthesis <strong>in</strong> Hanseniaspora uvarum dur<strong>in</strong>g w<strong>in</strong>emak<strong>in</strong>gYEV8-FG 19:15 R. Schaffrath* 1,2 , C. Bär 1,2 , D. Jablonowski 1,21 Universität Kassel, Institut für Biologie, Abteilung Mikrobiologie, Kassel, Germany2 University of Leicester, Department of Genetics, Leicester, GermanyFeel me, thrill me, kill me – when K. lactis meets S. cerevisiaeM<strong>in</strong>i-Symposia of the Special Groups: Tuesday, March 20, 16:30˘Special Group: Funktionelle GenomanalyseOrganisation: H.-P. Klenk, Leibniz-Institut DSMZ – German Collection of Microorganisms and Cell Cultures,Braunschweig, GermanyGermany16:30 Annual Meet<strong>in</strong>g of the Special Group Funktionelle GenomanalyseBIOspektrum | Tagungsband <strong>2012</strong>


42 SHORT LECTURESMonday, March 19, 08:30–10:30Open Topics I: Molecularstructure and biochemistryLecture hall N7Chair: Sonja AlbersCo-Chair: Dirk L<strong>in</strong>keOTV00108:30*N.A. CHRIST, S. BOCHMANN,D. GOTTSTEIN, E. DUCHARDT-FERNER,U. HELLMICH, S. DÜSTERHUS, P. KÖTTER,P. GÜNTERT, K.-D. ENTIAN, J. WÖHNERTThe first structure of a LanI prote<strong>in</strong>,SpaI: The prote<strong>in</strong> conferr<strong>in</strong>gautoimmunity aga<strong>in</strong>st the lantibioticsubtil<strong>in</strong> <strong>in</strong> Bacillus subtilis reveals anovel foldOTV00208:45*S. BOCHMANN, N. CHRIST, P. KÖTTER,S. DÜSTERHUS, J. WÖHNERT, K.-D. ENTIANAnalysis of SpaI-mediated lantibioticimmunity <strong>in</strong> Bacillus subtilisOTV00309:00*T. STAUFENBERGER, J.F. IMHOFF,A. LABESFirst crenarchaeal chit<strong>in</strong>ase detected <strong>in</strong>Sulfolobus tokodaiiOTV00409:15H. GULDAN, F.-M. MATYSIK, M. BOCOLA,R. STERNER, *B. PATRICKA novel biosynthetic pathway for thesynthesis of Archaea-type ether lipids <strong>in</strong>BacteriaOTV00509:30*D. LINKE, S. SHAHID, M. HABECK,B. BARDIAUX, B. VAN ROSSUMDe novo structure of the membraneanchor doma<strong>in</strong> of the trimericautotransporter YadA by solid-stateNMR spectroscopyOTV00609:45*T. NEINER, K. LASSAK, A. GHOSH,S. HARTUNG, J.A. TAINER, S.-V. ALBERSBiochemical and structural analysis ofFlaH, a component of the crenarchaealflagellumOTV00710:00*L. SIMON, M. ULBRICH, J. RIES, H. EWERS,P.L. GRAUMANNSubcellular position<strong>in</strong>g of a DNA-b<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong> through constra<strong>in</strong>t movementOTV00810:15*N. DE ALMEIDA, H. WESSELS,W. MAALCKE, J. KELTJENS, M. JETTEN ,B. KARTALProte<strong>in</strong> complexes <strong>in</strong>volved <strong>in</strong> theelectron transport cha<strong>in</strong> of anammoxbacteriaMP I: Bacterial cell surface,antibiotics and novel therapyapproachesLecture hall N5Chair: Volkhard KempfCo-Chair: Erw<strong>in</strong> BohnMPV00108:30H. BRÖTZ-OESTERHELT, *A. MUELLER,D. MUENCH, Y. SCHMIDT, K. REDER-CHRIST, G. SCHIFFER, G. BENDAS,H. GROSS, H.-G. SAHL, T. SCHNEIDERThe lipodepsipeptide empedopept<strong>in</strong><strong>in</strong>hibits cell wall biosynthesis throughCa 2+ -dependent complex formation withpeptidoglycan precursorsMPV00208:45I. BLEIZIFFER, K. MCAULAY, G. XIA,M. HUSSAIN, G. POHLENTZ, A. PESCHEL,S.J. FOSTER, G. PETERS, *C. HEILMANNThe Staphylococcus aureus plasm<strong>in</strong>sensitiveprote<strong>in</strong> Pls is a glycoprote<strong>in</strong>MPV00309:00*B. OESTERREICH, R. KONTERMANN,C. ERCK, U. LORENZ, K. OHLSENFrom target to therapy – Expression andcharacterization of ananti-staphylococcal antibodyMPV00409:15*C. SZAGUNN, T.A. WICHELHAUS,V.A.J. KEMPF, S. GÖTTIGAntibiotic resistance and pathogenicityof NDM-carry<strong>in</strong>g Ac<strong>in</strong>etobacterbaumanniiMPV00509:30*P. OBERHETTINGER, M. SCHÜTZ, J. LEO,D. LINKE, I. AUTENRIETHIntim<strong>in</strong> and <strong>in</strong>vas<strong>in</strong> export theirC-term<strong>in</strong>us to the bacterial cell surfaceus<strong>in</strong>g an <strong>in</strong>verse mechanism comparedto classical autotransportMPV00609:45*A. GRÜTZNER, M. ROHDE,G.S. CHHATWAL, S.R. TALAYAnalysis of the <strong>in</strong>teraction of <strong>in</strong>vasiveM1 Streptococcus pyogenes withhuman endothelial cellsMPV00710:00*C. WEBER, K. KRAUEL, A. GREINACHER,S. HAMMERSCHMIDTLipopolysaccharides of Gram-negativebacteria contribute to the creation ofhepar<strong>in</strong>-<strong>in</strong>duced thrombocytopenia-elicit<strong>in</strong>gantibodies by b<strong>in</strong>d<strong>in</strong>g and conformationallyalter<strong>in</strong>g platelet factor 4MPV00810:15*D. KRETSCHMER, N. NIKOLA, M. DUERR,M. OTTO, A. PESCHELStaphylococcus epidermidis andStaphylococcus aureus Quorum Sens<strong>in</strong>gSystem agr Regulates Formyl PeptideReceptor 2 Ligand Secretion and therebythe Activation of the Innate ImmuneSystemSoil Microbiology I: Microbialprocesses <strong>in</strong>volved <strong>in</strong> carbonand nitrogen cycl<strong>in</strong>gLecture hall N3Chair: Sebastian BehrensSMV00208:30*Z. JAKOB, H. SYLVIA, B. ALEXANDRE,T. SONIA, C. FRANZDistribution, diversity, and activity ofanaerobic ammonium oxidiz<strong>in</strong>g bacteria<strong>in</strong> soilsSMV00308:45*K. PALMER, M.A. HORNDenitrification activity of a new anddiverse denitrifier community <strong>in</strong> a pHneutral fen soil <strong>in</strong> F<strong>in</strong>nish Lapland isnitrate limitedBIOspektrum | Tagungsband <strong>2012</strong>


43Monday, March 19, 08:30–10:30SMV00409:00*P.S. DEPKAT-JAKOB, G.G. BROWN,S.M. TSAI, M.A. HORN, H.L. DRAKEEmission of Denitrification-derivedNitrogenous Gases by BrazilianEarthwormsSMV00509:15B. ZHU, G. VAN DIJK, C. FRITZ,M.S.M. JETTEN, *K.F. ETTWIGAnaerobic methane oxidizers preventmethane emissions from a m<strong>in</strong>erotro -phic peatlandSMV00609:30*A. GITTEL, J. BARTA, I. LACMANOVA,V. TORSVIK, A. RICHTER, S. OWENS,J. GILBERT, C. SCHLEPER, T. URICHMicroorganisms affect<strong>in</strong>g thestabilisation of soil organic carbon <strong>in</strong>cryoturbated soils of the Siberian ArcticSMV00709:45*C. SCHURIG, R. SMITTENBERG, J. BERGER,F. KRAFT, S.K. WOCHE, M.-O. GÖBEL,H.J. HEIPIEPER, A. MILTNER, M. KÄSTNERCould bacterial residues be animportant source of SOM? – A casestudy from a glacier forefieldSMV00810:00*A. STACHETER, H.L. DRAKE, S. KOLBMethanol Consumption byMethylotrophs <strong>in</strong> Temperate AeratedSoilsSMV01710:15*S. GWOSDZ, J. WEST, D. JONES, K. SMITH,M. KRÜGEREffects of elevated CO 2concentrationson microbial ecosystem at the artificialtest site ASGARD, EnglandMetabolic Regulation andSignall<strong>in</strong>g I: Signals andperceptionLecture hall N2Chair: Kirsten JungCo-Chair: Joachim E. SchultzRSV00108:30*J. WITAN, G. UNDENFunctional <strong>in</strong>teraction of the Escherichiacoli transporters DctA and DcuB withthe sensor k<strong>in</strong>ase DcuSRSV00208:45*Y. GÖPEL, B. REICHENBACH,K. PAPENFORT, C. SHARMA, J. VOGEL,B. GÖRKEYhbJ – a novel RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> functionsas mediator of signal transduction<strong>in</strong>the hierarchically act<strong>in</strong>g GlmYZ sRNAcascadeRSV00309:00*H. ANTELMANN, B.K. CHI, P. WAACK,K. GRONAU, D. BECHER, D. ALBRECHT,W. HINRICHS, R.J. READ, G. PALMStructural <strong>in</strong>sights <strong>in</strong>to the redox-switchmechanism of HypR, a disulfide stresssens<strong>in</strong>gMarR/DUF24-family regulator ofBacillus subtilisRSV00409:15*O. FOKINA, K. FORCHHAMMERHow the P IIprote<strong>in</strong> from Synechococcus<strong>in</strong>tegrates metabolic with energy signalsto control its targetsRSV00509:30*J. OBERENDER, M. BOLLPost-translational modificationdeterm<strong>in</strong>es the substrate specificity of acarboxylic acid-coenzyme A ligaseRSV00609:45*D. ESSER, J. REIMANN, T.K. PHAM,S.V. ALBERS, P.C. WRIGHT, B. SIEBERSHot signal transduction <strong>in</strong> thethermoacidophilic creanarchaeumSulfolobus acidocaldariusRSV00710:00I. HITKOVA, C. MANSKE, S. BRAMEYER,K. SCHUBERT, C. HARMATH,S. LINNERBAUER, S. JOYCE, D. CLARKE,*R. HEERMANNA novel LuxR-based cell-to-cellcommunication system <strong>in</strong> theentomopathogen Photorhabduslum<strong>in</strong>escensRSV00810:15*A. KESSLER, U. SCHELL, C. HARRISON,H. HILBIα-Hydroxyketone-mediated signaltransduction <strong>in</strong> Legionella pneumophilaOpen Topics II:Molecular biologyLecture hall N4Chair: Julia Fritz-SteuberCo-Chair: Jörg SoppaOTV00908:30*T. WALDMINGHAUS, C. WEIGEL,K. SKARSTADReplication fork movement andmethylation governs SeqA b<strong>in</strong>d<strong>in</strong>g to theEscherichia coli chromosomeOTV01008:45*H. GRÖNHEIM, W. STEFFEN, J. STEUBERTranslocation of sodium ions by the ND5subunit of mitochondrial complex I fromthe yeast Yarrowia lipolyticaOTV01109:00*V. SALMAN, R. AMANN, D. SHUB,H. SCHULZ-VOGTLarge and frequent <strong>in</strong>trons <strong>in</strong> the 16SrRNA genes of large sulfur bacteriaOTV01209:15*S. LAASS, J. KLEIN, D. JAHN, P. TIELENRegulation of anaerobic respiratorypathways <strong>in</strong> D<strong>in</strong>oroseobacter shibaeOTV01309:30S. BOSCHI BAZAN, G. GEGINAT, T. BREINIG,M.J. SCHMITT, *F. BREINIGInfluence of subcellular antigenlocalization with<strong>in</strong> different yeastgenera on the activation of ovalbum<strong>in</strong>specificCD8 T lymphocytesBIOspektrum | Tagungsband <strong>2012</strong>


44 SHORT LECTURESMonday, March 19, 08:30–10:30OTV01409:45*B. PETERS, M. MIENTUS, D. KOSTNER,W. LIEBL, A. EHRENREICHThe quest for new oxidative catalysts:Expression of metagenomic membranebounddehydrogenases from acetic acidbacteria <strong>in</strong> Gluconobacter oxydansOTV01510:00*C. WITHARANA, L. HOU, C. LASSEK,V. ROPPELT, G. KLUG, E. EVGUENIEVA-HACKENBERGGrowth phase dependent changes of theRNA degrad<strong>in</strong>g exosome <strong>in</strong> SulfolobussolfataricusOTV01610:15*S.L. GARCIA, A. SRIVASTAVA,H.-P. GROSSART, T. MCMAHON,R. STEPANAUSKAS, A. SCZYRBA, T. WOYKE,S. BARCHMANN, F. WARNECKEFreshwater Act<strong>in</strong>obacteria acI asrevealed by s<strong>in</strong>gle-cell genomicsSecondary Metabolites I:From the genome to theproductLecture hall N9Chair: Elke DittmannCo-Chair: Tilmann WeberMEV00108:30*M. KAI, O. GENILLOUD, S. SINGH,A. SVATOŠMass spectrometric analysis ofantibiotics from bacteriaMEV00208:45*J. DISCHINGER, M. JOSTEN , A.-M. HERZNER, A. YAKÉLÉBA,M. OEDENKOVEN, H.-G. SAHL, J. PIEL ,G. BIERBAUMM<strong>in</strong><strong>in</strong>g for new lantibiotic producer <strong>in</strong>microbial genome sequencesMEV00309:00*B. KRAWCZYK, W.M. MÜLLER, P. ENSLE,R.D. SÜSSMUTHBiosynthesis of class III lantibiotics –<strong>in</strong> vitro studiesMEV00409:15*B. BOLL, T. TAUBIZ, L. HEIDEThe Effect of MbtH-like Prote<strong>in</strong>s on theAdenylation of Tyros<strong>in</strong>e <strong>in</strong> the Biosynthesisof Am<strong>in</strong>ocoumar<strong>in</strong> Antibiotics andVancomyc<strong>in</strong>MEV00509:30*E.M. MUSIOL, T. HÄRTNER, A. KULIK,W. WOHLLEBEN, T. WEBERKirCI and KirCII, the discrete acyltransferases<strong>in</strong>volved <strong>in</strong> kirromyc<strong>in</strong> biosynthesisMEV00609:45*Q. ZHOU, H.B. BODEInvestigation of the type II polyketidesynthase from Gram-negative bacteriaPhotorhabdus lum<strong>in</strong>escence TT01MEV00710:00*A. ADAM, K.-H. VAN PÉEPurification and Characterisation of theFlav<strong>in</strong>-Dependent Mono dechloro am<strong>in</strong>o -pyrrolnitr<strong>in</strong> 3-Halogenase from Pyrrol -nitr<strong>in</strong> BiosynthesisMEV00810:15*M. MATUSCHEK, C. WALLWEY, X. XIE,S.-M. LIEasG and FgaFS are key enzymes <strong>in</strong> thedifferentiation of ergot alkaloidbiosynthesis <strong>in</strong> Claviceps purpurea andAspergillus fumigatusMicrobial Survival Strategies I:Adaptation of microorganismsto chemical and physicalstressorsLecture hall N1Chair: Jörg StülkeCo-Chair: Ralph BertramSSV00108:30*A. BARTSCH, A. KLINGNER, J. BECKER,C. WITTMANNMetabolic pathway fluxes of the mar<strong>in</strong>emodel bacterium D<strong>in</strong>oroseobactershibae under chang<strong>in</strong>g environmentalconditionsSSV00208:45*V. BEHRENDS, K.J. WILLIAMS,V.A. JENKINS, B.D. ROBERTSON,J.G. BUNDYGlucosyl-glycerate is a nitrogen stressdependentcarbon-capacitator <strong>in</strong>Mycobacterium smegmatisSSV00309:00*L. PLATZEN, A. MICHEL, B. WEIL,M. BROCKER, M. BOTTFlavohemoprote<strong>in</strong> Hmp ofCorynebacterium glutamicum is<strong>in</strong>volved <strong>in</strong> nitrosative stress resistanceSSV00409:15A. YANDrug efflux as a surviv<strong>in</strong>g strategy <strong>in</strong>response to the anaerobic stress <strong>in</strong> E.coliSSV00509:30*S. MIRIAM, B. AVERHOFFMetabolic adaptation of Ac<strong>in</strong>etobacterto chang<strong>in</strong>g environmental conditionsSSV00609:45*K. SELL, E.A. GALINSKIThe <strong>in</strong>compatible solute creat<strong>in</strong>e<strong>in</strong>hibits bacterial Na + /H + antiportersSSV00710:00*A. KIRSTEN, M. HERZBERG, D.H. NIESHow Cupriavidus metallidurans dealswith toxic transition metalsSSV00810:15*J.-P. OUEDRAOGO, S. HAGEN, V. MEYERAccept your fate? Defence strategies ofyeast and filamentous fungi aga<strong>in</strong>st thechit<strong>in</strong> synthase <strong>in</strong>hibitor AFPBIOspektrum | Tagungsband <strong>2012</strong>


45Tuesday, March 20, 08:30–10:30Open Topics III:Enzymology/BiotechnologyLecture hall N7Chair: Garabed AntranikianCo-Chair: Bernhard HauerOTV01708:30*O. RASIGRAF, C. VOGT, H.-H. RICHNOW,M.S.M. JETTEN, K.F. ETTWIGCarbon and hydrogen isotopefractionation dur<strong>in</strong>g nitrite-dependentanaerobic methane oxidation byMethylomirabilis oxyferaOTV01808:45*S. ELLEUCHE, B. KLIPPEL,G. ANTRANIKIANCharacterization of Novel BacterialAlcohol Dehydrogenases Capable ofOxydiz<strong>in</strong>g 1,3-propanediolOTV01909:00*S. HONDA, D. SCHEPS, L. KÜHNEL,B. NESTL, B. HAUERBacterial CYP153 monooxygenases asbiocatalysts for the synthesis ofω-hydroxy fatty acidsOTV02009:15*S. SANÉ, S. RUBENWOLF, C. JOLIVALT,S. KERZENMACHERUs<strong>in</strong>g yeast and fungi to produceelectricity – Towards a self-regenerat<strong>in</strong>genzymatic biofuel cell cathodeOTV02109:30*K. BÜHLER, R. KARANDE, B. HALAN,A. SCHMIDBiofilms – A new Chapter <strong>in</strong> BiocatalysisOTV02209:45*S. SÖLLNER, M. RAHNERT, M. SIEMANN-HERZBERG, R. TAKORS, J. ALTENBUCHNERGrowth-decoupled, anaerobic succ<strong>in</strong>ateproduction from glycerol with pyruvatek<strong>in</strong>asedeficient E. coli mutantsOTV02310:00*J. VAN OOYEN, S. NOACK, M. BOTT,L. EGGELINGGradual <strong>in</strong>sight <strong>in</strong>to Corynebacteriumglutamicum’s central metabolism for the<strong>in</strong>crease of L-lys<strong>in</strong>e productionOTV02410:15H. WEINGARTInduction of systemic resistance <strong>in</strong>soybean by the antagonistic epiphytePseudomonas syr<strong>in</strong>gae 22d/93MP II: Bacteria host cell<strong>in</strong>teraction and host responseLecture hall N5Chair: Sven HammerschmidtCo-Chair: Christopher WeidenmaierMPV00908:30*S. HANNEMANN, J.E. GALÁNSalmonella Typhimurium StimulatedTranscriptional Response AidsIntracellular ReplicationMPV01008:45*M. FAULSTICH, J.-P. BÖTTCHER, T. MEYER,M. FRAUNHOLZ, T. RUDELRecruitment of PI3 k<strong>in</strong>ase to caveol<strong>in</strong> 1determ<strong>in</strong>es the switch from theextracellular to the dissem<strong>in</strong>at<strong>in</strong>g stageof gonococcal <strong>in</strong>fectionMPV01109:00*R. BÜCKER, J. BECKER, A.K. HEROVEN,P. DERSCH, C. WITTMANNSystems biology of the pathogenicbacterium Yers<strong>in</strong>ia pseudotuberculosisMPV01209:15*A.D. ROEHRICH, E. GUILLOSSOU,R.B. SESSIONS, A.J. BLOCKER,I. MARTINEZ-ARGUDOShigella IpaD has a dual role <strong>in</strong> type IIIsecretion system activationMPV01309:30*B. FRANZ, L. YUN-YUEH , M. TRUTTMANN,T. RIESS, M. FAUSTMANN, V. KEMPF,C. DEHIOBartonella henselae adhes<strong>in</strong> BadAnegatively regulates effector secretionthrough the VirB/D4 type IV secretionsystemMPV01409:45*C. LASSEK, M. BURGHARTZ, D. CHAVESMORENO, B. HESSLING, A. OTTO, M. JAHN,D. BECHER, D. PIEPER, K. RIEDELA metaproteomic analysis of a human<strong>in</strong>dwell<strong>in</strong>g ur<strong>in</strong>ary catheter biofilmdom<strong>in</strong>ated by Pseudomonas aerug<strong>in</strong>osaMPV01510:00*V. BEHRENDS, B. RYALL, J.E. ZLOSNIK,D.A. SPEERT, J.G. BUNDY, H.D. WILLIAMSMetabolic adaptations of Pseudomonasaerug<strong>in</strong>osa dur<strong>in</strong>g cystic fibrosis lung<strong>in</strong>fectionsMPV01610:15*S. VOSS, T. HALLSTRÖM, L. PETRUSCHKA,K. KLINGBEIL, K. RIESBECK, P. ZIPFEL,S. HAMMERSCHMIDTPneumococcal surface prote<strong>in</strong> C: amultifunctional pneumococcal virulencefactor and vitronect<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>Physiology I: Structural andregulatory aspectsLecture hall N3Chair: Gary SawersCo-Chair: Agnieszka BeraPSV00108:30*L. KREUTER, S. DAXER, U. KÜPER,F. MAYER, V. MÜLLER, R. RACHEL,H. HUBERThe unusual cell architecture of I. hospitalisand consequences for its energymetabolismPSV00208:45*S. BUBENDORFER, S. HELD, N. WINDEL,A. PAULICK, A. KLINGL, K. THORMANNFunction and specificity of the dualflagellar sytem <strong>in</strong> Shewanellaputrefaciens CN-32PSV00309:00*C. DOBERENZ, L. BEYER, D. FALKE,M. ZORN, B. THIEMER, G. SAWERSPyruvate formate-lyase ControlsFormate Translocation by the FocAChannelPSV00409:15*A. SCHNORPFEIL, M. MÜLLER,R. BRÜCKNERThe small non-cod<strong>in</strong>g csRNAs controlledby the response regulator CiaR affectβ-lactam sensitivity and competence <strong>in</strong>Streptococcus pneumoniaeBIOspektrum | Tagungsband <strong>2012</strong>


46 SHORT LECTURESTuesday, March 20, 08:30–10:30PSV00509:30*D. VASILEVA, H. JANSSEN, H. BAHLFur mediates control of riboflav<strong>in</strong>biosynthesis, iron uptake and energymetabolism <strong>in</strong> ClostridiumacetobutylicumPSV00609:45*A. UHDE, T. MAEDA, L. CLERMONT, J.-W. YOUN, V.F. WENDISCH, R. KRÄMER,K. MARIN, G.M. SEIBOLDImproved Glucosam<strong>in</strong>e Utilization byCorynebacterium glutamicum and itsapplication for L-Lys<strong>in</strong>e productionPSV00710:00*P. PETERS-WENDISCH, K.C. STANSEN,S. GÖTKER, V.F. WENDISCHCharacterization of biot<strong>in</strong> prote<strong>in</strong> ligasefrom Corynebacterium glutamicum:enzymatic analysis, physiological roleand biotechnological applicationPSV00810:15*D. LEHMANN, T. LÜTKE-EVERSLOHPhysiological effects of disrupt<strong>in</strong>g theacetate and acetone formationpathways <strong>in</strong> Clostridium acetobutylicumMetabolic regulation andsignal<strong>in</strong>g II: Responses andpathwaysLecture hall N2Chair: Gottfried UndenCo-Chair: Michael BottRSV00908:30*F. COMMICHAU, S. THOLEN, K. GUNKAA high-frequency mutation <strong>in</strong> Bacillussubtilis: Requirements for the decryptificationof the gudB glutamate dehydrogenasegeneRSV01008:45*A. CARIUS, L. CARIUS, H. GRAMMELThe PpsR Prote<strong>in</strong> <strong>in</strong> Rhodospirillumrubrum: A major metabolismcoord<strong>in</strong>atorRSV01109:00*B. BERGHOFF, Y. HERMANNS, G. KLUGF<strong>in</strong>e-tun<strong>in</strong>g of sulfur metabolism by apeptide-cod<strong>in</strong>g sRNA <strong>in</strong> thephotooxidative stress response ofRhodobacterRSV01209:15*M. VOCKENHUBER, B. SUESSThe Conserved sRNA scr5239 ControlsDagA Expression by TranslationalRepressionRSV01309:30*A. SCHRAMM, B. LEE, T. JEGANATHAN,P.I. HIGGSTwo hybrid histid<strong>in</strong>e k<strong>in</strong>ases utilize<strong>in</strong>ter- and <strong>in</strong>tra-prote<strong>in</strong> phosphorylationto regulate developmental progression<strong>in</strong> Myxococcus xanthusRSV01409:45*S. SCHWEIKERT, S. BRINGER, M. BOTTStudies of an Fnr-like transcriptionalregulator <strong>in</strong> Gluconobacter oxydans621HRSV01510:00*D. LÜTTMANN, B. GÖRKEEIIA Ntr of the nitrogenphosphotransferase system regulatesexpression of the pho regulon via<strong>in</strong>teraction with histid<strong>in</strong>e k<strong>in</strong>ase PhoR <strong>in</strong>Escherichia coliRSV01610:15*C. MÜLLER, S. FETZNERA Pseudomonas putida bioreporterstra<strong>in</strong> for the detection ofalkylqu<strong>in</strong>olone-convert<strong>in</strong>g enzymesSoil microbiology II:Geomicrobiology andenvironmental microbiologyLecture hall N4Chair: Andreas KapplerSMV00908:30*A. BAHR, P. BOMBACH, A. FISCHEREvidence of aerobic polycyclic aromatichydrocarbon (PAH) biodegradation <strong>in</strong> acontam<strong>in</strong>ated aquifer by comb<strong>in</strong><strong>in</strong>gBACTRAP ® s and laboratory microcosmsSMV01008:45M.B. LOGANATHAN, A. KAPPLER,*S. BEHRENSCobalt trace metal requirement forreductive dechlor<strong>in</strong>ation oftrichloroethene by DehalococcoidesSMV01109:00*M. SCHMIDT, I. NIJENHUIS, D. WOLFRAM,S. DEVAKOTA, J. BIRKIGT, B. KLEIN,H.H. RICHNOWAnaerobic transformation ofchlorobenzene and dichlorobenzene <strong>in</strong>highly contam<strong>in</strong>ated groundwaterSMV01209:15*S. ZIEGLER, K. DOLCH, J. MAJZLAN,J. GESCHEROn the dist<strong>in</strong>ct physiological capabilitiesof so far uncultured archaea <strong>in</strong>acidophilic biofilmsSMV01309:30*S. JECHALKE, C. KOPMANN,I. ROSENDAHL, J. GROONEWEG,E. KRÖGERRECKLENFORT, U. ZIMMERLING,V. WEICHELT, G.-C. DING, J. SIEMENS,W. AMELUNG, H. HEUER, K. SMALLAEffects of sulfadiaz<strong>in</strong>e enter<strong>in</strong>g viamanure <strong>in</strong>to soil on abundance andtransferability of antibiotic resistance <strong>in</strong>the rhizosphere of grass and maizeSMV01409:45*M. PESTER, B. HAUSMANN, N. BITTNER,P. DEEVONG, M. WAGNER, A. LOYThe ‘rare biosphere’ contributes towetland sulfate reduction – famelessactors <strong>in</strong> carbon cycl<strong>in</strong>g and climatechangeSMV01510:00*C. SCHMIDT, E.-D. MELTON, A. KAPPLERMicrobial iron cycl<strong>in</strong>g <strong>in</strong> freshwatersedimentsSMV01610:15*D. KANAPARTHI, M. DUMONT,B. POMMERENKE, P. CASPERAutotrophic Fe(II) oxidiz<strong>in</strong>g bacteria <strong>in</strong>the littoral sediment of Lake GroßeFuchskuhleBIOspektrum | Tagungsband <strong>2012</strong>


47Tuesday, March 20, 08:30–10:30MP III: Virulence factors,function and regulationLecture hall N9Chair: Thomas RudelCo-Chair: Samuel WagnerMPV01708:30I. AHMAD, A. LAMPROKOSTOPOULOU,S. LE GUYON, E. STRECK, M. BARTHEL,V. PETERS, W.-D. HARDT, *U. RÖMLINGComplex c-di-GMP signal<strong>in</strong>g networksmediate the transition between biofilmformation and virulence properties <strong>in</strong>Salmonella enterica serovarTyphimuriumMPV01808:45*M. BURGHARTZ, P. TIELEN, R. NEUBAUER,D. JAHN, M. JAHNCharacterization of bacterial stra<strong>in</strong>sisolated from community acquiredasymptomatic catheter associatedur<strong>in</strong>ary tract <strong>in</strong>fectionsMPV01909:00*B. WALDMANNGlobal discovery of virulence-associatedsmall RNAs <strong>in</strong> Yers<strong>in</strong>ia pseudo tubercu -losisMPV02009:15*V. SCHÜNEMANN, K. BOS, H. POINAR,J. KRAUSEFish<strong>in</strong>g for ancient pathogens: A draftgenome of a Yers<strong>in</strong>ia pestis stra<strong>in</strong> fromthe medieval Black DeathMPV02109:30*T. JAEGER, J.G. MALONE, P. MANFREDI,A. DÖTSCH, A. BLANKA, S. HÄUSSLER,U. JENALThe YfiBNR signal transductionmechanism reveals novel targets for theevolution of persistent Pseudomonasaerug<strong>in</strong>osa <strong>in</strong> cystic fibrosis airwaysMPV02209:45*L. DENKEL, S. HORST, S. FAZLE ROUF,V. KITOWSKI, O. BÖHM, M. RHEN, T. JÄGER,F.-C. BANGEMethion<strong>in</strong>e sulfoxide reductases defendSalmonella Typhimurium from oxidativestress and provide bacterialpathogenesisMPV02310:00*G. MARINCOLA, T. SCHÄFER, K. OHLSEN,C. GOERKE, C. WOLZRNase Y of Staphylococcus aureus doesnot result <strong>in</strong> bulk mRNA decay but <strong>in</strong>activation of virulence genesCell envelope I: Membranetransport and dynamicsLecture hall N1Chair: Jan TommassenCo-Chair: Doron RapaportCEV00108:30*H. STRAHL, L. HAMOENThe bacterial MreB cytoskeletonorganizes the cell membraneCEV00208:45*D. WOLF, P. DOMÍNGUEZ-CUEVAS,R. DANIEL, T. MASCHERCell envelope stress response <strong>in</strong> cellwall-deficient L-forms of Bacillus subtilisCEV00309:00*S. HEBECKER, W. ARENDT,T. HASENKAMPF, I. HEINEMANN, D. SÖLL,D. JAHN, J. MOSERMechanism of substrate recognition ofthe tRNA-dependent alanyl-phospha ti -dyl glycerol synthase from Pseudomonasaerug<strong>in</strong>osaCEV00409:15T. BAUMGARTEN, S. STEFANIE SPERLING,J. SEIFERT, F. STEINIGER, J.A. MÜLLER,L.Y. WICK, *H.J. HEIPIEPERMembrane vesicle formation <strong>in</strong>Pseudomonas putida DOT-T1E asmultiple stress response mechanismenhances cell surface hydrophobicityand biofilm formationCEV00509:30*I. MALDENER, P. STARON,K. FORCHHAMMERA Novel ATP-Driven Pathway ofGlycolipid Export for Cell EnvelopeFormation Involv<strong>in</strong>g TolCCEV00609:45A. EDWARDS, J.A. DOWNIE,*M. KREHENBRINKA non-classical periplasmic prote<strong>in</strong>target<strong>in</strong>g mechanismCEV00710:00*J. LEO, P. OBERHETTINGER, M. SCHÜTZ,M. FLÖTENMEYER, I. AUTENRIETH, D. LINKEStructural and functional dissection ofthe Invas<strong>in</strong>-Intim<strong>in</strong> family of bacterialadhes<strong>in</strong>sCEV00810:15*M. WENZEL, A.I. CHIRIAC, B. ALBADA,A. OTTO, A. KNÜFER, D. BECHER,L. HAMOEN, H.-G. SAHL, N. METZLER-NOLTE, J.E. BANDOWThe Cell Envelope as Target of a NovelAntimicrobial PeptideBIOspektrum | Tagungsband <strong>2012</strong>


48 SHORT LECTURESWednesday, March 21, 09:00–11:00Open Topics IV:Environmental MicrobiologyLecture hall N7Chair: Michael SchloterCo-Chair: Barbara MoraschOTV02509:00*J. DEUTZMANN, B. SCHINKAnaerobic denitrify<strong>in</strong>g methaneoxidation <strong>in</strong> a deep oligotrophicfreshwater lakeOTV02609:15*F. SCHULZ, M. KUROLL, K. AISTLEITNER,M. HORNLife <strong>in</strong>side the Nucleus – An UnusualSymbiont of Amoebae Related toRickettsiaeOTV02709:30*A. QUAISER, X. BODI, A. DUFRESNE,A. DHEILLY, S. COUDOUEL, D. NAQUIN,A. FRANCEZ, P. VANDENKOORNHUYSEFunctional community analysis of amicrobial mat <strong>in</strong>volved <strong>in</strong> the oxydationof iron by metatranscriptomicsOTV02809:45G. PILLONI, M. GRANITSIOTIS, *T. LUEDERSTest<strong>in</strong>g the limits of 454 pyrotagsequenc<strong>in</strong>g: reproducibility andquantitative assessmentOTV02910:00*S.E. RUFF, J. BIDDLE, A. TESKE,A. RAMETTE, K. KNITTEL, A. BOETIUSMicrobial Communities of Mar<strong>in</strong>eMethane Seeps: Sketch<strong>in</strong>g the BigPictureOTV03010:15*M. BLÖTHE, A. SCHIPPERSProkaryotic diversity <strong>in</strong> Pacific Oceanmanganese nodulesOTV03110:30S. GLAESER, F. LEUNERT, I. SALKA,H.-P. GROSSART, *J. GLAESERInhibition of heterotrophic bacteria bysolar radiation <strong>in</strong> a humic lakeOTV03210:45*X. DONG, M. ENGEL, M. SCHLOTERPhylogenetic characterization andcomparison of microbial communities <strong>in</strong>mesophilic and thermophilic anaerobicdigestersMP IV: Microbial Pathogenicity/HumanMicrobiotaLecture hall N5Chair: Hubert HilbiCo-Chair: Julia-Stefanie FrickMPV02409:00M. CHRISTNER, M. BUSCH, C. HEINZE,M. KOTASINSKA, G. FRANKE, *H. ROHDEsarA negatively regulates Staphylo -coccus epidermidis biofilm formation bymodulat<strong>in</strong>g expression of 1 MDa extra -cellular matrix b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> andautolysis dependent release of eDNAMPV02509:15*A. KOENIGS, P. KRAICZY, C. SIEGEL,S. FRÜH, T. HALLSTRÖM, C. SKERKA,P.F. ZIPFELCspA of Borrelia burgdorferi is aregulator of the alternative pathwayMPV02609:30S. WANNER, M. RAUTENBERG, S. BAUR,L. KULL, *C. WEIDENMAIERZwitterionic cell wall polymers ofbacterial pathogens-importantmodulators of T cell dependent<strong>in</strong>fectionsMPV02709:45*M.M. HEIMESAAT, A. FISCHER,R. PLICKERT, L.-M. HAAG, B. OTTO,A.A. KÜHL, J.I. DASHTI, A.E. ZAUTNER,M. MUNOZ, C. LODDENKEMPER, U. GROß,U.B. GÖBEL, S. BERESWILLNovel Mur<strong>in</strong>e Infection Models ProvideDeep Insights <strong>in</strong>to the „Ménage à Trois“of Campylobacter jejuni, Microbiota andHost Innate ImmunityHMV00110:00*A. BRAUNE, M. BLAUTDeglycosylation of polyphenolicC-glucosides by a human gut bacteriumHMV00210:15*S. KROHN, J. HARTMANN, A. BRODZINSKI,A. CHATZINOTAS, S. BÖHM, T. BERGApplication of real-time PCR, T-RFLP anddirect sequenc<strong>in</strong>g for the identificationof polybacterial 16S rRNA genes <strong>in</strong>ascitesHMV00310:30*K. FÖRSTER-FROMME, S. MITRA,T. SCHEURENBRAND, S. BISKUP,D. BOEHM, D.H. HUSON, S.C. BISCHOFFAnalysis of the <strong>in</strong>test<strong>in</strong>al microbiotaus<strong>in</strong>g SOLiD 16SrRNA gene sequenc<strong>in</strong>gand SOLiD shotgun sequenc<strong>in</strong>gHMV00410:45*D. JANEK, B. KRISMER, A. PESCHELBacterioc<strong>in</strong> production ofstaphylococcal nasal isolatesPhysiology II: Redox systemsand cytochromesLecture hall N3Chair: Re<strong>in</strong>hold BrücknerCo-Chair: Klaus HantkePSV00909:00*J. ZHANG, P. FRIEDRICH, B.M. MARTINS,W. BUCKEL4-Hydroxybutyryl-CoA dehydratase, aradical enzyme <strong>in</strong> metabolic pathways ofanaerobic Bacteria and ArchaeaPSV01009:15*J. DERMER, G. FUCHSCharacterization of a novel anaerobicsteroid C25 dehydrogenase (DMSOreductase family) <strong>in</strong> SterolibacteriumdenitrificansPSV01109:30*R. ROSENTHAL, T.J. ERBInvestigat<strong>in</strong>g the reaction mechanism ofcrotonyl-CoA carboxylase/reductase:Explor<strong>in</strong>g the bio(techno)logicalpotential of reductive carboxylationPSV01209:45*M. KERN, J. SIMON, M.G. KLOTZThe unconventional octahaemcytochrome c MccA is the term<strong>in</strong>alreductase of Wol<strong>in</strong>ella succ<strong>in</strong>ogenessulfite respirationBIOspektrum | Tagungsband <strong>2012</strong>


49Wednesday, March 21, 09:00–11:00PSV01310:00*M. SCHLEBUSCH, W. HAUF,K. FORCHHAMMERLocalization and regulation of PHB granules<strong>in</strong> Synechocystis sp. PCC 6803PSV01410:15*J. MOSER, C. LANGE, M. BRÖCKER,M. SAGGU, F. LENDZIAN, H. SCHEER,D. JAHNBiosynthesis of (Bacterio)chlorophylls:ATP-Dependent Transient SubunitInteraction and Electron Transfer ofDark-operative ProtochlorophyllideOxidoreductasePSV01510:30*M. JETTEN, M. SMEULDERS, H. OP DENCAMP, T. BARENDS, I. SCHLICHTINGCarbon disulfide hydrolase: a newenzyme for CS 2conversion <strong>in</strong>acidothermophilic microorganismsPSV01610:45*K. SCHLEGEL, V. LEONE, J. FARALDO-GÓMEZ, V. MÜLLERA promiscuous archaeal ATP synthaseconcurrently coupled to Na + and H +translocationSecondary Metabolites II:Fermentation Studies/Microbial Survival Strategies IILecture hall N2Chair: Lutz Heide, Christiane WolzCo-Chair: Shu-M<strong>in</strong>g Li, Knut OhlsenMEV00909:00*Z.-E. BILAL, A. YOUSAFBiosynthesis of Cephlaospor<strong>in</strong> CThrough Improved stra<strong>in</strong>s of Aspergillusand Acremonium speciesMEV01009:15*A. KLINGNER, A. BARTSCH, J. BECKER,C. WITTMANNSystems biology of the mar<strong>in</strong>e antibioticproducer Phaeobacter gallaeciensisMEV01109:30*A.R. WEIZ, K. ISHIDA, K. MAKOWER,N. ZIEMERT, C. HERTWECK, E. DITTMANNCharacterization and manipulation ofthe biosynthetic pathway ofcyanobacterial tricyclic microvirid<strong>in</strong>s <strong>in</strong>E. coliMEV01209:45*A. JONES, S. OTTILIE, A. EUSTÁQUIO,D. EDWARDS, L. GERWICK, B. MOORE,W. GERWICKEvaluation of Streptomyces coelicoloras a heterologous expression host fornatural products from mar<strong>in</strong>efilamentous cyanobacteriaSSV00910:00S. SCHUSTERMathematical modell<strong>in</strong>g of cooperationand cheat<strong>in</strong>g <strong>in</strong> survival strategies ofmicroorganismsSSV01010:15*R. BERTRAM, K. LEWIS, S. LECHNERStaphylococcus aureus persister cellstolerant to bactericidal antibioticsSSV01110:30*N. STREMPEL, M. NUSSER, G. BRENNER-WEISS, J. OVERHAGESodium hypochlorite stimulates c-di-GMP synthesis and biofilm formation <strong>in</strong>Pseudomonas aerug<strong>in</strong>osaSSV01210:45B. COLLEY, S. KJELLEBERG,*J. KLEBENSBERGERSiaABCD, a signal<strong>in</strong>g pathway controll<strong>in</strong>gautoaggregation <strong>in</strong> Pseudomonasaerug<strong>in</strong>osaBacterial Differentiation:New aspects of bacterial celldifferentiationLecture hall N4Chair: Mart<strong>in</strong> ThanbichlerCo-Chair: Günther MuthBDV00109:00*K. JONAS, M.T. LAUBSett<strong>in</strong>g the pace: Mechanismscontroll<strong>in</strong>g the temporal regulation ofthe Caulobacter crescentus cell cycleBDV00209:15*D. KIEKEBUSCH, K. MICHIE, L.-O. ESSEN,J. LÖWE, M. THANBICHLERHow to generate a prote<strong>in</strong> gradientwith<strong>in</strong> a bacterial cell: dynamiclocalization cycle of the cell divisionregulator MipZBDV00309:30*C. KAIMER, D. ZUSMANRegulation of cellular reversals <strong>in</strong>Myxococcus xanthusBDV00409:45*J. LEHNER, Y. ZHANG, S. BERENDT,I. MALDENER, K. FORCHHAMMERThe cell wall amidase AmiC2 is pivotalfor multicellular development <strong>in</strong> thecyanobacterium Nostoc punctiformeATCC 29133BDV00510:00*F.D. MÜLLER, O. RASCHDORF,E. KATZMANN, M. MESSERER, D. SCHÜLERFunctional analysis of cytoskeletalprote<strong>in</strong>s implicated <strong>in</strong> magnetosomeformation and cell division <strong>in</strong>Magnetospirillum gryphiswaldenseBDV00610:15*A. TREUNER-LANGE, A. HARMS,L. SOGAARD-ANDERSENThe PomX prote<strong>in</strong> is required for celldivision <strong>in</strong> Myxococcus xanthusBDV00710:30*J.C. GARCIA-BETANCUR, A. YEPESGARCIA, D. LOPEZCell Differentiation <strong>in</strong> BiofilmsCommunities of Staphylococcus aureusBIOspektrum | Tagungsband <strong>2012</strong>


50 SHORT LECTURESWednesday, March 21, 09:00–11:00BDV00810:45*C. JOGLER, F.O. GLÖCKNER, R. KOLTEREat<strong>in</strong>g and be<strong>in</strong>g eaten: What bacterialcell biology can tell us about eukaryo -genesisCell Envelope II: Cell wallsynthesis and ma<strong>in</strong>tenanceLecture hall N9Chair: Hans-Georg SahlCo-Chair: Christoph MayerCEV00909:00*J. DOMINGUEZ-ESCOBAR, A. CHASTANET,A.H. CREVENNA, R. WEDLICH-SÖLDNER,R. CARBALLIDO-LÓPEZProcessive movement of MreBassociatedcell wall biosyntheticcomplexes <strong>in</strong> bacteriaCEV01009:15*J. GISIN, A. SCHNEIDER, B. NÄGELE,C. MAYERA shortcut pathway to UDP-MurNActhrough peptidoglycan recycl<strong>in</strong>g <strong>in</strong>PseudomonasCEV01109:30*D. MÜNCH, T. ROEMER, S.H. LEE,M. ENGESER, H.-G. SAHL , T. SCHNEIDERIdentification and <strong>in</strong> vitro analysis of theGatD/MurT enzyme-complex catalyz<strong>in</strong>glipid II amidation <strong>in</strong> S. aureusCEV01209:45*B. SIEGER, M. BRAMKAMPSynthetic analysis of the apical cell wallsynthesis mach<strong>in</strong>ery fromCorynebacterium glutamicumCEV01310:00*T. KOHLER, N. GISCH, M. SCHLAG,K. DARM, U. VÖLKER, U. ZÄHRINGER,S. HAMMERSCHMIDTRepeat<strong>in</strong>g structures of different Grampositivesurface-prote<strong>in</strong>s are essentialfor the bacterial <strong>in</strong>teraction with humanThrombospond<strong>in</strong>-1CEV01410:15*M. SCHLAG, S. ZOLL, A. SHKUMATOV,M. RAUTENBERG, T. STEHLE, F. GÖTZThe structural basis of staphylococcalcell wall recognition by SH3b doma<strong>in</strong>sCEV01510:30A. HENRICH, J.B. SCHULTE, A.W. ECK,*G.M. SEIBOLDIdentification of the trehalose uptakesystem TusEFGK 2of Corynebacteriumgluctamicum and characterization of itsrole <strong>in</strong> the biosynthesis of mycolic acidsCEV01610:45*B. MEYER, B. ZOLGHADR, E. PEYFOON,M. PABST, M. PANICO, H.R. MORRIS,P. MESSNER, C. SCHÄFFER, A. DELL,S.-V. ALBERSElucidation of the N-glycosylationpathway <strong>in</strong> the thermoacidophilicarchaeon Sulfolobus acidocaldariusFungi: Fungal genetics andphysiologyLecture hall N1Chair: Re<strong>in</strong>hard FischerCo-Chair: Rüdiger HamppFUV00109:00*M. NOWROUSIAN, I. TEICHERT, G. WOLFF,U. KÜCKGenomics and transcriptomics based onnext-generation sequenc<strong>in</strong>g techniquesto characterize fungal developmentalgenesFUV00209:15*J. RÖHRIG, R. FISCHERVipA – a novel player <strong>in</strong> light sens<strong>in</strong>gand development <strong>in</strong> Aspergillus nidulansFUV00309:30*K. GRÜTZMANN, K. SZAFRANSKI,M. POHL, K. VOIGT, A. PETZOLD,S. SCHUSTERAlternative splic<strong>in</strong>g <strong>in</strong> the fungal k<strong>in</strong>gdomFUV00409:45*A. YEMELIN, S. MATHEIS, E. THINES,K. ANDRESEN, A.J. FOSTERTranscription factors controll<strong>in</strong>gsporulation <strong>in</strong> Magnaporthe oryzaeFUV00510:00*S. BRAUS-STROMEYER, V.T. TRAN,C. TIMPNER, C. HOPPENAU, S. SINGH,A. KÜHN, H. KUSCH, O. VALERIUS,G. BRAUSThe <strong>in</strong>teraction of the plant-pathogenVerticillium longosporum and its hostBrassica napus and <strong>in</strong>sights <strong>in</strong>to theevolutionary orig<strong>in</strong> of the fungal hybridFUV00610:15*R. REINA , C. LIERS, R. ULLRICH,I. GARCIA-ROMERA, M. HOFRICHTER,E. ARANDAInduction of manganese peroxidases ofwood and leaf-litter coloniz<strong>in</strong>gagaricomycetes by olive oil mill residuesFUV00710:30*N. HORLACHER, S. SCHREY,J. NACHTIGALL, R. HAMPP, R. SÜSSMUTH,H.-P. FIEDLERThe plant pathogenic fungusHeterobasidion produces planthormone-like compounds to elude theplant defenseFUV00810:45*T. WOLLENBERG, J. DONNER, K. ZUTHER,L. STANNEK, J. SCHIRAWSKIDiscover<strong>in</strong>g host specificity candidategenes of Sporisorium reilianum bygenotyp<strong>in</strong>g mixed-variety offspr<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


spr<strong>in</strong>ger-spektrum.deMikrobiologie –e<strong>in</strong>e E<strong>in</strong>führung<strong>in</strong> grundlegendeArbeitstechnikenNeu!Eckhard BastMikrobiologische MethodenE<strong>in</strong>e E<strong>in</strong>führung <strong>in</strong> grundlegende ArbeitstechnikenDieses Standardwerk richtet sich an Studierende und Dozenten der Biologie, Biotechnologie und Mediz<strong>in</strong>, an Biologielehrer,an technische Assistenten und an Wissenschaftler <strong>in</strong> Forschung, Industrie und Untersuchungslabors. Es bietet präzise und reproduzierbare „Man-nehme“-Vorschriften der wichtigsten mikrobiologischen Methoden theoretische Grundlagen und H<strong>in</strong>weise zur Auswertung, zur Leistungsfähigkeit und zu den Grenzen der behandeltenArbeitstechniken Erläuterungen zu Bau und Funktion der benötigten Geräte und zu den Eigenschaften der e<strong>in</strong>gesetzten Materialien die Beschreibung der Sicherheits- und Schutzmaßnahmen beim mikrobiologischen Arbeiten die Darstellung der gebräuchlichen Sterilisationsverfahren und des sterilen Arbeitens wichtige Informationen zu Nährböden und Kulturgefäßen Anleitungen zur Anreicherung, Isolierung und Kultivierung e<strong>in</strong>zelliger Mikroorganismen Angaben zur Beschaffung und Aufbewahrung von Re<strong>in</strong>kulturen e<strong>in</strong>e Beschreibung lichtmikroskopischer Untersuchungsverfahren und Färbetechniken e<strong>in</strong>schließlich fluoreszenzmikroskopischerVerfahren und der Phasenkontrastmikroskopie e<strong>in</strong>en Überblick über Methoden der Zellzahl- und Biomassebestimmung bei Bakterien und Hefen.Für die 3. Auflage wurde der Text überarbeitet und an zahlreichen Stellen ergänzt. Unter anderem wurden die Regelnder Biostoffverordnung, Schnelltests zur Gramfärbung und die Epifluoreszenzmikroskopie mit zahlreichen Färbeverfahrenneu aufgenommen.3. Aufl. <strong>2012</strong>, <strong>2012</strong>, XVIII, 457 S. 31 Abb.ISBN 978-3-8274-1813-5 7 € (D) 39,95 / € (A) 41,07 / *sFr 50,00Bei Fragen oder Bestellung wenden Sie sich bitte an 7 Spr<strong>in</strong>ger Customer Service Center GmbH, Haberstr. 7, 69126 Heidelberg 7 Telefon: +49 (0) 6221-345-4301 7 Fax: +49 (0) 6221-345-42297 Email: orders-hd-<strong>in</strong>dividuals@spr<strong>in</strong>ger.com 7 € (D) s<strong>in</strong>d gebundene Ladenpreise <strong>in</strong> Deutschland und enthalten 7% MwSt; € (A) s<strong>in</strong>d gebundene Ladenpreise <strong>in</strong> Österreich und enthalten 10% MwSt.Die mit * gekennzeichneten Preise für Bücher und die mit ** gekennzeichneten Preise für elektronische Produkte s<strong>in</strong>d unverb<strong>in</strong>dliche Preisempfehlungen und enthalten die landesübliche MwSt.7 Preisänderungen und Irrtümer vorbehalten.


52ISV01Die verborgene Welt der Bakterien und ihre Bedeutung fürdas Leben auf der ErdeK.-H. SchleiferTechnische Universität München, Mikrobiologie, München, GermanyBei Bakterien denken die meisten Menschen an Krankheitserreger. Dochdie überwiegende Mehrheit dieser Organismen ist harmlos oder sogarnützlich. Sie spielen e<strong>in</strong>e wichtige Rolle bei der Herstellung fermentierterLebensmittel oder <strong>in</strong> der weißen Biotechnologie. Die zellkernlosenProkaryoten (Bakterien + Archaeen) s<strong>in</strong>d jedoch noch aus anderenGründen sehr wichtig. Sie kommen <strong>in</strong> ungeheuer großen Zahlen vor undmachen ca. 50% der globalen Biomasse aus. Leider ist bisher nur e<strong>in</strong>Bruchteil von ihnen bekannt, da sie als Re<strong>in</strong>kultur nicht zugänglich s<strong>in</strong>d.Durch genotypische Methoden, <strong>in</strong>sbesondere durch vergleichendeSequenzanalyse der 16S-rRNS Gene ist es allerd<strong>in</strong>gs möglich, dieOrganismen auch ohne vorherige Kultivierung zu identifizieren. Mit Hilfemaßgeschneiderter, fluoreszenzmarkierter Oligonukleotidsonden, die ankomplementäre Sequenzen der 16S-rRNS b<strong>in</strong>den, lassen sich dieOrganismen auch <strong>in</strong> situ nachweisen und identifizieren. Dies soll anhandverschiedener Beispiele belegt werden.Die Prokaryoten s<strong>in</strong>d die Wegbereiter der Biosphäre. Für m<strong>in</strong>destens 2Milliarden Jahre waren sie die e<strong>in</strong>zigen Lebewesen auf unserem Planeten.Sie waren an der Entstehung der höheren Lebewesen (Eukaryoten)beteiligt, und die Cyanobakterien sorgten für den nötigen Sauerstoff aufder Erde. Der Nährstoffkreislauf, <strong>in</strong>sbesondere Stickstoff-und Schwefelkreislauf,wäre ohne die Prokaryoten unvollständig. Überdies zeichnen siesich durch e<strong>in</strong>zigartige Mechanismen der Energiegew<strong>in</strong>nung aus, und siesetzen auch die Grenzen des Lebens fest. Sie wachsen überall, wo nochflüssiges Wassers vorkommt.Die Bakterien spielen auch e<strong>in</strong>e besondere Rolle <strong>in</strong> der Evolution undÖkologie der Eukaryoten. Sie können als Kommensalen, Endo- oderEktosymbionten vorkommen. Dies soll an verschiedenen Beispielengezeigt werden.Bakterien und Archaeen s<strong>in</strong>d durch ihre vielfältigen Aktivitäten wichtigfür Umwelt und Klima. Sie s<strong>in</strong>d entscheidend an Aufbau und Erhalt derBiosphäre beteiligt. Ohne sie wäre die M<strong>in</strong>eralisierung organischer Stoffeunvollständig und ohne sie gäbe es auch nicht die typischen Eukaryoten.Der Vorläufer der heutigen Mitochondrien, den Energiekraftwerken dereukaryotischen Zellen, gehört zu den Alpha-Proteobakterien und dieChloroplasten, <strong>in</strong> denen die Photosynthese stattf<strong>in</strong>det, stammen vonCyanobakterien ab. All dies spricht dafür, dass es ohne Bakterien ke<strong>in</strong>Leben auf unserem Planeten gäbe.ISV02From microorganisms to the atmosphere: flooded soils and themethane cycleR. ConradMax-Planck-Institut für terrestrische Mikrobiologie, Biogeochemie,Marburg, GermanyFlooded soils such as rice fields and wetlands are the most importantsource for the greenhouse gas methane. Rice fields, <strong>in</strong> particular, serve asmodel for study<strong>in</strong>g the role of the structure of anaerobic microbialcommunities for ecosystem function<strong>in</strong>g and the partition<strong>in</strong>g of carbon fluxalong different paths of degradation of organic matter to methane. Floodedsoils are relatively rapidly depleted of oxygen and other oxidants such asferric iron and sulfate. Then, organic matter degradation results <strong>in</strong> theproduction methane. Methane is eventually produced from different typesof organic matter, ma<strong>in</strong>ly from plant litter, root exudates, and soil organicmatter. Methane production is achieved by a community consist<strong>in</strong>g ofhydrolytic, ferment<strong>in</strong>g and methanogenic microorganisms. Acetate andhydrogen (plus CO 2) are the two most important fermentation productsthat are used as methanogenic substrates to different extent. The transportof CH 4 to the atmosphere is ma<strong>in</strong>ly partitioned between transport throughthe aerenchyma system of plants, gas ebullition and diffusion. Transportthrough oxygenated zones such as the surface soil or the rhizosphereresults <strong>in</strong> oxidation of a substantial percentage of methane bymethanotrophic bacteria thus attenuat<strong>in</strong>g the methane flux <strong>in</strong>to theatmosphere. Tracer experiments (e.g. us<strong>in</strong>g stable carbon isotopes) areuseful for quantify<strong>in</strong>g the partition<strong>in</strong>g of carbon flux along different pathsand for elucidat<strong>in</strong>g the active microbial groups <strong>in</strong>volved <strong>in</strong> carbontransformation.ISV03Physiology, mechanisms and habitats of microbial Fe(II) oxidationA. KapplerUniversity of Tüb<strong>in</strong>gen, Geomicrobiology, Center for AppliedGeosciences, Tüb<strong>in</strong>gen, GermanyThe two most important redox states of iron <strong>in</strong> the environment are Fe(II)[ferrous iron] and Fe(III) [ferric iron]. Dissolved Fe(II), relatively solubleFe(II) m<strong>in</strong>erals and poorly soluble Fe(III) m<strong>in</strong>erals are abundant <strong>in</strong> pHneutralsoils and sediments. Redox transformation of iron lead<strong>in</strong>g either todissolution, transformation or precipitation of iron m<strong>in</strong>erals is used bymany microorganisms to produce energy and to grow. Oxidation ofdissolved ferrous iron [Fe(II)] at neutral pH can be catalyzed byacidophilic aerobic and neutrophilic microaerophilic, nitrate-reduc<strong>in</strong>g andeven phototrophic microorganisms. This contribution will present thecurrent knowledge and new results regard<strong>in</strong>g mechanisms, physiology,ecology and environmental implications of microbial Fe(II) oxidation.Special focus will be on microaerophilic Fe(II)-oxidiz<strong>in</strong>g bacteria thatthrive <strong>in</strong> gradients of ferrous iron and oxygen (e.g. at the surface of riceroots <strong>in</strong> paddy soil), phototrophic Fe(II)-oxidiz<strong>in</strong>g autotrophs liv<strong>in</strong>g <strong>in</strong>surface near environments such as littoral sediments, and f<strong>in</strong>ally on nitratereduc<strong>in</strong>gbacteria oxidiz<strong>in</strong>g Fe(II) <strong>in</strong> soils and sediments.ISV04Assembly and function of archaeal surface structuresS.-V. AlbersMax-Planck-Institut für terrestrische Mikrobiologie, Marburg, GermanyArchaea, the third doma<strong>in</strong> of life, possess a variety of surface structuressuch as pili and flagella. These structures have <strong>in</strong> common that they arecomposed of subunits that are found <strong>in</strong> bacterial type IV pili which amongothers are <strong>in</strong>volved <strong>in</strong> bacterial pathogenesis. The archaeal pili and flagellasystems appear to be much simpler than their bacterial counterparts and aretherefore well suited model systems to understand the mechanistic of theassembly process.The thermoacidophilic archaeon Sulfolobus acidocaldariusexhibits three different surface appendages, (i) flagella, (ii) th<strong>in</strong> pili, and (iii) UVlight <strong>in</strong>duced pili. In Sulfolobus the flagellum is ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> adhesion andsurface motility, which seems to be <strong>in</strong>hibited by the th<strong>in</strong> pili. The UV <strong>in</strong>ducedpili <strong>in</strong>itiate cell aggregation after DNA damage and subsequent DNA repair byconjugation. Next to the physiological function of these surface structures ourunderstand<strong>in</strong>g of their assembly will be discussed.ISV05Current views on the role as well as the fate of host cellsdur<strong>in</strong>g <strong>in</strong>fectionThomas F. Meyer and coworkersDepartment of Molecular Biology, Max Planck Institute for Infection Biology,Berl<strong>in</strong>, GermanyInfectious disease research has led us to the realization that the <strong>in</strong>itiationand progression of <strong>in</strong>fection are critically dependent on both pathogen andhost determ<strong>in</strong>ants. Microbial virulence factors have been studied <strong>in</strong> greatdetail over the past decades; however, the role of host determ<strong>in</strong>ants as thecounterparts of pathogen virulence factors and signal transductionelements has been less <strong>in</strong>tensely pursued. With the discovery of RNAi, anextremely useful tool has become available that facilitates the assessmentof host-cell determ<strong>in</strong>ants and their role <strong>in</strong> <strong>in</strong>fection at the genome-widelevel. Here, I present two examples of global host-cell function analysis,address<strong>in</strong>g <strong>in</strong>fluenza virus and Chlamydia <strong>in</strong>fections (1,2), and discuss theimplications for the development of a novel class of therapeutic drugs aswell as for our future understand<strong>in</strong>g of host susceptibility to <strong>in</strong>fection andmorbidity/mortality determ<strong>in</strong>ants.Host cells are not merely vehicles for pathogen replication; it appears hostcells are also subject to genetic and epigenetic modifications dur<strong>in</strong>g<strong>in</strong>fection, and are therefore capable of acquir<strong>in</strong>g heritable features that mayunderlie pathological sequelae, <strong>in</strong>clud<strong>in</strong>g cancer. The gastric pathogenHelicobacter pylori is the paradigm of a cancer-<strong>in</strong>duc<strong>in</strong>g bacterium (3).We, and others, can show that H. pylori and other bacterial pathogens arecapable of caus<strong>in</strong>g genetic and epigenetic lesions <strong>in</strong> <strong>in</strong>fected cells (4).However, DNA damage alone does not seem to be sufficient <strong>in</strong> itself forcarc<strong>in</strong>ogenesis. Other features such as persistence of <strong>in</strong>fection andmitogenic stimuli are likely cofactors (5).1. Karlas, A., N.Machuy, Y.Sh<strong>in</strong>, K.-P.Pleissner, A.Artar<strong>in</strong>i, D.Heuer, D.Becker, H.Khalil, L.A.Ogilvie,S.Hess, A.P.Mäurer, E.Müller, T.Wolff, T.Rudel, and T.F.Meyer. 2010. Genome-wide RNAi screenidentifies human host factors crucial for <strong>in</strong>fluenza virus replication. Nature 463:818-822.2. Gurumurthy, R.K., A.P.Mäurer, N.Machuy, S.Hess, K.P.Pleissner, J.Schuchhardt, T.Rudel, andT.F.Meyer. 2010. A loss-of-function screen reveals Ras- and Raf-<strong>in</strong>dependent MEK-ERK signal<strong>in</strong>g dur<strong>in</strong>gChlamydia trachomatis <strong>in</strong>fection. Science Signal<strong>in</strong>g 3:ra21.3. Bauer, B., and T.F.Meyer. 2011. The human gastric pathogen Helicobacter pylori and its association withgastric cancer and ulcer disease. Ulcers. doi:10.1155/2011/3401574. Fassi Fehri, L., C.Rechner, S.Janssen, T.N.Mak, C.Holland, S.Bartfeld, H.Bruggemann, and T.F.Meyer.2009. Helicobacter pylori-<strong>in</strong>duced modification of the histone H3 phosphorylation status <strong>in</strong> gastric epithelialcells reflects its impact on cell cycle regulation. Epigenetics. 4:577-586.5. Kessler, M., J.Zielecki, O.Thieck, H.J.Mollenkopf, C.Fotopoulou, and T.F.Meyer. 2011. ChlamydiaTrachomatis Disturbs Epithelial Tissue Homeostasis <strong>in</strong> Fallopian Tubes via Paracr<strong>in</strong>e Wnt Signal<strong>in</strong>g. Am. JPathol..180:186-198.ISV06No abstract submitted!BIOspektrum | Tagungsband <strong>2012</strong>


53ISV07Teichoic acids <strong>in</strong> Gram-positive cell wall function and host<strong>in</strong>teractionA. PeschelUniversitätskl<strong>in</strong>ikum Tüb<strong>in</strong>gen, Medical Microbiology and HygieneDepartment, Tüb<strong>in</strong>gen, GermanyThe presence of teichoic acids or related polyanionic glycopolymers hasrema<strong>in</strong>ed an enigmatic trait of most Gram-positive bacterial cellenvelopes. Recent advances <strong>in</strong> teichoic acids biosynthesis and theavailability of def<strong>in</strong>ed mutants now permit to explore the roles of teichoicacids, which exhibit extensive species or stra<strong>in</strong>-specific differences <strong>in</strong>composition and glycosylation but share polyanionic properties. Althoughnot essential to bacterial viability recent studies <strong>in</strong>dicate that teichoic acidare crucial for direct<strong>in</strong>g cell envelope metabolism and turn-over and forgovern<strong>in</strong>g the capacity of host-adapted Gram-positive bacteria to colonizeand <strong>in</strong>fect mammalian host organisms. Therefore, teichoic acids representattractive targets for new antibacterial therapeutics aga<strong>in</strong>st staphylococciand other Gram-positive human pathogens.ISV08Out of the iron age: the battle for z<strong>in</strong>cJ. TommassenUtrecht University, Molecular Microbiology, Utrecht, NetherlandsThe cell envelope of Gram-negative bacteria consists of two membranes,which are separated by the periplasm conta<strong>in</strong><strong>in</strong>g the peptidoglycan layer.The outer membrane is an asymmetrical bilayer consist<strong>in</strong>g ofphospholipids <strong>in</strong> the <strong>in</strong>ner leaflet and lipopolysaccharides <strong>in</strong> the outerleaflet. It functions as a barrier for harmful compounds from theenvironment <strong>in</strong>clud<strong>in</strong>g many antibiotics. In contrast to the <strong>in</strong>nermembrane, the outer membrane is not energized by a proton gradient andATP is not available <strong>in</strong> the periplasm. The lack of direct energy sourcesmay complicate transport processes across the outer membrane.Nevertheless, nutrients are taken up from the environment and prote<strong>in</strong>s,<strong>in</strong>clud<strong>in</strong>g tox<strong>in</strong>s and hydrolytic enzymes, are secreted.Most nutrients pass the outer membrane by passive diffusion via outermembrane prote<strong>in</strong>s, collectively called por<strong>in</strong>s, which form large openchannels <strong>in</strong> the outer membrane. Hence, <strong>in</strong> this case, energy availability isnot an issue. However, diffusion is an option only when the extracellularconcentration of the solute is high. The uptake of nutrients that are toodilute <strong>in</strong> the environment or whose size exceeds the exclusion limit of thepor<strong>in</strong>s is dependent on specific receptors and requires energy. The energysource utilized is the proton-motive force across the <strong>in</strong>ner membrane,which is coupled to the transport process <strong>in</strong> the outer membrane via acomplex of three prote<strong>in</strong>s, the TonB complex. The receptors <strong>in</strong>volved arecalled TonB-dependent family (Tdf) members.In the vertebrate host, iron is sequestered by the iron-transport and -storageprote<strong>in</strong>s transferr<strong>in</strong> and lactoferr<strong>in</strong>. Hence, the concentration of free iron isextremely low and restricts microbial growth, a mechanism known asnutritional immunity. Many Gram-negative pathogens respond to ironlimitation by the production and secretion of small iron-chelat<strong>in</strong>gcompound, called siderophores, which b<strong>in</strong>d ferric ions with very highaff<strong>in</strong>ity. In addition, they produce Tdf receptors for the uptake of ferricsiderophorecomplexes. Other pathogens, <strong>in</strong>clud<strong>in</strong>g Neisseria men<strong>in</strong>gitidis,do not produce siderophores, but they produce receptors for the ironb<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong>s of the host.S<strong>in</strong>ce efficient iron acquisition is an important virulence factor, it has beenstudied extensively <strong>in</strong> many pathogens. However, nutritional immunity <strong>in</strong>the host is not restricted to iron limitation. Also other metals, <strong>in</strong>clud<strong>in</strong>gz<strong>in</strong>c, manganese and nickel, can be limit<strong>in</strong>g <strong>in</strong> the host, which responds to<strong>in</strong>fections by the production of metal-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s, such asmetallothione<strong>in</strong>s and calprotect<strong>in</strong>. How these metals are transported acrossthe outer membrane is largely unknown.N. men<strong>in</strong>gitidis normally lives as a commensal <strong>in</strong> the upper respiratorytract of up to 20% of the population but occasionally causes sepsis anmen<strong>in</strong>gitis. A broadly cross-protective vacc<strong>in</strong>e is not available. Thepresence of 12 Tdf receptors has been identified by analyz<strong>in</strong>g the availablegenome sequences. Five of these receptors have well-def<strong>in</strong>ed roles <strong>in</strong> ironacquisition and their expression is <strong>in</strong>duced under iron limitation.Microarray studies revealed that the expression of several other Tdfreceptors is unresponsive to iron availability; hence, we considered thepossibility that these receptors are <strong>in</strong>volved <strong>in</strong> the uptake of other metals.We have studied the response of N. men<strong>in</strong>gitidis to z<strong>in</strong>c limitation andfound that the expression of two Tdf receptors is specifically <strong>in</strong>ducedunder those conditions. We have demonstrated that these receptors are<strong>in</strong>volved <strong>in</strong> z<strong>in</strong>c acquisition and identified their ligands. The resultsdemonstrate how N. men<strong>in</strong>gitidis evades nutritional immunity imposed bythe metal-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s of the host. The receptors <strong>in</strong>volved areattractive vacc<strong>in</strong>e candidates.ISV09Orig<strong>in</strong>s and proliferation of L-form (cell-wall deficient)Bacillus subtilisP. Domínguez-Cuevas, R. Mercier, Y. Kawai, J. Err<strong>in</strong>gton*Newcastle University, Centre for Bacterial Cell Biology, Institute for Celland Molecular Biosciences, Newcastle upon Tyne, United K<strong>in</strong>gdom.The cell wall is a def<strong>in</strong><strong>in</strong>g structure of bacterial cells. It provides aprotective outer shell and is crucial <strong>in</strong> pathogenesis as well as the target forimportant antibiotics. Synthesis of the wall is organised by cytoskeletalprote<strong>in</strong>s homologous to tubul<strong>in</strong> (FtsZ) and act<strong>in</strong> (MreB). Because all majorbranches of the bacterial l<strong>in</strong>eage possess both wall and cytoskeleton, thesewere probably present <strong>in</strong> the last common ancestor of the bacteria. L-formsare unusual variants of bacteria that lack the wall and are found <strong>in</strong> variousspecialised habitats, possibly responsible for a range of chronic andpersistent diseases. We have developed a model system for study<strong>in</strong>g the L-form state <strong>in</strong> Bacillus subtilis (Leaver et al., 2009, Nature 457, 849-53).Molecular genetic analysis has revealed a number of discrete stepsrequired for the transition from the walled to the non-walled state(Domnguez-Cuevas et al., <strong>2012</strong>, Mol Microbiol 83, 52-66). Unexpectedly,it has also shown that proliferation of L-forms is completely <strong>in</strong>dependentof the normally essential FtsZ or MreB cytoskeletal systems and occurs bya membrane blebb<strong>in</strong>g or tubulation process. Genetic analysis has identifiedfactors required for proliferation of L-forms, and so far these results po<strong>in</strong>tto membrane dynamics as be<strong>in</strong>g of critical importance. L-forms mayprovide an <strong>in</strong>terest<strong>in</strong>g model for consider<strong>in</strong>g how primitive cellsproliferated before the <strong>in</strong>vention of the cell wall.ISV10Positive regulation of cell division site position<strong>in</strong>g <strong>in</strong> bacteriaby a ParA prote<strong>in</strong>L. Søgaard-AndersenMax-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany.In all cells, accurate position<strong>in</strong>g of the division site is essential forgenerat<strong>in</strong>g appropriately-sized daughter cells with a correct chromosomenumber. In bacteria, cell division generally occurs at midcell and <strong>in</strong>itiateswith assembly of the tubul<strong>in</strong> homologue FtsZ <strong>in</strong>to a circumferential r<strong>in</strong>glikestructure, the Z-r<strong>in</strong>g, underneath the cell membrane at the <strong>in</strong>cipientdivision site. Subsequently, FtsZ recruits the rema<strong>in</strong><strong>in</strong>g components of thedivision mach<strong>in</strong>ery needed to carry out cytok<strong>in</strong>esis. Thus, the position ofZ-r<strong>in</strong>g formation dictates the division site. Consistently, all known systemsthat regulate position<strong>in</strong>g of the division site control Z-r<strong>in</strong>g position<strong>in</strong>g.These systems act as negative regulators to <strong>in</strong>hibit Z-r<strong>in</strong>g formation at thecell poles and over the nucleoid, leav<strong>in</strong>g only midcell free for Z-r<strong>in</strong>gformation. Here we show that the ParA homologue PomZ positivelyregulates Z-r<strong>in</strong>g position<strong>in</strong>g <strong>in</strong> Myxococcus xanthus. Lack of PomZ results<strong>in</strong> division defects, a reduction <strong>in</strong> Z-r<strong>in</strong>g formation, and abnormalposition<strong>in</strong>g of the few Z-r<strong>in</strong>gs formed. PomZ localization is cell cycleregulated and culm<strong>in</strong>ates at midcell before and <strong>in</strong>dependently of FtsZsuggest<strong>in</strong>g that PomZ recruits FtsZ to midcell. FtsZ alone does notpolymerize, however, FtsZ polymerization is directly stimulated by PomZ<strong>in</strong> vitro. Thus, PomZ positively regulates position<strong>in</strong>g of the division site byrecruit<strong>in</strong>g FtsZ and provid<strong>in</strong>g positional <strong>in</strong>formation for Z-r<strong>in</strong>g formationand coupl<strong>in</strong>g it to cell cycle progression. Models will be discussed for howPomZ identifies midcell.ISV11Integration of signals <strong>in</strong> the regulation of bacterial nitrogenassimilationA.J. N<strong>in</strong>faUniversity of Michigan Medical School, Department of BiologicalChemistry, Ann Arbor, MI, United StatesIn bacteria, nitrogen assimilation is coord<strong>in</strong>ated with other aspects ofmetabolism and cellular energy status. Three major signals are known tocontrol the expression of nitrogen regulated genes and the activity of theenzyme glutam<strong>in</strong>e synthetase, which plays a key role <strong>in</strong> the assimilation ofthe preferred nitrogen source, ammonia. These three signals are (i)glutam<strong>in</strong>e, (ii) a-ketoglutarate, and (iii) the ratio of ATP to ADP, which isan <strong>in</strong>dicator of the cellular adenylylate energy charge. In this presentation,I will review our understand<strong>in</strong>g of how these signals function to controlnitrogen assimilation <strong>in</strong> Escherichia coli.The expression of nitrogen-regulated (Ntr) genes <strong>in</strong> E. coli is controlled bya cascade-type system consist<strong>in</strong>g of two l<strong>in</strong>ked covalent modificationcycles, <strong>in</strong> which the downstream cycle is comprised of a two-componentregulatory system that directly controls gene expression. The regulation ofglutam<strong>in</strong>e synthetase activity is also controlled by a cascade-type systemcomprised of two l<strong>in</strong>ked covalent modification cycles, <strong>in</strong> which thedownstream cycle is comprised of glutam<strong>in</strong>e synthetase and the enzymethat controls its activity by reversible adenylylation. The two signall<strong>in</strong>gsystems are connected, as the upstream cycle for both systems is the same.In this upstream covalent modification cycle, the PII signal transductionBIOspektrum | Tagungsband <strong>2012</strong>


54prote<strong>in</strong> is reversibly uridylylated by the signal transduc<strong>in</strong>g enzymeUTase/UR. The PII prote<strong>in</strong> then regulates the activity of the twodownstream covalent modification cycles. PII is one of the most widelydistributed prote<strong>in</strong>s <strong>in</strong> nature, and it appears to be universally <strong>in</strong>volved <strong>in</strong>controll<strong>in</strong>g nitrogen assimilation.I will discuss biochemical studies that <strong>in</strong>dicated that PII is the sensor of thea-ketoglutarate signal and of the adenylylate energy charge signal, whichare antagonistic, and will review our current understand<strong>in</strong>g of the signal<strong>in</strong>gmechanisms. I will also discuss biochemical studies describ<strong>in</strong>g thesensation of glutam<strong>in</strong>e by two of the signal-transduction enzymes of thesystem. F<strong>in</strong>ally, I will review recent studies that revealed factors<strong>in</strong>fluenc<strong>in</strong>g the sensitivity of responses to the glutam<strong>in</strong>e signal. Together,these results will provide a basic overview of the control of nitrogenassimilation <strong>in</strong> E. coli.ISV12Signall<strong>in</strong>g <strong>in</strong> biofilm formation of Bacillus subtilisJ. StülkeGeorg-August University, Allgeme<strong>in</strong>e Mikrobiologie, Gött<strong>in</strong>gen, GermanyCells of Bacillus subtilis can either be motile or sessile, depend<strong>in</strong>g on theexpression of mutually exclusive sets of genes that are required foragellum or biolm formation, respectively. Both activities arecoord<strong>in</strong>ated by the master regulator, S<strong>in</strong>R. We have identified three novelfactors that are required for biofilm formation, the transcription factorCcpA, the novel RNase Y and the previously uncharacterized YmdBprote<strong>in</strong>. S<strong>in</strong>ce YmdB had not been studied before, we analyzed thecorrespond<strong>in</strong>g mutant <strong>in</strong> more detail. We observed a strong overexpressionof the hag gene encod<strong>in</strong>g agell<strong>in</strong> and of other genes of the SigDdependentmotility regulon <strong>in</strong> the ymdB mutant, whereas the two majoroperons for biolm formation, tapA-sipW-tasA and epsA-O, were notexpressed. As a result, the ymdB mutant is unable to form biolms. Ananalysis of the <strong>in</strong>dividual cells of a population revealed that the ymdBmutant no longer exhibited bistable behavior; <strong>in</strong>stead, all cells are shortand motile. The <strong>in</strong>ability of the ymdB mutant to form biolms issuppressed by the deletion of the s<strong>in</strong>R gene encod<strong>in</strong>g the master regulatorof biolm formation, <strong>in</strong>dicat<strong>in</strong>g that S<strong>in</strong>R-dependent repression of biolmgenes cannot be relieved <strong>in</strong> a ymdB mutant. Our studies demonstrate thatlack of expression of SlrR, an antagonist of S<strong>in</strong>R, and overexpression ofSlrR suppresses the effects of a ymdB mutation.ISV13No abstract submitted!ISV14No abstract submitted!ISV15Suppression of Clostridium difficile disease and transmissionby the <strong>in</strong>test<strong>in</strong>al microbiotaA.W. WalkerWellcome Trust Sanger Institute, Pathogen Genomics Group, H<strong>in</strong>xton,United K<strong>in</strong>gdomThe human large <strong>in</strong>test<strong>in</strong>e plays host to an extremely abundant and diversecollection of microbes, which are collectively termed the <strong>in</strong>test<strong>in</strong>almicrobiota. Under normal circumstances our resident microbes areconsidered to play a number of key roles <strong>in</strong> the ma<strong>in</strong>tenance of humanhealth. One example is the establishment of a phenomenon termed“colonization resistance”. Dur<strong>in</strong>g health, or <strong>in</strong> the absence of antibioticuse, our <strong>in</strong>digenous microbiota can effectively <strong>in</strong>hibit colonization andovergrowth by <strong>in</strong>vad<strong>in</strong>g “foreign” microbes such as pathogens. In do<strong>in</strong>g soour microbiota helps to protect us from gastro<strong>in</strong>test<strong>in</strong>al <strong>in</strong>fection and alsoacts to keep potentially pathogenic <strong>in</strong>digenous species such as Clostridiumdifficile under control. Colonization resistance aga<strong>in</strong>st C. difficile istypically broken by broad-spectrum antibiotic use, which disrupts thedensity, composition and activity of the <strong>in</strong>test<strong>in</strong>al microbiota and allowsthe pathogen to proliferate <strong>in</strong> the <strong>in</strong>test<strong>in</strong>e and cause disease. Us<strong>in</strong>g amouse model of disease we monitored longitud<strong>in</strong>al shifts <strong>in</strong> microbiotacomposition <strong>in</strong> an attempt to better understand the underly<strong>in</strong>g dynamicsbeh<strong>in</strong>d antibiotic-associated C. difficile <strong>in</strong>fection and transmission. Wef<strong>in</strong>d that <strong>in</strong>fection with certa<strong>in</strong> stra<strong>in</strong>s of C. difficile results <strong>in</strong> prolongedshedd<strong>in</strong>g of C. difficile spores, which occurs <strong>in</strong> tandem with <strong>in</strong>hibited reestablishmentof colonization resistance. This leads to enhancedtransmission of these stra<strong>in</strong>s and also mimics the situation observed <strong>in</strong>around 25% of C. difficile cases <strong>in</strong> humans where the disease becomesrefractory to treatment and patients suffers constant relapses, even aftertreatment with strong antibiotics such as vancomyc<strong>in</strong>. I will thereforedescribe more novel means of restor<strong>in</strong>g bacterial diversity <strong>in</strong> the <strong>in</strong>test<strong>in</strong>eand offer some perspectives on future challenges for develop<strong>in</strong>g therapiesto promote colonization resistance.ISV16Systems biology of halophilic archaeaD. OestherheltMax-Planck-Institut für Biochemie, Mart<strong>in</strong>sried, GermanyExtreme halophiles from the branch of euryarchaeota live <strong>in</strong> very hostileenvironments characterized by <strong>in</strong>tense radiation and shortage of nutrientsand oxygen. Halobacterium sal<strong>in</strong>arum became a model organism to studyadaptation of life to these extreme conditions and cytoplasmic saltconcentrations of up to 5 M. After a general description of halophilicfeatures of these organisms specific example of systems biological modelsof <strong>in</strong>termediary metabolism, bioenergetics and signal transduction on thebasis of -omics data as well ass biochemical and behavioural experimentswill be presented.ISV17Microbial survival strategies: Staphylococcus aureus as ahighly effective surviverR. A. ProctorEmeritus Professor of Medical Microbiology/Immunology and Medic<strong>in</strong>e.University of Wiscons<strong>in</strong> School of Medic<strong>in</strong>e and Public Health, Madison, WI,United StatesS. aureus uses multiple strategies to survive from coloniz<strong>in</strong>g passively thehost to attack<strong>in</strong>g the host defenses. S. aureus has traditionally beenconsidered a colonizer of the nose, but the newer methicill<strong>in</strong> resistantstra<strong>in</strong>s (MRSA) have the capacity to colonize the throat, vag<strong>in</strong>a, rectum,and sk<strong>in</strong>. Once the sk<strong>in</strong> is barrier is breached host cationic antimicrobialprote<strong>in</strong>s (CAPs) are released from the kerat<strong>in</strong>ocytes, but S. aureus has atwo-component regulator, GraRS, which recognizes and confers resistanceto CAPs. Local resident <strong>in</strong>flammatory cells such as macrophages and mastcells can be circumvented by the organism be<strong>in</strong>g taken up <strong>in</strong>to the host cellvia 51 <strong>in</strong>tegr<strong>in</strong> and eventually the cytoplasm thereby avoid<strong>in</strong>g thebactericidal mechanisms of these professional phagocytes. S. aureus has avery wide variety of factors that block each stage of <strong>in</strong>flux of neutrophils(PMNs) <strong>in</strong>to the area of local <strong>in</strong>fection. Those PMNs that do reach the<strong>in</strong>fected site can also have their bactericidal mechanisms circumvented sothat they too become a reservoir for S. aureus. Proliferation of thestaphylococci can result <strong>in</strong> local abscess formation where<strong>in</strong> bacterialprote<strong>in</strong>s such as coagulase can limit blood flow thereby reduc<strong>in</strong>g PMN<strong>in</strong>flux, ClfA and Eap can help <strong>in</strong> the formation of an abscess, and theanaerobic micro-environment will also reduce the effectiveness ofprofessional phagocytes. Other S. aureus can down-regulate theirvirulence factors by becom<strong>in</strong>g small colony variants (SCVs) and delet<strong>in</strong>gtheir agr and its associated virulence regulon. Although these organismsare much less aggressive, they are better able to enter a very wide varietyof host cells (<strong>in</strong>clud<strong>in</strong>g respirator and mammar epithelial cells, endothelialcells, fibroblasts, and kerat<strong>in</strong>ocytes), and persist because they fail to lyseor to produce apoptosis of the host cells, do not stimulate hypoxia<strong>in</strong>duciblefactor (HIF), and resist host cell CAPs. Phenotypic switch<strong>in</strong>g toSCVs has now been demonstrated <strong>in</strong> animal models, and these SCVsgenerate a much less robust immune response than their wild type parentstra<strong>in</strong>s. In addition, these apparently less virulent variants show <strong>in</strong>creasedexpression of adhes<strong>in</strong>s, thereby allow<strong>in</strong>g them to persist better on hosttissues. The ability of S. aureus to form biofilm is another mechanism forescap<strong>in</strong>g host defenses. T cells have been recently implicated <strong>in</strong> thedefense aga<strong>in</strong>st S. aureus <strong>in</strong>fections, and T-cell angery is found <strong>in</strong> chronic<strong>in</strong>fections. Particularly worry<strong>in</strong>g is the fact that multi-drug resistantstra<strong>in</strong>s are now circulat<strong>in</strong>g that have enhanced ability to survive on sk<strong>in</strong>, <strong>in</strong>the lung, and kidneys. For example, resistance to l<strong>in</strong>ezolid has been l<strong>in</strong>kedto po<strong>in</strong>t mutations <strong>in</strong> relA that allowed for the development of SCVs thatshowed an enhanced str<strong>in</strong>gent response and persistent <strong>in</strong>fection <strong>in</strong> patientsand animal models. The success of S. aureus as a pathogen certa<strong>in</strong>lyrelates to the vast array of survival strategies.BDV001Sett<strong>in</strong>g the pace: Mechanisms controll<strong>in</strong>g the temporalregulation of the Caulobacter crescentus cell cycleK. Jonas* 1 , M.T. Laub 1,21 Massachusetts Institute of Technology, Department of Biology,Cambridge MA, United States2 Massachusetts Institute of Technology, Howard Hughes Medical Institute,Cambridge MA, United StatesOne of the most fundamental processes <strong>in</strong> biology is the regulation of thecell cycle, <strong>in</strong>volv<strong>in</strong>g DNA replication, chromosome segregation, and celldivision. The alpha-proteobacterium Caulobacter crescentus has emergedas an excellent model for study<strong>in</strong>g the basic pr<strong>in</strong>ciples of cell cyclecontrol, largely ow<strong>in</strong>g to an ability to synchronize large populations ofcells. Additionally, Caulobacter divides asymmetrically, yield<strong>in</strong>g daughtercells that differ with respect to their replicative fates and morphology. This<strong>in</strong>tr<strong>in</strong>sic asymmetry has also made Caulobacter an attractive model forunderstand<strong>in</strong>g spatial regulatory mechanisms. Our recent workBIOspektrum | Tagungsband <strong>2012</strong>


55demonstrated that the Caulobacter cell cycle is composed of two separablecontrol modules [1]. One module centers on an essential DNA-b<strong>in</strong>d<strong>in</strong>gprote<strong>in</strong> called CtrA, which governs replicative asymmetry, polarmorphogenesis and cell division. The other module centers on thereplication <strong>in</strong>itiator DnaA and dictates the periodicity of DNA replication,thereby act<strong>in</strong>g as an <strong>in</strong>tr<strong>in</strong>sic pacemaker of replication and the cell cycle.Although CtrA regulation is now understood <strong>in</strong> great detail, ourunderstand<strong>in</strong>g of the mechanisms govern<strong>in</strong>g DnaA activity rema<strong>in</strong>s<strong>in</strong>complete. Us<strong>in</strong>g a comb<strong>in</strong>ation of genetic and yeast two-hybrid screenswe have identified a novel regulator of DnaA, whose precise role <strong>in</strong> theregulation of DnaA and replication are currently under <strong>in</strong>vestigation.Dissect<strong>in</strong>g the regulation of the cell cycle <strong>in</strong> Caulobacter andunderstand<strong>in</strong>g how it relates to the cell cycles of other bacteria willultimately provide <strong>in</strong>sight <strong>in</strong>to how the bacterial cell cycle has evolved toallow cells to grow and proliferate <strong>in</strong> diverse environmental niches.[1] Jonas K, Chen YE, Laub MT. (2011). Modularity of the bacterial cell cycle enables <strong>in</strong>dependentspatial and temporal control of DNA replication. Current Biology. 21(13):1092-101.BDV002How to generate a prote<strong>in</strong> gradient with<strong>in</strong> a bacterial cell:dynamic localization cycle of the cell division regulator MipZD. Kiekebusch* 1,2 , K. Michie 3 , L.-O. Essen 4 , J. Löwe 3 , M. Thanbichler 1,21 Max Planck Institute for Terrestrial Microbiology, Max Planck ResearchGroup Prokaryotic Cell Biology, Marburg, Germany2 Philipps University , Department of Biology, Marburg, Germany3 Medical Research Council, Laboratory of Molecular Biology, Cambridge,United K<strong>in</strong>gdom4 Philipps University, Department of Chemistry, Marburg, GermanyIntracellular prote<strong>in</strong> gradients play a critical role <strong>in</strong> the spatial organizationof both prokaryotic and eukaryotic cells, but <strong>in</strong> many cases themechanisms underly<strong>in</strong>g their formation are still unclear. Recently, abipolar gradient of the P-loop ATPase MipZ was found to be required forproper division site placement <strong>in</strong> the differentiat<strong>in</strong>g bacterium Caulobactercrescentus.MipZ <strong>in</strong>teracts with a k<strong>in</strong>etochore-like nucleoprote<strong>in</strong> complex formed bythe DNA partition<strong>in</strong>g prote<strong>in</strong> ParB <strong>in</strong> proximity of the chromosomal orig<strong>in</strong>of replication. Upon entry <strong>in</strong>to S-phase, the two newly duplicated orig<strong>in</strong>regions are partitioned and sequestered to opposite cell poles, giv<strong>in</strong>g rise toa bipolar distribution of MipZ with a def<strong>in</strong>ed concentration m<strong>in</strong>imum atthe cell center. Act<strong>in</strong>g as a direct <strong>in</strong>hibitor of divisome formation, MipZthus effectively conf<strong>in</strong>es cytok<strong>in</strong>esis to the midcell region.Based on the crystal structures of the apo and ATP-bound prote<strong>in</strong> and bymeans of mutant variants of MipZ, we dissected the role of nucleotideb<strong>in</strong>d<strong>in</strong>g and hydrolysis <strong>in</strong> MipZ function. Gradient formation is found torely on a nucleotide-regulated alternation of MipZ between a monomericand dimeric form. MipZ monomers <strong>in</strong>teract with ParB, which results <strong>in</strong>recruitment of MipZ to the polar regions. Our results suggest that the polarParB complexes locally stimulate the formation of ATP-bound MipZdimers, the biological active form that <strong>in</strong>hibits FtsZ assembly. Moreover,dimers are reta<strong>in</strong>ed near the cell poles through association withchromosomal DNA. Due to their <strong>in</strong>tr<strong>in</strong>sic ATPase activity, dimerseventually dissociate <strong>in</strong>to freely diffusible monomers that undergospontaneous nucleotide exchange and are recaptured by ParB.The MipZ gradient can thus be envisioned as an asymmetric distribution ofdimers that are released from a polar pool and slowly diffuse towards midcell.By virtue of the marked differences <strong>in</strong> the <strong>in</strong>teraction networks anddiffusion rates of monomers and dimers, ATP hydrolysis promotesoscillation of MipZ between the polar ParB complexes and pole-distalregions of the nucleoid. The MipZ gradient thus represents the steady-statedistribution of molecules <strong>in</strong> a highly dynamic system, provid<strong>in</strong>g a generalmechanism for the establishment of prote<strong>in</strong> gradients with<strong>in</strong> the conf<strong>in</strong>edspace of the bacterial cytoplasm.BDV003Regulation of cellular reversals <strong>in</strong> Myxococcus xanthusC. Kaimer*, D. ZusmanUniversity of California, Berkeley, Molecular and Cellular Biology,Berkeley, United StatesSocial behaviour patterns, such as predation or the formation of fruit<strong>in</strong>gbodies <strong>in</strong> the soil bacterium Myxococcus xanthus, require the coord<strong>in</strong>atedmovement of cells. Myxococci lack flagella, but move by glid<strong>in</strong>g on solidsurfaces us<strong>in</strong>g two genetically dist<strong>in</strong>ct mechanisms: social S-motilitymediates movement <strong>in</strong> groups while adventurous A-motility powers<strong>in</strong>dividual cells.In both systems, coord<strong>in</strong>ated movement is achieved by regulat<strong>in</strong>g thefrequency of cellular reversals. Reversals <strong>in</strong>volve the <strong>in</strong>version of thecell´s polarity axis, which is established by a pair of GTPase/GAP prote<strong>in</strong>s(MglA and MglB) that localize to opposite cell poles. MglA and MglBswitch their position at reversal, result<strong>in</strong>g <strong>in</strong> the re-orientation of the S- andA-motility motors.The frequency of cell reversals is modulated by the Frz signall<strong>in</strong>gpathway, which operates similar to the E. coli chemotaxis system. In thepresence of a chemoreceptor homologue FrzCD and a coupl<strong>in</strong>g prote<strong>in</strong>FrzA, phosphotransfer occurs from the FrzE histid<strong>in</strong>e k<strong>in</strong>ase to a responseregulator, FrzZ. We currently use genetic and biochemical approaches toidentify downstream targets of the response regulator FrzZ. Characteriz<strong>in</strong>gthe output of the pathway is essential to understand how the Frz systemcontrols the GTPase/GAP switch and times cell reversals.BDV004The cell wall amidase AmiC2 is pivotal for multicellulardevelopment <strong>in</strong> the cyanobacterium Nostoc punctiforme ATCC29133J. Lehner* 1 , Y. Zhang 2 , S. Berendt 1 , I. Maldener 1 , K. Forchhammer 11 Universität Tüb<strong>in</strong>gen, IMIT, Mikrobiologie/ Organismische Interaktionen,Tüb<strong>in</strong>gen, Germany2 Hertie-Institute, Cl<strong>in</strong>ical Bra<strong>in</strong> Research, Tüb<strong>in</strong>gen, GermanyFilamentous cyanobacteria of the order Nostocales are primordialmulticellular organisms, a property widely considered unique toeukaryotes. Their filaments are composed of hundreds of mutuallydependent vegetative cells and, when deprived for a source of comb<strong>in</strong>ednitrogen, regularly spaced N 2-fix<strong>in</strong>g heterocysts. Furthermore, specializedspore-like cells (ak<strong>in</strong>etes) and motile filaments (hormogonia) differentiateunder certa<strong>in</strong> environmental conditions. The cells of the filament exchangemetabolites and signal<strong>in</strong>g molecules, but the structural basis for cellularcommunication with<strong>in</strong> the filament rema<strong>in</strong>s elusive.Here we show that mutation of a s<strong>in</strong>gle gene, encod<strong>in</strong>g cell-wall amidaseAmiC2, completely changes the filamentous morphology of N.punctiforme and abrogates cell differentiation and <strong>in</strong>tercellularcommunication. The mutant forms irregular clusters of twisted cellsconnected by aberrant septa. Rapid <strong>in</strong>tercellular molecule exchange takesplace between cells of the wild-type filaments, but is completely abolished<strong>in</strong> the mutant, and this blockage obstructs any cell-differentiation,<strong>in</strong>dicat<strong>in</strong>g a fundamental importance of <strong>in</strong>tercellular communication forcell-differentiation <strong>in</strong> N. punctiforme. AmiC2-GFP localizes <strong>in</strong> the cellwall imply<strong>in</strong>g that AmiC2 processes the newly synthesized septum <strong>in</strong>to afunctional cell-cell communication structure dur<strong>in</strong>g cell division.Ultrastructural analysis shows a contiguous mure<strong>in</strong> sacculus with<strong>in</strong>dividual cells connected by a s<strong>in</strong>gle-layered septal cross-wall <strong>in</strong> themutant as well as <strong>in</strong> the wild type. AmiC2-GFP also accumulates <strong>in</strong> theregion of the polar neck dur<strong>in</strong>g heterocyst differentiation and disappearsafter heterocyst maturation as well as <strong>in</strong> the septa of mature ak<strong>in</strong>etes.Synchronously divid<strong>in</strong>g cells of hormogonia accumulate AmiC2-GFP <strong>in</strong>the septal cross walls. The AmiC2 prote<strong>in</strong> could be expressed <strong>in</strong> E. coliand purified. It shows cell wall lytic activity and can complement thefilamentous phenotype of E. coli triple amidase mutants.From our studies we can conclude that the cell wall amidase AmiC2 of N.punctiforme is a novel morphogene required for cell-cell communication,cellular development and multicellularity <strong>in</strong> this cyanobacteriumBDV005Functional analysis of cytoskeletal prote<strong>in</strong>s implicated <strong>in</strong>magnetosome formation and cell division <strong>in</strong> MagnetospirillumgryphiswaldenseF.D. Müller*, O. Raschdorf, E. Katzmann, M. Messerer, D. SchülerLudwig-Maximilians-Universität München, Mikrobiologie, Planegg-Mart<strong>in</strong>sried, GermanyMagnetotactic bacteria use magnetosomes to move along magnetic fieldl<strong>in</strong>es. Magnetosomes are organelles which consist of membrane-enclosednanometer-sized magnetite crystals l<strong>in</strong>ed up along the cell axis. Thismagnetosome cha<strong>in</strong> is located at midcell and split dur<strong>in</strong>g cell division,whereupon magnetosomes are thought to re-localize from the new cellpoles to the new centres by an as yet unknown mechanism. Midcell<strong>in</strong>formation <strong>in</strong> bacteria is usually provided by the essential cell divisionprote<strong>in</strong>, FtsZ. Intrigu<strong>in</strong>gly, M. gryphiswaldense has two ftsZ homologs (agenu<strong>in</strong>e ftsZ and ftsZm). ftsZm is co-located with<strong>in</strong> the genomicmagnetosome island with other magnetosome genes <strong>in</strong>clud<strong>in</strong>g mamK,which encodes a further, act<strong>in</strong>-like cytoskeletal prote<strong>in</strong> that polymerizes<strong>in</strong>to straight magnetosome filament structures. We analyzed the functionof these cytoskeletal elements likely implicated <strong>in</strong> the magnetosome cha<strong>in</strong>division and segregation process.Fluorescence microscopy revealed that FtsZ Mgr and FtsZm co-localize atthe division plane <strong>in</strong> asymmetric spots opposite to the MamK filament.This asymmetry co<strong>in</strong>cides with an asymmetric <strong>in</strong>dentation and division ofM. gryphiswaldense cells which likely facilitates cleavage of themagnetosome cha<strong>in</strong> ow<strong>in</strong>g to leverage. In contrast to previous observation,deletion of had no effect on magnetite crystal biom<strong>in</strong>eralization but<strong>in</strong>fluenced the cell size of M. gryphiswaldense. To analyze the dynamics ofmagnetosome daughter cha<strong>in</strong> segregation we performed fluorescence timelapse microscopy of grow<strong>in</strong>g cells. Our prelim<strong>in</strong>ary results suggest thatequal proportions of magnetosomes are rapidly removed from the divisionplane and become trapped at the centres of future daughter cells dur<strong>in</strong>g thedivision process. Electron microscopy of division-<strong>in</strong>hibited cells suggestsBIOspektrum | Tagungsband <strong>2012</strong>


56that this trapp<strong>in</strong>g depends on the act<strong>in</strong>-like MamK prote<strong>in</strong>. Overall, ourdata suggest that magnetosome segregation and re-localization is tied to anactive, divisome and MamK-dependent mechanism.BDV006The PomX prote<strong>in</strong> is required for cell division <strong>in</strong> MyxococcusxanthusA. Treuner-Lange*, A. Harms, L. Søgaard-AndersenMPI for terrestrial microbiology, Department of Ecophysiology, Marburg, GermanyFtsZ is a highly conserved component of the bacterial cell divisionmach<strong>in</strong>ery and formation of the FtsZ-r<strong>in</strong>g at the <strong>in</strong>cipient division site isone of the earliest detectable event <strong>in</strong> the assembly of the divisionmach<strong>in</strong>ery. In bacteria selection of the site of cell division has beenthought to rely on negative regulators only; however, we recently showedthat the ParA-like prote<strong>in</strong> PomZ positively regulates Z-r<strong>in</strong>g formation <strong>in</strong>Myxococcus xanthus. Briefly, <strong>in</strong> a pomZ mutant FtsZ-r<strong>in</strong>g formation isstrongly reduced and the FtsZ-r<strong>in</strong>gs formed are abnormally positioned.PomZ localization changes with cell cycle progression culm<strong>in</strong>at<strong>in</strong>g <strong>in</strong>localization to the <strong>in</strong>cipient division site before and <strong>in</strong> the absence ofFtsZ.In vitro FtsZ of M. xanthus hydrolyses GTP but do not assemble <strong>in</strong>tofilaments suggest<strong>in</strong>g that GTP hydrolysis-dependent depolymerization isas fast as the GTP-dependent polymerization, thus, preclud<strong>in</strong>g filamentaccumulation. PomZ weakly stimulates FtsZ polymerization suggest<strong>in</strong>gthat PomZ functions to directly recruit FtsZ to midcell and to stabilize theZ-r<strong>in</strong>g. Thus, PomZ provides direct positional <strong>in</strong>formation for Z-r<strong>in</strong>gformation, thereby, positively regulat<strong>in</strong>g position<strong>in</strong>g of the division site.To identify prote<strong>in</strong>s important for direct<strong>in</strong>g PomZ to mid-cell, we focussedon the gene flank<strong>in</strong>g pomZ, i.e. pomX, which encodes a prote<strong>in</strong> with a C-term<strong>in</strong>al coiled-coil region. A pomX mutant phenocopies a pomZ mutant<strong>in</strong>dicat<strong>in</strong>g that PomX is also <strong>in</strong>volved <strong>in</strong> cell division. Consistently, <strong>in</strong> theabsence of PomX, FtsZ-r<strong>in</strong>g formation is significantly reduced and the Z-r<strong>in</strong>gs formed are abnormally localized. mCherry-PomX localizes <strong>in</strong> a cellcycle-dependent manner: In short cells, PomX forms a cluster away frommid-cell, and <strong>in</strong> longer cells a mid-cell cluster. Moreover, <strong>in</strong> the absence ofPomX, PomZ localization to the off-center cluster and at mid-cell isabolished and <strong>in</strong> the absence of PomZ, PomX predom<strong>in</strong>antly localizesrandomly and rarely at mid-cell. Additionally, us<strong>in</strong>g purified His 6-taggedPomX prote<strong>in</strong> PomZ was pulled out from wild type extracts. Moreover,His 6-PomX forms filaments <strong>in</strong> a cofactor-<strong>in</strong>dependent manner. Accord<strong>in</strong>gto our current work<strong>in</strong>g hypothesis PomX and PomZ <strong>in</strong>teract to form acomplex with FtsZ <strong>in</strong> that way fulfill<strong>in</strong>g two purposes, recruitment of FtsZto mid-cell and stabilization of the Z-r<strong>in</strong>g.BDV007Cell differentiation <strong>in</strong> biofilms communities of StaphylococcusaureusJ.C. Garcia-Betancur*, A. Yepes Garcia, D. LopezUniversität Würzburg, ZINF, Würzburg, GermanyMicrobial communities embedded <strong>in</strong> biofilms generally differentiate <strong>in</strong>todiverse subpopulations of specialized cells [2]. Development of biofilmsrelies on the spatio-temporal distribution of each one of the constituentsubpopulations of specialized cells [3]. The pathogen Staphylococcusaureus is considered an important model to study biofilm development dueto its ability to generate biofilm-mediated chronic <strong>in</strong>fections [1]. Albeit thepresence of specialized cells has been reported <strong>in</strong> communities of S. aureus[4] it is unknown whether biofilm formation <strong>in</strong> S. aureus requires thedifferentiation of specialized cell types and if so, what would be thecontribution of those subpopulations to biofilm development.We have developed a new model to study biofilm formation <strong>in</strong> which S.aureus forms extremely robust biofilms. This is based on the fact thatbiofilm development can be observed when cells grow on agar surfaces. Inthese conditions, the biofilms formed by S. aureus exhibits a sophisticatedarchitecture that correlates with the stra<strong>in</strong>s’ ability to form biofilm <strong>in</strong> vivo.Moreover, transcriptional reporters of genes known to be essential forbiofilm development were created to visualize and monitor theirexpression pattern with<strong>in</strong> the microbial community that conforms thebiofilm. Exam<strong>in</strong>ation of the expression of these reporters dur<strong>in</strong>g biofilmformation showed a heterogeneous expression pattern among thecommunity. A subpopulation of cells specialized <strong>in</strong> produc<strong>in</strong>g andsecret<strong>in</strong>g the polysaccharidic extracellular matrix differentiates.Differentiation of this subpopulation is dynamic s<strong>in</strong>ce the proportion of thespecialized cells varies along the different stages of the development.Similar pattern was observed for the subpopulation of cells responsible forthe synthesis of adhesion prote<strong>in</strong>s. Flow cytometry was used to quantifythe temporal differentiation pattern of these subpopulations <strong>in</strong>volved <strong>in</strong>biofilm formation.[1]Otto, M.,(2008) Staphylococcal biofilms.Curr Top Microbiol Immunol 322:207-228[2]Stewart, P.S. & M.J. Frankl<strong>in</strong>,(2008) Physiological heterogeneity <strong>in</strong> biofilms.Nat Rev Microbiol 6:199-210[3]Vlamakis, H., C. Aguilar, R. Losick & R. Kolter,(2008) Control of cell fate by the formation of anarchitecturally complex bacterial community.Genes Dev 22:945-953[4]Yarwood, J.M., D.J. Bartels, E.M. Volper & E.P. Greenberg,(2004) Quorum sens<strong>in</strong>g <strong>in</strong> Staphylococcusaureus biofilms.J Bacteriol 186:1838-1850BDV008Eat<strong>in</strong>g and be<strong>in</strong>g eaten: What bacterial cell biology can tell usabout eukaryogenesisC. Jogler* 1 , F.O. Glöckner 2 , R. Kolter 11 Harvard Medical School, Microbiology and Genetics, Boston, United States2 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Bremen, GermanyProkaryotes are def<strong>in</strong>ed as a group of organisms generally lack<strong>in</strong>g amembrane-bound nucleus or other membrane-bound organelle; these arethe hallmarks of eukaryotic cells. Yet, species of the bacterial phylumPlanctomycetes have been shown to harbor <strong>in</strong>tra cytoplasmic membranes(ICM). The ICM of the planctomycetal model organism Gemmataobscuriglobus forms two double membranes surround<strong>in</strong>g the DNA <strong>in</strong> anucleus-like compartment. In addition, some Planytomycetes divide likeyeasts, via budd<strong>in</strong>g. They also lack the characteristic bacterial divisionprote<strong>in</strong> FtsZ. Furthermore, planctomycetal membrane coat-like prote<strong>in</strong>sresembl<strong>in</strong>g eukaryotic clathr<strong>in</strong>s were recently discovered. Their<strong>in</strong>volvement <strong>in</strong> vesicle formation and endocytosis-like uptake of prote<strong>in</strong>shas been demonstrated. Consequently ancestors of modern Planctomycetesmight have contributed to the orig<strong>in</strong> of the eukaryotic cell plan. However,ultimate proof of endocytosis has been hampered by the lack of genetictools for Planctomycetes. To overcome these limitations, we first screenedfor a suitable model organism among planctomycetal species available asaxenic cultures. We identified Planctomyces limnophilus as a potentialcandidate and demonstrated that P. limnophilus displays the characteristicsubcellular compartmentalization of the Planctomycetes. This f<strong>in</strong>d<strong>in</strong>gprovided us with the necessary impetus to develop genetic tools for itsmanipulation. Such tools make P. limnophilus relevant as a model for<strong>in</strong>vestigat<strong>in</strong>g the molecular basis of planctomycetal compartmentalization<strong>in</strong> general and to unearth the secrets of the planctomycetal impact oneukaryogenesis.BDP001The Streptomyces spore wall synthesiz<strong>in</strong>g complex SSSCS. Sigle, E.-M. Kle<strong>in</strong>schnitz*, W. Wohlleben, G. MuthUniversität Tüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyThe Mre-prote<strong>in</strong>s of rod-shaped bacteria form a peptidoglycan (PG)synthesiz<strong>in</strong>g complex at the lateral wall to ensure elongation growth.Although mycelial Streptomyces coelicolor grows by apical tip extensionwhich does not <strong>in</strong>volve lateral cell wall synthesis, it conta<strong>in</strong>s three mreBlikegenes and a complete mreB cluster compris<strong>in</strong>g mreBCD, pbp2 and sfr(rodA). Mutant analysis demonstrated that the mre-genes were not requiredfor vegetative growth but affected sporulation. Mutant spores sufferedfrom a defective spore wall render<strong>in</strong>g the spores sensitive to highosmolarity, moderate heat and to cell wall damage by lysozyme orvancomyc<strong>in</strong> 1,2 . Study of prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions by a bacterial twohybridanalysis revealed a similar <strong>in</strong>teraction pattern as reported for thelateral wall synthesiz<strong>in</strong>g complex suggest<strong>in</strong>g that the Streptomyces sporewall is synthesized by a multi-prote<strong>in</strong> complex which resembles the lateralwall synthesiz<strong>in</strong>g complex of rod-shaped bacteria 2 . Screen<strong>in</strong>g of a genomiclibrary identified several additional <strong>in</strong>teraction partners as novelcomponents of the SSSC. Interaction of MreC, MreD, PBP2 and Sfr withthe eukaryotic type Ser/Thr k<strong>in</strong>ase SCO4078 <strong>in</strong>dicates regulation of theSSSC by prote<strong>in</strong> phosphorylation. Knock out experiments confirmed therole <strong>in</strong> spore wall synthesis for SCO2097, a small act<strong>in</strong>omycetes specificmembrane prote<strong>in</strong>, localized with<strong>in</strong> the dcw cluster <strong>in</strong>volved <strong>in</strong> celldivision and PG synthesis, and SCO2584 which is located next to teichoicacid biosynthetic genes. S<strong>in</strong>ce tagF(SCO2997) and SCO2584 mutantsshowed a similar morphological defect as the mre-mutants, teichoic acidsmight also be <strong>in</strong>volved <strong>in</strong> spore wall synthesis of S. coelicolor.[1] Heichl<strong>in</strong>ger, A., M. Ammelburg, E.- M. Kle<strong>in</strong>schnitz, A. Latus, I. Maldener, K. Flärdh, W. Wohlleben,and G. Muth. The MreB-like prote<strong>in</strong> Mbl of Streptomyces coelicolor A3(2) depends on MreB for properlocalization and contributes to spore wall synthesis. J Bacteriol,2011,193, 1533-1542[2] Kle<strong>in</strong>schnitz, E.-M., A. Heichl<strong>in</strong>ger, K. Schirner, J. W<strong>in</strong>kler, A. Latus, I. Maldener, W. Wohlleben, andG. Muth. Prote<strong>in</strong>s encoded by the mre gene cluster <strong>in</strong> Streptomyces coelicolor A3(2) cooperate <strong>in</strong> spore wallsynthesis. Mol Microbiol,2011,79, 1367 - 1379.[3] Kle<strong>in</strong>schnitz EM, Latus A, Sigle S, Maldener I, Wohlleben W, Muth G. Genetic analysis of SCO2997,encod<strong>in</strong>g a TagF homologue, <strong>in</strong>dicates a role for wall teichoic acids <strong>in</strong> sporulation of Streptomycescoelicolor A3(2).J Bacteriol, 2011,193:6080-6085.BDP002Magnetosome cha<strong>in</strong>s are recruited to cellular division sitesand split by asymmetric septationE. Katzmann* 1,2 , F.D. Müller 1 , C. Lang 3 , M. Messerer 1 , M. W<strong>in</strong>klhofer 4 ,J. Plitzko 2 , D. Schüler 11 LMU München Biozentrum, Mikrobiologie, Mart<strong>in</strong>sried, Germany2 Max Planck Institut of Biochemistry, Molecular Structural Biology,Mart<strong>in</strong>sried, Germany3 University Stanford, Biology, Stanford CA, United States4 LMU München, Earth and Environmental Sciences, München, GermanyMagnetotactic bacteria navigate along magnetic field l<strong>in</strong>es us<strong>in</strong>g wellorderedcha<strong>in</strong>s of membrane enclosed magnetic crystals, referred to asmagnetosomes,which have emerged as model to <strong>in</strong>vestigate <strong>in</strong>tracellularBIOspektrum | Tagungsband <strong>2012</strong>


57differentiation and organelle biogenesis <strong>in</strong> prokaryotic systems. To becomedivided and segregated faithfully dur<strong>in</strong>g cytok<strong>in</strong>esis, the magnetosomecha<strong>in</strong> has to be properly positioned, cleaved and separated aga<strong>in</strong>st<strong>in</strong>tracha<strong>in</strong> magnetostatic forces. Here we demonstrate that magnetotacticbacteria use dedicated mechanisms to control the position and division ofthe magnetosome cha<strong>in</strong>, thus ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g magnetic orientation throughoutdivisional cycle. Us<strong>in</strong>g electron and time-lapse microscopy ofsynchronized cells of Magnetospirillum gryphiswaldense, we demonstratethat magnetosome cha<strong>in</strong>s undergo a dynamic pole-to-midcell translocationdur<strong>in</strong>g cytok<strong>in</strong>esis. Nascent cha<strong>in</strong>s were recruited to division sites also <strong>in</strong>division-<strong>in</strong>hibited cells, but not <strong>in</strong> a mamK mutant, <strong>in</strong>dicat<strong>in</strong>g an activemechanism depend<strong>in</strong>g upon the act<strong>in</strong>-like cytoskeletal magnetosomefilament. Cryo-electron tomography revealed that both the magnetosomecha<strong>in</strong> and the magnetosome filament are split <strong>in</strong>to halves by asymmetricseptation and unidirectional <strong>in</strong>dentation, which we <strong>in</strong>terpret <strong>in</strong> terms of aspecific adaptation required to overcome the magnetostatic <strong>in</strong>teractionsbetween separat<strong>in</strong>g daughter cha<strong>in</strong>s. Our study demonstrates thatmagnetosome division and segregation is coord<strong>in</strong>ated with cytok<strong>in</strong>esis andresembles partition<strong>in</strong>g mechanisms of other organelles andmacromolecular complexes <strong>in</strong> bacteria.BDP003Differentiation of bacterial spores by Fourier transform <strong>in</strong>fraredspectroscopy (FTIR) and chemometrical data treatmentH. Brandl*, A. Brandes AmmannUniversity of Zürich, Environmental Sciences, Zurich, SwitzerlandFourier transform <strong>in</strong>frared spectroscopy (FTIR) has been used as analyticaltool <strong>in</strong> chemistry for many years to elucidate chemical structures. Inaddition, FTIR can also be applied as a rapid and non-<strong>in</strong>vasive method todetect and identify microorganisms. The specific and f<strong>in</strong>gerpr<strong>in</strong>t-likespectra allow - under optimal conditions - discrim<strong>in</strong>ation down to thespecies level. The aim of this study was to develop a fast and reproduciblenon-molecular method to differentiate Bacillus spores orig<strong>in</strong>at<strong>in</strong>g fromdifferent species as well as to identify spores <strong>in</strong> a simple matrix, such asthe clay m<strong>in</strong>eral, bentonite. We <strong>in</strong>vestigated spores from pure cultures ofseven different Bacillus species by FTIR <strong>in</strong> reflection or transmissionmode followed by chemometrical data treatment. All species <strong>in</strong>vestigated(B. atrophaeus, B. brevis, B. circulans, B. lentus, B. megaterium, B.subtilis, B. thur<strong>in</strong>giensis) are typical aerobic soil-borne spore formers. Tosimulate soil, mixtures of bentonite and spores of B. megaterium at variouswt/wt ratios were <strong>in</strong>cluded <strong>in</strong> the study. Both hierarchical cluster analysisand pr<strong>in</strong>cipal component analysis of the spectra along withmultidimensional scal<strong>in</strong>g allowed the discrim<strong>in</strong>ation of different speciesand spore-matrix-mixtures. Our results show that FTIR spectroscopy is afast method for species-level discrim<strong>in</strong>ation of Bacillus spores. Sporeswere still detectable <strong>in</strong> the presence of the clay m<strong>in</strong>eral bentonite. Even atenfold excess of bentonite (correspond<strong>in</strong>g to 2.1 x 10exp10 colonyform<strong>in</strong>g units per gram of m<strong>in</strong>eral matrix) still resulted <strong>in</strong> an unambiguousidentification of B. megaterium spores.BDP004Functional complementation of large operon deletions with<strong>in</strong>the magnetosome Island of Magnetospirillum gryphiswaldenseI. Kol<strong>in</strong>ko* 1 , C. Jogler 2 , Y. Zhang 3 , R. Müller 4 , D. Schüler 11 LMU München, AG Schüler, Institut für Mikrobiologie, Planegg-Mart<strong>in</strong>sried, Germany2 Harvard Medical School, Armenise Build<strong>in</strong>g, Boston, United K<strong>in</strong>gdom3 Gene Bridges GmbH, BioInnovationsZentrum, Dresden, Germany4 Saarland University, Department of Pharmaceutical Biotechnology,Saarbrücken, GermanyThe magnetotactic bacterium Magnetospirillum gryphiswaldense produces<strong>in</strong>tracellular organelles, the magnetosomes, which consist of magnetitecrystals surrounded by a magnetosome membrane. Their uniform sizes andunique magnetic properties make them highly attractive forbiotechnological and medical applications. Most of the genes controll<strong>in</strong>gmagnetosome formation have been identified with<strong>in</strong> a genomicmagnetosome island (MAI) of 115 kb. By mutational analysis, themamAB, mamGFDC, mms6 and mamXY operons, which have sizesbetween 2 and 17 kb and which comprise 30 genes <strong>in</strong> total, wereimplicated <strong>in</strong> the synthesis of properly sized and shaped magnetosomes.However, complementation of operon mutants has proven difficult due tothe requirement to clone, transfer and express large genomic fragments.Complementation of smaller regions up to 5 kb (mamGFDC, mamXY) wasaccomplished by conjugational transfer of replicative plasmids, result<strong>in</strong>g <strong>in</strong>stable <strong>in</strong> trans expression and reconstitution of wildtype phenotypes. Forclon<strong>in</strong>g of larger fragments, compris<strong>in</strong>g for example the large mamABoperon encod<strong>in</strong>g 17 magnetosome genes, we used recomb<strong>in</strong>ogenicclon<strong>in</strong>g. Conjugational transfer of replicative vectors harbor<strong>in</strong>g this region,however, revealed high <strong>in</strong>stability of the plasmids and resulted <strong>in</strong> partialdegradation of cloned genomic fragments, probably due to toxic effects ofmulticopy expression of encoded magnetosome membrane prote<strong>in</strong>s.Therefore, alternative strategies, such as expression <strong>in</strong> RecA - backgroundstra<strong>in</strong>s, use of <strong>in</strong>ducible expression systems, and chromosomal <strong>in</strong>sertionare currently <strong>in</strong>vestigated for stable expression. Eventually, clon<strong>in</strong>g andfunctional expression of entire large operons from M. gryphiswaldensemight be also useful for future metabolic eng<strong>in</strong>eer<strong>in</strong>g of the magnetosomesynthesis pathway.BDP005A small acid soluble spore prote<strong>in</strong> is essential for germ<strong>in</strong>ationof Clostridium acetobutylicum sporesD. Wetzel*, H. Janssen, R.-J. FischerUniversity of Rostock, Division of Microbiology, Rostock, GermanyClostridium acetobutylicum is a potent solvent producer and <strong>in</strong> recentyears it has become a model organism for the understand<strong>in</strong>g of themolecular biology of non-pathogenic clostridia. We are <strong>in</strong>terested <strong>in</strong> theevents dur<strong>in</strong>g the cell cycle of C. acetobutylicum. Here, we focus on resultsdeal<strong>in</strong>g with aspects of the resistance and germ<strong>in</strong>ation capability of its spores.Alpha/beta-type small acid soluble spore prote<strong>in</strong>s (SASP) are usuallylocated <strong>in</strong> the core of the endospores. They carry important functions likethe protection of spore DNA aga<strong>in</strong>st damage due to desiccation, heat orchemical agents. Furthermore, dur<strong>in</strong>g germ<strong>in</strong>ation fast degradation ofSASPs by germ<strong>in</strong>ation specific proteases provide an important am<strong>in</strong>o acidpool for the development of the new vegetative cell.In the genome of C. acetobutylicum five open read<strong>in</strong>g frames are expectedto encode SASP-like prote<strong>in</strong>s [1]. To unravel the <strong>in</strong>dividual functions ofthese prote<strong>in</strong>s we generated specific knock out mutants us<strong>in</strong>g the ClosTronTechnology by <strong>in</strong>sertional <strong>in</strong>activation based on the selective retarget<strong>in</strong>ggroup II <strong>in</strong>tron [2]. Analysis of the phenotypes us<strong>in</strong>g transmission electronmicroscopy revealed the production of morphological <strong>in</strong>tact spores.However, sporulation assays [3] proved that the <strong>in</strong>dividual germ<strong>in</strong>ationcapabilities of the mutant stra<strong>in</strong>s were affected to different levels. Most<strong>in</strong>terest<strong>in</strong>gly, one SASP was essential for germ<strong>in</strong>ation which could berestored by a plasmid-based complementation of the gene knock out.[1] Nöll<strong>in</strong>g et al., 2001, J Bacteriol. 183:4823-4838[2] Heap et al., 2007, J Microbiol Methods 70:452-464[3] Burns et al., 2010, J Bacteriol. 192:657-664BDP006Spore formation <strong>in</strong> Clostridium acetobutylicum ATCC 824depends on granulose synthesisK. Zimmermann*, R.-J. FischerUniversität Rostock, Biowissenschaften/Mikrobiologie, Rostock, GermanyThe transition phase of growth of the Gram-positive, spore-form<strong>in</strong>ganaerobe Clostridium acetobutylicum is characterized by severalmorphological changes. At the beg<strong>in</strong>n<strong>in</strong>g swollen and cigar shaped cells,clostridial stages, are formed. In the cells, a polymeric carbohydrate,granulose is accumulated <strong>in</strong> the form of granules. Granulose is expected tobe a energy- and carbon storage, necessary as a prerequisite for sporulation.We proved that a s<strong>in</strong>gle glycogen synthase (GlgA) <strong>in</strong> the genome of C.acetobutylicum plays a crucial role <strong>in</strong> the biosynthesis of granulose. AglgA <strong>in</strong>sertion mutant (ClosTron ® technology, [1]) was unable toaccumulate granulose and did not form endospores. Results of thephenotypic characterisation are presented. This data <strong>in</strong>cludes colonymorphology, cell differentiation and sporulation assays ofglgA-mutantcells <strong>in</strong> comparison to the wildtype.Detailed comparative TEM studies revealed that even prespore formation<strong>in</strong> the mutant stra<strong>in</strong> seemed to be blocked at a very early stage. Molecularanalysis confirmed the correct <strong>in</strong>sertion <strong>in</strong>to the target gene and a negative<strong>in</strong>fluence on granulose-gene specific mRNA formation. However,transcription of the master regulator of sporulation spo0A seemed not to beaffected (RT-PCR). Almost every gene of the granulose metabolism was<strong>in</strong>fluenced, whereas first evidence could be ga<strong>in</strong>ed, that miss<strong>in</strong>g granuloseaffects degradation by a feed-back mechanism.[1] Heapet al.,2007, J Microbiol Methods 70:452-464BDP007Monitor<strong>in</strong>g of population dynamics of Corynebacteriumglutamicum by multiparameter flow cytometryA. Neumeyer*, M. Bott, J. FrunzkeForschungszentrum Jülich, Biotechnologie 1, Jülich, GermanyCorynebacterium glutamicum is a Gram-positive soil bacterium that isused as an <strong>in</strong>dustrial am<strong>in</strong>o acid producer. For stra<strong>in</strong> analysis and processmonitor<strong>in</strong>g usually average data result<strong>in</strong>g from the analysis of bulks ofcells are provided for key parameters such as growth rate, productivity,and viability. However, several studies of the last decades revealed thateven isogenic bacterial populations may exhibit significant cell-to-cellvariation due to differences <strong>in</strong> microenvironment, cell age, cell cycle orstochastic effects on gene expression. In this context, fluorescenceactivatedcell sort<strong>in</strong>g (FACS) allows a rapid and efficient <strong>in</strong>sight <strong>in</strong>tocomplex phenotypes and allows high-throughput analysis at the s<strong>in</strong>gle celllevel.BIOspektrum | Tagungsband <strong>2012</strong>


58Here, multiple parameters were analyzed <strong>in</strong> s<strong>in</strong>gle cells ofCorynebacterium glutamicum via FACS. By analyz<strong>in</strong>g a typical growthcurve of C. glutamicum subpopulations were identified differ<strong>in</strong>g <strong>in</strong> size,DNA pattern, metabolic activity, membrane <strong>in</strong>tegrity, and membranepotential. These populations show a dynamic pattern depend<strong>in</strong>g on stra<strong>in</strong>background, cultivation conditions, and growth phase. DNA patternsoscillate with<strong>in</strong> the growth curve. Cells <strong>in</strong> the early log phase conta<strong>in</strong>ma<strong>in</strong>ly a s<strong>in</strong>gle chromosome equivalent followed by a proliferation phasecharacterized by a decrease <strong>in</strong> cells with a s<strong>in</strong>gle chromosome equivalentand an <strong>in</strong>crease <strong>in</strong> cells with multiple chromosome equivalents. Cells <strong>in</strong>the stationary phase exhibit predom<strong>in</strong>antly a s<strong>in</strong>gle chromosomeequivalent. The reductase activity (<strong>in</strong>dicator for electron transport cha<strong>in</strong>function and cellular viability) also shows significant correlation with celldensities. Cells of the log phase show the highest reductase activitywhereas cells of the early or late log phase exhibit a reduction <strong>in</strong> viability;stationary cells demonstrate the lowest activity as well as a depolarizationof the cell membrane which could not be detected <strong>in</strong> cells of the log phase.The rate of depolarization correlates with the uptake of propidium iodide<strong>in</strong>dicative for damaged cell membranes. These results demonstrate flowcytometry as an efficient tool for the study of bacterial populationdynamics and process monitor<strong>in</strong>g at s<strong>in</strong>gle cell resolution.BDP008Polar magneto-aerotaxis <strong>in</strong> Magnetospirillum gryphiswaldenseF. Popp* 1 , J. Hofmann 1 , D. Bartolo 2 , D. Schüler 11 LMU München, Mikrobiologie, AG Schüler, Planegg-Mart<strong>in</strong>sried, Germany2 ESPCI-ParisTech, PMMH Lab, Paris, FranceThe paradigmatic concept of random walk motion observed <strong>in</strong> mostprokaryotes is greatly simplified <strong>in</strong> freely swimm<strong>in</strong>g magnetotacticbacteria (MTB) which conta<strong>in</strong> a cha<strong>in</strong> of nano-sized magnetic particles.Passive alignment with the Earth’s magnetic field forces the bacteria ontoa nearly l<strong>in</strong>ear track. In addition, most MTB possess the selectable trait tofollow the magnetic field l<strong>in</strong>es <strong>in</strong> a preferred swimm<strong>in</strong>g direction (eitherN- or S-seek<strong>in</strong>g) depend<strong>in</strong>g on the prevail<strong>in</strong>g habitat conditions. To date,the underly<strong>in</strong>g molecular mechanism of how magnetic polarity is<strong>in</strong>tegrated with other taxis mechanisms is not understood.M. gryphiswaldense is a bipolarly flagellated gradient organism which iscapable of polar swimm<strong>in</strong>g behaviour if grown under selective conditions.Automated video track<strong>in</strong>g of wild type cells revealed swimm<strong>in</strong>g episodes<strong>in</strong> alternat<strong>in</strong>g directions which are <strong>in</strong>terrupted by short reversals. Thereversal frequency did not change significantly <strong>in</strong> polarised cultures.We identified four chemotaxis gene clusters conta<strong>in</strong><strong>in</strong>g conserved genescheAWYBR <strong>in</strong> the genome of M. gryphiswaldense. Whereas deletion ofoperons 2-4 did not impact on chemotaxis, only loss of CheOp1 had a cleareffect on aerotaxis. This <strong>in</strong>dicated a possible l<strong>in</strong>k between polarity andchemotaxis at the genetic level. In magnetospirillum cells hav<strong>in</strong>g an apparentlysymmetrical morphology, polarity might be established by asymmetriclocalization of constituents of the chemotaxis mach<strong>in</strong>ery. Therefore, we studiedthe <strong>in</strong>tracellular localization of fluorescent prote<strong>in</strong> fusions to chemotaxisprote<strong>in</strong>s CheA and CheW. S<strong>in</strong>ce these prote<strong>in</strong>s localised to variable positions <strong>in</strong>the cell they are unlikely to determ<strong>in</strong>e polarity.Swimm<strong>in</strong>g polarity is currently be<strong>in</strong>g studied quantitatively by amicrofluidic assay us<strong>in</strong>g fluorescence-labelled cells and <strong>in</strong> competitionassays. This will also reveal the putative selective advantage ofmagnetotaxis.BDP009Spatiotemporal patterns of microbial communities <strong>in</strong> ahydrologically dynamic alp<strong>in</strong>e porous aquifer (Mittenwald,Germany)Y. Zhou*, C. Kellermann, C. GrieblerHelmholtz Zentrum München, Institute of Groundwater Ecology, Munich,GermanyIt has been repeatedly shown for aquatic habitats that microbialcommunities underlie seasonal dynamics and follow environmentalgradients. Recently, microbial communities of karst aquifers were shownto be <strong>in</strong>fluenced by seasonal hydrodynamics. In turn, we <strong>in</strong>vestigatedseasonal patterns of selected microbial and physical-chemical variables <strong>in</strong>groundwater and sediments of an alp<strong>in</strong>e oligotrophic porous aquifer over aperiod of two years. Characterized by a high hydraulic conductivity andgroundwater flow velocities, this aquifer exhibited pronounced seasonalhydrological dynamics, which are confirmed by pronounced groundwatertable fluctuations. The groundwater table was found highest dur<strong>in</strong>gsummer along with lowest bacterial diversity (H’ = 1.31 ± 0.35 SD) <strong>in</strong>suspended bacterial communities, as analyzed by T-RFLP f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g.A similar pattern was observed for the total number of planktonic bacteria,with lowest numbers <strong>in</strong> spr<strong>in</strong>g and summer (1.4×10 4 cells mL -1 ) andhighest values (2.7 ×10 5 cells mL -1 ) dur<strong>in</strong>g w<strong>in</strong>ter season. The ratio of totalversus active cells, determ<strong>in</strong>ed by analysis of <strong>in</strong>tracellular ATP, waslowest <strong>in</strong> summer and w<strong>in</strong>ter (0.07%~10%) and highest <strong>in</strong> autumn(16%~85%). Bacterial carbon production measurements revealed highestactivities <strong>in</strong> summer and lowest <strong>in</strong> w<strong>in</strong>ter, with average carbon productionof 6.22 and 1.30 ng C L -1 h -1 respectively. The carbon turnover related toconcentrations of AOC, which ranged from 5 to 25 g L -1 , account<strong>in</strong>g foronly 0.1 to 1.3% of the bulk DOC. Sediment bacterial communities from anearby river exhibited a stable community composition and diversity whenexposed to groundwater for one year. Initially sterile sediments, on theother hand, were readily colonized and established a bacterial diversitysimilar to the exposed river sediment. In conclusion, hydrodynamicsmarkedly <strong>in</strong>fluenced the planktonic bacterial communities while attachedcommunities have not been affected by the serious hydrological changes.BDP010Dur<strong>in</strong>g stress Spx hits the emergency brake on swimm<strong>in</strong>g motilityN. Moliere*, K. TurgayLeibniz Universität, Institut für Mikrobiologie, Hannover, GermanyClp proteases are key players <strong>in</strong> the regulation of bacterial differentiationprocesses, such as competence [4] and sporulation [3]. The proteaseClpXP is required for differentiation <strong>in</strong>to motile cells <strong>in</strong> Bacillus subtilis[1]. An important proteolysis substrate of ClpXP is the globaltranscriptional regulator Spx, which activates the expression of stresstolerance genes dur<strong>in</strong>g oxidative stress. At the same time Spx acts as anegative regulator of a dist<strong>in</strong>ct group of genes, <strong>in</strong>clud<strong>in</strong>g those responsiblefor competence development. Under non-stress conditions, Spx isefficiently degraded by the ClpXP protease, result<strong>in</strong>g <strong>in</strong> a low steady statelevel of the prote<strong>in</strong>. However, <strong>in</strong> response to oxidative stress, thisproteolysis is halted and Spx accumulates <strong>in</strong> the cell [2]. We have<strong>in</strong>vestigated the effect of ClpXP on swimm<strong>in</strong>g motility and found that theClpXP substrate Spx acts as a negative regulator of flagellar genes.Furthermore, motility genes are transiently down-regulated <strong>in</strong> response tooxidative stress. We propose that dur<strong>in</strong>g adverse environmental conditions,such as oxidative stress, the execution of the stress response program isgiven priority over motility development by the action of the regulatorSpx. Possible mechanisms of this negative regulation are discussed.[1] Msadek T, Dartois V, Kunst F, Herbaud ML, Denizot F, Rapoport G.ClpP of Bacillus subtilis isrequired for competence development, motility, degradative enzyme synthesis, growth at hightemperature and sporulation. Mol Microbiol. 27(5):899-914; 1998.[2] Nakano S, Zheng G, Nakano MM, Zuber P. Multiple pathways of Spx (YjbD) proteolysis <strong>in</strong>Bacillus subtilis. J Bacteriol. 184(13):3664-70; 2002.[3] Pan Q, Gars<strong>in</strong> DA, Losick R. Self-re<strong>in</strong>forc<strong>in</strong>g activation of a cell-specific transcription factor byproteolysis of an anti-sigma factor <strong>in</strong> B. subtilis. Mol Cell. Oct;8(4):873-83; 2001.[4] Turgay K, Hahn J, Burghoorn J, Dubnau D. Competence <strong>in</strong> Bacillus subtilis is controlled byregulated proteolysis of a transcription factor. EMBO J. Nov 16;17(22):6730-8; 1998.BDP011Subcellular compartmentalization of a bacterial organelle byprote<strong>in</strong> diffusion barriersS. Schlimpert* 1,2 , A. Briegel 3 , K. Bolte 2 , J. Kahnt 4 , U.G. Maier 2 ,G.J. Jensen 3 , M. Thanbichler 1,21 Max Planck Institue for Terrestrial Microbiology, Max Planck ResearchGroup “Prokaryotic Cell Biology”, Marburg, Germany2 Philipps University, Department of Biology, Marburg, Germany, Germany3 California Institute of Technology, Division of Biology and HowardHughes Medical Institute, Pasadena, CA, United States4 Max Planck Institute for Terrestrial Microbiology, Department ofEcophysiology, Marburg, GermanyIntracellular compartmentalization by different diffusion barriermechanisms has previously been thought to be solely utilized byeukaryotic cells. Here, we report for the first time that non-membranousprote<strong>in</strong> diffusion barriers also exist <strong>in</strong> prokaryotes. Us<strong>in</strong>g Caulobactercrescentus as a model organism, we show that these diffusion barriersphysically separate cell envelope components of the cell body from theth<strong>in</strong> stalk appendage and create <strong>in</strong>tra-stalk doma<strong>in</strong>s. The Caulobacter stalkrepresents a th<strong>in</strong> extension of the cell envelope that is free of DNA,ribosomes and most cytoplasmic prote<strong>in</strong>s. It is segmented at irregular<strong>in</strong>tervals by so-called crossbands, disk-like structures of so far unclearfunction and identity.In this study, we discovered that crossbands serve as prote<strong>in</strong> diffusionbarriers. The major constituents of these diffusion barriers are four prote<strong>in</strong>sthat co-assemble <strong>in</strong> a cell cycle-dependent manner <strong>in</strong>to a static complex atthe junction between the stalk and the cell body. Us<strong>in</strong>g fluorescence loss <strong>in</strong>photobleach<strong>in</strong>g (FLIP) we observed that, <strong>in</strong> contrast to eukaryotic cells,these diffusion barriers not only laterally compartmentalize cellularmembranes but also limit the free diffusion of soluble (periplasmic)prote<strong>in</strong>s. Moreover, competition assays with wild-type and barrierdeficientcells revealed that diffusion barriers are essential for fitness asthey m<strong>in</strong>imize the effective volume of the cell body envelope, therebyallow<strong>in</strong>g faster adaptation to environmental changes that require theupregulation of prote<strong>in</strong> production.Collectively, our f<strong>in</strong>d<strong>in</strong>gs demonstrate that crossband formation <strong>in</strong> thestalked alpha-proteobacterium Caulobacter crescentus presents a novelmechanism to optimize growth by restrict<strong>in</strong>g prote<strong>in</strong> mobility <strong>in</strong> aprokaryotic cell.BIOspektrum | Tagungsband <strong>2012</strong>


59BDP012Functional analysis of the magnetosome island <strong>in</strong>Magnetospirillum gryphiswaldense: The mamAB operon issufficient for magnetite biom<strong>in</strong>eralizationA. Lohße*, S. Ullrich, E. Katzmann, S. Borg, D. SchülerLudwig-Maximilians-Universität München, Department 1, MikrobiologieAG-Schüler, Planegg-Mart<strong>in</strong>sried, GermanyThe magnetotactic bacterium M. gryphiswaldense synthesizes <strong>in</strong>tracellularmembrane-enveloped crystals of magnetite, which serve for magnetotacticnavigation. The biosynthesis of the nanometer-sized magnetosomes isunder strict genetic control result<strong>in</strong>g <strong>in</strong> well-def<strong>in</strong>ed sizes andmorphologies. Almost all genes implicated <strong>in</strong> the biogenesis were foundlocated <strong>in</strong> a conserved genomic magnetosome island (MAI). Beside thesemam and mms operons this 115-kb region is cod<strong>in</strong>g numerous transposasesas well as hypothetical prote<strong>in</strong>s of unknown functions. Therefore, weimplemented a comb<strong>in</strong>ation of comprehensive and functional analysis ofall MAI prote<strong>in</strong>s. By the construction of multiple large deletion mutants upto 59 kb we demonstrated that the MAI can be deleted without anyconsequences for growth under laboratory conditions. While the majorityof MAI genes have no detectable function <strong>in</strong> magnetosome formation andcould be elim<strong>in</strong>ated without any effect, only


60BDP016The paryphoplasm of Planctomycetes is a highly derivedperiplasmM. Krehenbr<strong>in</strong>k* 1 , R. Stamboliyska²1 University of Oxford, Biochemistry, Oxford, United K<strong>in</strong>gdom²Ludwig-Miximillians-Universität, Department of Evolutionary Biology,Munich, GermanyPlanctomycetes are bacteria with an unusually high degree of <strong>in</strong>tracellularcompartmentalization. Although the extent of compartmentalization varies,the cell content of all planctomycetes is differentiated <strong>in</strong>to at least a centralriboplasm conta<strong>in</strong><strong>in</strong>g the genomic DNA and ribosomes, and an extensiveperipheral compartment termed the paryphoplasm. Uniquely <strong>in</strong> bacteria,endocytotic prote<strong>in</strong> uptake and membrane traffick<strong>in</strong>g has been observed <strong>in</strong>the paryphoplasm of Gemmata obscuriglobus. As the division of thecellular contents <strong>in</strong>to paryphoplasm and riboplasm is rem<strong>in</strong>iscent of thedivision of the cell contents of Gram-negative bacteria <strong>in</strong>to a centralcytoplasm and a peripheral periplasm, the genome sequence of the modelplanctomycete Planctomyces limnophilus was exam<strong>in</strong>ed for the presenceof prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the ma<strong>in</strong>tenance and function<strong>in</strong>g of the Gramnegativeperiplasm and outer membrane. The P. limnophilus genome wasfound to encode a large number of prote<strong>in</strong>s typical for the periplasm andthe outer membrane, <strong>in</strong>clud<strong>in</strong>g the outer membrane <strong>in</strong>sertion prote<strong>in</strong>BamA and outer membrane components of pili and flagella. Fewhomologs of Gram-negative prote<strong>in</strong> secretion systems were found, andvery few prote<strong>in</strong>s were found <strong>in</strong> the culture supernatant. In contrast, ~22%of all encoded prote<strong>in</strong>s were predicted to carry a Sec signal peptide, whichcorresponds well with 20-30% of all prote<strong>in</strong>s targeted to the periplasm <strong>in</strong> atypical Gram-negative bacterium. A comparison of these prote<strong>in</strong>s with theperiplasmic prote<strong>in</strong>s of Gram-negative bacteria also revealed substantialfunctional overlap between the two sets. We propose that theparyphoplasm is derived from a modified and greatly expanded periplasmand discuss the role of this cellular compartment <strong>in</strong> the lifestyle of thisgroup of organisms.BDP017Lipid specificity of a bacterial dynam<strong>in</strong>-like prote<strong>in</strong>P. Sawant* 1 , M. Bramkamp 21 University of Cologne, IGSDHD, Biochemistry, Köln, Germany2 University of Cologne, Cologne, GermanyMembrane fusion and fission are rapid, dynamic processes that occur <strong>in</strong>eukaryotic and prokaryotic cells to facilitate generation and transport ofvesicles, <strong>in</strong>duce membrane traffick<strong>in</strong>g, ma<strong>in</strong>ta<strong>in</strong> cell shape and size.Prote<strong>in</strong>s of dynam<strong>in</strong> superfamily play an important role <strong>in</strong> ma<strong>in</strong>tenance ofmembrane dynamics. This prote<strong>in</strong> family <strong>in</strong>cludes members like classicaldynam<strong>in</strong>s, dynam<strong>in</strong>-related prote<strong>in</strong>s and guanylate-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s oratlast<strong>in</strong>s. Dynam<strong>in</strong> GTPases demonstrate functions such as vesiclescission, division of organelles, cytok<strong>in</strong>esis and microbial resistance.DynA is a 136 KDa GTPase <strong>in</strong> Bacillus subtilis. Its structure isremarkable, as it seems to have developed from a fusion event betweentwo molecules thus consist<strong>in</strong>g of two separate GTPase and dynam<strong>in</strong>-likesubunits. On account of sequence homology to other bacterial andeukaryotic dynam<strong>in</strong>s, similar biochemical properties such as GTPhydrolysis and membrane fusion, DynA is classified as a member of thedynam<strong>in</strong> superfamily. It is a bacterial dynam<strong>in</strong>-like prote<strong>in</strong> (BDLP) whosefunction is reasonably parallel to eukaryotic mitofus<strong>in</strong>s, <strong>in</strong>volved <strong>in</strong>mitochondrial outer membrane fusion. Mitofus<strong>in</strong>s mediate nucleotidedependentfusion whereas DynA shows nucleotide-<strong>in</strong>dependent membranetether<strong>in</strong>g and fusion <strong>in</strong> vitro. Our recent <strong>in</strong> vitro data has shown DynA tomediate nucleotide-<strong>in</strong>dependent fusion of vesicles generated fromphosphatidylglycerol (PG) and cardiolip<strong>in</strong> (CA). Vesicle tether<strong>in</strong>g but notfusion was observed with other lipids tested so far which is suggestive ofDynA’s aff<strong>in</strong>ity for PG and CA phospholipids. Currently we determ<strong>in</strong>e theam<strong>in</strong>o acid positions <strong>in</strong> DynA that mediate such lipid specificity. Thismight allow identify<strong>in</strong>g DynA’s target on bacterial membrane. Overall aimof this project is reveal<strong>in</strong>g the function and actual mechanism of DynA <strong>in</strong>bacteria. B. subtilis DynA seems like a promis<strong>in</strong>g BDLP candidate due tothe well characterised molecular biology of its host organism and theunique structural features of the molecule. Biochemical and cell biologicalcharacterisation of DynA us<strong>in</strong>g the simple B. subtilis may providemechanistic implications <strong>in</strong> particular for the mitochondrial membranedynamics as well as other dynam<strong>in</strong>-like prote<strong>in</strong>s (DLPs).BDP018The mamXY operon is <strong>in</strong>volved <strong>in</strong> controll<strong>in</strong>g magnetiteformation and magnetosome cha<strong>in</strong> position<strong>in</strong>g <strong>in</strong>Magnetospirillum gryphiswaldenseO. Raschdorf* 1 , F. Müller 1 , E. Katzmann 1 , M. Pósfai 2 , D. Schüler 11 Ludwig-Maximillians-Universität München, Department Biologie I -Mikrobiologie, Mart<strong>in</strong>sried, Germany2 University of Pannonia, Department of Earth and EnvironmentalSciences, Veszprém, Hungary, GermanyMagnetotactic bacteria (MTB) use <strong>in</strong>tracellular cha<strong>in</strong>s of membraneenvelopedmagnetite crystals, called magnetosomes, to orientate alongmagnetic fields. The sequential steps of magnetosome synthesis <strong>in</strong>volve<strong>in</strong>tracellular differentiation and <strong>in</strong>clude vesicle formation, magnetitenucleation and m<strong>in</strong>eralization as well as magnetosome cha<strong>in</strong> alignmentand are subject to tight genetic regulation. Most of the genes implicated <strong>in</strong>magnetosome formation are organized <strong>in</strong> four operons that are clusteredwith<strong>in</strong> a genomic magnetosome island. Despite of recent progress <strong>in</strong>characterization of these genes, the function of the mamXY operon has notbeen well <strong>in</strong>vestigated so far. To close this gap, we created unmarkeddeletions of all four <strong>in</strong>dividual genes with<strong>in</strong> this operon and analyzed thephenotype of the mutants. The mamH-like gene encodes for a uniquemembrane-spann<strong>in</strong>g prote<strong>in</strong> affiliated to the group of MFS transporters butfused to a putative ferric reductase-like doma<strong>in</strong>. The mamH-like mutantforms magnetite crystals with heterogenic size, structure and cellulardistribution. The mutant also displays a delay <strong>in</strong> production offerrimagnetic magnetosomes. A similar phenotype was observed upondeletion of mamX, <strong>in</strong>dicat<strong>in</strong>g a function <strong>in</strong> the same cellularbiom<strong>in</strong>eralization process. Deletion of the MTB-specific mamY genehowever, did not <strong>in</strong>fluence m<strong>in</strong>eralization but led to mislocalization ofmagnetosome cha<strong>in</strong>s. Fluorescence microscopy revealed that MamYlocalizes as a filamentous structure co<strong>in</strong>cid<strong>in</strong>g with the expected positionof the magnetosome cha<strong>in</strong>. The prote<strong>in</strong> may therefore directly participate<strong>in</strong> target<strong>in</strong>g magnetosomes to their assigned position by an as yet unknownmechanism. Unexpectedly, deletion of ftsZm, cod<strong>in</strong>g for a truncatedhomolog of the major cell division prote<strong>in</strong> FtsZ, did not show any obviouscell division phenotype, and <strong>in</strong> contrast to previous reports also nobiom<strong>in</strong>eralization defects. In conclusion, our data suggests that the prote<strong>in</strong>sencoded with<strong>in</strong> the mamXY operon play a major role <strong>in</strong> magnetosomebiom<strong>in</strong>eralization and cha<strong>in</strong> position<strong>in</strong>g.BDP019Mapp<strong>in</strong>g the <strong>in</strong>teraction surfaces of the bacterial cell divisionregulator MipZB. He* 1,2 , M. Thanbichler 1,21 Max Planck Institute for Terrestrial Microbiology, Prokaryotic CellBiology, Marburg, Germany2 Philipps University, Department of Biology, Marburg, GermanyProper position<strong>in</strong>g of the cell division site <strong>in</strong> Caulobacter crescentus isregulated by the ATPase MipZ, which forms bipolar gradients with<strong>in</strong> thecell, thus restrict<strong>in</strong>g assembly of the cytok<strong>in</strong>etic FtsZ r<strong>in</strong>g to the midcellregion. Gradient formation is driven by a dynamic localization cycle that<strong>in</strong>volves the alternation of MipZ between a monomeric and dimeric statewith dist<strong>in</strong>ct <strong>in</strong>teraction patterns and diffusion rates. This cycle depends onthe oscillation of MipZ between non-specific chromosomal DNA and apolarly localized complex of the chromosome partition<strong>in</strong>g prote<strong>in</strong> ParB.To map the surface regions that mediate the <strong>in</strong>teraction of MipZ with FtsZ,ParB and DNA, we systematically exchanged surface-exposed residuesus<strong>in</strong>g alan<strong>in</strong>e-scann<strong>in</strong>g mutagenesis. Analyz<strong>in</strong>g the subcellular distributionof the mutant prote<strong>in</strong>s as well as their ability to support division siteplacement, we identified three clusters of residues each of which is likelyresponsible for contact<strong>in</strong>g one of the <strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong>s. Notably, theDNA-b<strong>in</strong>d<strong>in</strong>g pocket of the MipZ dimer is composed of residues from bothdimer subunits. Moreover, it was found to be located opposite the putativeFtsZ-b<strong>in</strong>d<strong>in</strong>g region, consistent with the previous f<strong>in</strong>d<strong>in</strong>g that the regulatoryeffect of MipZ is specific for its dimeric form and <strong>in</strong>volves contacts with bothDNA and FtsZ. These results provide the first detailed analysis of the<strong>in</strong>teraction determ<strong>in</strong>ants of MipZ and yield new <strong>in</strong>sights <strong>in</strong>to the mechanismsthat underly the function of this unique regulatory system.BDP020Bactofil<strong>in</strong>s: polar landmarks <strong>in</strong> Myxococcus xanthusL. L<strong>in</strong>* 1,2 , A. Harms 3 , J. Kahnt 3 , L. Søgaard-Andersen 3 , M. Thanbichler 1,21 Max Planck Institute for Terrestrial Microbiology, Prokaryotic CellBiology, Marburg, Germany2 Philipps University, Department of Biology, Marburg, Germany3 Max Planck Institute for Terrestrial Microbiology, Department ofEcophysiology, Marburg, GermanyBacteria, similar to eukaryotes, possess cytoskeletons that are <strong>in</strong>volved <strong>in</strong>the temporal and spatial organization of various cellular processes<strong>in</strong>clud<strong>in</strong>g cell division, cell morphogenesis, cell polarity, as well as DNABIOspektrum | Tagungsband <strong>2012</strong>


61partition<strong>in</strong>g. Out of these elements, the tubul<strong>in</strong> homologue FtsZ, the act<strong>in</strong>homologue MreB, and <strong>in</strong>termediate filament-like (IF) prote<strong>in</strong>s arewidespread <strong>in</strong> many bacterial l<strong>in</strong>eages. In addition, <strong>in</strong> recent years, an<strong>in</strong>creas<strong>in</strong>g number of non-canonical cytoskeletons have been identified <strong>in</strong>bacteria. These <strong>in</strong>clude a new class of cytoskeletal prote<strong>in</strong>s, namedbactofil<strong>in</strong>s, which was orig<strong>in</strong>ally discovered <strong>in</strong> Caulobacter crescentus.Bactofil<strong>in</strong>s are widely distributed among bacteria and show no similarity<strong>in</strong> either sequence or structure to other known cytoskeletal prote<strong>in</strong>s.Interest<strong>in</strong>gly, many species possess two or more bactofil<strong>in</strong> alleles,<strong>in</strong>dicat<strong>in</strong>g multiple gene duplication events and functional differentiation.Previous work showed that <strong>in</strong> C. crescentus,two bactofil<strong>in</strong> paralogues,BacA and BacB, are <strong>in</strong>volved <strong>in</strong> stalk biogenesis. In this study, we haveextended the <strong>in</strong>vestigation of bactofil<strong>in</strong>s to Myxococcus xanthus, a socialspecies that conta<strong>in</strong>s four bactofil<strong>in</strong> homologues. Our results suggest thatbactofil<strong>in</strong>s of M. xanthus are <strong>in</strong>volved <strong>in</strong> a variety of different processes,mediat<strong>in</strong>g the proper arrangement of prote<strong>in</strong> complexes with<strong>in</strong> the cell.Thus, bactofil<strong>in</strong>s are a novel and widespread group of cytoskeletal prote<strong>in</strong>sthat show a conserved overall architecture but have diverged significantlywith respect to their localization patterns and functions.BDP021Overexpression of Flotill<strong>in</strong>s affects septum formation <strong>in</strong> BacillussubtilisB. Mielich*, J. Schneider, D. LopezResearch Center for Infectious Diseases, Institute for Molecular InfectionBiology, Würzburg, GermanyThe model organism Bacillus subtilis has been traditionally used to studythe presence of Flotill<strong>in</strong> prote<strong>in</strong>s <strong>in</strong> bacteria (1-3). Flotill<strong>in</strong>s are prote<strong>in</strong>sthat exclusively localize <strong>in</strong> lipid rafts of eukaryotic cells (4,5). In B.subtilis, flotill<strong>in</strong>s localize <strong>in</strong> membrane microdoma<strong>in</strong>s that are functionallysimilar to the lipid rafts of eurkaryotes. This opens the door for us<strong>in</strong>gbacteria as systems to address <strong>in</strong>tr<strong>in</strong>cate questions <strong>in</strong> developmentalbiology such as the role of flotill<strong>in</strong>s <strong>in</strong> lipid rafts or the <strong>in</strong>fluence thatflotill<strong>in</strong>s exerts on of diverse cellular processes that are related to lipidrafts.We constructed a stra<strong>in</strong> that simultaneously overexpress the two genes thatencode for flotill<strong>in</strong>-like prote<strong>in</strong>s <strong>in</strong> B. subtilis, yqfA and floT. Higherconcentration of flotill<strong>in</strong> prote<strong>in</strong>s was found <strong>in</strong> the membrane of grow<strong>in</strong>gcells. Remarkably, the overexpression of flotill<strong>in</strong> caused hyperactivation ofseveral signal<strong>in</strong>g transduction pathways associated with lipid rafts, likebiofilm formation. Moreover, overexpression of flotill<strong>in</strong>s caused aberrantcell division <strong>in</strong> B. subtilis. Cells showed smaller cell size, probably causedby the assembly of multiple septa along the cells, which eventually giverise to the formation of anucleate, non-autonomous m<strong>in</strong>icells that swimfreely <strong>in</strong> the cultures of B. subtilis (6). Microscopical and biochemicalstudies will be shown to elucidate how flotill<strong>in</strong> <strong>in</strong>fluence the properlocalization of the prote<strong>in</strong>s responsible for septum formation and theactivation of the signal<strong>in</strong>g pathway to biofilm formation <strong>in</strong> B. subtilis.1. C. Donovan, M. Bramkamp, Characterization and subcellular localization of a bacterial flotill<strong>in</strong>homologue.Microbiology155, 1786 (Jun, 2009).2. D. Lopez, R. Kolter, Functional microdoma<strong>in</strong>s <strong>in</strong> bacterial membranes.Genes Dev24, 1893 (Sep 1, 2010).3. N. Tavernarakis, M. Driscoll, N. C. Kyrpides, The SPFH doma<strong>in</strong>: implicated <strong>in</strong> regulat<strong>in</strong>g targeted prote<strong>in</strong>turnover <strong>in</strong> stomat<strong>in</strong>s and other membrane-associated prote<strong>in</strong>s.Trends Biochem Sci24, 425 (Nov, 1999).4. M. F. Langhorst, A. Reuter, C. A. Stuermer, Scaffold<strong>in</strong>g microdoma<strong>in</strong>s and beyond: the function ofreggie/flotill<strong>in</strong> prote<strong>in</strong>s.Cell Mol Life Sci62, 2228 (Oct, 2005).5. I. C. Morrow, R. G. Parton, Flotill<strong>in</strong>s and the PHB doma<strong>in</strong> prote<strong>in</strong> family: rafts, worms andanaesthetics.Traffic6, 725 (Sep, 2005).6. H. I. Adler, W. D. Fisher, A. Cohen, A. A. Hardigree, M<strong>in</strong>iature Escherichia coli cells deficient <strong>in</strong>DNA.Proc Natl Acad Sci U S A57, 321 (Feb, 1967).BDP022Differential expression of two flotill<strong>in</strong>-like prote<strong>in</strong>s <strong>in</strong> BacillussubtilisJ. Schneider*, B. Mielich, D. LopezResearch Center for Infectious Diseases, IMIB, Wuerzburg, GermanyB. subtilisis a model organism traditionally used for the study of flotill<strong>in</strong>prote<strong>in</strong>s <strong>in</strong> the membrane of bacteria (1-3). Flotill<strong>in</strong>s are prote<strong>in</strong>sexclusively associated with lipid rafts <strong>in</strong> eukaryotic cells (4-6). In B.subtilis and several other bacterial models, flotill<strong>in</strong> prote<strong>in</strong>s localize <strong>in</strong>membrane microdoma<strong>in</strong>s that are functionally similar to lipid rafts ofeukaryotic cells. Concretely, functional microdoma<strong>in</strong>s of B. subtilisconta<strong>in</strong> two different flotill<strong>in</strong>-like prote<strong>in</strong>s named YqfA and FloT. S<strong>in</strong>cethe role of flotill<strong>in</strong>s <strong>in</strong> lipid rafts is not entirely clear, we used B. subtilis asmodel organism to carry out genetic and biochemical approaches <strong>in</strong> orderto understand the role of each one of the two different flotill<strong>in</strong>-like prote<strong>in</strong>sthat are present <strong>in</strong> the functional microdoma<strong>in</strong>s.Our data suggest that the absence of one of the flotill<strong>in</strong>s does not affect thelocalization of the other <strong>in</strong> functional membrane microdoma<strong>in</strong>s of B.subtilis. The expression of FloT and YqfA flotil<strong>in</strong>s is controlled differentlybecause specific grow<strong>in</strong>g conditions lead cells to express just YqfA or bothFloT and YqfA flotill<strong>in</strong>s simultaneously. Expression of YqfA orFloT+YqfA <strong>in</strong> the functional microdoma<strong>in</strong>s of B. subtilis affectssignificantly the functionality of the signal<strong>in</strong>g pathways harbored with<strong>in</strong>the functional microdoma<strong>in</strong>s. Consistently with the different expression ofthe two flotill<strong>in</strong>-like prote<strong>in</strong>s, our studies of gene expression us<strong>in</strong>gtranscriptional reporters <strong>in</strong>dicate that floT and yqfA genes are differentlyregulated. The regulation cascades that control the expression of bothflotill<strong>in</strong>-encod<strong>in</strong>g genes will be presented and discussed.1. C. Donovan, M. Bramkamp. (2009)Microbiology155, 1786.2. D. Lopez, R. Kolter. (2010)Genes Dev24, 1893.3. N. Tavernarakis, M. Driscoll, N. C. Kyrpides. (1999)Trends Biochem Sci24, 425.4. M. F. Langhorst, A. Reuter, C. A. Stuermer (2005)Cell Mol Life Sci62, 2228.5. I. C. Morrow, R. G. Parton. (2005)Traffic6, 725.6. E. Rivera-Milla, C. A. Stuermer, E. Malaga-Trillo. (2006)Cell Mol Life Sci63, 343.CEV001The bacterial MreB cytoskeleton organizes the cell membraneH. Strahl*, L. HamoenNewcastle University, Centre for Bacterial Cell Biology, Newcastle uponTyne, United K<strong>in</strong>gdomMany bacteria require the act<strong>in</strong> homolog MreB to ma<strong>in</strong>ta<strong>in</strong> a rod-like cellshape 1, 2 . This bacterial cytoskeleton prote<strong>in</strong> forms short filaments beneaththe cell membrane and organizes lateral cell wall synthesis 1, 2, 3 . We foundthat compounds that perturb the localization of MreB also alter the lipiddistribution <strong>in</strong> the cell membrane. Importantly, this effect leads to anaberrant distribution of membrane prote<strong>in</strong>s. We show for the E. coli LacYpermease and F 1F o ATP synthase that this is accompanied by a reduction<strong>in</strong> enzyme activity. It appears that the MreB cytoskeleton, together withthe transmembrane prote<strong>in</strong>s MreC and MreD, actively organize thebacterial cytoplasmic membrane by form<strong>in</strong>g fluid membrane microdoma<strong>in</strong>s.This property is comparable to that described for the eukaryoticcortical act<strong>in</strong> cytoskeleton 4, 5 . We speculate that this common function ofMreB and act<strong>in</strong> might be the reason why this prote<strong>in</strong> family has rema<strong>in</strong>edconserved dur<strong>in</strong>g evolution.1: Graumann PL (2007) Cytoskeletal elements <strong>in</strong> bacteria. Annu Rev Microbiol 61:589-618.2: Carballido-Lopez R (2006) The bacterial act<strong>in</strong>-like cytoskeleton. Microbiol Mol Biol Rev 70(4):888-909.3: Dom<strong>in</strong>guez-Escobar J, et al. (2011) Processive movement of MreB-associated cell wallbiosynthetic complexes <strong>in</strong> bacteria. Science 333(6039):225-228.4: Liu AP & Fletcher DA (2006) Act<strong>in</strong> polymerization serves as a membrane doma<strong>in</strong> switch <strong>in</strong>model lipid bilayers. Biophysical Journal 91(11):4064-4070.5: Petrov EP, Ehrig J, & Schwille P (2011) Near-critical fluctuations and cytoskeleton-assistedphase separation lead to subdiffusion <strong>in</strong> cell membranes. Biophysical Journal 100(1):80-89.CEV002Cell envelope stress response <strong>in</strong> cell wall-deficient L-forms ofBacillus subtilisD. Wolf* 1 , P. Domínguez-Cuevas 2 , R. Daniel 2 , T. Mascher 11 LMU München, Department I, Mikrobiologie, Mart<strong>in</strong>sried, Germany2 University of Newcastle upon Tyne, CBCB, Newcastle upon Tyne, UnitedK<strong>in</strong>gdomL-forms are cell wall-deficient cells that can grow and proliferate <strong>in</strong>osmotically stabiliz<strong>in</strong>g media [1]. Recently, a stra<strong>in</strong> of the Gram-positivemodel bacterium Bacillus subtilis was constructed that allows a controlledswitch<strong>in</strong>g between rod-shaped wild type cells and correspond<strong>in</strong>g L-forms[2]. Both states can be stably ma<strong>in</strong>ta<strong>in</strong>ed under suitable culture conditions.Because of the absence of a cell wall, L-forms are known to be <strong>in</strong>sensitiveto -lactam antibiotics. But reports on the susceptibility of L-forms toother antibiotics that <strong>in</strong>terfere with membrane-anchored steps of cell wallbiosynthesis are sparse, conflict<strong>in</strong>g and strongly <strong>in</strong>fluenced by stra<strong>in</strong>background and method of L-form generation. We therefore aimed at<strong>in</strong>vestigat<strong>in</strong>g the response of B. subtilis to the presence of cell envelopeantibiotics, both with regard to antibiotic resistance and the <strong>in</strong>duction ofthe known LiaRS- and BceRS-dependent cell envelope stress biosensors[3]. Our results show that B. subtilis L-forms are resistant to antibioticsthat <strong>in</strong>terfere with the bactoprenol cycle, such as bacitrac<strong>in</strong> andvancomyc<strong>in</strong>, but are hyper-sensitive to nis<strong>in</strong> and daptomyc<strong>in</strong>, which bothaffect membrane <strong>in</strong>tegrity. Moreover, we established a lacZ-based reportergene assay for L-forms and provide evidence that LiaRS senses its<strong>in</strong>ducers <strong>in</strong>directly (“damage-sens<strong>in</strong>g”), while the Bce module presumablydetects its <strong>in</strong>ducers directly (“drug-sens<strong>in</strong>g”) [4].[1] Onoda et al. (1992), J Gen Microbiol. 138:1265-70[2] Leaver et al. (2009), Nature. 457:849-53[3] Jordan et al. (2008), FEMS Microbiol. Rev. 32:107-146[4] Wolf et al. (2011), submittedCEV003Mechanism of substrate recognition of the tRNA-dependent alanylphosphatidylglycerolsynthase from Pseudomonas aerug<strong>in</strong>osaS. Hebecker* 1 , W. Arendt 1 , T. Hasenkampf 1 , I. He<strong>in</strong>emann 2 , D. Söll 2 ,D. Jahn 1 , J. Moser 11 TU Braunschweig, Department of Microbiology, Braunschweig, Germany2 Yale University, Department of Molecular Biophysics and Biochemistry,New Haven, United StatesThe alanyl-phosphatidylglycerol synthase (A-PGS) from the opportunisticbacterium Pseudomonas aerug<strong>in</strong>osa catalyzes the alanylation of thephospholipid phosphatidylglycerol <strong>in</strong> a tRNA Ala -dependent reaction. Whenexposed to acidic growth conditions, P. aerug<strong>in</strong>osa synthesizes significantamounts of alanyl-phosphatidylglycerol (A-PG). Furthermore, formationBIOspektrum | Tagungsband <strong>2012</strong>


62of A-PG was found responsible for the resistance of P. aerug<strong>in</strong>osa to theCAMP protam<strong>in</strong>e sulphate, the -lactam antibiotic cefsulod<strong>in</strong>, the heavymetal ion Cr 3+ and the osmolyte sodium lactate.Despite the presence of a large hydrophobic N-term<strong>in</strong>al transmembranedoma<strong>in</strong> all elements for the catalytic function of the A-PGS are localized<strong>in</strong> the C-term<strong>in</strong>al hydrophilic doma<strong>in</strong> (A-PGS 543-881). Us<strong>in</strong>g this catalyticfragment an overall of 33 mutant prote<strong>in</strong>s were analyzed <strong>in</strong> vitro. Based onthese analyses it was proposed that the enzymatic mechanism proceeds viaa direct transesterification <strong>in</strong> an acid-base catalysis of D765. Thereby, the2’ or 3’ hydroxyl group of the lipid substrate might nucleophilically attackthe -carbonyl group of Ala-tRNA Ala , which is function<strong>in</strong>g as an activatedalanyl-ester substrate.A-PGS catalysis at the water-lipid <strong>in</strong>terface requires accurate substraterecognition for phosphatidylglycerol and concurrently for the cytosolic cosubstrateAla-tRNA Ala . Substrate recognition was analyzed by us<strong>in</strong>gam<strong>in</strong>oacylated microhelices as analogues of the natural tRNA substrate.The enzyme even tolerated mutated versions of this m<strong>in</strong>imal substrate,which <strong>in</strong>dicates that neither the <strong>in</strong>tact tRNA, nor the <strong>in</strong>dividual sequenceof the acceptor stem is a determ<strong>in</strong>ant for substrate recognition.Furthermore, the analysis of derivatives of phosphatidylglycerol <strong>in</strong>dicatedthat the polar head group of the phospholipid is specifically recognized bythe enzyme, whereas modification of an <strong>in</strong>dividual fatty acid or even thedeletion of a s<strong>in</strong>gle fatty acid did not abolish A-PG synthesis.Hebecker, S., Arendt, W., He<strong>in</strong>emann, I.U., Tiefenau, J.H.J., Nimtz, M., Rohde, M., Söll, D., and Moser, J..(2011) Alanyl-Phosphatidylglycerol Synthase: Mechanism of Substrate Recognition dur<strong>in</strong>g tRNAdependentLipid Modification <strong>in</strong> Pseudomonas aerug<strong>in</strong>osa.Mol Microbiol.80: 935-950.CEV004Membrane vesicle formation <strong>in</strong> Pseudomonas putida DOT-T1Eas multiple stress response mechanism enhances cell surfacehydrophobicity and biofilm formationT. Baumgarten 1 , S. Stefanie Sperl<strong>in</strong>g 1 , J. Seifert 2 , F. Ste<strong>in</strong>iger 3 ,J.A. Müller 1 , L.Y. Wick 4 , H.J. Heipieper* 11 Helmholtz Centre for Environmental Research - UFZ, DepartmentEnvironmental Biotechnology, Leipzig, Germany2 Helmholtz Centre for Environmental Research - UFZ, Department ofProteomics, Leipzig, Germany3 Cl<strong>in</strong>ics of the Friedrich Schiller University, Electron Microscopic Centre,Jena, Germany4 Helmholtz Centre for Environmental Research - UFZ, Department ofEnvironmental Microbiology, Leipzig, GermanyThe adaptation of bacteria to a rapid change of environmental conditions isa basic requirement for their survival. Especially the bacterial cellenvelope as complex <strong>in</strong>terface to the environment is very sensitive tostress. Therefore, several mechanisms had been evolved with whichbacteria respond to the presence of different environmental stresses.Among these mechanisms, the release of outer membrane vesicles (MV) <strong>in</strong>Gram-negative bacteria has ga<strong>in</strong>ed research <strong>in</strong>terest especially because ofits <strong>in</strong>volvement <strong>in</strong> pathogenic processes such as that of Pseudomonasaerug<strong>in</strong>osa biofilm formation <strong>in</strong> cystic fibrosis lungs. In this study we<strong>in</strong>vestigated the role of MV formation as an adaptive response ofPseudomonas putida DOT-T1E to several stresses and its correlation tobiofilm formation. In the presence of long cha<strong>in</strong> alcohols, high NaClconcentrations, EDTA, and after heat shock cells of this stra<strong>in</strong> release MVvery rapidly. The formed MV show similar size and charge properties aswell as comparable composition <strong>in</strong> prote<strong>in</strong>s and fatty acids. In addition,this process caused a significant <strong>in</strong>crease <strong>in</strong> cell surface hydrophobicityand consequently led to an enhanced tendency to form biofilms.Baumgarten T., Vazquez J., Bastisch C., Veron W., Feuilloley M.G.J., Nietzsche S., Wick L.Y., HeipieperH.J.(2011) Alkanols and chlorophenols cause different physiological adaptive responses on the level of cellsurface properties and membrane vesicle formation <strong>in</strong>Pseudomonas putidaDOT-T1E. Appl. Microbiol.Biotechnol. <strong>in</strong> press. DOI: 10.1007/s00253-011-3442-9Heipieper H.J., Neumann G., Cornelissen S., Me<strong>in</strong>hardt F.(2007) Solvent-tolerant bacteria forbiotransformations <strong>in</strong> two-phase fermentation systems. Appl. Microbiol. Biotechnol.74:961-973.Neumann G., Cornelissen S., van Breukelen F., Hunger S., Lippold H., Loffhagen N., Wick L.Y., HeipieperH.J.(2006) Energetics and surface properties ofPseudomonas putidaDOT-T1E <strong>in</strong> a two-phase fermentationsystem with 1-decanol as second phase. Appl. Environ. Microbiol.72:4232-4238.CEV005A novel ATP-Driven pathway of glycolipid export for cellenvelope formation <strong>in</strong>volv<strong>in</strong>g TolCI. Maldener* 1 , P. Staron 1,2 , K. Forchhammer 11 EK-University, IMIT/Organismic Interactions, Tüb<strong>in</strong>gen, Germany2 Universität, Tüb<strong>in</strong>gen, GermanyType I secretion systems mediate the transport across the membrane. Theyare composed of 3 components: <strong>in</strong>ner membrane factor (IMF), membranefusion prote<strong>in</strong> (MFP) and outer membrane factor (OMF). The IMF is<strong>in</strong>volved <strong>in</strong> substrate recognition, transport and energy conversion. In caseof ABC-exporters anATPb<strong>in</strong>d<strong>in</strong>gcassette, as part of the IMF, provides theenergy. The MFP bridges the periplasmic space, connect<strong>in</strong>g the <strong>in</strong>ner withthe outer membrane factor. The OMF (TolC and homologues) is a poreform<strong>in</strong>gmembrane-barrel prote<strong>in</strong> that extends <strong>in</strong>to the periplasmic spaceas an a-helical barrel.Dur<strong>in</strong>g morphological differentiation to N 2 fix<strong>in</strong>g heterocysts, thefilamentous cyanobacterium Anabaena sp. stra<strong>in</strong> PCC 7120 forms anextracellular glycolipid layer (HGL). Function<strong>in</strong>g as O 2 diffusion barrier,this layer is deposited on top of the outer membrane. Mutants defective <strong>in</strong>any gene of the devBCA (alr3710-3712) operon, encod<strong>in</strong>g an ABCexporter, are not able to grow on N 2. Although the mutants are notimpaired <strong>in</strong> HGL synthesis, the HGL layer is not present. The devB geneencodes a MFP orthologe, devC a substrate b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> of an IMF, anddevA the respective ATPase (1). A mutant <strong>in</strong> alr2887, encod<strong>in</strong>g a poreform<strong>in</strong>gTolC-like OMF, is also not able to grow on N 2. It shows the samephenotype like mutants <strong>in</strong> devBCA (2).We provide evidence that DevBCA and TolC form a type I secretionsystem required for the direct transport of both HGLs across the gramnegativecell wall. By prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction studies (<strong>in</strong> vivo and <strong>in</strong>vitro FA-crossl<strong>in</strong>k, SPR and ITC) we could reveal the k<strong>in</strong>etic parametersfor gat<strong>in</strong>g and transport, the stoichiometric relations, the specific b<strong>in</strong>d<strong>in</strong>gsites, and <strong>in</strong>dications on a yet unknown mechanism of ATP-driven type Isecretion systems. As proposed for the MFP MacA fromE. coli (3),thehomologue DevB needs to connect IMF and OMF as a hexamer. The ATPaseactivity of the reconstituted DevBCA complex is <strong>in</strong>creased up to seven fold <strong>in</strong>the presence of purified HGLs. We identified am<strong>in</strong>o acids <strong>in</strong> DevB that areessential for formation of the hexameric channel and the reaction of thereconstituted complex towards its HGL substrate (4).Our f<strong>in</strong>d<strong>in</strong>gs provide a molecular basis for understand<strong>in</strong>g this alternative type oflipid transport system, which represents a novel route for lipids out of the cell.1 Fiedler, G., M. Arnold, S. Hannus & I. Maldener, (1998) The DevBCA exporter is essential for envelopeformation <strong>in</strong> heterocysts of the cyanobacteriumAnabaenasp. stra<strong>in</strong> PCC 7120.Mol Microbiol27: 1193-1202.2 Moslavac, S., K. Nicolaisen, O. Mirus, F. Al Dehni, R. Pernil, E. Flores, I. Maldener & E. Schleiff, (2007)A TolC-like prote<strong>in</strong> is required for heterocyst development <strong>in</strong>Anabaenasp. stra<strong>in</strong> PCC 7120.J Bacteriol189:7887-7895.3 Yum, S., Y. Xu, S. Piao, S. H. Sim, H. M. Kim, W. S. Jo, K. J. Kim, H. S. Kweon, M. H. Jeong, H. Jeon,K. Lee & N. C. Ha, (2009) Crystal structure of the periplasmic component of a tripartite macrolide-specificefflux pump.J Mol Biol387: 1286-1297.4 Staron. P. , K. Forchhammer & I. Maldener, (2011) Novel ATP-driven pathway of glycolipid export<strong>in</strong>volv<strong>in</strong>g TolC.J Biol Chem286: 38202-38210CEV006A non-classical periplasmic prote<strong>in</strong> target<strong>in</strong>g mechanismA. Edwards 1 , J.A. Downie 1 , M. Krehenbr<strong>in</strong>k* 21 John Innes Centre, Norwich, United K<strong>in</strong>gdom2 University of Oxford, Biochemistry, Oxford, United K<strong>in</strong>gdomMost periplasmic prote<strong>in</strong>s carry a hydrophobic N-term<strong>in</strong>al signal peptidethat is required for target<strong>in</strong>g and export by the Sec mach<strong>in</strong>ery.Nevertheless, a few prote<strong>in</strong>s lack<strong>in</strong>g such a peptide have been reportedfrom periplasmic fractions; the mechanism by which these are targeted andexported is currently poorly understood. One of these prote<strong>in</strong>s is theMn/Fe superoxide dismutase (SodA) of Rhizobium legum<strong>in</strong>osarum, whichis also exported to the periplasm of various proteobacteria, <strong>in</strong>clud<strong>in</strong>gEscherichia coli. This prote<strong>in</strong> was used as a model substrate to study themechanism of non-classical prote<strong>in</strong> target<strong>in</strong>g. SodA export was <strong>in</strong>hibitedby azide, an <strong>in</strong>hibitor of SecA ATPase activity. An E. coli stra<strong>in</strong>express<strong>in</strong>g a temperature-sensitive SecA variant also exhibited stronglyreduced SodA export, <strong>in</strong>dicat<strong>in</strong>g export via a SecA-l<strong>in</strong>ked mechanism. Byscreen<strong>in</strong>g various reporter fusion prote<strong>in</strong>s, we showed that the 10 N-term<strong>in</strong>al am<strong>in</strong>o acid residues of SodA were sufficient to target a reporterprote<strong>in</strong> to the periplasm; further screen<strong>in</strong>g of random mutant libraries anddirected mutageneses identified a putative target<strong>in</strong>g signal with<strong>in</strong> thissequence. Although the SecYEG translocon had previously been shown todirectly require the b<strong>in</strong>d<strong>in</strong>g of classical signal peptides for activation, theidentified target<strong>in</strong>g signal bore no resemblance to any known signalsequence. The target<strong>in</strong>g and translocation mechanism was therefore further<strong>in</strong>vestigated us<strong>in</strong>g <strong>in</strong> vivo and <strong>in</strong> vitro translocation assays to identifyprote<strong>in</strong>s required for successful target<strong>in</strong>g and their <strong>in</strong>teractions with thenon-classical signal. Our results demonstrate a novel Sec-dependentperiplasmic prote<strong>in</strong> target<strong>in</strong>g mechanism that is <strong>in</strong>dependent of a classicalsignal peptide. Export of SodA to the periplasm is not limited toRhizobium, but was also observed <strong>in</strong> other proteobacteria. As SodA is amajor virulence factor, the secretion and target<strong>in</strong>g mechanism of thisprote<strong>in</strong> may also have significant implications for bacterial pathogenesis.CEV007Structural and functional dissection of the Invas<strong>in</strong>-Intim<strong>in</strong>family of bacterial adhes<strong>in</strong>sJ. Leo* 1 , P. Oberhett<strong>in</strong>ger 2 , M. Schütz 2 , M. Flötenmeyer 1,3 , I. Autenrieth 2 ,D. L<strong>in</strong>ke 11 Max Planck Institute for Devlopmental Biology, Department of Prote<strong>in</strong>Evolution, Tüb<strong>in</strong>gen, Germany2 University Cl<strong>in</strong>ics Tüb<strong>in</strong>gen, Interfaculty Institute for Microbiology andInfection Medic<strong>in</strong>e, Tüb<strong>in</strong>gen, Germany3 Max Planck Institute for Developmental Biology, Electron MicroscopyUnit, Tüb<strong>in</strong>gen, GermanyIntim<strong>in</strong> and Invas<strong>in</strong> are well-characterised virulence factors ofenterophathogenic Escherichia coli and yers<strong>in</strong>iae, respectively. Theseouter membrane prote<strong>in</strong>s belong to a family of prote<strong>in</strong>s whoseBIOspektrum | Tagungsband <strong>2012</strong>


63extracellular doma<strong>in</strong> is secreted through the outer membrane by a novelautotransport mechanism, termed type Ve secretion [1]. Compared toclassical (type Va) autotransporters, Intim<strong>in</strong> and Invas<strong>in</strong> have an <strong>in</strong>vertedtopology, with the C-term<strong>in</strong>al passenger be<strong>in</strong>g exported through an N-term<strong>in</strong>al -barrel pore [2]. In addition, these prote<strong>in</strong>s have an N-term<strong>in</strong>alperiplasmic doma<strong>in</strong> with homology to LysM. We show that theperiplasmic doma<strong>in</strong> of Intim<strong>in</strong>, but not the correspond<strong>in</strong>g, smaller doma<strong>in</strong>of Invas<strong>in</strong>, b<strong>in</strong>ds to peptidoglycan, and that Ca 2+ ions enhance this b<strong>in</strong>d<strong>in</strong>g.Furthermore, the Intim<strong>in</strong> periplasmic doma<strong>in</strong> mediates dimerisation. TheC-term<strong>in</strong>al passenger doma<strong>in</strong>s of Invas<strong>in</strong> and Intim<strong>in</strong> conta<strong>in</strong>s an array ofrepeated immunoglobul<strong>in</strong> (Ig)-like doma<strong>in</strong>s [3,4]. We have identified afurther Ig doma<strong>in</strong> at the N-term<strong>in</strong>us of the passenger, which may be<strong>in</strong>volved <strong>in</strong> passenger export. In addition, we have produced and refoldedthe -barrel translocator doma<strong>in</strong> of Invas<strong>in</strong> for crystallisation trials. Thestructure of this doma<strong>in</strong> would confirm our topology model and offer<strong>in</strong>sight <strong>in</strong>to this new mechanism of autotransport.[1] Leo JC, Gr<strong>in</strong> I, L<strong>in</strong>ke D (2011):Type V secretion: mechanism(s) of autotransport through thebacterial outer membrane. Phil Trans R Soc B, <strong>in</strong> press.[2] Oberhett<strong>in</strong>ger P, Schütz M, He<strong>in</strong>z N, Leo JC, Berger J, Autenrieth IB, L<strong>in</strong>ke D (2011): Intim<strong>in</strong>and Invas<strong>in</strong> are members of a family of autotransporters that export their C-term<strong>in</strong>us to the bacterialcell surface. Under revision.[3] Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ (1999) Crystal structure of Invas<strong>in</strong>: abacterial <strong>in</strong>tegr<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Science 286, 291-295.[4] Luo Y, Frey EA, Pfuetzer RA, Creagh AL, Knoechel DG, Haynes CA, F<strong>in</strong>laz BB & StrynadkaNCJ (2000) Crystal structure of the enteropathogenic Escherichia coli <strong>in</strong>tim<strong>in</strong>-receptor complex.Nature 405, 1073-1077.CEV008The cell envelope as target of a novel antimicrobial peptideM. Wenzel* 1 , A.I. Chiriac 2 , B. Albada 3 , A. Otto 4 , A. Knüfer 3 , D. Becher 4 ,L. Hamoen 5 , H.-G. Sahl 2 , N. Metzler-Nolte 3 , J.E. Bandow 11 Ruhr University Bochum, Microbial Biology, Bochum, Germany2 University of Bonn, Pharmaceutical Microbiology, Bonn, Germany3 Ruhr University Bochum, Bio<strong>in</strong>organic Chemistry, Bochum, Germany4 University of Greifswald, Microbial Physiology and Molecular Biology,Greifswald, Germany5 University of Newvastle, Institute for Cell and Molecular Biosciences,Newcastle, United K<strong>in</strong>gdomCationic hexapeptide MP196, composed of alternat<strong>in</strong>g arg<strong>in</strong><strong>in</strong>e andtryptophane [3,4], is a promis<strong>in</strong>g new antibacterial agent with excellentactivity aga<strong>in</strong>st Gram positive bacteria whereas non-toxic to human cells.The mechanism of action of this peptide was studied by proteomic<strong>in</strong>vestigation of the bacterial stress response, which has been proven to bea useful tool <strong>in</strong> elucidat<strong>in</strong>g antibiotic targets [1,2]. This approach revealedstrong similarities of MP196 with potassium ionophore val<strong>in</strong>omyc<strong>in</strong> aswell as cell wall biosynthesis-<strong>in</strong>hibit<strong>in</strong>g bacitrac<strong>in</strong>. More specifically, weobserved strong <strong>in</strong>duction of both membrane stress-<strong>in</strong>duced PspA and cellwall stress-<strong>in</strong>duced LiaH prote<strong>in</strong>s, suggest<strong>in</strong>g a novel or comb<strong>in</strong>ed cellenvelope-related mechanism of action. Further, we <strong>in</strong>vestigated the<strong>in</strong>fluence of MP196 on membrane <strong>in</strong>tegrity and cell wall biosynthesis byseveral cell-based assays, such as radioactive precursor <strong>in</strong>corporation,potassium efflux, and membrane potential measurements.Taken together, our results suggest, that MP196 treatment results <strong>in</strong> energyand, therefore, nutrient limitation caused by impaired membrane functions.[1] Bandow JE et al., Antimicrob. Agents Chemother., 2003, 47:948-55[2] Wenzel and Bandow, Proteomics, 2011, 11:3256-68[3] Strøm MB et al., J. Med. Chem., 2003, 46:1567-70[4] Chantson JT et al., ChemMedChem., 2006, 1:1268-74CEV009Processive movement of MreB-associated cell wall biosyntheticcomplexes <strong>in</strong> bacteriaJ. Dom<strong>in</strong>guez-Escobar*, A. Chastanet, A.H. Crevenna, R. Wedlich-Söldner, R. Carballido-LópezMax-Planck-Institute of Biochemistry, Cellular Dynamics and CellPattern<strong>in</strong>g, Mart<strong>in</strong>sried, FranceThe rod-shaped model gram positive bacterium Bacillus subtilis expressesthree isoforms of the prokaryotic act<strong>in</strong>: MreB, Mbl and MreBH. All threeprote<strong>in</strong>s are thought to polymerize <strong>in</strong>to dynamic filamentous helicalstructures underneath the cell membrane and together with the cell wall(CW) control cell morphogenesis. The prevail<strong>in</strong>g model postulates thatmembrane-associated MreB filaments spatially organize elongationspecificpeptidoglycan-synthesiz<strong>in</strong>g complexes along sidewalls.We have used Total Internal Reflection Fluorescence microscopy(TIRFM) to quantitatively characterize the <strong>in</strong> vivo distribution anddynamics of fluorescently-labelled MreB prote<strong>in</strong>s and visualize thedynamic relationship between MreB isoforms and CW synthesis prote<strong>in</strong>s<strong>in</strong> Bacillus subtilis cells. We show that dur<strong>in</strong>g exponential growth MreBprote<strong>in</strong>s do not form helical structures. Instead, together with othermorphogenetic factors (MreC, MreD, PBPH, PBP2a and RodA), theyassemble <strong>in</strong>to discrete patches that processively move along peripheraltracks perpendicular to the cell axis. We show with Fluorescence RecoveryAfter Photobleach<strong>in</strong>g (FRAP) experiments that patch motility is not drivenby MreB polymerization. Patch motility arrest us<strong>in</strong>g CW <strong>in</strong>hibitorsvancomyc<strong>in</strong> and phosphomyc<strong>in</strong>, strongly suggest that the motive force forMreB patches is provided by peptydoglycan (PG) synthesis itself. We alsoprovide evidence that MreB determ<strong>in</strong>es rod shape by restrict<strong>in</strong>g mobility ofelongation complexes.We propose that 1) CW elongation complexes <strong>in</strong>sert new PG along trackslargely normal to cell long axis, 2) complexes motility is powered by PGpolymerization, and 3) MreB acts as a polymeric clamp to restrict the diffusionof CW complexes and allow processive movement <strong>in</strong> correct orientation.CEV010A shortcut pathway to UDP-MurNAc through peptidoglycanrecycl<strong>in</strong>g <strong>in</strong> PseudomonasJ. Gis<strong>in</strong>* 1,2 , A. Schneider 3 , B. Nägele 3 , C. Mayer 3,21 Universität Konstanz, Molekulare Mikrobiologie, Konstanz, Germany2 Universität Konstanz, Graduiertenschule Chemical Biology, Konstanz,Germany3 Interfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong> UniversitätTüb<strong>in</strong>gen, Biotechnologie/Mikrobiologie, Tüb<strong>in</strong>gen, GermanyIn almost all bacteria, the essential cell wall component peptidoglycan issynthesized by a conserved pathway that represents a major target forantibiotics. Synthesis of the soluble cell wall precursor UDP-MurNAcwith<strong>in</strong> the cytoplasm <strong>in</strong>volves the essential and highly conserved prote<strong>in</strong>sMurA and MurB. Inhibition of MurA by the antibiotic fosfomyc<strong>in</strong><strong>in</strong>terferes with peptidoglycan synthesis, caus<strong>in</strong>g growth arrest andeventially cell lysis.Study<strong>in</strong>g peptidoglycan recycl<strong>in</strong>g <strong>in</strong> Pseudomonas, we now identified analternative pathway for UDP-MurNAc synthesis. MurNAc recovered fromthe own cell wall or scavenged from the environment is directly fed <strong>in</strong>topeptidoglycan synthesis. The pathway <strong>in</strong>volves an anomeric k<strong>in</strong>ase thatATP-dependently phosphorylates MurNAc at the C1 position.Subsequently, an uridyltransferase generates UDP-MurNAc fromMurNAc--1-phosphate. Mutants <strong>in</strong> the cod<strong>in</strong>g genes accumulated therespective recycl<strong>in</strong>g <strong>in</strong>termediates and showed an <strong>in</strong>creased susceptibilityto fosfomyc<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g the relevance of this pathway for UDP-MurNAcbiosynthesis and <strong>in</strong>tr<strong>in</strong>sic fosfomyc<strong>in</strong> resistance. The pathway is conserved<strong>in</strong> all Pseudomonas stra<strong>in</strong>s and many other gram negative bacteria<strong>in</strong>clud<strong>in</strong>g important pathogens.CEV011Identification and <strong>in</strong> vitro analysis of the GatD/MurT enzymecomplexcatalyz<strong>in</strong>g lipid II amidation <strong>in</strong> S. aureusD. Münch* 1 , T. Roemer 2 , S.H. Lee 2 , M. Engeser 3 , H.-G. Sahl 1 , T. Schneider 11 Universität Bonn, Pharmazeutische Mikrobiologie, Bonn, Germany2 Merck Research Laboratories, Department of Infectious Diseases,Kenilworth, NJ, United States3 Universität Bonn, Kekulé Institute for Organic Chemistry andBiochemistry, Bonn, GermanyThe peptidoglycan of Staphylococcus aureus is characterized by a highdegree of crossl<strong>in</strong>k<strong>in</strong>g and almost completely lacks free carboxyl groups,due to amidation of the D-glutamic acid <strong>in</strong> the stem peptide. Amidation ofpeptidoglycan has been proposed to play a decisive role <strong>in</strong> polymerizationof cell wall build<strong>in</strong>g blocks, correlat<strong>in</strong>g with the crossl<strong>in</strong>k<strong>in</strong>g ofneighbor<strong>in</strong>g peptidoglycan stem peptides. Mutants with a reduced degreeof amidation are less viable and show <strong>in</strong>creased susceptibility tomethicill<strong>in</strong>.We identified the enzymes catalyz<strong>in</strong>g the formation of D-glutam<strong>in</strong>e <strong>in</strong>position 2 of the stem peptide. We provide biochemical evidence that thereaction is catalyzed by a glutam<strong>in</strong>e amidotransferase-like prote<strong>in</strong> and aMur ligase homologue, encoded by SA1707 and SA1708, respectively.Both prote<strong>in</strong>s, for which we propose the designation GatD and MurT, arerequired for amidation and appear to form a physically stable bi-enzymecomplex.To <strong>in</strong>vestigate the reaction <strong>in</strong> vitro we purified recomb<strong>in</strong>ant GatD andMurT His-tag fusion prote<strong>in</strong>s and their potential substrates, i.e. UDP-MurNAc-pentapeptide, as well as the membrane-bound cell wallprecursors lipid I, lipid II and lipid II-Gly 5. In vitro amidation occurredwith all bactoprenol-bound <strong>in</strong>termediates, suggest<strong>in</strong>g that <strong>in</strong> vivo lipid IIand/or lipid II-Gly 5 may be substrates for GatD/MurT. Inactivation of theGatD active site abolished lipid II amidation.Both, murT and gatD are organized <strong>in</strong> an operon and are essential genes ofS. aureus. BLAST analysis revealed the presence of homologoustranscriptional units <strong>in</strong> a number of gram-positive pathogens, e.g.Mycobacterium tuberculosis, Streptococcus pneumonia and Clostridiumperfr<strong>in</strong>gens, all known to have a D-iso-glutam<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g PG. A lessnegatively charged PG reduces susceptibility towards defens<strong>in</strong>s and mayplay a general role <strong>in</strong> <strong>in</strong>nate immune signal<strong>in</strong>g.BIOspektrum | Tagungsband <strong>2012</strong>


64CEV012Synthetic analysis of the apical cell wall synthesis mach<strong>in</strong>eryfrom Corynebacterium glutamicumB. Sieger*, M. BramkampInstitut für Biochemie, AG Krämer, Köln, GermanyCorynebacterium glutamicum is a Gram-positive and non-sporulat<strong>in</strong>g soilbacterium with high <strong>in</strong>dustrial and medical relevance. Compared to themodel organisms E. coli or B. subtilis for <strong>in</strong>stance, the rod-shapedact<strong>in</strong>omycete C. glutamicum lacks several conserved cell division andshape determ<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s such as the act<strong>in</strong> homologue MreB, thenucleoid occlusion Noc- and the division site select<strong>in</strong>g M<strong>in</strong> system.Morphology and polar elongation is ensured by a mach<strong>in</strong>ery composed ofthe polar determ<strong>in</strong>ant DivIVA, the lipid II flippase RodA and severalpenicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s (PBPs). A second flippase FtsW is part of thedivisome and <strong>in</strong>volved <strong>in</strong> septal growth dur<strong>in</strong>g division, where it <strong>in</strong>teractswith FtsZ. We recently showed that DivIVA directly <strong>in</strong>teracts with the Parsystem, thereby provid<strong>in</strong>g the polar tether<strong>in</strong>g factor <strong>in</strong> chromosomesegregation. Depletion of divIVA as well as deletion of rodA both resulted<strong>in</strong> a coccoid morphology. Us<strong>in</strong>g our established synthetic<strong>in</strong> vivosystem,where E. coli cells are used as expression vessels for prote<strong>in</strong>-prote<strong>in</strong><strong>in</strong>teraction candidates, we provide evidence that DivIVA <strong>in</strong>teracts withRodA, thereby co-localiz<strong>in</strong>g it to the cell poles. Individually expressedRodA was distributed randomly around the E. coli cell, whereas polarrecruitment could only be observed <strong>in</strong> the presence of DivIVA. To furtheranalyse this <strong>in</strong>teraction, a heterologous FRET system with DivIVA-YFPand RodA-CFP was established. To verify the specificity of the DivIVAand RodA <strong>in</strong>teraction, we <strong>in</strong>cluded FtsW <strong>in</strong> our<strong>in</strong> vivosystem. However,an <strong>in</strong>teraction of DivIVA and FtsW was not observed. Our data suggestthat apical growth <strong>in</strong> Corynebacteria may depend on recruitment of PBPsupon transpeptidation substrate (lipid II) recognition.CEV013Repeat<strong>in</strong>g structures of different Gram-positive surfaceprote<strong>in</strong>sare essential for the bacterial <strong>in</strong>teraction with humanThrombospond<strong>in</strong>-1T. Kohler* 1 , N. Gisch 2 , M. Schlag 3 , K. Darm 4 , U. Völker 4 , U. Zähr<strong>in</strong>ger 2 ,S. Hammerschmidt 11 Universitiy of Greifswald, Interfaculty Institute for Genetics and FunctionalGenomics, Department Genetics of Microorganisms, Greifswald, Germany2 Research Center Borstel, Leibniz-Center for Medic<strong>in</strong>e and Biosciences,Department of Molecular Infection Biology, Borstel, Germany3 University of Tüb<strong>in</strong>gen, Department of Microbial Genetics, Tüb<strong>in</strong>gen, Germany4 University of Greifswald, Interfaculty Institute for Genetics and FunctionalGenomics, Department of Functional Genomics , Greifswald, GermanyAdherence of bacteria to host cells is a multifactorial process and proceedsbacterial <strong>in</strong>fections. The versatile <strong>in</strong>terplay between pathogenic bacteriaand its host depend on numerous <strong>in</strong>teractions of bacterial surface structuresand host matrix prote<strong>in</strong>s. The matricellular glycoprote<strong>in</strong> Thrombospond<strong>in</strong>-1 (TSP-1) is ma<strong>in</strong>ly secreted by thrombocytes but also by other human celltypes. TSP-1 is a multifunctional, multidoma<strong>in</strong> 420 kDa homotrimer witha wide range of predicted functions <strong>in</strong> adherence and migration, cellmorphology, proliferation and apoptosis as well as <strong>in</strong> <strong>in</strong>teraction withextracellular proteases. TSP-1 is part of the extracellular matrix and showsb<strong>in</strong>d<strong>in</strong>g to different matrix prote<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g fibronect<strong>in</strong>, fibr<strong>in</strong>ogen,hepar<strong>in</strong> and furthermore to the surface receptors CD36, CD47 and <strong>in</strong>tegr<strong>in</strong> 5 1 (CD49e/CD29). A recent study revealed a new role of TSP-1 for the<strong>in</strong>terplay of different Gram-positive pathogens with host cells (Rennemeieret al., 2007). The TSP-1 was shown to act as a molecular bridge betweenhost cells and Gram-positive bacteria, which facilitated adherence to and<strong>in</strong>vasion <strong>in</strong>to different human epithelial and endothelial cells.Nevertheless, the receptor on the bacterial site as well as on the host site isstill unknown. Surface plasmon resonance (SPR) studies with TSP-1immobilized on CM5 biosensor chip and ligand overlay assays revealeddifferent potential prote<strong>in</strong>aceous b<strong>in</strong>d<strong>in</strong>g partners on the bacterial surfaceofStaphylococcus epidermidis,Staphylococcus aureusandStreptococcuspneumoniae. To identify the prote<strong>in</strong>s of <strong>in</strong>terest, 2D-gelelectrophoresis ofsurface prote<strong>in</strong> fractions was performed and peptides were analyzed bymass spectrometry. Putative candidate prote<strong>in</strong>s fromS. epidermidis andS.pneumoniae were cloned, purified and analyzed for a common b<strong>in</strong>d<strong>in</strong>gmotif of Gram-positive surface prote<strong>in</strong>s. It turned out that surface-exposedrepeats of these prote<strong>in</strong>s are essential for TSP-1-b<strong>in</strong>d<strong>in</strong>g activity. Thespecificity of the TSP-1 <strong>in</strong>teraction with the identified repetitive structuresof Gram-positive surface prote<strong>in</strong>s was demonstrated by SPR, ligandoverlay assays and competitive <strong>in</strong>hibition assays. Taken together, thisstudy identified TSP-1 b<strong>in</strong>d<strong>in</strong>g motifs <strong>in</strong> several surface prote<strong>in</strong>s of Grampositivebacteria <strong>in</strong>volved <strong>in</strong> recruitment of TSP-1.Rennemeier C., Hammerschmidt S., Niemann S., Inamura S., Zähr<strong>in</strong>ger U., Kehrel BE. (2007).Thrombospond<strong>in</strong>-1 promotes cellular adherence of gram-positive pathogens via recognition ofpeptidoglycan. FASEB J., (12):3118-32CEV014The structural basis of staphylococcal cell wall recognition bySH3b doma<strong>in</strong>sM. Schlag* 1 , S. Zoll 2 , A. Shkumatov 3 , M. Rautenberg 4 , T. Stehle 2 , F. Götz 11 University, Microbial Genetics, Tüb<strong>in</strong>gen, Germany2 University, IFIB, Tüb<strong>in</strong>gen, Germany3 EMBL, Hamburg, Germany4 Medical Microbiology Institute, Tüb<strong>in</strong>gen, GermanyThe staphylococcal major autolys<strong>in</strong> Atl is a bifunctional enzyme consist<strong>in</strong>gof an amidase and a glucosam<strong>in</strong>idase moiety, separated by <strong>in</strong>ternal repeats(R). Processed amidase and glucosam<strong>in</strong>idase are targeted via the repeatdoma<strong>in</strong>s (R) to the cell division site. The mechanism beh<strong>in</strong>d this preciselocalization is still unknown. Here, we show by X-ray structural analysisof the repeats that each of the three formerly described repeats consists oftwo repeats with dist<strong>in</strong>ct hydrophobic b<strong>in</strong>d<strong>in</strong>g grooves, harbor<strong>in</strong>g a GW-(glyc<strong>in</strong>-tryptophan) motif doma<strong>in</strong> that can be blocked by am<strong>in</strong>o acidexchange. We could demonstrate that LTA b<strong>in</strong>d<strong>in</strong>g, but not PGN b<strong>in</strong>d<strong>in</strong>gdepends on the presumptive cell wall b<strong>in</strong>d<strong>in</strong>g site. Small-angle X-rayscatter<strong>in</strong>g (SAXS) measurement of full-length amidase revealed two<strong>in</strong>flective l<strong>in</strong>kers between AmiE and R 1 and between R 2 and R 3 that renderthe amidase highly flexibile.Based on b<strong>in</strong>d<strong>in</strong>g studies and structuralanalysis of the repeat subunits we present a model for target<strong>in</strong>g amidase tothe site of cell division to optimally perform the last step of cell devision,the cell separation.CEV015Identification of the trehalose uptake system TusEFGK 2 ofCorynebacterium gluctamicum and characterization of its role<strong>in</strong> the biosynthesis of mycolic acidsA. Henrich, J.B. Schulte, A.W. Eck, G.M. Seibold*Institute of Biochemistry, University of Cologne, Department of Chemistry,Cologne, GermanyTrehalose is a prerequisite for the production of trehalose mycolates (TM),major and structurally important constituents of the cell envelope ofCorynebacter<strong>in</strong>eae (2). Mutant stra<strong>in</strong>s of Corynebacterium glutamicumunable to synthesize trehalose due to the knock-out of the genes of thepathways of trehalose biosynthesis are impaired <strong>in</strong> growth <strong>in</strong> m<strong>in</strong>imalmedium with sucrose and do not form TM. These effects caused by theabolished trehalose synthesis <strong>in</strong> C. glutamicum otsAtreStreY can becompensated by addition of trehalose to the culture broth (2). As hithertono uptake of trehalose <strong>in</strong> C. glutamicum was detected, it was suggestedthat trehalose is secreted <strong>in</strong> a free form followed by subsequentextracellular transfer of mycolyl residues onto the sugar molecule (2).However, the identification of a trehalose uptake system (LpqY-SugABC)<strong>in</strong> the related species Mycobacterium tuberculosis (1) po<strong>in</strong>ted at theexistence of such a system also <strong>in</strong> C. glutamicum. In addition, we observedtrehalose utilization by C. glutamicum cultivated <strong>in</strong> m<strong>in</strong>imal mediumconta<strong>in</strong><strong>in</strong>g glucose plus trehalose. Taken together these data seriouslychallenged the above mentioned hypothesis of the free trehalose export forTM synthesis.We here present the identification and characterization of the trehaloseuptake system of C. glutamicum as the highly specific ABC transportsystem TusEFGK 2 with an apparent K m of 0.16 ± 0.02 M and a V max of2.5 ± 0.1 nmol/(m<strong>in</strong> * mg cdm). In fact, the substrate b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> TusEpossess only a low identity to the mycobacterial LpqY, yet tryptophanfluorescence-b<strong>in</strong>d<strong>in</strong>g assays clearly showed trehalose b<strong>in</strong>d<strong>in</strong>g to purifiedTusE. Deletion of the genomic locus encod<strong>in</strong>g the transporter <strong>in</strong> C.glutamicum tus abolished trehalose uptake and utilization.In addition, we analyzed the effect of trehalose uptake on TM synthesis <strong>in</strong>the absence of <strong>in</strong>ternal trehalose formation and therefore constructed thestra<strong>in</strong> C. glutamicum otsAtreStreYtus. Addition of trehalose toculture broth <strong>in</strong>deed abolished the growth defects observed for C.glutamicum otsAtreStreYtus and led to the formation of TM. Theseresults <strong>in</strong>dicate that for TM synthesis <strong>in</strong> C. glutamicumotsAtreStreYtus free trehalose present <strong>in</strong> the culture supernatant isutilized, which usually has to be export from the cytoplasm, wheretrehalose synthesis takes place.1. Kalscheuer, R. et al.,2010. Trehalose-recycl<strong>in</strong>g ABC transporter LpqY-SugA-SugB-SugC isessential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci U S A107:21761-6.2. Tropis, M. et al., 2005. The crucial role of trehalose and structurally related oligosaccharides <strong>in</strong>the biosynthesis and transfer of mycolic acids <strong>in</strong> Corynebacter<strong>in</strong>eae. J Biol Chem280:26573-85.BIOspektrum | Tagungsband <strong>2012</strong>


65CEV016Elucidation of the N-glycosylation pathway <strong>in</strong> thethermoacidophilic archaeon Sulfolobus acidocaldariusB. Meyer* 1 , B. Zolghadr 2 , E. Peyfoon 3 , M. Pabst 2 , M. Panico 3 ,H.R. Morris 3 , P. Messner 2 , C. Schäffer 2 , A. Dell 3 , S.-V. Albers 11 Max-Planck-Institut für terrestrische Mikrobiologie, Molecular Biology ofArchaea, Marburg, Germany2 Universität für Bodenkultur Wien, Department of NanoBiotechnology, Vienna,Austria3 Imperial College London, Division of Molecular Biosciences, London,United K<strong>in</strong>gdomGlycosylation is the most dom<strong>in</strong>ant form of post translation prote<strong>in</strong>modification. It is proposed that more than 2/3 of the eukaryotic prote<strong>in</strong>sare modified by the attachment of sugar molecules. Due to the commonoccurrence of glycosylation <strong>in</strong> eukaryotic prote<strong>in</strong>s, it was long believedthat glycosylation is a restricted to this doma<strong>in</strong> of life, however, when <strong>in</strong>1976 Mescher and Strom<strong>in</strong>ger purified the S-Layer prote<strong>in</strong> fromHalobacterium sal<strong>in</strong>arium, which conta<strong>in</strong>ed glycans covalently l<strong>in</strong>ked toasparag<strong>in</strong>e residues, questions evoked how N-glycosylation occurs <strong>in</strong>Bacteria and Archaea.So far the N-glycosylation process <strong>in</strong> crenarchaeotais still uncovered. Here, we will report the first results elucidat<strong>in</strong>g the N-glycosylation pathway <strong>in</strong> the thermoacidophilic archaeon Sulfolobusacidocaldarius. Deletion studies of selected genes cod<strong>in</strong>g forglycosyltransferases mediat<strong>in</strong>g the transfer of activated sugar precursors toa lipid carrier and the key enzyme of the glycosylation theoligosaccharyltransferase, showed the essential properties of the N-glycosylation process <strong>in</strong> Sulfolobus. Furthermore S. acidocaldariusexhibited a unique composition and branched structure of the N-l<strong>in</strong>kedoligosaccharide, which is l<strong>in</strong>ked by a chitobiose core to the S-Layerprote<strong>in</strong>, known to be present <strong>in</strong> the N-glycans of Eukarya and so far notfound <strong>in</strong> other Archaea.CEP001Interaction between histid<strong>in</strong>e k<strong>in</strong>ase and ABC-transporter:new regulatory pathway <strong>in</strong> antimicrobial peptide resistancemodules of Bacillus subtilisS. D<strong>in</strong>tner*, S. GebhardLMU Mikrobiologie, Department I, Mart<strong>in</strong>sried, GermanyThe genome of Bacillus subtilis conta<strong>in</strong>s three loci (bceRSAB, psdRSAB,yxdJKLM), which are very similar <strong>in</strong> gene organization and <strong>in</strong> sequence,are <strong>in</strong>volved <strong>in</strong> resistance to various peptide antibiotics. The encodedmodules are comprised of a two-component regulatory system (TCS) andan ATP-b<strong>in</strong>d<strong>in</strong>g-cassette (ABC) transporter. Both the permease and sensork<strong>in</strong>ase components show unusual doma<strong>in</strong> architecture: the permeasesconta<strong>in</strong> ten transmembrane helices with a large extracellular loop betweenhelices 7 and 8, while the sensor k<strong>in</strong>ases lack any obvious <strong>in</strong>put doma<strong>in</strong>.Strik<strong>in</strong>gly, <strong>in</strong> the Bce and Psd modules the ABC-transporter and TCS havean absolute and mutual requirement for each other <strong>in</strong> both sens<strong>in</strong>g of andresistance to their respective antimicrobial compounds, suggest<strong>in</strong>g a novelmode of signal transduction <strong>in</strong> which the transporter constitutes the actualsensor. Database searches revealed the wide-spread occurrence of suchmodules among Firmicutes bacteria, and parallel phylogenetic analysisshowed that transporters and TCSs have co-evolved. Based on thesef<strong>in</strong>d<strong>in</strong>gs, we hypothesize the formation of a sensory complex between bothcomponents, likely <strong>in</strong>volv<strong>in</strong>g direct prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions betweenthe transport permease and histid<strong>in</strong>e k<strong>in</strong>ase. This is supported by <strong>in</strong>itialresults from bacterial two-hybrid assays. To further validate ourhypothesis, both the transporter (BceAB) and the histid<strong>in</strong>e k<strong>in</strong>ase (BceS)were expressed heterologously <strong>in</strong> E. coli cytoplasmic membranes andcould be purified to high yields. Physical <strong>in</strong>teraction between both prote<strong>in</strong>components will be tested by subsequent <strong>in</strong> vitro <strong>in</strong>teraction and copurificationstudies, comb<strong>in</strong>ed with <strong>in</strong> vivo cross-l<strong>in</strong>k<strong>in</strong>g experiments.Taken together, our results show that Bce-type ABC-transporters andTCSs have co-evolved to form self-sufficient detoxification modulesaga<strong>in</strong>st antimicrobial peptides, and suggest a novel signal<strong>in</strong>g mechanism<strong>in</strong>volv<strong>in</strong>g formation of a sensory complex between transport permease andsensor k<strong>in</strong>ase.CEP002Mapp<strong>in</strong>g functional doma<strong>in</strong>s of colic<strong>in</strong> M, a prote<strong>in</strong> tox<strong>in</strong> fromE. coliS. Helbig* 1 , S. Patzer 1 , K. Zeth 1 , C. Schiene-Fischer 2 , V. Braun 11 Max Planck Institute for Developmental Biology, Department of Prote<strong>in</strong>Evolution, Tüb<strong>in</strong>gen, Germany2 Max Planck Research Unit of Enzymology of Prote<strong>in</strong> Fold<strong>in</strong>g, Halle, GermanyColic<strong>in</strong> M (Cma), a prote<strong>in</strong> tox<strong>in</strong> from E. coli, is a novel phosphataseconcern<strong>in</strong>g sequence, structure and substrate specificity. It is is imported<strong>in</strong>to the periplasm of sensitive cells via a receptor-dependent energycoupledprocess. E. coli and closely related stra<strong>in</strong>s are killey by <strong>in</strong>hibitionof mure<strong>in</strong> biosynthesis; Cma cleaves the phosphate ester bond between thelipid carrier and the mure<strong>in</strong> precursor. This mode of action is unique forCma. With 271 am<strong>in</strong>o acid residues, it is the smallest of all knowncolic<strong>in</strong>s. Its fold is unique among colic<strong>in</strong>s and even among all knownprote<strong>in</strong>s. The prote<strong>in</strong> forms a compact structure, which makes it difficult todel<strong>in</strong>eate the functional doma<strong>in</strong>s which are well-separated <strong>in</strong> most othercolic<strong>in</strong>s [1].To study these functional doma<strong>in</strong>s of Cma, mutants <strong>in</strong> the variouspredicted doma<strong>in</strong>s were isolated and characterized with special emphasison the activity doma<strong>in</strong>. The active site is located <strong>in</strong> a surface-exposedregion. Conversion of Asp226 to Glu, Asn, or Ala <strong>in</strong>activated Cma. Thisresidue is exposed at the Cma surface and is surrounded by Asp225,Tyr228, Asp229, His235 and Arg236; replacement of each residue withalan<strong>in</strong>e <strong>in</strong>activated Cma. We propose that Asp226 directly participates <strong>in</strong>phosphate ester hydrolysis and that the surround<strong>in</strong>g residues contribute tothe active site. All these residues are strongly conserved <strong>in</strong> Cma-likeprote<strong>in</strong>s of other species.Moreover, we found that the hydrophobic helix 1, that extends from thecompact Cma structure, b<strong>in</strong>ds the tox<strong>in</strong> to the FhuA receptor <strong>in</strong> the outermembrane and is thereby <strong>in</strong>volved <strong>in</strong> its uptake [3].Kill<strong>in</strong>g of cells by Cma strictly depends on the periplasmic peptidyl prolylcis/trans isomerase/chaperone FkpA [4]. Because of its compact structurethe colic<strong>in</strong> must unfold dur<strong>in</strong>g translocation across the outer membraneund refold <strong>in</strong> the periplasm to be toxic. This is supported by FkpA thatpresumably assists <strong>in</strong> refold<strong>in</strong>g by cis/trans isomerisation of one or a fewprolyl bonds.To identify the Cma prolyl bonds targeted by FkpA, we replaced the 15prol<strong>in</strong>e residues <strong>in</strong>dividually with alan<strong>in</strong>e and found four mutants withreduced activities. P107A displayes 10%, P129A, P176A and P260A show1% activity. Three of them were not imported, the rema<strong>in</strong><strong>in</strong>g P176Amutant is structural identical to wild-type Cma which makes it unlikelythat the mutation changes the phosphatase active site that is located farfrom this prol<strong>in</strong>e residue. In an <strong>in</strong> vitro peptide assay FkpA isomerized theCma prolyl bond Phe175-Pro176 at a high rate. These results suppose thatthis bond is most likely targeted by FkpA <strong>in</strong> the activation of Cma <strong>in</strong> theperiplasm [4].[1] Zeth et al. (2008) Crystal structure of colic<strong>in</strong> M, a novel phosphatase specifically imported byEscherichia coli. J Biol Chem. 283(37):25324-31[2] Hullmann et al. (2008) Periplasmic chaperone FkpA is essential for imported colic<strong>in</strong> M toxicity.Mol Microbiol 69 (4):926-37[3] Helbig and Braun (2011) Mapp<strong>in</strong>g functional doma<strong>in</strong>s of colic<strong>in</strong> M. J Bacteriol. 193(4):815-21[4] Helbig et al. (2011) Activation of colic<strong>in</strong> M by the FkpA prolyl cis-trans isomerase/chaperone.J Biol Chem. 286(8):6280-90CEP003Oligomeric structure of the energy transduc<strong>in</strong>g ExbB-ExbD-TonB complexA. Pramanik*, V. BraunMax Planck Institute for Developmental BIology, Prote<strong>in</strong> Evolution, Tüb<strong>in</strong>gen,GermanyIn Escherichia coli and other Gram-negative bacteria energy coupled outermembrane transporters allow the entry of scarce substrates, toxic prote<strong>in</strong>s,and bacterial viruses (phages) <strong>in</strong>to the cells. The required energy is derivedfrom the proton-motive force, which is transduced by the ExbB-ExbD-TonB prote<strong>in</strong> complex from the cytoplasmic membrane. Little is knownabout the structure and stoichiometry of this complex, which is required toelucidate the mechanisms of energy harvest<strong>in</strong>g at the cytoplasmicmembrane and concomitant energy transfer to the outer membranetransporters. We found that C-term<strong>in</strong>ally His6 tagged ExbB and and StrepTagged ExbD are as functional as wild type. We solubilized an ExbBoligomer and an ExbB-ExbD subcomplex from the cytoplasmic membranewith the help of the detergents decyl and undecyl maltoside. We havepurified tagged ExbB oligomer and ExbB-ExbD complex by aff<strong>in</strong>itychromatograph followed by size exclusion chromatography. We havecharacterized the prote<strong>in</strong> complex <strong>in</strong> solution by Blue Native PAGE, sizeexclusion chromatography and small angle X-ray scatter<strong>in</strong>g (SAXS). Allthe methods <strong>in</strong>dicated that there are 4-6 ExbB monomers <strong>in</strong> the complex.To understand the def<strong>in</strong>ite stoichiometry of the complexes we used laser<strong>in</strong>ducedliquid bead ion desorption mass spectrometry (LILBID-MS). Atmoderate desorption laser energies we determ<strong>in</strong>ed the oligomeric structureof ExbB to be ma<strong>in</strong>ly hexameric (ExbB 6), with m<strong>in</strong>or amounts of trimers(ExbB 3), dimers (ExbB 2), and monomers (ExbB 1). Under the sameconditions ExbB-ExbD formed a complex consist<strong>in</strong>g of ExbB 6ExbD 1, witha m<strong>in</strong>or amount of ExbB 5ExbD 1. At higher desorption laser <strong>in</strong>tensities,ExbB 1 and ExbD 1 and traces of ExbB 3ExbD 1, ExbB 2ExbD 1, ExbB 1ExbD 1,ExbB 3, and ExbB 2 were observed. S<strong>in</strong>ce the ExbB 6 complex and theExbB 6ExbD 1 complex rema<strong>in</strong>ed stable dur<strong>in</strong>g solubilization andsubsequent chromatographic purification on nickel-nitrilotriacetateagarose, Strep-Tact<strong>in</strong>, and Superdex 200, and dur<strong>in</strong>g native blue gelelectrophoresis, we conclud that ExbB 6 and ExbB 6ExbD 1 aresubcomplexes on which the f<strong>in</strong>al complex <strong>in</strong>clud<strong>in</strong>g TonB is assembled.1. Pramanik, A., et al., Oligomeric structure of ExbB and ExbB-ExbD isolated from Escherichiacoli as revealed by LILBID mass spectrometry. Biochemistry, 2011.50(41): p. 8950-6.2. Pramanik, A., et al., ExbB prote<strong>in</strong> <strong>in</strong> the cytoplasmic membrane of Escherichia coli forms astable oligomer. Biochemistry, 2010.49(40): p. 8721-8.BIOspektrum | Tagungsband <strong>2012</strong>


66CEP004Investigation on the subcellular localization of the Gramicid<strong>in</strong>S synthetaseM. Hartmann* 1 , M. Berditsch 1 , S. Afon<strong>in</strong> 2 , C. Weber 3 , M. FotouhiArdakani 4 , D. Gerthsen 4 , A.S. Ulrich 3,21 KIT/Institute of Organic Chemistry and CFN, Karlsruhe, Germany2 KIT/Institute of Biological Interfaces (IBG-2), Karlsruhe, Germany3 KIT/ Institute of Organic Chemistry, Biochemistry, Karlsruhe, Germany4 KIT/Laboratory for Electron Microscopy, DFG Center for FunctionalNanostructures, Karlsruhe, GermanyNon-ribosomal peptide synthetases (NRPS) enable bacterial and fungalcells to produce a variety of important compounds, like antimicrobialpeptides, cytotoxic surfactants or siderophores, as an alternative way to theribosomal peptide biosynthesis. We <strong>in</strong>vestigate the NRPS for Gramicid<strong>in</strong> S(GS), a cyclic ß-stranded decapeptide, which shows pronouncedantimicrobial activity aga<strong>in</strong>st Gram-positive bacteria, and is also activeaga<strong>in</strong>st Gram-negative bacteria, viruses and fungi. Like all NRPS, the GSsynthetase consists of two subunits, GrsA (127 kDa) and GrsB (510 kDa),which are each composed of several doma<strong>in</strong>s (A=adenylation,PCP=peptidylcarrier, C=condensation, And TE=thioester).Despite extensive research on the modular structure of NRPS, littleattention has been paid on its subcellular localization <strong>in</strong> the produc<strong>in</strong>gcells. Here, we <strong>in</strong>vestigated the localization of GS synthetase<strong>in</strong>Aneur<strong>in</strong>ibacillus migulanus, and Western blot analysis was used tocompare cytosolic and membrane fractions of GS-produc<strong>in</strong>g and nonproduc<strong>in</strong>gphenotypes. Immuno-gold electron microscopy was performedwith antibodies aga<strong>in</strong>st the A-doma<strong>in</strong> of GrsA. These comb<strong>in</strong>ed resultsshow that GS synthetase is localized <strong>in</strong> the membrane fractions. Based onhydropathy analysis of the A-doma<strong>in</strong>, we then exam<strong>in</strong>ed its aff<strong>in</strong>itytowards different phospholipids. These lipid-prote<strong>in</strong> <strong>in</strong>teraction studiesshowed an aff<strong>in</strong>ity of the GrsA A-doma<strong>in</strong> especially to cardiolip<strong>in</strong>, whichis present <strong>in</strong>A. migulanusmembranes <strong>in</strong> high concentration. Our resultssuggest that it will be possible to optimize the reconstitution of NRPS onsolid support materials for the production of peptides<strong>in</strong> vitro.[1] Hoyer, K. M., C. Mahlert, and M. A. Marahiel.2007. The iterative gramicid<strong>in</strong> s thioesterasecatalyzes peptide ligation and cyclization. Chem Biol14:13-22[2] Snider, C., S. Jayas<strong>in</strong>ghe, K. Hristova, and S. H. White.2009 MPEx: a tool for explor<strong>in</strong>gmembrane prote<strong>in</strong>s. Prote<strong>in</strong> Sci18:2624-8.[3] Berditsch, M., S. Afon<strong>in</strong>, and A. S. Ulrich.2007. The ability ofAneur<strong>in</strong>ibacillusmigulanus(Bacillus brevis) to produce the antibiotic gramicid<strong>in</strong> S is correlated with phenotypevariation. Appl Environ Microbiol73:6620-8.CEP005Influence of flotill<strong>in</strong>s on lipid raft dynamicsJ. Bach*, M. BramkampInstitute of Biochemistry, University of Cologne, Cologne, GermanyBiological membranes are characterized by a high diversity of lipids.Contrary to previous assumptions it could be shown that these lipids arenot homogeneously distributed <strong>in</strong> the membrane but form highlyspecialized doma<strong>in</strong>s, also termed lipid rafts. In these lipid rafts particularprote<strong>in</strong>s are present and can rout<strong>in</strong>ely be isolated with these lipid rafts.One subset of these prote<strong>in</strong>s are flotill<strong>in</strong>s. Flotill<strong>in</strong>s normally conta<strong>in</strong> ahairp<strong>in</strong> loop that tethers the prote<strong>in</strong> to the membrane, accord<strong>in</strong>gly flotill<strong>in</strong>sexhibit a SPFH (stomat<strong>in</strong>-prohibit<strong>in</strong>-Flotill<strong>in</strong>-HflK/C)-doma<strong>in</strong> and aflotill<strong>in</strong> doma<strong>in</strong>. Furthermore flotill<strong>in</strong>s and other SPFH-doma<strong>in</strong> conta<strong>in</strong><strong>in</strong>gprote<strong>in</strong>s build highly dynamic oligomeric structures. However, thefunction of flotill<strong>in</strong>s is not yet fully understood but it is generally assumedthat they act as scaffold<strong>in</strong>g prote<strong>in</strong>s for lipid rafts. In the liv<strong>in</strong>g cell it issupposed that highly specialized prote<strong>in</strong>s and lipids are recruited byflotill<strong>in</strong>s to microdoma<strong>in</strong>s and form functional complexes. The closesthomologue to human flotill<strong>in</strong>1 can be found <strong>in</strong> the model organismBacillus subtilis. In previous work we were able to identify several<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong>s of the flotill<strong>in</strong> homologue, namely YuaG (FloT).Detergent resistant membranes (DRM) were isolated from a stra<strong>in</strong>express<strong>in</strong>g SNAP-YuaG. The DRMs were <strong>in</strong>cubated with magnetic beadsl<strong>in</strong>ked to benzylguan<strong>in</strong>e that covalently b<strong>in</strong>ds to the SNAP-tag. Severalprote<strong>in</strong>s that are likely <strong>in</strong>teraction partner of YuaG were co-eluted.Strik<strong>in</strong>gly, no crossl<strong>in</strong>k<strong>in</strong>g of these prote<strong>in</strong>s was required for co-elution.One of the identified prote<strong>in</strong>s is the SPFH-doma<strong>in</strong> conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>YqfA. However, several other prote<strong>in</strong>s were co-eluted with YuaG. Herewe show how the identified prote<strong>in</strong> complexes functionally depend on theformation of lipid microdoma<strong>in</strong>s.CEP006Analysis of the chlamydial translation elongation factor EF-TuS. De Benedetti*, A. Gaballah, B. HenrichfreiseInstitute for Medical Microbiology, Immunology and Parasitology(IMMIP), Pharmaceutical Microbiology Section, Bonn, Germanyvital role <strong>in</strong> Bacillus subtilis: it contributes to cell shape ma<strong>in</strong>tenance,apparently via <strong>in</strong>teraction with the cytoskeleton prote<strong>in</strong> MreB. In rodshapedbacteria the act<strong>in</strong>-ortholog MreB is thought to direct <strong>in</strong>corporationof cell wall material <strong>in</strong>to the side wall. Surpris<strong>in</strong>gly, chlamydiae harbor,despite their spherical shape and the absence of a cell wall, MreB and werecently proved <strong>in</strong> vitro activity for this prote<strong>in</strong>.Here, we show that EF-Tu from Chlamydophila pneumoniae is functional<strong>in</strong> vitro. The purified, strep-tagged prote<strong>in</strong> polymerized <strong>in</strong> a concentration,pH and ion strength dependent fashion <strong>in</strong> light scatter<strong>in</strong>g andsedimentation assays. Additionally, us<strong>in</strong>g co-pellet<strong>in</strong>g assays, wedemonstrated that (i) chlamydial EF-Tu <strong>in</strong>teracts with MreB and (ii) thepolymerization of MreB is improved <strong>in</strong> the presence of EF-Tu.A deeper <strong>in</strong>sight <strong>in</strong>to the functions of EF-Tu and its role <strong>in</strong> chlamydial cellbiology on molecular level will provide valuable <strong>in</strong>formation for thedesign of new anti-chlamydial antibiotics.CEP007Investigation of TatA d oligomerization to a pore complexC. Gottselig* 1 , T. Walther 2 , S. Vollmer 2 , F. Stockmar 3 , G.U. Nienhaus 3 ,A.S. Ulrich 1,21 KIT, Institute of Biological Interfaces 2, Karlsruhe, Germany2 KIT, Institute of Organic Chemistry, Karlsruhe, Germany3 KIT, Institute of Applied Physics, Karlsruhe, GermanyThe “tw<strong>in</strong> arg<strong>in</strong><strong>in</strong>e translocase” (Tat) is a prote<strong>in</strong> export mach<strong>in</strong>ery thattransports certa<strong>in</strong> folded prote<strong>in</strong>s across the bacterial plasma membrane.The cargo-prote<strong>in</strong>s are targeted to the Tat pathway via an N-term<strong>in</strong>alsignal sequence conta<strong>in</strong><strong>in</strong>g a dist<strong>in</strong>ctive tw<strong>in</strong>-arg<strong>in</strong><strong>in</strong>e motif. The Tatsystem of Bacillus subtilis consists of two essential components, the TatAand TatC prote<strong>in</strong>s, where the transmembrane prote<strong>in</strong> TatA has beensuggested to form a prote<strong>in</strong>-conduct<strong>in</strong>g channel by self-assembly, but littleis known about its oligomeric structure or the translocation mechanism.We have recently discovered a conserved pattern of charged am<strong>in</strong>o acidsthat are able to form a network of consecutive salt-bridges, and on thisbasis we proposed a three-dimensional model of the pore-form<strong>in</strong>g complexTatA d. Our hypothesis is that TatA d could self-assemble via <strong>in</strong>tramolecularand <strong>in</strong>termolecular salt bridges <strong>in</strong>to tetramers, which can subsequentlyoligomerize to a pore complex with variable diameter. To test and confirmthis model of pore formation, we have produced different di-cyste<strong>in</strong>emutants to replace the postulated salt-bridges by covalent bridges, whichshould allow us to dist<strong>in</strong>guish <strong>in</strong>tra- and <strong>in</strong>termolecular contacts. Furthercharge mutants TatA d have been produced to analyze their effect on theoligomerization behavior by SDS-PAGE and Blue-Native PAGE. S<strong>in</strong>glecyste<strong>in</strong>eside cha<strong>in</strong>s have also been <strong>in</strong>troduced <strong>in</strong>to TatA d, to whichfluorophores or sp<strong>in</strong> labels can be covalently bound for FluorescenceCorrelation Spectroscopy (FCS), Förster Resonance Energy Transfer(FRET) and Electron Sp<strong>in</strong> Resonance (ESR) experiments. The selfassemblyof TatA d monomers <strong>in</strong>to an oligomeric pore complex is be<strong>in</strong>gstudied us<strong>in</strong>g FCS, and distances between TatA d prote<strong>in</strong>s will be detectedby FRET and ESR.CEP008S-Layer prote<strong>in</strong>s as platform for nanoscale sensor applicationsO. Riebe*, C. Berger, H. BahlUniversität Rostock, Biowissenschaften/Mikrobiologie, Rostock, GermanyIn many prokaryotes Surface Layer (S-layer) prote<strong>in</strong>s are the outermostsurface of the cell. These self-assembl<strong>in</strong>g prote<strong>in</strong> layers have variousexcit<strong>in</strong>g features. The monomeric prote<strong>in</strong>s are clustered on the cell surface<strong>in</strong> an entropy-driven process and form paracrystall<strong>in</strong>e highly regularstructures. Depend<strong>in</strong>g on the organism different arrangements of theprote<strong>in</strong> subunits are possible. They are composed from one to six identicalsubunits result<strong>in</strong>g <strong>in</strong> oblique (p1, p2), square (p4) or hexagonal forms (p3or p6) of the prote<strong>in</strong> lattice. We <strong>in</strong>vestigated prote<strong>in</strong>s with different latticesymmetries for the application <strong>in</strong> nanostructured sensor chips. Due to thevery regular organisation with an ample supply of functional groups (e. g.-NH 2 or SH groups), this lattices should function as the basic build<strong>in</strong>gblock for a nanosensor. The functionalisation of this sensor is managed bycrossl<strong>in</strong>k<strong>in</strong>g of the functional groups to specific receptors for chemicalcompounds based on Aptamers and a comb<strong>in</strong>ation with fluorescent dyes.Thus, the sensor could be used for the detection of drugs or otherchemicals <strong>in</strong> fresh- or process water. Here, we present first results on themultimerisation- and b<strong>in</strong>d<strong>in</strong>g characteristics of heterologously expressedS-layer fragments as well as coat<strong>in</strong>g and coupl<strong>in</strong>g experiments for their use<strong>in</strong> a novel detection system.The bacterial translation elongation factor EF-Tu is well known to be<strong>in</strong>volveld <strong>in</strong> prokaryotic prote<strong>in</strong> biosynthesis. EF-Tu from Escherichia colihas been shown to polymerize <strong>in</strong> vitro and a recent study providedevidence that the prote<strong>in</strong> serves besides its function <strong>in</strong> translation anotherBIOspektrum | Tagungsband <strong>2012</strong>


67CEP009The cation diffusion facilitator prote<strong>in</strong>s MamB and MamM ofMagnetospirillum gryphiswaldense are <strong>in</strong>volved <strong>in</strong> magnetitebiom<strong>in</strong>eralization and magnetosome membrane assemblyR. Uebe* 1 , K. Junge 1 , V. Henn 1 , G. Poxleitner 1 , E. Katzmann 1,2 , J. Plitzko 2 ,R. Zarivach 3 , T. Kasama 4 , G. Wanner 1 , M. Pósfai 5 , L. Böttger 6 ,B. Matzanke 6 , D. Schüler 11 Bereich Mikrobiologie/Ludwig-Maximilians-Universität, DepartmentBiologie I, München, Germany2 Max Planck Institut für Biochemie, Mart<strong>in</strong>sried, Germany3 Ben Gurion University of the Negev, Beer-Sheva, Israel4 Technical University of Denmark, Kongens Lyngby, Denmark5 University of Pannonia, Veszprém, Hungary6 Universität zu Lübeck, Lübeck, GermanyMagnetotactic bacteria have the ability to orient along geomagnetic fieldl<strong>in</strong>es based on the formation of <strong>in</strong>tracellular nanometer-sized, membraneenclosedmagnetic iron m<strong>in</strong>erals, called magnetosomes. The formation ofthese unique bacterial organelles <strong>in</strong>volves several processes such ascytoplasmic membrane <strong>in</strong>vag<strong>in</strong>ation and magnetosome vesicle formation,accumulation of large amounts of iron <strong>in</strong> the vesicles and crystallization ofmagnetite. Among the most abundant prote<strong>in</strong>s associated with themagnetosome membrane of Magnetospirillum gryphiswaldense are MamBand MamM, which were implicated <strong>in</strong> magnetosomal iron transportbecause of their similarity to the cation diffusion facilitator family. Herewe demonstrate that MamB and MamM are multifunctional prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> several steps of magnetosome formation. Whereas bothprote<strong>in</strong>s are essential for magnetite biom<strong>in</strong>eralization, only deletion ofmamB resulted <strong>in</strong> loss of magnetosome membrane vesicles. MamBstability depended on the presence of MamM by formation of aheterodimer complex. In addition, MamB was found to <strong>in</strong>teract withseveral other prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g the PDZ1 doma<strong>in</strong> of MamE, a putativemagnetosome associated protease. Whereas any modification of MamBresulted <strong>in</strong> loss of function, substitution of am<strong>in</strong>o acids with<strong>in</strong> MamM leadto <strong>in</strong>creased formation of polycrystall<strong>in</strong>e <strong>in</strong>stead of s<strong>in</strong>gle crystals formed<strong>in</strong> the wild type. A s<strong>in</strong>gle am<strong>in</strong>o acid substitution with<strong>in</strong> MamM resulted<strong>in</strong> the formation of crystals consist<strong>in</strong>g of the iron(III) oxide hematite,which coexisted with crystals of the mixed-valence oxide magnetite.Together, the data <strong>in</strong>dicate that MamM and MamB have complexfunctions and are <strong>in</strong>volved <strong>in</strong> the control of different key steps ofmagnetosome formation, which are l<strong>in</strong>ked by their direct <strong>in</strong>teraction.CEP010Energy conservation <strong>in</strong> Archaea: the unique way of IgnicoccusS. Daxer* 1 , L. Kreuter 1 , U. Küper 1 , R. Rachel 2 , H. Huber 11 Universität Regensburg, Institut für Mikrobiologie, Regensburg, Germany2 Universität Regensburg, Zentrum für Elektronenmikroskopie der Fakultätfür Biologie und Vorkl<strong>in</strong>ische Mediz<strong>in</strong>I, Regensburg, GermanyIn prokaryotes, only cytoplasmic membranes have been described so far toharbor ATP synthase complexes. The hyperthermophilic,chemolithoautotrophic Crenarchaeon Ignicoccus hospitalis (1) is the firstorganism, which does not follow this rule. The organism exhibits anunusual cell envelope consist<strong>in</strong>g of an <strong>in</strong>ner and an outermost membranethat are separated by a huge <strong>in</strong>ter-membrane compartment (IMC).Recently it has been shown that the ATP synthase and H 2:sulfuroxidoreductase complexes of I. hospitalis are located <strong>in</strong> the outermostmembrane (2). As a consequence this membrane is energized by harbor<strong>in</strong>gthe primary and secondary proton pumps which are necessary for energyconservation with<strong>in</strong> the IMC. As a further characteristic the outermostmembrane conta<strong>in</strong>s multiple copies of the pore-form<strong>in</strong>g complex Ihomp1,which was proposed to be a prerequisite for the attachment and <strong>in</strong>teractionwith Nanoarchaeum equitans. S<strong>in</strong>ce I. hospitalis is the only known hostfor this organism (3) the localization of all these complexes was<strong>in</strong>vestigated <strong>in</strong> all members of the genus Ignicoccus. Immunofluorescenceexperiments with whole cells showed that the extraord<strong>in</strong>ary localization ofthe ATP synthase and H 2:sulfur oxidoreductase complex is a commonfeature of all known members of the genus Ignicoccus. Therefore, theoutermost membrane of all Ignicoccus stra<strong>in</strong>s is energized and ATP isgenerated <strong>in</strong> the IMC. Further <strong>in</strong>vestigations showed that the acetyl-CoAsynthetasewhich activates acetate to acetyl-CoA by consum<strong>in</strong>g ATP isalso associated to the outermost membrane of all Ignicoccus members. Incontrast, the pore-form<strong>in</strong>g complex Ihomp1 is exclusively found on thecell surface of I. hospitalis, support<strong>in</strong>g the hypothesis of its <strong>in</strong>volvement <strong>in</strong>the attachment of N. equitans.(1) Paper W. et al. 2007 Int. J. Syst. Evol. Microbiol. 57: 803-808(2) Kueper U. et al. 2010 PNAS 107: 3152-3156(3) Jahn U. et al. 2008 J. Bacteriol. 190: 1743-1750(4) This project is supported by a grant from the DFGCEP011Adsorption k<strong>in</strong>etics of cell wall components of gram positivebacteria on technical surfaces studied by QCM-DM. Suhr* 1 , T. Günther 1 , J. Raff 2,3 , K. Pollmann 31 Helmholtz-Center Dresden-Rossendorf, Institute of Radiochemistry,Biophysics, Dresden, Germany2 Helmholtz-Center Dresden-Rossendorf, Institute of Radiochemistry,Biogeochemistry, Dresden, Germany3 Helmholtz-Center Dresden-Rossendorf, Helmholtz Institute Freiberg forResource Technology, Dresden, GermanyIn general, the cell wall components of gram-positive bacteria e.g. s<strong>in</strong>glelipid bilayer, peptidoglycan, Surface-layer prote<strong>in</strong>s (S-layer) and otherbiopolymers are well studied. These cell wall components are <strong>in</strong>terest<strong>in</strong>gfor several bio-<strong>in</strong>duced technical applications such as biosorptivematerials. Although biosorption processes have been <strong>in</strong>tensively<strong>in</strong>vestigated, the <strong>in</strong>vestigation of metal <strong>in</strong>teraction with biomolecules aswell as adsorption processes on substrates on molecular level rema<strong>in</strong>schalleng<strong>in</strong>g.In our work we used the quartz crystal microbalance with dissipationmonitor<strong>in</strong>g (QCM-D) <strong>in</strong> order to study the layer formation of cell wallcompounds and <strong>in</strong>teraction processes on the nano scale range.This analytical method allows the detailed detection of array formation ofbacterial S-layer prote<strong>in</strong>s and gives a better understand<strong>in</strong>g of the selfassembl<strong>in</strong>gprocesses. S-layer prote<strong>in</strong>s as a part of the outer cell envelopeof many eubacteria and archaea form paracrystall<strong>in</strong>e prote<strong>in</strong> lattices <strong>in</strong>stra<strong>in</strong> depended geometrical structures [1]. Once isolated the prote<strong>in</strong>sexhibit the ability to form these lattices on different k<strong>in</strong>ds of <strong>in</strong>terfaces andpossesses equal to the bacteria cells high metal b<strong>in</strong>d<strong>in</strong>g capacities. Theseproperties open a wide spectrum of applications e.g. ultrafiltrationmembranes for organic and <strong>in</strong>organic ions and molecules, templates for thesynthesis of catalytic nanoparticles and other bio-eng<strong>in</strong>eered materials [2, 3].By perform<strong>in</strong>g different experiments with and without modification oftechnical surfaces with adhesive promoters e.g. polyelectrolytes it ispossible to make exact statements regard<strong>in</strong>g coat<strong>in</strong>g k<strong>in</strong>etics, layerstability and <strong>in</strong>teraction with metals. Subsequent atomic force microscopy(AFM) studies enable the imag<strong>in</strong>g of bio nanostructures and revealcomplex <strong>in</strong>formation of structural properties. Aim of these <strong>in</strong>vestigationsis the assembly of a simplified biological multilayer based on cellcompounds of gram positive bacteria <strong>in</strong> order to clarify sorption processes<strong>in</strong> a complex system. The understand<strong>in</strong>g of coat<strong>in</strong>g, biological andbiological-metal <strong>in</strong>teraction processes is <strong>in</strong>terest<strong>in</strong>g for different technicalapplications.[1] U.B. Sleytr et al., Prog. Surf. Sci. 68 (2001), 231-278.[2] K. Pollmann et al., Biotechnology Advances 24 (2006), 58- 68.[3] J. Raff et al., Chem. Mater. 15 (2003), 240-244.CEP012Visualization of an S-layer <strong>in</strong> the anammox bacteriumKuenenia stuttgartiensisM. van Teesel<strong>in</strong>g* 1 , A. Kl<strong>in</strong>gl 2,3 , R. Rachel 2 , M. Jetten 1 , L. van Niftrik 11 Radboud University Nijmegen, Microbiology, Nijmegen, Netherlands2 Universitaet Regensburg, Centre for EM, Regensburg, Germany3 Philipps Universität Marburg, LOEWE Research Centre for SyntheticMicrobiology (SYNMIKRO), Marburg, Germany“Candidatus Kuenenia stuttgartiensis” is an anaerobic ammoniumoxidiz<strong>in</strong>g (anammox) bacterium belong<strong>in</strong>g to the order of Brocadiales <strong>in</strong>the phylum of the Planctomycetes. Anammox bacteria are important <strong>in</strong>nature where they contribute significantly to oceanic nitrogen loss and areapplied <strong>in</strong> wastewater treatment for the removal of ammonium. The cellbiology of anammox bacteria is extraord<strong>in</strong>ary; the cells are divided <strong>in</strong>tothree membrane-bounded compartments. In addition, the cell wall of K.stuttgartiensis does not classify as a typical bacterial cell wall, s<strong>in</strong>ce itlacks peptidoglycan and does not seem to have a typical outer membrane.The question thus arises how the structural <strong>in</strong>tegrity of the cells isma<strong>in</strong>ta<strong>in</strong>ed. To answer this question the cell wall was studied via freezeetch<strong>in</strong>g experiments. Electron micrographs showed the presence of ahexagonal surface layer (S-layer) <strong>in</strong> the majority of K. stuttgartiensis cells.S-layers, crystall<strong>in</strong>e two-dimensional arrays of prote<strong>in</strong>aceous subunits thatmake up the outermost layer of many bacterial cell envelopes, have beenpreviously found to have a shape determ<strong>in</strong><strong>in</strong>g function <strong>in</strong> some bacteria. Itis therefore hypothesized that the S-layer could provide structural <strong>in</strong>tegrityto the K. stuttgartiensis cell. Currently attempts are be<strong>in</strong>g made to isolatethe S-layer fromK. stuttgartiensiscells to characterize the S-layer andidentify the prote<strong>in</strong> (subunits).BIOspektrum | Tagungsband <strong>2012</strong>


68CEP013Role of RodA <strong>in</strong> Staphylococcus carnosus TM300T. Roth*, J. Deibert, S. Reichert, D. Kühner, U. BertscheUniversity of Tüb<strong>in</strong>gen, IMIT - Mikrobielle Genetik, Tüb<strong>in</strong>gen, GermanyBacteria appear <strong>in</strong> various shapes like rods, mycetes, cocci, and manymore. The cell shape of every bacterium is determ<strong>in</strong>ed by its cell wall ormure<strong>in</strong> (peptidoglycan), as the mure<strong>in</strong> sacculus provides stability aga<strong>in</strong>stthe <strong>in</strong>ternal turgor pressure. For peptidoglycan biosynthesis the <strong>in</strong>teractionof several prote<strong>in</strong>s is required, amongst them are the so called SEDSfamilyprote<strong>in</strong>s (e.g. RodA, FstW).SEDS stands for shape, elongation, division, and sporulation, and most ofthe prote<strong>in</strong>s are essential and can therefore not be deleted. In rod-shapedbacteria like Bacillus subtilis or E. coli the prote<strong>in</strong> RodA is required forlateral growth of the organism. Yet, a deletion mutant of rodA <strong>in</strong> E. coli isknown, which is viable <strong>in</strong> m<strong>in</strong>imal medium as enlarged cocci, albeit with alow growth rate.In Staphylococcus carnosus (S. carnosus) there are three genes alignedwhich encode prote<strong>in</strong>s of the SEDS family, one of them be<strong>in</strong>g rodA. S<strong>in</strong>ceit has never been observed that bacteria of this genus grow <strong>in</strong> other shapesthan cocci, we tried to <strong>in</strong>vestigate the role of rodA <strong>in</strong> S. carnosus. We wereable to completely delete the rodA gene and obta<strong>in</strong> a slow grow<strong>in</strong>g butviable mutant. There seems to be no difference <strong>in</strong> shape or diameter whenviewed by electron microscopy. However, the peptidoglycanbiosynthesiz<strong>in</strong>g mach<strong>in</strong>ery is disordered. We could show <strong>in</strong> a pulsefeed<strong>in</strong>g experiment, followed by fluorescent vancomyc<strong>in</strong> label<strong>in</strong>g that thelocalization of newly synthesized peptidoglycan is altered compared to thewild type stra<strong>in</strong>. In addition HPLC analysis of digested petidoglycanrevealed differences <strong>in</strong> the muropeptide pattern. Together with ourBacterial-Two-Hybrid experiments, where we obta<strong>in</strong>ed an <strong>in</strong>teractionbetween RodA and all of the four native PBPs of S. aureus,these results<strong>in</strong>dicate that RodA <strong>in</strong>deed plays a role dur<strong>in</strong>g cell growth of staphylococci,even though these bacteria do not elongate.CEP014Penicill<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 2x of Streptococcus pneumoniae: therole of different doma<strong>in</strong>s for cellular localizationK. Peters* 1 , C. Stahlmann 2 , I. Schweizer 1 , D. Denapaite 1 , R. Hakenbeck 11 University of Kaiserslautern, Department of Microbiology,Kaiserslautern, Germany2 Helmholz Institute for Pharmaceutical Research, Department of DrugDelivery, Saarbrücken, GermanyPenicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 2x (PBP2x) is one of the six PBPs <strong>in</strong> S.pneumoniae <strong>in</strong>volved <strong>in</strong> late steps of peptidoglycan biosynthesis. PBP2xcatalyse a penicill<strong>in</strong>-sensitive transpeptidation reaction. The PBP2xdoma<strong>in</strong> architecture is organized <strong>in</strong> an N-Term<strong>in</strong>al PBP dimerizationdoma<strong>in</strong>, a central transpeptidase doma<strong>in</strong> (TP) and two PASTA (Penicill<strong>in</strong>b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> And Ser/Thr prote<strong>in</strong> k<strong>in</strong>ase Associated) doma<strong>in</strong>s <strong>in</strong> its C-term<strong>in</strong>al region [1]. Mutations <strong>in</strong> the TP doma<strong>in</strong> of PBP2x that <strong>in</strong>terferewith beta-lactam b<strong>in</strong>d<strong>in</strong>g are crucial for the development of high levelpenicill<strong>in</strong>-resistance which <strong>in</strong>volves other PBPs as well. The PASTAdoma<strong>in</strong>s of bacterial Ser/Thr prote<strong>in</strong> k<strong>in</strong>ases exhibit low aff<strong>in</strong>ity for betalactamantibiotics and are likely to sense peptidoglycan precursors.As revealed by immunofluorescence techniques localization of PBP2x atthe septum has confirmed its role <strong>in</strong> the division process [2]. However,immunosta<strong>in</strong><strong>in</strong>g has the disadvantage that cells need to be fixed and haveto undergo a damag<strong>in</strong>g cell wall permeabilization treatment. Greenfluorescence prote<strong>in</strong> (GFP) fusions can overcome these problems andallow the visualization of fusion prote<strong>in</strong>s <strong>in</strong> liv<strong>in</strong>g cells.To <strong>in</strong>vestigate the role of PBP2x dur<strong>in</strong>g growth and division of S.pneumoniae cells, an N-term<strong>in</strong>al GFP-PBP2x fusion was constructed us<strong>in</strong>ga Zn-<strong>in</strong>ducible promoter. Upon <strong>in</strong>duction with Z<strong>in</strong>c, a GFP-PBP2x signalwas observed at the septum <strong>in</strong> S. pneumoniae cells. Furthermore, thenative copy of the pbp2x gene could be deleted <strong>in</strong> these cells withoutaffect<strong>in</strong>g cell growth and morphology, show<strong>in</strong>g that GFP-PBP2x isfunctional. This conditional mutant of pbp2x could be grown for five toseven generations <strong>in</strong> the absence of <strong>in</strong>ducer before depletion of PBP2x wasapparent, result<strong>in</strong>g <strong>in</strong> dist<strong>in</strong>ct phenotypes <strong>in</strong>clud<strong>in</strong>g significant changes <strong>in</strong>cell morphology before a complete halt <strong>in</strong> growth was observed. In orderto better understand the role of the various doma<strong>in</strong>s of PBP2x forlocalization at the septum, different mutant constructs <strong>in</strong> the TP and the C-term<strong>in</strong>al doma<strong>in</strong> were constructed and characterised. The data show thatthe PASTA doma<strong>in</strong> is required for localization at the septum.1. E. Gordon, N. Mouz, E. Duee and O. Dideberg, J. Mol. Biol. 299 (2000), p. 477-485.2. C. Morlot, A. Zapun, O. Dideberg and T. Vernet, Mol. Microbiol. 50 (2003), p. 845-55.CEP015Inter- and <strong>in</strong>tramycelial DNA-translocation dur<strong>in</strong>g StreptomycesconjugationL. Thoma*, E. Sepulveda, J. Vogelmann, G. MuthUniversität Tüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyThe Gram positive soil bacterium Streptomyces transfers DNA <strong>in</strong> a uniqueprocess <strong>in</strong>volv<strong>in</strong>g a s<strong>in</strong>gle plasmid-encoded prote<strong>in</strong> TraB and a doublestrandedDNA molecule. TraB prote<strong>in</strong>s encoded by different Streptomycesplasmids have a highly specific DNA b<strong>in</strong>d<strong>in</strong>g activity and <strong>in</strong>teract onlywith a specific plasmid region, the clt locus, but do not b<strong>in</strong>d to unrelatedplasmids. They recognize characteristic 8 bp direct repeats (TRS, TraBRecognition Sequence) via a C-term<strong>in</strong>al wHTH motif. Exchange of the 13aa helix H3 of TraB pSVH1 aga<strong>in</strong>st H3 of TraB pIJ101 was sufficient to switchspecificity of clt recognition 1 . B<strong>in</strong>d<strong>in</strong>g of TraB to clt is non-covalently anddoes not <strong>in</strong>volve processs<strong>in</strong>g of the plasmid DNA. In addition to theplasmid localized clt, TraB pSVH1 also b<strong>in</strong>ds to clt-like sequences on thechromosome, <strong>in</strong>dicat<strong>in</strong>g a chromosome mobilization mechanism<strong>in</strong>dependent of plasmid <strong>in</strong>tegration.TraB pSVH1 assembles to hexameric r<strong>in</strong>g structures with a central 31 Åchannel and forms pores <strong>in</strong> lipid bilayers. Structure and DNA b<strong>in</strong>d<strong>in</strong>gcharacteristics of TraB <strong>in</strong>dicate that TraB is derived from a FtsK-likeancestor prote<strong>in</strong> suggest<strong>in</strong>g that Streptomyces adapted the FtsK/SpoIIIEchromosome segregation system to transfer DNA between two dist<strong>in</strong>ctStreptomyces cells 1 .In adaptation to the mycelial growth, Streptomyces conjugation also<strong>in</strong>volves subsequent spread<strong>in</strong>g of the transferred plasmid with<strong>in</strong> therecipient mycelium. Whereas primary transfer from the donor to therecipient seems to depend on a s<strong>in</strong>gle prote<strong>in</strong> (TraB), plasmid spread<strong>in</strong>gvia septal crosswalls requires five to six plasmid encoded Spd-prote<strong>in</strong>s <strong>in</strong>addition to TraB. None of the Spd prote<strong>in</strong>s has any similarity to afunctionally characterized prote<strong>in</strong>. Bacterial two-hybrid analyses, <strong>in</strong> vivocrossl<strong>in</strong>k<strong>in</strong>g and pulldown assays revealed <strong>in</strong>teractions of TraB and manySpd prote<strong>in</strong>s. Biochemical analyses of purified prote<strong>in</strong>s revealedpeptidoglycan-b<strong>in</strong>d<strong>in</strong>g activities for TraB, SpdB2, Orf108, SpdA, TraRand DNA-b<strong>in</strong>d<strong>in</strong>g activities for TraB, SpdB2, TraR and SpdA. SpdArecognizes a conserved pal<strong>in</strong>dromic DNA motif <strong>in</strong>side the spdA cod<strong>in</strong>gregion 2 . SpdB2 was shown to form pores <strong>in</strong> planar lipid bilayers.These data suggest a large DNA translocation complex at the septalcrosswalls with TraB act<strong>in</strong>g as the motor prote<strong>in</strong> and SpdB2 probablyform<strong>in</strong>g a channel structure.1, Vogelmann, J., Ammelburg, M., F<strong>in</strong>ger, C., Guezguez, J., L<strong>in</strong>ke, D., Flötenmeyer, M., Stierhof,Y., Wohlleben, W., and Muth, G.Conjugal plasmid transfer <strong>in</strong> Streptomyces resembles bacterialchromosome segregation by FtsK/SpoIIIE., EMBO J.2011, 30:2246-542, Sepulveda, E., Thoma, L., and Muth, G., A short pal<strong>in</strong>dromic DNA motif is <strong>in</strong>volved <strong>in</strong><strong>in</strong>tramycelial plasmid spread<strong>in</strong>g dur<strong>in</strong>g Streptomyces conjugation, submittedCEP016A highly sensitive enzymatic assay for lytic transglycosylasesand their product 1,6-anhydro-N-acetylmuramic acidB. Naegele*, A. Schneider, J. Hirscher, C. MayerUniversität Tüb<strong>in</strong>gen, Biotechnology, Microbiology, AG Mayer, Tüb<strong>in</strong>gen,GermanyThe peptidoglycan (or mure<strong>in</strong>) is a huge, net-shaped glycopeptidemacromolecule that surrounds and stabilizes the bacterial cell. It consistsof glycan strands composed of two alternat<strong>in</strong>g am<strong>in</strong>o sugars N-acetylglucosam<strong>in</strong>e (GlcNAc) and N-acetylmuramic acid (MurNAc). Thelatter of both is unique to bacteria. Dur<strong>in</strong>g cell growth large amounts ofMurNAc-conta<strong>in</strong><strong>in</strong>g fragments (muropeptides) are released from thebacterial cell wall. Fragments carry<strong>in</strong>g a 1,6-anhydroMurNAc moiety attheir reduc<strong>in</strong>g-end are generated by a special type of muramidases, thelytic transglycosylases (LTs), catalyz<strong>in</strong>g an <strong>in</strong>tramoleculartransglycosylation reaction. In E. coli LTs are the ma<strong>in</strong> cell wall lyticenzymes, <strong>in</strong> other bacteria such as B. subtilis the occurance of theseenzymes rema<strong>in</strong>s unclear.S<strong>in</strong>ce it is difficult to analyze LTs and 1,6-anhydroMurNAc, a novel assaywas developed to identify and characterize unknown LTs and determ<strong>in</strong>etheir specificity. After digestion of purified peptidoglycan with LTs 1,6-anhydroMurNAc was released by total hydrolysis and re-N-acetylation ofthe samples. In a second step a highly sensitive enzymatic assay wasapplied which is based on radioactive phosphorylation of 1,6-anhydroMurNAc with anhydroMurNAc-k<strong>in</strong>ase AnmK of E. coli.1 Theenzyme specifically converts 1,6-anhydro-MurNAc to MurNAc-6P whichis then detectable down to femtomolar amounts by TLC.1. Uehara, T. et al, 2005, J. Bacteriol. 187:3643-9BIOspektrum | Tagungsband <strong>2012</strong>


69CEP017Unique wall teichoic acid glycosylation of the borderl<strong>in</strong>eStaphylococcus aureus stra<strong>in</strong> PS187 is required for hostpathogen <strong>in</strong>teractionV. W<strong>in</strong>stel* 1 , P. Sanchez-Carballo 2 , C. Liang 3 , T. Dandekar 3 , O. Holst 2 ,A. Peschel 1 , G. Xia 11 Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, Cellularand Molecular Microbiology Division, Tueb<strong>in</strong>gen, Germany2 Research Center Borstel, Leibniz-Center for Medic<strong>in</strong>e and Biosciences,Division of Structural Biochemistry, Borstel, Germany3 University of Würzburg, Biozentrum, Bio<strong>in</strong>formatik, Würzburg, GermanyStaphylococccus aureus is a major human pathogen caus<strong>in</strong>g severediseases <strong>in</strong>clud<strong>in</strong>g endocarditis, pneumonia and sepsis. Important surfacepolymers are wall teichoic acids (WTA) known to play a crucial role <strong>in</strong> anumber of processes <strong>in</strong>clud<strong>in</strong>g host pathogen <strong>in</strong>teraction, biofilmformation, resistance to antimicrobials and phage adsorption. Us<strong>in</strong>g agenome sequenc<strong>in</strong>g approach S. aureus stra<strong>in</strong> PS187 was found to be aborderl<strong>in</strong>e S. aureus isolate shar<strong>in</strong>g almost all classical surface prote<strong>in</strong>adhes<strong>in</strong>s required for host pathogen <strong>in</strong>teraction. Of note one formerlyidentified nasal colonization factor, WTA, is changed <strong>in</strong> PS187 to a uniqueWTA consist<strong>in</strong>g of repetitive units of polyglycerolphosphate (GroP)substituted with D-ala or N-acetylgalatosam<strong>in</strong>e (GalNAc) revised by NMRand renamed as C-type WTA. Based on the genome sequenc<strong>in</strong>g approacha novel WTA biosynthesis gene cluster encod<strong>in</strong>g for a unique WTAglycosyltransferase designated as TagN was discovered. Genetic mutants<strong>in</strong> PS187 lack<strong>in</strong>g C-type WTA and only the GalNAc modification wereconstructed and used for biochemical analysis. Lect<strong>in</strong> overlay, WTAPAGE and 1H-NMR analysis clearly demonstrate TagN acts as a WTAGalNAc glycosyltransferase. Based on this C-type WTA glycosylation wasfound to play a crucial role <strong>in</strong> phage <strong>in</strong>fection as well as <strong>in</strong> surviv<strong>in</strong>g athigh temperatures. Of cl<strong>in</strong>ical relevance C-type WTA glycosylation isrequired for <strong>in</strong>teraction with human epithilial cells <strong>in</strong>dicat<strong>in</strong>g PS187 WTAis essential for the colonization process although the WTA structure isdifferent if compared to other S. aureus stra<strong>in</strong>s. Hence <strong>in</strong>hibition of S.aureus WTA glycosylation can be a promis<strong>in</strong>g strategy to avoid nasalcolonization.CEP018Communication and Heterogeneity among Microcystis coloniesK. Makower*, E. DittmannUniversity of Potsdam, Microbiology, Potsdam, GermanyBloom formation of the cyanobacterial genus Microcystis represents aworldwide phenomenon reflect<strong>in</strong>g enormous ecological success of thesephototrophic bacteria under certa<strong>in</strong> environmental conditions. Asophisticated and diverse formation of <strong>in</strong>trigu<strong>in</strong>g colonial morphotypesreflects heterogeneity as well as genetic plasticity among Microcystis cellsand is <strong>in</strong>fluenced by a comprehensive <strong>in</strong>tercellular communication. In arecently <strong>in</strong>itiated project heterogeneity of Microcystis colonies shall be<strong>in</strong>vestigated both, from the molecular basis and the physiological effects.Effects of known impact factors on Microcystis colony size like high-lightconditions, as well as certa<strong>in</strong> cell surface prote<strong>in</strong>s and other peptides arebe<strong>in</strong>g systematically monitored and characterized. Insights <strong>in</strong>to themolecular basis of Microcystis colony formation shall be gathered by<strong>in</strong>vestigat<strong>in</strong>g fluorescence labeled Microcystis knockout stra<strong>in</strong>s, deficient<strong>in</strong> the production of the cell-cell-<strong>in</strong>teraction affect<strong>in</strong>g prote<strong>in</strong>s andpeptides, respectively. Furthermore new sequenc<strong>in</strong>g approaches aresupposed to clarify genetic conformity or vary<strong>in</strong>g genetic compositionwith<strong>in</strong> cells of Microcystis colonies. In addition to the molecularcharacterization of colonies ecological aspects such as vertical migrationproperties and enzyme gradients with<strong>in</strong> cell assemblies might give further<strong>in</strong>dications as to the biological benefits ofMicrocystis’sophisticated colonyformation.CEP019The C-term<strong>in</strong>al doma<strong>in</strong> confers b<strong>in</strong>d<strong>in</strong>g partner specificity toBacillus subtilis DivIVAS. Halbedel* 1 , S. van Baarle 2 , I. Nazli Çelik 3 , M. Bramkamp 2 ,L.W. Hamoen 31 Robert Koch-Institut, FG11 - Bakterielle Infektionen, Wernigerode, Germany2 Universität Köln, Institut für Biochemie, Köln, Germany3 Newcastle University, Center for Bacterial Cell Biology, Newcastle uponTyne, United K<strong>in</strong>gdomDivIVA prote<strong>in</strong>s are curvature sensitive membrane b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s thatrecruit other prote<strong>in</strong>s to the poles and the division septum. They comprisean N-term<strong>in</strong>al lipid b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> fused to less conserved C-term<strong>in</strong>alcoiled coil doma<strong>in</strong>s that vary <strong>in</strong> length and sequence among the differentgram positive species. We used bacterial two hybrid analyses to test whichpart of B. subtilis DivIVA is responsible for the <strong>in</strong>teraction to M<strong>in</strong>J andRacA. This approach identified short C-term<strong>in</strong>al truncations of DivIVAthat selectively have lost the ability to <strong>in</strong>teract with M<strong>in</strong>J and RacA,suggest<strong>in</strong>g that C-term<strong>in</strong>us of DivIVA is crucial for b<strong>in</strong>d<strong>in</strong>g partnerrecruitment. Complementation experiments of the B. subtilis divIVAbackground with chimeric DivIVA prote<strong>in</strong>s that consist of N-term<strong>in</strong>alstretches of B. subtilis DivIVA and correspond<strong>in</strong>g C-term<strong>in</strong>al portions ofDivIVA from Listeria monocytogenes furthermore demonstrated that thecomplete C-term<strong>in</strong>al coiled coil doma<strong>in</strong> is required for M<strong>in</strong>J and RacAb<strong>in</strong>d<strong>in</strong>g. Our analyses provide evidence that the C-term<strong>in</strong>al doma<strong>in</strong> of B.subtilis DivIVA is the structural unit that provides the dock<strong>in</strong>g site towhich M<strong>in</strong>J and RacA b<strong>in</strong>d. Fusion of the DivIVA-like lipid b<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong> to a less conserved C-term<strong>in</strong>al prote<strong>in</strong> recruitment module thatserves a species-specific cellular function therefore appears to be theunify<strong>in</strong>g architectural feature of DivIVA prote<strong>in</strong>s.CEP020Identification of DivIVA <strong>in</strong>teraction partners <strong>in</strong> ListeriamonocytogenesK.G. Kaval*, S. HalbedelRobert Koch-Institut, FG11 - Bakterielle Infektionen, Wernigerode, GermanyCell division, a vital process <strong>in</strong> all organisms, <strong>in</strong>volves the division of theparent cell <strong>in</strong>to two or more daughter cells, so as to ma<strong>in</strong>ta<strong>in</strong> growth andproliferation. DivIVA is a well conserved prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> this process<strong>in</strong> various Gram-positive bacteria, hav<strong>in</strong>g an N- term<strong>in</strong>al lipid b<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong> (LBD) connected to a C-term<strong>in</strong>al coiled coil doma<strong>in</strong> (CTD) via aflexible l<strong>in</strong>ker. The CTD is postulated to confer diverse morphogeneticfunctions to DivIVA orthologues <strong>in</strong> different bacterial species, by allow<strong>in</strong>git to b<strong>in</strong>d to different <strong>in</strong>teraction partners. Previous work showed asimilarity <strong>in</strong> the phenotype of divIVA and secA2 deletion mutants ofListeria monocytogenes, <strong>in</strong>dicat<strong>in</strong>g a possible <strong>in</strong>teraction between thesetwo prote<strong>in</strong>s either directly or via some other <strong>in</strong>termediates. The accessorysecretion ATPase SecA2 allows for the translocation of virulence relatedautolys<strong>in</strong>s and thus contributes to full virulence of L. monocytogenes.Bacterial two hybrid assays were used to test for direct <strong>in</strong>teractionsbetween listerial DivIVA, SecA and SecA2. However, these experimentsshowed only self-<strong>in</strong>teractions but no direct <strong>in</strong>teractions between theseprote<strong>in</strong>s, which h<strong>in</strong>ted to the presence of other <strong>in</strong>termediary <strong>in</strong>teractionpartners. Aff<strong>in</strong>ity tagged constructs of the respective genes were cloned forthe purpose of carry<strong>in</strong>g out aff<strong>in</strong>ity pull-down assays us<strong>in</strong>g the respectiveaff<strong>in</strong>ity tagged prote<strong>in</strong>s, to identify and characterize these b<strong>in</strong>d<strong>in</strong>g partners.This approach will help us to identify so far unknown genes that play arole <strong>in</strong> SecA2-dependent prote<strong>in</strong> secretion, cell division and virulencepathways of L. monocytogenes. Current progress of these experimentswould be presented on this poster.CEP021Cell wall modifications as a mechanism of antibiotic selfresistanceR. Pozzi*, H.-J. Frasch, E. StegmannUniversität Tüb<strong>in</strong>gen, Mikrobiologie/biotechnologie, Tüb<strong>in</strong>gen, GermanyInvestigations <strong>in</strong>to mechanisms of antibiotic self-resistance <strong>in</strong>act<strong>in</strong>omycetes are important to understand the emergence of antibioticresistance <strong>in</strong> pathogens and to acquire fundamental knowledge useful forthe development of high producer stra<strong>in</strong>s by metabolic eng<strong>in</strong>eer<strong>in</strong>g. Animportant target for lantibiotics and glycopeptides is the bacterial cell wall.We are currently <strong>in</strong>terested <strong>in</strong> the study of the self-immunity mechanism <strong>in</strong>Microbispora ATCC PTA-5024 and Amycolatopsis balhimyc<strong>in</strong>a bothsynthesiz<strong>in</strong>g antibiotics <strong>in</strong>terfer<strong>in</strong>g with the bacterial cell wall.Microbispora is the producer of NAI-107, the first example of a class Ilantibiotic produced by act<strong>in</strong>omycetes. It <strong>in</strong>hibits the <strong>in</strong>corporation oflipid-II <strong>in</strong> the nascent peptidoglycan by b<strong>in</strong>d<strong>in</strong>g to the pyrophosphatemoiety. This novel lantibiotic has attracted attention as a potential drugcandidate because of its antibacterial profile that cover Gram-positiveresistant pathogens like glycopeptide-<strong>in</strong>termediate S. aureus (GISA) andvancomyc<strong>in</strong>-resistant enterococci (VRE) [1]. A. balhimyc<strong>in</strong>a produces thevancomyc<strong>in</strong>-type glycopeptide balhimyc<strong>in</strong> which b<strong>in</strong>ds to the D-Ala-D-Ala end<strong>in</strong>g cell wall precursors. The most common resistance mechanismof bacteria aga<strong>in</strong>st glycopeptides is to reprogram the mure<strong>in</strong> syntheticmach<strong>in</strong>ery result<strong>in</strong>g <strong>in</strong> resistant cell wall precursors end<strong>in</strong>g on D-Ala-D-Lac.To understand the self-resistance of the producer and the mode of action ofthe antibiotic it is important to analyse the cell wall composition of theproducer under production and non-production conditions. In contrast tothe model organism Streptomyces coelicolor M145, both stra<strong>in</strong>sMicrobispora and A. balhimyc<strong>in</strong>a do not have a monoglyc<strong>in</strong>e <strong>in</strong>terbridgebut they present a direct l<strong>in</strong>kage between peptide cha<strong>in</strong>s. Mature A.balhimyc<strong>in</strong>a peptidoglycan conta<strong>in</strong>s ma<strong>in</strong>ly tri- and tetrapeptides and onlytraces of the D-Ala-D-Ala end<strong>in</strong>g pentapeptides that are b<strong>in</strong>d<strong>in</strong>g sites forthe antibiotic produced. Both A. balhimyc<strong>in</strong>a wild type and a nonproduc<strong>in</strong>gmutant stra<strong>in</strong> synthesize ma<strong>in</strong>ly peptidoglycan precursorsend<strong>in</strong>g with D-Lac <strong>in</strong>dicat<strong>in</strong>g a constitutive synthesis of a resistant cellwall [2]. HPLC-MS analyses of Microbispora cell wall precursors reveal amass peak of 1193.4 Da. This value corresponds to the precursor UDP-BIOspektrum | Tagungsband <strong>2012</strong>


70MurNAc-L-Ala-D-Glu-LL-Dap-D-Ala-D-Ala <strong>in</strong>dicat<strong>in</strong>g thatMicrobispora protect itself not by synthesiz<strong>in</strong>g resistant peptidoglycan.Castiglione, F.; Lazzar<strong>in</strong>i, A; Carrano, L.; Corti, E.; Ciciliato, I.; Gastaldo, L.; Candiani, P.; Losi,D.; Mar<strong>in</strong>elli, F.; Selva, E; Parenti, F.; Chemistry and Biology,2008, 15, 22Schäberle, T.F.; Vollmer, W.; Frasch, H.J.; Hüttel, S.; Kulik, A.; Röttgen, M.; von Thaler, A.K.,Wohlleben, W.; Stegmann, E.; Antimicrob Agents Chemother,2011, 55(9)CEP022Interaction and Localisation of the Ser/Thr k<strong>in</strong>ase PknB and theessential two component system YycFG of Staphylococcus aureusP. Hardt* 1 , M. Türck 2 , S. Donat 3 , K. Ohlsen 3 , G. Bendeas 4 , H.-G. Sahl 1 ,G. Bierbaum 2 , T. Schneider 11 Institut für Mediz<strong>in</strong>ische Mikrobiologie, Immunologie und Parasitologie,Pharmazeutische Mikrobiologie, Bonn, Germany2 Institut für Mediz<strong>in</strong>ische Mikrobiologie, Immunologie und Parasitologie,Mediz<strong>in</strong>ische Mikrobiologie, Bonn, Germany3 Institut für Molekulare Infektionsbiologie, Würzburg, Germany4 Institut für Pharmazie, Institut für pharmazeutische Chemie, Bonn, GermanyProkaryotic signal transduction pathways regulate cellular functions <strong>in</strong>response to environmental cues and enable bacteria to react immediately tochang<strong>in</strong>g conditions like antibiotic stress. Besides two-componentregulatory systems (TCS), one-component regulatory systems (OCS)represent one of the most abundant signal<strong>in</strong>g systems <strong>in</strong> prokaryotes.These OCS <strong>in</strong>clude eukaryotic-like ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ases (ESTKs) andphosphatases (ESTPs), which are <strong>in</strong>creas<strong>in</strong>gly recognised as importantregulators of major processes such as cell wall metabolism and division,virulence/ bacterial pathogenesis and spore formation. One suchESTK/ESTP-couple has recently been identified <strong>in</strong> Staphylococcus aureusdesignated PknB/YloO [1]. The extracellular sensor part of the k<strong>in</strong>aseconta<strong>in</strong>s three daisy-cha<strong>in</strong>ed PASTA-doma<strong>in</strong>s assumed to be capable ofb<strong>in</strong>d<strong>in</strong>g peptidoglycan subunits, suggest<strong>in</strong>g that PknB monitors thecoord<strong>in</strong>ated assembly of peptidoglycan biosynthesis and cell division. Thesignal recognised by PknB has not been identified so far.To further <strong>in</strong>vestigate the role of PknB we analysed the <strong>in</strong>terplay with theessential YycFG TCS on the molecular level and show phosphorylation ofthe response regulator YycF. The YycFG system is <strong>in</strong>volved <strong>in</strong> the controlof peptidoglycan metabolism <strong>in</strong> S. aureus and both, PknB-GFP and YycG-GFP co-localize at the septum, the site of active cell wall biosynthesis <strong>in</strong>cocci. This makes an <strong>in</strong>teraction with the cell wall precursor lipid II andsubunits thereof, very likely. Determ<strong>in</strong>ation of the b<strong>in</strong>d<strong>in</strong>g parameters toselected lipid II variants, <strong>in</strong>clud<strong>in</strong>g amidated lipid II and subunits, us<strong>in</strong>gquartz crystal microbalance (QCM) biosensor technique will shed lightonto the signal recognized by PknB.[1] Donat S, Streker K, Schirmeister T, Rakette S, Stehle T, Liebeke M, Lalk M, Ohlsen K. (2009).Transcriptome and functional analysis of the eukaryotic-type ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ase PknB <strong>in</strong>Staphylococcus aureus. J Bacteriol. 191(13):4056-69.CEP023New <strong>in</strong>sights <strong>in</strong>to the regulation of the phage shock system <strong>in</strong> E. coliH. Osadnik*, T. BrüserLeibniz Universität, Institut für Mikrobiologie, Hannover, GermanyThe phage shock system is a membrane stress sensor and effector systemof E. coli, compris<strong>in</strong>g seven genes <strong>in</strong> three operons. Some of the <strong>in</strong>duc<strong>in</strong>gsignals <strong>in</strong>clude addition of 10% ethanol, osmotic upshift, severe heatshock, misfolded membrane prote<strong>in</strong>s and disturbance of lipid biogenesis.Stress leads to up-regulation of the systems’ genes, namely the geneencod<strong>in</strong>g for the phage shock prote<strong>in</strong> A (PspA), a prote<strong>in</strong> with largecoiled-coil doma<strong>in</strong>s. Essential parts of the system, especially homologuesof PspA, are conserved and widespread among bacteria, archaea andplastids of higher plants, where the prote<strong>in</strong> seems to be responsible forthylakoid membrane formation and organization.S<strong>in</strong>ce PspA production is strongly <strong>in</strong>duced whenever the <strong>in</strong>tegrity of the<strong>in</strong>ner membrane is at stake, PspA is thought to exhibit a membranestabiliz<strong>in</strong>g function via direct b<strong>in</strong>d<strong>in</strong>g to the <strong>in</strong>ner membrane leaflet. Whileit is well established that PspA forms multimeric complexes <strong>in</strong> vivo to doso, its mechanism of action is still poorly understood, as well as theregulation of the system itself.The cellular PspA-level is ma<strong>in</strong>ly regulated by a negative feedback-like<strong>in</strong>teraction of PspA with the systems’ activator prote<strong>in</strong> PspF. The <strong>in</strong>tegralmembrane prote<strong>in</strong>s PspB and PspC relay stress signals via direct<strong>in</strong>teraction with PspA, lead<strong>in</strong>g to the activation of PspF and thereforehigher PspA-levels.With our new data we provide improved and ref<strong>in</strong>ed <strong>in</strong>sights <strong>in</strong>to theregulatory aspects of the Psp-regulon, lead<strong>in</strong>g to a better understand<strong>in</strong>g ofa complex membrane stress system.CEP025Recovery of cell wall fragments <strong>in</strong> Bacillus subtilis:Characterisation of D-Glu-mDAP carboxypeptidase andMurNAc-6P etheraseA. Duckworth*, A. Schneider, S. Unsleber, C. MayerIMIT, Biotechnologie/Mikrobiologie, Tüb<strong>in</strong>gen, GermanyIn E. coli and other Gram negative bacteria, the peptidoglycan fragmentsreleased dur<strong>in</strong>g cell growth and division are efficiently reutilised andrecycled. In contrast, cell wall recycl<strong>in</strong>g <strong>in</strong> the Gram positive bacterium B.subtilis has not been thoroughly studied to date. However, more than 30autolys<strong>in</strong>s have been identified <strong>in</strong> this organism that are responsible forcleavage of peptidoglycan and release fragments <strong>in</strong>to the medium dur<strong>in</strong>gdifferent developmental processes. We are characteris<strong>in</strong>g the cell wallturnover products of B. subtilis and are <strong>in</strong>vestigat<strong>in</strong>g an operon of sixgenes (ybbI, ybbH, ybbF, amiE, nagZ, ybbC) <strong>in</strong>volved <strong>in</strong> peptidoglycanrecycl<strong>in</strong>g. NagZ and AmiE have been functionally characterised recently(Litz<strong>in</strong>ger et al. 2010. J Bacteriol.;192(12):3132-43). NagZ is an Exo-GlcNAc'ase that cleaves the glycosidic bond between non-reduc<strong>in</strong>gGlcNAc and MurNAc residues of GlcNAc-MurNAc-peptides(muropeptides), and AmiE subsequently cleaves the MurNAc-peptidebond. Here we report the characterisation of YbbC and YbbI. YbbC wasshown to cleave the products of the AmiE reaction, such as L-Ala-D-GlumDAPtripeptide. NagZ, AmiE and YbbC, which are secreted, are<strong>in</strong>volved <strong>in</strong> the sequential digest of muropeptides <strong>in</strong> the cell wallcompartment. The result<strong>in</strong>g am<strong>in</strong>o acids mDAP, L-Ala-D-Glu dipeptideand am<strong>in</strong>o sugar monomers MurNAc and GlcNAc are imported <strong>in</strong>to thecytoplasm by <strong>in</strong>dividual transporters. YbbI is a MurNAc-6P etherase asrevealed by the Morgan-Elson assay. MurNAc is phosphorylated toMurNAc-6P by a PTS transporter and then converted to GlcNAc-6P by thecytoplasmic etherase YbbI. Thus, the ybbIHFEDC cluster is required forthe recycl<strong>in</strong>g of cell wall fragments <strong>in</strong> B. subtilis.CEP026The role of Lipoprote<strong>in</strong> STM 3690 <strong>in</strong> the biogenesis of thetrimeric autotransporter adhes<strong>in</strong> SadA <strong>in</strong> SalmonellaI. Gr<strong>in</strong>* 1 , A. Felipe-Lopez 2 , G. Sauer 1 , H. Schwarz 1 , M. Hensel 2 , D. L<strong>in</strong>ke 11 MPI für Entwicklungsbiologie, Prote<strong>in</strong>evolution, Tüb<strong>in</strong>gen, Germany2 Universität Osnabrück, Mikrobiologie, Osnabrück, GermanyQuestion: Salmonella is a major agent <strong>in</strong> human food-borne diseases.Among the prote<strong>in</strong>s expressed on the surface of the cells, adhes<strong>in</strong>s,prote<strong>in</strong>s which allow the bacteria to stick to biotic and abiotic surfaces, arekey virulence factors.From the large family of adhesion prote<strong>in</strong>s, the trimeric autotransporteradhes<strong>in</strong>s (TAA) form a dist<strong>in</strong>ct subgroup. TAAs are non-fimbrial, nonpilus,homotrimeric adhes<strong>in</strong>s which are widespread among proteobacteria.They have a modular doma<strong>in</strong> structure of extended coiled-coil stretches<strong>in</strong>terspersed with globular doma<strong>in</strong>s. The extracellular part of theautotransporter, which can be as large as 100 kDa and above, istransported over the outer membrane of gram-negative bacteria through itsown membrane anchor by an unknown mechanism. Several of theautotransporter operons <strong>in</strong> enterobacteria also conta<strong>in</strong> a small periplasmiclipoprote<strong>in</strong> of unknown function upstream of the ma<strong>in</strong> TAA gene. Thelocation <strong>in</strong> the operon suggests a support<strong>in</strong>g role <strong>in</strong> the fold<strong>in</strong>g and exportof the passenger doma<strong>in</strong>. The aim of the presented work was to ga<strong>in</strong><strong>in</strong>sight <strong>in</strong>to the structure of the lipoprote<strong>in</strong> and to elucidate its function androle <strong>in</strong> the autotransport of SadA.Methods: Bio<strong>in</strong>formatics, Mass spectrometry, Immunofluorescence,FACS, Phage Display, X-Ray CrystallographyResults: Us<strong>in</strong>g GCView, a bio<strong>in</strong>formatics tool for visualiz<strong>in</strong>g genomiccontext for homology search results (1) we could show that the operon ofSTM 3690 and SadA is conserved <strong>in</strong> composition and genomic location <strong>in</strong>Enterobacteria.We were able to verify that STM 3690 is a periplasmic lipoprote<strong>in</strong> bysubcellular fractionation of bacterial cells express<strong>in</strong>g the prote<strong>in</strong>.Furthermore we showed the correct lipid modification of the N-Term<strong>in</strong>usby mass spectrometry.Cells express<strong>in</strong>g either SadA and STM 3690 show a higher amount ofSadA on the surface compared to cells which express only SadA.We used Phage Diplay to screen for possible <strong>in</strong>teraction partners of thelipoprote<strong>in</strong>. This was complemented by pulldowns as well as <strong>in</strong> vivocrossl<strong>in</strong>ks <strong>in</strong> Salmonella.Conclusions: Prelim<strong>in</strong>ary data suggests a function as chaperone dur<strong>in</strong>g theexport process.1) Gr<strong>in</strong> I., L<strong>in</strong>ke D. GCView: the genomic context viewer for prote<strong>in</strong> homology searches. NucleicAcids Res. 2011, 39, W353-W356.BIOspektrum | Tagungsband <strong>2012</strong>


71CEP027Characterisation of the Esx secretion system of Staphylococcus aureusH. Kneuper*, T. PalmerUniversity of Dundee, Division of Molecular Microbiology, Dundee,United K<strong>in</strong>gdomThe Sec-<strong>in</strong>dependent Esx (or Type VII) prote<strong>in</strong> secretion pathway ispredom<strong>in</strong>antly found <strong>in</strong> members of the Act<strong>in</strong>obacteria and Firmicutes.Initially characterised for its role <strong>in</strong> virulence of Mycobacteriumtuberculosis [1], Type VII secretion systems have s<strong>in</strong>ce been associatedwith a number of diverse processes <strong>in</strong>clud<strong>in</strong>g conjugative DNA transfer[2] and iron aquisition [3]. In Staphylococcus aureus, a Type VII secretionsystem is present that contributes to virulence by enhanc<strong>in</strong>g mur<strong>in</strong>eabscess formation and establish<strong>in</strong>g persistent <strong>in</strong>fections [4, 5].To further assess the role of <strong>in</strong>dividual Esx components <strong>in</strong> prote<strong>in</strong>secretion, unmarked chromosomal deletions of s<strong>in</strong>gle esx genes as well asthe whole esx operon were created <strong>in</strong> S. aureus stra<strong>in</strong>s RN6390 and COL.As the Esx system was found to be <strong>in</strong>volved <strong>in</strong> various processes notdirectly related to virulence <strong>in</strong> Act<strong>in</strong>obacteria and is furthermore present <strong>in</strong>a wide range of non-pathogenic Firmicutes bacteria, we also tried toidentify alternative pathways affected by deletions of core Esxcomponents.[1] Abdallah et al. (2007), Nature Rev. Microbiol. 5, 883-891[2] Coros et al. (2008), Mol. Microbiol. 69(4), 794-808[3] Siegrist et al. (2009), PNAS 106(44), 18792-18797[4] Burts et al. (2005), PNAS 102(4), 1169-1174[5] Burts et al. (2008), Mol. Microbiol. 69(3), 736-746CEP028Identification of a Tat signal peptide-process<strong>in</strong>g proteaseN. Nigusie Woldeyohannis* 1 , S. Richter 2 , B. Hou 1 , T. Brüser 11 Leibniz University Hannover, Institute of Microbiology, Hannover, Germany2 Leibniz-<strong>in</strong>stitut für Pflanzenbiochemie, Halle, GermanyProte<strong>in</strong>s can be translocated by the tw<strong>in</strong>-arg<strong>in</strong><strong>in</strong>e translocation (Tat)pathway <strong>in</strong> a folded conformation. The N-term<strong>in</strong>al signal peptide of suchTat-substrates is unfolded <strong>in</strong> solution, even when the rema<strong>in</strong>der of theprote<strong>in</strong> is fully folded. After transport, the signal peptide is usually cleavedoff by a signal peptidase. Precursor prote<strong>in</strong>s can Tat-<strong>in</strong>dependently <strong>in</strong>teractwith membranes via their signal peptide. It has been suggested that thismembrane <strong>in</strong>teraction is important for functional transport, as signalpeptides can adopt secondary structures at the membrane surface thatcould trigger the recognition by the Tat system. In our studies on the Tatsystem of Escherichia coli, we noted the generation of a dist<strong>in</strong>ct partiallyprocessed Tat substrate <strong>in</strong> the cytoplasm, whereas <strong>in</strong> the periplasm therewas only correctly processed HiPIP detectable. In vitro studies revealedthat a component of the cytoplasmic membrane catalyzed this specifictransport-<strong>in</strong>dependent proteolytic turnover. We were able to identify theresponsible enzyme as well as the exact cleavage site <strong>in</strong> the signal peptideand could characterize the requirements for the process<strong>in</strong>g. Interest<strong>in</strong>gly,the cleavage had almost no <strong>in</strong>fluence on the translocation efficiency.Together, our data <strong>in</strong>dicate that membrane-<strong>in</strong>teract<strong>in</strong>g Tat substratesencounter proteases that do not abolish transport, at least if the Tatsubstrate is correctly folded. This observation is discussed <strong>in</strong> terms ofpossible roles for a membrane <strong>in</strong>teraction prior to Tat transport.CEP029TatA and TatE are membrane-permeabiliz<strong>in</strong>g components ofthe Tat system <strong>in</strong> Escherichia coliD. Mehner*, C. Rathmann, T. BrüserLeibniz University Hannover, Institute of Microbiology, Hannover, GermanyThe tw<strong>in</strong>-arg<strong>in</strong><strong>in</strong>e translocation (Tat) pathway transports folded prote<strong>in</strong>sacross the cytoplasmic membrane of most prokaryotes and the thylakoidmembrane of plant plastids. A basic prerequisite for translocation is astable membrane potential. In Escherichia coli, the functional Tattranslocaseconsists of multiple copies of the prote<strong>in</strong>s TatA, TatB andTatC. There exists a second paralog of TatA, TatE that can functionallysubstitute TatA. While TatB and TatC form stable complexes <strong>in</strong> thecytoplasmic membrane that are believed to mediate the specificrecognition of Tat substrates, TatA forms separate complexes that onlytransiently <strong>in</strong>teract with TatBC complexes dur<strong>in</strong>g translocation. It isbelieved that TatA complexes somehow facilitate the prote<strong>in</strong> passage. Wenoted that recomb<strong>in</strong>ant TatA strongly affects growth. This effect could betraced back to the N-term<strong>in</strong>us that forms a trans-membrane doma<strong>in</strong>.Further analyses <strong>in</strong>dicated that this N-term<strong>in</strong>us alone has the capacity topermeabilize the membrane, which is very unusual for a natural transmembranedoma<strong>in</strong> and thus strongly suggests a direct function of the TatAN-term<strong>in</strong>us <strong>in</strong> the facilitation of the membrane passage. The data supportthe view that TatA as well as TatE are pore-form<strong>in</strong>g or membraneweaken<strong>in</strong>gconstituents of the Tat system.CEP030Mode of action of theta-defens<strong>in</strong>s aga<strong>in</strong>st Staphylococcus aureusM. Wilmes* 1 , A. Ouellette 2 , M. Selsted 2 , H.-G. Sahl 11 Universität Bonn, Institut für Med. Mikrobiologie, Immunologie undParasitologie (IMMIP), Bonn, Germany2 University of Southern California, Pathology & Laboratory Medic<strong>in</strong>e,Los Angeles, United StatesMulticellular organisms defend themselves aga<strong>in</strong>st <strong>in</strong>fectiousmicroorganisms by produc<strong>in</strong>g a wide array of antimicrobial peptidesreferred to as host defense peptides (HDPs). These evolutionary ancientpeptides are important effector molecules of <strong>in</strong>nate immunity and display -<strong>in</strong> addition to their immunomodulatory functions - potent directantimicrobial activity aga<strong>in</strong>st a broad range of pathogens. Generally, HDPsare short (12 to 50 am<strong>in</strong>o acids), positively charged and able to adopt anamphipathic structure.Among HDPs defens<strong>in</strong>s are an important peptide family characterized bydisulfide-stabilized -sheets as a major structural component. Their modeof action was long thought to result from electrostatic <strong>in</strong>teraction betweenthe cationic peptides and negatively charged microbial membranes,followed by pore-formation or unspecific membrane permeabilization.Recently, it has been demonstrated that defens<strong>in</strong> activities can be muchmore targeted and that fungal (Schneider et al., 2010), <strong>in</strong>vertebrate(Schmitt et al., 2010) and human defens<strong>in</strong>s (Sass et al., 2010; De Leeuw etal., 2010) b<strong>in</strong>d to and sequester the bacterial cell wall build<strong>in</strong>g block lipidII, thereby specifically <strong>in</strong>hibit<strong>in</strong>g cell wall biosynthesis <strong>in</strong> staphylococci.Interest<strong>in</strong>gly, the antistaphylococcal mode of action of the cyclic rhesusmacaque theta-defens<strong>in</strong>s (RTD-1 and RTD-2) differ from this s<strong>in</strong>ce RTDsdo not affect cell wall biosynthesis. Moreover, the peptides do notcompromise the membrane <strong>in</strong>tegrity. S. aureus cells treated with RTDsshow membranous structures, protrusions of cytoplasmic contents and cellwalls peel<strong>in</strong>g off the cell. These morphological changes <strong>in</strong>dicate prematureactivation of peptidoglycan lytic enzymes <strong>in</strong>volved <strong>in</strong> cell separation asmechanism of kill<strong>in</strong>g.CEP031Analyses of the alkal<strong>in</strong>e shock prote<strong>in</strong> 23 (Asp23) ofStaphylococcus aureusM. Müller 1 , S. Reiß 1 , R. Schlüter 1 , W. Reiß 1 , U. Mäder 2 , J. Marles-Wright 3 , R. Lewis 3 , S. Engelmann 1 , M. Hecker 1 , J. Pané-Farré* 11 Ernst-Moritz-Arndt-Universität, Institut für Mikrobiologie, Greifswald, Germany2 Ernst-Moritz-Arndt-Universität, Functional Genomics Group, Greifswald,Germany3 University of Newcastle upon Tyne, Newcastle Structural Biology,Newcastle, United K<strong>in</strong>gdomWith a copy number of about 20,000 molecules per cell, Asp23 is one ofthe most abundant prote<strong>in</strong>s <strong>in</strong> S. aureus. Asp23 has been characterized as aprote<strong>in</strong> with an apparent molecular mass of 23 kDa that, follow<strong>in</strong>g analkal<strong>in</strong>e shock, accumulates <strong>in</strong> the soluble prote<strong>in</strong> fraction. Moreover, itwas shown that the transcription of the asp23 gene is exclusively regulatedby the alternative sigma factor SigB. The function of Asp23, however, hasrema<strong>in</strong>ed elusive. Sequence analysis identified Asp23 as a Pfam DUF322family member, preclud<strong>in</strong>g functional predictions based on its sequence.Us<strong>in</strong>g fluorescence microscopy we found that Asp23 co-localizes with thestaphylococcal cell membrane. Interest<strong>in</strong>gly, Asp23 appeared to beexcluded from sites of active cell division. S<strong>in</strong>ce Asp23 has norecognizable transmembrane spann<strong>in</strong>g doma<strong>in</strong>s, we <strong>in</strong>itiated a search forprote<strong>in</strong>s that l<strong>in</strong>k Asp23 to the cell membrane. To ga<strong>in</strong> evidence for thefunction of Asp23, a deletion mutant was constructed and comparativeanalyses of the wild type and mutant proteome and transcriptome werecarried out. These analyses identified a rather small number ofdifferentially regulated transcripts and prote<strong>in</strong>s. Furthermore, us<strong>in</strong>gtransmission electron microscopy of negatively sta<strong>in</strong>ed Asp23 prote<strong>in</strong> weshowed that it forms large spiral complexes <strong>in</strong> vitro, the formation ofwhich appears to be dependent on the presence of magnesium ions.In summary, we identified Asp23 as a membrane associated prote<strong>in</strong> <strong>in</strong> S.aureus that forms large, ordered complexes <strong>in</strong> vitro. Identification of theAsp23 function is the subject of ongo<strong>in</strong>g research.BIOspektrum | Tagungsband <strong>2012</strong>


72CEP032Yeast mitochondria as a model system to study the biogenesisof Yers<strong>in</strong>ia Adhes<strong>in</strong> A (YadA)T. Ulrich* 1 , J.E.N. Müller 1 , D. Papic 1 , I. Gr<strong>in</strong> 2 , D. L<strong>in</strong>ke 2 , K.S. Dimmer 1 ,I.B. Autenrieth 3 , D. Rapaport 31 University of Tüb<strong>in</strong>gen, Interfaculty Institute for Biochemistry, Tüb<strong>in</strong>gen,Germany2 Max-Planck Institute for Developmental Biology, Department of Prote<strong>in</strong>Evolution, Tüb<strong>in</strong>gen, Germany3 University of Tüb<strong>in</strong>gen, Interfaculty Institute of Microbiology andInfection Medic<strong>in</strong>e, Tüb<strong>in</strong>gen, Germany-barrel prote<strong>in</strong>s are found <strong>in</strong> the outer membranes of eukaryoticorganelles of endosymbiotic orig<strong>in</strong> as well as <strong>in</strong> the outer membrane ofGram-negative bacteria. Precursors of mitochondrial -barrel prote<strong>in</strong>s aresynthesized <strong>in</strong> the cytosol and have to be targeted to the organelle.Currently, the signal that assures their specific target<strong>in</strong>g to mitochondria ispoorly def<strong>in</strong>ed. To characterize the structural features needed for specificmitochondrial target<strong>in</strong>g and to test whether a full -barrel structure isrequired we expressed <strong>in</strong> yeast cells the -barrel doma<strong>in</strong> of the trimericautotransporter Yers<strong>in</strong>ia Adhes<strong>in</strong> A (YadA). Trimeric autotransporters arefound only <strong>in</strong> prokaryotes where they are anchored to the outer membraneby a s<strong>in</strong>gle 12- stranded -barrel structure to which each monomer iscontribut<strong>in</strong>g 4 -strands. Importantly, we found that YadA is solelylocalized to the mitochondrial outer membrane where it exists <strong>in</strong> a nativetrimeric conformation. These f<strong>in</strong>d<strong>in</strong>gs demonstrate that rather than a l<strong>in</strong>earsequence or a complete -barrel structure, four -strands are sufficient forthe mitochondria to recognize and assemble -barrel prote<strong>in</strong>. Remarkably,the evolutionary orig<strong>in</strong> of mitochondria from bacteria enables them toimport and assemble even prote<strong>in</strong>s belong<strong>in</strong>g to a class that is absent <strong>in</strong>eukaryotes.EMV1-FGDegradation of organic carbon by microorganisms - do weknow the 'rules' and limits?F. WiddelMax Planck Institute for Mar<strong>in</strong>e Microbiology, Bremen, GermanyThe postulate of 'microbial <strong>in</strong>errancy' states that for every substancesynthesized by organisms there must be at least one type of microorganismable to degrade it. An undegradable biogenic substance would haveaccumulated <strong>in</strong> earth’s history. This postulate has significantly stimulatedbiodegradation research. For a long time, many compounds with lowchemical reactivity were thought to undergo biodegradation only <strong>in</strong> thepresence of oxygen. However, dur<strong>in</strong>g the last two decades or so, metabolictypes of anaerobic microbes observed <strong>in</strong> habitats or enriched and isolated<strong>in</strong> cultures were shown to degrade compounds that formerly wereconsidered recalcitrant under anoxic conditions; a class of such compoundsare, for <strong>in</strong>stance, hydrocarbons <strong>in</strong> gas and oil. Microorganisms degrad<strong>in</strong>gchemically unreactive compounds <strong>in</strong> anoxic habitats are 'confronted' withtwo challenges, a mechanistic and (often) an energetic one: Bonds may bedifficult to activate, and the net energy ga<strong>in</strong> may be very low, respectively.For experimental <strong>in</strong>vestigation, also slowness of the processes may presenta certa<strong>in</strong> obstacle. Still, on a global scale and over geologically relevantperiods, even such slow processes are relevant.EMV2-FGCharacteris<strong>in</strong>g oligotrophic bacterial growth with flowcytometryF. HammesEawag, Microbiology, Dübendorf, SwitzerlandMost natural and eng<strong>in</strong>eered aquatic environments comprise a broaddiversity of both natural and anthropogenic organic carbon compounds,utilised by an equally broad diversity of <strong>in</strong>digenous bacterial species. Butcarbon concentrations are typically low. Total biodegradable organiccarbon concentrations below 1 mg/L is common <strong>in</strong> many lakes, rivers,groundwater and dr<strong>in</strong>k<strong>in</strong>g water, and concentrations of <strong>in</strong>dividualsubstrates below 1 g/L are normal. Bacterial concentrations <strong>in</strong> suchenvironments are <strong>in</strong> direct correlation to available substrate concentrations, andtypically range from 10 2 to 10 6 cells/mL. These concentrations are severalorders of magnitude lower than those usually employed <strong>in</strong> laboratory basedstudies, and research is further complicated by the diversity <strong>in</strong> both the carbonresources and the utilis<strong>in</strong>g bacteria. Hence, improved methods for analys<strong>in</strong>gbacterial growth are welcomed. Flow cytometry (FCM) is a method particularlysuited for analysis of bacterial growth <strong>in</strong> these conditions. Firstly, FCM detectsall bacteria, irrespective of cultivability. This allows the study of <strong>in</strong>digenousbacterial communities that do not grow on conventional nutrient media.Secondly, FCM analysis can provide sensitive data on cell concentrations, cellsize and nucleic acid content, allow<strong>in</strong>g for detailed <strong>in</strong>formation on theorganisms <strong>in</strong> question. F<strong>in</strong>ally, FCM analysis can be automated easily. Thisprovides the opportunity for extensive high resolution analysis of dynamicprocesses such as bacterial growth. This presentation will discuss the use ofFCM <strong>in</strong> study<strong>in</strong>g (1) <strong>in</strong>digenous bacterial community growth on naturalassimilable organic carbon (AOC), (2) s<strong>in</strong>gle species (pathogenic bacteria)growth on natural AOC, and (3) s<strong>in</strong>gle species growth on specific organiccarbon compounds.EMV3-FGSubstrate use of extremely oligotrophic bacteriaA. Schwedt* 1 , M. Seidel 1,2 , T. Dittmar 1,2 , M. Simon 2 , V. Bondarev 1 ,S. Romano 1 , G. Lavik 1 , H.N. Schulz-Vogt 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Microbiology, EcophysiologyGroup, Bremen, Germany2 Carl von Ossietzky University of Oldenburg, Institute of Chemistry andBiology of the Mar<strong>in</strong>e Environment, Oldenburg, GermanyMar<strong>in</strong>e planktonic bacteria live <strong>in</strong> habitats that are extremely limited <strong>in</strong>available nutrients, especially the concentration of bioavailable dissolvedorganic compounds is very low and often close to the detection limit.Therefore, it is difficult to study the substrate use of these bacteria underoligotrophic conditions. Very sensitive methods are needed and it is crucialto keep equipment and medium contam<strong>in</strong>ation-free to study the physiologyof bacteria proliferat<strong>in</strong>g under extremely oligotrophic conditions. Thesubstrate use of Pseudovibriosp. stra<strong>in</strong> FO-BEG1 was <strong>in</strong>vestigated <strong>in</strong>artificial and natural oligotrophic seawater on elemental (dissolved organiccarbon, DOC and total dissolved nitrogen, TDN) and molecular level. Themolecular composition of dissolved organic matter (DOM) wasdeterm<strong>in</strong>ed by electrospray ionization Fourier transform ion cyclotronresonance mass spectrometry (ESI FT-ICR-MS) and molecular am<strong>in</strong>o acidanalysis. Our data show that the <strong>in</strong>vestigated Pseudovibrio stra<strong>in</strong> is able tomultiply from about 20 cells mL -1 to 20,000 cells mL -1 <strong>in</strong> artificial and to800,000 cells mL -1 <strong>in</strong> natural seawater. DOC concentrations <strong>in</strong> artificialseawater were < 5 mol C L -1 and 75 mol C L -1 <strong>in</strong> natural seawater.Dur<strong>in</strong>g growth no significant decrease <strong>in</strong> DOC and TDN concentrationswas detectable. Also N 2 and CO 2 fixation could be ruled out as majornitrogen or carbon source. Interest<strong>in</strong>gly, am<strong>in</strong>o acids were not the primarysubstrate for growth <strong>in</strong> both artificial and natural seawater. Among theseveral thousand compounds detected <strong>in</strong> seawater, the bacteria were ableto use different organic compounds simultaneously, such as organicsulfonates or am<strong>in</strong>osugars. Most of the metabolized compounds conta<strong>in</strong>ednitrogen and thus might serve also as nitrogen source for the bacteria underoligotrophic conditions. Our data demonstrate that many differentsubstrates can be used under extremely oligotrophic conditions at orig<strong>in</strong>alconcentrations. Furthermore, growth <strong>in</strong> artificial seawater was observed,with DOC concentrations much lower than typically detected <strong>in</strong> naturaloligotrophic seawater.EMV4-FGMicrobial degradation of organic compounds (naturalcompounds, xenobiotics, and pesticides) and the formation ofsoil organic matter and biogenic non-extractable (or bound)residuesM. Kästner*, A. MiltnerHelmholtz-Centre for Environmental Research, EnvironmentalBiotechnology, Leipzig, GermanyDur<strong>in</strong>g microbial degradation, carbon from any biodegradable organiccompound <strong>in</strong> soil is partitioned <strong>in</strong>to parent compound, metabolites, nonextractableresidues (NER), CO 2, and microbial biomass. This distributionmust be known to assess the fate of the compound <strong>in</strong> soil, e.g. NER frompesticides are considered to consist of adsorbed and sequestered parentcompounds or metabolites and thus as hazardous residues. However, theymay also partly derive from bacterial biomass, result<strong>in</strong>g <strong>in</strong> harmlessbiogenic residues. In addition, the formation of soil organic matter (SOM)or humic compounds has long been a dom<strong>in</strong>at<strong>in</strong>g topic <strong>in</strong> soil sciencebecause the amount and composition of SOM determ<strong>in</strong>es soil quality butthe processes are still not yet really understood. The so-called humicsubstances were regarded for a long time as a novel category of crossl<strong>in</strong>kedorganic materials. However, the genesis and microbial contributionis still poorly understood. In addition, due to decreas<strong>in</strong>g soil organic matter(SOM) contents all over Europe, a proper management of SOM is neededfor ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g soil fertility and for mitigation of the global <strong>in</strong>crease of theatmospheric CO 2 concentration.Microbial biomass residues could be identified as a significant source forSOM. We <strong>in</strong>cubated 13 C-labelled bacterial cells <strong>in</strong> an agricultural soil andtraced the fate of the 13 C label of bacterial biomass <strong>in</strong> soil by isotopicanalysis [1-5]. In the presentation, the mass balance data will besummarized and the microbial biomass and its residues by scann<strong>in</strong>gelectron microscopy (SEM) will be visualized. The results <strong>in</strong>dicate that ahigh percentage of the biomass-derived carbon (<strong>in</strong> particular fromprote<strong>in</strong>s) rema<strong>in</strong>s <strong>in</strong> soil, ma<strong>in</strong>ly <strong>in</strong> the non-liv<strong>in</strong>g part of SOM afterextended <strong>in</strong>cubation. The SEM micrographs only rarely show <strong>in</strong>tact cells.Instead, organic patchy fragments of 200-500 nm size are abundant<strong>in</strong>dicat<strong>in</strong>g specific dis<strong>in</strong>tegration processes of cell walls. These fragmentsare associated with all stages of cell envelope decay and fragmentation.BIOspektrum | Tagungsband <strong>2012</strong>


73Similar fragments develop on <strong>in</strong>itially clean and sterile <strong>in</strong> situ microcosmsdur<strong>in</strong>g exposure <strong>in</strong> groundwater provid<strong>in</strong>g clear evidence for theirmicrobial orig<strong>in</strong>. Microbial cell envelope fragments thus contributesignificantly to SOM formation. The results provide a simple explanationfor the development of the small, nano-scale patchy organic materialsobserved <strong>in</strong> soil electron micrographs. They suggest that microstructuresof microbial cells and of small plant debris provide the moleculararchitecture of SOM adsorbed to particle surfaces. This orig<strong>in</strong> andmacromolecular architecture of SOM is consistent with most observationson SOM, e.g. the abundance of microbial-derived biomarkers, the low C/Nratio, the water repellency and the stabilisation of microbial biomass [6].The specific molecular architecture determ<strong>in</strong>es carbon m<strong>in</strong>eralisation andbalances as well as the fate of pesticides and environmental contam<strong>in</strong>ants.These conclusions were confirmed by studies [7,8] on the biodegradationof isotope labeled 2,4-D and ibuprofen <strong>in</strong> soil which quantified thecontribution of microbial residues to the NER <strong>in</strong> soil. The amount of labelfound <strong>in</strong> biomolecules <strong>in</strong>dicated that virtually all of the NER of thecompounds are derived from microbial biomass.Miltner, A., Richnow, H.H., Kop<strong>in</strong>ke, F.-D. and M. Kästner. Assimilation of CO2 by soil microorganismsand transformation <strong>in</strong>to soil organic matter. Organic Geochemistry, 35 (2004), p. 1015 - 1024.K<strong>in</strong>dler, R., Miltner, A., Richnow, H.H. and M. Kästner. Fate of gram-negative bacterial biomass <strong>in</strong> soils -survival of cells, carbon balance and persistence of the lux gene as genetic label. Soil Biology andBiochemistry, 38 (2006), p. 2860-2870.Lueders, T., K<strong>in</strong>dler, R., Miltner, A., Friedrich, M.W. and M. Kaestner. Bacterial micropredators and fungidist<strong>in</strong>ctively active <strong>in</strong> a soil food web. Applied and Environmental Microbiology, 72 (2006), p. 5342-5348.K<strong>in</strong>dler. R., Miltner, A., Richnow, H.H. and M. Kästner. Fate of microbial biomass compounds (fatty acids)<strong>in</strong> soil and their contribution to soil organic matter. Organic Geochemistry, 40 (2009), p. 29-37.Miltner, A., K<strong>in</strong>dler. R., Richnow, H.H. and M. Kästner. Fate of microbial biomass-derived am<strong>in</strong>o acids <strong>in</strong>soil and their contribution to soil organic matter. Organic Geochemistry, 40 (2009) p. 978-985.Miltner A., Bombach P., Schmidt-Brücken B. and M. Kästner. SOM genesis - Microbial biomass asignificant source. Biogeochemistry, <strong>in</strong> revision.Nowak, K., Miltner, A., Gehre, M., Schäffer, A. and M. Kästner. Formation and Fate of “Bound” Residuesfrom Microbial Biomass dur<strong>in</strong>g Biodegradation of 2,4-D <strong>in</strong> Soil. Environ. Sci. Technol, 45 (2011), p. 1127-1132.Nowak, K.M., Girardi, C., Miltner, A., Gehre, M., Schäffer, A., Kästner, M. (2011). Formation and fate ofbiogenic “non-extractable” residues dur<strong>in</strong>g the biodegradation of 13C6-ibuprofen <strong>in</strong> soil. EnvironmentalPollution, submitted.Acknowledgement- This study was f<strong>in</strong>ancially supported by the Helmholtz Centre for EnvironmentalResearch UFZ, by the German Research Council (DFG, Kä 887/1) and by the European Commission(ModelPROBE, contract number 213161).EMV5-FGWhat keeps microorganisms from eat<strong>in</strong>g emerg<strong>in</strong>gcontam<strong>in</strong>ants? - A study on the corrosion <strong>in</strong>hibitorbenzotriazoleB. Morasch*, S.B. Haderle<strong>in</strong>University of Tueb<strong>in</strong>gen, Center for Applied Geoscience (ZAG),Tueb<strong>in</strong>gen, GermanyNumerous anthropogenic contam<strong>in</strong>ants are cont<strong>in</strong>uously released <strong>in</strong>tofreshwater systems where they are typically present <strong>in</strong> the g/L range orbelow. These emerg<strong>in</strong>g contam<strong>in</strong>ants might be seen as one of the mostwidespread environmental problems we are fac<strong>in</strong>g today. The corrosion<strong>in</strong>hibitor benzotriazole (BT) is a high production volume chemical withmany <strong>in</strong>dustrial and domestic applications which is almost ubiquitouslypresent <strong>in</strong> the aquatic environment. Although shar<strong>in</strong>g structural similaritieswith certa<strong>in</strong> biomolecules, neither <strong>in</strong> sewage sludge nor <strong>in</strong> oligotrophicfreshwater systems microorganisms seem to efficiently degrade BT. Forthe first time, an aerobic culture could be enriched and ma<strong>in</strong>ta<strong>in</strong>ed thatcouples biodegradation of BT with growth. Us<strong>in</strong>g the enrichment culture,the biodegradation of BT was studied <strong>in</strong> further detail and <strong>in</strong>hibitoryeffects of BT on the degradation of other carbon sources were observed.BT affected biodegradation of other compounds when present atconcentrations as low as 20 mg/L. N-methylanil<strong>in</strong>e could be identified as atransformation product of BT based on GC-MS analysis. Althoughreported to have toxic effects towards microorganisms, N-methylanil<strong>in</strong>ewas a less efficient <strong>in</strong>hibitor of substrate utilization than BT. Ourhypothesis is that not the damage to cellular structures or the <strong>in</strong>hibition ofcell function<strong>in</strong>g <strong>in</strong> general is responsible for the <strong>in</strong>hibitory effect of BT butthat the compound acts on specific enzymes. In the context of susta<strong>in</strong>ablewater quality it is important to come to a better understand<strong>in</strong>g of the<strong>in</strong>hibitory <strong>in</strong>fluence of BT and other emerg<strong>in</strong>g contam<strong>in</strong>ants on microbialactivities <strong>in</strong> the environment.EMV6-FGPhenoxyacetic acids - what soil microbes can handle etherl<strong>in</strong>kages<strong>in</strong> soil?Y. Liu 1,2 , S.-J. Liu 2 , H.L. Drake 1 , M. Horn* 11 University of Bayreuth, Ecological Microbiology, Bayreuth, Germany2 Ch<strong>in</strong>ese Academy of Sciences, State Key Laboratory of MicrobialResources, Institute of Microbiology, Beij<strong>in</strong>g, Ch<strong>in</strong>a4-Chloro-2-methyl-phenoxyacetic acid (MCPA) is one of the best sell<strong>in</strong>gherbicides utilized for wheat and lawn control world wide. MCPA ischaracterized by an ether-bond between a substituted phenol and an aceticacid residue, and subject to aerobic microbial degradation <strong>in</strong> soil. Previousf<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicated that Beta- and Gammaproteobacteria are associatedwith MCPA degradation <strong>in</strong> soils. Degradation is <strong>in</strong>itiated by oxygenasecatalyzedcleavage of a glyoxylate residue. Thus, degradation occurs <strong>in</strong>aerated surface soil and macropores generated by earthworms (i.e., burrowwalls). To resolve active MCPA degraders and m<strong>in</strong>e for new oxygenaseencod<strong>in</strong>g genes associated with MCPA degradation <strong>in</strong> bulk and earthwormaffected soil, 16S rRNA stable isotope prob<strong>in</strong>g (SIP) coupled to structuralgene DNA SIP and quantitative PCR was performed. Soil columns weresupplemented with [U 13 C]-MCPA at application level concentrations (i.e.,20 g MCPA g DW -1 ) <strong>in</strong> the presence of earthworms. [U 12 C]-MCPAtreatments served as controls. MCPA was degraded with<strong>in</strong> 27 days of<strong>in</strong>cubation. Total 16S rRNA analysis revealed 90 active family-level taxa,33 of which were not affiliated with known families, <strong>in</strong>dicat<strong>in</strong>gphylogenetic novelty <strong>in</strong> bulk soil and drilosphere. 21 and 19 major activetaxa occurred <strong>in</strong> the drilosphere and bulk soil, respectively. 12 of thosetaxa assimilated MCPA-13C and were affiliated with Alpha-, Beta-,Gammaproteobacteria, Act<strong>in</strong>obacteria, and Firmicutes.Sph<strong>in</strong>gomonadaceae and Bradyrhizobiaceae of the Alphaproteobacteriadom<strong>in</strong>ated MCPA-assimilat<strong>in</strong>g bacteria, <strong>in</strong>dicat<strong>in</strong>g that those taxa weremajor MCPA degraders bulk and earthworm affected soil. In oxicmicrocosms of bulk soil and burrow wall material supplemented with highconcentrations of [U- 13 C] MCPA (300 g g DW -1 ), Sph<strong>in</strong>gomonadaceaerelatedtaxa dom<strong>in</strong>ated MCPA consumers, while Betaproteobacteria(Burkholderiaceae-, Comamonadaceae-, and Oxalobacteraceae-relatedtaxa) dom<strong>in</strong>ated MCPA consumers <strong>in</strong> cast microcosms. Structural geneSIP <strong>in</strong> such microcosms <strong>in</strong>dicated that MCPA degraders host tfdA-like,cadA and r/sdpA encod<strong>in</strong>g oxygenase genes. Based on 84% prote<strong>in</strong>sequence identity, 49, 6, and 17 operational taxonomic units (OTUs) ofwere detected <strong>in</strong> total, <strong>in</strong>clud<strong>in</strong>g many hitherto unknown genes. Most ofthe detected genes affiliated with oxygenase genes fromAlphaproteobacteria. 8, 6, and 4 OTUs of tfdA-like, cadA and r/sdpAgenes, respectively, were MCPA-[ 13 C] labeled. Quantitative PCR (qPCR)revealed that copy numbers of such oxygenase genes <strong>in</strong>creased dur<strong>in</strong>gMCPA degradation <strong>in</strong> soil microcosms, and the expression of tfdA-like andr/sdpA genes was stimulated by MCPA, <strong>in</strong>dicat<strong>in</strong>g that diverse oxygenaseencod<strong>in</strong>ggenes were <strong>in</strong>volved <strong>in</strong> MCPA degradation. The comb<strong>in</strong>ed data<strong>in</strong>dicate that (i) Alphaproteobacteria rather than Betaproteobacteria aremajor MCPA degrades <strong>in</strong> certa<strong>in</strong> soils and (ii) new oxygenases areassociated with MCPA degradation.EMV7-FGA new function for an old yellow enzyme: dearomatiz<strong>in</strong>gnaphthoyl-CoA reductase, a key enzyme <strong>in</strong> anaerobicnaphthalene degradationC. Eberle<strong>in</strong>* 1 , H. Mouttaki 2 , R. Meckenstock 2 , M. Boll 11 University of Leipzig, Institute of Biochemistry, Leipzig, Germany2 Helmholtz Center Munich, German Research Center for EnvironmentalHealth, Institute of Groundwater Ecology, Munich, GermanyPolyaromatic hydrocarbons (PAH) are harmful to the environment andhuman health; they are highly persistent due to the high resonance energyof the r<strong>in</strong>g system and to the low bioavailability. Only little is known aboutenzymes <strong>in</strong>volved <strong>in</strong> the anaerobic metabolism of PAHs. The <strong>in</strong>itialactivation of naphthalene is considered to proceed by carboxylationyield<strong>in</strong>g 2-naphthoic acid 1,2 , which is then activated to 2-naphthoyl-CoAby a specific ligase. Initial evidence was obta<strong>in</strong>ed that this key<strong>in</strong>termediate is dearomatized by reduction 3,4 . Us<strong>in</strong>g extracts from thesulphate reduc<strong>in</strong>g, naphthalene degrad<strong>in</strong>g enrichment culture N47 thetime-, prote<strong>in</strong>- and electron donor dependent reduction of 5,6,7,8-tetrahydronaphthoyl-CoA (THNCoA) was demonstrated. This activity (5.1± 1.2 nmol m<strong>in</strong> -1 mg -1 ) was sufficiently high for the growth rate of cells;surpris<strong>in</strong>gly it was not oxygen sensitive and not dependent on ATPhydrolysis. Prote<strong>in</strong> purification/characterization <strong>in</strong>clud<strong>in</strong>g massspectrometric analysis of tryptic digests revealed that the 2-naphthoyl-CoAreductase (NCR) is a member of the old yellow enzyme (OYE)-family.UV/vis spectra supported the existence of a flav<strong>in</strong> cofactor and FeSclusters.The newly identified enzyme represents the prototype of a novelclass of aryl-CoA reductases.1 Musat 2009 Env Microbiol 11:209-192 Bergmann 2011 Arch Microbiol 4:241-2503 Annweiler 2002 Appl Env Microbiol 68:852-858.4 Selesi 2010 J Bac 192:295-306EMP1-FGChalleng<strong>in</strong>g Microbial Infallibility: Investigations on theBiodegradability of Cyclic PeptidesM. Perzborn*, C. Syldatk, J. RudatKarlsruhe Institute of Technology, IBLT, Section II: Technical Biology,Karlsruhe, GermanyDiketopiperaz<strong>in</strong>es (DKPs) are the smallest possible cyclic peptidescomposed of two -am<strong>in</strong>o acids. They are abundant natural compoundsproduced by a variety of microorganisms as secondary metabolites, e.g. asquorum sens<strong>in</strong>g molecules [1]. Moreover DKPs occur as degradationproducts e.g. of am<strong>in</strong>openicill<strong>in</strong> antibiotics [2] which are under discussionBIOspektrum | Tagungsband <strong>2012</strong>


74as health problem due to the allergenic potential of these exceptional stablecompounds.Although their abundance <strong>in</strong> nature, little is known about thebiodegradation of this substance class and only for few stra<strong>in</strong>s hydrolysisof DKPs is reported. In this study we present different approaches toidentify potential DKP degrad<strong>in</strong>g stra<strong>in</strong>s and enzymes, test<strong>in</strong>g eight DKPssynthesized from prote<strong>in</strong>ogenic am<strong>in</strong>o acids and three from nonprote<strong>in</strong>ogenicam<strong>in</strong>o acids (e.g. sarcos<strong>in</strong>e) as substrates:- Despite peptidase activity aga<strong>in</strong>st some DKPs has been reported sometime ago [3] tested activities could not be confirmed <strong>in</strong> our lab. Furtherexperiments with additional peptidases <strong>in</strong>dicate peptidase stability for allused DKPs.- Recently certa<strong>in</strong> cyclic amidases (hydanto<strong>in</strong>ases) have been shown toalso cleave dihydropyrimid<strong>in</strong>e derivatives which are structurally related toDKPs [4]. We could demonstrate degradation of different DKPs by threestra<strong>in</strong>s exhibit<strong>in</strong>g such cyclic amidase activity. Whether the responsibleenzymes are the same is subject of further <strong>in</strong>vestigations.- Paenibacillus chibensis (DSM 329) and Streptomyces flavovirens (DSM40062) have been described to hydrolyze the aspartame derivativecyclo(L-Asp-L-Phe) [5]. In our studies this activity appeared to besubstrate <strong>in</strong>ducible <strong>in</strong> S. flavovirens but not <strong>in</strong> P. chibensis. Moreover wedetected the degradation of an additional substrate cyclo(L-Asp-L-Asp) byP. chibensis while no other of the tested DKPs was hydrolyzed by one ofthese stra<strong>in</strong>s.- Two bacterial stra<strong>in</strong>s isolated dur<strong>in</strong>g this study were shown toenantioselectively cleave racemic cyclo(DL-Ala-DL-Ala). We coulddemonstrate that the cyclo(D-Ala-D-Ala) isomer was not attacked by bothstra<strong>in</strong>s which were identified as Microbacterium sp. and Paenibacillus sp.by 16S rDNA sequence analysis.1. M.B. Mart<strong>in</strong>s, I. Carvalho, Tetrahedron63(2007), p. 9923.2. A. Lamm, I. Gozlan, A. Rotste<strong>in</strong>, D. Avisar, J Env Sci Health Part A44(2009), p. 1512.3. T. Ishiyama, J Biochem17(1933), p. 287.4. U. Engel, C. Syldatk, J. Rudat, Appl Microbiol Biotechnol, published onl<strong>in</strong>e Nov 27th, 2011.5. EP 0 220 028 - B1 (1990) AJINOMOTO CO.EMP2-FGEthylbenzene - Isotope fractionation measurements as a tool tocharacterize aerobic and anaerobic biodegradationC. Dorer* 1 , A.J.M. Stams 2 , H.H. Richnow 1 , C. Vogt 11 Helmholtz Centre for Environmental Research - UFZ, Department ofIsotope Biogeochemistry, Leipzig, Germany2 Wagen<strong>in</strong>gen University, Laboratory of Microbiology, Wagen<strong>in</strong>gen,NetherlandsBTEX compounds (benzene, toluene, ethylbenzene and xylenes) arecommon pollutants <strong>in</strong> our environment released from spill<strong>in</strong>gs of gasol<strong>in</strong>e.As hydrocarbons are chemically <strong>in</strong>ert compounds they need to be activatedto start degradation processes. For long time only molecular oxygen ashighly reactive cosubstrate was known to <strong>in</strong>itiate biological decompositionof these compounds. In the last years biochemically completely differentmechanisms for <strong>in</strong>itial attack under anoxic conditions were elucidated.Two of them are relevant for ethylbenzene degradation: fumarate additionand oxygen-<strong>in</strong>dependent hydroxylation. The better we know whichbiodegradation process prevails the better it is possible to make reliablepredictions for remediation measures.Here we present isotope fractionation measurements of carbon andhydrogen as a tool to characterize the biodegradation processes ofethylbenzene and a cheap means for monitor<strong>in</strong>g the transformation atcontam<strong>in</strong>ated sites. Different reaction mechanisms are reflected bydifferent isotope effects (the result of different reaction rates of moleculesconta<strong>in</strong><strong>in</strong>g the light or the heavy isotope). By this way the <strong>in</strong>itial step ofvarious degradation pathways can be differed by determ<strong>in</strong><strong>in</strong>g the s<strong>in</strong>gleand comb<strong>in</strong>ed fractionation behaviour of carbon and hydrogen.Investigated ethylbenzene dehydrogenase catalysed reactions by nitratereduc<strong>in</strong>gtest organisms (Aromatoleum aromaticum, Georgfuchsiatoluolica and Azoarcus sp.) show a pronounced hydrogen fractionationcontrast<strong>in</strong>g to aerobic transformation via hydroxylation of the side-cha<strong>in</strong> orthe r<strong>in</strong>g (<strong>in</strong>vestigated for Pseudomonas putida and an enrichment culturedom<strong>in</strong>ated by an Acidovorax-related species, respecively. Furthermoremask<strong>in</strong>g effects can be excluded by look<strong>in</strong>g at two elements at the sametime.Altogether the newly ga<strong>in</strong>ed isotopic enrichment factors from various labcultures will be useful for application at field sites and will complete thepicture of isotope effects for BTEX compounds.EMP3-FGChloroethenes <strong>in</strong> a historical context: From recalcitrance tocomplete m<strong>in</strong>eralizationS. Mungenast*, I. Kranzioch, I. Kranzioch, K.R. Schmidt, A. TiehmDVGW-Water Technology Center (TZW), Department of EnvironmentalBiotechnology, Karlsruhe, GermanyChloroethenes were identified as common contam<strong>in</strong>ants <strong>in</strong> groundwater asearly as the 1970s (1). Their extensive use as degreas<strong>in</strong>g or dry clean<strong>in</strong>gsolvents and synthetic feed stocks until today has led to groundwatercontam<strong>in</strong>ation world wide. They are <strong>in</strong>cluded <strong>in</strong> the USEPA’s list ofprimary regulated dr<strong>in</strong>k<strong>in</strong>g water contam<strong>in</strong>ants (2), because of their toxicand carc<strong>in</strong>ogenic effects on human health.Common consensus until 1980 was that chlor<strong>in</strong>ated ethenes(Tetrachloroethene (=Perchloroethene, PCE); Trichloroethene (TCE); thethree dichloroethenes isomers (cDCE, tDCE, 1,1DCE) and v<strong>in</strong>yl chloride(VC)) were recalcitrant to biodegradation. This op<strong>in</strong>ion was supported bythe fact that these compounds were thought to be only of anthropogenicorig<strong>in</strong>. In addition to that only little importance was assigned to biologicalprocesses <strong>in</strong> groundwater before the 1980s (1).After several studies on the fate of PCE and TCE <strong>in</strong> anaerobicgroundwater and the accumulation of cDCE or VC as possibletransformation products, it was clear at the end of the 1980s that microbialreductive dechlor<strong>in</strong>ation can take place <strong>in</strong> anaerobic, chloroethenecontam<strong>in</strong>ated aquifers. From that time on researchers all over the worldaddressed biological degradation of chloroethenes under different redoxconditionsand with a wide range of auxiliary substrates. Today thecommon op<strong>in</strong>ion is that chloroethenes with higher chlor<strong>in</strong>e content (PCE,TCE) can be degraded more easily under anaerobic conditions serv<strong>in</strong>g aselectron acceptors and chloroethenes with lower chlor<strong>in</strong>e content (DCE,VC) can be degraded more easily under aerobic conditions serv<strong>in</strong>g aselectron donors (3).Here we want to report recent f<strong>in</strong>d<strong>in</strong>gs on reductive dechlor<strong>in</strong>ation, onaerobic metabolism (cometabolic and productive) of lower chlor<strong>in</strong>atedethenes and on first results <strong>in</strong>dicat<strong>in</strong>g that aerobic productivebiodegradation of TCE is possible.(1) P. M. Bradley, Bioremediation Journal72003, p. 81.(2) Code of Federal Regulations Title 40, Pt.141.50 (2002 ed).(3) A. Tiehm and K. R. Schmidt, Current Op<strong>in</strong>ion <strong>in</strong> Biotechnology22(2011), p. 415.(4) The authors k<strong>in</strong>dly acknowledge f<strong>in</strong>ancial support by BMWi (AiF project no. 16224 N).EMP4-FGSoil microbial communities <strong>in</strong>volved <strong>in</strong> carbon cycl<strong>in</strong>g dur<strong>in</strong>gleaf litter degradation of annual and perennial plantsS. Wallisch* 1,2 , W. Heller 3 , S. Stich 3 , F. Fleischmann 4 , M. Schloter 2,51 Helmholtz Zentrum München, environmental genomics, Oberschleissheim,Germany2 Technische Universitaet Muenchen, Chair of Soil Ecology, Neuherberg,Germany3 HelmholtzZentrum Muenchen – German Research Center for EnvironmentalHealth, Institute of Biochemical Plant Pathology, Research Group of PlantAbiotic Stress, Neuherberg, Germany4 Technische Universität München, Phytopathology of Woody Plants,Freis<strong>in</strong>g, Germany5 HelmholtzZentrum Muenchen, Research Unit Environmental Genomics,Neuherberg, GermanyMicrobial degradation of plant litter materials provides the primaryresources for organic matter formation <strong>in</strong> soil. The aim of this study was toenlighten the role of bacterial colonisation on leaf litter fragments and to<strong>in</strong>vestigate shifts <strong>in</strong> microbial diversity dur<strong>in</strong>g leaf litter degradation <strong>in</strong> thecontext of carbon cycl<strong>in</strong>g.Therefore, we compared two different litter types: (I)Zea maysas annualand (II)Fagus sylvaticaas perennial model plant. Leafs were sewed <strong>in</strong>tonylon bags and <strong>in</strong>cubated for up to eight (Z. mays) and thirty (F. sylvatica)weeks, respectively, <strong>in</strong> the soil. The state of degradation was determ<strong>in</strong>edby the loss of dry weight. For molecular analyses 16S rRNA genes weredetected by two different f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g techniques, term<strong>in</strong>al restrictionfragment length polymorphism (T-RFLP) and enterobacterial repetitive<strong>in</strong>tergenic consensus sequences (ERIC). To get a deeper <strong>in</strong>sight whichbacterial communities are <strong>in</strong>volved <strong>in</strong> litter degradation next generationsequenc<strong>in</strong>g us<strong>in</strong>g a 454 platform was performed. Additionally, the amountof sugars, am<strong>in</strong>o sugars and phenols was analysed.First results of the experiment with litter of the annual plant showed aconsistent pattern of microbial community shifts. T-RFLP, ERIC andsequenc<strong>in</strong>g results reflected concordantly changes of the bacterialcommunity over time. Summariz<strong>in</strong>g, microbial diversity <strong>in</strong>creased dur<strong>in</strong>gleaf litter degradation and bacterial stra<strong>in</strong>s related to carbon cycl<strong>in</strong>g suchasAct<strong>in</strong>omycetesandMyxococcalescould be identified. Further analyseswill reveal how microbial diversity develops on perennial leaf litter.Different results are expected as the litter ofF. sylvaticaconta<strong>in</strong>s higheramounts of persistent substances as lign<strong>in</strong> and celluloses compared toZeamays.EMP5-FGBenzotriazole derivatives: biodegradation patterns with threedifferent activated sludge biocenosesB. Herzog* 1 , H. Lemmer 2 , H. Horn 1 and E. Müller 11 Institute of Water Quality Control, TU München, Garch<strong>in</strong>g, Germany2 Bavarian Environment Agency, Munich, GermanyThe compounds benzotriazole (BT), 5-methylbenzotriazole (5-TTri) and 4-methylbenzotriazole (4-TTri) are polar micropollutants widely used asBIOspektrum | Tagungsband <strong>2012</strong>


75corrosion <strong>in</strong>hibitors <strong>in</strong> dishwash<strong>in</strong>g detergents and <strong>in</strong> deic<strong>in</strong>g or anti-ic<strong>in</strong>gfluids on airplanes. Due to their widespread usage <strong>in</strong> many applications,their high polarity and therefore good water solubility on one hand andtheir poor biodegradability on the other, these compounds are found <strong>in</strong>nearly all aquatic compartments <strong>in</strong>clud<strong>in</strong>g ground water. For that reasonthere is urgent need to shed more light on the biological relevance ofbenzotriazole derivatives. The aim of the present work is to ga<strong>in</strong> <strong>in</strong>sight<strong>in</strong>to selected BT derivatives biodegradation patterns by bench scale testswith three different activated sludge biocoenoses derived from threewastewater treatment systems: WWTP 1 with membrane technology,WWTP 2 equipped with a two-step activated sludge treatment and WWTP3 with an <strong>in</strong>termittent nitrification/denitrification regime. After <strong>in</strong>oculationwith 5 g L -1 MLSS and 10 mg L -1 of BT or else a 10 mg L -1 mixture of 4-TTri and 5-TTri ( 40/60%) the reactors, rang<strong>in</strong>g from 100 to 500 ml <strong>in</strong>volume, were operated under different nutrient and biomass conditions toevaluate the best setup for aerobically degrad<strong>in</strong>g benzotriazole compounds.Biodegradation was shown best for 5-TTri followed by BT and worst for4-TTri <strong>in</strong> all reactors regardless which sludge was applied. Concern<strong>in</strong>g thedegradation rate over time the sludge from WWTP 1 proved best, followedby WWTP 2 and 3. Also the concentration of nutrients and energy sourcessuch as C- and N-substrates proved to be important. Thus by dos<strong>in</strong>g thebenzotriazoles as co-substrates together with an easily utilizable C- and N-source degradation turned out faster compared to reactors fedbenzotriazoles as sole C- and/or N-source. In addition to the laboratoryexperiments environmental water samples were collected to check the<strong>in</strong>fluence of WWT retention times on biodegradation. Moreover,benzotriazole concentrations <strong>in</strong> the receiv<strong>in</strong>g rivers were determ<strong>in</strong>ed.These studies showed <strong>in</strong> all tested waters benzotriazoles to be found atconcentrations rang<strong>in</strong>g from 0.50 to 31.0 g L -1 . WWTPs turned out toconstitute one major po<strong>in</strong>t source for benzotriazoles <strong>in</strong>to the aquaticenvironment. Ongo<strong>in</strong>g research is focus<strong>in</strong>g on benzotriazole degrad<strong>in</strong>gorganisms' or communities' characterization at aerobic and anaerobicconditions and locat<strong>in</strong>g of possible <strong>in</strong>termediates or end-products.FBV1-FGNo abstract submitted!FBV2-FGThe carbon depletion response of Aspergillus niger dur<strong>in</strong>gsubmerged cultivation.B.M. Nitsche* 1 , T.R. Jrgensen 1,2 , V. Meyer 2,3 , A.F.J. Ram 1,21 Leiden University, Institute of Biotechnology, Leiden, Netherlands2 Kluyver Centre for Genomics of Industrial Fermentation, Delft, Netherlands3 Berl<strong>in</strong> University of Technology, Institute of Biotechnology, Berl<strong>in</strong>, GermanyBackground: Filamentous fungi experience carbon limitation <strong>in</strong> both theirnatural habitats and biotechnological operations. Compared to nutrient-richgrowth conditions, carbon limitation triggers dramatic changes affect<strong>in</strong>gvirtually all cellular processes. Liberation of carbon from extra- and<strong>in</strong>tracellular sources fuel<strong>in</strong>g fungal self-propagation can be considered astheir key response. Comprehensive description of the processes <strong>in</strong>volvedand their <strong>in</strong>teractions are important to ga<strong>in</strong> further understand<strong>in</strong>g on asystems-level. Increas<strong>in</strong>g knowledge will be relevant for <strong>in</strong>dustrial,medical and fundamental research to improve yields of bioprocesses anddevelop new antifungal strategies.Results: This study describes the physiological, morphological andgenome-wide transcriptional changes caused by severe carbon limitationdur<strong>in</strong>g prolonged submerged batch cultivation of the filamentous fungusAspergillus niger. The application of bioreactors allowed for highlyreproducible cultivation conditions and monitor<strong>in</strong>g of physiologicalparameters. We describe the dispersed hyphal morphology at dist<strong>in</strong>ctcultivation phases and applied automated image analysis to illustrate thedynamics of cryptically re-grow<strong>in</strong>g hyphae. Us<strong>in</strong>g the AffymetrixGeneChip platform, we established genome-wide transcriptional profilesfor day 1, 3 and 6 of carbon limitation. Compared to exponential growthconditions, roughly 50% (7292) of all genes were differentially expresseddur<strong>in</strong>g at least one of the starvation time po<strong>in</strong>ts. To identify majortranscriptional trends, we performed enrichment analysis of GeneOntology, Pfam doma<strong>in</strong> and Kyoto Encyclopedia of Genes and Genomespathway annotations. Among the predom<strong>in</strong>antly <strong>in</strong>duced processes areautophagy and asexual reproduction. Furthermore, we discuss thetranscriptional profiles of enzyme classes, which have been reported toplay important roles <strong>in</strong> ag<strong>in</strong>g cultures of filamentous fungi, such aschit<strong>in</strong>ases, glucanases and proteases.Conclusions: Us<strong>in</strong>g an <strong>in</strong>terdiscipl<strong>in</strong>ary approach, which comb<strong>in</strong>es highlyreproducible cultivation conditions with bio<strong>in</strong>formatics <strong>in</strong>clud<strong>in</strong>gautomated image analysis, genome-wide transcriptional profil<strong>in</strong>g andenrichment analysis, this study provides the first comprehensive analysisof the carbon depletion response <strong>in</strong> filamentous fungi. The generated datawill be fundamental to further improve our understand<strong>in</strong>g of <strong>in</strong>terrelatedprocesses triggered by carbon limitation such as autolysis, proteolysis, celldeath, and reproduction.FBV3-FGBlood is a very special fluid - the transcriptome of Aspergillusfumigatus <strong>in</strong> response to human bloodP. Olbermann* 1 , S. Tarazona 2 , H. Irmer 3 , C. Jöchl 4 , D. Turras 5 , A. Di Pietro 5 ,H. Haas 4 , G.H. Braus 3 , A. Conesa 2 , S. Krappmann 11 Universität Würzburg, Zentrum für Infektionsforschung, Würzburg, Germany2 Centro de Investigacion Príncipe Felipe, Bio<strong>in</strong>formatics and GenomicsDepartment, Valencia, Spa<strong>in</strong>3 University of Gött<strong>in</strong>gen, Institute for Microbiology and Genetics, Gött<strong>in</strong>gen,Germany4 Innsbruck Medical University, Division of Molecular Biology, Innsbruck,Australia5 University of Cordoba, Department of Genetics, Cordoba, Spa<strong>in</strong>Aspergillus fumigatus is the major cause of Invasive Aspergillosis (IA), alife threaten<strong>in</strong>g disease with a mortality rate of 90 to 95 % that affectsprimarily immunocompromised <strong>in</strong>dividuals. A pivotal step l<strong>in</strong>ked toseverity of this disease is the entry of the fungus <strong>in</strong>to a blood vessel and itsdissem<strong>in</strong>ation <strong>in</strong>to the blood circuit. Upon enter<strong>in</strong>g the blood stream A.fumigatus has to adapt to its new environment and to cope with multiplefactors. Although transcriptomes of several host <strong>in</strong>fect<strong>in</strong>g fungi have beenpublished recently, knowledge about the adaptation of the A. fumigatustranscriptome to blood environment <strong>in</strong>side the human host is scarce andlimits understand<strong>in</strong>g of pathogenesis and A. fumigatus dissem<strong>in</strong>ation.To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to this part of <strong>in</strong>fection and transcriptional networks<strong>in</strong>volved <strong>in</strong> this process, we developed an <strong>in</strong> vitro model us<strong>in</strong>g humanblood mimick<strong>in</strong>g haematogenous dissem<strong>in</strong>ation <strong>in</strong>clud<strong>in</strong>g a time courseanalysis to elucidate the differences of fungal response at several timepo<strong>in</strong>ts towards blood. This model was used to capture the gene expressionthat can be found dur<strong>in</strong>g adaptational processes of the fungus. Sampleswere analysed by whole genome expression profil<strong>in</strong>g us<strong>in</strong>g microarraysfollowed by gene enrichment analysis and further bio<strong>in</strong>formatic analysis.Herewith we could identify multiple genes <strong>in</strong>volved <strong>in</strong> adaptation of A.fumigatus to blood such as genes <strong>in</strong>volved <strong>in</strong> signal<strong>in</strong>g, growth regulationand metabolism. As a first application of our <strong>in</strong> vitro model we alsomeasured the transcriptional response of A. fumigatus to human bloodwhen exposed to the antifungal posaconazole. This gave us the possibilityto identify the responses of the fungus when cop<strong>in</strong>g with the drug <strong>in</strong> theenvironment <strong>in</strong> which it acts <strong>in</strong> human treatment. Additionally those datawere confirmed us<strong>in</strong>g real-time qPCR to support the role of certa<strong>in</strong> genesfor the survival of A. fumigatus <strong>in</strong> blood.This analysis will provide important <strong>in</strong>sights regard<strong>in</strong>g the genes <strong>in</strong>volved<strong>in</strong> stages of IA and thus may lead the way to new targets for fight<strong>in</strong>g thisopportunistic pathogen. The model allows us to test the role of A.fumigatus and factors affect<strong>in</strong>g the pathogen <strong>in</strong> this unique environment.FBV4-FGProteomic profil<strong>in</strong>g of the short-term response of Aspergillusfumigatus to hypoxic growth conditionsK. Kroll* 1,2 , M. Vödisch 1,2 , M. Roth 3 , A.A. Brakhage 1,2 , O. Kniemeyer 1,21 Hans-Knöll-Institute, Department of Molecular and AppliedMicrobiology, Jena, Germany2 Friedrich-Schiller-University Jena, Jena, Germany3 Hans-Knöll-Institute, Department of Bio Pilot Plant, Leibniz Institute forNatural Product Research and Infection Biology, Jena, GermanyAspergillus fumigatus is an opportunistic airborne pathogen caus<strong>in</strong>gsystemic <strong>in</strong>fections <strong>in</strong> immunocompromised patients. This filamentousfungus is an obligate aerobe and requires molecular oxygen for growth.However, dur<strong>in</strong>g the <strong>in</strong>fection process A. fumigatus has to adapt quickly tovery low oxygen concentrations when it grows <strong>in</strong> <strong>in</strong>flammatory, necrotictissue. Recently, it was shown that hypoxia is <strong>in</strong>volved <strong>in</strong> virulence of A.fumigatus [1]. In our lab, the metabolic long-term response of this fungushas recently been analyzed by us<strong>in</strong>g an oxygen-controlled chemostat [2].However, little is known about the short-term adaptive mechanisms of A.fumigatus to low oxygen concentrations. Therefore, we aimed to<strong>in</strong>vestigate the immediate response of A. fumigatus after oxygen depletionon the prote<strong>in</strong> level.A. fumigatus was cultivated as a batch culture <strong>in</strong> a 3 L bioreactor. Afterpre-cultivation at 21 % (vol/vol) molecular oxygen concentration, theoxygen supply was shifted to 0.2 % (vol/vol) and several samples weretaken dur<strong>in</strong>g a 24 hour period of hypoxia. Cytosolic prote<strong>in</strong> levels wereanalyzed by 2D - gel electrophoresis and differentially regulated prote<strong>in</strong>swere identified by MALDI-TOF/TOF-analysis.Significant changes <strong>in</strong> the am<strong>in</strong>o acid, carbohydrate and energymetabolism were observed with<strong>in</strong> 24 hours of hypoxia. Glycolyticenzymes and prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> am<strong>in</strong>o acid metabolism were upregulated.Furthermore, there was an <strong>in</strong>creased production of prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> respiration, electron transport and the general stress response.By contrast, prote<strong>in</strong>s of the pentose phosphate pathway (PPP) and the TCAcycle were down regulated dur<strong>in</strong>g the short-term response, as well.Under hypoxic conditions, we determ<strong>in</strong>ed a strong up-regulation of thealcohol dehydrogenase AlcA which is <strong>in</strong>volved <strong>in</strong> the utilization of ethanolBIOspektrum | Tagungsband <strong>2012</strong>


76[3]. In summary, hypoxia has a strong <strong>in</strong>fluence on the metabolicregulation of A. fumigatus and the character of the long- and short-termresponse to hypoxia differs only partly. In future experiments, we willanalyze the function of the alcohol dehydrogenase <strong>in</strong> the adaptationprocess of A. fumigatus to hypoxia <strong>in</strong> more detail.[1] SD. Willger, S. Puttikamonkul and R.A. Cramer, PLOS Pathogens 4 (2008), p. 680-685[2] M. Vödisch, K. Scherlach and O. Kniemeyer, Journal of Proteome Research 10, (2011), p. 2508-2524[3] C.H. Doy, J.A. Pateman and E.H. Creaser, DNA 4 (1985), p. 105-114FBV5-FGDifferential analysis of <strong>in</strong>tra- and extra-cellular proteomes ofVerticillium longisporum dur<strong>in</strong>g biotrophic and saprophyticgrowthA. Kühn* 1 , H. Kusch 1 , C. Hoppenau 1 , K. Michels 2 , I. Feussner 2 , B. Voigt 3 ,D. Becher 3 , M. Hecker 3 , S.A. Braus-Stromeyer 1 , G.H. Braus 11 Georg-August Universität Gött<strong>in</strong>gen, Institut für Mikrobiologie und Genetik,Gött<strong>in</strong>gen, Germany2 Georg-August Universität Gött<strong>in</strong>gen, Abteilung Biochemie der Pflanze,Albrecht-von-Haller-Institut für Pflanzenwissenschaften, Gött<strong>in</strong>gen, Germany3 Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie,Greifswald, GermanyThe soil-born, hemibiotrophic plant pathogenic fungus Verticilliumlongisporum causes premature senescence and flower<strong>in</strong>g <strong>in</strong> oilseed rape(Brassica napus), which results <strong>in</strong> immense agricultural yield reduction. Inspite of the significant economical importance of this pathogen, the factorsfor host specificity are still unknown and the network of virulence factors(effectors) is poorly analyzed. The focus of this study is to identify fungalprote<strong>in</strong>s expressed dur<strong>in</strong>g plant <strong>in</strong>fection. Therefore we <strong>in</strong>vestigated theextra- and <strong>in</strong>tracellular changes of the V. longisporum proteome <strong>in</strong>ducedby oilseed rape xylem sap (biotrophic model) versus conventionalsaprophytic growth media. Procedures for the isolation and purification ofprote<strong>in</strong>s were optimized for Verticillium samples. Prote<strong>in</strong> extracts wereseparated by one- and two-dimensional gel electrophoresis and peptidesamples were analyzed by MALDI-TOF and LC-MSMS. The result<strong>in</strong>gspectra were searched aga<strong>in</strong>st peptide data derived of the draft genomesequence of V. longisporum 43 we are currently assembl<strong>in</strong>g andannotat<strong>in</strong>g. Exoproteomes vary to a great extent depend<strong>in</strong>g on growthmedium, growth phase and light conditions. The identified prote<strong>in</strong>s andtheir functional categories may represent the different phases of the<strong>in</strong>fection cycle. We identified adhes<strong>in</strong>s and many different groups ofcarbohydrate-active enzymes like polysaccharide lyases and glycosylhydrolases, which could be important for penetration and degradation ofstructurally complex pect<strong>in</strong> molecules of the plant. Additionally severalmembers of peptidase families were detected, which might be importantfor proteolysis of host substrates or host defense prote<strong>in</strong>s. Furthermoremany small cyste<strong>in</strong>e-rich prote<strong>in</strong>s and necrosis and ethylene-<strong>in</strong>duc<strong>in</strong>g-likeprote<strong>in</strong>s (NLP) were identified, which are potential effectors <strong>in</strong>pathogenicity. Candidate genes and prote<strong>in</strong>s are currently analyzedregard<strong>in</strong>g their importance dur<strong>in</strong>g plant <strong>in</strong>fection.FBV6-FGRegulation of fruit<strong>in</strong>g body formation <strong>in</strong> Copr<strong>in</strong>opsis c<strong>in</strong>ereaM. Navarro-Gonzalez*, M. Arndt, M. Zomorrodi, A. Majcherczyk, U. KüesGeorg-August-Universität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie undtechnische Mykologie, Gött<strong>in</strong>gen, GermanyFruit<strong>in</strong>g body formation <strong>in</strong> the edible dung fungus Copr<strong>in</strong>opsis c<strong>in</strong>erea isregulated by environmental cues (nutrients, temperature, light, humidity),physiological conditions (mycelial status, age) and genetic controlelements (e.g. A and B mat<strong>in</strong>g type genes, dst1 and dst2 genes for lightreceptors). Fruit<strong>in</strong>g body development consists of a series of def<strong>in</strong>ed stepsoccurr<strong>in</strong>g <strong>in</strong> a concerted process over seven days. Follow<strong>in</strong>g hyphalaggregation, stipe and cap tissues differentiate controlled by light and darkphases. Once light-<strong>in</strong>duced karyogamy takes place <strong>in</strong> basidia present at thesurface of the gills <strong>in</strong> the cap of mature primordia, stipe elongation and capexpansion start parallel to meiosis <strong>in</strong> the basidia and subsequentbasidiospore formation. All these processes are expected to appo<strong>in</strong>tnumerous <strong>in</strong>tracellular as well as extracellular prote<strong>in</strong> functions, many ofwhich might be specific to steps <strong>in</strong> fruit<strong>in</strong>g. S<strong>in</strong>ce the genome of thefungus is available, identification of prote<strong>in</strong>s can now be addressed bylarge scale proteomic techniques. Stipe and cap fractions from immaturefruit<strong>in</strong>g bodies at meiosis are shown to differ from each other, both <strong>in</strong> the<strong>in</strong>tracellular and the extracellular proteome.FBV7-FGThe stress-activated prote<strong>in</strong> k<strong>in</strong>ase FgOS-2 is a key regulator<strong>in</strong> the life cycle of the cereal pathogen Fusarium gram<strong>in</strong>earumJ. Bormann*, N. Van Thuat, W. SchäferUniversity of Hamburg, Biocenter Kle<strong>in</strong> Flottbek, Department ofMolecular Phytopathology and Genetics, Hamburg, GermanyFusarium gram<strong>in</strong>earumis one of the most destructive pathogens of cerealsand a threat to food and feed production worldwide. It is an ascomycetousplant pathogen and the causal agent of Fusarium head blight disease <strong>in</strong>small gra<strong>in</strong> cereals and of cob rot disease <strong>in</strong> maize. Infection with F.gram<strong>in</strong>earum leads to yield losses and mycotox<strong>in</strong> contam<strong>in</strong>ation.Zearalenone (ZEA) and deoxynivalenol (DON) are hazardous mycotox<strong>in</strong>s;the latter is necessary for virulence towards wheat. Deletion mutants of theF. gram<strong>in</strong>earum orthologue of the Saccharomyces cerevisiae Hog1 stressactivatedprote<strong>in</strong> k<strong>in</strong>ase, FgOS-2 (FgOS-2), showed drastically reduced<strong>in</strong> planta DON and ZEA production. However, FgOS-2 produced evenmore DON than the wild type under <strong>in</strong> vitro conditions, whereas ZEAproduction was similar to that of the wild type. These deletion stra<strong>in</strong>sshowed a dramatically reduced pathogenicity towards maize and wheat.We constitutively expressed the fluorescent prote<strong>in</strong> dsRed <strong>in</strong> the deletionstra<strong>in</strong>s and the wild type. Microscopic analysis revealed that FgOS-2 isunable to reach the rachis node at the base of wheat spikelets. Dur<strong>in</strong>gvegetative growth, FgOS-2 stra<strong>in</strong>s showed greater resistance aga<strong>in</strong>stphenylpyrrole and dicarboxymide fungicides. Growth was retarded uponosmotic treatment: the growth rate of mutant colonies on agar platessupplemented with NaCl was reduced but conidia formation rema<strong>in</strong>edunchanged. However, the germ<strong>in</strong>ation of mutant conidia on osmotic media wasseverely impaired. Germ tubes were swollen and conta<strong>in</strong>ed multiple nuclei. Thedeletion mutants completely failed to produce perithecia and ascospores.Furthermore, FgOS-2 also plays a role <strong>in</strong> reactive oxygen species (ROS)-relatedsignall<strong>in</strong>g. The transcription and activity of fungal catalases is modulated byFgOS-2. Among the genes regulated by FgOS-2 we found a putative calciumdependentNADPH-oxidase (noxC) and the transcriptional regulator of ROSmetabolism, atf1. The present study describes new aspects of stress-activatedprote<strong>in</strong> k<strong>in</strong>ase signall<strong>in</strong>g <strong>in</strong> F. gram<strong>in</strong>earum.FUV001Genomics and transcriptomics based on next-generationsequenc<strong>in</strong>g techniques to characterize fungal developmentalgenesM. Nowrousian*, I. Teichert, G. Wolff, U. KückRuhr-Universität Bochum, Allgeme<strong>in</strong>e und Molekulare Botanik, Bochum,GermanyNext-generation sequenc<strong>in</strong>g (NGS) techniques have revolutionized thefield of genomics/functional genomics. We have recently sequenced andassembled the genome of the filamentous ascomycete Sordariamacrospora, a model organism for fungal development, solely from NGSreads (PLoS Genet 6:e1000891). We are currently apply<strong>in</strong>g NGS <strong>in</strong> twoapproaches for the identification and characterization of developmentalgenes. (I) With laser capture microdissection, we can separateprotoperithecia from the surround<strong>in</strong>g hyphae. RNA isolation andamplification from 150 protoperithecia yields enough material for RNAseqanalysis. The result<strong>in</strong>g data were compared to RNA-seq data fromwhole mycelial exctracts to characterize the genome-wide spatialdistribution of gene expression dur<strong>in</strong>g sexual development. Additionally,we used the RNA-seq <strong>in</strong>formation to improve the predicted S. macrosporagene models, and annotated UTRs for more than 50 % of the genes. (II)We sequenced the genomes from three mutants that were generated byconventional mutagenesis, and identified the three causative mutationsthrough bio<strong>in</strong>formatics analysis. One mutant carries a mutation <strong>in</strong> thedevelopmental gene pro41. The second, a spore color mutant, has a po<strong>in</strong>tmutation <strong>in</strong> a gene that encodes an enzyme of the melan<strong>in</strong> biosynthesispathway. In the third mutant, a po<strong>in</strong>t mutation <strong>in</strong> the stop codon of aconserved fungal transcription factor causes the sterility of the mutant. Forall three mutants, transformation with a wild-type copy of the affectedgene restored the wild-type phenotype. These data show that wholegenome-sequenc<strong>in</strong>g of mutant stra<strong>in</strong>s is a rapid method for theidentification of developmental genes.FUV002VipA - a novel player <strong>in</strong> light sens<strong>in</strong>g and development <strong>in</strong>Aspergillus nidulansJ. Röhrig*, R. FischerKarlsruhe Institute of Technology (KIT), Microbiology, Karlsruhe, GermanyIn the filamentous ascomycete A. nidulans development and metabolismare strongly regulated by light. In light A. nidulans undergoes an asexuallife cycle with formation of conidiophores and conidiospores whereas <strong>in</strong>the dark sexual development with ascospore formation and production ofsecondary metabolites takes place [1]. For light detection of severalwavelengths A. nidulans harbors different photosensors like theBIOspektrum | Tagungsband <strong>2012</strong>


77phytochrome FphA for red light sens<strong>in</strong>g and the White Collar homologueLreA for blue light detection. A central regulator is the Velvet prote<strong>in</strong>, anFphA <strong>in</strong>teraction partner [2].Here, we report about a novel Velvet <strong>in</strong>teraction partner, VipA (velvet<strong>in</strong>teract<strong>in</strong>g prote<strong>in</strong> A). VipA is a 334aa prote<strong>in</strong> <strong>in</strong>clud<strong>in</strong>g a FAR1 doma<strong>in</strong>.FAR1 prote<strong>in</strong>s are well known from plants like Arabidopsis thalianawhere members of this prote<strong>in</strong> family are <strong>in</strong>volved <strong>in</strong> phytochromecontrolled far-red light responses [3,4]. In A. nidulans a vipA deletionstra<strong>in</strong> produced only 36% of conidiospores compared to wildtype. Thisf<strong>in</strong>d<strong>in</strong>g po<strong>in</strong>ts to an activat<strong>in</strong>g role of VipA <strong>in</strong> asexual development. Incontrast VeA shows an <strong>in</strong>hibitory effect [5]. VeA - VipA <strong>in</strong>teraction wasshown by yeast-two hybrid analysis and bimolecular fluorescencecomplementation. The two prote<strong>in</strong>s <strong>in</strong>teract <strong>in</strong> the nuclei. VipA representsa new element <strong>in</strong> the regulatory network of spore formation <strong>in</strong> A. nidulans.Detailed analyses on gene regulation through VipA and its relation to otherlight regulators are on the way.1. Rodriguez-Romero J. et al. (2010) Annu Rev Microbiol 64: 585-610.2. Bayram O. et al. (2010) Fungal Genet Biol 47: 900-908.3. Hudson M. et al. (1999) Genes Dev 13: 2017-2027.4. L<strong>in</strong> R., Wang H. (2004) Plant Physiol 136: 4010-4022.5. Calvo A.M. (2008) Fungal Genet Biol 45: 1053-1061.FUV003Alternative splic<strong>in</strong>g <strong>in</strong> the fungal k<strong>in</strong>gdomK. Grützmann* 1 , K. Szafranski 2 , M. Pohl 1 , K. Voigt 3 , A. Petzold 2 , S. Schuster 11 University Jena, Department of Bio<strong>in</strong>formatics, Jena, Germany2 Leibniz Institute for Age Research, Fritz Lipmann Institute, GenomeAnalysis, Jena, Germany3 Leibniz Institute for Natural Product Research and Infection Biology andUniversity of Jena, Jena Microbial Resource Collection, Jena, GermanyDur<strong>in</strong>g gene expression of higher eukaryotes, alternative splic<strong>in</strong>g (AS) canproduce various isoforms from one primary transcript. Thus, AS is thoughtto <strong>in</strong>crease a cell's cod<strong>in</strong>g potential from a limited gene <strong>in</strong>ventory.Although AS is common <strong>in</strong> higher plants and animals, its extent and use <strong>in</strong>fungi is mostly unknown. We undertook a genome-wide <strong>in</strong>vestigation ofalternative splic<strong>in</strong>g <strong>in</strong> 28 fungal species from the three phyla Ascomycota,Basidiomycota and Mucoromycot<strong>in</strong>a, apply<strong>in</strong>g current bio<strong>in</strong>formatics datam<strong>in</strong><strong>in</strong>g techniques. Our analysis reveals that on average over the<strong>in</strong>vestigated fungi, 6.2% of the genes are associated with AS.Cryptococcus neoformans and Coccidioidis immitis show outstand<strong>in</strong>grates of 18% and 13%, respectively. Intron retention is the predom<strong>in</strong>ant AStype <strong>in</strong> fungi, whereas exon skipp<strong>in</strong>g is very rare. The <strong>in</strong>vestigatedBasidiomycota have on average higher AS rates (8.6%) and more diversecategories of AS affected genes than the Ascomycota (AS rate 7.0%,exclud<strong>in</strong>g yeasts). Contrarily, AS is nearly absent <strong>in</strong> strict yeasts. Wehypothesize that AS is rather common <strong>in</strong> many fungi and could facilitatemycelial and thallic complexity.FUV004Transcription factors controll<strong>in</strong>g sporulation <strong>in</strong> Magnaporthe oryzaeA. Yemel<strong>in</strong>*, S. Matheis, E. Th<strong>in</strong>es, K. Andresen, A.J. FosterInstitue of Biotechnology and Drug Research (IBWF), Plant protection,Kaiserslautern, GermanyThe Magnaporthe oryzae FLB3 and FLB4 transcription factor-encod<strong>in</strong>ggenes were deleted. Analysis of resultant mutants demonstrated that Flb4pis essential for spore formation and that stra<strong>in</strong>s lack<strong>in</strong>g this gene had‘fluffy’ colony morphology due to an <strong>in</strong>ability to complete conidiophoreformation. Meanwhile Flb3p is required for normal levels of aerialmycelium formation. Us<strong>in</strong>g microarray analysis we identified genesdependent on both transcription factors. This analysis revealed that thetranscription of several genes encod<strong>in</strong>g prote<strong>in</strong>s previously implicated <strong>in</strong>sporulation <strong>in</strong> Magnaporthe or <strong>in</strong> other filamentous fungi are affected byFLB3 and/or FLB4 deletion. The transcript changes associated withdeletion of FLB3 and FLB4 were also reflected phenotypically: the flb3-mutant which shows reduced transcription of several secreted lipases and<strong>in</strong>creased transcript abundance for melan<strong>in</strong> biosynthetic genes has areduced extracellular lipase activity and <strong>in</strong>creased pigmentation; <strong>in</strong>contrast the flb4-mutant shows reduced transcript abundance for melan<strong>in</strong>biosynthetic genes and is white.FUV005The <strong>in</strong>teraction oft he plant-pathogen Verticilliumlongosporum and its host Brassica napus and <strong>in</strong>sights <strong>in</strong>to theevolutionary orig<strong>in</strong> of the fungal hybrid.S. Braus-Stromeyer*, V.T. Tran, C. Timpner, C. Hoppenau, S. S<strong>in</strong>gh,A. Kühn, H. Kusch, O. Valerius, G. BrausInstitut für Mikrobiologie und Genetik, Abt. Molekulare Mikrobiologie undGenetik, Gött<strong>in</strong>gen, GermanyVerticillium longisporum is a soil-borne fungal pathogen of oilseed rape(Brassica napus). Infection is <strong>in</strong>itiated by hyphae from germ<strong>in</strong>at<strong>in</strong>gmicrosclerotia which <strong>in</strong>vade the plant vascular system through penetrationof the f<strong>in</strong>e roots. We <strong>in</strong>vestigated the reaction of the fungus to xylem sapof the host-plant by differential expression of prote<strong>in</strong>s related to reactiveoxygen stress [1]. Knockdowns of the catalase-peroxidase of V.longisporum were <strong>in</strong>hibited <strong>in</strong> the late phase of disease development. Theevolutionary orig<strong>in</strong> of the cruciferous fungal pathogen, V. longisporum isstill a mystery. It is very closely related to both V. dahliae and V. alboatrumbut possesses some typical characteristics such as long spores,almost double amount of nuclear DNA content and cruciferous hostspecificity. V. longisporum is an example for an early stage of speciationand we show clear evidences for the orig<strong>in</strong> of the fungus. To clarify thehybrid status, we undertook molecular sequence analyses of the <strong>in</strong>ternaltranscribed spacer (ITS) and <strong>in</strong>tergenic spacer (IGS) regions of rDNA ofputative ancestors of V. longisporum. In addition a number of otherstructural genes were analyzed. We found one gene encod<strong>in</strong>g a putativez<strong>in</strong>c f<strong>in</strong>ger transcription factor with two dist<strong>in</strong>ct sequences carry<strong>in</strong>gdifferent markers support<strong>in</strong>g the hybrid orig<strong>in</strong> detection of the fungus. Oneof these sequences is almost identical to that of V. dahliae and the other ishighly similar to the sequence of V. albo-atrum. Currently we aresequenc<strong>in</strong>g V. longisporum to determ<strong>in</strong>e which rearrangements occurreddur<strong>in</strong>g and after the hybridization.1. S S<strong>in</strong>gh, SA Braus-Stromeyer, C Timpner, O Valerius, Av Tiedemann, P Karlovsky, C Druebert,A Polle, and GH. Braus, Molecular. Plant-Microbe Interactions, accepted (2011), DOI:10.1094/MPMI-08-11-0217FUV007The plant pathogenic fungus Heterobasidion produces planthormone-like compounds to elude the plant defenseN. Horlacher* 1 , S. Schrey 1 , J. Nachtigall 2 , R. Hampp 1 , R. Süssmuth 2 , H.-P. Fiedler 11 University Tueb<strong>in</strong>gen, IMIT, Tueb<strong>in</strong>gen, Germany2 TU Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, GermanyThe basidiomycete Heterobasidion annosum s.l. is a common pathogen ofconifers <strong>in</strong> the northern hemisphere and is responsible for high annuallosses <strong>in</strong> the forest <strong>in</strong>dustry [1] by caus<strong>in</strong>g the ‘annosum root rot’ [2]. H.annosum s.l. produces a variety of secondary metabolites with differentantibiotic activities e.g. fomannos<strong>in</strong> [3 and 4], fomajor<strong>in</strong> S [5] andfomannox<strong>in</strong> [6]. H. annosum s.l. <strong>in</strong>fects its host trees either via exposedwoody tissues such as wounds or by fungal growth through root-to-rootcontacts or grafts with the next tree.The plants defend themselves aga<strong>in</strong>st the <strong>in</strong>fection by the necrotrophicpathogen H. annosum s.l. [7] by activation of a jasmonic acid / ethylenedependentsignall<strong>in</strong>g pathway, dur<strong>in</strong>g which the expression of the markergene Hel (encod<strong>in</strong>g a Heve<strong>in</strong>-like prote<strong>in</strong>) is <strong>in</strong>duced [8]. This signall<strong>in</strong>gpathway can be suppressed by a prior activation of the salicylic acid (SA)-dependent signall<strong>in</strong>g pathway for which the PR-1 gene (pathogenesisrelated) is a marker gene [9].We found two further compounds which are produced by Heterobasidion<strong>in</strong> liquid medium. 5-formylsalicylic acid (5-FSA) is a compound that hadpreviously only been chemically synthesized and 331HaNZ is an unknowncompound. 5-FSA and 331HaNZ are structural analogues to salicylic acid.We observed that addition of 5-FSA or 331HaNZ promotes the <strong>in</strong>fectionof Norway spruce by Heterobasidion. We have also shown that 5-FSA<strong>in</strong>duces the expression of PR-1 <strong>in</strong> Arabidopsis thaliana and 5-FSA as wellas 331HaNZ repress the expression of Hel gene after fungal <strong>in</strong>fection. Weassume that both compounds repress spruce resistance, result<strong>in</strong>g <strong>in</strong>enhanced <strong>in</strong>fection by Heterobasidion.[1] Woodward, S.; J. Stenlid, R. Karjala<strong>in</strong>en, A. Hüttermann.Heterobasidion annosum: Biology,ecology, impact and control. CAB International, Wall<strong>in</strong>gford, Oxon, UK, 1998[2] Asiegbu, F.O.; A. Adomas & J. Stenlid. Mol Plant Pathol 6: 395-409, 2005[3] Bassett, C.; R.T. Sherwood, J.A. Kepler & P.B. Hamilton. Phytopath 57: 1046-1052, 1967[4] Kepler, J.A.; M.E. Wall, J.E. Mason, C. Bassett, A.T. Mc Phail & G.A. Sim. J Am Chem Soc89: 1260-1261, 1967[5] Donnelly, D.M.X.; J. O'Reilly, J. Polonsky & G.W. Van Eijk. Tetrahedron Lett 23: 5451-5452, 1982[6] Hesl<strong>in</strong>, M.; C. Stuart, M. R., Murchú, P. & D. M. X. Donnelly. Eur. J. For. Path. 13: 11-23, 1983.[7] Korhonen, K. & J. Stenlid. In: Woodward, S., J. Stenlid, R. Karjala<strong>in</strong>en, A. Hüttermann,eds.Heterobasidionannosum:Biology, ecology, impact and control. CAB International, Wall<strong>in</strong>gford,Oxon, UK, 43-71, 1998[8] Hossa<strong>in</strong> Md. M.; F. Sultana, M. Kubota, H. Koyama & M. Hyakumachi. Plant Cell Physiol. 48(12): 1724-1736, 2007[9] Beckers, G. J. M. & S. H. Spoel. Plant Biol. 8: 1-10, 2006FUV008Discover<strong>in</strong>g host specificity candidate genes of Sporisoriumreilianum by genotyp<strong>in</strong>g mixed-variety offspr<strong>in</strong>gT. Wollenberg*, J. Donner, K. Zuther, L. Stannek, J. SchirawskiAlbrecht-von-Haller Institut, Molecular Biology of Plant-MicrobeInteraction, Goett<strong>in</strong>gen, GermanySporisorium reilianumis a biotrophic plant pathogenic basidiomycete thatcauses head smut of maize and sorghum. The fungus exists <strong>in</strong> two varietieswith different host specificity. The sorghum variety (SRS) is fully virulenton sorghum. SRS <strong>in</strong>fection of maize leads to weak symptoms, such asphyllody of the floral parts. The maize variety (SRZ) is fully virulent onmaize, but does not show symptoms on sorghum <strong>in</strong>florescences. Instead,SRZ <strong>in</strong>fection of sorghum leads to the formation of red spots conta<strong>in</strong><strong>in</strong>gphytoalex<strong>in</strong>s on leaves.BIOspektrum | Tagungsband <strong>2012</strong>


78This different behavior challenged us to f<strong>in</strong>d factors responsible for hostspecificity. We analyze segregants of a mixed-variety <strong>in</strong>fection bothphenotypically and genotypically. Approximately 100 offspr<strong>in</strong>g of a crossof SRZxSRS are tested for virulence on maize and sorghum. Stra<strong>in</strong>s that donot lead to disease symptoms on sorghum and those show<strong>in</strong>g full virulenceon sorghum are subjected to genotypic analysis by perform<strong>in</strong>g speciesspecificPCRs as well as an NGS approach. Genomic regions stemm<strong>in</strong>gfrom the SRZ parent <strong>in</strong> non-virulent offspr<strong>in</strong>g and from the SRS parent <strong>in</strong>virulent offspr<strong>in</strong>g are expected to conta<strong>in</strong> candidate genes for hostspecificity. This way, we identified the beg<strong>in</strong>n<strong>in</strong>g of chromosome 7 as oneregion of <strong>in</strong>terest. This region harbors an SRZ-specific gene (hsc1) that,when <strong>in</strong>troduced <strong>in</strong>to SRS, was shown to positively contribute to theaggressiveness of the recomb<strong>in</strong>ant stra<strong>in</strong>s on maize and negatively onsorghum.This shows that genotyp<strong>in</strong>g of mixed-variety offspr<strong>in</strong>g is a powerful toolto discover candidate genes <strong>in</strong>volved <strong>in</strong> host specificity.FUV006Induction of manganese peroxidases of wood and leaf-littercoloniz<strong>in</strong>g agaricomycetes by olive oil mill residuesR. Re<strong>in</strong>a* 1 , C. Liers 2 , R. Ullrich 2 , I. Garcia-Romera 1 , M. Hofrichter 2 ,E. Aranda 11 Estación Experimental del Zaidín CSIC, Soil Microbiology and SymbioticSystems, Granada, Spa<strong>in</strong>2 International Graduate School of Zittau, Unit of EnvironmentalBiotechnology, Zittau, GermanyThe agro<strong>in</strong>dustrial waste “alpeorujo” (also known as DOR; Dry OliveResidue) is derived from the extraction of olive oil and is produced <strong>in</strong> largequantities of both solid and liquid wastes <strong>in</strong> Mediterranean countries.The residue can be regarded as stimulat<strong>in</strong>g natural <strong>in</strong>ductor foroxidoreductases ma<strong>in</strong>ly manganese peroxidases (MnP) produced by woodandlitter-decompos<strong>in</strong>g Agaricomycetes. Not only these fungi are able togrow <strong>in</strong> the presence of nearly toxic amounts of phenol-rich DOR <strong>in</strong> solidstate cultures; but also the <strong>in</strong>creased secretion of oxidative biocatalysts(e.g. up to 1 to 5-fold higher activities for MnP´s of Bjerkandera adusta,Auricularia auricula-judae and Agrocybe aegerita) helps them to detoxifythe persistent biopolymeric material. The later was evidenced by an<strong>in</strong>creased shoot and root dry weight of tomato plants grown <strong>in</strong> the presenceof fungal and enzymatically fermented DOR residues <strong>in</strong>dicated a certa<strong>in</strong>detoxification effect (100% with<strong>in</strong> 4 weeks for A. auricula-judae, B.adusta and A. aegerita). The biotransformation of DOR also could befollowed by changes <strong>in</strong> the molecular weight distribution of water-solublearomatics <strong>in</strong> the aqueous culture extracts (from 1.5 and 3.5 to 30 kDa) bysize exclusion chromatography obviously due to a de-polymerization butalso re-polymerization process.Further analysis of the de-novo peptides will allow us to clarify to whichMnP type these new representatives belong and which specific MnP genesare activated by DOR residues <strong>in</strong> the tested fungal organisms.FUP001The histone chaperone ASF1 is essential for sexualdevelopment <strong>in</strong> a filamentous fungusS. Ges<strong>in</strong>g 1 , D. Sch<strong>in</strong>dler 1 , B. Fränzel 2 , D. Wolters 2 , M. Nowrousian* 11 Ruhr-Universität Bochum, Allgeme<strong>in</strong>e und Molekulare Botanik, Bochum,Germany2 Ruhr-Universität Bochum, Analytische Chemie, Bochum, GermanyAscomycetes develop four major morphological types of fruit<strong>in</strong>g bodiesthat share a common ancestor, and a set of common core genes most likelycontrols this process. One way to identify such genes is to search forconserved expression patterns. We analyzed microarray data of Fusariumgram<strong>in</strong>earum and Sordaria macrospora, identify<strong>in</strong>g 78 genes with similarexpression patterns dur<strong>in</strong>g fruit<strong>in</strong>g body development. One of these geneswas asf1 (anti-silenc<strong>in</strong>g function 1), encod<strong>in</strong>g a predicted histonechaperone. asf1 expression is also upregulated dur<strong>in</strong>g development <strong>in</strong> thedistantly related ascomycete Pyronema confluens. To test whether asf1plays a role <strong>in</strong> fungal development, we generated an S. macrospora asf1deletion mutant. The mutant is sterile and can be complemented to fertilityby transformation with the wild-type asf1 and its P. confluens homologue.An ASF1-EGFP fusion prote<strong>in</strong> localizes to the nucleus. To test if ASF1acts as a histone chaperone <strong>in</strong> S. macrospora, we used tandem-aff<strong>in</strong>itypurification and mass spectrometry, and identified histones H3 and H4 asputative ASF1 <strong>in</strong>teraction partners. The ASF1-H3 and ASF1-H4<strong>in</strong>teractions were confirmed by yeast two-hybrid analysis. These data<strong>in</strong>dicate that the S. macrospora asf1 encodes a functional histonechaperone with a conserved role dur<strong>in</strong>g fruit<strong>in</strong>g body development.FUP002Inhibition of Verticillium dahliae <strong>in</strong> the presence or absence ofArabidoposis thaliana by Streptomyces lividansH. Meschke, S. Walter, H. Schrempf*University Osnabrück, FB Biologie/Chemie, Osnabrück, GermanyThe ascomycete Verticillium dahliae causes worldwide vascular wilt ofmany field and horticultural plants. Dur<strong>in</strong>g co-cultivation with the soilbacterium Streptomyces lividans, the germ<strong>in</strong>ation of fungal conidia, andthe subsequent proliferation are impaired, and fungal conida andmicrosclerotia arise barely. Upon application of each <strong>in</strong>dividual stra<strong>in</strong> toseeds of the model plant Arabidopsis thaliana, either the bacterial spores,or the conidia of each fungus germ<strong>in</strong>ate at or with<strong>in</strong> the mucilage,<strong>in</strong>clud<strong>in</strong>g its volcano-shaped structures.The extension of hyphae from each<strong>in</strong>dividual stra<strong>in</strong> correlates with the degradation of the pect<strong>in</strong>-conta<strong>in</strong><strong>in</strong>gmucilage. Proliferat<strong>in</strong>g hyphae spread to roots of the emerg<strong>in</strong>g seedl<strong>in</strong>gs.Plants, which arise <strong>in</strong> the presence of the Verticillium stra<strong>in</strong>, have damagedroots cells, an atrophied stem and root, as well as poorly developed leaveswith chlorosis symptoms. A. thaliana seeds that have been mixed with theVerticillium stra<strong>in</strong> together with S.lividans,have preferentially proliferat<strong>in</strong>gbacterial hyphae with<strong>in</strong> the mucilage, and at roots of the outgrow<strong>in</strong>gseedl<strong>in</strong>gs. As a result, result<strong>in</strong>g plants have considerably reduced diseasesymptoms(1). Us<strong>in</strong>g HPLC and LC-MS, we succeeded to purify andcharacterize S.lividans metabolites that provoke the above-outl<strong>in</strong>ed effects.Additional results led to deduce that the identified metabolites <strong>in</strong>ducemultiple cellular effects, which ultimately impair specific pathways forsignal transduction and apoptosis of the fungal plant pathogen (2)1) Meschke, H., and Schrempf, H. (2010) Microb Biotechnol 3: 428-4432) Meschke, H., Walter, S., and Schrempf,H. (2011) Environ Microbiol, <strong>in</strong> pressFUP003Physiological characterization and synthetic mediumdevelopment for a model rock-<strong>in</strong>habit<strong>in</strong>g black fungusC. Nai* 1,2 , H. Wong 3 , W. Broughton 1 , A. Gorbush<strong>in</strong>a 1,21 BAM Bundesanstalt für Materialforschung und -prüfung, Department 4(Material und Umwelt), Berl<strong>in</strong>, Germany2 Freie Universität Berl<strong>in</strong>, Geowissenschaften und Biologie, Chemie &Pharmazie, Berl<strong>in</strong>, Germany3 British Columbia Institute of Technology, Burnaby, British Columbia, CanadaBlack fungi (a.k.a. black yeasts, meristematic or microcolonial fungi) arethe most stress-resistant eukaryotes known to date. These filamentousascomycetes are able to colonize bare rock surfaces and have evolvedpassive mechanisms to cope with multiple stresses like high solarirradiation, temperature extremes, low water activity and spare nutrientavailability, notably meristematic (isodiametric) growth and <strong>in</strong>crustation ofthe cell wall with melan<strong>in</strong>s [1,2]. They are ubiquitous and often <strong>in</strong>volved<strong>in</strong> primary succession of terrestrial ecosystems by rock weather<strong>in</strong>g and soilformation. Black fungi are therefore an <strong>in</strong>terest<strong>in</strong>g object to studymechanisms of stress resistance (e.g. <strong>in</strong> astrobiology studies) and are aswell used <strong>in</strong> applied research to prevent material colonization andbiodeterioration. Recently, it has been shown that an ancient clade of rock<strong>in</strong>habit<strong>in</strong>gfungi is ancestral to both symbiotic (e.g., lichenized fungi) andpathogenic black fungi [3], which makes them an attractive model to studyestablishment of symbiotic <strong>in</strong>teractions and evolution of fungalpathogenesis <strong>in</strong> environmental isolates.Despite the ubiquity and importance of black fungi <strong>in</strong> the ecosystem andthe <strong>in</strong>terest for research <strong>in</strong> both basic and applied directions, relativelylittle is known about their nutritional physiology. Moreover, black fungiare often difficult to cultivate <strong>in</strong> def<strong>in</strong>ed media. Here, we present dataproduced with the Biolog System [4] to generate a broad physiologicalprofile of the model black fungus Sarc<strong>in</strong>omyces petricola A95 uponcultivation under approximately 1’040 different growth conditions.Knowledge <strong>in</strong>to growth physiology of our model microorganism was usedto develop a new ad hoc synthetic medium for A95, which we namedASM (for A95-specific medium) [5]. We compared growth of A95 <strong>in</strong>ASM and <strong>in</strong> the undef<strong>in</strong>ed MEB (2% malt extract broth) and we discussthe obta<strong>in</strong>ed data <strong>in</strong> the light of the oligotrophic character (ability to growwith limited nutrients) of black fungi. We propose that A95 is able tosurvive <strong>in</strong> oligotrophic niches by compound re-cycl<strong>in</strong>g (cannibalisticmechanism) as observed by ma<strong>in</strong>tenance of a low metabolic activity uponabsence of primary nutrients (especially sulfur or phosphor sources).References:[1] Staley et al. (1982), Microcolonial Fungi: Common Inhabitants on Desert Rocks?, Science 215:1093-5.[2] Gorbush<strong>in</strong>a (2007), Life on the rocks, Environmental Microbiology 9: 1613-1631.[3] Gueidan et al. (2008), A rock-<strong>in</strong>habit<strong>in</strong>g ancestor for mutualistic and pathogen-rich fungall<strong>in</strong>eages, Studies <strong>in</strong> Mycology 61: 111-119.[4] Bochner (2003), New technologies to assess genotype-phenotype relationships, Nature ReviewsGenetics 4: 309-314.[5] Nai et al., manuscript <strong>in</strong> preparation.BIOspektrum | Tagungsband <strong>2012</strong>


79FUP004Next-generation genome sequenc<strong>in</strong>g, assembly, annotation andanalysis of a mar<strong>in</strong>e isolate of Scopulariopsis brevicaulis.A. Kumar*, F. KempkenBotanisches Institut und Botanischer Garten Christian-Albrechts-Universität zu Kiel, Abteilung für Botanische Genetik undMolekularbiologie, Kiel, GermanyThe k<strong>in</strong>gdom fungi constitute the largest branch <strong>in</strong> the tree of life.However, a very little is known about fungal genomics, although someprogress have been made us<strong>in</strong>g Sanger sequenc<strong>in</strong>g <strong>in</strong> last two decades.Recently, the Sordaria macrospora genome became available us<strong>in</strong>g nextgenerationsequenc<strong>in</strong>g (1). To further explore fungal diversity, we set outto sequence mar<strong>in</strong>e isolates of fungi. Here we report the first example,Scopulariopsis brevicaulis, which has previously been known as acommon soil saprophyte and has been isolated from a wide variety ofsubstrates. Some species ofScopulariopsisare reported to cause humandiseases (2).S. brevicaulisis also known to produce cyclic peptidesscopularide A and B (3).We have established the genomic sequence of a mar<strong>in</strong>e isolate ofS.brevicaulisus<strong>in</strong>g three different next-generation sequenc<strong>in</strong>g methodsnamely, roche 454, illum<strong>in</strong>a and ion-torrent. Here<strong>in</strong>, we present ourcurrent results ofS. brevicaulisassembled genome of about 32 Mb sizeus<strong>in</strong>g 726,314, 247,824,350 and 2,556,553 reads from roche 454, illum<strong>in</strong>aand ion-torrent, respectively. We found the contig length is large for roche454 (935 contigs/N50 - 88 kb) <strong>in</strong> comparison to contigs of illum<strong>in</strong>a (29330contigs/N50 - 1.7 kb) and ion-torrent (32008 contigs/N50 - 1.6 kb).Furthermore, we will provide complete annotation of <strong>in</strong>dividual assembliesus<strong>in</strong>g each sequenc<strong>in</strong>g method and also a hybrid assembly achieved us<strong>in</strong>gpublically and commercially available next-generation sequence assemblyand annotation tools. This genome characterization assists fungal biologistto further carry out research with this species, which largely h<strong>in</strong>dered dueto unavailability of the genome.1. Nowrousian et al. (2010). De novo Assembly of a 40 Mb Eukaryotic Genome from ShortSequence Reads:Sordaria macrospora, a Model Organism for Fungal Morphogenesis. PLoS Genet6(4): e1000891.2. Cuenca-Estrella, et al. (2003). Scopulariopsis brevicaulis, a Fungal Pathogen Resistant to Broad-Spectrum Antifungal Agents. Antimicrobial Agents and Chemotherapy 47, 2339-41.3. Zhiguo et al. (2008). Scopularides A and B, Cyclodepsipeptides from a Mar<strong>in</strong>e Sponge-DerivedFungus, Scopulariopsis brevicaulis.Journal of Natural Products71 (6), 1052-1054FUP005Establishment of an appropriate transformation model for therock <strong>in</strong>habit<strong>in</strong>g fungi Sarc<strong>in</strong>omyces petricola (A95)S. Noack* 1 , W.J. Broughton 1 , T. Bus 2 , C. Nai 1,3 , L. Schneider 1 ,R. Banasiak 1 , A.A. Gorbush<strong>in</strong>a 11 Federal Institute for Materials Research and Test<strong>in</strong>g, Materials andEnvironment (IV), Berl<strong>in</strong>, Germany2 University of Applied Sciences Jena, Department of Medical Eng<strong>in</strong>eer<strong>in</strong>gand Biotechnology, Jena, Germany3 Free University of Berl<strong>in</strong>, Institute of Geological Sciences, DivisionGeochemistry, Hydrogeologie, M<strong>in</strong>eralogy, Berl<strong>in</strong>, GermanyMelanised micro-colonial fungi (MCF) colonize bare rock surfaces <strong>in</strong>deserts and other arid areas and are unequalled among eukaryoticorganisms <strong>in</strong> their ability to withstand extreme heat, desiccation and UVradiation. These organisms are crucial <strong>in</strong> the establishment of subaerialrock biofilms and, as such, set the stage for a variety of <strong>in</strong>teractionsimportant for m<strong>in</strong>eral/material stability and rock weather<strong>in</strong>g. MCF are ataxonomically diverse group of ascomycetes and are characterised bysimplified stress-protective morphologies <strong>in</strong>clud<strong>in</strong>g a peculiar compactcolonial structure, protective cell walls and multiple secondary metabolicproducts support<strong>in</strong>g their stress tolerance - melan<strong>in</strong>s, carotenoids,mycospor<strong>in</strong>es and compatible solutes. A meristematic black yeastspecies,Sarc<strong>in</strong>omyces petricola (A95), was isolated from a sun exposedmarble monument <strong>in</strong> Athens (Greece). Different methods have been testedto establish a transformation protocol for A95. A common method us<strong>in</strong>gthe b<strong>in</strong>ary Ti vector system of Agrobacterium tumefaciens was employed(De Groot et al., 1998). The stress-tolerant morphology of black yeasts,especially their thick cell walls and melanisation complicates the transferof DNA from A. tumefaciens to A95 however. Several methods tocircumvent this problem were tested, <strong>in</strong>clud<strong>in</strong>g DNA transfer by microprojectilebombardment and chemical weaken<strong>in</strong>g of the cell wall bytreatment with DMSO. Different protoplasts isolation protocols based onenzymes with chit<strong>in</strong>ase and ß-glucanase activity were also tested. Anefficient protocol yielded sufficient protoplasts for transformation withpolyethylenglycol. All that rema<strong>in</strong>s is to f<strong>in</strong>d an appropriate vector systemthat allows <strong>in</strong>tegration of the gene of <strong>in</strong>terest and its translation <strong>in</strong>to thefugal genome.De Groot MJA, Bundock P, Hooykaas PJJ, Beijersbergen AGM (1998). Agrobacterium tumefaciens- mediated transformation of filamentous fungi. Nature Biotechnology 16: 839-842FUP006Influence of microclimatic conditions on fungal diversity <strong>in</strong>biofilms from the facades of build<strong>in</strong>gs.S. Noack* 1 , M. Adler 2 , F. Seiffert 3,4 , W.J. Broughton 3 , A.A. Gorbush<strong>in</strong>a 3,41 Federal Institute for Materials Research and Test<strong>in</strong>g, Materials andEnvironment (4), Berl<strong>in</strong>, Germany2 Free University of Berl<strong>in</strong>, Institute of Biology, Berl<strong>in</strong>, Germany3 Federal Institute for Materials Research and Test<strong>in</strong>g, Materials andEnvironment (IV), Berl<strong>in</strong>, Germany4 Free University of Berl<strong>in</strong>, Institute of Geological Sciences, DivisionGeochemistry, Hydrogeologie, M<strong>in</strong>eralogy, Berl<strong>in</strong>, GermanyThe facades of build<strong>in</strong>gs and their structural elements are colonized bydiverse microbes <strong>in</strong>clud<strong>in</strong>g algae, bacteria and fungi. On older build<strong>in</strong>gsand monuments, these biofilms contribute to the general appearance.Because they cause surface discoloration and material damage,microorganisms that live on the facade of build<strong>in</strong>gs have been the subjectof <strong>in</strong>tense <strong>in</strong>terest.Our research concerns the <strong>in</strong>teraction of subaerial biofilms (SAB) and theunderly<strong>in</strong>g substrates. Important components of SAB <strong>in</strong>clude melanisedmicro-colonial fungi (MCF) and phototrophic micro-organisms. Highlymelanised MCF are well adapted to extreme environments and thus arestable partners <strong>in</strong> weather<strong>in</strong>g processes. Currently we are <strong>in</strong>vestigat<strong>in</strong>g the<strong>in</strong>fluence of different microclimatic conditions and seasonal fluctuationson fungal diversity <strong>in</strong> natural biofilms. A public build<strong>in</strong>g <strong>in</strong> Berl<strong>in</strong> waschosen for this purpose. Seasonal variations <strong>in</strong> the composition of thebiofilms on the shaded and damp northwest side of the build<strong>in</strong>g werecompared with those on the sunny and dry southeast side. DGGE analysesbased on sequence differences <strong>in</strong> the 18S rDNA and the ITS rDNA regionfrom different fungi were used to compare the populations. In this wayf<strong>in</strong>gerpr<strong>in</strong>ts of fungal diversity can be generated and compared to othercharacteristics of biofilm such as chlorophyll contents, spectral propertiesand other with biofilm partners.FUP007Differential analysis of <strong>in</strong>tra- and extra-cellular proteomes ofVerticillium longisporum dur<strong>in</strong>g biotrophic and saprophyticgrowthA. Kühn* 1 , H. Kusch 1 , C. Hoppenau 1 , K. Michels 2 , I. Feussner 2 , B. Voigt 3 ,D. Becher 3 , M. Hecker 3 , S. Braus-Stromeyer 1 , G. Braus 11 Georg-August-Universität Gött<strong>in</strong>gen, Institut für Mikrobiologie undGenetik, Gött<strong>in</strong>gen, Germany2 Georg-August Universität Gött<strong>in</strong>gen, Albrecht-von-Haller-Institut fürPflanzenwissenschaften, Gött<strong>in</strong>gen, Germany3 Ernst-Moritz-Arndt-Universität Greifswald, Institut für Mikrobiologie,Greifswald, GermanyThe soil-born, hemibiotrophic plant pathogenic fungus Verticilliumlongisporum causes premature senescence and flower<strong>in</strong>g <strong>in</strong> oilseed rape(Brassica napus), which results <strong>in</strong> immense agricultural yield reduction. Inspite of the significant economical importance of this pathogen, the factorsfor host specificity are still unknown and the network of virulence factors(effectors) is poorly analyzed. The focus of this study is to identify fungalprote<strong>in</strong>s expressed dur<strong>in</strong>g plant <strong>in</strong>fection. Therefore we <strong>in</strong>vestigated theextra- and <strong>in</strong>tracellular changes of the V. longisporum proteome <strong>in</strong>ducedby oilseed rape xylem sap (biotrophic model) versus conventionalsaprophytic growth media. Procedures for the isolation and purification ofprote<strong>in</strong>s were optimized for Verticillium samples. Prote<strong>in</strong> extracts wereseparated by one- and two-dimensional gel electrophoresis and peptidesamples were analyzed by MALDI-TOF and LC-MSMS. The result<strong>in</strong>gspectra were searched aga<strong>in</strong>st peptide data derived of the draft genomesequence of V. longisporum 43 we are currently assembl<strong>in</strong>g andannotat<strong>in</strong>g. Exoproteomes vary to a great extent depend<strong>in</strong>g on growthmedium, growth phase and light conditions. The identified prote<strong>in</strong>s andtheir functional categories may represent the different phases of the<strong>in</strong>fection cycle. We identified adhes<strong>in</strong>s and many different groups ofcarbohydrate-active enzymes like polysaccharide lyases and glycosylhydrolases, which could be important for penetration and degradation ofstructurally complex pect<strong>in</strong> molecules of the plant. Additionally severalmembers of peptidase families were detected, which might be importantfor proteolysis of host substrates or host defense prote<strong>in</strong>s. Furthermoremany small cyste<strong>in</strong>e-rich prote<strong>in</strong>s and necrosis and ethylene-<strong>in</strong>duc<strong>in</strong>g-likeprote<strong>in</strong>s (NLP) were identified, which are potential effectors <strong>in</strong>pathogenicity. Candidate genes and prote<strong>in</strong>s are currently analyzedregard<strong>in</strong>g their importance dur<strong>in</strong>g plant <strong>in</strong>fection.BIOspektrum | Tagungsband <strong>2012</strong>


80FUP008Asc1p’s role <strong>in</strong> MAP-k<strong>in</strong>ase and cAMP-PKA signal<strong>in</strong>gK. Schmitt*, N. Rachfall, S. Sanders, G.H. Braus, O. ValeriusGeorg-August University Gött<strong>in</strong>gen, Mol. Microbiol. & Genetics,Gött<strong>in</strong>gen, GermanyThe eukaryotic ribosomal prote<strong>in</strong> Asc1p/RACK1 is required fordevelopmental processes <strong>in</strong> lower eukaryotes (S. cerevisiae) as well as <strong>in</strong>higher eukaryotes (plants and mammals). However, there is poorknowledge about the prote<strong>in</strong>’s exact mode of action and its own posttranscriptionalregulation. We could show that S. cerevisiae Asc1p controlsthe abundance of transcription factors <strong>in</strong> yeast, namely of Ste12p, Phd1p,Tec1p, Rap1p, and Flo8p. This seems to be at least partially due to anAsc1p-dependent translational regulation of the transcription factormRNAs. We dissect Asc1p’s <strong>in</strong>fluence on the translation rates of theencod<strong>in</strong>g mRNAs from its putative <strong>in</strong>fluence on the stability of thementioned transcription factors. Tec1p-stability is regulated by the mat<strong>in</strong>gresponse pathway that targets Tec1p for degradation upon phosphorylationthrough the Fus3p-MAP-k<strong>in</strong>ase. Indeed, the pheromone response pathwayis up-regulated <strong>in</strong> the asc1 stra<strong>in</strong>. However, pathway <strong>in</strong>activation bydeletion of the FUS3 gene did not restore Tec1p levels <strong>in</strong> the asc1 stra<strong>in</strong>.Thus, Ascp1 affects Tec1p-abundance via a pheromone-<strong>in</strong>dependentmechanism. Shut-off experiments for Tec1p <strong>in</strong>dicate that deletion of ASC1has no effect on its stability suggest<strong>in</strong>g an Asc1p-dependent regulation ofTEC1-mRNA translation. We also analyze whether Asc1p itself is posttranslationallymodified (e.g. phosphorylated) through MAPk<strong>in</strong>ase/cAMP-PKApathways. Modifications of Asc1p could regulate its<strong>in</strong>teraction with other ribosomal prote<strong>in</strong>s or the formation of Asc1phomodimers[1]. Four phospho-sites of Asc1p are known from highthroughputstudies [2,3,4]. Us<strong>in</strong>g mass spectrometry we could confirm twoof these sites (S166 and T168) and furthermore determ<strong>in</strong>ed one previouslyunknown site (T72).Yatime et al. (2011). Structure of the RACK1 dimer from Saccharomyces cerevisiae. J Mol Biol411, 486-498.Chi et al. (2001). Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cycl<strong>in</strong>dependentk<strong>in</strong>ase. Genes Dev 15, 1078-1092.Smolka et al. (2007). Proteome-wide identification of <strong>in</strong> vivo targets of DNA damage checkpo<strong>in</strong>tk<strong>in</strong>ases. Proc Natl Acad Sci USA 104, 10364-10369.Albuquerque et al. (2008). A multidimensional chromatography technology for <strong>in</strong>-depthphosphoproteome analysis. Mol Cell Proteomics 7, 1389-1396.FUP009Mode of action of a cell cycle arrest<strong>in</strong>g yeast killer tox<strong>in</strong>T. Hoffmann*, J. Reiter, M.J. SchmittUniversität des Saarlandes, Molekular- und Zellbiologie, Saarbrücken,GermanyK28 is a heterodimeric A/B tox<strong>in</strong> secreted by virally <strong>in</strong>fected killer stra<strong>in</strong>sof the yeast Saccharomyces cerevisiae. After b<strong>in</strong>d<strong>in</strong>g to the cell wall ofsensitive yeasts the / tox<strong>in</strong> enters cells via receptor-mediatedendocytosis and is retrogradely transported to the cytosol where itdissociates <strong>in</strong>to its subunit components. While is polyubiquit<strong>in</strong>ated andproteasomaly degraded, the -subunit enters the nucleus and causes anirreversible cell cycle arrest at the transition from G1 to S phase. K28-treated cells typically arrest with a medium-sized bud, a s<strong>in</strong>gle nucleus <strong>in</strong>the mother cell and show a pre-replicative DNA content (1n).S<strong>in</strong>ce other cell cycle arrest<strong>in</strong>g killer tox<strong>in</strong>s like zymoc<strong>in</strong> fromKluyveromyces lactis or Pichia acaciae tox<strong>in</strong> PaT cause a similar“term<strong>in</strong>al phenotype”, we tested the effect of K28 on S. cerevisiae mutantsthat are resistant aga<strong>in</strong>st those tox<strong>in</strong>s. Agar diffusion assays showed thatdeletion of TRM9 or ELP3 did not lead to tox<strong>in</strong> resistance, <strong>in</strong>dicat<strong>in</strong>g thatthe arrest caused by K28 differs from zymoc<strong>in</strong> or PaT <strong>in</strong>duced cell cyclearrest. Interest<strong>in</strong>gly, RNA polymerase II deletion mutants (rpb4, rpb9)show complete resistance aga<strong>in</strong>st K28.To ga<strong>in</strong> deeper <strong>in</strong>sight <strong>in</strong>to the mechanism(s) of how K28 arrests the cellcycle, we further studied the <strong>in</strong>fluence of the tox<strong>in</strong> on transcription of cellcycle and G1-specific genes. Northern blot analyses showed that G1-specific CLN1 and CLN2 mRNA levels rapidly decrease after tox<strong>in</strong>treatment, though it is unclear if this decl<strong>in</strong>e is due to a direct effect.Potential tox<strong>in</strong> targets were identified <strong>in</strong> a yeast two hybrid screen andverified biochemically by coIP and GST pulldown assays. To confirm thatthe nucleus represents the compartment where <strong>in</strong> vivo toxicity occurs, weconstructed prote<strong>in</strong> fusions between K28 and mRFP and analysed their<strong>in</strong>tracellular localisation.FUP010Benzene oxygenation by Agrocybe aegerita aromaticperoxygenase (AaeAPO)A. Karich*, R. Ullrich, M. Kluge, M. HofrichterInternationales Hochschul<strong>in</strong>stitut (IHI) Zittau, Department Bio- undUmweltwissenschaften, Zittau, GermanyAgrocybe aegerita aromatic peroxygenase (AaeAPO) is an extracellularenzyme secreted by the agaric basidiomycete Agrocybe aegerita. AaeAPOhydroxylates the aromatic r<strong>in</strong>g of benzene us<strong>in</strong>g hydrogen peroxide as cosubstrate.The optimum pH for the reaction is around 7. The reactionproceeds via the primary product benzene oxide which rapidly undergoesaromatization and rearranges to phenol <strong>in</strong> aqueous solution. Existence ofbenzene oxide was proved by chemical preparation of this compound andGC/MS and LC-MS analysis. Further oxidation lead to hydroqu<strong>in</strong>one;catechol; p-benzoqu<strong>in</strong>one; o-benzoqu<strong>in</strong>one as well as 1,2,4-trihydroxybenzene and hydroxy-p-benzoqu<strong>in</strong>one. Us<strong>in</strong>g H 2 18 O 2 as cosubstratethe orig<strong>in</strong> of the oxygen transferred <strong>in</strong>to benzene and phenol wasproved to be the peroxide. The use of ascorbic acid as radical scavengerprevented dihydroxy benzenes from exchang<strong>in</strong>g oxygen with water (viaqu<strong>in</strong>ones) <strong>in</strong> this <strong>in</strong>vestigation. The apparent k cat and the approximated K M-value for benzene hydroxylation were estimated to 7.9 s -1 and 3.6 mMrespectively. Benzene oxygenation is first described here<strong>in</strong> for a hemeperoxidase.FUP011ER exit of a yeast viral A/B tox<strong>in</strong> SECrets of K28N. Mueller*, M. SchmittSaarland University, Molecular and Cellbiology, Saarbrücken, GermanyK28 is a virus encoded A/B prote<strong>in</strong> tox<strong>in</strong> secreted by the yeastSaccharomyces cerevisiae that enters susceptible target cells by receptormediatedendocytosis. After retrograde transport from early endosomesthrough the secretory pathway, the / heterodimeric tox<strong>in</strong> reaches thecytosol where the cytotoxic -subunit dissociates from , subsequentlyenters the nucleus and causes cell death by block<strong>in</strong>g DNA synthesis andarrest<strong>in</strong>g cells at the G1/S boundary of the cell cycle [1].Interest<strong>in</strong>gly, K28 retrotranslocation from the ER <strong>in</strong>to the cytosol is<strong>in</strong>dependent of ubiquit<strong>in</strong>ation and does not require cellular components ofthe ER-associated prote<strong>in</strong> degradation mach<strong>in</strong>ery (ERAD). In contrast, ERexit of a cytotoxic -variant expressed <strong>in</strong> the ER lumen depends onubiquit<strong>in</strong>ation, proteasomes and ERAD components, <strong>in</strong>dicat<strong>in</strong>g (i) that amost likely masks itself as ERAD substrate and (ii) that ERretrotranslocation mechanistically differs under both scenarios [2]. Toelucidate the molecular mechanism(s) of ER-to-cytosol tox<strong>in</strong> transport <strong>in</strong>yeast as well as <strong>in</strong> mammalian cells, the major focus of the present study isto identify cellular components (<strong>in</strong>clud<strong>in</strong>g the nature of the ERtranslocation channel) <strong>in</strong>volved <strong>in</strong> this process. The requirement ofproteasomal activity and ubiquit<strong>in</strong>ation to drive ER export, and theidentification of cellular K28 <strong>in</strong>teraction partners of both, the / tox<strong>in</strong> aswell as K28 are be<strong>in</strong>g analysed<strong>in</strong> vitroby us<strong>in</strong>g isolated microsomes andIP experiments.K<strong>in</strong>dly supported by a grant from the Deutsche Forschungsgeme<strong>in</strong>schaft(GRK 845).[1] Carroll et al. (2009). Dev. Cell .....[2] Heiligenste<strong>in</strong> et al. (2006). EMBO J. .....FUP012Adapt<strong>in</strong>g yeast as a model to study ric<strong>in</strong> tox<strong>in</strong> A uptake andtraffick<strong>in</strong>gB. Becker*, M. SchmittFR. 8.3 Biosciences, Molecular and Cell Biology, Saarbrücken, GermanyThe plant A/B tox<strong>in</strong> ric<strong>in</strong> represents a heterodimeric glycoprote<strong>in</strong>belong<strong>in</strong>g to the family of ribosome <strong>in</strong>activat<strong>in</strong>g prote<strong>in</strong>s, RIPs. Its toxicitytowards eukaryotic cells results from the depur<strong>in</strong>ation of 28S rRNA due tothe N-glycosidic activity of ric<strong>in</strong> tox<strong>in</strong> A cha<strong>in</strong>, RTA. S<strong>in</strong>ce extention ofRTA by a mammalian-specific endoplasmic reticulum (ER) retentionsignal (KDEL) significantly <strong>in</strong>creases RTA <strong>in</strong> vivo toxicity aga<strong>in</strong>stmammalian cells, we analyzed the phenotypic effect of RTA carry<strong>in</strong>g theyeast-specific ER retention motif HDEL. Interest<strong>in</strong>gly, such a tox<strong>in</strong>(RTA HDEL ) showed a similar cytotoxic effect on yeast as a correspond<strong>in</strong>gRTA KDEL variant on HeLa cells. Furthermore, we established a powerfulyeast bioassay for RTA <strong>in</strong> vivo uptake and traffick<strong>in</strong>g which is based onthe measurement of dissolved oxygen <strong>in</strong> tox<strong>in</strong>-treated spheroplast culturesof S. cerevisiae. We show that yeast spheroplasts are highly sensitiveaga<strong>in</strong>st external applied RTA and further demonstrate that its toxicity isgreatly enhanced by replac<strong>in</strong>g the C-term<strong>in</strong>al KDEL motif by HDEL.Based on the RTA resistant phenotype seen <strong>in</strong> yeast knock-out mutantsdefective <strong>in</strong> early steps of endocytosis (end3) and/or <strong>in</strong> RTA depur<strong>in</strong>ationactivity on 28S rRNA (rpl12B) we feel that the yeast-based bioassaydescribed <strong>in</strong> this study is a powerful tool to dissect <strong>in</strong>tracellular A/B tox<strong>in</strong>transport from the plasma membrane through the endosomal compartmentto the ER.Furthermore, we established a simple and sensitive fluorescence assaybased on the<strong>in</strong> vivotranslation of a GFP reporter to <strong>in</strong>vestigate <strong>in</strong>tracellularRTA traffick<strong>in</strong>g from the endosome to the yeast ER. Our results <strong>in</strong>dicatethat both, the mammalian Rab6a homologue Ypt6p, and the yeast syntax<strong>in</strong>5 homologue Sft2p are <strong>in</strong>volved <strong>in</strong> tox<strong>in</strong> transport from the endosome tothe TGN. In addition, the GARP complex is also important for thistraffick<strong>in</strong>g step, whereas defects <strong>in</strong> the retromer complex did not <strong>in</strong>fluenceRTA toxicity. S<strong>in</strong>ce our results uncovered strik<strong>in</strong>g similarities of tox<strong>in</strong>traffick<strong>in</strong>g between yeast and mammalian cells, we feel that our screen<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


81system represents an attractive alternative to siRNA-based screen<strong>in</strong>gsystems <strong>in</strong> mammalian cells.K<strong>in</strong>dly supported by a grant from the Deutsche Forschungsgeme<strong>in</strong>schaft.B. Becker and M.J. Schmitt (2011). Tox<strong>in</strong>s 7, 834-847.FUP013Molecular mechanism of light repression of sexual sporeformation <strong>in</strong> the filamentous fungus Aspergillus nidulansK. Seither*, R. FischerKarlsruhe Institute of Technology (KIT), Microbiology, Karlsruhe, GermanyThe filamentous ascomycete Aspergillus nidulans is able to perceive lightdue to a repertoire of light sensors, among which is a pyhtochrome (FphA)and a flav<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g transcription factor (LreA) (1,2,3). Light triggersmany physiological processes and morphogenetic pathways <strong>in</strong> fungi. For<strong>in</strong>stance <strong>in</strong> Aspergillus nidulans, light <strong>in</strong>duces the development of asexualspores whereas the sexual cycle is preferred <strong>in</strong> darkness. Whereas light<strong>in</strong>ductionis studied quite well, repression of sexual genes <strong>in</strong> light has notbeen studied yet. NosA (numberof sexual spores) and NsdD (never<strong>in</strong>sexualdevelopment) are both important activators of sexual development(4,5). Both prote<strong>in</strong>s localize to the nucleus <strong>in</strong> all stages of development,which correlates with their function as putative transcription factors andthe fact that they both harbor a NLS.In order to understand the effect of light on these transcription factors,direct <strong>in</strong>teraction between them and light regulator prote<strong>in</strong>s has beenstudied. Indeed, NosA <strong>in</strong>teracted with FphA <strong>in</strong> the nucleus as shown bybimolecular fluorescence complementation. This could <strong>in</strong>dicate negativeregulation of the NosA activity. In addition, it was found that FphA b<strong>in</strong>dsto the promoters of nosA and nsdD as shown by ChIP (Chromat<strong>in</strong>-Immunoprecipitation). This suggests transcriptional control of theirexpression. LreA also bound to the promoter of nsdD, but this b<strong>in</strong>d<strong>in</strong>goccurred only <strong>in</strong> light. As the expression of nsdD was lower <strong>in</strong> light than <strong>in</strong>the dark, LreA appears to repress nsdD. As NsdD and NosA are bothputative transcription factors, they also activate or repress other genes.CpeA, a catalase-peroxidase, was found to be regulated by NosA. It wasshown that NosA b<strong>in</strong>ds to the promoter of cpeA and that <strong>in</strong> the nosAstra<strong>in</strong>the expression of CpeA was drastically reduced (4). In addition, agene with a WSC-doma<strong>in</strong> and a putative FAD-dependent oxidoreductaseappeared to be regulated by NsdD.(1) Purschwitz J. et al., (2008) Curr. Biol. 18(4):255-9(2) Blumenste<strong>in</strong> A. et al., (2005) Curr. Biol. 15(20):1833-8(3) Rodriguez-Romero J. et al., (2010) Annu. Rev. Microbiol. 64:585-610(4) Vienken, K. & Fischer, R. (2006) Mol. Microbiol. 61:544-554(5) Han, K. et al., (2001) Mol. Microbiol. 41:299-309FUP014g1i-diagnosis: development of a stra<strong>in</strong>-specific diagnostic toolfor the entomopathogenic fungus Beauveria brongniartiiA.-C. Fatu 1,2 , V. Fatu 1,2 , A.-M. Andrei 2 , C. Ciornei 3 , D. Lupastean 4 ,A. Leclerque* 11 Julius Kühn-Institut (JKI), Institut für Biologischen Pflanzenschutz,Darmstadt, Germany2 Research-Development Institute for Plant Protection (ICDPP),Bucharest, Romania3 Forest Research and Management Institute (ICAS), Forest ResearchStation Bacau, Bacau, Romania4 Stefan cel Mare University of Suceava, Faculty of Forestry, Suceava, RomaniaMitosporic fungi e.g. of the genus Beauveria are of considerable economicand ecological <strong>in</strong>terest as <strong>in</strong>sect biocontrol agents. Stra<strong>in</strong>s of the speciesBeauveria brongniartii have been found particularly promis<strong>in</strong>g for thecontrol of scarabaeid pests as the European cock-chafer, Melolontha sp.,and to date several B. brongniartii formulations, e.g. “Melocont ® ”, areregistered myco<strong>in</strong>secticides. Beyond immediate control efficiencies,parameters as the persistence of fungal spores <strong>in</strong> the environment, thepossible build-up of a residual <strong>in</strong>secticidal activity, and the long-termimpact of biocontrol fungi upon ecosystem biodiversity are of relevancefor myco<strong>in</strong>secticide evaluation and registration. Therefore, diagnostic toolsfor the assessment of these parameters are highly solicited.In several mitosporic fungi <strong>in</strong>clud<strong>in</strong>g Beauveria brongniartii, nuclearrRNA encod<strong>in</strong>g genes have previously been found <strong>in</strong>terrupted bysequences homologous to self-splic<strong>in</strong>g group 1 <strong>in</strong>trons. We have made useof the presence of these genetic elements to develop a PCR-basedapproach to stra<strong>in</strong>-specific diagnosis.With<strong>in</strong> the framework of research activities aim<strong>in</strong>g towards thedevelopment of a Melolontha biocontrol strategy based upon endemicfungal isolates from Romania, the Romanian B. brongniartii isolateICDPP#1a was genetically compared to the “Melocont” producer stra<strong>in</strong>.Amplified 18S rRNA encod<strong>in</strong>g sequences from both stra<strong>in</strong>s were found tobe 100% identical, and stra<strong>in</strong>s clustered tightly with<strong>in</strong> the B. brongniartiiclade of a phylogenetic tree reconstructed from a second, <strong>in</strong>dependentmarker, namely elongation factor 1 alpha, that is currently the marker ofchoice for the <strong>in</strong>fra-generic classification of Beauveria. However, adifference <strong>in</strong> the respective 18S rRNA gene exon-<strong>in</strong>tron structures wasdetected. Based upon this genetic difference, a PCR-based diagnostic toolwas developed that renders the two-sided positive discrim<strong>in</strong>ation and thedifferential assessment of the environmental persistence of thesebiocontrol stra<strong>in</strong>s possible.However, as several conserved <strong>in</strong>tron <strong>in</strong>sertion sites that allow for aconsiderable number of different exon-<strong>in</strong>tron structures have beenidentified throughout the 18S and 28S rRNA genes of Beauveria andrelated fungi, g1i-diagnosis clearly holds potential for application beyondthis specific context.Fatu A-C, Fatu V, Andrei A-M, Ciornei C, Lupastean D, Leclerque A (2011) Stra<strong>in</strong>-specific PCRbaseddiagnosis for Beauveria brongniartii biocontrol stra<strong>in</strong>s. IOBC/wprs Bullet<strong>in</strong> 66: 213-216.FUP015Will be presented as FUV006!FUP016Deneddylation and fungal developmentJ. Sch<strong>in</strong>ke*, M. Christmann, G. BrausGeorg August Universität Gött<strong>in</strong>gen, Mikrobiologie und Genetik,Gött<strong>in</strong>gen, GermanyDeneddylation is the removal of the ubiquit<strong>in</strong> (Ub)-like prote<strong>in</strong> Nedd8from cull<strong>in</strong>s. Cull<strong>in</strong>s are subunits of cull<strong>in</strong>-RING Ub ligases (CRL) whichare controlled <strong>in</strong> their activity and assembly/reassembly by neddylationand deneddylation. The most important eukaryotic deneddylases are theCOP9 signalosome (CSN) and the deneddylat<strong>in</strong>g enzyme 1 (DEN1).Mammalian Den1 has two functions: an isopeptidase activity remov<strong>in</strong>gNedd8 from cull<strong>in</strong>s and other prote<strong>in</strong>s and an additional l<strong>in</strong>ear peptidaseactivity process<strong>in</strong>g Nedd8 from a precursor prote<strong>in</strong>. Filamentous fungipossess an eight subunit COP9 signalosome (CSN) which is rem<strong>in</strong>iscent tothe correspond<strong>in</strong>g plant and vertebrate complex (Busch et al., 2007 PNAS104: 8089-8094; Braus et al., 2010 Curr Op<strong>in</strong> Microbiol 13: 672-676).Aspergillus nidulans requires CSN function to trigger development <strong>in</strong>response towards light, and for a coord<strong>in</strong>ated secondary metabolism(Nahlik et al., 2010 Mol Microbiol 78: 964-79). We show here thecharacterization of the fungal Den1 ortholog DenA. The denA geneencodes a cyste<strong>in</strong>e protease deneddylat<strong>in</strong>g enzyme. DenA is required forlight control and the asexual fungal development whereas CSN is requiredfor the sexual cycle. Processed Nedd8 is unable to rescue conidiaformation suggest<strong>in</strong>g that the lack of the DenA deneddylase isopeptidaseactivity is responsible for the defect. Yeast-two-hybrid experimentssuggest a physical <strong>in</strong>teraction between DenA and CSN which will befurther evaluated.FUP017Analysis of the F-box prote<strong>in</strong> encod<strong>in</strong>g genes of theopportunistic human pathogen Aspergillus fumigatusB. Joehnk* 1 , î Bayram 1 , T. He<strong>in</strong>ekamp 2 , A.A. Brakhage 2 , G.H. Braus 11 Georg-August-Universität, Department of molecular Microbiology andGenetics, Gött<strong>in</strong>gen, Germany2 Leibniz Institute for Natural Product Research and Infection Biology –HKI, Department of Molecular and Applied Microbiology, Jena, GermanyA major virulence factor for the opportunistic human pathogen Aspergillusfumigatus is its ability to rapidly adapt to host conditions dur<strong>in</strong>g <strong>in</strong>fection.The rapid response to environmental changes <strong>in</strong> the host underlies a wellbalancedsystem of production and degradation of prote<strong>in</strong>s. A highlyconserved mechanism for controlled prote<strong>in</strong> degradation is the ubiquit<strong>in</strong>proteasome-system.Ubiquit<strong>in</strong> molecules are attached to the target prote<strong>in</strong>sby the ubiquit<strong>in</strong>-prote<strong>in</strong> ligase (E3) and therefore polyubiquitnylatedprote<strong>in</strong>s are dest<strong>in</strong>ed for degradation via the 26S-proteasome. The largestgroup of E3-enzymes is the SCF Cull<strong>in</strong>1 R<strong>in</strong>g ligases (CRL), which aremultisubunit enzymes. The F-box subunit functions as a substrate adaptorand thus, is responsible for the substrate specificity of the E3 enzyme. Inthis study we have analyzed the genes, encod<strong>in</strong>g the three F-box prote<strong>in</strong>sFbx15, Fbx23 and Fbx29 <strong>in</strong> the opportunistic pathogen Aspergillusfumigatus. Deletion of these genes results <strong>in</strong> growth defects under differentstress conditions <strong>in</strong>clud<strong>in</strong>g H 2O 2 mediated oxidative stress, and <strong>in</strong>creasedtemperature, which are important parts of the <strong>in</strong>nate immune response. Wecould further show that the gene for the F-box prote<strong>in</strong> Fbx15 is essantialfor virulence of A. fumigatus <strong>in</strong> a mur<strong>in</strong>e model. In contrast to this thefbx15 deletion mutant displays a enhanced production of theimmunosupressive mycotox<strong>in</strong>, gliotox<strong>in</strong> compared to wt andcomplementation stra<strong>in</strong>. In addition knock-out attemps of fbx25, another F-box encod<strong>in</strong>g gene revealed that this is an essantial fbx-gene for A.fumigatus. Functional GFP-tagged versions of Fbx15 and Fbx25 could belocalized <strong>in</strong> the nucleus suggest<strong>in</strong>g regulatory functions of these F-boxesfor certa<strong>in</strong> transcription factors. Future studies aim to identify potentialtargets of these F-box prote<strong>in</strong>s and their function <strong>in</strong> stress recognition andresponse.This work is supported by the Deutsche Forschungsgeme<strong>in</strong>schaft, DFGResearch Unit 1334.BIOspektrum | Tagungsband <strong>2012</strong>


82FUP018FbFP as an Oxygen-Independent fluorescence reporter <strong>in</strong>Saccharomyces cerevisiae and Candida albicansI. Eichhof*, D. Tielker, J.F. ErnstHe<strong>in</strong>rich-He<strong>in</strong>e-Universität Düsseldorf, Biologie, Molekulare Mykologie,Düsseldorf, GermanyMany microbes colonize anoxic or hypoxic niches and several groups ofpathogens atta<strong>in</strong> their virulence by their ability to adapt to theseconditions. Although green fluorescent prote<strong>in</strong> (GFP) and its variants arevaluable tools for monitor<strong>in</strong>g gene expression and prote<strong>in</strong> localization,their use is limited to aerobic environments, because chromophoresynthesis of these reporters requires oxygen. Therefore we establishedflav<strong>in</strong> mononucleotide-based oxygen-<strong>in</strong>dependent fluorescent prote<strong>in</strong>s(FbFP) as reporters for the apathogenic yeast Saccharomyces cerevisiaeand the human fungal pathogen Candida albicans by express<strong>in</strong>g thecodon-adapted gene encod<strong>in</strong>g CaFbFP under the control of differentpromoters <strong>in</strong> both fungi (Eukaryot. Cell 8:913-915, 2009). Synthesis ofCaFbFP was demonstrated <strong>in</strong> S. cerevisiae and C. albicans cells byimmunoblott<strong>in</strong>g and fluorescence was detected under both normoxic andhypoxic conditions <strong>in</strong> the cytoplasm of cells. To exam<strong>in</strong>e the use of FbFPas a reporter <strong>in</strong> other cell compartments we attempted to achieve cell walllocalization of FbFP <strong>in</strong> S. cerevisiae by generat<strong>in</strong>g fusions to the cell wallprote<strong>in</strong> Aga2. Fluorescence analyses and immunodetection <strong>in</strong>dicated thelocalization and fluorescence of the FbFP fusion on the yeast cell surface.The ability of FbFP to fluoresce <strong>in</strong> yeast nuclei was <strong>in</strong>vestigated by fusionof CaFbFP to the histone H2B of S. cerevisiae and C. albicans,respectively. Fluorescence analyses of S. cerevisiae cells showed a clearFbFP-mediated fluorescence signal <strong>in</strong> the nuclei.FUP019Screen<strong>in</strong>g of white rot fungi from Belarus for novel dyebleach<strong>in</strong>g enzymesA. Matura* 1 , M. Liebe 1 , W. Burd 2 , K.-H. van Pée 11 TU Dresden, Allgeme<strong>in</strong>e Biochemie, Dresden, Germany2 University, Biology, Grodno, BelarusThe textile <strong>in</strong>dustry is an <strong>in</strong>dustrial branch with great relevance for theenvironment. Dur<strong>in</strong>g the textile dy<strong>in</strong>g process 30 to 40% of dyes do notb<strong>in</strong>d to the cotton fibres and rema<strong>in</strong> <strong>in</strong> the waste water. The costs forclean<strong>in</strong>g this waste water with different physical, chemical,electrochemical or biological methods are high. For bleach<strong>in</strong>g of nonbounddyes <strong>in</strong> the waste water and bleach<strong>in</strong>g of cotton, the use of enzymesfrom white rot fungi could be an environmentally friendly and also lesscost <strong>in</strong>tensive alternative.We performed a screen<strong>in</strong>g for dye decolourisation by novel white rot fungifrom National Park Belaweschskaja Puschtscha Belarus. Because of thesimilar phenolic structure of lign<strong>in</strong> and <strong>in</strong>dustrial dyes, white rot fungi candegrade many of these dyes. The most effective enzymes for thisapplication are laccases and peroxidases. 17 different fungal mixedcultures were <strong>in</strong>vestigated for their ability to bleach 40 dyes of yellow,orange, red, blue, and black colour with different chemical structures used<strong>in</strong> technical textile dy<strong>in</strong>g processes. Bleach<strong>in</strong>g experiments were carriedout on agar plates and <strong>in</strong> liquid cultures. From mixed cultures with highdecolourisation rates we isolated pure fungal samples for identification.Whereas many fungi could degrade blue and black dyes, only a few ofthem could also decolourise yellow, orange, and red ones. Especially thedecolourisation of yellow dyes is a problem <strong>in</strong> many bleach<strong>in</strong>g processesand often a yellow colour rema<strong>in</strong>s even after the successful decolourisationof blue or black dyes. Two of our new fungi aMucor hiemalis sp.silvaticusand aMortierella verticillatasp. are able to decolourise yellowdyes very effectively. The ma<strong>in</strong> enzymes from some of the fungi with veryhigh bleach<strong>in</strong>g activity were detected and partly purified. We determ<strong>in</strong>edlaccase, manganese- and lign<strong>in</strong>peroxidase activities and performed firstchromatographic purification steps for these enzymes. Thus we found newenzymes with <strong>in</strong>terest<strong>in</strong>g properties for the use <strong>in</strong> <strong>in</strong>dustrial bleach<strong>in</strong>gprocesses.FUP020Alternative splic<strong>in</strong>g <strong>in</strong> fungal aldo-keto reductasesK. Grützmann* 1 , K. Hoffmann 2 , M. Eckart 2 , S. Schuster 1 , K. Voigt 21 University Jena, Department of Bio<strong>in</strong>formatics, Jena, Germany2 Leibniz Institute for Natural Product Research and Infection Biology andUniversity of Jena, Jena Microbial Resource Collection, Jena, GermanyAldo-keto reductases (AKRs) are characterized by a common 3D-fold, the() 8-barrel motif and a broad substrate specificity [1]. They areNAD(P)H-dependent andrecognize broad categories of carbonylconta<strong>in</strong><strong>in</strong>gsubstrates, e.g. aldehydes, ketones, monosaccharides, andsteroids. The cofactor b<strong>in</strong>d<strong>in</strong>g site for NAD(P)H is highly conserved.AKRs encompass a superfamily compris<strong>in</strong>g approx. 120 members <strong>in</strong> 14prote<strong>in</strong> families scatter<strong>in</strong>g through prokaryotes, plants, animals and fungi.In former studies (manuscript <strong>in</strong> prep.), we reconstructed the evolution offungal AKRs us<strong>in</strong>g distance, maximum parsimony, maximum likelihoodand Bayesian analyses. We are able to recognize different subgroups andparalogs and discovered different alleles. In order to understand theevolution of these different alleles we predicted the possible occurrence ofalternative splic<strong>in</strong>g (AS). We applied the bio<strong>in</strong>formatics tool NetAspGene([2], http://www.cbs.dtu.dk/services/NetAspGene/), which was orig<strong>in</strong>allytra<strong>in</strong>ed for genes of the ascomycete Emericella nidulans (anamorph:Aspergillus nidulans), to AKRs from zygomycetes. Known splice sitescould be recovered. The prediction of additional splice sites with highconfidence scores rang<strong>in</strong>g typically between 0.85 and 1.00 actuallysuggests a diversification through AS. The impact of AS <strong>in</strong> the evolutionof fungal AKRs are discussed.1. Barski et al. (2008) The aldo-keto reductase superfamily and its role <strong>in</strong> drug metabolism anddetoxification. Drug Metab Rev. 2008 40(4), 553-624.2. Wang et al. (2009) Analysis and prediction of gene splice sites <strong>in</strong> four Aspergillus genomes.Fungal Genet Biol. 46, 14-18.FUP021Eng<strong>in</strong>eer<strong>in</strong>g the citric/isocitric acid overproduction by theyeast Yarrowia lipolyticaV. Yovkova 1 , M. Holz 1 , A. Aurich 2 , S. Mauersberger* 1 , G. Barth 11 Technische Universität Dresden, Biology, Institute of Microbiology,Dresden, Germany2 Helmholtz Centre for Environmental Research - UFZ, Environmental andBiotechnology Centre (UBZ), Leipzig, GermanyFunctionalized carboxylic acids are highly versatile chemical species witha wide range of applications (e.g. as co-polymers, build<strong>in</strong>g blocks,acidulants). Therefore they are of special <strong>in</strong>terest as biotechnologicallyavailable targets. The yeast Yarrowia lipolytica secretes high amounts ofvarious organic acids, like citric acid (CA) and isocitric acid (ICA) underseveral conditions of growth limitation from an excess of carbon source.Depend<strong>in</strong>g on the carbon source used, stra<strong>in</strong>s of Y. lipolytica produce amixture of CA and ICA <strong>in</strong> a characteristic ratio. On carbohydrates andglycerol, wild-type stra<strong>in</strong>s show a CA/ICA ratio of 90:10, and onsunflower oil and n-alkanes of 60:40. To exam<strong>in</strong>e, whether this CA/ICAproduct ratio can be <strong>in</strong>fluenced, isocitrate lyase (ICL1), aconitase (ACO1)or isocitrate dehydrogenase (IDP1) overexpress<strong>in</strong>g stra<strong>in</strong>s wereconstructed conta<strong>in</strong><strong>in</strong>g multiple copies of these genes, respectively.Additionally, ICL1 disrupted stra<strong>in</strong>s were tested. In the ICL1overexpress<strong>in</strong>g stra<strong>in</strong>s the part of ICA on the whole product (CA + ICA)decreased to 3-7% on all tested carbon sources [1]. In contrast, the ACO1and <strong>in</strong>terest<strong>in</strong>gly also the IDP1 overexpression resulted <strong>in</strong> a shift of theproduct pattern <strong>in</strong> direction of ICA [2]. On carbohydrates the ICAproportion <strong>in</strong>creased from 10-12% to 14-15%, on sunflower oil even from35-45% to 65-72% of total acid produced. The loss of the isocitrate lyaseactivity <strong>in</strong> the icl1-defective stra<strong>in</strong>s had a comparable effect on theCA/ICA ratio like the ACO1 overexpression. On glucose and glycerol theICA proportion was 2-5% higher compared to the wild-type stra<strong>in</strong>. Thus,us<strong>in</strong>g wild-type or eng<strong>in</strong>eered Y. lipolytica stra<strong>in</strong>s the enantiomericallypure form of isocitric acid, currently available as a speciality compound,can be produced now <strong>in</strong> large amounts and used as a build<strong>in</strong>g block fororganic synthesis [3].[1] Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Appl Microbiol Biotechnol77:861-869[2] Holz M, Förster A, Mauersberger S, Barth G (2009) Appl Microbiol Biotechnol 81: 1087-1096[3] Heretzsch P, Thomas F, Aurich A, Krautscheid H, Sicker D, Giannis A (2008) Angew Chem IntEd 47: 1958-1960These studies were partially supported by the BMBF of Germany (0339822) and the SMUL of theLand Saxony, Germany (138811.61/89 and 2620000240).FUP022A molecular tool for transposon-mediated mutagenesis <strong>in</strong>Aspergillus speciesE.K. Hihlal*, F. KempkenBotanisches Institut , Abt. Botanische Genetik & Molekularbiologie, Kiel,GermanyTransposons are ubiquitous genetic elements present <strong>in</strong> the genomes of allliv<strong>in</strong>g cells. Among the different types of transposable elements cut-andpaste transposons are particularly useful for development of transposonbasedmutagenesis systems. We previously have characterizedtransposable elements <strong>in</strong> two filamentousfungi,AspergillusnigerandPenicillium chrysogenum(ref. 1), therebyidentifiy<strong>in</strong>g transposonVaderas an active element <strong>in</strong>A.niger Upon selectionfor chlorate resistantA.nigercolonies, oneVadercopy was found <strong>in</strong>tegrated<strong>in</strong> thenirAgene. As this copy apparently conta<strong>in</strong>ed all necessary sequence<strong>in</strong>formation for be<strong>in</strong>gtrans-activated it was used for vector developmentand fungal transformation (ref. 2).We observed a Vaderexcision frequency of about 1 <strong>in</strong> 2.2x10 5 A.nigerspores. All colonies analyzed exhibited an excision event on the DNAlevel andVader footpr<strong>in</strong>ts were found. Employ<strong>in</strong>g thermal asymmetric<strong>in</strong>terlaced-PCR the re<strong>in</strong>tegration sites of 21 <strong>in</strong>dependent excision eventswere determ<strong>in</strong>ed. All re<strong>in</strong>tegration events occurred with<strong>in</strong> or very close togenes. Thus,Vader appears to be a useful tool for transposon mutagenesis<strong>in</strong>A.niger (ref. 2).BIOspektrum | Tagungsband <strong>2012</strong>


83We then set out to analyze the activity ofVader<strong>in</strong>A. nidulans.TheVaderelement on its does not exhibit any activity <strong>in</strong>A. nidulans. Thiswas anticipated asVaderlacks the appropriate transposase gene. A newvector <strong>in</strong>clud<strong>in</strong>g the transposase gene was established and <strong>in</strong>serted thevector at theniaD locus. Transformants are currently be<strong>in</strong>g analyzed foractivity ofVader.1. Braumann I, van den Berg M, & Kempken F (2007) Transposons <strong>in</strong> biotechnologically relevantstra<strong>in</strong>s ofAspergillus nigerandPenicillium chrysogenum. Fungal Genet Biol 44:1399-14142. Hihlal E, Braumann I, van den Berg M, & Kempken F (2011)Vaderis a suitable element fortransposon mediated mutagenesis <strong>in</strong>Aspergillus niger. App Environment Microbiol 77:2332-2336FUP023Eng<strong>in</strong>eer<strong>in</strong>g the -ketoglutarate overproduction by the yeastYarrowia lipolyticaV. Yovkova* 1 , C. Otto 1 , H. Gebhardt 2 , A. Aurich 3 , *S. Mauersberger 1 ,G. Barth 11 Technische Universität Dresden, Biology, Institute of Microbiology, Dresden,Germany2 Evonik Degussa GmbH, E & V Biotechnology/Science to Bus<strong>in</strong>ess Center,Marl, Germany3 Helmholtz Centre for Environmental Research – UFZ, Environmental andBiotechnology Centre (UBZ), Leipzig, GermanyOne of the most prom<strong>in</strong>ent features of the non-conventional yeastYarrowia lipolytica is the secretion of high amounts (up to about 200 g/L)of various organic acids, like -ketoglutaric (KGA), pyruvic (PYR) orcitric/isocitric (CA/ICA) acids under special culture conditions. Typically,an excess of carbon source and simultaneous growth limitation by differentfactors, e.g. thiam<strong>in</strong>e (KGA and PYR) or nitrogen exhaustion (CAandICA) result <strong>in</strong> overproduction of organic acids. The amount and k<strong>in</strong>d ofproduced organic acids can be affected by changes of activities of <strong>in</strong>volvedenzymes [1-3]. The aim of this study was to improve the KGAoverproduction by Y. lipolytica from renewable substrates (e.g. glyceroland raw glycerol) and to exam<strong>in</strong>e whether the amount of the secretedm<strong>in</strong>or products pyruvate, fumarate and malate can be <strong>in</strong>fluenced by agene-dose dependent overexpression of enzymes of the tricarboxylic acidcycle and of gluconeogenesis. We show that a gene-dose dependentoverexpression of the genes encod<strong>in</strong>g isocitrate dehydrogenases,-ketoglutarate dehydrogenase, fumarase and pyruvate carboxylase or acomb<strong>in</strong>ation of them can result <strong>in</strong> an <strong>in</strong>creased KGA production and <strong>in</strong> adifferent product ratio of the secreted organic acids under KGA productionconditions.[1] Förster A, Jacobs K, Juretzek T, Mauersberger S, Barth G (2007) Appl Microbiol Biotechnol77: 861-869[2] Holz M, Förster A, Mauersberger S, Barth G (2009) Appl Microbiol Biotechnol 81: 1087-1096[3] Holz M, Otto C, Kretzschmar A, Yovkova V, Aurich A, Pötter M, Marx A, Barth G (2011)Appl Microbiol Biotechnol 89: 1519-1526This study was partially co-f<strong>in</strong>anced by the European Union, the Land of North-Rh<strong>in</strong>e Westphaliaof Germany and by the Evonik Degussa GmbH.FUP024The secretome of Heterobasidion irregulare on spruce woodA. Majcherczyk, U. Kües*Universität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie und technischeMykologie, Gött<strong>in</strong>gen, GermanyHeterobasidion species are severe pathogens <strong>in</strong> conifer plantations andnatural forests <strong>in</strong> Europe and the USA and cause root and butt rot <strong>in</strong> liv<strong>in</strong>gtrees. The fungi are white rots, degrad<strong>in</strong>g simultaneously or selectivelylign<strong>in</strong>. The genome of the North American Heterobasidion irregular wasestablished by the JGI (Jo<strong>in</strong>t Genome Institute, Walnut Creek, CA) and theannotated genome can be used <strong>in</strong> studies of the fungal proteome. H.irregular was grown <strong>in</strong> liquid medium with and without Picea abies wood.Freely secreted and hyphal sheath associated prote<strong>in</strong>s analyzed by 2D-gelelectrophoresis revealed a high diversity between wood supplemented andcontrol cultures. Prote<strong>in</strong> identification by ESI-LC-MS/MS was eitherperformed on s<strong>in</strong>gle prote<strong>in</strong> spots form 2D-gels or by application of a shotgunmethod on complex prote<strong>in</strong> mixtures. Us<strong>in</strong>g a MASCOT databasewith the H. irregular proteome as deduced from the fungal genome, <strong>in</strong>total 98 different secreted prote<strong>in</strong>s have been identified. 58 prote<strong>in</strong>s werepresent under both culture conditions and only six prote<strong>in</strong>s weresuppressed by wood supplementation. Addition of wood resulted <strong>in</strong> 36new prote<strong>in</strong>s secreted <strong>in</strong>to the culture media. Redox-enzymes wererepresented by 21 prote<strong>in</strong>s and most of them were <strong>in</strong>duced by wood.Expression of laccases (except of one) and alcohol oxidases differed notbetween the two culture media. However, wood <strong>in</strong>duced secretion of FADoxidoreductasesand redox-enzymes with unknown function andfurthermore <strong>in</strong>duced secretion of specialized glycanases, lipases andproteases.The JGI is gratefully thanked for provid<strong>in</strong>g the annotated H. irregulargenome to the public.FUP025Differential gene expression <strong>in</strong> submerged spore form<strong>in</strong>g culturesof the entomopathogenic fungus Metarhizium anisopliaeS. Laut, D. Stephan*, A. LeclerqueJulius Kühn-Institut (JKI), Institut für Biologischen Pflanzenschutz,Darmstadt, GermanyHyphomycetes of the genus Metarhizium (Ascomycota: Clavicipitaceae)are among the best characterized fungal entomopathogens <strong>in</strong>fect<strong>in</strong>g withwidely vary<strong>in</strong>g host specificity over 200 different <strong>in</strong>sect species. Naturally,Metarhizium multiplies and spreads by means of asexual conidiosporesformed from mycelia on solid surfaces, e.g. an <strong>in</strong>sect cadaver.Application of Metarhizium and related fungi as <strong>in</strong>sect biocontrol agentsrelies on the production of high numbers of both viable and virulentspores, and liquid as opposed to solid surface fermentation would be thepreferred way to reach this goal for both technical and economic reasons.However, fungal sporulation <strong>in</strong> submerged culture must be expected to bephysiologically different from solid surface sporulation. While factors<strong>in</strong>volved <strong>in</strong> conidiospore formation have previously been <strong>in</strong>vestigated forfilamentous fungi, few is known about the molecular biology and geneticsof submerged spore formation.In order to identify genes differentially transcribed <strong>in</strong> two liquid cultures ofthe same isolate of Metarhizium anisopliae, stra<strong>in</strong> Ma43, - one culturereproducibly sporulat<strong>in</strong>g, the other show<strong>in</strong>g formation of mycelial“pellets”, i.e. a common form of submerged mycelial growth of this fungus- we have used a suppression subtractive hybridization PCR (SSH-PCR)approach. Methodological aspects and the current state of data m<strong>in</strong><strong>in</strong>gfrom the project will be presented.FUP026Prote<strong>in</strong>s expressed dur<strong>in</strong>g hyphal aggregation for fruit<strong>in</strong>gbody formation <strong>in</strong> BasidiomycetesK.K. Lakkireddy, M. Navarro-Gonzalez*, U. KüesGeorg-August-Universität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie undtechnische Mykologie, Gött<strong>in</strong>gen, GermanyThe first visible step <strong>in</strong> fruit<strong>in</strong>g body development <strong>in</strong> basidiomycetes is theformation of small hyphal knot by localized <strong>in</strong>tense branch<strong>in</strong>g of hyphaeof restricted length followed by hyphal aggregation. In Copr<strong>in</strong>opsisc<strong>in</strong>erea, the first not yet fruit<strong>in</strong>g-specific step of hyphal branch<strong>in</strong>g occurs<strong>in</strong> the dark, the second step requires a light signal. Hyphal aggregationimplies cell-cell contacts and prote<strong>in</strong> <strong>in</strong>teractions on the outer cell wallsare anticipated. Few prote<strong>in</strong> candidates were identified and discussed <strong>in</strong>the past for such function, amongst were the galect<strong>in</strong>s <strong>in</strong> C. c<strong>in</strong>erea and theAa-Pri1 prote<strong>in</strong> (aegerolys<strong>in</strong>) <strong>in</strong> Agrocybe aegerita that are specificallyexpressed dur<strong>in</strong>g the step of hyphal aggregation as well as dur<strong>in</strong>gsubsequent primordia development. In this study we follow up thedistribution of such genes <strong>in</strong> the steadily grow<strong>in</strong>g number of availablegenomes of basidiomycetes. Neither galect<strong>in</strong> genes nor Aa-pri1-like genesare present <strong>in</strong> all mushroom species, mak<strong>in</strong>g an essential role <strong>in</strong> hyphalaggregation unlikely.FUP027Proteomic analysis of tomatoes <strong>in</strong> response to endophyticPhialocephala fort<strong>in</strong>ii <strong>in</strong>fectionM. Kucklick* 1 , I. Glöckner 1 , C. Junker 1 , B. Schulz 1 , K. Riedel 21 TU Braunschweig, Institut für Mikrobiologie, 38106 Braunschweig, Germany2 Ernst-Moritz-Arndt University of Greifswald, Institute of Microbiology,Greifswald, GermanyPhialocephala fort<strong>in</strong>ii is a common root endophyte of woody plants and ischaracterized by its low host specificity. So far, little is known about themolecular mechanism of its <strong>in</strong>teraction with the host and whether it is ofpathogenic, parasitic, symbiotic or mutualistic nature.In contrast to truly phytopathogenic fungi such as Alternaria solani, a P.fort<strong>in</strong>ii-isolate from larch clearly promotes the growth of tomato(Lycopersicum esculentum) plants. A semi-quantitative metaproteomicsapproach was employed to <strong>in</strong>vestigate the molecelular mechanismsunderly<strong>in</strong>g the plant response to presence of the endophytic P. fort<strong>in</strong>ii andthe pathogenic A. solani together with the response of P. fort<strong>in</strong>ii to plantdefence mechanisms. To this end prote<strong>in</strong>s were extracted from (I) P.fort<strong>in</strong>ii and A. solani-<strong>in</strong>fected plants, (II) un<strong>in</strong>fected control plants and (III)P. fort<strong>in</strong>ii and A. solani grown on agar plates and analyzed by acomb<strong>in</strong>ation of one-dimensional gel-electrophoresis, liquidchromatography and tandem mass spectrometry. Subsequently, 809prote<strong>in</strong>s were assigned to either plant or fungal orig<strong>in</strong> and to differentfunctional classes employ<strong>in</strong>g our newly established bio<strong>in</strong>formaticsworkflow ProPHANE (Schneider et al., 2011).Most importantly, typical plant defence mechanisms, for <strong>in</strong>stance thebiosynthesis of jasmonic acid <strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>duced systemic resistance (ISR),the upregulation of the pathogenesis-related prote<strong>in</strong> TSI (<strong>in</strong>dicat<strong>in</strong>gsystemic acquired resistance (SAR)), the <strong>in</strong>creas<strong>in</strong>g amounts of beta1,3-glucanases and several chit<strong>in</strong>ases, or the expression of oxidative stressBIOspektrum | Tagungsband <strong>2012</strong>


84defence enzymes, were found to be <strong>in</strong>duced by both fungi. Altogether, thesimilar responses of Lycopersicum esculentum to P. fort<strong>in</strong>ii and A. solani<strong>in</strong>dicatea classification of the endophyte P. fort<strong>in</strong>ii as a pathogen bytomato plants.Schneider, T., Vieira de Castro Junior, J., Schmid, E., Card<strong>in</strong>ale, M., Eberl, L., Grube, M., Berg, G.,Riedel K. (2011). Structure and function of the symbiosis partners of the lung lichen (LobariapulmonariaL. Hoffm.) analyzed by metaproteomics. Proteomics11, 2752-2756FUP028Prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction studies to decipher fungal sexualdevelopmentI. Teichert*, E. Steffens, S. Nordzieke, A. Beier, U. KückRuhr-University Bochum, General and Molecular Botany, Bochum, GermanyFungi are able to produce a number of different cell types and multicellularstructures dur<strong>in</strong>g their life cycle. One prom<strong>in</strong>ent example is the formationof fruit<strong>in</strong>g bodies to propagate sexually. Our studies focused on thefilamentous fungus Sordaria macrospora which produces fruit<strong>in</strong>g bodieswith<strong>in</strong> seven days under laboratory conditions. By analyz<strong>in</strong>g sterilemutants, several prote<strong>in</strong>s required for sexual development were identified,the so-called “PRO” prote<strong>in</strong>s [1]. To ga<strong>in</strong> more <strong>in</strong>sight <strong>in</strong>to the regulationof fruit<strong>in</strong>g body differentiation, we performed prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractionstudies with several PRO prote<strong>in</strong>s us<strong>in</strong>g yeast-two-hybrid, TAP-tagpurification and subsequent mass spectrometry, co-immunoprecipitation,and fluorescence microscopy. We have further tested different fungalpromoters for expression of recomb<strong>in</strong>ant prote<strong>in</strong>s. Interest<strong>in</strong>gly, we wereable to l<strong>in</strong>k several developmental prote<strong>in</strong>s via shared <strong>in</strong>teraction partnersand propose the formation of multi-prote<strong>in</strong> complexes conta<strong>in</strong><strong>in</strong>gdevelopmental and signal<strong>in</strong>g prote<strong>in</strong>s. In conclusion, our data h<strong>in</strong>t to anextensive network regulat<strong>in</strong>g cellular differentiation <strong>in</strong> a fungal modelsystem.[1] Engh I, Nowrousian M, Kück U (2010) Sordaria macrospora, a model organism to study fungalcellular development. Europ J Cell Biol 89: 864-872FUP029Optimisation of vectors for transformations <strong>in</strong> Copr<strong>in</strong>opsis c<strong>in</strong>ereaB. Dörnte*, U. KüesUniversität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie und technischeMykologie, Gött<strong>in</strong>gen, GermanyThe genetic transformation of the model fungus Copr<strong>in</strong>opsis c<strong>in</strong>ereaallows the genomic analysis and manipulation of this organism. Initially,transformations were used to study the structure; functions and regulationof expression of genes; <strong>in</strong> recent years usage for overexpression of<strong>in</strong>dustrially important enzymes are also emerg<strong>in</strong>g. For the transfer ofgenetic material, chromosomal <strong>in</strong>tegrative vectors are used. These vectorsconta<strong>in</strong> a selectable marker gene and/or a gene of <strong>in</strong>terest under the controlof regulatory sequences such as promoter or term<strong>in</strong>ator. Due to lack ofsystematic experimental data, little is known about the <strong>in</strong>fluence of vectorson transformation frequencies. This work targets at improvement of thetransformation vector pCc1001 (1). This pUC9-based vector conta<strong>in</strong>s a 6.5kb PstI genomic fragment of C. c<strong>in</strong>erea with the tryptophan synthetasegene (trp1) that can be used to complement trp1- defects. The vectorhowever shows a surpris<strong>in</strong>g phenomenon. In s<strong>in</strong>gle transformation it givesonly low numbers of transformants whereas efficiencies <strong>in</strong> cotransformationraise by factors of >100%, yield<strong>in</strong>g several hundreds oftransformants per experiment. To <strong>in</strong>vestigate this phenomenon further, thevector was modified <strong>in</strong> length and fragments with thetrp1gene weresubcloned <strong>in</strong>to pBluescriptKS-. The effects on the transformationefficiency were <strong>in</strong>vestigated by us<strong>in</strong>g several co-transformationexperiments.(1) B<strong>in</strong>n<strong>in</strong>ger DM et al. (1987)DNA-mediated transformation of the basidiomycete Copr<strong>in</strong>usc<strong>in</strong>ereus. EMBO J 6:835-840FUP030A mat<strong>in</strong>g loci <strong>in</strong> Copr<strong>in</strong>opsis c<strong>in</strong>erea differ <strong>in</strong> the numbers ofHD1 and HD2 homeodoma<strong>in</strong> transcription factor genesU. Kües*, Y. Yu, M. Navarro-GonzalézUniversität Gött<strong>in</strong>gen, Molekulare Holzbiotechnologie und technischeMykologie, Gött<strong>in</strong>gen, GermanyThe 25 kb-long A mat<strong>in</strong>g type locus <strong>in</strong> the mushroom Copr<strong>in</strong>opsis c<strong>in</strong>ereacontrols def<strong>in</strong>ed steps <strong>in</strong> the formation of a dikaryotic mycelium aftermat<strong>in</strong>g of two compatible monokaryons, as well as the formation of thefruit<strong>in</strong>g bodies on the established dikaryon. Usually, three paralogous pairsof divergently transcribed genes for two dist<strong>in</strong>ct types of homeodoma<strong>in</strong>transcription factors (termed HD1 and HD2 after dist<strong>in</strong>guishedhomeodoma<strong>in</strong> sequences) are found <strong>in</strong> the multiple alleles of the A locus.For dikaryon formation and regulation of sexual development,heterodimerization of HD1 and HD2 prote<strong>in</strong>s from allelic pairs fromdifferent A loci is required. In some A loci found <strong>in</strong> nature, alleles of genepairs are not complete or one of two genes have been made <strong>in</strong>-active.Functional redundancy allows the system still to work as long as an HD1gene <strong>in</strong> one and an HD2 <strong>in</strong> the other allelic gene pair are operative. In thisstudy, we present for the first time two completely sequenced A loci.Evidences for gene duplications, deletions and <strong>in</strong>activations are found. Theloci differ <strong>in</strong> the number of potential gene pairs (five versus three), <strong>in</strong>genes that have been duplicated <strong>in</strong> evolution, <strong>in</strong> genes that have been lost<strong>in</strong> evolution and <strong>in</strong> genes that are still present but have been made <strong>in</strong>active.Kües U, James TY, Heitmann J (2011) Mat<strong>in</strong>g type <strong>in</strong> Basidiomycetes: Unipolar, bipolar, andtetrapolar patterns of sexuality. In: Pöggeler S, Wöstemeyer J (eds) Evolution of fungi and fungilikeorganisms. The mycota XIV. Spr<strong>in</strong>ger, Berl<strong>in</strong>, pp 97-160FUP031Enzymatic oxidation of nitrophenols by a DyP-type peroxidaseF. Hahn*, R. Ullrich, M. Kluge, M. Hofrichter, C. LiersInternational Graduate School zittau, Environmental Biotechnology,Zittau, GermanyThe jelly fungus Auricularia auricula-judae produces a dye decoloriz<strong>in</strong>gperoxidase (DyP; EC 1.11.1.19) <strong>in</strong> plant-based complex media (e.g.tomato juice suspension). DyP-type peroxidases represent a separatesuperfamily of heme peroxidases and were first described forbasidiomycetous fungi and later also found <strong>in</strong> eubacteria. These enzymesoxidize diverse synthetic and natural dyes <strong>in</strong>clud<strong>in</strong>g recalcitrantanthraqu<strong>in</strong>one derivatives (e.g. Reactive Blue 5), as well as typicalperoxidase substrates such as ABTS and 2,6-dimethoxyphenol. As lign<strong>in</strong>peroxidases (LiP; EC 1.11.1.14), some DyPs have been shown to oxidizemethoxylated aromatics with high-redox potential such as veratryl alcoholand a non-phenolic -O-4 lign<strong>in</strong> model dimer (Liers et al. 2010). Tosubstantiate this f<strong>in</strong>d<strong>in</strong>g, the oxidation of several mononitrophenols weretested us<strong>in</strong>g the DyP of A. auricula-judae. For peroxidases, the conversionof these high-redox potential substrates has so far only been reported forLiP. The Auricularia DyP was found to act on i) ortho-nitrophenol (oNP),ii) meta-nitrophenol (mNP) and iii) para-nitrophenol (pNP). The pHdependency for pNP showed an oxidation optimum at pH 4.5, which istypical for phenol conversions by DyPs. In all cases, the correspond<strong>in</strong>gqu<strong>in</strong>ones and d<strong>in</strong>itrophenols were identified as major products of NPoxidation; moreover, the formation of further unknown products wasobserved <strong>in</strong> the HPLC elution profiles. The mechanism of nitration wasexam<strong>in</strong>ed us<strong>in</strong>g 15 N-labeled pNP and an additional source of nitro-groups(sodium nitrite). Products were identified by HPLC-MS, and mass-tochargeratios evaluated to clarify the orig<strong>in</strong> of nitro-groups. The additionalnitrogen <strong>in</strong> d<strong>in</strong>itrophenols formed dur<strong>in</strong>g enzymatic conversion was foundto orig<strong>in</strong>ate from both nitrophenol and sodium nitrite. Based on theseresults, a hypothetical reaction scheme has been postulated.FUP032Insights <strong>in</strong>to gene regulation under hypoxia <strong>in</strong> the humanpathogenic fungus Aspergillus fumigatusF. Hillmann*, V. Pähtz, A.A. Brakhage, O. KniemeyerHans-Knöll-Institut, Molecular and Applied Microbiology, Jena, GermanyThe saprophytic mold Aspergillus fumigatus is the predom<strong>in</strong>ant airbornefungal pathogen caus<strong>in</strong>g locally restricted pulmonary diseases such asnon<strong>in</strong>vasive aspergilloma or systemic <strong>in</strong>fections <strong>in</strong> immunocompromised<strong>in</strong>dividuals. A. fumigatus is usually acquired by the <strong>in</strong>halation of fungalspores which, if not cleared by the immune system, germ<strong>in</strong>ate to formhyphae. At the site of <strong>in</strong>fection very often <strong>in</strong>flammatory, necrotic lesionsoccur, which are <strong>in</strong> many cases associated with severe hypoxia. Only littleis known about the regulatory circuits <strong>in</strong>volved <strong>in</strong> the adaptation of thisfungus to these low oxygen environments. Recently SrbA was identified asa homologue of the sterol regulatory element b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> SREBP fromfission yeast, activat<strong>in</strong>g hypoxic gene expression <strong>in</strong> response to low sterollevels. This mutant was unable to grow <strong>in</strong> the presence of less than 5% O 2and attenuated <strong>in</strong> virulence <strong>in</strong> mouse <strong>in</strong>fection models of <strong>in</strong>vasiveaspergillosis (1). Our <strong>in</strong>itial experiments analyzed the gene expression ofA. fumigatus dur<strong>in</strong>g its long term response to hypoxia <strong>in</strong> a glucose limitedO 2-controlled fermenter (2). Differential mRNA levels of a number ofgenes dur<strong>in</strong>g hypoxia were verified by Northern hybridization. Whenanalys<strong>in</strong>g their expression <strong>in</strong> an srbA null mutant background we foundthat several of these genes were regulated <strong>in</strong>dependent from SrbA dur<strong>in</strong>g ashort-term exposure to hypoxia. From microarray data and genome widesearches we are aim<strong>in</strong>g to identify new regulatory prote<strong>in</strong>s. Bycharacteriz<strong>in</strong>g the phenotypes of mutants <strong>in</strong> the respective genes theirputative roles <strong>in</strong> the response to low O 2 concentrations are discussed.(1) Willger, S.D. et al., 2008. PLoS Pathog. 4(11):e1000200.(2) Vödisch et al., 2011. J. Proteome Res. 10(5):2508-2524.BIOspektrum | Tagungsband <strong>2012</strong>


85FUP033A proteome reference map of Aspergillus nidulans and newputative targets of the AnCF complexK. Tuppatsch* 1,2 , O. Kniemeyer 1 , P. Hortschansky 1 , A.A. Brakhage 1,21 Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knoell Institute (HKI), Department Molecular and Applied Microbiology, Jena,Germany2 Friedrich Schiller University Jena, Institute of Microbiology, Jena, GermanyThe mould Aspergillus nidulans is a well suited model organisms forfilamentous fungi and is closely related to many Aspergillus species of<strong>in</strong>dustrial and medical <strong>in</strong>terest. With the completion and publication of theA. nidulans genome it is feasible to study gene expression and prote<strong>in</strong>production on a global scale. A variety of transcriptome studies have beenalready carried out for A. nidulans. By contrast, only little <strong>in</strong>formation isavailable about the dynamic changes of the proteome of A. nidulans uponenvironmental changes, stress conditions or genetic modifications.Furthermore, no proteome map for A. nidulans has been published so far.For this reason, we established the first 2-D reference map for the<strong>in</strong>tracellular prote<strong>in</strong> fraction of A. nidulans stra<strong>in</strong> TNO2A7. After 2D-gelelectrophoretic separation, visualisation of prote<strong>in</strong>s by Coomassie sta<strong>in</strong><strong>in</strong>gand image analysis with Delta 2D, 435 spots represent<strong>in</strong>g 364 differentprote<strong>in</strong>s were identified by MALDI-TOF-MS/MS analysis. Qunatitativeproteomic analysis of a hapC deletion mutant revealed many prote<strong>in</strong>s withdifference <strong>in</strong> abundance <strong>in</strong> comparison to the wild type. Two prote<strong>in</strong>s, aconserved hypothetical prote<strong>in</strong> and a guan<strong>in</strong>e nucleotide dissociation<strong>in</strong>hibitor, were found to be putative, so far uncharacterised targets of theAnCF complex. Knock-out and double knock-out stra<strong>in</strong>s of thecorrespond<strong>in</strong>g genes are <strong>in</strong> progressFUP034Interaction of the phytopathogenic fungus Verticilliumlongisporum with the antagonistic soil bacterium PseudomonasfluorescensK. Nesemann*, S. Braus-Stromeyer, P. Tarazona Corrales, C. Hoppenau,H. Irmer, G. BrausInstitut für Mikrobiologie und Genetik, Universität Gött<strong>in</strong>gen, Abteilungfür molekulare Mikrobiologie und Genetik, Gött<strong>in</strong>gen, GermanyThe filamentous soil-borne fungus V. longisporum possessesphytopathogenic properties and is responsible for <strong>in</strong>creas<strong>in</strong>g economicallosses <strong>in</strong> the cultivation of oilseed rape (Brassica napus). Antagonisticbacteria like Pseudomonas fluorescens can be used as biological controlagents to reduce the <strong>in</strong>fection <strong>in</strong>tensity of saprophytic fungi <strong>in</strong> the absenceof appropriate fungicides. We analyse the <strong>in</strong>teraction between these threeorganisms on a molecular and genetic level to explore the potential of P.fluorescens as a biocontrol tool for V. longisporum. Initial experimentssuggested that the impact of the bacterium on fungal growth is highlymedium and stra<strong>in</strong>-dependent. We focused on potential bacterialmycotox<strong>in</strong>s. Biosurfactants (glucolipids or cyclic lipopeptids) andphenaz<strong>in</strong>es produced by P. fluorescens are act<strong>in</strong>g aga<strong>in</strong>st rest<strong>in</strong>g structuresof fungal pathogens. They are operat<strong>in</strong>g synergeticly by <strong>in</strong>tegrat<strong>in</strong>g thebiosurfactants <strong>in</strong>to the cell membrane <strong>in</strong>creas<strong>in</strong>g its permeability for thetoxic phenaz<strong>in</strong>es to enter <strong>in</strong>to the cytoplasm. The bacteria produce avariety of additional antifungal secondary metabolites like 2,4-diacetylphlorogluc<strong>in</strong>ol, hydrogen cyanide or pyrrolnitr<strong>in</strong> which are allcontrolled by the two-component system gacS-gacA. P. fluorescensmutants defective <strong>in</strong> the production of s<strong>in</strong>gle secondary metabolites testedwere still able to <strong>in</strong>hibit the germ<strong>in</strong>ation of fungal spores. Knockouts of thegeneral regulator gacA of P. fluorescens lost the ability to <strong>in</strong>hibitgerm<strong>in</strong>ation of the fungus. Our future focus will be the fungal response tothe presence of the bacterium.HMV001Deglycosylation of polyphenolic C-glucosides by a human gutbacteriumA. Braune*, M. BlautGerman Institute of Human Nutrition Potsdam-Rehbruecke,Gastro<strong>in</strong>test<strong>in</strong>al Microbiology, Nuthetal, GermanyDietary polyphenols, such as (iso)flavonoids, have been implicated <strong>in</strong> theprevention of age-related chronic disorders <strong>in</strong>clud<strong>in</strong>g cancer andcardiovascular diseases [1]. Polyphenols are present <strong>in</strong> plant-derived foodand food supplements, predom<strong>in</strong>antly <strong>in</strong> their glycosidic form, either as O-glycosides or as C-glycosides. In contrast to the O-glycosides, <strong>in</strong>gestedC-coupled glycosides resist cleavage by human enzymes and can mostlikely only be deglycosylated by gut bacteria. A rod-shaped Gram-positivebacterium, stra<strong>in</strong> CG19-1, capable of deglycosylat<strong>in</strong>g the isoflavonepuerar<strong>in</strong> (daidze<strong>in</strong> 8-C-glucoside) to daidze<strong>in</strong> was isolated from humanfeces [2]. Comparative 16S rRNA gene sequence analysis <strong>in</strong>dicated thatthe strictly anaerobic isolate is a new species of the Lachnospiraceae.Stra<strong>in</strong> CG19-1 also converted polyphenolic C-glucosides other thanpuerar<strong>in</strong>. The xanthone C-glucoside mangifer<strong>in</strong> was deglycosylated tonorathyriol. Several C-glucosides of the flavones luteol<strong>in</strong> and apigen<strong>in</strong>were cleaved to their aglycones, which were further degraded to thecorrespond<strong>in</strong>g hydroxyphenyl propionic acids. Stra<strong>in</strong> CG19-1 alsoconverted (iso)flavonoid O-glucosides, but at rates that were lower thanthose observed for the C-glucosides. The isoflavone O-glucosides wereconverted to their aglycones, while the flavone O-glucosides underwentdeglycosylation and subsequent degradation to hydroxyphenyl propionicacids. Thus, stra<strong>in</strong> CG19-1 may affect the bioavailability and, thereby, theeffects not only of polyphenolic O-glucosides but also of C-glucosidespreviously assumed to be stable <strong>in</strong> the human body. The mechanism of theC-glucosyl cleavage rema<strong>in</strong>s to be elucidated. For this purpose,identification of the <strong>in</strong>volved enzyme(s) from stra<strong>in</strong> CG19-1 is <strong>in</strong> progress.[1] Crozier A, Jaganath IB, Clifford MN (2009) Nat Prod Rep 26: 1001-43[2] Braune A, Blaut M (2011) Environ Microbiol 13: 482-91HMV002Application of real-time PCR, T-RFLP and direct sequenc<strong>in</strong>g forthe identification of polybacterial 16S rRNA genes <strong>in</strong> ascitesS. Krohn* 1,2 , J. Hartmann 1 , A. Brodz<strong>in</strong>ski 1 , A. Chatz<strong>in</strong>otas 2 , S. Böhm 1 , T. Berg 11 University Hospital Leipzig, Division of Gastroenterology andHepatology, Leipzig, Germany2 Helmholtz Centre for Environmental Research - UFZ, Department ofEnvironmental Microbiology, Leipzig, GermanyQuestion: Spontaneous bacterial peritonitis (SBP) is a serious complication<strong>in</strong> cirrhotic patients with a mortality rate up to 50%. However, earlydiagnosis and antibiotic treatment can improve cl<strong>in</strong>ical outcome. Due tothe limited detection rates of culture-dependent bacterial identification <strong>in</strong>patients with cl<strong>in</strong>ical SBP diagnosis, we evaluated 16S rRNA geneamplification for the rapid detection of bacterial DNA <strong>in</strong> ascites andfurther characterized polybacterial samples by term<strong>in</strong>al restrictionfragment length polymorphism (T-RFLP) and direct sequenc<strong>in</strong>g.Methods: 98 ascitic fluid samples from 43 patients undergo<strong>in</strong>g severaldiagnostic paracenteses were studied. To avoid cross hybridization ofbacterial broad range primers with the human DNA background weselectively isolated bacterial DNA of all samples with a commerciallyavailable isolation kit (MolYsis). 16S rRNA genes were amplified by realtimepolymerase cha<strong>in</strong> reaction (PCR) and directly sequenced. Us<strong>in</strong>g theweb-based tool RipSeq (iSentio), mixed chromatograms were immediately<strong>in</strong>terpreted. T-RFLP analysis characterized polymicrobial samples bydisplay<strong>in</strong>g their bacterial diversity patterns.Results: Bacterial DNA (bactDNA) was detected <strong>in</strong> 57/98 (58%) of theascitic fluid samples. 22/43 patients (51%) underwent several paracenteses(mean 3.5; range 2-6) from which 5/22 patients (23%) showed positivebactDNA <strong>in</strong> ascites throughout all paracenteses and 4/22 (18%) patientswere bactDNA negative. In the rema<strong>in</strong><strong>in</strong>g 13 patients at least one positiveascites sample could be detected (mean number of positive samples 2.3;range 1-4). A s<strong>in</strong>gle paracentesis was performed <strong>in</strong> 21/43 (49%) patients.BactDNA positive ascites was observed <strong>in</strong> 12/21 (57%) samples whereas9/21 (43%) ascitic fluids were PCR negative. Us<strong>in</strong>g TRFLP, multiple T-RF were detected <strong>in</strong> positive ascites potentially <strong>in</strong>dicat<strong>in</strong>g the presence ofseveral dist<strong>in</strong>ct stra<strong>in</strong>s. Direct sequenc<strong>in</strong>g with 16S rRNA gene basedprimers showed mixed chromatograms which revealed gram positive aswell as gram negative organisms.Conclusion: A mixed bacterialDNA content can bedetected <strong>in</strong> ascites viaPCR target<strong>in</strong>g the 16S rRNA genes and T-RFLP analysis. Directsequenc<strong>in</strong>g of PCR products and analysis of mixed chromatograms us<strong>in</strong>gRipSeq may offer a rapid tool to identify the most abundant sequencetypes.HMV003Analysis of the <strong>in</strong>test<strong>in</strong>al microbiota us<strong>in</strong>g SOLiD 16SrRNAgene sequenc<strong>in</strong>g and SOLiD shotgun sequenc<strong>in</strong>gK. Förster-Fromme* 1 , S. Mitra 2 , T. Scheurenbrand 2,3 , S. Biskup 3 , D. Boehm 3 ,D.H. Huson 2 , S.C. Bischoff 11 Universität Hohenheim, Institut für Ernährungsmediz<strong>in</strong>, Stuttgart, Germany2 University of Tüb<strong>in</strong>gen, Center for Bio<strong>in</strong>formatics, Tüb<strong>in</strong>gen, Germany3 CeGaT GmbH, Tüb<strong>in</strong>gen, GermanyMetagenomics seeks to understand microbial communities andassemblages by DNA sequenc<strong>in</strong>g. Technological advances <strong>in</strong> nextgeneration sequenc<strong>in</strong>g technologies are fuell<strong>in</strong>g a rapid growth <strong>in</strong> thenumber and scope of projects aim<strong>in</strong>g to analyze complex microbialenvironments such as mar<strong>in</strong>e, soil or the gut. Recent improvements <strong>in</strong>longer read lengths and paired-sequenc<strong>in</strong>g allow better resolution <strong>in</strong>profil<strong>in</strong>g microbial communities. While both 454 sequenc<strong>in</strong>g and Illum<strong>in</strong>asequenc<strong>in</strong>g have been used <strong>in</strong> numerous metagenomic studies, SOLiDsequenc<strong>in</strong>g is not commonly used <strong>in</strong> this area, as it is believed to moresuitable <strong>in</strong> the context of reference-guided projects. To <strong>in</strong>vestigate theperformance of SOLiD sequenc<strong>in</strong>g <strong>in</strong> a metagenomic context, wecompared taxonomic profiles of both Sanger and SOLiD mate-pairsequenc<strong>in</strong>g reads obta<strong>in</strong>ed from the bacterial 16S rRNA gene that wasamplified from microbial DNA extracted from a human fecal sample.Additionally, from the same fecal sample, complete genomic microbialBIOspektrum | Tagungsband <strong>2012</strong>


86DNA was extracted and shotgun sequenced us<strong>in</strong>g the SOLiD technique tostudy the composition of the <strong>in</strong>test<strong>in</strong>al microbiota and the exist<strong>in</strong>gmicrobial metabolism. By analyz<strong>in</strong>g the data us<strong>in</strong>g BLASTX aga<strong>in</strong>st theNR database and MEGAN we found that the microbiota composition of16S rRNA gene sequences obta<strong>in</strong>ed us<strong>in</strong>g Sanger sequenc<strong>in</strong>g and SOLiDsequenc<strong>in</strong>g provide comparable results. However, with SOLiD sequenceswe obta<strong>in</strong>ed more resolution down to the species level. In addition, withthe shotgun data we are able to identify the functional profile us<strong>in</strong>g SEEDand KEGG.This study shows that SOLiD mate-pair sequenc<strong>in</strong>g is a viable and costefficient option for analyz<strong>in</strong>g a complex microbiome. To the best of ourknowledge, this is the first time that SOLiD sequenc<strong>in</strong>g has been used <strong>in</strong>such a study.HMV004Bacterioc<strong>in</strong> production of staphylococcal nasal isolatesD. Janek*, B. Krismer, A. PeschelUnikl<strong>in</strong>ik Tüb<strong>in</strong>gen, Mediz<strong>in</strong>ische Mikrobiologie, Tüb<strong>in</strong>gen, GermanyStaphylococcus aureus is a major pathogen <strong>in</strong> hospital- and communityacquired<strong>in</strong>fections. Colonisation of the anterior nares <strong>in</strong> about 30% of thepopulation is a major risk factor for S. aureus <strong>in</strong>fections. Recently thecomposition of the nasal flora has been <strong>in</strong>verstigated. Interest<strong>in</strong>gly, thebacterial diversity <strong>in</strong> the human nose reaches from aerobic to strictlyanaerobic bacteria. The most frequently occurr<strong>in</strong>g species areCorynebacterium accolens/ C. macg<strong>in</strong>leyi, S. epidermidis andPropionibacterium acnes. In order to <strong>in</strong>vestigate if bacterioc<strong>in</strong> productionmight play a role dur<strong>in</strong>g nasal colonisation, we analysed the bacterioc<strong>in</strong>production of nasal Staphylococcus stra<strong>in</strong>s.The test-stra<strong>in</strong>s were casted <strong>in</strong> an agar plate and the nasal isolates werestamped on the plate. Various isolates showed growth <strong>in</strong>hibition zones ofthe test-stra<strong>in</strong>s. Transposon plasmids could be transformed <strong>in</strong>to variousstra<strong>in</strong>s and mutagenesis was performed.Analysis of 93 stapylococcal nasal isolates offered that various stra<strong>in</strong>sproduce bacterioc<strong>in</strong>s aga<strong>in</strong>st Micrococcus luteus and other nasal bacteria(S. aureus, Corynebacteria, Moraxella, Propionibacteria…).Thebacterioc<strong>in</strong> production of some nasal isolates turned out to be <strong>in</strong>ducible byhydrogen peroxide or iron limitation.One of these bacterioc<strong>in</strong>s, produced by an S. epidermidis stra<strong>in</strong>, could becharacterized as a Nukac<strong>in</strong>-like lantibiotic with activity aga<strong>in</strong>stMicrococcos luteus, Moraxella catarrhalis, Streptococcus pyogenes andCorynebacterium pseudodiphtheriticum.Knowledge about the various <strong>in</strong>teractions between staphylococcal andother nasal isolates could be important for effective S. aureus controlstrategies.HMP001Microbiological air quality <strong>in</strong> the hospital environments of twomajor hospitals <strong>in</strong> Ben<strong>in</strong> City metropolis, Edo State, NigeriaF.O. Ekhaise*University of Ben<strong>in</strong>, Microbiology, Ben<strong>in</strong>, NigeriaWe spend most of our lives <strong>in</strong> different <strong>in</strong>door environments, <strong>in</strong> homes,day-care facilities, schools and workplaces and we are constantly be<strong>in</strong>gchallenged by the microbial contents of these environments. It becameimperative to undertake a study of the microbiological air quality of theairborne microflora <strong>in</strong> the environments of two major government ownedhospitals (University of Ben<strong>in</strong> Teach<strong>in</strong>g Hospital, (UBTH) and CentralHospital) <strong>in</strong> Ben<strong>in</strong> City metropolis. The air samples were sampled everymonth for the three (3) months <strong>in</strong> the wet season (June - August, 2010) andthree (3) months of the dry season (November 2010 - January 2011) us<strong>in</strong>gthe settled plate methods. The study sites were divided <strong>in</strong>to n<strong>in</strong>e unitswhich <strong>in</strong>cludes Accident and Emergency Ward, Laboratory, Male ward,Female Ward, Children Ward, Labour Room, Treatment Room, Theatreand outside the hospital gate. The mean airborne bacterial load <strong>in</strong> the twohospitals ranges from 8.5cfu/m<strong>in</strong> to 172.5cfu/m<strong>in</strong> and 5.5cfu/m<strong>in</strong> to64.5cfu/m<strong>in</strong> for UBTH and Central hospital <strong>in</strong> the wet season. While themean airborne fungal load <strong>in</strong> UBTH and Central hospital <strong>in</strong> dry seasonranges from 2.5cfu/m<strong>in</strong> to 9.5cfu/m<strong>in</strong> and 1.5cfu/m<strong>in</strong> to 19.0cfu/m<strong>in</strong>respectively. The female ward, children ward, accident and emergencyward and outside the hospital gate were recognized to record the highestairborne microflora. The result revealed the isolation of ten (10) fungalairborne isolates and six (6) airborne bacterial isolates. These <strong>in</strong>cludes,Aspergillus niger, Aspergillus flavus, Botryodiplodia acer<strong>in</strong>a, Rhizopusstolonifer, Nigospora zimm, Mucor sp., Monilla <strong>in</strong>fuscans, Penicillium sp.,Candida sp. and Trichoderma viridis, while the six (6) bacterial isolates<strong>in</strong>cludes Staphylococcus aureus, Staphylococcus epidermidis, Bacilluscereus, Bacillus sp., Serratia marcescens and Micrococcus sp. The resultshows the highest fungal population of 26.5cfu/m<strong>in</strong> (Outside environment)<strong>in</strong> UBTH followed by 24.0cfu/m<strong>in</strong> (Outside environment) <strong>in</strong> CentralHospital. The highest bacterial population of 172.5cfu/m<strong>in</strong> (outsideenvironment) was recorded <strong>in</strong> UBTH. The fungal isolates Aspergillusniger (53.0%) and Monilla <strong>in</strong>fuscans (43.9%) were showed to be the mostfrequently isolated airborne fungal isolates while Staphylococcus aureus(91.3%) and Staphylococcus epidermidis (85.8%) were the mostfrequently isolated airborne bacterial isolates. The Statistical analysisshowed no significant difference between the values obta<strong>in</strong>ed dur<strong>in</strong>g thewet and dry seasons <strong>in</strong> both hospitals studied. KEYWORD: Airbornemicroflora, bacteria, fungi, hospital environment, time and bioaerosols.HMP002Unusual Multi organ presentation of Hydatid cystY. Hashemi Aghdam* 1 , V. Montazeri 2 , R. Azhough 2 , H. Farajkhah 2 ,*A. Moradi 2 , M. Naghavi Behzad 3 , S. Rahimi 4 , *F. golch<strong>in</strong> 41 Islamic Azad University, Medical Faculty, Young Researchers Club, TabrizBranch, Tabriz, Islamic Republic of Iran2 Tabriz University of Medical Sciences, Medical Faculty, Tabriz, IslamicRepublic of Iran3 Tabriz University of Medical Sciences, Medical Faculty, Student ResearchCommittee, Tabriz, Islamic Republic of Iran4 Islamic Azad University, Medical Faculty, Tabriz, Islamic Republic of IranIntroduction: Hydatidosis is a common problem all over the world.Hydatid cysts could be formed <strong>in</strong> all parts of human body except hair andnail that there is no blood. The prevalence of this disease is higher <strong>in</strong>children rather than adults. Risk of <strong>in</strong>fection depends on sanitation and itcould be prevented easily. The ultimate treatment is surgery but recurrentrate can be decreased by adm<strong>in</strong>ister<strong>in</strong>g medical treatment <strong>in</strong> thepreoperative and post operative periods.Case Report: A 35 year's old female patient presented with cough,purulent production and dyspnea. In computerized tomographic scan (CTscan) numerous cysts were observed <strong>in</strong> chest, abdomen and paravertebralmuscles. Because of cysts were ruptured, surgical <strong>in</strong>tervention wasplanned for thoracic lesions without prior antiparasitic medical treatment.The patient had no complications <strong>in</strong> short- term follow up.Discussion: Hydatid cyst is a parasitic disease which is known from thetime of Hippocrates. Infection will occur by eat<strong>in</strong>g vegetablescontam<strong>in</strong>ated with eggs of this parasite or contam<strong>in</strong>ated viscera ofherbivores and parasite larvae form cyst <strong>in</strong> human body. The <strong>in</strong>fectedperson is <strong>in</strong> risk of pneumocysis, pleural effusion, pneumothorax,secondary Ech<strong>in</strong>ococcus <strong>in</strong> pleural and peritoneal cavities and muscles<strong>in</strong>volvement. In our case there was platysma Dorsey and abdom<strong>in</strong>almuscle <strong>in</strong>volvement that there was no problem despite of dorsal andpleural cysts rupture, fortunately. Another <strong>in</strong>terest<strong>in</strong>g po<strong>in</strong>t <strong>in</strong> this case wasthat, there was no relation between pleural and dorsal muscle cysts.Generally observance of basic pr<strong>in</strong>ciples of health such as wash<strong>in</strong>g handswith soap after garden<strong>in</strong>g or contact with dogs and also wash<strong>in</strong>gvegetables that could be contam<strong>in</strong>ated with dog feces are very importantpo<strong>in</strong>ts prevent<strong>in</strong>g these diseases. However this disease could be curedeasily by surgery, if surgery is conducted after tak<strong>in</strong>g a short course ofAlbendazole and Mebendazole, the efficacy of surgical treatment will bebetter.HMP003Relationship among chlamydia pneumoniae <strong>in</strong>fection,atherosclerosis and expectancy of coronary artery diseaseY. Hashemi Aghdam* 1 , S. Rahimi 2 , A. Moradi* 3 , R. Ghassemi Nezhad* 4 ,F. Gholch<strong>in</strong>* 2 , M. Naghavi Behzad 51 Islamic Azad University, Medical Faculty, Young Researchers Club, TabrizBranch, Tabriz, Islamic Republic of Iran2 Islamic Azad University, Medical Faculty, Tabriz, Islamic Republic of Iran3 Tabriz University of Medical Sciences, Medical Faculty, Tabriz, IslamicRepublic of Iran4 Student of Azerbaijan Medical University, Dentistry Faculty, Baku, IslamicRepublic of Iran5 Tabriz University of Medical Sciences, Medical Faculty, Student ResearchCommittee, Tabriz, Islamic Republic of IranIntroduction: Coronary artery disease (CAD) is the lead<strong>in</strong>g cause of death<strong>in</strong> many countries. The underly<strong>in</strong>g mechanism of the chronic <strong>in</strong>flammatoryprocess <strong>in</strong> atherosclerosis is still unknown (1). But, the risk for coronaryevents may rise dur<strong>in</strong>g acute <strong>in</strong>fection (2). There are f<strong>in</strong>d<strong>in</strong>gs suggest<strong>in</strong>gthe <strong>in</strong>flammatory and immunogenic nature of the atherosclerosis (3). It iscurrently unclear what causes the chronic <strong>in</strong>flammation with<strong>in</strong>atherosclerotic plaques. One emerg<strong>in</strong>g paradigm suggests that <strong>in</strong>fectionwith bacteria and/or viruses can contribute to the pathogenesis ofatherosclerosis (4). Chronic Chlamydia pneumoniea <strong>in</strong>fection has recentlybeen associated with atherosclerosis. The aim of this study was to<strong>in</strong>vestigate the association of Chlamydia pneumoniea <strong>in</strong>fection, Ischemicheart disease (IHD) and atherosclerosis.Material and Method: 86 patients with background of recent IschemicHeart Disease, referred to Shahid Madani hospital of Tabriz from January2010- January 2011 were studied. Different blood samples were taken toassess the lipid profile and other tests. Blood culture was done andTriglyceride, High-Density Lipoprote<strong>in</strong> (HDL), Low density Lipoprote<strong>in</strong>(LDL), IgG and IgA antibodies aga<strong>in</strong>st Chlamydia Pneumoniea wereBIOspektrum | Tagungsband <strong>2012</strong>


87measured by conventional enzymatic methods and micro immunefluorescence method. SPSS version 17 software was used for analyz<strong>in</strong>g thedata.Results: Antibody test aga<strong>in</strong>st Chlamydia pneumoniea was positive <strong>in</strong> 41patients (47.67%) and were diagnosed as seropositive. Confirm<strong>in</strong>g nosignificant difference between seropositive and seronegative patients <strong>in</strong>HDL (p=0.4), mean concentrations of Total cholesterol, LDL andTriglyceride were significantly higher <strong>in</strong> Chlamydia pneumoniaseropositive patients respectively. The mean concentrations of triglyceride,Total Cholesterol and LDL were P=0.003, P=0.001 and P=0.005. To seethe relationship among IHD, <strong>in</strong>fection and lipid profile multivariateanalysis were done that, it was also follow<strong>in</strong>g the univariate results.Conclusion: Thus, C. pneumoniae antibodies seem to correlate with analtered serum lipid profile considered to <strong>in</strong>crease the risk ofatherosclerosis. This f<strong>in</strong>d<strong>in</strong>g supports the proposal that C.pneumoniae<strong>in</strong>fection may play a role <strong>in</strong> the pathogenesis of atherosclerosis (5). Insome cases, the <strong>in</strong>fectious agents are found with<strong>in</strong> the plaques and viableorganisms can be isolated suggest<strong>in</strong>g a direct effect (4). Also, C.pneumoniae antibody positivity was <strong>in</strong>dependently associated withischemic stroke <strong>in</strong> elderly patients (6). Chronic Chlamydia pneumoniea<strong>in</strong>fection was one of the risk factors for Ischemic heart disease, but toknow its exact role and mechanism, more studies are required.HMP004Role of Pseudomonas aerug<strong>in</strong>osa <strong>in</strong> nasocomial <strong>in</strong>fections andapproach to its treatmentY. Hashemi Aghdam* 1 , S. Rahimi 2 , A. Moradi* 3 , F. Golch<strong>in</strong>* 41 Islamic Azad University, Medical Faculty, Young Researchers Club, TabrizBranch, Tabriz, Islamic Republic of Iran2 Islamic Azad University, Medical Faculty, Tabriz, Islamic Republic of Iran3 Tabriz University of Medical Sciences, Orthopedic Surgery Department,Tabriz, Islamic Republic of Iran4 Islamic Azad University, Medical Faculty, Tabriz, Islamic Republic of IranIntroduction: One of the most important concerns <strong>in</strong> hospitals isantimicrobial resistance <strong>in</strong> hospital pathogens that puts patients <strong>in</strong> risk ofmorbidity and mortality. It is caused by plasmid mediated resistanceaga<strong>in</strong>st beta lactams by produc<strong>in</strong>g extended spectrum beta lactamasesenzyme (ESBLs). Pseudomonas aerug<strong>in</strong>osa is one of those pathogens thatis <strong>in</strong> common with most of these nasocomial <strong>in</strong>fections. This study wasconducted to f<strong>in</strong>d the role of Pseudomonas aerug<strong>in</strong>osa <strong>in</strong> nasocomial<strong>in</strong>fections to f<strong>in</strong>d the best approach for its treatment.Methods: Different Samples from different parts of like tracheal aspirate,ur<strong>in</strong>e, blood, bronchial aspirate, sputum, CSF, wound discharge, bonemarrow and peritoneal fluid of ICU patients of 5 hospitals <strong>in</strong> Tabriz weretaken. They were tested for susceptibility by Disk agar diffusion methodand screen<strong>in</strong>g of ESBL-produc<strong>in</strong>g by Double disc approximation test,respectively, also comb<strong>in</strong>ed test disc method and MIC determ<strong>in</strong>ation by E-test were adopted for confirmation. Extract<strong>in</strong>g Plasmid DNA by Kado andLiu technique, the presences of bla CTX-M1, bla CTX-M2 were studied byPolymerase Cha<strong>in</strong> Reaction (PCR).Results:248 ICU patients, <strong>in</strong>fected by Gram-negative bacilli were studied.Pseudomonas aerug<strong>in</strong>osa was the second agents <strong>in</strong> nosocomial <strong>in</strong>fection,67 (27%). The susceptibility test showed 29%, 38%, 53.9%, 98%, 96%,70% 100% and 100% resistance aga<strong>in</strong>st Piperacill<strong>in</strong>, ceftazidim,Ofloxac<strong>in</strong>, Sulphamethoazle, Cefotaxime, ceftriaxone, Tetracycl<strong>in</strong>e andcefuroxime. The Double Disk Test showed 96.7%, 100% and 96.6%resistance aga<strong>in</strong>st Ceftriaxone, Cefotaxime, and Ceftazidime. Thecomb<strong>in</strong>ed Test showed 63.4% negative result aga<strong>in</strong>st Cefotaxime andCefotaxime / Clavulanic acid and 67.5% aga<strong>in</strong>st Ceftazidime andCeftazidime / Clavulanic acid. By E-test ESBLs production was detected<strong>in</strong> P.aerug<strong>in</strong>osa(78%). In plasmid extraction 64.5 % of isolates harbored as<strong>in</strong>gle plasmid of 63kb.On the basis of PCR results, All of stra<strong>in</strong>s lackedeither CTX-M-1 or CTX-M-2 gene to confirm the rule for bla CTX-M.Conclusion:Pesudomonas aerug<strong>in</strong>sawas one of the most prevalent bacteria.Highest rate of resistance was showed aga<strong>in</strong>st Cefuroxime, Tetracycl<strong>in</strong>eand lowest rate was showed aga<strong>in</strong>st Amikac<strong>in</strong> and Piperacill<strong>in</strong>. Our resultsshowed that DDT test was not as sensitive as CT and MIC methods and nostatistical significant difference was found between results of CT and MIC.Confirm<strong>in</strong>g no rules for suspicious genes by PCR, 78% of stra<strong>in</strong>s werefounded as ESBL producer. S<strong>in</strong>ce the genes encod<strong>in</strong>g theses enzymes arema<strong>in</strong>ly located on plasmids, so transmission of the plasmids coulddissem<strong>in</strong>ate the resistance <strong>in</strong> future, unless the consumption ofcephalospor<strong>in</strong>s are restricted and antibiotics such as imipenem substitudedfor the third generation cephalospor<strong>in</strong>s, because these antibiotics,especially ceftazidim and ceftriaxone are strong <strong>in</strong>ducers of ESBLs.HMP005Identification of D-tryptophan as immunologically activecompound excreted by probiotic bacteria us<strong>in</strong>g immunological <strong>in</strong>vitro-test systemsI. Kepert 1,2 , J. Fonseca 3 , K. Hochw<strong>in</strong>d* 4 , S. van Hemert 5 , M. Schmid 4 ,P. Schmitt-Koppl<strong>in</strong> 3 ,S. Krauss-Etschmann 1,2 ,A. Hartmann 41 Dr.von Haunersches K<strong>in</strong>derspital ,Munich ,Germany2 Helmholtz Zentrum, Comprehensive Pneumology Center, Munich, Germany3 Helmholtz Zentrum, Research Unit BioGeoChemistry and Analytics, Munich,Germany4 Helmholtz Zentrum, Department Microbe-Plant Interactions, Munich, Germany5 W<strong>in</strong>clove, Amsterdam, NetherlandsThe <strong>in</strong>terest of probiotic bacteria <strong>in</strong> health care is <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> the lastyears. However there is still a lack of understand<strong>in</strong>g the underly<strong>in</strong>gmechanisms. One reason for the detected health benefits might be thecrosstalk between bacteria and the host which is difficult to predict.Therefore, we aimed to identify soluble compounds produced by probioticbacteria us<strong>in</strong>g <strong>in</strong> vitro screen<strong>in</strong>g tools, high performance chemical analysisand metabolic profil<strong>in</strong>g.Gram-positive probiotic bacteria were grown <strong>in</strong> def<strong>in</strong>ed m<strong>in</strong>imal mediumand supernatants were taken at stationary phase. Culture supernatants,separated fractions and pure compounds were screened for their ability toprevent the lipopolysaccharide-<strong>in</strong>duced maturation of human monocytederiveddendritic cells (DC). The activation markers CD83, CD86, CD80,and CD40 were measured with flow cytometry. Furthermore tests wereperformed <strong>in</strong>dicat<strong>in</strong>g <strong>in</strong>hibition of the allergy-related thymus andactivation regulated chemok<strong>in</strong>e (TARC) secretion of KM-H2 Hodgk<strong>in</strong>Lymphoma cells (ELISA). Immune-active supernatants were fractionatedby solid phase extraction and elution was performed with <strong>in</strong>creas<strong>in</strong>gmethanol concentration <strong>in</strong> water. After separation immune-active fractionsand compounds were analysed us<strong>in</strong>g FTICR-MS and NMR.Supernatants of several bacterial stra<strong>in</strong>s significantly down-regulated theexpress<strong>in</strong>g of the activation markers CD83, CD86 and CD40. They alsosignificantly reduced TARC secretion of KM-H2 cells. After fractionationof two selected supernatants, the immune modulatory activity was found <strong>in</strong>the 20%, 40% and 50% methanol fractions. We focused on the compound<strong>in</strong> the 20% methanol fraction and were able to characterize it as D-tryptophan. In addition it was the only D-am<strong>in</strong>o acid hav<strong>in</strong>g this immunemodulatory effect when we tested the pure D-am<strong>in</strong>o acids.The present work demonstrated that small extracellular molecules fromprobiotic stra<strong>in</strong>s have immune modulatory activity <strong>in</strong> the screen<strong>in</strong>gsystems applied. Our work provides evidence that D-tryptophan is one ofseveral hitherto not yet described small molecules of probiotic bacteriawhich potentially <strong>in</strong>terfere with human immune responses. This may givefurther basis for the application of these compounds as food additives tof<strong>in</strong>ally provide anti-allergic effects.HMP006Metabolic characterization of dental biofilms produced byStreptococcus mutans under dietary carbohydrate exposureE.-M. Decker*, G. Maier, C. von OhleUniversity Centre of Dentistry, Oral Medic<strong>in</strong>e and Maxillofacial Surgery,Department of Operative Dentistry and Periodontology, Tüb<strong>in</strong>gen, GermanyStrep. mutans is known to be a major pathogen for dental caries andhuman tooth decay. Especially, sucrose <strong>in</strong>duces high cariogenicity byactivat<strong>in</strong>g microbial glycosyltransferases and thus production ofextracellular adhesive polysaccharides. The aim of the study was themetabolic characterization of Strep. mutans biofilm formation <strong>in</strong> thepresence of glucose, sucrose and the sugar alcohol xylitol. Biofilms ofStrep. mutans were produced metaboliz<strong>in</strong>g Schaedler-broth (0.58%glucose) (M1), Schaedler-broth with 5% sucrose as supplement (M2) andSchaedler-broth wih 1% xylitol <strong>in</strong> addition (M3) on human enamel slides.After 24h <strong>in</strong>cubation time at 37°C the surface-associated biofilms werelabeled us<strong>in</strong>g three specific sta<strong>in</strong><strong>in</strong>g protocols: 1. live/dead celldifferentiation, 2. sta<strong>in</strong><strong>in</strong>g of total bacterial cells and extracellularpolysaccharides (EPS) by concanaval<strong>in</strong> A and 3. sta<strong>in</strong><strong>in</strong>g of total bacterialcells and microbial respiratory activity. The marked biofilms wereanalysed by confocal laser scann<strong>in</strong>g microscopy and checked for microbialtotal cell counts and colony growth on Schaedler agar plates. Ten series ofeach approach were performed and analysed by means of one-way analysisof variance and Tukey Kramer statistical tests. The streptococcal biofilmthickness and volume reached its maximum under sucrose exposition <strong>in</strong>M2. Regard<strong>in</strong>g the stratification of the biofilms the ConA-based EPSsignals<strong>in</strong> all three media (M1-M3) showed higher acitivity <strong>in</strong> the <strong>in</strong>ternalregions of biofilms near to enamel compared with outer biofilm regions.The microbial respiratory activity tended to be lower <strong>in</strong> M2 <strong>in</strong> comparisonwith M1 and M3. In the presence of sucrose Strep. mutans biofilmsappeared as microcolonies associated with <strong>in</strong>creased viability parameterslike biofilm depth, volume and higher vitality proportions compared to thecorrespond<strong>in</strong>g biofilms grown <strong>in</strong> media with glucose or xylitol. With<strong>in</strong> theBIOspektrum | Tagungsband <strong>2012</strong>


88laboratory conditions the non-cariogenic sweetener xylitol did not revealdecrease of microbial vitality, respiratory activity or EPS-activity.HMP007Flagell<strong>in</strong> and tcpC are essential factors of the protective effectof E. coli Nissle stra<strong>in</strong> 1917 <strong>in</strong> DSS- <strong>in</strong>duced colitisS. Menz* 1 , K. Gronbach 1 , P. Adam 2 , A. Wieser 3 , S. Schubert 3 ,U. Dobr<strong>in</strong>dt 4 , T. Ölschläger 5 , I.B. Autenrieth 1 , J.-S. Frick 11 Med. Mikrobiologie & Hygiene, Uni Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen, Germany2 Institut für Pathologie, Uni Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen, Germany3 Ludwig-Maximilians-Universität München, Max von Pettenkofer-Institut,München, Germany4 Universitätskl<strong>in</strong>ikum Münster, Institut für Hygiene, Münster, Germany5 Julius-Maximilians-Universität Würzburg, Institut für MolekulareInfektionsbiologie, Würzburg, GermanyBackground: The probiotic E. coli Nissle stra<strong>in</strong> 1917 (EcN) is as effectiveas mesalaz<strong>in</strong>e <strong>in</strong> ma<strong>in</strong>tenance of remission <strong>in</strong> ulcerative colitis andshortens the duration of diarrhea <strong>in</strong> young children. We studied <strong>in</strong> aprecl<strong>in</strong>ical model of acute colitis whether EcN protects from disease andanalysed the bacterial mechanism underly<strong>in</strong>g the anti-<strong>in</strong>flammatory capacity.Methods: C57BL/6 and TLR5 -/- mice were fed with either EcN orEcNfliC or EcNtcpC and treated with 3, 5% DSS. Body weight anddisease activity <strong>in</strong>dex were assessed daily. At the end of the experiment thecolon length and weight was measured and <strong>in</strong>flammation was determ<strong>in</strong>edby histological analyses of the colon. Furthermore activation andmaturation of lam<strong>in</strong>a propria and mesenteric lymph node dendritic cellsand T cells was analysed.Results: In wild type mice E. coli Nissle protects from DSS <strong>in</strong>duced colitiswhereas the protection is reduced <strong>in</strong> TLR5 -/- mice. In l<strong>in</strong>e with this thefliC mutant stra<strong>in</strong> was less effective <strong>in</strong> protect<strong>in</strong>g the host from disease ascompared to the EcN wild type stra<strong>in</strong>. However a second bacterial factortcpC also contributes to the protective effect of EcN as the tcpC mutantstra<strong>in</strong> was not able to protect from disease. Adm<strong>in</strong>istration of the doublemutant fliCtcpC of EcN evidences this conclusion.Conclusions: EcN ameliorates a DSS <strong>in</strong>duced acute colitis via flagell<strong>in</strong>and the secreted prote<strong>in</strong> tcpC. However contribution of further bacterialfactors to the anti-<strong>in</strong>flammatory effect of EcN can not be excluded.HMP008Molecular mechanisms lead<strong>in</strong>g to semi-mature mur<strong>in</strong>edendritic cells and their role <strong>in</strong> <strong>in</strong>test<strong>in</strong>al homeostasisA. Steimle* 1 , H.-H. Öz 1 , M. Jucker 2 , J. Geisel 3 , H. Kalbacher 4 , I.B. Autenrieth 1 ,J.-S. Frick 11 University of Tüb<strong>in</strong>gen, Institute for Medical Microbiology and Hygiene,Tüb<strong>in</strong>gen, Germany2 Hertie-Institut für kl<strong>in</strong>ische Hirnforschung ,Abteilung ZellbiologieNeurologischer Erkrankungen , Tüb<strong>in</strong>gen, Germany3 University of Tüb<strong>in</strong>gen, Institute of Dermatology, Tüb<strong>in</strong>gen, Germany4 University of Tüb<strong>in</strong>gen, Interfakultäres Institut für Biochemie, Tüb<strong>in</strong>gen,GermanyDendritic cells (DCs) can provide different phenotypes. They can displayan immature DC (iDC) phenotype or an activated mature DC (mDC)phenotype. Recently a third phenotype has been discovered, termed semimature(smDCs). These smDCs are able to take up antigen, but not toprocess it and they show reduced expression of T cell activat<strong>in</strong>g costimulatorymolecules and a reduced expression of MHC class II. SmDCfail to polarize T cells. Sm BMDCs show reduced cleav<strong>in</strong>g of the <strong>in</strong>variantcha<strong>in</strong> (Ii) compared to mDCs, a major regulator of the MHC class IItransport to the cell surface, so lead<strong>in</strong>g to reduced MHC class II surfaceexpression. The cleav<strong>in</strong>g of Ii is catalyzed by the endosomal proteaseCatS, which is regulated by the endogenous <strong>in</strong>hibitor Cystat<strong>in</strong> C. Indeed,mice lack<strong>in</strong>g Cystat<strong>in</strong> C provide a significant higher susceptibility towardsDSS <strong>in</strong>duced colitis.Therefore we suggest, that semi-maturation plays an important role <strong>in</strong>ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the <strong>in</strong>test<strong>in</strong>al homeostasis and that regulation of Catheps<strong>in</strong> Scould be a potential target for the treatment of colitis.HMP009Role of dendritic cell activation as well as Toll-like receptor 2and 4 expression while DSS colitisA. Wittmann* 1 , I.B. Autenrieth 1 , R. Darveau 2 , J.-S. Frick 11 University of Tüb<strong>in</strong>gen, Interfacultary Institute for Microbiology andInfection Medic<strong>in</strong>e Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen, Germany2 University of Wash<strong>in</strong>gton, Department of Periodontics, Seattle, United States(DSS) model was employed. Therefore C57BL/6 mice were treated with2.5 % (v/w) DSS for 6 days. DSS treated mice featured and <strong>in</strong>creasedsurface expression of TLR2 and TLR4 on lam<strong>in</strong>a propria dendritic cells(LPDC) compared to healthy mock mice. The role of TLR4 signal<strong>in</strong>g waselucidated precisely by additional adm<strong>in</strong>istration of E. coli JM83 or E. coliJM83 htrB htrB Pg to mice dur<strong>in</strong>g DSS challenge. The lipid A structure ofE. coli JM83 htrB htrB Pg features a palmitate <strong>in</strong>stead of laurate and istherefore less endotoxic and <strong>in</strong>duces a weaker TLR4 signal<strong>in</strong>g. Micetreated with DSS and E. coli JM83 adm<strong>in</strong>istration showed and reducedweight loss, disease activity <strong>in</strong>dex and reduced colon shorten<strong>in</strong>g comparedto DSS treated and E. coli JM83 htrB htrB Pg adm<strong>in</strong>istered or DSS onlytreated mice. DSS treatment and adm<strong>in</strong>istration of E. coli JM83 led as wellto an <strong>in</strong>creased gen expression level of anti-<strong>in</strong>flammatory genes comparedDSS treatment and E. coli JM83 htrB htrB Pg adm<strong>in</strong>istration. Theactivation level of LPDC was not important concern<strong>in</strong>g disease severity,s<strong>in</strong>ce all DSS treated mice <strong>in</strong>dependent of bacterial adm<strong>in</strong>istration featuredhigh surface expression of MHCII, CD40, CD80 and CD86. Of further<strong>in</strong>terest was the distribution of LPDC <strong>in</strong>to subsets, therefore cells wereanalyzed for their surface expression of CD8, CD4, CD11b and CD103.The only difference <strong>in</strong> subset distribution was the <strong>in</strong>creased percentage ofCD103 + DC <strong>in</strong> the LP as well as <strong>in</strong> the mesenteric lymph nodes of micereceiv<strong>in</strong>g DSS and E. coli JM83 compared to mice receiv<strong>in</strong>g DSS and E.coli JM83 htrB htrB Pg. DSS treated and E. coli JM83 adm<strong>in</strong>istered miceshowed similar surface expression of TLR2 and reduced surfaceexpression of TLR4 compared to DSS treated and E. coli JM83 htrBhtrB Pg adm<strong>in</strong>istered miceIncreased appearance of CD103+ DCs and higher amounts of TLR2 andTLR4 are likely to be a counter regulation of the host <strong>in</strong> order to suppressdevelop<strong>in</strong>g <strong>in</strong>flammation.HMP010Clonal diversity and geographic signatures of human oralbacterial stra<strong>in</strong>s on a world-wide scaleH.-P. Horz 1 , H. Schill<strong>in</strong>g* 1 , O. Kessler 1 , M. Stonek<strong>in</strong>g 1,2 , J. Li 2 , G. Conrads 11 RWTH Aachen Universitätskl<strong>in</strong>ikum, Orale Mikrobiologie und Immunologie,Aachen, Germany2 Max Planck Institute for Evolutionary Anthropology, Department ofEvolutionary Genetics, Leipzig, GermanyObjective: The human microbiome projects seek to describe the bacterialcommunities harboured <strong>in</strong> the human body. From a medical perspectivethis research has revealed the importance of human-associated microbialcommunities for health or disease. However, view<strong>in</strong>g the humanmicrobiome from an evolutionary perspective can provide valuable<strong>in</strong>formation regard<strong>in</strong>g the history of our ancestors (i.e. human migrationpattern). The most prom<strong>in</strong>ent and as yet successful example isHelicobacter pylori as its genetic variants could well be correlated withdist<strong>in</strong>ct human populations. The basic drawback of H. pylori relatedstudies however is the requirement of stomach-biopsies which drasticallyreduces the number of samples that can be analyzed. Here we test thehypothesis that the genetic variability of dist<strong>in</strong>ct bacterial species <strong>in</strong> theoral ecosystem may have the similar potential as a chronometer of humanevolution. Methods: To this end saliva samples from ten volunteers eachfrom 12 areas world-wide, represent<strong>in</strong>g diverse ethnic groups have beenthe <strong>in</strong>itial focus of this study. Variations <strong>in</strong> the 16S-23S rDNA <strong>in</strong>ternaltranscribed spacer region of Fusobacterium nucleatum and the gdh,(encod<strong>in</strong>g for the glucose-dehydrogenase) and the gtf (encod<strong>in</strong>g for theglucosyl-transferase) of the mitis-streptococci (all of which are typicalpioneers of biofilm formation) have been analyzed by culture-<strong>in</strong>dependentmethods. Results: As a result we observed a high <strong>in</strong>tra- and <strong>in</strong>ter<strong>in</strong>dividualclonal diversity for all species analyzed. Phylogenetic treereconstruction revealed several clusters shared between two or morecountries but also country-specific l<strong>in</strong>eages. Us<strong>in</strong>g the Unifrac significancetest and the P-test showed significant differences between stra<strong>in</strong>populations and geographic regions. The degree of those differenceshowever varied among the genes analyzed and the countries <strong>in</strong>cluded.Conclusions: So far it rema<strong>in</strong>s unclear to what extent the differences aredue to divergence and vertical <strong>in</strong>heritance or rather due to diet and/orgeography <strong>in</strong>fluences. However the data <strong>in</strong>dicate that the salivarymicrobiome may hold valuable <strong>in</strong>formation for provid<strong>in</strong>g new perspectiveson unsolved human migration patterns - an issue of medical, social andanthropological importance.Hosts live normally <strong>in</strong> symbiosis with their <strong>in</strong>test<strong>in</strong>al microbiota due to along co evolution. Somehow this tolerance is abolished <strong>in</strong> IBD patients,which leads to a strong and long last<strong>in</strong>g <strong>in</strong>flammation irregularly<strong>in</strong>terrupted by short remission phases.In order to <strong>in</strong>vestigate the role of dendritic cells and their TLR2 and TLR4expression while acute phase <strong>in</strong>flammation the Dextran sodium sulfateBIOspektrum | Tagungsband <strong>2012</strong>


89HMP011Effects of antimicrobial peptides on methanogenic archaeaC. Bang* 1 , A. Schilhabel 1 , K. Weidenbach 1 , A. Kopp 2 , T. Goldmann 3 ,T. Gutsmann 2 , R. Schmitz-Streit 11 CAU Kiel, Institut für Allgeme<strong>in</strong>e Mikrobiologie, Kiel, Germany2 Forschungszentrum Borstel, Division of Biophysics, Borstel, Germany3 Forschungszentrum Borstel, Division of Cl<strong>in</strong>ical and ExperimentalPathology, Borstel, GermanyMethanogenic archaea occur as members of the <strong>in</strong>digenous humanmicrobiota found on several mucosal tissues. Therefore they are exposedto antimicrobial peptides (AMPs) secreted by these epithelia. Although theantimicrobial and molecular effects of AMPs on bacteria are welldescribed, data for archaea are <strong>in</strong> general not available yet. As the archaealcell envelope differs profoundly <strong>in</strong> terms of chemical composition andstructure from that of bacteria it is not evident whether AMPs affect them.The effects of different natural and synthetic AMPs on the growth ofMethanobrevibacter smithii, Methanosphaera stadtmanae andMethanosarc<strong>in</strong>a mazei stra<strong>in</strong> Gö1 were tested with a microtiter plate assaythat had to be adapted to their anaerobic growth requirements and allowsmeasur<strong>in</strong>g growth curves. Overall the tested methanogenic archaea werehighly sensitive aga<strong>in</strong>st the used cathelicid<strong>in</strong>s, lys<strong>in</strong>s and one syntheticpeptide, however the sensitivities to the AMPs differed markedly amongthe different stra<strong>in</strong>s. Atomic force microscopy and transmission electronmicroscopy revealed that the structural <strong>in</strong>tegrity of the archaeal cells isdestroyed with<strong>in</strong> 4 hours of <strong>in</strong>cubation with AMPs. Us<strong>in</strong>g theLIVE/DEAD sta<strong>in</strong> the disruption of the cell envelope of M. smithii, M.stadtmanae and M. mazei with<strong>in</strong> a few m<strong>in</strong>utes could be verified. Ourresults strongly suggest that the release of AMPs by eukaryotic cells is apotent defence mechanism not only aga<strong>in</strong>st bacteria, but also aga<strong>in</strong>stmethanogenic archaea.HMP012Characterization of naturally occurr<strong>in</strong>g, <strong>in</strong>dustrial andmedical relevant biofilmsD. Langfeldt* 1 , N. Weiland 1 , N. P<strong>in</strong>now 1 , J. Eberhard 2 , R. Schmitz-Streit 11 CAU Kiel, Institut für Allgeme<strong>in</strong>e Mikrobiologie, Kiel, Germany2 Mediz<strong>in</strong>ische Hochschule Hannover, Kl<strong>in</strong>ik für Zahnärztliche Prothetikund biomediz<strong>in</strong>ische Werkstoffkunde, Hannover, GermanyBoth abiotic and biotic surfaces are subject to bacterial colonization andbiofilm formation. Biofilms formed on eng<strong>in</strong>eered surfaces or <strong>in</strong> medicalcontext can cause material degradation, foul<strong>in</strong>g or <strong>in</strong>fections. To provide<strong>in</strong>sights <strong>in</strong>to various microbial biofilms, naturally occurr<strong>in</strong>g biofilms suchas microbial consortia on the widely distributed moon jellyfish Aureliaaurita, a glacial biofilm, <strong>in</strong>dustrial and medical relevant biofilms werecharacterized. Biofilm compositions were studied by 16S rDNAphylogenetic analysis reveal<strong>in</strong>g only a very limited number of bacterialspecies <strong>in</strong> case of the A. aurita consortia <strong>in</strong>dicat<strong>in</strong>g specific <strong>in</strong>teractions(attraction/defence) between the host and the microorganisms. The ma<strong>in</strong>part of the analyzed sequences from the glacial biofilm yielded homologiesto uncultured bacteria found <strong>in</strong> contam<strong>in</strong>ated habitats that are potentially<strong>in</strong>volved <strong>in</strong> bioremediation processes. Analysis of suprag<strong>in</strong>gival biofilmsfrom different persons showed <strong>in</strong> general high microbial diversity,however they differed <strong>in</strong> the frequency of paradontopathogenic bacteria.The frequencies of these pathogenic bacteria showed a strong correlationto the respective <strong>in</strong>flammatory reaction def<strong>in</strong>ed for the test persons. Theobta<strong>in</strong>ed results may allow understand<strong>in</strong>g ecological systems, e.g. hostmicrobe<strong>in</strong>teractions, and provide <strong>in</strong>sights <strong>in</strong>to the prevention ofdetrimental biofilms <strong>in</strong> the medical sectors and <strong>in</strong>dustry.HMP013Impact of the <strong>in</strong>test<strong>in</strong>al microbiota on mucosal homeostasisI. Flade* 1 , K. Gronbach 1 , B. Stecher 2 , D. Huson 3 , H.-J. Ruscheweyh 3 ,I.B. Autenrieth 1 , J.-S. Frick 11 University of Tüb<strong>in</strong>gen, Med. Microbiology and Hygiene, Tüb<strong>in</strong>gen, Germany2 Max von Pettenkofer Institut, München, Germany3 University of Tüb<strong>in</strong>gen, Center for Bio<strong>in</strong>formatics, Tüb<strong>in</strong>gen, GermanyIn addition to genetic predisposition, environmental factors such ascommensal bacteria contribute to the development of <strong>in</strong>flammatory bowldisease (IBD).The gut of mammalians is colonised by a complex flora of microorganismsconta<strong>in</strong><strong>in</strong>g 500-1000 different bacterial species. These bacterialpopulations contribute to the health of the host, among other th<strong>in</strong>gs, bypromot<strong>in</strong>g proper immune systeme development and limit<strong>in</strong>g pathogencolonization. Bacteroides vulgatus mpk was shown to have the ability toprevent colitis, whereas E. coli mpk <strong>in</strong>duces <strong>in</strong>test<strong>in</strong>al <strong>in</strong>flammation <strong>in</strong><strong>in</strong>terleuk<strong>in</strong>-2-deficient (IL-2 -/- ) mice. The mechanism however rema<strong>in</strong>sunclear.In the current study we analyse the composition of the <strong>in</strong>test<strong>in</strong>almicrobiota of T-cell transferred Rag1 -/- mice by 454-Seqeunc<strong>in</strong>g of 16SrRNA encod<strong>in</strong>g genes. With this method we want to reveal differencesbetween the gut microbiota of mice that develop colitis compared to micethat stay healthy and the composition of the <strong>in</strong>test<strong>in</strong>al microbiota beforeand dur<strong>in</strong>g development of colitis.MEV001Mass spectrometric analysis of antibiotics from bacteriaM. Kai* 1 , O. Genilloud 2 , S. S<strong>in</strong>gh 3 , A. Svatoš 11 Max-Planck Institute for Chemical Ecology, Mass Spectrometry, Jena,Germany2 Fundación Med<strong>in</strong>a Centro de Excelencia en Investigación de MedicamentosInnovadores en Andalucía, Armilla/Granada, Spa<strong>in</strong>3 Merck Research Laboratories, Rahway, United StatesThiazolyl peptids are naturally occurr<strong>in</strong>g antibiotics produced by severalact<strong>in</strong>obacteria. The sulfur-conta<strong>in</strong><strong>in</strong>g, highly modified, macrocyclicpeptides are some of the most potent <strong>in</strong> vitro growth <strong>in</strong>hibitors of Grampositivebacteria by <strong>in</strong>hibition of prote<strong>in</strong> synthesis. Because ofcont<strong>in</strong>uously develop<strong>in</strong>g antibiotic-resistance of many bacteria there is stilla medical need to f<strong>in</strong>d new antibiotics. The natural function of antibioticsis still not sufficiently clarified, but antagonistic features are assumedwhich occur due to <strong>in</strong>teraction with other organisms. The previousantibiotic screen<strong>in</strong>gs were often performed under laboratory conditionsand did not simulate environmental circumstances for antibioticproduction, e.g. co-cultivation with other species. A re<strong>in</strong>vestigation withthese modified conditions consumes time and money. To allow a fast,sensitive, and cost-effective screen<strong>in</strong>g of cultivable bacteria we arecurrently establish<strong>in</strong>g a high throughput <strong>in</strong>fusion mass spectrometrymethod <strong>in</strong> which liquid extraction surface analysis us<strong>in</strong>g TriversaNanomate technology is comb<strong>in</strong>ed with the high mass accuracy andresolution available on LTQ-OrbitrapXL tandem mass spectrometer. Thescreen<strong>in</strong>g method was evaluated us<strong>in</strong>g different thiazolyl peptideproduc<strong>in</strong>g Streptomyces stra<strong>in</strong>s. The obta<strong>in</strong>ed data <strong>in</strong>dicate that <strong>in</strong> additionto antibiotic discovery this technique can be a powerful tool for manyother microbiological approaches, e.g. surface studies of signal moleculesdirectly between different bacterial species or other microorganisms.MEV002M<strong>in</strong><strong>in</strong>g for new lantibiotic producer <strong>in</strong> microbial genomesequencesJ. Disch<strong>in</strong>ger* 1 , M. Josten1 , A.-M. Herzner 1 , A. Yakéléba 1 ,M. Oedenkoven 1 , H.-G. Sahl 1 , J. Piel 2 , G. Bierbaum 11 University Bonn, Institute of Medical Microbiology, Bonn, Germany2 Universität Bonn, Kekulé-Institut für Organische Chemie und Biochemie,Bonn, GermanyThe discovery of antibiotics was one of the most important milestones <strong>in</strong>medic<strong>in</strong>e and <strong>in</strong> the fight aga<strong>in</strong>st <strong>in</strong>fectious disease. Today, more than 80%of anti-<strong>in</strong>fective drugs are natural or semi-synthetic compounds. Rapidlydevelop<strong>in</strong>g superbugs, i.e. pathogens that are resistant to almost allcommonly used antibiotics, have become an enormous problem. Thisnecessitates a further search for new antibiotic substances and sources. Tothis end, bacteria and their huge potential to produce antimicrobialsrepresent an <strong>in</strong>exhaustible resource.Lantibiotics (lanthion<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g antibiotics) are ribosomally producedbacterial peptide antibiotics that show <strong>in</strong>terest<strong>in</strong>g activities even <strong>in</strong> thenanomolar range aga<strong>in</strong>st (multiresistant) human pathogens. Thecharacteristic thioether aa (methyl-)lanthion<strong>in</strong>e is <strong>in</strong>troduced by extensiveenzyme-mediated posttranslational modifications. These rare aa form<strong>in</strong>tramolecular r<strong>in</strong>gs that are essential for the three-dimensional structureof lantibiotics, their enhanced stability aga<strong>in</strong>st proteases and oxidation, aswell as antimicrobial activity. These features make lantibiotics <strong>in</strong>terest<strong>in</strong>gcandidates or lead structures for novel antimicrobial applications <strong>in</strong>medical and food <strong>in</strong>dustry.Blast searches employ<strong>in</strong>g characteristic lantibiotic biosynthesis enzymes(LanM,B,C) <strong>in</strong> the NCBI database showed that ORFs cod<strong>in</strong>g for prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> lantibiotic production are widespread <strong>in</strong> bacteria of differentphyla. Based on these genomic data, we identified putative lantibiotic geneclusters <strong>in</strong> bacterial stra<strong>in</strong>s, for some of which production of lantibioticshad never been described before. The focus of our project is thehomologous and/or heterologous expression of those, so faruncharacterized, lantibiotics. In this context, we were able to identify andcharacterize the novel two-peptide lantibiotic lichenicid<strong>in</strong> that is producedby Bacillus licheniformis DSM 13. Additionally, a partial lantibiotic genecluster cod<strong>in</strong>g for prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> producer self-protection aga<strong>in</strong>st thewell-known lantibiotic mersacid<strong>in</strong> is present <strong>in</strong> Bacillus amyloliquefaciensFZB42. Transfer of the biosynthetic part of the mersacid<strong>in</strong> gene cluster toB. amyloliquefaciens FZB42 resulted <strong>in</strong> successful expression of fullymodified and active mersacid<strong>in</strong> <strong>in</strong> this stra<strong>in</strong>. Other putative lantibioticproducers, <strong>in</strong>clud<strong>in</strong>g a Caldicellulosiruptor bescii stra<strong>in</strong>, were identifiedand are still <strong>in</strong> the focus of the ongo<strong>in</strong>g work <strong>in</strong> this project.BIOspektrum | Tagungsband <strong>2012</strong>


90MEV003Biosynthesis of class III lantibiotics - <strong>in</strong> vitro studiesB. Krawczyk*, W.M. Müller, P. Ensle, R.D. SüssmuthTechnische Universität Berl<strong>in</strong>, Institut für Chemie , Berl<strong>in</strong>, GermanyLantibiotics represent an important class of peptide natural productssynthesized by large variety of Gramm positive bacteria. The mostcharacteristic structural feature of all lantibiotics is the presence oflanthion<strong>in</strong>e (Lan) bridges, a posttranslational modification, provid<strong>in</strong>gstructural constra<strong>in</strong>ts necessary for the biological activity 1 . The ribosomalorig<strong>in</strong> and <strong>in</strong>terest<strong>in</strong>g biological properties turns lantibiotics <strong>in</strong>to promis<strong>in</strong>gtemplates for the design of new biologically active compounds. Recentlywe reported on novel class III lantibiotics named labyr<strong>in</strong>thopept<strong>in</strong>es fromAct<strong>in</strong>omycetes 2 . The characteristic feature of labyr<strong>in</strong>thopept<strong>in</strong>es is aunique carbacyclic side cha<strong>in</strong> l<strong>in</strong>kage composed of the posttranslationallymodified triam<strong>in</strong>o triacid named labion<strong>in</strong> (Lab) <strong>in</strong>troduced by the LabKCenzyme 3 . In addition labyr<strong>in</strong>thopept<strong>in</strong> A2 displays a rare activity aga<strong>in</strong>stneuropathic pa<strong>in</strong> <strong>in</strong> mammals. In order to exploit unique features of thelabion<strong>in</strong> biosynthesis, the activity of the modify<strong>in</strong>g enzyme LabKC wasreconstituted <strong>in</strong> vitro, allow<strong>in</strong>g a detailed mechanistic <strong>in</strong>vestigation. TheLabKC enzyme, as all class III synthetases display a unique, well def<strong>in</strong>eddoma<strong>in</strong> arrangement <strong>in</strong> which each catalytic activity necessary for thebiosynthesis can be assigned to a specific doma<strong>in</strong> (see figure). It waspossible to identify a recognition motif with<strong>in</strong> the leader peptide, necessaryfor the process<strong>in</strong>g by the LabKC 4 . In addition the mode of process<strong>in</strong>g andthe substrate specificity were <strong>in</strong>vestigated provid<strong>in</strong>g deep <strong>in</strong>sights <strong>in</strong>to theactivity of class III enzymes. It was also found that the GTP preference ofLabKC is not conserved with<strong>in</strong> class III lantibiotics. We believe that largestructural diversity of this class of lantibiotics and the wide spread ofhomologues enzymes <strong>in</strong> known genomes might result <strong>in</strong> discover<strong>in</strong>g ofnew promis<strong>in</strong>g structures <strong>in</strong> the nearest future.1. Chatterjee et al., Biosynthesis and mode of action of lantibiotics. Chem. Rev. (2005) 105, 633-684.2. Me<strong>in</strong>dl et al., Labyr<strong>in</strong>thopept<strong>in</strong>s: a new class of carbacyclic lantibiotics. Angew. Chem. Int. Ed. (2010) 49,1151-1154.3. Müller et. al., In vitro biosynthesis of the prepeptide of type-III lantibiotic labyr<strong>in</strong>thopept<strong>in</strong> A2 <strong>in</strong>clud<strong>in</strong>gformation of a C-C bond as a post-translational modification. Angew. Chem. Int. Ed. (2010) 49, 2436-2440.4. Müller et. al., Leader Peptide-Directed Process<strong>in</strong>g of Labyr<strong>in</strong>thopept<strong>in</strong> A2 Precursor Peptide by theModify<strong>in</strong>g Enzyme LabKC. Biochemistry (2011) 50, 8362-8373.MEV004The Effect of MbtH-like Prote<strong>in</strong>s on the Adenylation ofTyros<strong>in</strong>e <strong>in</strong> the Biosynthesis of Am<strong>in</strong>ocoumar<strong>in</strong> Antibioticsand Vancomyc<strong>in</strong>B. Boll*, T. Taubiz, L. HeidePharmazeuisches Institut, Pharmazeutische Biologie, Tüb<strong>in</strong>gen, GermanyMbtH-like prote<strong>in</strong>s, comprised of approximately 70 am<strong>in</strong>o acids, areencoded <strong>in</strong> the biosynthetic gene clusters of non-ribosomally formedpeptides and other secondary metabolites derived from am<strong>in</strong>o acids.Recently, several MbtH-like prote<strong>in</strong>s have been shown to be required forthe adenylation of am<strong>in</strong>o acid <strong>in</strong> non-ribosomal peptide synthesis. We now<strong>in</strong>vestigated the role of MbtH-like prote<strong>in</strong>s <strong>in</strong> the biosynthesis of theam<strong>in</strong>ocoumar<strong>in</strong> antibiotics novobioc<strong>in</strong>, clorobioc<strong>in</strong> and simocycl<strong>in</strong>one D8as well as the glycopeptide antibiotic vancomyc<strong>in</strong>. It could be shown thatthe tyros<strong>in</strong>e-activat<strong>in</strong>g enzymes CloH, SimH and Pcza361.18, <strong>in</strong>volved <strong>in</strong>the biosynthesis of clorobioc<strong>in</strong>, simocycl<strong>in</strong>one D8 and vancomyc<strong>in</strong>,respectively, require the presence of MbtH-like prote<strong>in</strong>s <strong>in</strong> a molar ratio of1:1. They form a heterotetramer consist<strong>in</strong>g of two adenylat<strong>in</strong>g enzymesand two MbtH-like prote<strong>in</strong>s. In contrast, NovH <strong>in</strong>volved <strong>in</strong> novobioc<strong>in</strong>biosynthesis showed activity even <strong>in</strong> the absence of MbtH-like prote<strong>in</strong>s,but its activity was stimulated by the presence of MbtH-like prote<strong>in</strong>s.Comparison of the active centers of CloH and NovH showed only oneam<strong>in</strong>o acid to be different, i.e. L383 versus M383. A site-directedmutagenesis of this am<strong>in</strong>o acid <strong>in</strong> CloH (L383M) <strong>in</strong>deed resulted <strong>in</strong> anMbtH-<strong>in</strong>dependent mutant. All <strong>in</strong>vestigated tyros<strong>in</strong>e-adenylat<strong>in</strong>g enzymesexhibited remarkable promiscuity for MbtH-like prote<strong>in</strong>s from differentpathways and organisms. Additionally, the MbtH-like prote<strong>in</strong> YbdZ fromE. coli was found to co-purify with the heterologously expressed tyros<strong>in</strong>eadenylat<strong>in</strong>genzymes and to <strong>in</strong>fluence their biochemical propertiesmarkedly. Therefore, a knock-out stra<strong>in</strong> was created <strong>in</strong> which thecorrespond<strong>in</strong>g gene was deleted. This is of central importance for areliable biochemical characterization of the tyros<strong>in</strong>e-adenylat<strong>in</strong>g enzymes.1. Boll, B., Taubitz, T., and Heide, L. (2011) J. Biol. Chem. 286, 36281-362902. Wolpert, M., Gust, B., Kammerer, B., and Heide, L. (2007) Microbiology 153, 1413-14233. Baltz, R. H. (2011) J. Ind. Microbiol. Biotechnol. 38, 1747-1760MEV005KirCI and KirCII, the discrete acyltransferases <strong>in</strong>volved <strong>in</strong>kirromyc<strong>in</strong> biosynthesisE.M. Musiol*, T. Härtner, A. Kulik, W. Wohlleben, T. WeberUniversity of Tüb<strong>in</strong>gen, Microbiology/Biotechnology, Tüb<strong>in</strong>gen, Germanylarge complex of type I polyketide synthases and non-ribosomal peptidesynthetases (PKS I/NRPS complex), encoded by the genes kirAI-kirAVIand kirB [1]. The PKSs KirAI-KirAV have a “trans-AT”-architecture.These megaenzymes have no acyltransferase doma<strong>in</strong>s <strong>in</strong>tegrated <strong>in</strong>to thePKS modules. In contrast, KirAVI belongs to the classical “cis-AT”-typePKS, where the ATs are part of the PKS prote<strong>in</strong>. In the gene cluster ofkirromyc<strong>in</strong> two separate genes, kirCI and kirCII, were identified, whichare similar to acyltransferases.To <strong>in</strong>vestigate the <strong>in</strong>volvement of kirCI and kirCII <strong>in</strong> kirromyc<strong>in</strong>biosynthesis, mutants were generated and analyzed for kirromyc<strong>in</strong>production. The <strong>in</strong>activation of kirCI (kirCI) resulted <strong>in</strong> a significantreduction of kirromyc<strong>in</strong> production. In kirCII the kirromyc<strong>in</strong> synthesiswas completely abolished. To confirm the effects of the deletion of kirCIand kirCII, both mutants were complemented with the wild type genes. Inthe complemented stra<strong>in</strong>s the antibiotic production was restored to levelscomparable with the parent stra<strong>in</strong> S. coll<strong>in</strong>us Tü 365. These data <strong>in</strong>dicatethat both genes are <strong>in</strong>volved <strong>in</strong> kirromyc<strong>in</strong> biosynthesis and the genekirCII is essential for the production of this antibiotic.For kirromyc<strong>in</strong> assembly, a selective load<strong>in</strong>g of ACPs with the build<strong>in</strong>gblocks malonyl-CoA and ethylmalonyl-CoA is required. To f<strong>in</strong>d outwhether KirCI and KirCII are responsible for this precursor supply and todeterm<strong>in</strong>e the substrate specificity of these enzymes, an <strong>in</strong> vitro ACPload<strong>in</strong>g assay was carried out. Therefore KirCI, KirCII and two selectedACPs were expressed <strong>in</strong> E. coli and purified. The prote<strong>in</strong>s were used <strong>in</strong> the<strong>in</strong> vitro assay and the load<strong>in</strong>g of malonyl-CoA, methylmalonyl-CoA andethylmalonyl-CoA to the ACPs was monitored by autoradiography andHPLC/ESI-MS. The experiments showed that KirCI loads specificallymalonyl-CoA onto ACP4 and the second enzyme, KirCII, is the firstbiochemically characterized “trans-AT” with high specificity for ethylmalonyl-CoA and transfers this substrate to ACP5 [2]. Thus, there is a specificrecognition of the ACP of module 4 and 5 by KirCI and KirCII, respectively.To our knowledge, such <strong>in</strong>teraction mechanism, where a free-stand<strong>in</strong>g ATprote<strong>in</strong>that provide unusual build<strong>in</strong>g block, dock site-specific to the“recipient”-ACP to achieve structural diversity <strong>in</strong> polyketides was notcharacterized until now.[1]. T. Weber, K.J. Laiple, E.K. Pross, A. Textor, S. Grond, K. Welzel, S. Pelzer, A. Vente and W.Wohlleben, Chem Biol15(2008), 175-188.[2]. E.M. Musiol, T. Härtner, A. Kulik, J. Moldenhauer, J. Piel, W. Wohlleben and T. Weber, ChemBiol18(2011), 438-444.MEV006Investigation of the type II polyketide synthase from Gramnegativebacteria Photorhabdus lum<strong>in</strong>escence TT01Q. Zhou*, H.B. BodeGoethe Universität Frankfurt, Molekulare Biowissenschaften, Frankfurtam Ma<strong>in</strong>, GermanyThe aromatic heptaketide anthraqu<strong>in</strong>one (AQ-256) is produced by theentomopathogenic Gram-negative bacterium Photorhabdus lumicescenceTT01 (1). Previous studies have shown that the type II polyketide synthase(type II PKS) is responsible for the AQ-256 biosynthesis, because thetypical octaketide shunt products known from act<strong>in</strong>orhod<strong>in</strong> biosynthesiscould be identified (2). The gene cluster consists of ketosynthase (KS ),cha<strong>in</strong> length factor (CLF or KS ), acyl-carrier prote<strong>in</strong> (ACP), two cylases,one ketoreductase, one phosphopantethe<strong>in</strong>yl transferase (PPTase) and twoprote<strong>in</strong>s with possible function as a CoA ligase (AntG) and hydrolase(AntI), respectively.In this study, we show that E. coli could be used as host for <strong>in</strong> vivoanalysis of the biosynthesis by comb<strong>in</strong><strong>in</strong>g two Duet vectors <strong>in</strong>clud<strong>in</strong>gwhole or partial gene cluster. Not only the shunt products could beidentified by HPLC-MS, but also the function of the genes could be<strong>in</strong>vestigated <strong>in</strong> E. coli. Most prote<strong>in</strong>s were expressed <strong>in</strong> soluble fraction <strong>in</strong> E.coli BL21 DE(3) and successfully purified. ACP could only be activated by thePPTase <strong>in</strong> company with AntG, but not by Sfp or MtaA. It looks as if thePPTase and AntG have strong <strong>in</strong>teraction with each other. Site-directed mutantsof AntG were generated and their activities could be tested. Additionaldisruptions of the gene antG and antI <strong>in</strong> TT01 were also performed. Utahmyc<strong>in</strong>(3) was identified <strong>in</strong> the TT01 AntI knockout mutant. The hydrolase AntI wasresponsible for heptaketide formation from octaketide. F<strong>in</strong>ally, <strong>in</strong> vitroexperiments were performed lead<strong>in</strong>g to production of octaketide shunt productsus<strong>in</strong>g the m<strong>in</strong>imal PKS, KR and CYC/ARO.1. Brachmann, A. O.; Joyce, S. A.; Jenke-Kodarna, H.; Schwär, G.; Clarke, D. J.; Bode, H.B.Chembiochem2007,8(14), 1721-1728.2. McDaniel, R.; Ebert khosla, S.; Hopwood, D. A.; Khosla, C.Science1993,262(5139), 1546-1550.3. Bauer, J. D.; K<strong>in</strong>g, R. W.; Brady, S. F. Utahmyc<strong>in</strong>s A and B,Journal of NaturalProducts2010,73(5), 976-979.Kirromyc<strong>in</strong> is an antibiotic produced by Streptomyces coll<strong>in</strong>us Tü 365.This compound b<strong>in</strong>ds to the elongation factor Tu (EF-Tu) and blocksbacterial prote<strong>in</strong> biosynthesis. The molecule backbone is synthesized by aBIOspektrum | Tagungsband <strong>2012</strong>


91MEV007Purification and Characterisation of the Flav<strong>in</strong>-DependentMonodechloroam<strong>in</strong>opyrrolnitr<strong>in</strong> 3-Halogenase fromPyrrolnitr<strong>in</strong> BiosynthesisA. Adam*, K.-H. van PéeTU Dresden, Institut für Biochemie, Dresden, GermanyPyrrolnitr<strong>in</strong> is an antifungal compound first isolated from Pseudomonaspyrroc<strong>in</strong>ia. The gene cluster and the correspond<strong>in</strong>g enzymes responsiblefor pyrrolnitr<strong>in</strong> biosynthesis were identified <strong>in</strong> Pseudomonas fluorescens(BL915) and other pyrrolnitr<strong>in</strong> produc<strong>in</strong>g bacteria. The third enzyme,monodechloroam<strong>in</strong>opyrrolnitr<strong>in</strong> (MCAP) 3-halogenase (PrnC), catalysesthe regioselective chlor<strong>in</strong>ation of MCAP <strong>in</strong> the 3-position of the pyrroler<strong>in</strong>g. PrnC is a flav<strong>in</strong>-dependent halogenase and its reaction mechanism issuggested to be very similar to that of other flav<strong>in</strong>-dependent halogenases.However, the am<strong>in</strong>o acid sequence shows hardly any similarity to theam<strong>in</strong>o acid sequence of tryptophan halogenases for some of which threedimensionalstructures are known.Additionally, PrnC is, besides the tryptophan halogenases, the only knownflav<strong>in</strong>-dependent halogenase that catalyses the halogenation of a freesubstrate. Other known flav<strong>in</strong>-dependent halogenases catalys<strong>in</strong>g thechlor<strong>in</strong>ation of a pyrrole moiety act on a substrate bound to a peptidylcarrier prote<strong>in</strong> mak<strong>in</strong>g elucidation of the 3-D structure of these enzymes,especially <strong>in</strong> the presence of substrate, very difficult. Thus, the 3-Dstructure of PrnC is of high importance to understand how substratespecificity and regioselectivity are regulated <strong>in</strong> flav<strong>in</strong>-dependenthalogenases.So far, purification of PrnC <strong>in</strong> its active form has not been achievedsatisfactorily which is partially due to the <strong>in</strong>compatibility of the tags usedand the high tendency of PrnC to form aggregates with itself and otherprote<strong>in</strong>s. The lack of purified PrnC so far prevented further detailedanalysis of the enzyme. Here we report a novel purification strategylead<strong>in</strong>g to purified, active PrnC. Us<strong>in</strong>g the GST-fusion prote<strong>in</strong> strategy it ispossible to obta<strong>in</strong> homgeneous PrnC from recomb<strong>in</strong>ant Escherichia colicells. The purity level of the eluted fusion prote<strong>in</strong> highly depends on thegrowth temperature of the E. coli stra<strong>in</strong> used for expression. MALDI-TOF-MS analysis revealed that the chaperon<strong>in</strong> GroEL and other prote<strong>in</strong>s are copurifiedby glutathione aff<strong>in</strong>ity chromatography when the growthtemperature is not reduced to 20 °C. Dilution of the crude extract as wellas the addition of Tween-20 has a high impact on the aff<strong>in</strong>ity of the fusionprote<strong>in</strong> to the glutathione column. The addition of detergent does not<strong>in</strong>hibit halogenat<strong>in</strong>g activity, neither that of the fusion prote<strong>in</strong> nor that ofthe purified PrnC after thromb<strong>in</strong> digestion.Furthermore we can now report on first characterisation results giv<strong>in</strong>g firsth<strong>in</strong>ts towards the reaction mechanism of PrnC.van Pée, K. H. and Ligon, J. M., Nat. Prod. Rep., 2000, 17, 157.Hammer, P. E., Hill, D. S., Lam, S. T., van Pée, K. H., Ligon, J. M., Appl. Environ. Microbiol., 1997, 63,2147.Dorreste<strong>in</strong>, P. C., Yeh, E., Garneau-Tsodikova, S., Kelleher, N. L., Walsh, C. T., PNAS, 2005, 39, 13843.MEV008EasG and FgaFS are key enzymes <strong>in</strong> the differentiation ofergot alkaloid biosynthesis <strong>in</strong> Claviceps purpurea andAspergillus fumigatusM. Matuschek* 1 , C. Wallwey 1 , X. Xie 2 , S.-M. Li 11 Philipps-Universität Marburg, Institut für Pharmazeutische Biologie undBiotechnologie, Marburg, Germany2 Philipps-Universität Marburg, Fachbereich Chemie, Marburg, GermanyErgot alkaloids are secondary metabolites belong<strong>in</strong>g to <strong>in</strong>dole derivativesand are produced by a wide range of fungi with Claviceps purpurea as themost important producer for medical use. They show a broad spectrum ofbiological activities and their toxic effects were reported back to themiddle ages. The early steps of ergot alkaloid biosynthesis are shared byC. purpurea and Aspergillus fumigatus, whereas later steps differ <strong>in</strong> thetwo fungi.[1] Chanoclav<strong>in</strong>e-I aldehyde[2] was proposed as branch po<strong>in</strong>tfor the biosynthesis <strong>in</strong> both fungi,[3] which is converted <strong>in</strong> A. fumigatus tothe clav<strong>in</strong>e-type alkaloid festuclav<strong>in</strong>e by the festuclav<strong>in</strong>e synthase FgaFS<strong>in</strong> the presence of the old yellow enzyme FgaOx3.[1] In C. purpureachanoclav<strong>in</strong>e-I aldehyde is converted to agroclav<strong>in</strong>e by EasG <strong>in</strong> thepresence of reduced glutathione without a requirement of EasA.[4] Theenzymes were purified by aff<strong>in</strong>ity chromatography after overproduction <strong>in</strong>E. coli and characterized biochemically. The <strong>in</strong> vitro results for theformation of festuclav<strong>in</strong>e catalysed by FgaOx3 and FgaFS proved tworeduction steps. In contrast, agroclav<strong>in</strong>e differs from festuclav<strong>in</strong>e by adouble bond between C8 and C9. Therefore only one reduction, butadditionally an isomerisation step is necessary. We have shown that EasGwas responsible for the reduction step and a non-enzymatic adduct withreduced glutathione for the isomerisation. The structures of festuclav<strong>in</strong>eand agroclav<strong>in</strong>e were unequivocally elucidated by NMR and MS analyses.In summary, EasG and FgaFS are the key enzymes controll<strong>in</strong>g the branchpo<strong>in</strong>t of ergot alkaloid biosynthesis <strong>in</strong> C. purpurea and A. fumigatus.[1.] C. Wallwey, M. Matuschek, X.-L. Xie, S.-M. Li, Org. Biomol. Chem. 2010, 8, 3500-3508.[2.] C. Wallwey, M. Matuschek, S.-M. Li, Arch. Microbiol. 2010, 192, 127-134.[3.] C. M. Coyle, J. Z. Cheng, S. E. O'Connor, D. G. Panaccione, Appl. Environ. Microbiol. 2010, 76, 3898-3903.[4.] M. Matuschek, C. Wallwey, X. Xie, S. M. Li, Org. Biomol. Chem. 2011, 9, 4328-4335.MEV009Biosynthesis of Cephlaospor<strong>in</strong> C Through Improved stra<strong>in</strong>s ofAspergillus and Acremonium speciesZ.-E. Bilal*, A. YousafInstitute of Agricultural sciences, University of the Punjab, Lahore,Pakistan., Institute of Agricultural sciences, University of the Punjab,Lahore, Pakistan., Lahore, PakistanAntibiotics are secondary metabolites produced by microorganisms,extremely important to the health of our society. Cephalospor<strong>in</strong>s are broadspectrumantibiotics which are very similar <strong>in</strong> structure and action topenicill<strong>in</strong>s but more resistant to -lactamases. Optimization of media isuseful to <strong>in</strong>crease the production of antibiotics. Induction of mutation iscommonly employed to <strong>in</strong>crease the yield of secondary metabolites likeantibiotics. Chemical mutation is preferred method because of the ease <strong>in</strong>handl<strong>in</strong>g and avoid<strong>in</strong>g the hazardous effects of radiations.Monitor<strong>in</strong>g the concentrations of antibiotics and their precursors isrequired for their optimized production. Due to higher concentrations ofprote<strong>in</strong>s and other liquid phases <strong>in</strong> fermented broth aseptic sampl<strong>in</strong>g is adifficult task. Spectrophotometeric analysis can be used for the estimationof the antibiotic produced by microbes. Bioassay analysis can be done toconfirm the antibiotic activity of the antibiotic produced. HPLC is used todifferentiate the specific antibiotic from other secondary metabolites ofmicrobes from the fermented broth.The aim of this research work was to optimize media conditions andimprovement of fungal stra<strong>in</strong>s through chemical mutation for enhancedCephalospor<strong>in</strong> C (CPC) production by Aspergillus and Acremonium species.For media optimization different concentrations of media contents wereanalyzed for <strong>in</strong>creased production. Best results were shown byfermentation media supplemented with sucrose 30mg/ml. While DLmethion<strong>in</strong>eshows optimum yield at 3mg/ml; and fermentation mediasupplemented with ammonium sulphate 7.5mg/ml as nitrogen sources gavemaximum yield.For mutation <strong>in</strong>duction fungal stra<strong>in</strong>s were treated with 400g/ml of Ethylmethane sulfonate (EMS) for 30-80 m<strong>in</strong>utes. It was observed that time ofchemical treatment was <strong>in</strong>versely proportional to the survival of fungalstra<strong>in</strong>s; m<strong>in</strong>imum survival rate was obta<strong>in</strong>ed at treatment of 1 hour.The mutants were then further analyzed for CPC production withoptimized media conditions <strong>in</strong> similar way as done earlier before <strong>in</strong>ductionof mutation. Results obta<strong>in</strong>ed showed that very small <strong>in</strong>crease <strong>in</strong> CPCproduction, <strong>in</strong> few fungal stra<strong>in</strong>s but not <strong>in</strong> all. This might be due to<strong>in</strong>sufficient mutation for target genes (i.e., <strong>in</strong>volved <strong>in</strong> CPC production) <strong>in</strong>rema<strong>in</strong><strong>in</strong>g fungal species.The spectrophotometeric and HPLC analysis of fermented broths wereperformed to analyze CPC yields. Similarities were observed <strong>in</strong> the resultsof both analyses. On spectrophotometeric and HPLC analysis, beforemutation maximum yield of CPC (2.583 and 0. 254mg/ml respectively)was obta<strong>in</strong>ed with Acremonium kiliense FCBP # 162, respectively andafter mutation maximum production of CPC (2.346, 0.24mg/mlrespectively) was achieved with Acremonium furcatum FCBP # 409.The bioassay analysis of the fungal stra<strong>in</strong>s and survivors (mutants) wereperformed to confirm antibacterial activity of CPC. The <strong>in</strong>creasedantibacterial activity was observed for some stra<strong>in</strong>s after mutation, forothers it was decreased and it rema<strong>in</strong>ed constant for rema<strong>in</strong><strong>in</strong>g stra<strong>in</strong>s.MEV010Systems biology of the mar<strong>in</strong>e antibiotic producer PhaeobactergallaeciensisA. Kl<strong>in</strong>gner*, A. Bartsch, J. Becker, C. WittmannInstitut für Bioverfahrenstechnik, TU Braunschweig, Braunschweig, GermanyMar<strong>in</strong>e bacteria ga<strong>in</strong> more <strong>in</strong>terest s<strong>in</strong>ce it is assumed that among thesebacteria is a great potential of secondary metabolites which may be of<strong>in</strong>dustrial or medical <strong>in</strong>terest. The Roseobacter clade is one of the mostprevalent mar<strong>in</strong>e microorganisms, which are highly distributed <strong>in</strong> theoceans [1]. Many new species were found <strong>in</strong> the last few years and a richrepertoire of metabolic pathways has been identified. However, there islittle <strong>in</strong>formation about the <strong>in</strong> vivo use <strong>in</strong> the mar<strong>in</strong>e environment [2, 3].Phaeobacter gallaeciensis has the ability to produce a new <strong>in</strong>terest<strong>in</strong>gantibiotic, the tropoditiethic acid (TDA). Furthermore, other secondarymetabolites, so called “Roseobacticides”, were found, which <strong>in</strong>hibit thegrowth of diverse mar<strong>in</strong>e algae and bacteria [4, 5]. This makes thebacterium <strong>in</strong>terest<strong>in</strong>g for studies <strong>in</strong> systems biology, to developoptimization strategies and enhance the secondary metabolite production.In this work P. gallaeciensisis <strong>in</strong>vestigated by systems wide metabolic fluxanalysis us<strong>in</strong>g 13 C-labell<strong>in</strong>g studies and computational flux modell<strong>in</strong>g withthe software OpenFlux [6]. This provides a first <strong>in</strong>sight <strong>in</strong>to the <strong>in</strong> vivo useof its pathways. The first set of experiments focussed on the impact ofdifferent carbon sources. Together with transcriptome profil<strong>in</strong>g this willBIOspektrum | Tagungsband <strong>2012</strong>


92provide an <strong>in</strong>sight <strong>in</strong>to the regulation network <strong>in</strong> order to approach thecomplete picture of the cell.First labell<strong>in</strong>g studies showed that glucose is metabolized only via theEntner-Doudoroff pathway. This is an extremely unusual flux distributionand seems to be characteristic for the Roseobacter clade. In this study theimpact of nutritional changes on the flux distribution was <strong>in</strong>vestigated byperform<strong>in</strong>g the first systems wide metabolic flux analyses.Acknowledgements: The work is funded by the German Research Foundationwith<strong>in</strong> the subproject C4 <strong>in</strong> the SFB TRR51 “Ecology, Physiology andMolecular Biology of the Roseobacter clade: Towards a Systems BiologyUnderstand<strong>in</strong>g of a Globally Important Clade of Mar<strong>in</strong>e Bacteria”.[1] Buchan A, González JM, Moran MA (2005), Appl Environ Microbol, 71(10): 5665-5677[2] Wagner-Döbler I, Ballhausen B, et al. (2010) ISME J, 4: 61-77[3] Fürch T, Preusse M, et al. (2009), BMC Microbiology, 9: 209[4] Seyedsayamdost, M. R., G. Carr, et al. (2011), J Am Chem Soc.[5] Martens T, Heidorn T, et al. (2006), Int J Syst Evol Microbiol, 56(6): 1293[6] Quek, L. E., C. Wittmann, et al. (2009), Microb Cell Fact 8: 25.MEV011Characterization and manipulation of the biosyntheticpathway of cyanobacterial tricyclic microvirid<strong>in</strong>s <strong>in</strong> E. coliA.R. Weiz* 1 , K. Ishida 2 , K. Makower 1 , N. Ziemert 3 , C. Hertweck 2 , E. Dittmann 11 Institute of Biochemistry and Biology, Microbiology, Golm, Germany2 Leibniz Institute for Natural Product Research and Infection Biology, Jena,Germany3 Scripps Institution of Oceanography, San Diego, United StatesCyanobacteria are a structurally diverse group of bacteria, mak<strong>in</strong>g avariety of biochemically active natural products us<strong>in</strong>g mostly thenonribosomal mach<strong>in</strong>ery of large multienzyme complexes. Microvirid<strong>in</strong>sare the largest known cyanobacterial oligopeptides synthesized through aunique ribosomal route (1). The unprecedented microvirid<strong>in</strong> gene clusterencodes for a precursor peptide (MdnA), two novel ATP-grasp ligases(MdnB and C), a GNAT-type acetyltransferase (MdnD) and an ABCtransporter(MdnE).Microvirid<strong>in</strong>s comprise an unrivaled multicyclic cagelikearchitecture, carry<strong>in</strong>g characteristic -ester and a secondary -amidebond. They are produced by different isolates of cyanobacteria, <strong>in</strong>clud<strong>in</strong>gthe unicellular, bloom-form<strong>in</strong>g freshwater cyanobacteriumMicrocystisaerug<strong>in</strong>osaNies843. The ser<strong>in</strong>e protease <strong>in</strong>hibitory activity contributes toboth ecological and pharmacological relevance of microvirid<strong>in</strong>s. Here wereport the construction of a stable expression platform for heterologousexpression of microvirid<strong>in</strong>s <strong>in</strong>E. coli. Biostatistics and mutational analysisidentified the conserved PFFARFL motif <strong>in</strong> the precursor peptide as arecognition sequence for the ATP-grasp ligases. Manipulations of the C-term<strong>in</strong>al part of the leader peptide abolished lactam r<strong>in</strong>g formation ofmicrovirid<strong>in</strong>s.The ABC-transporter MdnE was unveiled to be crucial forcyclization and process<strong>in</strong>g of microvirid<strong>in</strong>s, probably hold<strong>in</strong>g andstabiliz<strong>in</strong>g a putative microvirid<strong>in</strong> maturation complex at the <strong>in</strong>nermembrane (2). Site-directed mutagenesis <strong>in</strong> the microvirid<strong>in</strong> core sequenceshowed flexibility of the microvirid<strong>in</strong> biosynthetic pathway to be used forpeptide eng<strong>in</strong>eer<strong>in</strong>g. We determ<strong>in</strong>ed residues that are important for theprotease <strong>in</strong>hibition and are currently <strong>in</strong> process to optimize the product fordifferent pharmaceutical targets. Furthermore, we developed a method toexpress cryptic microvirid<strong>in</strong> precursor peptides from field and lab samples.1. Ziemert, N., K. Ishida, A. Liaimer, C. Hertweck and E. Dittmann. Angew Chem Int EdEngl47(40), 2008, p. 7756-9.2. Weiz, Annika R., K. Ishida, K. Makower, N. Ziemert, C. Hertweck and E. Dittmann. Chemistry& Biology18(11), 2011, p. 1413-1421.MEV012Evaluation of Streptomyces coelicolor as a heterologous expressionhost for natural products from mar<strong>in</strong>e filamentous cyanobacteriaA. Jones* 1,2 , S. Ottilie 2 , A. Eustáquio 2 , D. Edwards 3 , L. Gerwick 2 ,B. Moore 2 , W. Gerwick 21 Universität Tüb<strong>in</strong>gen, Pharmazeutische Biologie, Tüb<strong>in</strong>gen, Germany2 University of California San Diego, Scripps Institution of Oceanography,La Jolla, CA, USA, United States3 California State University , Chico, CA, USA, United StatesFilamentous mar<strong>in</strong>e cyanobacteria are rich sources of bioactive naturalproducts and employ highly unusual biosynthetic enzymes <strong>in</strong> theirassembly. However, the current lack of techniques for stable DNA transfer<strong>in</strong>to these filamentous organisms comb<strong>in</strong>ed with the absence ofheterologous expression strategies for non-ribosomal cyanobacterial geneclusters prohibit the creation of mutant stra<strong>in</strong>s or the heterologousproduction of these cyanobacterial compounds <strong>in</strong> other bacteria. In thisstudy, we evaluated the capability of a derivative of the modelact<strong>in</strong>omycete Streptomyces coelicolor A3(2) to express enzymes <strong>in</strong>volved<strong>in</strong> the biosynthesis of the prote<strong>in</strong> k<strong>in</strong>ase C activator lyngbyatox<strong>in</strong> A from aHawaiian stra<strong>in</strong> of Moorea producta (previously classified as Lyngbyamajuscula). Despite large differences <strong>in</strong> GC content between these twobacteria and the presence of multiple TTA/UUA leuc<strong>in</strong>e codons <strong>in</strong>lyngbyatox<strong>in</strong> open read<strong>in</strong>g frames, we were able to achieve expression ofLtxB and LtxC <strong>in</strong> S. coelicolor M512 and confirmed the <strong>in</strong> vitrofunctionality of S. coelicolor overexpressed LtxC. Attempts to express theentire lyngbyatox<strong>in</strong> A gene cluster <strong>in</strong> S. coelicolor M512 were notsuccessful because of transcript term<strong>in</strong>ation observed for the ltxA gene,which encodes a large non-ribosomal peptide synthetase. However, theseattempts did show a detectable level of cyanobacterial promoterrecognition <strong>in</strong> Streptomyces. Successful Streptomyces expression ofbiosynthetic enzymes from mar<strong>in</strong>e cyanobacteria provides a new platformfor biochemical <strong>in</strong>vestigation of these prote<strong>in</strong>s and a promis<strong>in</strong>g avenue forcomb<strong>in</strong>atorial biosynthesis between these two bacterial phyla.MEP001Endophytic fungi, the microbial factories of associated plantsecondary metabolites: Camptothec<strong>in</strong> as an exampleS. Kusari*, M. SpitellerTU Dortmund, Institute of Environmental Research (INFU) of the Facultyof Chemistry, Dortmund, GermanyEndophytic fungi <strong>in</strong>habit healthy tissues of plants and occasionallyproduce associated plant secondary metabolites [1-5]. We recently isolatedan endophytic fungus, Fusarium solani from the bark of Camptothecaacum<strong>in</strong>ata, which is capable of produc<strong>in</strong>g the anticancer pro-drugcamptothec<strong>in</strong> (CPT) and two structural analogues <strong>in</strong> axenic monoculture[6]. We deciphered a cross-species biosynthetic pathway where theendophyte utilizes <strong>in</strong>digenous geraniol 10-hydroxylase, secologan<strong>in</strong>synthase, and tryptophan decarboxylase to biosynthesize CPT precursors.However, to complete CPT biosynthesis, it requires the host strictosid<strong>in</strong>esynthase [7]. The fungal CPT biosynthetic genes destabilized ex plantaover successive subculture generations. The seventh subculture predictedprote<strong>in</strong>s exhibited reduced homologies to the orig<strong>in</strong>al enzymes prov<strong>in</strong>gthat such genomic <strong>in</strong>stability leads to dysfunction at the am<strong>in</strong>o acid level.The endophyte with an impaired CPT biosynthetic capability wasartificially <strong>in</strong>oculated <strong>in</strong>to the liv<strong>in</strong>g host plants and then recovered aftercolonization. CPT biosynthesis could still not be restored [7]. We furtherdiscovered the survival strategy of this endophyte by identify<strong>in</strong>g typicalam<strong>in</strong>o acid residues <strong>in</strong> the CPT-b<strong>in</strong>d<strong>in</strong>g and catalytic doma<strong>in</strong>s of itstopoisomerase I [8]. Recently, it was also revealed that chrysomelidbeetles (Kanarella unicolor) feeds on the leaves of CPT-conta<strong>in</strong><strong>in</strong>g N.nimmoniana without any apparent adverse effect [9]. We thus envisageaddress<strong>in</strong>g the follow<strong>in</strong>g open questions: why and how do endophytesproduce plant bioactive compounds? What are the diverse <strong>in</strong>teractions thatendophytes have with other coexist<strong>in</strong>g endophytes, host plants, <strong>in</strong>sects,and specific herbivores? Elucidat<strong>in</strong>g these connections can not onlyenhance the understand<strong>in</strong>g of evolution of complex defense mechanisms <strong>in</strong>plants and associated organisms, but also help <strong>in</strong> the susta<strong>in</strong>ed productionof plant compounds us<strong>in</strong>g endophytes harbored with<strong>in</strong> them.[1] Kusari, S. & Spiteller, M. (2011). Nat. Prod. Rep. 28, 1203-1207.[2] Kusari, S. & Spiteller, M. (2010). In Biotechnology - Its Grow<strong>in</strong>g Dimensions. Sonali Publications, NewDelhi, India, pp. 1-27.[3] Kusari, S., Lamshöft, M., Spiteller, M. (2009). J. Appl. Microbiol. 107, 1019-1030.[4] Kusari, S., Zühlke, S., Kosuth, J., Cellarova, E. & Spiteller, M. (2009). J. Nat. Prod. 72, 1825-1835.[5] Kusari, S., Lamshöft, M., Zühlke, S. & Spiteller, M. (2008). J. Nat. Prod. 71, 159-162.[6] Kusari, S., Zühlke, S. & Spiteller, M. (2009). J. Nat. Prod. 72, 2-7.[7] Kusari, S., Zühlke, S. & Spiteller, M. (2011). J. Nat. Prod. 74, 764-775.[8] Kusari, S., Kosuth, J., Cellarova, E. & Spiteller, M. (2011). Fungal Ecol. 4, 219-223.[9] Ramesha, B. T., Zuehlke, S., Vijaya, R., Priti, V., Ravikanth, G., Ganeshaiah, K., Spiteller, M., Shaanker,R. U. (2011). J. Chem. Ecol. 37, 533-536.MEP002Biochemical characterization of ecto<strong>in</strong>e hydroxylases fromextremophilesN. Widderich*, M. Pittelkow, S. Weigand, E. BremerPhilipps-University Marburg, Biology, Marburg, GermanyEcto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e are widely used by members of the Bacteriato offset the detrimental effects of high osmolarity on cellular physiology.Both compatible solutes also possess stabiliz<strong>in</strong>g effects formacromolecules and these properties, sometimes also referred to <strong>in</strong> theliterature as "chemical chaperones", have spurred considerablebiotechnological <strong>in</strong>terest <strong>in</strong> ecto<strong>in</strong>es. They have already found practicaluses <strong>in</strong> cosmetics, sk<strong>in</strong>-care products, as prote<strong>in</strong>- and whole cell stabilizersand medical applications are currently envisioned as well. Ecto<strong>in</strong>esynthesis is osmotically stimulated and catalyzed by the EctABC enzymes.A subset of the ecto<strong>in</strong>e producers typically convert part of the newlyproduced ecto<strong>in</strong>e <strong>in</strong>to 5-hydoxyecto<strong>in</strong>e through the enzymatic action of theEctD hydroxylase, a member of the non-heme iron (II) and 2-oxoglutaratedependentdeoxygenase super-family (1, 2). Although closely related <strong>in</strong>chemical structure, ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e possess differentproperties, with 5-hydroxyecto<strong>in</strong>e be<strong>in</strong>g often the more effectivestabiliz<strong>in</strong>g compound and the more potent cellular stress protectant (3).Ecto<strong>in</strong>e hydroxylases from Virgibacillus salexigens (1) and Streptomycescoelicolor (3) have been biochemically characterized and a high-resolutioncrystal structure of the EctD prote<strong>in</strong> from V. salexigens has been solved(2). This crystal structure revealed the position<strong>in</strong>g of the iron ligand with<strong>in</strong>the active site of the EctD enzyme but it conta<strong>in</strong>ed neither the substrateecto<strong>in</strong>e nor the co-substrate 2-oxoglutarate. To advance our biochemicalunderstand<strong>in</strong>g of this enzyme and to characterize EctD-type prote<strong>in</strong>s forfurther crystallographic studies, we have characterized the properties ofecto<strong>in</strong>e hydroxylases from microorganisms that can colonize habitats withBIOspektrum | Tagungsband <strong>2012</strong>


93extremes <strong>in</strong> sal<strong>in</strong>ity (Halomonas elongata), pH (Alkalilimnicola ehrlichii;Acidiphilium cryptum) or temperature (Sph<strong>in</strong>gopyxis alaskensis; Geobacillussp. Y412MC10). Although the k<strong>in</strong>etic parameters and catalytic properties of thecharacterized ecto<strong>in</strong>e hydroxylases from these extremophiles are very similar,some of studied EctD prote<strong>in</strong>s are very robust enzymes that makes them<strong>in</strong>terest<strong>in</strong>g candidates as catalyst <strong>in</strong> recomb<strong>in</strong>ant-DNA based whole-cellbiotransformation processes and for structural analysis.(1) Bursy, J., Pierik, A.J., Pica, N. and Bremer, E. (2007). J. Biol. Chem. 282:31147-31155.(2) Reuter, K., Pittelkow, M., Bursy, J., He<strong>in</strong>e, A., Craan, T. and Bremer, E. (2010). PLoS ONE5(5):e10647.(3) Bursy, J., Kuhlmann, A.U., Pittelkow, M., Hartmann, H., Jebbar, M., Pierik, A.J. and Bremer, E. (2008).Appl. Env. Microbiol. 74:7286-7296.MEP003Structure-guided site-directed mutagenesis of the ecto<strong>in</strong>ehydroxylase from the moderate halophile Virgibacillus salexigensM. Pittelkow 1 , N. Widderich* 1 , W. Buckel 1,2 , E. Bremer 11 Philipps-University Marburg, Biology, Marburg, Germany2 Max Planck Institute for Terrestrial Microbiology, Marburg, GermanyIncreases <strong>in</strong> the external sal<strong>in</strong>ity triggers water efflux from the microbialcell and the ensu<strong>in</strong>g dehydration of the cytoplasm negatively affects cellgrowth and impairs survival. To balance the osmotic gradient across thecytoplasmic membrane, many microorganisms amass a selected class oforganic compounds, the "compatible solutes". One of the most widely usedcompatible solutes by members of the Bacteria is the tetrahydropyrimid<strong>in</strong>eecto<strong>in</strong>e and its derivative 5-hydroxyecto<strong>in</strong>e. These two compatible soluteshave attracted considerable biotechnological attention, are produced <strong>in</strong>large-scale fermentation processes employ<strong>in</strong>g halotolerant microorganismsand are commercially used <strong>in</strong> sk<strong>in</strong>-care products, as prote<strong>in</strong> and cellstabilizers and medical applications of ecto<strong>in</strong>es are envisioned. About athird of all microbial ecto<strong>in</strong>e producers also synthesize 5-hydroxyecto<strong>in</strong>efrom ecto<strong>in</strong>e. 5-hydroxyecto<strong>in</strong>e is synthesized by a stereo-specifichydroxylase (EctD) that is a member of the non-heme iron (II) and 2-oxoglutarate-dependent dioxygenase super-family (1). Microbial EctDtypeprote<strong>in</strong>s are closely related to each other and belong structurally to thePhyH-subgroup with<strong>in</strong> the dioxygenase super-family. This was disclosedby the recently reported high-resolution crystal structure of the ecto<strong>in</strong>ehydroxylase from the moderate halophile Virgibacillus salexigens (2). Thisstructure revealed the unambiguous position<strong>in</strong>g of the iron ligand with<strong>in</strong>the active site of the EctD enzyme by an evolutionarily conserved ironb<strong>in</strong>d<strong>in</strong>gmotif, the so-called 2-His-1-carboxylase facial triad. However, theobta<strong>in</strong>ed crystal structure conta<strong>in</strong>ed neither the substrate ecto<strong>in</strong>e nor theco-substrate 2-oxoglutarate. Here we used the crystal structure of the V.salexigens EctD enzyme as a template to functionally probe, via sitedirectedmutagenesis, am<strong>in</strong>o acid residues that seemed important for thecorrect position<strong>in</strong>g of the ligand ecto<strong>in</strong>e and the co-substrate 2-oxoglutatewith respect to the catalytically critical iron-ligand. These studies allowedus to map the spatial organization of the active site of EctD that is buried<strong>in</strong> a deep caveat formed by the monomeric EctD prote<strong>in</strong>. A detailedreaction scheme for the stereo-chemical hydroxylation of ecto<strong>in</strong>e to 5-hydroxyecto<strong>in</strong>e catalyzed by the EctD enzyme will be presented.(1) Bursy, J., Pierik, A.J., Pica, N. and Bremer, E. (2007). J. Biol. Chem. 282:31147-31155.(2) Reuter, K. Pittelkow, M., Bursy, J., He<strong>in</strong>e, A., Craan, T. and Bremer, E. (2010). PLoS ONE 5(5):e10647MEP004Biosynthesis, Partial Purification and Characterization ofInvertase from Sacchromyces cerevisae by Solid-StateFermentation of Carrot PeelsZ.-E. Bilal*, H. AshrafUniversity of the Punjab, Agricultural sciences, Lahore, PakistanPotential of different Sacchromyces species,cultivated under solid-statefermentation (SSF) us<strong>in</strong>g carrot peels (Daucus carota L.) as substrate was<strong>in</strong>vestigated. The highest productivity of <strong>in</strong>vertase (7.95 U mL -1 ) wasachieved by us<strong>in</strong>g Sacchromyces cerevisae on 90% <strong>in</strong>itial moisture contentwith 2.5 ml <strong>in</strong>oculum size after 72 h of <strong>in</strong>cubation period. The enzyme waspurified about 1.42 fold by ammonium sulphate precipitation. It showedthermal stability from 20-40 o C over a pH range 5.5 to 6.5 with maximumactivity at pH 5.5 and 50° C. The enzyme was highly active towardssucrose at both concentrations viz: 0.1 M and 0.5 M, but it showed lessactivity towards glycerol. It was completely <strong>in</strong>hibited by Hg 2+ (1mM) andslightly stimulated by Co 2+ and Na +1 at the same concentration.a unique active site iron-guanylylpyrid<strong>in</strong>ol (FeGP) cofactor, <strong>in</strong> which alow-sp<strong>in</strong> Fe II is coord<strong>in</strong>ated by a pyrid<strong>in</strong>ol nitrogen, an acyl group, twocarbon monoxide, and the sulfur of the enzyme’s cyste<strong>in</strong>e. Here, westudied the biosynthesis of the FeGP cofactor by follow<strong>in</strong>g the<strong>in</strong>corporation of 13 C and 2 H from labeled precursors <strong>in</strong>to the cofactor bygrow<strong>in</strong>g methanogenic archaea and by subsequent NMR, MALDI-TOF-MS and/or ESI-FT-ICR-MS analysis [s1] of the isolated cofactor andreference compounds. The cofactors pyrid<strong>in</strong>ol moiety was found to besynthesized from three C-1 of acetate, two C-2 of acetate, two C-1 ofpyruvate, one carbon from the methyl group of l-methion<strong>in</strong>e, and onecarbon directly from CO 2. The metabolic orig<strong>in</strong> of the two CO- ligandswas CO 2 rather than C-1 or C-2 of acetate or pyruvate exclud<strong>in</strong>g that the twoCO are derived from dehydroglyc<strong>in</strong>e as has previously been shown for the COligands<strong>in</strong> [FeFe]-hydrogenases. A formation of the CO from CO 2 via directreduction catalyzed by a nickel-dependent CO dehydrogenase or from formatecould also be excluded. When the cells were grown <strong>in</strong> the presence of 13 CO thetwo CO-ligands and the acyl group became 13 C labeled, <strong>in</strong>dicat<strong>in</strong>g that free COis either an <strong>in</strong>termediate <strong>in</strong> their synthesis or that free CO can exchange withthese iron-bound ligands. Based on these f<strong>in</strong>d<strong>in</strong>gs, we propose pathways ofhow the FeGP cofactor might be synthesized.MEP006A recomb<strong>in</strong>ant system for the biotransfomation of ecto<strong>in</strong>e <strong>in</strong>tothe chemical chaperone 5-hydroxyecto<strong>in</strong>eN. Stöveken*, N. Widderich, M. Pittelkow, E. BremerPhilipps University Marburg, Laboratory of Microbiology, Marburg,GermanyEcto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e are an important class of compatible solutesthat are synthesized by many microorganisms <strong>in</strong> response to high sal<strong>in</strong>ity.Some ecto<strong>in</strong>e producers transform part of the newly formed ecto<strong>in</strong>e <strong>in</strong>to 5-hydroxyecto<strong>in</strong>e through the enzymatic action of the ecto<strong>in</strong>e hydroxylase(EctD), a non-heme iron (II)- and 2-oxoglutarate dependent dioxygenase(1, 2). Ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e have attracted considerablybiotechnological <strong>in</strong>terest s<strong>in</strong>ce they possess <strong>in</strong>terest<strong>in</strong>g stabiliz<strong>in</strong>gproperties for prote<strong>in</strong>s, nucleic acids, membranes and whole cells.Although closely related <strong>in</strong> chemical structure, ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e have different properties, with 5-hydroxyecto<strong>in</strong>e be<strong>in</strong>goften the more effective stabiliz<strong>in</strong>g compound and the more potent cellularstress protectant. Currently, ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e arebiotechnologically produced by large-scale fermentation of halotolerantmicroorganisms us<strong>in</strong>g the bacterial milk<strong>in</strong>g process. Synthesis of 5-hydroxyecto<strong>in</strong>e depends on the prior production of ecto<strong>in</strong>e, a processwhose efficiency depends on various environmental conditions and thegrowth phase of the culture. As a consequence, ecto<strong>in</strong>e/5-hydroxyecto<strong>in</strong>eproducers often conta<strong>in</strong> a mixture of these compounds and this requirestime-consum<strong>in</strong>g and costly separation procedures dur<strong>in</strong>g the downstreamprocesses for the biotechnological production of pure ecto<strong>in</strong>e and 5-hydroxyecto<strong>in</strong>e. Recomb<strong>in</strong>ant-DNA based biotransformation processesmight be an <strong>in</strong>terest<strong>in</strong>g alternative to produce 5-hydroxyecto<strong>in</strong>e.Escherichia coli can import ecto<strong>in</strong>e under osmotic stress conditions (viathe ProP and ProU transporters) but it cannot synthesize it. We set up a cellfactory of an E. coli stra<strong>in</strong> that is unable to synthesize its naturalcompatible solute trehalose and that carries on a plasmid heterologousectD genes whose expression can be triggered by add<strong>in</strong>g an <strong>in</strong>ducer to thegrowth medium. This biotransformation process was optimized by us<strong>in</strong>gdifferent expression stra<strong>in</strong>s, various cultivation conditions and byemploy<strong>in</strong>g EctD prote<strong>in</strong>s from various extremophiles. We found that ecto<strong>in</strong>e iseffectively taken up by these recomb<strong>in</strong>ant E. coli cells, converted efficiently<strong>in</strong>to 5-hydroxyecto<strong>in</strong>e and that a substantial portion of the newly produced 5-hydroxyecto<strong>in</strong>e is secreted <strong>in</strong>to the growth medium.(1)Bursy, J., Pierik, A.J., Pica, N. and Bremer, E.(2007) Osmotically <strong>in</strong>duced synthesis of thecompatible solute hydroxyecto<strong>in</strong>e is mediated by an evolutionarily conserved ecto<strong>in</strong>e hydroxylase.J. Biol. Chem.282:31147-31155.(2)Reuter, K., Pittelkow, M., Bursy, J., He<strong>in</strong>e, A., Craan, T. and Bremer, E.(2010) Synthesis of 5-hydroxyecto<strong>in</strong>e from ecto<strong>in</strong>e: crystal structure of the non-heme iron (II) and 2-oxoglutaratedependentdioxygenase EctD. PLoS ONE 5(5):e10647.MEP005Biosynthesis of the iron-guanylylpyrid<strong>in</strong>ol cofactor of [Fe]-hydrogenase <strong>in</strong> methanogenic archaea as elucidated by stableisotopelabel<strong>in</strong>gM. Schick*, X. Xie, U. L<strong>in</strong>ne, J. Kahnt, S. ShimaMPI für terrestrische Mikrobiologie, Biochemie, Marburg, Germany[Fe]-hydrogenase catalyzes the reversible hydride transfer from H 2 tomethenyltetrahydromethanopther<strong>in</strong>, which is an <strong>in</strong>termediate <strong>in</strong> methaneformation from H 2 and CO 2 <strong>in</strong> methanogenic archaea. The enzyme harborsBIOspektrum | Tagungsband <strong>2012</strong>


94MEP007Identification and toxigenic potential of a cyanobacterialstra<strong>in</strong> (nostoc sp.)B. Nowruzi* 1 , R.A. Khavari-Nejad 1,2 , K. Sivonen 3 , B. Kazemi 4,5 , F. Najafi 1 ,T. Nejadsattari 21 Tarbiat Moallem University, Department of Biology, Faculty of Science,Tehran, Iran, Islamic Republic of2 Islamic Azad University, Department of Biology, Science and ResearchBranch, Tehran, Iran, Islamic Republic of3 University of Hels<strong>in</strong>ki, Department of Applied Chemistry and Microbiology,Hels<strong>in</strong>ki, F<strong>in</strong>land4 Shahid Beheshti University of Medical Sciences, Department of Biotechnology,Tehran, Iran, Islamic Republic of5 Shahid Beheshti University of Medical Sciences, Cellular and MolecularBiology Research Center, Tehran, Iran, Islamic Republic ofCyanobacteria are well known for their production of a multitude of highlytoxic and depsipeptides or alkaloids. Among the photosynthetic microorganisms,cyanobacteria belong<strong>in</strong>g to the genus Nostoc are regarded as goodcandidates for produc<strong>in</strong>g biologically active secondary metabolites, whichare highly toxic to humans and other animals.The current scenario of toxicity has become more and more threaten<strong>in</strong>g andimportance <strong>in</strong> recent years due to <strong>in</strong>crease <strong>in</strong> the rate of deaths <strong>in</strong> animalsespecially can<strong>in</strong>e and cows. Tox<strong>in</strong>-produc<strong>in</strong>g cyanobacteria represent a healthhazard, and can cause death, ma<strong>in</strong>ly from liver damage, upon <strong>in</strong>gestion ofdr<strong>in</strong>k<strong>in</strong>g water <strong>in</strong>fested with cyanobacterial supplement products.This prompted us to do an endeavor towards to molecular detection oftox<strong>in</strong>s, microcyst<strong>in</strong>, anatox<strong>in</strong>- a, and other bioactive compounds by PCRand LC-MS, <strong>in</strong> order to <strong>in</strong>troduc<strong>in</strong>g the probably causative compound <strong>in</strong><strong>in</strong>cidents of fatal can<strong>in</strong>e.Our molecular data, demonstrate that the studied stra<strong>in</strong> conta<strong>in</strong>s nosF geneand most likely products of unusual am<strong>in</strong>o acid 4-methylprol<strong>in</strong>e. Inaddition to validat<strong>in</strong>g the use of eight oligonucleotide primers set foridentification of potential of tox<strong>in</strong>/ bioactive compounds <strong>in</strong> Nostoc stra<strong>in</strong>,this study also def<strong>in</strong>es some chemical analyses, that will be useful asprobes for future studies of the synthesis of natural products <strong>in</strong> that stra<strong>in</strong>.Result of ion chromatograms and MS 2 fragmentation patterns showed that,while, there were three different peptidic compound classes(anabaenopept<strong>in</strong>, cryptophyc<strong>in</strong> and nostocyclopeptides), there were notany sign from the presence of anatox<strong>in</strong>- a, homoanatox<strong>in</strong>-a, hassallid<strong>in</strong> andmicrocyst<strong>in</strong> <strong>in</strong> that stra<strong>in</strong>. Moreover, the biochemical assays have aimed todetection of the presence of antifungal effects <strong>in</strong> cell extract. Thephylogeny of the stra<strong>in</strong> was also <strong>in</strong>vestigated by comb<strong>in</strong>ation genetic andphenotypic relationships of the Nostoc stra<strong>in</strong>.In spite of presence these compounds, especially the depsipeptidescryptophyc<strong>in</strong>s, with strong cytotoxic effect on the tubul<strong>in</strong> polymerization, thereis no evidence of overt neurotoxicity or histopathological changes <strong>in</strong>dicative ofeffects on the bra<strong>in</strong> and peripheral nerves were reported <strong>in</strong> the dogs or rats.The above f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that cyanobacteria are a promis<strong>in</strong>g but stillunexplored natural resource possess<strong>in</strong>g many bioactive compounds usefulfor the pharmaceutical, food and cosmetic <strong>in</strong>dustry. Of the new drugsapproved between 1983 and 1994, up to 80% of antibacterial andanticancer drugs were derived from natural products. Indeed, bioactivecompounds of algae are of special <strong>in</strong>terest <strong>in</strong> the development of newenvironment harmless. The present study aims the prelim<strong>in</strong>ary<strong>in</strong>vestigation of antimicrobial and toxicity evaluation of Nostoc. Thismerits further and more detailed <strong>in</strong>vestigations.MEP008Molecular mechanisms of rhamnolipid synthesis <strong>in</strong>Pseudomonas aerug<strong>in</strong>osa dur<strong>in</strong>g batch fermentationA. Schmidberger* 1 , M. Henkel 2 , U. Obst 1 , R. Hausmann 2 , T. Schwartz 11 Karlsruhe Institute of Technology, Institute of Functional Interfaces;Department of Interface Microbiology, Eggenste<strong>in</strong>-Leopoldshafen, Germany2 Karlsruhe Institute of Technology, Institute of Process Eng<strong>in</strong>eer<strong>in</strong>g <strong>in</strong> LifeSciences; Section II: Technical Biology, Karlsruhe, GermanyPseudomonas aerug<strong>in</strong>osa is a gram-negative, opportunistic humanpathogen that produces the biosurfactant rhamnolipid amongst others assecondary metabolites dur<strong>in</strong>g stationary growth phase. The regulation ofrhamnolipid synthesis is tightly governed by a complex regulatory network<strong>in</strong>clud<strong>in</strong>g bacterial quorum sens<strong>in</strong>g systems as well as different sigma factors.Production of rhamnolipids is hence not solely dependent on cell density butalso nutrient availability and stress. The genes for mono- and di-rhamnolipidsynthesis, rhamnosyltransferases 1 and 2 respectively are encoded <strong>in</strong> onemutual operon which is under the direct control of the Rhl-quorum-sens<strong>in</strong>gsystem and stationary phase sigma factor RpoS. The Rhl-quorum-sens<strong>in</strong>gsystem <strong>in</strong> turn is controlled by the Las quorum-sens<strong>in</strong>g system and nitrogenlimitation sigma factor RpoN. Additional f<strong>in</strong>e-tun<strong>in</strong>g of the regulatory networkis achieved by various external negative and positive regulators.Production of rhamnolipids by Pseudomonas aerug<strong>in</strong>osa PAO1 dur<strong>in</strong>gbatch fermentation under nitrogen limitation with sunflower oil as carbonsource was recently demonstrated [1] and the production capacity has beenevaluated [2]. However, the molecular regulatory network dur<strong>in</strong>grhamnolipid batch fermentation is not yet fully elucidated on molecularregulation level.In this study we present gene expression data of the relevant systems<strong>in</strong>volved <strong>in</strong> the regulation of rhamnolipid production dur<strong>in</strong>g small-scalebatch cultivation under different medium compositions and nutrientsupplies us<strong>in</strong>g SYBR Green mediated quantitative real-time PCR.Furthermore, the gene expression dur<strong>in</strong>g the time course of a standard30L-batch fermentation is monitored.The aim of this project is the optimisation of rhamnolipid production underlarge-scale conditions for commercial production processes. Fullcomprehension of the molecular regulatory mechanisms beh<strong>in</strong>drhamnolipid synthesis is the key to manipulat<strong>in</strong>g and improv<strong>in</strong>g therhamnolipid production capacities.1. Muller, M.M., et al.,Pseudomonas aerug<strong>in</strong>osa PAO1 as a model for rhamnolipid production <strong>in</strong>bioreactor systems.Appl Microbiol Biotechnol, 2010.87(1): p. 167-74.2. Muller, M.M., et al.,Evaluation of rhamnolipid production capacity of Pseudomonas aerug<strong>in</strong>osaPAO1 <strong>in</strong> comparison to the rhamnolipid over-producer stra<strong>in</strong>s DSM 7108 and DSM 2874.ApplMicrobiol Biotechnol, 2011.89(3): p. 585-92.MEP009Characterization of an antimicrobial substance produced byBacillus pseudomycoides DSM 12442S. Basi-Chiplau*, J. Disch<strong>in</strong>ger, M. Josten, C. Szekat, H.-G. Sahl, G. BierbaumInstitute of Medical Microbiology Immunology and Parasitology,Microbiology, Bonn, GermanyLantibiotics are lanthion<strong>in</strong>e conta<strong>in</strong><strong>in</strong>g antimicrobial peptides. Lantibioticspossess structural genes which encode <strong>in</strong>active prepeptides. Dur<strong>in</strong>gmaturation, the prepeptide undergoes posttranslational modifications<strong>in</strong>clud<strong>in</strong>g the <strong>in</strong>troduction of rare am<strong>in</strong>o acids as lanthion<strong>in</strong>e andmethyllanthione as well as the proteolytic removal of the leader. The genecluster <strong>in</strong>cludes structural (lanA) and other genes which are <strong>in</strong>volved <strong>in</strong>lantibiotic modification (lanM,lanB, lanC,lanP), regulation (lanR,lanK),export (lanT (P)) and immunity (lanEFG).Genomic data m<strong>in</strong><strong>in</strong>g showed a new complete lantibiotic gene cluster <strong>in</strong>the Gram-positive bacterium Bacillus pseudomycoidesDSM 12442. Anantimicrobial activity was detected only <strong>in</strong> an isopropanol extract of thecell pellet but not <strong>in</strong> the culture supernatant. In agar well diffusion assays,it showed activity aga<strong>in</strong>st many Gram-positive bacteria, <strong>in</strong>clud<strong>in</strong>g bacilli,streptococci and staphylococci, whereas no activity was observed aga<strong>in</strong>stGram-negative bacteria. The antimicrobial substance was relatively stableat high temperature ( 100 0 C), low pH (< 7) and <strong>in</strong> organic solvents (e.g.acetone, ethanol, etc.). The partially purified substance was predicted tohave a mass of 2786.59 Da by MALDI-TOF analyis.To demonstrate the connection between the lantibiotic gene cluster and theantimicrobial activity,<strong>in</strong> vitrostudies and heterologous expressionoflanAandlanMwere conducted. Clones of both genes were constructed. Sofar, the LanM has been successfully expressed and purified. LanAexpression and purification is under progress. A factor Xa cleavage sitewas <strong>in</strong>troduced <strong>in</strong>to LanA, so that the leader peptide can be removed fromthe modified peptide to <strong>in</strong>vestigate its biological activity.MEP010Heterologous expression of synthetic lantibiotic libraries <strong>in</strong> S.carnosusS. Perconti* 1 , M. Urbanczyk 1 , P. Popella 1 , M. Nega 1 , B. Krismer 2 , M. Schlag 1 ,F. Götz 11 University of Tüb<strong>in</strong>gen, Microbial Genetics, Tüb<strong>in</strong>gen, Germany2 University of Tüb<strong>in</strong>gen, Medical Microbiology and Hygiene, Tüb<strong>in</strong>gen,GermanyMany gram-positive bacteria produce short peptides with antimicrobialactivity - so called “lantibiotics”. They are characterized by unusual am<strong>in</strong>oacids and lanthion<strong>in</strong>e r<strong>in</strong>gs that are both <strong>in</strong>troduced by posttranslationalmodifications. Lantibiotics primary act by b<strong>in</strong>d<strong>in</strong>g to the cell wallprecursor Lipid II, thus <strong>in</strong>duc<strong>in</strong>g pores <strong>in</strong> the cytoplasmic membrane ofother gram-positive bacteria. All lantibiotics are synthesized as <strong>in</strong>activeprecursors and subsequently activated through proteolytic cleavage byspecific proteases. The type A lantibiotic galliderm<strong>in</strong>, produced byStaphylococcus gall<strong>in</strong>arum, is considered for the treatment of acne(Propionibacterium acnes) and staphylococcal <strong>in</strong>fections like mastitis.We <strong>in</strong>troduced the relevant biosynthesis genes gdmBCDHTQ and thestructural gene gdmA on separate plasmids <strong>in</strong> S. carnosus TM300. Byus<strong>in</strong>g bioactivity assays as well as HPLC- and MS-analysis, wedemonstrated that the modified S. carnosus is able to produce thegalliderm<strong>in</strong> precursor that can be activated by the specific protease GdmP.This two-plasmid expression system is now used as a tool for theexpression of a synthetic gdmA-library <strong>in</strong> order to identify improvedgalliderm<strong>in</strong>-derivatives. In a similar approach, other lantibiotics such asnis<strong>in</strong> can be produced <strong>in</strong> S. carnosus. With this efficient system, we expectto produce and identify a high variety of novel lantibiotics.BIOspektrum | Tagungsband <strong>2012</strong>


95MEP011Development of Fed-Batch Strategies for AntibioticProduction of Act<strong>in</strong>oplanes friuliensisA. Ste<strong>in</strong>kämper* 1 , A. Wolf 2 , R. Masuch 2 , J. Hofmann 1,2 , K. Mauch 3 ,J. Schmid 3 , D. Schwartz 1 , R. Biener 11 University of Applied Sciences Essl<strong>in</strong>gen, Natural Sciences,Biotechnology, Essl<strong>in</strong>gen, Germany2 micro-biolytics, Essl<strong>in</strong>gen, Germany3 Insilico Biotechnology, Stuttgart, GermanyAct<strong>in</strong>oplanes friuliensis, a rare act<strong>in</strong>omycete, is the producer stra<strong>in</strong> offriulimic<strong>in</strong>, a lipopeptide antibiotic which is active aga<strong>in</strong>st a broad range ofmultiresistant gram-positive bacteria such as methicill<strong>in</strong>-resistantEnterococcus spec. and Staphylococcus aureus (MRE, MRSA) stra<strong>in</strong>s(Aretz, 2000).In order to improve the understand<strong>in</strong>g of the complex metabolic networkof the friulimic<strong>in</strong> biosynthesis <strong>in</strong> A. friuliensis, a genome-scale networkmodel will be developed and characterized (Insilico Biotechnology). Tovalidate the model and to perform metabolic flux analysis, data fromcultivations of A. friuliensis are collected and applied to this model. Thecultivations are carried out <strong>in</strong> a bioreactor under def<strong>in</strong>ed and controlledconditions. A chemically def<strong>in</strong>ed production medium, especiallydeveloped for A. friuliensis, is used. This def<strong>in</strong>ed medium is a prerequisitefor the quantitative analysis of cell metabolism dur<strong>in</strong>g the cultivations andis also necessary to verify a new developed middle <strong>in</strong>frared spectroscopymethod (AquaSpec Technology, micro-biolytics GmbH). With thismethod, all known substrates and metabolites can be measured <strong>in</strong> onesample.By develop<strong>in</strong>g fed-batch cultivation strategies, the production of thefriulimic<strong>in</strong> <strong>in</strong>hibit<strong>in</strong>g by-product ammonium could be prevented.The validated flux model, comb<strong>in</strong>ed with data of cultivation andtranscription analysis, will subsequently give h<strong>in</strong>ts for directed geneticmodifications and optimization of process control strategies with theobjective to redirect metabolic fluxes towards friulimic<strong>in</strong> production.Aretz, W.; Meiwes, J.; Seibert, G.; Vobis, G.; W<strong>in</strong>k, J., J Antibiot (Tokyo), 2000, 53, 807-815.7MEP012The catalytic and regulatory role of aconitase AcnA <strong>in</strong>Streptomyces viridochromogenes Tü494.E. MichtaUniversity of Tüb<strong>in</strong>gen, MicrobiologyBiotechnology, Tüb<strong>in</strong>gen, GermanyIn many organisms, aconitases have dual functions: they serve as primarymetabolisms enzymes <strong>in</strong> the tricarboxylic acide cycle and as regulators ofiron metabolism and oxidative stress response. Inactivation of theaconitase AcnA <strong>in</strong> Streptomyces viridochromogenes Tü494, the producerof herbicide antibiotic phosph<strong>in</strong>othricyl-alanyl-alan<strong>in</strong> (phosph<strong>in</strong>othric<strong>in</strong>tripeptide=PTT), leads to strong defects <strong>in</strong> physiological andmorphological differentiation. This mutant (MacnA) fails <strong>in</strong> sporulationand antibiotic production which are characteristic secondary metabolismspecific properties of sreptomyces. Furthemore, AcnA, <strong>in</strong> addition to itscatalytic function, is capable of b<strong>in</strong>d<strong>in</strong>g to iron responsive elements (IREs)thus alter<strong>in</strong>g the m-RNA stability <strong>in</strong> a similar mechanism described for theiron regulatory prote<strong>in</strong>s (IRPs). A mutation prevent<strong>in</strong>g the formation of the[4Fe-4S] cluster of the aconitase (HisacnA1(C538A)) abolishes itscatalytic activity, but does not <strong>in</strong>hibit its RNA-b<strong>in</strong>d<strong>in</strong>g ability. In contrast,HisacnA2(125-129)<strong>in</strong> which 5 highly conserved am<strong>in</strong>oacids of AcnA aredeleted shows an higher aff<strong>in</strong>ity to IREs than HisacnA. Furthermore,expression of HisacnA2 (125-129) <strong>in</strong>stead of native acnA gene results <strong>in</strong> astra<strong>in</strong> that sporulates earlier and has <strong>in</strong>creaseg PTT production than wild type.This correlates with the improved RNA-b<strong>in</strong>d<strong>in</strong>g ability of HisacnA2(125-129). In silico analysis of the S. viridochromogenes genome revealed severalIRE-like structures e.g. upstream of recA gene, <strong>in</strong>volved <strong>in</strong> the bacterial SOSresponse, ftsZ gene, required for the onset of sporulation <strong>in</strong> streptomyces. Theb<strong>in</strong>d<strong>in</strong>g of AcnA to these IREs is confirmed <strong>in</strong> gel shift assays. In conclusion,the demonstrated regulatory function of AcnA on the posttranscriptional levelprovides a new, so far unknown and unexploited form of regulation ofsecondary metabolism <strong>in</strong> streptomyces which might serve as possibility tooptimize antibiotic production.MEP013Metabolic eng<strong>in</strong>eer<strong>in</strong>g of Corynebacterium glutamicum for theproduction of -alan<strong>in</strong>eJ.P. Krause* 1 , D. Rittmann 2 , A. Hadiati 1 , C. Ziert 1 , V.F. Wendisch 11 Uni Bielefeld, Genetics of Prokaryotes, Bielefeld, Germany2 Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften,Jülich, Germany-alan<strong>in</strong>e is commercially available as a nutrition supplement for athletesand is a possible <strong>in</strong>termediate for the fermentative production of acrylicacid. Here, we report about the metabolic eng<strong>in</strong>eer<strong>in</strong>g of Corynebacteriumglutamicum for the production of -alan<strong>in</strong>e. Biomass formation andgrowth rate of C. glutamicum cultivated <strong>in</strong> glucose m<strong>in</strong>imal media werenot altered by supplementation with up to 200 mM -alan<strong>in</strong>e. Productionof -alan<strong>in</strong>e with C. glutamicum was achieved by overexpression of theaspartate 1-decarboxylase gene panD. Dur<strong>in</strong>g growth <strong>in</strong> glucose m<strong>in</strong>imalmedia -alan<strong>in</strong>e accumulated <strong>in</strong> the culture supernatant of cellsoverexpress<strong>in</strong>g panD, but not of the empty vector control stra<strong>in</strong>s. Toenhance production of -alan<strong>in</strong>e the panBC-operon cod<strong>in</strong>g for 3-methyl-2-oxobutanoate hydroxymethyltransferase and pantoate--alan<strong>in</strong>e ligase wasdeleted <strong>in</strong> C. glutamicum to avoid the dra<strong>in</strong> of -alan<strong>in</strong>e <strong>in</strong>to thepantothenate/Coenzyme A-pathway, thereby caus<strong>in</strong>g a pantothenateauxotrophy. Deletion of panBC <strong>in</strong> C. glutamicum R127 led to a 12 % <strong>in</strong>creaseof -alan<strong>in</strong>e production. However, supplementation of the auxotrophic stra<strong>in</strong>with less than 3 M pantothenate resulted <strong>in</strong> decreased biomass formation andfavored production of -alan<strong>in</strong>e over -alan<strong>in</strong>e. -alan<strong>in</strong>e occurred as abyproduct <strong>in</strong> all production experiments. To lower the byproduct formation thegene alaT cod<strong>in</strong>g for the ma<strong>in</strong> -alan<strong>in</strong>e-synthesiz<strong>in</strong>g transam<strong>in</strong>ase <strong>in</strong> C.glutamicum was deleted <strong>in</strong> comb<strong>in</strong>ation with panBC. The result<strong>in</strong>g so far mostpromis<strong>in</strong>g stra<strong>in</strong> C. glutamicum ATCC13032panBCalaT(pVWEx1-panD)produced 20 mM -alan<strong>in</strong>e and 2 mM -alan<strong>in</strong>e as byproduct from CGXIImedia with 4 % glucose as carbon and energy source.MEP014Secondary metabolites of fungi from the German Wadden SeaJ. Silber*, B. Ohlendorf, A. Erhard, A. Labes, J.F. ImhoffKieler Wirkstoff-Zentrum am GEOMAR, Mar<strong>in</strong>e Microbiology, Kiel, GermanyThe Wadden Sea forms an <strong>in</strong>terest<strong>in</strong>g habitat s<strong>in</strong>ce it underlies permanentchanges due to the tidal <strong>in</strong>fluence. Fungi liv<strong>in</strong>g <strong>in</strong> such an environmentpresumably need a high metabolic versatility <strong>in</strong> order to survive. Becausemetabolic versatility also may relate to secondary metabolite biosynthesis,fungal stra<strong>in</strong>s isolated from the German Wadden Sea were <strong>in</strong>vestigatedwith regard to secondary metabolite production. The 109 stra<strong>in</strong>s isolatedfrom sediments were grown under vary<strong>in</strong>g culture conditions, <strong>in</strong> shaken orstatic cultures and <strong>in</strong> different media. Cultures were extracted apply<strong>in</strong>gliquid-liquid extraction, and extracts were analysed by HPLC-DAD/MS.The results displayed a strong <strong>in</strong>fluence of the media composition onmetabolite production. One of the fungal stra<strong>in</strong>s showed exceptionallyattractive metabolite profiles and was selected for detailed <strong>in</strong>vestigations.The structures of several of the purified compounds of this stra<strong>in</strong> wereidentified by NMR spectroscopy as the known substances tric<strong>in</strong>onoic acid(Bashyal and Gunatilaka, 2010), 6-hydroxymelle<strong>in</strong>, 6-methoxymelle<strong>in</strong>(Dunn et al. 1979), orbutic<strong>in</strong>, 32-hydroxyorbutic<strong>in</strong>, antibiotic 15G256-2,15G256-2, and 15G256 (Schl<strong>in</strong>gmann et al. 2002). More importantly,six new compounds were elucidated <strong>in</strong> structure and bioactivity assays ofthese substances exhibited antibacterial and cytotoxic properties with thepotential of possible biotechnological application.Bashyal, B.P., Gunatilaka, A.A.L. (2010). Tric<strong>in</strong>onoic acid and tric<strong>in</strong>diol, two new irregularsesquiterpenes from an endophytic stra<strong>in</strong> of Fusarium tric<strong>in</strong>ctum. Nat. Prod. Res. 24: 349-356Dunn, A.W., Johnstone, R.A.W., K<strong>in</strong>g, T.J.,Less<strong>in</strong>ger, L., Sklarz, B. (1979). Fungal Metabolites.Part 7. Structures of C25 Compounds from Aspergillus variecolor. J.C.S. Perk<strong>in</strong> I: 2113-2117Schl<strong>in</strong>gmann, G., Milne, L., Carter, G.T. (2002). Isolation and identification of antifungalpolyesters from the mar<strong>in</strong>e fungus Hypoxylon oceanicum LL-15G256. Tetrahedron 58: 6825-6835MEP015Terpenoids from Corynebacterium glutamicumS.A.E. Heider*, M. Metzler, V. Erdmann, P. Peters-Wendisch, V.F. WendischUniversität Bielefeld, Faculty of Biology, Bielefeld, GermanyTerpenoids are the most diverse class of natural products compris<strong>in</strong>g morethan 40,000 of structurally different compounds. They naturally occur <strong>in</strong>microbes, animals and a wide range of plant species, where terpenes oftenare produced as secondary metabolites. Terpenoids exert a huge variety ofbiochemical properties and physiological functions. Therefore theircommercial applicability is not fully explored. At present terpenoidproducts are used <strong>in</strong> cancer therapy, treatment of <strong>in</strong>fectious diseases, cropprotection, food additives, flavors and cosmetics, but the large-scalechemical synthesis is often difficult or costly due to their structuralcomplexity and the isolation from the natural sources usually does notyield the desired quantities. For that reason the microbial biosynthesis is apromis<strong>in</strong>g approach for the production. Moreover, all terpenoids derivefrom the same universal precursor molecule isopenthenyl pyrophosphate(IPP) or its isomer dimethylallyl pyrophosphate (DMPP).In this work, the bacterium Corynebacterium glutamicum is analysed withrespect to the production of carotenoids, terpene pigments of greatcommercial <strong>in</strong>terest. The Gram positive C. glutamicum is used for theannual production of more than 3,000,000 tons of am<strong>in</strong>o acids. Thepredom<strong>in</strong>ant carotenoids <strong>in</strong> C. glutamicum are C 50-terpenedecaprenoxanth<strong>in</strong> and its glucoside. The yellow pigmented C. glutamicumpossesses a carotenogenic gene cluster for the complete pathway ofdecaprenoxanth<strong>in</strong> synthesis start<strong>in</strong>g from the precursors IPP and DMPP. Aseries of s<strong>in</strong>gle gene deletions verified the proposed pathway lead<strong>in</strong>g todecaprenoxanth<strong>in</strong> as the respective precursor carotenoids accumulatedwhich sometimes resulted <strong>in</strong> a changed cell color. Overexpression of dxs,encod<strong>in</strong>g 1-deoxy-D-xylulose-5-phosphat synthase, the first enzyme of theendogenous non-mevalonate pathway, slightly enhanced accumulation oflycopene <strong>in</strong> -crtXYXYX mutant. The possible <strong>in</strong>fluence of accumulat<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


96various carotenoids <strong>in</strong>stead of decaprenoxanth<strong>in</strong> on the growth behavior,sensitivity towards UV or oxidants will be assessed.MEP016Determ<strong>in</strong>ation of <strong>in</strong>fluenc<strong>in</strong>g factors on mycotox<strong>in</strong> production<strong>in</strong> Alternaria alternataK. Brzonkalik*, D. Hümmer, C. Syldatk, A. NeumannKarlsruhe Institute of Technology (KIT), Institute of Process Eng<strong>in</strong>eer<strong>in</strong>g<strong>in</strong> Life Sciences, Section II: Technical Biology, Karlsruhe, GermanyBlack-moulds of the genus Alternaria contam<strong>in</strong>ate many foodstuffs andagricultural products. In addition to the economical damage these fungican produce harmful secondary metabolites, the Alternaria tox<strong>in</strong>s. Some ofthese mycotox<strong>in</strong>s such as alternariol (AOH), alternariolmonomethylether(AME), altenuene (ALT) and tenuazonic acid (TA) have been described ascytotoxic, genotoxic and mutagenic <strong>in</strong> vivo and <strong>in</strong> vitro. These mycotox<strong>in</strong>swere detected <strong>in</strong> many foodstuffs even under refrigeration conditions. Tom<strong>in</strong>imize the health risks of the consumers it is absolutely essential todeterm<strong>in</strong>e factors which <strong>in</strong>fluence mycotox<strong>in</strong> production of Alternariaalternata.For the determ<strong>in</strong>ation of <strong>in</strong>fluenc<strong>in</strong>g parameters a robust and reliableplatform process was developed 1 . The system proofed to be highlyreproducible and set the conditions for the monitor<strong>in</strong>g of substrateconsumption and mycotox<strong>in</strong> production. Additionally, variation of s<strong>in</strong>gleprocess parameters was possible. The <strong>in</strong>fluences of carbon and nitrogensource 2 , aeration rate 1 and pH value were exam<strong>in</strong>ed. By the choice ofcarbon and nitrogen source mycotox<strong>in</strong> concentration and composition canbe altered whereas due to the variation of aeration rate and pH value over abroad range optimum curves can be obta<strong>in</strong>ed. This study provides essentialdata to elucidate mycotox<strong>in</strong> production <strong>in</strong> Alternaria alternata.1 K. Brzonkalik, T. Herrl<strong>in</strong>g, C. Syldatk, A. Neumann. International Journal of Food Microbiology 147(2011), p. 120-126.2 K. Brzonkalik, T. Herrl<strong>in</strong>g, C. Syldatk, A. Neumann, AMB Express 1:27 (2011).MEP017Production of cytotoxic tryprostat<strong>in</strong> B analogues by us<strong>in</strong>g theprenyltransferase FtmPT1B. Woll<strong>in</strong>sky* 1 , A. Hamacher 2 , M. Kassack 2 , S.-M. Li 11 Philipps-Universität Marburg, Institut für Pharmazeutische Biologie undBiotechnologie, Marburg, Germany2 He<strong>in</strong>rich-He<strong>in</strong>e Universität Düseldorf, Institut für Pharmazeutische undMediz<strong>in</strong>ische Chemie, Düsseldorf, GermanyThe prenyltransferase FtmPT1 from Aspergillus fumigatus is <strong>in</strong>volved <strong>in</strong>the biosynthesis of verruculogen [1] . This enzyme catalyzes the regularprenylation of cyclo-L-Trp-L-Pro (brevianamide F) of the <strong>in</strong>dole nucleusat C-2 position, result<strong>in</strong>g <strong>in</strong> the formation of tryprostat<strong>in</strong> B, which wasreported to be active as a cell cycle <strong>in</strong>hibitor [2;3] . It has been shown thatFtmPT1 accepted, <strong>in</strong> addition to its natural substrate brevianamid F, sevenother tryptophan-conta<strong>in</strong><strong>in</strong>g cyclic dipeptides [2;4] .In this study fourteen tryptophan-conta<strong>in</strong><strong>in</strong>g cyclic dipeptides, <strong>in</strong>clud<strong>in</strong>gall the four diastereomers of cyclo-Trp-Pro and cyclo-Trp-Ala, wereconverted to their C2-prenylated derivatives by us<strong>in</strong>g the overproducedand purified FtmPT1. The enzyme products were isolated on HPLC <strong>in</strong>preparative scales and their structures were elucidated by NMR and MSanalyses. The cytotoxic effects of the produced compounds were testedwith several human cell l<strong>in</strong>es. The prenylated products showedsignificantly higher cytotoxicity aga<strong>in</strong>st these cell l<strong>in</strong>es than the respectivenon-prenylated cyclic dipeptides. Therefore we provided additionalevidence that the prenylation is essential for the biological activity oftryprostat<strong>in</strong> analogues [5] .[1.] N. Steffan, A. Grundmann, W.-B. Y<strong>in</strong>, A. Kremer, S.-M. Li, Curr.Med.Chem.2009,16, 218-231.[2.] A. Grundmann, S.-M. Li, Microbiology 2005,151, 2199-2207.[3.] C. B. Cui, H. Kakeya, G. Okada, R. Onose, H. Osada, J.Antibiot. 1996,49, 527-533.[4.] L. Wang, W.-B. Y<strong>in</strong>, S.-M. Li, X.-Q. Liu,Ch<strong>in</strong>. J.Biochem.Mol.Biol. 2009,25, 580-584.[5.] H. D. Ja<strong>in</strong>, C. Zhang, S. Zhou, H. Zhou and others, Bioorg.Med.Chem. 2008,16, 4626-4651.MEP018Identification of PyrG1 as a glycosyltransferase <strong>in</strong>volved <strong>in</strong> thebiosynthesis of pyrro<strong>in</strong>domyc<strong>in</strong>sE.P. Patallo* 1 , K.H. van Pée 1 , A.F. Brana 2 , C.J. Moody 31 University, Biochemistry, Dresden, Germany2 University, Microbiology, Oviedo, Spa<strong>in</strong>3 University, Nott<strong>in</strong>gham, United K<strong>in</strong>gdomStreptomyces rugosporus LL-42D005 produces pyrro<strong>in</strong>domyc<strong>in</strong> A and itschlor<strong>in</strong>ated derivative, pyrro<strong>in</strong>domyc<strong>in</strong> B [1]. Pyrro<strong>in</strong>domyc<strong>in</strong>s are activeaga<strong>in</strong>st Gram-positive bacteria such as methicill<strong>in</strong>-resistantStaphylococcus aureus and vancomyc<strong>in</strong>-resistant Enterococci stra<strong>in</strong>s [2].Pyrro<strong>in</strong>domyc<strong>in</strong>s are related to other compounds conta<strong>in</strong><strong>in</strong>g a tetramic ortetronic acid moiety spiro-l<strong>in</strong>ked to a cyclohexene r<strong>in</strong>g.Little is known about the biosynthesis of pyrro<strong>in</strong>domyc<strong>in</strong>s. Inpyrro<strong>in</strong>domyc<strong>in</strong> B biosynthesis PyrH, a FADH 2-dependent tryptophan 5-halogenase, chlor<strong>in</strong>ates tryptophan to yield 5-Cl-tryptophan the first<strong>in</strong>termediate <strong>in</strong> the biosynthesis of a three-r<strong>in</strong>g pyrrolo<strong>in</strong>dole structure. Nofurther <strong>in</strong>formation about the biosynthesis of pyrro<strong>in</strong>domyc<strong>in</strong> B isavailable. We cloned around 30 kb of the pyrro<strong>in</strong>domyc<strong>in</strong> biosyntheticgene cluster and we proposed the function of the ORFs we found. In orderto obta<strong>in</strong> <strong>in</strong>formation about the function of these putative genes,<strong>in</strong>activation experiments were performed. A putative glycosyltransferasegene (pyrG1) was identified and a deletion mutant was constructed. Theresultant mutant stra<strong>in</strong> Streptomyces rugosporus pyrG1 neither producespyrro<strong>in</strong>domyc<strong>in</strong> A nor pyrro<strong>in</strong>domyc<strong>in</strong> B anymore. Instead, a new ma<strong>in</strong>compound with no pyrro<strong>in</strong>domyc<strong>in</strong> UV-spectrum was detected. Isolation,purification and structure elucidation of the accumulated product allowedthe characterisation of this compound as the aglycon of the polyketidemoiety of pyrro<strong>in</strong>domyc<strong>in</strong> A and B and provides first <strong>in</strong>sight <strong>in</strong>to thepyrro<strong>in</strong>domyc<strong>in</strong> biosynthetic pathway.D<strong>in</strong>g et al.J. Antibiotics199447, 1250-1257S<strong>in</strong>gh et al.J. Antibiotics199447, 1258-1265Zehner et al.Chem. Biol.200512, 445-52MEP019Prenylation of hydroxynaphthalenes and flavonoids by <strong>in</strong>doleprenyltransferases from fungiX. Yu* 1 , X. Xie 2 , S.-M. Li 11 Philipps-Universität Marburg, Institut für Pharmazeutische Biologie undBiotechnologie, Marburg, Germany2 Philipps-Universität Marburg, Fachbereich Chemie, Marburg, GermanyFungal <strong>in</strong>dole prenyltransferases of the dimethylallyltryptophan synthase(DMATS) superfamily are <strong>in</strong>volved <strong>in</strong> the biosynthesis of prenylated<strong>in</strong>dole alkaloids, and catalyze the prenylation of diverse <strong>in</strong>dolederivatives.(1) These enzymes share no sequence, but structure similaritywith the prenyltransferases of the CloQ/NphB group, which acceptedhydroxynaphthalenes, 4-hydroxyphenylpyruvate, phenaz<strong>in</strong>e andflavonoids as substrates. We have demonstrated that some <strong>in</strong>doleprenyltransferases accepted also hydroxynaphthalenes and flavonoids assubstrates.(2,3) N<strong>in</strong>e prenylated flavonoids and twenty prenylatedhydroxynaphthalenes have been isolated, and their structures wereelucidated by MS and NMR analyses. It has been shown that, for anaccepted hydroxynaphthalene, different enzymes produced usually thesame major prenylated product, i.e. with a regular C-prenyl moiety atpara- or ortho- position to a hydroxyl group. For hydroxynaphthaleneswith low conversion rates and regioselectivity, O-prenylated anddiprenylated derivatives were also identified as enzyme products. Forflavonoids accepted by 7-DMATS, C-6 between two hydroxyl groups wasthe favorable prenylation position. The K M values and turnover numbers(k cat) of some prenyltransferases towards selected hydroxynaphthalenes,are comparable to those obta<strong>in</strong>ed by us<strong>in</strong>g <strong>in</strong>dole derivatives. These resultsexpand the potential usage of prenyltransferases of the DMATSsuperfamily as catalysts for chemical synthesis, and meanwhile, <strong>in</strong>creasethe structural diversity of prenylated compounds.1. Li, S.-M. (2010) Nat. Prod. Rep. 27, 57-782. Yu, X., Xie, X., and Li, S.-M. (2011) Appl. Microbiol. Biotechnol. 92, 737-7483. Yu, X. and Li, S.-M. (2011) Chembiochem 12, 2280-2283MEP020Ergot alkaloid gene cluster <strong>in</strong> the fungal family ofArthrodermataceaeC. Wallwey* 1 , C. Heddergott 2 , X. Xie 3 , A. Brakhage 2 , S.-M. Li 11 Philipps-Universität Marburg, Institut für Pharmazeutische Biologie undBiotechnologie, Marburg, Germany2 Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie e.V., Jena,Germany3 Philipps-Universität Marburg, Fachbereich Chemie, Marburg, GermanyErgot alkaloids play an important role as pharmaceuticals as well as tox<strong>in</strong>s<strong>in</strong> food and feed <strong>in</strong>dustry.[1;2] Ergot alkaloids with a characteristictetracyclic ergol<strong>in</strong>e r<strong>in</strong>g can be divided <strong>in</strong>to three groups: clav<strong>in</strong>e-typealkaloids, ergoamides and ergopept<strong>in</strong>es.[1] Comparison of the gene clusterfor ergopept<strong>in</strong>es from Claviceps purpurea with those for clav<strong>in</strong>e-typealkaloids from Aspergillus fumigatus and Penicillium commune revealedthe presence of seven orthologous/homologous genes, which werespeculated to be responsible for the formation of the ergol<strong>in</strong>e system.Blast<strong>in</strong>g genome sequences of different fungi with enzymes for ergotalkaloid biosynthesis, led to the identification of a putative ergot alkaloidgene cluster <strong>in</strong> fungi of the family Arthrodermataceae. The gene clusterconsists of five genes with clear sequence similarity to those assigned tothe early common steps of the ergot alkaloid biosynthesis, i.e. fromprenylation of tryptophan to formation of chanoclav<strong>in</strong>e-I aldehyde, abranch po<strong>in</strong>t for clav<strong>in</strong>e-type ergot alkaloid and ergopept<strong>in</strong>e biosynthesis.The homologous genes be<strong>in</strong>g responsible for the conversion ofchanoclav<strong>in</strong>e-I aldehyde, i.e. fgaOx3 and fgaFS <strong>in</strong> A. fumigatus[3] or easG<strong>in</strong> C. purpurea[4], were not found <strong>in</strong> arthrodermataceous fungi, nor furthergenes <strong>in</strong> the biosynthesis of later special steps <strong>in</strong> both fungi.The function of one gene ChaDH, cod<strong>in</strong>g a chanoclav<strong>in</strong>e-I dehydrogenase,was proven by gene clon<strong>in</strong>g, expression and biochemical characterizationof the overproduced enzyme. NMR and MS analyses of the isolatedBIOspektrum | Tagungsband <strong>2012</strong>


97enzyme product proved unequivocally ChaDH as NAD-dependentchanoclav<strong>in</strong>e-I dehydrogenase like its homologue FgaDH.[5][1.] C. Wallwey, S.-M. Li, Nat. Prod. Rep. 2011, 28, 496-510.[2.] C. L. Schardl, D. G. Panaccione, P. Tudzynski, The Alkaloids, Chem. Biol. 2006, 63, 45-86.[3.] C. Wallwey, M. Matuschek, X.-L. Xie, S.-M. Li, Org. Biomol. Chem. 2010, 8, 3500-3508.[4.] M. Matuschek, C. Wallwey, X.-L. Xie, S.-M. Li, Org. Biomol. Chem. 2011, 9, 4328-4335.[5.] C. Wallwey, M. Matuschek, S.-M. Li, Arch. Microbiol. 2010, 192, 127-134.MEP021The <strong>in</strong>terlock<strong>in</strong>g between primary and secondary metabolism<strong>in</strong> the biosynthesis of the glycopeptide antibiotic Balhimyc<strong>in</strong>V. Goldf<strong>in</strong>ger*, M. Spohn, W. Wohlleben, E. StegmannEberhard-Karls-University, Microbiology/Biotechnology, Tüb<strong>in</strong>gen, GermanyBalhimyc<strong>in</strong> is a glycopeptide antibiotic of vancomyc<strong>in</strong>-type. Suchantibiotics are used for the treatment of serious <strong>in</strong>fections caused by multiresistantgram-positive bacteria. To antagonize the consistently <strong>in</strong>creas<strong>in</strong>gnumber of the antibiotic resistance, it is important to understand thebiosynthetic pathway of antibiotic production <strong>in</strong> details to optimize itsproduction and advance its impact.As glycopeptide balhimyc<strong>in</strong> consists of a glycosylated heptapeptidebackbone. Five of these seven am<strong>in</strong>o acids derive from the shikimatepathway. The analysis of the gene cluster showed that <strong>in</strong> addition to thegenes encod<strong>in</strong>g the biosynthetic enzymes, the balhimyc<strong>in</strong> gene cluster<strong>in</strong>cludes two genes (dahp, pdh) which encode the homologous keyenzymes of the shikimate pathway. The previous research showed that thedeletion and over expression of these additional genes <strong>in</strong>A.balhimyc<strong>in</strong>aaffects the antibiotic production. The over expressionofdahpfrom the antibiotic gene cluster causes <strong>in</strong>creased production ofbalhimyc<strong>in</strong>. The deletion of the same gene causes the decreased antibioticproduction. In contrast the over expression ofpdhfrom the balhimyc<strong>in</strong>biosynthetic gene cluster leads to the lower antibiotic production and itsdeletion does not show any remarkable effects consider<strong>in</strong>g the antibioticproduction. This fact could be expla<strong>in</strong>ed by cross-regulation betweentyros<strong>in</strong>e and phenyalan<strong>in</strong>e biosynthetic pathway which was describedforA. methanolica. ByA. methanolicatyros<strong>in</strong>e functions as an activator forprephenate dehydratase (Pdt) which catalyzes the first step reaction on thebranch<strong>in</strong>g po<strong>in</strong>t from prephenate direction phenylalan<strong>in</strong>e. Otherwise Pdt isfeedback <strong>in</strong>hibited by phenylalan<strong>in</strong>e. The overexpression of Pdt <strong>in</strong>A.balhimyc<strong>in</strong>a<strong>in</strong> the current work resulted <strong>in</strong> the <strong>in</strong>creased antibioticproduction what would expla<strong>in</strong> the results of the previous research andconfirm the similar regulation mechanism byA. balhimyc<strong>in</strong>aandA.methanolicaon the branch<strong>in</strong>g po<strong>in</strong>t between tyros<strong>in</strong>e and phenyalan<strong>in</strong>ebiosynthesis.The other disputable question <strong>in</strong> the tyros<strong>in</strong>e biosynthesis is the substratespecificity of Pdh. In-silico analysis let to assume that Streptomyce’s Pdhis L-arogenate and not prephenate specific. The overexpression andpurification ofA. balhimyc<strong>in</strong>aPdh which was used <strong>in</strong> enzyme assayshowed the prephenate specificity. The proof for L-arogenate specificity ofPdh fromA. balhimyc<strong>in</strong>a<strong>in</strong> an enzymassay has to be done.Thykaer J,Nielsen J,Wohlleben W,Weber T,Gutknecht M,Lantz AE,Stegmann E.,MetabEng.,2010,May 25, [Epub ahead of pr<strong>in</strong>t]Jian Song, Carol A. Bonner, Murray Wol<strong>in</strong>sky, Roy A. Jensen,BMC Biol.,2005,e pub 3:13Carol A. Bonner, Terrence Disz, Kaitlyn Hwang, Jian Song, Veronika Vonste<strong>in</strong>, Ross Overbeek,Roy A. Jensen,Microbiol Mol Biol Rev.,2008,p. 13-53David H. Calhoun, Duane L. Pierson, Roy A. Jensen,J Bacteriol.,1973,p.241-251MEP022Identification of a phenaz<strong>in</strong>e gene cluster <strong>in</strong> Dermacoccus sp.MT1.2, isolated from a Mariana Trench sedimentM. Wagner* 1 , W. Abdel-Mageed 2 , M. Jaspars 2 , O. Saleh 3 , L. Heide 3 ,W. Pathom-aree 4 , M. Goodfellow 4 , H.-P. Fiedler 11 Universität Tüb<strong>in</strong>gen, IMIT, Tüb<strong>in</strong>gen, Germany2 University of Aberdeen, Department of Chemistry, Aberdeen, United K<strong>in</strong>gdom3 Universität Tüb<strong>in</strong>gen, Pharmazeutische Biologie, Tüb<strong>in</strong>gen, Germany4 University of Newcastle, School of Biology, Newcastle, United K<strong>in</strong>gdomA sediment sample was taken from the Mariana Trench at the third deepestpo<strong>in</strong>t of earth, the Challenger Deep (10,898 m), <strong>in</strong> the western PacificOcean (11°19‘911“ N; 142°12‘372“ E) on 21 May 1998 by the remotelyoperated submersible Kaiko, us<strong>in</strong>g sterilized mud samplers dur<strong>in</strong>g divenumber 74. The sediment sample (approximately 2 ml) was stored at -20°C until analyzed for act<strong>in</strong>omycetes. 38 act<strong>in</strong>omycetes were isolatedus<strong>in</strong>g mar<strong>in</strong>e and raff<strong>in</strong>ose-histid<strong>in</strong>e agar, and were characterized byphylogenetic analysis on 16S rRNA gene sequenc<strong>in</strong>g [1]. The stra<strong>in</strong>s wereassigned to the genera Dermacoccus (19 isolates), Kocuria (1 isolate),Micromonospora (1 isolate), Streptomyces (5 isolates), Tsukamurella (11isolates) and Williamsia (1 isolate).The Dermacoccus isolates showed unusual secondary metabolite profilesdeterm<strong>in</strong>ed by HPLC-DAD analysis. Stra<strong>in</strong>s MT1.1 and MT1.2 exhibitedthe highest productivity and were therefore selected for fermentationstudies us<strong>in</strong>g ISP2 and 410 media, respectively. This led to the productionof seven novel phenaz<strong>in</strong>e metabolites, the dermacoz<strong>in</strong>es. Structureelucidation was performed by 13 C and 1 H NMR spectroscopic methods,electronic structure calculations and CD spectroscopy. The biologicaleffects of the dermacoz<strong>in</strong>es compromised antitumor, antiparasitic andantioxidative activities [2].We show the identification of the phenaz<strong>in</strong>e gene cluster <strong>in</strong> Dermacoccussp. MT1.2. A genome library of stra<strong>in</strong> MT1.2 was screened by colonyPCR. On cosmid MW_A9 a possible gene cluster was found that conta<strong>in</strong>edthe essential phenaz<strong>in</strong>e core genes and some more genes <strong>in</strong>volved <strong>in</strong> themodification of the <strong>in</strong>termediate product phenaz<strong>in</strong>e-1,6-dicarboxylic acid.We also show a proposed biosynthesis of dermacoz<strong>in</strong>es with respect to thepathway already known from other phenaz<strong>in</strong>e produc<strong>in</strong>g bacteria.Pathom-aree, W., Stach, J.E.M., Ward, A.C., Horikoshi, K., Bull, A.T. & Goodfellow, M.,Extremophiles, 2006, 10, 181-189.Abdel-Mageed, W.M., Milne, B.F., Wagner, M., Schumacher, M., Sandor, P., Pathom-aree, W.,Goodfellow, M., Bull, A.T., Horikoshi, K., Ebel, R., Diedrich, M., Fiedler, H.-P. and Jaspars, M.,Org. Biomol. Chem., 2010, 8, 2352-2362.MEP023On the way to unravel a novel biosynthetic pathway for theunique volatile 'sodorifen' of Serratia odoriferaT. Weise* 1 , M. Kai 1,2 , S.H. von Reuß 3,4 , W. Francke 4 , B. Piechulla 11 University of Rostock, Institute of Biological Sciences, Rostock, Germany2 Max Planck Institute for Chemical Ecology, Jena, Germany3 Cornell University, Boyce Thompson Institute, Ithaca, United States4 University of Hamburg, Organic Chemistry, Hamburg, GermanyBacteria are a profound source of secondary metabolites, e.g. antibioticsand tox<strong>in</strong>s (1). Unexpectedly large and diverse is also the spectrum ofvolatile secondary compounds. Octamethyl bicycle (3.2.1) octadiene(`sodorifen´) a volatile secondary metabolite of Serratia odorifera 4Rx13was recently found and structurally elucidated (2). `Sodorifen´ (C 16H 26) iscomposed of a new and unusual type of carbon skeleton. Each carbon atomof the bicyclic structure is methylated resp. methylenated. As the structureis new to science also the biosynthesis of this compound is still a mystery.A multi strategy approach <strong>in</strong>clud<strong>in</strong>g physiological experiments, genome,proteome, and metabolome analysis is presently conducted to unravel thebiosynthesis and regulation of `sodorifen´. Feed<strong>in</strong>g experiments withdifferent carbon sources, e.g. am<strong>in</strong>o acids, organic acids and sugars, wereperformed. The carbon compounds, which resulted <strong>in</strong> highest `sodorifen´emission, were subsequently used <strong>in</strong> [ 13 C] isotope feed<strong>in</strong>g experiments and<strong>in</strong>corporation <strong>in</strong>to `sodorifen´ was analysed by GC/MS and NMR. Besidethe results of the feed<strong>in</strong>g experiments we will present the accompaniedproteome and genome approaches.Acknowledgement: We thank our collaborators G. Gottschalk, R. Daniel, A. Thürmer, J. Voss, R.Lehmann (University of Gött<strong>in</strong>gen, D), M. Glocker and S. Mikkat (University of Rostock, D).1 Wenke K., Kai M., Piechulla B. (2010). Planta 231: 499-5062 Von Reuß S., Kai M., Piechulla B., Francke W. (2009). Angewandte Chemie 122: 2053-2054MEP024New elaiomyc<strong>in</strong>s produced by Streptomyces stra<strong>in</strong>sN. Manderscheid* 1 , S. Helaly 2 , A. Kulik 1 , B.-Y. Kim 3 , M. Goodfellow 3 ,J. Wiese 4 , J.F. Imhoff 4 , R.D. Süssmuth 2 , H.-P. Fiedler 11 Universität Tüb<strong>in</strong>gen, IMIT, Tüb<strong>in</strong>gen, Germany2 TU Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, Germany3 University of Newcastle, School of Biology, Newcastle, United K<strong>in</strong>gdom4 Leibniz Institut für Meereswissenschaften, Kieler Wirkstoffzentrum, Kiel,GermanyIn our search for novel secondary metabolites by HPLC-DAD screen<strong>in</strong>g,stra<strong>in</strong>s Streptomyces sp. BK 190 and Streptomyces sp. Tü 6399 weresubjected to a closer scrut<strong>in</strong>y because of <strong>in</strong>terest<strong>in</strong>g peaks <strong>in</strong> their HPLCprofile of a culture filtrate extract. Stra<strong>in</strong> BK 190 was isolated from a haymeadow soil taken from Cockle Park Experimental Farm <strong>in</strong>Northumberland, UK. Stra<strong>in</strong> Tü 6399 was isolated from a rhizospheric soilcollected <strong>in</strong> a spruce stand located <strong>in</strong> the Rammert Forest near Tüb<strong>in</strong>gen,Germany. Both stra<strong>in</strong>s were assigned to the genus Streptomyces by theirmorphological and chemotaxonomic features and by the sequence of thealmost complete 16S rRNA gene.It was shown by Kim et al. that stra<strong>in</strong> BK 190 produces two novelalkylhydrazide antibiotics, named elaiomyc<strong>in</strong> B and C, which showed<strong>in</strong>hibitory activities aga<strong>in</strong>st Staphylococcus lentus DSM 6672 and towardsthe enzymes acetylchol<strong>in</strong>esterase and phosphodiesterase [1].Stra<strong>in</strong> Tü 6399 produced two novel azoxy antibiotics, named elaiomyc<strong>in</strong> Dand E, which showed an <strong>in</strong>hibitory activity aga<strong>in</strong>st Bacillus subtilis DSM10, Staphylococcus lentus DSM 6672, Xanthomonas campestris DSM1706 and a slight activity towards the enzyme phosphodiesterase 4;elaiomyc<strong>in</strong> E showed a slight activity aga<strong>in</strong>st acetylchol<strong>in</strong>esterase.The new compounds are similar <strong>in</strong> structure to elaiomyc<strong>in</strong>, which was firstdescribed by Stevens et al. [2] conta<strong>in</strong><strong>in</strong>g a unique aliphatic ,unsaturatedazoxy group. Elaiomyc<strong>in</strong> exhibits an unusual <strong>in</strong>hibitoryactivity aga<strong>in</strong>st Mycobacterium tuberculosis.1 Kim, B.-Y., Willbold, S., Kulik, A., Helaly, S. E., Z<strong>in</strong>ecker, H., Wiese, J., Imhoff, J. F.,Goodfellow, M., Süssmuth, R. D. & Fiedler, H.-P. Elaiomyc<strong>in</strong>s B and C, novel alkylhydrazidesproduced by Streptomyces sp. BK 190. J. Antibiot. 64, 595-597 (2011).2 Haskell, T. H., Ryder, A. & Bartz, Q. R. Elaiomyc<strong>in</strong>, a new tuberculostatic antibiotic; isolationand chemical characterization. Antibiot. Chemother. 4, 141-144 (1954).BIOspektrum | Tagungsband <strong>2012</strong>


98MEP025Regulation of prist<strong>in</strong>amyc<strong>in</strong> biosynthesis <strong>in</strong> S. Prist<strong>in</strong>aespiralisJ. Guezguez*, Y. Mast, E. Sch<strong>in</strong>koIMIT, Microbiology/Biotechnology, Tüb<strong>in</strong>gen, GermanyThe streptogram<strong>in</strong> antibiotic prist<strong>in</strong>amyc<strong>in</strong>, produced by Streptomycesprist<strong>in</strong>aespiralis, is a mixture of two types of chemically unrelatedcompounds: prist<strong>in</strong>amyc<strong>in</strong> PI and PII, which are produced <strong>in</strong> a ratio of30:70. Prist<strong>in</strong>amyc<strong>in</strong> PI is a cyclic hexadepsipeptide, belong<strong>in</strong>g to the B-group of streptogram<strong>in</strong>s, while prist<strong>in</strong>amyc<strong>in</strong> PII has the structure of apolyunsaturated macrolactone of the A-group of streptogram<strong>in</strong>s. Bothcompounds alone <strong>in</strong>hibit the prote<strong>in</strong> biosynthesis by b<strong>in</strong>d<strong>in</strong>g to thepeptidyl transferase doma<strong>in</strong> of the 50S subunit of the ribosome and arebacteriostatic. The A-group prevents the b<strong>in</strong>d<strong>in</strong>g of the am<strong>in</strong>oacyl-tRNAto the 50S subunit of the ribosome. In contrast, the B-group facilitates therelease of the peptidyl-tRNA from the ribosome. Together they show astrong synergistic bactericidal activity, which can reach 100 times of theseparate components. The prist<strong>in</strong>amyc<strong>in</strong> biosynthetic gene cluster ischaracterized. It covers a region of about 210 kb where genes for PI andPII biosynthesis are <strong>in</strong>terspersed. Moreover, the prist<strong>in</strong>amyc<strong>in</strong> cod<strong>in</strong>gregion is <strong>in</strong>terrupted by a cryptic secondary metabolite gene cluster whichprobably encodes for an act<strong>in</strong>orhod<strong>in</strong>-like compound. Seven regulatorygenes were identified with<strong>in</strong> the 210 kb region:spbR, papR1, papR2,papR3, papR4, papR5 and papR6. SpbR (S.prist<strong>in</strong>aespiralisbutyrolactoneresponsivetranscriptional repressor) is a specific receptor prote<strong>in</strong> for -butyrolactones and the global regulator of prist<strong>in</strong>amyc<strong>in</strong> biosynthesis.papR1, papR2 and papR4 encode prote<strong>in</strong>s that are homologous to SARPswhich are pathway-specific transcriptional activator prote<strong>in</strong>s, whereaspapR3 and papR5 code both for prote<strong>in</strong>s that belong to the family of TetRrepressors. papR6 encodes a prote<strong>in</strong> belong<strong>in</strong>g to the class of responseregulators. On the basis of RT-PCR, bandshift and mutant analysis, aprelim<strong>in</strong>ary model of the regulation mechanism of prist<strong>in</strong>amyc<strong>in</strong>biosynthesis was established.Mast YJ, Wohlleben W, Sch<strong>in</strong>ko E.Identification and functional characterization of phenylglyc<strong>in</strong>ebiosynthetic genes <strong>in</strong>volved <strong>in</strong> prist<strong>in</strong>amyc<strong>in</strong> biosynthesis <strong>in</strong> Streptomyces prist<strong>in</strong>aespiralis.J Biotechnol.2010 Dec 10Mast Y, Weber T, Gölz M, Ort-W<strong>in</strong>klbauer R, Gondran A, Wohlleben W, Sch<strong>in</strong>ko E.Characterization of the'prist<strong>in</strong>amyc<strong>in</strong> supercluster' of Streptomyces prist<strong>in</strong>aespiralis.Microb Biotechnol. 2011 Oct 15MEP026Activation of a silent phenaz<strong>in</strong>e biosynthetic gene cluster fromStreptomyces reveals a novel phenaz<strong>in</strong>e conjugateO. Saleh 1 , T. Bonitz* 1 , A. Kulik 2 , N. Burkard 3 , A. Mühlenweg 4 , A. Vente 4 ,S. Polnick 1 , M. Lämmerhofer 1 , B. Gust 1 , H.-P. Fiedler 2 , L. Heide 11 University of Tüb<strong>in</strong>gen, Pharmaceutical Institute, Tüb<strong>in</strong>gen, Germany2 University of Tüb<strong>in</strong>gen, Faculty of Biology, Tüb<strong>in</strong>gen, Germany3 University of Tüb<strong>in</strong>gen, Institute for Organic Chemistry, Tüb<strong>in</strong>gen, Germany4 MerLion Pharmaceuticals GmbH, Berl<strong>in</strong>, GermanyThe activation of silent biosynthetic gene clusters is a pr<strong>in</strong>cipal challengefor genome m<strong>in</strong><strong>in</strong>g strategies <strong>in</strong> drug discovery. In the present study, aphenaz<strong>in</strong>e biosynthetic gene cluster was discovered <strong>in</strong> the Gram-positivebacterium Streptomyces tendae Tü1028. This gene cluster rema<strong>in</strong>ed silentunder a multitude of cultivation conditions, both <strong>in</strong> the genu<strong>in</strong>e producerstra<strong>in</strong> and <strong>in</strong> a heterologous expression stra<strong>in</strong>. However, <strong>in</strong>troduction of aconstitutive promoter upstream of the phenaz<strong>in</strong>e biosynthesis genes led tothe production of phenaz<strong>in</strong>e-1-carboxylic acid (PCA) and of a newderivative thereof, i.e. a conjugate of PCA and L-glutam<strong>in</strong>e. The l<strong>in</strong>kage ofPCA to L-glutam<strong>in</strong>e by amide bond formation was catalyzed by enzymesof the heterologous expression host Streptomyces coelicolor M512 andmay represent a detoxification mechanism. The gene cluster also conta<strong>in</strong>edgenes for all enzymes of the mevalonate pathway and for an aromaticprenyltransferase, thereby resembl<strong>in</strong>g gene clusters for prenylatedphenaz<strong>in</strong>es. However, purification and biochemical <strong>in</strong>vestigation of theprenyltransferase proved that it does not prenylate phenaz<strong>in</strong>es buthydroxynaphthalene substrates, show<strong>in</strong>g very similar properties as NphBof naphterp<strong>in</strong> biosynthesis (Kuzuyma et al., Nature 2005; 435: 983-7).MEP027Genetical analysis of the biosynthesis and z<strong>in</strong>c-regulation of[S,S]-EDDS, a biodegradable EDTA alternative produced byAmycolatopsis japonicumM. SpohnInterfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong>,Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyEDDS (Ethylene-diam<strong>in</strong>e-disucc<strong>in</strong>ic acid) produced by Amycolatopsisjaponicum is a suitable biodegradable alternative for the syntheticchelat<strong>in</strong>g agent EDTA, which has become the highest concentrated wastecompound <strong>in</strong> surface waters.EDDS is isomeric with EDTA and has similar properties. But <strong>in</strong> contrast toEDTA it conta<strong>in</strong>s two asymmetric carbon atoms, result<strong>in</strong>g <strong>in</strong> the existenceof three optical isomers, [S,S]-EDDS, [R,R]-EDDS and [R,S]-EDDS. A.japonicum produces the biodegradable S,S-configuration of EDDS.The biosynthesis of EDDS <strong>in</strong> A. japonicum is strictly z<strong>in</strong>c regulated. Az<strong>in</strong>c concentration of 5 M represses the production of EDDS at any timeof the fermentation [CEBULLA, 1995].In a hypothetical EDDS biosynthesis pathway oxalacetate and theaprote<strong>in</strong>ogenic am<strong>in</strong>oacid diam<strong>in</strong>opropionic acid (DAP) are covalentlybonded to form an <strong>in</strong>termediate which is subsequently processed <strong>in</strong> severalsteps to f<strong>in</strong>ally form [S,S]-EDDS [CEBULLA, 1995]. DAP is also used asa build<strong>in</strong>g block <strong>in</strong> other secondary metabolites with elucidatedbiosynthesis pathway like zwittermic<strong>in</strong> A and staphyloferr<strong>in</strong> B [ZHAO, 2008;CHEUNG, 2009]. Genetic screen<strong>in</strong>g <strong>in</strong> A. japonicum us<strong>in</strong>g the sequenceencod<strong>in</strong>g the DAP-synthesiz<strong>in</strong>g enzymes resulted <strong>in</strong> the identification of a generegion encod<strong>in</strong>g putative EDDS-biosynthesis-enzymes.To confirm their <strong>in</strong>volvement <strong>in</strong> the EDDS biosynthesis we compared theirtranscription patterns of A. japonicum cultures grown <strong>in</strong> z<strong>in</strong>c-conta<strong>in</strong><strong>in</strong>g(none EDDS production) and z<strong>in</strong>c-free (EDDS production) media. Theputative DAP-biosynthesis genes are only expressed under EDDSproduction conditions and are strictly repressed only by z<strong>in</strong>c and no otherdivalent metal ion.By directed mutagenesis and heterologous expression we want to evidencethe responsibility of these z<strong>in</strong>c-repressed genes for the EDDS production.CEBULLA, I. (1995). Gew<strong>in</strong>nung komplexbildender Substanzen mittels Amycolatopsis orientalis.Dissertation, Universität Tüb<strong>in</strong>gen.CHEUNG, J; BEASLEY, F; LIU, S; LAJOIE, G AND HENRICHS, D (2009). Molecular charakterizationof staphyloferr<strong>in</strong> B biosynthesis <strong>in</strong> Staphylococcus aureus. Molecular Microbiology 74(3); 594-608.ZHAO, C; SONG, C; LUO, Y; YU, Z AND SUN, M. (2008). L-2,3-Diam<strong>in</strong>opropionate: One of thebuild<strong>in</strong>g blocks for the biosynthesis of Zwittermic<strong>in</strong> A <strong>in</strong> Bacillus thur<strong>in</strong>gensis susp. kurstaki stra<strong>in</strong> YBT-1520. FEBS Letters 582; 3125-3131.MEP028Analysis of the biosynthesis of ast<strong>in</strong>s from Aster tataricus andcyclochlorot<strong>in</strong>e from Penicillium islandicumL. Flor*, K.-H. van PéeTU Dresden, Biochemistry, Dresden, GermanyAst<strong>in</strong>s are cyclic pentapeptides isolated from roots of the plant Astertataricus.The root extract shows potent anti-tumour activity <strong>in</strong> mouse tests(1). However, the amounts of ast<strong>in</strong>s that can be isolated from plants arevery low and chemical synthesis is accompanied by negative impacts onthe environment. Therefore, the project ‚Multi enzyme systems <strong>in</strong>volved <strong>in</strong>ast<strong>in</strong> biosynthesis and their use <strong>in</strong> heterologous ast<strong>in</strong> production(MESIAB)‘ aims at enhanc<strong>in</strong>g the production of ast<strong>in</strong>s us<strong>in</strong>g moleculargenetic tools. So far, ast<strong>in</strong>s A-J are known. Cyclochlorot<strong>in</strong>e, a secondarymetabolite with high similarity to ast<strong>in</strong>s, has been isolated from the fungusPenicillium islandicum. Cyclochlorot<strong>in</strong>e is a hepatotoxic compoundcaus<strong>in</strong>g necrosis, vacuolation of liver cells and development of blood lakes(2). Because of the high similarity of the peptides (3), similar enzymesshould be <strong>in</strong>volved <strong>in</strong> the biosynthetic pathways of ast<strong>in</strong>s andcyclochlorot<strong>in</strong>e. Both metabolites conta<strong>in</strong> a dichlor<strong>in</strong>ated pyrrolecarboxylic acid derivative which is most likely derived from prol<strong>in</strong>e. It isassumed that chlor<strong>in</strong>ation occurs on the level of a peptide carrier prote<strong>in</strong>tethered pyrrol carboxylic acid moiety by a flav<strong>in</strong>-dependent halogenase.The anticarc<strong>in</strong>ogenic activity of ast<strong>in</strong>s relies on the cyclic peptide and onthe chlor<strong>in</strong>ated prol<strong>in</strong>e residue (4,5). So far, neither a flav<strong>in</strong>-dependenthalogenase nor nonribosomal peptide synthethases have been described <strong>in</strong>plants. Via HPLC-MS from extracts of dry roots of Aster tataricus alltypes of ast<strong>in</strong>s could be detected, as well as cyclochlorot<strong>in</strong>e from culturemedia of P. islandicum. For genetic analysis we are <strong>in</strong> the process ofsequenc<strong>in</strong>g the genome of P. islandicum and construct<strong>in</strong>g cDNA-librariesfor A. tataricus and P. islandicum.(1) Morita et al. (1995) Tetrahedron, 51, 4, 1121-1132(2) Ghoh et al. (1978) App. Environ. Microb., 35, 6, 1074-1078(3) Schumacher et al. (1999) Tet. Letters, 40, 455-458(4) Saviano et al., 2004, Biopolymers, 76, 6, 477-84(5) Cozzol<strong>in</strong>o et al. (2005) Carc<strong>in</strong>ogenesis, 26, 733-739MEP029Secondary metabolism and morphogenesis <strong>in</strong> the penicill<strong>in</strong>producer Penicillium chrysogenum is regulated by the velvet-likecomplexS. Bloemendal*, B. Hoff, K. Kopke, A. Katschorowski, S. Milbredt,J. Kamerewerd, U. KückRuhr-Universität Bochum, Christian Doppler Labor für "Biotechnologieder Pilze", Bochum, GermanyThe recent discovery of a velvet complex conta<strong>in</strong><strong>in</strong>g several globalregulators of secondary metabolism <strong>in</strong> the model fungus Aspergillusnidulans [1,2] raises the question whether similar type complexes directfungal development and secondary metabolism <strong>in</strong> genera other thanAspergillus. The filamentous fungus Penicillium chrysogenum is the ma<strong>in</strong><strong>in</strong>dustrial producer of the pharmaceutically relevant beta-lactam antibioticpenicill<strong>in</strong>. All three biosynthesis genes are found <strong>in</strong> a s<strong>in</strong>gle cluster and theexpression of these genes is known to be controlled by a complex networkof global regulators.Here we provide a functional analysis of a velvet-like complex <strong>in</strong> a P.chrysogenum producer stra<strong>in</strong> that underwent several rounds of UVmutagenesis dur<strong>in</strong>g a stra<strong>in</strong> improvement program [3,4]. This complexBIOspektrum | Tagungsband <strong>2012</strong>


99comprises several structurally conserved velvet-like prote<strong>in</strong>s that havedist<strong>in</strong>ct developmental roles, illustrat<strong>in</strong>g the functional plasticity of theseregulators. We performed extensive phenotypic characterizations of s<strong>in</strong>gleand double knockout mutants us<strong>in</strong>g the codon-optimized FLP/FRTrecomb<strong>in</strong>ation system [5]. Data from penicill<strong>in</strong> bioassays andquantification of conidiospores of these knockout mutants clearly showthat all velvet-like prote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> secondary metabolism andother dist<strong>in</strong>ct developmental processes. By detailed fluorescencemicroscopy and prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction studies us<strong>in</strong>g bimolecularfluorescence complementation, tandem-aff<strong>in</strong>ity purification and yeast twohybrid,we want to extend the analysis of the velvet-like complex <strong>in</strong> P.chrysogenum. Our results widen the current picture of regulatory networkscontroll<strong>in</strong>g both fungal secondary metabolism and morphogenesis, whichis significant for the genetic manipulation of fungal metabolism as part of<strong>in</strong>dustrial stra<strong>in</strong> improvement programs.[1] Bayram et al. (2008) Science 13:1504-1506[2] Calvo AM (2008) Fungal Genet Biol 45: 1053-1061[3] Hoff B, Kamerewerd J, Sigl C, Mitterbauer R, Zadra I, Kürnste<strong>in</strong>er H, Kück U (2010) Eukaryot Cell:9:1236-50[4] Hoff B, Kamerewerd J, Sigl C, Zadra I, Kück U (2010) Appl Microbiol Biotechnol 85: 1081-1094[5] Kopke K, Hoff B, Kück U (2010) Appl Environ Microbiol 76:4664-4674MEP030Phenguignardic acid and guignardic acid, phytotoxicsecondary metabolites from the grape black rot fungusGuignardia bidwelliiI. Buckel* 1 , D. Molitor 2 , J. Liermann 3 , B. Berkelmann-Löhnertz 4 , T. Opatz 3 ,E. Th<strong>in</strong>es 11 Institute of Biotechnology and Drug Research (IBWF), Plant protection,Kaiserslautern, Germany2 Centre de Recherche Public – Gabriel Lippmann, Department Environmentand Agro-Biotechnologies, Belvaux, Luxembourg3 Johannes-Gutenberg-University, Institute of Organic Chemistry, Ma<strong>in</strong>z,Germany4 Geisenheim Research Center, Department of Phytomedic<strong>in</strong>e, Geisenheim,GermanyThe causal agent of black rot on grapes is the phytopathogenicfungusGuignardia bidwellii. Black rot is one of the most devastat<strong>in</strong>gdiseases on grapes and s<strong>in</strong>ce 2002 a serve outbreak of the disease wasevident <strong>in</strong> some German w<strong>in</strong>egrow<strong>in</strong>g regions. The <strong>in</strong>fection was observed<strong>in</strong> abandoned v<strong>in</strong>eyards primarily, but subsequently an expansion tocultivated v<strong>in</strong>eyards was found. The disease can result <strong>in</strong> significant croplosses rang<strong>in</strong>g from 5 to 80 % of the total yield.The <strong>in</strong>fection cycle ofGuignardia bidwelliiis characterized by two phases,a symptomless <strong>in</strong>itial phase followed by a necrotrophic phase. Thus thefungus is classified as a hemibiotrophic pathogen. Phytopathogenic fungioften produce phytotox<strong>in</strong>s for a successful colonisation of the plant. Suchlow-molecular compounds are frequently <strong>in</strong>volved <strong>in</strong> disease symptomformation.Bioactivity guided isolation led to the identification of phenguignardicacid, a new secondary metabolite from submerged cultures of the grapeblack rot fungus as phytotoxic agent. The compound is structurally relatedto guignardic acid, a dioxolanone moiety conta<strong>in</strong><strong>in</strong>g metabolite isolatedpreviously fromGuignardiaspecies. However, <strong>in</strong> contrast to guignardicacid, which is presumably synthesised via deam<strong>in</strong>ation products of val<strong>in</strong>eand phenylalan<strong>in</strong>e, the biochemical precursors for the biosynthesis of thenew phytotox<strong>in</strong> appears to be exclusively phenylalan<strong>in</strong>e.Both compounds were characterised <strong>in</strong> biological assays by us<strong>in</strong>g v<strong>in</strong>e leafsegments or <strong>in</strong>tact plants. Dur<strong>in</strong>g fermentation optimisation sevenstructurally related secondary metabolites were detected and isolated. Fourof the seven secondary metabolites were found to be phytotoxic on v<strong>in</strong>eleaf segments.MEP031The genetic potential of Streptomyces coll<strong>in</strong>us Tü 365 tosynthesize secondary metabolitesS. Rohrer* 1 , D. Iftime 1 , C. Rückert 2 , J. Kal<strong>in</strong>owski 2 , W. Wohlleben 3 , T. Weber 11 Interfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong> / UniversitätTüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie - Secondary Metabolite Genomics,Tüb<strong>in</strong>gen, Germany2 CeBiTec / Universität Bielefeld, Bielefeld, Germany3 Interfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong> / UniversitätTüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyStreptomycetes are common producers of secondary metabolites likeantibiotics. The stra<strong>in</strong> Streptomyces coll<strong>in</strong>us Tü 365 is known to producethe antibiotic Kirromyc<strong>in</strong> (Wolf and Zähner, 1972; Weber et al., 2008). Bybio<strong>in</strong>formatic analysis us<strong>in</strong>g the antiSMASH software (a secondarymetabolite prediction tool, Medema et al., 2011) 26 additional secondarymetabolite gene clusters were identified <strong>in</strong> the genome of this stra<strong>in</strong>, buttheir function and their biosynthesis products rema<strong>in</strong> to be elucidated. Thegenome harbors five clusters for NRPSs, five for terpenes, four for PKSsand four for PKS-NRPS-hybrids. Moreover, there are clusters for threesiderophores, a bacterioc<strong>in</strong>, an ecto<strong>in</strong>, a melan<strong>in</strong> and a lantibiotic present.Most of the clusters are not expressed or expressed at very low levelsunder standard laboratory conditions, but gene expression can be <strong>in</strong>ducedunder certa<strong>in</strong> conditions.Here we show transcriptional analyses of some of these gene clusters.First, the stra<strong>in</strong> was cultivated <strong>in</strong> different growth media to analyze thelevel of expression of the key genes from selected biosynthetic geneclusters by reverse transcriptase PCR (RT-PCR). RNA samples were takenat different time po<strong>in</strong>ts from the various liquid cultures. The obta<strong>in</strong>ed geneexpression data will facilitate the identification of the desired compounds.In a parallel approach cluster 1, a lantibiotic-like gene cluster, was <strong>in</strong>vestigated<strong>in</strong> heterologous expression studies. Cluster 1 consists of a two-gene transporter,a putative lantibiotic prepeptide and a rare putative class IV lantibiotics cyclase.The prepeptide was expressed <strong>in</strong> E. coli and the prepeptide <strong>in</strong> comb<strong>in</strong>ation withthe cyclase was expressed <strong>in</strong> S. lividans Tk 23.1. Wolf and Zähner, 1972. Metabolic products of microorganisms. 99: Kirromyc<strong>in</strong>. Arch.Microbiol. 83,2:147-154.2. Weber et al., 2008. Molecular analysis of the kirromyc<strong>in</strong> biosynthetic gene cluster revealed beta-alan<strong>in</strong>e asprecursor of the pyridone moiety. Chem Biol. 15, 2: 175-88.3. Medema et al., 2011. antiSMASH: rapid identification, annotation and analysis of secondary metabolitebiosynthesis gene clusters <strong>in</strong> bacterial and fungal genome sequences. Nucleic Acids Res. 39: 339-346.MEP032Identification of Gene Clusters for Biosynthesis ofBromotyros<strong>in</strong>e <strong>in</strong> Metagenomes of the Mar<strong>in</strong>e SpongesIanthella basta and Aplys<strong>in</strong>a cavernicolaK. Kunze*, K.-H. van PeeTU Dresden, Institut für Biochemie, Dresden, GermanyMar<strong>in</strong>e sponges (Verongida) are able to produce a set of bioactivemolecules. Among those compounds are bromtyros<strong>in</strong>es and bromotyros<strong>in</strong>ederivatives. Bromtyros<strong>in</strong>es (Bts) are known to have pharmacologicalrelevance. In mar<strong>in</strong>e sponges, Bts are typically located with<strong>in</strong> thespong<strong>in</strong>g/chit<strong>in</strong> based skeleton. They are supposed to protect the chit<strong>in</strong>skeleton from degradation, through chit<strong>in</strong>ase <strong>in</strong>hibition. Bts from thespecies Ianthella basta and Aplys<strong>in</strong>a cavernicola have already beendetected, but were not further <strong>in</strong>vestigated so far. From other biosyntheticpathways, for example the biosynthetic gene cluster of the peptideantibiotic balhimyc<strong>in</strong>, it is known, that halogenation of tyros<strong>in</strong>e residues iscatalysed by flav<strong>in</strong>-dependent halogenases. It should thus be possible todetect the Bt-biosynthesic gene cluster of I.basta and A. cavernicola byus<strong>in</strong>g the degenerated PCR primer pair TyrhalA_for/rev which is specificfor flav<strong>in</strong>-dependent tyros<strong>in</strong>e halogenases. Sponges are known to beassociated to a large amount with bacterial symbionts. Therefore, it seemsquite likely that the bromotyros<strong>in</strong>e producer is rather a bacterial or fungalsymbiont than the sponge itself. To def<strong>in</strong>e the orig<strong>in</strong> of the detected genes,two different methods for the extraction of metagenomic DNA (eDNA; e =environmental) are used. With the first method, the whole eDNA ofsponges is isolated, whereas the second method uses an additionalsymbiont-enrichment-step prior to eDNA extraction. After detection of thehalogenase gene, it should be possible to identify the whole gene cluster byus<strong>in</strong>g a DNA library (<strong>in</strong> form of a fosmid library). F<strong>in</strong>ally, the flav<strong>in</strong>dependenthalogenases will be characterised with respect to itshalogenat<strong>in</strong>g activity and substrate specificity.Miao SC, Andersen RJ, Allen TM. Cytotoxic metabolites from the sponge Ianthella basta collected<strong>in</strong> Papua New Gu<strong>in</strong>ea. J Nat Prod. 1990 Nov-Dec;53(6):1441-6.Thoms C, Wolff M, Padmakumar K, Ebel R, Proksch P. Chemical defense of Mediterraneansponges Aplys<strong>in</strong>a cavernicola and Aplys<strong>in</strong>a aerophoba. Z Naturforsch C. 2004 Jan-Feb;59(1-2):113-22.Pelzer S, Süssmuth R, Heckmann D, Recktenwald J, Huber P, Jung G, Wohlleben W. Identificationand analysis of the balhimyc<strong>in</strong> biosynthetic gene cluster and its use for manipulat<strong>in</strong>g glycopeptidebiosynthesis <strong>in</strong> Amycolatopsis mediterranei DSM5908. Antimicrob Agents Chemother. 1999Jul;43(7):1565-73.Webster NS, Taylor MW. Mar<strong>in</strong>e sponges and their microbial symbionts: love and otherrelationships. Environ Microbiol. 2011 Mar 28. doi: 10.1111/j.1462-2920.2011.02460.x. [Epubahead of pr<strong>in</strong>t] PubMed PMID: 21443739.MEP033Purification and clon<strong>in</strong>g of the O-Methyltransferase ofAlternaria alternataF. Oswald*, K. Brzonkalik, C. Syldatk, A. NeumannKIT, Technische Biologie, Karlsruhe, GermanyBlack-moulds of the genus Alternaria contam<strong>in</strong>ate many foodstuffs andagricultural products. In addition to the economical damage these fungican produce harmful secondary metabolites, the Alternaria tox<strong>in</strong>s. Some ofthese mycotox<strong>in</strong>s such as alternariol (AOH), alternariolmonomethylether(AME), altenuene (ALT) are polyketides and AOH is produced via thepolyketide pathway. AOH is than methylated by the alternariol-omethyltransferase,transferr<strong>in</strong>g a methyl group from SAM to AOH to yieldAME. The enzyme was partially purified and characterized, but thesequence is still unknown (1, 2).The Genome of Alternaria alternata was sequenced by the group of ChrisLawrence (3). In the genome 11 putative genes cod<strong>in</strong>g for polyketidesynthases were identified by Blast-analyses (4). Next to some of thesepolyketide synthetase genes for methyltransferases were also found. As thegenes for secondary metabolite production are usually clustered (5), it is likely,BIOspektrum | Tagungsband <strong>2012</strong>


100that the genes for AOH polyketide synthase and AOH-O-methyltransferase are<strong>in</strong> close proximity. Therefore identify<strong>in</strong>g the alternariol-O-methyltransferasewill also reveal the responsible polyketide synthetase.Putative methyltransferases were also identified by BLAST-analysis <strong>in</strong> thegenome of the close relative A. brassicicola and the sequences were usedto clone several SAM dependent methyltransferases of Alternariaalternata. Three partial and one total sequence were cloned.With the active expression of the identified genes be<strong>in</strong>g not easy, thealternariol-O-methyltransferase of Alternaria alternata was alsocharacterized <strong>in</strong> crude extracts and partially purified. An SAM dependentactivity-test was developed to identify the enzyme. The products wereanalysed by HPLC. With the N-term<strong>in</strong>al sequence of the enzyme it shouldbe possible to determ<strong>in</strong>e the gene.1) Gatenbeck and Hermodsson (1965): Enzymic Sythesis of Aromatic Product Alternariol2) St<strong>in</strong>son and Moreau (1986): Partial Purification and some Properties of an Alternariol-o-Methyltransferase fromAlternaria tenuis.3)http://www.vbi.vt.edu/archive/pdf/public_relations/annual_report/2009/ar2009-sci-07-lawrence.pdf4) Fetzner R., Lawrence C., Fischer R. (2011). Molecular analysis of secondary metabolite biosynthesis <strong>in</strong>Alternaria alternata. Biospektrum Special 2011: 128.5) Keller NP., Hohn TM. (1997). Metabolic pathway gene clusters <strong>in</strong> filamentous fungi. Fungal Geneticsand Biology 21: 17-29.MEP034The friulimic<strong>in</strong> producer Act<strong>in</strong>oplanes friuliensisN. Fischer*, N. Wagner, R. Biener, D. SchwartzUniversity of Applied Sciences Essl<strong>in</strong>gen, Biotechnology, Essl<strong>in</strong>gen,GermanyFriulimic<strong>in</strong>, a lipopeptide antibiotic produced by the rare act<strong>in</strong>omyceteAct<strong>in</strong>oplanes friuliensis, is active aga<strong>in</strong>st a broad range of multiresistantgram-positive bacteria such as methicill<strong>in</strong>-resistant Enterococcus sp.andStaphylococcus aureus (MRE, MRSA) stra<strong>in</strong>s.The complete biosynthetic gene cluster was characterized by sequenceanalysis and four different regulatory genes (regA, regB, regC and regD)were identified with<strong>in</strong> the cluster (Müller et al., 2007).Knockout-mutants miss<strong>in</strong>g the regulatory genes regC/D showed nonproductionof friulimic<strong>in</strong> as well as deficiency <strong>in</strong> carotenoid pigmentsynthesis which <strong>in</strong>dicates a pleiotropic mechanism of action of theencoded bacterial two component system.An <strong>in</strong> silico analysis of the A. friuliensis genome revealed the presence ofseveral fatty acid biosynthesis genes outside of the known biosyntheticgene cluster, that might be <strong>in</strong>volved <strong>in</strong> biosynthesis of the lipid part of theantibiotic. Among others three putative FabH genes (-Ketoacyl-AcylCarrier Prote<strong>in</strong> Synthase III) could be identified.To verify the role of these genes <strong>in</strong> antibiotic biosynthesis transcription analysisby RT Realtime-PCR as well as gene <strong>in</strong>activation experiments are carried out.Moreover three so far unknown secondary metabolite NRPS- and one PKSgenecluster as well as genes responsible for carotenoid biosynthesis andflagella formation could be identified and are under further <strong>in</strong>vestigation.To study the formation of spore flagella the growth conditions forsporangia formation and sporulation were determ<strong>in</strong>ed and analyzed byscann<strong>in</strong>g electron microscopy and RT-Realtime PCR. Additionallydifferent methods for enrichment of spores were tested to improve andfacilitate the <strong>in</strong>tergeneric conjugation procedure for A. friuliensis.MEP035Inhibition of quorum sens<strong>in</strong>g <strong>in</strong> Gram-Negative bacteria by astaphylococcal compoundY.-Y. Chu* 1 , M. Nega 1 , M. Wölfle 2 , M.T. Nguyen 1 , S. Grond 2 , F. Götz 11 Interfakultäres Institut für Mikrobiologie und Infektionsmediz<strong>in</strong>,Department of Microbial Genetics, Tueb<strong>in</strong>gen, Germany2 Institut für Organische Chemie , Tueb<strong>in</strong>gen, GermanyBacteria use signal molecules to regulate population density <strong>in</strong> a process ofbacterial communication called quorum sens<strong>in</strong>g. This process plays criticalroles <strong>in</strong> regulat<strong>in</strong>g various physiological activities, <strong>in</strong>clud<strong>in</strong>g production ofantibiotics, secretion of virulence factors, formation of biofilms, swarm<strong>in</strong>gmotility, biolum<strong>in</strong>escence, sporulation as well as symbiosis. Similarly, it isfound that various bacteria are able to secrete compounds for <strong>in</strong>hibit<strong>in</strong>g,<strong>in</strong>activat<strong>in</strong>g or stimulat<strong>in</strong>g quorum sens<strong>in</strong>g signals <strong>in</strong> other bacteria. In ourprevious study on co<strong>in</strong>fection ofStaphylococcusandPseudomonasaerug<strong>in</strong>osa, we observed thatP. aerug<strong>in</strong>osacould repress the growth ofpathogenic staphylococcalspeciesbut not of nonpathogenicstaphylococcalspeciesby respiratory <strong>in</strong>hibitors [1]. Meanwhile, to oursurprise, some stra<strong>in</strong>s of the nonpathogenic staphylococcalspeciesexhibitunknown compound X to <strong>in</strong>terrupt the function of quorum sens<strong>in</strong>gcontrolledfactors <strong>in</strong> gram-negative bacteria, such as the red prodigios<strong>in</strong>pigment <strong>in</strong>Serratia marcescens, the blue-green pyocyan<strong>in</strong><strong>in</strong>P.aerug<strong>in</strong>osaand biolum<strong>in</strong>escence <strong>in</strong>Vibrio harveyi.Physical analysisus<strong>in</strong>g XAD-16 res<strong>in</strong> and dialysis membrane demonstrated that themolecular weight of compound X is below 2 kDa. Moreover, compound Xresists alkal<strong>in</strong>e and acid pH, high temperature and prote<strong>in</strong>ase K treatment,which might exclude compound X as a normal peptide. However, themechanism of compound X expression is still unknown s<strong>in</strong>ce it is<strong>in</strong>dependent of the growth temperature, and oxygen concentration <strong>in</strong> themedium. In further study, not only purification and identification of thecompound X us<strong>in</strong>g high-performance liquid chromatography (HPLC) andmass spectrometry (MS) are essential. It also needs to <strong>in</strong>dentify thecorrespond<strong>in</strong>g genes by transposon mutagenesis and clon<strong>in</strong>g randomchromosomal DNA of compound produc<strong>in</strong>g staphylococcal sta<strong>in</strong> <strong>in</strong>to anonproduc<strong>in</strong>g stra<strong>in</strong>.In the end, <strong>in</strong>vestigation of how compound X disruptsthe quorum sens<strong>in</strong>g signal<strong>in</strong>g system <strong>in</strong> gram-negative bacteria would bean important and <strong>in</strong>terest<strong>in</strong>g issue for new generation of antibiotics.1. Voggu L, Schlag S, Biswas R, Rosenste<strong>in</strong> R, Rausch C, Götz F.,J Bacteriol,2006,188(23),8079-86.MEP036Effect of galliderm<strong>in</strong> on biofilm of Staphylococcus aureus andStaphylococcus epidermidisJ. Sais<strong>in</strong>g* 1,2 , L. Dube 1 , A.-K. Ziebandt 1 , M. Nega 1 , S. Voravuthikunchai 2 ,F. Götz 11 University of Tueb<strong>in</strong>gen, Microbial Genetics, Tueb<strong>in</strong>gen, Germany2 Pr<strong>in</strong>ce of Songkla University, Microbiology, Songkhla, ThailandStaphylococcus aureus and S. epidermidis are widely <strong>in</strong>volved <strong>in</strong> m<strong>in</strong>or tosevere <strong>in</strong>fection. A major problem is the aris<strong>in</strong>g of highly virulent andmultiple resistant clones and the manifestation of persistent <strong>in</strong>fections dueto biofilm-form<strong>in</strong>g stra<strong>in</strong>s. Once a biofilm is formed dur<strong>in</strong>g <strong>in</strong>fection,particularly implant-associated <strong>in</strong>fections, therapy is extremely difficultdue to the antibiotic resistance <strong>in</strong> a biofilm community. The objective ofthis study was to <strong>in</strong>vestigate the activity of galliderm<strong>in</strong> with respect toprevent biofilm formation and to kill staphylococci once a biofilm hasbeen formed. For planktonic grown S. aureus and S. epidermidis them<strong>in</strong>imal <strong>in</strong>hibitory concentration (MIC) and m<strong>in</strong>imal bactericidalconcentration (MBC) values of galliderm<strong>in</strong> was <strong>in</strong> the order of 4-8 g/ml.This galliderm<strong>in</strong> concentrat<strong>in</strong>g is also sufficient to prevent biofilmformationof both species representatives. Also, the viability of 24 h and 5-day staphylococcal biofilm grown cells is significantly decreased aftertreated with galliderm<strong>in</strong>. We also <strong>in</strong>vestigated the effect of galliderm<strong>in</strong> onthe expression of biofilm-mediat<strong>in</strong>g genes such as major autolys<strong>in</strong> (atl)and PIA-synthesiz<strong>in</strong>g <strong>in</strong>tercellular adhes<strong>in</strong> (ica). Northern blot analysisrevealed that <strong>in</strong> the presence of galliderm<strong>in</strong> the correspond<strong>in</strong>g transcriptswere significantly decreased. Our f<strong>in</strong>d<strong>in</strong>g <strong>in</strong>dicates that galliderm<strong>in</strong>efficiently prevents biofilm formation <strong>in</strong> staphylococci and represents agood candidate for treatment for appropriate therapy.MEP037the cyanobacterial tox<strong>in</strong> microcyst<strong>in</strong> b<strong>in</strong>ds to prote<strong>in</strong>s <strong>in</strong>vivo and plays an essential role <strong>in</strong> oxidative stress response <strong>in</strong>Microcystis aerug<strong>in</strong>osaS. Meissner* 1 , Y. Zilliges 2 , J.-C. Kehr 1 , M. Hagemann 3 , E. Dittmann 11 University of Potsdam, Department of Microbiology, Potsdam-Golm,Germany2 Humboldt University, Department of Molecular Ecology, Berl<strong>in</strong>, Germany3 University of Rostock, Department of Plant Physiology, Rostock, GermanyCyanobacteria produce a variety of secondary metabolites with yetunknown functions. Microcyst<strong>in</strong> is one of the most <strong>in</strong>tensely studiedsecondary metabolites due to its regular <strong>in</strong>volvement <strong>in</strong> toxic freshwatercyanobacterial mass developments. Here we describe a new function ofmicrocyst<strong>in</strong> act<strong>in</strong>g on prote<strong>in</strong>s of Microcystis aerug<strong>in</strong>osa PCC 7806,which <strong>in</strong>dicates a putative <strong>in</strong>volvement <strong>in</strong> physiological processes of theproduc<strong>in</strong>g organism.The phenotype of the microcyst<strong>in</strong> deficient mcyB mutant shows<strong>in</strong>creased susceptibility towards high light conditions of above 300 E/ m 2· s when compared to the microcyst<strong>in</strong> produc<strong>in</strong>g wild type. Microcyst<strong>in</strong>covalently b<strong>in</strong>ds to Microcystis prote<strong>in</strong>s <strong>in</strong> vivo and exposition to highlight strongly facilitates the b<strong>in</strong>d<strong>in</strong>g. In vitro, block<strong>in</strong>g of free sulfhydrylgroups of prote<strong>in</strong>s <strong>in</strong> mcyB mutant extracts disables the b<strong>in</strong>d<strong>in</strong>g.Accord<strong>in</strong>gly, microcyst<strong>in</strong> most likely <strong>in</strong>teracts with cyste<strong>in</strong>esof Microcystis prote<strong>in</strong>s to form a stable thioether bond. One of the mostprom<strong>in</strong>ent b<strong>in</strong>d<strong>in</strong>g partners of microcyst<strong>in</strong> is the large subunit of thecarbon fix<strong>in</strong>g enzyme RubisCO (RbcL). Interest<strong>in</strong>gly, the b<strong>in</strong>d<strong>in</strong>g ofmicrocyst<strong>in</strong> to RbcL renders the enzyme less susceptible towardsproteolysis by the ser<strong>in</strong>e protease subtilis<strong>in</strong>. Comparative proteomicstudies revealed altered accumulation patterns of several Calv<strong>in</strong> cycleenzymes <strong>in</strong>clud<strong>in</strong>g RubisCO as a consequence to the loss of microcyst<strong>in</strong>production.Altogether the f<strong>in</strong>d<strong>in</strong>gs outl<strong>in</strong>ed above strongly suggest an importantphysiological role of microcyst<strong>in</strong> with regard to modify<strong>in</strong>g the proteomeof Microcystis and <strong>in</strong>creas<strong>in</strong>g the capability of the cells to handleconditions trigger<strong>in</strong>g oxidative stress.Zilliges Y, Kehr J-C, Meissner S, Ishida K, Mikkat S, et al. (2011) The Cyanobacterial Hepatotox<strong>in</strong>Microcyst<strong>in</strong> B<strong>in</strong>ds to Prote<strong>in</strong>s and Increases the Fitness of Microcystis under Oxidative StressConditions. PLoS ONE 6(3): e17615. doi:10.1371/journal.pone.0017615BIOspektrum | Tagungsband <strong>2012</strong>


101MEP038A new arylsulfate sulfotransferase <strong>in</strong>volved <strong>in</strong> liponucleosideantibiotic biosynthesis <strong>in</strong> streptomycetesK. Eitel* 1 , L. Kaysser 2 , T. Tan<strong>in</strong>o 3 , S. Siebenberg 1 , A. Matsuda 3 ,S. Ichikawa 3 , B. Gust 11 University of Tüb<strong>in</strong>gen, Pharmaceutical Institute, Tüb<strong>in</strong>gen, Germany2 Scripps Institution of Oceanography, La Jolla, United States3 Faculty of Pharmaceutical Science, Hokkaido, JapanSulfotransferases are <strong>in</strong>volved <strong>in</strong> a variety of physiological processes andtypically use 3-phosphoadenos<strong>in</strong>e 5-phosphosulfate (PAPS) as the sulfatedonor substrate. In contrast, microbial arylsulfate sulfotransferases(ASSTs) are PAPS-<strong>in</strong>dependent and utilize arylsulfates as sulfate donors.Yet, their genu<strong>in</strong>e acceptor substrates are unknown. Here, we demonstratethat Cpz4 fromStreptomyces sp. MK730-62F2 is an ASST-typesulfotransferase responsible for the formation of sulfated liponucleosideantibiotics[1]. Gene deletion mutants showed that cpz4 is required for theproduction of sulfated caprazamyc<strong>in</strong> derivatives.Clon<strong>in</strong>g, overproduction, and purification of Cpz4 resulted <strong>in</strong> a 58-kDasoluble prote<strong>in</strong>. The enzyme catalyzed the transfer of a sulfate group fromp-nitrophenol sulfate (Km 48.1 m, kcat 0.14 s1) and methylumbelliferone sulfate (Km 34.5 m, kcat 0.15 s1) onto phenol (Km 25.9and 29.7 mm, respectively). The Cpz4 reaction proceeds by a p<strong>in</strong>g pongbi-bi mechanism. Several structural analogs of <strong>in</strong>termediates of thecaprazamyc<strong>in</strong> biosynthetic pathway were synthesized and tested assubstrates of Cpz4. Des-N-methyl-acyl-caprazol was converted withhighest efficiency 100 times faster than phenol. The fatty acyl side cha<strong>in</strong>and the uridyl moiety seem to be important for substrate recognition byCpz4. Liponucleosides, partially purified from various mutant stra<strong>in</strong>s werereadily sulfated by Cpz4 us<strong>in</strong>g p-nitrophenol sulfate. No product formationcould be observed with PAPS as the donor substrate. Sequence homologyof Cpz4 to the previously exam<strong>in</strong>ed ASSTs is low. However, numerousorthologs are encoded <strong>in</strong> microbial genomes and represent <strong>in</strong>terest<strong>in</strong>gsubjects for future <strong>in</strong>vestigations.[1] L. Kaysser, K. Eitel, T. Tan<strong>in</strong>o, S. Siebenberg, A. Matsuda, S. Ichikawa and B. Gust, J BiolChem.285(2010):12684-94.MEP039Tools for the analysis of metagenomic libraries regard<strong>in</strong>g theproduction of secondary metabolites with biosurfactantpropertiesS. Thies* 1 , F. Rosenau 2 , S. Wilhelm 1 , K.-E. Jaeger 11 He<strong>in</strong>rich-He<strong>in</strong>e-Universität , Institute for Molecular Enzyme Technology,Düsseldorf, Germany2 Universität Ulm, Institut für Pharmazeutische Biotechnologie, Ulm, GermanyMicrobiological produced compounds with tensidic properties(“biosurfactants”) may be useful alternatives for chemical synthesizedcompounds.Secondary metabolites like biosurfactants are synthesized <strong>in</strong> metabolicpathways with <strong>in</strong>dividual reactions catalysed by different enzymes. Inbacteria, the genes which encode enzymes <strong>in</strong>volved <strong>in</strong> the same pathwayare often organized <strong>in</strong> gene clusters, mean<strong>in</strong>g they are all localized <strong>in</strong> oneparticular region of the chromosome.In the case of biosurfactants, known gene cluster sizes are between ca.3.000 base pairs (bp) and up to 70.000 bp.Aim of this project is the construction of metagenomic libraries with DNAfragments conta<strong>in</strong><strong>in</strong>g clusters encod<strong>in</strong>g enzymes of surfactant produc<strong>in</strong>gpathways. Construct<strong>in</strong>g metagenomic libraries requires transfer of genetic<strong>in</strong>formation of certa<strong>in</strong> habitats <strong>in</strong>clud<strong>in</strong>g non-cultivatable organisms whichcan exclusively live <strong>in</strong> those niches <strong>in</strong>to a usable form by isolat<strong>in</strong>g theDNA directly from the environment and clon<strong>in</strong>g it <strong>in</strong>to appropriatevectors. By expression of the metagenomic DNA <strong>in</strong> suitable hosts,products of biosynthetic pathways like biosurfactants encoded by thisDNA can be identified. S<strong>in</strong>ce already the identification is done <strong>in</strong> wellestablishedand safe expression stra<strong>in</strong>s this method not only makes novelcompounds available but also ensures an option for recomb<strong>in</strong>antproduction <strong>in</strong> these platform production stra<strong>in</strong>s. Promis<strong>in</strong>g habitats to f<strong>in</strong>dstra<strong>in</strong>s produc<strong>in</strong>g tensidic molecules are fatty and oily environments likeslaughterhouses or tannery. Libraries conta<strong>in</strong><strong>in</strong>g DNA orig<strong>in</strong>ated <strong>in</strong> suchhabitats will be screened for produc<strong>in</strong>g compounds with tensidic properties.At present construction of a novel expression vector for libraryconstruction is f<strong>in</strong>ished which allows the expression of gene clustersencoded <strong>in</strong> both directions of an <strong>in</strong>serted DNA fragment. Enabl<strong>in</strong>g a rapidworkflow as required for efficient work with the large libraries, we haveoptimized a recently developed fast screen<strong>in</strong>g method for biosurfactantproduction concern<strong>in</strong>g our purposes.MEP040Anti-micobial activity of soil-liv<strong>in</strong>g Bacillus species aga<strong>in</strong>sthuman pathogenic and sepsis-related bacteriaO. Makarewicz, M. Kl<strong>in</strong>ger*, M. PletzUniversitätskl<strong>in</strong>ikum Jena, Sektion Kl<strong>in</strong>ische Infektiologie, Jena, GermanyObjectives: Soil liv<strong>in</strong>g bacteria are known to produce compounds thatpromote plant growth and confer resistance to plant diseases caused bydifferent pathogens [1, 2]. The rhizosphere can be colonized bybiofilmformation by various species, thus anti-microbials ensure alsosurvival advantage aga<strong>in</strong>st compet<strong>in</strong>g commensals. For example, B.amyloliquefaciensstra<strong>in</strong> FZB42 secrets at least 12 known antibiotics,which <strong>in</strong>hibit growth and destroy biofilms of other microorganisms andthat belong to different chemical classes: lipopetides, polyketides, smallpeptides [3]. The aim of our efforts is to scrren culture supernatants of soliliv<strong>in</strong>g Gram+ for novel substances with activity aga<strong>in</strong>st biofilms of multidrugresistant major bacterial human pathogens <strong>in</strong>volved <strong>in</strong>to catheter- anddevice associated <strong>in</strong>fections.Methods: We used supernatants of B. amyloliquefaciens(n=5), B. pumilus(n=1), B. licheniformis(n=1) and P. polymyxa (n=3) that were filtered,lyophilized and resuspended <strong>in</strong> 1/10 volume <strong>in</strong> sterilized water.Supernatants were used <strong>in</strong> disc diffusion tests aga<strong>in</strong>st multi-drug resistantisolates of E. coli (n=3), K. pneumoniae (n=2), P. aurug<strong>in</strong>osa(n=4), S.aureus (n=3), E. faecalis (n=2) and P. mirabilis (n=1) as <strong>in</strong>dicator stra<strong>in</strong>s.A more detailed analysis of active compounds was performed us<strong>in</strong>gbioautography based on th<strong>in</strong> layer chromatography.Results: Supernatants of P. polymyxa stra<strong>in</strong>sexhibited strongest antimicrobialactivity aga<strong>in</strong>st Gram+ and Gram- pathogens. B. amyloliquefaciensFZB 42 showed also high activities aga<strong>in</strong>st all <strong>in</strong>dicator stra<strong>in</strong>s. B. pumilus andB. licheniformis <strong>in</strong>hibited ma<strong>in</strong>ly growth of Gram+.Conclusion: Gram-positives soil liv<strong>in</strong>g bacteria secrete a wide spectrum of bioactivesecondary metabolites, which can <strong>in</strong>hibit the growth of humanpathogens. Further experiments will concentrate on identification of particularsubstances antimicrobial activity and analyze their anti-biofilm activities.1. Verhagen, B.W., et al.,Pseudomonas spp.-<strong>in</strong>duced systemic resistance to Botrytis c<strong>in</strong>erea is associatedwith <strong>in</strong>duction and prim<strong>in</strong>g of defence responses <strong>in</strong> grapev<strong>in</strong>e.J Exp Bot, 2010.61(1): p. 249-60.2. Ko, H.S., et al.,Biocontrol Ability of Lysobacter antibioticus HS124 Aga<strong>in</strong>st Phytophthora Blight IsMediated by the Production of 4-Hydroxyphenylacetic Acid and Several Lytic Enzymes.Curr Microbiol,2009.3. Chen, X.H., et al.,Comparative analysis of the complete genome sequence of the plant growth-promot<strong>in</strong>gbacterium Bacillus amyloliquefaciens FZB42. Nat Biotechnol, 2007.25(9): p. 1007-14.MEP041Identification of a gene participat<strong>in</strong>g <strong>in</strong> the sulphurmetabolism <strong>in</strong> Oenococcus oeniC. Knoll 1 , M. du Toit 2 , S. Schnell 3 , D. Rauhut* 4 , S. Irmler 51 Hochschule Rhe<strong>in</strong>Ma<strong>in</strong>, Fachbereich Geisenheim, Geisenheim, Germany2 University Stellenbosch, Institute for W<strong>in</strong>e Biotechnology, Stellenbosch, SouthAfrica3 Justus-Liebig-Universität Gießen, Institute for Applied Microbiology, Gießen,Germany4 Forschungsanstalt Geisenheim, Microbiology and Biochemistry, Geisenheim,Germany5 Forschungsanstalt Agroscope Liebefeld-Posieux ALP, Bern, SwitzerlandSulphur-conta<strong>in</strong><strong>in</strong>g compounds <strong>in</strong> w<strong>in</strong>e have a high impact on w<strong>in</strong>eflavour and quality. Recent studies demonstrated that Oenococcus oeni isable to produce, from methion<strong>in</strong>e, different volatile sulphur compounds(VSC) (Pripis-Nicolau et al. 2004), but no specific enzymes have beenidentified and characterised so far.In this research work an enzyme that degrades sulphur-conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>oacids was identified, heterologous expressed <strong>in</strong> Escherichia coliBL21(DE3) and biochemically characterised from two O. oeni stra<strong>in</strong>s ofoenological orig<strong>in</strong>s. The amplified PCR product consisted of 1140nucleotides encod<strong>in</strong>g a deduced prote<strong>in</strong> of 379 am<strong>in</strong>o acids and was highlyconserved among the compared O. oeni stra<strong>in</strong>s.The enzyme has characteristics of a cystathion<strong>in</strong>e-g-lyase (EC4.4.1.1), apyridoxal-5-phosphate-dependent enzyme catalyz<strong>in</strong>g an a,g-elim<strong>in</strong>ationreaction of l-cystathion<strong>in</strong>e to produce l-cyste<strong>in</strong>e, a-ketobutyrate andammonia. Moreover, it was able to catalyse an a,-elim<strong>in</strong>ation reactionsynthesiz<strong>in</strong>g homocyste<strong>in</strong>e, pyruvate and ammonia from l-cystathion<strong>in</strong>e.An elim<strong>in</strong>ation reaction of l-cyste<strong>in</strong>e and dl-homocyste<strong>in</strong>e was alsoefficiently catalysed by the enzyme, result<strong>in</strong>g <strong>in</strong> the formation of H 2S.Furthermore, the ability to demethiolate methion<strong>in</strong>e <strong>in</strong>to methanethiol, anunfavourable volatile sulphur substance, was shown.Climate change and specific v<strong>in</strong>ification practices can result <strong>in</strong> w<strong>in</strong>es withhigh alcohol concentrations (>13 % (v/v)). It could be demonstrated thatethanol contents up to 15 % (v/v) had no impact on the activity of thepurified enzymes. Furthermore, the enzymes were stable at temperaturessuitable for the w<strong>in</strong>e production and storage. If l-cystathion<strong>in</strong>e was used assubstrate, the enzyme activity was highest at pH 8.0. No activity wasobserved at a pH below 6.5. In, contrast, l-methion<strong>in</strong>e was degraded at pH5.5 and 6.Therefore further work with natural substrates will be necessary todeterm<strong>in</strong>e its <strong>in</strong>fluence on the VSC production <strong>in</strong> w<strong>in</strong>e (Knoll et al. 2011).BIOspektrum | Tagungsband <strong>2012</strong>


102Knoll, C., du Toit, M., Schnell, S., Rauhut, D., Irmler, S., 2011. Clon<strong>in</strong>g and characterisation of acystathion<strong>in</strong>e /g-lyase from two Oenococcus oeni oenological stra<strong>in</strong>s. Applied Microbiology andBiotechnology, 89, 1051-1060Pripis-Nicolau, L., Revel, G., Bertrand, A. and Lonvaud-Funel, A. (2004) Methion<strong>in</strong>e catabolism andproduction of volatile sulphur compounds by Oenococcus oeni. J Appl Microbiol 96 (5): 1176-1184MEP042Strategies for the recomb<strong>in</strong>ant production of the cyclicdepsipeptide val<strong>in</strong>omyc<strong>in</strong> <strong>in</strong> Escherichia coliJ. Jaitzig* 1 , J. Li 1 , R. Süssmuth 2 , P. Neubauer 11 Technische Universität Berl<strong>in</strong>, Institut für Biotechnologie, Berl<strong>in</strong>, Germany2 Technische Universität Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, GermanyThe natural pool of biologically active nonribosomal peptides (NRPs) frombacteria and fungi is vast but still largely untapped. Reasons are thestructural complexity of NRPs that impedes chemical synthesis and thepoor cultivability of the majority of source organisms. S<strong>in</strong>ce nonribosomalpeptide synthetases (NRPSs) assemble NRPs from simple build<strong>in</strong>g blocks,the heterologous expression of NRPSs <strong>in</strong> a robust and easy to manipulateexpression host like Escherichia coli is a desirable strategy to makepharmaceutically relevant NRPs more accessible (1). However, their largesize and complexity make recomb<strong>in</strong>ant expression of soluble and activeNRPSs <strong>in</strong> E. coli a bottleneck.Val<strong>in</strong>omyc<strong>in</strong> is a bioactive cyclodepsipeptide formed by the two NRPSs,Vlm1 (370 kDa) and Vlm2 (284 kDa) <strong>in</strong> Streptomyces tsusimaensis (2). Inorder to establish a recomb<strong>in</strong>ant production system for val<strong>in</strong>omyc<strong>in</strong> <strong>in</strong> E.coli and further characterize the val<strong>in</strong>omyc<strong>in</strong> biosynthesis, the two vlmgenes were isolated from the genomic DNA of S. tsusimaensis and<strong>in</strong>troduced <strong>in</strong>to various expression vectors via parallel recomb<strong>in</strong>ationalclon<strong>in</strong>g. A rational expression screen<strong>in</strong>g <strong>in</strong> 24- and 96-well plates wasperformed to test the expression constructs and relevant cultivationparameters <strong>in</strong> parallel. Correct fold<strong>in</strong>g and activity of the enzymes wereassayed <strong>in</strong> vitro after purification. To provide the necessaryposttranslational phosphopantethe<strong>in</strong>ylation of val<strong>in</strong>omyc<strong>in</strong> synthetase thesfp gene from Bacillus subtilis was genomically <strong>in</strong>tegrated <strong>in</strong>to the targetE. coli expression stra<strong>in</strong>.We could show that with a high-throughput screen<strong>in</strong>g and optimizationapproach even the large, <strong>in</strong>itially poorly expressed, heterodimericval<strong>in</strong>omyc<strong>in</strong> synthetase could be expressed soluble <strong>in</strong> E. coli. In vitroactivity studies of the four adenylation doma<strong>in</strong>s gave <strong>in</strong>formation onsubstrate specificities and experimentally confirmed the postulated modeof action of the val<strong>in</strong>omyc<strong>in</strong> biosynthetic assembly l<strong>in</strong>e (3). F<strong>in</strong>ally,val<strong>in</strong>omyc<strong>in</strong> formation was achieved by co-express<strong>in</strong>g Vlm1 and Vlm2 <strong>in</strong>an eng<strong>in</strong>eered E. coli stra<strong>in</strong> with genomically <strong>in</strong>tegrated B. subtilis sfp.This paves the way to tailor the enzymatic assembly l<strong>in</strong>e <strong>in</strong> order toproduce nonnatural val<strong>in</strong>omyc<strong>in</strong> derivatives.1. H. Zhang, B. A. Boghigian, J. Armando, B. A. Pfeifer, Nat Prod Rep 28, 125 (2011).2. Y. Q. Cheng, ChemBioChem 7, 471 (2006).3. N. A. Magarvey, M. Ehl<strong>in</strong>g-Schulz, C. T. Walsh, J Am Chem Soc 128, 10698 (2006).MEP043Genomic m<strong>in</strong><strong>in</strong>g for novel FADH2-dependent halogenases <strong>in</strong>mar<strong>in</strong>e sponge-associated microbial consortiaK. Bayer*, M. Scheuermayer, U. HentschelUniversity of Wuerzburg, Botany 2, Wuerzburg, GermanyMany mar<strong>in</strong>e sponges (Porifera) are known to conta<strong>in</strong> large amounts ofphylogenetically diverse microorganisms. Sponges are also known fortheir large arsenal of natural products many of which are halogenated. Inthis study, 36 different FADH2-dependent halogenase gene fragmentswere amplified from various Caribbean and Mediterranean sponges us<strong>in</strong>gnewly designed degenerate PCR primers. Four unique halogenase-positivefosmid clones, all conta<strong>in</strong><strong>in</strong>g the highly conserved am<strong>in</strong>o acid motif“GxGxxG”, were identified <strong>in</strong> the microbial metagenome of Aplys<strong>in</strong>aaerophoba. Sequence analysis of one halogenase-bear<strong>in</strong>g fosmid revealednotably two ORFs with high homologies to efflux and multidrug resistanceprote<strong>in</strong>s. S<strong>in</strong>gle cell genomic analysis allowed for a taxonomic assignmentof the halogenase genes to specific symbiotic l<strong>in</strong>eages. Specifically, thehalogenase cluster S1 is predicted to be produced by a deltaproteobacterialsymbiont and halogenase cluster S2 by a poribacterial sponge symbiont.An additional halogenase gene is possibly produced by an act<strong>in</strong>obacterialsymbiont of mar<strong>in</strong>e sponges. The identification of three novel,phylogenetically and possibly also functionally dist<strong>in</strong>ct halogenase geneclusters <strong>in</strong>dicates that the microbial consortia of sponges are a valuableresource for novel enzymes <strong>in</strong>volved <strong>in</strong> halogenation reactions.MEP044Heterologous Expression of the Lantibiotic Lichenicid<strong>in</strong> <strong>in</strong> E.coli and Generation of New Congeners by Introduc<strong>in</strong>g Non-Natural Am<strong>in</strong>o AcidsF. Oldach* 1 , T. Caetano 2 , A. Kuthn<strong>in</strong>g 1 , R. Al Toma 1 , J.M. Krawczyk 1 ,E. Mösker 1 , N. Budisa 1 , S. Mendo 2 , R.D. Süssmuth 11 Technische Universität Berl<strong>in</strong>, Institut für Chemie, Berl<strong>in</strong>, Germany2 University of Aveiro, Department of Biology and CESAM, Aveiro,PortugalLantibiotics are a family of ribosomally synthesized peptide antibiotics,produced by various bacteria. Subsequent to their synthesis lantibiotics areposttranslationally modified. Thereby the thioether-conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>o acidslanthion<strong>in</strong>e (Lan) and methyllanthion<strong>in</strong>e (MeLan) are formed fromSer/Cys and Thr/Cys, respectively [1]. The class I and II lantibioticsexhibit antimicrobial activity aga<strong>in</strong>st a large number of Gram-positivebacteria, e.g. Staphylococcus aureus, <strong>in</strong>clud<strong>in</strong>g MRSA [2], while class IIIlantibiotics have no antimicrobial effects and display other remarkablebioactivities, e.g. pa<strong>in</strong>-suppression <strong>in</strong> mice [3].The class II-lantibiotic Lichenicid<strong>in</strong>, produced by the Gram-positiveBacillus licheniformis is composed of the two subunits Bli and Bli thatare synthetized as an <strong>in</strong>active prepropeptide (LicA1, LicA2). The peptideis further modified by LicM1 (for LicA1) and LicM2 (for LicA2),exported by LicT and, <strong>in</strong> the case of Bli, it is cleaved by the proteaseLicP [4]. We developed a system that enabled us to successfully expressthe biosynthetic genes of Lichenicid<strong>in</strong> <strong>in</strong> the Gram-negative hostEscherichia coli [5].In order to generate novel structural diversity, we used this powerful toolfor genetic code eng<strong>in</strong>eer<strong>in</strong>g and <strong>in</strong>corporation of noncanonical am<strong>in</strong>oacids (ncAA). The possibility to express Lichenicid<strong>in</strong> variants <strong>in</strong> E. coliprovides the opportunity for novel Lantibiotics eng<strong>in</strong>eer<strong>in</strong>g. Ultimately,this will yield novel lantibiotics with new bioactivities due to dramatically<strong>in</strong>creased structural diversity [6].1. (a) G. Jung Angew. Chem. Int. Ed. Engl. 1991, 30, 1051 - 1068. (b) C. Chatterjee, M. Paul, L. Xie, W. A.van der Donk Chem. Rev. 2005,105, 633 - 683.2. H.-G. Sahl, G. Bierbaum Annu. Rev. Microbiol. 1998, 52, 41 - 79.3. K. Me<strong>in</strong>dl, T. Schmiederer, K. Schneider, A. Reicke, D. Butz, S. Keller, H. Gühr<strong>in</strong>g, L. Vértesy, J. W<strong>in</strong>k,H. Hoffmann, M. Brönstrup, G. M. Sheldrick, R. D. Süssmuth Angew. Chem. Int. Ed. 2010, 49, 1151 - 1154.4. M. Begley, P. D. Cotter, C. Hill, R. P. Ross Appl. Environ. Microbiol. 2009, 75, 5451 - 5460.5. T. Caetano, J. M. Krawczyk, E. Mösker, R. D. Süssmuth, S. Mendo Chem. Biol. 2011, 18, 90 - 100.6. F. Oldach, R. Al Toma, A. Kuthn<strong>in</strong>g, T. Caetano, S. Mendo, N. Budisa , R. D. Süssmuth Angew. Chem.Int. Ed. 2011, <strong>in</strong> press.MEP045Characterization of new type-III lantibioticsG.H. Völler*, J.M. Krawczyk, A. Pesic, R.D. SüssmuthTechnische Universität Berl<strong>in</strong>, Institut für Chemie , Berl<strong>in</strong>, GermanyLantibiotics are a large group of ribosomally synthesized peptidesconta<strong>in</strong><strong>in</strong>g the am<strong>in</strong>o acid lanthion<strong>in</strong>e [1]. They are ma<strong>in</strong>ly synthesized byBacilli, Staphylococci, Lactococci and Act<strong>in</strong>omycetes, and are classifiedaccord<strong>in</strong>g to their gene cluster, their biosynthetic pathway and theirbioactivity <strong>in</strong>to three major subtypes. From type-III lantibiotics producedby Act<strong>in</strong>omycetes only four peptides (SapB, SapT and LabA1/A2) havebeen structurally characterized although homologous gene clusters areabundant <strong>in</strong> other Act<strong>in</strong>omycetes [2,3,4,5].All these gene clusters share a similar architecture with all of the encodedprepropeptides conta<strong>in</strong><strong>in</strong>g a characteristic Ser/Ser/Cys motif, which haspreviously been suggested to act as a precursor of the lanthion<strong>in</strong>e andlabion<strong>in</strong> r<strong>in</strong>g, respectively [4,5]. We report on the detection, analytics andcharacterization of new type-III lantibiotics. Remarkably, accord<strong>in</strong>g to ourprelim<strong>in</strong>ary f<strong>in</strong>d<strong>in</strong>gs, the new type III-lantibiotics all conta<strong>in</strong> preferably theam<strong>in</strong>o acid labion<strong>in</strong>. We assume, that these f<strong>in</strong>d<strong>in</strong>gs have implications forthe structures of other type III lantibiotics, [2,3] and suggest that type-IIIlantibiotics are more abundant than anticipated previously.1. G. Jung, Angew. Chem. 1991, 30(9), 1051-11922. S. Kodani, M.E. Hudson, M.C. Durrant, M.J. Buttner, J.R. Nodwell, J. M. Willey, Proc. Natl. Acad. Sci. US A 2004, 101, 11448-11453.3. S. Kodani, M.A. Lodato, M.C Durrant, F. Picart, J.M. Willey, Mol. Microbiol. 2005, 58, 1368-13804. W. M. Müller, T. Schmiederer, P. Ensle, R. D. Süssmuth, Angew. Chem. Int. Ed. 2010, 122, 2486 -2490.5. K. Me<strong>in</strong>dl, T. Schmiederer, K. Schneider, A. Reicke, D. Butz, S. Keller, H. Gühr<strong>in</strong>g, L. Vértesy, J. W<strong>in</strong>k,H. Hoffmann, M. Brönstrup, G. M. Sheldrick, and R. D. Süssmuth, Angew. Chem. Int. Ed. 2010, 49, 1151-1154.BIOspektrum | Tagungsband <strong>2012</strong>


103MPV001The lipodepsipeptide empedopept<strong>in</strong> <strong>in</strong>hibits cell wall biosynthesisthrough Ca 2+ -dependent complex formation with peptidoglycanprecursorsH. Brötz-Oesterhelt 1 , *A. Mueller 2 , D. Muench 2 , Y. Schmidt 3 , K. Reder-Christ 4 ,G. Schiffer 5 , G. Bendas 4 , H. Gross 3 , H.-G. Sahl 2 , T. Schneider 21 University of Duesseldorf, Pharmaceutical Biology, Duesseldorf, Germany2 University of Bonn, Medical Microbiology, Immunology and Parasitology,Bonn, Germany3 University of Bonn, Pharmaceutical Biology, Bonn, Germany4 University of Bonn, Pharmaceutical Chemistry, Bonn, Germany5 AiCuris, Wuppertal, GermanyEmpedopept<strong>in</strong> is a natural lipodepsipeptide antibiotic with potentantibacterial activity aga<strong>in</strong>st multi-resistant Gram-positive bacteria<strong>in</strong>clud<strong>in</strong>g methicill<strong>in</strong>-resistant Staphylococcus aureus and penicill<strong>in</strong>resistantStreptococcus pneumoniae <strong>in</strong> vitro and <strong>in</strong> animal models ofbacterial <strong>in</strong>fection. Here, we present its so far elusive mechanism ofantibacterial action.Empedopept<strong>in</strong> selectively <strong>in</strong>terferes with late stages of cell wallbiosynthesis <strong>in</strong> <strong>in</strong>tact bacterial cells as demonstrated by <strong>in</strong>hibition of N-acetyl-glucosam<strong>in</strong>e <strong>in</strong>corporation <strong>in</strong>to polymeric peptidoglycan and theaccumulation of the ultimate soluble peptidoglycan precursor UDP-Nacetyl-muramicacid-pentapeptide <strong>in</strong> the cytoplasm. Us<strong>in</strong>g membranepreparations and the complete cascade of purified, recomb<strong>in</strong>ant late-stagepeptidoglycan biosynthetic enzymes and their respective purifiedsubstrates, we show that empedopept<strong>in</strong> forms complexes withundecaprenyl pyrophosphate conta<strong>in</strong><strong>in</strong>g peptidoglycan precursors. Theprimary physiological target of empedopept<strong>in</strong> is undecaprenylpyrophosphate-N-acetylmuramicacid-pentapeptide-N-acetyl-glucosam<strong>in</strong>e(lipid II), which is readily accessible at the outside of the cell and whichforms a complex with the antibiotic <strong>in</strong> a 1 : 2 molar stoichiometry. Lipid IIis bound <strong>in</strong> a region that <strong>in</strong>volves at least the pyrophosphate group, thefirst sugar, and the upper parts of stem peptide and undecaprenyl cha<strong>in</strong>.Undecaprenyl pyrophosphate and also teichoic acid precursors are boundwith lower aff<strong>in</strong>ity and constitute additional targets. Calcium ions arecrucial for the antibacterial activity of empedopept<strong>in</strong>, as they promotestronger <strong>in</strong>teraction with its targets and with negatively chargedphospholipids <strong>in</strong> the membrane. Based on the high structural similarity ofempedopept<strong>in</strong> to the tripropept<strong>in</strong>s and plusbac<strong>in</strong>s, we propose thismechanism of action for the whole compound class.MPV002The Staphylococcus aureus plasm<strong>in</strong>-sensitive prote<strong>in</strong> Pls is aglycoprote<strong>in</strong>I. Bleiziffer 1 , K. McAulay 2 , G. Xia 3 , M. Hussa<strong>in</strong> 1 , G. Pohlentz 4 , A. Peschel 3 ,S.J. Foster 2 , G. Peters 1 , C. Heilmann* 11 University Hospital Münster, Institute for Medical Microbiology, Münster,Germany2 University of Sheffield, Institute of Molecular Microbiology, Sheffield, UnitedK<strong>in</strong>gdom3 University of Tüb<strong>in</strong>gen, Medical Microbiology and Hygiene Department,Tüb<strong>in</strong>gen, Germany4 University Hospital Münster, Institute of Medical Physics and Biophysics,Münster, GermanyQuestion: Until recently, the <strong>in</strong>ability of bacteria to glycosylate prote<strong>in</strong>shas been considered a dogma. Now, it is widely accepted that bacteria canglycosylate prote<strong>in</strong>s. Most bacterial glycoprote<strong>in</strong>s identified to date arevirulence factors of pathogenic bacteria, i.e. adhes<strong>in</strong>s and <strong>in</strong>vas<strong>in</strong>s.Methods and Results: To study the impact of prote<strong>in</strong> glycosylation <strong>in</strong>staphylococci, we analysed lysostaph<strong>in</strong> lysates of the methicill<strong>in</strong>-resistantStaphylococcus aureus (MRSA) stra<strong>in</strong> 1061 by SDS-PAGE and PeriodicAcid Schiff sta<strong>in</strong> that specifically sta<strong>in</strong>s glycosylated prote<strong>in</strong>s. Wedetected two glycosylated surface prote<strong>in</strong>s with molecular masses of ~270and ~180 kDa, the latter be<strong>in</strong>g a degradation product of the 270 kDaprote<strong>in</strong> and identified as plasm<strong>in</strong>-sensitive prote<strong>in</strong> Pls by massspectrometry. In a search for potential glycosyltransferases (Gtfs) <strong>in</strong>volved<strong>in</strong> the glycosylation of Pls, we expressed the pls gene that is encoded onSCCmec type I <strong>in</strong> the SA113 wild-type stra<strong>in</strong> and various Gtf mutants(SA113gtfAB, SA113bgt, SA113E3, SA113gtfABE3, SA113gtfABE3E4).All stra<strong>in</strong>s, but the SA113gtfAB mutants produced glycosylated versions ofPls <strong>in</strong>dicat<strong>in</strong>g a role for GtfA and/or GtfB <strong>in</strong> Pls glycosylation. However,the MRSA mutant stra<strong>in</strong> COLgtfAB still produced a glycosylated versionof Pls suggest<strong>in</strong>g that MRSA genomes carry additional gtf genes. Blastsearches identified two potential gtf genes downstream of pls, which wetermed gtfC and gtfD. Expression analysis <strong>in</strong>dicated that both, GtfC andGtfD, are <strong>in</strong>volved <strong>in</strong> glycosylation of Pls <strong>in</strong> the MRSA stra<strong>in</strong>s COL and1061. Moreover, the construction and characterization of pls subclonesrevealed that glycosylation occurs at the C-term<strong>in</strong>al SD repeats of Pls. Plsis known to prevent S. aureus adherence to fibr<strong>in</strong>ogen and fibronect<strong>in</strong> andalso its <strong>in</strong>ternalization by host cells probably act<strong>in</strong>g by steric h<strong>in</strong>drance.ELISA adherence and <strong>in</strong>ternalization assays <strong>in</strong>dicated that these functionsare not due to the glycosylation of Pls. However, we detected a significantimpact of Pls glycosylation on its b<strong>in</strong>d<strong>in</strong>g to peptidoglycan suggest<strong>in</strong>g apotential function <strong>in</strong> the proper target<strong>in</strong>g and/or surface display of Pls.Conclusion: The S. aureus plasm<strong>in</strong>-sensitive prote<strong>in</strong> Pls is a glycoprote<strong>in</strong>and GtfC/GtfD are Gtfs <strong>in</strong>volved <strong>in</strong> its glycosylation. Glycosylation of Plshas no impact on its ability to prevent adherence or <strong>in</strong>ternalization, butpotentially plays a role <strong>in</strong> its proper target<strong>in</strong>g and/or surface display.Currently, further analyses are on the way to determ<strong>in</strong>e the impact of sugarmodifications on S. aureus pathogenicity, which may represent promis<strong>in</strong>gnew targets for therapeutic measures.MPV003From target to therapy - Expression and characterization ofan anti-staphylococcal antibodyB. Oesterreich* 1 , R. Kontermann 2 , C. Erck 2,3 , U. Lorenz 2,3,4 , K. Ohlsen 1,2,3,41 Institute of Moleculare Infectionbiology, University Würzburg, Würzburg,Germany2 Institute of Cellbiology, Stuttgart, Germany3 HZI, Braunschweig, Germany4 Department of Surgery, Würzburg, GermanyThe Gram-positive bacteriumStaphylococcus aureusis the major cause ofnosocomial <strong>in</strong>fections. In particular, diseases caused by methicill<strong>in</strong>resistantS.aureus(MRSA) are associated with higher morbidity, mortalityand medical costs due to show<strong>in</strong>g resistance to several classes ofestablished antibiotics and their ability to develop resistance mechanismsaga<strong>in</strong>st new antibiotics rapidly. Therefore, immunological strategies basedon therapeutic antibodies have the potential to close the gap for an efficienttreatment of MRSA.The focus of our work is theidentification of surface components ofstaphylococci with potential as an immunodom<strong>in</strong>at antigen. In thisregardthe immunodom<strong>in</strong>ant staphylococcal antigen A (IsaA) has beenidentified as a putative target for immunotherapy due to its expression byall cl<strong>in</strong>ical stra<strong>in</strong>s<strong>in</strong>vivo, and its surface exposure. Precl<strong>in</strong>ical experimentsrevealed protective properties of a monoclonal mouse anti-IsaA antibody(UK-66)<strong>in</strong> vitroby phagocytosis assays and <strong>in</strong> mouse <strong>in</strong>fection models.Therefore, this mouse monoclonal antibody was selected for humanization.The hybridoma clone UK-66 was the basis for the identification of theantigen b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> aga<strong>in</strong>st IsaA. The cod<strong>in</strong>g sequence was used toconstruct recomb<strong>in</strong>ant scFv and scFvFc fragments towards IsaA and tohumanize the mur<strong>in</strong>e antigen b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. The fragments werecharacterized <strong>in</strong> their function and specificity by Western Blot analysis,ELISA-studies, immuno-fluorescence analysis and FACS experiments.The results revealed that all constructed fragments posses a highspecificity towards IsaA and the property of the antigen b<strong>in</strong>d<strong>in</strong>g fragmentsto detect IsaA on the cell surface of differentS. aureusstra<strong>in</strong>s. After thesestudies the whole antibody was constructed and its function wascharacterized by ELISA-studies, FACS experiments and kill<strong>in</strong>g assays.Based on these results the humanized anti-IsaA antibody has the potentialfor a successful immunotherapy aga<strong>in</strong>st MRSA.MPV004Antibiotic resistance and pathogenicity of NDM-carry<strong>in</strong>gAc<strong>in</strong>etobacter baumanniiC. Szagunn*, T.A. Wichelhaus, V.A.J. Kempf, S. GöttigJohann Wolfgang Goethe-Universitätskl<strong>in</strong>ikum, Mediz<strong>in</strong>ische Mikrobiologieund Krankenhaushygiene, 60596 Frankfurt am Ma<strong>in</strong>, GermanyQuestion: The gram-negative bacterium Ac<strong>in</strong>etobacter baumannii causessevere nosocomial <strong>in</strong>fections. The worldwide spread of multidrug resistantA. baumannii is a serious global health threat. Aggravation of antibiotictreatment is ma<strong>in</strong>ly caused by OXA-lactamases and NDM (New Delhimetallo-beta-lactamase). In this study, we analyzed the prevalence of thementioned resistance genes <strong>in</strong> cl<strong>in</strong>ical A. baumannii isolates. Furthermore,we exam<strong>in</strong>ed the role of NDM <strong>in</strong> an <strong>in</strong>fection model s<strong>in</strong>ce it is suggestedto be part of a genomic pathogenicity island.Methods: DNA from A. baumannii cl<strong>in</strong>ical isolates was screened by PCRfor the presence of NDM and OXA-lactamases and verified by sequenc<strong>in</strong>g.Antibiotic susceptibility test<strong>in</strong>g was done us<strong>in</strong>g Vitek2 and E-test method.Pathogenicity of NDM- and non-NDM stra<strong>in</strong>s was <strong>in</strong>vestigated <strong>in</strong> timekill-k<strong>in</strong>eticsus<strong>in</strong>g the Galleria mellonella (larvae of the Greater WaxMoth) <strong>in</strong>fection model.Results: A. baumannii stra<strong>in</strong>s with an extended antibiotic resistanceprofile were isolated from 57 patients from <strong>in</strong>tensive care units between2001 and 2011. We discovered 38 imipenem-resistant stra<strong>in</strong>s; amongthose, 19 were positive for OXA-23, 3 for OXA-24 and 9 for OXA-58. Wedetected four NDM-carry<strong>in</strong>g isolates: one NDM-1 positive stra<strong>in</strong> from2007 and two from 2011. In addition, we found one NDM isolate with anovel po<strong>in</strong>t mutation from 2010 which is now be<strong>in</strong>g considered as NDM-2. NDM-carry<strong>in</strong>g A. baumannii were resistant to all tested antibioticsexcept the reserve antibiotics tigecycl<strong>in</strong>e and colist<strong>in</strong>.Time-kill-k<strong>in</strong>etics <strong>in</strong> <strong>in</strong>fection experiments us<strong>in</strong>g our newly establishedGalleria mellonella <strong>in</strong>fection model revealed no difference betweenBIOspektrum | Tagungsband <strong>2012</strong>


104pathogenicity of NDM- and non-NDM-carry<strong>in</strong>g stra<strong>in</strong>s. However, therapywith imipenem reduced the mortality of larvae <strong>in</strong>fected with non-NDMstra<strong>in</strong>s significantly. In contrast, imipenem <strong>in</strong>jection did not lowermortality rates of larvae <strong>in</strong>fected with NDM stra<strong>in</strong>s.Conclusion: The majority of imipenem-resistant stra<strong>in</strong>s carried the OXA-23 gene. The NDM-1 gene could already be detected <strong>in</strong> isolates from2007, two years before NDM-1 was <strong>in</strong>itially discovered. The first NDMmutant, NDM-2, was discovered <strong>in</strong> an isolate from 2010. With the use ofGalleria mellonella, we established an <strong>in</strong>fection model for evaluat<strong>in</strong>gpathogenicity and antibiotic treatment.MPV005Intim<strong>in</strong> and <strong>in</strong>vas<strong>in</strong> export their C-term<strong>in</strong>us to the bacterialcell surface us<strong>in</strong>g an <strong>in</strong>verse mechanism compared to classicalautotransportP. Oberhett<strong>in</strong>ger* 1 , M. Schütz 1 , J. Leo 2 , D. L<strong>in</strong>ke 2 , I. Autenrieth 11 Institute of Microbiology and Infection Medic<strong>in</strong>e, Medical Microbiology,Tüb<strong>in</strong>gen, Germany2 Max Planck Institute for Developmental Microbiology, Prote<strong>in</strong> Evolution,Tüb<strong>in</strong>gen, GermanyA large group of bacterial surface prote<strong>in</strong>s is represented by the family ofautotransporter prote<strong>in</strong>s, which belong to the type V secretion system andare found <strong>in</strong> almost all Gram-negative bacteria. Autotransporter prote<strong>in</strong>sare often important virulence factors and consist of three functionaldoma<strong>in</strong>s: a N-term<strong>in</strong>al signal sequence, a C-term<strong>in</strong>al translocator doma<strong>in</strong>and a passenger doma<strong>in</strong> <strong>in</strong> between. After synthesis <strong>in</strong> the cytosol and Secmediatedtransport across the <strong>in</strong>ner membrane <strong>in</strong>to the periplasm, thetranslocator doma<strong>in</strong> forms a beta-barrel pore <strong>in</strong> the outer membrane,presumably with the help of the Bam complex. Through this pore, thepassenger doma<strong>in</strong> is then translocated to the surface of the cell.A second, unrelated family of outer membrane prote<strong>in</strong>s that exposepassenger doma<strong>in</strong>s on the bacterial outer surface are the <strong>in</strong>tim<strong>in</strong>s and<strong>in</strong>vas<strong>in</strong>s, nonfimbrial adhes<strong>in</strong>s from pathogenic bacteria, whichspecifically <strong>in</strong>teract with host cell surface receptors and mediate bacterialattachment or <strong>in</strong>vasion. They are <strong>in</strong>tegrated <strong>in</strong>to the bacterial outermembrane with the am<strong>in</strong>o-term<strong>in</strong>al region, while the carboxy-term<strong>in</strong>alregion of the polypeptide is exposed on the bacterial outer membrane.Whereas the surface-localized parts of the prote<strong>in</strong> are functionally welldescribed, the topology and <strong>in</strong>sertion of the N-term<strong>in</strong>al membrane doma<strong>in</strong>and the translocation process have not been described. To <strong>in</strong>vestigate thetopology and the mechanism of translocation <strong>in</strong> more detail, we had acloser look at the am<strong>in</strong>o acid sequence of <strong>in</strong>vas<strong>in</strong> and <strong>in</strong>tim<strong>in</strong> us<strong>in</strong>gSignalP, PsiBLAST and HHAlign. Herefrom we got a prediction of thesignal peptide and twelve different -strands, which might build up the -barrel with<strong>in</strong> the outer membrane. Out of these predictions, we developedtopology models of the membrane anchor of <strong>in</strong>vas<strong>in</strong> and <strong>in</strong>tim<strong>in</strong>. By<strong>in</strong>troduction of HA-Tags def<strong>in</strong><strong>in</strong>g the orientation of the translocatordoma<strong>in</strong> with<strong>in</strong> the outer membrane and extensive immunofluorescencestudies, we were able to confirm our models. Furthermore, we show thatthe major periplasmic chaperone <strong>in</strong>volved <strong>in</strong> <strong>in</strong>vas<strong>in</strong> biogenesis is SurAand that DegP is responsible for quality control if <strong>in</strong>vas<strong>in</strong>.Moreover, we came to believe that <strong>in</strong>tim<strong>in</strong> (Int) and <strong>in</strong>vas<strong>in</strong> (Inv), twomajor pathogenicity factors ofE.coliandYers<strong>in</strong>ia, are monomericautotransporters, with the remarkable difference that their doma<strong>in</strong> order isreversed.MPV006Analysis of the <strong>in</strong>teraction of <strong>in</strong>vasive M1 Streptococcuspyogenes with human endothelial cellsA. Grützner*, M. Rohde, G.S. Chhatwal, S.R. TalayHelmholtz Centre for Infection Research, Medical Microbiology,Braunschweig, GermanyQuestion: Streptococcus pyogenes (GAS) is a human pathogen that causesa variety of diseases rang<strong>in</strong>g from superficial <strong>in</strong>fections to severe <strong>in</strong>vasivediseases like necrotiz<strong>in</strong>g fasciitis and streptococcal toxic shock likesyndrome. Serotype M1 and M3 GAS are most frequently associated with<strong>in</strong>vasive diseases. The M1 surface prote<strong>in</strong> is known to be a major epithelialcell <strong>in</strong>vas<strong>in</strong> and causes vascular leakage <strong>in</strong> an animal model. However, tocause an <strong>in</strong>vasive disease, the pathogen has to reach deeper tissue, afterovercom<strong>in</strong>g the endothelial cell barrier. The project focuses on the<strong>in</strong>teraction of <strong>in</strong>vasive serotype M1 S. pyogenes with human endothelialcells (EC). The aim is to identify possible pathogen- and host cellassociatedfactors that mediate barrier cross<strong>in</strong>g to elucidate the underly<strong>in</strong>gsignal<strong>in</strong>g cascades <strong>in</strong> ECs.Methods and Results: Us<strong>in</strong>g an <strong>in</strong> vitro EC <strong>in</strong>fection model we couldshow that different M1 GAS cl<strong>in</strong>ical isolates are able to <strong>in</strong>vade polarizedconfluent EC monolayers. After 3 hours of <strong>in</strong>fection streptococci colocalizewith the marker prote<strong>in</strong> Lamp-1, <strong>in</strong>dicat<strong>in</strong>g streptococcaltraffick<strong>in</strong>g <strong>in</strong>to the late endosomal/ lysosomal compartment. To testwhether streptococci conta<strong>in</strong><strong>in</strong>g phagosomes also fuse with term<strong>in</strong>allysosomes, these were pre- loaded with BSA-gold particles and analysedby transmission electron microscopy (TEM). Microscopic images reveal aclose association of streptococci with gold particles, <strong>in</strong>dicat<strong>in</strong>g fusion ofthe streptococci conta<strong>in</strong><strong>in</strong>g vacuole with term<strong>in</strong>al lysosomes. Us<strong>in</strong>g anisogenic M1 knock out mutant we demonstrate that the M1 prote<strong>in</strong> is anessential factor for the <strong>in</strong>vasion process <strong>in</strong>to ECs. Furthermore, the entry ofM1 GAS could be significantly reduced us<strong>in</strong>g antibodies purified fromrabbit M1 antiserum. Infection studies us<strong>in</strong>g M1- coated latex beadssuggest that the M1 prote<strong>in</strong> is not only essential but also can solelymediate entry <strong>in</strong>to ECs. M1- coated latex beads, just like the M1 wt stra<strong>in</strong>,traffic <strong>in</strong>to the late endosomal/ lysosomal compartment.Conclusion: Serotype M1 GAS have the potential to <strong>in</strong>vade polarizedhuman ECs. The M1 surface prote<strong>in</strong> is the EC <strong>in</strong>vas<strong>in</strong> of M1 GAS. Thus,M1 prote<strong>in</strong> is the second streptococcal factor identified to allow access<strong>in</strong>to polarized confluent ECs, one of the strongest cellular barriers <strong>in</strong> thehuman body.MPV007Lipopolysaccharides of Gram-negative bacteria contribute tothe creation of hepar<strong>in</strong>-<strong>in</strong>duced thrombocytopenia-elicit<strong>in</strong>gantibodies by b<strong>in</strong>d<strong>in</strong>g and conformationally alter<strong>in</strong>g plateletfactor 4C. Weber* 1 , K. Krauel 2,3 , A. Gre<strong>in</strong>acher 2 , S. Hammerschmidt 11 Ernst Moritz Arndt University of Greifswald, Interfaculty Institute forGenetics and Functional Genomics, Genetics of Microorganisms,Greifswald, Germany2 Ernst Moritz Arndt University of Greifswald, Institute for Immunologyand Transfusion Medic<strong>in</strong>e, Transfusion Medic<strong>in</strong>e, Greifswald, Germany3 Ernst Moritz Arndt University of Greifswald, Center for InnovationCompetence, Humoral Immune Reactions <strong>in</strong> Cardiovascular Diseases,Greifswald, GermanySome Gram-negative bacteria have been reported to contribute to theetiology of blood clott<strong>in</strong>g disorders, e.g. hepar<strong>in</strong>-<strong>in</strong>ducedthrombocytopenia (HIT) among others. HIT is an IgG-antibody-mediatedadverse drug reaction aga<strong>in</strong>st complexes of the positively-chargedchemok<strong>in</strong>e platelet factor 4 (PF4) and the most frequently used anionicanticoagulant <strong>in</strong> cl<strong>in</strong>ical medic<strong>in</strong>e, hepar<strong>in</strong>. Interest<strong>in</strong>gly, even hepar<strong>in</strong>naïvepatients are able to generate IgG-antibodies specific for PF4/hepar<strong>in</strong>complexes as soon as 4 days after exposure to hepar<strong>in</strong>, presumablybecause these patients have encountered complexes similar to PF4/hepar<strong>in</strong>before such as PF4 bound to anionic bacterial surfaces dur<strong>in</strong>g <strong>in</strong>fections.Likely candidates for negatively charged molecules on the Gram-negativesurface are prote<strong>in</strong>s as well as lipopolysaccharides (LPS).In this study pre-treatment of bacteria with prote<strong>in</strong>ases showed thatprote<strong>in</strong>s play only a m<strong>in</strong>or role <strong>in</strong> PF4 recruitment to the bacterial surface.However, the components of bacteria b<strong>in</strong>d<strong>in</strong>g PF4 have been p<strong>in</strong>po<strong>in</strong>tedby show<strong>in</strong>g that PF4 <strong>in</strong>teracts with LPS of the Gram-negative modelorganisms Escherichia coli and Salmonella typhimurium. Remarkably, E.coli and S. typhimurium mutants with successively shortened LPSbackbonedisplayed <strong>in</strong>creas<strong>in</strong>g PF4 b<strong>in</strong>d<strong>in</strong>g capacity. The highest b<strong>in</strong>d<strong>in</strong>gwas detected <strong>in</strong> the E. coli waaC and E. coli waaA mutants lack<strong>in</strong>gboth the O-antigens and parts of the core LPS. As the E. coli waaAmutant lacks <strong>in</strong> addition to the O-antigens and the <strong>in</strong>ner core heptoses alsothe 3-deoxy-D-manno-octulosonic acids (KDO) and as mono-phosphatelipid A showed a decreased b<strong>in</strong>d<strong>in</strong>g of PF4, the results suggested that thephosphate groups of lipid A are the actual structures contribut<strong>in</strong>g to PF4-b<strong>in</strong>d<strong>in</strong>g. Human PF4/hepar<strong>in</strong> antibodies could be aff<strong>in</strong>ity-purified frompatient sera us<strong>in</strong>g PF4-coated wild-type E. coli as well as PF4-coatedmutants. Thus purified antibodies tested positive <strong>in</strong> consecutivePF4/hepar<strong>in</strong> ELISA and hepar<strong>in</strong>-<strong>in</strong>duced platelet activation assays<strong>in</strong>dicated the exposition of PF4/hepar<strong>in</strong>-like epitopes on PF4-coated wildtypeE. coli and waa mutants.Hence, recruitment of PF4 to Gram-negative bacteria via lipid A and itsphosphate groups <strong>in</strong>duces epitopes on PF4 that can trigger a humoralimmune response specific for a wide variety of bacterial species.MPV008Staphylococcus epidermidis and Staphylococcus aureusQuorum Sens<strong>in</strong>g System agr Regulates Formyl PeptideReceptor 2 Ligand Secretion and thereby the Activation of theInnate Immune SystemD. Kretschmer* 1 , N. Nikola 1 , M. Duerr 1 , M. Otto 2 , A. Peschel 11 University of Tüb<strong>in</strong>gen, Institut of Medical Microbiology and InfectionMedic<strong>in</strong>e, Tüb<strong>in</strong>gen, Germany2 National Institute of Allergy and Infectious Diseases, US NationalInstitutes of Health, Bethesda, MD 20892, United StatesHighly pathogenic Staphylococcus aureus and the opportunistic pathogenStaphylococcus epidermidis secrete phenol-soluble modul<strong>in</strong> (PSM)peptides.Virulence of S. epidermidis depends mostly on the PSM peptides,which <strong>in</strong>duce chemotaxis <strong>in</strong> neutrophils and cytok<strong>in</strong>e <strong>in</strong>duction <strong>in</strong>peripheral blood mononuclearcells (PBMCs). The regulation of PSMsecretion and production occurs through the agr regulator. WhileBIOspektrum | Tagungsband <strong>2012</strong>


105chemotaxis and cytok<strong>in</strong>e <strong>in</strong>duction are crucial for <strong>in</strong>fections, the molecularbasis of the recognition by leucocytes has rema<strong>in</strong>ed un known. Here wedemonstrate that the human formyl peptide receptor 2 (FPR2) senses S.epidermidis PSMs at nanomolar concentrations. Specific block<strong>in</strong>g of FPR2or the down regulation of the PSM genes <strong>in</strong> the agr mutant led to severelydim<strong>in</strong>ished capacities of neutrophils to detect S. epidermidis PSMs.Moreover, Staphylococci developed the quorum sens<strong>in</strong>g system agr tocontrol their detection via human FPR2. Thus, the <strong>in</strong>nate immune systemuses a global mechanism to detect bacterial pathogens. Target<strong>in</strong>g FPR2may help to manage severe <strong>in</strong>fections <strong>in</strong>duced by different pathogens.Kretschmer D, Nikola N, Dürr M, Otto M and Peschel A,The virulence regulator Agr controls thestaphylococcal capacity to activate human neutrophils via the formyl peptide receptor 2, J Innate Immun.2011 Nov 8Kretschmer D, Gleske AK, Rautenberg M, Wang R, Koberle M, Bohn E, Schoneberg T, Rabiet MJ, BoulayF, Klebanoff SJ, van Kessel KA, van Strijp JA, Otto M, Peschel A: Human formyl peptide receptor 2 senseshighly pathogenic staphylococcus aureus. Cell Host Microbe 2010;7:463-473.Prat C, Bestebroer J, de Haas CJ, van Strijp JA, van Kessel KP: A new staphylococcal anti-<strong>in</strong>flammatoryprote<strong>in</strong> that antagonizes the formyl peptide receptor-like 1. J Immunol 2006;177:8017-8026.Wang R, Braughton KR, Kretschmer D, Bach TH, Queck SY, Li M, Kennedy AD, Dorward DW,Klebanoff SJ, Peschel A, DeLeo FR, Otto M: Identification of novel cytolytic peptides as key virulencedeterm<strong>in</strong>ants for community-associated mrsa. Nat Med 2007;13:1510-1514.Vuong C, Durr M, Carmody AB, Peschel A, Klebanoff SJ, Otto M: Regulated expression of pathogenassociatedmolecular pattern molecules <strong>in</strong> staphylococcus epidermidis: Quorum-sens<strong>in</strong>g determ<strong>in</strong>es pro<strong>in</strong>flammatorycapacity and production of phenol-soluble modul<strong>in</strong>s. Cell Microbiol 2004;6:753-759.MPV009Salmonella Typhimurium Stimulated TranscriptionalResponse Aids Intracellular ReplicationS. Hannemann*, J.E. GalánYale University School of Medic<strong>in</strong>e, Section of Microbial Pathogenesis,New Haven, United StatesBacterial products are recognized by <strong>in</strong>nate immune receptors lead<strong>in</strong>g to<strong>in</strong>flammatory responses that can both control pathogen spread and result <strong>in</strong>pathology. Intest<strong>in</strong>al epithelial cells, which are constantly exposed tobacterial products, prevent signal<strong>in</strong>g through <strong>in</strong>nate immune receptors toavoid pathology. However, enteric pathogens such as SalmonellaTyphimurium, are able to stimulate <strong>in</strong>test<strong>in</strong>al <strong>in</strong>flammation <strong>in</strong> order topromote bacterial <strong>in</strong>fection. We found that S. Typhimurium can stimulate<strong>in</strong>nate immune responses <strong>in</strong> cultured epithelial cells by mechanisms thatdo not <strong>in</strong>volve receptors of the <strong>in</strong>nate immune system. By deliver<strong>in</strong>g a setof effector prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g SopB, SopE and SopE2 through its type IIIsecretion system, the bacterium directly activates Rho-family GTPases thatsubsequently trigger a profound transcriptional reprogramm<strong>in</strong>g of hostepithelial cells. These modifications support bacterial replication bymodify<strong>in</strong>g the <strong>in</strong>tracellular environment.MPV010Recruitment of PI3 k<strong>in</strong>ase to caveol<strong>in</strong> 1 determ<strong>in</strong>es the switchfrom the extracellular to the dissem<strong>in</strong>at<strong>in</strong>g stage of gonococcal<strong>in</strong>fectionM. Faulstich* 1 , J.-P. Böttcher 2 , T. Meyer 2 , M. Fraunholz 1 , T. Rudel 11 University of Würzburg Biocenter, Chair of Microbiology, Würzburg, Germany2 Max Planck Institute for Infection Biology, Dept. Molecular Biology,Berl<strong>in</strong>, GermanyNeisseria gonorrhoeae causes ma<strong>in</strong>ly local <strong>in</strong>fections but occasionally<strong>in</strong>vades the blood stream thereby <strong>in</strong>itiat<strong>in</strong>g dissem<strong>in</strong>at<strong>in</strong>g gonococcal<strong>in</strong>fections (DGI). Gonococcal type 4 pili (T4P) stabilize local <strong>in</strong>fections bymediat<strong>in</strong>g microcolony formation and <strong>in</strong>duc<strong>in</strong>g anti-<strong>in</strong>vasive signals.Outer membrane por<strong>in</strong> PorB IA, <strong>in</strong> contrast, is associated with DGI andfacilitates the efficient <strong>in</strong>vasion of gonococci <strong>in</strong>to host cells. PorB IA b<strong>in</strong>dsto the scavenger receptor expressed on endothelial cells (SREC1) underlow phosphate conditions, as found e.g. <strong>in</strong> the vascular system. Here wedemonstrate that both, T4P-mediated <strong>in</strong>hibition of <strong>in</strong>vasion and PorB IAtriggered<strong>in</strong>vasion utilize lipid rafts and signal<strong>in</strong>g pathways that depend onphosphorylation of caveol<strong>in</strong>-1 at Tyr 14 (Cav1-pY14). We identified the p85regulatory subunit of PI3 k<strong>in</strong>ase (PI3K) and phospholipase C gamma1(PLC1) as new, exclusive and essential <strong>in</strong>teraction partners for Cav1-pY14 <strong>in</strong> the course of PorB IA-<strong>in</strong>duced <strong>in</strong>vasion. Active PI3K <strong>in</strong>duces theuptake of gonococci via a novel <strong>in</strong>vasion pathway <strong>in</strong>volv<strong>in</strong>g prote<strong>in</strong> k<strong>in</strong>aseC and Rac1. Thus the SREC-I/PorB IA <strong>in</strong>teraction triggers a novel route ofbacterial entry <strong>in</strong>to epithelial cells and offers first mechanistic <strong>in</strong>sight <strong>in</strong>tothe switch from local to dissem<strong>in</strong>at<strong>in</strong>g gonococcal <strong>in</strong>fection.MPV011Systems biology of the pathogenic bacterium Yers<strong>in</strong>iapseudotuberculosisR. Bücker* 1 , J. Becker 1 , A.K. Heroven 2 , P. Dersch 2 , C. Wittmann 11 Technical University Braunschweig, Institute of BiochemicalEng<strong>in</strong>eer<strong>in</strong>g, Braunschweig, Germany2 Helmholtz Center for Infection Research, Department of MolecularInfection Biology, Braunschweig, Germanysteadily work<strong>in</strong>g antibiotics. A promis<strong>in</strong>g approach to f<strong>in</strong>d new targets andtherapeutics is the achievement of a better understand<strong>in</strong>g of the <strong>in</strong> vivo l<strong>in</strong>kbetween pathogenicity and metabolism <strong>in</strong> the underly<strong>in</strong>g pathogens. Oneof the relevant microorganisms <strong>in</strong> this field is Yers<strong>in</strong>ia pseudotuberculosis,the causative agent of self-limit<strong>in</strong>g enteritis, diarrhoea, mesentericlymphadenitis or autoimmune disorders [2]. Concern<strong>in</strong>g the <strong>in</strong>vasion ofmammalian cells, Yers<strong>in</strong>ia is known to have a complex regulatory networkwhich is controlled by nutritional and environmental conditions [3].Here, we <strong>in</strong>vestigate its metabolism on the level of molecular <strong>in</strong> vivofluxes, us<strong>in</strong>g state of art 13 C metabolic flux analysis, that is, a coretechnology from <strong>in</strong>dustrial biotechnology to perform system-wide pathwayanalysis and subsequent design-based stra<strong>in</strong> optimization [4], so far rarelyfound <strong>in</strong> the medical field. As start<strong>in</strong>g po<strong>in</strong>t for the comprehensiveanalysis, a computational model of the metabolism of Y.pseudotuberculosis was created on basis of available genomic <strong>in</strong>formationand implemented <strong>in</strong>to the flux software platform OpenFlux [5]. Comb<strong>in</strong>edwith 13 C isotope experiments, the model allows to quantify all majorpathways from central carbon metabolism <strong>in</strong>clud<strong>in</strong>g glycolysis, pentosephosphate pathway, TCA cycle, anaplerotic pathways as well as anabolismof extracellular product formation.Us<strong>in</strong>g this novel approach, several mutants of Y. pseudotuberculosislack<strong>in</strong>g specific virulence factors are compared to the wild type to studythe <strong>in</strong>fluence of the correspond<strong>in</strong>g genes on metabolism. Simultaneouslyperformed transcriptome profil<strong>in</strong>g provides the l<strong>in</strong>k to the layers ofregulation, superimpos<strong>in</strong>g the flux network. In further studies the <strong>in</strong>fluenceof different antibiotic classes <strong>in</strong> sub-<strong>in</strong>hibitory concentrations will beunraveled as well as the effects of temperature, a key parameter dur<strong>in</strong>g the<strong>in</strong>fection cycle of Y. pseudotuberculosis.[1]Piddock LJ.: Lancet Infect Dis. 2011 Nov 17.[2] Heroven, A.K. and Dersch, P. (2006): Molecular Microbiology 62(5), 1469-1483.[3] Heroven, A.K. et al (2008): Molecular Microbiology 68(5), 1179-1195.[4] Wittmann, C. (2010): Advances <strong>in</strong> Biochemical Eng<strong>in</strong>eer<strong>in</strong>g/Biotechnology 120, 21-49.[5] Quek, L.E. et al (2009): Microbial Cell Factories 8:25.AcknowledgementsThe authors acknowledge f<strong>in</strong>ancial support by German Research Foundation with<strong>in</strong> the PriorityProgram „Wirtsadaptierter Metabolismus von bakteriellen Infektionserregern (SPP 1316)”MPV012Shigella IpaD has a dual role <strong>in</strong> type III secretion systemactivationA.D. Roehrich* 1 , E. Guillossou 1 , R.B. Sessions 2 , A.J. Blocker 1,2 , I. Mart<strong>in</strong>ez-Argudo 1,31 University of Bristol, School of Cellular and Molecular Medic<strong>in</strong>e, Bristol, Spa<strong>in</strong>2 University of Bristol, School of Biochemistry, Bristol, United K<strong>in</strong>gdom3 Universidad de Castilla-La Mancha, Facultad de Ciencias Ambientales yBioquímica, Toledo, Spa<strong>in</strong>Type III secretion systems (T3SS) are prote<strong>in</strong> <strong>in</strong>jection devices used byGram negative bacteria to manipulate eukaryotic cells. In Shigella, theT3SS is assembled when the environmental conditions are appropriate for<strong>in</strong>vasion. However, secretion is only activated after physical contact of theneedle tip with the host cell generates an activation signal. The signal istransmitted to the cytoplasm where it triggers secretion. First, translocatorsare secreted which form a pore <strong>in</strong> the host cell membrane. Second, effectorprote<strong>in</strong>s are translocated <strong>in</strong>to the host cell.The activation process is controlled by components both at the needle tipand <strong>in</strong> the cytoplasm: At the needle tip, IpaD provides a scaffold for thetranslocators IpaB and IpaC. In its absence no needle tip is formed, theT3SS secretes constitutively and is unable to sense host cell contact. In thecytoplasm, MxiC acts as a gate-keeper of the T3SS. In its absence, thesecretion of pore-form<strong>in</strong>g prote<strong>in</strong>s is decreased and effector prote<strong>in</strong>s are leaked.Questions: What is the role of the major needle tip prote<strong>in</strong> IpaD <strong>in</strong>secretion activation at the needle tip and <strong>in</strong> the cytoplasm? What is the roleof the cytoplasmic gate-keeper prote<strong>in</strong> MxiC <strong>in</strong> translocator secretion?Methods: We have performed random and site-directed mutagenesis ofipaD and mxiC, respectively, and analysed the type III secretion profiles,needle tip composition and host cell <strong>in</strong>teractions of the mutants. We havealso used prote<strong>in</strong> copurification to analyse prote<strong>in</strong> complexes.Results: Random mutagenesis of ipaD identified two classes of mutants.Class I mutants are affected <strong>in</strong> signal transduction from the needle tipwhile Class II are affected <strong>in</strong> regulation of ordered secretion <strong>in</strong>ductionfrom the cytoplasm. Site-directed mutagenesis identified a negatively chargedpatch on the surface of MxiC that might be <strong>in</strong>volved <strong>in</strong> <strong>in</strong>teraction with IpaD.Conclusions: Our data confirms and extends our understand<strong>in</strong>g of the<strong>in</strong>volvement of the major needle tip prote<strong>in</strong> <strong>in</strong> secretion activation andadds a completely novel aspect to the present model for prevention ofpremature secretion, <strong>in</strong> the absence of an activation signal, from with<strong>in</strong> thebacterial cytoplasm.The ris<strong>in</strong>g problem of antimicrobial resistance comb<strong>in</strong>ed with the shortageof antibacterial drug discovery [1] will result <strong>in</strong> a decreas<strong>in</strong>g number ofBIOspektrum | Tagungsband <strong>2012</strong>


106MPV013Bartonella henselae adhes<strong>in</strong> BadA negatively regulates effectorsecretion through the VirB/D4 type IV secretion systemB. Franz* 1 , L. Yun-Yueh2 , M. Truttmann 2 , T. Riess 1 , M. Faustmann 2 ,V. Kempf 1 , C. Dehio 21 Kl<strong>in</strong>ikum der Johann Wolfgang Goethe-Universität Frankfurt, Institut fürMediz<strong>in</strong>ische Mikrobiologie und Krankenhaushygiene, Frankfurt am Ma<strong>in</strong>,Germany2 Biozentrum of the University of Basel, Focal Area Infection Biology, Basel,SwitzerlandThe gram-negative, zoonotic pathogen Bartonella henselae is theaetiologic agent of cat scratch disease, bacillary angiomatosis and peliosishepatis. In recent years, two essential pathogenicity factors of B. henselaehave been <strong>in</strong>vestigated <strong>in</strong> detail: the trimeric autotransporter adhes<strong>in</strong>Bartonella adhes<strong>in</strong> A (BadA) and the VirB/D4 type IV secretion system(T4SS). BadA mediates adherence to endothelial cells, b<strong>in</strong>d<strong>in</strong>g tofibronect<strong>in</strong> and secretion of vascular endothelial growth factor (VEGF) <strong>in</strong>host cells. The VirB/D4 T4SS leads to the formation of <strong>in</strong>vasomes andtranslocates Bartonella effector prote<strong>in</strong>s (Beps) responsible for a variety ofreactions <strong>in</strong> the host cell. Analysis of these pathogenicity factors wasperformed <strong>in</strong> two different stra<strong>in</strong>s of B. henselae, one express<strong>in</strong>gexclusively BadA, the other one only the VirB/D4 T4SS. Therefore, itrema<strong>in</strong>ed unclear whether BadA and VirB/D4 T4SS functionally <strong>in</strong>teractor <strong>in</strong>terfere with each other.We analyzed the role of BadA and VirB/D4 T4SS when both wereexpressed <strong>in</strong> B. henselae simultaneously. Expression and function of BadAand VirB/D4 T4SS were analyzed <strong>in</strong> a variety of cl<strong>in</strong>ical B. henselaeisolates. However, most isolates exclusively either expressed BadA orVirB/D4 T4SS. Overexpression of full length or truncated BadA <strong>in</strong> theVirB/D4 T4SS express<strong>in</strong>g stra<strong>in</strong> affected the function of the T4SSdepend<strong>in</strong>g on the length of BadA. In contrast, BadA dependent fibronect<strong>in</strong>b<strong>in</strong>d<strong>in</strong>g, VEGF secretion and adhesion to endothelial cells were notaffected by a functional VirB/D4 T4SS. Furthermore, disruption of badA<strong>in</strong> the BadA express<strong>in</strong>g stra<strong>in</strong> by a transposon activated the VirB/D4T4SS. In summary, our results <strong>in</strong>dicate, that BadA does not function as apartner adhes<strong>in</strong> for the VirB/D4 T4SS and, <strong>in</strong>stead, BadA expressionnegatively regulates expression of the VirB/D4 T4SS by unknownmechanisms.B. Franz, L. Yun-Yueh and M. Truttmann contributed equally to this work.Also, V. Kempf and C. Dehio contributed equally.MPV014A metaproteomic analysis of a human <strong>in</strong>dwell<strong>in</strong>g ur<strong>in</strong>arycatheter biofilm dom<strong>in</strong>ated by Pseudomonas aerug<strong>in</strong>osaC. Lassek* 1 , M. Burghartz 2 , D. Chaves Moreno 3 , B. Hessl<strong>in</strong>g 1 , A. Otto 1 ,M. Jahn 2 , D. Becher 1 , D. Pieper 3 , K. Riedel 11 Universität Greifswald, Institut für Mikrobiologie , Greifswald, Germany2 TU Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany3 Helmholtz Zentrum für Infektionsforschung, Mikrobielle Interaktionenund Prozesse, Braunschweig, GermanyLong-term catheterization of the bladder leads <strong>in</strong>evitably to bacteriuria, butis mostly asymptomatic. Adaptive response of some bacteria to thecatheter environment causes an efficient biofilm formation, which canconta<strong>in</strong> 5x10^9 viable cells per centimeter. Up to now, scientists<strong>in</strong>vestigated the microbial biofilm-form<strong>in</strong>g community ma<strong>in</strong>ly by culturedependent methods, and only little is known about the functionaladaptation of the organisms and never a catheter-biofilm from humans wasanalyzed <strong>in</strong> depth. Our aim was to analyze a biofilm from a long-termcatheterized patient by a metaproteomic approach (1D-PAGE --> LC-ESI-MS/MS) to l<strong>in</strong>k structure and function of the microbial community present<strong>in</strong> the biofilm. P.aerug<strong>in</strong>osa was found to be the predom<strong>in</strong>ant colonizer(160 out of 340 bacterial prote<strong>in</strong>s could be assigned to P. aerug<strong>in</strong>osa), butalso other bacteria belong<strong>in</strong>g to the Enterobacteriales and Bacteroidaleswere present, <strong>in</strong>dicat<strong>in</strong>g a multispecies biofilm. The results wereconfirmed by quantitative 16S-ribosomal DNA sequenc<strong>in</strong>g. Abundantprote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> iron and nutrient uptake, <strong>in</strong> the osmotic- and theoxidative stress response. Catheter-associated ur<strong>in</strong>e <strong>in</strong>cludes a set ofsecreted prote<strong>in</strong>s which are ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> iron and nutrient uptake.Additionally, the pathogens were isolated and cultured <strong>in</strong> artificial ur<strong>in</strong>eand <strong>in</strong> LB medium. The proteome and the secretome of P.aerug<strong>in</strong>osa were<strong>in</strong>vestigated to elucidate the bladder specific expression and secretion ofprote<strong>in</strong>s. In addition, the metaproteome conta<strong>in</strong>s factors of the humanimmune system, i.e. factors of the complement system and neutrophilswere found known to play an important role dur<strong>in</strong>g host defense,<strong>in</strong>dicat<strong>in</strong>g a symptomatic bacteriuria. Our f<strong>in</strong>d<strong>in</strong>gs help to ga<strong>in</strong> a betterunderstand<strong>in</strong>g of bacterial biofilms on ur<strong>in</strong>ary tract catheters and unravelbladder specific adaptations.MPV015Metabolic adaptations of Pseudomonas aerug<strong>in</strong>osa dur<strong>in</strong>gcystic fibrosis lung <strong>in</strong>fectionsV. Behrends* 1 , B. Ryall 1 , J.E. Zlosnik 2 , D.A. Speert 2 , J.G. Bundy 1 , H.D. Williams 11 Imperial College, London, United K<strong>in</strong>gdom2 University of British Columbia, Vancouver, United K<strong>in</strong>gdomQuestion: P. aerug<strong>in</strong>osa is a major source of nosocomial <strong>in</strong>fections <strong>in</strong>immuno-compromised patients and the lead<strong>in</strong>g cause of morbidity andmortality <strong>in</strong> patients with cystic fibrosis (CF). While the genetics ofadaptations to the CF lung environment dur<strong>in</strong>g long-term <strong>in</strong>fection havebeen widely studied, the physiological and metabolic impact on thebacteria is large unknown.Methods: We used untargeted metabolic profil<strong>in</strong>g (metabolomics) of cellsupernatants (exometabolome analysis) to compare 179 stra<strong>in</strong>s,represent<strong>in</strong>g a series of mostly clonal l<strong>in</strong>eages from 18 <strong>in</strong>dividual CFpatients. Isolates were collected over time periods rang<strong>in</strong>g from betweenfour to twenty-four years for the <strong>in</strong>dividual patients.Results: We found evidence of metabolic adaptation to the CF lungenvironment: <strong>in</strong> particular, acetate production across all stra<strong>in</strong>s was highlysignificantly negatively associated with length of <strong>in</strong>fection (P < 0.001,Spearman rank-order correlation), while uptake of metabolically‘expensive’ aromatic am<strong>in</strong>o acids (Trp, Phe, Tyr) was <strong>in</strong>creased. Inaddition to this parallel evolution, we observed a large degree of variationbetween the different clonal l<strong>in</strong>eages.Conclusion: Our study has shown evidence of parallel metabolicadaptation of P. aerug<strong>in</strong>osa to the CF lung dur<strong>in</strong>g chronic <strong>in</strong>fection.However, isolates do not simply seem to converge on one metabolic ‘endstagephenotype’, but rather exhibit an unexpected level of metabolicdiversity between patients. Our data highlights the usefulness ofmetabolomic <strong>in</strong>vestigation of complex phenotypic adaptations dur<strong>in</strong>g <strong>in</strong>fection.MPV016Pneumococcal surface prote<strong>in</strong> C: a multifunctionalpneumococcal virulence factor and vitronect<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>S. Voß* 1 , T. Hallström 2 , L. Petruschka 1 , K. Kl<strong>in</strong>gbeil 1 , K. Riesbeck 3 , P. Zipfel 2 ,S. Hammerschmidt 11 Institute for Genetics and Functional Genomics, Genetics of Microorganisms,Greifswald, Germany2 Leibniz Institute for Natural Product Research and Infection Biology, InfectionBiology, Jena, Germany3 Lund University, Laboratory Medic<strong>in</strong>e, Malmö, SwedenStreptococcus pneumoniae is an asymptomatic colonizer of healthyhumans but can also cause severe local <strong>in</strong>fections or even life-threaten<strong>in</strong>gdiseases. A prerequisite for pneumococci to colonize the upper respiratoryairways is their capability to adhere directly to host cells or <strong>in</strong>directly by<strong>in</strong>teract<strong>in</strong>g with the extracellular matrix (ECM). Pneumococcal attachmentis mediated by bacterial cell wall components and surface-exposedprote<strong>in</strong>s, respectively. The major adhes<strong>in</strong> of pneumococci is thePneumococcal surface prote<strong>in</strong> C (PspC) which b<strong>in</strong>ds to the secretorycomponent (SC) of the human polymeric Ig receptor and also recruits thecomplement regulatory prote<strong>in</strong> factor H. We have also shown that hostcell-boundvitronect<strong>in</strong> (Vn), an adhesive glycoprote<strong>in</strong> present <strong>in</strong> plasmaand the ECM, is exploited by pneumococci as a molecular bridgefacilitat<strong>in</strong>g their adherence to and <strong>in</strong>vasion <strong>in</strong>to host cells by <strong>in</strong>duc<strong>in</strong>gprote<strong>in</strong>s of the host signal transduction cascades. Although the <strong>in</strong>teractionof pneumococci with vitronect<strong>in</strong> was demonstrated comprehensively, thepneumococcal adhes<strong>in</strong> for vitronect<strong>in</strong> rema<strong>in</strong>s unknown. Here wedemonstrate that the multifunctional PspC prote<strong>in</strong> is capable to <strong>in</strong>teractwith human vitronect<strong>in</strong>. Depletion of chol<strong>in</strong>e-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s from thesurface of pneumococci resulted <strong>in</strong> decreased Vn-b<strong>in</strong>d<strong>in</strong>g as analyzed byflow cytometry. Accord<strong>in</strong>gly, PspC-deficient pneumococci showed alower capability to recruit Vn. PspC was also expressed on the surface ofnon-pathogenic Lactococcus lactis. Similar to pneumococci, theheterologous L. lactis but not the lactococcal control stra<strong>in</strong> <strong>in</strong>teracted withimmobilized Vn. Moreover, purified PspC prote<strong>in</strong> derivativescompetitively <strong>in</strong>hibited b<strong>in</strong>d<strong>in</strong>g of multimeric Vn to pneumococci asanalyzed by flow cytometry. Surface plasmon resonance studies wereconducted with vitronect<strong>in</strong> immobilized on a CM5 biosensor chip anddifferent PspC derivatives as analytes. PspC peptides compris<strong>in</strong>g the N-term<strong>in</strong>al and helical R-doma<strong>in</strong> of the native prote<strong>in</strong> showed a dosedependentVn-b<strong>in</strong>d<strong>in</strong>g. Results of a peptide SPOT array <strong>in</strong>dicated that alys<strong>in</strong>e-rich region as well as the SC-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> of PspC is probably<strong>in</strong>volved <strong>in</strong> b<strong>in</strong>d<strong>in</strong>g to Vn. In conclusion, PspC exhibits vitronect<strong>in</strong>b<strong>in</strong>d<strong>in</strong>gactivity, and the b<strong>in</strong>d<strong>in</strong>g site has been narrowed down to an alphahelicalregion <strong>in</strong> PspC.Bergmann S, et al. (2009) J Cell Sci 122(Pt 2):256-67.Elm C, et al. (2004) J Biol Chem 279(8): 6296-304.Hammerschmidt S. (2006) Curr Op<strong>in</strong> Microbiol 9:12-20.Hammerschmidt S, et al. (2007) J Immunol 178(9):5848-58.BIOspektrum | Tagungsband <strong>2012</strong>


107MPV017Complex c-di-GMP signal<strong>in</strong>g networks mediate the transitionbetween biofilm formation and virulence properties <strong>in</strong>Salmonella enterica serovar TyphimuriumI. Ahmad 1 , A. Lamprokostopoulou 1 , S. Le Guyon 1 , E. Streck 1 , M. Barthel 2 ,V. Peters 1 , W.-D. Hardt 2 , U. Röml<strong>in</strong>g* 11 Karol<strong>in</strong>ska Institutet, Department of Microbiology, Tumor and CellBiology (MTC), Stockholm, Sweden2 ETH Zürich, Institute of Microbiology, D-BIOL, Zürich, SwitzerlandUpon Salmonella enterica serovar Typhimurium <strong>in</strong>fection of the gut, anearly l<strong>in</strong>e of defense is the gastro<strong>in</strong>test<strong>in</strong>al epithelium which senses thepathogen and <strong>in</strong>trusion along the epithelial barrier is one of the first eventstowards disease. Recently, we showed that high <strong>in</strong>tracellular amounts ofthe secondary messenger c-di-GMP <strong>in</strong> S. typhimurium abolishedstimulation of a pro-<strong>in</strong>flammatory immune response and <strong>in</strong>hibition of<strong>in</strong>vasion of the gastro<strong>in</strong>test<strong>in</strong>al epithelial cell l<strong>in</strong>e HT-29 suggest<strong>in</strong>gregulation of transition between biofilm formation and virulence by c-di-GMP <strong>in</strong> the <strong>in</strong>test<strong>in</strong>e. Here we show that highly complex c-di-GMPsignal<strong>in</strong>g networks consist<strong>in</strong>g of dist<strong>in</strong>ct groups of c-di-GMP synthesiz<strong>in</strong>gand degrad<strong>in</strong>g prote<strong>in</strong>s modulate the virulence phenotypes IL-8production, <strong>in</strong>vasion and <strong>in</strong> vivo colonization <strong>in</strong> the streptomyc<strong>in</strong>-treatedmouse model imply<strong>in</strong>g a spatial and timely modulation of virulenceproperties <strong>in</strong> S. typhimurium by c-di-GMP signal<strong>in</strong>g. Inhibition of the<strong>in</strong>vasion phenotype by c-di-GMP is associated with <strong>in</strong>hibition of secretionof the type three secretion system effector prote<strong>in</strong> SipA. Inhibition of the<strong>in</strong>vasion and IL-8 phenotype by c-di-GMP (partially) requires the majorbiofilm activator CsgD and/or BcsA the synthase for the extracellularmatrix component cellulose. Our f<strong>in</strong>d<strong>in</strong>gs show that c-di-GMP signal<strong>in</strong>g isat least equally important <strong>in</strong> the regulation of Salmonella-host <strong>in</strong>teractionas <strong>in</strong> the regulation of biofilm formation at ambient temperature.MPV018Characterization of bacterial stra<strong>in</strong>s isolated from communityacquired asymptomatic catheter associated ur<strong>in</strong>ary tract<strong>in</strong>fectionsM. Burghartz*, P. Tielen, R. Neubauer, D. Jahn, M. JahnTU Braunschweig, Institut für Mikrobiologie, Braunschweig, GermanyBacterial colonization of ur<strong>in</strong>ary tract catheters is a major cause ofnosocomial <strong>in</strong>fections. Most <strong>in</strong>vestigations focus on catheter isolates fromcl<strong>in</strong>ical sources. To analyze community acquired catheter <strong>in</strong>fections ofelderly patients seven different bacterial isolates from ur<strong>in</strong>ary Foley´scatheters of an urologist practice were identified and characterized withregard to their biofilm formation, urea utilization, DNA degradation andhemolysis activity. For eight antibiotics the m<strong>in</strong>imum <strong>in</strong>hibitoryconcentrations were determ<strong>in</strong>ed. Proteus mirabilis, Morganella morganii,Pseudomonas aerug<strong>in</strong>osa, Alcaligenes faecalis, Enterococcus faecalis,Stenotrophomonas maltophilia and Myroides odoratimimus were isolatedfrom the catheters. All isolates formed biofilms with S. maltophilia and E.faecalis show<strong>in</strong>g the strongest biofilm formation. Urease and DNaseactivity was detected for almost all species. Interest<strong>in</strong>gly, hemolysis wasonly found for P. aerug<strong>in</strong>osa, S. maltophilia and M. odoratimimus. Onlygentamic<strong>in</strong> abolished growth on 6 out of seven isolates while kanamyc<strong>in</strong>,ampicill<strong>in</strong>, nitrofuranto<strong>in</strong>, tobramyc<strong>in</strong> and cefixime showed almost noeffect. Ciprofloxac<strong>in</strong> and levofloxac<strong>in</strong> only <strong>in</strong>hibited the growth of P.mirabilis and M. morganii. The M. odoratimimus isolate was completelyresistant aga<strong>in</strong>st all tested antibiotics. We conclude that biofilm formation,urease and DNase production <strong>in</strong> comb<strong>in</strong>ation with antibiotic resistance areessential determ<strong>in</strong>ants of opportunistic pathogens <strong>in</strong> community acquiredur<strong>in</strong>ary tract catheter <strong>in</strong>fections.MPV019Global discovery of virulence-associated small RNAs <strong>in</strong>Yers<strong>in</strong>ia pseudotuberculosisB. Waldman 1 , A. K. Heroven 1 , J. Re<strong>in</strong>kensmeier 2 , J.-P. Schlüter 3 , A. Becker 3 ,R. Giegerich 2 , P. Dersch 11 Abteilung Molekulare Infektionsbiologie, Helmholtz-Zentrum fürInfektionsforschung, Braunschweig;Germany2 Technische Fakultät, Universität Bielefeld, Bielefeld, Germany3 Institut für Biologie, Universität Freiburg, Freiburg, GermanyYers<strong>in</strong>ia pseudotuberculosis is a food-born enteropathogenic bacteriumand closely related to the human pathogen Y. pestis. In both pathogens theRNA chaperon Hfq is required for full virulence (1) <strong>in</strong>dicat<strong>in</strong>g that smallRNAs play a crucial role <strong>in</strong> Yers<strong>in</strong>ia virulence. In fact, we found that <strong>in</strong> Y.pseudotuberculosis the post-transciptional Csr system participates <strong>in</strong>motility, stress resistance and the regulation of virulence genes, e.g. theglobal virulence regulator rovA. RovA controls the expression of earlystage virulence genes, which are important for Y. pseudotuberculosis tocolonize and penetrate the <strong>in</strong>test<strong>in</strong>al tract (2). In this study, we used a deepsequenc<strong>in</strong>g approach to identify and characterize further so far unknownsRNAs associated with Yers<strong>in</strong>ia virulence.Sequenc<strong>in</strong>g of RNA libraries from Y. pseudotuberculosis wildtype and anhfq mutant grown either at 25°C to stationary phase (simulat<strong>in</strong>genvironmental conditions/early <strong>in</strong>fection phase) or at 37°C to exponentialphase (late <strong>in</strong>fection phase) lead to the identification of 315 putative sRNAout of which 15 were encoded on the Yers<strong>in</strong>ia virulence plasmid pYV. Themajority of these newly identified sRNAs were only found <strong>in</strong> pathogenicyers<strong>in</strong>iae. Accord<strong>in</strong>g to the 454 data, one out of four of these newly foundsRNAs is temperature-regulated and about 40% are Hfq-dependent.Expression of selected candidates was further analysed and their <strong>in</strong>fluenceon virulence <strong>in</strong>vestigated.(1) Schiano CA, Bellows LE, Lathem WW. „The small RNA chaperone Hfq is required for the virulence ofYers<strong>in</strong>ia pseudotuberculosis.“ Infect Immun. 2010 May;78(5):2034-44. Epub 2010 Mar 15.(2) Heroven, AK, Böhme, K., Rohde, M., Dersch, P. „A Csr-type regulatory system, <strong>in</strong>clud<strong>in</strong>g small noncod<strong>in</strong>gRNAs, regulates the global virulence regulator RovA of Yers<strong>in</strong>ia pseudotuberculosis throughRovM.“ Mol Microbiol. 2008 Jun; 68(5):1179-95.MPV020Fish<strong>in</strong>g for ancient pathogens: A draft genome of a Yers<strong>in</strong>iapestis stra<strong>in</strong> from the medieval Black DeathV. Schünemann* 1 , K. Bos 2 , H. Po<strong>in</strong>ar 2 , J. Krause 11 University of Tüb<strong>in</strong>gen, Institute for Archaeological Sciences, Tüb<strong>in</strong>gen,Germany2 McMaster University, Department of Anthropology, Toronto, CanadaThe Black Death is considered to be one of the most devastat<strong>in</strong>gpandemics <strong>in</strong> human history. Between 1347 and 1352 approximately 30%-50% of Europeans died of this pandemic. Until recently the causativeagent of this epidemic was discussed highly controversial, severalpathogens -Bacillus anthracis, Yers<strong>in</strong>ia pestis or an unknown Filovirusweretaken <strong>in</strong>to account as putative agents. Previous genetic studies wereoften criticized as possible contam<strong>in</strong>ants of modern DNA or closelyrelated soil bacteria. Novel methodical approaches to prove theauthenticity of ancient DNA us<strong>in</strong>g characteristic damage patterns enabledus to verify Yers<strong>in</strong>ia pestis as at least one of the causative agents of theBlack Death. For this study 109 samples from skeletal rema<strong>in</strong>s of medievalplague victims buried <strong>in</strong> the East Smithfield cemetery <strong>in</strong> London wereanalyzed.In the next step 98% of the ancient genome of Y. pestis from four of thevictims was reconstructed to 30-fold genomic coverage. Phylogeneticanalysis revealed that the ancient pathogen is ancestral to most recentplague stra<strong>in</strong>s and very close to the root of all genome wide sequenced humanpathogenic Y. pestis stra<strong>in</strong>s. These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that the plague orig<strong>in</strong>ated asa human pathogen <strong>in</strong> the late medieval age and suggests that all previous plagueepidemics were caused by an ext<strong>in</strong>ct or so far not sequenced branch of Y. pestisor a different pathogen. Furthermore the ancestral Y. pestis stra<strong>in</strong> is highlysimilar to modern human pathogenic stra<strong>in</strong>s and therefore weakens theargument that genetic differences contributed to the higher mortality <strong>in</strong> themedieval era. Other factors beside the microbial genetics, e.g. environmentalchanges, vector dynamics, genetic susceptibility of the host populations or aconcurrent disease, should now be taken <strong>in</strong>to account to expla<strong>in</strong> the observedhigher virulence of the plague dur<strong>in</strong>g the Black Death pandemic. Thus, the firstgenome of an ancient bacterial pathogen offers a novel opportunity to study theevolution of pathogens.MPV021The YfiBNR signal transduction mechanism reveals noveltargets for the evolution of persistent Pseudomonas aerug<strong>in</strong>osa<strong>in</strong> cystic fibrosis airwaysT. Jaeger* 1 , J.G. Malone 1,2 , P. Manfredi 1 , A. Dötsch 3 , A. Blanka 4 , S. Häussler 3 ,U. Jenal 11 University of Basel, Biozentrum, Basel, Switzerland2 University of East Anglia, John Innes Centre, Norwich, United K<strong>in</strong>gdom3 Helmholtz Center for Infection Research, Braunschweig, Germany4 Tw<strong>in</strong>core, Centre of Cl<strong>in</strong>ical and Experimental Infection Research, Hannover,GermanyThe genetic adaptation of pathogens <strong>in</strong> host tissue plays a key role <strong>in</strong> theestablishment of chronic <strong>in</strong>fections. While whole genome sequenc<strong>in</strong>g hasopened up the analysis of genetic changes occurr<strong>in</strong>g dur<strong>in</strong>g long-term<strong>in</strong>fections, the identification and characterization of adaptive traits is oftenobscured by a lack of knowledge of the underly<strong>in</strong>g molecular processes.Our research addresses the role of Pseudomonas aerug<strong>in</strong>osa small colonyvariant (SCV) morphotypes <strong>in</strong> long-term <strong>in</strong>fections. In the lungs of cysticfibrosis patients, the appearance of SCVs correlates with a prolongedpersistence of <strong>in</strong>fection and poor lung function. Formation of P.aerug<strong>in</strong>osa SCVs is l<strong>in</strong>ked to <strong>in</strong>creased levels of the second messenger c-di-GMP. Our previous work identified the YfiBNR system as a keyregulator of the SCV phenotype. The effector of this tripartite signal<strong>in</strong>gmodule is the membrane bound diguanylate cyclase YfiN. Through acomb<strong>in</strong>ation of genetic and biochemical analyses we first outl<strong>in</strong>e themechanistic pr<strong>in</strong>ciples of YfiN regulation <strong>in</strong> detail. In particular, weidentify a number of activat<strong>in</strong>g mutations <strong>in</strong> all three components of theBIOspektrum | Tagungsband <strong>2012</strong>


108Yfi regulatory system. YfiBNR is shown to function via tightly controlledcompetition between allosteric b<strong>in</strong>d<strong>in</strong>g sites on the three Yfi prote<strong>in</strong>s; anovel regulatory mechanism that is apparently widespread amongperiplasmic signal<strong>in</strong>g systems <strong>in</strong> bacteria. We then show that dur<strong>in</strong>g longtermlung <strong>in</strong>fections of CF patients, activat<strong>in</strong>g mutations <strong>in</strong>vade thepopulation, driv<strong>in</strong>g SCV formation<strong>in</strong> vivo. The identification of mutational“scars” <strong>in</strong> the yfi genes of cl<strong>in</strong>ical isolates suggests that Yfi activity is bothunder positive and negative selection <strong>in</strong> vivo and that cont<strong>in</strong>uousadaptation of the c-di-GMP network contributes to the <strong>in</strong> vivo fitness of P.aerug<strong>in</strong>osa dur<strong>in</strong>g chronic lung <strong>in</strong>fections. These experiments uncover animportant new pr<strong>in</strong>ciple of <strong>in</strong> vivo persistence, and identify the c-di-GMPnetwork as a valid target for novel anti-<strong>in</strong>fectives directed aga<strong>in</strong>st chronic<strong>in</strong>fections.MPV022Methion<strong>in</strong>e sulfoxide reductases defend SalmonellaTyphimurium from oxidative stress and provide bacterialpathogenesisL. Denkel* 1 , S. Horst 1 , S. Fazle Rouf 1 , V. Kitowski 1 , O. Böhm 2 , M. Rhen 3 ,T. Jäger 2 , F.-C. Bange 11 Medical School Hannover, Medical Microbiology and Hospital Epidemiology,Hannover, Germany2 MOLISA GmbH, Magdeburg, Germany3 Karol<strong>in</strong>ska Institute, Microbiology, Tumor and Cellbiology, Stockholm, SwedenQuestion: Oxidative stress produced by the host dur<strong>in</strong>g Salmonella<strong>in</strong>fection converts methion<strong>in</strong>e to a mixture of methion<strong>in</strong>e-S-sulfoxide(Met-S-SO) and methion<strong>in</strong>e-R-sulfoxide (Met-R-SO) [1]. The methion<strong>in</strong>esulfoxide reductases MsrA and MsrB are known to protect bacteria byrepair<strong>in</strong>g oxidized methion<strong>in</strong>e, the former be<strong>in</strong>g specific for the S-formand the latter be<strong>in</strong>g specific for the R-form [1,2]. In this study wecharacterize MsrA, MsrB and a third methion<strong>in</strong>e sulfoxide reductase,MsrC, <strong>in</strong> S.Typhimurium.Methods: For this study we generated deletion mutants <strong>in</strong> S. Typhimuriumus<strong>in</strong>g the one-step <strong>in</strong>activation via homologous recomb<strong>in</strong>ation [3].Phenotypic analyses of S.Typhimurium stra<strong>in</strong>s <strong>in</strong>cluded growthexperiments, challeng<strong>in</strong>g bacteria with exogenous H 2O 2, <strong>in</strong>fection ofactivated RAW 264.7 macrophages and competitive <strong>in</strong>fection of Balb/cJmice with S. Typhimurium. For biochemical characterization of MsrA andMsrB the prote<strong>in</strong>s were overexpressed <strong>in</strong> E. coli, purified and exam<strong>in</strong>ed byNADPH l<strong>in</strong>ked reductase activity assay.Results: Here we show that deletion of msrA <strong>in</strong> S. Typhimurium <strong>in</strong>creasedsusceptibility to exogenous H 2O 2 and reduced bacterial replication <strong>in</strong>sideactivated macrophages and <strong>in</strong> mice. In contrast, an msrB mutant showedthe wild type phenotype. We constructed msrB and msrC mutant stra<strong>in</strong>s<strong>in</strong> a methion<strong>in</strong>e auxotrophic background of S. Typhimurium. The msrCmutant but not the msrB mutant failed to utilize free Met-R-SO.Recomb<strong>in</strong>ant MsrA was active aga<strong>in</strong>st both free and peptidyl Met-S-SO,whereas recomb<strong>in</strong>ant MsrB was only weakly active and specific forpeptidyl Met-R-SO. To dissect the role of MsrC <strong>in</strong> oxidative stressresponse we compared an msrC s<strong>in</strong>gle mutant and an msrBmsrCdouble mutant, and found that MsrC affects survival of S. Typhimuriumfollow<strong>in</strong>g exposure to H 2O 2, growth <strong>in</strong> macrophages and <strong>in</strong> comb<strong>in</strong>ationwith MsrB also <strong>in</strong> mice.Conclusions: Thus <strong>in</strong> summary, we showed that mutants of S.Typhimurium lack<strong>in</strong>g components of the methion<strong>in</strong>e sulfoxide reductasepathway are attenuated <strong>in</strong> vitro when exposed to H 2O 2, <strong>in</strong>side activatedmacrophages and <strong>in</strong> mice. Previously, MsrA and MsrB were considered tobe the pr<strong>in</strong>ciple enzymes of the msr-system that play a role <strong>in</strong> oxidativestress response. Here we show that <strong>in</strong> addition MsrC contributessignificantly to thwart the damage caused by oxidative stress <strong>in</strong>S.Typhimurium [4].1. Weissbach H, Etienne F, Hoshi T, He<strong>in</strong>emann SH, Lowther WT, et al. (2002) Peptide methion<strong>in</strong>esulfoxide reductase: structure, mechanism of action, and biological function. Arch Biochem Biophys 397:172-178.2. Boschi-Muller S, Olry A, Anto<strong>in</strong>e M, Branlant G (2005) The enzymology and biochemistry ofmethion<strong>in</strong>e sulfoxide reductases. Biochim Biophys Acta 1703:231-238.3. Datsenko KA, Wanner BL (2000) One-step <strong>in</strong>activation of chromosomal genes <strong>in</strong> Escherichia coli K-12us<strong>in</strong>g PCR products. Proc Natl Acad Sci U S A 97:6640-66454. Denkel LA, Horst SA, Rouf SF, Kitowski V, Böhm OM, Rhen M, Jäger T, Bange F-C (2011) Methion<strong>in</strong>eSulfoxide Reductases Are Essential for Virulence of Salmonella Typhimurium. PLoS ONE 6(11): e26974.doi:10.1371/journal.pone.0026974MPV023RNase Y of Staphylococcus aureus does not result <strong>in</strong> bulkmRNA decay but <strong>in</strong> activation of virulence genesG. Mar<strong>in</strong>cola* 1 , T. Schäfer 2 , K. Ohlsen 2 , C. Goerke 1 , C. Wolz 11 Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, Tüb<strong>in</strong>gen,Germany2 Institute for Molecular Infection Biology, Würzburg, GermanyBacteria are able to cope with environmental changes by rapidly alter<strong>in</strong>gmRNA expression. Coord<strong>in</strong>ated RNA decay is also essential to allowquick adjustment of RNA levels. Several RNases are <strong>in</strong>volved <strong>in</strong> RNAdecay, process<strong>in</strong>g and maturation of the different RNA species. Sequencehomologues of major Escherichia coli enzymes cannot be identified <strong>in</strong>firmicutes. Recently, an essential endoribonuclease, RNase Y, wasidentified <strong>in</strong> Bacillus subtilis as a key member of the degradosome andproposed to be important for bulk mRNA turnover. Here we analyzed therole of RNase Y homologue rny <strong>in</strong> the human pathogen Staphylococcusaureus. In contrast to B. subtilis, rny is obviously not essential <strong>in</strong> S. aureuss<strong>in</strong>ce rny deletion mutants could readily be obta<strong>in</strong>ed. As a model forRNase Y action, we used the process<strong>in</strong>g of saePQRS operon cod<strong>in</strong>g forcomponents of a global virulence regulatory system. The most prom<strong>in</strong>enttranscript of this operon was shown to be generated by specificendonucleolytic cleavage of a larger autoregulated transcript. In rnymutants the saePQRS process<strong>in</strong>g was no more detectable. To ga<strong>in</strong> <strong>in</strong>sight<strong>in</strong>to the expression of genes affected by RNase Y, gene expressionprofil<strong>in</strong>g between rny mutant and wild type was compared throughmicroarray analysis. As expected for an RNase mutant, the mRNA levelsof several genes/operons were significantly <strong>in</strong>creased <strong>in</strong> the rny mutant.Accord<strong>in</strong>gly, the half life of one of these operons was shown to beextended from 1.1 to 12.7 m<strong>in</strong>. However, the half-lifes of other mRNAspecies, <strong>in</strong>clud<strong>in</strong>g virulence genes and regulators such as agr, were notsignificantly altered <strong>in</strong> the rny mutant. This suggests that <strong>in</strong> S. aureusRNAse Y does not lead to decay of bulk RNA but rather <strong>in</strong>fluence mRNAexpression <strong>in</strong> a tightly controlled regulatory manner. Interest<strong>in</strong>gly, therewere many genes down-regulated <strong>in</strong> the rny mutant. Among those genes,which are presumably controlled by RNase Y <strong>in</strong> an <strong>in</strong>direct way, we couldidentify various known to be <strong>in</strong>volved <strong>in</strong> the pathogenesis of S. aureus.The promoter activities of those virulence genes (e.g. hlg and spa) were <strong>in</strong>deedseverely impaired <strong>in</strong> the rny mutants. RNase Y was moreover required for fullvirulence <strong>in</strong> a mur<strong>in</strong>e S. aureus bacteremia model. In summary, <strong>in</strong> S. aureusRNase Y is essential for coord<strong>in</strong>ated activation of virulence genes but does notlead to bulk RNA decay as shown <strong>in</strong> B. subtilis.MPV024sarA negatively regulates Staphylococcus epidermidis biofilmformation by modulat<strong>in</strong>g expression of 1 MDa extracellularmatrix b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> and autolysis dependent release ofeDNAM. Christner, M. Busch, C. He<strong>in</strong>ze, M. Kotas<strong>in</strong>ska, G. Franke, H. Rohde*UKE Hamburg-Eppendorf, Mediz<strong>in</strong>ische Mikrobiologie, Hamburg, GermanyBiofilm formation is essential for Staphylococcus epidermidispathogenicity <strong>in</strong> implant-associated <strong>in</strong>fections. Nonetheless, largeproportions of <strong>in</strong>vasive S. epidermidis isolates fail to show accumulativebiofilm growth <strong>in</strong> vitro. We here tested the hypothesis that this apparentparadox is related to the existence of superimposed regulatory systemssuppress<strong>in</strong>g a multi-cellular biofilm life style. Transposon mutagenesis ofcl<strong>in</strong>ical significant but biofilm negative S. epidermidis 1585 was used toisolate a biofilm positive mutant carry<strong>in</strong>g a Tn917 <strong>in</strong>sertion <strong>in</strong> sarA, chiefregulator of staphylococcal virulence. Genetic analysis found that<strong>in</strong>activation of sarA <strong>in</strong>duced biofilm formation via over-expression ofgiant 1 MDa extracellular matrix b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (Embp), serv<strong>in</strong>g as an<strong>in</strong>tercellular adhes<strong>in</strong>. In addition to Embp, augmented extracellular DNA(eDNA) release significantly contributed to biofilm formation <strong>in</strong> mutant1585sarA. Increased eDNA amounts <strong>in</strong>directly resulted from upregulationof metalloprotease SepA, lead<strong>in</strong>g to boosted process<strong>in</strong>g ofmajor autolys<strong>in</strong> AtlE, <strong>in</strong> turn result<strong>in</strong>g <strong>in</strong> augmented autolysis and releaseof chromosomal DNA . Hence, this study identifies sarA as a negativeregulator of Embp- and eDNA dependent biofilm formation, l<strong>in</strong>k<strong>in</strong>g SepAmediatedescape from defens<strong>in</strong> dermicid<strong>in</strong>e with biofilm related protectionfrom phagocytosis. Our data establish a central role of sarA as a regulatorensur<strong>in</strong>g S. epidermidis adaptation to hostile environments.MPV025CspA of Borrelia burgdorferi is a regulator of the alternativepathwayA. Koenigs* 1 , P. Kraiczy 1 , C. Siegel 1 , S. Früh 1 , T. Hallström 2 , C. Skerka 2 ,P.F. Zipfel 2,31 University Hospital Frankfurt, Medical Microbiology and InfectionControl, Frankfurt, Germany2 Leibniz Institute for Natural Product Research and Infection Biology,Department of Infection Biology, Jena, Germany3 Friedrich Schiller University, Jena, GermanyThe Lyme disease spirochete, Borrelia burgdorferi, is transmitted to thehuman host through the bite of an <strong>in</strong>fected tick. Upon entry <strong>in</strong>to thebloodstream the spirochetes are immediately confronted by the host’s<strong>in</strong>nate immune system. The complement system is an <strong>in</strong>tegral part of<strong>in</strong>nate immunity and <strong>in</strong> order to establish a persistent <strong>in</strong>fection <strong>in</strong> the host,Borreliae have evolved a number of sophisticated means to evadecomplement-mediated kill<strong>in</strong>g.The outer surface prote<strong>in</strong> CspA of B. burgdorferi contributes tocomplement resistance by b<strong>in</strong>d<strong>in</strong>g host complement regulators such asfactor H (CFH) and factor H-like prote<strong>in</strong>-1 (FHL-1). Here we demonstrateBIOspektrum | Tagungsband <strong>2012</strong>


109that CspA can also negatively regulate activation of the alternativepathway <strong>in</strong>dependently of its ability to b<strong>in</strong>d CFH and FHL-1.At first, various recomb<strong>in</strong>ant CspA prote<strong>in</strong>s with s<strong>in</strong>gle am<strong>in</strong>o acidsubstitutions have been generated. The mutated prote<strong>in</strong>s were screened fortheir ability to b<strong>in</strong>d CFH and FHL-1 utiliz<strong>in</strong>g ligand aff<strong>in</strong>ity blott<strong>in</strong>g andELISA. CspA with substitutions at position 101 (CspA K101E) and position242 (CspA D242A) displayed a reduced b<strong>in</strong>d<strong>in</strong>g capacity for CFH. Asubstitution at position 246 (CspA L246D) reduced b<strong>in</strong>d<strong>in</strong>g of CFH tomarg<strong>in</strong>al levels. By contrast, am<strong>in</strong>o acid substitutions at positions 146(CspA L146H) and 240 (CspA Y240A) abrogated b<strong>in</strong>d<strong>in</strong>g of CFH to negligiblelevels. Additionally, prote<strong>in</strong>s CspA L146H and CspA Y240A did not b<strong>in</strong>dsignificant levels of FHL-1 <strong>in</strong> a ligand aff<strong>in</strong>ity blot and CspA L246D showedonly marg<strong>in</strong>al b<strong>in</strong>d<strong>in</strong>g of FHL-1.In order to assess whether the mutated CspA prote<strong>in</strong>s, with their reducedor negligible b<strong>in</strong>d<strong>in</strong>g capacity for CFH and/or FHL-1, reta<strong>in</strong>ed theirnegative regulatory effect on the alternative pathway of complement, weemployed a cell-based hemolytic assay. Strik<strong>in</strong>gly, just like the wild-typeCspA, all mutated prote<strong>in</strong>s <strong>in</strong>vestigated were able to protect rabbiterythrocytes from complement-mediated lysis <strong>in</strong> the hemolytic assay.Taken together, our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that CspA is not only able tonegatively regulate the alternative pathway of complement by usurp<strong>in</strong>ghost regulator molecules such as CFH or FHL-1, but that it can alsoregulate the alternative pathway <strong>in</strong>dependently of those molecules. Thechallenge rema<strong>in</strong>s, to f<strong>in</strong>d out precisely where this second regulatoryactivity <strong>in</strong> the alternative pathway is targeted.MPV026Zwitterionic cell wall polymers of bacterial pathogensimportantmodulators of T cell dependent <strong>in</strong>fectionsS. Wanner, M. Rautenberg, S. Baur, L. Kull, C. Weidenmaier*IMIT, Medical Microbiology and Hygiene, Tüb<strong>in</strong>gen, GermanyS.aureus is responsible for serious and life-threaten<strong>in</strong>g human <strong>in</strong>fections,such as bacteremia, pneumonia, and endocarditis. However the mostprom<strong>in</strong>ent S. aureus <strong>in</strong>fections are sk<strong>in</strong> and soft-tissue <strong>in</strong>fections (SSTIs).In contrast to other types of <strong>in</strong>fections, the microbial factors <strong>in</strong>volved <strong>in</strong>the pathogenesis of sk<strong>in</strong> <strong>in</strong>fections provoked by S. aureus and theunderly<strong>in</strong>g host response mechanisms have yet to be studied <strong>in</strong> detail.Therefore, a comprehensive understand<strong>in</strong>g of the molecular events tak<strong>in</strong>gplace dur<strong>in</strong>g the course of a staphylococcal sk<strong>in</strong> <strong>in</strong>fection rema<strong>in</strong>s largelyelusive.Recently, the dogma of adaptive immune system activation was challengedby studies that demonstrated the ability of certa<strong>in</strong> microbial zwitterionicpolysaccharides to be processed and presented via the MHC II pathwaymuch like peptide antigens (1). Cell wall teichoic acid (WTA) of S. aureusis a zwitterionic polymer, and we demonstrate that purified WTA is able tostimulate CD4+ T-cell proliferation <strong>in</strong> an MHC II-dependent manner (2).We show <strong>in</strong> both <strong>in</strong> vitro and <strong>in</strong> vivo experiments that the zwitterioniccharge of WTA is crucial for this activity. The results of T cell transferexperiments and CD4+ T cell deficient mouse studies clearly demonstratethat T cell activation by WTA <strong>in</strong> S. aureus <strong>in</strong>fected tissue stronglymodulates abscess formation. The primary effector cytok<strong>in</strong>e produced byWTA activated T cells <strong>in</strong> vitro is IFN-, which we found to be responsiblefor promot<strong>in</strong>g the early phases of abscess formation <strong>in</strong> vivo. The laterstages of abscess progression and clearance rely on a Th17 type response,<strong>in</strong>dicated by high IL-17 levels <strong>in</strong> the abscess tissues at late time po<strong>in</strong>ts. Wecurrently try to understand the development and <strong>in</strong>terplay of T cellpopulations after MHCII dependent activation by WTA. In addition wewant to correlate structural differences <strong>in</strong> WTA polymers of differentGram-positive bacteria to their T cell stimulatory potential. So far wecould demonstrate that the WTA polymer of the sk<strong>in</strong> coloniz<strong>in</strong>gcommensal Staphylococcus epidermidis is <strong>in</strong> contrast to the WTA of S.aureus not able to activate T cells after MHC II presentation. The spac<strong>in</strong>gof the charge centers is shorter <strong>in</strong> S.epidermidis WTA as compared to S.aureus WTA s<strong>in</strong>ce S. epidermidis WTA conta<strong>in</strong>s glycerol-phosphaterepeat<strong>in</strong>g units as opposed to the ribitol-phosphate units of S. aureusWTA. Our study is both novel and highly important for understand<strong>in</strong>g themolecular basis of the complex pathology of staphylococcal SSTIs. Inaddition, it provides unique <strong>in</strong>sight on the role of staphylococcalglycopolymers <strong>in</strong> bacterial virulence, emphasiz<strong>in</strong>g the importance of<strong>in</strong>vestigat<strong>in</strong>g these surface molecules from a new perspective.1. Weidenmaier C, Peschel A(2008) Teichoic acids and related cell-wall glycopolymers <strong>in</strong> Gram-positivephysiology and host <strong>in</strong>teractions. Nat Rev Microbiol 6: 276-287.2. Weidenmaier, C., R. M. McLoughl<strong>in</strong>, and J. C. Lee.2010. The Zwitterionic Cell Wall Teichoic Acid ofStaphylococcus aureus Provokes Sk<strong>in</strong> Abscesses <strong>in</strong> Mice by a Novel CD4+ T-Cell-Dependent Mechanism.PLoS One5.MPV027Novel mur<strong>in</strong>e <strong>in</strong>fection models provide deep <strong>in</strong>sights <strong>in</strong>to the„Ménage à Trois“ of Campylobacter jejuni, microbiota andhost <strong>in</strong>nate immunityM.M. Heimesaat* 1 , A. Fischer 1 , R. Plickert 1 , L.-M. Haag 1 , B. Otto 1 ,A.A. Kühl 2 , J.I. Dashti 3 , A.E. Zautner 3 , M. Munoz 1 , C. Loddenkemper 2 ,U. Groß 3 , U.B. Göbel 1 , S. Bereswill 11 Charité - Universitätsmediz<strong>in</strong> Berl<strong>in</strong>, Institut für Mikrobiologie und Hygiene,Berl<strong>in</strong>, Germany2 Charité - Universitätsmediz<strong>in</strong> Berl<strong>in</strong>, Berl<strong>in</strong>, Germany3 University Medical Center Gött<strong>in</strong>gen, Gött<strong>in</strong>gen, GermanyBackground: Although Campylobacter jejuni-<strong>in</strong>fections have a highprevalence worldwide and represent a significant socioeconomic burden, itis still not well understood how C. jejuni causes <strong>in</strong>test<strong>in</strong>al <strong>in</strong>flammation.Detailed <strong>in</strong>vestigation of C. jejuni-mediated <strong>in</strong>test<strong>in</strong>al immunopathology ishampered by the lack of appropriate vertebrate models. In particular, micedisplay colonization resistance aga<strong>in</strong>st this pathogen.Methodology/Pr<strong>in</strong>cipal f<strong>in</strong>d<strong>in</strong>gs: To overcome these limitations wedeveloped a novel C. jejuni-<strong>in</strong>fection model us<strong>in</strong>g gnotobiotic mice <strong>in</strong>which the <strong>in</strong>test<strong>in</strong>al flora was eradicated by antibiotic treatment. Theseanimals could then be permanently associated with a complete human(hfa) or mur<strong>in</strong>e (mfa) microbiota. After peroral <strong>in</strong>fection C. jejunicolonized the gastro<strong>in</strong>test<strong>in</strong>al tract of gnotobiotic and hfa mice for sixweeks whereas mfa mice cleared the pathogen with<strong>in</strong> two days. Strik<strong>in</strong>gly,stable C. jejuni colonization was accompanied by a pro-<strong>in</strong>flammatoryimmune response <strong>in</strong>dicated by <strong>in</strong>creased numbers of T- and B-lymphocytes, regulatory T-cells, neutrophils and apoptotic cells as well as<strong>in</strong>creased concentrations of TNF-, IL-6, and MCP-1 <strong>in</strong> the colon mucosaof hfa mice. Analysis of MyD88 -/- , TRIF -/- , TLR4 -/- , and TLR9 -/- micerevealed that TLR4- and TLR9-signal<strong>in</strong>g was essential forimmunopathology follow<strong>in</strong>g C. jejuni-<strong>in</strong>fection. Interest<strong>in</strong>gly, C. jejunimutantstra<strong>in</strong>s deficient <strong>in</strong> formic acid metabolism and perception <strong>in</strong>ducedless <strong>in</strong>test<strong>in</strong>al immunopathology compared to the parental stra<strong>in</strong> <strong>in</strong>fection.In summary, the mur<strong>in</strong>e gut flora is essential for colonization resistanceaga<strong>in</strong>st C. jejuni and can be overcome by reconstitution of gnotobioticmice with human flora. Detection of C. jejuni-LPS and -CpG-DNA by hostTLR4 and TLR9, respectively, plays a key role <strong>in</strong> immunopathology.F<strong>in</strong>ally, the host immune response is tightly coupled to bacterial formicacid metabolism and <strong>in</strong>vasion fitness.Conclusion/Significance: We conclude that gnotobiotic and “humanized”mice represent excellent novel C. jejuni-<strong>in</strong>fection and -<strong>in</strong>flammationmodels and provide deep <strong>in</strong>sights <strong>in</strong>to the immunological and molecular<strong>in</strong>terplays between C. jejuni, microbiota and <strong>in</strong>nate immunity <strong>in</strong> humancampylobacteriosis.MPP001Detoxification of nitric oxide dur<strong>in</strong>g Salmonella pathogenesisA. Arkenberg*, D. Richardson, G. RowleyUniversity of East Anglia, School of Biological Sciences, Norwich, UnitedK<strong>in</strong>gdomThe detoxification of nitric oxide plays a major role dur<strong>in</strong>g thepathogenesis of Salmonella species. Nitric oxide has bactericidalproperties and is generated by <strong>in</strong>ducible nitric oxide synthase <strong>in</strong>sidemacrophages, where Salmonella is able to reside [1]. Salmonella hasevolved detoxification mechanisms, which allow survival <strong>in</strong> such astressful environment. Previous work has revealed the importance ofNorV, NrfA and HmpA [2], but more mechanisms are likely to be<strong>in</strong>volved. Microarray analysis of Salmonella enterica serovarTyphimurium (S.Typhimurium) highlighted the up-regulation of genes thatconta<strong>in</strong> putative tellurite resistance doma<strong>in</strong>s. The effect of gene deletionshas been <strong>in</strong>vestigated us<strong>in</strong>g various sensitivity and viability assays rang<strong>in</strong>gfrom exposure to hydrogen peroxide, effects on growth <strong>in</strong> the presence oftellurite, effect on growth by nitric oxide under oxic and anoxic conditionsto the use of cell culture models.[1] Haraga, A., Ohlson, M. B. and Miller, S. I. (2008) Salmonellae <strong>in</strong>terplay with host cells. Nat RevMicro.6, 53-66[2] Mills, P. C., Rowley, G., Spiro, S., H<strong>in</strong>ton, J. C. D. and Richardson, D. J. (2008) A comb<strong>in</strong>ation ofcytochrome c nitrite reductase (NrfA) and flavorubredox<strong>in</strong> (NorV) protects Salmonella enterica serovarTyphimurium aga<strong>in</strong>st kill<strong>in</strong>g by NO <strong>in</strong> anoxic environments. Microbiology.154, 1218-1228MPP002Discrim<strong>in</strong>ative hexaplex PCR strategy for the detection ofmethicill<strong>in</strong> resistance and virulence factors <strong>in</strong> StaphylococcusaureusS.M. Shahid*, S.F. Hussa<strong>in</strong>, A. Khatoon, M. Ismail, A. AzharThe Karachi Institute of Biotechnology & Genetic Eng<strong>in</strong>eer<strong>in</strong>g (KIBGE),University of Karachi, Medical Biotechnology, Karachi, PakistanIn cl<strong>in</strong>ical microbiology, phenotypic characterization is laborious and timeconsum<strong>in</strong>g strategy, rema<strong>in</strong>s less discrim<strong>in</strong>ative among high virulent toless virulent cl<strong>in</strong>ically important stra<strong>in</strong>s. Induction of moleculartechniques, allow a more accurate and less time consum<strong>in</strong>g way out for theBIOspektrum | Tagungsband <strong>2012</strong>


110identification of Staphylococcus aureus along with its virulencecapabilities. Here we describe a hexaplex strategy for a rapid detection ofmethicill<strong>in</strong> resistance, simultaneously discrim<strong>in</strong>at<strong>in</strong>g S. aureus fromcoagulase-negative staphylococci (CoNS) and occurrence of virulencefactors. It targets the nuc (specific for S. aureus), mec A (methicill<strong>in</strong>resistance determ<strong>in</strong>ant), fem A and fem B (S. aureus specific factorsessential for methicill<strong>in</strong> resistance), Luk S/F PV (encodes for PantonValent<strong>in</strong>e Leukocid<strong>in</strong>-PVL) and spa (encodes prote<strong>in</strong> A). Validation ofthis strategy was performed us<strong>in</strong>g previously characterized cl<strong>in</strong>ical isolatesof methicill<strong>in</strong> susceptible Staphylococcus aureus (MSSA), methicill<strong>in</strong>resistant Staphylococcus aureus (MRSA) and CoNS from differenthospital facilities. Amplification results were consistent and perfectlyaccurate <strong>in</strong> accordance to the biochemical and resistance properties of theisolates. This molecular approach renders cl<strong>in</strong>ical microbiology a feasible,rapid, simple and reliable technique discrim<strong>in</strong>at<strong>in</strong>g MSSA, MRSA andCoNS and provides an early and accurate way of detection, contribut<strong>in</strong>g <strong>in</strong>prevention from widespread dissem<strong>in</strong>ation and facilitat<strong>in</strong>g antibiotictherapy design.MPP003Optimization of PCR strategy for multilocus sequence analysisof Staphylococcus aureusS.M. Shahid*, A. Khatoon, F. Hussa<strong>in</strong>, M. Ismail, A. AzharThe Karachi Institute of Biotechnology & Genetic Eng<strong>in</strong>eer<strong>in</strong>g (KIBGE),University of Karachi, Medical Biotechnology, Karachi, PakistanMethicill<strong>in</strong>-resistant Staphylococcus aureus (MRSA) has been the mostcommon nosocomial pathogen worldwide. It is generally documented asthe most significant due to the burden of diseases it causes and to theevolution and global spread of multidrug-resistant clones. This studydescribes the optimization of PCR assay for the multilocus sequencetyp<strong>in</strong>g (MLST) and analysis of housekeep<strong>in</strong>g genes harbored byStaphylococcus aureus isolates. Conditions were optimized for a total ofseven housekeep<strong>in</strong>g genes which are carbamate k<strong>in</strong>ase (arcC), shikimatedehydrogenase (aroE), glycerol k<strong>in</strong>ase (glpF), guanylate k<strong>in</strong>ase (gmk),phosphate acetyltransferase (pta), triosephosphate isomerase (tpi), acetylcoenzyme A acetyltransferase (yqiL) each of which were ~500bp. A totalof 50 human cl<strong>in</strong>ical isolates of methicill<strong>in</strong>-resistant and -sensitiveStaphylococcus aureus were used to validate the method. This assay offerssimple, feasible and specific amplification of multilocus products, whichwould be more precisely and accurately analyzed by direct sequenc<strong>in</strong>gMPP004Isothermal Microcalorimetry as a powerful technique forsusceptibility test<strong>in</strong>g and <strong>in</strong>vestigation of multidrug resistantorganismsC. OrtmannTA Instruments, Microcalorimetry, Eschborn, GermanyThe need for f<strong>in</strong>d<strong>in</strong>g and test<strong>in</strong>g new drugs aga<strong>in</strong>st multiresistentorganisms is a great challenge for our modern society. With regard to thehigh amounts of antibiotics present <strong>in</strong> daily life the problem of resistantorganisms will <strong>in</strong>crease <strong>in</strong> future. Thus, beside improvements <strong>in</strong> hygieneespecially <strong>in</strong> hospitals and a conscious usage of antibiotics there is greatneed for develop<strong>in</strong>g new drugs and reliable tests to <strong>in</strong>vestigate their impacts.S<strong>in</strong>ce Isothermal Microcalorimetry (IMC) relies on dissipated heat overtime it is generally applicable to all sorts of organisms. There is hardly anyrestriction to the media either; IMC might be used with all body fluids,with solutions, broths or agars, fluid or solid. Hence, it has proved to be asimple, powerful and convenient technique to record the growth andmetabolism of bacteria, cell cultures and parasites (Braissant et al. 2009).Furthermore it is quicker than established techniques like proportionmethod on plates or blood cultures (e.g. Howell et al. <strong>2012</strong>, Buess 2007).In addition the method is nondestructive and provides a real time detectionof the <strong>in</strong>vestigated process <strong>in</strong>stead of snapshots which makes it especiallyvaluable for test<strong>in</strong>g the mechanisms of drug effects. It has been shown thatdrugs can dim<strong>in</strong>ish the growth of bacteria but there are also drugs that just delaythe onset of growth (e.g. von Ah et al. 2009). To dist<strong>in</strong>guish these two modes ofdrug effect is almost impossible with common techniques. Therefore IMC is apowerful method to determ<strong>in</strong>e m<strong>in</strong>imal <strong>in</strong>hibit<strong>in</strong>g concentrations (MIC) ofdrugs and other toxicological approaches. Actually at standardized conditionsIMC may reveal diagnostic capabilities because the heat flow curves arecharacteristic for most species. In environments with just a few frequentlypresent species like bacteria <strong>in</strong> a hospital the heat flow curve of a blood samplefor example may reveal the target species.This talk gives a short overview of recent IMC studies <strong>in</strong> the field ofmicrobiology and drug test<strong>in</strong>g with a focus on human pathogenic organisms. Italso provides some technical aspects of the method and gives an outlook <strong>in</strong>possible applications <strong>in</strong> the future.Braissant O, Wirtz D, Göpfert B & Daniels AU (2010) Use of isothermal microcalorimetry to monitormicrobial activities. FEMS Microbiol Lett 303: 1-8Buess, D (2007) Improved detection of Microorganisms <strong>in</strong> Blood by Isothermal Microcalorimetry. PhDThesis (Medic<strong>in</strong>e) University of BaselHowell, M.; Wirtz, D.; Daniels, A.U. & Braissant, O. (<strong>2012</strong>) Application of a Microcalorimetric Method forDeterm<strong>in</strong><strong>in</strong>g Drug Susceptibility <strong>in</strong>MycobacteriumSpecies. Journal of Cl<strong>in</strong>ical Microbiology doi:10.1128/JCM.05556-11von Ah, U.; Wirtz, D. & Daniels, A.U. (2009) Isothermal micro calorimetry - a new method for MICdeterm<strong>in</strong>ations: results for 12 antibiotics and reference stra<strong>in</strong>s ofE. coliandS. aureus. BMC Microbiology 9:106.MPP005ATP cytotoxicity assay <strong>in</strong> presence of CyaA and CyaA*preprationsA. Khosravani* 1 , J. Coote 2 , R. Parton 21 Yasouj University of Medical Sciences, Microbiology & Immunology, Yasouj,Islamic Republic of Iran2 Glasgow University, <strong>in</strong>fection and Immunity, Glasgow, United K<strong>in</strong>gdomIntroduction:Adenylate cyclase tox<strong>in</strong> (CyaA) tox<strong>in</strong> is an importantvirulence factor ofBordetella pertussis,the causative agent of whoop<strong>in</strong>gcough, and a potential component of acellular pertussis vacc<strong>in</strong>e. Theadenos<strong>in</strong>e triphosphate (ATP) assay is an alternative assay for measur<strong>in</strong>gcytotoxicity as it determ<strong>in</strong>es the number of viable cells <strong>in</strong> a culture basedon quantitation of ATP, by a biolum<strong>in</strong>escence method, which signals thepresence of metabolically-active cells.Material & Methods: The amount of ATP is directly related to cellnumbers. J774.2 (grown <strong>in</strong> RPMI 1640 medium), RBL-2H3 and sheepbone marrow mast cells (grown <strong>in</strong> DMEM medium) were treated withdifferent concentrations of CyaA or CyaA* for 2 h at 37°C. The CellTiter-GloÔ reagent was added to each sample and biolum<strong>in</strong>escence output wascompared to that of a negative control (untreated) (0% cytotoxicity)preparation.Results:Accord<strong>in</strong>g to this method 50% cytotoxicity for J774.2 cells wascaused by CyaA around 0.02 mg prote<strong>in</strong>/ml but was not achieved byCyaA* up to 1.25 mg prote<strong>in</strong>/ml. Little cell death (


111MPP007Comparative genomic analysis of 44 Clostridium difficile stra<strong>in</strong>sH. Kurka* 1 , A. Ehrenreich 1 , M. Rupnik 2 , B. Dupuy 3 , M. Monot 3 ,W. Ludwig 1 , W. Liebl 11 Technical University, Departement of Microbiology, Munich, Germany2 Institute of Public Health, Centre for Microbiology, Maribor, Slovenia3 Institute Pasteur, Microbiology, Paris, FranceClostridium difficilei s the ma<strong>in</strong> cause of healthcare associated diarrheaworldwide. The Clostridium difficile associated disease ranges from selflimiteddiarrhea to life-threaten<strong>in</strong>g colitis. One approach to classifydifferent Clostridium difficile stra<strong>in</strong>s is the determ<strong>in</strong>ation of the ribotype.The ribotype depends on differences <strong>in</strong> the length of the 16S-23S rRNA<strong>in</strong>tergenic spacer region. Current publications on comparative analysis ofClostridium difficile stra<strong>in</strong>s focused ma<strong>in</strong>ly on stra<strong>in</strong>s of one ribotype. Incontrast we present here a comparative genome analysis of genomesequences of 44 different Clostridium difficile stra<strong>in</strong>s, belong<strong>in</strong>g to 22dist<strong>in</strong>ct ribotypes.To <strong>in</strong>vestigate the phylogenetic diversity among the 44 Clostridiumdifficile stra<strong>in</strong>s we computed 14 different trees based on the nucleotidesequence of 14 different highly conservative marker genes us<strong>in</strong>g the ARBsoftware package. For each tree we unexpectedly found that stra<strong>in</strong>s of thesame ribotype belong to one node of the trees.With<strong>in</strong> our dataset we elucidated differences and similarities <strong>in</strong> genecontent with<strong>in</strong> stra<strong>in</strong>s of the same ribotype and with<strong>in</strong> stra<strong>in</strong>s of differentribotypes by implement<strong>in</strong>g a bidirectional NCBI BLAST. Us<strong>in</strong>g thisapproach we computed conserved and specific genes for the Clostridiumdifficile genomes. We found that the number of conserved genes dependson the ribotype of the stra<strong>in</strong>. In accordance to the tree analysis there is astrong correlation between stra<strong>in</strong>s of the same ribotype.Know<strong>in</strong>g similarities and differences on the gene level, the third aspect ofour analysis covers the detection of S<strong>in</strong>gle Nucleotide Polymorphisms(SNP). Us<strong>in</strong>g the software MUMmer for the SNP analysis we clarifywhich genomic regions are more susceptible to SNPs than others. Forexample we identified one region that seems to be specific for stra<strong>in</strong>s ofribotype 078. Generally we found that the number of SNPs depends on theribotype of the genome.Altogether the tree analysis unexpectedly proved so far that stra<strong>in</strong>s of thesame ribotype are more related to each other.MPP008Novel strategies for biofilm disruption from metagenomesH. Henke* 1,2 , I. Krohn-Molt* 1 , A. Pommeren<strong>in</strong>g-Röser 1 , W. Streit 1 , H. Rohde 21 Biozentrum Kle<strong>in</strong> Flottbek, Microbiology, Hamburg, Germany2 Universitätskl<strong>in</strong>ikum Hamburg-Eppendorf, Medical Microbiology, Hamburg,GermanyStaphylococcus- and Pseudomonas species` biofilms on medical deviceslead to huge hospital associated problems and are difficult to treat [1,2].We report on metagenomic screen<strong>in</strong>g methods and partial characterizationof metagenome clones that either <strong>in</strong>hibit the development of microbialbiofilms or hydrolyze established microbial biofilms. A total of 30.000fosmid clones of two metagenomic libraries have been analyzed for clonesthat encode prote<strong>in</strong>s <strong>in</strong>terfer<strong>in</strong>g with the <strong>in</strong>hibition of de novo formation ofbiofilms and lysis of already established microbial biofilms. Tests wereperformed us<strong>in</strong>g S. epidermidis stra<strong>in</strong> 1457 and P. aerug<strong>in</strong>osa stra<strong>in</strong>PA028. The screen<strong>in</strong>gs have been accomplished via an overlay-assay and<strong>in</strong> micro titer plates. Altogether 10 fosmid clones were identified thatstrongly <strong>in</strong>hibited the formation of P. aerug<strong>in</strong>osa PA028 and S. epidermidis1457 biofilm formation. 14 fosmid clones <strong>in</strong>hibit only S. epidermidis 1457biofilm formation. Furthermore 3 fosmid clones were identified that disruptalready established S. epidermidis 1457 biofilms. Furthermore all 27 identifiedfosmid clones have been sequenced via Illum<strong>in</strong>a and the ORFs and prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> biofilm phenotypes are currently <strong>in</strong> characterization.1. Rohde H, Mack D, Christner M, Burdelski C, Franke GC et al. (2006) Pathogenesis of staphylococcaldevice-related <strong>in</strong>fections: from basic science to new diagnostic, therapeutic and prophylactic approaches.Rev Med Microbiol 17: 45-54.2. Rupp ME, Archer GL (1994) Coagulase-negative staphylococci: pathogens associated with medicalprogress. Cl<strong>in</strong> Infect Dis 19: 231-243.MPP009Co-regulation of multidrug resistance and pathogenicity <strong>in</strong>Erw<strong>in</strong>ia amylovoraD. Pletzer*, H. We<strong>in</strong>gartJacobs University Bremen, School of Eng<strong>in</strong>eer<strong>in</strong>g and Science, Bremen,GermanyErw<strong>in</strong>ia amylovora, a plant pathogenic member of the Enterobacteriaceae,causes fire blight on rosaceous plants, especially pear and apple. Fireblight is one of the most devastat<strong>in</strong>g plant diseases caused by bacteria <strong>in</strong>Germany. Especially apple orchards <strong>in</strong> South Germany are severelyaffected by this existence-threaten<strong>in</strong>g disease, due to the warmer weatherconditions favor<strong>in</strong>g disease development. The commercial implications ofthis plant disease are aggravated by the limited effectiveness of currentcontrol measures. A major pathogenicity factor of E. amylovora ismultidrug efflux mediated by the RND-type pump AcrAB-TolC. It waspreviously shown that this efflux system confers resistance to a broadrange of structurally unrelated compounds <strong>in</strong>clud<strong>in</strong>g antibiotics, dyes andplant-derived antimicrobial tox<strong>in</strong>s. Moreover, acrB- and tolC-deficientmutants showed a dramatically reduced virulence on apple rootstocks. Theaim of this project is to explore the cause of the attenuated pathogenicity <strong>in</strong>mutants of E. amylovora lack<strong>in</strong>g a component of the AcrAB-TolC system.In Salmonella enterica, a human pathogenic enterobacterium, it was shownthat a transcriptional activator was responsible for downregulation ofnumerous genes encod<strong>in</strong>g prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> pathogenicity <strong>in</strong> an acrBdeficientmutant. We will determ<strong>in</strong>e whether such a global regulator,responsible for the co-regulation of pathogenicity and multidrug resistance,exists <strong>in</strong> E. amylovora. Beside AcrAB-TolC, three additional RND-typepumps are present <strong>in</strong> the annotated genome sequences of E. amylovora. Todeterm<strong>in</strong>e the role of these multidrug transporters <strong>in</strong> antibiotic resistanceand virulence of E. amylovora, transporter-deficient mutants will begenerated and characterized.MPP010Sublethal concentration of benzalkonium chloride <strong>in</strong>creases the<strong>in</strong>tracellular proliferation of Listeria monocytogenes <strong>in</strong> vitroL. Pricope* 1,2 , A. Nicolau 1 , M. Wagner 2 , K. Rychli 21 Dunarea de jos University, Galati, Romania2 Institute for Milk Hygiene, University of Veter<strong>in</strong>ary Medic<strong>in</strong>e, Vienna, AustriaQuestion: Listeria monocytogenes(L.monocytogenes) is a foodbornepathogen able to persist <strong>in</strong> the food process<strong>in</strong>g environment for months oreven years. Some L.monocytogenes stra<strong>in</strong>s are more resistant than othersto certa<strong>in</strong> sanitizers, like benzalkonium chloride (BAC), and thereforerepresent a cont<strong>in</strong>uous source of recontam<strong>in</strong>ation of food products. Arecent study <strong>in</strong>dicates that BAC affects the expression of stress prote<strong>in</strong>sand also of prote<strong>in</strong>s related to virulence <strong>in</strong> L. monocytogenes (Kastbjerg etal, 2010).The aim of our study was to assess the effect of sublethal concentration ofBAC on the virulence potential of L.monocytogenes.Methods: Three L.monocytogenes stra<strong>in</strong>s isolated from cheese smearwater - Austria (Lm1), cheese - Ireland (Lm2), and smoked salmon -Denmark (Lm3) and the cl<strong>in</strong>ical stra<strong>in</strong> EGDe, all serovar 1/2a, were<strong>in</strong>cubated with or without 1.25mg/l BAC for 30 m<strong>in</strong>utes. Invasion and<strong>in</strong>tracellular proliferation after 4 hours were determ<strong>in</strong>ed <strong>in</strong> a cell cultureassay us<strong>in</strong>g Caco-2, a human colonic carc<strong>in</strong>oma, HepG2, a humanhepatocellular liver carc<strong>in</strong>oma and THP-1, a human acute monocyticleukemia cell l<strong>in</strong>e.Results: The four L.monocytogenes stra<strong>in</strong>s vary significantly <strong>in</strong> <strong>in</strong>vasionand proliferation efficiency, <strong>in</strong> respect to all three human cell types. EGDeshowed the highest ability to <strong>in</strong>vade all cell types, followed by Lm 3,whereas for Lm1 and Lm 2 a significant lower <strong>in</strong>vasion rate was detected.Incubation with BAC significantly reduced the <strong>in</strong>vasion rate only of EGDeand Lm3, while the <strong>in</strong>vasion efficiency of Lm1 and Lm 2 was only slightlybut not significantly decreased by <strong>in</strong>cubation with BAC.Surpris<strong>in</strong>gly, 30 m<strong>in</strong>utes exposure to 1.25mg/l BAC <strong>in</strong>creasedsignificantly the <strong>in</strong>tracellular proliferation for all four stra<strong>in</strong>s <strong>in</strong> all threedifferent human cell types.Conclusions: These results suggest that through the exposure to ‘stress’caused by sublethal concentrations of dis<strong>in</strong>fectants L.monocytogenes mighteasier adapt to the <strong>in</strong>tracellular environment of the human cells whichleads to a higher <strong>in</strong>tracellular proliferation.Kastgjerg VG, Halberg Larsen M, Gram L, Ingmer H, (2010), Influence of sublethal concentrationof common dis<strong>in</strong>fectants on expression of virulence genes <strong>in</strong> Listeria monocytogenes, Appl. andEnvironmental Microbiology 76(1): 303-309MPP011Occurence of culturableVibrio choleraefrom LakeVictoriaand two rift valley lakes Albert and George, UgandaM. Kaddumukasa* 1,2 , F. Muyodi 31 Makerere University, Biological Sciences, Kampala, Uganda2 University, Biology, Kampala, Uganda3 University, Biological sciences, Kampala, UgandaIn Uganda the quality and quantity of clean water are already threatenedby poor sanitation, pollution, <strong>in</strong>creas<strong>in</strong>g population pressure anddeforestation. L<strong>in</strong>ks between climate change impacts, clean water andsanitation and human health are significant <strong>in</strong> Uganda. An <strong>in</strong>vestigation<strong>in</strong>to the occurrence ofVibrio choleraeand correlation with environmentalfactors was conducted from September 2009 to August 2010 <strong>in</strong> three lakes.Water samples were collectedmonthly from three shore sampl<strong>in</strong>g sites <strong>in</strong>Lakes Victoria (Gabba), Albert (Butiaba), George (Kayanzi) sites. Variousenvironmental parameters were monitored over this period. Enrichmenttechniques and standard tests were used to detect the presence ofV.cholerae.Seventy five percent (n= 90) of the samples were positive forV.cholerae. Environmental parameters were found to vary with theabundance ofV. choleraeover the seasons. V. choleraewas morefrequentlydetected dur<strong>in</strong>g the dry than <strong>in</strong> the wet season. Results revealBIOspektrum | Tagungsband <strong>2012</strong>


112that a unit <strong>in</strong>crease <strong>in</strong> water temperature resulted <strong>in</strong>to a significant decrease(P


113MPP016Regulation and functional characterization of the Arg<strong>in</strong><strong>in</strong>eDeim<strong>in</strong>ase System (ADS) of pyogenic streptococciA. Hitzmann* 1 , M. Rohde 1 , O. Goldmann 1 , S. Bergmann 2 , G.S. Chhatwal 1 ,M. Fulde 31 Helmholtz Centre for Infection Research, Medical Microbiology,Braunschweig, Germany2 TU Braunschweig, Braunschweig, Germany3 Hannover Medical School, Hannover, GermanyPyogenic streptococci comprise a large family of pathogenic bacteria<strong>in</strong>clud<strong>in</strong>g human specific, animal specific, and zoonotic species, lead<strong>in</strong>g tosimilar cl<strong>in</strong>ical patterns and diseases. Its spectrums of diseases range frommild <strong>in</strong>fections of the sk<strong>in</strong> to severe and life-threaten<strong>in</strong>g septicaemia,necrotiz<strong>in</strong>g fasciitis and toxic shock-like syndrome. Similarities <strong>in</strong> thepatho-physiology between S. canis, ma<strong>in</strong>ly isolated from dogs and cats,but <strong>in</strong>creas<strong>in</strong>gly recognized as a zoonotic agent, and the well characterizedhuman pathogens S. pyogenes and S. dysgalactiae sub. equismilis suggestcommon virulence factors <strong>in</strong> these species. One of these virulence traits isthe Arg<strong>in</strong><strong>in</strong>e Deim<strong>in</strong>ase System (ADS) which is widely distributed amongpathogenic streptococci and other prokaryotes. As a secondary metabolicpathway, the ADS catalyses the conversion from arg<strong>in</strong><strong>in</strong>e to ornith<strong>in</strong>e,thereby produc<strong>in</strong>g ATP, CO 2, and ammonia. Besides its role <strong>in</strong>metabolism, the ADS is also upregulated dur<strong>in</strong>g <strong>in</strong>fection of the host.Moreover, it is speculated that the ability to raise the external pH due toammonia formation dur<strong>in</strong>g arg<strong>in</strong>olysis is responsible for overcom<strong>in</strong>gacidic conditions, e.g. <strong>in</strong> the phagolysosome.In pyogenic streptococci the ADS consists of seven genes: arcR and flpS,cod<strong>in</strong>g for putative transcriptional regulators, arcA, an arg<strong>in</strong><strong>in</strong>e deim<strong>in</strong>ase,arcB, an ornith<strong>in</strong>e-carbamoyltransferase, arcC, a carbamate k<strong>in</strong>ase, arcD,an arg<strong>in</strong><strong>in</strong>e-ornith<strong>in</strong>e antiporter, and arcT, a putative Xaa/His-dipeptidase.We could show <strong>in</strong> RT-PCR and Western Blot analysis, as well as <strong>in</strong>enzymatic assays, that the ADS is highly upregulated under nutrientstarvation and arg<strong>in</strong><strong>in</strong>e supplementation. Furthermore, glucose effectivelyrepresses the ADS expression underl<strong>in</strong><strong>in</strong>g its function as a secondarymetabolic pathway. Prelim<strong>in</strong>ary phenotypic analysis us<strong>in</strong>g FACS andelectron microscopy revealed that ArcA, ArcB, and ArcC are located onthe bacterial surface. This would be a prerequisite for neutraliz<strong>in</strong>genvironmental acidification. However, its exact contributions to virulencerema<strong>in</strong> elusive.MPP017Borrelia bavariensis sp. nov. resist complement-mediatedkill<strong>in</strong>g <strong>in</strong>dependent of b<strong>in</strong>d<strong>in</strong>g of complement regulatorsC. Hammerschmidt* 1 , A. Koenigs 1 , T. Hallström 2 , C. Skerka 2 , R. Wallich 3 ,P.F. Zipfel 2,4 , P. Kraiczy 11 University Hospital Frankfurt, Medical Microbiology and InfectionControl, Frankfurt, Germany2 Leibniz Institute for Natural Product Research and Infection Biology,Department of Infection Biology, Jena, Germany3 University of Heidelberg, Institute of Immunology, Heidelberg, Germany4 Friedrich Schiller University, Jena, GermanyLyme disease, the most prevalent vector-borne anthropozoonosis <strong>in</strong>Europe, is caused by spirochetes of the Borrelia burgdorferi sensu latocomplex.B. burgdorferi sensu lato differ <strong>in</strong> their resistance to complement-mediatedkill<strong>in</strong>g by human serum. It is well-known that complement resistance iscorrelated with the ability of Borreliae to b<strong>in</strong>d host-derived fluid-phasecomplement regulators of the alternative pathway, factor H (CFH) andfactor H-like prote<strong>in</strong> 1 (FHL-1) via dist<strong>in</strong>ct molecules termed complementregulator-acquir<strong>in</strong>g surface prote<strong>in</strong>s or CRASPs.Here, we <strong>in</strong>vestigate Borrelia bavariensis sp. nov. formerly described asBorrelia gar<strong>in</strong>ii OspA serotype 4 for elucidat<strong>in</strong>g the molecular mechanismof serum resistance. This genospecies showed a higher pathogenicity tohumans and displayed an <strong>in</strong>termediate serum-resistant phenotype to humanserum. Interest<strong>in</strong>gly, none of the Borrelia bavariensis stra<strong>in</strong>s analyzedwere able to acquire complement regulators CFH or FHL-1 and did notproduce any CRASPs.To exclude the possibility that B. bavariensis captures complementregulators of the classical pathway to escape the <strong>in</strong>nate immune system,the capacity of several isolates to b<strong>in</strong>d C4b-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> (C4BP) or C1-Inhibitor was exam<strong>in</strong>ed. S<strong>in</strong>ce none of the borrelial isolates were able tob<strong>in</strong>d these complement regulators, we <strong>in</strong>vestigated two CRASP-1orthologous prote<strong>in</strong>s, BGA66 and BGA71 display<strong>in</strong>g an <strong>in</strong>tr<strong>in</strong>siccomplement regulatory activity.Therefore, a serum-sensitive B. gar<strong>in</strong>ii stra<strong>in</strong> lack<strong>in</strong>g all CRASPs wastransformed with a shuttle vector harbor<strong>in</strong>g the entire BGA66 or BGA71encod<strong>in</strong>g gene under the control of their native promoters. Apply<strong>in</strong>ggrowth <strong>in</strong>hibition assays, the borrelial transformants G1/pBGA66 andG1/pBGA71 survived <strong>in</strong> 50% human serum. In addition, both stra<strong>in</strong>s alsoshowed a strongly reduced deposition of complement components on theirsurface when compared to the wild-type stra<strong>in</strong> suggest<strong>in</strong>g that BGA66 andBGA71 exhibit complement regulatory activity.Taken together, we demonstrate that B. bavariensis sp. nov. survives <strong>in</strong>human serum <strong>in</strong>dependently of its ability to b<strong>in</strong>d diverse complementregulators <strong>in</strong>clud<strong>in</strong>g CFH, FHL-1, CFHR-1, CFHR-2, CFHR-5, C4BP, andC1-Inhibitor. In addition BGA66 and BGA71 were identified as candidatesfor facilitat<strong>in</strong>g serum resistance of B. bavariensis.MPP018Phosphosignal<strong>in</strong>g of human bronchial epithelial cells <strong>in</strong>response to bacterial virulence factorsE. Richter* 1 , M. Harms 1 , K. Ventz 1 , J.-P. Jan-Peter Hildebrandt 2 , J. Mostertz 1 ,F. Hochgräfe 11 Greifswald University, Pathoproteomics, Greifswald, Germany2 Greifswald University, Animal Physiology and Biochemistry, ZoologicalInstitute, Greifswald, GermanyBackground: The gram-positive bacterium Staphylococcus aureus is awidespread pathogen that colonizes the human sk<strong>in</strong> and the upperrespiratory tract. It can cause community- and hospital-acquired <strong>in</strong>fections,<strong>in</strong>clud<strong>in</strong>g endocarditis, pneumonia, or even sepsis. On the cellular level, S.aureus is able to <strong>in</strong>vade host cells and evades the immune response.Methods: Here, we have employed stable isotope label<strong>in</strong>g with am<strong>in</strong>oacids <strong>in</strong> cell culture (SILAC), enrichment of phosphorylated prote<strong>in</strong>s andhigh-accuracy quantitative mass spectrometry <strong>in</strong> order to def<strong>in</strong>e the hostcell response of human bronchial epithelial cells to virulence factors anddur<strong>in</strong>g <strong>in</strong>vasion and post-<strong>in</strong>vasion by staphylococci.Conclusion: Human bronchial epithelial cells represent a first l<strong>in</strong>e ofdefense aga<strong>in</strong>st <strong>in</strong>vad<strong>in</strong>g pathogens. Sens<strong>in</strong>g of bacterial products or direct<strong>in</strong>teraction with the pathogenic aggressor leads to a def<strong>in</strong>ed change ofsignal perception and transduction and eventually results <strong>in</strong> areprogrammed cellular activity.MPP019The evolution of Zygomycetes as causative agents of emergentdiseasesK. Voigt* 1,2 , K. Hoffmann 1,2 , V.U. Schwartze 1,2 , I.D. Jacobsen 1 , G.S. de Hoog 31 Leibniz Institute for Natural Product Research and Infection Biology, Jena,Germany2 University of Jena, Dept. Microbiology and Molecular Biology, Jena, Germany3 CBS-KNAW Fungal Biodiversity Centre, Utrecht, NetherlandsZygomycetes, formerly described as class with<strong>in</strong> the fungal k<strong>in</strong>gdom, arepolyphyletic, and therefore, split <strong>in</strong>to five dist<strong>in</strong>ct subphyla, which are theEntomophthoromycot<strong>in</strong>a, Mucoromycot<strong>in</strong>a, Mortierellomycot<strong>in</strong>a,Kickxellomycot<strong>in</strong>a and Zoopagomycot<strong>in</strong>a [1, 2]. The former two subphylaconta<strong>in</strong> species, which are human pathogenic caus<strong>in</strong>g <strong>in</strong>fections withdiverse predisposition and etiologies. They encompass ubiquitouslydistributed saprotrophic soil- or dead plant material-<strong>in</strong>habit<strong>in</strong>g fungi of theorder Mucorales (subphyl.: Mucoromycot<strong>in</strong>a, formerly classified <strong>in</strong>to thepolyphyletic class Zygomycetes). Human pathogenic species <strong>in</strong>habitdifferent growth temperature optima rang<strong>in</strong>g from 33 °C to 42 °C, whileattenuated species and stra<strong>in</strong>s exhibit lower temperature optima. Virulencewas tested <strong>in</strong> an embryonated hen egg model. S<strong>in</strong>gle and comb<strong>in</strong>edgenealogies based on distance, maximum parsimony, maximum likelihoodand Bayesian analyses of aligned nucleotide sequences of the nuclearencodedgenes for act<strong>in</strong> (act) and for the 5.8S ribosomal RNA flanked bythe <strong>in</strong>ternal transcribed spacer (ITS) regions 1 and 2 of a total of 150species were reconstructed. The phylogenetic reconstructions suggestmultiple orig<strong>in</strong>s of pathogenicity <strong>in</strong> certa<strong>in</strong> evolutionary l<strong>in</strong>eages. Forexample, four dist<strong>in</strong>ct families, Cunn<strong>in</strong>ghamellaceae, Lichtheimiaceae,Mucoraceae and Syncephalastraceae are <strong>in</strong>volved <strong>in</strong> disease developmentwith<strong>in</strong> the Mucoromycot<strong>in</strong>a [3-9]. Evolutionary trends are discussed withrespect to ecology, physiology and virulence.1. D.S. Hibbett, M. B<strong>in</strong>der, J.F. Bischoff. et al., Mycol. Res.111(2007), p. 509-547.2. K. Hoffmann, K. Voigt and P.M. Kirk, Mycotaxon115(2011), p. 353-363.3. A. Alastruey-Izquierdo, K. Hoffmann, G.S. de Hoog et al., J. Cl<strong>in</strong>. Microbiol.48(2010): 2154-2170.4. R. Vitale, G.S. de Hoog, P. Schwarz et al., J. Cl<strong>in</strong>. Microbiol. (2011), <strong>in</strong> press.5. W. Schrödl, T. Heydel, V.U. Schwartze et al., J. Cl<strong>in</strong>. Microbiol. (2011), <strong>in</strong> press.6. C. Schoch, K.A. Seifert, S. Huhndorf et al., PNAS (2011), <strong>in</strong> press.7. I. Ebersberger, R. de Matos Simoes, A. Kupczok et al. Mol. Biol. Evol (2011), <strong>in</strong> press.8. K. Voigt <strong>in</strong> “Syllabus of Plant Families”, ed. W. Frey et al., (Bornträger Verlag) (<strong>2012</strong>), <strong>in</strong> press.9. K. Voigt and P.M. Kirk <strong>in</strong> „Encyclopedia of Food Microbiology“, 2 nd ed., (Elsevier) (<strong>2012</strong>), <strong>in</strong> press.10. We k<strong>in</strong>dly acknowledge the Fungal Work<strong>in</strong>g Group of the International Fungal Barcod<strong>in</strong>g Consortiumand the Assembl<strong>in</strong>g the Fungal Tree of Life Consortium for <strong>in</strong>tegration <strong>in</strong>to their global network. We thankIngo Ebersberger (CIBIV, University of Vienna, Austria), Rytas Vilgalys and Andrij Gryganski (DukeUniversity Durham, NC, USA) and Conrad Schoch (NCBI, NIH, Bethesda, Maryland, USA) for stra<strong>in</strong> anddata share.BIOspektrum | Tagungsband <strong>2012</strong>


114MPP020Induction of the NF-kb signal transduction pathway <strong>in</strong>response to Corynebacterium diphtheriae <strong>in</strong>fectionL. Ott* 1 , B. Scholz 2 , K. Hasselt 3 , A. Ensser 2 , A. Burkovski 11 Lehrstuhl für Mikrobiologie, Biologie, Erlangen, Germany2 Virolgisches Institut, Erlangen, Germany3 Friedrich Bauer Institut, Bayreuth, GermanyCorynebacterium diphtheriae, the causative agent of diphtheria, has beenthoroughly studied with respect to tox<strong>in</strong> production and pili formation. Incontrast, knowledge on host responses to <strong>in</strong>fection by this bacterium islimited. In this study, we analyzed epithelial cells <strong>in</strong> response tocolonization by different C. diphtheriae isolates.An NFk-B reporter cell l<strong>in</strong>e was used to monitor the effect of C.diphtheriae <strong>in</strong>fection on human cells. Adhesion and gentamic<strong>in</strong> protectionassays revealed stra<strong>in</strong>s-specific differences <strong>in</strong> host pathogen <strong>in</strong>teraction.Stra<strong>in</strong>-specific differences and a correlation of <strong>in</strong>vasion rate with <strong>in</strong>ductionof NFk-B were observed <strong>in</strong> luciferase reporter gene measurements. Thiswas further supported by immune-fluorescence microscopy that showedthat translocation of p65, as a hallmark of NFk-B <strong>in</strong>duction, was onlyobserved <strong>in</strong> association with cell <strong>in</strong>vasion by C. diphtheriae.Our data <strong>in</strong>dicate that the response of epithelial cells to C. diphtheriae<strong>in</strong>fection is determ<strong>in</strong>ed by the <strong>in</strong>ternalization of bacteria and that <strong>in</strong>vasionof these cells by C. diphtheriae is an active process of these bacteria.MPP021The Na + -translocat<strong>in</strong>g NADH:qu<strong>in</strong>one oxidoreductase (Na + -NQR) and its role <strong>in</strong> the bactericidal effect of silver ions onVibrio choleraeV. Muras* 1 , W. Steffen 1 , G. Fritz 2 , J. Steuber 11 Universität Hohenheim, Institut für Mikrobiologie, Stuttgart Hohenheim,Germany2 Unikl<strong>in</strong>ik, Freiburg, GermanyThe antimicrobial effect of silver ions on a broad range of pathogenicmicroorganisms and even fungi is well known s<strong>in</strong>ce ancient times. It is stillused today <strong>in</strong> many applications rang<strong>in</strong>g from purification of waste waterto lam<strong>in</strong>ation of surgical <strong>in</strong>struments to control bacterial growth [1]. Thefact that there are nearly no negative effects on humans make it apromis<strong>in</strong>g alternative to common antibiotics. Yet the mechanism by whichAg + ions <strong>in</strong>duce cell death or <strong>in</strong>hibition of growth is not fully understood.One hypothesis describ<strong>in</strong>g the bactericidal action of Ag + <strong>in</strong>volves<strong>in</strong>hibition of bacterial respiration [1]. A possible target molecule for Ag + isthe Na + -pump<strong>in</strong>g NADH-qu<strong>in</strong>one:oxidoreductase (Na + -NQR). The Na + -NQR is the ma<strong>in</strong> entry po<strong>in</strong>t for electrons <strong>in</strong>to the aerobic respiratory cha<strong>in</strong>of many mar<strong>in</strong>e and pathogenic bacteria [2]. It is a membrane-boundenzyme complex composed of six subunits (NqrABCDEF) which conta<strong>in</strong>sfour flav<strong>in</strong>s, one 2Fe-2S cluster and ubiqu<strong>in</strong>one-8 as cofactors [3]. Itsprimary function is to build up and ma<strong>in</strong>ta<strong>in</strong> a sodium motive force (SMF)across the membrane that is used for motility and metabolic work [2]. An<strong>in</strong>hibition by silver might therefore result <strong>in</strong> a breakdown of the SMF andthe loss of energy.Here we show that the Na + -NQR is a target for Ag + ions <strong>in</strong> Vibriocholerae. Its activity is <strong>in</strong>hibited by Ag + <strong>in</strong> the nanomolar concentrationrange both <strong>in</strong> vivo and <strong>in</strong> vitro.1. Silver, S., Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMSMicrobiol Rev, 2003. 27(2-3): p. 341-53.2. Duffy, E.B. and B. Barquera, Membrane topology mapp<strong>in</strong>g of the Na + -pump<strong>in</strong>g NADH: qu<strong>in</strong>oneoxidoreductase from Vibrio cholerae by PhoA-green fluorescent prote<strong>in</strong> fusion analysis. J Bacteriol, 2006.188(24): p. 8343-51.3. Casutt, M.S., et al., Localization and function of the membrane-bound riboflav<strong>in</strong> <strong>in</strong> the Na + -translocat<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase (Na + -NQR) from Vibrio cholerae. J Biol Chem, 2010. 285(35): p. 27088-99.MPP022The role of Yers<strong>in</strong>ia enterocolitica YadA, Invas<strong>in</strong> and host cell1 <strong>in</strong>tegr<strong>in</strong>s for Yop <strong>in</strong>jection <strong>in</strong>to leukocyte populations <strong>in</strong>vitro and <strong>in</strong> vivoE. Deuschle* 1 , B. Keller 1 , A. Siegfried 1 , B. Manncke 1 , R. Fässler 2 ,I.B. Autenrieth 1 , E. Bohn 11 Institute for Medical Microbiology and Hygiene, Tüb<strong>in</strong>gen, Germany2 Max-Planck-Institut fr Biochemistry, Mart<strong>in</strong>sried, GermanyDur<strong>in</strong>g Yers<strong>in</strong>ia <strong>in</strong>fection, the bacterial type three secretion system (TTSS)is crucial for evasion of the host’s immune response. Prior to <strong>in</strong>jection ofYers<strong>in</strong>ia outer prote<strong>in</strong>s (Yops) <strong>in</strong>to the targeted cells via the TTSS,bacteria adhere to the host cells via an <strong>in</strong>teraction of YadA or Invas<strong>in</strong> (Inv)with 1 <strong>in</strong>tegr<strong>in</strong>s [1]. It was shown that 1 <strong>in</strong>tegr<strong>in</strong>s are crucial for Yop<strong>in</strong>jection <strong>in</strong>to fibroblasts [2]. Levels of Yop <strong>in</strong>jection <strong>in</strong>to leukocytes canbe measured by us<strong>in</strong>g a -lactamase reporter system for detection via flowcytometry [2]. In vitro <strong>in</strong>fection of splenic leukocytes revealed that DCs,macrophages, B cells and granulocytes are <strong>in</strong>fected <strong>in</strong> a similar mannerwith wildtype, Inv- or YadA-deficient stra<strong>in</strong>s. Experiments <strong>in</strong> a mouse<strong>in</strong>fection model revealed that Invas<strong>in</strong> plays a m<strong>in</strong>or role and YadA acrucial role for Yop <strong>in</strong>jection by Yers<strong>in</strong>ia enterocolitica. To <strong>in</strong>vestigate therole of 1 <strong>in</strong>tegr<strong>in</strong>s for Yop <strong>in</strong>jection <strong>in</strong>to granulocytes, B cells and T cellswe derived 1 <strong>in</strong>tegr<strong>in</strong> depleted splenocytes from conditional knockoutmice. Depletion of 1 <strong>in</strong>tegr<strong>in</strong>s did not affect Yop <strong>in</strong>jection mediated byYadA but reduced Yop <strong>in</strong>jection triggered by Invas<strong>in</strong>, <strong>in</strong>dicat<strong>in</strong>g that onlyInvas<strong>in</strong> triggered Yop <strong>in</strong>jection is strictly 1 <strong>in</strong>tegr<strong>in</strong> dependent.Taken together, our data provide evidence that dur<strong>in</strong>g systemic mouse<strong>in</strong>fection YadA but not Inv is essential for Yop <strong>in</strong>jection. In consequencethis means that dur<strong>in</strong>g mouse <strong>in</strong>fection Yop <strong>in</strong>jection <strong>in</strong>to leukocytes canoccur also <strong>in</strong> a 1 <strong>in</strong>tegr<strong>in</strong> <strong>in</strong>dependent manner.1. Mejia, E., J.B. Bliska, and G.I. Viboud, Yers<strong>in</strong>ia controls type III effector delivery <strong>in</strong>to host cellsby modulat<strong>in</strong>g Rho activity. Plos Pathogens, 2008.4(1).2. Koberle, M., et al., Yers<strong>in</strong>ia enterocolitica Targets Cells of the Innate and Adaptive ImmuneSystem by Injection of Yops <strong>in</strong> a Mouse Infection Model. Plos Pathogens, 2009.5(8).MPP023Streptococcus pneumoniae activates primary human lung cellsand stimulates exocytosis of Weibel palade bodiesS. Bergmann* 1 , M. Lüttge 2 , M. Fulde 2,3 , A. Nerlich 4 , M. Rohde 2 ,K.T. Preissner 5 , S. Hammerschmidt 6 , M. Ste<strong>in</strong>ert 1 , T.J. Mitchell 7 ,G.S. Chhatwal 21 Technische Universität Braunschweig, Institute for Microbiology,Braunschweig, Germany2 Helmholtz Centre for Infection Research, Braunschweig, Germany3 Hannover Medical School, Hannover, Germany4 University of Veter<strong>in</strong>ary Medic<strong>in</strong>e Hannover, Hannover, Germany5 Medical School, Justus-Liebig-University, Giessen, Germany6 Ernst Moritz Arndt University, Greifswald, Germany7 University of Glasgow, Glasgow, United K<strong>in</strong>gdomQuestion: Streptococcus pneumoniae (pneumococcus) is a facultativepathogenic commensal coloniz<strong>in</strong>g the human nasopharyngeal cavity (1).Pneumococci express the pore-form<strong>in</strong>g cytotox<strong>in</strong> pneumolys<strong>in</strong> as a majorvirulence factor (2). Invasive pneumococcal <strong>in</strong>fections lead to<strong>in</strong>flammatory <strong>in</strong>filtration of leukocytes <strong>in</strong>to lung alveoli and to septicdissem<strong>in</strong>ation with<strong>in</strong> the vascular system. The lung microvasculature iscovered by pulmonary endothelial cells conta<strong>in</strong><strong>in</strong>g special storagegranules. These granules are named Weibel-Palade bodies (WPB) andconta<strong>in</strong> the procoagulant von Willebrand factor (vWF) and IL-8, which arereleased <strong>in</strong> response to vascular <strong>in</strong>juries (3). The ma<strong>in</strong> question of thisstudy was focused on characterization of the <strong>in</strong>teraction of pneumococciwith primary human endothelial lung cells.Methods and Results: Microscopic analyses of pneumococcal <strong>in</strong>fectionwith primary human microvascular endothelial cells (HPMEC) revealed adose-dependent adherence and <strong>in</strong>ternalization of pneumococci.Interest<strong>in</strong>gly, measurement of reactive oxygen species production us<strong>in</strong>gcarboxylated H2-DCFDA <strong>in</strong>dicated an activation of the cells bypneumococci. Moreover, evaluation of changes <strong>in</strong> the amount of WPBconta<strong>in</strong><strong>in</strong>gcells demonstrated a stimulation of WPB exocytosis dur<strong>in</strong>g apneumococcal <strong>in</strong>fection. The stimulation of WPB-exocytosis wasconfirmed by biochemical quantification of vWF and IL-8 secretion. Inaddition, sublytic amounts of pneumolys<strong>in</strong> stimulated vWF secretion <strong>in</strong>addition to direct bacterial adherence. Controls of the cell morphology andevaluation of cytotoxic effects confirmed a non-altered fitness of theendothelial cells dur<strong>in</strong>g the <strong>in</strong>fection experiments.Conclusions: The release of vWF was <strong>in</strong>duced after <strong>in</strong>fection withpneumococci from both the apical and the basal cell surfaces, <strong>in</strong>dicat<strong>in</strong>g astimulation of WPB exocytosis dur<strong>in</strong>g septicemia from <strong>in</strong>side thevasculature and also follow<strong>in</strong>g <strong>in</strong>vasive pneumococcal transmigration fromthe pulmonary tissue <strong>in</strong>to the bloodstream. These results demonstrate thatpneumococcal <strong>in</strong>fection activates endothelial cells cover<strong>in</strong>g the vasculatureof humans and <strong>in</strong>duces the release of pro-<strong>in</strong>flammatory and procoagulativecomponents from WPB.[1] Cartwright, K. (2002).Eur J Pediatr 161:188-95.[2] Mitchell, A. M. and Mitchell, T. J. (2010).Cl<strong>in</strong> Microbiol Infect 16:411-8.[3] Rondaij, M. G., Sell<strong>in</strong>k, E., Gijzen, K. A.,et al., (2004). Arterioscl Thromb Vasc Biol 24:1315-20.MPP024Msb2 shedd<strong>in</strong>g protects Candida albicans aga<strong>in</strong>st antimicrobialpeptidesM. Swidergall* 1 , E. Szafranski-Schneider 1 , F. Cottier 1 , D. Tielker 1 , E. Roman 2 ,J. Pla 2 , J.F. Ernst 11 He<strong>in</strong>rich- He<strong>in</strong>e- Universität, Molekulare Mykologie, Düsseldorf, Germany2 Universidad Complutense, Departamento de Microbiología II, Madrid, Spa<strong>in</strong>Msb2 is a sensor prote<strong>in</strong> <strong>in</strong> the plasma membrane of fungi. In the humanfungal pathogen C. albicans Msb2 signals via the Cek1 MAP k<strong>in</strong>asepathway to ma<strong>in</strong>ta<strong>in</strong> cell wall <strong>in</strong>tegrity and allow filamentous growth.Msb2 doubly epitope-tagged <strong>in</strong> its large extracellular and smallcytoplasmic doma<strong>in</strong> was efficiently cleaved dur<strong>in</strong>g liquid and surfacegrowth and theextracellular doma<strong>in</strong> was almost quantitatively released <strong>in</strong>to the growthmedium. Msb2 cleavage was <strong>in</strong>dependent of proteases Sap9/Sap10 andKex2. Secreted Msb2 was highly O-glycosylated by prote<strong>in</strong>mannosyltransferases <strong>in</strong>clud<strong>in</strong>g Pmt1 result<strong>in</strong>g <strong>in</strong> an apparent molecularBIOspektrum | Tagungsband <strong>2012</strong>


115mass of >400 kDa. Deletion analyses revealed that the transmembraneregion is required for Msb2 function, while the large N- term<strong>in</strong>al and thesmall cytoplasmic region function to downregulate Msb2 signall<strong>in</strong>g or,respectively, allow its <strong>in</strong>duction of by tunicamyc<strong>in</strong>. Purified extracellularMsb2 doma<strong>in</strong> protected fungal and bacterial cells effectively fromantimicrobial peptides (AMPs) histat<strong>in</strong> and LL-37. AMP <strong>in</strong>activation asnot due to degradation but depended on the quantity and length of theMsb2 glycofragment. C. albicans msb2 mutants were supersensitive to LL-37 but not histat<strong>in</strong>-5 suggest<strong>in</strong>g that secreted rather than cell-associatedMsb2 determ<strong>in</strong>es AMP protection. Thus, <strong>in</strong> addition to its sensor functionMsb2 has a second activity because shedd<strong>in</strong>g of its glycofragmentgenerates AMP quorum resistance.MPP025Assembly, stoichiometry and turnover of the Yers<strong>in</strong>ia Type IIIsecretion systemA. Diepold*, J. ArmitageUniversity of Oxford, Department of Biochemistry, Oxford, United K<strong>in</strong>gdomThe Type III Secretion System represents one of the most complexprokaryotic prote<strong>in</strong> transport systems. The mach<strong>in</strong>ery, also called<strong>in</strong>jectisome, spans both bacterial membranes and the periplasm, and allowsthe direct, tightly regulated transport of effector prote<strong>in</strong>s from the bacterialcytosol <strong>in</strong>to the host cell.Around 25 prote<strong>in</strong>s are <strong>in</strong>volved <strong>in</strong> assembly and function of the<strong>in</strong>jectisome. Even though its overall structure could be visualized, ourknowledge about assembly, exact composition and dynamic behavior ofthe functional <strong>in</strong>jectisome rema<strong>in</strong>s limited, especially with respect to theactual export apparatus <strong>in</strong> the <strong>in</strong>ner membrane and the cytosol.To answer these questions, we have created fluorescently labeled<strong>in</strong>jectisome components <strong>in</strong> Yers<strong>in</strong>ia enterocolitica and analyzed them <strong>in</strong>vivo, which allowed us to determ<strong>in</strong>e the stoichiometry and turnover ofdifferent substructures.Beyond assess<strong>in</strong>g assembly, composition and dynamics of the functionalmach<strong>in</strong>ery, our approach can yield first <strong>in</strong>sights <strong>in</strong>to the adaptation of the<strong>in</strong>jectisome to changes <strong>in</strong> the environment.MPP026Interaction of Legionella pneumophila outer membranevesicles with host cells and bacteriaJ. Jäger*, S. Krüger, M. Ste<strong>in</strong>ertTU Braunschweig, Institut für Mikrobiologie, Braunschweig, GermanyQuestion: Legionella pneumophila is a Gram-negative <strong>in</strong>tracellularpathogen that can cause a severe form of pneumonia. After aerosolformation <strong>in</strong> man-made water systems, L. pneumophila can enter, colonizeand destroy the human lung. Dur<strong>in</strong>g <strong>in</strong>fection the pathogen employssophisticated mach<strong>in</strong>eries to deliver prote<strong>in</strong>s to host cells and tissues.Besides the secretion of <strong>in</strong>dividual prote<strong>in</strong>s, L. pneumophila sheds vesiclesderived from its outer membrane. Outer membrane vesicles (OMVs) arespherical bilayer structures and consist of characteristic outer membraneconstituents <strong>in</strong>clud<strong>in</strong>g outer membrane prote<strong>in</strong>s, phospholipids and LPS(Shevchuket al.,2011) as well as periplasmic components.The group has described a comprehensive proteome reference map forOMVs of L. pneumophila (Galkaet al.,2008). A functional classification ofthe proteome showed that OMVs conta<strong>in</strong> many virulence factors. Confocallaser scann<strong>in</strong>g microscopy revealed a spatial association between L.pneumophila OMVs and the host cell surface. It rema<strong>in</strong>s unclear if this<strong>in</strong>dicates adhesion or fusion events between OMVs and host membranes.The role of L. pneumophila OMVs <strong>in</strong> <strong>in</strong>terbacterial communication is alsounknown.Methods and Results: To address the question if OMV material is<strong>in</strong>corporated <strong>in</strong>to target cell membranes, human macrophages and differentbacteria were co-<strong>in</strong>cubated with OMVs. Samples were taken and analysedat various time po<strong>in</strong>ts. The presence of the L. pneumophila major outermembrane prote<strong>in</strong> (MOMP) could not be detected <strong>in</strong> any of the target cellsby Western blott<strong>in</strong>g.Conclusion: This f<strong>in</strong>d<strong>in</strong>g h<strong>in</strong>ts towards a weak <strong>in</strong>teraction with cellsurfaces or rapid <strong>in</strong>gestion and degradation of OMV material. Ongo<strong>in</strong>gstudies address the effect of L. pneumophila OMVs on humanmacrophages <strong>in</strong> regard to metabolic activity and cytoskeletonrearrangements. Interbacterial effects of L. pneumophila OMVs aredissected by immunofluorescence microscopy and FACS analysis.Shevchuk O, Jäger J, Ste<strong>in</strong>ert M. (2011) Virulence properties of the Legionella pneumophila cellenvelope. Front Microbiol. 2:74. Epub 2011 Apr 25. PubMed PMID: 21747794Galka F, Wai SN, Kusch H, et al. (2008). Proteomic characterization of the whole secretome ofLegionella pneumophila and functional analysis of outer membrane vesicles. Infect Immun.76(5):1825-36. Epub 2008 Feb 4. PubMed PMID: 18250176MPP027Comprehensive pan-genomics of Corynebacterium diphtheriaeE. Trost* 1 , S. Castro Soares 1,2 , A. Tauch 11 Universität Bielefeld, Center for Biotechnology (CeBiTec), Bielefeld, Germany2 Federal University of M<strong>in</strong>as Gerais, Departments of General Biology andBiochemistry and Immunology, Belo Horizonte, BrazilOne of the most prom<strong>in</strong>ent human pathogens is the Gram-positivebacterium Corynebacterium diphtheriae, the causative agent of diphtheria.The species is one of the best <strong>in</strong>vestigated bacteria <strong>in</strong> respect to its tox<strong>in</strong>and the associated iron homeostasis. In the presence of iron, transcriptionof the tox gene is repressed by the iron dependent regulator DtxR.Nevertheless, little is known about the stra<strong>in</strong>-specific differences lead<strong>in</strong>gto the wide variety of symptoms caused <strong>in</strong> humans by C. diphtheriae. Inorder to understand these crucial differences we sequenced ten stra<strong>in</strong>sisolated from patients with classical diphtheria, endocarditis, andpneumonia us<strong>in</strong>g 454 technology. In addition, we selected the wellcharacterizedlaboratory stra<strong>in</strong> C7 tox+ and the most prom<strong>in</strong>ent vacc<strong>in</strong>eproducer stra<strong>in</strong> PW8. Includ<strong>in</strong>g the previously published genome sequenceof C. diphtheriae NCTC1329 we herewith present the comprehensivecomparative analysis of thirteen C. diphtheriae stra<strong>in</strong>s and the firstcharacterization of the pan-genome of this human pathogen. Comparativegenomics revealed a core genome consist<strong>in</strong>g of 1611 highly conservedprote<strong>in</strong>-cod<strong>in</strong>g regions and approximately 65 s<strong>in</strong>gletons on average forevery sequenced genome. Moreover, analysis of the prophage regioncompris<strong>in</strong>g the diphtheria tox<strong>in</strong> gene tox revealed that PW8 has beenlysogenized by a second copy of the -prophage, which encodes anadditional tox gene. As transcription of the tox gene is under control of theiron-dependent regulator DtxR, its putative DNA b<strong>in</strong>d<strong>in</strong>g sites werepredicted. Comparative studies showed that the DtxR regulon of thesequenced stra<strong>in</strong>s exhibits differences due to gene loss, gene duplicationsand gene acquisition. Moreover, the prediction of pathogenicity islandswith the software tool PIPS resulted <strong>in</strong> the detection of 133 pathogenicityislands distributed throughout the sequenced stra<strong>in</strong>s.MPP028Comparative study of the <strong>in</strong>vasiveness of Salmonella serotypesTyphimurium and Enteritidis for CaCo-2 cells.D. Witek* 1 , A. Dreusch 2 , W. Rudy 2 , R. Napierala 3 ,Anja Bruchmann 41 Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland2 MicroMol Gesellschaft für mikrobiologische und molekularbiologischeAuftragsforschung mbH, Karlsruhe, Germany3 Poznan University of Life Sciences, Poznan, Poland, Poland4 University of Mannheim, GermanyIntroduction: Salmonella serotypes are entero<strong>in</strong>vasive pathogens which areresponsible ma<strong>in</strong>ly for gastroenteritis <strong>in</strong> humans <strong>in</strong> <strong>in</strong>dustrializedcountries. Moreover they are one of the most significant causative agentsof food poison<strong>in</strong>g. Human contam<strong>in</strong>ation ma<strong>in</strong>ly occurs from poultryproducts, especially eggs and meat. Salmonella enterica serotypeEnteritidis is the most frequently isolated serotype dur<strong>in</strong>g salmonellosis(33%) [1]. This serotype represents a major problem <strong>in</strong> chicken rear<strong>in</strong>gbecause <strong>in</strong>fection is very <strong>in</strong>sidious <strong>in</strong> these animals and they are usuallyasymptomatic carriers of Salmonella. Bacteria pass to the eggs transovarand probably also retrocecal and chickens contam<strong>in</strong>ate their fellow birdsby spread<strong>in</strong>g Salmonella <strong>in</strong> the environment via excretion. Meatcontam<strong>in</strong>ation usually results from carcass contam<strong>in</strong>ation at slaughter<strong>in</strong>g[1]. 4% of the S. Typhimurium chromosome (about 200 genes) encode forvirulence factors. These factors <strong>in</strong>clude, to date, five pathogenicity islands,numerous smaller pathogenicity islets, other virulence factors on thechromosome and at least one virulence plasmid. Invasion <strong>in</strong>duced by S.Typhimurium <strong>in</strong>volves denud<strong>in</strong>g of the microvilli and ruffl<strong>in</strong>g of the cellsurface. These cell surface rearrangements lead to an uptake of thebacterium <strong>in</strong> large vacuoles [2].Method: We compared the <strong>in</strong>vasiveness of S. Typhimurium and S.Enteritidis for CaCo2-cells <strong>in</strong> a gentamic<strong>in</strong> protection/<strong>in</strong>vasion assay. Cellswere grown <strong>in</strong> tissue culture trays. Subsequently semiconfluentmonolayers were <strong>in</strong>fected with Salmonella to achieve multiplicity of<strong>in</strong>fection (MOI) of 100. Adhesion was allowed to proceed for 3 hours.Serial dilutions were plated onto case<strong>in</strong>-soja-pepton agar plates for viablebacterial count<strong>in</strong>g. For quantification of <strong>in</strong>tracellular bacteria Caco-2monolayers were treated with gentamic<strong>in</strong> to kill extracellular bacteriabefore proceed<strong>in</strong>g with cell lysis and plat<strong>in</strong>g. After <strong>in</strong>cubation epithelialcells were lysed and the number of <strong>in</strong>ternalized bacterial cells wasenumerated by plat<strong>in</strong>g serial lysate dilutions on CASO-agar [3].Results: This study shows that Salmonella penetrates the <strong>in</strong>test<strong>in</strong>al cellsafter 1 hour of <strong>in</strong>fection. After 3-4 hours bacteria beg<strong>in</strong> to divide. We canshow that S. Typhimurium has a higher <strong>in</strong>vasiveness than S. Enteritidiseven if the number of bacterial cells of S. Enteritidis at the beg<strong>in</strong>n<strong>in</strong>g of<strong>in</strong>fection was higher than the number of S. Typhimurium.[1] Virlogeux-Payant, I. at al., 2003. Low persistence of a large-plasmid-cured variant of Salmonellaenteritidis <strong>in</strong> ceca of chicks. Avian Dis. 47/1, 163-8.[2] F<strong>in</strong>lay, B., B. et al., 2000. Salmonella <strong>in</strong>teractions with host cells: <strong>in</strong> vitro to <strong>in</strong> vivo. Philos. Trans. R.Soc. Lond., B, Biol. Sci. 355/1397, 623-31.BIOspektrum | Tagungsband <strong>2012</strong>


116[3] Liu, C. et al., 2010. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on<strong>in</strong>test<strong>in</strong>al epithelial cells INT-407. World J. Gastroenterol. 16/18, 2283-90.MPP029A small RNA represses expression of the chemotaxis receptorTlpB <strong>in</strong> Helicobacter pyloriS.R. Pernitzsch* 1 , D. Beier 2 , C.M. Sharma 11 University of Würzburg, Research Center for Infectious Diseases, Würzburg,Germany2 University of Würzburg, Biocenter, Würzburg, GermanyThe <strong>in</strong>tense study and the sequenc<strong>in</strong>g of several genomes of Helicobacterpylori, one of the most prevalent human pathogens, have contributed muchto understand<strong>in</strong>g of its genomic diversity and virulence mechanisms.However, only a few transcriptional regulators have been described <strong>in</strong> thesmall Helicobacter genome and almost noth<strong>in</strong>g is known about the role ofpost-transcriptional regulation of gene expression <strong>in</strong> this pathogenicEpsilonproteobacterium. Until recently, Helicobacter was even regarded asa bacterium without riboregulation [1]. However, our recent differentialRNA-seq approach based on high-throughput sequenc<strong>in</strong>g of cDNA led tothe discovery of ~60 small RNA (sRNA) candidates <strong>in</strong> H. pylori stra<strong>in</strong>26695 <strong>in</strong>clud<strong>in</strong>g potential regulators of cis- and trans-encoded targetmRNAs [2]. Here we present the functional characterization of one veryabundant sRNA, HPnc5490, which is highly conserved <strong>in</strong> diverseHelicobacter stra<strong>in</strong>s. Expression profil<strong>in</strong>g on Northern blots revealed<strong>in</strong>duction of this sRNA under acid stress and accumulation <strong>in</strong> stationarygrowth phase. Furthermore, bio<strong>in</strong>formatics-based target predictions<strong>in</strong>dicated that HPnc5490 could directly b<strong>in</strong>d to a G-repeat far upstream <strong>in</strong>the 5’ UTR of tlpB mRNA, which encodes for one of the four chemotaxisreceptors of H. pylori and is assumed to play a role <strong>in</strong> pH taxis, quorumsens<strong>in</strong>gas well as <strong>in</strong> the <strong>in</strong>flammatory response upon <strong>in</strong>fection <strong>in</strong> mice [3,4, 5]. Study<strong>in</strong>g transcriptome as well as proteome changes upon deletion ofHPnc5490 revealed down-regulation of tlpB on the mRNA as well asprote<strong>in</strong> level. In addition, complementation of HPnc5490 <strong>in</strong> the unrelatedrdxA locus restores repression of the TlpB prote<strong>in</strong>. Moreover, we haveconstructed several sRNA mutants to validate the <strong>in</strong>teraction site betweentlpB and HPnc5490 <strong>in</strong> vivo. Initial <strong>in</strong> vitro structure prob<strong>in</strong>g andtoepr<strong>in</strong>t<strong>in</strong>g experiments suggest that down-regulation of tlpB viaHPnc5490 is rather based on structural rearrangements, transcriptdestabilization or transcription attenuation than on the translational<strong>in</strong>hibition by mask<strong>in</strong>g the ribosome b<strong>in</strong>d<strong>in</strong>g site. Overall, our resultsconfirm tlpB mRNA as a first trans-encoded target of HPnc5490 sRNAand <strong>in</strong>dicate that this sRNAs could have a role <strong>in</strong> regulation of chemotaxis<strong>in</strong> H. pylori.[1] Mitarai N, Andersson AMC, Krishna S, Semsey S & Sneppen K (2007). Phys. Biol., 4(3):164-171.[2] Sharma CM, Hoffmann S, Darfeuille F, Reignier J, F<strong>in</strong>deiß S, Sittka A, Chabas S, Reiche K,Hackermüller J, Re<strong>in</strong>hardt R, Stadler PF, Vogel J (2010). Nature, 464(7286):250-255.[3] Croxen MA, Sisson G, Melano R, Hoffman PS (2007). J. Biol. Chem. 282(28):20667-75.[4] Rader BA, Wreden C, Hicks KG, Sweeny EG, Ottemann KM, Guillem<strong>in</strong> K (2011). Microbiology,157(Pt 9):2445-55.[5] McGee DJ, Langford ML, Watson EL, Carter JE, Chen YT, Ottemann KM (2005). Infect. Immun.73(3):1820-7.MPP030Characterization of putative virulence factors <strong>in</strong> Clavibactermichiganensis subsp. michiganensis.E. Hiery* 1 , K. Lühr 1 , J. Spang 1 , S. Adam 1 , S. Reid 2 , S. Sonnewald 2 ,A. Burkovski 11 University Erlangen-Nürnberg, Microbiology, Erlangen, Germany2 University Erlangen-Nürnberg, Biochemistry, Erlangen, GermanyClavibacter michiganensis subsp. michiganensis (Cmm) enters tomatoplants, multiplies <strong>in</strong> the xylem sap, and subsequently triggers diseasesymptoms. Due to the fact that the bacterium causes economic losses ofagriculturally important crops, it is one of the quarant<strong>in</strong>e organisms <strong>in</strong> theEuropean Community. When an <strong>in</strong>fection occurs, virulence factors are ofgreat importance. However, very little is known about these prote<strong>in</strong>s. Thetwo natural plasmids of the wild-type stra<strong>in</strong> Cmm382 carry the genes forthe virulence factors CelA, which is a ß-1,4-endocellulase, and Pat-1,which is a putative ser<strong>in</strong>e protease. With<strong>in</strong> the 26 other putative ser<strong>in</strong>eprotease genes of Cmm, four are located on the natural plasmids.Here, we analyzed the possible importance of these four genes <strong>in</strong>pathogenicity with fluorescence measurement, <strong>in</strong>sertion mutagenesis,qPCR, and microarray experiments. Furthermore, we established a xylemsurrogate medium to carry out <strong>in</strong>fection experiments<strong>in</strong> vitroand analyzedthe behavior of Cmm gene expression<strong>in</strong> this medium. Additionally, wewere <strong>in</strong>terested <strong>in</strong> proteome analysis and carried out mass spectrometry.In fluorescence and microarray experiments, we saw an <strong>in</strong>crease <strong>in</strong> theexpression of the five ser<strong>in</strong>e proteases and other putative virulence factors<strong>in</strong> the xylem surrogate medium compared with m<strong>in</strong>imal medium. For theproteome analysis, we carried out the first steps to analyze the surface,extracellular, and cytoplasmic prote<strong>in</strong>s after grow<strong>in</strong>g <strong>in</strong> m<strong>in</strong>imal mediumcompared with the xylem surrogate medium.With this new medium as well as the different methods, unknownvirulence factors can be identified.MPP031Serotype- and host-specific colonization of Yers<strong>in</strong>ia enterocoliticaJ. Schaake* 1 , A. Drees 2 , F. Uliczka 1 , P. Grün<strong>in</strong>g 2 , J. Verspohl 2 ,P. Valent<strong>in</strong>-Weigand 2 , P. Dersch 11 Helmholtz Zentrum für Infektionsforschung, Molekulare Mikrobiologie,Braunschweig, Germany2 Stiftung Tierärztliche Hochschule, Institut für Mikrobiologie, Hannover,GermanyThe food-borne enteropathogen Yers<strong>in</strong>ia enterocolitica is responsible forup to 6 000 - 7 000 cases of gastro<strong>in</strong>test<strong>in</strong>al diseases <strong>in</strong> Germany per year.Most <strong>in</strong>fections <strong>in</strong> Europe are caused by the virulent Y. enterocoliticaserotypes O:3 and O:9. Interest<strong>in</strong>gly, almost all studies on Y. enterocoliticahave been done on stra<strong>in</strong>s of the serogroup O:8.Enteropathogenic Yers<strong>in</strong>iae are able to colonize different host organismswhich leads to several symptoms or severities of disease. While humansdevelop gut-associated as well as autoimmune diseases, pigs rema<strong>in</strong>cl<strong>in</strong>ically healthy although the porc<strong>in</strong>e <strong>in</strong>test<strong>in</strong>al tract can be efficientlycolonized by Y. enterocolitica. Slaughtered pigs are known to be the mostimportant reservoir of virulent enteropathogenic Yers<strong>in</strong>iae. Serotypeanalysis of the isolated stra<strong>in</strong>s showed that O:3 is clearly the mostprevalent one <strong>in</strong> pigs.In this study different Y. enterocolitica isolates were analysed regard<strong>in</strong>gprote<strong>in</strong> levels of virulence factors as well as adhesion, <strong>in</strong>vasion andsurvival properties on mur<strong>in</strong>e, porc<strong>in</strong>e and human epithelial andmacrophage cell l<strong>in</strong>es. We observed a significant serotype specificity ofthe bacterial isolates but no host-specific <strong>in</strong>teractions with the different celll<strong>in</strong>es.S<strong>in</strong>ce different reactions <strong>in</strong> the host organisms emerge upon Yers<strong>in</strong>ia<strong>in</strong>fections, it seemed necessary to analyse Y. enterocolitica <strong>in</strong>fections notonly <strong>in</strong> the well established mouse model but also <strong>in</strong> pigs, which representthe most important reservoir for Yers<strong>in</strong>iae. To study the dissem<strong>in</strong>ation ofY. enterocolitica <strong>in</strong> pigs, we established a m<strong>in</strong>ipig colonisation model. 6-8week old m<strong>in</strong>ipigs were <strong>in</strong>fected with Y. enterocolitica wildtype stra<strong>in</strong>s ofdifferent serotypes and the bacterial burden of different organs wasdeterm<strong>in</strong>ed. We could show that Y. enterocolitica O:3 efficiently colonizesthe porc<strong>in</strong>e <strong>in</strong>test<strong>in</strong>al tract and is better adapted to pigs than otherserotypes. In further experiments we focused on the identification andcharacterization of virulence determ<strong>in</strong>ants <strong>in</strong> Y. enterocolitica serotype O:3that contribute to the better adaptation.MPP032Investigation of bacterial growth and expression patternsofhexRofPseudomonas syr<strong>in</strong>gaeharbour<strong>in</strong>g multiple HexRb<strong>in</strong>d<strong>in</strong>g sitesA. Mehmood*, S. Khandekar, M. UllrichJacobs university Bremen, Microbiology, Bremen, GermanyPseudomonas syr<strong>in</strong>gae pv. glyc<strong>in</strong>eaPG4180, the causative agent ofbacterial blight of soy-bean plants, possesses several virulence factors, oneof them be<strong>in</strong>g the synthesis of exopolysaccharides. One of them, levan, is apolymer of fructose, which is synthesized from sucrose by two highlysimilar enzymes termed levansucrases(Lsc). It was hypothesized thattranscription of lscis controlled by the hexose metabolism repressor, HexR.HexR controls genes encod<strong>in</strong>g for the Entner-Doudoroff pathway (EDP),the major glucose utilization route <strong>in</strong> Pseudomonasspecies. Interest<strong>in</strong>gly, ahexRknock-out mutant of P. syr<strong>in</strong>gaewas unable to grow on mediaconta<strong>in</strong><strong>in</strong>g glucose and sucrose. Thus, a new growth medium wasformulated conta<strong>in</strong><strong>in</strong>g glutamate <strong>in</strong>stead of glucose and ammoniumchloride as the sole carbon and nitrogen source. DNA aff<strong>in</strong>itychromatography and MALDI-TOF analysis demonstrated b<strong>in</strong>d<strong>in</strong>g of HexRto the upstream sequence of lscBat 28°C. The effects of multiple HexRb<strong>in</strong>d<strong>in</strong>g sites on growth and hexRexpression <strong>in</strong> PG4180 transformantscarry<strong>in</strong>g the upstream sequences of central glucose metabolism genes(<strong>in</strong>tergenic region between eddand gap-1) and the upstream sequence oflscB, respectively, were <strong>in</strong>vestigated <strong>in</strong> liquid media conta<strong>in</strong><strong>in</strong>g eitherglucose, sucrose, or glutamate as sole carbon source. In contrast to allother transformants, PG4180 harbour<strong>in</strong>g plasmid 8n-edd-gap showed asignificant reduction <strong>in</strong> growth irrespective of the carbon source. Thissuggested that there was no particular <strong>in</strong>fluence of the carbon source onbacterial growth <strong>in</strong> presence of multiple copies of HexR b<strong>in</strong>d<strong>in</strong>g sites. ThehexR expression analysis of the transformants carry<strong>in</strong>g 8n-edd-gap and 8nlscB<strong>in</strong> glucose- or sucrose-supplemented media revealed that alltransformants showed a higher level of hexRexpression at an OD 600 of 0.5,which decreased with <strong>in</strong>creas<strong>in</strong>g growth. The progressive growthdependentdecrease ofhexR expression suggested a more important role ofHexR dur<strong>in</strong>g the lag and early logarithmic phases of growth. Interest<strong>in</strong>gly,the highest expression ofhexR was observed <strong>in</strong> the transformantharbour<strong>in</strong>g plasmid 8n-lscB prompt<strong>in</strong>g the speculation that this upstreamsequence <strong>in</strong>deed impacted the expression ofhexR.BIOspektrum | Tagungsband <strong>2012</strong>


117MPP033Phosphorylation <strong>in</strong> Staphylococcus aureus, the role of PknBand StpS. Donat* 1 , P. Francois 2 , T. Schäfer 1 , J. Schrenzel 2 , D. Becher 3 , K. Ohlsen 11 Institute for Molecular Infection Biology, University of Wuerzburg,Wuerzburg, Germany2 Service of Infectious Diseases, Geneva University Hospital, Geneva, Switzerland3 Institute for Microbiology, University of Greifswald, Greifswald, GermanyPosttranslational modification of prote<strong>in</strong>s <strong>in</strong>creases there functionaldiversity. Very important for the function of a variety of enzymes isthereby the switch between an active or <strong>in</strong>active status by reversiblephosphorylation. In signal transduction pathways these phosphorylationand dephosphorylation events are a key mechanism to response to <strong>in</strong>traand<strong>in</strong>tercellular signal.Although prokaryotes were thought to use predom<strong>in</strong>antly two componentsystems for signal transduction, genes encod<strong>in</strong>g ser<strong>in</strong>e/threon<strong>in</strong>e, tyros<strong>in</strong>ek<strong>in</strong>ases and phosphatases have been identified <strong>in</strong> a wide variety ofmicroorganisms. The aim of our work is the analysis of the function androle of the ser<strong>in</strong>e/threon<strong>in</strong>e k<strong>in</strong>ase PknB and its correspond<strong>in</strong>g phosphataseStp <strong>in</strong> the metabolism and virulence of the major pathogenStaphylococcusaureus. Therefore, we <strong>in</strong>vestigated the transcriptomic profile of theS.aureuswild type stra<strong>in</strong> NewmanHG [1] and its isogenic deletion mutantspknB, stpand stp/pknB. By this approach we identified an <strong>in</strong>fluenceofpknBandstpon the expression of major virulence regulators as well as oncentral metabolic pathways. Furthermore, by us<strong>in</strong>g a proteomic approachsubstrates and <strong>in</strong>teraction partners of this signal<strong>in</strong>g system could beanalyzed. Additionally, pknBshowed a higher virulence potential <strong>in</strong> an <strong>in</strong>vivo mur<strong>in</strong>e <strong>in</strong>fection model whereas stpwas significantly attenuated.Our expression and proteomic data together with the <strong>in</strong> vivo <strong>in</strong>fectionresults strongly suggest an important role the signal transduction modulPknB and Stp <strong>in</strong> the metabolism and virulence ofS. aureus.[1] Ma<strong>in</strong>ieroet al., 2010MPP034Host cell adhesion and immune evasion of zoonotic and nonzoonoticMRSAP. Jung* 1 , K. Bleses 1 , A. Feßler 2 , J. Blatt 3 , B. Ballhausen 4 , S. Schwarz 2 ,R. Köck 5 , K. Becker 4 , C. Cuny 6 , S. Monecke 7 , R. Ehricht 8 , L. von Müller 1 ,M. Herrmann 1 , M. Bischoff 11 University of Saarland Hospital, Institute of Medical Microbiology andHygiene, Homburg, Germany2 Friedrich-Loeffler-Institute (FLI), Institute of Farm Animal Genetics,Neustadt-Mariensee, Germany3 Färber Emil GmbH, Zweibrücken, Germany4 University Hospital of Münster, Institute of Medical Microbiology, Münster,Germany5 University Hospital of Münster, Institute of Hygiene, Münster, Germany6 Robert Koch Institute, Wernigerode, Germany7 Dresden University of Technology, Institute of Medical Microbiology andHygiene, Dresden, Germany8 Alere Technologies GmbH, Jena, GermanyDur<strong>in</strong>g recent years livestock-associated methicill<strong>in</strong>-resistantStaphylococcus aureus (LA-MRSA), mostly belong<strong>in</strong>g to the clonalcomplex (CC) 398, have been recognized as a source for human <strong>in</strong>fectionswith a potential for a major healthcare challenge. So far the pathogenicmechanism of endemic LA-MRSA and of their methicll<strong>in</strong>-susceptiblecounterparts (MSSA) for transmission across species barriers,colonization, and disease formation are mostly unknown. Crucial stepstowards disease formation <strong>in</strong>clude bacterial adhesion to host cell matrixcomponents, <strong>in</strong>vasion of cells and tissues, and evasion from the hostimmune response. We are address<strong>in</strong>g these processes by analyz<strong>in</strong>g theability of epidemiologically relevant zoonotic and non zoonotic MRSAand MSSA to adhere to human and animal cells and cell matrixcomponents that are known to be important for bacterial adhesion. In asecond approach, the uptake of zoonotic and non zoonotic MRSA andMSSA by human and porc<strong>in</strong>e blood phagocytes is <strong>in</strong>vestigated.First results <strong>in</strong>dicate a stra<strong>in</strong>-specific ability to adhere to humankerat<strong>in</strong>ocytes, different types of human/bov<strong>in</strong>e collagen and immobilizedhuman/bov<strong>in</strong>e plasma fibronect<strong>in</strong>. The latter reveals a host dependency ofsome animal isolates. Overall, zoonotic MRSA CC398 isolates displayed amore heterogeneous fibronect<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g than human hospital-acquiredMRSA isolates. In whole blood phagocytosis assays, we observedsignificant differences <strong>in</strong> the bacterial uptake by porc<strong>in</strong>e and human bloodgranulocytes, but no such differences with regard to the orig<strong>in</strong> of theisolates.Taken together, our data suggest that MRSA derived from animals cannotbe easily dist<strong>in</strong>guished from those derived from humans by the adhesiveand immune evasive properties <strong>in</strong>vestigated.MPP035An FNR-Homologue <strong>in</strong> the aerobic phytopathgenic bacteriumXanthomonas campestris pv.vesicatoria controls expression ofthe operon encod<strong>in</strong>g a high-aff<strong>in</strong>ity Cytochrome d OxidaseJ. Kirchberg* 1 , T. He<strong>in</strong>z 2 , T. Hoppe 1 , B. Thiemer 1 , G. Sawers 11 University, Microbiology, Halle, Germany2 University, Biotechnology, Halle, GermanyThe plant pathogen Xanthomonas campestris pv.vesicatoria (Xcv)is anobligate aerobic oxidase-negative - proteobacterium that causes bacterialspot disease on pepper and tomato plants. It grows <strong>in</strong> the <strong>in</strong>tercellularspace between plant cells where it must overcome iron- and oxygenlimitation,as well as cope with reactive oxygen species (ROS) and nitricoxide, which potentially form part of the host defense mechanism.Analysis of the genome of Xcv revealed a gene (xcv1871) encod<strong>in</strong>g anFNR-like transcription factor, which we refer to as FLP (FNR-likeprote<strong>in</strong>). In E. coli FNR is an oxygen-responsive transcription regulatorswitch<strong>in</strong>g on gene expression under oxygen-limit<strong>in</strong>g or anaerobic growthconditions. FLP from Xcv and E. coli FNR share 50% am<strong>in</strong>o acid sequencesimilarity and FLP could partially complement an E. coli fnr mutant.Notably the N-term<strong>in</strong>al Cys residues required for [Fe-S] clustercoord<strong>in</strong>ation and the C-term<strong>in</strong>al E-SR motif, which <strong>in</strong> FNR recognises thesequence TTGAT - N4 - ATCAA, are conserved, suggest<strong>in</strong>g that FLP isalso an oxygen-sensitive transcriptional regulator <strong>in</strong> this obligate aerobe.The putative FLP-recognition sequence is conserved <strong>in</strong> front of the cydABoperon encod<strong>in</strong>g a high-aff<strong>in</strong>ity cytochrome d oxidase. Growth studiesunder oxygen-limit<strong>in</strong>g conditions demonstrated that Xcv can not grow <strong>in</strong>the absence of oxygen; however, RT-PCR analyses revealed thattranscription of the cydAB operon was <strong>in</strong>creased when oxygen levels <strong>in</strong> thegrowth medium were low. Deletion of the flp gene <strong>in</strong> Xcv preventedtranscription of the cydAB operon and led to a reduced growth phenotypeof the mutant <strong>in</strong> pepper plants. Introduction of the flp gene on a plasmidrestored both cydAB expression and growth <strong>in</strong> planta. Taken together, ourstudies suggest that FLP might be required to allow optimal growth of Xcvunder oxygen-limit<strong>in</strong>g conditions dur<strong>in</strong>g <strong>in</strong>fection of the host plant.MPP036Icm/Dot-dependent modulation of phagocyte migration byLegionella pneumophilaS. Simon*, M. Wagner*, H. HilbiMax von Pettenkofer-Institut, Ludwig-Maximilians-Universität, München,GermanyLegionella pneumophila, the causative agent of Legionnaires' disease,<strong>in</strong>fects and replicates <strong>in</strong> macrophages and <strong>in</strong> free-liv<strong>in</strong>g amoebae such asAcanthamoeba castellanii or Dictyostelium discoideum [1]. Follow<strong>in</strong>g<strong>in</strong>ternalization by a host cell, L. pneumophila forms a "Legionellaconta<strong>in</strong><strong>in</strong>gvacuole" (LCV), which avoids fusion with lysosomes,communicates with the endoplasmic reticulum and allows <strong>in</strong>tracellularreplication. LCV formation is governed by the bacterial Icm/Dot type IVsecretion system (T4SS) through the secretion of a myriad of “effectorprote<strong>in</strong>s”. Some of these effectors target host phospho<strong>in</strong>ositide lipids orsmall GTPases and thus subvert eukaryotic vesicle traffick<strong>in</strong>g and signaltransduction pathways. Here we <strong>in</strong>vestigate the impact of L. pneumophila<strong>in</strong>fection on chemotaxis and motility of mammalian and protozoanphagocytes. To this end, an under-agarose cell migration assay wasestablished to monitor the migration behavior of RAW264.7 mur<strong>in</strong>emacrophages and D. discoideum amoebae towards tumor necrosis factor(TNF) or folate, respectively. The motility of phagocytes <strong>in</strong>fected withwild-type L. pneumophila was severely reduced compared to macrophagesor D. discoideum <strong>in</strong>fected with L. pneumophila icm/dot mutant stra<strong>in</strong>s,which cannot grow <strong>in</strong>tracellularly. Our results <strong>in</strong>dicate that L. pneumophilaimpairs phagocyte migration <strong>in</strong> an Icm/Dot-dependent manner andsuggests that some L. pneumophila effector prote<strong>in</strong>s <strong>in</strong>terfere with hostsignal<strong>in</strong>g pathways that are <strong>in</strong>volved <strong>in</strong> chemotaxis and cell migration.Currently, we characterize <strong>in</strong> detail the <strong>in</strong>terplay between bacterial andhost factors participat<strong>in</strong>g <strong>in</strong> phagocyte motility.[1] Hilbi, H., C. Hoffmann, and C. F. Harrison, Legionella spp. outdoors: colonization,communication and persistence. Environ Microbiol Rep, 2011.3: p. 286-296.MPP037Crystal structure and regulation mechanisms of the AdenylylCyclase CyaB from the human pathogen Pseudomonas aerug<strong>in</strong>osaH. Topal* 1,2 , N.B. Fulcher 3 , C. Steegborn 2 , M.C. Wolfgang 31 University Konstanz, Biophysics and Membrane Prote<strong>in</strong> Crystallography,Konstanz, Germany2 University , Biochemistry, Bayreuth, Germany3 University, Cystic Fibrosis/Pulmonary Research and Treatment Center, NorthCarol<strong>in</strong>a, USA, United StatesPseudomonas aerug<strong>in</strong>osa is a major cause of nosocomial <strong>in</strong>fections, andtreatment of P. aerug<strong>in</strong>osa <strong>in</strong>fections is h<strong>in</strong>dered by the bacterium’s highantibiotic resistance. The regulatory network controll<strong>in</strong>g P. aerug<strong>in</strong>osaBIOspektrum | Tagungsband <strong>2012</strong>


118virulence provides novel targets for drug development. CyaB is a virulenceregulat<strong>in</strong>g sensor prote<strong>in</strong> belong<strong>in</strong>g to adenylyl cyclase (AC) Class III, aprote<strong>in</strong> family form<strong>in</strong>g the second messenger cyclic adenos<strong>in</strong>e 3’,5’-monophosphate (cAMP) through conserved catalytic doma<strong>in</strong>s, which areregulated by a diverse set of fused regulatory doma<strong>in</strong>s. CyaB is furtherregulated by its N-term<strong>in</strong>al MASE2 doma<strong>in</strong>, which also acts as cellmembrane anchor [1].We describe here the biochemical and structural characterization of CyaB,and its <strong>in</strong>hibition by small molecules. The tertiary structure of CyaB showsthe same fold<strong>in</strong>g pattern, as all previously described class III ACs. CyaB<strong>in</strong>dicates subtle differences <strong>in</strong> active site and <strong>in</strong>hibitor b<strong>in</strong>d<strong>in</strong>g sites byus<strong>in</strong>g the AC CyaC as a template [2].Through a genetic screen, we identified several activat<strong>in</strong>g mutations, thatare <strong>in</strong>volved <strong>in</strong> the regulation of CyaB by the Chp virulence system, andby solv<strong>in</strong>g the crystal structure of the CyaB catalytic doma<strong>in</strong>, we canrationalize the effects of several of these mutations and suggest that CyaBemploys regulation mechanisms similar to other Class III AC, buttriggered by other stimuli. Our results reveal mechanistic <strong>in</strong>sights <strong>in</strong>tophysiological and pharmacological regulation of CyaB and thus providethe basis for a better understand<strong>in</strong>g of this signall<strong>in</strong>g system and forexploit<strong>in</strong>g it for drug development.[1] Fulcher et al, Molecular Microbiology (2010) 76(4), 889-904[2] Steegborn et al, Nature Structural & Molecular Biology (2005) 12(1), 32-37MPP038The role of 1-<strong>in</strong>tegr<strong>in</strong> for Yop translocation <strong>in</strong> Yers<strong>in</strong>iaenterocoliticaB. Keller* 1 , E. Deuschle 1 , B. Manncke 1 , A. Siegfried 1 , R. Fässler 2 ,I.B. Autenrieth 1 , E. Bohn 11 Institute of Medical Microbiology and Hygiene, University Hospital ofTüb<strong>in</strong>gen, Tüb<strong>in</strong>gen, Germany2 Max Planck Institute of Biochemistry, Department of Molecular Medic<strong>in</strong>e,Munich, GermanyYers<strong>in</strong>ia enterocolitica <strong>in</strong>jects effector prote<strong>in</strong>s (Yops) <strong>in</strong>to host cells witha Type Three Secretion System (TTSS). Injection of Yops affects severalcell functions what f<strong>in</strong>ally leads to immune evasion.Former studies us<strong>in</strong>g cultured cells showed that an <strong>in</strong>teraction of theYers<strong>in</strong>ia adhesion factors YadA and Invas<strong>in</strong> with 1-<strong>in</strong>tegr<strong>in</strong>s on the hostcell site acts as a prerequisite for Yop translocation. 1-<strong>in</strong>tegr<strong>in</strong>s aretransmembrane heterodimeric receptors which can switch between anactive and <strong>in</strong>active conformation, and trigger various signal<strong>in</strong>g cascades<strong>in</strong>side the cell. In this study we want to show whether and how 1-<strong>in</strong>tegr<strong>in</strong>mediated signal<strong>in</strong>g contributes to Yop translocation <strong>in</strong> vitro anddiscrim<strong>in</strong>ate between Inv and YadA triggered effects. For this purpose a -lactamase reporter system was used to detect and quantify Yop <strong>in</strong>jection <strong>in</strong><strong>in</strong>fected cells.We will present evidence that YadA and Invas<strong>in</strong> show strik<strong>in</strong>g differences howthey contribute to Yop <strong>in</strong>jection.(1) Monitor<strong>in</strong>g Yop translocation <strong>in</strong>to epithelial and fibroblastoid cells showsthat Inv triggered Yop <strong>in</strong>jection is always strictly dependent on the expressionof 1-<strong>in</strong>tegr<strong>in</strong>s and an <strong>in</strong>tact 1-cytoplasmic doma<strong>in</strong>. Thereby the 1-cytoplasmic doma<strong>in</strong> seems to be crucial as a b<strong>in</strong>d<strong>in</strong>g site for the adaptor tal<strong>in</strong> <strong>in</strong>terms of <strong>in</strong>side-out activation and as a l<strong>in</strong>ker to the act<strong>in</strong> cytoskeleton. But it isnot important as a transmitter for 1-<strong>in</strong>tegr<strong>in</strong> mediated outside-<strong>in</strong> signal<strong>in</strong>g bythe tyros<strong>in</strong>e k<strong>in</strong>ases FAK, SRC or ILK. So a high aff<strong>in</strong>ity <strong>in</strong>teraction betweenInv and 1-<strong>in</strong>tegr<strong>in</strong>, <strong>in</strong> which <strong>in</strong>side-out activation by tal<strong>in</strong> is <strong>in</strong>volved, seems tobe sufficient for Inv mediated effector translocation.(2) In contrast, only <strong>in</strong> fibroblasts but not <strong>in</strong> epithelial cells <strong>in</strong>teraction of YadAwith 1-<strong>in</strong>tegr<strong>in</strong>s is required for Yop translocation. Additionally the 1-cytoplasmic doma<strong>in</strong> is only partly important for YadA triggered Yop <strong>in</strong>jection.So depend<strong>in</strong>g on cell type 1-<strong>in</strong>tegr<strong>in</strong>s are completely dispensible for YadAmediated Yop <strong>in</strong>jection. This clearly demonstrates, that YadA can <strong>in</strong>itiate Yoptranslocation also by so far unknown 1-<strong>in</strong>tegr<strong>in</strong>-<strong>in</strong>dependent mechanisms.MPP039Human formyl peptide receptor 2 senses and differentiatesenterococciD. Bloes* 1 , D. Kretschmer 1 , M. Otto 2 , A. Peschel 11 Interfaculty Insitute of Microbiology and Infection Medic<strong>in</strong>e, Cellular andMolecular Microbiology, Tueb<strong>in</strong>gen, Germany2 National Institute of Health, National Institute of Allergy and InfectiousDiseases, Bethesda, United StatesThe human <strong>in</strong>nate immune system counteracts bacterial <strong>in</strong>vaders bymultiple antimicrobial mechanisms <strong>in</strong>clud<strong>in</strong>g polymorphonuclearleukocytes (PMN), which represent the most efficient phagocytes firstoccurr<strong>in</strong>g at the site of <strong>in</strong>fection.The human formyl peptide receptor 2 (FPR2) is a seven-transmembrane G-prote<strong>in</strong> coupled receptor and is found on various cells. Recently, we couldshow that FPR2 is crucial for recruit<strong>in</strong>g and activat<strong>in</strong>g PMN <strong>in</strong>staphylococcal <strong>in</strong>fections because it senses concentrations of the majorstaphylococcal cytolys<strong>in</strong>s phenol-soluble modul<strong>in</strong> (PSM) peptides [1].Moreover, FPR2 adjusts PMN responses with respect to PSM release andpathogenicity of staphylococcal species [2].Enterococci represent another group of important nosocomial pathogens.In this study, we show that not only staphylococci but also certa<strong>in</strong>enterococci are capable of produc<strong>in</strong>g ligands for FPR2 therebyunderscor<strong>in</strong>g the importance of this receptor <strong>in</strong> antibacterial host defense.PMN chemotaxis and <strong>in</strong>tracellular calcium <strong>in</strong>flux were <strong>in</strong>duced <strong>in</strong> a dosedependentmanner by supernatants of Enterococcus faecalis andEnterococcus faecium. Only for E. faecium, this effect could be <strong>in</strong>hibitedby the S. aureus-derived FPR2-antagonist FLIPr. In agreement with this,calcium flux <strong>in</strong> receptor-transfected HL-60 cells showed that only E.faecium elicited a FPR2-specific response whereas E. faecalis did not.Also, vancomyc<strong>in</strong>-resistant E. faecium isolates <strong>in</strong>duced a considerablystronger response than vancomyc<strong>in</strong>-susceptible isolates. However, both E.faecium and E. faecalis activated the FPR2 paralog FPR1, which sensesbacterial formylated peptides. The enterococcal genomes do not encodepeptides with apparent similarity to PSM peptides. To further characterizethe unknown FPR2 ligands produced by E. faecium, supernatants weretreated with proteases, which completely abolished the ability to stimulateFPR2 transfected HL-60 cells. This <strong>in</strong>dicates that the unknown FPR2ligands of E. faecium represent peptides.In conclusion, we were able to demonstrate that certa<strong>in</strong> enterococciproduce peptide-derived microbial associated molecular patterns, whichare sensed by human FPR2.[1] Kretschmer et al. (2010), Human formyl peptide receptor 2 senses highly pathogenic Staphylococcusaureus. Cell Host Microbe. Jun 25;7(6):463-73.[2] Rautenberg et al. (2011), Neutrophil responses to staphylococcal pathogens and commensals via theformyl peptide receptor 2 relates to phenol-soluble modul<strong>in</strong> release and virulence. FASEB J.Apr;25(4):1254-63.MPP040Prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction with<strong>in</strong> the Cpx-two component systemK. TschaunerUniversität Osnabrück, Molekulare Mikrobiologie, Osnabrück, GermanyTwo-component signal transduction systems (TCS) are the ma<strong>in</strong>mechanisms by which bacteria sense and respond to environmental stimuli[1]. TCS typically consist of a sensor k<strong>in</strong>ase (SK) and a response regulator(RR). The SK autophosphorylates upon detect<strong>in</strong>g an <strong>in</strong>duc<strong>in</strong>g cue andtransfers the phosphoryl group to its cognate RR which now promoteschanges <strong>in</strong> cellular physiology or behavior [1]. To keep the TCS <strong>in</strong>balance, the RR gets dephosphorylated <strong>in</strong>tr<strong>in</strong>sic or due to the phosphataseactivity of the SK [1]. However, the mechanistic details about the precisesignal <strong>in</strong>tegration and transfer rema<strong>in</strong> still unknown [2].The Cpx-envelope stress system is a well established TCS composed of themembrane-bound SK CpxA, the cytosolic RR CpxR and <strong>in</strong> addition of theaccessory prote<strong>in</strong> CpxP [3]. Factors that cause cell envelope stress as e.g.pH stress, salt stress and misfolded prote<strong>in</strong>s <strong>in</strong>duce the Cpx-TCS [3]. Theaccessory CpxP <strong>in</strong>hibits autophosphorylation of CpxA and supports thedegradation of misfolded pilus subunits [3]. Previous functional andstructural studies suggest not only that CpxP <strong>in</strong>hibits CpxA through adirect prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction but also <strong>in</strong>dicate how CpxP act as asensor for misfolded pilus subunits, pH and salt [4]. With membrane-SPINE [5] and bacterial two-hybrid system, we were now able todemonstrate the direct physical prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction between CpxPand CpxA<strong>in</strong> vivo. Furthermore, our data show under several Cpx-<strong>in</strong>duc<strong>in</strong>gconditions that CpxP is released from CpxA assign<strong>in</strong>g CpxP as the sensorfor specific Cpx-<strong>in</strong>duc<strong>in</strong>g stimuli. Release of CpxP from CpxA is assumedto result dimerization and consequently <strong>in</strong> the autophosphorylation ofCpxA [1, 3]. Thus, our comb<strong>in</strong>ed results lead to a deeper <strong>in</strong>sight <strong>in</strong>to thesignal recognition <strong>in</strong> TCS <strong>in</strong> general.A.M. Stock, V.L. Rob<strong>in</strong>son and P.N. Goudreau, Annu. Rev. Biochem.69(2000), p. 183.J. Cheung and W.A. Hendrickson, Curr. Op<strong>in</strong>. Microbiol.13(2010), p. 116.S. Hunke, R. Keller and V.S. Müller, FEMS Microbiol. Lett (2011) doi: 10.1111/j.1574-6968.2011.02436.x..X. Zhou, R. Keller, R. Volkmer, N. Krauß, P. Scheerer and S. Hunke J Biol Chem286(2011), p. 9805.V.S. Müller, P.R. Jungblut, T.F. Meyer and S. Hunke, Proteomics (2011)11, p. 2124.MPP041Comparative secretome analysis of Enterococcus faecalisisolates from food and cl<strong>in</strong>ical orig<strong>in</strong>I. Hartmann* 1 , S. Giubergia 1,2 , A. Pessione 2 , E. Pessione 2 , K. Riedel 1,31 Helmholtz Centre for Infection research, Microbial Proteomics,Braunschweig, Germany2 University of Tur<strong>in</strong>, Laboratorio di Biochimica e Proteomica deiMicrorganismi D.B.A.U, Tur<strong>in</strong>, Italy3 Ernst-Moritz-Arndt University of Greifswald, Insitute of Microbiology,Greifswald, GermanyThe ubiquitous Gram-positive Enterococcus faecalis belongs to the groupof lactic acid bacteria and is part of the natural gut microbiota ofmammals, but is also found <strong>in</strong> a range of fermented foods, particularly <strong>in</strong>artisanal cheeses. The presence of E. faecalis <strong>in</strong> cheese can be consideredbeneficial, with its metabolic activity contribut<strong>in</strong>g to desired traits liketexture or flavour. Furthermore, probiotic effects have been attributed tothis organism. However, the widespread application of E. faecalis <strong>in</strong> starterBIOspektrum | Tagungsband <strong>2012</strong>


119cultures for cheese fermentation or as a probiotic is currently limited bythe potential health risks associated with its use. E. faecalis also occurs asan opportunistic pathogen that can cause severe <strong>in</strong>fections such asendocarditis, septicemia and ur<strong>in</strong>ary tract <strong>in</strong>fections. Therefore, thoroughcharacterization of isolates is necessary <strong>in</strong> order to assess potential risksfor susceptible <strong>in</strong>dividuals. In this study, we <strong>in</strong>vestigated the effect of thegrowth environment on the secretome of two phenotypically similar E.faecalis stra<strong>in</strong>s from food and cl<strong>in</strong>ical orig<strong>in</strong>. To <strong>in</strong>vestigate the scenario ofpotentially pathogenic E. faecalis <strong>in</strong>gestion with food, they were grown <strong>in</strong>the standard laboratory medium M17 and <strong>in</strong> Simulated Colon EnvironmentMedium (SCEM) to mimic the conditions <strong>in</strong> the gut. As many of the E.faecalis virulence factors identified so far are secreted, extracellularprote<strong>in</strong>s were isolated, separated and identified by 1D-SDS-PAGE- LC-MS/MS and comparatively analyzed. A total of 346 prote<strong>in</strong>s wereidentified. In the further analysis, special attention was given to knownvirulence factors as well as the 36 prote<strong>in</strong>s be<strong>in</strong>g solely expressed <strong>in</strong>SCEM.MPP042A scavenger receptor on nasal epithelial surfaces - Animportant player <strong>in</strong> Staphylococcus aureus nasal colonizationM. Rautenberg*, S. Baur, S. Wanner, L. Kull, C. WeidenmaierInterfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, MedicalMicrobiology, Tüb<strong>in</strong>gen, GermanyMany severe bacterial <strong>in</strong>fections orig<strong>in</strong>ate from the microflora of the host.One of the most frequent causes of such <strong>in</strong>fections is Staphylococcusaureus, which colonizes the noses of about one third of the population.However, the molecular basis of this colonization is only understood<strong>in</strong>completely. It has been demonstrated that cell wall glycoploymers(CWGs) are important for adhesion of Gram-positive bacteria to host cells.The cell wall teichoic acid (WTA) of S. aureus has been shown to mediateadhesion to nasal epithelial cells and to be crucial for S. aureuscolonization <strong>in</strong> a cotton rat model. However, the appropriate receptor onnasal epithelial cells rema<strong>in</strong>s elusive.Recent research <strong>in</strong> the field of glycobiology suggests members of thescavenger receptor family as an <strong>in</strong>teraction partner for WTA. Previouslythis hypothesis could be confirmed by us<strong>in</strong>g <strong>in</strong>hibitors aga<strong>in</strong>st scavengerreceptors, which <strong>in</strong>hibited adhesion of S. aureus to nasal epithelial cells,markedly. Recently, the expression of a scavenger receptor on epithelialcells has been described. In accordance, function block<strong>in</strong>g antibodies tothis receptor <strong>in</strong>hibited S. aureus adhesion to human epithelial cells understatic and mild sheer stress conditions. To further elucidate these f<strong>in</strong>d<strong>in</strong>gs<strong>in</strong> a nasal colonization model <strong>in</strong> cotton rats we established primary cellcultures of nasal epithelial cells from cotton rats. Thereby we could detectthe expression of the mentioned scavenger receptor. Moreover, we wereable to demonstrate a specific b<strong>in</strong>d<strong>in</strong>g of WTA to these primary cotton ratepithelial cells us<strong>in</strong>g WTA labeled latex beads. Recently, we confirmedthe crucial role of this scavenger receptor <strong>in</strong> vivo by block<strong>in</strong>g S. aureusadhesion to nasal epithelial cells by pre<strong>in</strong>cubat<strong>in</strong>g nasal epithelia of cottonrats with an antibody aga<strong>in</strong>st this scavenger receptor. Thus, we herepresent the first receptor for WTA <strong>in</strong> nasal colonization.MPP043Infection of human endothelial progenitor cells withBartonella henselae <strong>in</strong>duces vessel-like growth <strong>in</strong> vitro.F. O'Rourke* 1 , T. Mändle 2 , C. Urbich 3 , S. Dimmeler 3 , K. Lauber 41 Kl<strong>in</strong>ikum der Goethe Universität Frankfurt, Mediz<strong>in</strong>ische Mikrobiologie,Frankfurt am Ma<strong>in</strong>, Germany2 Universitätskl<strong>in</strong>ikum, Mediz<strong>in</strong>ische Mikrobiologie, Tüb<strong>in</strong>gen, Germany3 Kl<strong>in</strong>ikum der Goethe Universität Frankfurt, Institut für KardiovaskuläreRegeneration, Frankfurt am Ma<strong>in</strong>, Germany4 Universität München, Molekulare Onkologie, München, GermanyEndothelial progenitor cells (EPCs) are a heterogeneous mixture of adultstem cells that play an essential role <strong>in</strong> revascularization after vasculardamage. Their discovery over a decade ago led to various pre-cl<strong>in</strong>ical andcl<strong>in</strong>ical trials <strong>in</strong>vestigat<strong>in</strong>g the use of these cells <strong>in</strong> regenerative medic<strong>in</strong>efor ischemic <strong>in</strong>jury. In our work we <strong>in</strong>vestigated an unconventionalmethod of improv<strong>in</strong>g the angiogenic potential of EPCs through bacterial<strong>in</strong>fection.Bartonella spp.are facultative <strong>in</strong>tracellular pathogens and theonly known bacteria to <strong>in</strong>duce angiogenesis <strong>in</strong> humans. Here we describefor the first time the course of a bacterial <strong>in</strong>fection of EPCs with thevasculotropic bacteriumB. henselae. Our data demonstrate that EPCs arehighly susceptible toB. henselaeand that <strong>in</strong>fection does not disturb their<strong>in</strong>itial differentiation under angiogenic conditions. Upon <strong>in</strong>fection EPCsshow a strong activation of hypoxia <strong>in</strong>ducible factor-1 (HIF-1), the keytranscription factor <strong>in</strong> angiogenesis. This is followed by the signature HIF-1-dependent pro-angiogenic cell response <strong>in</strong>clud<strong>in</strong>g production ofcytok<strong>in</strong>es such as vascular endothelial growth factor (VEGF) andadrenomedull<strong>in</strong> (ADM). Furthermore,B. henselaeprevents apoptosis ofEPCs and <strong>in</strong>duces cell migration along a stromal cell-derived factor(SDF)-1 gradient, both essential functional components of the angiogenicresponse. F<strong>in</strong>ally, when culture plates are coated with a basementmembrane which simulates the extra-cellular matrix(Matrigel TM ), <strong>in</strong>fectedEPCs assemble <strong>in</strong>to complex vessel-like structures<strong>in</strong> vitro. We haverecently shown that heat-killedB. henselaecan also <strong>in</strong>duce the build<strong>in</strong>g ofvessel-like structures<strong>in</strong> vitrosuggest<strong>in</strong>g the <strong>in</strong>volvement of some yetunknownouter membrane element. Cumulatively, our data demonstratethat <strong>in</strong>fection withB. henselaecan improve the angiogenic capacity ofEPCs and <strong>in</strong>duce vessel-like growth<strong>in</strong> vitro. At present we are work<strong>in</strong>g tophenotypically and genetically characterize the transformation of EPCsfrom circulation progenitor cells to vessel-like structures and identifygenes and pathways <strong>in</strong>volved <strong>in</strong> this bacterial <strong>in</strong>duced process.MPP044Sweet toothed bats without cavities - almost no appearance ofdental caries <strong>in</strong> the frugivorous bat Artibeus jamaicensisS. Brändel* 1,2 , F. Bengelsdorf 1 , I. Wagner 2 , A. Mack 3 , R. Diebolder 4 ,B. Stegmann 1 , M. Tschapka 2 , B. Haller 3 , R. Hibst 4 , E.K.V. Kalko 2 , P. Dürre 11 University Ulm, Institute of Microbiology and Biotechnology, Ulm, Germany2 University Ulm, Institute of Experimental Ecology, Ulm, Germany3 University Ulm, Kl<strong>in</strong>ik für Zahnerhaltungskunde und Parodontologie, Ulm,Germany4 University Ulm, Institut für Lasertechnologien <strong>in</strong> der Mediz<strong>in</strong> undMesstechnik, Ulm, GermanyDental caries is a widespread disease which affects humans and othermammal species, but obviously not the frugivorous bat Artibeusjamaicensis. There are many studies concern<strong>in</strong>g dental decay <strong>in</strong> humansand animal models, but so far little is known about the complexmicrobiological and environmental <strong>in</strong>teractions which lead to dental caries.Although these bats consume nearly exclusively figs and consequentlyhigh amounts of sugars, they are less affected by cavities than humans. Toconfirm this observation and to offer an explanation, a study wasconducted <strong>in</strong>clud<strong>in</strong>g ecological, microbiological, dental, and microscopicaltechniques.Animals were captured <strong>in</strong> the wild dur<strong>in</strong>g field work on Barro ColoradoIsland (Panama). The teeth of the bats were analyzed with dental criteria todeterm<strong>in</strong>e the <strong>in</strong>cidence of dental caries. Only three of 230 captured A.jamaicensis were affected. In general, only 0.9 % of the surveyed surfaceof the teeth showed appearance of dental plaque as documented bysta<strong>in</strong><strong>in</strong>g, notoriously less than <strong>in</strong> humans.To identify the oral microbial community of these bats, saliva sampleswere taken, genomic DNA was extracted, and the amplified bacterial 16SrDNA fragments were analyzed by 454-Pyrosequenc<strong>in</strong>g. It was found thatthe oral microbiota of healthy bats is similar to human saliva regard<strong>in</strong>g thecomposition of microorganisms with one exception: Healthy bats salivalacks obligate anaerobic bacteria. Nevertheless, plaque-form<strong>in</strong>g as well asfacultative anaerobic bacteria could be found. Obligate anaerobes couldonly be detected <strong>in</strong> a saliva sample of a caries affected A. lituratus. Allanaerobic bacteria found are potentially cariogenic under anaerobicconditions, normally found <strong>in</strong> elder dental plaque. The confirmation ofpotentially cariogenic bacteria <strong>in</strong> the saliva of bats leads to the assumptionthat there are no substances protect<strong>in</strong>g aga<strong>in</strong>st caries <strong>in</strong> saliva <strong>in</strong>hibit<strong>in</strong>gtheir growth.Extracted teeth of dead specimens were exam<strong>in</strong>ed <strong>in</strong> reference to humanteeth <strong>in</strong> their hardness, surface structure, and enamel. First results show asmoother surface structure, the lack of pores, and a th<strong>in</strong>ner enamel layer.These results <strong>in</strong>dicate that it is the particular surface shape of the enamel ofthe teeth of bats which is related to less caries <strong>in</strong>cidence <strong>in</strong> A. jamaicencis,despite the attendance of cariogenic bacteria.MPP045Staphylococcal major autolys<strong>in</strong> (Atl) is <strong>in</strong>volved <strong>in</strong> excretion ofcytoplasmic prote<strong>in</strong>sL. Dube* 1 , A.-K. Ziebandt 1 , M. Schlag 1 , S. Haase 1 , M. Franz-Wachtel 2 ,J. Madlung 2 , F. Götz 11 University of Tüb<strong>in</strong>gen, Microbial Genetics, Tüb<strong>in</strong>gen, Germany2 University of Tüb<strong>in</strong>gen, Proteome Center Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen, GermanyIn both gram-positive and -negative bacteria as well as <strong>in</strong> yeasts typicalcytoplasmic prote<strong>in</strong>s/enzymes are found outside the cell <strong>in</strong> the culturesupernatant or attached to the cell surface where they may contribute tovirulence. Noth<strong>in</strong>g is known how these “extracellular” cytoplasmicprote<strong>in</strong>s are translocated through the cytoplasmic membrane and this typeof secretion was referred to as "nonclassical prote<strong>in</strong> secretion". We coulddemonstrate that <strong>in</strong> Staphylococcus aureus the major autolys<strong>in</strong> Atl plays acrucial role <strong>in</strong> release of cytoplasmic prote<strong>in</strong>s. We could show that <strong>in</strong>Staphylococcus aureus 20 typical cytoplasmic prote<strong>in</strong>s were excreted andus<strong>in</strong>g glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as acytoplasmic <strong>in</strong>dicator enzyme, we showed that all cl<strong>in</strong>ical isolates testedexcreted this prote<strong>in</strong>. To answer the question of how discrim<strong>in</strong>atory theexcretion of cytoplasmic prote<strong>in</strong>s is, we performed a two-dimensionalPAGE of cytoplasmic prote<strong>in</strong>s isolated from WT. We disproved thecommon op<strong>in</strong>ion that only highly expressed and abundant cytoplasmicBIOspektrum | Tagungsband <strong>2012</strong>


120prote<strong>in</strong>s are excreted. On the contrary, the most abundant cytoplasmicprote<strong>in</strong>s were not found <strong>in</strong> the secretome. These results suggest that thereexists a selection mechanism <strong>in</strong> the excretion of cytoplasmic prote<strong>in</strong>s. Thepresence or absence of prophages had little <strong>in</strong>fluence on the secretomepattern. Furthermore we could show <strong>in</strong> the atl mutant that secondarypeptidoglycan hydrolases were <strong>in</strong>creased both <strong>in</strong> the secretome as well thecorrespond<strong>in</strong>g genes were transcriptionally up-regulated suggest<strong>in</strong>g acompensatory mechanism for the atl mutation. As the major autolys<strong>in</strong>b<strong>in</strong>ds at the septum site, we assume that the prote<strong>in</strong>s are preferentiallyreleased at and dur<strong>in</strong>g septum formation.MPP046Relaxed substrate specificity of bacterial phospholipidflippases - alanyl- phosphatidylglycerol confers wild type leveldaptomyc<strong>in</strong> resistance <strong>in</strong> the presence of lysylphosphatidylglycerolflippases <strong>in</strong> Staphylococcus aureusC. Slavet<strong>in</strong>sky*, C. Ernst, A. PeschelUniversity of Tub<strong>in</strong>gen, Interfaculty Institute of Microbiology andInfection Medic<strong>in</strong>e (IMIT), Cellular and Molecular Microbiology Section,Tüb<strong>in</strong>gen, GermanyThe Multiple Peptide Resistance Factor (MprF) of Staphylococcus aureusis a bifunctional enzyme with two separable functional doma<strong>in</strong>s thatsynthesize positively charged lysyl- phosphatidylglycerol (Lys-PG) andfacilitate Lys-PG flipp<strong>in</strong>g <strong>in</strong>to the outer leaflet of the membrane, result<strong>in</strong>g<strong>in</strong> repulsion of cationic antimicrobial peptides encountered dur<strong>in</strong>gcolonization and <strong>in</strong>fection of the human host or compet<strong>in</strong>g microorganisms(Peschel et al.,2001, Ernst et al., 2009). The impact of MprF- mediatedLys-PG production on CAMP resistance has been confirmed with MprFhomologs from major human pathogens, such as Listeria monocytogenes,Bacillus anthracis, Mycobacterium tuberculosis, and also with MprFhomologs from Rhizobium tropici and Bacillus subtilis.Interest<strong>in</strong>gly, some MprF prote<strong>in</strong>s synthesize zwitterionic alanylphosphatidylglycerol(Ala-PG), such as MprF homologs fromEnterococcus faecium, Clostridium perfr<strong>in</strong>gens, or Pseudomonasaerug<strong>in</strong>osa. The Impact of the production of zwitterionic Ala-PG onsusceptibility to antimicrobial peptides has so far only been studied <strong>in</strong> thegram- negative pathogen P. aerug<strong>in</strong>osa, which alanylates 6% of thephospholipids, lead<strong>in</strong>g to select phenotypes, such as reduced susceptibilityto cromium ions, protam<strong>in</strong>e sulphate and cefsulid<strong>in</strong> (Kle<strong>in</strong> et al., 2009).We expressed the Ala-PG produc<strong>in</strong>g MprF of C. perfr<strong>in</strong>gens <strong>in</strong> a S. aureusmprF deletion mutant and show that Ala-PG <strong>in</strong>tegrates effectively <strong>in</strong> thephospholipid biosynthetic pathways of S. aureus, lead<strong>in</strong>g to the productionof more than 60 % Ala-PG. The production of Ala-PG <strong>in</strong> S. aureus enabledus to <strong>in</strong>vestigate the impact of zwitterionic Ala-PG on CAMPsusceptibility <strong>in</strong> a gram positive pathogen and led to the unexpectedobservation that Ala-PG is as effective <strong>in</strong> conferr<strong>in</strong>g a basic level ofresistance to the CAMP- like antibiotic daptomyc<strong>in</strong>, as Lys-PG, as long asLys-PG flippases are present, <strong>in</strong>dicat<strong>in</strong>g that Lys-PG flippases have broadrange specificity for am<strong>in</strong>oacyl- phospholipids.MPP047Functional genome analysis of Paenibacillus larvae, the causativeagent of the American Foulbrood of honey bees (AFB)M. Djukic* 1 , E. Brzuszkiewicz 1 , A. Fünfhaus 2 , E. Genersch 2 , R. Daniel 11 Georg-August-University Goett<strong>in</strong>gen, Goett<strong>in</strong>gen Genomics Laboratory,Goett<strong>in</strong>gen, Germany2 Institute for Bee Research, Hohen Neuendorf, GermanyPaenibacillus larvae is a rod-shaped and spore-form<strong>in</strong>g Gram-positivebacterium caus<strong>in</strong>g American Foulbrood of honey bees. First P. larvae hasbeen described as Bacillus larvae <strong>in</strong> 1906. Recently, it was shown that thespecies P. larvae comprises different genotypes differ<strong>in</strong>g <strong>in</strong> virulence atthe <strong>in</strong>dividual <strong>in</strong>sect and at the colony level [1]. P. larvae is able to <strong>in</strong>fecthoney bees and honey bee larvas via the spores, but only kills the latter.The way of <strong>in</strong>fection and kill<strong>in</strong>g is still poorly understood. It has beenshown, that approximately 10 <strong>in</strong>fectious spores from virulent stra<strong>in</strong>s aresufficient to cause mortality [2].Raw-sequenc<strong>in</strong>g of the P. larvae str. 08-100 (ERIC I) and str. 04-309(ERIC II) genomes were done by us<strong>in</strong>g 454-pyrosequenc<strong>in</strong>g. The obta<strong>in</strong>edsequences were assembled and analyzed. Subsequently, contigs weresorted and rema<strong>in</strong><strong>in</strong>g gaps closed. The genome size of P. larvae str. 04-309 (ERIC II) and the GC content are approximately 4.05 Mb and 45 %,respectively, while the genome size of P. larvae str. 08-100 is about 4.51Mb and has a GC content of 44 %. The annotation of the genomesequences provided new important <strong>in</strong>sights <strong>in</strong>to genes <strong>in</strong>volved <strong>in</strong>pathogenesis.[1] Genersch et al., Int. J. Syst. Evol. Microbiol. 56, 501-511 (2006)[2] Brodsgaard et al., Apidologie 29, 569-578 (1998)MPP048Transcriptome and proteome analyses of P. aerug<strong>in</strong>osa PAO1express<strong>in</strong>g the biofilm-<strong>in</strong>hibit<strong>in</strong>g SDR BpiB09 reveal asignificant effect on QS-controlled genesC. Utpatel* 1 , P. Bijtenhoorn 1 , A. Thürmer 2 , E. Brzuszkiewicz 2 , R. Daniel 2 ,B. Voigt 3 , M. Hecker 3 , C. Vollstedt 1 , W.R. Streit 11 University of Hamburg, Biozentrum Kle<strong>in</strong> Flottbek - Mikrobiologie &Biotechnologie, Hamburg, Germany2 University of Gött<strong>in</strong>gen, Institute of Microbiology and Genetics -Gött<strong>in</strong>gen Genomics Laboratory, Gött<strong>in</strong>gen, Germany3 University of Greifswald, Institute of Microbiology - Division ofMicrobial Physiology and Molecular Biology, Greifswald, GermanyIn Pseudomonas aerug<strong>in</strong>osa, quorum sens<strong>in</strong>g-regulated gene expressioncontributes to the formation and ma<strong>in</strong>tenance of biofilms and theirtolerance to conventional antimicrobials. Therefore QS and QS-relatedgene expression are promis<strong>in</strong>g targets for the development of newantimicrobial drugs. Here we report on a genome wide transcriptomeanalysis us<strong>in</strong>g next generation sequenc<strong>in</strong>g RNA-seq and proteome analysisof PAO1 cells express<strong>in</strong>g the recently published novel and metagenomederivedshort-cha<strong>in</strong> dehydrogenase/reductase (SDR) BpiB09 1 . Expressionof BpiB09 resulted <strong>in</strong> a significantly reduced pyocyan<strong>in</strong> production,decreased motility, poor biofilm formation and decreased paralysis ofnematodes. HPLC-MS analyses correlated these phenotypes with thealmost complete absence of synthesized auto<strong>in</strong>ducers <strong>in</strong> PAO1. Ourgenome wide comparative transcriptome and whole-cell-prote<strong>in</strong> proteomeanalysis of P. aerug<strong>in</strong>osa PAO1 express<strong>in</strong>g BpiB09 identified significanteffects on most of the quorum sens<strong>in</strong>g controlled genes like lasI, rhlI, pqsRand pqsABCD. A least 38 of these well-known QS-regulated genes werestrongly (>10-fold) down-regulated <strong>in</strong> their expression profiles. As well asignificant number of genes and ORFs were detected that had been l<strong>in</strong>kedto QS-phenotypes <strong>in</strong> PAO1 and that were less than 10-fold but at least 4-fold altered <strong>in</strong> their expression level. Altogether these were 80 genes/ORFsand among those we found the hcnB and hcnC genes <strong>in</strong>volved <strong>in</strong> hydrogencyanide synthesis, the aprD and aprE genes <strong>in</strong>volved <strong>in</strong> alkal<strong>in</strong>e proteasesecretion as well as lecB and lasA. Additionally a def<strong>in</strong>ed subset of so farnot QS-l<strong>in</strong>ked genes was affected. These data were supported by 2Dproteomeanalyses of PAO1 cells. Altogether, our data suggest that thedirect expression of SDR <strong>in</strong> PAO1 and/or the exogenous addition ofBpiB09 to grow<strong>in</strong>g PAO1 cells have profound effects on PAO1 geneexpression and might be a useful tool for the development of novel antibiofilmstrategies.1 Bijtenhoorn, P., Mayerhofer, H., Müller-Dieckmann, J., Utpatel, C., Schipper, C., Hornung, C., Szesny,M., Grond, S., Thürmer, A., Brzuszkiewicz, E., Daniel, R., Dierk<strong>in</strong>g, K., Schulenburg, H., & W. R. Streit(2011) A Novel Metagenomic Short-Cha<strong>in</strong> Dehydrogenase/Reductase Attenuates Pseudomonas aerug<strong>in</strong>osaBiofilm Formation and Virulence on Caenorhabditis elegans. PLoS ONE 6(10)MPP049Comparative global transcriptome analysis ofCandidaalbicansandCandida dubl<strong>in</strong>iensisallows new <strong>in</strong>sights <strong>in</strong>tochlamydospore developmentK. Palige* 1 , J. L<strong>in</strong>de 2 , F. Citiulo 3 , D.J. Sullivan 4 , S. Rupp 5 , J. Morschhäuser 6 ,B. Hube 3 , P. Staib 11 Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knöll-Institute (HKI), JRG Fundamental Molecular Biology of PathogenicFungi, Jena, Germany2 Hans Knöll Institut, Systems Biology/Bio<strong>in</strong>formatics, Jena, Germany3 Hans Knöll Institut, Microbial Pathogenicity Mechanisms, Jena, Germany4 University of Dubl<strong>in</strong>, School of Dental Science and Dubl<strong>in</strong> Dental Hospital,Tr<strong>in</strong>ity College, Dubl<strong>in</strong>, Ireland5 University of Stuttgart, Institute of Interfacial Eng<strong>in</strong>eer<strong>in</strong>g, Stuttgart, Germany6 University of Würzburg, Institute for Molecular Infection Biology, Würzburg,GermanyCandida albicans and Candida dubl<strong>in</strong>iensisare highly related pathogenicyeast species display<strong>in</strong>g differences <strong>in</strong> their epidemiology and <strong>in</strong> somephenotypic characteristics, <strong>in</strong>clud<strong>in</strong>g virulence-associated traits. Dur<strong>in</strong>g <strong>in</strong>vitro growth on certa<strong>in</strong> nutrient-poor media, both share the species-specificability to produce chlamydospores, large spherical, thick-walled cells withunknown function. Interest<strong>in</strong>gly however, onlyC. dubl<strong>in</strong>iensisformspseudoyphae with abundant chlamydospores on Staib agar (syn.Guizotiaabyss<strong>in</strong>icacreat<strong>in</strong><strong>in</strong>e agar), on whichC. albicansgrows as a budd<strong>in</strong>g yeast.In order to get new <strong>in</strong>sights <strong>in</strong>to chlamydospore development, wecompared the global transcriptional profile of both species dur<strong>in</strong>g growth<strong>in</strong> Staib medium by DNA microarray analysis and RNA sequenc<strong>in</strong>g. As ameans to narrow down the putative set of chlamydospore- versuspseudohyphae-specific genes, the analysis of aC. albicansnrg1mutant wasalso <strong>in</strong>cluded <strong>in</strong> this study.C. albicansmutants <strong>in</strong> this global repressor offilamentation have previously been demonstrated to produce not onlypseudohyphae but also abundant chlamydospores <strong>in</strong> Staib medium, similarasC. dubl<strong>in</strong>iensis. At present, <strong>in</strong>dividual identified genes are functionallycharacterized <strong>in</strong>C. albicansandC. dubl<strong>in</strong>iensis, for their putative role <strong>in</strong>chlamydospore development but also with respect to other phenotypicBIOspektrum | Tagungsband <strong>2012</strong>


121characteristics. These studies should contribute to a better understand<strong>in</strong>g ofthe fundamental biology of these medically important pathogenic fungi.Staib P, Morschhäuser J (2005) Differential expression of theNRG1repressor controls speciesspecificregulation of chlamydospore development <strong>in</strong>Candida albicansandCandida dubl<strong>in</strong>iensis.Mol Microbiol 55: 637-652MPP050The immune modulatory zwitterionic cell wall polymer ofStaphylococcus aureus - an important role <strong>in</strong> CA-MRSApathogenicity?S. Wanner*, M. Rautenberg, C. WeidenmaierInstitute of Microbiology and Infection Medic<strong>in</strong>e (IMIT), MedicalMicrobiology, Tueb<strong>in</strong>gen, GermanyStaphylococcus aureus is a major pathogen, <strong>in</strong> both nosocomial andcommunity-acquired <strong>in</strong>fections that can cause a large variety of <strong>in</strong>fectionsbut sk<strong>in</strong> and soft-tissue <strong>in</strong>fections (SSTIs) are the most common typecaused by CA-MRSA. The pathogenicity of CA-MRSA stra<strong>in</strong>s seems todepend on an array of different virulence factors; however the relativeactivity of these factors is still unclear. Recently, we demonstrated that thecell wall polymer WTA (wall teichoic acid) of S. aureus is a majormodulator for the early phase of abscess formation [1]. The immunemodulatory activity of WTA depends on its zwitterionic character and theability to stimulate CD4+ T-cell proliferation <strong>in</strong> an MHC II-dependentmanner [2], which is <strong>in</strong> contrast to the current dogma a non peptideantigen. We found that highly pathogenic CA-MRSA stra<strong>in</strong>s exhibit anelevated amount of WTA <strong>in</strong> their cell wall. Purified prote<strong>in</strong>-free cell wallfractions from CA-MRSA <strong>in</strong>duce T-cell proliferation and cytok<strong>in</strong>eproduction more efficiently than cell wall from non CA-MRSA. Thus, cellwall fractions of CA-MRSA stra<strong>in</strong>s are more active <strong>in</strong> sk<strong>in</strong> abscessformation, which can be attributed to the higher WTA amount <strong>in</strong> their cellwall. Hence, up-regulation of WTA expression is one of the possiblemechanisms CA-MRSA exploit to ga<strong>in</strong> virulence. To confirm ourhypothesis, we currently elucidate a detailed expression profile ofimportant structural genes of WTA biosynthesis by quantitative real-timePCR. Therefore, selected CA-MRSA stra<strong>in</strong>s will be compared to differentnon CA-MRSA stra<strong>in</strong>s <strong>in</strong> vitro and ex vivo us<strong>in</strong>g a sk<strong>in</strong> abscess model <strong>in</strong>mice. Furthermore, we plan to measure the expression of teichoic acidbiosynthesis enzymes on the prote<strong>in</strong> level. Our goal is to get more <strong>in</strong>sights<strong>in</strong>to the regulatory elements <strong>in</strong>volved <strong>in</strong> WTA biosynthesis. This studymay contribute to a better understand<strong>in</strong>g of the complex pathology ofSSTIs caused by highly virulent CA-MRSA stra<strong>in</strong>s.[1] Weidenmaier, C., R. M. McLoughl<strong>in</strong>, and J. C. Lee. The Zwitterionic Cell Wall Teichoic Acidof Staphylococcus aureus Provokes Sk<strong>in</strong> Abscesses <strong>in</strong> Mice by a Novel CD4+ T-Cell DependentMechanism. PLoS One 5. 2010.[2] Mazmanian, S. K., and D. L. Kasper. The love-hate relationship between bacterialpolysaccharides and the host immune system. Nat Rev Immunol 2006. 6:849-58.MPP051Cell contact dependent virulence gene expression <strong>in</strong> Yers<strong>in</strong>iapseudotuberculosisW. Opitz*, P. DerschHelmholtz Zentrum für Infektionsforschung, Molekulare Mikrobiologie,Braunschweig, GermanyThe enteropathogenic bacterium Yers<strong>in</strong>ia pseudotuberculosis colonizes thehuman gut and transmigrates through the mucosal cell layer <strong>in</strong>tounderly<strong>in</strong>g lymphatic tissues and organs. This causes several gut- andlymph- associated diseases and <strong>in</strong> rare cases autoimmune diseases.As Y. pseudotuberculosis can be found <strong>in</strong> the environment as well as <strong>in</strong>sideits host’s body, it needs to perfectly adapt to these particular conditions.Especially virulence genes are tightly environmentally regulated. We showthat Y. pseudotuberculosis senses cell contact to dist<strong>in</strong>guish betweenenvironment and host and to adapt gene expression. Especially genesrequired <strong>in</strong> the late phase of <strong>in</strong>fection (yop regulon) seem to beupregulated upon contact to human cells.With<strong>in</strong> this work the impact of cell contact on the expression of the outermembrane prote<strong>in</strong> YadA and its transcriptional regulator LcrF was<strong>in</strong>vestigated. Dur<strong>in</strong>g <strong>in</strong>fection YadA mediates adhesion to and <strong>in</strong>vasion<strong>in</strong>to epithelial cells and helps to evade host’s immune system. Monolayersof epithelial cells (HEp-2) were <strong>in</strong>fected with Y. pseudotuberculosiscarry<strong>in</strong>g yadA and lcrF promoter reporter gene fusions to GFP orluciferase. The expression pattern of bacteria <strong>in</strong> contact to cells werecompared to free bacteria and analyzed by fluorescence microscopy,lum<strong>in</strong>escence detection or western blott<strong>in</strong>g. We could show that theexpression of yadA is directly activated through a cell contact dependentexpression of its regulator lcrF. Further, CsrA, a RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> ofthe carbon storage system, is part of this cell contact sens<strong>in</strong>g cascade. Theimportance of several other factors could be excluded.By analyz<strong>in</strong>g various mutants and perform<strong>in</strong>g microarray analysis we wantto identify more participat<strong>in</strong>g factors and the cell contact sensor.MPP052Expression of filamentous hemagglut<strong>in</strong><strong>in</strong> <strong>in</strong> Bartonella henselaeE. Wüstenhagen*, B. Franz, V.A.J. KempfKl<strong>in</strong>ikum der Johann Wolfgang Goethe-Universität, Institut für Mediz<strong>in</strong>ischeMikrobiologie und Krankenhaushygiene, Frankfurt am Ma<strong>in</strong>, GermanyThe gram-negative, zoonotic pathogen Bartonella henselae causes catscratch disease and vasculoproliverative disorders. In recent years, twoessential pathogenicity factors ofB. henselae have been <strong>in</strong>vestigated <strong>in</strong> detail: the trimeric autotransporteradhes<strong>in</strong> Bartonella adhes<strong>in</strong> A (BadA) and the VirB/D4 type IV secretionsystem (VirB/D4 T4SS). Analysis of the genomic sequence of B. henselaegave evidence for an additional pathogenicity factor, the filamentoushemagglut<strong>in</strong><strong>in</strong> (FHA). Eight genes of different length encode homologuesof filamentous hemagglut<strong>in</strong><strong>in</strong> (FhaB), and four genes encode homologuesof FhaC/HecB of Bordetella pertussis form<strong>in</strong>g potentially a two partnersecretion system. Until now, noth<strong>in</strong>g is known on the role of FHA <strong>in</strong><strong>in</strong>fections with B. henselae. Here, we analyzed the expression of fhaB andfhaC/hecB <strong>in</strong> two different B. henselae stra<strong>in</strong>s (Marseille, Hoston-1) underdifferent growth conditions (different pH values, at 30 and 37 °C) byquantitative realtime-RT-PCR. Our data revealed that fhaB and fhaC/hecBwere (i) expressed <strong>in</strong> both B. henselae stra<strong>in</strong>s and (ii) expression was pHdependentmean<strong>in</strong>g that the expression level <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g pHvalues. Cultivation temperature did not have an effect on expression.These results give first evidence, that filamentous hemagglut<strong>in</strong><strong>in</strong> is <strong>in</strong> factexpressed <strong>in</strong> B. henselae and might therefore play a role <strong>in</strong> Bartonella<strong>in</strong>fections.MPP053Determ<strong>in</strong>ation of <strong>in</strong>tracellular survival of Streptococcus agalactiae<strong>in</strong> the <strong>in</strong>teraction with monocytic and granulocytic cellsA. Sagar* 1 , C. Klemm 1 , S. Mauerer 1 , G. van Zandbergen 2 , B. Spellerberg 11 University of Ulm, Institute of Medical Microbiology and Hospital Hygiene,Ulm, Germany2 Federal Institute of vacc<strong>in</strong>es and bio-medical drug, Immunology, Langen,GermanyStreptococcus agalactiae (Group B Streptococci, GBS) is an importantcause of human <strong>in</strong>vasive <strong>in</strong>fections <strong>in</strong> newborns, pregnant women andimmunocompromised adult patients. The ß-hemolys<strong>in</strong> of GBS is a surfaceassociated tox<strong>in</strong> and regarded as a major virulence factor of GBS. It isregulated by the cov two-component regulatory system, which controlsnumerous virulence factors of GBS. To determ<strong>in</strong>e the role of the ß-hemolys<strong>in</strong> for <strong>in</strong>tracellular survival and to rule out the effect of othervirulence factors controlled by cov, we <strong>in</strong>vestigated hemolytic andnonhemolytic GBS mutants for <strong>in</strong>tracellular survival <strong>in</strong> primary humangranulocytes and THP-1 cells.We exam<strong>in</strong>ed the role of ß-hemolys<strong>in</strong> for <strong>in</strong>teraction with the monocyticand granulocytic cells us<strong>in</strong>g a serotype Ia S. agalactiae wild type stra<strong>in</strong>and an isogenic nonhemolytic deletion mutant of this stra<strong>in</strong>. Both stra<strong>in</strong>swere fluorescently labeled with an EGFP express<strong>in</strong>g plasmid. Follow<strong>in</strong>g<strong>in</strong>fection of eukaryotic cells with GBS, the <strong>in</strong>tracellular bacteria wereevaluated by FACS analysis and cultur<strong>in</strong>g of <strong>in</strong>tracellular bacteria.Interest<strong>in</strong>gly, the non-hemolytic mutants were able to survive <strong>in</strong> the<strong>in</strong>tracellular environment <strong>in</strong> significantly higher numbers than thehemolytic stra<strong>in</strong>. A f<strong>in</strong>d<strong>in</strong>g that was observed for primary granulocytes aswell as for THP-1 cells. To exclude the possibility that the observeddifferences <strong>in</strong> survival were due to host cell death <strong>in</strong>duced by thehemolytic but not the non-hemolytic stra<strong>in</strong>, Lactate Dehydrogenase (LDH)assays were carried out and confirmed a better survival capacity of thenonhemolytic stra<strong>in</strong>. To assess the <strong>in</strong>duction of IL-8 follow<strong>in</strong>g <strong>in</strong>fectionwith GBS, ELISA determ<strong>in</strong>ations were performed. While a considerablerelease of IL-8 could be observed, we could however not f<strong>in</strong>d a significantdifference <strong>in</strong> their ability to <strong>in</strong>duce the chemok<strong>in</strong>e. To determ<strong>in</strong>e thebacterial mediators of IL-8 release <strong>in</strong> this sett<strong>in</strong>g, cell wall preparationsfrom both stra<strong>in</strong>s were <strong>in</strong>cubated with THP-1 cells. Both preparations werefound to exert a potent pro<strong>in</strong>flammatory stimulus on THP-1 cells. Inconclusion our results <strong>in</strong>dicate, that the S. agalactiaeß-hemolys<strong>in</strong> has astrong <strong>in</strong>fluence on the <strong>in</strong>tracellular survival of GBS and that a tightlycontrolled regulation of ß-hemolys<strong>in</strong> expression is required for thesuccessful establishment of GBS <strong>in</strong> different host niches.BIOspektrum | Tagungsband <strong>2012</strong>


122MPP054BopC is a type III secretion effector prote<strong>in</strong> of BurkholderiapseudomalleiS. Muangman* 1 , S. Korbsrisate 1 , V. Muangsombut 1 , V. Sr<strong>in</strong>on 1 , N.L. Adler 2 ,G.N. Schroeder 3 , G. Frankel 3 , E.E. Galyov 2,31 Mahidol University, Immunology, Faculty of Medic<strong>in</strong>e Siriraj Hospital,Bangkok, Thailand2 University of Leicester, Infection, Immunity and Inflammation, Leicester,United K<strong>in</strong>gdom3 Imperial College London, Centre for Molecular Microbiology and Infection,Division of Cell and Molecular Biology, London, United K<strong>in</strong>gdomQuestion: Burkholderia pseudomallei is the causative agent ofmelioidosis, the disease endemic <strong>in</strong> southeast Asia and northern Australia.The promis<strong>in</strong>g component caus<strong>in</strong>g pathogenesis is the Bsa type IIIsecretion system (T3SS). Only two Bsa-secreted effectors have beenconclusively identified to date. Here we explored the T3SS-dependentsecretion and the virulence mechanism of a B. pseudomallei putativeeffector prote<strong>in</strong> BopC (BPSS1516), which is encoded from the bpss1516gene adjacent to its putative chaperone bpss1517.Methods: B. pseudomallei bopC gene was cloned as Glutathione S-transferase (GST)-tagged constructs and expressed <strong>in</strong> Escherichia coli.Pull down and co-purification assays were conducted to address the<strong>in</strong>teraction between BopC and its putative chaperone BPSS1517.Translocation assay was performed to <strong>in</strong>vestigate the importance of the N-term<strong>in</strong>al am<strong>in</strong>o acids of BopC. B. pseudomallei bopC mutant wasconstructed by <strong>in</strong>sertion mutagenesis. A549 lung epithelial cells wereemployed for <strong>in</strong>vasion assay.Results: Immunoblott<strong>in</strong>g demonstrated that BopC was secreted <strong>in</strong>toculture supernatant by the wild-type B. pseudomallei stra<strong>in</strong>, but itssecretion was abolished <strong>in</strong> the bsaZ T3SS mutant, suggest<strong>in</strong>g that BopC issecreted via T3SS. Pull down and co-purification assays confirmed thatBopC <strong>in</strong>teracts with its putative chaperone, BPSS1517, <strong>in</strong> vitro. The first20 N-term<strong>in</strong>al am<strong>in</strong>o acids of BopC were found to be sufficient to mediatethe T3SS-dependent translocation of a reporter prote<strong>in</strong> from a heterologousenteropathogenic E. coli host <strong>in</strong>to mammalian cells. F<strong>in</strong>ally, B.pseudomallei bopC mutant was found to be less <strong>in</strong>vasive than the wildtypestra<strong>in</strong> <strong>in</strong> the epithelial cells.Conclusions: B. pseudomallei BopC is a newly identified type III effectorprote<strong>in</strong>. The secretion of BopC is dependent on Bsa T3SS. FurthermoreBopC is implicated <strong>in</strong> the B. pseudomallei <strong>in</strong>vasion <strong>in</strong>to epithelial cells.Muangman S, Korbsrisate S, Muangsombut V, Sr<strong>in</strong>on V, Adler N L, Schroeder G N, et al., BopC isa type III secreted effector prote<strong>in</strong> of Burkholderia pseudomallei. FEMS microbiology letters,2011;323 (1): 75-82.MPP055Proteomic characterization of the different Legionellapneumophila life stageT. Gerlach* 1 , P. Aurass 1 , B. Voigt 2 , D. Becher 2 , M. Hecker 2 , L. Jänsch 3 ,T. Goldmann 4 , M. Ste<strong>in</strong>ert 5 , A. Flieger 11 Robert Koch-Institut, Division of Bacterial Infections (FG11),Wernigerode, Germany2 Ernst-Moritz-Arndt-Universität, Division of Microbial Physiology andMolecular Biology, Greifswald, Germany3 Helmholtz Centre for Infection Research, Cellular Proteom Research,Braunschweig, Germany4 Leibnitz-Zentrum Borstel, Cl<strong>in</strong>ical and Experimental Pathology, Borstel,Germany5 Technische Universität Braunschweig, Department of Life SciencesInstitute of Microbiology, Braunschweig, GermanyThe Gram-negative bacterium Legionella pneumophila is the causativeagent of a severe and often fatal human pneumonia, Legionnaires’ disease.In the natural environment, L. pneumophila <strong>in</strong>habits freshwater andbiofilms and parasitizes protozoan hosts. The <strong>in</strong>tracellular life cycle of L.pneumophila is divided <strong>in</strong>to two dist<strong>in</strong>ct stages: the replicative phase (RP),where the bacteria multiply until the nutrients cease, and the transmissivephase (TP), where the bacteria render virulent and <strong>in</strong>vasive. Uponprolonged periods of stress (such as nutrient deprivation, temperaturechange, etc.), L. pneumophila may enter <strong>in</strong>to the viable but not culturable(VBNC) state where the bacteria only show a very low level of metabolicactivity and do not grow on standard media. Remarkably, VBNC state L.pneumophila may resuscitate and thereby rega<strong>in</strong> culturability as well asvirulence after passage through a eucaryotic host. In consequence, VBNCstate L. pneumophila have to be considered as a public health hazard. Tocharacterize the dist<strong>in</strong>ct stages of life for L. pneumophila, <strong>in</strong> this study weperformed a systematic proteomic comparison of broth-grown RP and TPand stress-<strong>in</strong>duced VBNC states. To <strong>in</strong>duce VBNC cell formation <strong>in</strong> L.pneumophila bacteria, different stress conditions like cold and heat stress,nutrient limitation, and several chemical agents were tested. Dur<strong>in</strong>g heatstress (42°C), the number of CFU decreased to zero with<strong>in</strong> 68 dayswhereas the microcosms rema<strong>in</strong>ed stable with respect to culturability at4°C and 21°C for at least 140 days. Despite the drastic decrease <strong>in</strong> CFUcounts, 40% of the bacteria rema<strong>in</strong>ed viable accord<strong>in</strong>g to microscopiclive/dead analysis. For proteome analysis, it is essential to separate theVBNC-Legionella from dead bacteria. To this purpose, we usedfluorescence-activated cell sort<strong>in</strong>g (FACS). Our work will contribute to adeeper understand<strong>in</strong>g of the modification processes with<strong>in</strong> bacteria <strong>in</strong>response to different conditions, <strong>in</strong>clud<strong>in</strong>g adaptation to long-term stress.MPP056Carolacton cause <strong>in</strong>hibition of Streptococcus mutans biofilmsthrough the ser<strong>in</strong>e/threon<strong>in</strong>e prote<strong>in</strong> k<strong>in</strong>ase PknBM. Reck* 1 , B. Kunze 1 , J. Tomasch 1 , S. Schulz 2 , I. Wagner-Döbler 11 Helmholtz Centre for Infection Research, Microbial Communication,Braunschweig, Germany2 Technical University Braunschweig, Institute for Organic Chemistry,Braunschweig, GermanyBiofilm form<strong>in</strong>g bacteria are often significantly more resistant to drugtreatments than their planktonic counterparts and are associated to variouspathological conditions <strong>in</strong> humans as e.g. cystic fibrosis, colonisation of<strong>in</strong>dwell<strong>in</strong>g medical devices and dental plaque formation. Therefore newsubstances and therapies aim<strong>in</strong>g to erase biofilms are urgently needed. Onepossible strategy to cope with this demand is to disturb signal-transduction<strong>in</strong> biofilms.Carolacton, a secondary metabolite isolated from the myxobacteriumSorangium cellulosum was proven to disturb biofilm viability at nanomolarconcentrations. Treated biofilms showed a leakage of cytoplasmic content(prote<strong>in</strong>s and DNA) <strong>in</strong> grow<strong>in</strong>g cells at low pH. Us<strong>in</strong>g a ß-galactosidasereporter stra<strong>in</strong> and quantitative PCR the efflux-dynamics of <strong>in</strong>tracellularprote<strong>in</strong>s and DNA were quantified. The strong acidification occurr<strong>in</strong>gdur<strong>in</strong>g biofilm growth was shown to be responsible for the biofilm-specificactivity of carolacton.A chemical conversion of the of the ketocarbonic function of the moleculeto a methlyester did not impact its activity, <strong>in</strong>dicat<strong>in</strong>g that carolacton is notfunctionally activated at low pH by a change of its net charge. Besidemultiple genes <strong>in</strong>volved <strong>in</strong> cell wall metabolism the VicKRX and ComDEtwo-component signal transduction systems were found to play anessential role <strong>in</strong> the cellular response to carolacton treatment as identifiedby time-resolved microarray analysis. The <strong>in</strong>fluence of carolacton on denovo cell wall metabolism and cell division was further <strong>in</strong>vestigated byfluorescence microscopy us<strong>in</strong>g a fluorescent vancomyc<strong>in</strong> derivative.A sensitivity test<strong>in</strong>g of mutants with deletions of all 13 viable histid<strong>in</strong>ek<strong>in</strong>ases and the ser<strong>in</strong>e/threon<strong>in</strong>e prote<strong>in</strong> k<strong>in</strong>ase PknB identified only thepknB mutant to be <strong>in</strong>sensitive to carolacton treatment. Furthermore astrong overlap between the PknB-regulon <strong>in</strong> S. mutans and the genesaffected by carolacton treatment was found. In conclusion the data suggestthat carolacton <strong>in</strong>terferes with PknB-mediated signall<strong>in</strong>g <strong>in</strong> grow<strong>in</strong>g cells.The altered cell wall metabolism and architecture cause membrane damageand cell death at low pH.MPP057Systems biology analysis of metabolic adaptation of Staphylococcusaureus and analysis of the impact of prote<strong>in</strong> complexesM. Burian* 1 , C. Liang 2 , T. Dandekar 2 , U. Völker 11 Interfaculty Institute for Genetics and Functional Genomics, Departmentof Functional Genomics, Greifswald, Germany2 Biocenter, University of Würzburg, Department of Bio<strong>in</strong>formatics,Würzburg, GermanySystems biology approaches, comb<strong>in</strong><strong>in</strong>g modern OMICs techniques withbio<strong>in</strong>formatics and mathematical model<strong>in</strong>g allow us to explore howadaptation of cell physiology and metabolic processes affect pathogenicity<strong>in</strong> a more “panoramic view” and thus may accomplish a new level ofunderstand<strong>in</strong>g. The emergence of methicill<strong>in</strong>-resistant Staphylococcusaureus (MRSA) stra<strong>in</strong>s caus<strong>in</strong>g serious <strong>in</strong>fections even <strong>in</strong> healthy<strong>in</strong>dividuals (CA-MRSA) represents a major threat and underscores theneed for a comprehensive understand<strong>in</strong>g of virulence mechanisms. S<strong>in</strong>ce itis known that the basic cell physiology determ<strong>in</strong>es not only growth butpathogenicity as well, we want to identify the concentrations and complexformation of prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> central carbon metabolism. Twophysiological adaptation scenarios, which are very likely encountered by S.aureus dur<strong>in</strong>g <strong>in</strong>fection sett<strong>in</strong>gs are addressed <strong>in</strong> vitro: i) changes <strong>in</strong> thesupply of carbon sources and ii) the aerobic/anaerobic shift. In addition,prote<strong>in</strong> concentrations of <strong>in</strong>ternalized S. aureus cells by non-professionalphagocytes will be determ<strong>in</strong>ed.For absolute quantification of prote<strong>in</strong>s we use the QconCAT technologywhich allows quantification of up to 15 prote<strong>in</strong>s with<strong>in</strong> a syntheticstandard prote<strong>in</strong>. The design as well as the construction (heterologousexpression, label<strong>in</strong>g with stable isotopes, purification and quality control)of 4 QconCAT prote<strong>in</strong>s <strong>in</strong> total (cover<strong>in</strong>g all enzymes of the glycolysis,TCA-cycle, gluconeogenesis, pentosephosphate pathway and prote<strong>in</strong>s<strong>in</strong>volved <strong>in</strong> the aerobic/anaerobic shift) is completed. For experimentalscreen<strong>in</strong>g of prote<strong>in</strong> complexes we use <strong>in</strong> vivo cross-l<strong>in</strong>k<strong>in</strong>g and tagg<strong>in</strong>gexperiments. Enzymes of the central carbon metabolism are used as a baitprote<strong>in</strong>,tagged with a Strep-tag and <strong>in</strong>serted <strong>in</strong>to the plasmid pMADBIOspektrum | Tagungsband <strong>2012</strong>


123which is then used to exchange the wild type copy of the gene with thetagged gene version.F<strong>in</strong>ally, <strong>in</strong>tegrat<strong>in</strong>g these isotope and tap-tagged data <strong>in</strong>to bio<strong>in</strong>formaticapproaches allows us not only to reconstruct fluxes but also the dynamicsof different prote<strong>in</strong> complexes. Consequently, we will determ<strong>in</strong>e to whatdegree prote<strong>in</strong> complexes are required for physiological fitness of S.aureus, which accounts to a better understand<strong>in</strong>g of its pathophysiology.MPP058The Patat<strong>in</strong>-like Prote<strong>in</strong> VipD/ PatA - a phospholipase A ofLegionella pneumophila play<strong>in</strong>g a role <strong>in</strong> bacterium-host <strong>in</strong>teractionK. Seipel*, P. Aurass, A. FliegerRobert Koch-Institut, FG 11 Division of Bacterial Infections, Wernigerode,GermanyThe phospholipase VipD/ PatA is one of eleven patat<strong>in</strong>-like prote<strong>in</strong>s (PLP)found <strong>in</strong> Legionella pneumophila. Patat<strong>in</strong>-like prote<strong>in</strong>s are lipid-acylhydrolases ma<strong>in</strong>ly characterized <strong>in</strong> plants so far, but they were previouslyshown to be widely coded with<strong>in</strong> bacterial genomes. In L. pneumophila,VipD/ PatA was determ<strong>in</strong>ed to be a substrate of the type IVB secretionsystem by Shohdy et al. (PNAS 2005). We focused on this prote<strong>in</strong> becauseit is the L. pneumophila PLP which is most similar to ExoU, a potentphospholipase and cytotox<strong>in</strong> of Pseudomonas aerug<strong>in</strong>osa that causes rapidhost cell death upon <strong>in</strong>jection by the type III secretion system of thispathogen. We previously found that similar to ExoU, VipD/ PatA localizesto the cytoplasmic membrane after expression <strong>in</strong> A549 lung epithelialcells. Here, the C-term<strong>in</strong>al region of the prote<strong>in</strong> plays an essential role,because deletion of the 129 C-term<strong>in</strong>al am<strong>in</strong>o acids abolishes propertarget<strong>in</strong>g. We now aimed to characterize the prote<strong>in</strong> determ<strong>in</strong>ants fortranslocation of VipD/ PatA to the cytoplasmic membrane. Therefore, wemutated or deleted potential phosphorylation sites, special conservedmotifs and a potential transmembrane doma<strong>in</strong> as well as a region of lowcomplexity to evaluate the <strong>in</strong>fluence of these parts for membranelocalization. The lipolytic activity of VipD/ PatA, for which Ser<strong>in</strong>-72embedded <strong>in</strong> a G-X-S-X-G lipase motif is essential, is not required formembrane target<strong>in</strong>g.MPP059sRNA-mediated control of the primary <strong>in</strong>vasion factor <strong>in</strong>vas<strong>in</strong><strong>in</strong> Yers<strong>in</strong>ia pseudotuberculosisS. Seekircher*, K. Böhme, A.K. Heroven, W. Opitz, P. DerschHZI, MIBI, Braunschweig, GermanyYers<strong>in</strong>ia pseudotuberculosis is an enteric human pathogen that causes gutassociateddiseases. The primary virulence determ<strong>in</strong>ant is the outermembrane prote<strong>in</strong> <strong>in</strong>vas<strong>in</strong>. This prote<strong>in</strong> mediates bacterial b<strong>in</strong>d<strong>in</strong>g to and<strong>in</strong>vasion through the epithelial cells of the gut.Invas<strong>in</strong> expression is controlled by rovA (regulator of virulence A) <strong>in</strong>response to the surround<strong>in</strong>g temperature and ion availability (1). One keyregulator of rovA <strong>in</strong> turn is the csr (carbon storage regulator) system. It iscomposed of the RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> CsrA and two regulatory RNAs,csrB and CsrC. These RNAs sequester CsrA thus controll<strong>in</strong>g its function (2).Expression and stability of the two RNAs is controlled by differentregulators and sensory cascades. Recent f<strong>in</strong>d<strong>in</strong>gs showed that CsrBexpression is activated upon bacterial contact to epithelial cells. Althougha two-component regulator system is known to <strong>in</strong>duce CsrB synthesis thecell contact signal is not <strong>in</strong>tegrated via this sensor system.The regulation of CsrC <strong>in</strong>volves various transcriptional and posttranscriptionalmodulators. For example the Yers<strong>in</strong>ia modulator A (YmoA)confers CsrC RNA stability. However, CsrC stability is not directlymediated by YmoA. Microarray analysis <strong>in</strong>dicated that YmoA affectsexpression of different RNases, which might control CsrC turnover.(1) Nagel G., Lahrz A., Dersch P. „Environmental control of <strong>in</strong>vas<strong>in</strong> expression <strong>in</strong> Yers<strong>in</strong>iapseudotuberculosisis mediated by regulation of RovA, a transcriptional activator of the SlyA/Horfamily.“ Mol Microbiol. 2001 Sep; 41(6):1249-69.(2) Heroven, AK, Böhme, K., Rohde, M., Dersch, P. „A Csr-type regulatory system, <strong>in</strong>clud<strong>in</strong>gsmall non-cod<strong>in</strong>g RNAs, regulates the global virulence regulator RovAofYers<strong>in</strong>iapseudotuberculosisthrough RovM.“ Mol Microbiol. 2008 Jun; 68(5):1179-95.MPP060Proteomic characterization of host pathogen <strong>in</strong>teractiondur<strong>in</strong>g <strong>in</strong>ternalization of S. aureus by A549 cellsK. Surmann* 1 , M. Simon 1 , P. Hildebrandt 1 , H. Pförtner 1 , V.M. Dhople 1 ,N. Reil<strong>in</strong>g 2 , U. Schaible 3 , F. Schmidt 1 , U. Völker 11 EMA University Greifswald, Functional Genomics, Greifswald, Germany2 Research Center Borstel, Division of Microbial Interface Biology,Borstel, Germany3 Research Center Borstel, Department of Molecular Infection Biology,Borstel, Germanylike sepsis or endocarditis [2]. Therefore, it is of <strong>in</strong>terest to understand themechanism of adaptation of the pathogen upon <strong>in</strong>fection as well as theresponse of its host. Proteomic studies of <strong>in</strong>ternalized bacteria are stronglylimited by the low number of cells recoverable from the host. With ournewly developed workflow that comb<strong>in</strong>es a pulse-chase SILAC approach,GFP supported enrichment of bacterial prote<strong>in</strong>s by fluorescence activatedcell sort<strong>in</strong>g (FACS) and gel-free mass spectrometry analysis (MS), it ispossible to monitor the proteome of S. aureus RN1HG pMV158GFP<strong>in</strong>ternalized by S9 cells, human bronchial epithelial cells [3]. We identifiedabout 600 S. aureus prote<strong>in</strong>s from 3-7x10 6 <strong>in</strong>ternalized bacteria and morethan 500 could be quantified. A further <strong>in</strong>terest<strong>in</strong>g host model for this<strong>in</strong>fection assay is the A549 cell l<strong>in</strong>e. Those cells belong to the alveoli ofhuman lungs, produce surfactant [4] and secrete certa<strong>in</strong> cytok<strong>in</strong>es and havetherefore an impact also on the <strong>in</strong>nate immune system. In present study weanalyzed the proteome of S. aureus after <strong>in</strong>ternalization by A549 cells.Dur<strong>in</strong>g a time range from 1.5-6.5 hours after <strong>in</strong>fection 1-3x10 6 bacteriacould be separated from the host cells. With an optimized protocolidentification and quantification of 842 prote<strong>in</strong>s could be accomplished.We could show that prote<strong>in</strong>s belong<strong>in</strong>g to e.g. peptidoglycan biosynthesisand glycolysis/gluconeogenesis were upregulated dur<strong>in</strong>g <strong>in</strong>fection.However, staphylococcal virulence factors which have an <strong>in</strong>fluence on itspathogenicity like hemolytic tox<strong>in</strong>s, adhes<strong>in</strong>s and enzymes which <strong>in</strong>terferewith host cell signal<strong>in</strong>g are ma<strong>in</strong>ly secreted <strong>in</strong>to the host cell lumen andtherefore lost dur<strong>in</strong>g FACS sort<strong>in</strong>g. In order to make those extracellularprote<strong>in</strong>s also accessible, we now established methods of enrich<strong>in</strong>g cellularcomponents <strong>in</strong> which S. aureus presumably resides [5]. Us<strong>in</strong>g densitygradient centrifugation and lipobiot<strong>in</strong> attached to magnetic beads,compartments conta<strong>in</strong><strong>in</strong>g S. aureus and its secreted prote<strong>in</strong>s were isolatedand analyzed by LC-MS. Microscopic techniques were applied to provethe <strong>in</strong>tracellular localization of S. aureus. Compartments conta<strong>in</strong><strong>in</strong>g<strong>in</strong>ternalized S. aureus will then be isolated and lysed probably mak<strong>in</strong>g the<strong>in</strong> vivo secretome of S. aureus accessible to proteome analysis.[1] Garzoni, C., Kelley, W.L. (2009):Trends Microbiol., 17(2), 59-65.[2] Lowy, F.D. (1998) N. Engl. J. Med., 339: 520-532.[3] Schmidt, F. et al (2010): Proteomics, 10(15): 2801-11.[4] Lieber, M. et al (1976): International Journal of Cancer, 17(1): p. 62-70.[5] S<strong>in</strong>ha, B., Fraunholz, M. (2010): International Journal of Medical Microbiology, 300(2-3):170-5.MPP061Direct activation of Legionella pneumophila glycerophospholipid:cholesterol acyltransferase PlaC by the z<strong>in</strong>c metalloprote<strong>in</strong>aseProAC. Lang* 1 , E. Rastew 2 , B. Hermes 2 , E. Siegbrecht 2 , S. Banerji 2 , A. Flieger 11 Robert Koch Institut, Division of Bacterial Infections (FG11),Wernigerode, Germany2 Robert Koch Institut, Berl<strong>in</strong>, GermanyLegionella pneumophila <strong>in</strong>fects both mammalian cells and environmentalhosts, such as amoeba. Enzymes secreted by Legionella pneumophila, suchas phospholipases A (PLA) and glycerophospholipid: cholesterolacyltransferases (GCAT), may target host cell lipids and thereforecontribute to Legionnaires’ disease establishment. L. pneumophilapossesses three prote<strong>in</strong>s, PlaA, PlaC, and PlaD, belong<strong>in</strong>g to the GDSLfamily of lipases / acyltransferases. Enzymatic activity of these enzymesdepends on a conserved nucleophilic ser<strong>in</strong>e embedded <strong>in</strong>to the GDSLmotif as well as on the residues aspartate and histid<strong>in</strong> together build<strong>in</strong>g upthe catalytic triad. The sequences of PlaA and PlaC harbour N-term<strong>in</strong>alsignal peptides for Sec and subsequent type II-dependent prote<strong>in</strong> export,whereas the secretion mode of PlaD is still unclear. PlaC is the majorGCAT secreted by L. pneumophila and able to transfer free fatty acidsfrom phospholipids to cholesterol and ergosterol, additional to PLA andLPLA activities. This GCAT activity is post-transcriptionally regulated byProA, a secreted z<strong>in</strong>c metalloprotease. S<strong>in</strong>ce cholesterol is an importantcompound of mammalian cell membranes and ergosterol of amoebamembranes, GCAT activity might be a tool for host cell remodell<strong>in</strong>gdur<strong>in</strong>g Legionella <strong>in</strong>fection. Our aim was to characterize the mode of PlaCGCAT activation and to determ<strong>in</strong>e how ProA processes PlaC. Our results<strong>in</strong>dicate that PlaC forms two prote<strong>in</strong> loops due to <strong>in</strong>tramolecular disulfidebonds which are both essential for PLA / GCAT activities. Analyses of thepotential cleavage site as well as loop 1 deletion mutants suggest theimportance of ProA loop deletion for GCAT activation. Our data therefore<strong>in</strong>dicate a novel enzyme <strong>in</strong>hibition / activation mechanism where loop 1displays an <strong>in</strong>hibitory effect on PlaC GCAT and full PLA activity untilPlaC is exported to the external space and subsequently activated by ProA.S. aureus was widely considered an extracellular pathogen. In the lastyears it became evident that it is able to <strong>in</strong>vade and persist <strong>in</strong> nonprofessionalphagocytic cells [1]. Besides milder sk<strong>in</strong> <strong>in</strong>fections thisGram-positive bacterium is known to <strong>in</strong>duce severe systemic <strong>in</strong>fectionsBIOspektrum | Tagungsband <strong>2012</strong>


124MPP062Invasiveness of Salmonella serotypes Typhimurium andEnteritidis for transfected primary chicken <strong>in</strong>test<strong>in</strong>al cells.D. Witek* 1 , A. Dreusch 2 , W. Rudy 2 , R. Napierala 3 , Anja Bruchmann 41 Wroclaw University of Environmental and Live Sciences, Wroclaw, Poland,Poland2 MicroMol Gesellschaft für mikrobiologische und molekularbiologischeAuftragsforschung mbH, Karlsruhe, Germany3 Poznan University of Life Sciences, Poznan, Poland4 University of Mannheim, GermanyIntroduction: 33% of salmonellosis is caused by S.Enteritidis. Humancontam<strong>in</strong>ation ma<strong>in</strong>ly occurs from poultry products. S. Enteritidisrepresents a major problem <strong>in</strong> chicken rear<strong>in</strong>g because <strong>in</strong>fection is<strong>in</strong>sidious <strong>in</strong> these animals and they are usually asymptomatic carriers ofSalmonella. Bacteria pass to the eggs transovar and probably alsoretrocecal and chickens contam<strong>in</strong>ate their fellow birds by spread<strong>in</strong>gSalmonella <strong>in</strong> the environment via excretion. S. Typhimurium is localized<strong>in</strong> the host cell with<strong>in</strong> a membrane compartment known as the Salmonellaconta<strong>in</strong><strong>in</strong>gvacuole (SCV). These bacteria are capable to survive andreplicate with<strong>in</strong> the SCV, eventually kill<strong>in</strong>g the host cell and be<strong>in</strong>greleased <strong>in</strong>to the extracellular medium to <strong>in</strong>fect other cells. Salmonellaserotypes are responsible for gastroenteritis <strong>in</strong> humans <strong>in</strong> <strong>in</strong>dustrializedcountries [1] [2].Method: The <strong>in</strong>test<strong>in</strong>e wall from 18-day-old chicken embryos was cut,washed several times and digested for 18h at 4°C and subsequently for 30m<strong>in</strong> at 37°C with Tryps<strong>in</strong>/EDTA. Cells were f<strong>in</strong>ally separated by gentlypipett<strong>in</strong>g <strong>in</strong> the presence of DMEM supplemented with 2% chicken serum,2 mM L-glutam<strong>in</strong>e and 10 g/ml epithelial growth factor and <strong>in</strong>cubated for2h at 37°C [3]. After <strong>in</strong>cubation cells were diluted <strong>in</strong> basal seed<strong>in</strong>gmedium supplemented with 10% FCS and 2mM L-glutam<strong>in</strong>e. Transfectionof primary chicken cells was carried out us<strong>in</strong>g retroviral vector pBABEhTERT-p53DD.The cells were cloned twice by limit<strong>in</strong>g dilution andcharacterized us<strong>in</strong>g epithelial cell markers. An <strong>in</strong>vasion assay was carriedout to research the <strong>in</strong>vasiveness of Salmonellafor primary chicken<strong>in</strong>test<strong>in</strong>al cells. Cells were <strong>in</strong>fected with Salmonella for 1 hour(multiplicity of <strong>in</strong>fection (MOI) 100). Serial dilutions were plated forviable bacterial count<strong>in</strong>g. For quantification of <strong>in</strong>tracellular bacteriachicken cells were treated with gentamic<strong>in</strong> to kill extracellular bacteria.After <strong>in</strong>cubation epithelial cells were lysed and the number of <strong>in</strong>ternalizedbacterial cells was enumerated by plat<strong>in</strong>g serial lysate dilutions [4].Results: This study shows that Salmonella does not cause apoptosis <strong>in</strong>cultured primary chicken epithelial cells and is able to <strong>in</strong>fect the cells anddivide with<strong>in</strong> them after 3-4 hours of <strong>in</strong>fection.[1] Virlogeux-Payant, I. at al., 2003. Low persistence of a large-plasmid-cured variant of Salmonellaenteritidis <strong>in</strong> ceca of chicks. Avian Dis. 47/1, 163-8.[2] F<strong>in</strong>lay, B., B. et al., 2000. Salmonella <strong>in</strong>teractions with host cells: <strong>in</strong> vitro to <strong>in</strong> vivo. Philos. Trans. R.Soc. Lond., B, Biol. Sci. 355/1397, 623-31.[3] Velge, P. et al, 2002. Establishment and characterization of partially differentiated chicken enterocyte cellclones. Eur. J. Cell Biol. 81/4, 203-12Liu, C. et al., 2010. Adhesion and immunomodulatory effects of Bifidobacterium lactis HN019 on <strong>in</strong>test<strong>in</strong>alepithelial cells INT-407. World J. Gastroenterol. 16/18, 2283-90.MPP063Characterization of the C-term<strong>in</strong>al half of major cellassociatedphospholipase A PlaB of Legionella pneumophilaK. Kuhle* 1 , J. Bender 1 , K. Heuner 2 , A. Flieger 11 Robert Koch-Institut, FG11, Wernigerode, Germany2 Robert Koch-Institut, Berl<strong>in</strong>, GermanyThe lung pathogen Legionella pneumophila expresses a variety ofphospholipases potentially <strong>in</strong>volved <strong>in</strong> disease-promot<strong>in</strong>g processes anddevelopment of pneumonia. The recently identified major cell-associatedphospholipase A (PLA)/ lysophospholipase A (LPLA) with an additionalhemolytic activity, designated PlaB, shares no homology to previouslydescribed phospholipases. So far, it was shown that PlaB utilizes a typicaltriad of Ser-Asp-His for effective hydrolysis of phospholipids locatedwith<strong>in</strong> the N-term<strong>in</strong>al half of the prote<strong>in</strong> for cleavage of phospholipids,such as phosphatidylglycerol (PG) and -chol<strong>in</strong>e (PC) as well as therespective lysophospholipids. We further determ<strong>in</strong>ed that PC- but not PGhydrolyz<strong>in</strong>gPLA activity is directly l<strong>in</strong>ked to the hemolytic potential ofPlaB. The first characterized member of a new family of lipases also playsan important role as virulence factor <strong>in</strong> a gu<strong>in</strong>ea pig <strong>in</strong>fection model. Untilnow, the function of the C-term<strong>in</strong>al half of the prote<strong>in</strong> is unknown, but itcontributes to lipolytic activity. Therefore we aimed to characterize itsfunction. Interest<strong>in</strong>gly, the analysis of three C-term<strong>in</strong>ally truncatedversions of PlaB recomb<strong>in</strong>antly expressed <strong>in</strong> E. coli revealed, that a lack ofonly 5 am<strong>in</strong>o acids (aa) leads to a decrease of PC-PLA activity. The lackof 10 aa at the C-term<strong>in</strong>us however results <strong>in</strong> a decrease of PG- and PC-PLA activity whereas the removal of 15 aa completely abolishes theenzymatic activity. Furthermore, sufficient amounts of soluble and activePlaB have been successfully purified and used for antibody production.This now allows detection of the prote<strong>in</strong> <strong>in</strong> L. pneumophila and therebycharacterization of its def<strong>in</strong>ite localization and export pathway.MPP064Resistance phenotypes mediated by Am<strong>in</strong>oacyl-Phosphatidylglycerol SynthasesW. Arendt* 1 , S. Hebecker 1 , S. Jäger 1 , M. Nimtz 2 , J. Moser 11 TU Braunschweig, Institut für Mikrobiologie, Braunschweig, Germany2 Helmholtz-Zentrum für Infektionsforschung, Institut für ZelluläreProteomik, Braunschweig, GermanyThe specific am<strong>in</strong>oacylation of the phospholipid phosphatidylglycerol(PG) with alan<strong>in</strong>e or with lys<strong>in</strong>e catalyzed by am<strong>in</strong>oacylphosphatidylglycerolsynthases (aaPGS) was shown to render variousorganisms less susceptible to antibacterial agents. This study makes use ofPseudomonas aerug<strong>in</strong>osa chimeric mutant stra<strong>in</strong>s produc<strong>in</strong>g lysylphosphatidylglycerol(L-PG) <strong>in</strong>stead of the naturally occurr<strong>in</strong>g alanylphosphatidylglycerol(A-PG) to study the result<strong>in</strong>g impact on bacterialresistance. Consequences of such artificial phospholipid composition werestudied <strong>in</strong> the presence of an overall of n<strong>in</strong>e antimicrobials (-lactams, alipopeptide antibiotic, cationic surfactants, CAMPs) to quantitativelyassess the effect of A-PG substitution (with L-PG, L-PG and A-PG,<strong>in</strong>creased A-PG levels). For the employed P. aerug<strong>in</strong>osa model system anexclusive ‘charge repulsion mechanism’ does not expla<strong>in</strong> the attenuatedantimicrobial susceptibility due to PG modification. Additionally, thespecificity of n<strong>in</strong>e orthologous aaPGS enzymes was experimentallydeterm<strong>in</strong>ed. The newly characterized prote<strong>in</strong> sequences allowed toestablish a significant group of A-PG synthase sequences which werebio<strong>in</strong>formatically compared to the related group of L-PG synthesiz<strong>in</strong>genzymes. The analysis revealed a diverse orig<strong>in</strong> for the evolution of A-PGand L-PG synthases as the specificity of an <strong>in</strong>dividual enzyme is notreflected <strong>in</strong> terms of a characteristic sequence motif. This f<strong>in</strong>d<strong>in</strong>g isrelevant for future development of potential aaPGS <strong>in</strong>hibitors.MPP065Yada mediated complement evasion of Yers<strong>in</strong>ia enterocoliticaM. Sch<strong>in</strong>dler* 1 , M. Schütz 1 , S. Rooijakkers 2 , T. Hallström 3 , I. Autenrieth 11 Mediz<strong>in</strong>ische Mikrobiologie, Universitätskl<strong>in</strong>ikum Tüb<strong>in</strong>en, Tüb<strong>in</strong>gen,Germany2 Medical Microbiology , University Medical Center, Utrecht, Netherlands3 Leibniz Institute for Natural Product Research and Infection Biology, Hans-Knöll-Institute, Jena, GermanyThe Yers<strong>in</strong>ia adhes<strong>in</strong> A (YadA) is a trimeric autotransporter adhes<strong>in</strong> withmultiple functions <strong>in</strong> host-pathogen <strong>in</strong>teractions. A major function ofYadA is the protection of Yers<strong>in</strong>ia from kill<strong>in</strong>g by the host complementsystem. Numerous studies have shown that YadA is essential forcomplement evasion <strong>in</strong> vitro (1,2,4). Recently, we have generated severalYers<strong>in</strong>ia enterocolitica (Ye) stra<strong>in</strong>s express<strong>in</strong>g po<strong>in</strong>t mutated versions ofYadA carry<strong>in</strong>g a s<strong>in</strong>gle am<strong>in</strong>o acid exchange (G389 was exchanged witham<strong>in</strong>o acids of <strong>in</strong>creas<strong>in</strong>g side cha<strong>in</strong> size: A, S) with<strong>in</strong> the membraneanchor doma<strong>in</strong>. We have shown <strong>in</strong> vitro that when expressed <strong>in</strong> E. coli theYadA trimer stability decreases with <strong>in</strong>creas<strong>in</strong>g side cha<strong>in</strong> size (3). Wehave also shown that the decreased trimer stability has an effect on serumresistance, <strong>in</strong>teraction with the complement regulator Factor H andvirulence of Yers<strong>in</strong>ia enterocolitica <strong>in</strong> a mouse model of <strong>in</strong>fection (5). Tofurther dissect the mechanism of YadA-mediated complement evasion wethoroughly analysed b<strong>in</strong>d<strong>in</strong>g of complement factors and found that YadAof Yers<strong>in</strong>ia enterocolitica is able to actively recruit the complement prote<strong>in</strong>C3. C3 that b<strong>in</strong>ds to the bacterial surface is subsequently <strong>in</strong>activated bycomplement factors <strong>in</strong> a YadA-dependent manner. The b<strong>in</strong>d<strong>in</strong>g of C3 alsoplays a supportive role <strong>in</strong> the b<strong>in</strong>d<strong>in</strong>g of the complement regulator FactorH. C3 <strong>in</strong>activation results <strong>in</strong> a reduced activation of the later steps of thecomplement system, especially <strong>in</strong> a reduced formation of the term<strong>in</strong>alcomplement complex. Consequently, this leads to an enhanced serumresistance of Yers<strong>in</strong>ia enterocolitica.1. Biedzka-Sarek, M., Jarva, H., Hyytiä<strong>in</strong>en, H., Meri, S. and Skurnik, M., Infect Immun, 2008, 76,4100-4109 2. Biedzka-Sarek, M., Salmenl<strong>in</strong>na, S., Gruber, M., Lupas, A.N., Meri, S. and Skurnik,M., Infect Immun, 2008, 76, 5016-5027 3. Grossk<strong>in</strong>sky, U., Schütz, M., Fritz, M., Schmid, Y.,Lamparter, M.C., Szczesny, P., Lupas, A.N., Autenrieth, I.B. and L<strong>in</strong>ke, D., J Bacteriol, 2007, 189,9011-9019 4. Kirjava<strong>in</strong>en, V., Jarva, H., Biedzka-Sarek, M., Blom, A.M., Skurnik, M. and Meri, S.,PLoS Pathog, 2008, 4, e1000140 5. Schütz, M., Weiss, E.-M., Sch<strong>in</strong>dler, M., Hallström, T., Zipfel,P.F., L<strong>in</strong>ke, D., and Autenrieth, I.B., Infect Immun, 2010, 78, 2677-2690MPP066RNA-sequenc<strong>in</strong>g analysis of c-di-GMP effects on the UPECtranscriptomeA. Borries*, E. Lacanna, A. BöhmUni Würzburg, Institute for Molecular Infection Biology, Würzburg,GermanyThe bacterial signal<strong>in</strong>g molecule cyclic dimeric GMP (c-di-GMP) is a keyfactor controll<strong>in</strong>g the transition from acute <strong>in</strong>fection <strong>in</strong>to a state of chronic<strong>in</strong>fection. Generally, high <strong>in</strong>tracellular levels of c-di-GMP favorpersistence and <strong>in</strong>terfere with acute virulence. However, little is knownabout the molecular mechanisms underly<strong>in</strong>g this c-di-GMP based switchfrom virulence to persistence. In particular, only few mRNAs or noncod<strong>in</strong>gRNAs are known to change their cellular abundance <strong>in</strong> response toBIOspektrum | Tagungsband <strong>2012</strong>


125altered c-di-GMP levels. Here we used a comparative RNA-sequenc<strong>in</strong>gapproach to identify genes <strong>in</strong> uropathogenic E. coli that are controlled byc-di-GMP. In addition we used ribo-sequenc<strong>in</strong>g to globally maptranscription start sites and to discover several novel transcripts, <strong>in</strong>clud<strong>in</strong>gpredicted regulatory RNAs. Results are discussed with a focus on genesencoded <strong>in</strong> pathogenicity islands and on additional factors known to be<strong>in</strong>volved <strong>in</strong> E. coli virulence dur<strong>in</strong>g bladder <strong>in</strong>fections.MPP067Posttranslational prote<strong>in</strong> modifications <strong>in</strong> host pathogen<strong>in</strong>teractionsE. Richter*, M. Harm, K. Ventz, J. Mostertz, F. HochgräfeGreifswald University, ZIK FunGene, Junior Research GroupPathoproteomics, Greifswald, GermanyMany bacteria cause life threaten<strong>in</strong>g diseases and face cl<strong>in</strong>icians with adilemma caused by an <strong>in</strong>creas<strong>in</strong>g resistance of bacterial <strong>in</strong>fections aga<strong>in</strong>stcurrent treatment options. Prote<strong>in</strong> modifications, such as phosphorylationand thiol oxidation, seem to be crucial for the host <strong>in</strong> order to reactadequately to the <strong>in</strong>vad<strong>in</strong>g pathogen. In pathogenic bacteria, on the otherhand, they are believed to be critical for adaptation and virulence. Ourgroup hypothesises that analys<strong>in</strong>g prote<strong>in</strong> modifications <strong>in</strong> host pathogenmodels with system wide approaches will not only lead to a betterunderstand<strong>in</strong>g of the biology of <strong>in</strong>fections but can also result <strong>in</strong> thedevelopment of novel pharmaceutical <strong>in</strong>tervention strategies. To this end,we use quantitative mass spectrometry based proteomics <strong>in</strong> comb<strong>in</strong>ationwith modification specific enrichment and visualization strategies<strong>in</strong>clud<strong>in</strong>g aff<strong>in</strong>ity-based k<strong>in</strong>ase and phosphopeptide enrichments as well asfluorescence and differential chemical thiol-redox labell<strong>in</strong>g.MPP068Microevolution of Pseudomonas aerug<strong>in</strong>osa clonal l<strong>in</strong>eagesJ. Klockgether*, N. Cramer, C.F. Davenport, B. TümmlerHannover Medical School, Cl<strong>in</strong>ical Research Group - OE 6711; Ped.Pneumology, Hannover, GermanyQuestion: Chronic airway <strong>in</strong>fections with P. aerug<strong>in</strong>osa are frequent <strong>in</strong><strong>in</strong>dividuals with cystic fibrosis (CF) and are a paradigm of howenvironmental bacteria can conquer, adapt and persist <strong>in</strong> an atypicalhabitat. The phenotypical conversion goes along with a microevolution ofthe genome dur<strong>in</strong>g colonization of the airways.Methods: At Hannover Medical School sequential isolates have beencollected s<strong>in</strong>ce the onset of colonization from patients seen at the CFcl<strong>in</strong>ic, who became chronically colonized <strong>in</strong> their airways with P.aerug<strong>in</strong>osa between 1982 and 1991. Detect<strong>in</strong>g the same clonal l<strong>in</strong>eage forisolates over a long time course by a genotyp<strong>in</strong>g microarray <strong>in</strong>dicated thepersistence and adaptation of the respective P. aerug<strong>in</strong>osa clone. In orderto analyse microevolution we selected sequential isolates for comparativegenomics. First, <strong>in</strong>termediary and late isolates were sequenced by Illum<strong>in</strong>asequenc<strong>in</strong>g and analysed for their global fitness and phenotypic diversity.Informative genetic markers were then used for genotyp<strong>in</strong>g all sequentialisolates to reconstruct the temporal evolution with<strong>in</strong> the clonal l<strong>in</strong>eagesdur<strong>in</strong>g the <strong>in</strong>fection periods of up to 20 years.Results and Conclusion: Results for isolates belong<strong>in</strong>g to the commonclone PA14 for example <strong>in</strong>dicated a diversification <strong>in</strong>to three branches <strong>in</strong>the patient’s lungs with 15 nucleotide substitutions and a large deletionacquired by the population dur<strong>in</strong>g the observation period. The genome ofanother common clone (clone C) rema<strong>in</strong>ed <strong>in</strong>variant dur<strong>in</strong>g the first threeyears, 15 years later, however, 947 transitions and 12 transversions hadaccumulated <strong>in</strong> an isolate, likely after acquisition of a mutation <strong>in</strong> mutL.Another study on <strong>in</strong>traclonal diversity of P. aerug<strong>in</strong>osa was done on CFisolates belong<strong>in</strong>g to the clonal complex TB. The respective stra<strong>in</strong>s wereisolated <strong>in</strong> 1983 <strong>in</strong> the Hannover CF cl<strong>in</strong>ic from different patients andshowed highly divergent phenotypes. Sequenc<strong>in</strong>g, however, revealed onlyfew genomic differences as only a few nucleotide exchanges and smalldeletions were detected as probable causes for divergent phenotypes.MPP069Differential attachment of Lyme disease spirochetes to humankerat<strong>in</strong>ocytesS. Bigelmayr, C. Hammerschmidt, A. Koenigs, P. Kraiczy*J.W. Goethe University Hospital, Institute of Medical Microbiology andInfection Contro, Frankfurt, GermanyUpon entry <strong>in</strong>to the human host by a bite of an <strong>in</strong>fected tick, spirocheteshave developed diverse strategies to successfully colonize host tissues andsurvive <strong>in</strong> an unfavorable hostile environment. Attachment to human cellsis thought to be a key step for the establishment of an <strong>in</strong>fection that causesmultiple cl<strong>in</strong>ical symptoms <strong>in</strong>clud<strong>in</strong>g serious neurological as well as longtermdermatological manifestations. Infection of the various tissuesdepends on the ability of spirochetes to b<strong>in</strong>d to different cell types. In thisstudy, we exam<strong>in</strong>ed the ability of Lyme disease spirochetes belong<strong>in</strong>g tofive dist<strong>in</strong>ct human pathogenic genospecies (Borrelia burgdorferi, B.afzelii, B. gar<strong>in</strong>ii, B. spielmanii, and B. bavariensis) and two genospecieswith disputed pathogenic potential (B. lusitaniae and B. valaisiana) to b<strong>in</strong>dto human kerat<strong>in</strong>ocytes. Among the genospecies analysed, B. valaisianaand B. spielmanii showed the strongest attachment (up to 1200 borrelialcells per 100 kerat<strong>in</strong>ocytes) while B. bavariensis, B. gar<strong>in</strong>ii, and B. afzeliidisplayed a moderate b<strong>in</strong>d<strong>in</strong>g activity (up to 120 bacterial cells per 100kerat<strong>in</strong>ocytes) suggest<strong>in</strong>g a role of these five genospecies <strong>in</strong> mediat<strong>in</strong>g<strong>in</strong>fection of human sk<strong>in</strong>. In contrast, B. burgdorferi and B. lusitaniaecompletely lacked b<strong>in</strong>d<strong>in</strong>g. Furthermore, <strong>in</strong>traspecies differences have alsobeen observed among B. gar<strong>in</strong>ii, B. bavariensis, B. afzelii, and <strong>in</strong> particularB. valaisiana.Recently, it has been shown that bacterial prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> serumresistance confer attachment to human kerat<strong>in</strong>ocytes. Among Lymedisease spirochetes, complement regulator-acquir<strong>in</strong>g surface prote<strong>in</strong>s(CRASPs) are known to be essential for resistance to kill<strong>in</strong>g by humanserum. To further assess the role of these <strong>in</strong>fection-associated outer surfaceprote<strong>in</strong>s for mediat<strong>in</strong>g <strong>in</strong>teraction to human cells, B. gar<strong>in</strong>ii cellsproduc<strong>in</strong>g dist<strong>in</strong>ct CRASPs orig<strong>in</strong>ally derived from B. burgdorferi wereemployed. Interest<strong>in</strong>gly, b<strong>in</strong>d<strong>in</strong>g capacity to human kerat<strong>in</strong>ocytes<strong>in</strong>creased up to four-fold when employ<strong>in</strong>g B. gar<strong>in</strong>ii produc<strong>in</strong>g CRASP-4but not CRASP-1, CRASP-2 or CRASP-3 compared to wild-type B.gar<strong>in</strong>ii cells lack<strong>in</strong>g CRASPs. Taken together, these data provide evidencethat dist<strong>in</strong>ct borrelial genospecies differ <strong>in</strong> their ability to attach to humankerat<strong>in</strong>ocytes and, <strong>in</strong> addition, support a role of certa<strong>in</strong> CRASPs asadhes<strong>in</strong>s of Lyme disease spirochetes.MPP070The role of <strong>in</strong>sertion elements <strong>in</strong> the evolution of antibioticresistance of Staphylococcus aureusF. Schreiber*, M. Nagel, C. Szekat, G. BierbaumUniversity of Bonn, Institute of Medical Microbiology, Immunology andParasitology (IMMIP), Bonn, GermanyIn recent years the pathogen Staphylococcus aureus was able to acquireresistance to nearly all antibiotics used <strong>in</strong> cl<strong>in</strong>ical practice. Exposure tosub<strong>in</strong>hibitory concentrations of these antibiotics may lead to an <strong>in</strong>ductionof mutational mechanisms, as for example the SOS response (1) or themobilization of IS elements. IS elements are mobile genetic elements thatare able to alter gene expression <strong>in</strong> staphylococci by <strong>in</strong>tegration <strong>in</strong>todifferent regions of the chromosome which may result <strong>in</strong> an <strong>in</strong>activation oroverexpression of genes. Our experiments are focused on the mechanisms<strong>in</strong>volved <strong>in</strong> the regulation of the transposition of IS elements, such asIS256 and IS257, and their <strong>in</strong>fluence on vancomyc<strong>in</strong> resistancedevelopment <strong>in</strong> S. aureus. It has previously been reported that thetreatment with sub<strong>in</strong>hibitory concentrations of different groups ofantibiotics resulted <strong>in</strong> an activation of the transposition frequency of the<strong>in</strong>sertion element IS256r <strong>in</strong> S. aureus HG001 (2). Furthermore, thealternative sigma factor B was shown to be a negative regulator of thetransposition activity of IS256r by generat<strong>in</strong>g an antisense RNA of thetransposase (2,3). Additionally, we identified the rsbU gene, whichencodes a positive regulator of sigma factor B, as a hotspot for IS256<strong>in</strong>sertion <strong>in</strong> S. aureus. The rsbU::IS256 <strong>in</strong>sertion mutants displayed awhite colony colour as a consequence of <strong>in</strong>hibition of staphyloxanth<strong>in</strong>biosynthesis and appeared preferentially <strong>in</strong> the presence of antibiotics andafter <strong>in</strong>cubation at 45°C. In further experiments we will test the effect ofthe IS256 <strong>in</strong>sertion <strong>in</strong>to rsbU on the transposition frequency of IS256.(1) Miller et al. 2004, Science 305, 1629-1631.(2) Nagel et al. 2011, Int J Med Microbiol., 301(3):229-36.(3) Valle et al. 2007,J Bacteriol., 189(7):2886-96.MPP071Phenotypic and genotypic characteristics of Vibrio isolatesfrom environmental, cl<strong>in</strong>ical and seafood samples <strong>in</strong> GermanyS. Bechlars*, N. Bier, F. Kle<strong>in</strong>, E. Strauch, R. DieckmannFederal Institute for Risk Assessment, Biological Safety, Berl<strong>in</strong>, GermanyThe number of <strong>in</strong>fections caused by pathogenic Vibrio spp. worldwide hassteadily <strong>in</strong>creased <strong>in</strong> recent years. Vibrio spp. are ubiquitous Gramnegativebacteria found naturally <strong>in</strong> mar<strong>in</strong>e and estuar<strong>in</strong>e waters, <strong>in</strong>clud<strong>in</strong>gaquaculture sett<strong>in</strong>gs. They are a lead<strong>in</strong>g cause of seafood-borne bacterialillness. Increas<strong>in</strong>g <strong>in</strong>cidence of vibrioses <strong>in</strong> mar<strong>in</strong>e animals and humanshas been l<strong>in</strong>ked to ris<strong>in</strong>g seawater temperature due to global warm<strong>in</strong>g andthe grow<strong>in</strong>g global trade of seafood. The systematic assessment andcharacterisation of Vibrio spp. pathogenic to humans <strong>in</strong> environment,seafood and disease <strong>in</strong> Germany is a major focus of the research programVibrioNet. In the present study, phenotypic and genotypic traits of sets ofisolates of V. parahaemolyticus and V. vulnificus from different sourceswere comparatively evaluated to assess their pathogenic potential.Molecular typ<strong>in</strong>g us<strong>in</strong>g Multi-Locus Sequence Typ<strong>in</strong>g and virulencemarkers were used to evaluate the genetic profiles and virulence potential.Phenotypic virulence characteristics were addressed us<strong>in</strong>g tests forpathogenicity related traits such as serum resistance, hemolys<strong>in</strong>production, motility, biofilm formation and extracellular enzyme activities.BIOspektrum | Tagungsband <strong>2012</strong>


126F<strong>in</strong>ally, selected stra<strong>in</strong>s were characterized <strong>in</strong><strong>in</strong> vitro screens us<strong>in</strong>g cellcultures. First results of these <strong>in</strong>vestigations are presented.MPP072Genetic and morphological analyses of the vancomyc<strong>in</strong> anddaptomyc<strong>in</strong> resistant Staphylococcus aureus stra<strong>in</strong> VC40A. Berscheid* 1 , P. Sass 1,2 , A. Jansen 1 , M. Oedenkoven 1 , C. Szekat 1 ,P. François 3 , A. Strittmatter 4 , J. Schrenzel 3 , G. Gottschalk 4 , G. Bierbaum 11 University of Bonn, Institute of Medical Microbiology, Immunology andParasitology (IMMIP), Bonn, Germany2 He<strong>in</strong>rich He<strong>in</strong>e University, Institute for Pharmaceutical Biology,Duesseldorf, Germany3 University of Geneva Hospitals, Genomic Research Laboratory, Divisionof Infectious Diseases, Geneva, Switzerland4 University of Gött<strong>in</strong>gen, Institute of Microbiology and Genetics,Gött<strong>in</strong>gen, GermanyGlycopeptide antibiotics (e.g. vancomyc<strong>in</strong>) are the ma<strong>in</strong>stay of therapy forserious <strong>in</strong>fections caused by methicill<strong>in</strong>-resistant Staphylococcus aureus(MRSA). However, MRSA stra<strong>in</strong>s with reduced susceptibility toglycopeptides have emerged dur<strong>in</strong>g the last decade. In times of <strong>in</strong>creasedantibiotic treatment failure, there is an obvious need to understand howbacteria respond to the presence of antimicrobial compounds and developresistance. In order to study the impact of an elevated mutation frequencyon vancomyc<strong>in</strong> resistance development, we had previously generated thehighly vancomyc<strong>in</strong> resistant stra<strong>in</strong> S. aureus VC40 (MIC: 64 g/ml) byserial passage of S. aureus RN4220mutS (MIC: 2 g/ml) <strong>in</strong> the presenceof <strong>in</strong>creas<strong>in</strong>g concentrations of vancomyc<strong>in</strong> (1).In the current study, cross-resistance to daptomyc<strong>in</strong>, a lipopeptideantibiotic recently <strong>in</strong>troduced for the treatment of complicated sk<strong>in</strong> andsk<strong>in</strong> structure <strong>in</strong>fections (cSSSI) caused by MRSA, was observed <strong>in</strong> stra<strong>in</strong>VC40. To further elucidate the resistance phenotype of S. aureus VC40,the full genome sequences of this stra<strong>in</strong> and its parent stra<strong>in</strong>RN4220mutS were determ<strong>in</strong>ed us<strong>in</strong>g 454 sequenc<strong>in</strong>g technology. A totalof 79 mutations <strong>in</strong> genes related to cell wall metabolism, transport andgene regulation were detected <strong>in</strong> stra<strong>in</strong> VC40. Po<strong>in</strong>t mutations were alsofound <strong>in</strong> the histid<strong>in</strong>e k<strong>in</strong>ases of the two-component regulatory systemsVraSR and YycFG (WalKR), which significantly impact on thebiosynthesis and turnover rates of the bacterial cell wall (2,3), andaccompany<strong>in</strong>g transcriptome analyses <strong>in</strong>deed showed an altered expressionof affected regulons <strong>in</strong> stra<strong>in</strong> VC40. Further morphological analyses us<strong>in</strong>gtransmission electron microscopy revealed that stra<strong>in</strong> VC40 wascharacterized by an abnormal cell envelope morphology that may resultfrom deregulated VraSR or YycFG systems. Re<strong>in</strong>troduction of the VraSmutations <strong>in</strong>to the parental background led to a significant <strong>in</strong>crease <strong>in</strong>resistance aga<strong>in</strong>st several cell wall-active antibiotics, <strong>in</strong>clud<strong>in</strong>gvancomyc<strong>in</strong>, daptomyc<strong>in</strong> and the lantibiotic mersacid<strong>in</strong>. In conclusion,characterization of stra<strong>in</strong> VC40 reveals a central role for VraS mutations <strong>in</strong>resistance development to cell envelope-active agents and may help to ga<strong>in</strong>a better understand<strong>in</strong>g of the mode of antibiotic resistance evolution <strong>in</strong> S.aureus.(1) Schaaff et al. 2002, AAC 46:3540-3548(2) Kuroda et al. 2003, Mol Microbiol 49(3):807-821(3) Dubrac et al. 2008, Mol Microbiol 70(6):1307-1322MPP073Antibiotic acyldepsipeptides <strong>in</strong>hibit bacterial cell division by<strong>in</strong>duc<strong>in</strong>g the ClpP peptidase-dependent degradation of the celldivision prote<strong>in</strong> FtsZP. Sass* 1 , K. Famulla 1 , M. Josten 2 , H.-G. Sahl 2 , L. Hamoen 3 , H. Brötz-Oesterhelt 11 He<strong>in</strong>rich He<strong>in</strong>e University of Duesseldorf, Institute for PharmaceuticalBiology, Duesseldorf, Germany2 University of Bonn, Institute of Medical Microbiology, Immunology andParasitology , Bonn, Germany3 Newcastle University, Centre for Bacterial Cell Biology, Institute for Celland Molecular Biosciences, Newcastle upon Tyne, United K<strong>in</strong>gdomA novel class of antibacterial acyldepsipeptides (ADEPs) exerts prom<strong>in</strong>entactivity aga<strong>in</strong>st Gram-positive bacteria <strong>in</strong>clud<strong>in</strong>g multi-resistantStaphylococcus aureus <strong>in</strong> vitro and <strong>in</strong> vivo [1]. ADEPs act bydysregulat<strong>in</strong>g ClpP peptidase of the bacterial case<strong>in</strong>olytic protease system.Usually, the activity of ClpP is tightly controlled by ATP-dependent Clp-ATPases and accessory prote<strong>in</strong>s. ADEPs overcome these tight controlmechanisms, switch<strong>in</strong>g ClpP from a regulated to an uncontrolled proteasethat predom<strong>in</strong>antly targets unfolded or flexible prote<strong>in</strong>s as well as nascentpolypeptides <strong>in</strong> the absence of Clp-ATPases [1,2,3]. Although the activityof ADEPs can be expla<strong>in</strong>ed on the molecular level of its target ClpP, thespecific events that f<strong>in</strong>ally lead to bacterial cell death rema<strong>in</strong>ed unknown.In our study, we <strong>in</strong>vestigated the effect of ADEP treatment on differentGram-positive species us<strong>in</strong>g high-resolution microscopy. In the presenceof low <strong>in</strong>hibitory ADEP concentrations, the coccoid cells of S. aureus andStreptococcus pneumoniae swelled to more than 3-fold the volume of wildtype cells, and the rod-shaped cells of Bacillus subtilis grew <strong>in</strong>to very longfilaments, which reached 60- to 100-fold the length of untreated cells,clearly <strong>in</strong>dicat<strong>in</strong>g stalled bacterial cell division. To ga<strong>in</strong> further <strong>in</strong>sights<strong>in</strong>to the underly<strong>in</strong>g molecular mechanism, we followed the events that ledto the <strong>in</strong>hibition of cell division. We observed that ADEP treatmentresulted <strong>in</strong> the <strong>in</strong>hibition of septum formation <strong>in</strong> S. aureus and B. subtilis,while chromosome segregation was rather unaffected. Localization studieswith GFP-labeled cell division prote<strong>in</strong>s revealed that the ADEP-ClpPcomplex <strong>in</strong>terferes with key components of early cell division andtherefore perturbs normal divisome formation. By analyz<strong>in</strong>g cell extractsof ADEP-treated bacteria, immunoblott<strong>in</strong>g revealed that treated cellsshowed a significantly decreased abundance of the essential FtsZ prote<strong>in</strong>,which consequently ends <strong>in</strong> bacterial cell death [4]. Specific degradation ofFtsZ by ADEP-activated ClpP was confirmed by <strong>in</strong> vitro studies us<strong>in</strong>gpurified ClpP prote<strong>in</strong>. ADEPs demonstrate that beside their <strong>in</strong>terest<strong>in</strong>gantibacterial potency they are excellent tools to exam<strong>in</strong>e centralmechanism of bacterial physiology, like cell division and regulatedproteolysis.[1] Brötz-Oesterhelt et al. 2005, Nat. Med. 11: 1082-87[2] Kirste<strong>in</strong> et al. 2009, EMBO Mol. Med. 1: 37-49[3] Lee et al. 2010, Nat. Struct. Mol. Biol. 1787: 1-8[4] Sass et al. 2011, Proc Natl Acad Sci U S A. 108(42):17474-9MPP074Molecular mode of action of acyldepsipeptide antibiotics <strong>in</strong>mycobacteriaK. Famulla* 1 , P. Sass 1 , T. Akopian 2 , O. Kandror 2 , R. Kalscheuer 3 ,A. Goldberg 2 , H. Broetz-Oesterhelt 11 He<strong>in</strong>rich-He<strong>in</strong>e University Duesseldorf, Institute of Pharmaceutical Biologyand Biotechnology, Duesseldorf, Germany2 Harvard Medical School, Department of Cell Biology, Boston, MA, United States3 He<strong>in</strong>rich-He<strong>in</strong>e University Duesseldorf, Institute for Medical Microbiology,Duesseldorf, GermanyAcyldepsipeptides (designated ADEPs) are a novel class of antibiotics,which act through an unprecedented mechanism by dysregulat<strong>in</strong>g thebacterial case<strong>in</strong>olytic protease ClpP [1], which is otherwise controlled byClp-ATPases and adapter prote<strong>in</strong>s. B<strong>in</strong>d<strong>in</strong>g of ADEPs to ClpP prevents the<strong>in</strong>teraction of the peptidase with correspond<strong>in</strong>g Clp-ATPases and leads tothe <strong>in</strong>hibition of all natural functions of ClpP [2]. Additionally, ADEPs<strong>in</strong>duce open<strong>in</strong>g of the entrance pore to the proteolytic chamber, whichconfers <strong>in</strong>dependent proteolytic activity to the peptidase. ADEP-activatedClpP degrades nascent polypeptides at the ribosome and flexible prote<strong>in</strong>s<strong>in</strong> the absence of Clp-ATPases [3]. Recently, it has been shown that FtsZ,an essential cell division prote<strong>in</strong>, is a particularly sensitive target forADEP-activated ClpP [4].Although ADEPs demonstrated promis<strong>in</strong>g antibacterial activity aga<strong>in</strong>ststaphylococci, streptococci and enterococci <strong>in</strong> vitro and <strong>in</strong> <strong>in</strong>fectionmodels, their development was hampered by the fact that ClpP is notstrictly essential <strong>in</strong> these genera and prone to mutation. To this end, one ofour aims is to identify pathogens, which are less susceptible for mutationsand therefor have the potential for a slower development of ADEPresistance. A special feature of mycobacteria is that they encode twochromosomal copies of ClpP [5] and recent observations have shown thatboth genes are essential <strong>in</strong> these organisms [6, 7]. In this study, we arefocus<strong>in</strong>g on the efficacy of ADEPs aga<strong>in</strong>st mycobacteria. We demonstratethat ADEPs are active aga<strong>in</strong>st Mycobacterium bovis BCG, which is closelyrelated to M. tuberculosis, a pathogen of global importance and thecausative agent of tuberculosis. We further observed that ADEPs activatethe ClpP complex of M. tuberculosis <strong>in</strong> vitro to degrade several modelsubstrates <strong>in</strong>clud<strong>in</strong>g the flexible prote<strong>in</strong> case<strong>in</strong>. Thus, ADEPs are idealtools to study the function of these unique ClpP prote<strong>in</strong>s <strong>in</strong> mycobacteria.Furthermore, ClpP represents a promis<strong>in</strong>g new drug target due to itsessentiality <strong>in</strong> these organisms, and ADEPs are <strong>in</strong>terest<strong>in</strong>g lead structuresfor the development of new anti-tuberculosis drugs.[1] Brötz-Oesterhelt et al. 2005, Nat. Med. 11: 1082-87[2] Kirste<strong>in</strong> et al. 2009, EMBO Mol. Med. 1: 37-49[3] Lee et al. 2010, Nat. Struct. Mol. Biol. 1787: 1-8[4] Sass et al. 2011, Proc Natl Acad Sci U S A. 108(42):17474-9[5] Chandu et al. 2004, Res. Microbiol. 155: 710-719[6] Sasetti et al. 2001, PNAS, 98: 12712-12717[7] Oll<strong>in</strong>ger et al. 2011, J. Bacteriol., epub. ahead of pr<strong>in</strong>t.MPP075Will not be presented!MPP076Interference of qu<strong>in</strong>oles and am<strong>in</strong>ocoumar<strong>in</strong>es regard<strong>in</strong>gRecA mediated response <strong>in</strong> Staphylococcus aureusW. Schröder*, C. Goerke, C. WolzAG Wolz, Mediz<strong>in</strong>ische Mikrobiologie, Tüb<strong>in</strong>gen, GermanyDifferent gyrase <strong>in</strong>hibitors b<strong>in</strong>d to different moieties of the gyrase bothresult<strong>in</strong>g <strong>in</strong> arrest of DNA replication. The ch<strong>in</strong>olones are known to <strong>in</strong>ducethe bacterial SOS response through the generation of double strand breakesresult<strong>in</strong>g <strong>in</strong> RecA activation. RecA dependent cleavage of the LexArepressor results <strong>in</strong> error prone repair, which favours mutations andBIOspektrum | Tagungsband <strong>2012</strong>


127therefore resistance development. Other gyrase <strong>in</strong>hibitors, namely theam<strong>in</strong>ocoumar<strong>in</strong>es b<strong>in</strong>d the GyrB subunit which leads to competitive<strong>in</strong>hibition of the ATPase activity of gyrase but not to double strand brakes.Here we observe partially antagonistic effects of qu<strong>in</strong>olones(ciprofloxac<strong>in</strong>) and am<strong>in</strong>ocoumar<strong>in</strong>es (novobioc<strong>in</strong>) with regard to RecA<strong>in</strong>duction, SOS response, mutation rate and phage <strong>in</strong>duction <strong>in</strong> the humanpathogen Staphylococcus aureus.Site-specific mutants (recA, lexA) as well as an <strong>in</strong>ducible recA mutantwere constructed and the comb<strong>in</strong>ed action of gyrase <strong>in</strong>hibitors analysed bytranscriptional analysis and Western blots. In addition effects on phage<strong>in</strong>duction and mutation frequencies were assessed.We could show that ciprofloxac<strong>in</strong> results <strong>in</strong> a RecA dependentderepression of LexA target genes such as the error prone polymeraseSACOL1400. In contrast the am<strong>in</strong>ocoumar<strong>in</strong>e novobioc<strong>in</strong> leads to adecrease <strong>in</strong> RecA expression on prote<strong>in</strong> as well as transcript level.Interest<strong>in</strong>gly, the comb<strong>in</strong>ation of ciprofloxac<strong>in</strong> and novobioc<strong>in</strong> results also<strong>in</strong> decrease of RecA. However, by comb<strong>in</strong>ation of both antibioticsalthough RecA expression is significantly repressed the SOS response isstill <strong>in</strong>duced as shown by the <strong>in</strong>duction of the LexA target gene cod<strong>in</strong>g forthe error-prone polymerase SACOL1400. Also phage <strong>in</strong>duction was notaltered by RecA repression. An artificially dose-dependent recAexpression system showed us, that <strong>in</strong>duction of the lexA genes as well asphage <strong>in</strong>duction is clearly correlated to the RecA expression level.In summary, the result <strong>in</strong>dicate that there are additional RecA <strong>in</strong>dependentmechanisms <strong>in</strong>volved <strong>in</strong> lexA autocleavage <strong>in</strong>duced by a mix ofciprofloxac<strong>in</strong> and novobioc<strong>in</strong>.To identify this second activator or pathwayis very important, s<strong>in</strong>ce it is <strong>in</strong>volved <strong>in</strong> generat<strong>in</strong>g resistant bacteria andneeds to be considered dur<strong>in</strong>g antibacterial therapy.MPP077Comparative proteome analysis of Staphylococcus aureusstra<strong>in</strong>s co-<strong>in</strong>ternalized <strong>in</strong>to S9 cellsH. Pförtner* 1 , M. Burian 1 , P. Hildebrandt 2 , J. Liese 3 , C. Wolz 3 , F. Schmidt 2 ,U. Völker 11 University Greifswald, Department of Functional Genomics, Greifswald,Germany2 University Greifswald, Junior Research Group Applied Proteomics of the ZIK-FunGene , Greifswald, Germany3 University Tüb<strong>in</strong>gen, Interfaculty Institute for Microbiology and InfectionMedic<strong>in</strong>e, Tüb<strong>in</strong>gen, GermanyStaphylococcus aureus, the cause of a wide spectrum of severecommunity-acquired and nosocomial <strong>in</strong>fections, is acknowledged as an<strong>in</strong>tracellular pathogen, as it can be <strong>in</strong>ternalized and persist <strong>in</strong> nonprofessionalphagocytic cells <strong>in</strong> cell culture experiments [1] . Dur<strong>in</strong>g the<strong>in</strong>ternalization process, S. aureus has to adapt to the <strong>in</strong>tracellularenvironment to survive or even persist with<strong>in</strong> the host, but still little isknown about these adaptive changes on proteome level. S. aureusvirulence factors, which are important to establish an <strong>in</strong>fection are tightlycontrolled by global regulators. The accessory gene regulator (agr) is oneof the major global regulators of S. aureus virulence. RNAIII, the effectormolecule of the agr system, positively controls the production ofexoprote<strong>in</strong>s and negatively controls cell surface bound prote<strong>in</strong>s dur<strong>in</strong>g thepost exponential growth phase [2] . There is evidence that this regulatorysystem plays a role <strong>in</strong> the establishment of an <strong>in</strong>fection and host cellkill<strong>in</strong>g. For <strong>in</strong>stance, expression of agr is <strong>in</strong>itially <strong>in</strong>creased <strong>in</strong> the acutephase of <strong>in</strong>fection <strong>in</strong> non-professional phagocytic cells [3] .Furthermore,agr mutants are attenuated <strong>in</strong> their virulence <strong>in</strong> several mouse models [4,5,6,7] .The aim of this study is to comparatively <strong>in</strong>vestigate the adaptive andcompetitive response of S. aureus HG001 wild type and its isogenic agrmutant upon co-<strong>in</strong>ternalization by human bronchial epithelial cells (S9).The strik<strong>in</strong>g advantage of such a co-<strong>in</strong>fection assay is that both stra<strong>in</strong>s are<strong>in</strong>ternalized simultaneously and adapt to the host under exactly the sameconditions.Proteome analysis of the co-<strong>in</strong>ternalized S. aureus are performed with thewell established workflow, which comb<strong>in</strong>es a classical <strong>in</strong>fection assaywith high capacity cell sort<strong>in</strong>g and gel-free proteomics [8] .To make the <strong>in</strong>ternalized Staphylococci accessible, they have to beseparated from debris of lysed S9 cells and dist<strong>in</strong>guished between wildtype and mutant by FACS. After validation, the fluorescent markergpCerulean of the agr mutant showed a clear dist<strong>in</strong>ction to the GFPexpression of the wild type. Accord<strong>in</strong>gly, we are now able to sort co<strong>in</strong>ternalizedS. aureus parallel <strong>in</strong> dist<strong>in</strong>ct wells of a 96-well plate.In conclusion, with this sett<strong>in</strong>g we are able to monitor co-<strong>in</strong>ternalizedHG001 wild type and agr mutant and make them with FACS-sort<strong>in</strong>g andon membrane digest accessible for proteome analysis.[1] Garzoni C. et al. 2009. Trends Microbiol, 17, 59-65.[2] Dunman PM. et al. 2001. Journal of Bacteriology, 24, 7341-7353.[3] Tuchscherr L. et al. 2011. EMBO Mol. Med., 3, 129-141.[4] Abdelnour A. et al. 1993. Infection and Immunity, 9, 3879-3885.[5] Cheung AL. et al. 1994. Journal of Cl<strong>in</strong>ical Investigation, 94, 1815-1822.[6] Gillaspy AF. et al. 1995. Infection and Immunity, 63 (9), 3373-3380.[7] Wright JS. 3 rd et al. 2005. PNAS, 102 (5), 1691-1696.[8] Schmidt F. et al. 2010. Proteomics, 10, 2801-2811.MPP078Comparative dRNA-seq analysis of multiple Campylobacterjejuni stra<strong>in</strong>sG. Dugar* 1 , A. Herbig 2 , K. Förstner 1 , N. Heidrich 1 , R. Re<strong>in</strong>hardt 3 , K. Nieselt 2 ,C. Sharma 11 University of Würzburg, Research Centre of Infectious Diseases, Würzburg,Germany2 University of Tüb<strong>in</strong>gen, Integrative Transcriptomics, ZBIT (Center forBio<strong>in</strong>formatics Tüb<strong>in</strong>gen), Tüb<strong>in</strong>gen, Germany3 Max Planck Institute for Plant Breed<strong>in</strong>g Research, Cologne, GermanyCampylobacter jejuni, a Gram-negative spiral-shapedEpsilonproteobacterium, is one of the most common causes of bacterialgastroenteritis <strong>in</strong> humans [1]. While it is a commensal of chicken, it hasalso been associated with the development of autoimmune disorders likeGuilla<strong>in</strong>-Barré and Miller-Fisher syndromes <strong>in</strong> humans. Themicroaerophilic, foodborne pathogen is able to survive under various stressconditions imposed by the environment and the host. The small genome ofC. jejuni (1.65 Mb) carries only a few transcriptional regulators and almostnoth<strong>in</strong>g is known about the role of non-cod<strong>in</strong>g RNAs <strong>in</strong> this pathogen.Like the related human pathogen Helicobacter pylori, C. jejuni also lacksthe RNA chaperone, Hfq, which plays a pivotal role <strong>in</strong> sRNA-mediatedregulation <strong>in</strong> many bacteria.Massively parallel cDNA sequenc<strong>in</strong>g (RNA-seq) has been revolutioniz<strong>in</strong>gtranscriptome analysis <strong>in</strong> both eukaryotes and prokaryotes and hasrevealed a wealth of novel <strong>in</strong>formation about microbial transcriptomes [2].Recently, we have developed a novel differential approach (dRNA-seq)selective for the 5’ end of primary transcripts, which revealed anunexpectedly complex transcriptional output and massive antisensetranscription from the small and compact genome of the relatedEpsilonproteobacterium H. pylori [3]. This method allowed us to def<strong>in</strong>e agenome-wide map of transcriptional start sites (TSS) and operons, andrevealed more than 60 sRNAs <strong>in</strong>clud<strong>in</strong>g potential regulators of cis- andtrans- encoded mRNAs <strong>in</strong> H. pylori.Here we present a comparative dRNA-seq approach to analyze thetranscriptome structure and TSS conservation of four different C. jejunistra<strong>in</strong>s. This comparative study reveals that the majority of TSS isconserved among all stra<strong>in</strong>s but that there are also several stra<strong>in</strong>-specificTSS <strong>in</strong>dicat<strong>in</strong>g divergent transcription patterns among different stra<strong>in</strong>s.Moreover, Northern blot analysis confirmed similar and differentialexpression patterns of several conserved and stra<strong>in</strong> specific sRNAcandidates <strong>in</strong> C. jejuni. This is the first comparative analysis of the primarytranscriptomes and sRNA repertoire of multiple C. jejuni stra<strong>in</strong>s and willprovide new <strong>in</strong>sights <strong>in</strong>to riboregulation <strong>in</strong> this bacterial pathogen.1. Young, K. T., L. M. Davis & V. J. Dirita, (2007)Campylobacter jejuni: molecular biology andpathogenesis.Nat Rev Microbiol 5: 665-679.2. Croucher, N. J. & N. R. Thomson, (2010)Study<strong>in</strong>g bacterial transcriptomes us<strong>in</strong>g RNA-seq.Curr Op<strong>in</strong>Microbiol 13: 619-624.3. Sharma CM, Hoffmann S, Darfeuille F, Reignier J, F<strong>in</strong>deiß S, Sittka A, Chabas S, Reiche K,Hackermüller J, Re<strong>in</strong>hardt R, Stadler PF, Vogel J (2010) The primary transcriptome of the major humanpathogen Helicobacter pylori. Nature, 464(7286):250-5MPP079How a thioredox<strong>in</strong>-like prote<strong>in</strong> <strong>in</strong>fluences the susceptibility toß-lactam antibiotics <strong>in</strong> Staphylococcus aureus.N. Göhr<strong>in</strong>g* 1 , I. Fedtke 1 , G. Xia 1 , A.M. Jorge 2 , M.G. P<strong>in</strong>ho 2 , U. Bertsche 3 ,A. Peschel 11 Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, University ofTüb<strong>in</strong>gen, Cellular and Molecular Microbiology, Tüb<strong>in</strong>gen, Germany2 Instituto de Tecnologia Quimica e Biologica, Universidade Nova de Lisboa,Laboratory of Bacterial Cell Biology, Oeiras, Portugal3 Interfaculty Institute of Microbiology and Infection Medic<strong>in</strong>e, University ofTüb<strong>in</strong>gen, Microbial Genetics, Tüb<strong>in</strong>gen, GermanyAs a human pathogen, Staphylococcus aureus is capable of coloniz<strong>in</strong>g thehostile ecological niche of the anterior nares <strong>in</strong> humans and has thereforedeveloped different strategies <strong>in</strong> order to survive dur<strong>in</strong>g variousenvironmental stresses. Dur<strong>in</strong>g the process of <strong>in</strong>fection, S. aureus isexposed to multiple antimicrobial compounds such as oxidative burstproducts and antibiotics. The underly<strong>in</strong>g regulatory pathways govern<strong>in</strong>gsusceptibility or resistance are complex and still rema<strong>in</strong> only superficiallyunderstood. With<strong>in</strong> this tightly balanced resistance network a thioredox<strong>in</strong>likeprote<strong>in</strong> YjbH has been shown to control disulfide stress response <strong>in</strong>Bacillus subtilis by monitor<strong>in</strong>g the controlled degradation of thetranscriptional stress regulator Spx via the proteasome-like ClpXPprotease. Similar functions could be attributed to the S. aureus YjbHhomolog us<strong>in</strong>g the disulfide stress-<strong>in</strong>duc<strong>in</strong>g agent diamide as <strong>in</strong> B. subtilis.Further experiments revealed the <strong>in</strong>dispensable role of conserved cyste<strong>in</strong>eresidues with<strong>in</strong> the YjbH prote<strong>in</strong> for this activity. In addition, <strong>in</strong>activationof YjbH led to moderate resistance to oxacill<strong>in</strong> and other -lactamantibiotics, which was associated with an <strong>in</strong>crease <strong>in</strong> peptidoglycan crossl<strong>in</strong>k<strong>in</strong>gand higher penicill<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> 4 levels. Of note, the impactof YjbH on -lactam susceptibility was still observed when the conservedcyste<strong>in</strong>es of YjbH were mutated <strong>in</strong>dicat<strong>in</strong>g that the roles of YjbH <strong>in</strong>disulfide stress and -lactam resistance rely on different types ofBIOspektrum | Tagungsband <strong>2012</strong>


128<strong>in</strong>teractions. Taken together, our results <strong>in</strong>dicate that the ClpXP adaptorYjbH may have more target prote<strong>in</strong>s than previously thought and that aclose l<strong>in</strong>k between oxidative burst and -lactam resistance mechanismsmay exist <strong>in</strong> S. aureus.MPP080Fully human antibodies target<strong>in</strong>g crucial prote<strong>in</strong>s ofStaphylococcus aureusA. Kraus* 1 , N. Möker 1 , J. Garcia-Lara 2 , S. Foster 2 , M. Tesar 11 MorphoSys, Mart<strong>in</strong>sried, Germany2Absynth Biologics, Sheffield, UKThe opportunistic pathogen Staphylococcus aureus is a serious health threatcaus<strong>in</strong>g a wide range of <strong>in</strong>fections with often fatal outcome. The emergence ofantibiotic resistant stra<strong>in</strong>s, most important the methicill<strong>in</strong> resistant stra<strong>in</strong>s(MRSA), has further complicated the treatment of S. aureus <strong>in</strong>fections.In order to develop a novel therapy, we have employed MorphoSys’ HuCAL ®antibody library, which as of today has delivered more than 70 therapeutic leadcandidates be<strong>in</strong>g developed <strong>in</strong> various <strong>in</strong>dications and thousands of researchantibodies. Previous antibody-mediated therapies for Staphylococcus <strong>in</strong>fectionstargeted known virulence factors or capsule antigens. Our new approachfocuses on different essential membrane prote<strong>in</strong>s crucial for the survival of S.aureus (<strong>in</strong>clud<strong>in</strong>g MRSA).Fully human antibodies were selected from the HuCAL ® Plat<strong>in</strong>um libraryb<strong>in</strong>d<strong>in</strong>g to synthesized peptides represent<strong>in</strong>g extracellular loops of the targetprote<strong>in</strong>s. The antibodies were shown to b<strong>in</strong>d to S. aureus cells by ELISA andFACS. Functional data of the antibodies from <strong>in</strong> vitro assays will be presented.MPP081Prevalence of enteropathogens <strong>in</strong> suckl<strong>in</strong>g piglets withdiarrhoea <strong>in</strong> German organic farms with special regard to therole of Clostridium perfr<strong>in</strong>gens type AH. Seeger* 1 , T. Eisenberg 1 , H.P. Hamann 1 , A. Nesseler 1 , R. Volmer 1 , C.Werner 2 , A. Sundrum 2 , M. Zschöck 11 Landesbetrieb Hessisches Landeslabor, Abteilung Veter<strong>in</strong>ärmediz<strong>in</strong>, Gießen,Germany2 Universität Kassel, Fachbereich Ökologische Agrarwissenschaften,Fachgebiet Tierernährung und Tiergesundheit, GermanyPiglet diarrhoea is a multifactorial disease, which <strong>in</strong>duces relevanteconomic losses <strong>in</strong> piglet production due to piglet loss, impaired growth,and treatment costs. In this study 699 faecal samples of diarrhoeic piglets <strong>in</strong>258 litters from 18 organic farms were <strong>in</strong>vestigated for the occurrence ofenterotoxigenic Escherichia coli (ETEC), Clostridium (Cl.) perfr<strong>in</strong>gens,Rotavirus, and Coccidia. Additionally 369 faecal samples of sows and 419samples of healthy piglets were <strong>in</strong>vestigated for Cl. perfr<strong>in</strong>gens.In 39.5% of all diseased litters Cl. perfr<strong>in</strong>gens type A was detected, themost frequent enteropathogen <strong>in</strong> this study. 89.7% of Cl. perfr<strong>in</strong>gens typeA isolates were tested positive for the gene cod<strong>in</strong>g 2-tox<strong>in</strong>. Rotavirusoccurred <strong>in</strong> 27.6%, and Coccidia <strong>in</strong> 20.0% of the diseased litters, whereasthe diagnosis ETEC was made <strong>in</strong> an unexpected low number of cases(7.7%). Cl. perfr<strong>in</strong>gens type C was not found <strong>in</strong> any sample. Remarkablythe detection rate of Cl. perfr<strong>in</strong>gens type A among healthy suckl<strong>in</strong>g pigletsreached 58.9%, which is was even higher than <strong>in</strong> diarrhoeic piglets. Only8.5% of Cl. perfr<strong>in</strong>gens type A isolates from sows carried the gene for 2-tox<strong>in</strong>, which could be detected <strong>in</strong> 94.2% of all suckl<strong>in</strong>g piglet isolates(healthy as well as diarrhoeic). This discovery implicates an overestimationof the role of sows as source of Cl. perfr<strong>in</strong>gens <strong>in</strong>fection for suckl<strong>in</strong>gpiglets <strong>in</strong> the past.MPP082Bacillus – extremely fast C. elegans killer: <strong>in</strong>sights <strong>in</strong>tomechanisms of virulenceI. Iatsenko*, R. J. SommerMax Planck Institute for Developmental Biology, Department forEvolutionary Biology, Tueb<strong>in</strong>genC. elegans has been proven as a comprehensive model system to studymechanisms of microbial pathogenicity. We employed this system <strong>in</strong> orderto carry out systematic analysis of nematode-Bacillus <strong>in</strong>teractions. Oursurvey showed (Rae et al. 2010) that majority of Bacillus stra<strong>in</strong>s arebenign to nematodes and only 3% of more then 800 Bacillus stra<strong>in</strong>s testedshowed virulence to C. elegans. One of the virulent stra<strong>in</strong>s – B. sp. 27,kills C. elegans extremely fast (16 hours) and represents one of the fastestC. elegans killers known today; therefore we decided to study virulentmechanisms of this stra<strong>in</strong> <strong>in</strong> more detail. Us<strong>in</strong>g transposon mutagenesis,we found a number of B. sp. 27 mutants with attenuated virulence to C.elegans. Interest<strong>in</strong>gly, many genes that were hit <strong>in</strong> transposon mutantsappeared to be plasmid-encoded, suggest<strong>in</strong>g that virulent genes may beencoded by plasmids. To confirm that, we generated several plasmid-curedderivatives of B. sp. 27. Kill<strong>in</strong>g assay with C. elegans showed that thosederivatives lost virulence completely, confirm<strong>in</strong>g that virulent factors of B.sp. 27 are <strong>in</strong>deed plasmid-encoded. Tak<strong>in</strong>g <strong>in</strong>to account that B. sp. 27 wasidentified as B. thur<strong>in</strong>giensis, we checked if wild type and plasmid-curedderivatives produce Cry tox<strong>in</strong>s (parasporal crystals). We found that <strong>in</strong>contrast to wild type, plasmid-cured derivatives no longer form parasporalcrystals, strongly suggest<strong>in</strong>g that Cry tox<strong>in</strong>s are responsible for C. eleganskill<strong>in</strong>g. Currently, we are do<strong>in</strong>g whole genome sequenc<strong>in</strong>g of B. sp. 27 <strong>in</strong>order to f<strong>in</strong>d out what genes are encoded by virulent plasmids and toidentify type of Cry tox<strong>in</strong> that kills nematodes. On the other hand, we useall advantages of C. elegans as a model to reveal molecular mechanisms ofnematode defense response aga<strong>in</strong>st toxic B. sp. 27.MPV1-FGModulation of phospho<strong>in</strong>ositide metabolism by Legionella sppS. Weber*, S. Dol<strong>in</strong>sky, I. Haneburger, H. HilbiMax von Pettenkofer Institute, Bacteriology, Munich, GermanyThe opportunistic pathogensLegionella pneumophilaandLegionellalongbeachaeemploy a conserved mechanism to replicate <strong>in</strong> amoebae andmacrophages with<strong>in</strong> a unique compartment called the “Legionellaconta<strong>in</strong><strong>in</strong>gvacuole” (LCV). Formation of LCVs requires the bacterialIcm/Dot type IV secretion system which, for L. pneumophila, translocatesmore than 250 “effector prote<strong>in</strong>s” <strong>in</strong>to the target host cell. The L.pneumophila effect or prote<strong>in</strong>s SidM and SidC anchor to thephospho<strong>in</strong>ositide (PI) lipid phosphatidyl<strong>in</strong>ositol-4-phosphate (PI(4)P) onthe cytosolic face of LCVs, where they <strong>in</strong>terfere with host cell vesicletraffick<strong>in</strong>g and signal transduction [1]. Pulldown experiments with PIlipids coupled to agarose beads revealed that L. longbeachae SidC alsospecifically b<strong>in</strong>ds to PI(4)P.L. pneumophilamodulates the PI pattern of LCVs <strong>in</strong> an Icm/Dot dependentmanner, yet the mechanism rema<strong>in</strong>s elusive. We recently discovered abacterial PI phosphatase, which is translocated <strong>in</strong>to the host via theIcm/Dot T4SS and preferentially hydrolyses poly-phosphorylated PIsyield<strong>in</strong>g PI(4)P. This PI phosphatase, termed LppA, may have a function<strong>in</strong> regulat<strong>in</strong>g the PI pattern of the LCV dur<strong>in</strong>g <strong>in</strong>fection.The genetically tractable social amoebaDictyostelium discoideumhas beenused <strong>in</strong> a number of studies to analyze LCV formation of L. pneumophila.The PI 5-phosphatase OCRL1 and itsDictyosteliumhomologue Dd5P4localize to LCVs, restrict <strong>in</strong>tracellular bacterial growth and are implicated<strong>in</strong> retrograde traffick<strong>in</strong>g [1]. Us<strong>in</strong>g specific GFP-fused PI probesheterologously produced <strong>in</strong>Dictyostelium, LCVs were found to accumulatedist<strong>in</strong>ct PI lipids. Current efforts aim at a detailed characterization of theLCV PI pattern and the role of PI-modulat<strong>in</strong>gLegionellaeffector prote<strong>in</strong>s.[1]. Weber, S.S., Ragaz, C. and Hilbi, H. (2009) Pathogen traffick<strong>in</strong>g pathways and hostphospho<strong>in</strong>ositide metabolism. Mol. Microbiol. 71, 1341-1352.MPV2-FGThe YycFG (WalRK/VicRK) two-component regulatorysystem of Staphylococcus aureus and its capability to sensechanges <strong>in</strong> membrane fluidityM. Türck*, G. BierbaumUniversity of Bonn, Institute of Medical Microbiology, Immunology andParasitology (IMMIP), Bonn, GermanyTwo-component regulatory systems (TCSs) play a major role <strong>in</strong> bacteriaand confer the ability to recognize and to respond to changes <strong>in</strong> theirenvironment. TC systems are composed of a sensor histid<strong>in</strong>e k<strong>in</strong>ase and acognate response regulator. After sens<strong>in</strong>g of a particular signal the k<strong>in</strong>aseundergoes autophosphorylation and <strong>in</strong> a subsequent step the phosphoricgroup is transferred to the response regulator, chang<strong>in</strong>g its ability to b<strong>in</strong>dDNA and thereby also affect<strong>in</strong>g transcriptional expression of target genes.In the prom<strong>in</strong>ent nosocomial grampositive pathogen Staphylococcusaureus, YycFG (WalRK/VicRK) represents an outstand<strong>in</strong>g TCS,characterized by its essentiality [1] and important role <strong>in</strong> ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g cellwall homoeostasis [2], especially after localization to the cell division site[3]. Whilst knowledge on localization and regulatory activity of thissystem has been steadily <strong>in</strong>creas<strong>in</strong>g <strong>in</strong> the last years, less is known aboutthe particular signals, which modulate the YycG k<strong>in</strong>ase activity. In order toaddress this question, the full-length YycG wild type k<strong>in</strong>ase - <strong>in</strong>clud<strong>in</strong>gboth transmembrane (TM) doma<strong>in</strong>s - and a mutant version with an aaexchange (Y306N) <strong>in</strong> the cytoplasmic PAS doma<strong>in</strong>, have been expressedas C-His 6-tagged prote<strong>in</strong>s and tested <strong>in</strong> two <strong>in</strong> vitro systems. The first oneutilizes Triton X-100 as a membrane mimick<strong>in</strong>g surfactant and <strong>in</strong> thesecond system the k<strong>in</strong>ases were reconstituted <strong>in</strong> a membrane provided byphospholipid-liposomes. After suitable conditions for YycGautophosphorylation and phosphoric group transfer to YycF had beendeterm<strong>in</strong>ed, it could be demonstrated that high alkali salt concentrations, <strong>in</strong>particular of KCl, and low temperatures were necessary to stimulate YycGactivity. Further exam<strong>in</strong>ation <strong>in</strong>dicated that <strong>in</strong> both systems <strong>in</strong>creased saltconcentrations <strong>in</strong> comb<strong>in</strong>ation with low temperatures seemed to lead to adecreased fluidity of micelles and liposomes, <strong>in</strong>dicat<strong>in</strong>g that a certa<strong>in</strong>stiffness is necessary for activity. In case of the mutated YycG(Y306N)k<strong>in</strong>ase the effect of changes <strong>in</strong> the microenvironmental condition were lesspronounced, lead<strong>in</strong>g to an <strong>in</strong>creased activity <strong>in</strong> general. S<strong>in</strong>ce it was shownthat the full-length k<strong>in</strong>ase can be turned off by a decrease <strong>in</strong> viscosity, weBIOspektrum | Tagungsband <strong>2012</strong>


129suggest that the YycG k<strong>in</strong>ase might <strong>in</strong> vivo respond to membrane fluidityvia its TM doma<strong>in</strong>s.[1] Fabret and Hoch (1998), J Bacteriol., 180(23):6375-83.[2] Dubrac et al. (2008), Mol Microbiol.,70(6):1307-22.[3] Fukushima et al. (2011), Mol Microbiol., 79(2):503-22.MPV3-FGStructure and function of the PorB por<strong>in</strong> from dissem<strong>in</strong>at<strong>in</strong>gN. gonorrhoeaeK. Zeth* 1 , V. Kozjak-Pavlovic 2 , M. Faulstich 2 , O. Kepp 2 , T. Rudel 21 University of Tüb<strong>in</strong>gen, ZMBP, Tüb<strong>in</strong>gen, Germany2 University of Würzburg, Department of Microbiology, Würzburg,GermanyThe outer membrane of Gram-negative bacteria is permeabilized by a largenumber of por<strong>in</strong> channels for the uptake of small molecules. Por<strong>in</strong>s are themajor outer membrane prote<strong>in</strong>s of proteobacteria and mitochondria. Somepor<strong>in</strong>s of the Neisseriaceae clade can <strong>in</strong>sert and permeabilize the <strong>in</strong>nermitochondrial membranes of mammalians cells dur<strong>in</strong>g <strong>in</strong>fection and maylead to mitochondrially <strong>in</strong>duced apoptosis. Por<strong>in</strong>s of the serotype A(PorB IA) of N. gonorrhoeae are associated with dissem<strong>in</strong>at<strong>in</strong>g gonococcaldisease and mediate the rapid <strong>in</strong>vasion <strong>in</strong>to host cells <strong>in</strong> a phosphatesensitive manner. To understand these functions on the basis of structuraldata we analyzed the structure of PorB IA isolated from wildtype N.gonorrhoeae. The structure <strong>in</strong> complex with ATP and phosphate solved atthe resolution 3.1 Å displays a surplus of positive charges <strong>in</strong>side thechannel with a potential for substrate transfer. ATP is coord<strong>in</strong>ated bypositively charged residues via aromatic, sugar and pyrophosphate moietyatoms. A short b-bulge <strong>in</strong>serted <strong>in</strong>to the b2-strand nearby the location ofATP and the long L3 loop narrows the barrel diameter significantly andtogether support substrate specificity. Phosphate ions known to <strong>in</strong>terferewith bacterial uptake after host cell contact are present, one of which iscoord<strong>in</strong>ated by two Arg residues nearby the ATP at the extraplasmicchannel exit. In vivo assays of bacteria carry<strong>in</strong>g mutations at residuescomplex<strong>in</strong>g phosphate molecules confirm the importance of these residuesfor host cell <strong>in</strong>vasion. Interest<strong>in</strong>gly, the structure also comprises a smallpeptide sequence as remnant of a periplasmic prote<strong>in</strong> which physicallyl<strong>in</strong>ks por<strong>in</strong> molecules to the peptidoglycane layer. Although similar <strong>in</strong>sequence to related Neisseriacea, PorB IA shows differences which moreclearly deviate from the non-apoptotic por<strong>in</strong> from N. sicca or N. lactamica.Models of these PorB channels are compared <strong>in</strong> structure and possiblefunctional implications are outl<strong>in</strong>ed and tested.MPV4-FGMethicill<strong>in</strong> Resistance <strong>in</strong>Staphylococcus aureusDepends onß-O-GlcNAcylation of Wall Teichoic AcidsS. Brown 1 , G. Xia* 2 , L. G. Luhachack 3 , J. Campbell 1 , T. Meredith 1 , C. Chen 1 ,V. W<strong>in</strong>stel 2 , C. Gekeler 2 , J. E. Irazoqui 3 , A. Peschel 2 , S. Walker 11 Department of Microbiology and Immunobiology, Harvard Medical School,Boston MA, USA2 Cellular and Molecular Microbiology Section, Interfaculty Institute ofMicrobiology and Infection Medic<strong>in</strong>e, University of Tüb<strong>in</strong>gen, Tüb<strong>in</strong>gen.Germany3 Department of Pediatrics, Massachusetts General Hospital, Harvard MedicalSchool, Boston, USAStaphylococcus aureuspeptidoglycan is densely functionalized withanionic polymers called wall teichoic acids (WTAs), which are requiredfor proper cell division. Prevent<strong>in</strong>g WTA polymer synthesis sensitizesmethicill<strong>in</strong> resistantS. aureus(MRSA) to beta-lactams. Here we describethe discovery and biochemical characterization of a novelglycosyltransferase, TarS, that attaches b-O-N- Acetylglucos-am<strong>in</strong>e (b-O-GlcNAc) residues toS. aureusWTAs. We show that b-O-GlcNAcylation ofWTAs is required for the beta-lactam resistant phenotype <strong>in</strong> MRSA. Theb-O-GlcNAc residues play a specific structural role <strong>in</strong> mediat<strong>in</strong>g resistances<strong>in</strong>ce neither a-O-GlcNAc modifications nor b-O-glucosyl modificationsconfer resistance. We propose that b-O-GlcNAcylated WTAs scaffoldpeptidoglycan biosynthetic complexes conta<strong>in</strong><strong>in</strong>g the resistanttranspeptidase PBP2a. The b-O-GlcNAc transferase identified here, TarS,is a new target for <strong>in</strong>hibitors that sensitize MRSA to beta-lactams.MPV5-FGIdentification of -haemolys<strong>in</strong> encod<strong>in</strong>g genes <strong>in</strong> Streptococcusang<strong>in</strong>osusD. Asam* 1 , S. Mauerer 1 , E. Walheim 2 , B. Spellerberg 11 University Hospital Ulm, Institute for Medical Microbiology and Hygiene,Ulm, Germany2 University Ulm, Ulm, GermanyStreptococcus ang<strong>in</strong>osus is a commensal of the oral cavity, thegastro<strong>in</strong>test<strong>in</strong>al and the female urogenital tract. It has cl<strong>in</strong>ical significance<strong>in</strong> abscess formation and has been suggested to play a pathogenic role <strong>in</strong>patients with cystic fibrosis. An <strong>in</strong>terest<strong>in</strong>g feature of these bacteria is the<strong>in</strong>consistent phenotype regard<strong>in</strong>g Lancefield antigens as well ashaemolytic activity. While a considerable percentage of S. ang<strong>in</strong>osusstra<strong>in</strong>s display a prom<strong>in</strong>ent ß-haemolytic phenotype, the correspond<strong>in</strong>ggenes have not been identified yet. In different streptococcal species the ß-haemolys<strong>in</strong> is a modified short peptide (SLS) that is related to Class Ibacterioc<strong>in</strong>s. It is encoded <strong>in</strong> the sag gene cluster <strong>in</strong>clud<strong>in</strong>g genes for thecorrespond<strong>in</strong>g posttranslational modifications and transport mach<strong>in</strong>ery.By random chromosomal <strong>in</strong>tegration of the pGhost9:ISS1 transpositionvector we generated a plasmid-based mutant library of the haemolyticStreptococcus ang<strong>in</strong>osus stra<strong>in</strong> ATCC 12395. This library was screenedfor mutants show<strong>in</strong>g a loss of the ß-haemolytic phenotype on blood agarplates and non-haemolytic mutants were selected for further <strong>in</strong>vestigation.By sequenc<strong>in</strong>g the <strong>in</strong>sertion sites of these mutants we identified thus far 10different mutations sites <strong>in</strong> a gene cluster of 9 kb harbour<strong>in</strong>g 9 openread<strong>in</strong>g frames, with significant similarities to the sag (SLS associatedgene) gene cluster of Streptococcus pyogenes that encodes the haemolys<strong>in</strong>Streptolys<strong>in</strong> S (SLS). ORFs correspond<strong>in</strong>g to all of the 9 sag genes (sagAto sagI) could be identified. Similarities of the deduced am<strong>in</strong>o acids of theputative S. ang<strong>in</strong>osus sag gene cluster to the Sag-prote<strong>in</strong>s of S. pyogenesrange from 37 % (sagF) to 81 % (sagD). To further <strong>in</strong>vestigate the S.ang<strong>in</strong>osus haemolys<strong>in</strong>, a functional haemolys<strong>in</strong> assay with culturesupernatants and whole bacteria was carried out. Haemolytic activity wasonly observed with whole cells, not <strong>in</strong> the supernatant, <strong>in</strong>dicat<strong>in</strong>g that likeSLS of S. pyogenes, the S. ang<strong>in</strong>osus haemolys<strong>in</strong> is able to lyseerythrocytes only <strong>in</strong> cell-associated form. But contrary to S. pyogenes,add<strong>in</strong>g of FCS to the cell-free supernatant of S. ang<strong>in</strong>osus did not <strong>in</strong>creasehaemolytic activity.In summary we were able to identify an SLS-like gene cluster as thegenetic basis of S. ang<strong>in</strong>osus ß-haemolys<strong>in</strong> production and could furthercharacterize the ß-haemolys<strong>in</strong>.MPV6-FGAlternative pathways of phagosomal escape of StaphylococcusaureusF. Glow<strong>in</strong>ski 1 , K. Paprotka 2 , M. Grosz 3 , B. S<strong>in</strong>ha 3 , M. Fraunholz* 21 Max Planck Institute for Infection Biology, Dept. Molecular Biology, Berl<strong>in</strong>,Germany2 University of Würzburg , Chair of Microbiology, Biocenter, Würzburg,Germany3 Univeristy of Würzburg, Institute of Hygiene and Microbiology, Würzburg,GermanyStaphylococcus aureus is efficiently taken up by non-professionalphagocytes. Subsequently, certa<strong>in</strong> bacterial stra<strong>in</strong>s are able to escape thephagoendosome <strong>in</strong> an agr-controlled process. We have recently identifiedthat expression of S. aureus -tox<strong>in</strong>, an agr-effector encoded by RNAIII,can augment phagosomal escape <strong>in</strong> presence of -tox<strong>in</strong>. Here we show thatexpression of phenol soluble modul<strong>in</strong> (PSM) but not PSM also leads toescape of -tox<strong>in</strong> positive S. aureus. By contrast, the membranedestructiveactivity of PSM is supported by another phospholipase. Thus,alternative pathways exist for phagosomal escape of S. aureus, whichmight present different strategies to avoid lysosomal dis<strong>in</strong>fection <strong>in</strong>presence or absence of -convert<strong>in</strong>g phages.MPP1-FGCharacterization of a novel genomic island <strong>in</strong> a monophasicvariant of Salmonella TyphimuriumS. Simon*, A. Flieger, W. RabschRobert Koch Institute, National Reference Centre for Salmonella and otherEnteric Pathogens and Division of Bacterial Infections, Wernigerode,GermanyBesides the core genome, bacterial chromosomes harbour numerousaccessory genes acquired by horizontal gene transfer. Organised <strong>in</strong> clusterspredom<strong>in</strong>antly at tRNA loci, these genes are recognised as genomic islands(GEIs). Depend<strong>in</strong>g on their gene content the elements are termedpathogenicity, symbiosis, metabolic, fitness or resistance islands [1]. Herewe describe a novel 18.4 kb genomic island adjacent to the thrWtRNAlocus of an endemic monophasic variant of Salmonella Typhimurium. 454sequenc<strong>in</strong>g and subsequent BLAST analyses revealed 27 open read<strong>in</strong>gframes and a significantly lower G+C content compared to the closelyrelated S. Typhimurium LT2 genome. Homologies cover<strong>in</strong>g large parts ofthe island have been found to several E. coli and Shigella nucleotidesequences [2]. Prote<strong>in</strong> BLAST analyses revealed a number of phagerelatedprote<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g that the island might be of phage-orig<strong>in</strong>.Transcripts were detected for 24 ORFs. Further we showed that the islandcan be excised from the chromosome and form a circular <strong>in</strong>termediatewhich is mobilised under certa<strong>in</strong> conditions. Broth mat<strong>in</strong>g experimentsresulted <strong>in</strong> the successful conjugational transfer of the 18.4 kb island fromthe donor to an appropriate S. Typhimurium recipient stra<strong>in</strong>. To elucidatethe function of the island, we focussed on ORF 10 s<strong>in</strong>ce it is predicted tocode for a T3SS effector. Our experiments suggest that its product is trulysecreted but probably not via the SPI1-, SPI2- or flagella-T3SS describedBIOspektrum | Tagungsband <strong>2012</strong>


130forS. Typhimurium. Uncover<strong>in</strong>g the function of the ORF 10 gene productand the identification of potential <strong>in</strong>teraction partners would provideessential <strong>in</strong>formation to understand the relevance of the whole island <strong>in</strong> theemerg<strong>in</strong>g monophasic variant of Salmonella Typhimurium.U. Dobr<strong>in</strong>dt, B. Hochhuth, U. Hentschel, J. Hacker, Nature Reviews2(2004), p. 414.S. Trüpschuch, J.A. Laverde Gomez, I. Ediberidze, A. Flieger, W. Rabsch, Int J MedMicrobiol300(2010), p. 279.MPP2-FGImportant codon positions and unusual anomalies <strong>in</strong> microbial16S RNA sequencesS. LawrenceUniversity of Cambridge and Sci-Tech(South), Earth Sciences andBiochemistry Research, Cambridge, United K<strong>in</strong>gdomIn most microbial RNA seqeunces there are particular regions of thesequence that show a priority for important translations especially whenthe organism is produc<strong>in</strong>g specific substances for its own survivalmechanisms and for <strong>in</strong>corporation and use <strong>in</strong> both <strong>in</strong>tercellular and<strong>in</strong>tracellular activities. These codon sequences are needed for theproduction of polysaccharides which are used both <strong>in</strong>side and outside thecell wall so are both exopolysaccharides and <strong>in</strong>trapolysaccharides.However these particular codon sequences are not always as regular asexpected and have some unusual anomalies especially with the advent ofAAA and AAAA repetitions. These may not seem unusual at first but theirimportance becomes apparent with the gradual production of the <strong>in</strong>tra andextracellular products. The two species that will be considered that providesuch unusual sequences are firstly xanthomonas, a plant pathogen andsecondly clostridia, a human pathogen. The important codon sequencesand anomalies for these species will be considered.MPP3-FGComplete fiber structure of the trimeric autotransporter adhes<strong>in</strong>SadAM.D. Hartmann, A.N. Lupas, B. Hernandez Alvarez*Max Planck Institute for Developmental Biology, Department of Prote<strong>in</strong>Evolution, Tueb<strong>in</strong>gen, GermanyTrimeric autotranporter adhes<strong>in</strong>s (TAAs) represent a group of nonfimbrial,non-pilus adhes<strong>in</strong>s that are widespread <strong>in</strong> -, -, and g-proteobacteria. They <strong>in</strong>clude a number of prom<strong>in</strong>ent pathogenicity factors<strong>in</strong>clud<strong>in</strong>g Yers<strong>in</strong>ia YadA, Neisseria NadA and Bartonella BadA that are<strong>in</strong>volved <strong>in</strong> pathogen adhesion as well as <strong>in</strong> the defence aga<strong>in</strong>st hostresponses. TAAs are targeted by the type Vc secretion pathway throughthe outer membrane <strong>in</strong>to the extracellular space. Their architecture followsa general head-stalk-anchor assembly from the N- to the C-term<strong>in</strong>us.TAAs are highly modular multidoma<strong>in</strong> prote<strong>in</strong>s with a variable number ofhead and stalk doma<strong>in</strong>s that are l<strong>in</strong>ked by several types of connectordoma<strong>in</strong>s. The highly conserved C-term<strong>in</strong>al membrane anchor harbours theautotransporter function and def<strong>in</strong>es the prote<strong>in</strong> family [1].In order to explore the doma<strong>in</strong> diversity of trimeric autotransporteradhes<strong>in</strong>s, we set out to produce a dictionary approach (daTAA, available athttp://toolkit.tueb<strong>in</strong>gen.mpg.de/dataa) which allows the detailed andautomated annotation of TAAs from sequence data [2]. daTAA provides<strong>in</strong>formation on the sequence, structure and function of so far 25 differentdoma<strong>in</strong> types as well as the rules by which these are comb<strong>in</strong>ed to form theobserved long fibers on the cell surface.As complete TAA fibers are not amenable for X-ray crystallography, weturned to solve the structures of s<strong>in</strong>gle doma<strong>in</strong>s <strong>in</strong> order to assemble them<strong>in</strong>to the full fiber <strong>in</strong> silico <strong>in</strong> a later step. The Salmonella adhes<strong>in</strong> SadAserved as a perfect model as it is a highly complex adhes<strong>in</strong> composed ofdifferent types of doma<strong>in</strong>s. Closest SadA homologues are found <strong>in</strong> almostall enterobacteria, such as UpaG, an adhes<strong>in</strong> <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>fectionprocess of uropathogenic E. coli. Exploit<strong>in</strong>g the observation that almost alldoma<strong>in</strong> types of TAAs beg<strong>in</strong> and end <strong>in</strong> coiled-coil segments, weproduced a pASK IBA - based expression vector system that fuses theextremely stable trimeric pII variant of the GCN4 leuc<strong>in</strong>e zipper <strong>in</strong> registerto the N- and C-term<strong>in</strong>al ends of the doma<strong>in</strong> constructs [3, 4]. We solvedthe structure of all exemplars of doma<strong>in</strong> types of SadA by molecularreplacement and assembled them together with homology models ofisolated doma<strong>in</strong>s <strong>in</strong>to a complete structural model of the full SadA fiber.Our work successfully approved the applicability of the dictionaryapproach to understand the structural organization and to perform theannotation of this complex class of prote<strong>in</strong>s.1. D. L<strong>in</strong>ke, T. Riess, I.B. Autenrieth, A. Lupas and V.A. Kempf. Trends Microbiol.,14(2006), p. 264.2. P. Szczesny and A. Lupas.Bio<strong>in</strong>formatics.24(2008), p. 1251.3. B. Hernandez Alvarez, M.D. Hartmann, R. Albrecht, A.N. Lupas, K. Zeth and D. L<strong>in</strong>ke. Prote<strong>in</strong> Eng DesSel.21(2008), p. 11.4. M.D. Hartmann, O. Ridderbusch, K. Zeth, R. Albrecht, O. Testa, D.N. Woolfson, G. Sauer, S.Dun<strong>in</strong>-Horkawicz, A.N. Lupas and B. Hernandez Alvarez. Proc Natl Acad Sci U S A. 106 (2009), p.16950.OTV001The first structure of a LanI prote<strong>in</strong>, SpaI: The prote<strong>in</strong>conferr<strong>in</strong>g autoimmunity aga<strong>in</strong>st the lantibiotic subtil<strong>in</strong> <strong>in</strong>Bacillus subtilis reveals a novel foldN.A. Christ* 1,2 , S. Bochmann 1 , D. Gottste<strong>in</strong> 2,3 , E. Duchardt-Ferner 1,2 ,U. Hellmich 1,2 , S. Düsterhus 1 , P. Kötter 1 , P. Güntert 2,3 , K.-D. Entian 1,4 ,J. Wöhnert 1,2,41 Goethe University Frankfurt, Institute for Molecular Bioscience, Frankfurt amMa<strong>in</strong>, Germany2 Goethe University Frankfurt, Center of Biomolecular Magnetic Resonance,Frankfurt am Ma<strong>in</strong>, Germany3 Goethe University Frankfurt, Institute of Biophysical Chemistry, Frankfurt amMa<strong>in</strong>, Germany4 Goethe University Frankfurt, Cluster of Excellence “MacromolecularComplexes", Frankfurt am Ma<strong>in</strong>, GermanyThe careless use of many antibiotics <strong>in</strong> the past lead to emerg<strong>in</strong>gresistances even aga<strong>in</strong>st ‘last resort’ drugs such as vancomyc<strong>in</strong>. Thus,there is an urgent need for structurally novel antimicrobial agents.Lantibiotics are small ribosomally synthesized peptide antibiotics withposttranslational modified am<strong>in</strong>o acids result<strong>in</strong>g <strong>in</strong> the characteristiclanthion<strong>in</strong>e and methyllanthion<strong>in</strong>e bridges.Bacillus subtilis ATCC 6633 produces the lantibiotic subtil<strong>in</strong> whichdamages the cell wall of gram-positive bacteria. SpaI is a 16.8 kDalipoprote<strong>in</strong> which is part of the self-protection system of B. subtilis aga<strong>in</strong>stsubtil<strong>in</strong>. It is attached to the outside of the cytoplasmic membrane via acovalent diacylglycerol anchor. SpaI together with the ABC-transporterSpaFEG protects the membrane from subtil<strong>in</strong> <strong>in</strong>sertion.We solved the structure of a 15 kDa biologically active fragment of SpaIby NMR which is the first structure of any LanI (lanthion<strong>in</strong>e immunity)prote<strong>in</strong> from lantibiotic produc<strong>in</strong>g stra<strong>in</strong>s. A search <strong>in</strong> the DALI database<strong>in</strong>dicated a novel fold for SpaI. Our data show that SpaI has as ma<strong>in</strong>ly -strand structure with seven -strands and two -helices 1 . NMR<strong>in</strong>vestigations of a full length construct of SpaI lack<strong>in</strong>g the diacylglycerolanchor suggest that the 30 N-term<strong>in</strong>al am<strong>in</strong>o acids are unfolded <strong>in</strong> theabsence of a membrane. However, this N-term<strong>in</strong>al stretch shows<strong>in</strong>teractions with liposomes <strong>in</strong> NMR titration experiments. When mutat<strong>in</strong>gthis stretch <strong>in</strong> vivo the SpaI mediated immunity of B. subtilis aga<strong>in</strong>stsubtil<strong>in</strong> is not affected and lipobox mutants of SpaI are still found <strong>in</strong> themembrane fraction.Our results are the first step on the way to understand subtil<strong>in</strong>autoimmunity of B. subtilis on a structural level at atomic resolution.1 Christ N.A., Duchardt-Ferner E., Düsterhus S., Kötter P., Entian K.D. and Wöhnert J.,Biomol.NMR Assign. <strong>in</strong> press.OTV002Analysis of SpaI-mediated lantibiotic immunity <strong>in</strong> Bacillus subtilisS. Bochmann* 1 , N. Christ 1,2 , P. Kötter 1 , S. Düsterhus 1 , J. Wöhnert 1,2,3 , K.-D. Entian 1,31 Goethe University Frankfurt, Institute of Molecular Biosciences, Frankfurt amMa<strong>in</strong>, Germany2 Goethe University Frankfurt, Center of Biomolecular Magnetic Resonance,Frankfurt am Ma<strong>in</strong>, Germany3 Goethe University Frankfurt, Cluster of Excellence “MacromolecularComplexes, Frankfurt am Ma<strong>in</strong>, GermanyLantibiotics are lanthion<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g peptides [1] that exhibitantimicrobial as well as pheromone-like auto<strong>in</strong>duc<strong>in</strong>g activity [2]. Bacillussubtilis ATCC 6633 produces the cationic pore-form<strong>in</strong>g lantibioticsubtil<strong>in</strong>, which acts on Gram-positive microorganisms by <strong>in</strong>terfer<strong>in</strong>g withthe lipid II cycle essential for peptidoglycan biosynthesis [3]. Selfprotection of the producer cells is mediated by the lipoprote<strong>in</strong> SpaI and theSpaFEG ABC-transporter [4]. SpaI as typical lipoprote<strong>in</strong> is anchored to theouter membrane via a diacylglycerol moiety.Different SpaI mutations were generated to elucidate the mechanism ofSpaI-mediated immunity. In contrast to other membrane boundlipoprote<strong>in</strong>s, replacement of the cyste<strong>in</strong>e with<strong>in</strong> the lipobox-motif “LSAC”by alan<strong>in</strong>e did not release the prote<strong>in</strong> from the membrane. This result<strong>in</strong>dicates that the membrane <strong>in</strong>teraction of the mature prote<strong>in</strong> occurs also<strong>in</strong> the absence of lipid-modification. Based on structural elucidation, twodoma<strong>in</strong>s (doma<strong>in</strong> 1 and doma<strong>in</strong> 2) were identified, which are <strong>in</strong>dispensablefor SpaI function. Surpris<strong>in</strong>gly, if am<strong>in</strong>o acid residues of doma<strong>in</strong> 1 werenewly aligned, the mutated SpaI D1mix prote<strong>in</strong> was still functional. Thecurrent data suggest that the overall charge of doma<strong>in</strong> 1 is decisive for itsfunction, and not its primary sequence. Doma<strong>in</strong> 2 is also <strong>in</strong>dispensable forSpaI function and needs to be entirely conserved.Our current data suggest that the N-term<strong>in</strong>al doma<strong>in</strong> of SpaI is importantfor membrane association <strong>in</strong> addition to the diacylglycerol anchor.1. Schnell, N., et al.,Prepeptide sequence of epiderm<strong>in</strong>, a ribosomally synthesized antibiotic with foursulphide-r<strong>in</strong>gs. Nature, 1988. 333(6170): p. 276-8.2. Ste<strong>in</strong>, T., et al.,Dual control of subtil<strong>in</strong> biosynthesis and immunity <strong>in</strong> Bacillus subtilis. Mol Microbiol,2002. 44(2): p. 403-16.3. Brotz, H., et al.,Role of lipid-bound peptidoglycan precursors <strong>in</strong> the formation of pores by nis<strong>in</strong>, epiderm<strong>in</strong>and other lantibiotics. Mol Microbiol, 1998. 30(2): p. 317-27.4. Kle<strong>in</strong>, C. and K.D. Entian,Genes <strong>in</strong>volved <strong>in</strong> self-protection aga<strong>in</strong>st the lantibiotic subtil<strong>in</strong> produced byBacillus subtilis ATCC 6633. Appl Environ Microbiol, 1994. 60(8): p. 2793-801.BIOspektrum | Tagungsband <strong>2012</strong>


131OTV003First crenarchaeal chit<strong>in</strong>ase detected <strong>in</strong> Sulfolobus tokodaiiT. Staufenberger*, J.F. Imhoff, A. LabesGEOMAR, KiWiZ, Kiel, GermanyChit<strong>in</strong> is after cellulose the second most abundant biopolymer on earth,consist<strong>in</strong>g of beta 1,4-glycosidic bonded N-acetyl-glucosam<strong>in</strong>e subunitswith various grades of acetylation. It is wide spread from deserts to thedeep sea, generated mostly by arthropoda and fungi with a production andsteady state amount of an estimated 10 10 to 10 11 tons per year [1]. Chit<strong>in</strong>degradation is an extremely important step <strong>in</strong> nutrient cycl<strong>in</strong>g especially <strong>in</strong>the oceans [2] and comprises the comb<strong>in</strong>ed action of several enzymes.Dur<strong>in</strong>g the degradation process chit<strong>in</strong>ases (EC3.2.4.14) ma<strong>in</strong>ly hydrolysethe beta 1,4-glycosidic bonds with<strong>in</strong> the chit<strong>in</strong> polymer. Althoughchit<strong>in</strong>ases are widely distributed <strong>in</strong> all doma<strong>in</strong>s of life, only little is knownabout archaeal chit<strong>in</strong>ases. With<strong>in</strong> the doma<strong>in</strong> of archaea, only teneuryarchaeal chit<strong>in</strong>ases were found so far <strong>in</strong> terms of genetic or molecular<strong>in</strong>formation. Until now, no chit<strong>in</strong>ases or chit<strong>in</strong>ase genes were described orannotated from crenarchaea.Here we show that the ORF BAB65950 from Sulfolobus tokodaii str. 7encodes for the first functional crenarchaeal chit<strong>in</strong>ase. The ORF wasexpressed <strong>in</strong> E. coli and the result<strong>in</strong>g prote<strong>in</strong> degraded chit<strong>in</strong>. It was henceclassified as a chit<strong>in</strong>ase (EC 3.2.4.14). The prote<strong>in</strong> characterisationrevealed a specific activity of 75 mU/mg when <strong>in</strong>cubated with colloidalchit<strong>in</strong> as substrate. The optimal activity of the enzyme was at pH 2.5 and70°C. A dimeric enzyme configuration is proposed. The derived am<strong>in</strong>oacid sequence of the enzyme could neither be attributed to the glycosidehydrolase family 18 nor 19. However, with<strong>in</strong> a phylogenetic sequence tree,the deduced am<strong>in</strong>o acid sequence of the ORF clustered <strong>in</strong>to closeproximity of members of the glycoside hydrolase family 18 [3].[1] Patil et al. 2000 Enzyme and Microbial Technology; 26: 473-483[2] Poulicek et al. 1991 Biochemical Systematics and Ecology; 19: 385-394[3] Staufenberger et al. 2011 Microbiological Research; <strong>in</strong> pressOTV004A novel biosynthetic pathway for the synthesis of Archaeatypeether lipids <strong>in</strong> BacteriaH. Guldan 1 , F.-M. Matysik 2 , M. Bocola 1 , R. Sterner 1 , B. Patrick* 11 University of Regensburg, Biophysics and physical Biochemistry,Regensburg, Germany2 University of Regensburg, Analytical Chemistry, Chemo- and Biosensors,Regensburg, GermanyThe universal tree of life divides all organisms <strong>in</strong>to the phylogeneticsuperk<strong>in</strong>gdoms Eukarya, Bacteria and Archaea, which differ by thechemical composition of their membrane lipids. Lipids from Bacteria andEukarya are composed of a sn-glycerol-3-phosphate core to which fattyacids are bound via ester l<strong>in</strong>kages, while lipids from Archaea consist of snglycerol-1-phosphate(G1P) to which polyprenyl cha<strong>in</strong>s are attached byether bonds.This difference has suggested that the emergence of the Archaea dur<strong>in</strong>gevolution was l<strong>in</strong>ked to the advent of glycerol-1-phosphate dehydrogenase(G1PDH) and geranylgeranylglyceryl phosphate synthase (GGGPS).These enzymes catalyze the first two steps lead<strong>in</strong>g to G1P-based etherlipids, the reduction of dihydroxyacetone phosphate to G1P, and thecondensation of G1P with geranylgeranyl pyrophosphate togeranylgeranylglyceryl phosphate.We were <strong>in</strong>terested to elucidate the function of the hithertouncharacterized AraM and PcrB prote<strong>in</strong>s, which show a significantsequence similarity to the archaeal G1PDH and GGGPS, respectively, butoccur <strong>in</strong> gram-positive bacteria such as Bacillus subtilis. We first showedthat AraM is a Ni 2+ -dependent G1PDH [1] . We then analyzed the functionof PcrB, which is a homologue of the archaeal GGGPS and therefore wasassumed to l<strong>in</strong>k G1P generated by AraM with an unknown polyprenylpyrophosphate substrate, yield<strong>in</strong>g a specific ether lipid. We developed aprotocol for the identification of this substrate of PcrB which is based onits reaction with 14 C-G1P and the subsequent isolation of the formed radiolabeledether lipid product from B. subtilis cells. The results showed thatPcrB catalyzes the reaction of G1P with heptaprenyl pyrophosphate toheptaprenylglyceryl phosphate, which is subsequently dephosphorylatedand acetylated.The functional assignment of AraM and PcrB has allowed us to identify ahitherto unknown pathway for the biosynthesis of archaea-type ether lipids<strong>in</strong> gram-positive bacteria. Moreover, we show that the different substratespecificities of the archaeal GGGPS and the bacterial PcrB, which b<strong>in</strong>dpolyprenyl moieties conta<strong>in</strong><strong>in</strong>g 20 and 35 carbon atoms, respectively, arecaused by a s<strong>in</strong>gle am<strong>in</strong>o acid difference at the bottom of the active site [2] .[1] H. Guldan, R. Sterner, P. Bab<strong>in</strong>ger, Biochemistry 2008, 47, 7376-7384.[2] H. Guldan, F. M. Matysik, M. Bocola, R. Sterner, P. Bab<strong>in</strong>ger, Angewandte Chemie Int. Ed. 2011, 50,8188-8191.OTV005De novo structure of the membrane anchor doma<strong>in</strong> of thetrimeric autotransporter YadA by solid-state NMR spectroscopyD. L<strong>in</strong>ke* 1 , S. Shahid 1 , M. Habeck 1 , B. Bardiaux 2 , B. van Rossum 21 MPI Entwicklungsbiologie, Prote<strong>in</strong> Evolution, Tüb<strong>in</strong>gen, Germany2 FMP Berl<strong>in</strong>, Berl<strong>in</strong>, GermanyQuestion: Solid-state magic-angle sp<strong>in</strong>n<strong>in</strong>g (MAS) NMR spectroscopyhas long been discussed as the emerg<strong>in</strong>g method of choice for membraneprote<strong>in</strong> structural biology (1,2). MAS NMR does not necessarily needhighly and macroscopically ordered material and is not hampered by slowtumbl<strong>in</strong>g. Moreover, solid-state NMR is a unique tool to study bothdynamics and structure of prote<strong>in</strong>s simultaneously at atomic resolution (3-5).YadA is a trimeric autotransporter adhes<strong>in</strong> (TAA (6)). Many members ofthe TAA family are important pathogenicity factors that mediate adhesionto host cells and tissues <strong>in</strong> such diverse diseases as diarrhea, ur<strong>in</strong>ary tract<strong>in</strong>fections, or airway <strong>in</strong>fections. The common structural features of TAAsare trimeric doma<strong>in</strong>s with a high content of alpha-helical coiled coils andof beta-helical or beta-trefoil structures (6). These doma<strong>in</strong>s occur <strong>in</strong>vary<strong>in</strong>g order and repeat number <strong>in</strong> different bacterial TAAs, but thedef<strong>in</strong><strong>in</strong>g element of the family is the membrane anchor (or translocator)doma<strong>in</strong> which hosts two important functions. It anchors the adhes<strong>in</strong> <strong>in</strong> thebacterial outer membrane and exports all other, extracellular doma<strong>in</strong>s tothe cell surface - hence the name, autotransporter. The mechanism of thisautotransport is poorly understood.Methods: solid-state magic angle sp<strong>in</strong>n<strong>in</strong>g NMRResults: Here, we present the first structure of a membrane prote<strong>in</strong>, thetransmembrane doma<strong>in</strong> of the Yers<strong>in</strong>ia Adhes<strong>in</strong> A (YadA), solvedexclusively with solid-state MAS NMR data, us<strong>in</strong>g a s<strong>in</strong>gle, uniformly13C/15N labeled sample.Conlusions: The first partial structure of a TAA was obta<strong>in</strong>ed for thecollagen-b<strong>in</strong>d<strong>in</strong>g, extracellular head doma<strong>in</strong> of YadA from theenteropathogenYers<strong>in</strong>ia enterocolitica (7). Thus far, only for one TAAanchor doma<strong>in</strong>, of Haemophilus Hia, an x-ray structure has been obta<strong>in</strong>ed(11). We applied solid-state MAS NMR to crystall<strong>in</strong>e YadA-M to collecthigh-resolution structural data. In addition, NMR allowed us to acquire<strong>in</strong>formation on flexibility and other mechanistic detail that cannot betransferred from the x-ray structure of Hia (11).1. A. McDermott, Annual Review of Biophysics 38, 385 (2009).2. P. J. Judge, A. Watts, Current Op<strong>in</strong>ion <strong>in</strong> Chemical Biology 15, 690 (2011).3. W. T. Frankset al., Journal of the American Chemical Society 127, 12291 (2005).4. S. Jehleet al., Nature Structural & Molecular Biology 17, 1037 (2010).5. C. Wasmeret al., Science 319, 1523 (2008).6. D. L<strong>in</strong>ke et al., Trends <strong>in</strong> Microbiology 14, 264 (2006).7. H. Nummel<strong>in</strong>et al., The EMBO Journal 23, 701 (2004).8. U. Grossk<strong>in</strong>skyet al., Journal of Bacteriology 189, 9011 (2007).9. U. Lehr et al., Molecular Microbiology 78, 932 (2010).10. A. Roggenkampet al., Journal of Bacteriology 185, 3735 (2003).11. G. Meng et al., The EMBO journal 25, 2297 (2006).OTV006Biochemical and structural analysis of FlaH, a component ofthe crenarchaeal flagellumT. Ne<strong>in</strong>er* 1 , K. Lassak 1 , A. Ghosh 1 , S. Hartung 1,2 , J.A. Ta<strong>in</strong>er 2 , S.-V. Albers 11 Max Planck Institut for terrestrial Microbiology , Molecular biology ofArchaea, Marburg, Germany2 Lawrence Berkeley National Lab, Life Sciences Division, Berkeley, UnitedStatesMotility is a very important attribute of live. It allows the organisms fromall three doma<strong>in</strong>s of life to adapt to a chang<strong>in</strong>g environment, which iscrucial for the survival of various species. The two most commonly usedmotility structures <strong>in</strong> bacteria are flagella and type IV pili. Flagella are<strong>in</strong>volved <strong>in</strong> swimm<strong>in</strong>g motility whereas type IV pili are mostly <strong>in</strong>volved <strong>in</strong>twitch<strong>in</strong>g motility. Both modes of movements have been extensivelystudied and the assembly systems and functions are well characterized.This is not the case for archaeal motility. Numerous cell appendages suchas flagella and pili have been already identified, but still not much isknown about their assembly mechanisms and functions. We are mostly<strong>in</strong>terested <strong>in</strong> the archaeal flagellum, which is a unique motility apparatusthat performs the same function as bacterial flagella; although it isstructurally more related to bacterial type IV pili. In most knownflagellated archaea the flagella-associated genes are organized <strong>in</strong> a s<strong>in</strong>glefla gene cluster, consist<strong>in</strong>g of flagell<strong>in</strong> encod<strong>in</strong>g genes (flaA, flaB), somevariations of genes encod<strong>in</strong>g accessory prote<strong>in</strong>s (flaCDEGFH), genesencod<strong>in</strong>g an ATPase (flaI) and a polytopic membrane prote<strong>in</strong> (flaJ).Us<strong>in</strong>g Sulfolobus acidocaldarius as a model organism we want to analyzethe crenarchaeal flagella assembly system and its function. We couldalready show that all seven genes encoded <strong>in</strong> the fla gene cluster ofSulfolobus acidocaldarius are essential for crenarchaeal flagella assemblyand for swimm<strong>in</strong>g motility <strong>in</strong> liquid environments. My project is ma<strong>in</strong>lyfocused on the <strong>in</strong> vivo and <strong>in</strong> vitro study of S. acidocaldarius flagellacomponent FlaH. FlaH is an <strong>in</strong>complete ATPase, which conta<strong>in</strong>s a welldef<strong>in</strong>ed Walker A, but lacks the Walker B motive. As we determ<strong>in</strong>ed thestructure of FlaH and us<strong>in</strong>g this, we constructed def<strong>in</strong>ed po<strong>in</strong>t mutants.Comb<strong>in</strong><strong>in</strong>g mutant analysis with biochemical studies will help us toBIOspektrum | Tagungsband <strong>2012</strong>


132understand the exact role of FlaH <strong>in</strong> the assembly and function of thecrenarchaeal flagellum.OTV007Subcellular position<strong>in</strong>g of a DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> throughconstra<strong>in</strong>t movementL. Simon* 1 , M. Ulbrich 2 , J. Ries 3 , H. Ewers 3 , P.L. Graumann 11 University of Freiburg, Mikrobiologie, Freiburg, Germany2 University of Freiburg, Bioss (Centre for Biological signall<strong>in</strong>g studies)and Department for Medic<strong>in</strong>e, Institute of Physiology, Freiburg, Germany3 ETH Zürich, Laboratory of Physical Chemistry, Zürich, SwitzerlandMany prote<strong>in</strong> complexes localize to def<strong>in</strong>ed regions with<strong>in</strong> cells. Thebacterial SMC complex consists of a central SMC dimer and twoaccessory factors, ScpA and ScpB. SMC b<strong>in</strong>ds non-specifically to DNA <strong>in</strong>vitro, while ScpA and ScpB appear to confer a regulatory function. Thecomplex plays an important role <strong>in</strong> chromosome condensation andsegregation dur<strong>in</strong>g the bacterial cell cycle, and forms two discretesubcellular centres, one <strong>in</strong> each cell half, when imaged with conventionalepi-fluorescence microscopy. Us<strong>in</strong>g s<strong>in</strong>gle molecule microscopy andtrack<strong>in</strong>g we show that localization is achieved through limited yet rapidmovement of the SMC subunits through a cell half, while the accessoryScpAB subunits mediate temporal arrest of a subset of SMC molecules atthe centre of a cell half. Thus, specific localization is achieved bymovement through the nucleoid and transient arrest at the nucleoid centre.FRAP studies show that the SMC pool has a high turnover with<strong>in</strong> a cellhalf and is also replenished through de novo prote<strong>in</strong> synthesis, yield<strong>in</strong>g anadditional level of prote<strong>in</strong> dynamics. Diffusion/movement with<strong>in</strong> a limitedcompartment and transient arrest may be a general means to accumulateprote<strong>in</strong>s with<strong>in</strong> non-compartmentalized cells.OTV008Prote<strong>in</strong> complexes <strong>in</strong>volved <strong>in</strong> the electron transport cha<strong>in</strong> ofanammox bacteriaN. de Almeida* 1 , H. Wessels 2 , W. Maalcke 1 , J. Keltjens 1 , M. Jetten 1 , B. Kartal 11 Radboud University Nijmegen , Microbiology, Nijmegen, Netherlands2 Radboud University Nijmegen Medical Centre, Department of Pediatrics,Nijmegen, NetherlandsAnammox bacteria comb<strong>in</strong>e ammonia with nitrite to d<strong>in</strong>itrogen gas withnitric oxide and hydraz<strong>in</strong>e as <strong>in</strong>termediates (1). Oxidation of the latteryields low-redox-potential electrons, which can be used for CO 2 fixation.We hypothesize that these are replenished through the oxidation of nitriteto nitrate by a nitrite oxidiz<strong>in</strong>g system (NAR) (2). As nitrite is a relativelypoor reductant, the electrons have to be energized to enter the bc 1-complexor to feed a qu<strong>in</strong>one pool, which implies reverse electron transport.The gene cluster that conta<strong>in</strong>s the catalytic subunits of nitrite oxidiz<strong>in</strong>g(narGH) system covers almost the full natural repertoire of electroncarriers. This <strong>in</strong>cludes genes encod<strong>in</strong>g six putative heme-conta<strong>in</strong><strong>in</strong>gprote<strong>in</strong>s and two putative blue-copper prote<strong>in</strong>s and a putative anchor to themembrane show<strong>in</strong>g homology to a cytochrome bd oxidase subunit (2).Furthermore, the genome of the anammox bacterium Candidatus Kueneniastuttgartiensis shows a high redundancy of respiratory genes, suggest<strong>in</strong>g an<strong>in</strong>tricate cellular electron transport system. Interest<strong>in</strong>gly, the three operonsencod<strong>in</strong>g for the bc 1 complexes, complex III <strong>in</strong> the respiratory cha<strong>in</strong>, alldiffer <strong>in</strong> their subunit composition from the canonical bc 1 complexes <strong>in</strong>other microorganisms. One operon consists only of a heme b /c fusionprote<strong>in</strong> and the Rieske prote<strong>in</strong>. The other two operons encode for multiheme c conta<strong>in</strong><strong>in</strong>g genes, NAD(P) oxidoreductase subunits and,<strong>in</strong>trigu<strong>in</strong>gly one of them conta<strong>in</strong>s a hydroxylam<strong>in</strong>e oxidoreductase subunit.The comb<strong>in</strong>ation of these subunits strongly suggests that electrons derivedfrom different oxidation reactions could be wired to different electronacceptors, once enter<strong>in</strong>g the bc 1 complexes.The whole prote<strong>in</strong> complement of K. stuttgartiensis membranes wasdeterm<strong>in</strong>ed with prote<strong>in</strong> correlation profil<strong>in</strong>g us<strong>in</strong>g LC-MS/MS data fromconsecutive Blue Native (BN) gel slices (3). The detection of differentcomplexes was coupled to <strong>in</strong>-gel activities of the respiratory complexes <strong>in</strong>BN gels. Further, the catalytic subunit of the nitrite oxidiz<strong>in</strong>g system of K.stuttgartiensis was purified.1) Kartal B, et al (2011): Molecular mechanism of anaerobic ammonium Oxidation. Nature 479: 127-130.2) de Almeida NM, et al (2011): Prote<strong>in</strong>s and prote<strong>in</strong> complexes <strong>in</strong>volved <strong>in</strong> the biochemical reactions ofanaerobic ammonium-oxidiz<strong>in</strong>g bacteria. Biochemical Society Transactions. 39: 303-308.3)Wessels JCT, et al (2009) LC-MS/MS as an alternative for SDS-PAGE <strong>in</strong> blue native analysis of prote<strong>in</strong>complexes. Proteomics 17: 4221-4228.OTV009Replication fork movement and methylation governs SeqAb<strong>in</strong>d<strong>in</strong>g to the Escherichia coli chromosomeT. Waldm<strong>in</strong>ghaus* 1 , C. Weigel 2 , K. Skarstad 31 LOEWE-Zentrum für Synthetische Mikrobiologie, Philipps-Universität,Marburg, Germany2 HTW, Department of Life Science Eng<strong>in</strong>eer<strong>in</strong>g, Berl<strong>in</strong>, Germany3 Norwegian Institute for Cancer Research, Cell Biology, Oslo, NorwayChromosomes are composed of enormously long DNA molecules whichmust be distributed correctly as the cells grow and divide. In Escherichiacoli the SeqA prote<strong>in</strong> might be <strong>in</strong>volved <strong>in</strong> organization of new DNAbeh<strong>in</strong>d the replication forks. SeqA b<strong>in</strong>ds specific to GATC sequenceswhich are methylated on the A of the old strand but not on the new strand.Such hemi-methylated DNA is produced by progression of the replicationforks and lasts until Dam methyltransferase methylates the new strand. It istherefore believed that a region of hemi-methylated DNA covered bySeqA follows the replication fork. We show that this is <strong>in</strong>deed the case byus<strong>in</strong>g global ChIP on Chip analysis of SeqA <strong>in</strong> cells synchronizedregard<strong>in</strong>g DNA replication. To assess hemi-methylation we developed thefirst genome wide method for methylation analysis <strong>in</strong> bacteria. Acomparison of rapid and slow growth conditions showed that <strong>in</strong> cells withmultiple replication forks per chromosome, the old forks b<strong>in</strong>d little SeqA.Analysis of stra<strong>in</strong>s with strong SeqA b<strong>in</strong>d<strong>in</strong>g sites at differentchromosomal loci supported this f<strong>in</strong>d<strong>in</strong>g. The results <strong>in</strong>dicate that a reorganizationof the chromosome occurs at a timepo<strong>in</strong>t co<strong>in</strong>cid<strong>in</strong>g with theend of SeqA dependent orig<strong>in</strong> sequestration. We suggest that areorganization event occurs result<strong>in</strong>g <strong>in</strong> both orig<strong>in</strong> desequestration andloss of old replication forks from the SeqA structures.Waldm<strong>in</strong>ghaus, T. and Skarstad, K. (2009) The Escherichia coli SeqA prote<strong>in</strong>. Plasmid, 61, 141-150.Waldm<strong>in</strong>ghaus, T. and Skarstad, K. (2010) ChIP on Chip: surpris<strong>in</strong>g results are often artifacts. BMCGenomics. 11, 414.OTV010Translocation of sodium ions by the ND5 subunit ofmitochondrial complex I from the yeast Yarrowia lipolyticaH. Grönheim*, W. Steffen, J. SteuberUniversität Hohenheim, Mikrobiologie FG Zelluläre Mikrobiologie,Stuttgart, GermanyMitochondrial complex I (NADH:ubiqu<strong>in</strong>one oxidoreductase), localized <strong>in</strong>the <strong>in</strong>ner mitochondrial membrane, is the first enzyme of the electrontransport cha<strong>in</strong> of the oxidative phosphorylation system. The L-shapedcomplex is partitioned <strong>in</strong>to a peripheral arm and a membrane-bounddoma<strong>in</strong>.In the peripheral arm electrons from NADH are transferred to ubiqu<strong>in</strong>onevia iron sulfur clusters, us<strong>in</strong>g FMN as cofactor. This process is coupled, byconformational changes as structural data <strong>in</strong>dicates, with the translocationof protons by the membrane-bound doma<strong>in</strong> (Brandt 2006; Efremov,Baradaran et al. 2010; Efremov and Sazanov 2011). Here we focus on theND5 subunit of the membrane-bound doma<strong>in</strong> of the mammalian complexwhich is considered to be <strong>in</strong>volved <strong>in</strong> the translocation of protons.Previous studies showed that the ND5 homologue NuoL from E. colicomplex I transports sodium ions across the membrane (Gemperli,Schaffitzel et al. 2007). We also observed that ND5 from human complexI, when <strong>in</strong>serted <strong>in</strong>to the <strong>in</strong>ner mitochondrial membrane of S. cerevisiae,leads to an <strong>in</strong>creased salt sensitivity of the yeast cells, suggest<strong>in</strong>g that ND5promotes the leakage of cations across the mitochondrial membrane(Steffen, Gemperli et al. 2010). Here, we <strong>in</strong>vestigate the cation transportactivity of the ND5 homologue from the yeast Y. lipolytica produced asGFP-ND5 fusion prote<strong>in</strong> <strong>in</strong> ER vesicles from S. cerevisiae. The topologyof ND5 <strong>in</strong> the vesicles was analyzed by limited proteolysis. The N-term<strong>in</strong>al GFP fusion to ND5 was oriented towards the external lumen ofER vesicles. This uniform orientation of ND5 <strong>in</strong> vesicles was theprerequisite for cation transport studies where a Na + concentration gradientwas applied. ER vesicles conta<strong>in</strong><strong>in</strong>g GFP-ND5 exhibited a significantlyhigher Na + uptake activity than control vesicles without ND5. This<strong>in</strong>dicates that the <strong>in</strong>dividual ND5 prote<strong>in</strong> which is highly related tosecondary Na + /H + antiporters conta<strong>in</strong>s a channel for Na + .Brandt, U. (2006). "Energy convert<strong>in</strong>g NADH:qu<strong>in</strong>one oxidoreductase (complex I)."Annu Rev Biochem75:69-92.Efremov, R. G., R. Baradaran, et al. (2010). "The architecture of respiratory complex I."Nature465(7297):441-445.Efremov, R. G. and L. A. Sazanov (2011). "Structure of the membrane doma<strong>in</strong> of respiratory complexI."Nature476(7361): 414-420.Gemperli, A. C., C. Schaffitzel, et al. (2007). "Transport of Na + and K + by an antiporter-related subunit fromthe Escherichia coli NADH dehydrogenase I produced <strong>in</strong> Saccharomyces cerevisiae."Arch Microbiol188(5):509-521.Steffen, W., A. C. Gemperli, et al. (2010). "Organelle-specific expression of subunit ND5 of human complexI (NADH dehydrogenase) alters cation homeostasis <strong>in</strong> Saccharomyces cerevisiae."FEMS Yeast Res10(6):648-659.BIOspektrum | Tagungsband <strong>2012</strong>


133OTV011Large and frequent <strong>in</strong>trons <strong>in</strong> the 16S rRNA genes of largesulfur bacteriaV. Salman*, R. Amann, D. Shub, H. Schulz-VogtMax Planck Institut für mar<strong>in</strong>e Mikrobiologie, Mikrobiologie, Bremen,GermanyThe gene encod<strong>in</strong>g the small ribosomal subunit (16S/18S rDNA) serves asa prom<strong>in</strong>ent tool for the phylogenetic analysis and classification of liv<strong>in</strong>gorganisms ow<strong>in</strong>g to its high degree of conservation and its fundamentalfunction 1 . Nowadays, established methods to analyze this gene are tak<strong>in</strong>gadvantage of its conservation <strong>in</strong> size and nucleotide composition 2 . Wesequenced the 16S rRNA genes of not yet cultivated large sulfur bacteria,among them the largest known bacteriumThiomargarita namibiensis, andfound that the genes regularly conta<strong>in</strong> numerous self-splic<strong>in</strong>g <strong>in</strong>trons ofvariable length. The 16S rRNA genes of these bacteria can thus beenlarged to up to 3.5 kb.Us<strong>in</strong>g a modified CARD-FISH approach we can show that the <strong>in</strong>trons aretranscribed as part of the rRNA precursor, but they cannot be located <strong>in</strong> thenative ribosomes. Also, the <strong>in</strong>trons show self-splic<strong>in</strong>g abilities <strong>in</strong> <strong>in</strong>vitroexperiments, i.e. they autonomously excise from RNA and mediatethe ligation of the two exons. These f<strong>in</strong>d<strong>in</strong>gs lead to the conclusion that the<strong>in</strong>trons are capable of <strong>in</strong>dependent removal dur<strong>in</strong>g ribosome maturation,therefore m<strong>in</strong>imiz<strong>in</strong>g negative impact on the host organism. Remarkably,<strong>in</strong>trons have never been identified <strong>in</strong> bacterial 16S rRNA genes before,although be<strong>in</strong>g the most frequently sequenced gene today. This may becaused <strong>in</strong> part by a bias dur<strong>in</strong>g the PCR amplification step discrim<strong>in</strong>at<strong>in</strong>gaga<strong>in</strong>st longer homologues, as we can show experimentally as well. Thefact that <strong>in</strong>trons were now located <strong>in</strong> the 16S rRNA genes <strong>in</strong> the largesulfur bacteria, and have also been found <strong>in</strong> the 23S rRNA genes of severalother bacteria 3,4 , implies that the presence of <strong>in</strong>trons <strong>in</strong> the bacterial rRNAoperon is more common than previously recognized. Possibly, also othergroups of bacteria likewise have <strong>in</strong>trons <strong>in</strong> their 16S rRNA genes, whichwould have profound implications for common methods <strong>in</strong> molecularecology - it may cause systematic biases and lead to the exclusion of the<strong>in</strong>tron-conta<strong>in</strong><strong>in</strong>g fraction of a heterogeneous population. The generalimpact of this f<strong>in</strong>d<strong>in</strong>g on the standard analysis of rRNA genes is apparent.1N. R. Pace, G. J. Olsen, C. R. Woese, Cell45 (1986) p. 325-326.2C. R. Woese, Microbiology Reviews51(1987) p. 221-271.3 R. Raghavan, S. R. Miller, L. D. Hicks, M. F. M<strong>in</strong>nick, Journal of Bacteriology189 (2007) p. 6572-6579.4 C. L. Nesbø, W. F. Doolittle, Proceed<strong>in</strong>gs of the National Academy of Science U S A100 (2003) p. 10806-10811.5 This study was funded by the Max Planck Society.OTV012Regulation of anaerobic respiratory pathways <strong>in</strong>D<strong>in</strong>oroseobacter shibaeS. Laaß*, J. Kle<strong>in</strong>, D. Jahn, P. TielenTechnische Universität Braunschweig, Institut für Mikrobiologie,Braunschweig, GermanyDenitrification is part of the global nitrogen cycle and an importantmechanism of energy generation under anaerobic conditions.D<strong>in</strong>oroseobacter shibae, a representative of the globally abundant mar<strong>in</strong>eRoseobacter clade, is used as a model organism to study the transcriptionalresponse to chang<strong>in</strong>g oxygen conditions <strong>in</strong> the presence of nitrate. Itsannotated 4.4 Mb genome sequence revealed clustered genes, which are<strong>in</strong>volved <strong>in</strong> anaerobic respiratory energy metabolism with nitrate asalternative electron acceptor [1]. Interest<strong>in</strong>gly, D. shibae conta<strong>in</strong>s theperiplasmic nitrate reductase Nap <strong>in</strong>stead of the membrane bound Nar. D.shibae features nir, nor and nos operons <strong>in</strong> the vic<strong>in</strong>ity of the nap operon.An unusual high number of Crp/Fnr-like regulators have been predicted:Beside one FnrL-homologue with a [4Fe-4S] 2+ -cluster, six Dnr-likeregulators are found. The genes encod<strong>in</strong>g DnrD and DnrE are directlylocated between the nor- and nos-operon. We are <strong>in</strong>terested <strong>in</strong> identify<strong>in</strong>ggene regulatory patterns after shift<strong>in</strong>g from aerobic to anaerobicdenitrify<strong>in</strong>g conditions. Therefore, we used cont<strong>in</strong>uous cultivation of D.shibae <strong>in</strong> a chemostat comb<strong>in</strong>ed with time series microarray analysis. Wedetected anaerobic growth of D. shibae via denitrification. Transcriptomeanalysis revealed dist<strong>in</strong>ct patterns of gene expression <strong>in</strong> response tooxygen limitation. The change from aerobic to anaerobic growth showed asequential <strong>in</strong>duction of gene clusters encod<strong>in</strong>g the four reductases of thedenitrification mach<strong>in</strong>ery. Genes encod<strong>in</strong>g Fnr/Crp-like regulators showeddifferent expression levels over time. In response to oxygen limitation, animmediate upregulation of universal stress prote<strong>in</strong>s, f<strong>in</strong>e-tun<strong>in</strong>g of theelectron transport cha<strong>in</strong> components, as well as the downregulation of thetranslational apparatus was observed. Furthermore, we predict a regulatorynetwork for the anaerobic respiratory pathway <strong>in</strong> D. shibae.[1] Wagner-Döbler et al.(2009), ISME J. 4: 61-77.OTV013Influence of subcellular antigen localization with<strong>in</strong> different yeastgenera on the activation of ovalbum<strong>in</strong>-specific CD8 TlymphocytesS. Boschi Bazan 1 , G. Geg<strong>in</strong>at 2 , T. Bre<strong>in</strong>ig 3 , M.J. Schmitt 1 , F. Bre<strong>in</strong>ig* 11 Universität des Saarlandes, Molekular- und Zellbiologie, Saarbrücken,Germany2 Universitätskl<strong>in</strong>ikum Magdeburg, Kl<strong>in</strong>ische Mikrobiologie, Magdeburg,Germany3 Universität des Saarlandes, Informatik, Saarbrücken, GermanyYeasts of the genus Saccharomyces express<strong>in</strong>g recomb<strong>in</strong>ant antigens arecurrently evaluated as candidate T cell vacc<strong>in</strong>es. We compared the<strong>in</strong>teraction k<strong>in</strong>etics between four biotechnologically relevant yeast genera(Saccharomyces cerevisiae, Schizosaccharomyces pombe, Kluyveromyceslactis and Pichia pastoris) and human dendritic cells. Further, we analyzedthe activation capacity of recomb<strong>in</strong>ant yeasts express<strong>in</strong>g ovalbum<strong>in</strong>(OVA) either <strong>in</strong>tracellular, extracellular or surface-displayed by OVAspecificCD8 T lymphocytes. We found that the k<strong>in</strong>etic patterns of yeastuptake by phagocytic cells varied between the tested yeast genera and thatboth genus and subcellular OVA antigen localization <strong>in</strong>fluenced thestrength of T cell activation. In particular, <strong>in</strong> S. cerevisiae, a secretedantigen was less effectively delivered than its cytosolic variant, whereasmost efficient antigen delivery with P. pastoris was obta<strong>in</strong>ed by cellsurface bound antigen. Our data <strong>in</strong>dicate that prote<strong>in</strong> secretion might notbe an effective delivery pathway <strong>in</strong> yeast. [Bazan et al. (2011) Vacc<strong>in</strong>e 29;8165]OTV014The quest for new oxidative catalysts: Expression ofmetagenomic membrane-bound dehydrogenases from aceticacid bacteria <strong>in</strong> Gluconobacter oxydansB. Peters*, M. Mientus, D. Kostner, W. Liebl, A. EhrenreichTechnische Universität München, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g,GermanyAcetic acid bacteria are used <strong>in</strong> biotechnology due to their ability to<strong>in</strong>completely oxidize a great variety of carbohydrates, alcohols and relatedcompounds. Many of these oxidations are unfeasible us<strong>in</strong>g organicchemistry. Because these reactions are mostly catalyzed by membranebounddehydrogenases, <strong>in</strong> a rapid, regio- and stereo-selective manner, thesubstrates do not have to be transported <strong>in</strong>to the cytoplasm. Due to the factthat many acetic acid bacteria can not be cultivated <strong>in</strong> the laboratory weuse a metagenomic approach to <strong>in</strong>dentify new membrane-bounddehydrogenases of potential value for biotechnology from a mother ofv<strong>in</strong>egar.The membrane-bound dehydrogenases are screened by sequence similarityfrom the metagenomic library and are functionally expressed <strong>in</strong> speciallydesigned Gluconobacter oxydans stra<strong>in</strong>s. In these stra<strong>in</strong>s all membranebounddehydrogenases were deleted us<strong>in</strong>g a clean deletion systemdeveloped by our group to avoid overlapp<strong>in</strong>g enzymatic specificities.Us<strong>in</strong>g specifically designed expression vectors we ensure functional<strong>in</strong>tegration <strong>in</strong> the membrane physiology of these organisms.In order to set up a high throughput assay to characterize the activity ofmembrane-bound dehydrogenases, we developed a whole cell system <strong>in</strong>microtiter-plates. The advantage of this system is a m<strong>in</strong>imized cellpreparation together with the ability to compare many sta<strong>in</strong>s or substrates<strong>in</strong> one experiment. We used this approach to determ<strong>in</strong>e the <strong>in</strong> vivosubstrate spectrum of several membrane-bound dehydrogenases fromacetic acid bacteria for the first time.OTV015Growth phase dependent changes of the RNA degrad<strong>in</strong>gexosome <strong>in</strong> Sulfolobus solfataricusC. Witharana*, L. Hou, C. Lassek, V. Roppelt, G. Klug, E. Evguenieva-HackenbergJustus-Liebig-Universität Giessen, Institut für Mikrobiologie undMolekularbiologie, Gießen, GermanyWe are <strong>in</strong>vestigat<strong>in</strong>g the exosome of the hyperthermophilic and acidophilicarchaeonSulfolobus solfataricus(1).The archaeal exosome is a prote<strong>in</strong>complex <strong>in</strong>volved <strong>in</strong> the degradation and the posttranscriptional tail<strong>in</strong>g ofRNA. The core of the complex is build of a phosphorolytically activehexameric r<strong>in</strong>g of the subunits Rrp41 and Rrp42, to which a trimeric capof the RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s Rrp4 and/or Csl4 attaches (2). Rrp4 and Csl4confer different substrate specificity to the exosome (3). In addition tothese subunits, the archaeal DnaG prote<strong>in</strong> is stably associated with theexosome (4). The majority of the prote<strong>in</strong> complex <strong>in</strong>clud<strong>in</strong>g DnaG islocalized at the periphery of the cell and is detectable <strong>in</strong> the non-solublefraction (5). Here we show that DnaG directly <strong>in</strong>teracts with Csl4 <strong>in</strong> theexosome, and that it differently <strong>in</strong>fluences the activity of complexes withhomotrimeric Rrp4- or Csl4-caps<strong>in</strong> vitro. We confirmed the existence ofBIOspektrum | Tagungsband <strong>2012</strong>


134heterotrimeric, Rrp4- and Csl4-conta<strong>in</strong><strong>in</strong>g caps<strong>in</strong> vivo. Furthermore, weobserved <strong>in</strong>creased amounts of soluble, Rrp4-conta<strong>in</strong><strong>in</strong>g exosome <strong>in</strong> thestationary phase, when the vast majority of the DnaG-Csl4-exosomerema<strong>in</strong>s non-soluble. Our data strongly suggest that temporal and spatialchanges <strong>in</strong> the localization of the exosome are based on changes <strong>in</strong> thecomposition of the RNA-b<strong>in</strong>d<strong>in</strong>g cap and its <strong>in</strong>teraction with DnaG.1. Evguenieva-Hackenberg, E., Walter, P., Hochleitner, E., Lottspeich, F., Klug, G. (2003) An exosome-likecomplex <strong>in</strong>Sulfolobus solfataricus.EMBOreports4: 889-893.2. Evguenieva-Hackenberg, E. and Klug, G. (2009) RNA degradation <strong>in</strong> Archaea and Gram-negativebacteria different fromEscherichia coli.Progress <strong>in</strong> Molecular Biology and Translational Science85: 275-317.3. Roppelt, V., Klug, G., Evguenieva-Hackenberg, E. (2010) The evolutionarily conserved subunits Rrp4and Csl4 confer different substrate specificities to the archaeal exosome.FEBS Lett.584: 2931-2936.4. Walter, P., Kle<strong>in</strong>, F., Lorentzen, E., Ilchmann, A,. Klug, G., Evguenieva-Hackenberg, E. (2006).Characterisation of native and reconstituted exosome complexes from the hyperthermophilicarchaeonSulfolobus solfataricus.Mol. Microbiol.62: 1076-1089.5. Roppelt, V., Hobel, C., Albers, S. V., Lassek, C., Schwarz, H., Klug, G., Evguenieva-Hackenberg, E.(2010) The archaeal exosome localizes to the membrane.FEBS Lett.584:2791-2795.OTV016Freshwater Act<strong>in</strong>obacteria acI as revealed by s<strong>in</strong>gle-cellgenomicsS.L. Garcia* 1 , A. Srivastava 2 , H.-P. Grossart 2 , T. McMahon 3 , R. Stepanauskas 4 ,A. Sczyrba 5,6 , T. Woyke 5 , S. Barchmann 1 , F. Warnecke 11 Friedrich Schiller University, Jena School for Microbial Communication,Jena, Germany2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Department forLimnology Of Stratified Lakes, Neuglobsow, Germany3 University of Wiscons<strong>in</strong> – Madison, Department of Civil & EnvironmentalEng<strong>in</strong>eer<strong>in</strong>g, Madison, United States4 Bigelow Laboratory for Ocean Sciences, S<strong>in</strong>gle Cell Genomics Center, WestBoothbay Harbor, United States5 DOE Jo<strong>in</strong>t Genome Institute, Microbial Program, Creek, United States6 University of Bielefeld, Department for Computational Metagenomics,Bielefeld, United StatesAct<strong>in</strong>obacteria of the acI clade are often numerically dom<strong>in</strong>at<strong>in</strong>gfreshwater ecosystems where they can contribute >50% of the bacteria <strong>in</strong>the surface water. However and as often with environmentally importantspecies they are uncultured to date. That is why we set out to study theirgenomic <strong>in</strong>formation <strong>in</strong> order to learn about their physiology andecological niche. We used a s<strong>in</strong>gle cell genomics approach whichconsisted of the follow<strong>in</strong>g steps: (1) s<strong>in</strong>gle cell sort<strong>in</strong>g by Fluorescenceactivatedcell sort<strong>in</strong>g (FACS), (2) whole genome amplification (WGA)us<strong>in</strong>g Phi29 DNA polymerase, (3) screen<strong>in</strong>g of SAG (S<strong>in</strong>gle cell amplifiedgenome) DNA by 16S rRNA sequenc<strong>in</strong>g, (4) shotgun genomic sequenc<strong>in</strong>gfollowed by (5) genome assembly, annotation and data analysis us<strong>in</strong>g TheJo<strong>in</strong>t Genome Institute’s (JGI) Integrated Microbial Genomes (IMG)analysis platform. We obta<strong>in</strong>ed a draft genomic sequence <strong>in</strong> 75 largercontigs (sum = 1.16 Mbp) and with an unusual low genomic G+C mol%(i.e. ~42%). S<strong>in</strong>gle copy gene analysis suggests an almost completegenome recovery. We also noticed a rather low percentage of genes withno predicted functions (i.e. ~15%) as compared to other cultured andgenome-sequenced microbial species. Our metabolic reconstruction h<strong>in</strong>tsat the degradation of pentoses (e.g. xylose) <strong>in</strong>stead of hexoses. We alsofound an act<strong>in</strong>orhodops<strong>in</strong> gene that may contribute to energy conservationunder unfavorable conditions. This project reveals the possibilities andlimitations of s<strong>in</strong>gle cell genomics for microbial species that defycultivation to date.OTV017Carbon and hydrogen isotope fractionation dur<strong>in</strong>g nitritedependentanaerobic methane oxidation by MethylomirabilisoxyferaO. Rasigraf* 1 , C. Vogt 2 , H.-H. Richnow 2 , M.S.M. Jetten 1 , K.F. Ettwig 11 Radboud Universiteit Nijmegen, Microbiology, Nijmegen, Netherlands2 Helmholtz Centre for Environmental Research – UFZ, IsotopeBiogeochemistry, Leipzig, GermanyAnaerobic oxidation of methane coupled to nitrite reduction is a recentlydiscovered methane s<strong>in</strong>k of as yet unknown global significance. Thebacteria that have been identified to carry out this process, CandidatusMethylomirabilis oxyfera, oxidize methane via the known aerobic pathway<strong>in</strong>volv<strong>in</strong>g the monooxygenase reaction [1]. In contrast to aerobicmethanotrophs, oxygen is produced <strong>in</strong>tracellularly and used for theactivation of methane by a phylogenetically dist<strong>in</strong>ct particulate methanemonooxygenase (pMMO) [1]. Here we report the fractionation factors forcarbon and hydrogen dur<strong>in</strong>g methane degradation by an enrichment cultureof M. oxyfera bacteria. In two separate batch <strong>in</strong>cubation experiments withdifferent absolute biomass and methane contents, the specificmethanotrophic activity was similar and the progressive isotopeenrichment identical. The enrichment factors determ<strong>in</strong>ed by Rayleighapproach were <strong>in</strong> the upper range of values reported so far for aerobicmethanotrophs. In addition, two-dimensional specific isotope analysis ( =( H -1 -1)/( C -1 -1)) was performed and also the determ<strong>in</strong>ed value waswith<strong>in</strong> the range determ<strong>in</strong>ed for other aerobic and anaerobicmethanotrophs. The results showed that <strong>in</strong> contrast to abiotic processesbiological methane oxidation exhibits a narrow range of fractionationfactors for carbon and hydrogen irrespective of the underly<strong>in</strong>g biochemicalmechanisms. In contrast to aerobic proteobacterial methanotrophs, M.oxyfera does not assimilate its cell carbon from methane. Instead, only theCalv<strong>in</strong>-Benson-Bassham cycle of autotrophic carbon dioxide fixation wasshown to be complete <strong>in</strong> the genome, as well as transcribed and expressed[2]. Further experiments are conducted <strong>in</strong> order to experimentally validatethe proposed <strong>in</strong>corporation of carbon dioxide <strong>in</strong>to cell biomass.[1] Ettwig et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.[2] Wu et al. (2011) A new <strong>in</strong>tra-aerobic metabolism <strong>in</strong> the nitrite-dependent anaerobic methane-oxidiz<strong>in</strong>gbacterium Candidatus 'Methylomirabilis oxyfera'. Biochemical Society Transactions 39, 243-248.OTV018Characterization of Novel Bacterial Alcohol DehydrogenasesCapable of Oxydiz<strong>in</strong>g 1,3-propanediolS. Elleuche*, B. Klippel, G. AntranikianTechnische Universität Hamburg-Harburg, Technische Mikrobiologie,Hamburg, Germany1,3-propanediole (1,3-PD) is a valuable compound for textile fiber, filmand plastic <strong>in</strong>dustry. It is chemically produced from acrole<strong>in</strong> or ethyleneoxide via 3-hydroxypropionaldehyde (3-HPA). S<strong>in</strong>ce the chemicalproduction of 1,3-PD is expensive and goes along with the formation oftoxic side products, much effort has been taken to establish amicrobiological production system. Facultative anaerobic microorganismshave been <strong>in</strong>vestigated with regard to their capability to produce 1,3-PDfrom glycerol. In a 2-step reaction, glycerol is converted to 3-HPA and thelatter is f<strong>in</strong>ally reduced to 1,3-PD by a 1,3-propanediol oxidoreductase(PDOR). The second reaction has been shown to be catalyzed by nonspecificalcohol dehydrogenases (ADH) as well. S<strong>in</strong>ce only a few PDORhave been <strong>in</strong>vestigated <strong>in</strong> detail, an approach to identify and characterizeADH with novel properties for the production of 1,3-PD has beenestablished. BLAST searches were performed us<strong>in</strong>g the sequences ofPDOR and related ADH with known activity towards 3-HPA or 1,3-PDfrom species of the genera Citrobacter, Clostridium, Klebsiella, andEscherichia coli. Putative homologues were identified <strong>in</strong> the genome ofthe bacterial species Oenococcus oeni, Dickeya zeae, Pectobacteriumatrosepticum, Pelobacter carb<strong>in</strong>olicus and from sequenced metagenomesderived from uncultivated bacteria liv<strong>in</strong>g <strong>in</strong> deep sea-sediments. A total of10 different open read<strong>in</strong>g frames were cloned <strong>in</strong>to pQE30 expressionvectors and were purified after heterologous production <strong>in</strong> E. coli. Resultson the evolutionary relationships and biochemical properties of theenzymes will be presented.OTV019Bacterial CYP153 monooxygenases as biocatalysts for thesynthesis of -hydroxy fatty acidsS. Honda*, D. Scheps, L. Kühnel, B. Nestl, B. HauerUniversität Stuttgart, Institut für Technische Biochemie, Stuttgart,Germany-Hydroxy fatty acids (-OHFAs) and ,-dicarboxylic acids (,-DCAs) are multifunctional compounds useful for the production ofpolymers, lubricants, cosmetics and pharmaceuticals. Recently, mediumtolong-cha<strong>in</strong> saturated -OHFAs have attracted considerable attention fortheir use as precursors of poly(-hydroxy fatty acids) [1]. These polymersexhibit similar or even superior physicochemical properties compared topolyethylene and other bioplastics. Long-cha<strong>in</strong> cis-monounsaturated -OHFAs and ,-DCAs are also valuable because they yield polymers thatcan be cross-l<strong>in</strong>ked or chemically modified at their double bond sites [2].Cytochrome P450 monooxygenases (CYPs) are enzymes that usemolecular oxygen to <strong>in</strong>sert one oxygen atom <strong>in</strong>to non-activatedhydrocarbons. Dur<strong>in</strong>g the last two decades several eukaryotic CYPs havebeen isolated and eng<strong>in</strong>eered for the yeast-based production of -OHFAsand ,-DCAs [3]. Bacterial CYP153A enzymes are soluble alkane -hydroxylases [4] whose activity towards fatty acids has not been reportedyet. As certa<strong>in</strong> CYP153A convert primary alcohols to ,-diols [5,6], wepresumed they -hydroxylated fatty acids as well.We functionally expressed CYP153A from Polaromonas sp.,Mycobacterium mar<strong>in</strong>um and Mar<strong>in</strong>obacter aquaeolei <strong>in</strong> E. coli to<strong>in</strong>vestigate their <strong>in</strong> vitro fatty acid oxidation profiles. Here we demonstratefor the first time that CYP153A enzymes oxidize fatty acids to -OHFAsand, sometimes, further to ,-DCAs. CYP153A from M. aquaeolei wasidentified as a fatty acid -hydroxylase with a broad substrate range. Thisbiocatalyst produced -OHFAs from medium-cha<strong>in</strong> saturated and longcha<strong>in</strong>cis/trans-monounsaturated fatty acids with 64 - 93% conversion and>95% -regioselectivity. Our study gives further <strong>in</strong>sight <strong>in</strong>to thephysiology of -oxidiz<strong>in</strong>g bacteria and provides the basis for thedevelopment of a recomb<strong>in</strong>ant E. coli system to synthesize -OHFAs fromrenewable feedstocks.We acknowledge f<strong>in</strong>ancial support from the German Federal M<strong>in</strong>istry ofEducation and Research (BMBF) <strong>in</strong> the frame of the “Systems Biology <strong>in</strong>Pseudomonas for Industrial Biocatalysis” project as well as the EuropeanBIOspektrum | Tagungsband <strong>2012</strong>


135Union’s 7 th Framework Programme FP7/2007-2013 under grant agreementN° 266025.[1] Liu, C. et al. (2011): Biomacromolecules 12: 3291-3298[2] Yang, Y.X. et al. (2010): Biomacromolecules 11: 259-268[3] Craft, D.L. et al. (2003): Appl Environ Microbiol 69: 5983-5991[4] van Beilen, J.B. et al. (2006): Appl Environ Microbiol 72: 59-65[5] Fujii, T. et al. (2006): Biosci Biotechnol Biochem 70: 1379-1385[6] Scheps, D. et al. (2011): Org Biomol Chem 9: 6727-6733OTV020Us<strong>in</strong>g yeast and fungi to produce electricity- Towards a self-regenerat<strong>in</strong>g enzymatic biofuel cell cathodeS. Sané* 1 , S. Rubenwolf 1 , C. Jolivalt 2 , S. Kerzenmacher 11 University Freiburg, MEMS application, Freiburg, Germany2 Chimie ParisTech, Paris, FranceBiofuel cells (BFCs) directly transform chemical energy <strong>in</strong>to electricity foras long as fuel and oxidant are supplied. To catalyze the electrode reaction<strong>in</strong> biofuel cells, for <strong>in</strong>stance biochemical pathways of completemicroorganisms or enzymatic biocatalysts can be used [1].The aim of our research is to improve the long-term stability of efficient,but currently short-lived enzymatic biofuel cell electrodes [2]. We aim tocont<strong>in</strong>ually supply catalytically-active enzymes at the electrode us<strong>in</strong>gliv<strong>in</strong>g microorganisms that grow <strong>in</strong> an electrode-<strong>in</strong>tegrated microbioreactor.In the present work, we demonstrate the feasibility of us<strong>in</strong>g the crudeculture supernatant of the fungus Trametes versicolor and the recomb<strong>in</strong>antyeast Yarrowia lipolytica [3] to supply the biocatalyst laccase to a biofuelcell cathode. Both T. versicolor and Y. lipolytica were grown <strong>in</strong> a syntheticdeficient (SD) medium. At approximately the highest enzyme activity,which was 3.6 U/ml for T. versicolor and 0.02 U/ml for Y. lipolytica,culture supernatant was transferred <strong>in</strong>to a biofuel cell cathodecompartment [4]. To record the loadcurve, current was <strong>in</strong>crementally<strong>in</strong>creased (steps of 5.6 A/(cm 2 *h)) and the cathode potential wasmeasured aga<strong>in</strong>st a saturated calomel electrode (SCE). At a cathodepotential of 0.4 V vs. SCE, we obta<strong>in</strong>ed a current density of 134 A/cm 2for T. versicolor. The same enzyme activity of commercial T. versicolorlaccase (Sigma) <strong>in</strong> SD medium yielded a current density of only 75A/cm 2 and <strong>in</strong> citrate buffer a current density of 87 A/cm 2 . For Y.lipolytica, a current density of 4 A/cm 2 was measured. The same amountof purified laccase from Y. lipolytica <strong>in</strong> SD medium and <strong>in</strong> citrate bufferresulted <strong>in</strong> a current density of 8 A/cm 2 and 12 A/cm 2 respectively.Our results are a first step towards construct<strong>in</strong>g a self-regenerat<strong>in</strong>genzymatic biofuel cell with extended lifetime. Furthermore, we haveshown that the choice of microorganism, has an <strong>in</strong>fluence on the obta<strong>in</strong>edcurrent density, because it has a large <strong>in</strong>fluence on the composition of theculture supernatant as well as on laccase activity. Important topics forfuture work will be the clarification of the secreted byproducts and the<strong>in</strong>tegration of the laccase-produc<strong>in</strong>g microorganisms <strong>in</strong> the electrodecompartment.[1] R.A. Bullen et al., Biosens. Bioelectron., (2006), pp. 2015-2045[2] S. Rubenwolf et al., Appl. Microbiol. Biotechnol., (2011), pp. 1315-132[3] C. Jolivalt et al.,Appl Microbiol Biotechnol., (2005) pp. 450-456[4] A. Kloke et al., Biosens. Bioelectron. (2010), pp. 2559-2565OTV021Biofilms - a new Chapter <strong>in</strong> BiocatalysisK. Bühler*, R. Karande, B. Halan, A. SchmidTU Dortmund, BCI / Biotechnik, Dortmund, GermanyIn biocatalysis, the traditional bottlenecks like low biocatalyst stability,toxicity problems, and difficulties <strong>in</strong> runn<strong>in</strong>g cont<strong>in</strong>uous processes are stillprevail<strong>in</strong>g. A most promis<strong>in</strong>g approach to counteract such shortfalls is theexploitation of biofilms for produc<strong>in</strong>g <strong>in</strong>dustrially relevant compounds.Biofilm formation is a common feature of microbes. Under certa<strong>in</strong>conditions, they attach to various k<strong>in</strong>ds of surfaces and form a sort ofsessile community at aqueous solid <strong>in</strong>terfaces [1] . Advantages of biofilmgrow<strong>in</strong>g organisms as compared to their planktonic counterparts are theirphysical robustness, the ability to self-immobilize, and their long-termstability. In the recent years, we developed a number of different biofilmreactors and characterized the biofilm catalyst under reaction conditions.In this presentation, we will <strong>in</strong>troduce three different biofilm reactorconcepts and po<strong>in</strong>t out advantages and disadvantages. The basicconfiguration of a membrane attached biofilm reactor (MABR) turned outto be severely oxygen limited and difficult to scale up [2] . This shortcom<strong>in</strong>gwas circumvented by <strong>in</strong>troduc<strong>in</strong>g a dual purpose ceramic membrane <strong>in</strong>tothe reactor system, which simultaneously served as growth surface for thebiocatalyst and as aeration device [3] . This system is currently underevaluation for scale up.In a novel approach, we comb<strong>in</strong>ed a capillary three phase (aqueousorganic-gas)segmented-flow reactor with catalytic biofilms [4] . Based onthe <strong>in</strong>ternal shear forces with<strong>in</strong> such micro-capillary reactor systems, thisset-up takes advantage of high mass transfer rates. In addition, these shearforces prevent the system from clogg<strong>in</strong>g and control the biofilm thickness.We will present data regard<strong>in</strong>g the conversions of octane and styrene tooctanol and (S)-styrene oxide, respectively, <strong>in</strong> these different set-ups anddiscuss the pros and cons of these approaches for biofilm based catalysis.[1] Rosche, B. et al., 2009, Trends <strong>in</strong> Biotechnol.27: p. 636-43.[2] Gross, R. et al., 2010, Biotechnol Bioeng.105: p. 705-17[3] Halan, B. et al., 2010, Biotechnol Bioeng,106: p. 516-27[4] Schmid A., et al. 2011, PCT/EP2011/057724, FiledOTV022Growth-decoupled, anaerobic succ<strong>in</strong>ate production fromglycerol with pyruvate-k<strong>in</strong>ase deficient E. coli mutantsS. Söllner* 1 , M. Rahnert 2 , M. Siemann-Herzberg 2 , R. Takors 2 , J. Altenbuchner 11 Institut für Industrielle Genetik, Universität Stuttgart, Stuttgart, Germany2 Institute of Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, University of Stuttgart, Stuttgart,GermanyWe constructed E. coli stra<strong>in</strong>s for succ<strong>in</strong>ate production from glycerol by arational comb<strong>in</strong>ation of gene deletions and a concomitant evolutionarydesign. Based on elementary mode calculations the formation of 1 molsucc<strong>in</strong>ate from 1 mol glycerol with simultaneous fixation of 1 mol of CO 2represents the theoretical maximum yield. This can be realized if succ<strong>in</strong>ateis exclusively formed by PEP carboxylation followed by the reductivebranch of the tricarboxylic acid cycle. Therefore the genes pykF and pykA,both encod<strong>in</strong>g pyruvate k<strong>in</strong>ases, were deleted. Otherwise, the pyruvatek<strong>in</strong>ases would catalyze the direct conversion of PEP <strong>in</strong>to pyruvate. Theresult<strong>in</strong>g stra<strong>in</strong>s could, however, barely grow on glycerol, presumablycaused by a certa<strong>in</strong> pyruvate shortage. Only after a selection procedure forfaster growth, the evolved mutants revealed growth rates <strong>in</strong> the range of0.3 h -1 . In these stra<strong>in</strong>s, pyruvate was most likely formed through a novelpathway. It is proposed to be based on a complete ‘rerout<strong>in</strong>g’ ofmetabolism which <strong>in</strong>cludes the follow<strong>in</strong>g steps: PEP carboxylation tooxaloacetate, conversion of oxaloacetate to malate, and decarboxylation ofmalate to pyruvate, further termed POMP. Evidence for the POMPpathwaycomes from the deleterious effects on growth after furtherdeletion of genes cod<strong>in</strong>g for malic enzymes. The stra<strong>in</strong> ss279 (pykApykF gldA ldhA poxB pflB tdcE) was f<strong>in</strong>ally used <strong>in</strong> a ‘zerogrowthcultivation’ setup (direct biotransformation from glycerol tosucc<strong>in</strong>ate) at a cell concentration of 0.4 g/L (DCW). To implement this, thegeneration of cell mass was aerobically assured, prior to the ultimateproduction phase, s<strong>in</strong>ce E. coli is not able to grow anaerobically onglycerol, as long as a necessary external electron acceptor is absent.Consequently, succ<strong>in</strong>ate was produced from glycerol and carbon dioxide(or bicarbonate) <strong>in</strong> an adjacent anaerobic production phase at non-grow<strong>in</strong>gconditions. At <strong>in</strong>itial lab-scale, we observed cont<strong>in</strong>uous succ<strong>in</strong>ateproduction over a period of 6 days. Here<strong>in</strong>, 58 mM glycerol was consumedand 48 mM succ<strong>in</strong>ate was produced, which corresponded to an averagemolar yield of 82 %. This <strong>in</strong>dicated a net fixation of CO 2 <strong>in</strong> the productionphase, which was further confirmed by stable isotope labell<strong>in</strong>g assays,prov<strong>in</strong>g the <strong>in</strong>corporation of 13 C-labeled bicarbonate <strong>in</strong>to the producedsucc<strong>in</strong>ate.OTV023Gradual <strong>in</strong>sight <strong>in</strong>to Corynebacterium glutamicum`s centralmetabolism for the <strong>in</strong>crease of L-lys<strong>in</strong>e productionJ. van Ooyen*, S. Noack, M. Bott, L. Eggel<strong>in</strong>gForschungszentrum Jülich GmbH, IBG-1: Biotechnologie, Jülich, GermanyCorynebacterium glutamicum is used for the large production of am<strong>in</strong>oacids like L-glutamate, L-val<strong>in</strong>e or L-lys<strong>in</strong>e, the latter made <strong>in</strong> a scale of8x10 5 annual metric tons. We applied a stoichiometric model andidentified citrate synthase (CS) as most promis<strong>in</strong>g target to <strong>in</strong>crease L-lys<strong>in</strong>e production. We therefore replaced the two promoters which weidentified <strong>in</strong> front of the CS gene gltA of a lys<strong>in</strong>e producer by n<strong>in</strong>epromoters of decreas<strong>in</strong>g strength. The result<strong>in</strong>g set of stra<strong>in</strong>s wassubsequently analysed with respect to CS activity, growth, and L-lys<strong>in</strong>eyield. The decrease of CS-activity below 30% led to an <strong>in</strong>crease <strong>in</strong> L-lys<strong>in</strong>e yield accompanied by a decrease <strong>in</strong> growth rate. A reduced CSactivityof 6% produced an <strong>in</strong>crease <strong>in</strong> L-lys<strong>in</strong>e yield from 0.17 g/g to 0.32g/g. As a further step the global consequences at the transcriptome,metabolome, and fluxome level were monitored with<strong>in</strong> the stra<strong>in</strong> series.Reduced CS activity results <strong>in</strong> altered expression of genes controlled byRamA and RamB, and <strong>in</strong>creased cytosolic concentrations of aspartate andaspartate-derived am<strong>in</strong>o acids. The fluxome study revealed that reducedCS-activity surpris<strong>in</strong>gly has only a marg<strong>in</strong>al <strong>in</strong>fluence on CS flux itself,but <strong>in</strong>creases the <strong>in</strong>ternal concentration of its substrates oxaloacetate andacetyl-CoA, thus show<strong>in</strong>g that the observed systemwide macroscopiceffects are due to locally bordered differences.This systemic approach opens an excit<strong>in</strong>g new view on the system C.glutamicum as an excellent and robust producer of bulk compounds andraises new challenges for stoichiometric models applied to the liv<strong>in</strong>g cell.BIOspektrum | Tagungsband <strong>2012</strong>


136OTV024Induction of systemic resistance <strong>in</strong> soybean by the antagonisticepiphyte Pseudomonas syr<strong>in</strong>gae 22d/93H. We<strong>in</strong>gartJacobs University Bremen, School of Eng<strong>in</strong>eer<strong>in</strong>g and Science, Bremen,GermanyThe use of naturally occurr<strong>in</strong>g antagonists to suppress plant diseases offersan alternative to classical methods of plant protection. The epiphytePseudomonas syr<strong>in</strong>gae 22d/93, isolated from a healthy soybean leaf,shows great potential for controll<strong>in</strong>g P. syr<strong>in</strong>gae pv. glyc<strong>in</strong>ea, the causalagent of bacterial blight of soybean. Its activity aga<strong>in</strong>st P. syr<strong>in</strong>gae pv.glyc<strong>in</strong>ea is highly reproducible even <strong>in</strong> field trials, and the antagonisticmechanisms <strong>in</strong>volved are of our special <strong>in</strong>terest. It has been proposed thatseveral attributes contribute to biocontrol, <strong>in</strong>clud<strong>in</strong>g antibiosis, competitionfor nutrients, niche exclusion, <strong>in</strong>terference with cell signall<strong>in</strong>g systems,and <strong>in</strong>duction of systemic plant resistance.We used Affymetrix soybean genome arrays to exam<strong>in</strong>e transcriptionalchanges that occur <strong>in</strong> soybean leaves <strong>in</strong>oculated with the antagonist P.syr<strong>in</strong>gae 22d/93. If the antagonist is able to trigger plant defencemechanisms prior to <strong>in</strong>fection by the pathogen, disease can be reduced.The result<strong>in</strong>g elevated state of resistance <strong>in</strong> plant parts distant from the siteof primary trigger<strong>in</strong>g is variably referred to as systemic acquired resistance(SAR) or <strong>in</strong>duced systemic resistance (ISR). SAR is characterized by anearly <strong>in</strong>crease <strong>in</strong> salicylic acid, which appears to be an essential signall<strong>in</strong>gmolecule <strong>in</strong> the SAR pathway and by the accumulation of pathogenesisrelated(PR)-prote<strong>in</strong>s. ISR is <strong>in</strong>duced by non-pathogenic organisms, e.g.plant growth-promot<strong>in</strong>g rhizobacteria and depends on the plant signall<strong>in</strong>gmolecule jasmonic acid. Infiltration of soybean leaves with P. syr<strong>in</strong>gae22d/93 led to the up- or down-regulation of more than 2.800 genes,respectively, more than twofold as compared with control plants.Noteworthy, several genes encod<strong>in</strong>g PR-prote<strong>in</strong>s and genes <strong>in</strong>volved <strong>in</strong>phytoalex<strong>in</strong> production were up-regulated, <strong>in</strong>dicat<strong>in</strong>g that P. syr<strong>in</strong>gae22d/93 can <strong>in</strong>duce SAR <strong>in</strong> soybean.OTV025Anaerobic denitrify<strong>in</strong>g methane oxidation <strong>in</strong> a deep oligotrophicfreshwater lakeJ. Deutzmann*, B. Sch<strong>in</strong>kUniversität Konstanz, Biology/Microbial Ecology, Konstanz, GermanyDenitrify<strong>in</strong>g methane oxidation has first been described <strong>in</strong> 2006 for anenrichment culture orig<strong>in</strong>at<strong>in</strong>g from an eutrophic freshwater habitat.Bacteria of subgroup a of the NC10 phylum are proposed to carry out thisnovel process. However, noth<strong>in</strong>g but scarce sequence <strong>in</strong>formation and onereport on denitrify<strong>in</strong>g methane oxidation <strong>in</strong> a wastewater treatment plant isavailable on the distribution of this process and the respective bacteria <strong>in</strong>the environment.To assess the importance of denitrify<strong>in</strong>g methane oxidation <strong>in</strong> naturalhabitats, we <strong>in</strong>vestigated the occurrence of this process and the distributionof the respective NC10 bacteria <strong>in</strong> sediments of Lake Constance.Radiotracer experiments were performed to track the process <strong>in</strong> littoral andprofundal sediments and the diversity of NC10 bacteria was analyzedus<strong>in</strong>g molecular methods.Denitrify<strong>in</strong>g methane oxidation was reliably detected only <strong>in</strong> profundalsediments, but rates were about 20 times lower than aerobic methaneoxidation rates <strong>in</strong> these experiments. After those <strong>in</strong>dications for a spatialdistribution pattern of this process, the community composition anddistribution of NC10 bacteria were <strong>in</strong>vestigated <strong>in</strong> greater detail and athigher spatial resolution. NC10 bacteria of group a, the denitrify<strong>in</strong>gmethanotrophs, were not detectable <strong>in</strong> Lake Constance sediments atshallow water sites (80 m), <strong>in</strong>dicat<strong>in</strong>g that littoral sediments do notprovide a suitable habitat for these bacteria.More studies on different habitats are needed to estimate the role ofdenitrify<strong>in</strong>g methane oxidation <strong>in</strong> the global carbon and nitrogen cycle, buthere we present first evidence for the occurrence this process <strong>in</strong> deepoligotrophic lakes and revealed a clear spatial distribution pattern of theresponsible microorganisms.OTV026Life <strong>in</strong>side the nucleus - an unusual symbiont of amoebaerelated to rickettsiaeF. Schulz*, M. Kuroll, K. Aistleitner, M. HornUniversity of Vienna, Department of Microbial Ecology, Vienna, Austriasequenc<strong>in</strong>g as Hartmannella sp. These amoebae were stably <strong>in</strong>fected withbacteria that unexpectedly were located <strong>in</strong>side the host nucleus, asdemonstrated by fluorescence <strong>in</strong> situ hybridization and electronmicroscopy. All known amoeba symbionts live <strong>in</strong> the host cytoplasm; anendonuclear symbiont has not been described, and such a life style is alsorare <strong>in</strong> other eukaryotic hosts. Phylogenetic analysis of these bacteria,named FS-5, revealed an only low degree of 16S rRNA sequencesimilarity (89 %) to their closest relative, the paramecium symbiontCaedibacter caryophilus. Endonuclear symbiosis requires a complex<strong>in</strong>fection process. We showed that FS-5 is not limited to Hartmannellahosts but can also <strong>in</strong>fect Acanthamoeba castellanii. We studied the<strong>in</strong>fection process and the developmental cycle <strong>in</strong> both hosts byfluorescence <strong>in</strong> situ hybridisation comb<strong>in</strong>ed with DNA sta<strong>in</strong><strong>in</strong>g andassessed host fitness by propidium iodide sta<strong>in</strong><strong>in</strong>g and determ<strong>in</strong>ation ofamoeba cell numbers. Hardly any bacteria could be detected <strong>in</strong> thecytoplasm at early time po<strong>in</strong>ts, suggest<strong>in</strong>g that the bacteria with a highdegree of specificity traffic to the host nucleus. High <strong>in</strong>fection levels werereached after 120 h, at which time po<strong>in</strong>t the nucleus is pronouncedlyenlarged and completely filled with bacteria. Interest<strong>in</strong>gly, there is noobvious deleterious effect on the amoeba hosts dur<strong>in</strong>g the first 120 h post<strong>in</strong>fection, but host cell lysis was observed at later time po<strong>in</strong>ts. Presently,further experiments regard<strong>in</strong>g the host range of FS-5 and its distribution <strong>in</strong>the environment, as well as genome sequence analysis is underway. Thiswill help elucidate the molecular mechanisms underly<strong>in</strong>g the endonuclearlifestyle of this unique symbiont.OTV027Functional community analysis of a microbial mat <strong>in</strong>volved <strong>in</strong>the oxydation of iron by metatranscriptomicsA. Quaiser* 1 , X. Bodi 1 , A. Dufresne 1 , A. Dheilly 2 , S. Coudouel 2 ,D. Naqu<strong>in</strong> 2 , A. Francez 1 , P. Vandenkoornhuyse 11 Université de Rennes 1, EcoBio, Rennes, France2 Université de Rennes 1, OSUR, Environmental Genomic plateforme,Rennes, FranceThrough the capacity to use Fe(II) as an electron source and theconservation of energy by this process neutrophilic iron oxidiz<strong>in</strong>gmicroorganisms (FOMs) play an important role <strong>in</strong> iron redox cycl<strong>in</strong>g.While the role of the biotic and abiotic process was seen controversiallyfor a long time, new data confirm<strong>in</strong>g the importance of microbialimplication <strong>in</strong> this process are accumulat<strong>in</strong>g. The typical characteristic ofdescribed FOMs liv<strong>in</strong>g at circumneutral pH is their lithotrophicmetabolism us<strong>in</strong>g iron as their sole energy source. To compete with abioticiron oxidation this oxygen-dependent reaction must take place at the oxicanoxic<strong>in</strong>terface, conditions often only found <strong>in</strong> difficult accessiblemicroenvironments masked by complex ecosystems as soils andsediments. The recent detection of neutrophilic FOMs <strong>in</strong> a large variety ofenvironments, as sediments, iron seeps, wetland soils and rhizosphere, beartestimony to their wide distribution and their importance <strong>in</strong> global ironredox cycl<strong>in</strong>g. While most oxic-anoxic <strong>in</strong>terfaces are difficult to accessand to analyze, FOMs are flourish<strong>in</strong>g at the particular redox boundarycharacterized by steady fluxes of Fe(II) orig<strong>in</strong>at<strong>in</strong>g from an anoxic sourceand the oxygen is supplied from an oxygenated water body. Theseconditions are given and most obvious visible for example <strong>in</strong> iron-richmicrobial mats, spann<strong>in</strong>g often several tenths of meters with variousdepths. This model implies several ecological questions <strong>in</strong> particular aboutthe multi- partnership mutualism and syntrophy, the coupl<strong>in</strong>g of thediversity with the function of the microbial actors and the long-termma<strong>in</strong>tenance of the mat. The major objective of our project is tounderstand the role of the <strong>in</strong>teractions among microorganisms <strong>in</strong> thebiogeochemical function<strong>in</strong>g of an ecosystem <strong>in</strong>volved <strong>in</strong> iron redoxcycl<strong>in</strong>g. The activities of the microbial community were analyzed bycomparative metatranscriptomics and correlated to biogeochemical factors.The analysis of the microbial diversity revealed the activities of a relativelimited number of species. The most abundant active microorganisms wereaffiliated only to three different groups: the Alveolata (eucaryote), themethanotrophs (gammaproteobacteria) and the betaproteobacteriapotentially <strong>in</strong>volved <strong>in</strong> iron oxidation. While the presence of iron oxidizerwere expected, the activity of methanotrophs was surpris<strong>in</strong>g. The statisticalanalysis showed a vertical spatial structur<strong>in</strong>g of the microbial community<strong>in</strong> dependence of the depth with higher activities of methanotrophs nearthe sediment. These results <strong>in</strong>dicate that the stability and the structur<strong>in</strong>g ofthe mat is based on functional <strong>in</strong>teractions among methanotrophs and ironoxidiz<strong>in</strong>g bacteria. Our study shows that <strong>in</strong>-depth metatranscriptomicapproaches allow the l<strong>in</strong>kage of the microbial diversity to function as wellas the l<strong>in</strong>kage of the microbial activity to environmental factors.Free-liv<strong>in</strong>g amoebae are abundant <strong>in</strong> various habitats worldwide and areamong the most important predators of microorganisms. Some bacteria,however, are able to evade phagocytosis by amoebae and may establish astable and symbiotic relationship with these protozoa. Protozoa have thusbeen suggested to play an important role for the evolution of <strong>in</strong>tracellularbacteria <strong>in</strong>clud<strong>in</strong>g human pathogens. From a nitrify<strong>in</strong>g bioreactor werecently isolated a free-liv<strong>in</strong>g amoeba stra<strong>in</strong> identified by 18S rRNA geneBIOspektrum | Tagungsband <strong>2012</strong>


137OTV028Test<strong>in</strong>g the limits of 454 pyrotag sequenc<strong>in</strong>g: reproducibilityand quantitative assessmentG. Pilloni, M. Granitsiotis, T. Lueders*Helmholtz Zentrum München, Institute of Groundwater Ecology,Neuherberg, GermanyCharacterization of microbial community structure via 16S rRNA geneprofil<strong>in</strong>g has been greatly advanced <strong>in</strong> recent years by the application ofamplicon pyrosequenc<strong>in</strong>g. The possibility of barcode “tagg<strong>in</strong>g”sequenc<strong>in</strong>g templates gives the opportunity to massively screen multiplesamples from environmental or cl<strong>in</strong>ical sources for community details.However, an on-go<strong>in</strong>g debate questions the reproducibility and semiquantitativerigour of pyrotag sequenc<strong>in</strong>g, and, as <strong>in</strong> the early days ofgenetic community f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g, pros and cons are cont<strong>in</strong>uouslyprovided.In this study we <strong>in</strong>vestigate the reproducibility of bacterial 454 pyrotagsequenc<strong>in</strong>g over biological and technical replicates of natural microbiota.Moreover, via quantitatively def<strong>in</strong>ed template spik<strong>in</strong>g to the naturalcommunity, we explore the potential for recover<strong>in</strong>g specific templateratios with<strong>in</strong> complex microbial communities. For this reason, we pyrotagsequenced three biological replicates of three samples, each belong<strong>in</strong>gfrom yearly sampl<strong>in</strong>g campaigns of sediment from a tar oil contam<strong>in</strong>atedaquifer <strong>in</strong> Düsseldorf, Germany. Furthermore, we subjected one DNAextract to replicate technical analyses as well as to <strong>in</strong>creas<strong>in</strong>g ratios (0, 0.2,2 and 20%) of 16S rRNA genes from a pure culture (Vibrio fisheri)orig<strong>in</strong>ally not present <strong>in</strong> the sample.Unexpectedly, taxa abundances were highly reproducible <strong>in</strong> our hands,with max standard deviation of 4% abundance across biological and 2%for technical replicates. Furthermore, our workflow was also capable ofrecover<strong>in</strong>g V. fisheri amendmend ratios <strong>in</strong> reliable amounts (0, 0.29, 3.9and 23.8%). These results highlight that pyrotag sequenc<strong>in</strong>g, if done andevaluated with due caution, has the potential to robustly recapture taxatemplate abundances with<strong>in</strong> environmental microbial communities.OTV029Microbial Communities of Mar<strong>in</strong>e Methane Seeps: Sketch<strong>in</strong>gthe Big PictureS.E. Ruff* 1 , J. Biddle 2 , A. Teske 3 , A. Ramette 1 , K. Knittel 4 , A. Boetius 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, HGF MPG Group forDeep Sea Ecology and Technology, Bremen, Germany2 University of Delaware, College of Earth, Ocean and the Environment,Lewes, DE, USA, United States3 University of North Carol<strong>in</strong>a at Chapel Hill, Department of Mar<strong>in</strong>eSciences, Chapel Hill, NC, USA, United States4 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Department of MolecularEcology, Bremen, GermanyGlobal ocean sampl<strong>in</strong>g efforts like the GOS expedition [1] and theInternational Census of Mar<strong>in</strong>e Microbes (ICoMM) [2] have revealeddist<strong>in</strong>ct microbial communities <strong>in</strong> surface and deep waters, coastal andopen ocean ecosystems as well as <strong>in</strong> pelagic and benthic realms [3] . Thispresentation aims at sketch<strong>in</strong>g the big picture of archaeal and bacterialcommunities <strong>in</strong>habit<strong>in</strong>g cold seeps. We have analyzed 26 methane seepecosystems of different temperature regimes across all major oceans fromthe Arctic to Antarctica. To identify the full range of residentmethanotrophic key players as well as microbial taxa with<strong>in</strong> the rarebiosphere, 454-pyrosequenc<strong>in</strong>g of the variable region V6 with<strong>in</strong> the 16SrRNA gene was applied. In addition to a description of biogeography,community composition, ß-diversity and covariation of certa<strong>in</strong> taxa,environmental data were <strong>in</strong>cluded <strong>in</strong> order to expla<strong>in</strong> some of the emerg<strong>in</strong>gpatterns. First results <strong>in</strong>dicate that the seep communities are far morediverse and dist<strong>in</strong>ct than previously assumed. 80% of the archaeal OTUs(operational taxonomic units at a 97% nucleotide similarity cut-off)belonged to a variable community occurr<strong>in</strong>g at some seeps, but not atothers. Interest<strong>in</strong>gly, this variable community <strong>in</strong>cluded all anaerobicmethanotrophic (ANME) key players with the ANME-2a/2b clade be<strong>in</strong>gmost widespread. Around 18% of archaeal OTUs were unique (occurr<strong>in</strong>gonly at one seep) and only 2% of archaeal OTUs were residents (occurr<strong>in</strong>gat all seeps). These residents were identified as organisms of theMiscellaneous Crenarchaeotal Group and Mar<strong>in</strong>e Benthic Group B. Thebacterial rare biosphere was even more prom<strong>in</strong>ent with 30% of all bacterialOTUs be<strong>in</strong>g unique and only about 1% of resident OTUs. The rema<strong>in</strong><strong>in</strong>g69% of all OTUs, the bacterial variable community, were dom<strong>in</strong>ated byDelta- and Gammaproteobacteria, while most of the bacterial residents areyet unknown, s<strong>in</strong>ce they could merely be classified to the order level andlacked cultivated representatives. This presentation will discuss ways todef<strong>in</strong>e core microbial communities of mar<strong>in</strong>e methane seeps <strong>in</strong> dist<strong>in</strong>ctocean realms and ma<strong>in</strong> factors driv<strong>in</strong>g their diversity.1. Nealson, K.H. and J.C. Venter (2007) "Metagenomics and the global ocean survey: what's <strong>in</strong> itfor us, and why should we care?" ISME J. 1: p. 185-187.2. http://icomm.mbl.edu/3. Z<strong>in</strong>ger, L. et al. (2011) "Global Patterns of Bacterial Beta-Diversity <strong>in</strong> Seafloor and SeawaterEcosystems." PLoS ONE. 6: p. e24570.OTV030Prokaryotic diversity <strong>in</strong> Pacific Ocean manganese nodulesM. Blöthe*, A. SchippersBundesanstalt für Geowissenschaften und Rohstoffe, Geomicrobiology,Hannover, GermanyDNA extraction from different parts (hydrogenetic, diagenetic, core, edge)of a Pacific Ocean manganese nodule and a manganese crust collecteddur<strong>in</strong>g the cruise SO205 <strong>in</strong> 2010 with the German research vessel Sonnewere analyzed with qPCR and via clone libraries for 16S rRNA genes ofArchaea and Bacteria. Results <strong>in</strong>dicate highest cell numbers <strong>in</strong> thediagenetic and circular edge nodule parts with about 1.7×10 8 - 3×10 8cells/g and similar values (1×10 8 cells/g) were obta<strong>in</strong>ed for the top 2 cm ofthe nodule surround<strong>in</strong>g sediment. Cell numbers <strong>in</strong>side the nodule and <strong>in</strong>the hydrogenetic part were lower by one order of magnitude (about 10 7cells/g). Bacterial cell numbers were always higher than numbers ofArchaea. The diversity (Yue & Clayton Q YC similarity coefficient) ofbacterial and archaeal communities associated with the nodules wasdifferent from the community diversity <strong>in</strong> the sediment and on themanganese crust. Bacterial species highly similar to Shewanella benthicawere found <strong>in</strong> all clone libraries from the nodule but not <strong>in</strong> the surround<strong>in</strong>gsediment or <strong>in</strong> the manganese crust. Nearly all obta<strong>in</strong>ed archaeal 16SrRNA gene sequences belonged to the Mar<strong>in</strong>e Group I Crenarchaeota.OTV031Inhibition of heterotrophic bacteria by solar radiation <strong>in</strong> a humiclakeS. Glaeser 1,2 , F. Leunert 3 , I. Salka 3 , H.-P. Grossart 3 , *J. Glaeser 11 Justus LiebigUniversität, Mikrobiologie und Molekularbiologie, Gießen, Germany2 Justus Liebig Universität, Institut für Angewandte Mikrobiologie, Gießen,Germany3 Institut für Gewässerökologie und B<strong>in</strong>nenfischerei, Limnologie GeschiteterSeen, Stechl<strong>in</strong>, GermanyLight excitation of colored dissolved organic matter (cDOM) lead tophotochemical reactions that produce low molecular weight (LMW)growth substrates that stimulate bacterial activity and <strong>in</strong>hibitory reactiveoxygen species (ROS). In order to <strong>in</strong>vestigate the impact of ROSgeneration on bacterial activity we monitored diurnal cycles of ROSformation and bacterial activity <strong>in</strong> the humic south-west bas<strong>in</strong> of LakeGrosse Fuchskuhle. High solar radiation caused strong <strong>in</strong>hibition ofbacterial 14 C-leuc<strong>in</strong>e and 14 C-acetate uptake <strong>in</strong> surface waters and<strong>in</strong>creased the fraction of membrane-damaged cells assessed by life/deadsta<strong>in</strong><strong>in</strong>g. The <strong>in</strong>hibition was paralleled by the formation of ROS, whichvery likely are the agents caus<strong>in</strong>g bacterial <strong>in</strong>hibition. In order to verify ourdata, cultures represent<strong>in</strong>g predom<strong>in</strong>ant bacterial phylotypes of the SWbas<strong>in</strong> were <strong>in</strong>cubated <strong>in</strong> the surface water layer by us<strong>in</strong>g dialysis bags.Acetate and leuc<strong>in</strong>e uptake and the fraction of membrane-damaged cellswere monitored <strong>in</strong> those cultures. Novosph<strong>in</strong>gobium acidiphilum(Alphaproteobacteria) represents a persistent species of the SW bas<strong>in</strong> andwas not hampered <strong>in</strong> activity by solar radiation. In contrast, the activity ofPolynucleobacter necessarius a predom<strong>in</strong>ant Betaproteobacteriarepresentative was strongly <strong>in</strong>hibited by high solar radiation as <strong>in</strong>dicatedby a low uptake of acetate and leuc<strong>in</strong>e compared to early morn<strong>in</strong>g samples.Cultures of both stra<strong>in</strong>s showed a very high fraction of life cells that didnot decrease dur<strong>in</strong>g daytime hours. Hence, we conclude that N.acidiphilum and P. necessarius have efficient mechanisms to cope with<strong>in</strong>hibitory products of photochemical reactions with respect toma<strong>in</strong>tenance of cell <strong>in</strong>tegrity. Interest<strong>in</strong>gly, solar radiation mediatedformation of <strong>in</strong>hibitory substances leads to very low activity of P.necessarius, but not of N. acidiphilum. Hence, photochemical reactionsthat generate <strong>in</strong>hibitory ROS affect predom<strong>in</strong>ant bacteria of a humic lake<strong>in</strong> a species-specific manner.OTV032Phylogenetic characterization and comparison of microbialcommunities <strong>in</strong> mesophilic and thermophilic anaerobic digestersX. Dong*, M. Engel, M. SchloterHelmholtz Zentrum München, Environmental Genomics, Neuherberg,GermanyMesophilic (30-40°C) and thermophilic (45-60°C) anaerobic digestion ofsubstrate are the two ma<strong>in</strong> processes for biogas production. Mesophilicdigestion is the most commonly used process with higher operat<strong>in</strong>grobustness, while thermophilic digestion provides higher biogasproduction with improved hygiene by reduc<strong>in</strong>g the pathogens. The largelyunknown compositions of microbial communities, especially thehydrolytic bacterial communities <strong>in</strong>volved <strong>in</strong> these processes are the key tounderstand the complex process. Thus cost-effective process could bechosen under different circumstances.Lab scale mesophilic (~38.8°C) and thermophilic (~55°C) digestersoperated with energy plants with semi-cont<strong>in</strong>uous stirr<strong>in</strong>g and dailyfeed<strong>in</strong>g were used <strong>in</strong> this study. Bar-coded amplicon pyrosequenc<strong>in</strong>g ofBIOspektrum | Tagungsband <strong>2012</strong>


13816S rRNA genes was applied to acquire an overview about composition ofmicrobial communities <strong>in</strong> both types of digesters. Hydrolytic microbialcommunities were characterized apply<strong>in</strong>g a functional oligonucleotidemicroarray target<strong>in</strong>g 756 different cellulase genes.The pyrosequenc<strong>in</strong>g results showed that members of the phylumFirmicutes dom<strong>in</strong>ated <strong>in</strong> both digesters rang<strong>in</strong>g from 73.8-84.5%.Representatives of the phylum Act<strong>in</strong>obacteria were the second abundantgroup found <strong>in</strong> both digesters, with a lower proportion detected <strong>in</strong> thethermophilic one. Significant differences <strong>in</strong> microbial communitystructures of the two digesters were found at f<strong>in</strong>er taxonomical levels. Thefunctional oligonucleotide microarray focuses on the detection of fourdifferent cellulase gene families and results revealed similar functionaldistribution patterns between the two types of digesters although a higherdiversity with<strong>in</strong> the cellulolytic microbial community was found <strong>in</strong>mesophilic digesters.In conclusion, this study could show that the operat<strong>in</strong>g conditions didaffect the diversity of microbial community, while the effect on thehydrolytic bacterial communities <strong>in</strong>volved seems to be less pronounced.OTP001Molecular clon<strong>in</strong>g of enantioselective ester hydrolase fromBacillus pumilusV. VermaShri Mata Vaishno Devi University , Biotechnology, Katra, IndiaA gene from Bacillus pumilus expressed under its native promoter wascloned <strong>in</strong> Escherichia coli. Recomb<strong>in</strong>ant B. pumilus esterase (BPE) affectsthe k<strong>in</strong>etic resolution of racemic mixtures such as unsubstituted andsubstituted 1-(phenyl)ethanols (E ~ 33–103), ethyl 3-hydroxy-3-phenylpropanoate (E ~ 45–71), trans-4-fluorophenyl-3-hydroxymethyl-Nmethylpiperid<strong>in</strong>e(E ~ 10–13) and ethyl 2- hydroxy-4-phenylbutyrate (E~7). The enzyme is composed of a 34-am<strong>in</strong>o acid signal peptide and a 181-am<strong>in</strong>o acid mature prote<strong>in</strong> correspond<strong>in</strong>g to a molecular weight of ~19.2kD and pI ~ 9.4. 3-D the structural model of the enzyme built byhomology modell<strong>in</strong>g us<strong>in</strong>g the atomic coord<strong>in</strong>ates from the crystalstructure of B. subtilis lipase (LipA) showed a compact m<strong>in</strong>imal a/bhydrolase fold.Biography: Prof. V. Verma, a former scientist of Indian Institute of IntegrativeMedic<strong>in</strong>e (formerly known as Reg. Res. Lab), Jammu , a CSIR researchlaboratory and presently Professor of Biotechnology, Shri Mata Vaishno DeviUniversity, Katra (J&K) is acclaimed for his work <strong>in</strong> microbial biotechnology.His work <strong>in</strong> this field ma<strong>in</strong>ly related to the clon<strong>in</strong>g & heterlogous overexpresionof microbial genes encod<strong>in</strong>g enantio-specific enzymes known forresolv<strong>in</strong>g the racemic drug <strong>in</strong>termediates. Besides, he did pioneer<strong>in</strong>g work <strong>in</strong>the development of fermentation based technologies for the mass production ofselected microbial isolates as biocontrol agents as part of <strong>in</strong>tegrated nutrient &disease management of agriculturally important plants. His research areas<strong>in</strong>clude microbial gene clon<strong>in</strong>g & their heterologous expression, fermentationtechnology for organic agriculture and DNA f<strong>in</strong>ger pr<strong>in</strong>t<strong>in</strong>g of the importantmicrobial isolates for IPR & registration purposes.Prof. Verma is recipient of anumber of national/<strong>in</strong>ternational awards <strong>in</strong> Biological Sciences andBiotechnology. He is Fellow of a number of Academies of Sciences <strong>in</strong> India.Recently he received INDUSTRIAL MEDAL AWARD from the BiotechResearch Society of India for his outstand<strong>in</strong>g contributions <strong>in</strong> Biotechnology.OTP002Isolation and characterization of novel potent Cr (VI)reduc<strong>in</strong>g alkaliphilic bacterim from hypersal<strong>in</strong>e soda lakesA. Ibrahim*, M. El-Tayeb, Y. El-Badawi, A. Al-SalamahBotany and Microbiology, Riyadh, Saudi ArabiaA stra<strong>in</strong> KSUCr3 with extremely high Cr(VI)-reduc<strong>in</strong>g ability underalkal<strong>in</strong>e conditions was isolated from hypersal<strong>in</strong>e soda lakes and identifiedas Amphibacillussp. on the basis of 16S rRNA gene sequence analysis.The results showed that Amphibacillussp. stra<strong>in</strong> KSUCr3 was tolerant tovery high Cr(VI) concentration (75 mM) <strong>in</strong> addition to high tolerance toother heavy metals <strong>in</strong>clud<strong>in</strong>g Ni 2+ (100 mM), Mo 2+ (75 mM), Co 2+ (5 mM),Mn 2+ (100 mM), Zn 2+ (2 mM), Cu 2+ (2mM) and Pb (75mM). Stra<strong>in</strong>KSUCr3 was shown to be of a high efficiency <strong>in</strong> detoxify<strong>in</strong>g chromate, asit could rapidly reduce 5 mM of Cr(VI) to a non detectable level over 24 h.In addition, stra<strong>in</strong> KSUCr3 could reduce Cr(VI) efficiently over a widerange of <strong>in</strong>itial Cr(VI) concentrations (1 -10 mM) <strong>in</strong> alkal<strong>in</strong>e mediumunder aerobic conditions without significant effect on the bacterial growth.Addition of glucose, NaCl and Na 2CO 3 to the culture medium caused adramatic <strong>in</strong>crease <strong>in</strong> Cr(VI)-reduction by Amphibacillus sp. stra<strong>in</strong>KSUCr3. The maximum chromate removal was exhibited <strong>in</strong> alkal<strong>in</strong>emedium conta<strong>in</strong><strong>in</strong>g 1.5% Na 2CO 3, 0.8% glucose, and 1.2% NaCl, at<strong>in</strong>cubation temperature of 40 ºC and shak<strong>in</strong>g of 100 rpm. Under optimumCr (VI) reduction conditions, Cr(VI) reduction rate reached 237 Mh 1which is one of the highest Cr(VI) reduction rate, under alkal<strong>in</strong>e conditionsand high salt concentration, compared to other microorganisms that hasbeen reported so far. Furthermore, the presence of other metals, such asNi 2+ , Co 2+ , Cu 2+ and Mn 2+ slightly stimulated Cr(VI)-reduction ability bythe stra<strong>in</strong> KSUCr3.The isolate,Amphibacillus sp. stra<strong>in</strong> KSUCr3, exhibitedan ability to repeatedly reduce hexavalent chromium without anyamendment of nutrients, suggest<strong>in</strong>g its potential application <strong>in</strong> cont<strong>in</strong>uousbioremediation of Cr(VI). The results also revealed the possible isolationof potent heavy metals resistant bacteria from extreme environment suchas hypersal<strong>in</strong>e soda lakes.OTP003-amylase production by Bacillus species isolated from sweat foodwasteO. Ermithi* 1 , A. Agha 1 , N. Elmarzugi 1,2 , S. Naji 11 Biotechnology Research Center, Microbiology, Tripoli, Libyan ArabJamabiriya2 Alfateh University, Faculty of Pharmacy, Tripoli, Libyan Arab JamabiriyaIndustrial applications of enzymes have been receiv<strong>in</strong>g attentionthroughout the world. Amylases are of great importance <strong>in</strong> biochemicalprocesses, and wide range of application of amylases have used <strong>in</strong> varioussectors like confectionary, bak<strong>in</strong>g, paper, textile, detergent, beverages,baby foods, medic<strong>in</strong>al and pharmaceutical manufactur<strong>in</strong>g <strong>in</strong>dustries whichdrew both researchers and <strong>in</strong>dustry excessive attention.It is became a rout<strong>in</strong>e work to isolate and produce amylase from differentfungal sources, however, the current work aimed to produce amylaseenzyme from bacterial source (Bacillusspecies). In order to do that, threedifferent formulas has been chosen, the first one is only glucose (starchfree), the second one is mixture of glucose and starch, and the last one isonly starch (with six isolation), at pH 7 (±0.2) and (37°C). The productionactivity has been measured by spectrophotometer <strong>in</strong> each formula at until8hours time <strong>in</strong>tervals.The results obta<strong>in</strong>ed from formula I showed no significant change <strong>in</strong> thelevel of glucose and this is because of the gene cod<strong>in</strong>g of amylase activitywas turned off (enzyme repression) as a result of glucose availability.Formula II showed modest decrease <strong>in</strong> glucose concentration because thebacteria used the free glucose available rather than break<strong>in</strong>g up the starchto get glucose. However, <strong>in</strong> formula III there was an <strong>in</strong>crease <strong>in</strong> the levelof glucose concentration especially after one hour of <strong>in</strong>cubation as a resultof amylase enzyme activity.F<strong>in</strong>ally, formula III proved the production of -amylase from Bacillusspecies isolated and identified from sweat food waste.1- Kunamneni A, Permaul K, and S<strong>in</strong>gh S (2005) Amylase Production <strong>in</strong> Solid State Fermentation by theThermophilic FungusThermomyces lanug<strong>in</strong>osus, Journal of Biosc<strong>in</strong>ence and Bioeng<strong>in</strong>eer<strong>in</strong>g,100(2): 168-171.2- Akesson M, Hhagander P, and Axelsson J P (2001) -amylase Production <strong>in</strong> Fed-batch CultivationofBacillus Caldolyticus, Life science Eng<strong>in</strong>eer<strong>in</strong>g,9: 709.3- Roy A, Moktan B, and Prabir K. Sarar (2007) Characteristics of Bacillus cereus Isolated from legumebasedIndian Fermented Foods,Food Control,18: 1555-15644- Calderon M, loiseau G, and Guyot J P (2003) Fermentation by Lactobacillus Fermentum Ogi E1 ofDifferent Comb<strong>in</strong>ations of Carbohydrates Occurr<strong>in</strong>g Naturally <strong>in</strong> Cereals: Consequence on GrowthEnergetic and -amylase ProductionInt. J. Food Microbiol.,80: 161-169.5- Dharani Aiyer P V (2004) Effect of C: N Ratio on Alpha Amylase Production byBacilluslicheniformisSPT 27,African Journal of Biotechnology,V 13(10): 519-522.OTP004Identification of acetate <strong>in</strong>corporat<strong>in</strong>g Arcobacter spp. as potentialmanganese reducers <strong>in</strong> pelagic redoxcl<strong>in</strong>es of the central BalticSea via 16S rRNA based 13 C stable isotope prob<strong>in</strong>gC. Berg* 1 , M. Labrenz 1 , S. Beckmann 2 , G. Jost 1 , K. Jürgens 11 Leibniz Institute for Baltic Sea Research (IOW), BiologicalOceanography, Rostock/Warnemünde, Germany2 University of New South Wales (UNSW), School of Biotechnology andBiomolecular Sciences, Sydney, AustraliaPelagic redoxcl<strong>in</strong>es <strong>in</strong> the central Baltic Sea are recognized asenvironments with elevated microbial activities compris<strong>in</strong>g both,heterotrophic and autotrophic prokaryotes, <strong>in</strong>volved <strong>in</strong> importantbiogeochemical cycles. Aim of our study was to reveal first <strong>in</strong>sights <strong>in</strong>tothe identity and function of heterotrophic bacteria <strong>in</strong> this habitat which iswell-studied with respect to autotrophic activities. Therefore, pelagicredoxcl<strong>in</strong>es of the Gotland bas<strong>in</strong> were sampled <strong>in</strong> 2005 and 2009,respectively, and subjected to stimulation experiments with differentorganic substrates and electron acceptors, followed by the identification ofstimulated bacteria us<strong>in</strong>g 16S rRNA gene s<strong>in</strong>gle strand conformationpolymorphism (SSCP) analyses. In addition, RNA stable isotope prob<strong>in</strong>g(RNA-SIP) followed by subsequent 16S rRNA based quantitative RT-PCRand f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g served to identify acetate <strong>in</strong>corporat<strong>in</strong>g organisms. In2005, <strong>in</strong> water from the sulfidic zone, 17.3 Mol Mn 4+ were reduced after48 h and bacteria affiliated with the epsilonproteobacterial Arcobacter sp.dom<strong>in</strong>ated the <strong>in</strong>cubation. In 2009, bulk <strong>in</strong>corporation of 3 H labelledacetate was highest <strong>in</strong> the oxic-anoxic <strong>in</strong>terface layer and still high <strong>in</strong> thesulfidic zone. After 72 hours, bacteria affiliated with Arcobacter sp.<strong>in</strong>corporated the 13 C-labeled acetate <strong>in</strong> the oxic-anoxic <strong>in</strong>terface layer andthe sulfidic zone while the gammaproteobacterial genera Neptunomonassp. and Colwellia sp. <strong>in</strong>corporated acetate <strong>in</strong> the oxic-anoxic <strong>in</strong>terfacelayer only. Together, <strong>in</strong> both experiments two phylogenetically dist<strong>in</strong>ctclusters with<strong>in</strong> the genus Arcobacter sp. were identified related topreviously recovered Arcobacter sp. from manganese-oxide rich shelfBIOspektrum | Tagungsband <strong>2012</strong>


139sediments <strong>in</strong> the Black Sea by Thamdrup et al. 2000. Thus, we identifiedacetate utiliz<strong>in</strong>g Arcobacter spp. as potential heterotrophic manganesereducers <strong>in</strong> pelagic Baltic Sea redoxcl<strong>in</strong>es.OTP005Artificial fusion of a two-component styrene monooxygenaseT. He<strong>in</strong>e*, C. Conrad, J.A.D. Grön<strong>in</strong>g, S.R. Kaschabek, D. Tischler,M. SchlömannTU Bergakademie Freiberg, Environmental Microbiology, Freiberg, GermanyStyrene monooxygenases (SMOs) are external flavoprote<strong>in</strong>monooxygenases perform<strong>in</strong>g enantioselective oxygenations of styrene andstructurally related compounds (Monters<strong>in</strong>o et al., 2011). In most cases as<strong>in</strong>gle NADH-dependent oxidoreductase (StyB) provides reduced FAD fora s<strong>in</strong>gle styrene-epoxidiz<strong>in</strong>g monooxygenase (StyA). Recently, aremarkable reductase type StyA2B was found and biochemicallycharacterized, <strong>in</strong> which the oxygenase subunit is naturally fused to theFAD reductase (Tischler et al., 2009). This wild-type s<strong>in</strong>gle-componentSMO was shown to be self-sufficient but of rather low epoxidationactivity. Cooperation with another s<strong>in</strong>gle styrene oxygenase subunit StyA1is likely to be necessary to generate high specific epoxidation activity <strong>in</strong>host stra<strong>in</strong> R. opacus 1CP (Tischler et al., 2010). Despite a current lack ofknowledge on the biochemical reasons for the evolution of StyA2B, onecomponentSMOs may have several advantages over multicomponentsystems as shown for other monooxygenase classes.Here<strong>in</strong>, we describe the construction of self-sufficient chimeric styrenemonooxygenases by a molecular genetic approach as well as theprelim<strong>in</strong>ary characterization of the recomb<strong>in</strong>ant prote<strong>in</strong>s. The artificialfusion of the genes styA and styB from Pseudomonas fluorescens ST byelim<strong>in</strong>ation of the stop codon of styA and by <strong>in</strong>troduc<strong>in</strong>g various l<strong>in</strong>kersizes (Lx) provided four styALxB-gene variants. The artificially fused onecomponentSMOs were successfully expressed <strong>in</strong> E. coli BL21. Activitywas demonstrated from these clones by convert<strong>in</strong>g <strong>in</strong>dole <strong>in</strong>to <strong>in</strong>digo andlater on determ<strong>in</strong>ed by means of homogeneous prote<strong>in</strong> preparations.The artificial fusion of two-component SMOs was for the first timesuccesfully demonstrated and should provide access to valuablebiocatalysts <strong>in</strong> the field of f<strong>in</strong>e chemical syntheses.Tischler, D., D. Eulberg, S. Lakner, S. R. Kaschabek, W. J. H. van Berkel, M. Schlömann (2009)Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. J. Bacteriol.191:4996-5009.Tischler, D., R. Kermer, J. A. D. Grön<strong>in</strong>g, S. R. Kaschabek, W. J. H. van Berkel, M. Schlömann (2010)StyA1 and StyA2B from Rhodococcus opacus 1CP: A multifunctional styrene monooxygenase system. J.Bacteriol. 192:5220-5227.Monters<strong>in</strong>o, S., D. Tischler, G. T. Gassner, W. J. H. van Berkel (2011) Catalytic and structural features offlavoprote<strong>in</strong> hydroxylases and epoxidases. Adv. Synth. Catal. 353:2301-2319.OTP006Molecular basis of symbiosis <strong>in</strong>vestigated <strong>in</strong> ChlorochromatiumaggregatumP. Henke*, J. OvermannDSMZ, MÖD, Braunschweig, GermanyThe phototrophic consortium "Chlorochromatium aggregatum" is amulitcellular association between the green sulfur bacterial epibiontsChlorobium chlorochromatii and a central motile chemotrophicBetaproteobacterium. The flagellated central rod moves the entireconsortium towards the light enabl<strong>in</strong>g the epibiont to conduct anoxygenicphotosynthesis. The cells are connected through specific cell-cell adhesionstructures and division results <strong>in</strong> two <strong>in</strong>tact daughter consortia. Theseobservations suggest the exchange of multiple signals between the epibiontand the central bacterium mak<strong>in</strong>g this culturable association a suitablesystem for understand<strong>in</strong>g the molecular basis of symbiosis betweennonrelated bacteria. The comparison of the Chl. chlorochromatii genomewith eleven available genomes of free-liv<strong>in</strong>g relatives revealed uniqueopen read<strong>in</strong>g frames. The major fraction of the ORFs code for hypotheticalprote<strong>in</strong>s, but putative large exoprote<strong>in</strong>s and a prote<strong>in</strong> with a RTX tox<strong>in</strong>typeß-roll were identified. In particular Cag1919 which bears several RTXrepeats which are typically found <strong>in</strong> Gram-negative pathogenic bacteria isof <strong>in</strong>terest. These putative symbiosis genes (Cag1919, Cag1920, Cag0614and Cag0616) are constitutively transcribed and have been analysedfurther. The whole gene of Cag1919 was cloned <strong>in</strong>to a vector of the pQEseries and expressed heterologously <strong>in</strong> the E.coli stra<strong>in</strong> XL1Blue. Theprote<strong>in</strong> can be used <strong>in</strong> Ca 2+ - b<strong>in</strong>d<strong>in</strong>g experiments due to its predicted Ca 2+ -b<strong>in</strong>d<strong>in</strong>g region. Cag0614 and Cag0616 represent the largest open read<strong>in</strong>gframes <strong>in</strong> the prokaryotic world known to date with length of 110418 and61938 bp, respectively. Due to their large size only fragments can becloned and expressed. Interest<strong>in</strong>gly, expression of Cag1919 and 1920 weredeleterious to E. coli stra<strong>in</strong>s caus<strong>in</strong>g the formation of extremely long,filamented or branched cells. To facilitate the localization of the prote<strong>in</strong>s<strong>in</strong> Chl. chlorochromatii, <strong>in</strong> the free-liv<strong>in</strong>g and symbiotic state, the result<strong>in</strong>grecomb<strong>in</strong>ant prote<strong>in</strong>s are used to produce antibodies for immunogoldlabell<strong>in</strong>g and tyramide signal amplification. With these results prote<strong>in</strong>srelevant <strong>in</strong> bacterial symbiosis can be localized and the question how amotif known from pathogenic bacteria operates <strong>in</strong> symbiosis approached.OTP007Effect of phosphate on a community of iron oxidiz<strong>in</strong>g bacteriaJ. Kipry*, C. Wiacek, M. SchlömannTU Bergakademie Freiberg, Environmental Microbiology, Freiberg, GermanyAt the open pit Nochten (Lusatia, East Germany) m<strong>in</strong>e waters arebiotechnologically treated <strong>in</strong> a pilot plant by microbial iron oxidation withthe subsequent precipitation of schwertmannite. These waters arecharacterized by a low pH value, high concentrations of iron and onlytraces of phosphate. The low phosphate availability appears to be a factorthat <strong>in</strong>fluences the microbial activity. To <strong>in</strong>crease the capacity of the pilotplant, the effect of phosphate on the oxidation rate and the microbialcommunity was <strong>in</strong>vestigated.The microbial community of the treatment plant was cultivated with andwithout phosphate <strong>in</strong> a pilot plant-adapted laboratory set up. Besides thedeterm<strong>in</strong>ation of chemical parameters like pH, iron and phosphateconcentration the microbial community was quantitatively characterizedby cell count<strong>in</strong>g and qualitatively by T-RFLP analysis. The results showthat the iron oxidation rate, the bacterial community and cell numbersdiffered significantly based on the phosphate availability. The cell numberwas doubled <strong>in</strong> the system with phosphate. The microbial community <strong>in</strong>the reactor without phosphate consisted of various iron oxidiz<strong>in</strong>g (60%)and non-iron oxidiz<strong>in</strong>g bacteria (40%), whereas exclusively the ironoxidiz<strong>in</strong>g bacteria ‘Ferrovum myxofaciens’ was present <strong>in</strong> the reactor withadded phosphate.Together with the higher cell number and higher percentage of ironoxidizer <strong>in</strong> presence of phosphate also the oxidation rate <strong>in</strong>creasedcompared to the system without phosphate.OTP008L-Sorbitol-Dehydrogenase from Bradyrhizobium japonicumUSDA 110 can be applied <strong>in</strong> D-Sorbose Production us<strong>in</strong>gElectrochemical Cofactor RegenerationS. Gauer 1 , Z. Wang 2 , M. Etienne 2 , A. Walcarius 2 , F. Giffhorn 1 , G.-W. Kohr<strong>in</strong>g* 11 Saarland University, Microbiology, Saarbrücken, Germany2 CNRS, Physical Chemistry and Microbiology for the Environment, Nancy,France, FranceIn the FP7 EU project ERUDESP an enzyme reactor with electrochemicalcofactor regeneration was developed for the production of enantiopurebuild<strong>in</strong>g blocks used <strong>in</strong> pharmaceutical synthesis. Apply<strong>in</strong>g the suitableenzymes, the reactor can also be used for the production of rare sugars likeD-sorbose, which is an <strong>in</strong>terest<strong>in</strong>g synthon for pharmaceutical applicationsand can be used as a low calorie sweetener. An annotated ribitoldehydrogenasegene of Bradyrhizobium japonicum USDA 110 wasidentified <strong>in</strong> a BLAST search with the N-term<strong>in</strong>al am<strong>in</strong>o acid sequence ofan earlier described L-sorbitol-dehydrogenase of Stenotrophomonasmaltophilia [1], which oxidizes L-sorbitol to D-sorbose. The gene wasamplified, tagged with histid<strong>in</strong>es and heterologously expressed <strong>in</strong> E. coliBL21Gold(D3). The biochemical exam<strong>in</strong>ation of this prote<strong>in</strong> exhibitedcomparable L-sorbitol-dehydrogenase activity to the S.maltophiliaenzyme. The L-sorbitol-dehydrogenase from B. japonicum wasencapsulated together with diaphorase <strong>in</strong> sol-gel layers on gold electrodesas has been described earlier for a D-sorbitol-dehydrogenase fromRhodobacter sphaeroides [2]. With NAD + and the mediatorferrocenedimethanol <strong>in</strong> solution the oxidation of D-sorbitol could bedemonstrated by cyclic voltammetry. The results let the enzyme appear asa promis<strong>in</strong>g candidate for the production of the rare sugar D-sorbose <strong>in</strong>enzyme reactors with electrochemical cofactor regeneration.[1]Brechtel E., Huwig A., Giffhorn F., Appl Environ Microbiol.68, 582-587 (2002)[2]Wang, Z., Etienne, M., Kohr<strong>in</strong>g, G.W., Bon Sa<strong>in</strong>t Côme, Y., Kuhn, A., Walcarius, A.,Electrochimica Acta56, 9032-9040 (2011)OTP009Biofoul<strong>in</strong>g of ultrafiltration membranes for dr<strong>in</strong>k<strong>in</strong>g watertreatment characterized by Confocal Laser Scann<strong>in</strong>g MicroscopyB. Braun*, U. SzewzykTU Berl<strong>in</strong>, Environmental Microbiology, Berl<strong>in</strong>, GermanyBiofoul<strong>in</strong>g is known as a major reason for flux decl<strong>in</strong>e <strong>in</strong> the performanceof membrane based water and wastewater treatment plants. The relevanceof biofilm extracellular polymeric substances (EPS) <strong>in</strong> terms of foul<strong>in</strong>g onmembranes has been <strong>in</strong>dicated <strong>in</strong> several studies. Therefore, a profoundknowledge of the composition of biofoul<strong>in</strong>g is important for thedevelopment of new countermeasures <strong>in</strong> enhanc<strong>in</strong>g membranepermeability.The objective of this <strong>in</strong>vestigation was the characterization of microbialaggregates and EPS components <strong>in</strong> biofilms that contribute to biofoul<strong>in</strong>gof ultrafiltration membranes us<strong>in</strong>g confocal laser microscopy (CLMS).Biofoul<strong>in</strong>g tests were conducted us<strong>in</strong>g an experimental setup, where ahollow-fiber ultrafiltration (UF) membrane module made of polyethylenewas fed with natural water. Dead end filtration was carried outcont<strong>in</strong>uously by us<strong>in</strong>g a constant pressure of 20mbar and an <strong>in</strong>itialBIOspektrum | Tagungsband <strong>2012</strong>


140membrane permeability of 390Lh -1 m -1 bar -1 . One operation cycle consistedof 20m<strong>in</strong> of filtration and a backwash of 20sec. Samples of fouledmembranes were <strong>in</strong>vestigated after one, three and six cycles of filtration.The biofoul<strong>in</strong>g was analyzed by confocal laser scann<strong>in</strong>g microscopy(CLSM) after simultaneous sta<strong>in</strong><strong>in</strong>g. The bacteria <strong>in</strong> the foul<strong>in</strong>g weresta<strong>in</strong>ed with DAPI specific to nucleic acids and different fluorescentlabeled lect<strong>in</strong>s specific to polysaccharides of the EPS.Confocal laser microscopy showed that biofoul<strong>in</strong>g on the membrane was acomposition of heterogeneous colonization of bacteria and extra cellularpolymeric substances (EPS) conta<strong>in</strong><strong>in</strong>g, N-acetylglucosam<strong>in</strong>e, N-acetylgalactoseam<strong>in</strong>e and L fucose. The detection of the bacteria and thelocation of the polysaccharides could be related to the biofoul<strong>in</strong>gaccumulation. Our <strong>in</strong>vestigations assume, that at first polysaccharides ofthe <strong>in</strong>fluent adsorbed to the membrane surface and serve as layer for thedevelopment of a condition<strong>in</strong>g film. Backwash<strong>in</strong>g was able to remove cellsfrom the membrane, but was unable to remove adsorbed substances of thecondition<strong>in</strong>g film.OTP010Evaluation of analytical sensitivity and specificity of thebiothreat assay for cl<strong>in</strong>ical Bacillus anthracis diagnostics bythe PLEX-ID SystemM. Hanczaruk* 1 , B. Thoma 1 , M. Antwerpen 1 , S. Schmoldt 1 , C. Tiemann 2 ,D. Knoop 2 , A. Hartmann 2 , L. Zöller 1 , G. Grass 11 Bundeswehr Institute of Microbiology, Munich, Germany2 LABCON-OWL GmbH, Bad Salzuflen, GermanyBacillus anthracis causes a cl<strong>in</strong>ical condition known as Anthrax diseaseand the bacterium is placed top on the list of biological agents potentiallyto be used <strong>in</strong> bioterrorism and biological warfare.B. anthracis belongs tothe B. cereus group spp., which are genetically closely related. For<strong>in</strong>stance, plasmids similar to B. anthracis pXO1 and pXO2 can also befound <strong>in</strong> B. cereus. These plasmids are of paramount importance forvirulence of the bacilli. pXO1 codes for the tox<strong>in</strong>s edema- and lethal-factoralong with protective antigen needed for tox<strong>in</strong> delivery <strong>in</strong>to host cells.pXO2 is required for capsule formation enabl<strong>in</strong>g evasion of host immuneresponse. The PLEX-ID System is a technique based on PCR andElectrospray-Ionization Mass Spectrometry (ESI-MS) provid<strong>in</strong>g the exactbase-composition of (partial) gene amplificates. As part of a so-called“biothreat assay” species specific primer sets were developed enabl<strong>in</strong>g thedetection of 46 viral and bacterial biothreat pathogens.Here<strong>in</strong>, closely related organisms can be differentiated <strong>in</strong> a s<strong>in</strong>gle run on amultiplex-assay-base aim<strong>in</strong>g at reliable and fast identification of unknownsamples by (subspecies-) specific base pair signatures. B. anthracisdetection, for example, is achieved via two B. anthracis specificchromosomal and one pXO1- and pXO2-plasmid specific targets. Toevaluate this “biothreat assay” we tested its analytical specificity (crossreactivity)and analytical sensitivity [limit of detection (LoD)]. For this, weanalyzed a panel of B. anthracis (plasmid positive and negative) stra<strong>in</strong>sand Bacillus spp. isolates closely related to B. anthracis. Included <strong>in</strong> thisstudy were also other organisms represent<strong>in</strong>g the resident flora of cl<strong>in</strong>icalmatrices and various matrices relevant <strong>in</strong> cl<strong>in</strong>ical B. anthracis diagnostics.The LoD was as low as 5 genome copies per l from culture and 5 to 10genome copies from cl<strong>in</strong>ical matrices such as EDTA blood. Takentogether, the PLEX-ID technique allows for the reliable identification ofB. anthracis (plasmid positive and negative stra<strong>in</strong>s) and the discrim<strong>in</strong>ationfrom other B. cereus-group bacteria (<strong>in</strong>cl. plasmid positive stra<strong>in</strong>s) with<strong>in</strong>acceptable cl<strong>in</strong>ical sensitivity.OTP011Seek<strong>in</strong>g novel Hydrogenases from a hydrothermal ventenrichment cultureM. Hansen*, M. PernerUniversity of Hamburg, Molecular Biology of Microbial Consortia,Hamburg, GermanyA culture enriched with diffuse fluids taken at the hydrothermal ventSisters Peak (5° S on the Mid-Atlantic Ridge) grows autotrophically onartificial seawater supplemented with hydrogen. Analyses of amplified 16SrRNA genes revealed the presence of species commonly not known toutilize hydrogen as electron donor, namely the AlphaproteobacteriumThalassospira sp. and the Gammaproteobacteria Thiomicrospiracrunogena, Pseudomonas pachastrellae and Alteromonas macleodii.Fluorescence <strong>in</strong> situ hybridization with specific probes designed to targeteach species <strong>in</strong>dividually demonstrated little community shifts <strong>in</strong> theculture with<strong>in</strong> 4 weeks. The relative abundance of T. crunogena variedbetween 40-71% and of Thalassospira sp. between 25-40%, respectively.Relative abundances of A. macleodii and P. pachastrellae were between2% and 10%. We also performed hydrogen consumption measurementswith the enrichments, which clearly illustrated the active uptake ofhydrogen. The uptake hydrogenase activity of membrane associatedprote<strong>in</strong>s from the mixed culture was 0.253 ± 0.079 mol H 2*m<strong>in</strong> -1 *mg -1 ,contrast<strong>in</strong>g the low uptake activity for the soluble prote<strong>in</strong>s (0.023 ± 0.132mol H 2*m<strong>in</strong> -1 *mg -1 ). Conclusively, hydrogenases are be<strong>in</strong>g expressedand are active <strong>in</strong> this culture. S<strong>in</strong>ce we have not been able to assign thehydrogenases to one of the species <strong>in</strong> the enrichment culture we arecurrently pursu<strong>in</strong>g 2 strategies: (i) Native PAGE and an <strong>in</strong>-gelhydrogenase activity assay <strong>in</strong> comb<strong>in</strong>ation with sequenc<strong>in</strong>g of activeprote<strong>in</strong> bands and (ii) <strong>in</strong>vestigation of the isolated species with respect togrowth with hydrogen, uptake hydrogenase activities and hydrogenconsumption.OTP012Three-dimensional obstacles for bacterial surface motilityN. Kouzel*, C. MeelBiocenter/Institute of Theoretical Physics, AG Prof. Dr. Maier, Cologne,GermanyMany bacterial species live at surfaces. For surface colonization they havedeveloped mechanisms which allow them to move while rema<strong>in</strong><strong>in</strong>gattached to surfaces. The most ubiquitous mode of surface motility ismediated by type IV pili. These polymeric cell appendages mediatemotility through cycles of pilus polymerization, adhesion, anddepolymerization. Natural adhesion surfaces, <strong>in</strong>clud<strong>in</strong>g mammalian hostcells, are not flat. It is unknown, however, how the topography of a surface<strong>in</strong>fluences bacterial surface motility. Here, we show that the roundNeisseria gonorrhoeae (gonococcus) was preferentially reflected frombarriers with a depth of 1 m but not by lower barriers. Gonococcalmotility was conf<strong>in</strong>ed to grooves whose dimensions were on the order ofthe size of the bacteria and the dynamics of movement was <strong>in</strong> agreementwith a tug-of-war model. Likewise, the motility of the rod-likeMyxococcus xanthus (myxococcus) was conf<strong>in</strong>ed to grooves. In summary,the data demonstrate that surface-motile bacteria can sense the topographyof the surface and that their movements are guided by microscopicelevations.Meel, C., Kouzel, N., Oldewurtel, E.R., Maier, B. Three-dimensionalobstacles for bacterial surface motility, Small, accepted.OTP013Recomb<strong>in</strong>ant production of genetically modified S-layerprote<strong>in</strong>s <strong>in</strong> different expression systems*F. Lederer 1 , S. Kutschke 1 , K. Pollmann 21 Helmholtz-Zentrum Dresden, Institute of Radiochemistry, Biophysics Division,Dresden, Germany2 Helmholtz-Zentrum Dresden, Helmholtz Institute of Freiberg, Dresden,GermanySurface layer (S-layer) are prote<strong>in</strong>s which cover the outermost of manyprokaryotes and are probably the basic and oldest forms of bacterialenvelope. These prote<strong>in</strong>s are mostly composed of prote<strong>in</strong> and glycoprote<strong>in</strong>monomers and have the ability to self-assemble <strong>in</strong>to two-dimensionalarrays on <strong>in</strong>terfaces. Several characteristics like their work as molecularsieve, as virulence factor or the protection of the cell from toxic heavymetal ions make S-layer prote<strong>in</strong>s <strong>in</strong>terest<strong>in</strong>g for their usage asultrafiltration membranes, drug microconta<strong>in</strong>ers, filter materials orpattern<strong>in</strong>g structures <strong>in</strong> nanotechnology.Heterologous expression of S-layer prote<strong>in</strong>s is not simple and depends onthe used vector and the expression system. Equally the S-layer prote<strong>in</strong> size,genetic specifics, and the existence of adapted signal peptides <strong>in</strong>fluence theexpression. To enable an efficient and economical prote<strong>in</strong> productionprote<strong>in</strong> secretion is the most favoured method.In this work we describe the recomb<strong>in</strong>ant production of different S-layervariants and characterize the differences of the used prote<strong>in</strong> expressionsystems.We used four different S-layer genes of Lys<strong>in</strong>ibacillus sphaericus JG-A12,Bacillus spec. JG-B12 and Lactobacillus acidophilus and expressed theirprote<strong>in</strong>s <strong>in</strong> Escherichia coli, Pichia pastoris and Lactococcus lactis. Someof these prote<strong>in</strong>s were genetically modified to adapt the construct to theused S-layer expression system.Our work identified Lactococcus lactis as the best expression system forthe used S-layer genes.OTP014Biological applications for nano-mechanical detectionofmolecular recognitionM. Leisner* 1 , A. Mader 1 , K. Gruber 1 , R. Castelli 2 , P.H. Seeberger 2 , J. Raedler 11 LMU, Physik, Munich, Germany2 Freie Universitaet Berl<strong>in</strong>, Biology, Chemistry and Pharmacy, Berl<strong>in</strong>, GermanyAdvances <strong>in</strong> carbohydrate sequenc<strong>in</strong>g technologies have revealed thetremendous complexity of the glycome. Understand<strong>in</strong>g the biologicalfunction of carbohydrates requires the identification and quantification ofcarbohydrate <strong>in</strong>teractions with biomolecules. The <strong>in</strong>creas<strong>in</strong>g importance ofcarbohydrate-based sensors able to specifically detect sugar b<strong>in</strong>d<strong>in</strong>gmolecules or cells, has been shown for medical diagnostics and drugscreen<strong>in</strong>g. Our biosensor with a self-assembled manno side based sens<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


141layer that specifically detects carbohydrate-prote<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g <strong>in</strong>teractions(mannoside - ConA), as well as real time <strong>in</strong>teraction of carbohydrates withdifferent E. coli stra<strong>in</strong>s <strong>in</strong> solution. B<strong>in</strong>d<strong>in</strong>g to the Cantilever surfacecauses mechanical surface stress, that is transduced <strong>in</strong>to a mechanical forceand cantilever bend<strong>in</strong>g. The degree and duration of cantilever deflectioncorrelates with the <strong>in</strong>teraction‘s strength. In this study we presentcarbohydrate-based cantilever biosensors as a robust, label-free, andscalable method to analyze carbohydrate-prote<strong>in</strong> and carbohydrate-bacteria<strong>in</strong>teractions. The cantilevers thereby exhibit specific and reproducibledeflection with a high sensitivity range of over four orders of magnitude.OTP015Antibiotics Screen<strong>in</strong>g 2.0 - Tools for <strong>in</strong> silico Genome M<strong>in</strong><strong>in</strong>gfor Natural Product Biosynthesis PathwaysK. Bl<strong>in</strong> 1 , M.H. Medema 2 , R. Marc 3 , O. Kohlbacher 3 , R. Breitl<strong>in</strong>g 2,4 , E. Takano 2 ,T. Weber* 11 IMIT / Universität Tüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie - SecondaryMetabolite Genomics, Tüb<strong>in</strong>gen, Germany2 Gron<strong>in</strong>gen Biomolecular Sciences and Biotechnology Institute / University ofGron<strong>in</strong>gen, Microbial Physiology, Gron<strong>in</strong>gen, Netherlands3 ZBiT / Universität Tüb<strong>in</strong>gen, Applied Bio<strong>in</strong>formatics, Tüb<strong>in</strong>gen, Germany4 University of Glasgow, Institute of Molecular, Cell and Systems Biology,Glasgow, United K<strong>in</strong>gdomMicroorganisms are a rich source for natural products of which many havepotent antimicrobial or antitumor activity. While <strong>in</strong> the past, functionalscreen<strong>in</strong>g approaches directed directly to the substances or to putativetargets were the ma<strong>in</strong> approaches for the identification and isolation ofnovel compounds, the easy availability of whole genome sequence data ofputative producers nowadays offers great possibilities to assess the geneticpotential of the stra<strong>in</strong>s<strong>in</strong> silico.For such analyses of genomic data novel, sophisticated tools are requiredwhich allow the prediction of putative biosynthetic products. Therefore,several tools were developed <strong>in</strong> our group:The Open Source annotation platform CLUSEAN 1 is a versatile tool forthe analysis of s<strong>in</strong>gle biosynthetic gene clusters as well as whole genomesequences. CLUSEAN conta<strong>in</strong>s generic modules for automated BLAST orHMMer analyses as well as specialized tools for the doma<strong>in</strong> assignmentand specificity prediction of modular polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS).Included <strong>in</strong>to CLUSEAN is NRPSpredictor 2,3 . This tool allows theprediction of substrate specificities of adenylation doma<strong>in</strong>s of NRPSenzymes and thus the prediction of the peptide products. Here, we presentthe new version NRPSpredictor 2 which conta<strong>in</strong>s updated models for theam<strong>in</strong>o acids and now allows prediction up to the am<strong>in</strong>o acid level.All of these tools are now also <strong>in</strong>tegrated <strong>in</strong>to the antibiotics and secondarymetabolites analysis shell antiSMASH 4 . This pipel<strong>in</strong>e conta<strong>in</strong>s most toolsthat are currently available for the analysis of secondary metabolite geneclusters, <strong>in</strong>clud<strong>in</strong>g CLUSEAN and NRPSpredictor2. antiSMASH is eitheravailable as a standalone application or as a web based service.URLs for download<strong>in</strong>g/us<strong>in</strong>g the software:CLUSEAN: http://redm<strong>in</strong>e.secondarymetabolites.org/projects/cluseanNRPSpredictor2: http://nrps.<strong>in</strong>formatik.uni-tueb<strong>in</strong>gen.deantiSMASH: http://antismash.secondarymetabolites.org/1. Weber, T., et al. (2009). J. Biotechnol. 140, 13-17.2. Rausch et al., (2005) Nucleic Acids Res. 33, 5799-58083. Röttig, M., et al. (2011) Nucleic Acids Res. 39, W362-3674. Medema, M.H., et al. (2011) Nucleic Acids Res. 39, W339-W346.OTP016Relative prote<strong>in</strong> quantification us<strong>in</strong>g 36 S- or 34 S- sulfateF.-A. Herbst* 1 , N. Jehmlich 1,2 , M. Taubert 1 , T. Behr 1 , J. Seifert 1 , F. Schmidt 1,2 ,M. von Bergen 11 UFZ - Helmholtz Centre for Environmental Research, Proteomics, Leipzig,Germany2 Ernst-Moritz-Arndt-University Greifswald, Department of FunctionalGenomics, Greifswald, GermanyTo uncover changes <strong>in</strong> the proteome and to draw conclusions from this it iscrucial to quantify as accurate as possible. One of the favored methods isthe metabolic <strong>in</strong>troduction of stable isotopes. Currently <strong>in</strong> use are heavylabeled am<strong>in</strong>o acids or substrates to directly compare the <strong>in</strong>tensities ofassociated peptide pairs of two or more different conditions dur<strong>in</strong>g a s<strong>in</strong>glemeasurement [1]. Even though these techniques have proven to befeasible, they have drawbacks as well. The addition of am<strong>in</strong>o acids might<strong>in</strong>fluence the proteome or they get metabolized, result<strong>in</strong>g <strong>in</strong> anunpredictable spread of the label. The label<strong>in</strong>g of the whole proteome by13 C or 15 N labeled substrates usually results <strong>in</strong> <strong>in</strong>corporation patterns whichare hard to predict and therefore bio<strong>in</strong>formatically complicated [2].Here we show the potential of utiliz<strong>in</strong>g heavy sulfur isotopes for relativeprote<strong>in</strong> quantification. Sulfur is an essential element for microorganismsand is part of methion<strong>in</strong>e and cyste<strong>in</strong>e, so it can be used as universal labelfor quantitative proteomic studies. The fact that sulfur conta<strong>in</strong><strong>in</strong>g am<strong>in</strong>oacids are encountered <strong>in</strong>frequently is a mixed bless<strong>in</strong>g. Although only asmall fraction of measurable peptides will give quantitative <strong>in</strong>formation,the <strong>in</strong>corporation patterns are well predictable <strong>in</strong> comparison to carbon ornitrogen label<strong>in</strong>g strategies. So far the relative proteomic change of P.putida with benzoate as carbon source was elucidated us<strong>in</strong>g 36 S-labeledsulfate [3]. It could be shown that this technique leads to the relativequantification of many relevant prote<strong>in</strong>s. Due to the high costs and lowavailability of 36 S-sulfur or -sulfate, we further <strong>in</strong>vestigated the usage of34 S-labeled sulfate. As most tryptic peptides conta<strong>in</strong> only one sulfur atom,the mass shift of 2 Da correspond<strong>in</strong>g to the 34 S-label is not enough to fullyseparate the isotopic patterns with rout<strong>in</strong>e resolutions. We are show<strong>in</strong>g thatthe <strong>in</strong> silico separation of the isotopic pattern for relative quantification ispossible, tak<strong>in</strong>g the monoisotopic peak as reference to simulate the correctdistributions. The proteomic change <strong>in</strong> P. fluorescens dur<strong>in</strong>g naphthalenedegradation will be presented from a label switch experiment us<strong>in</strong>g 34 S-sulfate to first confirm the suitability of 34 S as universal label and secondto identify relevant physiological changes besides the known.1. Beynon, R.J. and J.M. Pratt,Metabolic label<strong>in</strong>g of prote<strong>in</strong>s for proteomics.Molecular & cellularproteomics : MCP, 2005.4(7): p. 857-72.2. Jehmlich, N., et al.,Decimal place slope, a fast and precise method for quantify<strong>in</strong>g 13C <strong>in</strong>corporationlevels for detect<strong>in</strong>g the metabolic activity of microbial species.Molecular & cellular proteomics : MCP,2010.9(6): p. 1221-7.3. Jehmlich, N., et al.,Sulphur-(36) S stable isotope label<strong>in</strong>g of am<strong>in</strong>o acids for quantification(SULAQ).Proteomics, 2011.OTP017Development of a functional screen<strong>in</strong>g method for novel[NiFe]-hydrogenases from metagenomesN. Rychlik*, M. PernerUniversity Hamburg - BZF, Molecular Biology of Microbial Consortia,Hamburg, GermanyThe <strong>in</strong>terconversion between molecular H 2 and protons and electrons isextremely <strong>in</strong>terest<strong>in</strong>g for biotechnological applications because H 2 is oneof the most promis<strong>in</strong>g renewable fuels. This reaction is catalyzed byenzymes called hydrogenases ( H 2 2 H + + 2 e - ). The direction of thisreaction depends on the redox potential of the components able to <strong>in</strong>teractwith the enzyme. One biotechnological application for hydrogenases is <strong>in</strong>fuel cells, where energy becomes available through the oxidation of H 2.Alternatively, hydrogenases are applicable for the biological H 2 production<strong>in</strong> electrochemical cells. One of the most crucial challenges <strong>in</strong> thesebiotechnological applications is to resolve the problem associated with theoxygen sensitivity of hydrogenases.In hydrothermal deep sea vent habitats, hot hydrothermal fluids enrichedwith reduced <strong>in</strong>organic compounds e.g. H 2 emit from the ground. As theascend<strong>in</strong>g hydrothermal fluids come <strong>in</strong> contact with cold, oxygenatedambient seawater, mix<strong>in</strong>g processes constitute habitats with steep physicochemicalgradients, e.g. habitats with high concentrations of H 2 andoxygen. With respect to these abiotic conditions, the rich energy sourceprovided by H 2 oxidation and the large numbers of diverse H 2-oxidiz<strong>in</strong>gmicroorganisms, hydrothermal vents facilitate ideal conditions for seek<strong>in</strong>goxygen tolerant hydrogenases.To identify and study novel oxygen tolerant hydrogenases we usedmetagenomic material from these habitats and constructed broad-hostrange fosmid libraries. S<strong>in</strong>ce heterologous expression of functionalhydrogenases <strong>in</strong> the standard host Escherichia coli is difficult becausecomplex <strong>in</strong>teractions of maturation- and assembly prote<strong>in</strong>s are oftenneeded, we are establish<strong>in</strong>g function based screen<strong>in</strong>gs with alternativeheterologous hosts. Therefore, two new deletion mutants are currentlybe<strong>in</strong>g constructed: These are the -proteobacterium Shewanella oneidensisMR-1 and the -proteobacterium Wol<strong>in</strong>ella succ<strong>in</strong>ogenes. Both organismspossess a s<strong>in</strong>gle [NiFe]-hydrogenase and are promis<strong>in</strong>g candidates forestablish<strong>in</strong>g this functional screen<strong>in</strong>g method. A [NiFe]-hydrogenasedeletion mutant of Shewanella oneidensis MR-1 (hyaB) was developedsuccessfully and we here report our first results of the conducted functionalscreen.OTP018Fate of elemental sulfur <strong>in</strong> coastal sediments andhydrothermal ventsP. Pjevac*, S. Lenk, M. MußmannMax Planck Institute for Mar<strong>in</strong>e Microbiology, Molecular Ecology,Bremen, GermanyZero-valence sulfur (ZVS) species such as elemental sulfur (S 0 ) andpolysulfides are central <strong>in</strong>termediates <strong>in</strong> sulfur cycl<strong>in</strong>g at redox cl<strong>in</strong>es <strong>in</strong>mar<strong>in</strong>e and freshwater sediments. We found significant amounts of ZVS atthe sediment surface of tidal flats <strong>in</strong> the German Wadden Sea. Also, largeS 0 precipitates are cover<strong>in</strong>g the surface at a hydrothermal system <strong>in</strong> theManus Bas<strong>in</strong>/Papua-New Gu<strong>in</strong>ea. It is generally unknown, howmicroorganisms <strong>in</strong> these environments metabolize dissolved andparticulate ZVS under different oxygen regimes. To <strong>in</strong>vestigate thebacterial community utiliz<strong>in</strong>g ZVS, we sampled native S 0 fromgeochemically diverse systems <strong>in</strong> the Manus Bas<strong>in</strong>. Moreover, we exposedS 0 slabs as colonization surfaces <strong>in</strong> both coastal sediments and athydrothermal vents for a period of 2-6 weeks. To identify key S-cycl<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


142bacteria <strong>in</strong> situ, we used 16S rRNA clone libraries, 454-tag sequenc<strong>in</strong>g andCARD-FISH. S 0 slabs <strong>in</strong>cubated <strong>in</strong> oxic sediment were ma<strong>in</strong>ly colonizedby epsilonproteobacteria that were related to Sulfurimonas andSulfurovum. Sulfate formation supported that epsilonproteobacteria areimportant ZVS-oxidiz<strong>in</strong>g organisms not only <strong>in</strong> hydrothermal systems and<strong>in</strong> OMZs but also <strong>in</strong> temperate mar<strong>in</strong>e sediments. S 0 slabs from the anoxicsediment were colonized ma<strong>in</strong>ly by probably S-disproportionat<strong>in</strong>gDesulfocapsa. We will compare the diversity of S 0 -utiliz<strong>in</strong>g organismsfrom coastal sediments and from hydrothermal systems to look fordifferences and commonalities. Our data will provide detailed <strong>in</strong>sights <strong>in</strong>tothe bacterial community <strong>in</strong>volved <strong>in</strong> biogeochemical cycl<strong>in</strong>g of zerovalence sulfur species <strong>in</strong> different habitats.OTP019Synthetic microbial production pathways for benzoyl-CoAderivedmetabolitesJ. Mock*, J. HeiderUniversität Marburg, Mikrobiologie, Marburg, GermanyBenzoyl-CoA is a key <strong>in</strong>termediate <strong>in</strong> several metabolic pathways. For<strong>in</strong>stance it is a precursor for polyketide synthesis <strong>in</strong> plants andmicroorganisms or an <strong>in</strong>termediate <strong>in</strong> aromatic hydrocarbon degradation.S<strong>in</strong>ce benzoyl-CoA normally does not occur <strong>in</strong> microbial metabolism, anydesigned benzoyl-CoA-dependent microbial pathway requires an <strong>in</strong>itiationmodule to synthesise this <strong>in</strong>termediate. We made use of a benzoatetransporter and a benzoate-CoA ligase from the betaproteobacteriumAromatoleum aromaticum, which are <strong>in</strong>volved <strong>in</strong> anaerobic benzoatedegradation, to create recomb<strong>in</strong>ant benzoyl-CoA-produc<strong>in</strong>g bacterialstra<strong>in</strong>s.Our first efforts to couple benzoyl-CoA to the synthesis of a product aimedat the polyketide biphenyl, which is synthesised from benzoyl-CoA andthree malonyl-CoA by biphenyl synthase of the rowan berry Sorbusaucuparia 1 . The <strong>in</strong>itial host stra<strong>in</strong> of E.coli did not produce any detectableproducts, probably because of limited malonyl-CoA supply. Therefore, weshifted to the related Shimwellia (formerly Escherichia) blattae, s<strong>in</strong>ce thisspecies can be grown on malonate 2 , which should release the metabolicbottleneck. First results <strong>in</strong>dicate that a metabolite is <strong>in</strong>deed produced byrecomb<strong>in</strong>ant cultures fed with benzoate and malonate, which will befurther characterized.Another more extended possible biosynthetic pathway start<strong>in</strong>g frombenzoyl-CoA is pursued for the production of (R)-benzylsucc<strong>in</strong>ate, anaromatic compound of potential <strong>in</strong>terest for production of biodegradablepolymers. (R)-benzylsucc<strong>in</strong>ate is an <strong>in</strong>termediate of anaerobic toluenedegradation and is usually synthesised from toluene and fumarate via aglycyl radical enzyme 3 . We will try to establish a synthetic pathway forthis compound from benzoyl-CoA and the mixed acid-fermentationproduct succ<strong>in</strong>ate by revers<strong>in</strong>g the -oxidation pathway <strong>in</strong>volved <strong>in</strong>benzylsucc<strong>in</strong>ate degradation. The first step of this reverse pathway is thecondensation of benzoyl-CoA and succ<strong>in</strong>yl-CoA to benzoylsucc<strong>in</strong>yl-CoAby a new type of thiolase. First results on establish<strong>in</strong>g this reaction will beshown.1 Liu B, Raeth T, Beuerle T, Beerhues L. (2007). Biphenyl synthase, a novel type III polyketidesynthase. Planta. 225, 1495-503.2 Priest F G, Barker M. (2010). Gram-negative bacteria associated with brewery yeasts:reclassification of Obesumbacterium proteus biogroup 2 as Shimwellia pseudoproteus gen. nov., sp.nov., and transfer of Escherichia blattae to Shimwellia blattae comb. nov.Int Journal Systematic andEvol Microbiology.60,828-8333 Leutwe<strong>in</strong> C, Heider J. (2002). (R)-Benzylsucc<strong>in</strong>yl-CoA dehydrogenase of Thauera aromatica, anenzyme of the anaerobic toluene catabolic pathway.Arch Microbiol.178, 517-524,OTP020Influence of the <strong>in</strong>itial dissolved H 2 concentration on the reductivedechlor<strong>in</strong>ation of 1,2,3-trichlorobenzene by Dehalococcoides sp.stra<strong>in</strong> CBDB1S. Hartwig* 1 , G. Sawers 2 , U. Lechner 11 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Lechner,Halle (Saale), Germany2 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Sawers, Halle(Saale), GermanyThe genus Dehalococcoides comprises strictly anaerobic bacteria thatconserve energy exclusively by organohalide respiration. They only usehalogenated organic compounds such as 1,2,3-trichlorobenzene (TCB) aselectron acceptor and hydrogen as electron donor. Moreover, they only useacetate as a carbon source. The genome of Dehalococcoides sp. stra<strong>in</strong>CBDB1 encodes 32 homologous cobalt-dependent reductivedehalogenases (Rdh), 5 types of multi-subunit hydrogenases (Hyd) and aputative formate dehydrogenase (Fdh) as one of the most abundantprote<strong>in</strong>s <strong>in</strong> stra<strong>in</strong> CBDB1 [1].The <strong>in</strong>fluence of vary<strong>in</strong>g the dissolved H 2 concentration on thestoichiometric dechlor<strong>in</strong>ation of 1,2,3-TCB to 1,3-dichlorobenzene (DCB)was monitored <strong>in</strong> Dehalococcoides sp. stra<strong>in</strong> CBDB1 us<strong>in</strong>g gaschromatography. Initial dissolved H 2 concentrations from 1 M to 10 Mwere applied to cultures conta<strong>in</strong><strong>in</strong>g 50 M 1,2,3-TCB. The completedechlor<strong>in</strong>ation of50 M 1,2,3-TCB was achieved with<strong>in</strong> 48 hours us<strong>in</strong>g an <strong>in</strong>itial H 2concentration of 10 M. We could demonstrate that the rate of reductivedechlor<strong>in</strong>ation of 1,2,3-TCB to 1,3-DCB <strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>itialdissolved H 2 concentrations. Moreover, the hydrogen uptake rate also<strong>in</strong>creased with <strong>in</strong>creas<strong>in</strong>g dissolved H 2 concentrations. Hydrogenconsumption was also observed at an elevated redox potential (between -350 and -110 mV), whereas under these conditions reductivedechlor<strong>in</strong>ation did not occur. This <strong>in</strong>dicates that hydrogen oxidation andreductive dechlor<strong>in</strong>ation can be uncoupled. Us<strong>in</strong>g qRT-PCR it could bedemonstrated that the genes encod<strong>in</strong>g the catalytic subunits of the Fdh andthe periplasmatic hydrogenase Hup were highly expressed. Expression ofthese genes was also <strong>in</strong>fluenced <strong>in</strong> response to different <strong>in</strong>itial dissolved H 2concentrations.Acknowledgement: This work is supported by the DFG (research unit FOR1530)[1] Kube et al. (2005) Genome sequence of the chlor<strong>in</strong>ated compound-respir<strong>in</strong>g bacteriumDehalococcoides species stra<strong>in</strong> CBDB1. Nat Biotechnol 23, p.1269-1273OTP021Heterologues Regulation of Reductive Dehalogenase GeneExpression by a MarR-type RegulatorL. Segler* 1 , G. Sawers 2 , U. Lechner 11 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Lechner,Halle (Saale), Germany2 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Sawers, Halle(Saale), GermanyThe anaerobic bacterium Dehalococcoides sp. CBDB1 belongs to thephylum Chloroflexi and is unusual <strong>in</strong> that it is able to dechlor<strong>in</strong>atedifferent chloroaromatic compounds such as 1,2,3-trichlorbenzene (TCB)and 2,3,7,8-tetrachlorodibenzo-p-diox<strong>in</strong> (TCDD). Dechlor<strong>in</strong>ation takesplace <strong>in</strong> a process called organohalide respiration and is catalysed byreductive dehalogenases (Rdh) and driven by hydrogen as electron donor.The genome of stra<strong>in</strong> CBDB1 conta<strong>in</strong>s 32 genes encod<strong>in</strong>g putative Rdhs[1]. The Rdh enzymes consist of a catalytic subunit RdhA together with aputative membrane-anchor subunit RdhB and these are encoded by rdhABoperons. The rdhAB operons are closely associated with genes encod<strong>in</strong>geither MarR-type or two-component system (TCS) transcriptionalregulators. The role of these regulators <strong>in</strong> the transcriptional control of therespective rdhAB genes is unclear.Because Dehalococcoides bacteria are not genetically tractable and aredifficult to work with, a heterologous system to study the function of theMarR prote<strong>in</strong> CbdbA1625 <strong>in</strong> controll<strong>in</strong>g expression of the rdhA genecbdbA1624 was developed. A heterologous <strong>in</strong> vivo system <strong>in</strong> Escherichiacoli was established us<strong>in</strong>g a s<strong>in</strong>gle-copy reporter-lacZ fusion compris<strong>in</strong>gthe <strong>in</strong>tergenic region (IR) between cbdbA1624 and the divergentlytranscribed cbdbA1625, encod<strong>in</strong>g a MarR-type regulator. We analysed theactivity of the promoter of cbdbA1624 and that of cbdbA1625. Bothpromoters were functional <strong>in</strong> E. coli MC4100. The effect of multicopycbdbA1625 on expression of both reporter-lacZ fusions was analysed. TheMarR-type regulator had a negative effect on expression of bothpromoters. This work demonstrates that heterologous expression systemsprovide a powerful approach to dissect the transcriptional regulation of rdhgene expression.Acknowledgement: This work is supported by the DFG (research unit FOR1530)[1] Kube et al.(2005) Genome sequence of the chlor<strong>in</strong>ated compound-respir<strong>in</strong>g bacteriumDehalococcoides species stra<strong>in</strong> CBDB1. Nat Biotechnol 23, p.1269-1273.OTP0224-Sulfoacetophenone Baeyer-Villiger-type Monooxygenase and 4-Sulfophenylacetate Esterase <strong>in</strong> Comamonas testosteroni KF-1M. Weiss* 1 , K. Denger 1 , T. Huhn 2 , D. Schleheck 11 Microbial Ecology, Department of Biological Sciences, Konstanz, Germany2 Organic Chemistry, Department of Chemistry, Konstanz, GermanyThe xenobiotic laundry surfactant L<strong>in</strong>ear Alkylbenzene Sulfonate (LAS)(3 x 10 6 tons per year worldwide, [1]) is completely degraded byheterotrophic bacterial communities [2]. However, until now, no<strong>in</strong>formation on the enzymes and genes <strong>in</strong>volved has been established.3-(4-Sulfophenyl)butyrate (3-C4-SPC) is a biodegradation <strong>in</strong>termediate ofLAS, and 3-C4-SPC is m<strong>in</strong>eralized by Comamonas testosteroni KF-1 [3,4] through a pathway that <strong>in</strong>volves 4-sulfoacetophenone (SAP) and an<strong>in</strong>ducible Baeyer-Villiger-type monooxygenase (BVMO) to yield 4-sulfophenylacetate (SPAc) from SAP. The hydrolysis of SPAc to 4-sulfophenol (SP) and acetate is catalysed by an esterase. This SPAcesterasewas purified to homogeneity and the correspond<strong>in</strong>g gene <strong>in</strong> C.testosteroni KF-1 identified by peptide-mass f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g. A predictedBVMO gene was located directly upstream to the SPAc-esterase gene.This candidate gene was over expressed <strong>in</strong> Escherichia coli and purified.The recomb<strong>in</strong>ant enzyme catalyzed the NADPH-dependent oxygenation ofSAP to SPAc, which was hydrolyzed after the addition of purified SPAcesterase,yield<strong>in</strong>g SP and acetate. Thus, the first two genes and enzymes<strong>in</strong>volved <strong>in</strong> the complete degradation pathway for LAS have beenidentified and characterized.References:[1], Knepper, T. P., D. Barceló, and P. de Voogt (eds.)., 2003. Elsevier, Amsterdam, chapter 1.BIOspektrum | Tagungsband <strong>2012</strong>


143[2], van G<strong>in</strong>kel, C. G., 1996. Biodegradation 7:151-164.[3], Schleheck, D.et al.,2004. Appl Environ Microbiol 70:4053-4063.[4], Schleheck, D. et al., 2010. Appl Environ Microbiol 76:196-202.OTP023Use of transcription factors to visualize small-molecules at thes<strong>in</strong>gle cell level, and application for metabolic eng<strong>in</strong>eer<strong>in</strong>gG. SchendzielorzForschungszentrum Jülich Gmbh, IBG1: Biotechnologie, Jülich, GermanySuccessful mutant development <strong>in</strong> microbial biotechnology relies onrandom mutations and comb<strong>in</strong>atorial approaches. A current limitation isthe subsequent screen<strong>in</strong>g of bacterial populations for cells with <strong>in</strong>creasedproduction properties. We developed sensors to quantify metaboliteswith<strong>in</strong> a s<strong>in</strong>gle cell. Together with FACS this enables the isolation ofs<strong>in</strong>gle producer cells from large mutant libraries. The system is based on atranscriptional regulator and its target gene fused to eyfp. S<strong>in</strong>cetranscriptional regulators exist which naturally sense numerous smallmolecules,our technology enables a various new applications.As one example we use the transcriptional regulator LysG of C.glutamicum sens<strong>in</strong>g basic am<strong>in</strong>o acids. Introduc<strong>in</strong>g the sensor pSenLys <strong>in</strong>a C. glutamicum mutant produc<strong>in</strong>g L-lys<strong>in</strong>e or L-arg<strong>in</strong><strong>in</strong>e resulted <strong>in</strong>strong fluorescent cells, which was not the case with controls. The keyenzyme of L-arg<strong>in</strong><strong>in</strong>e synthesis is the argB encoded acetylglutamatk<strong>in</strong>asewhich is <strong>in</strong>hibited <strong>in</strong> its activity by L-arg<strong>in</strong><strong>in</strong>e. A plasmid-encoded argBmutant library was generated via epPCR and <strong>in</strong>troduced <strong>in</strong>toC.glutamicum carry<strong>in</strong>g pSenLys. Apply<strong>in</strong>g FACS selection, sequenc<strong>in</strong>gand acetylglutamatk<strong>in</strong>ase activity determ<strong>in</strong>ation 16 argB alleles wereisolated carry<strong>in</strong>g 22 different mutations. Whereas wild type argB is<strong>in</strong>active at 0.5 mM L-arg<strong>in</strong><strong>in</strong>e, mutant alleles were selected which reta<strong>in</strong>edfull activity at 4 mM L-arg<strong>in</strong><strong>in</strong>e.As another example we treated the wild type of C.glutamicum carry<strong>in</strong>gpSenLys with N-methyl-N-nitro-N-nitrosoguanid<strong>in</strong>e. Out of 6.5 x 10 6cells 270 cells were selected, of which 225 accumulated 3-38 mM L-lys<strong>in</strong>e. Targeted sequenc<strong>in</strong>g identified 13 new chromosomal mutations <strong>in</strong>the known targets lysC and hom. From 10 mutants with no mutation <strong>in</strong>known targets the entire genome was sequenced us<strong>in</strong>g Illum<strong>in</strong>a HiSeq2000 technology. A murE mutation was identified which when <strong>in</strong>troduced<strong>in</strong>to exist<strong>in</strong>g L-lys<strong>in</strong>e producers improved the L-lys<strong>in</strong>e titers significantlyOTP024Correlations between process parameters and the microcosmof biogas fermentersN. Krakat*, P. SchererHAW, LifeSciences, Hamburg, GermanyThe <strong>in</strong>fluence of the process parameters hydraulic retention time (HRT),organic load<strong>in</strong>g rate (OLR), substrate and temperature upon bacterialdiversity was analyzed <strong>in</strong> automated fermenters. Therefore, a mesophilic(41°C) and thermophilic (55 and 60°C) anaerobic fermentation of beetsilage as model substrate for renewable biomass was monitored by theamplified ‘‘ribosomal DNA’’ restriction analysis (ARDRA).Surpris<strong>in</strong>gly, a predom<strong>in</strong>ant population of hydrogen utiliz<strong>in</strong>gEuryarchaeota (represented by Methanobacteriales, Methanomicrobiales)was observed under all operat<strong>in</strong>g modes. The acetotrophic Methanosaetassp. and Methanosarc<strong>in</strong>a spp. played apparently only a m<strong>in</strong>or role amongthe operational taxonomic units (OTUs) found. Under thermophilicconditions Methanosaeta spp. could even not be detected.This contradicts to common models for anaerobic digestion processes. Animportant f<strong>in</strong>d<strong>in</strong>g was that under thermophilic conditions a change <strong>in</strong>temperature from 60 °C to 55 °C and back to 60 °C aga<strong>in</strong> was an importantparameter to impact reversibly the morphological diversity ofmethanogenic Euryarchaeota. They changed from a mixture ofmethanogenic cocci and rods to an exclusive appearance of rods and vice versa.Under mesophilic conditions the temperature was held constant andvariations of the hydraulic retention time (HRT) <strong>in</strong>fluenced remarkably thediversity of methanogens. Long HRTs (e.g. 37 days) kept the level ofmethanogenic species richness low, while quickly decreased HRTs (e.g. 8days) <strong>in</strong>duced a higher diversity and similar diversity patterns, respectively.This study also revealed that the population dynamics, the species richnessand diversity of hydrolytic and fermentative Bacteria was higher comparedto the diversity of methanogenic Archaea.Under mesophilic andthermophilic fermentation temperatures, most of the detected OTUs couldbe assigned to the Phyla Firmicute, Bacteroidetes andProteobacteria,while Chloroflexi appear to play an important but yetunknown role dur<strong>in</strong>g a mesophilic biogas process with high nutrient levelsof renewable biomass like beets. Astonish<strong>in</strong>gly, only s<strong>in</strong>gle bacterial phylacould be impacted. One explanation of this phenomenon could be thefunctional redundancy of carbohydrate degraders. The presence of the taxaPlanctomycetes, Act<strong>in</strong>obacteria and Alcaligenaceae was related to longHRTs and short OLRs, while the Phylum Acidobacteria was governed byshort HRTs and high OLRs, respectively.OTP025Identification of Klebsiella pneumoniae’s stra<strong>in</strong>s isolated from« ur<strong>in</strong>e » as a human pathological product and evaluation of theirantibiotic resistanceK. Bensalem*, H. ChettibiBadji Mokhtar University, Laboratory of Microbiology. Department ofBiochemistry, ANNABA, AlgeriaOur study was about the biochemical identification of Klebsiellapneumoniae’s stra<strong>in</strong>s which were isolated from “ur<strong>in</strong>e” as a humanpathological product, <strong>in</strong> addition to the evaluation of their sensibility toantibiotics. The results synthesized from this research have shown that:K.pneumoniae has the ability to produce “aceto<strong>in</strong>” from “pyruvic acid”,hence it is characterized by a positive Voges-Proskauer reaction.The results of “the antibiogram” have confirmed the efficiency of“colist<strong>in</strong>” as an antibiotic on our stra<strong>in</strong>s. We have also shown theproduction of BLSE enzymes (Beta Lactamases with Extended Spectrum)by some stra<strong>in</strong>s. In addition to this, we have tested the effect of“<strong>in</strong>oculum” on the resistance to “cefotaxim” and to the association“amoxicill<strong>in</strong> + clavulanic acid” and the results have shown a widen<strong>in</strong>g ofthe circle’s diameter surround<strong>in</strong>g the antibiotic’s disc after dilution, whichexpla<strong>in</strong>s a higher sensibility of stra<strong>in</strong>s to antibiotics. This experience of“<strong>in</strong>oculum’s effect” has shown us that from a lower <strong>in</strong>oculum (afterdilution) results a higher sensibility.OTP026Isomer and enantioselective carbon stable isotope fractionation ofhexachlorocyclohexane dur<strong>in</strong>g aerobic biodegradation bySp<strong>in</strong>gobium sppS. Bashir*, H.-H. Richnow, I. NijenhuisHelmholtz Centre for Environmental Research GmbH - UFZ, Isotopebiogeochemistry, Leipzig, GermanyIn biochemical processes the preferential reactivity of the lighter stableisotope over the heavier stable isotope results <strong>in</strong> enrichment of the heavierisotopes <strong>in</strong> the residual substrate and relative enrichment of the lighterisotope <strong>in</strong> the products. The isomer and enantioselective carbon stableisotope fractionation of organic contam<strong>in</strong>ants such ashexachlorocyclohexane and its chiral isomers (-HCH) may be used toassess their fate <strong>in</strong> the environment. The extent of<strong>in</strong> situtransformationmay therefore be <strong>in</strong>ferred by us<strong>in</strong>g experimentally determ<strong>in</strong>ed compoundspecific isotope fractionation factors dur<strong>in</strong>g biotransformation by def<strong>in</strong>edmicrobial cultures. In this study, carbon isotope fractionation factors weredeterm<strong>in</strong>ed for the biotransformation of and -HCH us<strong>in</strong>g two aerobicbacterial stra<strong>in</strong>s: Sph<strong>in</strong>gobium <strong>in</strong>dicum B90A and Sph<strong>in</strong>gobium japonicumUT26. Batch culture biodegradation experiments were performed and thecarbon isotope fractionation of -HCH degradation was quantified by theRayleigh equation. The bulk enrichment factor for -HCH was highlysimilar (C= -1.8) for both S. japonicum UT26 and S. <strong>in</strong>dicum B90A, butless compared previously reported values for anaerobic HCHdechlor<strong>in</strong>ation (-3.9±0.6) [1]. Additionally, the carbon isotopefractionation for -HCH and its enantiomers was quantified. Interest<strong>in</strong>gly,carbon isotope fractionation of -HCH by S. japonicum was <strong>in</strong> a similarrange to -HCH; for S. <strong>in</strong>dicum fractionation was about 3 fold higher.Similarly, prelim<strong>in</strong>ary <strong>in</strong>vestigation showed that fractionation of -HCHenantiomers was correspond<strong>in</strong>g to the bulk isotope fractionation of -HCH. The differences <strong>in</strong> fractionation may be due to the presence andactivity of the different dehalogenases (L<strong>in</strong>) <strong>in</strong> these organisms. Therefore,although a qualitative assessment of biodegradation of HCH<strong>in</strong> situmay bepossible, a quantitative assessment requires further <strong>in</strong>vestigations.[1]Badeaet al.(2009) Environmental Science & Technology 43(9), 3155-3161.OTP027The ability of Iranian traditional dairy bacterial stra<strong>in</strong>s todetoxification of Aflatox<strong>in</strong> B1P. Jafari* 1,2 , M. Tajabadi Ebrahimi 2,3 , S.D. Hosse<strong>in</strong>i 2,3,41 Islamic Azad University, Arak barnch, Microbiology, Science faculty, Tehran, Iran2 Islamic Azad University (IAU), Arak Branch, Microbiology, Science faculty,Arak, Iran3 Islamic Azad University, Central Tehran Branch, cellular and molecularbiology, Tehran, Islamic Republic of Iran4 Razi Vacc<strong>in</strong>ation and Serum Research, Cellular and Molecular Biology, Arak,Islamic Republic of IranIntroduction: Aflatox<strong>in</strong>s such as Aflatox<strong>in</strong> B1 (AFB1) are highly toxic,mutagenic, teratogenic and carc<strong>in</strong>ogenic compounds produced by somespecies ofAspergillus.They are found <strong>in</strong> many foods and feeds andconsidered as a major public health problem especially <strong>in</strong> develop<strong>in</strong>g countries.This study was conducted <strong>in</strong>vestigate the AFB1 detoxification ability of 60probiotic bacteria isolated from Iranian traditional dairy products.Method: A work<strong>in</strong>g solution of 5 g/ml of AFB1 was prepared <strong>in</strong>phosphate-buffered sal<strong>in</strong>e (PBS, pH 7.3). Bacterial suspension wasprepared by cultur<strong>in</strong>g the stra<strong>in</strong>s <strong>in</strong> MRS broth at 37°C for 20h. TheseBIOspektrum | Tagungsband <strong>2012</strong>


144bacteria were resistant to acid, bile and digestive enzymes and were shownto lower the cholesterol levels <strong>in</strong> mice model. Bacterial cultures werecentrifuged and the pellets were washed (3 times) and were suspended <strong>in</strong><strong>in</strong> AFB1 solution with f<strong>in</strong>al concentration of 1-1.5×10 10 CFU/ml. thebacterial solutions were <strong>in</strong>cubated for 2 h at 37°C. The cell freesupernatants samples were analyzed with a reverse phase highperformanceliquid chromatography (HPLC) as well as the Enzyme L<strong>in</strong>kedImmunosorbent Assay (ELISA).Results: The results showed that the AFB1 b<strong>in</strong>d<strong>in</strong>g capacity of stra<strong>in</strong>s wasstra<strong>in</strong> dependent. The stra<strong>in</strong>s were observed to possess variable AFB2-b<strong>in</strong>d<strong>in</strong>g ability <strong>in</strong> the range from 8 to 63%. Most efficient b<strong>in</strong>d<strong>in</strong>g of AFB1was observed byL.plantarumTD14, andL.caseiTD15. The differences <strong>in</strong>the b<strong>in</strong>d<strong>in</strong>g activities of AFB1 between the stra<strong>in</strong>s showed statisticalsignificance (p>0.05). Our results <strong>in</strong>dicated the protective ability of these<strong>in</strong>digenous probiotic stra<strong>in</strong>s aga<strong>in</strong>st AFB1as well as their beneficial healtheffects. It is well documented that the AFB1 detoxification by thesebacteria <strong>in</strong>volves sequestration by b<strong>in</strong>d<strong>in</strong>g the tox<strong>in</strong> to the bacterial cellwall. These f<strong>in</strong>d<strong>in</strong>gs suggest that certa<strong>in</strong> novel probiotic bacteria isolatedform Iranian traditional dairy products with high aflatox<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g capacitycould be selected for detoxification of foods.OTP028Identification of the protoporphyr<strong>in</strong>ogen IX oxidase <strong>in</strong>Pseudomonas aerug<strong>in</strong>osaD. Zwerschke*, M. Jahn, D. JahnInst. f. Microbiologie, AG Jahn, Braunschweig, GermanyHeme is an important tetrapyrrole because of its function as a cofactor <strong>in</strong>several prote<strong>in</strong>s which are l<strong>in</strong>ked to fundamental biological processes likerespiration, photosynthesis, the metabolism and transport of oxygen (Layeret al, 2010). The biosynthesis of heme is a well studied process,nevertheless there are bacteria which obviously lack one or more of theknown enzymes for this pathway and are still able to synthesize heme. Forat least three steps dur<strong>in</strong>g the heme formation it is known that there existother enzymes responsible for catalysis (Boynton et al, 2011). One of theseenzymes is the protoporphyr<strong>in</strong>ogen IX oxidase (PPO). PPO oxidizesprotoporphyr<strong>in</strong>ogen IX to protoporphyr<strong>in</strong> IX which is the penultimate step<strong>in</strong> the heme biosynthetic pathway (Layer et al, 2010). Until today noknown PPO-gene has been identified for Pseudomonas aerug<strong>in</strong>osa. Ourapproach was to isolate the oxygen-dependent PPO-gene from P.aerug<strong>in</strong>osa by complementation of an Escherichia coli PPO mutant with aP. aerug<strong>in</strong>osa ATCC 17933 gene library. UV/Vis and fluorescence spectrawere recorded via high pressure liquid chromatography to measure thelevel of heme <strong>in</strong> apparently positive clones. Complementary genes fromclones with high heme levels were sequenced. To <strong>in</strong>vestigate so obta<strong>in</strong>edputative PPO we will knock out these genes <strong>in</strong> P. aerug<strong>in</strong>osa andcomplement the phenotype with the E. coli PPO (hemG). Furthermore, wewill overproduce the putative P. aerug<strong>in</strong>osa PPO for their biochemicalcharacterization.Layer G., Reichelt J., Jahn D. and He<strong>in</strong>z D. (2010) Structure and function of enzymes <strong>in</strong> hemebiosynthesis. Prote<strong>in</strong> Sci. 19(6): 1137-1161Boynton T.O., Gerdes S., Craven S.H., Neidle E.L., Phillips J.D. and Dailey H.A. (2011) Discoveryof a Gene Involved <strong>in</strong> a Third Bacterial Protoporphyr<strong>in</strong>ogen Oxidase Activity through ComparativeGenomic Analysis and Functional Complementation. Appl. and Environmental Microbiol. 77(14):4795-4801OTP029Isolation of Streptomyces <strong>in</strong>tegrative chromosomal elements byroll<strong>in</strong>g-circle amplificationD. Heimlich*, N. Osipenkov, W. Wohlleben, G. MuthUniversität Tüb<strong>in</strong>gen, Mikrobiologie/Biotechnologie, Tüb<strong>in</strong>gen, GermanyThe order Act<strong>in</strong>omycetales consists of high G+C Gram-positive bacteriaof which many species form a branch<strong>in</strong>g mycelium by apical tip extension.Act<strong>in</strong>omycetes, <strong>in</strong> particular the genus Streptomyces, are the mostimportant source of biologically active microbial products, <strong>in</strong>clud<strong>in</strong>gantibiotics. As antibiotic producers, the act<strong>in</strong>omycetes represent the naturalreservoir of resistance genes that are transferred to other bacteria byhorizontal gene transfer (HGT).The availability of genomic sequences of many act<strong>in</strong>omycetes revealed thepresence of multiple <strong>in</strong>tegrative chromosomal elements (ICE). ICE´s arecharacterized by their prophage-like mode of ma<strong>in</strong>tenance as part of thechromosome, and their ability to excise, to promote their transfer to a newhost, and to <strong>in</strong>tegrate <strong>in</strong>to the host genome by site specific recomb<strong>in</strong>ation.S<strong>in</strong>ce ICE´s normally dis<strong>in</strong>tegrate only prior to conjugation, which isregulated by unknown factors, such elements are very difficult to isolateby alkal<strong>in</strong>e lysis.Here we show that it is possible to amplify novel ICE´s from differentStreptomyces stra<strong>in</strong>s us<strong>in</strong>g random hexamer primers and the Phi29 DNApolymerase. Sequence analysis of subcloned DNA fragments allows therapid characterization of the newly isolated Streptomyces ICE´s.The presented work was done as part of the “MikrobiologischesGroßpraktikum/Biotechnologie ( 1 ) and a bachelor thesis ( 2 ).OTP030A highly efficient Staphylococcus carnosus mutant selectionsystem based on suicidal bacterioc<strong>in</strong> activationB. Krismer*, M. Nega, G. Thumm, F. Götz, A. PeschelUniversity of Tueb<strong>in</strong>gen, IMIT, Tueb<strong>in</strong>gen, GermanyStra<strong>in</strong>s from various staphylococcal species produce bacterioc<strong>in</strong> peptides,which are thought to play important roles <strong>in</strong> bacterial competition andoffer <strong>in</strong>terest<strong>in</strong>g biotechnological avenues. Many bacterioc<strong>in</strong>s are secretedas <strong>in</strong>active pre-peptides with subsequent activation by specific proteolyticcleavage. By deletion of the protease gene gdmP <strong>in</strong> Staphylococcusgall<strong>in</strong>arum Tü3928, which produces of the highly active lanthion<strong>in</strong>econta<strong>in</strong><strong>in</strong>gbacterioc<strong>in</strong> galliderm<strong>in</strong> (lantibiotic), a stra<strong>in</strong> was createdproduc<strong>in</strong>g <strong>in</strong>active pre-galliderm<strong>in</strong>. On this basis a new suicidal mutantselection system <strong>in</strong> the food-grade bacterium Staphylococcus carnosus wasdeveloped. Whereas pre-galliderm<strong>in</strong> was <strong>in</strong>active aga<strong>in</strong>st S. carnosus, itexerted potent bactericidal activity toward GdmP-secret<strong>in</strong>g S. carnosusstra<strong>in</strong>s. To take advantage of this effect gdmP was cloned <strong>in</strong> plasmidvectors used for random transposon mutagenesis or targeted allelicreplacement of chromosomal genes. Both mutagenesis strategies rely onrare recomb<strong>in</strong>ation events and it has rema<strong>in</strong>ed difficult and laborious toidentify mutants among a vast majority of bacterial clones that still conta<strong>in</strong>the delivery vectors. The gdmP-express<strong>in</strong>g plasmids pGS1 and pGS2enabled very fast, easy, and reliable identification of transposon or genereplacement mutants, respectively. Mutant selection <strong>in</strong> the presence of pregalliderm<strong>in</strong>caused suicidal <strong>in</strong>activation of all clones that had reta<strong>in</strong>ed theplasmids and allowed only growth of plasmid cured mutants. Efficiency ofmutant identification was several magnitudes higher compared to standardscreen<strong>in</strong>g for the absence of plasmid-encoded antibiotic resistance markersand reached 100% specificity. Thus, the new pre-galliderm<strong>in</strong> based mutantselection system represents a substantial improvement of staphylococcalmutagenesis methodology.OTP031Reductive dechlor<strong>in</strong>ation <strong>in</strong> Desulfitobacterium hafniense Y51:Impact of vitam<strong>in</strong> B 12 on pceA gene stability and expressionA. Re<strong>in</strong>hold*, T. Schubert, G. DiekertFriedrich-Schiller-University, Institute for Microbiology, Department ofApplied and Ecological Microbiology, Jena, GermanyDesulfitobacterium hafniense Y51 is a strictly anaerobic, gram-positivebacterium, which is able to grow with aliphatic chlor<strong>in</strong>ated compounds,such as tetrachloroethene (PCE), as term<strong>in</strong>al electron acceptors. PCE isreductively dechlor<strong>in</strong>ated to cis-1,2-dichloroethene. The key enzyme is thePCE reductive dehalogenase, a corr<strong>in</strong>oid cofactor and iron-sulfur clusterconta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>. All enzymes required for de novo corr<strong>in</strong>oid cofactorbiosynthesis are encoded <strong>in</strong> the genome of D. hafniense Y51 (1). The geneencod<strong>in</strong>g the PCE reductive dehalogenase, pceA, is organized <strong>in</strong> thepceABCT gene cluster. The cluster is flanked by two almost identical<strong>in</strong>sertion sequences <strong>in</strong>clud<strong>in</strong>g transposase genes. The excision of the pcegene cluster from the genome of D. hafniense Y51 can occur (2).In this study we <strong>in</strong>vestigated the impact of vitam<strong>in</strong> B 12 added to themedium on the transposition of the pceA gene. In the presence of thegrowth substrate PCE the pceA gene rema<strong>in</strong>s stable <strong>in</strong> D. hafniense Y51genome whether or not vitam<strong>in</strong> B 12 was added to the culture. When cellswere cultivated on fumarate <strong>in</strong>stead of PCE and vitam<strong>in</strong> B 12 was omittedfrom the medium, the number of pceA genes per culture decreased rapidly.Interest<strong>in</strong>gly, this effect is strongly delayed when external vitam<strong>in</strong> B 12 wasprovided (long-term effect).To acquire the data presented here, cells repeatedly grown on the differentmedia compositions were analysed for the number of pceA genes us<strong>in</strong>gquantitative PCR (qPCR), for the pceA transcript level us<strong>in</strong>g reversetranscription quantitative PCR (RT-qPCR), for the PceA enzyme activityand the amount of PceA prote<strong>in</strong> us<strong>in</strong>g specific antibodies. In parallel, theexpression of vitam<strong>in</strong> B 12 biosynthesis genes was exam<strong>in</strong>ed. Based on theresults of this survey a positive effect of vitam<strong>in</strong> B 12 on the pceA genestability and expression <strong>in</strong> D. hafniense Y51 is discussed.(1) Nonaka H. et al. (2006) J Bacteriol 188, 2262-2274.(2) Futagami T. et al. (2006) Appl Microbiol Biotechnol 70, 720-728.OTP032TrxR system - A new target <strong>in</strong> the fight aga<strong>in</strong>st MycobacteriumtuberculosisN. Rücker* 1 , O. Koch 2 , K. Heller 3 , F. Stuhlmann 3 , S. Schmitt 3 ,P.C. Khandavalli 3 , D. Sch<strong>in</strong>zer 3 , L. Flohé 3 , P.M. Selzer 2 , F.-C. Bange 1 , T. Jäger 31 Mediz<strong>in</strong>sche Hochschule Hannover, Institut für mediz<strong>in</strong>ische Mikrobiologie,Hannover, Germany2 Intervet/SP , Animal Health, Schwabenheim, Germany, Germany3 MOLISA GmbH, Magdeburg, Germany, GermanyMycobacterium tuberculosis (Mtb)depends on an efficient anti-oxidativesystem dur<strong>in</strong>g <strong>in</strong>fection. To ma<strong>in</strong>ta<strong>in</strong> the survival, Mtb relies on theThioredox<strong>in</strong> Reductase (TrxR) system, because it lacks a glutathioneBIOspektrum | Tagungsband <strong>2012</strong>


145system. Even though, eukaryotes obta<strong>in</strong> TrxR system as well, the similarityis very low, therefore TrxR systems can be targeted to treat tuberculosis.After an <strong>in</strong> silico high throughput screen<strong>in</strong>g for Trx-<strong>in</strong>hibitors, fourdifferent low mass scaffolds were identified. In vitro test<strong>in</strong>g of compoundsrely<strong>in</strong>g on those scaffolds was performed at recomb<strong>in</strong>ant expressed MtbTrxR. The auspicious substances were tested <strong>in</strong> liquid Mtb cultures withMGIT 960 system (Becton Dick<strong>in</strong>son). We identified several substancesthat showed bacteriostatic effects on Mtb at M concentrations.We could show that by attack<strong>in</strong>g the TrxR-system <strong>in</strong> vitro mycobacterialgrowth can be arrested.OTP033Nitrous oxide reductase with a unique [4Cu:2S] centre fromdenitrify<strong>in</strong>g Pseudomonas stutzeriA. Wüst* 1 , L. Schneider 1 , A. Pomowski 1 , W.G. Zumft 2 , P.M.H. Kroneck 3 ,O. E<strong>in</strong>sle 11 Albert-Ludwigs-Universität Freiburg, Institut für Organische Chemie undBiochemie, Freiburg, Germany2 Karlsruher Institut für Technologie, Molekulare Mikrobiologie, Karlsruhe,Germany3 Universität Konstanz , Dept. of Biology, Konstanz, GermanyThe genera Pseudomonas and Paracoccus <strong>in</strong>clude the most commonlyisolated denitrify<strong>in</strong>g bacteria from soils and aquatic sediments and mayrepresent the most active denitrifiers <strong>in</strong> natural environments 3 .Denitrification is the dissimilatory reduction from the ionic oxides (nitrateand nitrite) to the gaseous oxides nitric oxide and nitrous oxide. Thesubsequent two-electron reduction of nitrous oxide to d<strong>in</strong>itrogen is thef<strong>in</strong>al step <strong>in</strong> the denitrification process 4 . Nitrous oxide is <strong>in</strong>volved <strong>in</strong>atmospheric reactions and its accumulation <strong>in</strong> the stratosphere leads todepletion of ozone.Nitrous oxide reductase, NosZ, is a dimeric multi-copper prote<strong>in</strong>, with 638residues per subunit (74 kDa) and the reported copper content depends onthe purification strategy. Because of the high sensitivity of the enzymetoward dioxygen, the clusters of the soluble periplasmic enzyme degradeand it therefore loses its activity under aerobic conditions. In literature,several different forms were described, that can be dist<strong>in</strong>guished by theirtypical absorption and EPR spectra. The active purple form of the enzymecarries the well-characterized mixed-valent b<strong>in</strong>uclear Cu A centre and thetetranuclear Cu Z site, that was first described as a unique [4Cu:2S] centre 1for Pseudomonas stutzeri, <strong>in</strong>stead of the [4Cu:S] cluster 4 found previously.This newly described cluster was observed after the isolation andcrystallization under the exclusion of dioxygen 2 . In nitrous oxide reductasethe substrate N 2O is bound between the two copper centres, it is activatedby side-on b<strong>in</strong>d<strong>in</strong>g at Cu Z, so that then electrons can be transferred directlyfrom Cu A to N 2O. Several accessory prote<strong>in</strong>s were identified for thebiogenesis of active N 2O reductase, with predicted functions as Cuchaperones or ABC transporters. To date the exact steps of clusterbiogenesis and the mechanistic details of N 2O reduction are still unknown.OTP034Key enzymes of fuel oxygenate ether degradationJ. Schuster*, F. Schäfer, N. Yaneva, T. Rohwerder, R.H. Müller, H. HarmsHelmholtz Centre for Environmental Research GmbH - UFZ , Departmentof Environmental Microbiology , Leipzig, GermanyThe extensive use of methyl-tert-butyl and tert-amyl methyl ether (MTBEand TAME, respectively) as gasol<strong>in</strong>e additives has resulted <strong>in</strong> persistentgroundwater contam<strong>in</strong>ation due to their recalcitrance aga<strong>in</strong>st microbialattack. However, we were able to isolate the bacterial stra<strong>in</strong> Aqu<strong>in</strong>colatertiaricarbonis L108 from an MTBE-contam<strong>in</strong>ated aquifer (Leuna,Germany) which can grow well on all k<strong>in</strong>ds of fuel oxygenate ethers ass<strong>in</strong>gle source of carbon and energy [1]. We have now elucidated theunderly<strong>in</strong>g degradation pathways by generat<strong>in</strong>g gene knockoutsspecifically affect<strong>in</strong>g expression of key enzymatic steps. In addition,central metabolites of ether catabolism were identified. Initial degradationproceeds via specific hydroxylation by the EthABCD monooxygenasesystem result<strong>in</strong>g <strong>in</strong> the formation of tert-butyl or tert-amyl alcohol (TBAor TAA). Degradation of the latter is ma<strong>in</strong>ly catalyzed by themonooxygenase MdpJ. TBA is hydroxylated to 2-methylpropan-1,2-diol,while TAA is desaturated to the hemiterpene 2-methyl-3-buten-2-ol. In aside reaction, TBA and TAA are dehydrated to the correspond<strong>in</strong>g alkenes,i. e. isobutene and isoamylene isomers, by a not yet characterizedenzymatic step [2]. The 2-methylpropan-1,2-diol is oxidized further to 2-hydroxyisobutyric acid, which is activated to the correspond<strong>in</strong>g CoA esterand isomerized to the common metabolite 3-hydroxybutyryl-CoA by aspecific cobalam<strong>in</strong>-dependent acyl-CoA mutase [1]. 2-methyl-3-buten-2-ol, on the other hand, is degraded via a hemiterpenic primary alcohol andthe correspond<strong>in</strong>g aldehyde and carboxylic acid, l<strong>in</strong>k<strong>in</strong>g TAA degradationwith the biot<strong>in</strong>-dependent catabolism of the am<strong>in</strong>o acid leuc<strong>in</strong>e [3].T. Rohwerder, U. Breuer, D. Benndorf, U. Lechner and R.H. Müller, Appl. Environ. Microbiol.72 (2006), p.4128.F. Schäfer, L. Muzica, J. Schuster, N. Treuter, M. Rosell, H. Harms, R.H. Müller and T. Rohwerder, Appl.Environ. Microbiol.77 (2011), p. 5981.We k<strong>in</strong>dly acknowledge DBU (Deutsche Bundesstiftung Umwelt) for f<strong>in</strong>ancial support of F. Schäfer (AZ:20008/994) and C. Schumann (UFZ) and M. Neytschev (UFZ) for technical assistance and B. Wuerz (UFZ)for excellent analytical advice.OTP035Mar<strong>in</strong>obacter adhaerens hp15 is required for aggregation ofthe diatom, Thalassiosira weissflogiiM. Ullrich*, A. Gaerdes, E. Sonnensche<strong>in</strong>, S. Seebah, I. Torres-MonroyJacobs University Bremen, Molecular Life Science Research Center,Bremen, GermanyAggregation of diatoms is an important process <strong>in</strong> mar<strong>in</strong>e ecosystemslead<strong>in</strong>g to the settl<strong>in</strong>g of particulate organic carbon predom<strong>in</strong>antly <strong>in</strong> theform of mar<strong>in</strong>e snow. Exudation products of phytoplankton formtransparent exopolymer particles (TEP), which act as adhesives for particleaggregation. Heterotrophic bacteria <strong>in</strong>teract<strong>in</strong>g with phytoplankton may<strong>in</strong>fluence TEP formation and phytoplankton aggregation. This bacterialimpact has not been explored <strong>in</strong> detail. We hypothesized that bacteriaattach<strong>in</strong>g to Thalassiosira weissflogii might <strong>in</strong>teract <strong>in</strong> a yet-to-bedeterm<strong>in</strong>ed manner, which could impact TEP formation and aggregateabundance. The role of <strong>in</strong>dividual T. weissflogii-attach<strong>in</strong>g and free-liv<strong>in</strong>gnew bacterial isolates for TEP production and diatom aggregation was<strong>in</strong>vestigated <strong>in</strong> vitro. T. weissflogii did not aggregate <strong>in</strong> axenic culture, andstrik<strong>in</strong>g differences <strong>in</strong> aggregation dynamics and TEP abundance wereobserved when diatom cultures were <strong>in</strong>oculated with either diatomattach<strong>in</strong>g,i.e. Mar<strong>in</strong>obacter adhaerens HP15, or free-liv<strong>in</strong>g bacteria. Thedata <strong>in</strong>dicated that free-liv<strong>in</strong>g bacteria may not <strong>in</strong>fluence aggregationwhereas bacteria such as M. adhaerens HP15 may <strong>in</strong>crease aggregateformation. Interest<strong>in</strong>gly, photosynthetically <strong>in</strong>activated T. weissflogii cellsdid not aggregate regardless of the presence of bacteria. Comparison ofaggregate formation, TEP production, aggregate s<strong>in</strong>k<strong>in</strong>g velocity, and solidhydrated density revealed remarkable differences. Both, photosyntheticallyactive T. weissflogii and specific diatom-attach<strong>in</strong>g bacteria were requiredfor aggregation. It was concluded that <strong>in</strong>teractions between heterotrophicbacteria and diatoms <strong>in</strong>creased aggregate formation and particle s<strong>in</strong>k<strong>in</strong>gand thus may enhance the efficiency of the biological pump. M. adhaerensHP15 has become a genetically accessible model organism. Successfulsite-directed and transposon mutageneses, expression or reporter genes,and full access to the genome sequence of HP15 made this organism anideal model stra<strong>in</strong> to conduct the molecular dissection of the diatombacteria<strong>in</strong>teraction at the cell-to-cell level.OTP036Will be presented as OTV032!OTP037Carbon stable-isotope fractionation of brom<strong>in</strong>ated ethenes bySulfurospirillum multivoransA. Woods*, I. NijenhuisHelmholtz-Centre for Environmental Research-UFZ, IsotopeBiogeochemistry, Leipzig, GermanyMicrobial dehalogenation has been <strong>in</strong>vestigated as a viable remediationstrategy for contam<strong>in</strong>ated field sites, as several bacterial species have beenl<strong>in</strong>ked with biotransformation processes <strong>in</strong>clud<strong>in</strong>g reductivedehalogenation. Compound specific isotope analysis (CSIA) may be aneffective tool for monitor<strong>in</strong>g reductive dehalogenation activity <strong>in</strong> theenvironment if dist<strong>in</strong>ct fractionation patterns emerge dur<strong>in</strong>gbiodegradation studies <strong>in</strong> the laboratory. While the biodegradationpotential of chlor<strong>in</strong>ated ethenes has been extensively characterized, verylittle is known as regards biotransformation of brom<strong>in</strong>ated ethenes.However, certa<strong>in</strong> bacterial stra<strong>in</strong>s, <strong>in</strong>clud<strong>in</strong>g Sulfurospirillum multivoransand Desulfitobacterium sp. stra<strong>in</strong> PCE-S, which are capable of reductivedechlor<strong>in</strong>ation of tetrachloroethene (PCE) and trichloroethene (TCE) to1,2-dichloroethene (1,2-DCE), have also been shown to effectivelydebrom<strong>in</strong>ate tribromoethene (TBE) and 1,2-dibromoethene (1,2-DBE)under similar conditions [1].Carbon stable-isotope fractionation had previously been determ<strong>in</strong>ed dur<strong>in</strong>greductive dechlor<strong>in</strong>ation of PCE and TCE by S. multivorans andDesulfitobacterium sp. stra<strong>in</strong> PCE-S [2], but had not been tested for thecorrespond<strong>in</strong>g brom<strong>in</strong>ated compounds. This study aims to <strong>in</strong>vestigate thecarbon-isotope fractionation of TBE and 1,2-DBE dur<strong>in</strong>g reductivedebrom<strong>in</strong>ation by crude extracts of S. multivorans, and to evaluate theseresults aga<strong>in</strong>st those for their chlor<strong>in</strong>ated analogs. Prelim<strong>in</strong>ary results showbrom<strong>in</strong>ated ethene fractionation patterns as similar to those for chlor<strong>in</strong>atedethenes by each stra<strong>in</strong>, but to a lesser extent. In the case of TBE,fractionation was nearly negligible, contrast<strong>in</strong>g with significantfractionation observed for TCE. However, fractionation observed dur<strong>in</strong>greductive debrom<strong>in</strong>ation of 1,2-DBE, while less than that observed for 1,2-DCE, is significant, and suggests the potential use of CSIA for <strong>in</strong> situassessments of reductive debrom<strong>in</strong>ation. To further explore this potential,more studies are required to <strong>in</strong>vestigate fractionation occurr<strong>in</strong>g with otherstra<strong>in</strong>s and likewise, with chlor<strong>in</strong>ated ethenes.BIOspektrum | Tagungsband <strong>2012</strong>


1461. Ye, L.D., Schilhabel, A., Bartram, S., Boland,W., and G. Diekert. 2010. Reductive dehalogenation ofbrom<strong>in</strong>ated ethenes by Sulfurospirillum multivorans and Desulfitobacterium hafniense PCE-S. Environ.Microbiol. 12, 501-5092. Nijenhuis, I., Andert, J., Beck, K., Kästner, M., Diekert, G., and H. H. Richnow. 2005.Stable isotope fractionation of tetrachloroethene dur<strong>in</strong>g reductive dechlor<strong>in</strong>ation by Sulfurospirillummultivorans and Desulfitobacterium sp. stra<strong>in</strong> PCE-S and abiotic reactions with cyanocobalam<strong>in</strong>. Appl.Environ. Microb. 71 (7), 3413-3419OTP038Screen<strong>in</strong>g halophilic and halotolerant bacteria from sal<strong>in</strong>e soil,mud, br<strong>in</strong>e and salt sediments of Urmia lake <strong>in</strong> IranF. Jookar Kashi*, M.A. Amoozegar, P. OwilaShahed University, Biology, Tehran, Islamic Republic of IranHypersal<strong>in</strong>e lakes, with sal<strong>in</strong>ity ranges at or near saturation are extremeenvironments; yet, they often ma<strong>in</strong>ta<strong>in</strong> remarkably high microbial celldensities and are biologically very productive ecosystems. To adapt tosal<strong>in</strong>e conditions, bacteria have developed various strategies to ma<strong>in</strong>ta<strong>in</strong>cell structure and function. Studies of such bacteria are of greatimportance, as they may produce compounds of <strong>in</strong>dustrial <strong>in</strong>terest. Weemployed culture-dependent techniques to study microbial diversity <strong>in</strong>Urmia Lake , a unique hypersal<strong>in</strong>e lake (24.6% sal<strong>in</strong>ity) <strong>in</strong> northwest Iran.The samples were collected <strong>in</strong> November 2010 <strong>in</strong>to sterile bottles andstored <strong>in</strong> ice boxes <strong>in</strong> the laboratory ,pH, moisture content, and Na+ , K+ ,Ca2+ , Mg2+ , and Cl content of the salt and sediment samples weremeasured accord<strong>in</strong>g to standard methods. Screen<strong>in</strong>g bacteria from sal<strong>in</strong>esoil, mud, br<strong>in</strong>e and salt sediments of Urmia lake led to the isolation of280 moderately halophilic and 40 extremely halophilic bacteria amongwhich there were 191 gram-positive rods, 99 gram- negative rods and 30gram-positive cocci. PCR Amplification of 16S rDNA of isolates wascarried out by us<strong>in</strong>g universal primers and products were sequencedcommercially.These gene sequences were compared with other genesequences <strong>in</strong> the GenBank databases to f<strong>in</strong>d the closely related sequences.Most of the isolates belonged to different species of genus Bacillus.OTP039Generat<strong>in</strong>g mutated variants of the unique 5-chloromuconolactone dehalogenase from Rhodococcus opacus1CP and their comparison with the wildtype enzyme to elucidatecatalytic relevant residuesJ.A.D. Grön<strong>in</strong>g* 1 , C. Roth 2 , S.R. Kaschabek 1 , N. Sträter 2 , M. Schlömann 11 TU Bergakademie Freiberg, Environmental Microbiology, Freiberg, Germany2 University of Leipzig, Center for Biotechnology and Biomedic<strong>in</strong>e, Institute forStructural Analytics of Biopolymers, Leipzig, Germany5-Chloromuconolactone dehalogenase ClcF plays an unique role <strong>in</strong> 3-chlorocatechol degradation by R. opacus 1CP. The variant of a so calledmodified ortho-cleavage pathway <strong>in</strong> that act<strong>in</strong>obacterium differs from theone typically found <strong>in</strong> proteobacteria by the <strong>in</strong>ability of chloromuconatecycloisomerase ClcB2 to convert 2-chloro-cis,cis-muconate <strong>in</strong>to transdienelactone.Instead, ClcB2 behaves like a muconate cycloisomerasecatalyz<strong>in</strong>g cyclization of 2-chloro-cis,cis-muconate to 5-chloromuconolactone. Further dechlor<strong>in</strong>ation to cis-dienelactone isperformed by ClcF an enzyme show<strong>in</strong>g high similarity to(methyl)muconolactone isomerases. Although these enzymes are typically<strong>in</strong>volved <strong>in</strong> (methyl)catechol degradation their biochemical ability tocatalyze dechlor<strong>in</strong>ation of chloromuconolactones has been recently reported.As a first step to elucidate the mechanism of dechlor<strong>in</strong>ation as well as toidentify residues, relevant for activity, mutational analysis of recomb<strong>in</strong>antClcF was made. Properties of variants were compared to wildtype ClcF aswell as to muconolactone isomerase MLI and methylmuconolactoneisomerase MMLI from (methyl)catechol-degrad<strong>in</strong>g Cupriavidus necatorJMP134 <strong>in</strong> respect of changes <strong>in</strong> product formation (cis-/transdienelactone),k<strong>in</strong>etic parameters, and the ability to convertmuconolactone. Us<strong>in</strong>g an E. coli / pET expression system and a three-steppurification procedure turned out to be a well suited strategy to obta<strong>in</strong>recomb<strong>in</strong>ant prote<strong>in</strong>s <strong>in</strong> high purity. A considerable extent ofspecialization of ClcF for its new physiological function <strong>in</strong> stra<strong>in</strong> 1CP is<strong>in</strong>dicated by an extremely low activity of that enzyme to convertmuconolactone <strong>in</strong>to 3-oxoadipate enollactone which represents the orig<strong>in</strong>alfunction of (methyl)muconolactone isomerases. A similar picture wasobta<strong>in</strong>ed by comparison of specificity constants towards 5-chloromuconolactone of ClcF (1.4 M -1 s -1 ), MLI (0.6 M -1 s -1 ), andMMLI (0.06 M -1 s -1 ).OTP040Identification of am<strong>in</strong>o acids <strong>in</strong>volved <strong>in</strong> substrate b<strong>in</strong>d<strong>in</strong>g ofPHB depolymerase PhaZ7 of Paucimonas lemoigneiS. Hermawan* 1 , T. Papageorgiou 2 , D. Jendrossek 11 Institut für Mikrobiologie, Stuttgart, Germany2 Turku Centre for Biotechnology, Turku, F<strong>in</strong>landThe extracellular PHB depolymerase PhaZ7 of P. lemoignei is uniqueamong extracellular PHB depolymerases due to its specificity foramorphous native PHB granules (nPHB). The structure of PhaZ7 wassolved first at 1.9 Å [1] and recently at 1.4 Å [2]. PhaZ7 is a s<strong>in</strong>gle-doma<strong>in</strong>globular prote<strong>in</strong> with an / hydrolase fold and a catalytic triad consist<strong>in</strong>gof S136, E242, and H306. Analysis of PhaZ7 structure showed a highsimilarity to lipase LipA of Bacillus subtilis except for the presence of anadditional doma<strong>in</strong> <strong>in</strong> PhaZ7 that is absent <strong>in</strong> LipA. This lid-like doma<strong>in</strong>conta<strong>in</strong>ed many hydrophobic am<strong>in</strong>o acid residues suggest<strong>in</strong>g their possible<strong>in</strong>volvement <strong>in</strong> nPHB b<strong>in</strong>d<strong>in</strong>g. S<strong>in</strong>ce the PhaZ7 structure has no accessiblesubstrate entry to the catalytic site we suggest that conformational changesmust take place upon substrate b<strong>in</strong>d<strong>in</strong>g. The effects of mutations ofselected hydrophobic am<strong>in</strong>o acids of the PhaZ7 lid-like doma<strong>in</strong> on activityand nPHB b<strong>in</strong>d<strong>in</strong>g ability were <strong>in</strong>vestigated. Our results showed thatmutations of Y105, Y176, Y189, Y190 and W207 to alan<strong>in</strong>e or glutamateresulted <strong>in</strong> reduced nPHB depolymerase activity. Interest<strong>in</strong>gly, a lag-phaseof several m<strong>in</strong>utes <strong>in</strong> the depolymerase reaction was observed beforemaximal activity was determ<strong>in</strong>ed. B<strong>in</strong>d<strong>in</strong>g assays with nPHB revealed areduced b<strong>in</strong>d<strong>in</strong>g ability of these PhaZ7 mute<strong>in</strong>s compared with wild typePhaZ7. The structure of Y105D and Y190D mute<strong>in</strong>s were determ<strong>in</strong>ed andrevealed changes <strong>in</strong> the 280-290 region and <strong>in</strong> the 248-251 region.Recently, the structure of <strong>in</strong>active PhaZ7 S136A mute<strong>in</strong> bound to 3-hydroxybutyrate (3-HB) trimer has also been determ<strong>in</strong>ed. It showed that 3-HB trimer is bound to a groove surrounded by Y189/Y190, Y105 andY176. This result is consistent with our mutagenesis results. Additionally,similar to the structure of the Y105D and Y190D mute<strong>in</strong>s, the 280-295region and the 248-253 region of S136A mute<strong>in</strong> bound to 3-HB trimerwere miss<strong>in</strong>g <strong>in</strong>dicat<strong>in</strong>g some flexibility of these regions. Hence, ourhypothesis that hydrophobic am<strong>in</strong>o acid residues of the PhaZ7 lid-likedoma<strong>in</strong> are <strong>in</strong>volved <strong>in</strong> substrate b<strong>in</strong>d<strong>in</strong>g and that conformational changesupon substrate b<strong>in</strong>d<strong>in</strong>g occur was confirmed. Our results afford new<strong>in</strong>sights <strong>in</strong>to the mechanism of biopolymer b<strong>in</strong>d<strong>in</strong>g to PHB depolymerasesand enzymatic PHB hydrolyis.1. A. C. Papageorgiou, S. Hermawan, C. B. S<strong>in</strong>gh, and D. Jendrossek. 2008. J. Mol. Biol.382:1184-94.2. S. Wakadkar, S. Hermawan, D. Jendrossek, and A. C. Papageorgiou. 2010. Acta Crystallogr. Sect .FStruct. Biol. Cryst. Commun.66:648-54.OTP041Genome-guided analysis of physiological and morphologicaltraits of the metabolically versatile fermentative acetateoxidizer Thermacetogenium phaeumD. Oehler* 1 , A. Poehlen 2 , R. Daniel 2 , G. Gottschalk 2 , B. Sch<strong>in</strong>k 11 Universität Konstanz, Biology, Konstanz, Germany2 Universität Gött<strong>in</strong>gen, Biology, Gött<strong>in</strong>gen, GermanyFermentative conversion of acetate to CO2 and hydrogen becomespossible if the hydrogen partial pressure is kept low by a methanogenicpartner, but the energy ga<strong>in</strong>ed from this process is very low. Thisrelationship is called syntrophy.Thermacetogenium phaeum, isolated froma thermophillic anerobic methanogenic reactor, is able to grow on varioussubstrates to form acetate as sole product, and <strong>in</strong> coculture with amethanogenic bacterium,Thermacetogenium phaeumis able to grow onacetate. It was shown previously that the Wood-Ljungdahl pathway is used<strong>in</strong> both modes of liv<strong>in</strong>g, but the mechanism of energy conservation isunknown.To extend our knowledge on the biochemistry and physiology of this<strong>in</strong>terest<strong>in</strong>g organism, we completely sequenced the genomeofThermacetogenium phaeum.The stra<strong>in</strong> has one circular chromosome ofthe size of 2.93 Mb; the G+C content of the DNA is 53.88mol%. Themanual annotation of the 3215 CDS encoded by the genome gave a deeper<strong>in</strong>sight <strong>in</strong>to the physiology of the organism.All genes necessary for the Wood-Ljungdahl pathway were found but <strong>in</strong>comparison to the H + -dependent acetogen Moorella thermoacetica and theNa + -dependent acetogen Acetobacterium woodii no <strong>in</strong>dications ofcytochromes, sodium dependence, or of RNF-complexes were found aspotential energy conserv<strong>in</strong>g mechanisms. It was reported thatThermacetogenium phaeum is a sulfate reduc<strong>in</strong>g bacteria but neither thegenome sequence nor physiological experiments could confirm this result.As a sign of heavy phage attack <strong>in</strong> the past a lot of CRISPR sequences arepresent <strong>in</strong> the genome, and also a complete prophage was found.OTP042Construction of Rubber Oxygenase A variants (RoxA), adiheme-dioxygenase from Xanthomonas sp. 35YJ. Birke*, N. Hambsch, D. JendrossekInstitut für Mikrobiologie, AG Jendrossek, Stuttgart, GermanyThe extracellular diheme-dioxygenase RoxA (Rubber oxygenase A) fromXanthomonas sp. 35Y is able to cleave natural rubber, the primary productis ODTD (12-oxo-4,8-dimethyltrideca-4,8-diene-1-al) [1]. The cleavagemechanism of this reaction is unknown. Heterologous expression of RoxA<strong>in</strong> Escherichia coli, Bacillus subtilis or Pseudomonas putida was notsuccessful, therefore an overexpression of RoxA from a broad-host rangerhamnose <strong>in</strong>ducible plasmid was established <strong>in</strong> its natural host stra<strong>in</strong>Xanthomonas sp. 35Y [2]. However, it was not possible to obta<strong>in</strong>recomb<strong>in</strong>ant RoxA with either a strep-tag or his-tag at the C-term<strong>in</strong>us. TheBIOspektrum | Tagungsband <strong>2012</strong>


147reason for this was revealed <strong>in</strong> DNA hybridization experiments thatshowed an <strong>in</strong>tegration of the expression vector <strong>in</strong>to the chromosomal roxAcopy. This event restricted the tags from the rhamnose <strong>in</strong>ducible roxAcopy. These results led to a construction of a Xanthomonas sp. 35Y roxAdeletionmutant and a vector that allows site specific but roxA <strong>in</strong>dependent<strong>in</strong>tegration of a roxA copy <strong>in</strong>to the Xanthomonas sp. 35Y chromosome.Now it is possible to construct various RoxA mute<strong>in</strong>s to <strong>in</strong>vestigate thereaction mechanism of RoxA. Relevant residues for potentially <strong>in</strong>terest<strong>in</strong>gmutation sites can be selected due to the similarity between RoxA andseveral well characterizied bacterial cytochrome-c peroxidases (CCPs), forexample from Pseudomonas aerug<strong>in</strong>osa and Nitrosomonas europaea.Analogies were found <strong>in</strong> the distance and arrangement of the two hemecenters as well as <strong>in</strong> some conserved residues. Despite the similarity ofRoxA to CCPs RoxA has no peroxidase activity [3]. To simplify thepurification of RoxA mute<strong>in</strong>s, a strep-tag was added either to the C- or N-term<strong>in</strong>us. It turned out that only the N-term<strong>in</strong>al RoxA-strep-tag variant isstable. Unfortunately, a purification with the tag was not successful.Apparently, the tag is not completely accessible. Further experiments willaim at mute<strong>in</strong> construction and characterisation of these mute<strong>in</strong>s to get abetter understand<strong>in</strong>g of the reaction mechanism of RoxA.[1] R. Braaz, W. Armbruster, D. Jendrossek. Appl. Environ. Microbiol. 71 (2005), 2473-78.[2] N. Hambsch,G. Schmitt, D. Jendrossek. J. Appl. Microbiol. 109 (2010), 1067-75.[3] G. Schmitt et al. Microbiology 156 (2010), 2537-48.OTP043Stable isotope fractionation of monochlorobenzene dur<strong>in</strong>gaerobic degradation by Pseudomonas fluorescensD. Wolfram*, H. Richnow, I. NijenhuisHelmholtz Centre for Environmental Research - UFZ, IsotopeBiogeochemistry, Leipzig, GermanyMonochlorobenzene (MCB) is a frequently detected groundwatercontam<strong>in</strong>ant due to its widespread use as a solvent and pesticide. Becauseof its toxicity and persistence <strong>in</strong> aquifers MCB represents anenvironmental issue. Therefore, it is important to <strong>in</strong>vestigate its fate <strong>in</strong> theenvironment, <strong>in</strong>clud<strong>in</strong>g biotransformation processes. It has been shownthat MCB can be transformed by bacteria under aerobic and anaerobicconditions. Under aerobic conditions MCB can be used as sole carbon andenergy source for bacterial growth. The aerobic MCB degradation is<strong>in</strong>itiated by a dioxygenase and leads to the formation of chlorocatechol<strong>in</strong>termediates which then undergo either an ortho- or meta-cleavage. Forthe characterisation and assessment of <strong>in</strong> situ biotransformation processesstable isotope fractionation <strong>in</strong>vestigations are a valuable tool. The extent ofisotope fractionation depends on the reaction mechanism of <strong>in</strong>itial bondcleavage. Thus, the <strong>in</strong>vestigation of stable isotope fractionation might beused to characterise the biochemical reaction and <strong>in</strong> situ biodegradation ofan organic contam<strong>in</strong>ant. In the present laboratory study, carbon stableisotope fractionation dur<strong>in</strong>g aerobic MCB degradation by Pseudomonasfluorescens DSM 16274 was <strong>in</strong>vestigated. In contrast to different aerobicMCB degrad<strong>in</strong>g stra<strong>in</strong>s tested <strong>in</strong> a fractionation study of Kaschl et al. [1]Pseudomonas fluorescens DSM 16274 uses the meta-cleavage pathway tobreak down 3-chlorocatechol. The obta<strong>in</strong>ed enrichment factor for thereaction was, however, <strong>in</strong> the same range as the ones us<strong>in</strong>g the orthopathwaysupport<strong>in</strong>g that the aerobic pathway <strong>in</strong>itiated by a dioxygenasedoes not result <strong>in</strong> a significant carbon isotope fractionation. These resultssuggest that <strong>in</strong> oxic environments microbial MCB degradation can hardlybe dist<strong>in</strong>guished from abiotic attenuation processes. However, adifferentiation between aerobic and anaerobic biotransformation processesis possible due to the significant carbon isotope fractionation related toMCB degradation under anaerobic conditions.[1] Kaschl et al., Isotopic fractionation <strong>in</strong>dicates anaerobic monochlorobenzene biodegradation.Environmental Toxicology and Chemistry, 2005, 24 (6), 1315-1324OTP044Interaction of Listeria monocytogenes with free-liv<strong>in</strong>g amoebaeA. Müller* 1 , M. Wagner 1 , J. Walochnik 2 , S. Schmitz-Esser 11 Veter<strong>in</strong>ary University Vienna, Institute for Milkhygiene, Vienna, Austria2 Medical University Vienna, Insitute of Specific Prophylaxis and TropicalMedic<strong>in</strong>e, Vienna, AustriaListeria monocytogenes is among the most important food-bornepathogens. Despite the fact that the virulence mechanisms ofL.monocytogenesare very well characterized, and the demonstration of theubiquitous distribution of L. monocytogenes <strong>in</strong> the environment, ourknowledge about putative environmental reservoir(s) of L. monocytogenesis still limited.In this study we <strong>in</strong>vestigated the <strong>in</strong>teraction of L. monocytogenes with freeliv<strong>in</strong>g amoebae of the genus Acanthamoeba. In the environment as well as<strong>in</strong> food-production environments (e.g. dr<strong>in</strong>k<strong>in</strong>g water systems), L.monocytogenesis faced with predation by ubiquitous protozoa. Particularlyacanthamoebae have been shown to be important as hosts and shelters forpathogenic bacteria <strong>in</strong> the environment. We therefore speculated thatamoebae might also represent an environmental reservoir for Listeriamonocytogenes.To test the ability of L. monocytogenes to survive <strong>in</strong> amoebae, wedeveloped an <strong>in</strong>fection assay. Us<strong>in</strong>g this assay, we could show that L.monocytogenes can survive <strong>in</strong> acanthamoebae. Us<strong>in</strong>g confocal laserscann<strong>in</strong>g microscopy, we could also show the presence of L.monocytogenes <strong>in</strong> amoeba trophozoites and cysts. This is particularly<strong>in</strong>terest<strong>in</strong>g as amoebal cysts are highly resistant to various environmentalstresses such as dis<strong>in</strong>fectants, desiccation, or nutrient deprivation. Thepresence of L. monocytogenes <strong>in</strong> amoebal cysts might thus allow thesurvival of adverse environmental conditions and represent one putativereservoir of Listeria <strong>in</strong> the environment as well as food-productionenvironments.OTP045The TrpD2 prote<strong>in</strong> family, a novel class of DNA repair enzymes?D. Schneider* 1 , C. Stutz 2 , O. Mayans 2,3 , B. Patrick 11 University of Regensburg, Biophysics and physical Biochemistry, Regensburg,Germany2 Biozentrum Basel, Division of structural Biology, Basel, United K<strong>in</strong>gdom3 University of Liverpool, Institute of <strong>in</strong>tegrative Biology, Liverpool, UnitedK<strong>in</strong>gdomThe TrpD2 prote<strong>in</strong>s are uncharacterized homologues of the anthranilatephosphoribosyltransferase (TrpD), a homodimeric enzyme <strong>in</strong>volved <strong>in</strong>tryptophan biosynthesis [1-2] . There are about 140 known TrpD2 familyprote<strong>in</strong>s that are widespread among Bacteria, but do not occur <strong>in</strong> Archaea.They share on average 17 percent sequence identity with TrpD, but do notcatalyze the TrpD reaction. We have set out to elucidate the biologicalfunction of the TrpD2 group.We have solved the crystal structure of YbiB, the E. coli representative ofthe TrpD2 group. It is very similar to the structure of TrpD, but exhibits apositively charged surface groove with arg<strong>in</strong><strong>in</strong>e and lys<strong>in</strong>e residuesconserved throughout the whole TrpD2 group. The shape of the grooveand the charge distribution suggested that YbiB might b<strong>in</strong>d nucleic acids.Indeed, b<strong>in</strong>d<strong>in</strong>g of s<strong>in</strong>gle stranded DNA to YbiB and other TrpD2 prote<strong>in</strong>scould be detected and quantified by electro mobility shift assays,fluorescence spectroscopy, fluorescence polarization, and surface plasmonresonance. The b<strong>in</strong>d<strong>in</strong>g is characterized by a K D value of 6 to 60 nM andshows no sequence specificity. S<strong>in</strong>gle stranded RNA is bound equallywell, whereas the aff<strong>in</strong>ity for double stranded DNA is two orders ofmagnitude lower.The ybiB gene forms a LexA-controlled operon together with a geneencod<strong>in</strong>g a DNA helicase. This f<strong>in</strong>d<strong>in</strong>g po<strong>in</strong>ts to a possible <strong>in</strong>volvement <strong>in</strong>the E. coli SOS response to DNA-damag<strong>in</strong>g conditions. In support of thishypothesis, we could show that YbiB confers enhanced resistance aga<strong>in</strong>stthe mutagenic substance mitomyc<strong>in</strong> C (MMC) <strong>in</strong> vivo. Our results suggestthat the TrpD2 prote<strong>in</strong>s represent a novel class of DNA repair enzymesthat might recognize lesions such as <strong>in</strong>terstrand crossl<strong>in</strong>ks. The excision ofdamaged bases could be accomplished via phosphorolysis, s<strong>in</strong>ce both theTrpD and TrpD2 enzymes are evolutionary l<strong>in</strong>ked to the class IInucleoside phosphorylases [3] . These enzymes cleave off the base from anucleoside us<strong>in</strong>g <strong>in</strong>organic phosphate. YbiB presumably has a phosphateb<strong>in</strong>d<strong>in</strong>g site at its putative active center, which is located near the DNAb<strong>in</strong>d<strong>in</strong>g groove. Proteomic data support our DNA repair hypothesis.[1] M. Mar<strong>in</strong>o, M. Deuss, D. I. Svergun, P. V. Konarev, R. Sterner, O. Mayans, J Biol Chem 2006, 281,21410-21421.[2] S. Schlee, M. Deuss, M. Brun<strong>in</strong>g, A. Ivens, T. Schwab, N. Hellmann, O. Mayans, R. Sterner,Biochemistry 2009, 48, 5199-5209.[3] O. Mayans, A. Ivens, L. J. Nissen, K. Kirschner, M. Wilmanns, Embo J 2002, 21, 3245-3254.OTP046Microthrix parvicella and Cloacamonas acidam<strong>in</strong>ovorans:Indicator organisms for foam formation <strong>in</strong> large-scale biogasplants?T. Lienen*, A. Kleyböcker, H. WürdemannHelmholtz Zentrum Potsdam Deutsches GeoForschungsZentrum,Internationales Geothermiezentrum, Potsdam, GermanyAnaerobic co-fermentation of sewage sludge and waste with the objectiveto produce biogas is of grow<strong>in</strong>g <strong>in</strong>terest to generate renewable energy andto reduce greenhouse gas emissions. An anaerobic digester is still operatedas a so called “black box” and process failures such as foam, overacidificationor float<strong>in</strong>g layers occur <strong>in</strong> various plants. Changes <strong>in</strong> themicrobial community dur<strong>in</strong>g process failures could already be observed <strong>in</strong>laboratory-scale fermenters. However, the alteration <strong>in</strong> the microbialbiocenosis dur<strong>in</strong>g process failures <strong>in</strong> large-scale biogas plants is scarcely<strong>in</strong>vestigated.In our studies the variances of the microbial community dur<strong>in</strong>g a foamformation <strong>in</strong> a sewage sludge and grease fed biogas plant, consist<strong>in</strong>g offour 8.000.000 litre biogas reactors, were analyzed. To compare thediversification <strong>in</strong> the microbial community, the partial 16S rDNA genes ofthe two microbial doma<strong>in</strong>s Bacteria and Archaea were analyzed bypolymerase cha<strong>in</strong> reaction denatur<strong>in</strong>g gradient gel electrophoresis (PCR-DGGE) and microorganisms were identified by sequence alignment. Arelative quantification of possible <strong>in</strong>dicator organisms was carried outBIOspektrum | Tagungsband <strong>2012</strong>


148us<strong>in</strong>g real-time PCR. Activity measurements and analysis of spatialrelationship are planned via fluorescence<strong>in</strong> situhybridization (FISH).The molecular f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g revealed an altered microbial biocenosisdur<strong>in</strong>g a foam formation event and over a one-year period <strong>in</strong> the foam<strong>in</strong>gpronereactor. Microthrix parvicella and Cloacamonas acidam<strong>in</strong>ovoransseemed to be directly connected to the foam formation. Higher cellnumbers of these two organisms were detected <strong>in</strong> the foam. Real-time PCRmeasurements verified higher DNA amounts of M. parvicella <strong>in</strong> thefoam<strong>in</strong>g reactor and foam. Additionally, higher cell numbers of M.parvicella could be detected <strong>in</strong> the w<strong>in</strong>ter months possibly caused due totemperature sensitivity.M. parvicella and C. acidam<strong>in</strong>ovorans could act as <strong>in</strong>dicator organisms fora start<strong>in</strong>g foam formation <strong>in</strong> large-scale biogas plants. F<strong>in</strong>d<strong>in</strong>g a thresholdDNA concentration of M. parvicella or C. acidam<strong>in</strong>ovorans could serve asearly-warn<strong>in</strong>g <strong>in</strong>dicator to take countermeasures aga<strong>in</strong>st a foam formation.OTP047Monomerization of the dimeric polyprenylglyceryl phosphatesynthase PcrB by prote<strong>in</strong> design results <strong>in</strong> a different substratespecificityD. Peterhoff*, H. Zellner, R. Merkl, R. Sterner, P. Bab<strong>in</strong>gerUniversity of Regensburg, Biophysics and physical Biochemistry,Regensburg, GermanyThe bacterial PcrB prote<strong>in</strong>s show about 35% sequence identity to thearchaeal geranylgeranylglyceryl phosphate synthases (GGGPS). PcrB hasrecently been shown to be a heptaprenylglyceryl phosphate synthase,which catalyzes the formation of an ether bond between sn-glycerol-1-phosphate (G1P) and heptaprenyl pyrophosphate (HepPP) [1-2] . The crystalstructure of Bacillus subtilis PcrB reveals a G1P-b<strong>in</strong>d<strong>in</strong>g site as well as along hydrophobic groove similar to the geranylgeranyl pyrophosphateb<strong>in</strong>d<strong>in</strong>g site of Archaeoglobus fulgidus GGGPS [3-4] . However, the “ruler”limit<strong>in</strong>g the length of the polyprenyl pyrophosphate to 20 C-atoms <strong>in</strong>GGGPS is miss<strong>in</strong>g <strong>in</strong> PcrB, allow<strong>in</strong>g the b<strong>in</strong>d<strong>in</strong>g of HepPP which conta<strong>in</strong>s35 C-atoms.Both GGGPS and PcrB form homodimers. The subunit <strong>in</strong>terface has beenunambiguously determ<strong>in</strong>ed for GGGPS, whereas the published contactbetween the two PcrB subunits [3] is implausible due to the relatively smallburied surface area. We therefore decided to identify the native contact<strong>in</strong>terface of PcrB and to study the impact of dimerization for prote<strong>in</strong>stability and substrate specificity. Bio<strong>in</strong>formatic analysis predicted twoalternative <strong>in</strong>terfaces, one of them be<strong>in</strong>g identical to the GGGPS <strong>in</strong>terface.In order to loosen the dimer, we <strong>in</strong>troduced destabiliz<strong>in</strong>g am<strong>in</strong>o acids<strong>in</strong>dividually <strong>in</strong>to the two predicted <strong>in</strong>terfaces. Monomerization wasexclusively observed with mutations <strong>in</strong> the surface area that corresponds tothe GGGPS <strong>in</strong>terface. Furthermore, we <strong>in</strong>corporated the non-naturalam<strong>in</strong>oacid p-azido-L-phenylalan<strong>in</strong>e at specific sites <strong>in</strong>to each potential<strong>in</strong>terface us<strong>in</strong>g the method developed by Schultz and coworkers [5] tocrossl<strong>in</strong>k the protomers. The experiment confirmed that PcrB has the samecontact <strong>in</strong>terface like GGGPS. The stability of the monomerized variantswas not severely affected. However, their substrate specificity was limitedto shorter polyprenyl pyrophosphates (geranyl pyrophosphate, 10 C-atoms). This f<strong>in</strong>d<strong>in</strong>g shows that dimerization of PcrB is a prerequisite tob<strong>in</strong>d and process the native polyprenyl pyrophosphate substrate.[1] H. Guldan, R. Sterner, P. Bab<strong>in</strong>ger, Biochemistry 2008, 47, 7376-7384.[2] H. Guldan, F. M. Matysik, M. Bocola, R. Sterner, P. Bab<strong>in</strong>ger, Angewandte Chemie Int. Ed. 2011, 50,8188-8191.[3] J. Badger, J. M. Sauder, J. M. Adams, S. Antonysamy, K. Ba<strong>in</strong>, M. G. Bergseid, S. G. Buchanan, M. D.Buchanan, Y. Batiyenko, J. A. Christopher, et al., Prote<strong>in</strong>s 2005, 60, 787-796.[4] J. Payandeh, E. F. Pai, J Mol Evol 2007, 64, 364-374.[5] T. S. Young, I. Ahmad, J. A. Y<strong>in</strong>, P. G. Schultz, J Mol Biol 2010, 395, 361-374.OTP048Phylogenetic relationships among bacteria described fromalgae: Dist<strong>in</strong>ct source of new taxaF. Goecke, V. Thiel, J. Wiese*, A. Labes, J.F. ImhoffGEOMAR | Helmholtz-Zentrum für Ozeanforschung Kiel, Kieler Wirkstoff-Zentrum am GEOMAR, Kiel, GermanyBacteria are an <strong>in</strong>herent part of the physical environment of algae. Algaeare key components of the aquatic environments and are substrates formillions of microorganisms wait<strong>in</strong>g to be discovered. Recent<strong>in</strong>vestigations have shown that bacterial communities associated withalgae are highly specific to their host. Worldwide, representatives ofseveral new bacterial species and genera have been isolated from algae.We conducted a phylogenetic study based on 16S rRNA gene sequencesavailable <strong>in</strong> GenBank of 101 bacterial species (only type stra<strong>in</strong>s) whichhave been described as new species and have been derived from eukaryoticmacro- and micro-algal sources. We found a clear dom<strong>in</strong>ance of 6 majorbacterial l<strong>in</strong>eages. The major l<strong>in</strong>eage corresponded to Bacteroidetes with42 newly described bacterial species, followed by Proteobacteria(<strong>in</strong>clud<strong>in</strong>g Alpha- and Gammaproteobacteria) with 36 species. Firmicutes,Act<strong>in</strong>obacteria, Verrucomicrobia and Planctomycetes contributed to alesser extent. Based on the <strong>in</strong>formation of the species descriptions, 32% ofall new bacterial species were able to decompose macroalgalpolysaccharides, especially the members of Bacteroidetes andGammaproteobacteria. On the other hand, most of the bacteria describedfrom mar<strong>in</strong>e microalgae grouped <strong>in</strong>to the Alphaproteobacteria, <strong>in</strong>dicat<strong>in</strong>gthat some members of this group are well adapted to live <strong>in</strong> closeassociation with phytoplankton. We confirmed algae as a dist<strong>in</strong>ct sourcefor new bacterial taxa. Although such associations can be random orspecific, they could be expla<strong>in</strong>ed by evolutionary adaptations throughmetabolic pathways, niche specificity or mutualistic relationships. Thoseparameters might play an important role <strong>in</strong> algae-bacteria relationships <strong>in</strong>nature.OTP049Novel Octaheme Cytochromes c enzymesB. Hermann* 1 , F. Kemper 1 , M. Braun 1 , S. Netzer 1 , M. Dietrich 1 , M. Kern 2 ,J. Simon 2 , D. Wohlwend 1 , O. E<strong>in</strong>sle 11 Albert-Ludwigs-Universität Freiburg, Institut for Organische Chemie undBiochemie, Freiburg, Germany2 TU Darmstadt, Biologie, Darmstadt, GermanyMultiheme Cytochromes c (MCC) are a diverse family of electron carriersand redox enzymes that play a central role <strong>in</strong> several metabolic pathways.Some MCC enzymes have been structurally characterized <strong>in</strong> the past andwere found to conta<strong>in</strong> conserved heme-pack<strong>in</strong>g motifs, although theirprimary structures are largely unrelated [1,2]. Interest<strong>in</strong>gly, purified MCCsare able to convert more than one substrate. However these activities haveto be <strong>in</strong>terpreted carefully for the fact that not every measured <strong>in</strong> vitroactivity has a compulsory physiological role.The classical enzyme display<strong>in</strong>g a wide substrate versatility is NrfA, anammonium-produc<strong>in</strong>g pentaheme cytochrome c nitrite reductase, thatcatalyses the six-electron reduction of nitrite to ammonia as the keyreaction <strong>in</strong> respiratory nitrite ammonification. It is also able to converthydroxylam<strong>in</strong>e, nitric oxide, and sulfite [3,4]. Other already characterizedMCCs belong to the family of Octaheme Cytochomes C (OCC), likeoctaheme cytochrome c nitrite reductase (Onr) [5], octaheme tetrathionatereductase (Otr)[6] or the hydroxylam<strong>in</strong>e oxidoreductase (HAO) [7]. Thelatter is so far the only OCC known to function as an oxidase. This isma<strong>in</strong>ly due to an unusual cross-l<strong>in</strong>k of a tyros<strong>in</strong>e with a heme meso carbonof the active-site heme.Another so far uncharacterized class of OCC are the HAO, found <strong>in</strong> someEpsilonproteobacteria, such as some Campylobacter species [8]. Theseorganisms lack a NrfA homologue and yet are reported as nitriteammonifiers. Although the enzymes clearly are related to ’classical’ HAO,the active-site tyros<strong>in</strong>e residue is absent <strong>in</strong> HAO. It has been hypothesizedthat this enzyme reduces nitrite to hydroxylam<strong>in</strong>e but it might just as wellperform nitrite reduction to ammonium, thereby functionally replac<strong>in</strong>gNrfA.To broaden our knowledge of MCCs we focus on the structural propertiesthat lead to substrate versatility of MCCs. Therefore we use highresolutionX-ray crystallography <strong>in</strong> comb<strong>in</strong>ation with <strong>in</strong> vitro activityassays.As a first step we were able to purify two octaheme HAO, fromCampylobacter curvus and Campylobacter concisus and observed nitritereductase activity which is <strong>in</strong>deed lower than NrfA activity but still highenough to play a physiological role.[1] E<strong>in</strong>sle O. et al., Nature, 1999, 400, 476-480[2] Mowat, C.G. et al., Dalton Trans, 2005, 7, 3381-3389[3] Rudolf, M. et al., Biochem. Soc. Trans, 2002, 30, 649-653[4] Lukat, P. et al., Biochemistry, 2008, 47, 2080-2086[5] Tikhonova, T.V. et al., BBA, 2006, 1764, 715-723[6] Mowat, C.G. et al., Nat. Struct. Mol. Biol., 2004, 11, 1023-1024[7] Igarashi, N. et al., Nat. Struct. Biol., 1997, 4, 276-284[8] Kern, M. et al., BBA, 2009, 1787, 646-656OTP050Characterization of the potential heme chaperone HemWV. Haskamp*, S. Huhn, M. Jahn, D. JahnTU Braunschweig, Institut für Mikrobilogie, Braunschweig, GermanyModified tetrapyrroles are complex macrocycles and the most abundantpigments found <strong>in</strong> nature. They play a central role <strong>in</strong> electron transferdependent energy generat<strong>in</strong>g processes such as photosynthesis andrespiration. They further function as prosthetic groups for a variety ofenzymes, <strong>in</strong>clud<strong>in</strong>g catalases, peroxidases, cytochromes of the P450 classand sensor molecules. Heme is a hydrophobic molecule and associatesnon-specifically with lipids and prote<strong>in</strong>s <strong>in</strong> aqueous solution where itpromotes peroxidations. Due to its hydrophobicity und toxicity, heme hasto be transported to its target prote<strong>in</strong>s by different mechanisms, e.g.transport by transmembrane prote<strong>in</strong>s, heme b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s and hemechaperones.We identified E. coli HemW as a potential heme-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>. Tocharacterize the heme-b<strong>in</strong>d<strong>in</strong>g E. coli HemW was overproduced,anaerobically purified and a gel permeation chromatography wasperformed. Upon heme supplementation HemW dimerizes.First EPR spectra of E. coli HemW <strong>in</strong>cubated with heme revealed anspectrum typical of an oxidized [4Fe-4S] 3+ cluster <strong>in</strong>dicat<strong>in</strong>g electronBIOspektrum | Tagungsband <strong>2012</strong>


149transfer from the cluster to heme. Supplementation of HemW with an EPRactive Fe-Corrol revealed a 5x- and to a lesser extent 6x- coord<strong>in</strong>atedheme, the latter be<strong>in</strong>g an unusual form of coord<strong>in</strong>ation for heme.For further characterization of heme b<strong>in</strong>d<strong>in</strong>g different spectroscopicmethods will be used (Raman resonance, Mössbauer, MCD, ITC) with thedeterm<strong>in</strong>ation of the <strong>in</strong>volved am<strong>in</strong>o acid residues, the function of the ironsulphur cluster and SAM.To verify that HemW is truly a heme chaperon, heme-free Nitrate-Reductase and Cytochrome bd oxidase membrane vesicles will be testedfor heme transfer.OTP051Insights <strong>in</strong>to the ecological distributions of the widely distributedDehalococcoides-related Chloroflexi <strong>in</strong> the mar<strong>in</strong>e subsurfaceK. Wasmund*, C. Algora, J. Müller, L. AdrianHelmholtz Centre for Environmental Research, Isotope Biogeochemistry,Leipzig, GermanyBacteria of the phylum Chloroflexi appear to be widely distributed andsometimes abundant <strong>in</strong> the mar<strong>in</strong>e subsurface. Most subsurfaceChloroflexi form a dist<strong>in</strong>ct ‘class level’ clade that are affiliated withorganohalide-respir<strong>in</strong>g Dehalococcoides stra<strong>in</strong>s. Despite the apparentglobal ubiquity of these ‘Dehalococcoides-related Chloroflexi’ (DRC),little is known about their specific distributions and/or functionalproperties. In this research, specific PCR primers target<strong>in</strong>g 16S rRNAgenes of the DRC were designed and employed to study the distributionsof DRC <strong>in</strong> various subsurface environments. The assay proved highlyspecific and enabled the detection of a diverse range of DRC, oftenreveal<strong>in</strong>g the co-existence of diverse DRC phylotypes even with<strong>in</strong> s<strong>in</strong>glesubsurface samples. Quantification of DRC <strong>in</strong> mar<strong>in</strong>e sediment cores froma collection of globally dispersed locations by real-time PCR suggeststhese bacteria are seem<strong>in</strong>gly ubiquitous and establish highest numbers <strong>in</strong>the shallow subsurface (i.e., <strong>in</strong> the upper meters), yet survive and persistwith burial. Pyrosequenc<strong>in</strong>g of DRC through various mar<strong>in</strong>e sedimentcores enabled high coverage of DRC diversity and therefore enabledpatterns of diversity through depth to be clearly dist<strong>in</strong>guished. Thisapproach also revealed shifts <strong>in</strong> sub-groups of DRC through depth andsuggested different sub-groups with<strong>in</strong> the DRC favor differentbiogeochemical conditions, and therefore these sub-groups likely utilizedifferent modes of metabolism.OTP052Bacteria from the Baltic Sea <strong>in</strong>volved <strong>in</strong> the degradation ofterrestrial DOCJ. Simon*, J. OvermannLeibniz Institute DSMZ - German Collection of Microorganisms and CellCultures, Braunschweig, Department of Microbial Ecology and DiversityResearch, Braunschweig, GermanyPermafrost soils of the northern hemisphere store large amounts ofterrigenous dissolved organic carbon (tDOC). Climate change is expectedto result <strong>in</strong> a significantly <strong>in</strong>creased transport of tDOC to mar<strong>in</strong>e habitats.In order to assess the role of <strong>in</strong>creased tDOC mobilization for the globalcarbon budgets, the potential of tDOC degradation <strong>in</strong> the mar<strong>in</strong>eenvironment needs to be quantified. In the current study, key bacterialspecies <strong>in</strong>volved <strong>in</strong> the degradation of tDOC <strong>in</strong> the Baltic Sea werestudied. Because of its unique sal<strong>in</strong>ity gradient that ranges from nearlylimnic to mar<strong>in</strong>e conditions and s<strong>in</strong>ce it has been shown that the bacterialcommunity changes consistently along this sal<strong>in</strong>ity gradient, the Baltic Searepresents a suitable model system to study tDOC degradation underdifferent environmental conditions. Incubation experiments wereperformed <strong>in</strong> which Baltic Sea water was supplemented with fresh tDOCorig<strong>in</strong>at<strong>in</strong>g from the River Kalix (next to Överkalix, North Sweden). Highthroughput cultivation was used to recover relevant bacterial isolatesthrough the MultiDrop technique dur<strong>in</strong>g different stages of tDOCdegradation. Six different growth media were designed that conta<strong>in</strong> typicalconstituents of tDOC <strong>in</strong>clud<strong>in</strong>g a polymer mix and soluble and <strong>in</strong>solublehumic analogs. Changes <strong>in</strong> culturability were quantified through the mostprobable number technique. Community composition of culturablebacteria was assessed by DGGE-f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g of 16S rRNA genes. Firstresults reveal specific changes <strong>in</strong> the community composition of bacteriathat lead to the dom<strong>in</strong>ance of different bacteria dur<strong>in</strong>g the different stagesof the tDOC degradation.OTP053Acetone activation by strictly anaerobic bacteriaO.B. Gutiérrez Acosta*, B. Sch<strong>in</strong>kKonstanz university, Biology, Konstanz, GermanyDegradation of acetone by strictly anaerobic bacteria is be<strong>in</strong>g <strong>in</strong>vestigatedwith the sulfate-reduc<strong>in</strong>g bacterium Desulfococcus biacutus. An <strong>in</strong>itialATP-dependent carboxylation reaction has been proposed <strong>in</strong> the activationof acetone for aerobic and facultative anaerobic bacteria. In both types ofbacteria acetone is carboxylated to form acetoacetate as an <strong>in</strong>termediate.The mechanism proposed for those bacteria requires the <strong>in</strong>vestment of twoATP equivalents for the <strong>in</strong>itial step <strong>in</strong> the activation of acetone. In the caseof sulfate-reduc<strong>in</strong>g bacteria, this carboxylation reaction is less likely tooccur. The extreme energy limitation of the degradation of acetonecoupled to sulfate reduction would not allow the sulfate reducers to apply acarboxylation reaction as the <strong>in</strong>itial step. Therefore, we assumed thatsulfate-reduc<strong>in</strong>g bacteria use a different strategy <strong>in</strong> the activation ofacetone which is less energy expensive. A carbonylation reaction washypothesized for activation of acetone by D. biacutus. This carbonylationwould lead to 3-hydroxybutyrate or to an aldehyde derivative. Prelim<strong>in</strong>arystudies of the proposed carbonylation suggest that this reaction could takeplace <strong>in</strong> the activation of acetone. The acetone degradation <strong>in</strong> cellsuspension experiments with D. biacutusshowed a sulfate-reduc<strong>in</strong>g activityfaster and higher <strong>in</strong> the presence of CO than <strong>in</strong> the presence of CO 2.Aldehyde dehydrogenase activity was detected specifically <strong>in</strong>duced <strong>in</strong> cellextracts of acetone grown cells. This activity was enhanced by thepresence of ammonium <strong>in</strong> the test. Two dimensional electrophoresis withextracts ofD. biacutus showed different <strong>in</strong>duced prote<strong>in</strong>s <strong>in</strong> acetone growncells. MALDI-TOF-MS analysis of one of the acetone <strong>in</strong>duced prote<strong>in</strong>sresulted <strong>in</strong> an unknown prote<strong>in</strong>.OTP054Overexpression and purification of membrane prote<strong>in</strong>s fromGluconobacter oxydansM. Meyer*, U. Deppenmeier, P. SchweigerInstitute for Microbiology and Biotechnology, University of Bonn, AppliedMicrobiology, Bonn, GermanyGluconobacter oxydans is a member of the Gram-negativeAcetobacteraceae that performs rapid <strong>in</strong>complete oxidation of manysugars, sugar acids, polyols and alcohols. This feature has been exploited<strong>in</strong> several biotechnological processes (e.g. production of vitam<strong>in</strong> C and theantidiabetic drug miglitol). The genome sequence of G. oxydans 621H isknown and it was found to conta<strong>in</strong> over 70 uncharacterizedoxidoreductases. For <strong>in</strong>dustrial bioconversions, membrane-bounddehydrogenases are of major importance s<strong>in</strong>ce the products are excreted<strong>in</strong>to the medium to almost quantitative yields. However, theoverexpression and purification of membrane-bound prote<strong>in</strong>s is generallydifficult and time consum<strong>in</strong>g. The membrane-bound glucosedehydrogenase, encoded by gox0265, was expressed from the previouslyconstructed plasmid pBBR1p452 1 <strong>in</strong> G. oxydans hsdR <strong>in</strong> an attempt toimprove the process of <strong>in</strong>tegral membrane prote<strong>in</strong> purification. The vectorpBBR1p452 was constructed for gene expression <strong>in</strong> Gluconobacter spp.and its promoter displayed moderate strength. 1 Additionally, a C-term<strong>in</strong>alStrepTag was <strong>in</strong>corporated <strong>in</strong>to the expression construct. Membranes ofthe overexpression stra<strong>in</strong> had a specific activiy of 15 U/mg with glucose,which was seven-fold higher <strong>in</strong> comparison to the control stra<strong>in</strong>. The rateof oxygen consumption of these membranes was very high (1100 nmol ½O 2 m<strong>in</strong> -1 mg -1 ) and about three-times higher <strong>in</strong> comparison to the control.Glucose dehydrogenase was successfully purified from the membranes bysolubilisation with detergent and subsequent StrepTact<strong>in</strong> aff<strong>in</strong>itychromatography. Purified mGDH had a specific activity of 150 U/mgus<strong>in</strong>g D-glucose as substrate. Lower activities were also found with D-allose (43 % of activity compared to D-glucose), D-xylose (11 % ofactivity compared to D-glucose), D-galactose (7 % of activity compared toD-glucose) and D-gulose (4 % of activity compared to D-glucose). The K Mfor glucose was 3.4 mM and V max was 156 U/mg. These resultsdemonstrate, that the purification of active membrane prote<strong>in</strong>s byStrepTact<strong>in</strong> aff<strong>in</strong>ity chromatography is possible and can be used for thecharacterization of novel dehydrogenases.1 Kallnik, V., Meyer, M., Deppenmeier, U., Schweiger, P. (2010). Construction of expressionvectors for prote<strong>in</strong> production <strong>in</strong>Gluconobacter oxydans. J. Biotechnol. 145, 260-265OTP055Inducible gene expression and prote<strong>in</strong> production <strong>in</strong>Methanosarc<strong>in</strong>a mazeiS. Mondorf*, C. Welte, U. DeppenmeierIfMB, Applied Microbiology, Bonn, GermanyThe methanogenic archaeon Methanosarc<strong>in</strong>a mazei (Ms. mazei) is able toutilize different growth substrates such as H 2/CO 2, acetate, methylam<strong>in</strong>es,and methanol. Many enzymes <strong>in</strong>volved <strong>in</strong> the complex pathways ofmethanogenesis have been analyzed by heterologous overproduction <strong>in</strong> E.coli. However, for many methanogenic prote<strong>in</strong>s this was not successfuldue to unusual prosthetic groups that will not correctly assemble <strong>in</strong> E. coli.Hence, a method for homologous production of prote<strong>in</strong>s <strong>in</strong> Ms. mazei isdesirable.As a first step towards the production of complex prote<strong>in</strong>s, the simplereporter prote<strong>in</strong> -glucuronidase from E. coli was fused to the <strong>in</strong>duciblepromoter p1687 from Ms. mazei us<strong>in</strong>g the shuttle vector pWM321 [1]. Inthe Ms. mazei genome, the p1687 promoter is located upstream of the genecluster mtt1/ mtb1 that is transcribed dur<strong>in</strong>g growth on trimethylam<strong>in</strong>e butdown-regulated by a factor of 200 when the cells grow on methanol [2].BIOspektrum | Tagungsband <strong>2012</strong>


150When Ms. mazei pWM321-p1687-uidA utilized methanol as a substrate, -glucuronidase activity was almost not detectable <strong>in</strong>dicat<strong>in</strong>g a tightregulation of gene expression by the p1687 promoter. Induction by theaddition of trimethylam<strong>in</strong>e led to a strong <strong>in</strong>crease of expression of theuidA gene and -glucuronidase activity was monitored by the productionof p-nitrophenol from p-nitrophenyl--D-glucuronide.In summary, we describe the first <strong>in</strong>ducible gene expression system <strong>in</strong> Ms.mazei. This will be used for the overproduction and characterization ofprote<strong>in</strong>s that cannot be produced <strong>in</strong> E. coli and other simple expressionsystems. This will be of particular <strong>in</strong>terest for prote<strong>in</strong>s that harbourcomplex prosthetic groups that are hardly found or absent <strong>in</strong> the doma<strong>in</strong>Bacteria, e.g. tungsten enzymes.[1] Metcalf WW, Zhang JK, Apol<strong>in</strong>ario E, Sowers KR, Wolfe RS (1997) A genetic system forArchaea of the genus Methanosarc<strong>in</strong>a: liposome-mediated transformation and construction ofshuttle vectors. PNAS 94: 2626-31.[2] Krätzer C, Car<strong>in</strong>i P, Hovey R, Deppenmeier U (2009) Transcriptional profil<strong>in</strong>g ofmethyltransferase genes dur<strong>in</strong>g growth of Methanosarc<strong>in</strong>a mazei on trimethylam<strong>in</strong>e. J Bacteriol191: 5108-15.OTP056Antibacterial <strong>in</strong>vestigation of Artemisia campestris L (Asteraceae)M. Salem* 1 , A. Alruba 2 , J. El-turby 21 BioTechnology Research Center, Microbiology, Tripoli, Libyan ArabJamabiriya2 Tripoli university, pharmacy Facutly, pharmacy, Tripoli, Libyan ArabJamabiriyaArtemisia campestris L. (Asteraceae) is folk Libyan medic<strong>in</strong>al, smallaromatic perennial shrub that grow <strong>in</strong> North Africa and most of Europe.The grounded of aerial parts was extracted <strong>in</strong> soxhlet apparatussuccessively, each crude extract was subjected to antibacterial evaluationaga<strong>in</strong>st human pathogenic bacteria,Staph.aureus, E.coli, Salmonella spp.And Ps. aerug<strong>in</strong>osa, by us<strong>in</strong>g agar cup-cut diffusion assay .The resultsreported that chloroform and methanolic extracts were effectiveaga<strong>in</strong>stStaph.aureus <strong>in</strong> which shown by MIC is 12.5mg .OTP057Screen<strong>in</strong>g for thermostable cellulases for lignocellulosicbiomass degradationC. Schröder*, V. Bockemühl, G. AntranikianTechnical University Hamburg-Harburg, Technical Microbiology,Hamburg, GermanyExist<strong>in</strong>g bioref<strong>in</strong>eries for ethanol production ma<strong>in</strong>ly use starch-biomasssuch as wheat and corn. To avoid the usage of feed- and foodstuff,lignocellulosic biomass lately atta<strong>in</strong>ed particular <strong>in</strong>terest of research.Lignocellulosic material like wheat straw is a challeng<strong>in</strong>g substrate due tothe compact, often crystall<strong>in</strong>e structure of cellulose-, hemicellulose- andlign<strong>in</strong>-polymers. To obta<strong>in</strong> fermentable sugar-monomers from celluloseand hemicellulose by enzymatic degradation, the wheat straw has to bedecomposed, e.g. by hydrothermal processes.To discover novel thermostable cellulases for degradation of the cellulosicfraction, suitable environmental samples (T = 60-90°C, pH 5-7) wereenriched by us<strong>in</strong>g cellulose as sole carbon source. The DNA of thecultured microbial consortia was isolated for metagenomic libraryconstruction. Subsequently, the gene library was screened for the presenceof cellulase encod<strong>in</strong>g genes by detection of endoglucanase,cellobiohydrolase and -glucosidase activity us<strong>in</strong>g colorimetric activityassays. Additionally, for activity-based screen<strong>in</strong>g, metagenomic librarieswere constructed, directly us<strong>in</strong>g isolated DNA from hot spr<strong>in</strong>gs from theAzores without previous enrichment procedures. Furthermore a sequencebasedscreen<strong>in</strong>g approach was also applied us<strong>in</strong>g sequence data of ametagenome. By align<strong>in</strong>g the nucleotide sequences with known genes,potential cellulase-encod<strong>in</strong>g open read<strong>in</strong>g frames were identified.The activity-based screen<strong>in</strong>g revealed genes encod<strong>in</strong>g putativeendoglucanases and -glucosidases. The sequence-based analysis resulted<strong>in</strong> the detection of one gene encod<strong>in</strong>g another putative endoglucanase.Further work will be performed to express the identified genes <strong>in</strong> a suitablehost system such as E. coli and P. pastoris. The correspond<strong>in</strong>g enzymeswill be tested with regard to activity towards the cellulosic fraction of thedecomposed wheat straw.OTP058Translational regulation <strong>in</strong> Haloferax volcaniiJ. Schmitt*, J. SoppaUniversität Frankfurt, Institut für molekulare Biowissenschaften/AGSoppa, Frankfurt, GermanyTranslational regulation is an important cellular mechanism for geneexpression control and is present <strong>in</strong> all three doma<strong>in</strong>s of life. It enables thecell to answer very rapidly to changes <strong>in</strong> environmental conditions and isthus <strong>in</strong>volved <strong>in</strong> cell survival, differentiation, stress adaptation andresponse to specific stimuli.To ga<strong>in</strong> a global overview of growth phase-dependent translationalregulation translatome analyses were performed with Haloferax volcaniiand Halobacterium sal<strong>in</strong>arum (Lange et al., 2007). Polysome-boundmRNA was separated from free mRNA by sucrose gradient centrifugationand the two mRNA fractions were compared us<strong>in</strong>g DNA microarrays.Thereby it was revealed for the two species that 6% and 20%, respectively,of all genes showed growth phase-dependent differential translationalregulation (Lange et al.,2007). In H. volcanii many transcripts weretranslated with under-average efficiency <strong>in</strong> exponential as well asstationary phase, <strong>in</strong>dicat<strong>in</strong>g that their translation might be <strong>in</strong>duced <strong>in</strong>response to a different stimulus. Therefore, currently translatome analysesare performed after the application of various stress conditions, e.g. highand low osmolarity, high and low temperature, oxidative stress, poorcarbon sources.It was also revealed that the 5´- and 3´-UTRs are necessary and sufficientto transfer translational control from native transcripts to a reportertranscript. The 5´-UTRs are apparently necessary to down-regulateconstitutive translational <strong>in</strong>itiation, while <strong>in</strong>duction of translation isencoded <strong>in</strong> the 3´-UTRs (Brenneis and Soppa, 2009).However, the molecular mechanism and <strong>in</strong>volved prote<strong>in</strong>s are stillunknown. Therefore, the H. volcanii genome was searched for putativeRNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s. To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to their function the respectivegenes for selected prote<strong>in</strong>s were deleted and a conditional overexpressionsystem was generated. Analysis of the deletion and overexpressionmutants is currently under way.C. Lange, A. Zaigler, M. Hammelmann, J. Twellmeyer, G. Raddatz, S.C. Schuster,D. Oesterhelt & J. Soppa (2007) BMC Genomics 8:415M. Brenneis, J. Soppa (2009) PLoS ONE 4(2): e4484OTP059Biocatalytical Cyclization of CitronellalG. Siedenburg* 1 , D. Jendrossek 1 , M. Breuer 2 , B. Juhl 3 , J. Pleiss 3 , M. Seitz 3 ,J. Klebensberger 3 , B. Hauer 31 University of Stuttgart, Institute for Microbiology, Stuttgart, Germany2 BASF SE, Ludwigshafen, Germany3 University of Stuttgart, Institute of Technical Biochemistry, Stuttgart, GermanyHopanoids stabilize the cytoplasm membrane of many bacteria similar tothe function of sterols <strong>in</strong> eukarotes. Key enzyme of hopanoid biosynthesisis the squalene-hopene cyclase (SHC) which catalyzes the polycyclizationreaction of squalene to the pentacyclic triterpene hopene - the precursor ofall hopanoids. The SHC-catalyzed reaction is one of the most complexbiochemical reactions and <strong>in</strong>volves the formation of 5 r<strong>in</strong>g structures, thealteration of 13 covalent bonds, and the formation of 9 stereo centers.Zymomonas mobilis- an important ethanol produc<strong>in</strong>g bacterium - harbourstwo SHC-encod<strong>in</strong>g genes that were cloned and over-expressed <strong>in</strong> E. coli.Hopene-form<strong>in</strong>g activity was confirmed for both SHCs. One of the SHCswas additionally able to cyclise the monoterpene citronellal to isopulegol.This f<strong>in</strong>d<strong>in</strong>g is contrary to former results us<strong>in</strong>g the model SHC fromAlicyclobacillus acidocaldarius 1, 2 and several other SHCs cloned fromdifferent organisms <strong>in</strong> this study. Isopulegol is used as a flavor <strong>in</strong> differentproducts and is an important <strong>in</strong>termediate <strong>in</strong> the production of menthol.Our f<strong>in</strong>d<strong>in</strong>g is remarkable because cyclization of mono-, sequi- andditerpenes normally requires activation of the l<strong>in</strong>ear precursor bydiphosphate 3, 4 . Depend<strong>in</strong>g on the stereo-configuration of the substratedifferent isopulegol stereoisomers were formed. Cyclization of citronellalby SHC is the first example of an enzyme-catalyzed cyclization of a notactivatedl<strong>in</strong>ear monoterpene.Further work focussed on the optimization of the SHC-catalyzedcyclization of citronellal by mutagenesis of SHC active site am<strong>in</strong>o acids.Several SHC mute<strong>in</strong>s revealed a strong <strong>in</strong>crease <strong>in</strong> isopulegol-form<strong>in</strong>gactivity. Some mute<strong>in</strong>s were able to catalyze an almost completeconversion of citronellal to isopulegol ( 90%) compared to only 30% forthe wild type enzyme. Interest<strong>in</strong>gly, the stereo-configuration and therelative isomer composition of the product were altered <strong>in</strong> some mute<strong>in</strong>s.An overview on the cyclization potential of wild type and mutant SHCsfrom different sources will be given.1. Hosh<strong>in</strong>o, T.; Ohashi, S.Org.Lett.2002, 4, 2553-2556.2. Wendt, K. U.; Lenhart, A.; Schulz, G. E.J Mol Biol1999, 286, (1), 175-87.3. Bohlmann, J.; Meyer-Gauen, G.; Croteau, R.Proc Natl Acad Sci U S A1998, 95, (8), 4126-33.4. Davis, E. M.; Croteau, R.Top. Curr. Chem.2000, 209, 53-95.OTP060Development of a novel system for the functional expressionand screen<strong>in</strong>g of membrane prote<strong>in</strong>sA. Malach* 1 , A. Heck 1 , K.-E. Jaeger 2 , T. Drepper 11 He<strong>in</strong>rich-He<strong>in</strong>e-Universität, Institut für molekulare Enzymtechnolgie - AGDrepper, Düsseldorf, Germany2 He<strong>in</strong>rich-He<strong>in</strong>e-Universität, Institut für molekulare Enzymtechnolgie,Düsseldorf, GermanyThe heterologous expression of membrane prote<strong>in</strong>s and enzymes us<strong>in</strong>gstandard expression hosts as E. coli is often hampered by many differentfactors <strong>in</strong>clud<strong>in</strong>g low expression efficiencies, degradation of the product,product toxicity, <strong>in</strong>sufficient prote<strong>in</strong> fold<strong>in</strong>g or formation of <strong>in</strong>clusionBIOspektrum | Tagungsband <strong>2012</strong>


151bodies. Hence, we started to develop a novel bacterial expression systemfor the synthesis of membrane prote<strong>in</strong>s that is based on the phototsyntheticbacterium Rhodobacter capsulatus. Due to its unique physiologicalproperties the photosynthetic bacterium R. capsulatus is particularly suitedfor the high-level expression of membrane bound enzymes <strong>in</strong> an activeform: Phototrophic growth conditions <strong>in</strong>duce an <strong>in</strong>tracellulardifferentiation of the <strong>in</strong>ner membrane, lead<strong>in</strong>g to the formation ofmembrane vesicles <strong>in</strong> R. capsulatus. The membrane vesicles <strong>in</strong> turnprovide an <strong>in</strong>tr<strong>in</strong>sically high prote<strong>in</strong> fold<strong>in</strong>g and <strong>in</strong>corporation capacity.In order to evaluate the optimal growth conditions for heterologousmembrane prote<strong>in</strong> expression we started to express two differentmembrane prote<strong>in</strong>s, the bacteriorhodops<strong>in</strong> from Halobacterium sal<strong>in</strong>ariumas well as the squalene epoxidase from Stigmatella aurantiaca, underphototrophic, non-phototrophic as well as shifted conditions. Furthermore,<strong>in</strong>tegration of the heterologous membrane prote<strong>in</strong>s <strong>in</strong>to the photosyntheticmembrane vesicles was confirmed by prote<strong>in</strong> localization studies. Thenovel R. capsulatus expression system will now be used to identify novelmembrane bound monooxgenases from metagenomic libraries.OTP061Dehalococcoides sp. stra<strong>in</strong> CBDB1 reductively dehalogenatesbromobenzenes to benzene <strong>in</strong> a respiratory processM. Cooper* 1 , A. Wagner 2 , S. Ferdi 2 , J. Seifert 1 , L. Adrian 11 Helmholtz Centre for Environmental Research, Isotope Biogeochemistry,Leipzig, Germany2 Technische Universität Berl<strong>in</strong>, Angewandte Biochemie, Berl<strong>in</strong>, GermanyBrom<strong>in</strong>ated aromatics have broad applications <strong>in</strong> <strong>in</strong>dustry as flameretardants and fumigants or as <strong>in</strong>termediates dur<strong>in</strong>g the synthesis of dyes,agrochemicals, pharmaceuticals and herbicides. By now, many brom<strong>in</strong>atedcompounds are widespread contam<strong>in</strong>ants <strong>in</strong> the environment and areregarded as potentially harmful to humans and the environment. However,brom<strong>in</strong>ated aromatics are also released naturally, particularly <strong>in</strong> mar<strong>in</strong>eecosystems by algae, polychaets, sponges and molluscs. The completeremoval of all halogen substituents is a crucial step <strong>in</strong> the degradationprocess and for further m<strong>in</strong>eralization of halogenated compounds. Abacterial group which is known for its ability to reductively dehalogenate abroad range of toxic chlor<strong>in</strong>ated compounds such as chloroethenes,chlorobenzenes, chlorobiphenyls and diox<strong>in</strong>s is the genus of theDehalococcoides.In this study we <strong>in</strong>vestigated whether the pure Dehalococcoides sp. stra<strong>in</strong>CBDB1 is able to dehalogenate brom<strong>in</strong>ated benzenes, which were chosenas ‘model’ molecules for other more complex brom<strong>in</strong>ated compounds fromnatural or anthropogenic sources. Cultivation of stra<strong>in</strong> CBDB1 with 1,2,4-tribromobenzene, three different dibromobenzene congeners ormonobromobenzene revealed that all tested bromobenzenes werereductively dehalogenated to benzene <strong>in</strong> a respiratory process. Growthyields of 1.8 x 10 14 to 2.8 x 10 14 cells per mol of bromide released wereobta<strong>in</strong>ed. Additionally a newly designed methylviologen based enzymeactivity test was established to assess enzyme activity towardsbromobenzenes. Furthermore mass spectrometric analyses of reductivedehalogenases were carried out to ga<strong>in</strong> deeper <strong>in</strong>sight <strong>in</strong>to expressionpatterns of reductive dehalogenases after cultivation with differentbromobenzenes. Our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that the same enzymes are <strong>in</strong>volveddur<strong>in</strong>g bromobenzene reduction as dur<strong>in</strong>g chlorobenzene reduction, andsuggest that Dehalococcoides sp. stra<strong>in</strong> CBDB1 can be used forremediation of brom<strong>in</strong>ated aromatic contam<strong>in</strong>ants.OTP062BlueTox: A novel genetically encoded photosensitizerS. Endres* 1 , J. Walter 2 , J. Potzkei 1 , M. W<strong>in</strong>gen 1 , A. Heck 1 , K.-E. Jaeger 3 ,T. Drepper 11 He<strong>in</strong>rich-He<strong>in</strong>e-University, Institute of Molecular Enzyme Technology, WGDrepper, Düsseldorf, Germany2 He<strong>in</strong>rich-He<strong>in</strong>e-University, Department of Neurology, Düsseldorf, Germany3 He<strong>in</strong>rich-He<strong>in</strong>e-University, Institute of Molecular Enzyme Technology,Düsseldorf, GermanyFluorescent active dyes and prote<strong>in</strong>s like the green fluorescent prote<strong>in</strong>(GFP), isolated from the jellyfish Aequorea victoria and members of theGFP-like prote<strong>in</strong> family generates reactive oxygen species (ROS) as abyproduct of its fluorescence activity (1) . Thereby, the amount of generatedROS is strongly dependent on the prote<strong>in</strong>s structure (2,3) . One example for ahigh-level ROS-produc<strong>in</strong>g fluorescent prote<strong>in</strong> is KillerRed, a derivate ofthe non-fluorescent chromoprote<strong>in</strong> anm2CP isolated from Anthemedusaesp. (4) . This photosensitizer enables the light-mediated directed <strong>in</strong>activationof targeted cell-structures and/or whole cells by application of thechromophore-assisted-light-<strong>in</strong>activation (CALI-) technique(5) . As analternative to this red fluorescent photosensitizer we developed, on basis ofa FMN-based-fluorescent-prote<strong>in</strong> (FbFP) (6) , the novel photosensitizerBlueTox. BlueTox harbors a LOV-doma<strong>in</strong> (light, oxygen, voltage) thatb<strong>in</strong>ds flav<strong>in</strong>mononucleotide (FMN) as fluorophore and shows thecharacteristic excitation and emission maxima at 450nm ex /495nm em , respectively.We demonstrated the blue-light <strong>in</strong>duced, ROS-mediated photosensitiz<strong>in</strong>geffect of BlueTox by heterologous expression of the photosensitizer <strong>in</strong>Escherichia coli and subsequent time-resolved irradiation studies. Theresults of our <strong>in</strong> vivo analyses revealed a significant correlation betweendecrease of the amount of liv<strong>in</strong>g cells and irradiation time. Therefore,BlueTox is a powerful tool for light-mediated <strong>in</strong>activation of bacteria withhigh spatio-temporal resolution.1Jiménez-Banzo, A., S. Nonell, et al. (2008). "S<strong>in</strong>glet Oxygen Photosensitization by EGFP and itsChromophore HBDI." Biophysical journal 94 (1): 168-172.2Pletnev, S., N. G. Gurskaya, et al. (2009). "Structural basis for phototoxicity of the genetically encodedphotosensitizer KillerRed." The Journal of biological chemistry 284 (46): 32028-32039.3Carpentier, P., S. Violot, et al. (2009). "Structural basis for the phototoxicity of the fluorescent prote<strong>in</strong>KillerRed. "FEBS letters 583 (17): 2839-2842.4Bul<strong>in</strong>a, M. E., D. M. Chudakov, et al. (2006). "A genetically encoded photosensitizer." Naturebiotechnology 24 (1): 95-99.5Bul<strong>in</strong>a, M. E., K. A. Lukyanov, et al. (2006). "Chromophore-assisted light <strong>in</strong>activation (CALI) us<strong>in</strong>g thephototoxic fluorescent prote<strong>in</strong> KillerRed. "Nature protocols 1 (2): 947-953.6Drepper, T., T. Eggert, et al. (2007). "Reporter prote<strong>in</strong>s for <strong>in</strong> vivo fluorescence without oxygen." Naturebiotechnology 25 (4): 443-445.OTP063Production of the liposomase <strong>in</strong> Clostridium sporogenes for thetherapeutic use <strong>in</strong> tumor therapyK. Riegel* 1 , D. Meisohle 2 , P. Dürre 11 Universität Ulm, Institut für Mikrobiologie und Biotechnologie, Ulm, Germany2 Universität Ulm, Institut für Mediz<strong>in</strong>ische Mikrobiologie and Hygiene, Ulm,GermanySolid tumors and their environment possess certa<strong>in</strong> features that are unique<strong>in</strong> the human body. The most strik<strong>in</strong>g one is oxygen deprivation. Theseregions offer obligate anaerobic bacteria, such as clostridia, optimalconditions for growth. However, the colonization of the tumors alone isnot sufficient for a complete tumor regression (Ryan et al., 2006). Bygenetic modifications, these bacteria can function as vectors deliver<strong>in</strong>gtherapeutic prote<strong>in</strong>s or prodrug-convert<strong>in</strong>g enzymes to their targetsresult<strong>in</strong>g <strong>in</strong> a direct effect on the rema<strong>in</strong><strong>in</strong>g tumor tissue.In this project, the liposomase is used for this purpose. The liposomase is aprote<strong>in</strong> orig<strong>in</strong>ally isolated from Clostridium novyi that can destroyliposomes (Cheong et al., 2006). Liposomes are membranous vesicleswhich can function as carrier for anticancer drugs such as doxorubic<strong>in</strong>, asthese vesicles specifically accumulate <strong>in</strong> tumor tissues. However, the drugrelease from the liposomes is very slow due to their chemical and physicalstability (Gabizon et al., 2006). Therefore, a genetically eng<strong>in</strong>eered stra<strong>in</strong>of Clostridium sporogenes produc<strong>in</strong>g this enzyme should greatly enhancedrug delivery from liposomes. C. sporogenes is a proteolytic and sporeform<strong>in</strong>gorganism that proved to be an excellent colonizer of hypoxictumor tissue (Brown and Liu, 2004). For the expression of the liposomasegene <strong>in</strong> this organism a prote<strong>in</strong> expression system based on the T7 systemwas constructed. The result<strong>in</strong>g expression mutant of C. sporogenes shouldproduce and secrete the liposomase <strong>in</strong> the surround<strong>in</strong>g medium <strong>in</strong> asufficient concentration provid<strong>in</strong>g a more effective strategy <strong>in</strong> the fightaga<strong>in</strong>st cancer.Brown, J.M., & Liu, S.C., 2004. Use of anaerobic bacteria for cancer therapy. In: Nakano, M.M., & Zuber P.Strict and facultative anaerobes - medical and environmental aspects. Horizon Bioscience, Wymondham,England, 211-220.Cheong I., Huang X., Bettegowda C., Diaz L.A. Jr., K<strong>in</strong>zler K.W., Zhou S. and Vogelste<strong>in</strong> B., 2006. Abacterial prote<strong>in</strong> enhances the release and efficacy of liposomal cancer drugs. Science, 314, 1308-1311.Gabizon A.A., Shmeeda H. and Zakipsky S., 2006. Pros and Cons of the liposome platform <strong>in</strong> cancer drugtarget<strong>in</strong>g. Journal of Liposome Research, 16, 175-183.Ryan, R.M., Green, J., & Lewis, C.E., 2006. Use of bacteria <strong>in</strong> anti-cancer therapies. BioEssays, 28, 84-94.OTP064ClubSub-P: cluster-based subcellular localization predictionfor Gram-negative bacteria and archaeaN. Paramasivam*, D. L<strong>in</strong>keMPI Developmental Biology, Prote<strong>in</strong> Evolution, Tuebigen, GermanyThe subcellular localization (SCL) of prote<strong>in</strong>s provides important clues totheir function <strong>in</strong> a cell. In our efforts to predict useful vacc<strong>in</strong>e targetsaga<strong>in</strong>st Gram-negative bacteria, we noticed that misannotated start codonsfrequently lead to wrongly assigned SCLs. This and other problems <strong>in</strong>SCL prediction, such as the relatively high false-positive and falsenegativerates of some tools, can be avoided by apply<strong>in</strong>g multipleprediction tools to groups of homologous prote<strong>in</strong>s.Here we present ClubSub-P, an onl<strong>in</strong>e database that comb<strong>in</strong>es exist<strong>in</strong>gSCL prediction tools <strong>in</strong>to a consensus pipel<strong>in</strong>e from more than 600proteomes of fully sequenced microorganisms. On top of the consensusprediction at the level of s<strong>in</strong>gle sequences, the tool uses clusters ofhomologous prote<strong>in</strong>s from Gram-negative bacteria and from Archaea toelim<strong>in</strong>ate false-positive and false-negative predictions. ClubSub-P canassign the SCL of prote<strong>in</strong>s from Gram-negative bacteria and Archaea withhigh precision. The database is searchable, and can easily be expandedus<strong>in</strong>g either new bacterial genomes or new prediction tools as they becomeavailable. This will further improve the performance of the SCL prediction, aswell as the detection of misannotated start codons and other annotation errors.ClubSub-P is available onl<strong>in</strong>e athttp://toolkit.tueb<strong>in</strong>gen.mpg.de/clubsubp/Paramasivam N and L<strong>in</strong>ke D (2011) ClubSub-P: cluster-based subcellular localization predictionfor Gram-negative bacteria and archaea. Front. Microbio. 2:218. doi: 10.3389/fmicb.2011.00218BIOspektrum | Tagungsband <strong>2012</strong>


152OTP065The role of GvpM <strong>in</strong> gas vesicle formation of Halobacteriumsal<strong>in</strong>arum PHH1S. Tavlaridou*, F. PfeiferTU Darmstadt, Institut für Mikrobiologie und Genetik, Darmstadt, GermanyGas vesicles of Halobacterium sal<strong>in</strong>arum PHH1 are prote<strong>in</strong>aceous, gasfilledstructures conta<strong>in</strong><strong>in</strong>g GvpA and GvpC as the major structuralprote<strong>in</strong>s. The hydrophobic GvpA forms the ribbed structure of the gasvesicle wall that is stabilized by GvpC. Twelve additional genes are<strong>in</strong>volved <strong>in</strong> gas vesicle formation arranged <strong>in</strong> two clusters gvpACNO andgvpDEFGHIJKLM (= p-vac region). The gvpFGHIJKLM transcriptappears earlier compared to gvpDE and gvpACNO mRNAs. GvpM is anessential prote<strong>in</strong> for the gas vesicle formation but produced <strong>in</strong> smallamounts 1 . An alignment of GvpA and GvpM <strong>in</strong>dicates sequencesimilarities, suggest<strong>in</strong>g that GvpM might be a m<strong>in</strong>or structural componentof gas vesicles.To ga<strong>in</strong> further <strong>in</strong>sights <strong>in</strong>to the role of GvpM, we expressed the p-vacregion and an additional gvpM gene <strong>in</strong>Hfx. volcanii transformants. Astrong reduction of gas vesicle formation was detected compared to cellsexpress<strong>in</strong>g p-vac only, but <strong>in</strong> a few cells two or three extremely long gasvesicles were found. When GvpM was fused to GFP a strong aggregationof GvpM was observed <strong>in</strong> gvpM-gfp and p-vac+ gvpM-gfp transformants.It is possible that the aggregation of GvpM disturbs the gas vesicleformation. The aggregation of GvpM was also confirmed by Western analysis.In contrast to the strong reduction of the gas vesicle formation <strong>in</strong> p-vac+gvpM, transformants express<strong>in</strong>g p-vac +gvpGHIJKLM conta<strong>in</strong>ed gasvesicles <strong>in</strong> normal amounts. These results suggested that additional geneproducts derived from gvpG-M counteract the aggregation of GvpM. Toidentify the gene(s) responsible for this effect, transformants conta<strong>in</strong><strong>in</strong>g p-vac +gvpM plus one other gvp gene were analyzed.Transformantsharbor<strong>in</strong>g p-vac+gvpMG did not produce gas vesicles, whereas theaddition of gvpMH, gvpMJ orgvpML led to a wild-type gas vesicleformation. From these results it appears that GvpJ, GvpH and GvpL areable to compensate the <strong>in</strong>hibitory effect of GvpM on gas vesicle formation<strong>in</strong> p-vac transformants.1 Offner et al., (2000)J Bacteriol 182:4328-4336OTP066Virus adsorption and elim<strong>in</strong>ation <strong>in</strong> the activated sludge of themunicipal wastewater treatment plant of Hannover-HerrenhausenK. Ulbricht*, K.-H. Rosenw<strong>in</strong>kel, S. WolterLeibniz Universität Hannover, Institut für Siedlungswasserwitschaft undAbfalltechnik Hannover, Hannover, GermanyThe safety of dr<strong>in</strong>k<strong>in</strong>g water resources is actually one of the mostdiscussed issues <strong>in</strong> science. In this context the threat of waterborne diseaseoutbreaks caused by viruses must be particularly considered. The use ofbank filtrate for dr<strong>in</strong>k<strong>in</strong>g water purpose carries the highest risks of<strong>in</strong>fection because of the clarified, but still viruses conta<strong>in</strong><strong>in</strong>g wastewater <strong>in</strong>the rivers (1-10 PFU/l at low and up to 10-100 PFU/l at highcontam<strong>in</strong>ations) [1]. The most effective approach is to optimize virusreduction dur<strong>in</strong>g the wastewater treatment process to elim<strong>in</strong>ate the virusload before it is distributed by the water cycle. For this objective we haveto determ<strong>in</strong>e the elim<strong>in</strong>ation and adsorption processes of viruses <strong>in</strong> thewastewater treatment plant so that we can further on use this knowledgefor optimiz<strong>in</strong>g the processes with<strong>in</strong> the limits of ma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g the treatmentperformance.In the current project we observed <strong>in</strong> batch experiments with activatedsludge the decreas<strong>in</strong>g concentration of somatic coliphages <strong>in</strong>fect<strong>in</strong>gEscherichia coli stra<strong>in</strong> WG5 and determ<strong>in</strong>ed the dependency of adsorptionon the total solids content (TS). Furthermore, we also regarded if the virusload is temperature-dependent <strong>in</strong> the s<strong>in</strong>gle treatment steps (primaryclarifier, activated sludge system, secondary clarifier) of the WWTPHannover-Herrenhausen (February and August 2011).The results of the batch experiments demonstrated that after ca. 30d of<strong>in</strong>cubation the elim<strong>in</strong>ation process ends, even though not all phages were<strong>in</strong>activated (decrease from 1,27 x 10 4 to 2,29 x 10 1 PFU/ml).Consequently, a total virus reduction cannot be achieved with<strong>in</strong> a commonsludge age of 12-18d. Concern<strong>in</strong>g the adsorption processes we found thatdoubl<strong>in</strong>g the TS from ca. 3,2 to 6,66 g/l only slightly speeds up theadsorption process. But the f<strong>in</strong>ally reached adsorption rates turned out tobe equal.Observ<strong>in</strong>g the WWTP <strong>in</strong>dicated, that activated sludge can compensatevirus load fluctuations <strong>in</strong> the primary treatment step over longer periods. Incold season the efficiency of elim<strong>in</strong>ation with<strong>in</strong> the WWTP is somewhatlower than <strong>in</strong> warm season. Accord<strong>in</strong>g to the batch tests the differ<strong>in</strong>g TS(February: 3 g/l, August: 4 g/l) have no <strong>in</strong>fluence onto the elim<strong>in</strong>ation. Butthe higher temperature <strong>in</strong> summer leads to <strong>in</strong>crease of bacteria activity,which might be the reason for the better virus elim<strong>in</strong>ation.[1] Botzenhart K(2007) Viren im Tr<strong>in</strong>kwasser, Bundesgesundheitsblatt 50: 296-301OTP067Hot Metagenomics - towards an archaeal expression host formetagenome analysisJ. Kort* 1 , A. Wagner 2 , S.V. Albers 2 , B. Siebers 11 University of Duisburg-Essen, Biofilm Centre, Molecular Enzymetechnologyand Biochemistry, Essen, Germany2 Max-Planck Institute for terrestrial Microbiology, Molecular Biology ofArchaea, Marburg, GermanyArchaea offer excit<strong>in</strong>g potential for biotechnological applications, s<strong>in</strong>cetheir prote<strong>in</strong>s, so called “extremozymes”, are active under harshconditions. Unfortunately, the functional expression of many archaeal(hyper) thermophilic prote<strong>in</strong>s <strong>in</strong> mesophilic or even thermophilic bacterialhosts is limited. Even more severe is the choice of expression hosts <strong>in</strong>functional metagenomics. S<strong>in</strong>ce Archaea harbor a unique transcriptionmach<strong>in</strong>ery, the use of bacterial expression systems might lead to a preselection<strong>in</strong> current metagenomic approaches. The establishment of anexpression platform with a variety of host organisms, <strong>in</strong>clud<strong>in</strong>g Archaea,will help to capture the natural diversity.Sulfolobus acidocaldarius is a well characterized thermoacidophiliccrenarchaeon that grows optimally at 78°C and pH 2-3. It is geneticallytractable and a vector system for prote<strong>in</strong> expression has been established [1].For the expression <strong>in</strong> S. acidocaldarius the promoter of the maltoseb<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> malE is employed. Extensive mutational analysis ofdifferent parts of the malE promoter <strong>in</strong>clud<strong>in</strong>g the TATA box, the BREsite and the promoter length resulted <strong>in</strong> a hybrid promoter that had 5 foldhigher expression levels than the wild type promoter. The <strong>in</strong>sertion of theregulator that b<strong>in</strong>ds the malE promoter, termed MRP (maltose regulatoryprote<strong>in</strong>) <strong>in</strong>to the optimized expression vector led to a more than 4 fold<strong>in</strong>crease of expression levels. First results about the expression of archaeal(gluco)amylases, that failed to be expressed <strong>in</strong> common bacterial andeucaryal expression systems, will be presented. Furthermore, prelim<strong>in</strong>aryresults about the use of the vector for the expression of metagenomiclibraries from hot environments for identify<strong>in</strong>g new and <strong>in</strong>dustriallyrelevant enzymes will be discussed.OTP068Microbial biofilm formation <strong>in</strong> photobioreactorsI. Krohn-Molt*, A. Pommeren<strong>in</strong>g-Röser, D. Hanelt, W.R. StreitUniversität Hamburg, Biozentrum Kle<strong>in</strong> Flottbek, Mikrobiologie undBiotechnologie, Hamburg, GermanyStudies regard<strong>in</strong>g the development of biofilms of microalgae and the<strong>in</strong>teraction between prokaryotic and eukaryotic microorganisms are verylimited, despite their importance for the development of photobioreactors.In the analyses presented here, the development of biofilm and thebacterial community of the microalgae Scenedesmus obliquus andChlorella vulgaris were exam<strong>in</strong>ed <strong>in</strong> detail over a time period of threemonth <strong>in</strong> a reactor. The diversity and population dynamic of the bacteriawere exam<strong>in</strong>ed through analyses with scann<strong>in</strong>g electron microscope(SEM), fluorescence <strong>in</strong>-situ hybridization (FISH), denaturat<strong>in</strong>g gradientgel electrophoresis (DGGE) and 16S rRNA. Biomolecular analyses<strong>in</strong>dicated that various populations of alpha- and betaproteobacteria(concern<strong>in</strong>g the family of Comamonadaceae) as well as bacteroidetes (e.g.Pedobacter, Sedim<strong>in</strong>ibacterium, Flavobacterium and Bacteroidetes thathave not been cultivated yet) are associated with the microalgae exam<strong>in</strong>edhere. However, the populations of alphaproteobacteria (e.g.Sph<strong>in</strong>gomonas, Brevundimonas, S<strong>in</strong>orhizobium, Arcicella andOchrobactrum) as well as the populations of bacteroidetes dom<strong>in</strong>at<strong>in</strong>g.Altogether the diversity is rather limited. These results imply thatmetabolic performance of the bacterial populations is probably related andessential to the growth and stability of the algal culture. In addition, thecurrent work focuses on a detailed metagenome analysis of the algaebiofilm communities.OTP069The natural transformation mach<strong>in</strong>ery <strong>in</strong> Thermusthermophilus HB27: A pilus-<strong>in</strong>dependent DNA transportercompris<strong>in</strong>g unique motor ATPase and secret<strong>in</strong> complexesR. Salzer* 1 , J. Burkhardt 1 , J. Vonck 2 , B. Averhoff 11 Molecular Microbiology & Bioernergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, Germany2 Department of Structural Biology, Max-Planck Institute of Biophysics,Frankfurt/Ma<strong>in</strong>, Germany, GermanyTo get <strong>in</strong>sights <strong>in</strong>to the structure and function of DNA translocators wechose the thermophile T. thermophilus HB27 as model organism s<strong>in</strong>ce itexhibits the highest natural transformation frequencies known to date. Agenome-wide genetic screen followed by mutant studies led to theidentification of 16 dist<strong>in</strong>ct competence prote<strong>in</strong>s [1], several of them werefound to play a dual role <strong>in</strong> transformation and piliation. But the questionwhether the pilus structures itself are essential for DNA uptake was stillunanswered.BIOspektrum | Tagungsband <strong>2012</strong>


153Here we report on structural and functional analyses of the AAA-ATPasePilF, a unique motor component and the secret<strong>in</strong> PilQ. Both were found tobe essential for natural transformation and piliation. PilF carries a uniqueN-term<strong>in</strong>al triplicated GSPII doma<strong>in</strong> and a C-term<strong>in</strong>al tetracyste<strong>in</strong>motif<strong>in</strong>volved <strong>in</strong> z<strong>in</strong>c b<strong>in</strong>d<strong>in</strong>g [2]. Mutant studies revealed that two of thecyste<strong>in</strong>es are essential for Zn 2+ b<strong>in</strong>d<strong>in</strong>g, piliation, twitch<strong>in</strong>g motility andadhesion, but not for natural transformation.Recently, we reported on the novel structure of a PilQ complex,compris<strong>in</strong>g a stable cone and cup structure and six r<strong>in</strong>g structures [3].Structural analyses of a set of PilQ deletion derivates <strong>in</strong> T. thermophilusHB27 identified 136 N-term<strong>in</strong>al residues, encod<strong>in</strong>g an unusual fold as a r<strong>in</strong>g build<strong>in</strong>g doma<strong>in</strong>. Deletion of this doma<strong>in</strong> had a dramaticeffect on piliation but did not abolish natural transformation.Taken together, these f<strong>in</strong>d<strong>in</strong>gs provide clear evidence that the pilusstructures are not essential for natural transformation.[1] Averhoff B. (2009) FEMS Microbiol. Rev. 33:611-626.[2] Rose I., Biukovi G., Aderhold P., Müller V., Grüber G., Averhoff B. (2011) Extremophiles15:191-202.[3] Burkhardt J., Vonck J., Averhoff B. (2011) J. Biol. Chem. 286:9977-9984.OTP070Construction of a Bifunctional Cellulase-Xylanase fromThermophilic MicroorganismsM. Rizk*, S. Elleuche, G. AntranikianTechnische Universität Hamburg-Harburg, Technische Mikrobiologie,Hamburg, GermanyPlant cell walls conta<strong>in</strong> complex polymers and polysaccharides, such ascellulose and hemicellulose. The hydrolysis of these compounds has beenshown to be of relevant importance for the <strong>in</strong>dustry. Enzymes required forthis catalysis are extensively used <strong>in</strong> different <strong>in</strong>dustrial fields rang<strong>in</strong>gfrom the textile <strong>in</strong>dustry to food process<strong>in</strong>g and biofuel production. Anumber of separate bacterial enzymes work <strong>in</strong> tandem to efficiently digestpolysaccharides, through the hydrolysis of cellulose and hemicellulose.Xylanases hydrolyze -1,4 glycosidic l<strong>in</strong>kages of hemicellulose, whereascellulases catalyze random cleavage of the cellulose cha<strong>in</strong>. Few bacteriaare able to form multi-component enzyme complexes, known ascellulosomes, while others have separate enzymes or even isozymeswork<strong>in</strong>g <strong>in</strong> synergy. Such complexes and processes can be mimicked <strong>in</strong>laboratories, ow<strong>in</strong>g to a number of different molecular and genetictechniques. Several methods, <strong>in</strong>clud<strong>in</strong>g end-to-end fusion have beenshown to generate bi-functional enzyme constructs.The aim of this study is to generate bi-functional enzyme variants foroptimized polysaccharide degradation, by fus<strong>in</strong>g the genes encod<strong>in</strong>g forcellulase and xylanase. A l<strong>in</strong>ker, composed of 8 am<strong>in</strong>o acids, is addedbetween the two genes, which can lead to <strong>in</strong>creased stability andflexibility. Here we report the construction of the bi-functional enzymesand their characterization regard<strong>in</strong>g synergestic effects.OTP071Ornith<strong>in</strong>e am<strong>in</strong>otransferase (rocD) is essential for optimalgrowth with arg<strong>in</strong><strong>in</strong>e as s<strong>in</strong>gle nitrogen source <strong>in</strong>Mycobacterium smegmatisA. Hampel* 1,2 , B. Beckmann 2 , F.M. Gutzki 2 , D. Tsikas 2 , F.-C. Bange 11 MH Hannover, Institute of Microbiology, Hannover, Germany2 MH Hannover, Institute of Cl<strong>in</strong>ical Pharmacology, Hannover, GermanyPreviously, we studied arg<strong>in</strong><strong>in</strong>e metabolism under strictly anaerobicconditions, when mycobacteria are unable to replicate but persist <strong>in</strong>stead.However, <strong>in</strong> the presence of oxygen, mycobacteria show robust growth,even when arg<strong>in</strong><strong>in</strong>e is present as the only source of nitrogen. Themolecular mechanisms for this metabolic activity are unknown. RocD,encod<strong>in</strong>g the ornith<strong>in</strong>e am<strong>in</strong>otransferase, is part of the arg<strong>in</strong>ase pathway,and converts ornith<strong>in</strong>e to glutamate which is subsequently assimilated <strong>in</strong>tocentral metabolic pathways. A rocD mutant of Bacillus subtilis is not ableto utilize arg<strong>in</strong><strong>in</strong>e as a source of nitrogen.To <strong>in</strong>vestigate the role of ornith<strong>in</strong>e am<strong>in</strong>otransferase <strong>in</strong> mycobacteria, arocD mutant <strong>in</strong> Mycobacterium smegmatis (Msmeg) was generated andtested for growth <strong>in</strong> m<strong>in</strong>imal medium with arg<strong>in</strong><strong>in</strong>e as a s<strong>in</strong>gle source ofnitrogen. In addition the <strong>in</strong>tra- and extracellular ornith<strong>in</strong>e concentrationwas measured by gas chromatography mass spectrometry (GC-MS).The rocD mutant of Msmeg had a growth defect on arg<strong>in</strong><strong>in</strong>e, suggest<strong>in</strong>gthat rocD is essential for arg<strong>in</strong><strong>in</strong>e assimilation. The mutant also showed an<strong>in</strong>tra- and extracellular accumulation of ornith<strong>in</strong>e, the substrate for theornith<strong>in</strong>e am<strong>in</strong>otransferase.However, we observed residual growth of the mutant on arg<strong>in</strong><strong>in</strong>e,<strong>in</strong>dicat<strong>in</strong>g that <strong>in</strong> mycobacteria utilization of arg<strong>in</strong><strong>in</strong>e is more complexthan expected. At present we perform experiments to further def<strong>in</strong>earg<strong>in</strong><strong>in</strong>e metabolism <strong>in</strong> Msmeg.OTP072Transport and removal of bacteriophages <strong>in</strong> saturated sandcolumns under oxic and anoxic conditionsA. Frohnert* 1 , S. Apelt 2 , S. Klitzke 2 , H.-C. Sel<strong>in</strong>ka 1 , A. Reuchsel 1 ,I. Chorus 2 , R. Szewzyk 11 Umweltbundesamt, FG II 1.4, Berl<strong>in</strong>, Germany2 Umweltbundesamt, FG II 3.3, Berl<strong>in</strong>, GermanyTo protect groundwater as a dr<strong>in</strong>k<strong>in</strong>g water resource aga<strong>in</strong>stmicrobiological contam<strong>in</strong>ation protection zones are <strong>in</strong>stalled. Whiletravell<strong>in</strong>g through these zones concentrations of potential pathogens shalldecl<strong>in</strong>e to levels that pose no risks to human health. The removal dur<strong>in</strong>gthe subsurface passage is <strong>in</strong>fluenced by physicochemical conditions, e.g.oxygen concentration. The survival of microorganisms is affected by theamount of oxygen. In addition, depend<strong>in</strong>g on whether dissolved oxygen ispresent or not, m<strong>in</strong>eral phases with different adsorption properties can bepresent. In studies exam<strong>in</strong><strong>in</strong>g the transport of virus particles, the RNAbacteriophage MS2 and the DNA bacteriophage X174 are often usedbecause they resemble human viruses <strong>in</strong> structure and size. Moreover, theirdetection is much easier and cheaper to accomplish than that of humanviruses. Experiments <strong>in</strong> glass columns (length 55 cm, <strong>in</strong>ner diameter 7.3cm) filled with medium gra<strong>in</strong>ed sand were conducted. Different mobilephases either conta<strong>in</strong><strong>in</strong>g dissolved oxygen or be<strong>in</strong>g oxygen-free werespiked with bacteriophages MS2 and X174 and pumped through thesecolumns from bottom to top at a filter velocity of about 1m/d. At theeffluent physicochemical parameters were measured, and samples foranalys<strong>in</strong>g the bacteriophages by plaque assay were taken. Bacteriophagebreakthrough curves were compared to breakthrough curves of NaCl, usedas a conservative tracer. Both were analysed by one-dimensional models ofhydrogeological transport. Total elim<strong>in</strong>ations of bacteriophages weredeterm<strong>in</strong>ed by calculat<strong>in</strong>g the differences between the <strong>in</strong>put and recoveredamounts of viruses. In all experiments, the RNA bacteriophage MS2 waselim<strong>in</strong>ated more efficiently than the DNA bacteriophage X174.Compared to experiments with oxygen-free water, a higher elim<strong>in</strong>ation ofviruses was observed <strong>in</strong> oxic water. In connection with batch experimentsthe data suggest that differences <strong>in</strong> the <strong>in</strong>activation rate coefficients areimportant to expla<strong>in</strong> the results. Our results will contribute to a betterunderstand<strong>in</strong>g of the transport of viruses through oxic and anoxic zones <strong>in</strong>the subsurface.OTP073Construction of a Xanthomonas sp. 35Y rubber oxygenase(RoxA) deletion mutant and improvement of a homologousexpression system for RoxA mute<strong>in</strong>sN. Hambsch*, J. Birke, D. JendrossekUniversität Stuttgart, Institut für Mikrobiologie, Stuttgart, GermanyXanthomonas sp. 35Y is the so far only known Gram-negative bacteriumcapable to degrade natural rubber (polyisoprene) and to use rubberdegradation products as the sole source of carbon and energy. The primaryattack of the carbon backbone of polyisoprene is catalyzed by a novel typeof an extracellular diheme dioxygenase (rubber oxygenase RoxA) [1-3].To <strong>in</strong>vestigate the unknown RoxA cleavage mechanism, structure-functionanalysis of RoxA mute<strong>in</strong>s is necessary. Unfortunately, heterologousexpression of RoxA was not possible, neither <strong>in</strong> Escherichia coli, Bacillussubtilis nor <strong>in</strong> Pseudomonas putida. Therefore, a homologous RoxAexpression system was established <strong>in</strong> the host stra<strong>in</strong> Xanthomonas sp. 35Y[4]. However, it turned out that expression of a roxA copy from a broadhost range plasmid (with rhamnose-dependent promoter) transferred to theXanthomonas stra<strong>in</strong> could not be obta<strong>in</strong>ed immediately. Only afterspontaneous <strong>in</strong>tegration of the plasmid (after weeks up to months andseveral transfers on solid media) <strong>in</strong>to the chromosome, stable rhamnosedependentRoxA expression was obta<strong>in</strong>ed. Thus, a roxA deletion mutantwas constructed us<strong>in</strong>g sucrose counter selection with sacB. To improve theefficiency of <strong>in</strong>tegration of the expression plasmid <strong>in</strong>to the chromosome,the phage PhiC31 <strong>in</strong>tegration system was applied. Us<strong>in</strong>g this system, wesucceeded <strong>in</strong> rapid and reproducible <strong>in</strong>tegration of roxA copies <strong>in</strong>to theXanthomonas sp. chromosome. Wild type RoxA and first RoxA mute<strong>in</strong>swere successfully expressed. High yields of recomb<strong>in</strong>ant wild type RoxA( 1 mg/L culture) were reproducibly obta<strong>in</strong>ed with<strong>in</strong> 2-3 days ofcultivation <strong>in</strong> the presence of rhamnose. Purified recomb<strong>in</strong>ant RoxA wasactive, its activity could not be dist<strong>in</strong>guished from RoxA that had beenpurified from Xanthomonas sp. wild type.[1] Braaz, R., P. Fischer, D. Jendrossek (2004). AEM 70(12): 7388-7395.[2] Braaz, R., W. Armbruster, D. Jendrossek (2005). AEM 71(5): 2473-2478.[3] Schmitt, G., G. Seiffert, P. M. H. Kroneck,R. Braaz and D. Jendrossek (2010). Microbiology156: 2537-2548[4] Hambsch, N., G. Schmitt and D. Jendrossek (2010). JAM 109: 1067-1075BIOspektrum | Tagungsband <strong>2012</strong>


154OTP074Comparison of Faecal Culture and Real-Time QuantitativePCR Methods for Detection of Mycobacterium avium subsp.paratuberculosis <strong>in</strong> Bov<strong>in</strong>e Faecal SamplesA.A. Hassan* 1 , H. van Weer<strong>in</strong>g 1 , A. Heuvel<strong>in</strong>k 1 , M. Zschöck 2 , î Ak<strong>in</strong>eden 31 GD-Animal Health Service, Bacteriology, Deventer, Netherlands2 Landesbetrieb Hessisches Landeslabor, Bacteriology, Giessen, Germany3 Oemer.Ak<strong>in</strong>eden@vetmed.uni-giessen.de, Professur fürMilchwissenschaften, Institut für Tierärztliche Nahrungsmittelkunde,Giessen, GermanyMycobacterium avium subsp. paratuberculosis (MAP) is a robustmicroorganism, which causes <strong>in</strong>curable chronic enteritis <strong>in</strong> cattle. Thepresent study compared the efficacy of two different faecal cultureprocedures and Taq-Man PCR assay (Applied Biosystem) for detection ofMAP <strong>in</strong> faecal samples. Sixty one faecal samples were collected from twoDutch cattle herds (n=40, and n=21, respectively) which are known to beMAP positive. For cultur<strong>in</strong>g, all <strong>in</strong>dividual samples were decontam<strong>in</strong>atedus<strong>in</strong>g 0.75% HPC and cultured on HEYM agar (Harold’s Egg YolkMedium conta<strong>in</strong><strong>in</strong>g Mycobact<strong>in</strong> J and AVN, Becton Dick<strong>in</strong>son). Thesecond cultural method <strong>in</strong> sequentially two decontam<strong>in</strong>ation steps used 4%NaOH and malachite green-oxalic acid cultured on HEYM agar and on LJagar (modified Löwenste<strong>in</strong>-Jensen media conta<strong>in</strong> Mycobact<strong>in</strong> J). For theTaq-Man real-time PCR method, all faecal samples were tested <strong>in</strong> twodifferent laboratories us<strong>in</strong>g the same PCR kit. The sensitivity of the twocultural methods were 1.6% (n=1/61), 4.9% (n=3/61) and 8.2% (5/61) ofHEYM/ 0.75% HPC; HEYM/ 4% NaOH/malachite green-oxalic acid andLJ/ 4% NaOH/malachite green-oxalic acid, respectively. The sensitivity ofthe Taq-Man real-time PCR <strong>in</strong> two different laboratories were 13.1%(n=8/61) and 16.4% (n=10/61). The results revealed that cultural methodus<strong>in</strong>g LJ/ 4% NaOH/malachite green-oxalic acid is more sensitive thanothers and the Taq Man PCR assay had higher specificity than the culturalmethods. The results showed a significant deference between Taq-Manreal-time PCR assay and two cultural methods. In conclusion, Taq-Manreal-time PCR on bov<strong>in</strong>e faecal samples is a fast reliable method and couldbe applied <strong>in</strong> rout<strong>in</strong>e screen<strong>in</strong>g of MAP, lead<strong>in</strong>g to the improvement of theefficiency of MAP control strategies.OTP075Multilocus Sequence Typ<strong>in</strong>g (MLST) for the <strong>in</strong>fra-generictaxonomic classification of entomopathogenic RickettsiellabacteriaA. Leclerque* 1 , K. Hartelt 2 , C. Schuster 1 , K. Jung 1 , R.G. Kleepies 11 Julius Kühn-Institut (JKI), Institut für Biologischen Pflanzenschutz,Darmstadt, Germany2 Landesgesundheitsamt Baden-Württemberg, Ref. 93, MRE-Netzwerk ,Suttgart, GermanyThe taxonomic genus Rickettsiella comprises <strong>in</strong>tracellular bacteriaassociated with a wide range of arthropods that are currently classified <strong>in</strong>four recognized species - namely the nomenclatural type species,Rickettsiella popilliae (Dutky & Gooden), as well as Rickettsiella grylli(Vago & Martoja), Rickettsiella chironomi (Weiser), and Rickettsiellastethorae (Hall & Badgley) - and numerous further pathotypes. Both thedel<strong>in</strong>eation of species and the synonymization of pathotypes with speciesare highly problematic.In the sequel of a previous phylogenomic study at the supra-generic level,n<strong>in</strong>e selected genes - the 16S and 23S rRNA genes and the prote<strong>in</strong>encod<strong>in</strong>ggenes dnaG, ftsY, gidA, ksgA, rpoB, rpsA, and sucB - wereevaluated for their potential as markers for the generic and <strong>in</strong>fra-generictaxonomic classification of Rickettsiella-like bacteria. A methodologicalapproach comb<strong>in</strong><strong>in</strong>g phylogenetic reconstruction with likelihood-basedsignificance test<strong>in</strong>g was employed on the basis of sequence data from theRickettsiella popilliae - synonymized pathotypes `Rickettsiellamelolonthae’ and `Rickettsiella tipulae´ as well as the species R. grylli.The study identified two genetic markers, gidA and sucB, for MLSTanalysis with<strong>in</strong> the bacterial genus Rickettsiella. In contrast, rpsA and ftsYgene sequences were found to be sufficiently phylogeny-<strong>in</strong>formative toproduce a significant genus-level classification of Rickettsiella-likebacteria. Both the gidA and sucB genes were shown to be highlyphylogeny <strong>in</strong>formative at the <strong>in</strong>fra-generic taxonomic level and have beensubject to functional selection as concluded from their non-synonymous :synonymous site substitution frequencies (d N/d S) of 0.21 and 0.31,respectively. Moreover, be<strong>in</strong>g located at a distance of 570 kbp from eachother <strong>in</strong> the R. grylli genome (app. 1.5 Mbp), the simultaneous use of bothmarkers will make it likely that possible LGT events will not have affectedboth genes at a time. In particular, on the basis of the above analysis andwith<strong>in</strong> the range of <strong>in</strong>fra-generic diversity covered by the present study,these markers’ reliability and resolution potential for taxonomic studieswith<strong>in</strong> the genus Rickettsiella appear higher than those of thecorrespond<strong>in</strong>g 16S rRNA-encod<strong>in</strong>g sequences.Reference: Leclerque A, Hartelt K, Schuster C, Jung K, Kleespies RG(2011) Multilocus sequence typ<strong>in</strong>g (MLST) for the <strong>in</strong>fra-generictaxonomic classification of entomopathogenic Rickettsiella bacteria.FEMS Microbiology Letters 324:125-134.OTP076Evaluation of Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) forSpecies Identification of Bacteria of Genera Arcanobacteriumand TrueperellaM. Hijaz<strong>in</strong> 1 , J. Alber 1 , C. Lämmler 1 , A.A. Hassan 2 , M. Timke 3 ,M. Kostrzewa* 3 , E. Prenger-Bern<strong>in</strong>ghoff 4 , M. Zschöck 51 Justus-Liebig-Universität Gießen, Institut für Pharmakologie und Toxikologie,Gießen, Germany2 De Gezondheidsdienst voor Dieren (Animal Health Service), Deventer, TheNetherlands, Netherlands3 Bruker Daltonik GmbH, Entwicklung Bioanalyse, Bremen, Germany4 Justus-Liebig-Universität Gießen, Institut für Hygiene undInfektionskrankheiten der Tiere, Gießen, Germany5 Landesbetrieb Hessisches Landeslabor, Gießen, GermanyGenus Arcanobacterium (A.) consisted of n<strong>in</strong>e species, it was split <strong>in</strong> twodist<strong>in</strong>ct phylogenetic l<strong>in</strong>eages Arcanobacterium and Trueperella (T.) <strong>in</strong>2011. Species A. phocae, A. pluranimalium, A. hippocoleae, T. pyogenes,T. bonasi, T. bialowiezensis and T. abortisuis were ma<strong>in</strong>ly recovered from<strong>in</strong>fections of various animals and A. haemolyticum and T. bernardiaegenerally cause diseases <strong>in</strong> humans. In the present study Matrix-AssistedLaser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) was evaluated to identify 121 isolates and 11 reference stra<strong>in</strong>s ofgenus Arcanobacterium and genus Trueperella. All 121 isolates wererecovered from different animals and previously classified phenotypicallyand genotypically to six species of both genera. Species identification byMALDI-TOF MS was carried out by compar<strong>in</strong>g the ma<strong>in</strong> spectrum of eachisolate with the ma<strong>in</strong> spectra of 11 Arcanobacterium or Trueperellareference stra<strong>in</strong>s obta<strong>in</strong>ed <strong>in</strong> the present study and 3740 database entries<strong>in</strong>cluded <strong>in</strong> the MALDI Biotyper 2.0 software package (version 3.1.1.0)(Bruker Daltonik GmbH, Bremen, Germany). MALDI-TOF MS correctlyidentified (log (score) values 2.0) 22 of 23 T. abortisuis isolates and all<strong>in</strong>vestigated isolates of the species A. haemolyticum (n= 10), A.pluranimalium (n = 1), T. bialowiezensis (n = 3), T. bonasi (n = 7), and T.pyogenes (n = 77). Accord<strong>in</strong>g to the present results MALDI-TOF MS is apromis<strong>in</strong>g tool for fast and reliable identification of species ofArcanobacterium and Trueperella. Further studies with additional isolates,also <strong>in</strong>clud<strong>in</strong>g Arcanobacterium and Trueperella species commonlyrelated with human <strong>in</strong>fections, would underl<strong>in</strong>e the robustness of MALDI-TOF MS for identification of bacteria of both genera.OTP077Will not be presented!OTP078Identification of Campylobacter Species from Zoo Animals byMatrix-Assisted Laser Desorption Ionization-Time of FlightMass SpectrometryA.A. Hassan 1 , A. Heuvel<strong>in</strong>k 1 , E. van Engelen 1 , M. Hijaz<strong>in</strong> 2 , C. Lämmler 2 ,M. Zschöck 3 , M. Kostrzewa* 4 , M. Timke 41 De Gezondheidsdienst voor Dieren (Animal Health Service), Deventer,The Netherlands, Netherlands2 Justus-Liebig-Universität Gießen, Institut für Pharmakologie undToxikologie, Gießen, Germany3 Landesbetrieb Hessisches Landeslabor, Gießen, Germany4 Bruker Daltonik GmbH, Entwicklung Bioanalyse, Bremen, GermanyThe identification of genus Campylobacter at species level <strong>in</strong> rout<strong>in</strong>ediagnostic laboratories us<strong>in</strong>g conventional methods is still problematic dueto their poor biochemical activity. In this study, a total of 32 faecalsamples from 32 wild animals were exam<strong>in</strong>ed dur<strong>in</strong>g rout<strong>in</strong>emicrobiological diagnosis. Five isolates were suspected Campylobacterstra<strong>in</strong>s isolated from five animals (monkey, trumpeter swan, leopard andtwo meerkats). For species identification, Matrix-Assisted LaserDesorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOFMS) and DNA sequenc<strong>in</strong>g techniques were used. Two Campylobacterupsaliensis affiliated and two Campylobacter jejuni stra<strong>in</strong>s were identified.MALDI Biotyper software resulted <strong>in</strong> no reliable identification for isolateOV50-1. Indeed, this isolate may represent a new species of the genusCampylobacter. Partial 16S rRNA gene sequence similarity was only97.7% to C. upsaliensis, the best match of GenBank database comparison.This underl<strong>in</strong>es that there are no false-positive identification results byMALDI Biotyper software. Accord<strong>in</strong>g to the present results MALDI-TOFMS is a fast and reliable method for identification of bacteria of genusCampylobacter at the species level <strong>in</strong> rout<strong>in</strong>e diagnostic laboratories andmight help to elucidate the role of Campylobacter <strong>in</strong> <strong>in</strong>fections even ofexotic species.BIOspektrum | Tagungsband <strong>2012</strong>


155OTP079Oil degradation by Alcanivorax borkumensis - Understand<strong>in</strong>gstress response networks <strong>in</strong> relation to catabolic performanceD.J. Näther* 1,2,3 , H.J. Heipieper 4 , K.N. Timmis 2,31 Goethe-University, Molecular Biosciences, Frankfurt, Germany2 Helmholtz Centre for Infection Research, Environmental Microbiology,Braunschweig, Germany3 Technical University Braunschweig, Institute for Microbiology, Braunschweig,Germany4 Helmholtz Centre for Environmental Research, Department EnvironmentalMicrobiology, Leipzig, GermanyThe recent Gulf of Mexico oil spill about two years ago has once aga<strong>in</strong>shown the urgent need for simple and efficient bioremediation techniquesthat can be quickly implemented on a large scale. The unprecedentedcont<strong>in</strong>uous flow of crude oil <strong>in</strong>to the Gulf of Mexico presented a hugechallenge to exist<strong>in</strong>g oil-spill treatment methods, and current technologieswere not able to cope with the size and nature of the oil spill. Althoughgeneral <strong>in</strong>terest about polluted environments has lessened over the pastdecade, it is nonetheless necessary to make controlled <strong>in</strong>terventions andavoid pollution damage.A dist<strong>in</strong>ct group of members of the Oceanospirillales have a high aff<strong>in</strong>itytowards oil hydrocarbon substrates <strong>in</strong> seawater. The dom<strong>in</strong>at<strong>in</strong>g species <strong>in</strong>this community is Alcanivorax borkumensis (Yakimov et al., 1998), whichhas been studied <strong>in</strong>tensely for its bioremediation potential (Gertler et al.,2009, 2010). Unfortunately various stress conditions that naturally can befound <strong>in</strong> seawater, were so far not taken <strong>in</strong>to account for bioremediation studies.The aim of our project is to understand stress and survival to f<strong>in</strong>allyimprove catabolic performance <strong>in</strong> the field and f<strong>in</strong>d optimal formulations.For Alcanivorax borkumensis a microarray design was constructed to ga<strong>in</strong><strong>in</strong>sight <strong>in</strong>to stress networks under environmental conditions. First stressresponsenetworks and the post-translational regulation of stress responsemechanisms were revealed.Also membrane fatty acid composition was <strong>in</strong>vestigated and a mechanismto cope harsh stress conditions was found. F<strong>in</strong>ally first attempts for arobust formulation of Alcanivorax borkumensis were started with the aimto use those formulations <strong>in</strong> field trials for oil spills.Gertler C, Gerdts G, Timmis KN & Golysh<strong>in</strong> PN (2009) Microbial consortia <strong>in</strong> mesocosm bioremediationtrial us<strong>in</strong>g oil sorbents, slow-release fertilizer and bioaugmentation.FEMS Microbiol Ecol69: 288-300.Gertler C, Näther DJ, Gerdts G, Malpass MC & Golysh<strong>in</strong> PN (2010) A Mesocosm Study of the Changes <strong>in</strong>Mar<strong>in</strong>e Flagellate and Ciliate Communities <strong>in</strong> a Crude Oil Bioremediation Trial.Microb Ecol60: 180-191.Yakimov MM, Golysh<strong>in</strong> PN, Lang S, Moore ER, Abraham WR, Lunsdorf H & Timmis KN (1998)Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrad<strong>in</strong>g and surfactant produc<strong>in</strong>gmar<strong>in</strong>e bacterium. Int J Syst Bacteriol 48: 339-348.OTP080Development of an <strong>in</strong> situ remediation technology for BTEXcontam<strong>in</strong>atedgroundwater by the use of iron oxide nanoparticlesC. Meyer*, J. Bosch, J. Braunschweig, A. Meyer, R.U. MeckenstockHelmholtz Zentrum München, Institut für Grundwasserökologie,Neuherberg, GermanyIron oxides play an important role <strong>in</strong> the global biogeochemical cycles. Inrecent years, a lot of iron-reduc<strong>in</strong>g bacterial stra<strong>in</strong>s were discovered and itbecame obvious that dissimilatory Fe(III) reduction plays a significant role<strong>in</strong> anaerobic respiration processes <strong>in</strong> anoxic subsurface environments. Thereduction of Fe(III) is coupled to the oxidation of natural organic matter ororganic pollutants, whereby carbon dioxide is produced.However, Fe(III)<strong>in</strong> natural iron oxide m<strong>in</strong>erals is poorly soluble, shows a high crystall<strong>in</strong>ityand is thus hardly bioavailable for microorganisms.A recent study showed that colloidal iron oxide nanoparticles exhibit anexceptionally high reactivity compared to the reactivity of macro-sizedferric iron present <strong>in</strong> bulk phases (Bosch et al., 2010).Here, we want to use this high reactivity of iron oxide colloids for a newremediation technology for BTEX-polluted groundwater horizons.Eventually, our aim is to produce highly reactive iron oxide colloids whichcan be <strong>in</strong>jected <strong>in</strong>to a contam<strong>in</strong>ant plume <strong>in</strong> order to stimulate themicrobial iron reduction and degradation of contam<strong>in</strong>ants.In <strong>in</strong>itial growth batch experiments cells of Geobacter metallireducens orGeobacter toluenoxydans were concentrated to high density, repeatedlywashed and added to toluene conta<strong>in</strong><strong>in</strong>g reaction medium with Fe(III)either <strong>in</strong> the macromolecular state or <strong>in</strong> the nanosized form. Iron reductionwas constantly measured over a period of around 1000 h, us<strong>in</strong>g a ferroz<strong>in</strong>eassay for Fe(II) formation. Besides, toluene-degradation was analysed byGC-MS measurements and carbon isotope fractionation. Theseexperiments demonstrated that the addition of nanosized ferrihydriteenhanced the microbial toluene degradation, compared to thecorrespond<strong>in</strong>g bulk macroaggregates. Toluene was depleted almostcompletely by the use of nanosized ferrihydrite, whereas bulk ferrihydriteshowed no significant degradation.In the next step the iron oxide nanoparticles will be exposed <strong>in</strong> 2D-aquifersto exam<strong>in</strong>e their long-term stability as well as their long-term reactivity.Because of natural sediment as a matrix for the 2D-aquifer also a catalyticeffect is possible. As a last step we plan an outdoor test at a BTEXcontam<strong>in</strong>atedsite of a former <strong>in</strong>dustrial area.Bosch et al., 2010; Appl. Environ. Microbiol. 76:184-189.OTP081A new clean deletion and expression system for differentGluconobacter oxydans stra<strong>in</strong>sD. Kostner*, M. Mientus, B. Peters, W. Liebl, A. EhrenreichTU München, Department of Microbiology, Freis<strong>in</strong>g-Weihenstephan, GermanyThe acetic acid bacterium Gluconobacter oxydans is well known for itsability to <strong>in</strong>completely oxidize a great variety of carbohydrates, alcoholsand related compounds. In a multitude of biotechnological processes G.oxydans is used because of its regio- and stereo-selective oxidativepotential. The <strong>in</strong>complete oxidation of substrates is catalyzed by variousmembrane-bound dehydrogenases.For the detailed <strong>in</strong>vestigation of Gluconobacter a well established andeasily applicable clean deletion system is essential.A method for markerless clean deletion <strong>in</strong> G. oxydans stra<strong>in</strong> 621H isalready available from our group. This method is based on the use ofuracilphosphoribosyl transferase (UPRTase) as a counter-selectablemarker <strong>in</strong> the presence of the toxic pyrimid<strong>in</strong> analogue 5-fluorouracil (5-FU). The method is restricted to the usage of previously generated mutantsof the UPRTase gene (upp).To allow usage of wild-type stra<strong>in</strong>s <strong>in</strong>stead of upp-mutants, wedeveloped an improved clean-deletion system us<strong>in</strong>g a cytos<strong>in</strong>e-deam<strong>in</strong>aseas the counter-selectable marker <strong>in</strong> the presence of toxic 5-fluorocytos<strong>in</strong>e(5-FC).In order to complement deletions of membrane bound dehydrogenases weconstructed a shuttle vector system for their functional expression. Thissystem was successfully used for the complementation of membranebound dehydrogenases <strong>in</strong> G. oxydans 621H and could also be used <strong>in</strong> otherG. oxydans stra<strong>in</strong>s. Furthermore this vector system is available for theexpression and characterization of membrane bound dehydrogenases froma v<strong>in</strong>egar metagenomeOTP082Will not be presented!OTP083Roast Duck with Curry Aromatized on Grapefruit Gravyor:How to Properly Keep Research RecordsF. Centler, B. Kiesel, S. Kle<strong>in</strong>steuber, A. Kuppardt, T. Maskow, F. Ziel<strong>in</strong>ski*Helmholtz Centre for Environmental Research - UFZ, EnvironmentalMicrobiology, Leipzig, GermanyAny experimental work performed <strong>in</strong> a laboratory needs to be properlydocumented. Not only to assist a researcher <strong>in</strong> recall<strong>in</strong>g each <strong>in</strong>dividualstep of an experiment after weeks, months, or even years, but also becausesomeday its results might become part of a publication. Therefore, keep<strong>in</strong>ga laboratory notebook is a fundamental aspect of good scientific praxis,and a clearly written, self-explanatory lab book should be the standard.However, from our everyday experience with students, both new andadvanced <strong>in</strong> the lab, we have learned that a clear lab book does not comenaturally: dates are miss<strong>in</strong>g, objectives of experiments are not <strong>in</strong>dicated,methods are not described <strong>in</strong> detail, reasons for certa<strong>in</strong> procedures rema<strong>in</strong>unclear, samples have been arbitrarily renamed, supplementary documentsnecessary for data <strong>in</strong>terpretation are miss<strong>in</strong>g, loose notes, pr<strong>in</strong>touts, andphotocopies fall out when flick<strong>in</strong>g through the lab book, <strong>in</strong>terim results arenot documented, the writ<strong>in</strong>g is illegible, and so on. To alleviate thissituation and help our students to avoid the most common flaws, we haveformulated a few general guidel<strong>in</strong>es on how to properly keep researchrecords that we th<strong>in</strong>k are particularly crucial. So far so good! However,modern psychology posits that guidel<strong>in</strong>es are not well adopted as long theyare perceived as just another “dull <strong>in</strong>struction”. Besides, students arepotentially overloaded with “stuff to read and keep <strong>in</strong> m<strong>in</strong>d”. Therefore,we were especially concerned with the task on how to get our po<strong>in</strong>ts acrosswithout creat<strong>in</strong>g a feel<strong>in</strong>g of someth<strong>in</strong>g that “must” be followed or“should” be done, without be<strong>in</strong>g bor<strong>in</strong>g, and without be<strong>in</strong>g wiped out ofmemory shortly after read<strong>in</strong>g. We encountered this challenge by (i)visually exemplify<strong>in</strong>g our po<strong>in</strong>ts <strong>in</strong> the form of a poster, (ii) wrapp<strong>in</strong>g ourguidel<strong>in</strong>es <strong>in</strong>to a humorous story of metaphoric character, and (iii) plac<strong>in</strong>gthe poster <strong>in</strong> the lab floor, thereby rem<strong>in</strong>d<strong>in</strong>g our students of the mostimportant po<strong>in</strong>ts on a daily basis. Our poster entitled “Roast Duck withCurry Aromatized on Grapefruit Gravy” features a young scientist whokeeps a cook book to keep record of her attempts to fix a decent d<strong>in</strong>ner forfriends at her place, eventually do<strong>in</strong>g everyth<strong>in</strong>g right, except for … Tof<strong>in</strong>d out come and see our poster!BIOspektrum | Tagungsband <strong>2012</strong>


156OTP084The Use of GFP-GvpE fusions to characterize the <strong>in</strong>teraction ofthe two regulatory prote<strong>in</strong>s GvpD and GvpE of Halobacteriumsal<strong>in</strong>arumI. Schmidt*, F. PfeiferTU Darmstadt, Biology, Darmstadt, GermanyGas vesicle formation <strong>in</strong> Halobacterium sal<strong>in</strong>arum <strong>in</strong>volves fourteen gvpgenes arranged <strong>in</strong> two oppositely oriented gene clusters gvpACNO andgvpDEFGHIJKLM. The expression of these genes is regulated by twoendogenous regulatory prote<strong>in</strong>s, GvpD which is <strong>in</strong>volved <strong>in</strong> repression andthe transcriptional activator GvpE. Both prote<strong>in</strong>s are able to <strong>in</strong>teract andthis <strong>in</strong>teraction results <strong>in</strong> the lack of GvpE <strong>in</strong> Haloferax volcanii D + Etransformants [1, 2]. To quantify the reduction of the amount of GvpE <strong>in</strong>the presence of GvpD, an N-term<strong>in</strong>al fusion of GFP to GvpE wasconstructed. The activat<strong>in</strong>g function of the GFP-E fusion prote<strong>in</strong> wasshown <strong>in</strong> P A-bgaH transformants us<strong>in</strong>g the -galactosidase activity ofBgaH as reporter, s<strong>in</strong>ce wild-type GvpE (E WT) or the GFP fusion GFP-Eresulted <strong>in</strong> similar BgaH activities. The amount of GFP-E was thenquantified by fluorescence measurements <strong>in</strong> the absence or presence ofGvpD WT or GvpD mutants. GvpD mutant D 3-AAA acts as a superrepressor,whereas two other GvpD mutants, D Mut1 and D Mut6, lack the repress<strong>in</strong>gfunction. The fluorescence level determ<strong>in</strong>ed for the GFP-E transformantwas set 100%, the fluorescence of GFP-E + D WT was reduced to 40% <strong>in</strong>transformants, whereas the superrepressor D 3-AAA reduced the fluorescenceof GFP-E to 20%. No reduction of fluorescence was observed <strong>in</strong> GFP-Etransformants carry<strong>in</strong>g the defective mutant prote<strong>in</strong>s D Mut1 or D Mut6. TheGFP-E reporter system was also used to study the effect of various GvpEmutants that lost their activat<strong>in</strong>g function. The GvpE mutants E ARA andE K104A <strong>in</strong>curred mutations <strong>in</strong> one of the two putative DNA b<strong>in</strong>d<strong>in</strong>g regionsand is completely abolish<strong>in</strong>g the activator function. D WT and also thesuperrepressor mutant D 3-AAA reduced the fluorescence of both GvpEmutants to 50% and 40%, respectively. Further studies on GvpE and GvpDmutants are under way, to search and identify contact sites <strong>in</strong> bothregulatory prote<strong>in</strong>s that are important for the reduction of GvpE.(1) Zimmermann, P. & Pfeifer, F. (2003). Mol. Mircobiol. 49(3): 783-794(2) Scheuch, S., Marschaus, L., Sartorius-Neef, S., Pfeifer, F., (2008).ArchMicrobiol190: 333-339OTP085Enhanced FMN-b<strong>in</strong>d<strong>in</strong>g fluorescent prote<strong>in</strong>sM. W<strong>in</strong>gen* 1 , T. Drepper 1 , S. Hausmann 2 , J. Potzkei 1 , K.-E. Jaeger 31 He<strong>in</strong>rich He<strong>in</strong>e University Düsseldorf, Institute of Molecular EnzymeTechnology / WG Drepper, Jülich, Germany2 Evocatal GmbH, Düsseldorf, Germany3 He<strong>in</strong>rich He<strong>in</strong>e University Düsseldorf, Institute of Molecular EnzymeTechnology, Jülich, GermanyFluorescent prote<strong>in</strong>s (FP) like the green fluorescent prote<strong>in</strong> (GFP) and itsvariants are widely used <strong>in</strong> vivo reporters to study prote<strong>in</strong> expression,localization and <strong>in</strong>teraction [1]. Flav<strong>in</strong>-mononucleotide (FMN)-b<strong>in</strong>d<strong>in</strong>gFPs (FbFPs) are a new class of fluorescent reporters, which are derivedfrom bacterial ‘Light Oxygen Voltage’ (LOV) photoreceptor doma<strong>in</strong>s. Incontrast to the well-established FPs of the GFP-family, FbFPs do notrequire molecular oxygen for the development of their fluorescence signaland are therefore suitable reporter prote<strong>in</strong>s for fluorescence imag<strong>in</strong>g underaerobic, as well as under anaerobic conditions [2]. Applicability of FbFPshas so far been demonstrated for various anaerobic bacteria [2-4] and yeast[5]. Their <strong>in</strong>dependence of molecular oxygen also enables them tooutperform GFP-like prote<strong>in</strong>s as quantitative<strong>in</strong> vivoreal-time reporters [6].We are now conduct<strong>in</strong>g directed evolution experiments, <strong>in</strong> order to furtherenhance the fluorescence properties of FbFPs. Here, we report on thedevelopment of novel enhanced FbFP derivatives exhibit<strong>in</strong>g improvedbrightness or blue-shifted absorption and fluorescence spectra.1. Chudakov DM, Lukyanov S, Lukyanov KA:Fluorescent prote<strong>in</strong>s as a toolkit for <strong>in</strong> vivo imag<strong>in</strong>g.TrendsBiotechnol2005,23(12):605-613.2. Drepper T, Eggert T, Circolone F, Heck A, Krauss U, Guterl JK, Wendorff M, Losi A, Gärtner W, JaegerKE:Reporter prote<strong>in</strong>s for <strong>in</strong> vivo fluorescence without oxygen.Nat Biotechnol2007,25(4):443-445.3. Choi CH, Deguzman JV, Lamont RJ, Yilmaz Ö:Genetic Transformation of an Obligate Anaerobe, P.g<strong>in</strong>givalis for FMN-Green Fluorescent Prote<strong>in</strong> Expression <strong>in</strong> Study<strong>in</strong>g Host-Microbe Interaction.PLoSOne2011,6(4):e18499.4. Lobo LA, Smith CJ, Rocha ER:Flav<strong>in</strong> mononucleotide (FMN)-based fluorescent prote<strong>in</strong> (FbFP) asreporter for gene expression <strong>in</strong> the anaerobe Bacteroides fragilis.FEMS Microbiol Lett2011.5. Tielker D, Eichhof I, Jaeger KE, Ernst JF:Flav<strong>in</strong> mononucleotide-based fluorescent prote<strong>in</strong> as an oxygen<strong>in</strong>dependentreporter <strong>in</strong> Candida albicans and Saccharomyces cerevisiae.Eukaryot Cell2009,8(6):913-915.6. Drepper T, Huber R, Heck A, Circolone F, Hillmer AK, Büchs J, Jaeger KE:Flav<strong>in</strong> mononucleotidebasedfluorescent reporter prote<strong>in</strong>s outperform green fluorescent prote<strong>in</strong>-like prote<strong>in</strong>s as quantitative <strong>in</strong> vivoreal-time reporters.Appl Environ Microbiol2010,76(17):5990-5994.OTP086Interaction of eng<strong>in</strong>eered anorganic nanoparticles with bacterialbiofilmsA. Grün*, M. Madzgalla, W. ManzInstitute for Integrated Natural Sciences, University Koblenz-Landau,Department of Biology, Koblenz, GermanyIn the last decade eng<strong>in</strong>eered <strong>in</strong>organic nanoparticles (EINP) have beenbrought to the market <strong>in</strong> large quantities partly used as agents withantibacterial properties (e.g. Ag-EINP). Today, the result<strong>in</strong>g ambientconcentration of Ag nanoparticles <strong>in</strong> river water is estimated <strong>in</strong> a quitebroad range from 0.01 g/l up to 300 g/l [1, 2]. Based on a potentialpollution rate of EINP, bacterial biofilms <strong>in</strong> the environment will certa<strong>in</strong>lybe encountered as well. These Biofilm communities ensure essentialecosystem functions of lakes and rivers (e.g. self purification) and provideimportant ecosystem related services for dr<strong>in</strong>k<strong>in</strong>g water reservoirs,recreational centres, and biodiversity resources [3]. The biofilms displaythe locality where adsorption of organic and <strong>in</strong>organic matter does occur,and microbially mediated degradation, metabolism and m<strong>in</strong>eralisation takeplace. Even though numerous studies have been dealt with biologicaleffects of Ag nanoparticles already, knowledge of the ecotoxicology ofEINP to bacteria is mostly limited to studies on s<strong>in</strong>gle bacterial species <strong>in</strong>liquid cultures [4].To <strong>in</strong>vestigate <strong>in</strong>teractions of these widely used EINP at the aquaticterrestrial<strong>in</strong>terface, the DFG research unit INTERNANO was approvedvery recently. The study presented here is part of the prelim<strong>in</strong>ary work ofthe respective subproject BIOFILMS. To get first <strong>in</strong>sights <strong>in</strong>to the mutualeffects of EINP on structure and function of biofilms, both monospeciesbiofilms and native biofilms obta<strong>in</strong>ed from the river Rh<strong>in</strong>e were<strong>in</strong>vestigated after exposure to different concentrations of Ag nanoparticles.Aquabacterium citratiphilum was used as model organism to generatebiofilms under laboratory conditions apply<strong>in</strong>g commercial drip flowbiofilm reactors (BioSurface Technologies, Inc.). By us<strong>in</strong>g fluorescentdyes SYBR® Green and epifluorescence digital imag<strong>in</strong>g we obta<strong>in</strong>ed<strong>in</strong>formation regard<strong>in</strong>g the amount of adhered biomass. Application ofLIVE/DEAD®BacLight Bacterial Viability Kit showed the relativeamount of bacteria with uncompromised membrane <strong>in</strong>tegrity and thereforegave an estimate of the active total biofilm volume to surface area. Fromthese results, effective concentration of Ag nanoparticles on the adheredmicrobial biomass can be estimated for the model system <strong>in</strong>vestigated.[1] Boxall, A. et al (2008): Current and future predicted environmental exposure to eng<strong>in</strong>eered nanoparticles.In. Report to Defra.[2] Blaser, S.A. et al (2008): Estimation of cumulative aquatic exposure and risk due to silver: Contributionof nano-functionalized plastics and textiles. Sci. Tot. Environm., 390, 396-409.[3] Gerbersdorf, S.U. et al (2011): Anthropogenic pollutants affect ecosystem services of freshwatersediments: the need for a “triad plus x“ approach. Journal Soils Sedimentsdoi 10.1007/s11368-011-0373-0.[4] Pal, S. et al (2007): Does the antibacterial activity of silver nanoparticles depend on the shape of thenanoparticle? A study of the gram-negative bacterium Escherichia coli. Applied EnvironmentalMicrobiology73, 1712-1720.OTP087Construction of an expression system based on mannitol PTS<strong>in</strong> Bacillus subtilis and its regulationK. Morabbi Heravi*, J. AltenbuchnerInstitut für Industrielle Genetik, Universität Stuttgart, Stuttgart, GermanyRegulation of the mannitol utilization system (mtl operon) <strong>in</strong> B. subtiliswas studied <strong>in</strong> order to construct an expression system. The mtl operonconsists of mtlA (encod<strong>in</strong>g the phosphoenolpyruvate-dependentphosphotransferase system (PTS) enzyme IICB Mtl ), mtlF (encod<strong>in</strong>g thePTS enzyme IIA Mtl ), and mtlD (encod<strong>in</strong>g the mannitol 1-phosphatedehydrogenase). The mtlAFD operon is activated by MtlR (encod<strong>in</strong>g bymtlR), which is a transcriptional activator conta<strong>in</strong><strong>in</strong>g so-called PTSregulatory doma<strong>in</strong>s (PRDs) as well as EIIB Gat and EIIA Mtl doma<strong>in</strong>s.Pr<strong>in</strong>cipally, the phosphorylation state of the doma<strong>in</strong>s of such activatorsregulates its function. In other words, phosphorylation of PRDII activates aPRD conta<strong>in</strong><strong>in</strong>g activator, while phosphorylation of other doma<strong>in</strong>sdeactivates it. In this study, the promoters of mtlAFD operon (P mtlA) andmtlR (P mtlR) were fused to lacZ as a reporter gene. Measurement of -galactosidase <strong>in</strong>dicated that the P mtlA and P mtlR were <strong>in</strong>duced by mannitol,whereas glucose repressed their activities. Us<strong>in</strong>g primer extension method,transcription start sites as well as -10 and -35 boxes were identified<strong>in</strong>dicat<strong>in</strong>g a A -like structure of P mtlA and P mtlR. Specific regulation of P mtlAand P mtlR were <strong>in</strong>vestigated by deletion of mtlAF, mtlD and mtlR ormutation of mtlR to mtlR-H342D (as a phosphorylated PRDII mimic).Here, it was observed that the deletion of EIICB Mtl and EIIA Mtl componentsand MtlR-H342D mutation resulted <strong>in</strong> constitutive expression of P mtlA andP mtlR, while deletion of mtlR strongly reduced the promoter activity.Subsequently, the effect of carbon catabolite repression (CCR) was<strong>in</strong>vestigated where<strong>in</strong> generaltrans andcis components of CcpA-dependentCCR, and ptsG (encod<strong>in</strong>g glucose transporter)were deleted or mutated.Altogether, the results <strong>in</strong>dicated that glucose repression was ma<strong>in</strong>ly causedby an <strong>in</strong>hibition of MtlR by PtsG, while CcpA-dependent CCRcomponents exhibited m<strong>in</strong>or effects. Consequently, we assume that thephosphorylation state of PRDII doma<strong>in</strong> (H342) plays the ma<strong>in</strong> role <strong>in</strong>glucose repression of mannitol system.OTP088Self-<strong>in</strong>ducible Bacillus subtilis expression systemM. Wenzel*, J. AltenbuchnerInstitut für Industrielle Genetik, Universität Stuttgart, Stuttgart, GermanyHigh product yields and low costs are two of the ma<strong>in</strong> objectives of aneconomic production process. Hence, we developed a novel technicallyBIOspektrum | Tagungsband <strong>2012</strong>


157compliant expression system for heterologous prote<strong>in</strong> production <strong>in</strong>Bacillus subtilis [1].The system <strong>in</strong>volves the positively regulated manPpromoter of the mannose operon of B. subtilis. The enhanced greenfluorescent prote<strong>in</strong> (eGFP) was chosen as a reporter by reason of an easyonl<strong>in</strong>e-track<strong>in</strong>g of its expression. With the wildtype stra<strong>in</strong> relatively highproduct yields of 5.3 % [5.3 g eGFP per 100 g cdw (cell dry weight)] wereachieved but required large quantities of mannose to <strong>in</strong>duce the reactions,thus render<strong>in</strong>g the system’s technical application rather expensive. Try<strong>in</strong>gto improve this, mutant B. subtilis stra<strong>in</strong>s were used: the manA (mannosemetabolism) stra<strong>in</strong> TQ281 and the manP (mannose uptake) stra<strong>in</strong> TQ356.The total amount of <strong>in</strong>ducer was reduced with TQ281. However, the stra<strong>in</strong>displayed sensitivity to the <strong>in</strong>ducer mannose. To further improve the costefficiencyand product yield of the system, an <strong>in</strong>ducer-<strong>in</strong>dependent self<strong>in</strong>ductionsystem with TQ356 was developed, <strong>in</strong> which glucose prevents<strong>in</strong>duction by carbon catabolite repression. Optimal self-<strong>in</strong>ductionconditions could be achieved by utiliz<strong>in</strong>g a glucose limited processstrategy, namely a fed-batch process. The self-<strong>in</strong>duction was <strong>in</strong>itiated atthe beg<strong>in</strong>n<strong>in</strong>g of the glucose-restricted transition phase between the batchand fed-batch phase of fermentation and was ma<strong>in</strong>ta<strong>in</strong>ed throughout theentire glucose-limit<strong>in</strong>g fed-batch phase. With this strategy a nearlythreefold <strong>in</strong>crease of product yield to 14.6 % was ga<strong>in</strong>ed.The novel B. subtilis self-<strong>in</strong>duction system thus makes a considerablecontribution to improve product yield and to reduce the costs associatedwith its technical application.[1] Wenzel et al. (2011) Appl Environ Microbiol. 77(18):6419-6425.OTP089Biological roles of sRNAs <strong>in</strong> the halophilic archaeon Haloferaxvolcanii and identification of potential mRNA targetsK. Jantzer* 1 , J. Babski 1 , R. Heyer 2 , J. Benz 2 , A. Marchfelder 2 , J. Soppa 11 Goethe Universität, Institut für Molekulare Biowissenschaften, Frankfurt,Germany2 Universität Ulm, Biologie II, Ulm, GermanyBio<strong>in</strong>formatic approaches and/or experimental studies led to theidentification of many small non-cod<strong>in</strong>g RNAs (sRNAs) <strong>in</strong> severalarchaeal species. The halophilic archaeon Haloferax volcanii conta<strong>in</strong>s ahigh number of about 350 sRNAs, <strong>in</strong>dicat<strong>in</strong>g the importance for RNAmediatedregulation <strong>in</strong> these species [1, 2].To unravel biological roles of haloarchaeal sRNAs more than 30 sRNAgene deletion mutants were constructed and their phenotypes werecompared to that of the wild-type under 14 different conditions. Forexample, growth on different carbon sources, growth at different saltconcentrations, and stress adaptation were characterized. This phenotyp<strong>in</strong>gapproach was enabled by the possibility to grow H. volcanii <strong>in</strong> microtiterplates, which allows highly parallel cultivation [3]. Length of the lagphases, growth rates, and growth yields were quantified. In addition, cellmorphology was analyzed microscopically and cell behaviour wascharacterized us<strong>in</strong>g swarm plates. For 25 deletion mutants phenotypicdifferences to the wild-type were discovered, which <strong>in</strong> all cases werespecific for one or a few of the tested conditions. Notably, <strong>in</strong> several casesdeletion of a sRNA gene resulted <strong>in</strong> a ga<strong>in</strong>-of-function phenotype, whichhas not been described for any bacterial sRNA gene deletion mutants. Themutant phenotypes revealed that sRNAs are <strong>in</strong>volved <strong>in</strong> many biologicalprocesses <strong>in</strong> haloarchaea, <strong>in</strong>clud<strong>in</strong>g stress adaptation, metabolic regulationand cell behaviour. Selected examples will be shown.In archaea no target molecules for sRNAs have been identified so far. Thesearch for potential mRNA targets of H. volcanii sRNAs <strong>in</strong>cluded theanalysis of sRNA gene deletion as well as overexpression mutants us<strong>in</strong>gmicroarrays and Northern blot analyses. In addition, bio<strong>in</strong>formaticapproaches were applied. The comb<strong>in</strong>ation of the different methods led tothe identification of putative targets, and future research will aim atcharacterization of the predicted sRNA-mRNA <strong>in</strong>teractions.OTP090Comparison of two Dehalococcoides isolates from the Bitterfeldregion of Germany: reductive dehalogenase genes encoded <strong>in</strong> thegenomes and the capacity to dechlor<strong>in</strong>ate dibenzo-p-diox<strong>in</strong>sM. Pöritz* 1 , L. Adrian 2 , T. Wubet 3 , M. Tarkka 3 , I. Nijenhuis 2 , U. Lechner 11 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Lechner, Halle(Saale), Germany2 Helmholtz-Centre for Environmental Research-UFZ, Department of IsotopeBiogeochemistry, Leipzig, Germany3 Helmholtz-Centre for Environmental Research-UFZ, Department of SoilEcology, Halle (Saale), GermanyThe quality of both groundwater and surface water is severely jeopardizedglobally through contam<strong>in</strong>ation by halogenated compounds. The <strong>in</strong>dustrialarea of Bitterfeld <strong>in</strong> central Germany is particularly highly contam<strong>in</strong>atedby different chlor<strong>in</strong>ated benzenes and ethenes and also by very persistentcompounds like polychlor<strong>in</strong>ated dibenzo-p-diox<strong>in</strong>s and dibenzofurans. Thegenus Dehalococcoides represents a novel group of strictly anaerobicbacteria, which are key naturally occurr<strong>in</strong>g bioremediators of these highlytoxic compounds. Recently, two Dehalococcoides stra<strong>in</strong>s, DCMB5 andBTF08, have been enriched and isolated from samples taken fromsediment and aquifer, respectively, at the contam<strong>in</strong>ated site. Stra<strong>in</strong>DCMB5 (1) is able to dechlor<strong>in</strong>ate hexa- and pentachlorobenzene, as wellas all three tetra- and one trichlorobenzene. In contrast, stra<strong>in</strong> BTF08 isadapted to the dechlor<strong>in</strong>ation of chlor<strong>in</strong>ated ethenes (2).Comparison of the genomes of both stra<strong>in</strong>s revealed a contextuallyconserved core with some marked differences such as the presence of threecopies of a transposable element <strong>in</strong> stra<strong>in</strong> BTF08 and of a CRISPR locus <strong>in</strong>stra<strong>in</strong> DCMB5. The genes encod<strong>in</strong>g homologues of reductivedehalogenases (Rdh) are mostly located <strong>in</strong> so-called high plasticity regions(3). Only eight of the 20 Rdhs <strong>in</strong> BTF08 have orthologues <strong>in</strong> stra<strong>in</strong>DCMB5 accord<strong>in</strong>g to the orthologue def<strong>in</strong>ition of Kube et al. (4). One Rdhof stra<strong>in</strong> BTF08 has no orthologue <strong>in</strong> other Dehalococcoides stra<strong>in</strong>s. Theoccurrence of orthologues of the functionally characterized CbrA, achlorobenzene Rdh, only <strong>in</strong> stra<strong>in</strong> DCMB5 and the comb<strong>in</strong>ation of bothTceA and PceA (tri- and tetrachloroethene Rdhs, respectively) only <strong>in</strong>stra<strong>in</strong> BTF08 is <strong>in</strong> agreement with the different physiologies of bothstra<strong>in</strong>s. Stra<strong>in</strong> DCMB5 was shown to dechlor<strong>in</strong>ate selected dibenzo-pdiox<strong>in</strong>s.To l<strong>in</strong>k further differences <strong>in</strong> the content of rdh-genes of bothstra<strong>in</strong>s to their dehalogenation capacity we compared the capability of bothstra<strong>in</strong>s to dechlor<strong>in</strong>ate different chlor<strong>in</strong>ated diox<strong>in</strong>s.(1) Bunge et al. (2008) Environ Microbiol 10, 2670-2683(2) Cichocka et al.(2010) FEMS Microbiol Ecol 72, 297-310(3) McMurdie et al. (2009) PloS Genet 5, e1000714(4) Kube et al. (2005) Nat Biotechnol 23, 1269-1273OTP091Archaeal versus bacterial ammonia oxidation <strong>in</strong> oligotrophicand eutrophic freshwater sedimentsM. Herrmann* 1 , O. Spott 2 , K. Küsel 11 Friedrich Schiller University Jena, Institute of Ecology,Limnology/Aquatic Geomicrobiology group, Jena, Germany2 Helmholtz Centre for Environmental Research - UFZ, Department SoilPhysics, Halle, GermanyAmmonia oxidation, the first and rate-limit<strong>in</strong>g step of nitrification, iscarried out by ammonia-oxidiz<strong>in</strong>g bacteria (AOB) and ammonia-oxidiz<strong>in</strong>garchaea (AOA). Recent studies from mar<strong>in</strong>e and terrestrial environmentssuggest that AOA are better adapted to conditions of low ammoniaavailability. However, only little is known about the respective role ofAOA versus AOB <strong>in</strong> freshwater environments. We carried outcomparative <strong>in</strong>vestigations of the abundance and activity of AOA andAOB <strong>in</strong> sediments of a eutrophic and a neighbour<strong>in</strong>g oligotrophic lakelocated <strong>in</strong> Northwest Germany, address<strong>in</strong>g two hypotheses: (i) AOA/AOBratios shift <strong>in</strong> favour of AOB with <strong>in</strong>creas<strong>in</strong>g ammonium availability, and(ii) AOA play a major role <strong>in</strong> ammonia oxidation <strong>in</strong> the oligotrophic lakewhile AOB dom<strong>in</strong>ate this process <strong>in</strong> the eutrophic lake. Abundance,transcriptional activity, and community composition of AOA and AOBwere analyzed target<strong>in</strong>g the amoA gene encod<strong>in</strong>g ammoniamonooxygenaseas a functional marker. AOB-amoA/AOA-amoA generatios ranged from 1 to 1000 <strong>in</strong> the sediment of the eutrophic lake andfrom 0.001 to 1 <strong>in</strong> the oligotrophic lake. Here, AOA were especiallyabundant <strong>in</strong> rhizosphere sediment where they constituted up to 50 % of thetotal archaeal population. AOB-amoA gene copy numbers as well as AOBamoA/AOA-amoAgene ratios were positively correlated to NH 4+concentrations <strong>in</strong> the sediment pore water across sites. Sediment samplestaken directly from the field site or from short-term <strong>in</strong>cubationexperiments showed higher transcriptional activity of AOA or AOB <strong>in</strong> theoligotrophic and eutrophic sediments, respectively. These f<strong>in</strong>d<strong>in</strong>gs aresupported by prelim<strong>in</strong>ary results from potential nitrification assays us<strong>in</strong>gspecific <strong>in</strong>hibitors of bacterial ammonia oxidation, which suggest thatAOB dom<strong>in</strong>ate ammonia oxidation under eutrophic conditions.OTP092Bacterial formation of biogenic am<strong>in</strong>es <strong>in</strong> grape juice: the<strong>in</strong>fluence of culture conditionsE. Christ*, P. Pfeiffer, H. KönigMikrobiologie und We<strong>in</strong>forschung/Johannes Gutenberg-Universität,Biologie, Ma<strong>in</strong>z, GermanyThe production of biogenic am<strong>in</strong>es by lactic acid bacteria was analyzedunder various culture conditions. For the derivatization of the biogenicam<strong>in</strong>es, a freshly prepared solution of solid ortho-phthaldialdehyde wasused. This led to more constant results compared to the use ofcommercially available reagents. After microbial growth the producedbiogenic am<strong>in</strong>es were purified by solid phase extraction (SPE). A novelmethod <strong>in</strong>clud<strong>in</strong>g the application of a strong cation exchange cartridge wasdeveloped which was less time-consum<strong>in</strong>g than earlier described methods.The samples were analyzed with reversed phase high performance liquidchromatography (RP-HPLC). The <strong>in</strong>vestigations showed that the contentof biogenic am<strong>in</strong>es depended on the growth temperature, the pH value andthe am<strong>in</strong>o acid content. At 25 ºC higher concentrations up to factor of 16of biogenic am<strong>in</strong>es were produced by the selected microorganismsBIOspektrum | Tagungsband <strong>2012</strong>


158compared to 20 ºC. An <strong>in</strong>crease of the pH-value from 3.5 to 3.7 led tohigher formation of biogenic am<strong>in</strong>es of at most 100%. In addition, thetested stra<strong>in</strong>s produced a maximum of 170 mg/l of the health-relevanttyram<strong>in</strong>e, when am<strong>in</strong>o acids <strong>in</strong>clud<strong>in</strong>g tyros<strong>in</strong>e were added.OTP093Impacts of climate-sensitive environmental factors on fecalbacterial loads <strong>in</strong> the river LahnI. Herrig*, S. Böer, W. ManzInstitute for Integrated Natural Sciences, Department of Biology, Koblenz,GermanyFecal pollution of rivers bears a public health risk and is dim<strong>in</strong>ish<strong>in</strong>g thequality of ecological services provided by these important ecosystems [1].Therefore the aim of this study is the evaluation of potential impacts ofclimate change on the microbial water quality of rivers on an experimentalbasis.To get a deeper understand<strong>in</strong>g of the hygienic state of a subset river andhow it is <strong>in</strong>fluenced by climatic relevant factors, a 12 months-monitor<strong>in</strong>gis ongo<strong>in</strong>g.Dur<strong>in</strong>g this monitor<strong>in</strong>g, water samples are taken weekly at five differentsites of the river Lahn.Relative abundances of fecal <strong>in</strong>dicator organisms compris<strong>in</strong>g E. coli,somatic coliphages and <strong>in</strong>test<strong>in</strong>al Enterococci are determ<strong>in</strong>ed. Presence ofenterohaemorrhagic E. coli (EHEC) is tracked by means of a commercialPCR assay. In addition, the amount of settleable particles and physicalchemicalparameters such as temperature and pH are measured.Ma<strong>in</strong> focus of the analysis is to <strong>in</strong>vestigate the <strong>in</strong>fluence of climatesensitive factors such as water temperature, ra<strong>in</strong>fall and water discharge onthe relative abundance and spatial distribution of fecal <strong>in</strong>dicator bacteria.To assess the public health risk and for the development of manag<strong>in</strong>gstrategies it is important to identify sources of fecal pollution as well.Microbial source track<strong>in</strong>g by means of qPCR will be performed on thebasis of signature sequences specific for Bacteroidetes <strong>in</strong> order to discovercontam<strong>in</strong>ation pathways.Prelim<strong>in</strong>ary data show that the amount of particles and the relativeabundance of <strong>in</strong>dicator organisms <strong>in</strong>crease with river discharge.Accord<strong>in</strong>gly, highest rates could be observed after ra<strong>in</strong>fall events. On theother hand, decl<strong>in</strong><strong>in</strong>g water temperatures also seem to have a positiveimpact on coliphages.Ongo<strong>in</strong>g mesocosm experiments will aim at answer<strong>in</strong>g the questionwhether the high counts after ra<strong>in</strong>falls can be traced back only to the <strong>in</strong>putfrom external sources or if they are at least partly caused by resuspensionfrom the sediment.In general, numbers of E. coli were higher than those of coliphages andEnterococci. In particular cases they exceed the EU directive for bath<strong>in</strong>gwaters.In addition, results obta<strong>in</strong>ed with a commercial PCR assay <strong>in</strong>dicate thepresence of E. coli O104.[1] Gerbersdorf S. U., Hollert H., Br<strong>in</strong>kmann M., Wieprecht S., Schüttrumpf H., and Manz W.(2011). Anthropogenic pollutants affect ecosystem services of freshwater sediments: the need for a“triad plus x” approach. Journal Soils Sediments doi 10.1007/s11368-011-0373-0.OTP094Active groundwater bacterial communities <strong>in</strong> karstic aquifers<strong>in</strong> the Ha<strong>in</strong>ich (Thur<strong>in</strong>gia, Germany)A. Rusznyak* 1 , I. Schulze 1 , D.M. Akob 1 , M. Gaspar 2 , F. Warnecke 2 ,M. Herrmann 1 , P. Gees<strong>in</strong>k 3 , K.-U. Totsche 3 , K. Küsel 11 Friedrich Schiller University Jena, Institute of Ecology, Limnology/AquaticGeomicrobiology, Jena, Germany2 Friedrich Schiller University Jena, Institute of Microbiology, MicrobialEcology Group, Jena, Germany3 Friedrich Schiller University Jena, Institute of Earth Sciences, Chair ofHydrogeology, Jena, GermanyGroundwater ecosystems harbour a great proportion of the Earth`sprokaryotic biomass, however, knowledge about microbial diversity <strong>in</strong>prist<strong>in</strong>e groundwater is scarce. In these ecosystems, characterized by loworganic carbon content, lithoautotrophy might represent an importantmicrobial metabolic strategy. This study aimed to <strong>in</strong>vestigate the diversityof active groundwater bacteria by target<strong>in</strong>g gene transcripts for 16S rRNAand RuBisCO II large-subunit (cbbM) responsible for CO 2-fixation <strong>in</strong> theCalv<strong>in</strong> Cycle. Groundwater was collected <strong>in</strong> November 2010 and April2011 from different wells along a land-use gradient, rang<strong>in</strong>g from forest toagricultural fields, follow<strong>in</strong>g groundwater flow at the northeastern slope ofthe Ha<strong>in</strong>ich region (Thur<strong>in</strong>gia). The groundwater had a pH between 7.2and 7.4, conta<strong>in</strong>ed low organic carbon, had 30% oxygen saturation, andconta<strong>in</strong>ed up to 30 mg/l dissolved CO 2. Analysis of the active communitymembers by pyrosequenc<strong>in</strong>g revealed great spatial variability <strong>in</strong> thediversity of active groundwater bacteria as well as differences between theautumn and spr<strong>in</strong>g samples. In contrast, the composition of bacterialcommunities express<strong>in</strong>g the RuBisCO II gene showed only little variationbetween sampl<strong>in</strong>g sites and time po<strong>in</strong>ts. More than half of the 16S rRNAsequences (51.4%) were affiliated with Proteobacteria (dom<strong>in</strong>ated by the- and -subgroups) and unclassified Bacteria were also detected <strong>in</strong> highnumbers (23.6%). RuBisCO II sequences were related to thegeneraThiobacillus andSulfuricella and tocbbM sequences of unculturedbacteria orig<strong>in</strong>at<strong>in</strong>g from hypersal<strong>in</strong>e water and tar oil-contam<strong>in</strong>atedaquifers. We are currently work<strong>in</strong>g with multivariate statistics to correlatemicrobial observations with long-term physiochemical data sets to revealthe possible impact of land use on the groundwater bacterial communities.OTP095Will not be presented!OTP096Efficient marker recycl<strong>in</strong>g us<strong>in</strong>g the optimized FLP/FRTrecomb<strong>in</strong>ation system <strong>in</strong> filamentous fungiK. Kopke* 1 , B. Hoff 2 , U. Kück 11 Ruhr-Universitaet Bochum, Christian Doppler Laboratory for “FungalBiotechnology”, Lehrstuhl fuer Allgeme<strong>in</strong>e & Molekulare Botanik, Bochum,Germany2 BASF SE, Ludwigshafen, GermanyThe genetic manipulation of many filamentous fungi is limited by thenumber of functional resistance marker. For this reason we have developeda marker recycl<strong>in</strong>g for the penicill<strong>in</strong> producer Penicillium chrysogenumbased on the FLP/FRT recomb<strong>in</strong>ation system from the yeastSaccharomyces cerevisiae. In a first approach the functionality of thesystem was tested. Therefore a nourseothric<strong>in</strong> resistance cassette flankedby FRT sequences <strong>in</strong> direct repeat orientation (FRTnat1 cassette) wasectopically <strong>in</strong>tegrated <strong>in</strong>to a P. chrysogenum recipient stra<strong>in</strong>. Thecorrespond<strong>in</strong>g transformants were used to complete the system bytransform<strong>in</strong>g a codon-optimized Pcflp recomb<strong>in</strong>ase gene. Our analysis ofseveral transformants showed that successful recomb<strong>in</strong>ation events wereachievable with the codon-optimized recomb<strong>in</strong>ase. To further extend theapplication of the FLP/FRT recomb<strong>in</strong>ation system, we generated a markerfreePcku70FRT2 stra<strong>in</strong> which enables the production of multipledeletion stra<strong>in</strong>s by highly efficient homologous recomb<strong>in</strong>ation. Moreoverwe have established a one-step marker recycl<strong>in</strong>g. For this purpose theFLP/FRT system and the nat1 marker gene were comb<strong>in</strong>ed <strong>in</strong> a so-callednat1-Flipper cassette. To regulate the recomb<strong>in</strong>ase gene expression the<strong>in</strong>ducible xyl promoter was used. In future we <strong>in</strong>tend to use differentFlipper cassettes together with the Pcku70FRT2 stra<strong>in</strong> to constructmarker-free double and triple mutants.Furthermore the applicability of the developed marker recycl<strong>in</strong>g systemwas demonstrated <strong>in</strong> the ascomycetes Sordaria macrospora andAcremonium chrysogenum <strong>in</strong>dicat<strong>in</strong>g, that the optimized FLP/FRTrecomb<strong>in</strong>ation system will be suitable to fungi unrelated to the species<strong>in</strong>vestigated <strong>in</strong> this study.OTP097Methanogenic archaea from Siberian permafrost: unveil<strong>in</strong>gbiosignatures us<strong>in</strong>g Raman spectroscopyP. Serrano* 1 , U. Boettger 2 , J.P. de Vera 2 , D. Wagner 11 Alfred Wegener Institute for Polar Research, Geomicrobiology ofPermafrost Regions, Potsdam, Germany2 Deutsches Zentrum für Luft- und Raumfahrt e.V., Institut fürPlanetenforschung, Berl<strong>in</strong>, GermanyThe Mars Express and Phoenix Missions have reported the presence ofpermafrost sediments as well as high levels of methane <strong>in</strong> certa<strong>in</strong> areas ofthe northern hemisphere of the Red Planet. The fact that methane breaksup with UV-light and has a chemical lifetime of about 300 to 600 years <strong>in</strong>the Martian atmosphere is of great <strong>in</strong>terest because of its potentialbiological orig<strong>in</strong> (although geochemical explanations may also be possiblebut have not been confirmed yet).Methanogenic archaea from Siberian permafrost have been recentlyisolated at the Alfred Wegener Institute (AWI) <strong>in</strong> Germany. They present achemolithotrophic, anaerobic methabolism and are methane producers. Inaddition, they have proven to be remarkably resistant aga<strong>in</strong>st desiccation,osmotic stress, extremely low temperatures and starvation. Prelim<strong>in</strong>arystudies show that these archaea are able to survive simulated thermophysicalMartian conditions as well as the presence of UV-C and ioniz<strong>in</strong>gradiation. These features support that the methanogenic archea fromSiberian permafrost are strong candidates for potential present/past life <strong>in</strong>the Martian subsurface.The ExoMars Missions planned for 2016 and 2018 will <strong>in</strong>clude a Ramanspectroscope among the analytical <strong>in</strong>struments. Therefore, it is veryrelevant to get a deeper <strong>in</strong>sight <strong>in</strong> the Raman signatures of the terrestrialmethanogenic archaea to better <strong>in</strong>terpret the future data from Mars. As partof the “Biology and Mars Experiment” (BIOMEX) project, biosignaturesof methanogenic archaea from Siberian permafrost are be<strong>in</strong>g studied us<strong>in</strong>ga novel approach of Raman spectroscopy, never used before to describebiosignatures. Us<strong>in</strong>g a Raman source of 533nm, <strong>in</strong>terest<strong>in</strong>g spectra wasobta<strong>in</strong>ed for different species of methanogenic archaea, show<strong>in</strong>g commonpeaks to all the studied species (around 2900nm) and other peaks of moreBIOspektrum | Tagungsband <strong>2012</strong>


159specific nature. Lipid fractions from soil extracts were also analysed,present<strong>in</strong>g similar (although not identical) spectra to the studiedmethanogenic archaea. This fact po<strong>in</strong>ts out to some archaeal lipids, such asarchaeol, as possible biosignatures.OTP098Novel fungal components for biofilm manipulationT. Kle<strong>in</strong>tschek* 1 , H.-G. Lemaire 2 , U. Obst 1 , T. Schwartz 11 Karlsruhe Institute of Technology (KIT), Institute of FunctionalInterfaces, Karlsruhe, Germany2 BASF SE, Ludwigshafen, GermanyBiofoul<strong>in</strong>g presents a complex and a general problem <strong>in</strong> water-based<strong>in</strong>dustrial applications. For example, the bacterial attachment andsubsequent biofilm growth on reverse osmosis (RO) membranes arelargely responsible for the decl<strong>in</strong>e of the functional efficiency and the costeffectiveness.To date, for membrane clean<strong>in</strong>g mechanical or chemicalprocesses are commonly used. However, due to these treatments themembranes are often damaged which ultimately shortens the membranelife time. Therefore, several fungal supernatants are tested for activecomponents to achieve a careful and effective biofilm detachment ordestabilization from RO membranes. Fungi naturally produce a largenumber of metabolic products like exoenzymes. The fungal supernatants,produced by fermentation, are provided from an <strong>in</strong>dustrial type collection.To f<strong>in</strong>d novel fungal components 406 fungal supernatants were screened <strong>in</strong>a static high-throughput crystal violet assay with biofilms of s<strong>in</strong>glebacterial species. The promis<strong>in</strong>g supernatants were subsequentlycharacterized with further methods, such as colorimetric assays andimmunofluorescence microscopy. To perform the test<strong>in</strong>g of the promis<strong>in</strong>gsupernatants closer to natural and technical environments, a microfluidichigh-throughput biofilm reactor will be developed and characterized.Denatur<strong>in</strong>g gradient gel electrophoresis (DGGE) was used <strong>in</strong> order toanalyze the bacterial population of natural biofilms grow<strong>in</strong>g on ROmembranes.OTP099Development of a clean deletion and a transposon mutagenesisprocedure for Bacillus licheniformisM. Rach<strong>in</strong>ger* 1 , M. Pfaffenhäuser 1 , M. Schwarzer 1 , B. Mühlthaler 1 ,J. Bongaerts 2 , S. Evers 2 , K.-H. Maurer 3 , W. Liebl 1 , A. Ehrenreich 11 TU München, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g, Germany2 Henkel AG & Co. KGaA, Düsseldorf, Germany3 AB Enzymes GmbH, Darmstadt, GermanyBacillus licheniformis is an organism of great biotechnological potential.Based on its genome sequence a directed mutagenesis protocol enables<strong>in</strong>vestigation of specific genes identified by sequence analysis whereasrandom mutagenesis is used for identification of unknown genes belong<strong>in</strong>gto a def<strong>in</strong>ed function.For directed mutagenesis we established and developed a markerlessdeletion system <strong>in</strong> B. licheniformis. The result<strong>in</strong>g pKVM vector series canbe transferred by conjugation from E. coli and enables the construction ofdeletions up to 45 kbp. For a further improved and rapid procedure weused a nucleotide analogon for counter-selection without previousmodification of the <strong>in</strong>itial stra<strong>in</strong>. The pKVM vectors were exemplarilyused for deletion of genes <strong>in</strong>volved <strong>in</strong> C2 metabolism and methylcitratecycle.For undirected mutagenesis we used the mar<strong>in</strong>er based transposonTnYLB-1 which <strong>in</strong>tegrates at TA sites <strong>in</strong> the genome of B. licheniformis.The transposon system was transferred <strong>in</strong> a vector system capable forconjugative transfer and was subsequently used for construction of arandom transposon library. Transposition-rates up to 37 % were detectable.Transposon <strong>in</strong>sertion sites were identified by vectorette-PCR and <strong>in</strong>verse-PCR. F<strong>in</strong>ally, the library was screened for candidates <strong>in</strong>volved <strong>in</strong>anaerobic growth and utilization of acetate.OTP100Unusual membrane dynamics of Ignicoccus: 3D ultrastructureanalyzed by serial section<strong>in</strong>g and electron tomographyT. Heimerl* 1 , C. Meyer 2 , J. Flechsler 1 , U. Küper 1 , R. Wirth 1 , H. Huber 1 ,R. Rachel 11 Universität Regensburg, Lehrstuhl für Mikrobiologie, Regensburg, Germany2 Helmholtz Zentrum , Institute of Groundwater Ecology , München, GermanyThe hyperthermophilic chemolithoautotrophic Crenarchaeon Ignicoccushospitalisis an extraord<strong>in</strong>ary organism concern<strong>in</strong>g physiological features(e.g. CO 2 fixation), its ability to serve as host for Nanoarchaeum equitans,and also its ultrastructure [1, 2, 3]. In addition to its cytoplasmicmembrane, I. hospitalis has an outer membrane, and, <strong>in</strong> between bothmembranes, a large <strong>in</strong>terspace with round and elongated membranesurroundedvesicles and tubes [1]. We are <strong>in</strong>terested <strong>in</strong> analyz<strong>in</strong>g thestructure and network of the vesicles, the unusual overall cell architectureof Ignicoccus hospitalis, and the contact site to N. equitans, by 3D electronmicroscopy.Cells were cultivated <strong>in</strong> cellulose capillaries, high-pressure frozen, freezesubstitutedand res<strong>in</strong> embedded. Serial 50 nm sections were imaged bytransmission electron microscopy, and data aligned and visualized as 3Dstacks. For obta<strong>in</strong><strong>in</strong>g a higher resolution <strong>in</strong> the z-axis, 200 nm sectionswere analyzed by electron tomography. The f<strong>in</strong>al models show that themembrane system of I. hospitalisis dynamic and complex: Thecytoplasmic membrane frequently forms offshoots and <strong>in</strong>vag<strong>in</strong>ations.Vesicles can be found that are released from or fuse with the cytoplasmicmembrane; these are either free or <strong>in</strong>terconnected to other vesicles. Thephysiological role of this membrane vesicle system is yet unknown;however, it resembles the eukaryotic counterpart (like ER, Golgiapparatus, TGN), <strong>in</strong> structure and dynamics. In addition, the I. hospitalisgenome harbors seven prote<strong>in</strong>s that are homologues to the Bet3 subunit ofthe eukaryotic vesicle tether<strong>in</strong>g complex TRAPP I [4].Several macromolecules are part of the contact site: The N. equitans S-layer, and both, the <strong>in</strong>ner and outer membrane of I. hospitalis. Accord<strong>in</strong>gto label<strong>in</strong>g studies, N. equitans ga<strong>in</strong>s membrane lipids and am<strong>in</strong>o acidsfrom its host. 2D and 3D immuno-localisation showed that the Ihomp1prote<strong>in</strong>, the sulfur-H 2:oxidoreductase, and the A 1A OATP synthase arelocated <strong>in</strong> the outer membrane of I. hospitalis [5, 6], and are also part ofthe contact site. Biochemical studies helped to identify further prote<strong>in</strong>swhich might be relevant for cell-cell <strong>in</strong>teraction and/or metabolitetransport, like components of ABC transporters [7]. They are <strong>in</strong> the focusof ongo<strong>in</strong>g studies on the contact site.[1] W. Paper et al., Int J Syst Evol Biol 57 (2007), 803[2] U. Jahn et al., J Bacteriol 189 (2007), 4108[3] H. Huber et al., PNAS 105 (2008), 7851[4] M. Podar et al., Biol Direct, 3, (2008), 2[5] T. Burghardt et al., Mol Microbiol 63 (2007) 166[6] U. Küper et al., PNAS 107 (2010), 3152[7] T. Burghardt et al., Arch Microbiol 190, (2008), 379OTP101Characterisation of heat resistant spore formers isolated fromfoodsA. Rütschle* 1 , G. Lück<strong>in</strong>g 1 , M. Ehl<strong>in</strong>g-Schulz 2 , S. Scherer 11 Technische Universität München, ZIEL, Abteilung Mikrobiologie, Freis<strong>in</strong>g,Germany2 Veter<strong>in</strong>ärmediz<strong>in</strong>ische Universität Wien, Institut für FunktionelleMikrobiologie, Wien, AustriaAerobic spore formers (<strong>in</strong> many cases Bacillus species) are consistentlydetected <strong>in</strong> sterilized food and display a real hazard for the food <strong>in</strong>dustryand the consumer. Especially dairy products like UHT-cream, UHT-milk,soft cheese or milk powder are often contam<strong>in</strong>ated. In the context of aFEI/AiF research project (AiF 16012N) spore formers were isolated out ofdifferent foods (raw materials, pre and f<strong>in</strong>al products) and the foodprocess<strong>in</strong>g environment. In total, 450 isolates were identified via FTIRspectroscopyor 16S-rRNA sequenc<strong>in</strong>g and the heat resistance of thespores was tested at 100°C for 20 m<strong>in</strong>. It turned out that 97 of the 450isolates survived this thermal treatment. 29% of these heat resistantisolates were Bacillus subtilis, 17% Geobacillus stearothermophilus, 10%Bacillus amyloliquefaciens and 10% Bacillus licheniformis. B. subtilis wasthe most frequently detected heat resistant species. The heat resistanceproperties of these isolates were determ<strong>in</strong>ed <strong>in</strong> more detail and thermal<strong>in</strong>activation k<strong>in</strong>etics of 24 different B. subtilis stra<strong>in</strong>s at 95°C and 100°Cwere performed. The result<strong>in</strong>g D-values were stra<strong>in</strong>-specific and rangedfrom 15 m<strong>in</strong> to more than 180 m<strong>in</strong>. Further genetic and phenotypicanalyses may provide new <strong>in</strong>sights <strong>in</strong>to the strongly vary<strong>in</strong>g heatresistance properties of the Bacillus species [1].1. This research project was supported by the German M<strong>in</strong>istry of Economics and Technology (viaAiF) and the FEI (Forschungskreis der Ernährungs<strong>in</strong>dustrie e.V., Bonn). Project AiF 16012N.OTP102Thauera aromatica harbours a broad-host plasmid of the IncP-1plasmid that can be elim<strong>in</strong>ated <strong>in</strong> a model constructed wetlandP.M. Martínez-Lavanchy*, V. Imparato, Z. Chen, U. Kappelmeyer,P. Kuschk, M. Kästner, H.J. Heipieper, J.A. MüllerHelmholtz Centre for Environmental Research, EnvironmentalBiotechnology, Leipzig, GermanyThe denitrify<strong>in</strong>g ß-proteobacterium, Thauera aromatica, has served as amodel organism for biochemical research on anaerobic degradation ofaromatic compounds for many years. The genome of the type stra<strong>in</strong>, T.aromatica DSM6984, has now been sequenced by us. As expected, thosetransformation capabilities are reflected <strong>in</strong> the 4.3 Mbp genome.Unexpected, however, was the presence of a novel broad host plasmid ofthe IncP-1 family, pKJK10, that confers resistance to several classes ofwidely used antibiotics. Plasmids of this particular family are be<strong>in</strong>gconsidered as major vehicles for the spread of antibiotic resistance genes <strong>in</strong>cl<strong>in</strong>ical sett<strong>in</strong>gs, thereby hav<strong>in</strong>g a dramatic effect on medical treatmentoptions of microbial <strong>in</strong>fections. To our knowledge, this is the first time thatan IncP-1 plasmid has been found <strong>in</strong> an environmental microbe. WeBIOspektrum | Tagungsband <strong>2012</strong>


160characterised this plasmid <strong>in</strong> detail and could show that transfer viaconjugation to members of other microbial phyla occurs at high frequencyunder def<strong>in</strong>ed laboratory conditions. In contrast to those conjugationactivities, <strong>in</strong> a model constructed wetland the plasmid was rapidlyelim<strong>in</strong>ated. These data <strong>in</strong>dicate that constructed wetlands might beeffective and cost-efficient means for treatment of waters rich <strong>in</strong> bacteriaharbour<strong>in</strong>g antibiotic resistance genes.OTP103Towards the understand<strong>in</strong>g of the biosynthesis of -Nmethylam<strong>in</strong>oalan<strong>in</strong>e<strong>in</strong> cyanobacteriaA. Schilhabel, D. Langfeldt, N. P<strong>in</strong>now, C. Ehlers*Institut für Allgeme<strong>in</strong>e Mikrobiologie, Kiel, GermanyDiverse species of free liv<strong>in</strong>g as well as symbiotic cyanobacteria have beenreported to produce the non-prote<strong>in</strong>ogenic am<strong>in</strong>o acid -Nmethylam<strong>in</strong>oalan<strong>in</strong>e(BMAA) (Cox et al. 2005). BMAA is anenvironmental tox<strong>in</strong> accumulat<strong>in</strong>g via aquatic as well as terrestrial trophicwebs and it might be <strong>in</strong>volved <strong>in</strong> the etiology of motor neuron diseases <strong>in</strong>humans, like amyotrophic lateral sclerosis-park<strong>in</strong>sonism dementiacomplex (ALS-PDC) (Ince and Codd, 2005). Although toxic effects ofBMAA have been studied <strong>in</strong> mammalian test models and zebrafish asaquatic test model (Karaman and Speth, 2008; Purdie et al. 2009), untilnow no biosynthesis pathway for the production is known, which is crucialto understand if BMAA is synthesized constitutively or is regulated byenvironmental factors like e.g. nutrient supply.We aim at identify<strong>in</strong>g the BMAA biosynthesis pathway <strong>in</strong> cyanobacteriaand will here present first results on (i) detection of BMAA <strong>in</strong> differentcyanobacterial stra<strong>in</strong>s via a two-step HPLC-analysis and (ii) a potentialreaction mechanism for BMAA <strong>in</strong> the stra<strong>in</strong> Nostoc PCC7107.Cox et al. 2005; PNAS 102: 5074-5078Ince and Codd, 2005; Neuropathol. Appl. Neurobiol. 31. 345-353Karaman and Speth 2008 ; Life Sci. 82: 233-246Purdie et al. 2009 ; Aquatic Toxicology 95 : 279-284OTP104Act<strong>in</strong>obacterial chromosome tether<strong>in</strong>g factorC. Donovan*, B. Sieger, R. Krämer , M. BramkampUniversity of Cologne, Institute for Biochemistry, Cologne, GermanyBacteria exhibit a high degree of <strong>in</strong>tracellular organization, both <strong>in</strong> thetim<strong>in</strong>g of essential processes, and the placement of the chromosome anddivision site. The chromosome partition<strong>in</strong>g system of the rod-shapedact<strong>in</strong>omycete, Corynebacterium glutamicum consists of the Walker-typeATPase ParA, the DNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> ParB and centromere-like parSsites, found near the chromosomal orig<strong>in</strong> of replication. Upon <strong>in</strong>itiation ofchromosome replication, ParB specifically b<strong>in</strong>ds parS sites of the newlyreplicated oriC. ParA is recruited to the ParB-parS nucleoprote<strong>in</strong> complex,provid<strong>in</strong>g the driv<strong>in</strong>g force to relocalize the replicated oriC to the oppositecell pole. The ParB-oriC complex is then stably attached to the cell pole,where it rema<strong>in</strong>s and the cell divides <strong>in</strong> between the segregatedchromosomes. To date, polar orig<strong>in</strong> tether<strong>in</strong>g factors have been identified<strong>in</strong> only few bacteria. Thus, we were <strong>in</strong>terested <strong>in</strong> identify<strong>in</strong>g and analyz<strong>in</strong>gthe polar act<strong>in</strong>obacterial chromosome target<strong>in</strong>g factor. One possiblecandidate for tether<strong>in</strong>g the chromosome to the cell poles was the DivIVAprote<strong>in</strong>, which <strong>in</strong>fluences apical growth and cell shape <strong>in</strong> Act<strong>in</strong>obacteria.A synthetic <strong>in</strong> vivo approach was employed to analyse the anchor<strong>in</strong>g of theParB-oriC nucleoprote<strong>in</strong> complex to the cell poles via <strong>in</strong>teraction withDivIVA. In this system, E. coli cells, which lack homologues of the Parsystem and DivIVA, are used as the host for expression and <strong>in</strong>teractionanalysis of fluorescently labeled prote<strong>in</strong>s. It could be shown that DivIVAis necessary and sufficient to recruit ParB, therefore also tether the oriC atthe cell poles. With this synthetic system, <strong>in</strong> comb<strong>in</strong>ation with mutationalanalysis, the <strong>in</strong>teraction sites between ParB and DivIVA could be mapped.Indeed, analysis of a ParB mutant prote<strong>in</strong> <strong>in</strong> C. glutamicum showedreduced polar oriC localization. Interest<strong>in</strong>gly, the tether<strong>in</strong>g of the ParBoriCnucleoprote<strong>in</strong> complex at the cells via <strong>in</strong>teraction with DiviVA couldalso be demonstrated for other members of the Act<strong>in</strong>obacterium phylum,<strong>in</strong>clud<strong>in</strong>g the notorious pathogen Mycobacterium tuberculosis andStreptomyces coelicolor.OTP105New thermostable glycoside hydrolases derived fromthermophilic bacteria of the genus ThermusS. Blank* 1 , V. Bockemühl 1 , A. Angelov 2 , B. Leis², W. Liebl 2 ,G. Antranikian 11 Hamburg University of Technology, Institute of Technical Microbiology,Hamburg, Germany2 Technical University Muenchen, Department of Microbiology, Freis<strong>in</strong>g,GermanyThermus spp. constitutes one of the most widely distributed genera ofthermophilic bacteria. Most of the species have been isolated fromhydrothermal areas. Members of this genus are Gram-negative, non-motilerods, grow<strong>in</strong>g aerobically and anaerobically at an optimal temperature of60-70°C.Different Thermus-stra<strong>in</strong>s, able to utilize complex carbon sources such ascellulose and xylan, offer potential sources for thermostablelignocelluloses-degrad<strong>in</strong>g enzymes for application <strong>in</strong> bioref<strong>in</strong>ery. In the socalled „second generation bioref<strong>in</strong>ery” lignocellulosic material fromagricultural or forestry residues is used. An efficient and economic processrequires suitable pretreatment of this material <strong>in</strong>clud<strong>in</strong>g the enzymatichydrolysis of lignocellulose.With<strong>in</strong> this project several gene libraries from different Thermus-stra<strong>in</strong>swith dist<strong>in</strong>ct activity towards cellulose and xylan have been constructedand screened for glycoside-hydrolases. Two new -glucosidases could beidentified us<strong>in</strong>g E. coli as heterologous host. However, no activity oncellulose and xylan was observed although the Thermus wild-type stra<strong>in</strong>sshowed the correspond<strong>in</strong>g activity.To circumvent problems us<strong>in</strong>g a mesophilic host such as E. coli a newtwo-host fosmid system for the functional screen<strong>in</strong>g of gene libraries <strong>in</strong> thethermophilic host Thermus thermophilus will be tested currently. Thissystem offers the chance to harness new <strong>in</strong>dustrial relevant enzymes fromthermophilic bacteria.OTP106LipS and LipT, two novel thermostable lipolytic enzymesderived from soil and water metagenomesJ. Chow* 1 , C. Vollstedt 1 , B. Lau<strong>in</strong>ger 2 , P. Bongen 2 , J. Pietruszka 2 ,M. Eckste<strong>in</strong> 3 , O. Thum 3 , W.R. Streit 11 University of Hamburg, Microbiology and Biotechnology AG Streit,Hamburg, Germany2 He<strong>in</strong>rich-He<strong>in</strong>e-Universität Düsseldorf im Forschungszentrum Jülich,Institute for Bioorganic Chemistry (IBOC), Jülich, Germany3 Evonik Industries AG, Essen, GermanyLipolytic enzymes, namely carboxylesterases (EC 3.1.1.1) andtriacylglycerol lipases (EC 3.1.1.3), act on ester bonds and catalyze bothhydrolysis and synthesis reactions on a broad spectrum of substrates atvarious conditions render<strong>in</strong>g them especially suitable for biotechnologicalapplications. Some <strong>in</strong>dustrial production processes demand high work<strong>in</strong>gtemperatures and thus customized biocatalysts show<strong>in</strong>g a highthermostability. Most lipases used today orig<strong>in</strong>ate from mesophilicorganisms and are susceptible to thermal denaturation (Levisson et al.2009). Very few truly thermostable lipases are known. Here we report onthe identification and characterization of two novel thermostable bacteriallipases identified by us<strong>in</strong>g functional metagenomic screen<strong>in</strong>gs. Themetagenomic libraries were constructed from two different long-termenrichment cultures either <strong>in</strong>oculated with heat<strong>in</strong>g water or soil. Cultureswere ma<strong>in</strong>ta<strong>in</strong>ed at 65° to 75°C for three weeks and microbialcommunities characterized on a phylogenetic level based on 16S rRNA.Screen<strong>in</strong>g of the libraries us<strong>in</strong>g tributyr<strong>in</strong> and pNP-substrates (C 4 and C 12)at temperatures between 50°C and 70°C resulted <strong>in</strong> the identification ofeleven lipolytically active clones. Two clones have been studied <strong>in</strong> detail.The identified enzymes were designated LipS and LipT. Both enzymeswere expressed recomb<strong>in</strong>antly <strong>in</strong> E. coli BL21. The lipS gene encodes fora 30.2 kDa prote<strong>in</strong> and the recomb<strong>in</strong>ant enzyme reveals 50% residualactivity after 48 h at 70°C while the enzyme LipT (36.1 kDa) reveals 50%residual activity after 3 h at 70°C. LipS shows an optimum temperature at70°C, LipT at 75°C. Both enzymes catalyze the hydrolysis of medium tolong-cha<strong>in</strong> fatty acid esters like pNP-laurate (C 12) and -myristate (C 14).Furthermore, both enzymes hydrolyze a number of pharmaceuticallyrelevant chiral substrates like naproxen and ibuprofen esters. LipS actshighly specific on an ibuprofen-phenyl ester with an enantiomeric excess(ee) of 99 % for the (R) enantiomer. Interest<strong>in</strong>gly, LipS is able tosynthesize 1-propyl laurate and other long cha<strong>in</strong> fatty acid esters at 70°C.The synthesis rates were similar to those of the well-known lipase CalB.Thus, this is the first example of a thermostable metagenome-derivedenzyme that has comparable activities dur<strong>in</strong>g synthesis of polymericsubstances.Levisson, M., J. van der Oost, et al. (2009). "Carboxylic ester hydrolases fromhyperthermophiles."Extremophiles13(4): 567-81.OTP107Seroprevalence of porc<strong>in</strong>e parvovirus and leptospires <strong>in</strong> wildboars <strong>in</strong> Saxony, GermanyU. Ripp* 1,2 , A. Streck 1 , U. Truyen 1 , M. Pfeffer 1 , U. Plessow 1 , T. Homeier 11 University of Leipzig, Institute of Animal Hygiene and Veter<strong>in</strong>ary PublicHealth, Leipzig, Germany2 Synlab.vet Leipzig, Leipzig, GermanyMany countries <strong>in</strong> the world have populations of wild boars (Sus scrofa).They are known as reservoirs for a number of viruses as well as bacteriathat are transmissible to domestic animals and humans.Due to the <strong>in</strong>creased <strong>in</strong>teraction between humans and wild boars (e.g. trendof migration from cities, adaption of wild animals to urban areas) the riskof <strong>in</strong>fections for domesticated animals and men is gett<strong>in</strong>g higher.BIOspektrum | Tagungsband <strong>2012</strong>


161The importance of Leptospirosis is ma<strong>in</strong>ly its zoonotic potential, though itcan create losses <strong>in</strong> domesticated pigs as well. The organism is commonlyfound <strong>in</strong> bodies of water, moist soil or vegetation contam<strong>in</strong>ated by theur<strong>in</strong>e or tissues of <strong>in</strong>fected animals. For example, swimmers can contractthe disease <strong>in</strong> contam<strong>in</strong>ated <strong>in</strong>fected waters.In contrast, porc<strong>in</strong>e parvovirosis represents one of the most importantdisorders <strong>in</strong> domesticated pigs, but is not considered zoonotic. Highporc<strong>in</strong>e parvovirus (PPV) seroprevalences were found <strong>in</strong> wild boars <strong>in</strong>different European countries and the population of these animals iscurrently <strong>in</strong>creas<strong>in</strong>g. Therefore, wild boars may represent a threat fordomesticated pigs.In the present study, a total of 285 samples of wild boars shot <strong>in</strong> the areaaround Dresden, Saxony were exam<strong>in</strong>ed on the presence of antibodiesaga<strong>in</strong>st PPV and Leptospires.The specific antibody titres were determ<strong>in</strong>ed for PPV byhemagglut<strong>in</strong>ation-<strong>in</strong>hibition test (HI) and for Leptospira spp. bymicroagglut<strong>in</strong>ation test (MAT). The MAT panel consisted of 10 serovars.In case of PPV, titres 1:40 and <strong>in</strong> case of Leptospires, titres 1:100 wereconsidered positive.In total, 54.4 % of the samples were positive for PPV. To our knowledge,this is the first study on PPV seroprevalence <strong>in</strong> wild boars <strong>in</strong> Germany andthe results <strong>in</strong>dicate the need for further <strong>in</strong>vestigation.Although the exam<strong>in</strong>ation for leptospirosis has not yet been f<strong>in</strong>ished,prelim<strong>in</strong>ary results suggest a surpris<strong>in</strong>gly low prevalence of about 2.3 %,with two sera show<strong>in</strong>g MAT-titres of 1:50. In a previous study of urbanwild boars higher seroprevalences (18%) were found.OTP108Non-conventional translation <strong>in</strong>itiation <strong>in</strong> bacteriaM. Lehr*, P. Ludwig, D.J. Näther, J. SoppaGoethe-University, Institute for Molecular Biosciences, Frankfurt,GermanyInitiation of translation is an important step <strong>in</strong> the process of geneexpression. As <strong>in</strong>itiation is the rate-limit<strong>in</strong>g step of translation, mostregulatory mechanisms act at this step. The well-studied conventionalpathway of translation <strong>in</strong>itiation <strong>in</strong> bacteria relies on the <strong>in</strong>teraction of a socalled Sh<strong>in</strong>e Dalgarno (SD) motif upstream of the start codon with theanti-SD motif at 3’-end of the 16S rRNA. In addition to conventionaltranscripts two types of non-conventional transcripts exist <strong>in</strong> bacteria, i.e.leaderless transcripts lack<strong>in</strong>g a 5’-UTR and transcripts with a 5’-UTRwithout a SD motif. Initiation at leaderless transcripts requires thepreassembled 70S ribosome and the <strong>in</strong>itiator tRNA, while the <strong>in</strong>itiationmechanism for transcripts with SD-less 5’-UTRs is still unknown.Only about 60% of all E. coli genes are accompanied by SD motifs andthus about 40% have non-conventional transcripts (1). About 40 geneswith and without SD motifs were chosen and the 5’-ends of theirtranscripts were determ<strong>in</strong>ed us<strong>in</strong>g 5’-RACE. None of the transcripts wasleaderless, while 18 had a 5’-UTR without a SD motif. The 5’-UTRs ofthree SD-less transcripts and of one conventional transcript were fused tothe gusA reporter gene. The <strong>in</strong>itiation efficiencies of two of the SD-lesstranscripts were about 50% compared to the highly expressed conventionalcontrol transcript and even higher dur<strong>in</strong>g growth at 20 o C, underscor<strong>in</strong>g thatefficient translation is possible <strong>in</strong> the absence of a SD motif.To ga<strong>in</strong> a genome-wide overview of translational efficiencies <strong>in</strong> E. colitranslatome analyses were established, i.e. the separation of ribosome-freeuntranslated transcripts and of ribosome-bound transcripts and thecomparison of both fractions us<strong>in</strong>g DNA microarrays. As a first approachtranslation under standard conditions was compared to translation <strong>in</strong> thepresence of Kasugamyc<strong>in</strong>, which was described to specifically <strong>in</strong>hibittranslation of conventional transcripts. The 5’-ends of selected transcriptswere determ<strong>in</strong>ed. In contrast to the current belief there was no correlationbetween the presence of an SD motif and the <strong>in</strong>hibitory effect ofKasugamyc<strong>in</strong>. The next translatome analyses aim at characteriz<strong>in</strong>g the<strong>in</strong>fluence of different stress conditions on translational efficiencies and arecurrently under way.(1) Chang, B, Halgamuge, S., and Tang, S.L. (2006) Analysis of SD sequences <strong>in</strong> completedmicrobial genomes: non-SD-led genes are as common as SD-led genes. Gene 373: 90-99.OTP109Two new carotenoid cleavage oxygenases from mar<strong>in</strong>e bacteriaJ. Hoffmann* 1 , J. Altenbuchner 1 , H. Beuttler 2 , J. Bóna-Lovász 31 University of Stuttgart, Institute of Industrial Genetics, Stuttgart, Germany2 University of Stuttgart, Institute of Technical Biochemistry, Stuttgart, Germany3 University of Stuttgart, Institute for System Dynamics, Stuttgart, GermanyApocarotenoids are carotenoid cleavage products that are predom<strong>in</strong>antlyproduced by carotenoid cleavage oxygenases, a class of non-heme ironenzymes that specifically cleave C-C double bonds of carotenoids.Apocarotenoids have natural functions as colorants, antioxidants, aromacompounds or hormone-like signal<strong>in</strong>g molecules. They are technicallyapplied as nutritional supplements and colorants or flavors for food,cosmetics and pharmaceutical products. To date over 2000 genomes ofeukaryotes, archaea and bacteria have been sequenced and the data werepublished <strong>in</strong> the GenBank [1]. Numerous of these genomes conta<strong>in</strong>putative carotenoid cleavage oxygenase genes that have not been<strong>in</strong>vestigated yet. We constructed a two-plasmid expression system fortest<strong>in</strong>g the carotenoid cleavage activities of such enzymes. Two carotenoidcleavage oxygenases from Sph<strong>in</strong>gopyxis alaskensis RB2256 andPlesiocystis pacifica SIR-1 were further <strong>in</strong>vestigated.1. D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell and D.L. Wheeler, Nucleic AcidsResearch 36 (2008), p. D25.OTP110Isotopic f<strong>in</strong>gerpr<strong>in</strong>ts of bacterial chemosymbiosis <strong>in</strong> thebivalve Loripes lacteusA. Dreier* 1,2 , L. Stannek 1 , M. Blumenberg 2 , M. Taviani 3 , M. Sigov<strong>in</strong>i 4 ,C. Wrede 1 , V. Thiel 2 , M. Hoppert 1,21 Universität Gött<strong>in</strong>gen, Institut f. Mikrobiologie und Genetik, Gött<strong>in</strong>gen,Germany2 Universität Gött<strong>in</strong>gen, Courant Centre Geobiology, Gött<strong>in</strong>gen, Germany3 ISMAR-CNR, Bologna, Italy4 ISMAR-CNR, Venice, ItalyMetazoans with chemosynthetic bacterial endosymbionts are widespread<strong>in</strong> mar<strong>in</strong>e habitats and respective endosymbioses are known from sevenrecent animal phyla. However, little is known about endosymbioses <strong>in</strong>fossil sett<strong>in</strong>gs and, hence, its ecological significance <strong>in</strong> earth history. In thepresented project, we <strong>in</strong>vestigate the ancient and recent bivalve faunaliv<strong>in</strong>g at mar<strong>in</strong>e sedimentary oxic/anoxic <strong>in</strong>terfaces. Two bivalve speciescollected from the same benthic environment - a Mediterranean lagoon -were studied <strong>in</strong> detail. The diet of Loripes lacteus is based on thiotrophicgill symbionts whereas Venerupis aureus is a filter feed<strong>in</strong>g bivalve withoutsymbionts. The presence of three key enzymes from sulfur oxidation(APS-reductase), carbon fixation (RubisCO) and assimilation of nitrogen(glutam<strong>in</strong>e synthetase [GS]) were detected by immunofluorescence <strong>in</strong>symbionts of Loripes and/or by activity tests <strong>in</strong> liv<strong>in</strong>g specimens.In search of biosignatures associated with thiotrophic chemosymbionts thatmight be suitable for detection of chemosymbiontic diets <strong>in</strong> recent andfossil bivalve shells, we analyzed the isotopic composition of shell lipids( 13 C) and the bulk organic matrix of the shell ( 13 C, 15 N, 34 S). We couldshow that the comb<strong>in</strong>ed 15 N and 13 C values from shell extracts are stable<strong>in</strong> subfossil (Pleistocene) bivalve specimens, as long as the isotopic data is"calibrated" with respective signatures from a filter feed<strong>in</strong>g bivalvesampled from the same site or lithostratigraphic bed.OTP111A plasmid toolkit for the analysis of regulatory elements <strong>in</strong>Bacillus licheniformisR. Hertel*, H. LiesegangInstitute of Microbiology and Genetics, Gött<strong>in</strong>gen Genomics Laboratory,Gött<strong>in</strong>gen, GermanyBacillus licheniformis is a valuable <strong>in</strong>dustrial microorganism. Stra<strong>in</strong>s of itsspecies are used <strong>in</strong> <strong>in</strong>dustrial production of enzymes and antibiotics (1). Toimprove the <strong>in</strong>dustrial potential of this organism the <strong>in</strong>vestigation of theregulation, especially concern<strong>in</strong>g transcriptional and translational features,is of great <strong>in</strong>terest. However, the research on physiological activitiesdur<strong>in</strong>g fermentation processes suffers from the lack of adequate moleculartools. Here we present a set of related E. coli-Bacillus shuttle vectors forthe <strong>in</strong> vivo <strong>in</strong>vestigation of promoters and riboswitches. The backbone ofour vectors is constructed <strong>in</strong> a modular way to ease the adaptation of thedifferent components to a variety of experimental sett<strong>in</strong>gs. The qualitativeanalysis of s<strong>in</strong>gle cells <strong>in</strong> a culture is supported by gfp-vectors. Thequantification of regulatory activities is the target application of our lacZvectors.The orig<strong>in</strong> of replication of the pUB110 (2) vector offers theapplication <strong>in</strong> other species of the genus Bacillus. The observation that anumber of stra<strong>in</strong>s are genetically difficult to access is addressed by theability of the vectors to be transferred by transconjugation. We have shownthat our plasmids can be transferred from E. coli S17-1 (3) as a donorstra<strong>in</strong> to a number of test stra<strong>in</strong>s.(1) Schallmey, M., A. S<strong>in</strong>gh, and O.P. Ward, Can J Microbiol, 2004. 50(1): p. 1-17(2) Kegg<strong>in</strong>s, K. M., P. S.Lovett, and E J Duvall, Proc Natl Acad Sci U S A. 1978 March; 75(3): 1423-1427.(3) Simon, R., U. Priefer, and A. Pühler., Bio-Technology, 1983. 9(1): p. 784-791OTP112Characterisation of the cambialistic quercet<strong>in</strong>ase fromStreptomyces sp. FLAD. Nianios*, S. FetznerWestfälische Wilhelms-Universität Münster, Institut für MolekulareMikrobiologie und Biotechnologie, Münster, GermanyQuercet<strong>in</strong>ases catalyse the 2,4-dioxygenolytic cleavage of quercet<strong>in</strong>(3,5,7,3,4-pentahydroxyflavone), a wide-spread plant flavonol. Theybelong to the cup<strong>in</strong> superfamily, which is characterised by a six-stranded-barrel fold and conserved am<strong>in</strong>o acid motifs that provide the 3-His-1-Glu ligands to a divalent metal ion [1] . Whereas many cup<strong>in</strong>-typedioxygenases use Fe 2+ for catalysis, quercet<strong>in</strong>ase (QueD) fromBIOspektrum | Tagungsband <strong>2012</strong>


162Streptomyces sp. stra<strong>in</strong> FLA shows the highest activity with Ni 2+ ascofactor, followed by Co 2+ [2, 3] . The presumed ligand residues H69, H71and H115 of QueD were <strong>in</strong>dividually replaced by alan<strong>in</strong>e. Whereas QueD-H69A and QueD-H115A exhibited almost the same metal occupancy asthe wild type prote<strong>in</strong> (about 0.8 equivalents of nickel per prote<strong>in</strong>monomer), QueD-H71A conta<strong>in</strong>ed about 0.4 equivalents of nickel permonomer, <strong>in</strong>dicat<strong>in</strong>g that H71 is important for metal b<strong>in</strong>d<strong>in</strong>g. Replacementof H115 had only m<strong>in</strong>or effects on the activity of the enzyme, whereassubstitution of H71 or H69 resulted <strong>in</strong> enzymatic <strong>in</strong>activation.Interest<strong>in</strong>gly, anoxic fluorescence titration experiments <strong>in</strong>dicated that theQueD-H69A prote<strong>in</strong> is still able to b<strong>in</strong>d quercet<strong>in</strong> with a K d similar to thatof the wild-type enzyme, suggest<strong>in</strong>g that the H69 residue is relevant <strong>in</strong>catalysis rather than substrate b<strong>in</strong>d<strong>in</strong>g. Substrate deprotonation has beendiscussed as the <strong>in</strong>itial reaction step catalysed by quercet<strong>in</strong>ases [4] . TheH69 residue may act as the general base catalyst for <strong>in</strong>itial deprotonationof the metal-bound quercet<strong>in</strong>.Preference for Ni 2+ is extraord<strong>in</strong>ary for oxygenases, rais<strong>in</strong>g the question ofwhether the metal ion has a redox role <strong>in</strong> catalysis. The quercet<strong>in</strong>asereaction has been proposed to <strong>in</strong>volve s<strong>in</strong>gle electron transfer from theflavonolate anion via the metal to dioxygen [4, 5] . However, Ni 2+ centers <strong>in</strong>ligand environments dom<strong>in</strong>ated by O- and N-donors were proposed to beredox <strong>in</strong>ert [6] . Construction and characterisation of a Zn 2+ isoform ofQueD ion could shed light upon the question of whether the metal acts asan electron conduit. S<strong>in</strong>ce <strong>in</strong> vivo <strong>in</strong>corporation of Zn 2+ <strong>in</strong>to cytosolicrecomb<strong>in</strong>ant QueD failed, periplasmic expression and <strong>in</strong> vitrotranscription/translation studies are currently be<strong>in</strong>g performed.[1]Dunwell JM, Culham A, Carter CE, Sosa-Aguirre CR, Goodenough PW (2001) Trends Biochem. Sci.26:740-746[2]Merkens H, Sielker S, Rose K, Fetzner S (2007) Arch. Microbiol. 187:475-487[3]Merkens H, Kappl R, Jakob RP, Schmid FX, Fetzner S (2008) Biochemistry 47:12185-12196[4]Ste<strong>in</strong>er RA, Kalk KH, Dijkstra BW (2002) Proc. Natl. Acad. Sci. USA 99:16625-16630[5]Schaab MR, Barney BM, Francisco WA (2006) Biochemistry 45:1009-1016[6]Maroney MJ (1999) Curr. Op<strong>in</strong>. Chem. Biol. 3:188-199OTP113Unravell<strong>in</strong>g the role of small non-cod<strong>in</strong>g RNAs<strong>in</strong>Methanosarc<strong>in</strong>a mazeiGö1D. Prasse* 1 , D. Jäger 1 , S. Pernitzsch 1,2 , A. Richter 3 , R. Backofen 3 , C. Sharma 2 ,R.A. Schmitz-Streit 11 Department of General Microbiology , Christian-Albrechts-University, Kiel,Germany2 Institute for Molecular Infection Biology, Julius-Maximilians-University,Würzburg, Germany3 Department of Computer Science , Albert-Ludwigs-University, Freiburg,GermanyIn recent years the global impact of small non-cod<strong>in</strong>g RNAs (sRNA) <strong>in</strong> alldoma<strong>in</strong>s of life comes more and more obvious. As still little is known onregulatory roles of sRNAs <strong>in</strong> the doma<strong>in</strong> of Archaea, we recentlyperformed a genome-wide RNA-seq approach, result<strong>in</strong>g <strong>in</strong> the discoveryof 248 sRNAs <strong>in</strong> Methanosarc<strong>in</strong>a mazeistra<strong>in</strong> Gö1 [1]. The archaeal modelorganism M. mazeiis a representative methylotrophic archaeon ofsignificant ecological importance due to its role <strong>in</strong> biogenic methaneproduction <strong>in</strong> various anaerobic habitats on Earth and is able to fixmolecular nitrogen. Here we present the characterization of one selectedsRNA, sRNA 162, us<strong>in</strong>g biochemical and genetic approaches. Therespective results will be discussed <strong>in</strong> order to elucidate the potentialregulatory role of sRNA 162 <strong>in</strong>M. mazei.1. Jäger D , Sharma CM , Thomsen J, Ehlers C, Vogel J, Schmitz RA (2009) Deep sequenc<strong>in</strong>ganalysis of the Methanosarc<strong>in</strong>a mazei Gö1 transcriptome <strong>in</strong> response to nitrogen availability.PNAS. 106(51):21878-21882OTP115Changes <strong>in</strong> the microbial community structure of a fjord as aresult of ecologically eng<strong>in</strong>eered oxygenation (Byfjorden, westernSweden)M. Forth* 1 , B. Liljebladth 2 , A. Stigebrandt 2 , P. Hall 3 , A. Treusch 11 University of Southern Denmark, Institute of Biology, Odense C, Denmark2 University of Gothenburg, Department of Earth Sciences, Gothenburg, Sweden3 University of Gothenburg , Mar<strong>in</strong>e Chemistry, Gothenburg, SwedenThe availability of oxygen has a high <strong>in</strong>fluence on the diversity ofcommunities and the distribution of organisms <strong>in</strong> pelagic ecosystems.Hypoxic or anoxic conditions caused e.g. by stratification lead to reducedhabitats for oxygen depend<strong>in</strong>g eukaryotic and prokaryotic life. In recentyears, oxygen depleted bodies of water are becom<strong>in</strong>g more common. It isexpected that <strong>in</strong> the near future anthropogenic <strong>in</strong>fluences like e.g. climatechange and agriculture will <strong>in</strong>tensify this problem. Recently, more efforthas been put <strong>in</strong>to the restoration of hypoxic habitats. TheBaltic deep-waterOXygenation(BOX) project proposed to <strong>in</strong>troduce oxygen <strong>in</strong>to the longtermhypoxic or anoxic bottom waters of the Baltic Sea by us<strong>in</strong>g w<strong>in</strong>ddriven pumps to generate artificial mix<strong>in</strong>g.The Swedish Byfjorden is a long-term stratified system with a lower watercolumn and benthic zone that has been anoxic for a long time. In addition,an <strong>in</strong>flow of freshwater from a river is generat<strong>in</strong>g a brackish, welloxygenatedlayer of surface water with lower sal<strong>in</strong>ity than the deeperlayers, strengthen<strong>in</strong>g the stratification. Because of this, the Byfjorden is anideal model system for the Baltic Sea. As a part of the BOX project, a pilotstudy to test the artificial oxygenation was started <strong>in</strong> 2009. A pump was<strong>in</strong>stalled <strong>in</strong> the Byfjorden to mix the surface water <strong>in</strong>to the deeper layersand thereby oxygenate the anoxic zone.In this study, we monitored changes <strong>in</strong> microbial community structure <strong>in</strong>response to the oxygenation project <strong>in</strong> the Byfjorden. We analyzed watercolumn samples from before and dur<strong>in</strong>g the oxygenation as well as from acontrol station <strong>in</strong> a nearby, natural oxic fjord us<strong>in</strong>g a molecular microbialcommunity profil<strong>in</strong>g method. Here, we present the results <strong>in</strong> the context ofbiogeochemical and hydrographical data to show the impact of theoxygenation on the bacterial and archaeal community structures.OTP116Gene cluster for biosynthesis of the catechol-peptidesiderophore griseobact<strong>in</strong> <strong>in</strong> Streptomyces griseusS.I. Patzer*, V. BraunMax Planck Institute for Developmental Biology, Tüb<strong>in</strong>gen, GermanyIron is an essential element for the growth and proliferation of nearly allmicroorganisms. In the presence of oxygen, soluble ferrous iron is readilyoxidized to its ferric form, which is predom<strong>in</strong>antly <strong>in</strong>soluble at neutral pH.To overcome iron limitation, many bacteria synthesize and secrete lowmolecular-weight,high-aff<strong>in</strong>ity ferric iron chelators, called siderophores,which are actively taken up as a complex with Fe 3+ by a cognate ABCtransport system. The ma<strong>in</strong> siderophores produced by streptomycetes aredesferrioxam<strong>in</strong>es.Here we show that several Streptomyces griseus stra<strong>in</strong>s, <strong>in</strong> addition,synthesize a hitherto unknown siderophore with a catechol-peptidestructure, which we named griseobact<strong>in</strong>. The production is repressed byiron. We sequenced a 26-kb DNA region compris<strong>in</strong>g a siderophorebiosynthetic gene cluster encod<strong>in</strong>g prote<strong>in</strong>s similar to DhbABCEFG,which are <strong>in</strong>volved <strong>in</strong> the biosynthesis of 2,3-dihydroxybenzoate (DHBA)and <strong>in</strong> the <strong>in</strong>corporation of DHBA <strong>in</strong>to siderophores via a nonribosomalpeptide synthetase. Adjacent to the biosynthesis genes are genes thatencode prote<strong>in</strong>s for the secretion, uptake, and degradation of siderophores.Knockout mutagenesis, complementation and heterologous expressionconfirmed the requirement of the dhb genes for synthesis and secretion ofDHBA and of the entire biosynthesis gene cluster for biosynthesis andsecretion of griseobact<strong>in</strong>. Griseobact<strong>in</strong> was purified and characterized; itsstructure is consistent with a cyclic and, to a lesser extent, l<strong>in</strong>ear form ofthe trimeric ester of 2,3-dihydroxybenzoyl-arg<strong>in</strong>yl-threon<strong>in</strong>e complexedwith alum<strong>in</strong>um under iron-limit<strong>in</strong>g conditions. This is the first report onthe identification of the genes responsible for DHBA and catecholsiderophore biosynthesis <strong>in</strong> Streptomyces.Patzer S. I., Braun V. (2010) J. Bacteriol. 192:426-35OTP117Biochemical and genetic characterization of ethylene glycolmetabolism <strong>in</strong> Pseudomonas putida KT2440 and JM37B. Mückschel* 1 , O. Simon 2 , J. Klebensberger 1 , N. Graf 3 , J. Altenbuchner 3 ,J. Pfannstiel 2 , A. Huber 2 , B. Hauer 11 Universität Stuttgart, Institute of Technical Biochemistry, Stuttgart, Germany2 Universität Hohenheim, Department of Biosensorics, Stuttgart, Germany3 Universität Stuttgart, Institute of Industrial Genetics, Stuttgart, GermanyBe<strong>in</strong>g an important build<strong>in</strong>g block for flavor chemicals and polymers,glyoxylic acid is a valuable product for many <strong>in</strong>dustrial processes. Theenzymatic oxidation of ethylene glycol could provide an <strong>in</strong>terest<strong>in</strong>galternative to the commonly used chemical synthesis of glyoxylic acid. Inorder to develop such a biocatalyst, we started to <strong>in</strong>vestigate themetabolism of ethylene glycol us<strong>in</strong>g the Pseudomonas putida stra<strong>in</strong>sKT2440 and JM37.We found that P. putida JM37 rapidly grows <strong>in</strong> m<strong>in</strong>imal media conta<strong>in</strong><strong>in</strong>gethylene glycol or glyoxylic acid as sole source of carbon and energy,while stra<strong>in</strong> KT2440 did not show growth even after three days of<strong>in</strong>cubation. However, experiments with dense cell suspensions revealedcomplete conversion of ethylene glycol for both stra<strong>in</strong>s. In contrast toJM37, stra<strong>in</strong> KT2440 showed temporal accumulation of glycolic acid andglyoxylic acid as <strong>in</strong>termediates, f<strong>in</strong>ally yield<strong>in</strong>g oxalic acid as the endproduct.To identify key enzymes <strong>in</strong>volved <strong>in</strong> the metabolism of ethylene glycol, adifferential proteomic approach was used. Increased expression oftartronate semialdehyde synthase (Gcl), malate synthase (GlcB), andisocitrate lyase (AceA) <strong>in</strong> stra<strong>in</strong> JM37 as well as AceA <strong>in</strong> stra<strong>in</strong> KT2440was found dur<strong>in</strong>g <strong>in</strong>cubations with ethylene glycol or glyoxylic acid. Acorrespond<strong>in</strong>g triple mutant stra<strong>in</strong> harbor<strong>in</strong>g an additional deletion <strong>in</strong>prpB, encod<strong>in</strong>g for methyl isocitrate lyase, was constructed andcharacterized <strong>in</strong> stra<strong>in</strong> KT2440. This mutant showed a significantreduction <strong>in</strong> the conversion of ethylene glycol and <strong>in</strong>creased accumulationof glycolic acid and glyoxylic acid compared to the wildtype stra<strong>in</strong>.Further analysis uncovered the <strong>in</strong>duction of two PQQ-dependant ethanolBIOspektrum | Tagungsband <strong>2012</strong>


163dehydrogenases, <strong>in</strong>dicat<strong>in</strong>g their important role with<strong>in</strong> the oxidativemetabolism of ethylene glycol. This hypothesis was further supported by acorrespond<strong>in</strong>g double deletionmutant, which shows a strong decrease <strong>in</strong>ethylene glycol metabolism.OTP118Subtyp<strong>in</strong>g off17- related genes <strong>in</strong> wastewater of slaughterhousesS. Elmegerhi 1,21 Biotechnology Research Center, Microbiology, Tripoli, Libyan ArabJamabiriya2 Libyan Arab JamabiriyaThe zoonotic pathogens ofE.colican survive over long periods <strong>in</strong> sewagesludge as well as on pasture land and <strong>in</strong> association water systems. Theycould be widely spread <strong>in</strong> the environment by direct land application ofsludge or by regular contam<strong>in</strong>ation of surface water, but limited<strong>in</strong>formation is available concern<strong>in</strong>g the spread<strong>in</strong>g of these pathogens <strong>in</strong>sewage of slaughterhouses. TheF17family <strong>in</strong>cludesF17a, F17b, F17c,F111fimbriae produced by bov<strong>in</strong>eE.colistra<strong>in</strong>s. Wastewater samples from12 slaughterhouses located <strong>in</strong> different regions <strong>in</strong>Francewere tested todetect theF17-related fimbriae and to detect four subtypes of structuralsubunit genes positiveEscherichia coliisolates. A total of 224 wastewatersamples were collected <strong>in</strong> wastewater treatment plants at different stagesof wastewater process<strong>in</strong>g <strong>in</strong> small and big abattoirs and down andupstream rivers, screened for the presence ofF17 genes(F17 a- A gene, F17b- A gene, F17c-A/gafA gene and F111-A gene) by multiplexPCR.F17positiveE. coliisolates were detected <strong>in</strong> 24 % of the samplescollected (54/224); F17 a- A gene were found <strong>in</strong> 18 %,F17 b- Agene <strong>in</strong>4%,F17c-A/gafAgene <strong>in</strong> 41% andF111-Agene <strong>in</strong> 37% of the samples <strong>in</strong> allslaughterhouses, respectively, suggest<strong>in</strong>g that they could be spread <strong>in</strong>to theenvironment. Our results suggest that the diversity of theE. coli-associatedvirulence factors <strong>in</strong> the stra<strong>in</strong>s <strong>in</strong>dicates that the environment may play animportant role <strong>in</strong> the emergence of new pathogenicE. colistra<strong>in</strong>s and to<strong>in</strong>crease our knowledge of the important prevention needed <strong>in</strong> ourenvironment from the pathogenicE. coliand their mutual correlation.Keywords: slaughterhouses- wastewater-multiplex PCR-F17 a- A gene,F17 b- A gene, F17c-A/gafA gene and F111-A gene.OTP119Identification of Lign<strong>in</strong>-degrad<strong>in</strong>g enzymes from bacteriaN. Staiger* 1 , S. Bartetzko 1 , T. Hirth 1,2 , S. Rupp 1 , S. Zibek 11 Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB,Stuttgart, Germany2 Universität Stuttgart, Institut für Grenzflächenverfahrenstechnik IGVT,Stuttgart, GermanyLign<strong>in</strong> is the most abundant renewable source of aromatics. [1] Therefore, itis an <strong>in</strong>terest<strong>in</strong>g natural source for aromatic compounds <strong>in</strong> chemicalsynthesis, glues or biobased materials. Lign<strong>in</strong>, together with Cellulose andHemicellulose, is part of the structural framework <strong>in</strong> plants. [2] There arehuge amounts of lign<strong>in</strong> available from straw, waste wood or by-productsfrom paper <strong>in</strong>dustry (~50 mio t/a). Nowadays around 98% are burned toproduce energy. A prerequisite for the efficient utilization of lign<strong>in</strong> as aresource for chemicals is an adequate depolymerization process to obta<strong>in</strong>aromatic monomers from the recalcitrant polymer structure. Severalenzymes have been shown to be <strong>in</strong>volved <strong>in</strong> the enzymatic lign<strong>in</strong>degradation process, especially laccases (EC 1.10.3.2) and peroxidases(lign<strong>in</strong> peroxidase, EC 1.11.1.14 and manganese peroxidase,EC 1.11.1.13)from white-rot fungi. [3]S<strong>in</strong>ce the commercially available lign<strong>in</strong>-modify<strong>in</strong>g enzymes (LMEs) fromfungi are too expensive for the use <strong>in</strong> <strong>in</strong>dustrial applications, we arefocuss<strong>in</strong>g on the identification and overproduction of LME from bacteria.To our knowledge, no lign<strong>in</strong> degrad<strong>in</strong>g enzymes from bacteria arecommercially available. We have identified seven bacterial stra<strong>in</strong>s withlign<strong>in</strong>-degrad<strong>in</strong>g potential from the literature and conducted cultivationexperiments to determ<strong>in</strong>e LME activity <strong>in</strong> the culture supernatants. Twomedia with or without lign<strong>in</strong> as <strong>in</strong>ductor have been used. Our results showthat six stra<strong>in</strong>s grew <strong>in</strong> the culture media supplemented with 0.2% (w/v)lign<strong>in</strong>. Meanwhile one stra<strong>in</strong> was able to grow with 0.1% (w/v) but notwith 0.2% (w/v) lign<strong>in</strong>. As expected, all of the stra<strong>in</strong>s were able to grow <strong>in</strong>the standard media without lign<strong>in</strong>. In most of the bacteria a significant<strong>in</strong>crease <strong>in</strong> LME production was determ<strong>in</strong>ed when supplemented withlign<strong>in</strong>. Currently, genomic libraries of selected bacteria out of these sevenstra<strong>in</strong>s are constructed and LMEs will be identified apply<strong>in</strong>g highthroughputscreen<strong>in</strong>g (HTS) methods.[1] Wong, D. W. S. (2009) Structure and action mechanism of lign<strong>in</strong>olytic enzymes. Appl BiochemBiotechnol(157), 174-209.[2] Kuhad, R. C., S<strong>in</strong>gh, A., Eriksson, K. E. (1997) Microorganisms and Enzymes Involved <strong>in</strong> theDegradation of Plant Fiber Cell Walls. Adv Biochem Eng Biotechnol.(57), 45-125.[3] Qi-He, C., Krügener, S., Hirth, T., Rupp, S., Zibek, S. (2011) Co-cultured production of lign<strong>in</strong>modify<strong>in</strong>genzymes with white-rot fungi. Appl Biochem Biotechnol.(165), 700-718.OTP120Beat the cold: Multiple roles of the RNA helicase CshA atlower temperatures <strong>in</strong> Bacillus subtilisM. Lehnik-Habr<strong>in</strong>k*, L. Rempeters, J. StülkeUniversity of Gött<strong>in</strong>gen, Dept. of General Microbiology, Gött<strong>in</strong>gen, GermanyIn its natural habitat, the upper layers of the soil, Bacillus subtilis has tocope with a wide range of environmental challenges like low temperatures.Under these conditions the bacterium is faced with decreased membranefluidity and changes <strong>in</strong> the topology of the DNA. Furthermore, theformation of secondary structures of RNA is favored with decreas<strong>in</strong>gtemperatures. To avoid undesirable <strong>in</strong>tra- and <strong>in</strong>termolecular <strong>in</strong>teractionsof RNA molecules, the cell encodes a variety of prote<strong>in</strong>s help<strong>in</strong>g the RNAto fold properly. One of the largest prote<strong>in</strong> classes <strong>in</strong> RNA metabolism areDEAD-box RNA helicases. Such RNA helicases are highly conservedenzymes utiliz<strong>in</strong>g ATP to b<strong>in</strong>d and remodel RNA or ribonucleoprote<strong>in</strong>complexes.In this study we have <strong>in</strong>vestigated the impact of the DEAD-box RNAhelicase CshA on the growth of B. subtilis at low temperatures. We showthat under these conditions CshA is crucial for the bacterium to surviveand deletion of cshA leads to aberrant cell morphologies. Us<strong>in</strong>g a wide setof experiments we demonstrate that CshA is <strong>in</strong>volved <strong>in</strong> the degradation ofmRNA, the proper assembly of ribosomes and <strong>in</strong>teractions with prote<strong>in</strong>s ofthe cold shock response. Taken together, the DEAD-box RNA helicaseCshA has multiple roles <strong>in</strong> the adaption process of the cell to lowertemperatures thereby deal<strong>in</strong>g with rRNA and mRNA molecules.OTP121Conjugative plasmid pLS20 of Bacillus subtilis alters thetranscriptome and physiology of its host organismT. Rösch* 1,2 , W. Golman 1 , J. González Pastor 3 , P.L. Graumann 11 Faculty of Biology II, Albert Ludwigs University, Microbiology, Freiburg,Germany2 Spemann Graduate School of Biology and Medic<strong>in</strong>e, Albert LudwigsUniversity, Freiburg, Germany3 Centro de Astrobiología (CSIC-INTA), Departamento de Ecología Molecular(Invernadero), Madrid, Spa<strong>in</strong>Bacillus subtilis stra<strong>in</strong>s from the environment harbor different plasmids,which have been shown to alter different physiological traits, such asbiofilm formation. Here we analyse <strong>in</strong> detail the effect of a largeconjugative plasmid found <strong>in</strong> B. subtilis isolate (natto) used for foodprocess<strong>in</strong>g <strong>in</strong> Japan. Our work provides evidence that the plasmid pLS20<strong>in</strong>duces a global change <strong>in</strong> gene regulation on the host chromosome, butma<strong>in</strong>ta<strong>in</strong>s and propagates itself without harmfully burden<strong>in</strong>g the host.Exponentially grow<strong>in</strong>g cells exhibited numerous differences <strong>in</strong> theexpression of genes <strong>in</strong>volved <strong>in</strong> the <strong>in</strong>termediary metabolism, cellenvelope, different cellular processes, stress resistance and motility.Several changes lead to a benefit for the fitness of the host to adapt toenvironmental changes, the observed reduction of motility may lead to abenefit for the plasmid for more efficient transfer between bacteria.Interest<strong>in</strong>gly, plasmid pLS20 shows a significantly extended lag phasecompared to plasmid-free Bacillus cells, and conjugates most efficientlydur<strong>in</strong>g the lag period between stationary phase and exponential growth.The later commencement of growth is accompanied by the <strong>in</strong>duction oftransfer genes dur<strong>in</strong>g this growth phase, while exponential growth leads toa reduction <strong>in</strong> transcription rates of conjugative prote<strong>in</strong>s. Our work revealsa mutual benefit for host and conjugative plasmid and a differentiation-likebehavior of conjugative DNA transfer.OTP122Removal of pharmaceutical compound diclofenac by iron bacteriaH. Zhu*, W. Sun, Y. Zhang, U. Szewzyk, S.-U. GeissenTechnical University Berl<strong>in</strong> (TU Berl<strong>in</strong>), Environmental Microbiology, Berl<strong>in</strong>,GermanyIn recent years, pharmaceuticals are <strong>in</strong>creas<strong>in</strong>gly be<strong>in</strong>g detected <strong>in</strong> manywaterways all over the world. As a frequently prescribed non-steroidalanti-<strong>in</strong>flammatory drug, diclofenac has been ubiquitously detected <strong>in</strong> the<strong>in</strong>fluents and effluents of wastewater treatment plants (WWTPs) at the g/llevel, and it also occurs at concentrations of the ng/l level <strong>in</strong> surface water,ground water and even <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water. Although the acute ecotoxicityof diclofenac is relatively limited, it def<strong>in</strong>itely poses a risk on theecosystems where it is present.Biotransformation is generally considered to be the ma<strong>in</strong> process by whichto remove pharmaceuticals, both <strong>in</strong> WWTPs and <strong>in</strong> aquatic environment.In many cases, microorganisms are applied to m<strong>in</strong>eralize the pollutants towater or degrade them to acceptable forms. In this work, pure cultured ironbacteria were utilized to remove diclofenac. Meanwhile, the variousfactors that might affect the removal efficiency, such as <strong>in</strong>itial diclofenacconcentration, residual Fe 2+ levels, and Mn content, were <strong>in</strong>vestigated.BIOspektrum | Tagungsband <strong>2012</strong>


164The study results <strong>in</strong>dicated that some stra<strong>in</strong>s of iron bacteria were veryeffective to remove diclofenac under axenic condition. Among the 18tested stra<strong>in</strong>s, 4 stra<strong>in</strong>s showed removal efficiency above 90%.[1] Ternes TA, 1998. Occurrence of drugs <strong>in</strong> German sewage treatment plants and rivers. Water Res 32:3245-3260[2] Heberer T, Reddersen K, Mechl<strong>in</strong>ski A, 2002. From municipal sewage to dr<strong>in</strong>k<strong>in</strong>g water: fate andremoval of pharmaceutical residues <strong>in</strong> the aquatic environment <strong>in</strong> urban areas. Water Sci. Technol. 46:81-88[3] Ashton D, Hilton M, Thomas KV, 2004. Investigat<strong>in</strong>g the environmental transport of humanpharmaceuticals to streams <strong>in</strong> the United K<strong>in</strong>gdom. Sci Total Environ 333:167-184[4] Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA, 2007. Occurrence and removal of pharmaceuticalsand endocr<strong>in</strong>e disruptors <strong>in</strong> South Korean surface, dr<strong>in</strong>k<strong>in</strong>g , and waste waters. Water Res 41(5):1013-1021[5] Zhang YJ, Geissen SU, Gal C, 2008b. Carbamazep<strong>in</strong>e and diclofenac: removal <strong>in</strong> wastewater treatmentplants and occurrence <strong>in</strong> water bodies. Chemosphere 73: 1151-1161[6] Monteiro SC, Boxall ABA, 2010. Occurrence and fate of human pharmaceuticals <strong>in</strong> the environment.Rev Environ Contam Toxicol 202:53-154OTP123Fluorescence microscopical analysis of PHB granuleassociated prote<strong>in</strong>s (PGAPs) <strong>in</strong> Ralstonia eutropha H16D. Rais*, D. Pfeiffer*, D. JendrossekInstitut für Mikrobiologie, Universität Stuttgart, Stuttgart, GermanyRalstonia eutropha H16 has become the model organism for study<strong>in</strong>gmetabolism of poly(3-hydroxybutyrate) (PHB), an importantbiodegradable biopolymer [1]. Despite > 2 decades of <strong>in</strong>tense research onPHB metabolism new PHB granule-associated prote<strong>in</strong>s were recentlydiscovered us<strong>in</strong>g a two hybrid screen<strong>in</strong>g approach [2]. Meanwhile, at least19 prote<strong>in</strong>s are known that are important for biosynthesis, ma<strong>in</strong>tenance and<strong>in</strong>tracellular mobilization of PHB <strong>in</strong> R. eutropha. These are: acetoacetyl-CoA-thiolase (PhaA) and acetoacetyl-CoA reductase (PhaB) that arenecessary for synthesis of the PHB monomer (3-hydroxybutyryl-CoA),five phas<strong>in</strong>prote<strong>in</strong>s (PhaPs) that <strong>in</strong>clude major constituents of the granulessurface layer, 9 PHB depolymerases (PhaZs) (two of which are oligomerhydrolases), PHB synthase (PhaC), regulator PhaR and recently discoveredPhaM that ensures equal distribution of PHB granules dur<strong>in</strong>g cell division[3]. Many of the above-mentioned prote<strong>in</strong>s presumably are attached to thePHB granules surface layer. However, only for PhaC, PhaR, PhaP1,PhaP5, PhaZa1 and PhaM data are published that confirm<strong>in</strong>vivoattachment of these PGAPs. In this study we determ<strong>in</strong>ed subcellularlocalization of all currently known 5 phas<strong>in</strong> prote<strong>in</strong>s (PhaP1-5) undercondition permissive and restrictive for PHB accumulation. N- and C-term<strong>in</strong>al fusions of the respective phas<strong>in</strong> prote<strong>in</strong> with eYfp wereconstructed and the respective fusions cloned on a braod host rangeplasmid were conjugatively transfered to R. eutropha. All fusions wereexpressed <strong>in</strong> the wild type H16, <strong>in</strong> stra<strong>in</strong> PHB-4 (a chemically <strong>in</strong>ducedmutant with a nonsense mutation <strong>in</strong> PhaC) and <strong>in</strong> a chromosomal phaCmutant. Similar fusions were constructed for all putative PHBdepolymerases. The results for the depolymerases will be presented <strong>in</strong> aseparated poster (A. Sznajder et al.).[1] Re<strong>in</strong>ecke, F., Ste<strong>in</strong>büchel, A. (2009). J. Mol. Microbiol. Biotechnol. 16:91-108[2] Pfeiffer D., Jendrossek D. (2011). Microbiology. 157:2795-807.[3] Pfeiffer D., Wahl A., Jendrossek D. (2011). Mol Microbiol.82:936-51.OTP124Elucidat<strong>in</strong>g the CRISPR-Cas-System of Methanosarc<strong>in</strong>a mazeiGö1D. Jäger, K. Weidenbach, L. Nickel, R. Schmitz-Streit*Christian-Albrechts-Universität Kiel, Institut für Allgeme<strong>in</strong>e Mikrobiologie,Kiel, GermanyMethanosarc<strong>in</strong>a mazei stra<strong>in</strong> Gö1 (M. mazei) belongs to themethylotrophic methanogens of the order Methanosarc<strong>in</strong>ales, which havethe most versatile substrate spectrum with<strong>in</strong> the methanogenic archaeacontribut<strong>in</strong>g significantly to the production of the green house gas (Rogers& Whitman, 1991; Thauer, 1998).The genome annotation published <strong>in</strong> 2002 (Deppenmeier et al., 2002) didnot <strong>in</strong>clude the <strong>in</strong>formation on potential CRISPR loci <strong>in</strong> archaeal modelorganism. Our recent <strong>in</strong>vestigations however identified the presence of twoma<strong>in</strong> CRISPR loci <strong>in</strong> M. mazei. As characteristic for CRISPR loci, both ofthem conta<strong>in</strong> a conserved direct repeat of 37 nucleotides <strong>in</strong> length. Thefirst CRISPR locus, conta<strong>in</strong><strong>in</strong>g 47 direct repeats with spacers, is flanked bya Cas type I-B system, whereas the second locus (conta<strong>in</strong><strong>in</strong>g 81 directrepeats) is flanked by a polycistronic operon encod<strong>in</strong>g a RAMP module ofCAS prote<strong>in</strong>s (type III-B). Interest<strong>in</strong>gly, based on sequence homology ofalready known Cas6 prote<strong>in</strong>s, none of the loci obviously encode for themajor endoribonuclease of crRNA maturation. Here we present theidentification of potential M. mazei Cas6 orthologs. The biochemicalcharacterization of the prote<strong>in</strong>(s) will be presented and discussed.Deppenmeier, U., Johann, A., Hartsch, T., Merkl, R., Schmitz, R. A., Mart<strong>in</strong>ez-Arias, R., Henne, A., et al.(2002). The genome of Methanosarc<strong>in</strong>a mazei: evidence for lateral gene transfer between bacteria andarchaea.J Mol Microbiol Biotechnol,4(4), 453-461.Rogers, J. E., & Whitman eds., W. B. (1991). Microbial production and consumption of greenhouse gases:methane, nitrogen oxides and halomethanes.ASM Press, Wash<strong>in</strong>gton DC.Thauer, R. K. (1998). Biochemistry of methanogenesis: a tribute to Marjory Stephenson. 1998 MarjoryStephenson Prize Lecture.Microbiology,144 ( Pt 9, 2377-2406.OTP125SMC is recruited to oriC by ParB and promotes chromosomesegregation <strong>in</strong> Streptococcus pneumoniae and Bacillus subtilisA. M<strong>in</strong>nen* 1 , L. Attaiech 2 , M. Thon 2 , *F. Bürmann 1 , J.-W. Veen<strong>in</strong>g 2 ,S. Gruber 11 Max Planck Institute of Biochemistry, Chromosome Organization andDynamics, Mart<strong>in</strong>sried, Germany2 Gron<strong>in</strong>gen Biomolecular Sciences and Biotechnology Institute, Gron<strong>in</strong>gen,NetherlandsReliable segregation of replicated chromosomes is a prerequisite forma<strong>in</strong>ta<strong>in</strong><strong>in</strong>g genomic <strong>in</strong>tegrity. Multi-prote<strong>in</strong> complexes formed by theStructural Ma<strong>in</strong>tenance of Chromosomes (SMC) prote<strong>in</strong>s are essentialplayers for perform<strong>in</strong>g this task both <strong>in</strong> mitosis and meiosis, as well asdur<strong>in</strong>g the bacterial cell cycle.SMC prote<strong>in</strong>s are highly conserved <strong>in</strong> all doma<strong>in</strong>s of life. Most bacteriaexpress a s<strong>in</strong>gle SMC that is associated with the kleis<strong>in</strong> ScpA and ScpBprote<strong>in</strong> to form a complex called "bacterial condens<strong>in</strong>". In many bacterialspecies condens<strong>in</strong> is <strong>in</strong>dispensable for proper chromosome condensationand segregation.We found that condens<strong>in</strong>s of Bacillus subtilis and the human pathogenStreptococcus pneumoniae promote segregation of replicatedchromosomes and are recruited to parS sites at the orig<strong>in</strong> of replication bythe sequence specific DNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> ParB. This target<strong>in</strong>gmechanism seems to be conserved at least among gram-positive bacteriaand can be reconstituted <strong>in</strong> a heterologous expression system.OTP126Bacterial cytoskeletal element MreB forms dynamic act<strong>in</strong>-likefilaments <strong>in</strong> live cells and <strong>in</strong> vitroH.J. Defeu Soufo* 1 , C. Reimold 1 , H. Breddermann 1 , P. von Ohlshausen 2 ,A. Rohrbach 2 , P.L. Graumann 11 Albert-Ludwigs-Universität, Institut für Mikrobiologie , Freiburg, Germany2 Albert-Ludwigs-Universität, Institut für Mikrosystemtechnik, Freiburg,GermanyMreB prote<strong>in</strong> is an essential component of the cell shape generationsystem and additionally affects many subcellular position<strong>in</strong>g processes <strong>in</strong>bacteria. MreB has a three dimensional structure that is highly similar tothat of act<strong>in</strong> and forms filamentous structures <strong>in</strong> vitro. However, it has stillbeen a matter of dispute if act<strong>in</strong> and MreB have arisen through divergentor convergent evolution. It has recently been proposed that the activity ofMreB does not depend on the formation of extended filaments and that theprote<strong>in</strong> forms patch like structures rather than dynamic filaments <strong>in</strong> vivo.Us<strong>in</strong>g super resolution microscopy (S-TIRF) with a resolution of 100 nm,we provide evidence that MreB forms filaments <strong>in</strong> live Bacillus subtilisbacteria, which can extend at a rate of 65 nm/s and mostly have a length <strong>in</strong>between half and full turns around the cell periphery. Filaments display asurpris<strong>in</strong>gly variable degree of orientations, from circumferential tohelical, can fuse and split, and show extension dynamics that are affectedthrough a po<strong>in</strong>t mutation with<strong>in</strong> the ATPase motif. FRAP experimentsreveal very fast exchange rates consistent with rapid filament turnover.MreB and its three paralogs Mbl and MreBH also form polymers <strong>in</strong> vitro,dependent on ATP and magnesium. Our results demonstrate that MreBforms extended filamentous structures that are able to confer long range<strong>in</strong>teractions with membrane prote<strong>in</strong>s, which can be circumferential as wellas helical. Given that any polymer has an <strong>in</strong>herent bend<strong>in</strong>g stiffness, andthat MreB filaments are mostly longer than a half turn around the cellperiphery, filaments may exert a mechanical force aga<strong>in</strong>st the membranethat can lead to local transfer of energy aga<strong>in</strong>st the wall, possiblyfacilitat<strong>in</strong>g the <strong>in</strong>corporation of new peptidoglycan strands <strong>in</strong>to the exist<strong>in</strong>gwall polymer. Our data further support the notion that MreB and act<strong>in</strong> havehad a common ancestor whose function was already based on dynamicfilament extension/retraction reactions.OTP127Analysis of the complete genome of Janth<strong>in</strong>obacterium sp. HH01reveals a homoser<strong>in</strong>e lactone-<strong>in</strong>dependent regulation of theviolace<strong>in</strong> biosynthesis genesC. Hornung* 1 , A. Poehle<strong>in</strong> 2 , M. Schmidt 1 , M. Blokesch 3 , R. Daniel 2 ,W. Streit 11 Universität Hamburg, Biozentrum Kle<strong>in</strong> Flottbek, Mikrobiologie undBiotechnologie, Hamburg, Germany2 Georg-August-University of Göttigen, Gött<strong>in</strong>gen Genomics Laboratory,Institute of Microbiology and Genetics, Gött<strong>in</strong>gen, Germany3 Polytechnique Fédérale de Lausanne (EPFL), Laboratory of MolecularMicrobiology, Global Health Institute, Lausanne, Switzerland, SwitzerlandThe gram-negative -proteobacterium Janth<strong>in</strong>obacterium sp. HH01 wasrecently isolated from an aquatic environment. Janth<strong>in</strong>obacteria formbeneficial biofilms on the sk<strong>in</strong> of amphibia and are <strong>in</strong>volved <strong>in</strong> prevent<strong>in</strong>gfungal growth [1,2]. HH01 grows well <strong>in</strong> a wide temperature rangebetween 4 and 17 °C and produces violace<strong>in</strong> <strong>in</strong> stationary growth phase.BIOspektrum | Tagungsband <strong>2012</strong>


165In order to analyze the role of HH01 and its relation to the eukaryotic host,we established its genome sequence. The genome was determ<strong>in</strong>ed with asize of seven Mb. The most important f<strong>in</strong>d<strong>in</strong>g was a number ofPKS/NRPS-gene clusters that make this microbe potentially <strong>in</strong>terest<strong>in</strong>g forthe synthesis of novel drug molecules. In addition, it revealed the presenceof all known secretion systems (except type III) and a violace<strong>in</strong>biosynthesis operon. But contrary to the AHL (acyl homoser<strong>in</strong>e lactone)-dependent regulation of the known Chromobacterium violaceum violace<strong>in</strong>biosynthesis operon [3], no evidence for an AHL-dependent mechanismwas observed.To identify structural and regulat<strong>in</strong>g genes l<strong>in</strong>ked to the violace<strong>in</strong> synthesisa Tn5 transposon mutant library of about 7,000 clones was screened forclones impaired <strong>in</strong> violace<strong>in</strong> biosynthesis. About fifty white or weaklyviolet mutant clones were obta<strong>in</strong>ed and subsequently analyzed by PCR andcomplementation experiments. Besides a number of mutations located <strong>in</strong>structural genes, several mutations could be l<strong>in</strong>ked to the regulatorypathway associated with the violace<strong>in</strong> gene expression. These mutants arecurrently be<strong>in</strong>g <strong>in</strong>vestigated <strong>in</strong> more detail to elucidate the quorum-sens<strong>in</strong>gsystem of this newly discovered organism. Moreover data from thegenome annotation and complementation tests suggests that HH01 controlsthe violace<strong>in</strong> biosynthesis us<strong>in</strong>g a s<strong>in</strong>gle auto<strong>in</strong>ducer synthase andcorrespond<strong>in</strong>g receptor similar to the Vibrio cholerae CqsA/CqsS quorumsens<strong>in</strong>gsystem. Thus this is first example of a violace<strong>in</strong> biosynthesispathway that is not controlled by the <strong>in</strong>fluence of AHL auto<strong>in</strong>ducermolecules.[1] Matz et al., PLoS ONE3:e2744 (2008), [2] Becker et al.,Appl Environ Microbiol 75:6635-38(2009), [3] Hosh<strong>in</strong>o, Appl Microbiol Biotechnol 91:1463-75(2011)OTP128L-lys<strong>in</strong>e production by Corynebacterium glutamicum utiliz<strong>in</strong>galternative renewable resourcesS. Schiefelbe<strong>in</strong>*, J. Becker, N. Buschke, C. WittmannTU Braunschweig, Institute of Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, Braunschweig,GermanyWith a world market of 1.5 Million tons per year, the essential am<strong>in</strong>o acidL-lys<strong>in</strong>e is one of the most important biotechnological products. L-lys<strong>in</strong>eis ma<strong>in</strong>ly produced by fermentation us<strong>in</strong>g sugar-based feedstocksconsist<strong>in</strong>g of glucose, fructose or sucrose. However the use of these sugarshas certa<strong>in</strong> disadvantages. On the one hand the prices are constantly ris<strong>in</strong>gand on the other hand the use of sugars competes with the food <strong>in</strong>dustries.Therefore alternative carbon sources like lactate [1] or xylose [2] ga<strong>in</strong><strong>in</strong>terest for fermentative production. Systems metabolic eng<strong>in</strong>eer<strong>in</strong>gprovides an excellent start<strong>in</strong>g po<strong>in</strong>t to establish correspond<strong>in</strong>g productionprocesses. Recently a superior genetically def<strong>in</strong>ed Corynebacteriumglutamicum stra<strong>in</strong> was created with excellent production properties dur<strong>in</strong>ggrowth on glucose and <strong>in</strong>dustrially relevant feedstocks <strong>in</strong>clud<strong>in</strong>g molassesand corn steep liquor [3] .In this work we <strong>in</strong>vestigated the use of lactate and xylose as alternativecarbon sources. For xylose this first required metabolic eng<strong>in</strong>eer<strong>in</strong>g of thexylose assimilation pathways as previously demonstrated for theproduction of diam<strong>in</strong>opentane [2] .Lys<strong>in</strong>e production from lactate also requires eng<strong>in</strong>eer<strong>in</strong>g of C. glutamicum.Consequently the L-lys<strong>in</strong>e hyper produc<strong>in</strong>g C. glutamicum stra<strong>in</strong> wasmodified to better growth on lactate. This <strong>in</strong>cluded overexpression of thegene for qu<strong>in</strong>one-dependent L-lactate dehydrogenase (LldD), by us<strong>in</strong>g anative strong promoter.Both producer stra<strong>in</strong>s were <strong>in</strong>vestigated for their performance to producelys<strong>in</strong>e. They exhibited <strong>in</strong>terest<strong>in</strong>g properties and serve as a valuable proofof concept for bio based production on novel feedstocks.[1] Neuner et al. (2010): Mixed glucose and lactate uptake by Corynebacterium glutamicum throughmetabolic eng<strong>in</strong>eer<strong>in</strong>g[2] Buschke et al. (2011): Metabolic eng<strong>in</strong>eer<strong>in</strong>g of Corynebacterium glutamicum for production of 1,5-diam<strong>in</strong>o-pentane from hemicellulose.[3] Becker et al. (2010): From zero to hero - Design-based systems metabolic eng<strong>in</strong>eer<strong>in</strong>g ofCorynebacterium glutamicum for L-lys<strong>in</strong>e productionOTP129MenD- a biocatalyst for asymmetric C-C-ligationsS. Baier* 1 , A. Kurutsch 2 , M. Müller 2 , G. Sprenger 11 University of Stuttgart, Institute of Microbiology, Stuttgart, Germany2 Albert-Ludwig-University, Institute for Pharmaceutical Science,Freiburg, GermanyBesides their natural functions <strong>in</strong> cell metabolism, many thiam<strong>in</strong>ediphosphate (ThDP) dependent enzymes can be used <strong>in</strong> vitro for C-Cligationreactions (pyruvate decarboxylase, transketolase, benzoylformatedecarboxylase and others). 1 In menaqu<strong>in</strong>one biosynthesis, the ThDPdependentMenD (2-succ<strong>in</strong>yl-5-enol-pyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) Synthase) performs a Stetter-like 1,4 additionreaction by ligat<strong>in</strong>g isochorismate and 2-ketoglutarate under non-oxidativedecarboxylation to yield SEPHCHC. 2,3 MenD (subunit size of 65 kDa)from E. coli requires ThDP and a bivalent metal ion. 4 So far, MenD is theonly described enzyme catalyz<strong>in</strong>g a Stetter-like reaction which means thata nucleophilic donor substrate (2-ketoglutarate) is attached to ,unsaturatedcarbonyl acceptor (e.g. isochorismate). The reported K M andK cat values are <strong>in</strong> the M and 1 m<strong>in</strong> -1 range, respectively. 3 Crystalstructures for MenD wild type and mutant prote<strong>in</strong>s have been reportedfrom E. coli and B.subtilis allow<strong>in</strong>g <strong>in</strong>sights <strong>in</strong>to am<strong>in</strong>o acid residues ofthe active site which are discussed for cofactor and substrate b<strong>in</strong>d<strong>in</strong>g. 4,5,6Besides the Stetter-like reaction, MenD also catalyzes an 1,2-addition andprovides the approach to hydroxyketones. 7 Therefore, it is a promis<strong>in</strong>gbiocatalyst for C-C bond formation, but the substrate range has to beextended (e.g. 2,3-CHA) to ga<strong>in</strong> access to new products. Also, <strong>in</strong> vivobiosynthesis of MenD products with recomb<strong>in</strong>ant E.coli cells is a goal.Work on both the clarification of structure-function-relationship and theextension of the substrate range is underway and data will be presented.[1] Pohl, M., Sprenger, G.A., & Müller, M.:Curr Op Biotech 2004,15: 335-342.[2] Jiang M, Cao Y, Guo ZF, Chen M, Chen X & Guo Z:Biochem 2007, 46. 10979- 10989[3] Emmson GT, Campell IM & Bentley R:Biochem Biophys Res Commun 1985, 131, 956- 960[4] Bhas<strong>in</strong> M, Bill<strong>in</strong>sky JF, Palmer DRJ:Biochem 2003,42, 13496-13504[5] Priyadarshi A, Kim EE, Hwang KY:Biochem. Biophys. Res. Commun.2009,388, 4, 748-751[6] Dawson A,Fyfe PK& Hunter WN:J. Mol. Biol. 2008. 384, 1353-1368[7] Kurutsch A, Richter M, Brecht V,SprengerGA, Müller M:J. Mol. Catal. B, Enzym.2009, 61: 56-66.OTP130Phototrophic microbial fuel cell: Mircobial ecology forelectroactive systemsX.A. Walter*, I. Ieropoulos, J. Greenman, C. MelhuishUniversity of the West of England, Bristol Robotic Laboratory, Bristol, UnitedK<strong>in</strong>gdomOne century ago (1911) Potter has shown that electricity could begenerated by anaerobic microbial respiration of organic matter: the firstmicrobial fuel cell (MFC) was born. MFC systems are composed of twocompartments: an anodic chamber and a cathodic one. The electricity isgenerated <strong>in</strong> the anodic side by the microbiologically driven transfer ofelectrons from secondary fermentation products (e.g: fatty acid, ethanol,lactate, butyrate, acetate etc) to the electrode. The anode and cathodeelectrodes are connected through a circuit, which facilitates the flow ofelectrons from the former to the latter; this results <strong>in</strong> the production ofelectrical current. The produced protons (H + ) diffuse from the anodiccompartment <strong>in</strong>to the cathodic chamber, through a proton exchangemembrane (PEM) where they react with oxygen and <strong>in</strong>com<strong>in</strong>g electrons,thus produc<strong>in</strong>g water.The project aims are to use MFC for both carbon capture and electricityproduction. To achieve our objectives, we reproduce a controlled electroncascade such as the one occurr<strong>in</strong>g <strong>in</strong> stratified microbial food-web (e.g.microbial mats). In such systems, carbon is fixed through photosynthesisas biomass that is further consumed by underly<strong>in</strong>g anaerobic respirations.In our case, we cultivate oxygenic phototrophs for their capacity ofextract<strong>in</strong>g electrons from water and utilize it to reduce <strong>in</strong>organic carbon<strong>in</strong>to biomass. In addition, the by-product of their metabolism, oxygen, willenhance cathode efficiency by an O 2 supersaturation effect. The producedbiomass will therefore serve as the electron donor for anaerobic respiration<strong>in</strong> the anodic compartment. In this system the <strong>in</strong>organic carbon serves as atransporter to harvest light energy <strong>in</strong> the cathodic compartment and torelease it <strong>in</strong> the anodic one as electrons. The ma<strong>in</strong> challenge is to controlthe recycl<strong>in</strong>g of elements between those two compartments <strong>in</strong> order to beas close to as possible a semi-closed artificial ecosystem. Therefore, wewill obta<strong>in</strong> a carbon-neutral electroactive system. However, as we arereproduc<strong>in</strong>g an artificial microbial ecosystem, certa<strong>in</strong> ecological conceptshave to be taken <strong>in</strong>to account. Thus, we will present the ecological aspectsthat we have to control <strong>in</strong> order to produce an electroactive and carbonneutralsemi-closed system.OTP131Lake La Cruz, a Neoarchean Ecotone Ocean analogueX.A. Walter* 1 , A. Picazo-Mozo 2 , M.-R. Miracle 2 , E. Vicente 2 , A. Camacho 2 ,J. Zopfi 21 University of the West of England, Bristol Robotic Laboratory, Bristol, UnitedK<strong>in</strong>gdom2 University of Valencia, Institut Cavanilles de Biodiversitat i BiologiaEvolutiva, Burjassot, SwitzerlandRecent research on the biogeochemistry of the Late Archean Ocean (2.7-2.5 Ga) showed that there was a spatial patchwork of physical-chemicalconditions. A simplified model of an Archean Ocean would thus consist oftwo dist<strong>in</strong>ct compartments with different dom<strong>in</strong>at<strong>in</strong>g biogeochemicalprocesses: I) a shallow Ocean Marg<strong>in</strong> compartment with oxygenicphotosynthesis <strong>in</strong> the upper water column, and eux<strong>in</strong>ic conditions (anoxicand sulfidic) below the chemocl<strong>in</strong>e and <strong>in</strong> the sediments; II) an anoxicFe(II)-rich Open Ocean compartment with a primary productiondom<strong>in</strong>ated by anoxygenic photoferrotrophy and methanogenesis prevail<strong>in</strong>gorganic matter degradation <strong>in</strong> bottom layers and sediments.Whilst analogues of an ocean with established sulfur cycle, correspond<strong>in</strong>gto compartment I, have been described and well studied (e.g. Black Sea orLake Cadagno), only one modern analogues of the ferrug<strong>in</strong>ous open watercompartment has been described. Therefore, we study the microbial ironcycl<strong>in</strong>g, <strong>in</strong> the ferrug<strong>in</strong>ous water column of Lake La Cruz (Spa<strong>in</strong>). WeBIOspektrum | Tagungsband <strong>2012</strong>


166have shown direct evidences, for the first time, of the activity of anaerobicferro-oxidizers with<strong>in</strong> the water column. We have demonstrated that thoseautotrophs thrived by photoferrotrophy (anoxygenic photosynthesis) or bychemo-ferrotrophy (nitrate-dependent respiration). More over, all themetabolisms thought to have existed <strong>in</strong> the Late Archean Ocean arepresent <strong>in</strong> Lake La Cruz. Therefore, the results from this study comb<strong>in</strong>edwith those of previous studies allowed us to establish a biogeochemicalmodel that complement the ones describe above. Accord<strong>in</strong>gly, the watercolumn of Lake La Cruz may represent an ecotone between the two ma<strong>in</strong>Neoarchean Ocean compartments and, consequently, be a good modelsystem, or samples source, for study<strong>in</strong>g metabolic activity <strong>in</strong>teractions <strong>in</strong>experimental conditions that reflect theoretical models of the ArcheanOcean.OTP132Elim<strong>in</strong>ation of <strong>in</strong>dicator bacteria and viruses <strong>in</strong> open andcovered simulation channels of stream<strong>in</strong>g waterH.-C. Sel<strong>in</strong>ka* 1 , H. Dizer 1 , A. Frohnert 1 , R. Schmidt 2 , R. Szewzyk 11 Umweltbundesamt, FG II 1.4, Berl<strong>in</strong>, Germany2 Umweltbundesamt, FG IV 2.5, Berl<strong>in</strong>, GermanyIndicator bacteria have been shown to have limited value as <strong>in</strong>dicators forthe presence of viruses <strong>in</strong> water systems. For this reason, bacteriophages(coliphages) or human adenoviruses have been proposed as additional<strong>in</strong>dicators for human pathogenic viruses. To test their suitability, survivalof <strong>in</strong>dicator bacteria and viruses after release from a waste water discharge<strong>in</strong>to a river was studied <strong>in</strong> a river water simulation plant. The plantconsisted of elliptical channels each of 100 m length, 100 cm diameter and40 cm water depth, allow<strong>in</strong>g onl<strong>in</strong>e monitor<strong>in</strong>g of selected physical andchemical parameters. Concentrations of E. coli and <strong>in</strong>test<strong>in</strong>al enterococci,as well as somatic coliphages, F+phages, human adenoviruses andnoroviruses were monitored after a peak contam<strong>in</strong>ation of channel waterwith 1% or 5% of primary waste water effluent. Special attention wasgiven to the effect of sunlight and its UV components on the survival ofthese bacteria and viruses by us<strong>in</strong>g an open channel and a channelprotected from sunlight at different times of the year. Radiation wasmonitored as mJ/cm 2 from meteorological data. The dis<strong>in</strong>fection effect ofradiation was characterized through time and dose dependend k<strong>in</strong>etics ofelim<strong>in</strong>ation of test organisms as log unit per time ( t) or per radiation doseof sunlight ( d). As expected, the effect of solar radiation was dependenton the season with maximum effects dur<strong>in</strong>g summer. The effect ofradiation differed with regard to the test bacteria and viruses. Exposure tosunlight had a more significant effect on the <strong>in</strong>dicator bacteria than on theviruses. Most prolonged survival was found for somatic coliphages as wellas for human adeno- and noroviruses. These results support previousf<strong>in</strong>d<strong>in</strong>gs that <strong>in</strong>dicator bacteria are no good <strong>in</strong>dicators for viruses andsuggest coliphages as suitable viral <strong>in</strong>dicators, especially under adverseenvironmental conditions like high irradiation <strong>in</strong>tensity.OTP133Microvir<strong>in</strong> - a novel cyanobacterial lect<strong>in</strong> with broad andpotent anti-HIV activityJ.-C. Kehr* 1 , D. Huskens 2 , D. Schols 2 , E. Dittmann 11 Universität Potsdam, Mikrobiologie, Golm, Germany2 Katholieke Universiteit Leuven, Rega Institute for Medical Research, Leuven,BelgiumCarbohydrate b<strong>in</strong>d<strong>in</strong>g agents such as lect<strong>in</strong>s have proven to be valuablesource of anti-HIV therapeutics that may be applied as microbicides. It isknown that a variety of mannose-specific plant lect<strong>in</strong>s that b<strong>in</strong>doligomannose glycans have strong<strong>in</strong> vitroanti- HIV-1 <strong>in</strong>hibitory activities,and therefore have been proposed as microbicide candidates for topicalprophylaxis of HIV-1 <strong>in</strong>fection and as potential anti-HIV therapeutics.Here, we present the mannan-b<strong>in</strong>d<strong>in</strong>g lect<strong>in</strong> microvir<strong>in</strong> (MVN) from thecyanobacterium Microcystis aerug<strong>in</strong>osa PCC 7806 that represents apromis<strong>in</strong>g new HIV microbicide candidate. The sugar specificity of theprote<strong>in</strong> was elucidated through carbohydrate microarrays, which revealedMVN to be selective for mannan-type oligosaccharides with term<strong>in</strong>al a(1-2)-mannose moieties. Compared to the related prote<strong>in</strong> cyanovir<strong>in</strong>-n itexhibited comparable and broad anti-HIV-1 activity aga<strong>in</strong>st all evaluatedHIV-1 virus stra<strong>in</strong>s and cl<strong>in</strong>ical isolates, but was much less (>500-fold)cytotoxic when evaluated <strong>in</strong> various human T cell l<strong>in</strong>es and humanperipheral blood mononuclear cells (PBMC). In addition MVN was notmitogenic, did not <strong>in</strong>duce cellular activation markers <strong>in</strong> PBMC and neverenhanced viral replication, as this was observed with cyanovir<strong>in</strong> <strong>in</strong>specifically designed PBMC assays. The possible pathogenicconsequences associated with these side-effects have now raised the issueof safety of all other members of the antiviral class of lect<strong>in</strong>s. We so farconclude that MVN has a superior safety profile <strong>in</strong> comparison with othermembers of the antiviral lect<strong>in</strong>s that have been proposed as microbicidecandidates such as cyanovir<strong>in</strong>-n.Apart from its antiviral potential the<strong>in</strong> vivofunction of MVN wasextensively studied. Immunofluorescence microscopy (IFM) as well aslect<strong>in</strong> b<strong>in</strong>d<strong>in</strong>g analysis (LBA) us<strong>in</strong>g FITC-labelled MVN were employedand confirmed that MVN is secreted from M. aerug<strong>in</strong>osa cells and b<strong>in</strong>ds toLPS on its cell surface. M. aerug<strong>in</strong>osa cells form large colonies and MVNis proposed to be <strong>in</strong>volved <strong>in</strong> the cell-cell attachment. MVN orthologueswere identified <strong>in</strong> different cyanobacterial genera and are currently clonedand heterologously expressed <strong>in</strong> order to evaluate their antiviral activity.OTP134Eng<strong>in</strong>eer<strong>in</strong>g of Escherichia coli cells for the heterologousproduction of fucosylated human milk oligosaccharidesF. Baumgärtner*, L. Khan, G. Sprenger, C. AlbermannUniversity of Stuttgart, Institute of Microbiology, Stuttgart, GermanyAmong other biologically active substances, oligosaccharides represent afundamental component of human milk. They are known to showbeneficial effects for <strong>in</strong>fants, such as <strong>in</strong>hibition of pathogenic <strong>in</strong>fection byb<strong>in</strong>d<strong>in</strong>g pathogen receptors and growth promotion of bifidobacteria as keycommensals [1]. So far, <strong>in</strong>vestigation on the physiological function of milkoligosaccharides had only been accomplished by the use of s<strong>in</strong>glecompounds or mixtures that were purified from breast milk.Comprehensive study or even cl<strong>in</strong>ical trials with s<strong>in</strong>gle compoundsisolated from human milk were not possible, because major parts of theoligosaccharides <strong>in</strong> human milk are found only <strong>in</strong> small quantities.The work described here focuses on a novel method for the efficientsynthesis of oligosaccharides. The synthesis proceeds via a glycosylationreaction <strong>in</strong> recomb<strong>in</strong>ant Escherichia coli, which expresses suitableglycosyltransferases. The activated sugar precursors that are required forglycosyltransferase catalyzed reactions are generated by the metabolism ofthe organism. The pr<strong>in</strong>ciple possibility for a heterologous biosynthesis offucosylated oligosaccharides <strong>in</strong> E. coli was shown before [2, 3]. Here wepresent the construction of a plasmid-free stra<strong>in</strong> for the heterologoussynthesis of 2’-fucosyllactose us<strong>in</strong>g the -Red recomb<strong>in</strong>eer<strong>in</strong>g technique[4]. After optimization of the heterologous gene expression, 2’-fucosyllactose was produced <strong>in</strong> a large scale fed-batch bioreactorcultivation us<strong>in</strong>g glycerol as carbon source and lactose as substrate.[1] Kunz et al. (2000) Oligosaccharides <strong>in</strong> Human Milk: Structural, Functional, and MetabolicAspects. Annual Review of Nutrition, 20:699-722[2] Albermann et al. (2001) Synthesis of the milk oligosaccharide 2’-fucosyllactose us<strong>in</strong>grecomb<strong>in</strong>ant bacterial enzymes. Carbohydrate Research, 334:97-103[3] Drouillard et al. (2006) Large-Scale Synthesis of H-Antigen Oligosaccharides by Express<strong>in</strong>gHelicobacter pylori 1,2-Fucosyltransferase <strong>in</strong> Metabolically Eng<strong>in</strong>eered Escherichia coli Cells.Angewandte Chemie, 118:1810-1812[4] Albermann et al.(2010) A simple and reliable method to conduct and monitor expressioncassette <strong>in</strong>tegration <strong>in</strong>to the Escherichia coli chromosome. Biotechnology Journal, 5:32-8OTP135Functional expression of the dirigent prote<strong>in</strong> AtDIR6 <strong>in</strong> PichiapastorisC. Kazenwadel* 1 , J. Klebensberger 1 , A. Schaller 2 , B. Hauer 11 Universität Stuttgart, Institut für Technische Biochemie, Stuttgart, Germany2 Universität Hohenheim, Institut für Physiologie und Biotechnologie derPflanzen, Stuttgart, GermanyThe biosynthesis of lignans, a diverse class of secondary metabolites <strong>in</strong>plants, is <strong>in</strong>itiated by an one-electron oxidation of monolignol substrates,followed by a phenoxy radical coupl<strong>in</strong>g reaction. In plants, this reactioncan occur <strong>in</strong> an enantioselective fashion.Interest<strong>in</strong>gly, oxidases such aslaccases and peroxidases, which are essential to generate the <strong>in</strong>itial radicalsfor the subsequent coupl<strong>in</strong>g reaction, do not exhibit any regio- orstereoselective control. The discovery of dirigent prote<strong>in</strong>s fromForsythia<strong>in</strong>termedia (FiDIR1) [1] andArabidopsis thaliana(AtDIR6) [2] mediat<strong>in</strong>gthe stereoselective 8-8´coupl<strong>in</strong>g of coniferyl alcohol to either (+)- and (-)-p<strong>in</strong>ores<strong>in</strong>ol, respectively, uncovered the nature of such an enantioselectivecontrol. The mode of mechanism is still elusive, however, it is suggestedthat dirigent prote<strong>in</strong>s exist as homodimers lack<strong>in</strong>g oxidative capacitythemselves. They rather capture and orientate free radicals generated fromoxidases <strong>in</strong> such a way that a specific coupl<strong>in</strong>g mode is favored, lead<strong>in</strong>g tothe formation of optically active compounds. In order to uncover theunderly<strong>in</strong>g mechanism of this reaction, an effective prote<strong>in</strong> expressionsystem based on a fermentation process would be highly beneficial.Therefore, we heterologously expressed the dirigent prote<strong>in</strong> AtDIR6<strong>in</strong>Escherichia coli(E. coli) andPichia pastoris(P. pastoris). Whileexpression <strong>in</strong>E. colidid not yield a substantial amount of soluble prote<strong>in</strong> <strong>in</strong>different stra<strong>in</strong>s and under various conditions, fed-batch fermentation ofP.pastoris resulted <strong>in</strong> 47 mg/L of glycosylated AtDIR6, which represents amore than 300 fold <strong>in</strong>crease <strong>in</strong> yield compared to the expression with plantsuspension cultures. We found that the enantiomeric excess of (-)-p<strong>in</strong>ores<strong>in</strong>ol <strong>in</strong> the phenoxy radical coupl<strong>in</strong>g of coniferyl alcohol us<strong>in</strong>g thepurified enzyme<strong>in</strong> vitrowas comparable to the plant-derived enzyme.Further, we could demonstrate that the glycosylation ofP. pastoris-derivedAtDIR6 is essential for its dirigent activity. Taken together with the resultsobta<strong>in</strong>ed from CD-spectroscopy, our data strongly <strong>in</strong>dicate that theglycosylation of AtDIR6 is critical for <strong>in</strong>itial fold<strong>in</strong>g process as well as forthe conformational stability of the prote<strong>in</strong>.BIOspektrum | Tagungsband <strong>2012</strong>


1671. Dav<strong>in</strong> LB, Wang H, Crowell AL, Bedgar DL, Mart<strong>in</strong> DM, Sarkanen S, Lewis NG:StereoselectiveBimolecular Phenoxy Radical Coupl<strong>in</strong>g by an Auxiliary (Dirigent) Prote<strong>in</strong> Without an ActiveCenter.Science1997,275(5298):362-3672. Pickel B, Constant<strong>in</strong> MA, Pfannstiel J, Conrad J, Beifuss U, Schaller A:An EnantiocomplementaryDirigent Prote<strong>in</strong> for the Enantioselective Laccase-Catalyzed Oxidative Coupl<strong>in</strong>g of Phenols.AngewandteChemie-International Edition2010,49(1):202-204.OTP136The use of copper slag as armor stone <strong>in</strong> runn<strong>in</strong>g waters - Howdoes rock chemistry effect natural biofilm formation?D. Mewes* 1 , W. Manz 1 , J. Koop 2 , C. W<strong>in</strong>kelmann 1 , J. Meier 11 University Koblenz-Landau, Institute for Integrated Natural Sciences, Biology,Koblenz, Germany2 German Federal Institute of Hydrology, Referat U4 - Tierökologie, Koblenz,GermanyBenthic biofilms are <strong>in</strong>timate associations of benthic algae andheterotrophic microbes with<strong>in</strong> a matrix of extracellular polymericsubstances. They fulfill important ecosystem functions by provid<strong>in</strong>g basalenergy resources to higher trophic levels <strong>in</strong> lotic foodwebs and remov<strong>in</strong>gnutrients from the water column. They may also serve <strong>in</strong> the sequestrationof pollutants such as metall(oids), however, these may re-enter thefoodweb via graz<strong>in</strong>g organisms. Copper slag, a by-product of oreprocess<strong>in</strong>g, is a preferential construct<strong>in</strong>g material <strong>in</strong> water ways due to itshigh mass density. Its use, however, may result <strong>in</strong> the release of ecotoxicologicallyrelevant metall(oids) (e.g. Cd, Zn, Cu). Hence, the aim of ajo<strong>in</strong>t project with the German Federal Institute of Hydrology is to<strong>in</strong>vestigate the environmental impact of copper slag on benthic organismswith a special focus on the development of natural benthic biofilms <strong>in</strong> thepresent study. Six <strong>in</strong>door stream mesocosms, each with a closed watercircuit, were set up and filled with sediment and water (625 l) of the riverRh<strong>in</strong>e. Three of the six channels conta<strong>in</strong>ed additionally rocks of copperslag, the other three conta<strong>in</strong>ed basalt rocks as reference material. Biofilmswere sampled <strong>in</strong> 4-week <strong>in</strong>tervals over a period of six months. In order todifferentiate between the effects of leached (dissolved) metall(oid)s andthose of the rock surface chemistry, biofilms were sampled from copperslag and basalt rocks as well as from rocks orig<strong>in</strong>at<strong>in</strong>g from river Rh<strong>in</strong>esediments. Biofilm samples will be characterized by determ<strong>in</strong><strong>in</strong>g totalorganic carbon (total biomass), Chla(autotrophic component),phospholipid-P (liv<strong>in</strong>g biomass), and taxonomic composition. Thedeterm<strong>in</strong>ation of both, total and liv<strong>in</strong>g biomass, allows us to differentiatebetween mere biomass accumulation and actively grow<strong>in</strong>g or regenerat<strong>in</strong>gbiomass. Prelim<strong>in</strong>ary results will be presented and discussed aga<strong>in</strong>st thebackground of metall(oid) leach<strong>in</strong>g and accumulation.OTP137Non-standard circadian clock systems <strong>in</strong> cyanobacteriaA. Wiegard*, L. Seeliger, I.M. AxmannCharité Universitätsmediz<strong>in</strong> und Humboldt-Universität zu Berl<strong>in</strong>, Institutfür Theoretische Biologie, Berl<strong>in</strong>, GermanyMany organisms adapted their biological activities to environmentalchanges associated with alternations of day and night. Most eukaryoteseven evolved <strong>in</strong>ternal tim<strong>in</strong>g systems to predict those day-night cycles.Among prokaryotes solely cyanobacteria are known to posses such acircadian clock. In the model stra<strong>in</strong> Synechococcus elongatus PCC 7942 itconsists of just three prote<strong>in</strong>s (KaiA, -B and -C) that display 24hroscillations <strong>in</strong> prote<strong>in</strong> abundance, complex formation and posttranslationalmodification. KaiC as the core component undergoes rhythmicautophosphorylation and -dephosphorylation. These oscillations are aconsequence of KaiA sequestration by KaiC hexamers and KaiBCcomplexes (1).The number of kai-genes, however is not conserved among cyanobacterialspecies. Prochlorococcus has lost the kai gene and harbors a less robustclockwork based on KaiB and -C (2). In contrast, Synechocystis sp. PCC6803 expresses kaiAand even three homologs of both kaiB and-C.To ga<strong>in</strong> <strong>in</strong>sights <strong>in</strong>to the non-standard circadian clock of Synechocystis weare characteriz<strong>in</strong>g its multiple Kai prote<strong>in</strong>s <strong>in</strong> vitro and <strong>in</strong> vivo. Our <strong>in</strong> vitrodata suggest partial differences <strong>in</strong> their biochemical properties.Comparable to the well-studied Synechococcus counterpart,autophosphorylation of KaiC1 is enhanced by KaiA1, whereas thek<strong>in</strong>aseactivity of KaiC3 is <strong>in</strong>dependent of KaiA1. For <strong>in</strong> vivo analysesspecific antibodies aga<strong>in</strong>st KaiA and the different KaiC prote<strong>in</strong>s areavailable allow<strong>in</strong>g us to <strong>in</strong>vestigate the putative dynamic behavior of theSynechocystis Kai prote<strong>in</strong>s under different light/dark cycles as well asunder cont<strong>in</strong>uous conditions.Our f<strong>in</strong>d<strong>in</strong>gs suggest that the clockworks of cyanobacterial tim<strong>in</strong>g systemsdo not follow a universal bluepr<strong>in</strong>t. Further analyses will ga<strong>in</strong> <strong>in</strong>sights howthe composition of these clockworks contributes to their precision androbustness. Additionally our results might provide implications for theputative tim<strong>in</strong>g mechanisms of other bacterial species, such as purplebacteria, which encode KaiB and -C homologs but lack a kaiA relatedgene.(1) Brettschneider C, Rose RJ, Hertel S, Axmann IM, Heck AJ, Kollmann M. (2010) A sequestrationfeedback determ<strong>in</strong>es dynamics and temperature entra<strong>in</strong>ment of the KaiABCcircadian clock. Mol SystBiol.6:389(2) AxmannIM, Dühr<strong>in</strong>gU, SeeligerL, Arnold A, VanselowJT, Kramer A, and Wilde A (2009) Biochemicalevidence for a tim<strong>in</strong>g mechanism <strong>in</strong> prochlorococcus.J Bacteriol. 191(17):5342-7OTP138Phylogenetic analysis of -LactamesesO. Makarewicz, C. Ste<strong>in</strong>*, M. PletzUniversitätskl<strong>in</strong>ikum Jena, Sektion Kl<strong>in</strong>ische Infektiologie, Jena, GermanyObjectives: The number of annually identified b-lactamases with extendedactivity aga<strong>in</strong>st cephalospor<strong>in</strong>es (ESBL) <strong>in</strong>creased dur<strong>in</strong>g the last decade<strong>in</strong>dicat<strong>in</strong>g the need for appropriate deescalat<strong>in</strong>g antibiotic strategies. Thus,due to high recomb<strong>in</strong>ative genetic material of bacteria determ<strong>in</strong>ation ofspecies rema<strong>in</strong>s not sufficient for cl<strong>in</strong>ical use. Based on am<strong>in</strong>o acidsequence b-lactamases exhibit different substrate pattern allow<strong>in</strong>gclassification <strong>in</strong>to 16 functional groups [1]. Therefore, knowledge of thesequence is essential to identify ESBL variant and resistance properties.Although, some studies were performed to <strong>in</strong>vestigate substitutions ofTEM, SHV and CTX-M, SNP determ<strong>in</strong>ation of other b-lactamases likeOXA or AmpC rem<strong>in</strong>ds more challeng<strong>in</strong>g due to the high sequencevariability. Here we present an overall phylogenetic update of b-lactamases based on am<strong>in</strong>o acid (aa) sequences correlated to substrate<strong>in</strong>hibitorprofiles.Methods: We collected aa sequences of b-lactamases from NCBI database.In total, 643 sequences with at least 200 residues could be aligned andanalyzed us<strong>in</strong>g DS Gene 1.5 software (Accelrys Ltd) with the phylogeneticmethod by neighbor jo<strong>in</strong><strong>in</strong>g<strong>in</strong>g. The result<strong>in</strong>g phylogenetic tree wascorrelated to the functional properties proposed by Bush and Jacoby <strong>in</strong>2010 [1] and analyzed <strong>in</strong> detail.Results: As expected, the alignment reflected the differences of thehydrolyz<strong>in</strong>g mechanisms of the -lactamases. Closer relationships werefound for AmpC and OXA-type, whereas GES, CTX-M, IMI and KPCformed another phylogenetic group. Moreover, we could po<strong>in</strong>t outmutation hot spots, which are responsible for specific changes of thephenotype.Conclusion: Due to the expand<strong>in</strong>g multi-resistance of pathogens, a fastidentification of the ESBL-variant is <strong>in</strong> focus of cl<strong>in</strong>ical <strong>in</strong>terest and willallow the appropriate therapeutic <strong>in</strong>tervention.We found evidence that some unique aa substitutions are sufficient tocause specific changes <strong>in</strong> the phenotype of TEM <strong>in</strong>dicat<strong>in</strong>g that betterunderstand<strong>in</strong>g of substitution’s dynamics with<strong>in</strong> the types might simplifythe determ<strong>in</strong>ation of the given b-lactamase by SNP typ<strong>in</strong>g. We focus onthe validation of such unique substitutions with<strong>in</strong> the other molecularclasses that exhibit much higher sequence variation compared to TEM.1. Bush, K. and G.A. Jacoby,Updated functional classification of beta-lactamases.AntimicrobAgents Chemother, 2010.54(3): p. 969-76.OTP139Characterization of a Lipopeptide Biosurfactant Produced byBacteria Isolated from Petroleum-Polluted SoilW. El Moslimany* 1 , I. Al Rowaihi 1 , A. Humam 2 , A. Al Nayal 1 , R. Hamza 11 Arabian Gulf University, Biotechnology, Al Manama, Bahra<strong>in</strong>2 Saudi Aramco, Biotechnology, Dahran, Saudi ArabiaBiosurfactants are environmentally benign microbial products withtremendous environmental, <strong>in</strong>dustrial and biomedical applications. Thelarge scale production of biosurfactants has been hampered by their highproduction costs, poor stra<strong>in</strong> productivity and the use of expensivesubstrates. Here, two bacterial stra<strong>in</strong>s were isolated from petroleumcontam<strong>in</strong>atedsoil via enrichment <strong>in</strong> rich medium (LB) and m<strong>in</strong>imalmedium conta<strong>in</strong><strong>in</strong>g 2% Arabian light oil as the sole carbon source. Basedon 16S rDNA genes sequenc<strong>in</strong>g and phylogenetic analysis, the isolatedstra<strong>in</strong>s could be affiliated to different species of the generaBacillus(stra<strong>in</strong>I-15) andPseudomonas(stra<strong>in</strong> I-19). Both stra<strong>in</strong>s emulsified crude oil <strong>in</strong>m<strong>in</strong>imal medium with<strong>in</strong> 2 to 7 days of <strong>in</strong>cubation at 30 C. The oil dropletsof the produced emulsions had various sizes, <strong>in</strong>dicat<strong>in</strong>g the production ofdifferent types of biosurfactants/ bioemulsifiers. Prelim<strong>in</strong>ary screen<strong>in</strong>gassays such as oil displacement and droplet collapse, revealed the presenceof extracellular surface active agents (surfactants) <strong>in</strong> the cell free culturesupernatants.The I-19 isolate produced biosurfactant only when grown onhydrophobic substrates such as crude oil and diesel. Whereas the I-15stra<strong>in</strong> produced biosurfactant when grown on crude oil or even watersoluble substrates such as glucose. Surface tension measurementsconfirmed biosurfactant production by the isolated bacteria. Glucosegrowncultures of the I-15 isolate reduced the surface tension of the growthmedium from 68 mN/m to ca 40 mN/m (ca 40 % reduction). Whereascrude oil-grown cultures of the I-19 stra<strong>in</strong> brought about 20% reduction <strong>in</strong>surface tension as compared to that of the un<strong>in</strong>oculated medium. The CMCof the biosurfactant recovered from cultures of I-15 stra<strong>in</strong> on glucose wasestimated to 200 mg/L. The biosurfactant caused a reversible <strong>in</strong>hibition ofthe growth of the I-15 stra<strong>in</strong> on glucose. Fourier Transform InfraredSpectroscopy of the biosurfactant recovered from the I-15 cultures onglucose revealed functional groups that are typical of a lipopetideBIOspektrum | Tagungsband <strong>2012</strong>


168biosurfactant. The putative lipopeptide has potential applications <strong>in</strong> thepetroleum <strong>in</strong>dustry and environmental bioremediation. Moreover, it couldbe used as an antimicrobial agent.1- Cameotra, S. S., Makkar, R. S., Kaur, J. and Mehta, S. K. (2010). Synthesis of Biosurfactants and theirAdvantages to Microorganisms and Mank<strong>in</strong>d. Adv. Exp. Med. Biol. 672: 261-280.2- Mulligan, C.N.(2005). Environmental Applications of Biosurfactants. Environ. Poll.133: 183 198.3- Krishnaswamy, M., Subbuchettiar, G., Thiengungal, K. R., and Panchaksharam, S.(2008). Biosurfactants:Properties, Commercial Production and Application. Current Science. Rev.VOL. 94.OTP140A diagnostic qPCR assay for detection and quantification ofemetic and non-emetic Bacillus cereus <strong>in</strong> milkM. Dzieciol* 1 , M. Fricker 2 , M. Wagner 1 , I. He<strong>in</strong> 1 , M. Ehl<strong>in</strong>g-Schulz 21 Institute for Milk Hygiene, Milk Technology and Food Science, Department forFarm Animals and Veter<strong>in</strong>ary Public Health, Vienna, Austria2 Food Microbiology Unit, Department for Farm Animals and Veter<strong>in</strong>ary PublicHealth Cl<strong>in</strong>ic for Rum<strong>in</strong>ants, Vienna, AustriaQuestion: Bacillus cereus is known as the causative agent of an emeticand a diarrheal type of food-borne illness, and thus is a special problem forpublic health issues and for the dairy <strong>in</strong>dustry. Therefore more precisemonitor<strong>in</strong>g of B. cereus is necessary for a better understand<strong>in</strong>g of theircontribution to health and disease.Methods: The aim of the present study was to develop a diagnostic realtimequantitative PCR (qPCR) for the B. cereus group <strong>in</strong> milk. A TaqManqPCR assay based on amplification of the gyrase B (gyrB), the ces emetictox<strong>in</strong> and the 16S rRNA target sequences was designed <strong>in</strong>clud<strong>in</strong>g an<strong>in</strong>ternal amplification control (IAC) to identify false negative results.Results: The method showed 100% <strong>in</strong>clusivity and exclusivity whentest<strong>in</strong>g a panel of 41 B. cereus group stra<strong>in</strong>s, 10 non-B. cereus groupstra<strong>in</strong>s and 17 non-bacilli stra<strong>in</strong>s. The IAC target <strong>in</strong>cluded <strong>in</strong> each qPCRreaction showed no <strong>in</strong>terference with the ma<strong>in</strong> reaction. The detection limitwas successfully established <strong>in</strong> artificially contam<strong>in</strong>ated raw milk samplesand the optimized assay applied to naturally milk contam<strong>in</strong>ated samples.Conclusions: The qPCR assay is specific and sensitive and provides anefficient diagnostic and monitor<strong>in</strong>g tool for the identification of the B.cereus group <strong>in</strong> food.OTP141ROS formation by photochemical reactions affect BCC <strong>in</strong> ahumic lake and <strong>in</strong>duce adaptive responses <strong>in</strong> abundant bacteriaS. Glaeser* 1 , H.-P. Grossart 2 , J. Glaeser 31 Justus Liebig Universität, Institut für Angewandte Mikrobiologie, Gießen,Germany2 Institut für Gewässerökologie und B<strong>in</strong>nenfischerei, Limnologie GeschiteterSeen, Stechl<strong>in</strong>, Germany3 Justus Liebig Universität, Mikrobiologie und Molekularbiologie, Gießen,GermanySunlight-mediated photochemical reactions of colored dissolved organicmatter (CDOM) is an important process <strong>in</strong> humic lakes enhanc<strong>in</strong>gsubstrate availability for heterotrophic bacterioplankton. Althoughbacterioplankton species benefit from generated carbon substrates theyhave to cope with toxic reactive oxygen species (ROS) generatedsimultaneously. We <strong>in</strong>vestigated effects of artificially <strong>in</strong>creased s<strong>in</strong>gletoxygen ( 1 O 2) formation and hydrogen peroxide (H 2O 2) concentrations onbacterioplankton community composition (BCC) <strong>in</strong> the subsurface waterlayer of the humic Lake Grosse Fuchskuhle.BCC changes of abundant and metabolically active bacteria were<strong>in</strong>vestigated by the generation of 16S rRNA gene clone libraries and 16SrRNA target<strong>in</strong>g RT-PCR DGGE analysis us<strong>in</strong>g Bacteria and groupspecificprimer-systems.Major bacterioplankton groups respond differently to 1 O 2 and H 2O 2exposure. Alphaproteobacteria (Novosph<strong>in</strong>gobium acidiphilum) andBetaproteobacteria (Polynucleobacter necessarius and Limnohabitansrelated species) <strong>in</strong>creased <strong>in</strong> relative abundance after 1 O 2 but not afterH 2O 2 exposure. In contrast freshwater Act<strong>in</strong>obacteria were not detectedafter 1 O 2 exposure but <strong>in</strong>creased <strong>in</strong> relative abundance after H 2O 2exposure. We were able to isolate stra<strong>in</strong>s represent<strong>in</strong>g the abovementionedAlpha- and Betaproteobacteria and used those for laboratoryand <strong>in</strong> situ studies to <strong>in</strong>vestigate the response to ROS exposure. Firstexperiments showed that those stra<strong>in</strong>s were capable to withstand <strong>in</strong>creased1 O 2 exposure after pre-<strong>in</strong>cubation with moderate 1 O 2 concentrationsoccurr<strong>in</strong>g regularly<strong>in</strong> the <strong>in</strong>vestigated ecosystem. Our results <strong>in</strong>dicate thatROS generation by CDOM photolysis is an important factor for BCC <strong>in</strong>humic lakes and favor species with adaptive response mechanisms to ROSexposure.Glaeser SP., Grossart, H.-P. , and J. Glaeser (2010) Environ Microbiol 12(12): 3124-36OTP142Gluconobacter oxydans as a platform for the production of<strong>in</strong>dustrially important productsP. Schweiger* 1 , H. Groß 2 , U. Deppenmeier 11 Universität Bonn, Institut für Mikrobiologie und Biotechnologie , Bonn,Germany2 Universität Bonn, Institute of Pharmaceutical Biology, Bonn, GermanyMany useful organic compounds, such as pharmaceuticals and foodadditives, conta<strong>in</strong> asymmetric carbon centers and enantionmeric formsexist. Chemical synthesis of these products is often troublesome andproduces racemates. It is common to have a s<strong>in</strong>gle biologically activeenantiomer, while the other does not show activity and sometimes has aharmful effect. In such cases chemically synthesized racemates usuallyneed to be resolved, especially for pharmaceuticals. In contrast, manyenzymes act regio- and stereoselectively and are naturally capable ofconvert<strong>in</strong>g pro-chiral educts to enantiopure products. Gluconobacteroxydans is an important organism <strong>in</strong> biotransformation (e.g used <strong>in</strong>v<strong>in</strong>egar, vitam<strong>in</strong> C and antidiabetic drug production). Its genome isknown 1 and conta<strong>in</strong>s many uncharacterized cytosolic and membranebounddehydrogenases/oxidoreductases (>70) and they were surveyed fortheir ability to produce <strong>in</strong>dustrially important chiral products. Investigation<strong>in</strong>to prote<strong>in</strong> function via heterologous gene production <strong>in</strong> E. coli revealedmany oxidoreductases that reduced ,-diketones, -ketoaldehydes, andv<strong>in</strong>yl ketones. These enzymes are capable of produc<strong>in</strong>g chiral build<strong>in</strong>gblocks that f<strong>in</strong>d uses <strong>in</strong> <strong>in</strong>dustry (e.g. pharmaceutical, food additives andfragrance). Four cytoplasmic oxidoreductases were capable for produc<strong>in</strong>ghydroxy carbonyls with chiral centers 2 . Additionally, three cytoplasmicreductases acted on the olef<strong>in</strong>ic bonds of v<strong>in</strong>yl ketones, two of whichproduced stereospecific products when the olef<strong>in</strong>ic bond was substituted 3 .A cofactor regeneration scheme was developed to decrease costs and<strong>in</strong>crease yields. Membrane-bound dehydrogenases do not need cofactorregeneration and those of G. oxydans are known to excrete their<strong>in</strong>complete oxidation products of sugars, polyols, and alcohols to almostquantitative yields <strong>in</strong>to the medium. Accord<strong>in</strong>gly, the numerousmembrane-bound dehydrogenases of G. oxydans were found to oxidize anarray of diols and polyols, likely to chiral hydroxy carbonyls.Identification of the enzymatic products is currently ongo<strong>in</strong>g.Consequently, G. oxydans enzymes are renewable resources that provide aplatform for the production of optically active products <strong>in</strong> high amountsand avoid the toxicity often <strong>in</strong>volved <strong>in</strong> multi-step organic synthesis.1Prust C, Hoffmeister M, Liesegang H, Wiezer A, Fricke WF, Ehrenreich A, Gottschalk G, Deppenmeier U(2005) Complete genome sequence of the acetic acid bacterium Gluconobacter oxydans. Nat Biotechnol.23(2):195-200.2 Schweiger P, Gross H, Deppenmeier U (2010) Characterization of two aldo-keto reductases fromGluconobacter oxydans 621H capable of regio- and stereoselective alpha-ketocarbonyl reduction. ApplMicrobiol Biotechnol. 87(4):1415-1426.3 Schweiger P, Gross H, Wesener S, Deppenmeier U (2008) V<strong>in</strong>yl ketone reduction by three dist<strong>in</strong>ctGluconobacter oxydans 621H enzymes. Appl Microbiol Biotechnol. 80:955-1006.OTP143Microbial quality of table eggs sold <strong>in</strong> some Libyan marketM. Salem*, H. Elgheriani, A. Alfetory, S. ElmegerhiBioTechnology Research Center, Microbiology, Tripoli, Libyan ArabJamabiriyaHigh development <strong>in</strong> commercial poultry rear<strong>in</strong>g <strong>in</strong> Libya play animportant role <strong>in</strong> the creation of <strong>in</strong>come and also provide food <strong>in</strong> form ofmeats and eggs , <strong>in</strong> Libya consumption of eggs per person per week aboutsix eggs.The eggs considered to be highly nutritional value conta<strong>in</strong><strong>in</strong>g high levelsof vitam<strong>in</strong>s and m<strong>in</strong>erals, although the eggs considered a source ofcomplete food for growth but there are a lot of researches <strong>in</strong>dicate thatmicro organisms often contam<strong>in</strong>ate eggs.Total of 150 samples were collect randomly from different Libyan markets<strong>in</strong> Tripoli area and area surround Tripoli.Total count of bacteria and fungi were performed to all samples.The result showed that there were high levels of bacteria Isolated fromeggs content <strong>in</strong> different percents,E.coliwas more frequency andpseudomonas spp were highly frequent and Aeromonas .sppOTP144Simple and Rapid Detection Of Salmonella spp from Cattlefarms us<strong>in</strong>g Polymerase Cha<strong>in</strong> Reaction <strong>in</strong> Arak, IranS.D. Hosse<strong>in</strong>i*, A. Jadidi, P. Jafari, A. HomayounimehrRazi, Molecular biology, Arak, Iran, Islamic Republic ofThis study goal to employ biochemical and molecular assays to detect anddiagnoseSalmonella<strong>in</strong> cattle farms <strong>in</strong> Markazi prov<strong>in</strong>ce <strong>in</strong> central part of Iran. Forthis reasone,1124 faecal samples were collected from cattle randomly.Selective culture media specific for Salmonella were used to grow anumber of colonies from cattle samples. Salmonella suspicious colonieswere confirmed us<strong>in</strong>g biochemical tests. After biochemical confirmation,the isolates were subjected to molecular based approach to identifyBIOspektrum | Tagungsband <strong>2012</strong>


169Salmonella spp by amplify<strong>in</strong>g specific genes 16s rDNA gene. The PCRproducts were analyzed on 1% agarose gel. Thirty six samples were foundas a positive among of 1124 collected samples. The dada shown thatmolecular based approaches are more rapid and should thus be used forany <strong>in</strong>itial detection of Salmonella SPP.OTP145Systematical approach to decipher the rationales beh<strong>in</strong>d thedetergent and solvent stability of a model lipaseA. Fulton* 1 , J. Frauenkron-Machedjou 2 , S. Ulrich 2 , W. Susanne 1 , J. Karl-Erich 11 He<strong>in</strong>rich-He<strong>in</strong>e-University Düsseldorf, Insitute for molecular EnzymeTechnology, Research Center Jülich, Germany2 RWTH Aachen University, Lehrstuhl für Biotechnologie, GermanyThe stability and activity of the biocatalysts is often compromised by theuse of certa<strong>in</strong> additives, e.g. detergents and organic solvents, to <strong>in</strong>creasethe solubility of certa<strong>in</strong> reactants.This effect is not surpris<strong>in</strong>g and due to the evolutionary design of theenzyme. Enzymes have been evolved by nature to work efficiently <strong>in</strong>aqueous environments and thus require a water shell surround<strong>in</strong>g theprote<strong>in</strong> surface to reta<strong>in</strong> enzymatic activity. Solvents and detergents<strong>in</strong>terfere with the surround<strong>in</strong>g water shell and prote<strong>in</strong> electrostatics. This<strong>in</strong>terference can lead to the unfold<strong>in</strong>g and aggregation and a loss ofactivity. Despite these effects the <strong>in</strong>fluence of solvents on the enzymestructure and function has neither been studied systematically nor beenunderstood theoretically so far.We aim to discover the potential of stabiliz<strong>in</strong>g a model enzyme <strong>in</strong> nonconventionalmedia through a systematic mutagenesis study. We are<strong>in</strong>terested <strong>in</strong> the development of a predictive stability model for thecustomized design of biocatalysts <strong>in</strong> respect to the <strong>in</strong>tended application.The model enzyme for our purpose is BSLA (LipA from Bacillus subtilis),a m<strong>in</strong>imal /-hydrolase which can be easily expressed <strong>in</strong> Escherichia coli.BSLA has already been well characterized and is of known structure, thebiotechnological potential has been demonstrated with the production ofenantiopure cyclohexane-trans-1,2-diol[1].In preparation of this screen<strong>in</strong>g we have performed a saturationmutagenesis along the whole sequence of BSLA. Degenerated codonswere used to substitute the wild type am<strong>in</strong>o acid by every other naturallyoccurr<strong>in</strong>g am<strong>in</strong>o acid, result<strong>in</strong>g <strong>in</strong> a total of 3439 BSLA variants (181am<strong>in</strong>o acids x 19 possible substitutions). We are now develop<strong>in</strong>g a highthroughput screen<strong>in</strong>g system to monitor the stability of every variant <strong>in</strong>different detergents and organic solvents. The selection of the solvents isjustified through different <strong>in</strong>terferences towards the <strong>in</strong>tra prote<strong>in</strong><strong>in</strong>teractions that will be weakened. The results will give us an <strong>in</strong>sight <strong>in</strong>tothe contribution of every s<strong>in</strong>gle am<strong>in</strong>o acid towards the stability of thewhole enzyme. The library construction and mutant screen<strong>in</strong>g is performed<strong>in</strong> cooperation with a project partner(b) which will focus on the stability <strong>in</strong>other non-conventional media. We will present the results from thescreen<strong>in</strong>g of several exemplary mutants.[1] Jean Detry, Thorsten Rosenbaum, Stephan Lütz, Doris Hahn, Karl-Erich Jaeger, Michael Müller& Thorsten Eggert (2006) Biocatalytic production of enantiopure cyclohexane-trans-1,2-diol us<strong>in</strong>gextracellular lipases from Bacillus subtilis. Appl Microbiol Biotechnol. 72:1107-16.PMID:16586103OTP146Evaluat<strong>in</strong>g Food Safety Management Performance <strong>in</strong> a MilkPasteuris<strong>in</strong>g Facility us<strong>in</strong>g a Microbiological Assessment SchemeT. KennedyVeter<strong>in</strong>ary Public Health Inspection Service, Department of Agriculture,Food and the Mar<strong>in</strong>e, Dubl<strong>in</strong>, United K<strong>in</strong>gdomMilk and milk products are a heterogeneous group of food products.Depend<strong>in</strong>g on the heat treatment applied dur<strong>in</strong>g production, differentpathogens pose risks. The pathogens of concern are Listeriamonocytogenes, Bacillus cereus, Salmonella spp, Staphylococcus aureusand Escherichia coli s<strong>in</strong>ce these may survive pasteurisation treatments.The performance of a food safety management system (FSMS) <strong>in</strong> adr<strong>in</strong>k<strong>in</strong>g milk pasteurisation establishment was measured us<strong>in</strong>g amicrobiological assessment scheme (MAS). The MAS consisted ofmultiple sampl<strong>in</strong>g locations along the process<strong>in</strong>g l<strong>in</strong>e consist<strong>in</strong>g of highriskraw materials, the process<strong>in</strong>g environment, process water and endproducts. A total of 1268 samples were analysed over an 18-month-period.N<strong>in</strong>e microbial parameters (Salmonella spp., Listeria spp., B cereus, Staph.aureus, Total Bacterial Counts (TBC), Enterobacteriaceae, E. coli, Faecalenterococci and coliforms) were assessed. Results were benchmarkedaga<strong>in</strong>st legal, <strong>in</strong>dustry and best practice norms. 100% (n 0 = 233) of rawmilk samples met the EU TBC standard of < 10 5 cfuml -1 , however, Listeria<strong>in</strong>nocua was isolated <strong>in</strong> 3% (n 1=134) of raw milk samples. Listeria spp.(n 2=128), Salmonella spp. (n 3=118), Staph. aureus (n 4=118),Enterobacteriaceae (n 5=114), B. cereus (n 6=38) and E. coli (n 7=23) werenot detected <strong>in</strong> any end products. Listeria welshimeri (a poor hygiene<strong>in</strong>dicator) was identified <strong>in</strong> 2% (n 8=153) of environmental samplesSalmonella was not isolated <strong>in</strong> 63 environmental sample. 6% and 1% ofoperator hand swabs (n 9=100) had TBC and Enterobacteriaceae countsrespectively <strong>in</strong> excess of best practice norms of 10 2 cm -1 and 10 1 cm -1respectively. One (2.2%) water sample (n 11=46) had a coliform count of201cfuml -1 whereas five samples (11%) had TBC counts above acceptablenorms. The results <strong>in</strong>dicate that the FSMS is produc<strong>in</strong>g a safe product. TheMAS is an effective risk assessment tool that is useful to assess the overallperformance of the FSMS and allows a more targeted use of resources toimplement improvement. Satisfactory end product microbiological results<strong>in</strong>dicate that cold cha<strong>in</strong> control, post pasteurisation contam<strong>in</strong>ation from dry<strong>in</strong>gredients (e.g. buttermilk cultures), packag<strong>in</strong>g or unsanitary pipe workare not issues for this plant. However, the prerequisites of environmentalsanitation, raw material supply and control, water treatment and storageand staff hygiene are the areas with<strong>in</strong> the FSMS that pose the greatestrisks.OTP147Salmonella contam<strong>in</strong>ation of a Category 3 fat render<strong>in</strong>g plant - acase studyT. KennedyVeter<strong>in</strong>ary Public Health Inspection Service, Department of Agriculture,Food and the Mar<strong>in</strong>e, Dubl<strong>in</strong>, United K<strong>in</strong>gdomSafe petfood production is a key objective of manufacturers. Petfoods andtreats are often found <strong>in</strong> the home food preparation areas. Petfoods areoften handled by children and the elderly. Food safety issues <strong>in</strong>volv<strong>in</strong>gdirect human contact with processed petfoods is becom<strong>in</strong>g a majorregulatory focus. This case study describes an <strong>in</strong>tractable caseofSalmonellacontam<strong>in</strong>ation <strong>in</strong> a Category 3 animal by-products render<strong>in</strong>gfacility that produces tallow for the oleo-chemical <strong>in</strong>dustry and greaves forpetfood manufacture. The facility is located adjacent to a beefslaughterhouse operates a Hazard Analysis and Critical Control Po<strong>in</strong>t(HACCP) based manufactur<strong>in</strong>g system. The HACCP plan identifies threeCritical Control Po<strong>in</strong>ts (CCPs) - pre-render<strong>in</strong>g particle size, metaldetection and render<strong>in</strong>g temperature and duration. The facility is approvedunder Regulation (EC) 1774/2002 and is subject to official controls by theCompetent Authority. Over a period of 5 years 33 of 305 official greavessamples <strong>in</strong>termittently revealed the presence of Salmonella anatum, S.kentucky and S. new<strong>in</strong>gton. No deficiencies were detected <strong>in</strong> CCPimplementation. Due to the high render<strong>in</strong>g temperatures the source ofcontam<strong>in</strong>ation was believed to be post render<strong>in</strong>gcontam<strong>in</strong>ation.Salmonellawas not isolated from any of the environmentalsamples (n = 62) nor from the products taken with<strong>in</strong> process (n= 88).Analysis of pre-requisites identified deficiencies <strong>in</strong> pest control, sanitation,zon<strong>in</strong>g, operator hygienic practices and structure fabrication. Deepclean<strong>in</strong>g and corrections to operational pre-requisite resulted <strong>in</strong> temporaryimprovements. The establishment was decommissioned for 10 months.Prior to re-open<strong>in</strong>g fabrication was improved by lay<strong>in</strong>g a smooth floor,remov<strong>in</strong>g roughened welded seams <strong>in</strong> equipment, smooth plaster<strong>in</strong>g thewalls and properly duct<strong>in</strong>g cables and hoses. Post structural improvement,none of the 120 official greaves samples revealed the presenceofSalmonella. The likely contam<strong>in</strong>ation source is from <strong>in</strong>termittentshedd<strong>in</strong>g from nidi located <strong>in</strong> the deep recesses of blemishes with<strong>in</strong> thefabric.Salmonellais capable of surviv<strong>in</strong>g for extended periods <strong>in</strong> a varietyof environments. Complete elim<strong>in</strong>ation of pathogens is dependent on thestrict adherence to HACCP and GMPs. However, some practices are easyto apply, however <strong>in</strong> this case restoration of control required significant<strong>in</strong>vestment and plant redesign.OTP148Salmonella as a process hygiene microbiological criterion <strong>in</strong>Irish Wild PheasantT. KennedyVeter<strong>in</strong>ary Public Health Inspection Service, Department of Agriculture,Food and the Mar<strong>in</strong>e, Dubl<strong>in</strong>, United K<strong>in</strong>gdomMicrobiological criteria provide guidance on the acceptability offoodstuffs and their HACCP-based manufactur<strong>in</strong>g processes. Regulation(EC) 2073/2005 establishes process hygiene criteria (PHC) for carcasses ofdomestic fowl. No such criteria exist for pheasant. It is thus appropriate toestablish PHC. The processor selected for the study procures pheasantshunted from protected reserves, which are stocked with 18-week-oldpullets from a rear<strong>in</strong>g unit 3-4 months prior to the shoot<strong>in</strong>g season. Inseason 1 on each of 10 process<strong>in</strong>g days 4g of the neck sk<strong>in</strong> (NS) wereaseptically harvested from 35 pheasants selected at random post-chill<strong>in</strong>g.The NS from 7 carcasses were pooled to create 5 x 25g f<strong>in</strong>al samples.Samples were analysed for the presence forSalmonellaus<strong>in</strong>g ISO method6579. One sample revealed the presence of Salmonella. This procedurewas repeated <strong>in</strong> seasons 2 and 3 with identical results. PHC for pheasantwere determ<strong>in</strong>ed thus:n= number of units compromis<strong>in</strong>g the sample = 50derived from 10 consecutive sessions;c= number of samples whereSalmonella is detected = 1;m = M= absence <strong>in</strong> 25g of a pooled NS sample.Ongo<strong>in</strong>g performance exceed<strong>in</strong>g these criteria prompts the establishmentto implement timely corrective action to its process<strong>in</strong>g procedures and toreview disease control and bio-security measures on the rear<strong>in</strong>g farm. InBIOspektrum | Tagungsband <strong>2012</strong>


170the absence of legally mandated PHC for pheasant, it is recommended thatprocessors follow the protocols outl<strong>in</strong>ed to establish their own PHC.OTP149Effects of drought and rewett<strong>in</strong>g on bacterial communitystructure and extracellular enzyme activity <strong>in</strong> stream-bedsedimentsE. Pohlon* 1 , J. Marxsen 1 , A. Ochoa Fand<strong>in</strong>o 21 JLU Gießen, Animal Ecology, Gießen, Germany2 JLU Gießen, General and Soil Microbiology, Gießen, GermanyIncreas<strong>in</strong>g temperatures caused by global climate change affect streamecosystems as more frequent and longer drought events and more frequentand severe floods occur. In the current study bacterial community structure(CARD-FISH) and the activity of five extracellular enzymes have been<strong>in</strong>vestigated after artificial drought and rewett<strong>in</strong>g of stream sediments.Sediment from the Breitenbach (Hesse) was dried at 20°C over 13 weeks<strong>in</strong> plastic boxes with different covers simulat<strong>in</strong>g fast, <strong>in</strong>termediate, andslow dry<strong>in</strong>g before rewett<strong>in</strong>g with untreated or sterilized stream waterus<strong>in</strong>g the perfused core technique for 14 days. The total number(SybrGreen) of prokaryotes decreased after 2 weeks at all treatments. Thecommunity <strong>in</strong> the <strong>in</strong>itial wet sediment was dom<strong>in</strong>ated byBetaproteobacteria and shifted dur<strong>in</strong>g dry<strong>in</strong>g to a dom<strong>in</strong>ance ofAlphaproteobacteria and Act<strong>in</strong>obacteria <strong>in</strong> all treatments. After only 1 dayof rewett<strong>in</strong>g <strong>in</strong> the treatment with untreated stream water and after 2 dayswith sterile stream water the Betaproteobacteria recovered. The activity ofthe enzymes was affected by drought but did not vanish. Potentialam<strong>in</strong>opeptidase and alpha-glucosidase activity <strong>in</strong> the fast and <strong>in</strong>termediatedrought treatment decreased dist<strong>in</strong>ctly with<strong>in</strong> 4 weeks whereasphosphatase, beta-glucosidase and -xylosidase activity decreased lesssevere. In the rewett<strong>in</strong>g experiment the activity of alpha-glucosidase andam<strong>in</strong>opeptidase was <strong>in</strong>creas<strong>in</strong>g fastest but activities of all enzymesrema<strong>in</strong>ed below the <strong>in</strong>itial values after 14 days. The results demonstratethat the microbial community <strong>in</strong> stream-bed sediment was highly affectedby drought but recovered fast when rewetted. Drought facilitatedAct<strong>in</strong>obacteria and Alphaproteobacteria. In the view of ecosystem functionthe degradation of prote<strong>in</strong>s was affected first. All tested enzymes did notdisappear completely after 13 weeks of drought.OTP150Antimicrobial effects of silver nanoparticles aga<strong>in</strong>stmicroorganisms from activated sludgeV. Cheunuie-Ambe* 1 , S.K. Sandhi 1 , S. Gläser 1 , M. Kähkönen 2 ,S. Schnell 1 , M. Bunge 11 Justus Liebig University of Giessen, Institute of Applied Microbiology,Giessen, Germany2 University of Hels<strong>in</strong>ki, Department of Food and Environmental Sciences/Microbiology, Hels<strong>in</strong>ki, F<strong>in</strong>landThe extensive use of eng<strong>in</strong>eered metal nanoparticles with antimicrobialproperties (e.g., Ag, Zn, Cu, Ce, Ni) and their <strong>in</strong>creased release <strong>in</strong>to theenvironment has raised major concerns, due to unexplored(eco)toxicological effects and <strong>in</strong>adequate test<strong>in</strong>g methods.Samples were taken from activated sludge of a municipal wastewatertreatment plant (Giessen, Germany) and suspensions <strong>in</strong> aqueous buffersolutions were spiked with commercially available Ag(0) nanoparticles.Size distribution of the suspended Ag(0) nanoparticles was determ<strong>in</strong>ed byNanoparticle Track<strong>in</strong>g Analysis and revealed an average particle size of 31nm (D90


171OTP153Transcriptional regulation of the operon encod<strong>in</strong>g the stressresponsivesigma factor SigH and its anti-sigma factor RshA, andcontrol of SigH regulatory network <strong>in</strong> CorynebacteriumglutamicumT. Busche* 1 , R. Šilar 2 , M. Pimanová 2 , M. Pátek 2 , J. Kal<strong>in</strong>owski 21 Universität Bielefeld, Centrum für Biotechnologie (CeBiTec), Institut fürGenomforschung und Systembiologie, Bielefeld, Germany2 AS CR, v.v.i., Institute of Microbiology, Prague, Czech RepublicExpression of genes <strong>in</strong> Corynebacterium glutamicum, a Gram-positivenon-pathogenic bacterium used ma<strong>in</strong>ly for <strong>in</strong>dustrial production of am<strong>in</strong>oacids, is regulated by seven different sigma factors of RNA polymerase,<strong>in</strong>clud<strong>in</strong>g stress-responsive SigH. Accord<strong>in</strong>g to the C. glutamicum genomesequence, the SigH-dependent transcription may be controlled by antisigmafactor encoded by the rshA gene. The aim of the study was toanalyze transcriptional regulation of thesigHandrshAgenes, prove thefunction of rshA, determ<strong>in</strong>e the genes of the SigH regulon and propose amodel describ<strong>in</strong>g the role of SigH and RshA <strong>in</strong> oxidative and heat stressresponses.Transcription analysis revealed that the sigH gene and anti-sigma rshAgene are cotranscribed from four sigH housekeep<strong>in</strong>g promoters <strong>in</strong> C.glutamicum. In addition, a SigH-controlled rshA promoter was found todrive separate transcription of the rshA gene. To test if transcription ofSigH-controlled genes is <strong>in</strong>creased <strong>in</strong> the absence of the anti-sigma factorrshA gene under standard growth conditions, a C. glutamicumr shAdeletion stra<strong>in</strong> was constructed and used for genome-wide transcriptionprofil<strong>in</strong>g. In total, 83 genes organized <strong>in</strong> 61 putative transcriptional units,<strong>in</strong>clud<strong>in</strong>g those which were previously detected us<strong>in</strong>g sigH deletionstra<strong>in</strong>s, exhibited <strong>in</strong>creased transcription <strong>in</strong> the rshA deletion mutant <strong>in</strong>comparison to the wildtype stra<strong>in</strong>. The genes encod<strong>in</strong>g prote<strong>in</strong>s related todisulphide stress response, heat stress prote<strong>in</strong>s, components of the SOSresponseto DNA damage and proteasome components were the mostapparent upregulated gene groups. Potential SigH-dependent promotersupstream of the identified genes were found by transcription startdeterm<strong>in</strong>ation and by sequence analysis.The rshA gene codes for an anti-sigma factor controll<strong>in</strong>g function of thestress-responsive sigma factor SigH <strong>in</strong> C. glutamicum. Transcription ofrshA from a SigH-dependent promoter may serve to quickly shutdown theSigH-dependent stress response after the cells have passed the stresscondition. We propose here a model of regulation of oxidative and heatstress response <strong>in</strong>clud<strong>in</strong>g the redox homeostasis by SigH, RshA andthiorediox<strong>in</strong> system. The updated consensus sequence of SigH-controlledpromoters was derived from the 45 promoters of the genes belong<strong>in</strong>g tothe SigH regulon.OTP154Nanoflagellate diversity dur<strong>in</strong>g the iron fertilizationexperiment LOHAFEXS. Thiele* 1 , C. Wolf 2 , I. Schulz 2 , B. Fuchs 1 , P. Assmy 3 , R. Amann 11 The Max Planck Institute for Mar<strong>in</strong>e Microbiology, Bremen, Germany2 Alfred Wegener Institut, Research Group Bioscience, Bremerhaven, Germany3 Norwegian Polar Institute, Tromsø, NorwayAccord<strong>in</strong>g to the iron hypothesis of J. Mart<strong>in</strong>, vast parts of the ocean arenutrient rich but iron limited. Therefore, fertilization of these areas withiron sulfate, <strong>in</strong> order to create algae blooms, was considered as a method ofCO 2 sequestration. The ma<strong>in</strong> aim of the study was the <strong>in</strong>vestigation ofside-effects of such events to the ecosystem. S<strong>in</strong>ce <strong>in</strong>vestigations of thebacterial community discovered a strongly top down controlled system,<strong>in</strong>vestigation of the next larger organism, the eukaryotic plankton < 20m,may help to shed light <strong>in</strong>to the black box of biological carbon pump. The


172where lowest concentrations were recorded. Methane oxidation ratesmostly followed this pattern. Experiments simulat<strong>in</strong>g the mix<strong>in</strong>g offreshwater methanotrophic bacteria from the river with the sal<strong>in</strong>e waters ofthe Laptev Sea <strong>in</strong>dicate that at sal<strong>in</strong>ities above 5 PSU their function asbiofilter ends.OTP158Inhibition of the anaerobic degradation of ethylene glycol bybenzotriazolesD. Ilieva*, B. Morasch, S. Haderle<strong>in</strong>University of Tüb<strong>in</strong>gen, Center for Applied Geoscience (ZAG),Environmental M<strong>in</strong>eralogy & Chemistry, Tüb<strong>in</strong>gen, Germany1H-benzotriazole and its methylated derivative tolyltriazole belong to themost frequently used corrosion <strong>in</strong>hibitors <strong>in</strong> borehole heat exchangersystems.In case of a leakage, a local groundwater contam<strong>in</strong>ation mightoccur where ethylene glycol-based heat transfer fluid conta<strong>in</strong><strong>in</strong>g corrosion<strong>in</strong>hibitors enter the aquifer down to a depth of 150 meters. Microcosmexperiments with sediment <strong>in</strong>oculum showed that the two corrosion<strong>in</strong>hibitors are resistant to biodegradation under sulfate-, nitrate- and ironreduc<strong>in</strong>gconditions. This study describes the <strong>in</strong>hibitory effect ofbenzotriazoles on ethylene glycol degradation under nitrate- and sulfatereduc<strong>in</strong>gconditions.Experiments were conducted us<strong>in</strong>g a sediment <strong>in</strong>oculum from a depth of60 meters, which was sampled dur<strong>in</strong>g the <strong>in</strong>stallation of a borehole heatexchanger system. The biodegradation of ethylene glycol (5 mM) wasassessed as the sole carbon source and <strong>in</strong> the presence of (50 M) of eachof the benzotriazoles. Microcosm experiments were performed <strong>in</strong> triplicateat 12°C and room temperature (RT).In the absence of benzotriazoles more than 98 % of the <strong>in</strong>itial ethyleneglycol was degraded with<strong>in</strong> eight days by the denitrify<strong>in</strong>g bacteria. In thepresence of the two corrosion <strong>in</strong>hibitors the degradation of ethylene glycolproceeded at a lower rate and 98 % of the substrate were not degradeduntil 15 days of <strong>in</strong>cubation. Under sulfate-reduc<strong>in</strong>g conditions 50-100% ofthe <strong>in</strong>itial ethylene glycol concentration was utilized with<strong>in</strong> 138 days of<strong>in</strong>cubation <strong>in</strong> the absence of benzotriazoles. The presence of 1H-Benzotriazole caused <strong>in</strong>hibition of the biodegradation of ethylene glycol atlower temperatures. In the presence of tolyltriazole the effect on theethylene glycol degradation was variable, which might be expla<strong>in</strong>ed by theheterogeneous distribution of microorganisms <strong>in</strong> the <strong>in</strong>oculum.These f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that benzotriazoles may not only threatengroundwater quality due to their own toxicities but <strong>in</strong> addition <strong>in</strong>hibit thebiodegradation of other organic compounds.PSV001The unusual cell architecture of I. hospitalis and consequencesfor its energy metabolismL. Kreuter* 1 , S. Daxer 1 , U. Küper 1 , F. Mayer 2 , V. Müller 2 , R. Rachel 3 ,H. Huber 11 Universität Regensburg, Lehrstuhl für Mikrobiologie, Regensburg, Germany2 Goethe-Universität, Institut für Molekulare Biowissenschaften, Frankfurt/Ma<strong>in</strong>, Germany3 Universiät Regensburg, Zentrum für Elektronenmikroskopie der Fakultät fürBiologie und Vorkl<strong>in</strong>ische Mediz<strong>in</strong>, Regensburg, GermanyThe members of the genus Ignicoccus belong to the phylum of theCrenarchaeota. They obta<strong>in</strong> energy chemolithoautotrophically by thereduction of elemental sulfur with molecular hydrogen as electron donor(1). All described Ignicoccus species exhibit a unique cell architecture thatdiffers from all other Archaea known so far. The cell envelope consists oftwo membranes enclos<strong>in</strong>g a huge <strong>in</strong>ter-membrane compartment (IMC).Surpris<strong>in</strong>gly, it was shown for I. hospitalis that the outermost membraneconta<strong>in</strong>s the H 2:sulphur oxidoreductase as well as the ATP synthase. Thus,I. hospitalis is the first organism with an energized outermost membraneand ATP synthesis with<strong>in</strong> the IMC. DAPI sta<strong>in</strong><strong>in</strong>g and EM analysesshowed that DNA and ribosomes are localized <strong>in</strong> the cytoplasm, lead<strong>in</strong>g tothe conclusion that energy conservation is separated from <strong>in</strong>formationprocess<strong>in</strong>g and prote<strong>in</strong> biosynthesis (2). In addition, we were able todemonstrate that the acetyl-CoA synthetase that activates acetate to acetyl-CoA is associated to the outermost membrane. This is the first energyconsum<strong>in</strong>gprocess proven to take place <strong>in</strong> the <strong>in</strong>ter-membranecompartment.To further <strong>in</strong>vestigate the energy metabolism under these extraord<strong>in</strong>aryconditions, we are work<strong>in</strong>g on the purification and characterization of thecomplete ATP synthase complex of I. hospitalis. This <strong>in</strong>cludes studies onthe stability of the enzyme complex, its molecular composition, and itsbehaviour aga<strong>in</strong>st <strong>in</strong>hibitors. The f<strong>in</strong>d<strong>in</strong>gs of these experiments also willshed light on the nature of the <strong>in</strong>timate association between I. hospitalisand Nanoarchaeum equitans (3). It is known that N. equitans receivesam<strong>in</strong>o acids and lipids from its host. At present, it is still unclear if theenergy metabolism of N. equitans is dependent on I. hospitalis, too.F<strong>in</strong>ally, a re-exam<strong>in</strong>ation of the nomenclature of the differentcompartments and the two membranes of I. hospitalis will be discussed.(1) Paper W. et al. 2007 Int. J. Syst. Evol. Microbiol. 57:803-808(2) Kueper U. et al. 2010 PNAS 107: 3152-3156(3) Jahn U. et al. 2008 J. Bacteriol. 190: 1743-1750(4) This project is supported by a grant from the DFGPSV002Function and specificity of the dual flagellar sytem <strong>in</strong>Shewanella putrefaciens CN-32S. Bubendorfer* 1 , S. Held 1 , N. W<strong>in</strong>del 1 , A. Paulick 1 , A. Kl<strong>in</strong>gl 2 , K. Thormann 11 Max-Planck-Institut für terrestrische Mikrobiologie, Ecophysiology, Marburg,Germany2 Philipps-Universität Marburg, Cell Biology, Marburg, GermanyBacteria move towards favorable conditions by rotat<strong>in</strong>g helicalprote<strong>in</strong>aceous filaments, called flagella. The motor part of this <strong>in</strong>tricatebacterial nanomach<strong>in</strong>e <strong>in</strong>corporates stator units that exert torque on thefilament us<strong>in</strong>g gradients of H + - or Na + -ions. Stator units and the rotorcomponent FliM can be dynamically exchanged dur<strong>in</strong>g function. Previousstudies have shown that a large number of microorganisms harbor dualflagellar systems. However, little is known about function and regulationof dual flagellar systems <strong>in</strong> many species.The -proteobacterium Shewanella putrefaciens CN-32 possesses acomplete secondary flagellar system along with a correspond<strong>in</strong>g statorunit. In contrast to most secondary flagellar systems that have been studiedso far, expression already occurs dur<strong>in</strong>g planktonic growth <strong>in</strong> complexmedia and leads to the formation of a subpopulation with one or moreadditional flagella at random positions <strong>in</strong> addition to the primary polarsystem. We used physiological and phenotypic characterizations of def<strong>in</strong>edmutants <strong>in</strong> concert with fluorescent microscopy on labeled components ofthe two different systems, the stator prote<strong>in</strong>s PomB and MotB, the rotorcomponents FliM 1 and FliM 2,and the auxiliary motor components MotXand MotY, to determ<strong>in</strong>e localization and function of the prote<strong>in</strong>s <strong>in</strong> theflagellar motors.Our results demonstrate that the polar flagellum is driven by a Na + -dependent FliM 1/PomAB/MotX/MotY flagellar motor, while thesecondary motor is rotated by a H + -dependent FliM 2/MotAB motor. Thereis strong evidence that these components are highly specific for theircorrespond<strong>in</strong>g motor and are unlikely to be extensively swapped or sharedbetween the two flagellar systems under planktonic conditions. The resultshave implications for the specificity and dynamics of flagellar motorcomponents.PSV003Pyruvate formate-lyase Controls Formate Translocation bythe FocA ChannelC. Doberenz* 1 , L. Beyer 1 , D. Falke 1 , M. Zorn 2 , B. Thiemer 1 , G. Sawers 11 Mart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Sawers, Halle,Germany2 Mart<strong>in</strong>-Luther-University Halle, Pharmacy AG S<strong>in</strong>z, Halle, GermanyFormate is one of the major products of mixed-acid fermentation <strong>in</strong>Enterobacteria such as Escherichia coli and is an important electron donorfor many anaerobes. Dur<strong>in</strong>g fermentation <strong>in</strong> E. coli up to one third of thecarbon derived from glucose is metabolized to formate. The f<strong>in</strong>al step iscatalyzed by the cytoplasmic enzyme pyruvate formate-lyase (PflB), whichcatalyses the homolytic cleavage of pyruvate to acetyl-CoA and formate.PflB is a glycyl-radical enzyme that is converted from an <strong>in</strong>active to anactive form by the radical-SAM enzyme PflA 1 .Because accumulation of formate <strong>in</strong>side the cell can lead to acidification ofthe cytoplasm a mechanism to regulate its <strong>in</strong>tracellular level must exist.FocA is a bidirectional formate channel prote<strong>in</strong> that belongs to the familyof formate-nitrite transporters (FNT) 2 . Its gene, focA, is co-transcribed withthat encod<strong>in</strong>g PflB. Although several structures of FocA have beenpublished recently 3 , there is still no clear mechanistic understand<strong>in</strong>g ofhow formate import and export by FocA is controlled. Because synthesisof FocA and PflB is highly coord<strong>in</strong>ated this suggested that PflB might playa key role <strong>in</strong> controll<strong>in</strong>g formate translocation across the cytoplasmicmembrane. In <strong>in</strong>itial experiments we could show a FocA-dependent<strong>in</strong>teraction of PflB with the cytoplasmic membrane. The specificity of theFocA-PflB <strong>in</strong>teraction could be subsequently confirmed us<strong>in</strong>g a variety of<strong>in</strong> vivo and <strong>in</strong> vitro experimental approaches. Our f<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate that itis the <strong>in</strong>active form of PflB that <strong>in</strong>teracts with FocA. Based on thesef<strong>in</strong>d<strong>in</strong>gs we developed an assay to test our model for PflB-controlledgat<strong>in</strong>g of formate transport by FocA <strong>in</strong> vivo.1 Sawers RG & Clark DP (2004) Fermentative pyruvate and acetyl CoA metabolism. Chapter 3.5.3. EcoSal -Escherichia coli and Salmonella: Cellular and Molecular Biology (Curtiss R III, (Editor <strong>in</strong> Chief) ASMPress, Wash<strong>in</strong>gton, DC.2 Suppmann B & Sawers G (1994) Isolation and characterization of hypophosphite-resistant mutants ofEscherichia coli: identification of the FocA prote<strong>in</strong>, encoded by the pfl operon, as a putative formatetransporter. Mol Microbiol 11: 965-982.3 Wang et al., (2009) Structure of the formate transporter FocA reveals a pentameric aquapor<strong>in</strong>-like channel.Nature vol. 462 (7272) pp. 467-472;Waight et al., (2010) Structure and mechanism of a pentameric formate channel. Nat Struct Mol Biol 17, 31-37.;Lü et al., (2011) pH-Dependent Gat<strong>in</strong>g <strong>in</strong> a FocA Formate Channel. Science vol. 332 (6027) pp. 352-354BIOspektrum | Tagungsband <strong>2012</strong>


173PSV004The small non-cod<strong>in</strong>g csRNAs controlled by the responseregulator CiaR affect ß-lactam sensitivity and competence <strong>in</strong>Streptococcus pneumoniaeA. Schnorpfeil*, M. Müller, R. BrücknerUniversity Kaiserslautern, Microbiology, Kaiserslautern, GermanyThe two-component regulatory system CiaRH of Streptococcuspneumoniae directly controls 15 promoters, which drive transcription of 24genes organized <strong>in</strong> 5 operons and 10 s<strong>in</strong>gle transcriptional units. Five ofthese monocistronic units specify small non-cod<strong>in</strong>g RNAs, designatedcsRNAs (cia-dependentsmall RNA) (1). Expression analyses of the CiaRregulon demonstrated that CiaRH ma<strong>in</strong>ta<strong>in</strong>s high levels of gene expressionrather than respond<strong>in</strong>g strongly to a signal (2). Hyperactivation of theregulon by mutations <strong>in</strong> the histid<strong>in</strong>e k<strong>in</strong>ase gene ciaH leads to <strong>in</strong>creasedß-lactam resistance and concomitantly to a block of genetic competence(3). To determ<strong>in</strong>e which constituents of the CiaR regulon are <strong>in</strong>volved <strong>in</strong>these phenotypes, gene <strong>in</strong>activation studies were performed <strong>in</strong> stra<strong>in</strong>s withan activated CiaRH system. The results of these experiments showed thatthe block of transformability as well as the <strong>in</strong>creased ß-lactam resistance ismediated by the csRNAs. Test<strong>in</strong>g csRNAs <strong>in</strong>dividually revealed adom<strong>in</strong>ant role for csRNA4 and csRNA5 <strong>in</strong> both phenotypes. Genomicsearches for complementarity to csRNAs yielded no apparent candidatesfor ß-lactam resistance, but comC for competence regulation. The gene iscod<strong>in</strong>g for the precursor of the secreted competence stimulat<strong>in</strong>g peptideCSP, which is needed to <strong>in</strong>itiate competence development <strong>in</strong> S.pneumoniae. Analysis of comC translational fusions <strong>in</strong> the presence orabsence of csRNAs demonstrated post-transcriptional control of comCexpression. In addition, partial disruption of comC-csRNAcomplementarity by mutagenesis relieved comC from csRNA-mediatedcontrol. Thus, the CiaRH system <strong>in</strong>terferes with quorum-sens<strong>in</strong>g regulatedcompetence development via small non-cod<strong>in</strong>g csRNAs.1. Halfmann A., Kovács M., Hakenbeck R., and Brückner R.(2007). Identification of the genesdirectly controlled by the response regulator CiaR <strong>in</strong> Streptococcus pneumoniae: five out of 15promoters drive expression of small non-cod<strong>in</strong>g RNAs. Mol Microbiol.66, 110-126.2. Halfmann A., Schnorpfeil A., Müller M., Günzler U., Hakenbeck R., and Brückner R. (2011).Contribution of the k<strong>in</strong>ase CiaH to CiaR-dependent gene expression <strong>in</strong> Streptococcus pneumoniaeR6. J. Mol. Microbiol. Biotechnol.20, 96 - 104.3. Müller M., Marx P., Hakenbeck R., and Brückner R.(2011). Effect of new alleles of the histid<strong>in</strong>ek<strong>in</strong>ase gene ciaH on the activity of the response regulator CiaR <strong>in</strong> StreptococcuspneumoniaeR6.Microbiology157, 3104 - 3112.PSV005Fur mediates control of riboflav<strong>in</strong> biosynthesis, iron uptakeand energy metabolism <strong>in</strong> Clostridium acetobutylicumD. Vasileva*, H. Janssen, H. BahlUniversity of Rostock, Department of Microbiology, Rostock, GermanyA system for ma<strong>in</strong>tenance of adequate iron status with<strong>in</strong> the cell <strong>in</strong> mostbacterial species is represented by Fur (ferric uptake regulator). The role ofthis regulator <strong>in</strong> the bacterial iron response has been an area of active<strong>in</strong>vestigation. However, the molecular mechanisms for ma<strong>in</strong>tenance ofiron homeostasis <strong>in</strong> strictly anaerobic bacteria have rema<strong>in</strong>ed largelyuncharacterized. C. acetobutylicum is a representative of this group. Aunique feature of its fermentative metabolism is the ability to switch fromsynthesis of the organic acids acetate and butyrate dur<strong>in</strong>g exponentialgrowth to production of the solvents butanol, acetone and ethanol upontransition to stationary phase. A gene cod<strong>in</strong>g for a putative ferric uptakeregulator has been identified <strong>in</strong> the genome of C. acetobutylicum. We<strong>in</strong>activated the fur gene us<strong>in</strong>g <strong>in</strong>sertional mutagenesis. The resultantmutant showed a slow grow<strong>in</strong>g phenotype, but essentially no drasticchange <strong>in</strong> its fermentation pattern. A unique feature of its physiology wasthe overflow<strong>in</strong>g production of riboflav<strong>in</strong>. To ga<strong>in</strong> further <strong>in</strong>sights <strong>in</strong>to therole of the Fur prote<strong>in</strong> and the mechanisms for establishment of ironbalance <strong>in</strong> C. acetobutylicum, we characterized and compared the geneexpression profile of the fur mutant and the iron limitation stimulon of theparental stra<strong>in</strong>. In accordance with the phenotypic profile of the mutant,the genes that compose the ribDBAH operon, <strong>in</strong>volved <strong>in</strong> riboflav<strong>in</strong>biosynthesis, were highly upregulated. Proteomic analysis of the furmutant further confirmed these results. The rib genes were also highly<strong>in</strong>duced, when the wild type stra<strong>in</strong> was challenged with conditions of ironlimitation. Not surpris<strong>in</strong>gly, a repertoire of iron transport systems wasupregulated <strong>in</strong> both microarray datasets, suggest<strong>in</strong>g that they are regulatedby Fur accord<strong>in</strong>g to the availability of iron. Furthermore, iron limitationand <strong>in</strong>activation of fur affected the expression of a subset of genes,<strong>in</strong>volved <strong>in</strong> energy and carbon metabolism. Among them the most highly<strong>in</strong>duced was a flavodox<strong>in</strong> encod<strong>in</strong>g gene. In conclusion, these results showthat the strict anaerobe C. acetobutylicum senses and responds toavailability of iron on multiple levels us<strong>in</strong>g a sophisticated system thatemploys Fur.PSV006Improved Glucosam<strong>in</strong>e Utilization by Corynebacteriumglutamicum and its application for L-Lys<strong>in</strong>e productionA. Uhde* 1 , T. Maeda 1 , L. Clermont 1 , J.-W. Youn 2 , V.F. Wendisch 2 ,R. Krämer 1 , K. Mar<strong>in</strong> 1 , G.M. Seibold 11 University of Cologne, Institute of Biochemistry, Cologne, Germany2 University of Bielefeld, Genetics of Prokaryotes, Bielefeld, GermanyCorynebacterium glutamicum is a Gram-positive soil bacterium used forthe development of biotechnological processes to produce am<strong>in</strong>o acids,organic acids and alcohols. To reduce production costs the application of<strong>in</strong>expensive renewable carbon sources like starch hydrolysates andmolasse is preferred. To explore alternative and susta<strong>in</strong>able carbon sourcesfor biotechnological processes this contribution focuses on uptake andcatabolism of glucosam<strong>in</strong>e, a monomeric build<strong>in</strong>g block of the abundantnatural polymer chit<strong>in</strong>.Utilization of am<strong>in</strong>o sugars by C. glutamicum has not been <strong>in</strong>vestigated, sofar. Maximum growth rates of the wild type stra<strong>in</strong>, C. glutamicumATCC13032, with on glucosam<strong>in</strong>e as sole carbon source reach less than50 % of the rates observed dur<strong>in</strong>g cultivation on glucose, fructose orsucrose. Employ<strong>in</strong>g a directed evolution approach, we isolated a mutantstra<strong>in</strong> that overcame this growth limitation. Microarray analysis revealedan up-regulated expression of the nagAB-operon encod<strong>in</strong>g glucoseam<strong>in</strong>e-6P-deam<strong>in</strong>ase NagB required for glucosam<strong>in</strong>e catabolism. Indeedenzymatic activity of NagB was significantly <strong>in</strong>creased <strong>in</strong> mutant cellscompared to wild type stra<strong>in</strong>. Reporter gene assays us<strong>in</strong>g transcriptionalfusions of the wild type and the mutant nagAB promoter with apromoterless gfp gene showed that the <strong>in</strong>creased expression level of thenagAB operon is caused by a nucleotide exchange <strong>in</strong> the promoter.In addition, here we show that import of glucosam<strong>in</strong>e is catalyzed by thephosphotransferase system (PTS). Interest<strong>in</strong>gly, the glucose specific EIIpermease of PTS mediates the translocation and concomitantphosphorylation of glucosam<strong>in</strong>e, as well. However, the k m values ofglucose and glucosam<strong>in</strong>e import are considerably different; 15 M, 340M respectively. This results <strong>in</strong> a successive consumption of bothsubstrates that compete for the same transporter.Apply<strong>in</strong>g this knowledge of import and catabolism of glucosam<strong>in</strong>e wedemonstrated that plasmid-encoded overexpression of the nagB gene <strong>in</strong> aL-Lys<strong>in</strong>e produc<strong>in</strong>g stra<strong>in</strong> of C. glutamicum improves glucosam<strong>in</strong>eutilization. We observed almost the same product yield and productivitycompared to glucose as sole carbon source. Therefore, a significant step toutilize chit<strong>in</strong> hydrolysates for am<strong>in</strong>o acid production has been made.PSV007Characterization of biot<strong>in</strong> prote<strong>in</strong> ligase from Corynebacteriumglutamicum: enzymatic analysis, physiological role andbiotechnological applicationP. Peters-Wendisch*, K.C. Stansen, S. Götker, V.F. WendischUniversität Bielefeld, Biologie - BioVI - Genetik, Bielefeld, GermanyCorynebacterium glutamicum is a biot<strong>in</strong> auxotrophic bacterium that isused for large-scale production of am<strong>in</strong>o acids, especially of L-glutamateand L-lys<strong>in</strong>e. It is known that biot<strong>in</strong> limitation triggers L-glutamateproduction and that L-lys<strong>in</strong>e production can be <strong>in</strong>creased by enhanc<strong>in</strong>g theactivity of pyruvate carboxylase, one of two biot<strong>in</strong>-dependent prote<strong>in</strong>s ofC. glutamicum. A fragmentary biot<strong>in</strong> synthesis pathway, <strong>in</strong>clud<strong>in</strong>g thegenes bioA, bioD and bioB, but lack<strong>in</strong>g bioF, is encoded <strong>in</strong> the genome ofC. glutamicum along with a gene (cg0814) annotated to code for putativebiot<strong>in</strong> prote<strong>in</strong> ligase BirA 1 . In E. coli, the biot<strong>in</strong> genes are regulated by abifunctional BirA prote<strong>in</strong>, which is active as biot<strong>in</strong>-prote<strong>in</strong> ligase and astranscriptional repressor of the bio-genes 2 . BirA from C. glutamicum lacksan N-term<strong>in</strong>al DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> and is not regulat<strong>in</strong>g biot<strong>in</strong>metabolism as shown here by transcriptome analysis. In order to analysebiot<strong>in</strong> prote<strong>in</strong> ligase activity of the BirA from C. glutamicum, adiscont<strong>in</strong>uous enzyme assay was established. A 105aa peptidecorrespond<strong>in</strong>g to the carboxyterm<strong>in</strong>us of the biot<strong>in</strong> carboxylase/biot<strong>in</strong>carboxyl carrier prote<strong>in</strong> subunit AccBC of the acyl CoA carboxylases fromC. glutamicum was used as acceptor substrate. Biot<strong>in</strong>ylation of this biot<strong>in</strong>acceptor peptide was revealed with crude extracts of a stra<strong>in</strong>overexpress<strong>in</strong>g the birA gene and was shown to be ATP dependent. Thus,birA from C. glutamicum codes for a functional biot<strong>in</strong> prote<strong>in</strong> ligase (EC6.3.4.15). The birA gene was overexpressed and the result<strong>in</strong>g biot<strong>in</strong>prote<strong>in</strong> ligase overproduction <strong>in</strong>creased the level of the biot<strong>in</strong>-conta<strong>in</strong><strong>in</strong>gprote<strong>in</strong> pyruvate carboxylase and entailed a significant growth advantage<strong>in</strong> glucose m<strong>in</strong>imal medium. Moreover, birA overexpression improved L-lys<strong>in</strong>e production by a model producer stra<strong>in</strong> and resulted <strong>in</strong> a two-foldhigher L-lys<strong>in</strong>e yield on glucose as compared to the control stra<strong>in</strong>.1www.coryneregnet.de2Rodionov D.A.,Chem. Rev., 20073 Peters-Wendisch P. et al., Appl. Microbiol. Biotechnol., 2011, <strong>in</strong> press.BIOspektrum | Tagungsband <strong>2012</strong>


174PSV008Physiological effects of disrupt<strong>in</strong>g the acetate and acetoneformation pathways <strong>in</strong> Clostridium acetobutylicumD. Lehmann*, T. Lütke-EverslohInstitute of Biological Sciences/University of Rostock, Division ofMicrobiology, Rostock, GermanyClostridial acetone-butanol-ethanol (ABE) fermentation is a natural sourcefor microbial n-butanol production and rega<strong>in</strong>ed much <strong>in</strong>terest <strong>in</strong> academiaand <strong>in</strong>dustry <strong>in</strong> the past years. Due to the difficult genetic accessibility ofClostridium acetobutylicum and other solventogenic clostridia, successfulmetabolic eng<strong>in</strong>eer<strong>in</strong>g approaches are still rare. In this study, a set of fiveknock-out mutants with defects <strong>in</strong> the central fermentative metabolismwere generated us<strong>in</strong>g the ClosTron technology, <strong>in</strong>clud<strong>in</strong>g the constructionof targeted double knock-out mutants of C. acetobtuylicum ATCC 824.While disruption of the acetate biosynthetic pathway had no significantimpact on the metabolite distribution, mutants with defects <strong>in</strong> the acetonepathway, <strong>in</strong>clud<strong>in</strong>g both acetoacetate decarboxylase- (Adc) andacetoacetyl-CoA:acyl-CoA transferase- (CtfAB) negative mutants,exhibited high amounts of acetate <strong>in</strong> the fermentation broth. Dist<strong>in</strong>ctbutyrate <strong>in</strong>crease and decrease patterns dur<strong>in</strong>g the course of fermentationsprovided experimental evidence that butyrate, but not acetate, is reassimilatedvia an Adc/CtfAB-<strong>in</strong>dependent pathway <strong>in</strong> C. acetobutylicum.Interest<strong>in</strong>gly, comb<strong>in</strong><strong>in</strong>g the adc and ctfA mutations with a knock-out ofthe phosphotransacetylase- (Pta) encod<strong>in</strong>g gene, acetate production wasdrastically reduced, result<strong>in</strong>g <strong>in</strong> an <strong>in</strong>creased flux towards butyrate. Exceptfor the Pta-negative s<strong>in</strong>gle mutant, all mutants exhibited a significantlyreduced solvent production <strong>in</strong> pH-uncontrolled batch fermentations ascompared to the wildtype.PSV0094-Hydroxybutyryl-CoA dehydratase, a radical enzyme <strong>in</strong>metabolic pathways of anaerobic Bacteria and ArchaeaJ. Zhang* 1,2 , P. Friedrich 3 , B.M. Mart<strong>in</strong>s 4 , W. Buckel 1,21 Philipps-Universität, Fachbereich Biologie, Marburg, Germany2 Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany3 University of Newcastle upon Tyne, Chemistry, Newcastle, United K<strong>in</strong>gdom4 Humboldt-Universität zu Berl<strong>in</strong>, Biologie, Berl<strong>in</strong>, Germany4-Hydroxybutyryl-CoA dehydratase (AbfD) was discovered <strong>in</strong> thefermentation of 4-am<strong>in</strong>obutyrate to ammonia, acetate and butyrate <strong>in</strong>Clostridium am<strong>in</strong>obutyricum [1]. Recently, this radical enzyme has beenalso identified <strong>in</strong> two new CO 2 fixation pathways <strong>in</strong> Archaea [2]. The[4Fe-4S] cluster and FAD conta<strong>in</strong><strong>in</strong>g AbfD catalyzes the oxygen sensitiveand chemical difficult dehydration of 4-hydroxybutyryl-CoA to crotonyl-CoA, s<strong>in</strong>ce the unactivated -proton has to be removed (pK ~ 40). Thesuccessful production of variants of recomb<strong>in</strong>ant AbfD <strong>in</strong> Escherichia colidemonstrated that all highly conserved am<strong>in</strong>o acids around the activecenter are essential for activity. Surpris<strong>in</strong>gly, the low residual activity ofthe Y296F variant (


175PSV013Localization and regulation of PHB granules <strong>in</strong> Synechocystissp. PCC 6803M. Schlebusch*, W. Hauf, K. ForchhammerUniversity of Tüb<strong>in</strong>gen, Institute of Microbiology and Infection Medic<strong>in</strong>e ,Tüb<strong>in</strong>gen, GermanyPolyhydroxyalkanoates (PHA) are organic polyesters composed of (R)-3-hydroxy fatty acids which are synthesized by many bacteria as a carbonand energy storage material under unbalanced nutrient and energyavailability. PHAs are deposited <strong>in</strong>tracellularly as <strong>in</strong>soluble spherical<strong>in</strong>clusion called PHA granules, which consist of a polyester coresurrounded by a phospholipid layer with attached prote<strong>in</strong>s. One of theseprote<strong>in</strong>s is the PHA synthase, the key enzyme of PHA biosynthesis, whichcatalyses the formation from (R)-3-hydroxyacyl-CoA precursors. Onlylittle is known about the regulation and biogenesis of PHA accumulation <strong>in</strong>cyanobacteria. We <strong>in</strong>vestigate the granule self-assembly process, thefunction of granule-associated prote<strong>in</strong>s and the regulation of the PHBaccumulation <strong>in</strong> Synechocytis PCC 6803. We applied differentfluorescence dyes, as well as GFP-PHA synthase fusion prote<strong>in</strong>s to studythe early PHA granule formation. With these tools we <strong>in</strong>vestigate, whetherthis process is located at the cytoplasmatic membrane. We analyzed theproteome of purified PHA granules and identified new putative granuleassociatedprote<strong>in</strong>s. To ga<strong>in</strong> <strong>in</strong>sight <strong>in</strong>to the regulation of PHA synthesis,we <strong>in</strong>vestigate mutants, which are impaired <strong>in</strong> PHA accumulation. Herewe show that the NADPH pool is crucial for the PHA accumulation.PSV014Biosynthesis of (Bacterio)chlorophylls: ATP-DependentTransient Subunit Interaction and Electron Transfer of DarkoperativeProtochlorophyllide OxidoreductaseJ. Moser* 1 , C. Lange 1 , M. Bröcker 1 , M. Saggu 2 , F. Lendzian 2 , H. Scheer 3 ,D. Jahn 11 Technische Universität Braunschweig, Inst. f. Mikrobiologie, Braunschweig,Germany2 Technische Universität Berl<strong>in</strong>, Inst. f. Chemie, Berl<strong>in</strong>, Germany3 Ludwig-Maximilians-Universität München, Biologie 1, München, GermanyThe biosynthesis of (bacterio)chlorophylls is fundamental for the primaryproduction on earth. Reduction of the fully conjugated r<strong>in</strong>g system ofprotochlorophyllide results <strong>in</strong> the common core r<strong>in</strong>g architecture which ischaracteristic for all (bacterio)chlorophylls. Dark-operativeprotochlorophyllide oxidoreductase (DPOR) is a multi-subunit enzymeemploy<strong>in</strong>g nitrogenase-like catalysis for the chemically difficult twoelectron reduction of r<strong>in</strong>g D.Dur<strong>in</strong>g ATP-dependent DPOR catalysis the homodimeric ChlL 2 subunitcarry<strong>in</strong>g a [4Fe-4S] cluster, transfers electrons to the correspond<strong>in</strong>gheterotetrameric catalytic subunit (ChlN/ChlB) 2 which also possesses aredox active [4Fe-4S] cluster. To <strong>in</strong>vestigate the transient <strong>in</strong>teraction ofboth subcomplexes and the result<strong>in</strong>g electron transfer reactions, the ternaryDPOR enzyme holocomplex compris<strong>in</strong>g subunits ChlN, ChlB and ChlLwas trapped as an octameric (ChlN/ChlB) 2(ChlL 2) 2 complex after<strong>in</strong>cubation with non hydrolyzable ATP analogs. A nucleotide-dependentswitch mechanism trigger<strong>in</strong>g ternary complex formation and electrontransfer was concluded.The crystal structure of the catalytic (ChlN/ChlB) 2 complex of DPOR fromthe cyanobacterium Thermosynechococcus elongatus was solved at aresolution of 2.4 Å. Subunits ChlN and ChlB exhibit a related architectureof three subdoma<strong>in</strong>s built around a central, parallel ß-sheet surrounded by-helices. The (ChlN/ChlB) 2 prote<strong>in</strong> revealed a [4Fe-4S] clustercoord<strong>in</strong>ated by an oxygen atom of an aspartate residue alongside threecommon cyste<strong>in</strong>e ligands. Two substrate b<strong>in</strong>d<strong>in</strong>g sites enriched witharomatic residues for coord<strong>in</strong>ation of the protochlorophyllide substratemolecules are located at the <strong>in</strong>terface of each ChlN/ChlB half-tetramer.The complete octameric (ChlN/ChlB) 2(ChlL 2) 2 complex of DPOR wasmodeled based on the obta<strong>in</strong>ed structure and earlier functional studies. Theelectron transfer pathway via the various redox centers of DPOR to thesubstrate was reconstructed.Bröcker, M. J., Schomburg, S., He<strong>in</strong>z, D. W., Jahn, D., Schubert, W. D., and Moser, J. (2010).Crystal structure of the nitrogenase-like dark operative protochlorophyllide oxidoreductase catalyticcomplex (ChlN/ChlB)2. J. Biol. Chem.285, 27336-27345.Wätzlich, D., Bröcker, M., Uliczka, F., Ribbe, M., Virus, S.; Jahn, D. & Moser, J. (2009). ChimericNitrogenase-like Enzymes of (Bacterio)Chlorophyll Biosynthesis.J. Biol. Chem.284:15530-40.Bröcker, M.J.; Virus, S.; Ganskow, S.; Heathcote, P.; He<strong>in</strong>z, D.W.; Schubert, W-D.; Jahn, D. &Moser, J. (2008). ATP-Driven Reduction by Dark-Operative Protochlorophyllide OxidoreductasefromChlorobium tepidumMechanistically Resembles Nitrogenase Catalysis.J. Biol.Chem.283:10559-67.PSV015Carbon disulfide hydrolase: a new enzyme for CS 2 conversion<strong>in</strong> acidothermophilic microorganismsM. Jetten* 1 , M. Smeulders 1 , H. Op den Camp 1 , T. Barends 2 , I. Schlicht<strong>in</strong>g 21 Radboud University Nijmegen, Microbiology, Nijmegen, Netherlands2 MPI Heidelberg, Heidelberg, GermanyAcidophilic, thermophilic Archaea that live <strong>in</strong> mudpots of volcaniceocsystems obta<strong>in</strong> their energy from the oxidation of sulfur compoundssuch as carbon disulfide and hydrogen sulfide, thereby creat<strong>in</strong>g anextremely acidic environment with pH values as low as 1. Ahyperthermophilic Acidianus stra<strong>in</strong> A1-3 was isolated from the fumarolic,ancient sauna build<strong>in</strong>g at the Solfatara volcano (Naples, Italy). It wasshown to rapidly convert CS 2 <strong>in</strong>to H 2S and carbon dioxide (CO 2), but sofar little was known about the modes of action and the evolution of theenzyme(s) <strong>in</strong>volved. In this study we elucidated the structure, the proposedmechanism and evolution of the isolated CS 2 hydrolase from AcidianusA1-3. The enzyme monomer displayed a typical b-carbonic anhydrase foldand active site, yet CO 2 was not one of the typical substrates. Largecarboxy- and am<strong>in</strong>o-term<strong>in</strong>al arm extensions, and an unusualhexadecameric catenane oligomer were apparent <strong>in</strong> the enzyme. Thesestructure features resulted <strong>in</strong> the block<strong>in</strong>g of the usual entrance to carbonicanhydrase active sites, and the formation of a s<strong>in</strong>gle 1,5 nm long, highlyhydrophobic tunnel that functions as a specificity filter. The tunneldeterm<strong>in</strong>es the enzyme's substrate specificity for CS 2. The transposonsequences that surround the gene encod<strong>in</strong>g this CS 2 hydrolase po<strong>in</strong>t tohorizontal gene transfer as a mechanism for its acquisition dur<strong>in</strong>gevolution. Our results show how the ancient b-carbonic anhydrase, whichis central to global carbon metabolism, was transformed by divergentevolution <strong>in</strong>to a crucial enzyme <strong>in</strong> CS 2 metabolism.Smeulders MJ, Barends T, et al (2011) Evolution of a new enzyme for carbon disulphideconversion by an acidothermophilic archaeon. Nature 478(7369):412-416 doi:10.1038/nature10464PSV016A promiscuous archaeal ATP synthase concurrently coupledto Na + and H + translocationK. Schlegel* 1 , V. Leone 2 , J. Faraldo-Gómez 2 , V. Müller 11 Molecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, Germany2 Theoretical Molecular Biophysics Group, Max Planck Institute ofBiophysics, Frankfurt/Ma<strong>in</strong>, Germany, GermanyCytochrome-conta<strong>in</strong><strong>in</strong>g methanogenic archaea are one of the very feworganisms that generate a primary proton- as well as a primary sodium iongradient dur<strong>in</strong>g their metabolism (1). Thus, the critical question is howboth ion gradients are used for the synthesis of ATP. S<strong>in</strong>ce only one ATPsynthase (A 1A O type) is expressed, the enzyme may use both ions ascoupl<strong>in</strong>g ion, or the sodium ion gradient is converted to a secondary protongradient via Na + /H + antiporter or vice versa (2). We have addressed thislong stand<strong>in</strong>g question us<strong>in</strong>g energetically <strong>in</strong>tact <strong>in</strong>side out membranevesicles of Methanosarc<strong>in</strong>a acetivorans. Our results show that the A 1A OATP synthase translocates both ions, H + and Na + , simultaneously underphysiological conditions. To further elucidate this phenomenon, we usedfree-energy molecular simulations to analyse the ion-selectivity of the ionb<strong>in</strong>d<strong>in</strong>gsite of the subunit c. This appears to have been tuned via am<strong>in</strong>oacidsubstitutions allow<strong>in</strong>g the usage of H + and Na + under physiologicalconditions. The adaptation of the b<strong>in</strong>d<strong>in</strong>g site could be an adaptation to usethe heterogeneous ion gradient established dur<strong>in</strong>g methanogensis.1. Deppenmeier U, & Müller V (2008) Life close to the thermodynamic limit: how methanogenicarchaea conserve energy. Results Probl. Cell. Differ.45: 123-152.2. Pisa KY, Weidner C, Maischak H, Kavermann H, & Müller V (2007) The coupl<strong>in</strong>g ion <strong>in</strong>methanoarchaeal ATP synthases: H + versus Na + <strong>in</strong> the A1AO ATP synthase from the archaeonMethanosarc<strong>in</strong>a mazei Gö1. FEMS Microbiol. Lett.277:56-63.PSP001A tool for onl<strong>in</strong>e measurement of the <strong>in</strong>tracellular pH <strong>in</strong>Corynebacterium glutamicumK.M. Kirsch*, S. Mayr, R. Krämer, K. Mar<strong>in</strong>Universität Köln, Institut für Biochemie, Köln, GermanyThe soil bacterium C. glutamicum is a well established organism for<strong>in</strong>dustrial am<strong>in</strong>o acid production. In its natural habitat as well as dur<strong>in</strong>glarge scale fermentation, C. glutamicum is exposed to significant changesof the external pH. The limited mix<strong>in</strong>g capacity, pH regulation by additionof acids or NH 3 as well as elevated CO 2 concentrations at high celldensities contribute to transient fluctuations of the external pH. It isconsidered that most bacteria perform efficient pH homeostasis <strong>in</strong> order toma<strong>in</strong>ta<strong>in</strong> the structural and functional <strong>in</strong>tegrity of cellular macromoleculesbut, it is unknown for almost all bacteria to what extent the <strong>in</strong>ternal pH canvary and how fast the adjustment of the <strong>in</strong>ternal pH is achieved uponexternal shifts. Additionally, the major players of pH regulation and theenergetic costs of pH homeostasis are unknown, although their impact onthe efficiency of production processes seems to be obvious. In order toaddress these questions we established a method for onl<strong>in</strong>e measurementBIOspektrum | Tagungsband <strong>2012</strong>


176of pH i <strong>in</strong> vivo us<strong>in</strong>g the pH sensitive GFP variant pHluor<strong>in</strong> 1 . Themeasurement is <strong>in</strong>dependent of the amount of (functional) dye, fullyreversible, <strong>in</strong>sensitive towards ionic strength or <strong>in</strong>hibitors and allowssampl<strong>in</strong>g rates of less than 5 seconds. We applied the newly establishedmethod <strong>in</strong> C. glutamicum to quantify <strong>in</strong>ternal pH variations rang<strong>in</strong>g frompH 5 -7.5 upon acidification of the surround<strong>in</strong>g, to follow the cellularresponse <strong>in</strong> time and to look for major contributors to the export of protonsunder acidic stress conditions.1. Miesenböck et al., 1998PSP002Phenylacetaldehyde is oxidized by two different enzymes <strong>in</strong>anaerobic Aromatoleum aromaticum - phenylacetaldehydeferredox<strong>in</strong> oxidoreductase and phenylacetaldehydedehydrogenaseC. Debnar-Daumler*, J. HeiderPhilipps-University Marburg, Microbial Biochemistry, Marburg, GermanyThe mesophilic denitrify<strong>in</strong>g bacterium Aromatoleum aromaticum degradesphenylalan<strong>in</strong>e under anaerobic conditions to benzoyl-CoA, the common<strong>in</strong>termediate <strong>in</strong> anaerobic aromatics degradation. The most <strong>in</strong>terest<strong>in</strong>g step<strong>in</strong> this pathway is the oxidation of phenylacetaldehyde to phenylacetate.Two enzymes have been identified to catalyze this step: (i) aphenylacetaldehyde ferredox<strong>in</strong> oxidoreductase (AOR, encoded by geneebA5005) and (ii) a phenylacetaldehyde dehydrogenase (Pdh, encoded bygene ebA4954).Enzymes of the AOR family conta<strong>in</strong> a tungsten cofactor and mostdescribed representatives play important roles <strong>in</strong> peptide fermentation <strong>in</strong>hyperthermophilic archaea. However, more and more of these enzymes arealso found <strong>in</strong> anaerobic mesophilic bacteria. For example, A. aromaticumproduces an AOR-type enzyme when grown anaerobically onphenylalan<strong>in</strong>e as sole carbon source (1). This corresponds to asimultaneously <strong>in</strong>duced phenylacetaldehyde ferredox<strong>in</strong> oxidoreductaseactivity <strong>in</strong> the respective crude extracts. The enzyme has been highlyenriched and the presence of tungsten has been confirmed by ICP-MSmeasurements. S<strong>in</strong>ce anaerobic growth of the cells is also dependent onmolybdenum-conta<strong>in</strong><strong>in</strong>g nitrate reductase, A. aromaticum must be able toproduce molybdo- and tungstoenzymes at the same time. The pathways formolybdenum- and tungsten-cofactor biosynthesis are thought to be similarat least up to the step of metal <strong>in</strong>corporation (2). At this po<strong>in</strong>t, theorganism needs to discrim<strong>in</strong>ate between molybdenum and tungsten. Thegenome of A. aromaticum conta<strong>in</strong>s different genes cod<strong>in</strong>g for potentialmolybdenum- or tungsten-specific transport and <strong>in</strong>corporation prote<strong>in</strong>s,whose functions will be assessed by knock-out mutants.In addition to AOR, a dehydrogenase us<strong>in</strong>g both NAD and NADP aselectron acceptors (Pdh) is <strong>in</strong>volved <strong>in</strong> anaerobic phenylacetaldehydeoxidation. The enzyme has been enriched and identified by MS analysis asgene product of ebA4954, which is different from an orig<strong>in</strong>ally annotatedNAD-dependent enzyme for this reaction (gene product of ebA5381) (3).The prote<strong>in</strong> is oxygen-<strong>in</strong>sensitive. Its gene is currently be<strong>in</strong>g cloned to beoverexpressed <strong>in</strong> Escherichia coli and a knock-out mutant <strong>in</strong> A.aromaticum is be<strong>in</strong>g generated. Additionally, native and recomb<strong>in</strong>ant Pdhwill be biochemically characterized.1. Wöhlbrand, L., Kallerhoff, B., Lange, D., Hufnagel, P., Thiermann, J., Re<strong>in</strong>hardt, R.und Rabus,R.(2007) Functional proteomic view of metabolic regulation <strong>in</strong> “Aromatoleum aromaticum“ stra<strong>in</strong>EbN1.Proteomics7: 2222-2239.2. Bevers, L. E., Hagedoorn, P.-L. und Hagen, W. R.(2009) The bio<strong>in</strong>organic chemistry oftungsten.Coord<strong>in</strong>ation Chemistry Reviews253: 269-290.3. Rabus, R., Kube, M., Heider, J., Beck, A., Heitmann, K. und Widdel, F. (2005) The genomesequence of an anaerobic aromatic-degrad<strong>in</strong>g denitrify<strong>in</strong>g bacterium, stra<strong>in</strong> EbN1. Archives ofMicrobiology 183: 27-36.PSP003Central metabolic enzymes as ma<strong>in</strong> target of reactive oxygenspecies <strong>in</strong> bacteriaC.M. Lange* 1 , C. Trötschel 2 , A. Poetsch 2 , R. Krämer 1 , K. Mar<strong>in</strong> 11 University of Cologne, Institute for Biochemistry, Cologne, Germany2 University of Bochum, Institute for Plant Biochemistry , Bochum,GermanyS<strong>in</strong>ce the appearance of photosynthetic cyanobacteria on planet earth,oxidative stress is a common problem for most bacteria and means theoccurrence of ROS (reactive oxygen species) <strong>in</strong>clud<strong>in</strong>g hydrogen peroxide(H 2O 2), superoxide (O 2 - ) or the hydroxyl radical (HO .- ). In its naturalhabitat as well as dur<strong>in</strong>g biotechnological applications Corynebacteriumglutamicum is exposed to oxidative stress impact<strong>in</strong>g the <strong>in</strong>tegrity of themembrane, prote<strong>in</strong>s and DNA and therefore survival, growth and productyields. Remarkably, the response towards oxidative stress was addressed <strong>in</strong>several bacteria <strong>in</strong>clud<strong>in</strong>g Escherichia coli or De<strong>in</strong>ococcus radioduransbut is poorly understood <strong>in</strong> C. glutamicum.In this contribution we focused on oxidative modifications of enzymes thatare part of the central metabolism <strong>in</strong> C. glutamicum and discovered thatfructose-1,6-bisphosphat aldolase (FBA) and isocitrate dehydrogenase(ICDH) are prom<strong>in</strong>ent targets. Both show a high degree and manifoldROS-dependent modifications of particular am<strong>in</strong>o acid residues identifiedby Oxyblot TM and LC-MS/MS. For both, we found a correlation betweenthe extent of oxidative modification and loss of enzyme activity under <strong>in</strong>vitro conditions and could prove the occurrence of these modifications <strong>in</strong>vivo as well. In contrast, other highly abundant prote<strong>in</strong>s likephosphoglycerate k<strong>in</strong>ase (PGK) are not modified to the same extent. Inorder to unravel the correlation between the modification of particularresidues and the reduced activity, the enzymes of C. glutamicum werecompared with prote<strong>in</strong>s from De<strong>in</strong>ococcus radiodurans, Streptococcusgordonii and Propionibacterium acnes regard<strong>in</strong>g sequence similarity andoxidative damage upon expression <strong>in</strong> C. glutamicum. F<strong>in</strong>ally, a proteomewide analysis of oxidative modifications revealed that besides FBA andICDH selected enzymes of the Glycolysis and the TCA appear to be moresensitive than other enzymes of various pathways. We will discusscommon features of these enzymes that illustrate the multiplicity ofoxidative prote<strong>in</strong> damage <strong>in</strong> bacterial cells.PSP004Intracellular routes of iron delivery to modular redox enzymesM. Jarosch<strong>in</strong>sky*, C. P<strong>in</strong>ske, G. SawersMart<strong>in</strong>-Luther-University Halle, Biology/Microbiology AG Sawers, Halle,GermanyModular redox enzymes <strong>in</strong>volved <strong>in</strong> energy conservation often comprise alarge catalytic, a small electron-transferr<strong>in</strong>g and a membrane anchorsubunit. Examples <strong>in</strong> anaerobically grow<strong>in</strong>g Escherichia coli <strong>in</strong>clude the[NiFe]-hydrogenases (Hyd), nitrate reductase (Nar) and the formatedehydrogenases (Fdh). The activity of these enzymes relies heavily on theiron sulfur [FeS] cluster-conta<strong>in</strong><strong>in</strong>g small subunit 1 . The ma<strong>in</strong> [FeS]<strong>in</strong>sertion mach<strong>in</strong>ery is the Isc (iron sulfur cluster) system, <strong>in</strong> which IscUhas a scaffold function and IscA and ErpA are traffick<strong>in</strong>g prote<strong>in</strong>s 2 .However, not only the redox enzymes themselves require [FeS] clusters,but also many of the maturation prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> active site provisionconta<strong>in</strong> an [FeS] cluster. In addition, the active site of [NiFe]-Hyd conta<strong>in</strong>sa s<strong>in</strong>gle iron atom. In order to elucidate the role of the Isc [FeS] clusterbiogenesis mach<strong>in</strong>ery <strong>in</strong> the formation of these modular redox enzymes,knock-out mutants were used to monitor the respective enzyme activitiesand immunological methods were employed to analyze the subunitcomposition. The ErpA and the IscU components were <strong>in</strong>dispensable forgeneration of active redox enzymes, while the dependence on IscA wasonly partial. E. coli synthesizes three membrane-bound Hyd enzymes withHyd-1 and Hyd-2 function<strong>in</strong>g as hydrogen-oxidiz<strong>in</strong>g enzymes and Hyd-3form<strong>in</strong>g part of the hydrogen-evolv<strong>in</strong>g formate hydrogen lyase (FHL)complex 3 . The FHL complex was partially functional <strong>in</strong> an iscA mutant,while Hyd-1 and Hyd-2 activities were undetectable. This phenotype wasfound to be due to the absence of the respective small subunit. Process<strong>in</strong>gof all large Hyd subunits, which correlates with <strong>in</strong>sertion of active siteiron, still occurred. Therefore, <strong>in</strong>sertion of active site iron must be<strong>in</strong>dependent of the [FeS] mach<strong>in</strong>ery and <strong>in</strong>volves further unknowncomponents.1 P<strong>in</strong>ske C, Krüger S, Soboh B, Ihl<strong>in</strong>g C, Kuhns M, Braussemann M, Jarosch<strong>in</strong>sky M, Sauer C,Sargent F, et al. (2011) Arch Microbiol, 193, 893-903.2 V<strong>in</strong>ella D, Brochier-Armanet C, Loiseau L, Talla E & Barras F (2009) PLoS Genet 5, e1000497.3 Forzi L & Sawers RG (2007) Biometals 20, 565-578.PSP005C-Type Cytochromes <strong>in</strong> Hydrogen Oxidation and SulfurReduction <strong>in</strong> the Hyperthermophilic Archaeon IgnicoccushospitalisA. Kletz<strong>in</strong>* 1 , B. Naß 1 , M. Eckert 1 , M. Forth 1 , U. Küper 2 , H. Huber 21 TU Darmstadt, Mikrobiologie und Genetik, Darmstadt, Germany2 Universität Regensburg, Lehrstuhl für Mikrobiologie, Regensburg,GermanyIgnicoccus hospitalis is a strictly chemolithotrophic and hyperthermophilicarchaeon that grows by anaerobic hydrogen oxidation with sulfur aselectron acceptor. Ignicoccus species are special among archaea becausethey possess and <strong>in</strong>ner and outer membrane enclos<strong>in</strong>g an <strong>in</strong>termembranecompartment, which is not similar to the periplasmic space of Bacteria.A oA 1-ATPases and sulfur reductase/hydrogenase are localized <strong>in</strong> the outerbut not <strong>in</strong> the <strong>in</strong>ner membrane. Here we describe purification results withhydrogenase, sulfur reductase and electron-mediat<strong>in</strong>g multiheme c-typecytochromes.The hydrogenase purified from I. hospitalis membrane fractions consistedof four subunits, Igni_1366-1369, when separated on SDS gels, which<strong>in</strong>cluded the large and small NiFe hydrogenase subunits, the membraneanchor and the so far elusive Isp2 FeS subunit. The hydrogenase reducedviologen dyes (115-660 U/mg), 2,3,-Dimethylnaphthoqu<strong>in</strong>one (12 U/mg)and the soluble multiheme c-type cytochrome Igni_0955 <strong>in</strong> a semiquantitativeassay. The sulfur reductase has specific activities of 10-12U/mg <strong>in</strong> solubilized membrane fractions, however, this decreased rapidlyupon further purification. No prote<strong>in</strong>s were identified.Besides Igni_0955, I. hospitalis conta<strong>in</strong>s a second soluble multihemecytochrome c, termed Igni_1359. Both cytochromes were purifiedchromatographically 16 and 11-fold, respectively, to apparentBIOspektrum | Tagungsband <strong>2012</strong>


177homogeneity. Both run as dimers <strong>in</strong> gel filtration chromatography but theyalso form higher aggregates <strong>in</strong> denatur<strong>in</strong>g and non-denatur<strong>in</strong>gelectrophoresis. The absorption maxima were 552, 525, and 410 nm(reduced: 420nm) for Igni_0955 and 554, 521 and 409 nm (reduced 419nm) for Igni_1369. Hemochrome spectra showed 7 hemes/subunit, whilemass spectroscopy resulted <strong>in</strong> 8 hemes for both prote<strong>in</strong>s <strong>in</strong> accordancewith the prediction from sequence. Igni_1369 is one of the most abundantprote<strong>in</strong>s <strong>in</strong> Ignicoccus cells (5%) but its function is unknown.A survey of multiheme prote<strong>in</strong>s <strong>in</strong> Archaea showed that they occur <strong>in</strong>some but not all of the Desulfurococcales, the Archaeoglobi and theMethanomicrobia, and <strong>in</strong> the species Pyrobaculum calidifontis andNatrialba magadii. An overview of the distribution of various types of c-type cytochromes <strong>in</strong> Archaea will be discussed.PSP006Studies on the <strong>in</strong>teraction of the O-demethylase components of theanaerobe Acetobacterium dehalogenans us<strong>in</strong>g two-hybrid systemsH.D. Nguyen*, S. Studenik, G. DiekertFriedrich-Schiller-University Jena, Institute for Microbiology, Jena,GermanyThe anaerobe acetogen Acetobacterium dehalogenans utilizes the methylgroup of phenyl methyl ethers, which are products of lign<strong>in</strong> degradation, asa carbon and energy source. The O-demethylation reaction <strong>in</strong> which themethyl group of the substrate is transferred to tetrahydrofolate is mediatedby the key enzymes, the O-demethylases, <strong>in</strong> the methylotrophicmetabolism. Different O-demethylases are <strong>in</strong>duced <strong>in</strong> response to differentphenyl methyl ethers formed upon fungal lign<strong>in</strong> degradation.The O-demethylase complex consists of four enzymes: a methyltransferaseI (MT I), a methyltransferase II (MT II), a corr<strong>in</strong>oid prote<strong>in</strong> (CP) and anactivat<strong>in</strong>g enzyme (AE). The methyl group is transferred from the phenylmethyl ether to the super-reduced corr<strong>in</strong>oid prote<strong>in</strong> by MT I. Themethylated corr<strong>in</strong>oid prote<strong>in</strong> is subsequently demethylated and the methylgroup is transferred to tetrahydrofolate by MT II. The <strong>in</strong>activated form ofthe corr<strong>in</strong>oid prote<strong>in</strong>, cob(II)alam<strong>in</strong>, which may be generated by<strong>in</strong>advertent oxidation, is reduced by the activat<strong>in</strong>g enzyme <strong>in</strong> an ATPdependent reaction.To catalyze the complete O-demethylase reaction, an <strong>in</strong>teraction of at leastthree of the four prote<strong>in</strong>s components is required. Prote<strong>in</strong>-prote<strong>in</strong><strong>in</strong>teractions were <strong>in</strong>vestigated us<strong>in</strong>g bacterial and yeast two-hybridsystems. First results <strong>in</strong>dicate that CP, as methyl group carrier dur<strong>in</strong>g theO-demethylation process <strong>in</strong>teracts with all other prote<strong>in</strong>s of the O-demethylase complex. This f<strong>in</strong>d<strong>in</strong>g supports the crucial role of CP <strong>in</strong> themethylotrophic metabolism of Acetobacterium dehalogenans.PSP007Design of a bacterial electron transport module: Interaction ofmembrane-bound NiFe-hydrogenase with cytochromes b and cO. Klimmek*, M. Kern, M. Hirschmann, F. Keul, J. SimonTU Darmstadt, Department of Biology, Darmstadt, GermanyMany bacteria employ membrane-bound NiFe-hydrogenases (MBHs) thatserve <strong>in</strong> hydrogen gas uptake and electron transport <strong>in</strong> anaerobicrespiratory cha<strong>in</strong>s. MBHs possess a heterodimeric prote<strong>in</strong> complex thatconta<strong>in</strong>s the active site of hydrogen turnover and three iron-sulfur clusters.This entity is located at the periplasmic side of the membrane and l<strong>in</strong>ked tothe membrane via a qu<strong>in</strong>one-reactive dihaem cytochrome b. In contrast,soluble heterodimeric NiFe-hydrogenases from, for example, sulfatereducers are periplasmic enzymes that <strong>in</strong>teract with multihaemcytochromes c.The MBH complex of the Epsilonproteobacterium Wol<strong>in</strong>ella succ<strong>in</strong>ogenes(HydABC) is the key enzyme of anaerobic respiration us<strong>in</strong>g hydrogen gasas electron donor. The enzyme is anchored to the membrane by both thedihaem cytochrome b HydC and a C-term<strong>in</strong>al transmembrane helicalregion of the iron-sulfur subunit HydA [1,2]. In the absence of bothanchors, active hydrogenase was found almost exclusively <strong>in</strong> theperiplasmic cell fraction [1].The aim of this work was to identify am<strong>in</strong>o acid residues <strong>in</strong>volved <strong>in</strong>HydA-HydC <strong>in</strong>teraction. Furthermore, the ability of W. succ<strong>in</strong>ogenesMBH to reduce cytochromes c was <strong>in</strong>vestigated us<strong>in</strong>g purified HydABC orcell fractions conta<strong>in</strong><strong>in</strong>g the periplasmic HydAB complex. Advised by coevolutionarydependency studies based on <strong>in</strong>formation theory, eng<strong>in</strong>eer<strong>in</strong>gof HydAB was performed <strong>in</strong> order to optimize cytochrome c reduction byhydrogen gas, thus design<strong>in</strong>g a novel periplasmic electron transfer network<strong>in</strong> W. succ<strong>in</strong>ogenes.[1] Gross et al. (1998) Arch Microbiol 170: 50-58[2] Gross et al. (2004) J Biol Chem 279: 274-281PSP008The methylotrophic metabolism of Desulfitobacterium spp.M. Vogel, S. Studenik*, G. DiekertFriedrich-Schiller-University Jena, Institute for Microbiology, Jena, GermanyDesulfitobacterium spp. are strictly anaerobic bacteria first isolated fromenvironments contam<strong>in</strong>ated with halogenated compounds. In 2004, it wasshown, that at least two stra<strong>in</strong>s of Desulfitobacterium hafniense (DCB-2and PCE-S) are able to use phenyl methyl ethers, which are degradationproducts of lign<strong>in</strong>, as electron donors. By then, only acetogens had beenreported to convert these compounds under anoxic conditions. In contrastto acetogenic bacteria, Desulfitobacterium hafniense is not able to use CO 2as electron acceptor.We currently <strong>in</strong>vestigate the metabolic pathways <strong>in</strong>volved <strong>in</strong> the phenylmethyl ether consumption of Desulfitobacterium hafniense DCB-2. Keyenzymes are the O-demethylases, <strong>in</strong>ducible enzyme systems first describedfor acetogens. On the basis of the genome sequence 17 putative O-demethylase operons were identified. Recent studies concentrate on theheterologous expression of putative O-demethylase genes and thecharacterization of the correspond<strong>in</strong>g gene products.PSP009Temporal and spatial effects of adaptation, a new mechanismrely<strong>in</strong>g on posttranslational modification of key enzymes <strong>in</strong>degradative microorganismsS. Leibel<strong>in</strong>g* 1 , J.L. Zilles 2 , C.J. Werth 2 , R.H. Müller 1 , H. Harms 11 Helmholtz Centre for Environmental Research GmbH - UFZ,Environmental Microbiology, Leipzig, Germany2 University of Ill<strong>in</strong>ois at Urbana-Champaign, Civil and EnvironmentalEng<strong>in</strong>eer<strong>in</strong>g, Urbana, United StatesA vast spectrum of organic chemicals is steadily released to theenvironment by the <strong>in</strong>dustry and consumers. Despite the xenobioticcharacter of these chemicals, the ma<strong>in</strong> process responsible for mitigat<strong>in</strong>gtheir impact is pollutant degradation by microorganisms. The capability ofmicroorganisms to adapt to environmental pollutants and to couple theirdegradation to growth has been attributed to genetic mechanisms likemutation and recomb<strong>in</strong>ation of genes. However, other mechanisms mayalso expla<strong>in</strong> adaptative responses of microorganisms. Here<strong>in</strong>, we presentevidence for a mechanism improv<strong>in</strong>g the activity of degradative enzymesby posttranslational modification.The soil bacterium Delftia acidovorans MC1 was used; it degradesphenoxyalkanoate herbicides like 2,4-dichlorophenoxyacetate (2,4-D) and(RS)-2-(2,4-dichlorophenoxy-)propionate ((RS)-2,4-DP). Key enzymes forthe <strong>in</strong>itial degradation step are -ketoglutarate-dependent dioxygenases,which determ<strong>in</strong>e the microorganism’s substrate specificity, e.g. the (R)-2,4-DP/-ketoglutarate dioxygenase (RdpA) attacks the R-enantiomer of(R)-2,4-DP but not 2,4-D. The latter is cleaved by 2,4-D/- and (S)-2,4-DP/-ketoglutarate dioxygenases (TfdA and SdpA, respectively). Westudied adaptation <strong>in</strong> long-term cultivation experiments with mutant stra<strong>in</strong>sbear<strong>in</strong>g only RdpA. Noteworthy, cultivation <strong>in</strong> the presence of (R)-2,4-DPand 2,4-D led to improved degradation of 2,4-D (K m) and its utilization forbiomass formation. This was accompanied by a change <strong>in</strong> the enzymepattern, as made visible by 2D gel electrophoresis, show<strong>in</strong>g l<strong>in</strong>e-ups ofRdpA forms vary<strong>in</strong>g <strong>in</strong> their pI and number. S<strong>in</strong>ce there is only one rdpAgene <strong>in</strong> the genome of D. acidovorans and no mutations were found,posttranslational modification is a likely explanation for the appearance ofRdpA variants. Particularly plausible are charge relevant carbonylationreactions s<strong>in</strong>ce they alter the prote<strong>in</strong>s’ pI, as observed <strong>in</strong> our study.Carbonylation is <strong>in</strong>duced by reactive oxygen species (ROS), which areknown side products of oxygenase reactions which, <strong>in</strong> turn, causecarbonylation of the enzyme itself and other prote<strong>in</strong>s <strong>in</strong> its vic<strong>in</strong>ity.Carbonyl groups were identified through Western blott<strong>in</strong>g via theirspecific reactions with d<strong>in</strong>itrophenylhydraz<strong>in</strong>e. Our study of D.acidovorans adaptation was extended to a two-dimensional microfluidicpore network, which simulates subsurface pore spaces. Here, <strong>in</strong>itial growthon (R)-2,4-DP and adaptation on 2,4-D was observed via reflected DICmicroscopy <strong>in</strong> the pore network. Effluent collected dur<strong>in</strong>g adaptation iscurrently analyzed for the appearance of RdpA variants. Our researchprovides <strong>in</strong>sight <strong>in</strong>to adaptational capabilities of microbial stra<strong>in</strong>s <strong>in</strong>biotopes with limited genetic diversity, and def<strong>in</strong>es growth properties atlimit<strong>in</strong>g substrate concentrations which are relevant for treatment ofcontam<strong>in</strong>ants <strong>in</strong> soil and groundwater.BIOspektrum | Tagungsband <strong>2012</strong>


178PSP010Crystal structure of the electron-transferr<strong>in</strong>g flavoprote<strong>in</strong> (Etf)from Acidam<strong>in</strong>ococcus fermentans <strong>in</strong>volved <strong>in</strong> electronbifurcationN. Pal Chowdhury* 1,2 , A. Mohammed Hassan 1,2 , U. Demmer 3 , U. Ermler 3 ,W. Buckel 1,21 Philipps-Universität, Fachbereich Biologie, Marburg, Germany2 Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany3 Max-Planck-Institut für Biophysik, Frankfurt, GermanyAerobic organisms use electron-transferr<strong>in</strong>g flavoprote<strong>in</strong> (Etf) as electronacceptor for the oxidation of acyl-CoA to enoyl-CoA. The reduced form ofEtf is then reoxidized by qu<strong>in</strong>one at the <strong>in</strong>ner mitochondrial membrane ofeukaryotes or at the cytoplasmic membrane of bacteria. The structure ofthe human heterodimeric Etf () revealed three doma<strong>in</strong>s, two of which areformed by the -subunit (I and II) and one by the -subunit (III). -FADlocated at the surface of doma<strong>in</strong> II <strong>in</strong>teracts with acyl-CoA dehydrogenase.The center of doma<strong>in</strong> III conta<strong>in</strong>s AMP with an enigmatic function. The<strong>in</strong>terface between doma<strong>in</strong>s II and III appears to be flexible due to absenceof secondary structures [1].Anaerobic bacteria synthesize butyrate via the NADH-dependent reductionof crotonyl-CoA to butyryl-CoA mediated by butyryl-CoA dehydrogenaseand Etf. This exergonic reaction is coupled to the endergonic reduction offerredox<strong>in</strong> by NADH, a process called electron bifurcation [2]. Whereas <strong>in</strong>Clostridium klyuveri [3] and Clostridium tetanomorphum butyryl-CoAdehydrogenase and Etf form a tight complex, <strong>in</strong> A. fermentans bothcomponents separate dur<strong>in</strong>g purification. Recomb<strong>in</strong>ant Etf from A.fermentans produced <strong>in</strong> Escherichia coli was crystallized and its structurehas been solved. The structure is closely related to that of the human Etf,but AMP is replaced by a second -FAD. We propose that NADH reduces-FAD to -FADH - . Then -FAD switches towards -FADH - and takesone electron to yield -FADH·and -FAD·- . Whereas -FAD·- is stabilizedby the flavodox<strong>in</strong>-like doma<strong>in</strong> II and transfers the electron further to thedehydrogenase, the rema<strong>in</strong><strong>in</strong>g highly reactive -FADH·immediatelyreduces ferredox<strong>in</strong>. Repetition of this process results <strong>in</strong> the reduction of 2ferredox<strong>in</strong>s and one crotonyl-CoA by 2 NADH. The reduced ferrdox<strong>in</strong>smay give rise to H 2 or to H + /Na + via a membrane bound NADferredox<strong>in</strong>oxidoreductase also called Rnf.1. Roberts DL, Frerman FE & Kim JJ (1996) Proc Natl Acad Sci U S A 93, 14355-14360.2. Herrmann G, Jayamani E, Mai G & Buckel W (2008) J Bacteriol 190, 784-7913. Li F, H<strong>in</strong>derberger J, Seedorf H, Zhang J, Buckel W & Thauer RK (2008) J Bacteriol 190, 843-850PSP011Nitrous oxide turnover <strong>in</strong> the nitrate-ammonify<strong>in</strong>gEpsilonproteobacterium Wol<strong>in</strong>ella succ<strong>in</strong>ogenesM. Luckmann*, M. Kern, J. SimonTU-Darmstadt, Department of Biology, Darmstadt, GermanyGlobal warm<strong>in</strong>g is mov<strong>in</strong>g more and more to the public consciousness.Besides the commonly mentioned carbon dioxide, nitrous oxide (N 2O) isone of the most important greenhouse gases and accounts for about 10% ofthe anthropogenic greenhouse effect.In the environment N 2O is produced, for example, by nitrify<strong>in</strong>g anddenitrify<strong>in</strong>g microbial species. On the other hand, some respiratory nitrateammonify<strong>in</strong>gEpsilonproteobacteria are able to reduce nitrous oxide tod<strong>in</strong>itrogen via an unconventional cytochrome c nitrous oxide reductase(cNosZ). The energy metabolism of one of these bacteria, Wol<strong>in</strong>ellasucc<strong>in</strong>ogenes, has been characterized thoroughly <strong>in</strong> the past. The cells areable to use either formate or hydrogen gas as electron donors together withtypical term<strong>in</strong>al electron acceptors like, for example, fumarate, nitrate,polysulfide or nitrous oxide. Despite utiliz<strong>in</strong>g nitrous oxide, it is notknown if these cells are produc<strong>in</strong>g N 2O <strong>in</strong> substantial amounts dur<strong>in</strong>genergy substrate turnover or if they are act<strong>in</strong>g only as N 2O s<strong>in</strong>ks.The cytochromecnitrous oxide reductase of W. succ<strong>in</strong>ogenesis encoded bythe first gene of the nos gene cluster together with a unique electrontransport system that is predicted to connect the menaqu<strong>in</strong>one/menaqu<strong>in</strong>olpool with cNosZ. The <strong>in</strong>volved electron transfer cha<strong>in</strong> may comprise amenaqu<strong>in</strong>ol dehydrogenase of the unusual NapGH-type and the twomonohaem cytochromes c NosC1 and NosC2. Correspond<strong>in</strong>g <strong>in</strong>-framegene deletion stra<strong>in</strong>s were constructed and characterized. Based on theresults, a model of nitrous oxide turnover <strong>in</strong> W. succ<strong>in</strong>ogenes will bepresented.PSP012Anaerobic n-hexane degradation <strong>in</strong> nitrate reduc<strong>in</strong>g stra<strong>in</strong> HxN1A. Parthasarathy* 1,2 , M. Drozdowska 3 , J. Kahnt 2 , R. Rabus 4,5 , F. Widdel 5 ,B.T. Gold<strong>in</strong>g 3 , H. Wilkes 6 , W. Buckel 1,21 Philipps-Universität, Fachbereich Biologie, Marburg, Germany2 Max-Planck-Institut für terrestrische Mikrobiologie, Marburg, Germany3 University of Newcastle upon Tyne, Chemistry, Newcastle, UnitedK<strong>in</strong>gdom4 Universität Oldenburg, Institut für Chemie und Biologie des Meeres,Oldenburg, Germany5 Max-Planck-Institut für Mar<strong>in</strong>e Mikrobiologie, Bremen, Germany6 Helmholtz-Zentrum Potsdam, Organische Geochemie, Potsdam, GermanyThe denitrify<strong>in</strong>g Betaproteobacterium HxN1 grows on n-hexane [1]form<strong>in</strong>g alkyl substituted succ<strong>in</strong>ates. The proposed pathway starts with theaddition of n-hexane to fumarate with the exclusive abstraction of the pro-S hydrogen of n-hexane via a glycyl-radical enzyme catalysed reaction [1],yield<strong>in</strong>g a mixture of (2R,1'R) and (2S,1'R)-1'-methylpentylsucc<strong>in</strong>ates mostlikely as CoA-thioesters [2]. These <strong>in</strong>termediates are proposed to bedegraded via <strong>in</strong>tramolecular rearrangement to (4R)-(2-methylhexyl)malonyl-CoA and carboxyl group loss yield<strong>in</strong>g (4R)-4-methyloctanoyl-CoA. Further degradation may occur via dehydrogenationand -oxidation [3]. If (4R)-(2-methylhexyl)malonyl-CoA, synthesised bya novel method, and propionyl-CoA were <strong>in</strong>cubated with cell-free extractof stra<strong>in</strong> HxN1, MALDI-TOF mass spectrometry revealed formation ofmethylmalonyl-CoA and 2-methylhex-2-enoyl-CoA (-oxidation product).Therefore, transcarboxylation (CO 2 exchange between substrates) occurs atthe CoA thioester level as predicted, l<strong>in</strong>k<strong>in</strong>g the degradation of 1-methylpentylsucc<strong>in</strong>ate to the generation of succ<strong>in</strong>ate via methylmalonyl-CoA.1) Rabus R, Wilkes H, Behrends A, Armstroff A, Fischer T, Widdel F (2001) J Bacteriol 183,1707-1715.2) Jarl<strong>in</strong>g R, Sadeghi M, Drozdowska M, Lahme S, Buckel W, Rabus R, Widdel F, Gold<strong>in</strong>g BT, Wilkes H(2011), Angew. Chem. <strong>in</strong> press.3) Wilkes H, Rabus R, Fischer T, Armstroff A, Behrends A, Widdel F (2002) Arch. Microbiol 177, 235.PSP013Streptomyces coelicolor A3(2) Spores are Prepared for an AbruptShift from Aerobic Respiration to Anaerobic Respiration withNitrateD. Falke*, M. Fischer, G. SawersMart<strong>in</strong>-Luther-University Halle, Biology/Microbiology, AG Sawers, Halle(Saale), GermanyThe filamentous act<strong>in</strong>obacterium Streptomyces coelicolor has a complexlife cycle <strong>in</strong>clud<strong>in</strong>g growth as vegetative hyphae, generation ofhydrophobic aerial hyphae and the production of exospores. Despite be<strong>in</strong>gan obligate aerobe S. coelicolor is able to reduce nitrate to nitrite, probablyto help ma<strong>in</strong>ta<strong>in</strong> a membrane potential dur<strong>in</strong>g oxygen limitation. Thegenome of S. coelicolor has 3 copies of the narGHJI operon, eachencod<strong>in</strong>g a nitrate reductase (Nar) [1]. Nars are multi-subunit, membraneassociatedenzymes that couple nitrate reduction to energy conservation.Each Nar enzyme is synthesized <strong>in</strong> S. coelicolor and is active <strong>in</strong> differentphases of growth and <strong>in</strong> different tissues: Nar1 is active <strong>in</strong> spores; Nar2 isactive <strong>in</strong> germ<strong>in</strong>at<strong>in</strong>g spores and mycelium; while Nar3 is <strong>in</strong>duced <strong>in</strong> thestationary phase correlat<strong>in</strong>g with the onset of secondary metabolism [2].The Nar enzymes are therefore not redundant but rather appear to havedist<strong>in</strong>ct functions <strong>in</strong> the developmental program of the bacterium.In this study we focused on nitrate respiration <strong>in</strong> rest<strong>in</strong>g spores. Freshlyharvested spores of S. coelicolor wild type M145 could reduce nitrate at asignificant rate without addition of an exogenous electron donor. However,an exogenous electron donor was required to measure the activity <strong>in</strong> crudeextracts of spores. Moreover, activity could be visualized by direct sta<strong>in</strong><strong>in</strong>gafter native PAGE. Analysis of def<strong>in</strong>ed knockout mutants demonstratedthat Nar activity <strong>in</strong> spores was due exclusively to Nar1. By us<strong>in</strong>g adiscont<strong>in</strong>uous assay to measure nitrite production by spores we coulddemonstrate that Nar1 was only capable of nitrate reduction <strong>in</strong> the absenceof oxygen. Addition of oxygen immediately prevented nitrate reduction.S<strong>in</strong>ce Nar1 activity <strong>in</strong> whole spores showed a reversible dependence onanaerobiosis, this f<strong>in</strong>d<strong>in</strong>g suggests that spores regulate either nitratetransport or Nar1 activity <strong>in</strong> response to oxygen. Notably, studies us<strong>in</strong>gprote<strong>in</strong> synthesis <strong>in</strong>hibitors revealed that Nar1 is always present and active<strong>in</strong> rest<strong>in</strong>g spores.[1] van Keulen et al. (2005) Nitrate respiration <strong>in</strong> the act<strong>in</strong>omycete Streptomyces coelicolor.Biochem Soc Trans. 33(Pt 1):210-2[2] Fischer et al. (2010) The obligate aerobe Streptomyces coelicolor A3(2) synthesizes three activerespiratory nitrate reductases. Microbiology. 156(Pt 10):3166-79PSP014New <strong>in</strong>sights <strong>in</strong>to acetate and glycerol metabolism ofSchizosaccharomyces pombeT. Kle<strong>in</strong>*, K. Schneider, E. He<strong>in</strong>zleSaarland University, Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, Saarbruecken, GermanyThe fission yeast Schizosaccharomyces pombe has been a model organismof molecular biology for decades. However, little is known about itsBIOspektrum | Tagungsband <strong>2012</strong>


179physiology and the utilization of different carbon sources. In the presentwork, we <strong>in</strong>vestigated the glycerol/acetate co-consumption by fission yeast.In contrast to other well-known yeasts like Saccharomyces cerevisiae, S.pombe is not able to use C2-compounds, such as ethanol or acetic acid assole carbon source because the necessary enzymes of the glyoxylat cycleare miss<strong>in</strong>g. In 2010, Matsuzawa, et al. reported, that S. pombe is alsounable to use glycerol as sole carbon source, which is <strong>in</strong> accordance withour results but cannot be expla<strong>in</strong>ed up to now. In 2011, the simultaneousconsumption of glycerol and acetate by fission yeast has been reported(Klement, et al., 2011). Therefore we composed a m<strong>in</strong>imal mediaconta<strong>in</strong><strong>in</strong>g glycerol and acetate as sole carbon sources. The specific growthrate of S. pombe was determ<strong>in</strong>ed as 0.11 h -1 . The biomass yield was 0.48 gCDW g substrate -1 and the respiratory quotient (RQ) 1.05. No ethanol orother typical fermentation products were detected <strong>in</strong> the culturesupernatant. These f<strong>in</strong>d<strong>in</strong>gs suggest that glycerol and acetate are coconsumedunder completely respiratory conditions. This is a strik<strong>in</strong>gdifference compared to other yeasts, e.g. S. cerevisiae, where glycerol isused <strong>in</strong> the fermentative processes for the production of bioethanol.We performed experiments with 13 C-labeld acetate to ga<strong>in</strong> a deeperknowledge of the substrate distribution throughout the entire centralcarbon metabolism. Our results show, that glycerol is used as precursor forglycolysis, gluconeogenesis and the pentose phosphate pathway. Acetate ismetabolized via the tricarboxylic acid cycle (TCA) but glycerol alsocontributes to the acetyl-CoA pool. No transport of mitochondrialoxaloacetate (OAA) <strong>in</strong>to the cytosol was detected. Specific label<strong>in</strong>gpatterns of prote<strong>in</strong>ogenic am<strong>in</strong>o acids revealed, that am<strong>in</strong>o acids derivedfrom OAA are synthesized exclusively <strong>in</strong> the cytosol. Further work willconcentrate on the identification of possible regulatory mechanisms tounderstand, why S. pombe does not utilize glycerol as sole carbon source.Klement, T., Dankmeyer, L., Hommes, R., van Sol<strong>in</strong>gen, P. and Buchs, J. (2011). Acetate-glycerolcometabolism: Cultivat<strong>in</strong>g Schizosaccharomyces pombe on a non-fermentable carbon source <strong>in</strong> adef<strong>in</strong>ed m<strong>in</strong>imal medium.J Biosci Bioeng.112, 20-25.Matsuzawa, T., Ohashi, T., Hosomi, A., Tanaka, N., Tohda, H. and Takegawa, K. (2010). Thegld1+ gene encod<strong>in</strong>g glycerol dehydrogenase is required for glycerol metabolism <strong>in</strong>Schizosaccharomyces pombe.Appl Microbiol Biotechnol87,715-27.PSP015A m<strong>in</strong>iaturized parallel bioreactor system for cont<strong>in</strong>uouscultivation studies on yeastK. Schneider*, T. Kle<strong>in</strong>, E. He<strong>in</strong>zleSaarland University, Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, Saarbruecken, GermanyChemostat cultivation is a powerful tool for physiological studies onmicroorganisms. The cells are kept at a stable physiological steady stateand manipulations of environmental parameters like aeration and substrateavailability are possible. The disadvantages of this system <strong>in</strong>volve a longcultivation time to achieve a steady state and high substrate consumption,which can be problematic if expensive substances are used, e.g.isotopically labeled compounds.We report the construction and application of a set of parallel bioreactorswith 10 ml work<strong>in</strong>g volume for cont<strong>in</strong>uous cultivation. A similiar systemhas already been described for E. coli (Nanchen, et al., 2006) but has notbeen adapted to yeast cultivation up to now. Hungate tubes are used asculture vessels and placed <strong>in</strong> a water bath to ma<strong>in</strong>ta<strong>in</strong> 30°C cultivationtemperature. The rubber septum is pierced by needles, one connected to amultichannel peristaltic pump for feed<strong>in</strong>g fresh media. A secondmultichannel pump is used for constant removal of culture broth to keepthe culture volume at 10 ml. S<strong>in</strong>ce the efflux pump rate is far <strong>in</strong> excess ofthe feed<strong>in</strong>g rate it is also used to <strong>in</strong>duce aeration by generat<strong>in</strong>g underpressure <strong>in</strong>side the culture vessel. Sterile, water-saturated air is sucked <strong>in</strong>tothe tube via the third needle. A magnetic stirrer bar (9 x 6 mm) at thebottom of the vessel allows proper mix<strong>in</strong>g and boosts oxygen transfercompared to a purely bubbled system. Dissolved oxygen (DO) wasconstantly measured via optical DO sensors to ensure aerobic conditions.In addition the DO-concentration is a powerful <strong>in</strong>dicator of thephysiological state of the cells <strong>in</strong>side the bioreactor. Off-gas analysis isperformed by means of mass spectrometry.Our system can be applied for cont<strong>in</strong>uous cultivation of yeast cells <strong>in</strong> up to8 parallel bioreactors. DO-concentration profiles clearly <strong>in</strong>dicate theachievement of the steady state. Utilization of magnetic stirrer barsguarantees proper mix<strong>in</strong>g prohibit<strong>in</strong>g sedimentation of cells and permitsthe use of small aeration rates (1 vvm) which is beneficial for accurate offgasanalysis. We used this system to characterize the shift from respiratoryto respiro-fermentative growth for Schizosaccharomyces pombe andperformed cultivations with 13 C-labeled substrate to determ<strong>in</strong>e <strong>in</strong>tracellularfluxes through the central carbon metabolism.Nanchen, A., Schicker, A. and Sauer, U. (2006). Nonl<strong>in</strong>ear dependency of <strong>in</strong>tracellular fluxes ongrowth rate <strong>in</strong> m<strong>in</strong>iaturized cont<strong>in</strong>uous cultures of Escherichia coli.Appl EnvironMicrobiol72,1164-72.PSP016Biochemical and k<strong>in</strong>etic analysis of the acidophilic c-typecytochrome thiosulfate dehydrogenase from differentProteobacteriaK. Denkmann* 1 , A. Siemens 1 , J. Bergmann 1 , R. Zigann 1 , F. Gre<strong>in</strong> 2 ,I. Pereira 2 , C. Dahl 11 Universität Bonn, Institut für Mikrobiologie und Biotechnologie, Bonn,Germany2 Universidade Nova de Lisboa, Instituto de Tecnologia Química eBiológica, Oeiras, PortugalThe acidophilic tetrathionate-form<strong>in</strong>g enzyme thiosulfate dehydrogenasewas isolated from the purple sulfur bacterium Allochromatium v<strong>in</strong>osum[1]and the correspond<strong>in</strong>g gene (tsdA, YP_003442093) was identified on thema<strong>in</strong> A. v<strong>in</strong>osum chromosome (NC_013851) on the basis of the previouslydeterm<strong>in</strong>ed N-term<strong>in</strong>al am<strong>in</strong>o acid sequence. Thiosulfate dehydrogenase isa periplasmic, monomeric 25.8 kDa c-type cytochrome with an enzymeactivity optimum at pH 4.3. UV-Vis and EPR spectroscopy <strong>in</strong>dicatemethion<strong>in</strong>e (strictly conserved M 222 or M 236) and cyste<strong>in</strong>e (strictlyconserved C 123) as probable sixth distal axial ligands of the two heme irons<strong>in</strong> TsdA. In addition UV-Vis spectroscopy revealed a m<strong>in</strong>or peak at 635nm which was assigned to the iron high-sp<strong>in</strong> state. The low <strong>in</strong>tensity ofthis high-sp<strong>in</strong>-marker <strong>in</strong>dicates that only a small portion of hemes exists <strong>in</strong>5-coord<strong>in</strong>ation. An EPR spectrum of TsdA supplemented with its naturalelectron donor thiosulfate showed that the high sp<strong>in</strong> heme is completelyreduced at pH 5.0 but not at pH 8.0, which corresponds with the enzymesoptimum pH for activity. Furthermore we determ<strong>in</strong>ed the redox potentialof the hemes.Genes homologous to tsdA are present <strong>in</strong> a number of -, -, - and -proteobacteria. The wide-spread occurrence of tsdA agrees with reports oftetrathionate formation not only by specialized sulfur oxidizers but also bymany chemoorganoheterotrophs that use thiosulfate as a supplemental butnot as the sole energy source. For further analysis of TsdA we chose thefacultative chemolithoautotrophic well-established sulfur oxidizerThiomonas <strong>in</strong>termedia[2], the chemoorganoheterotrophic Pseudomonasstutzeri, for which tetrathionate formation from thiosulfate had previouslybeen reported [3] and the psychro and halotolerant heterotrophicPsychrobacter arcticus[4], for which sulfur-oxidiz<strong>in</strong>g capabilities havenever been <strong>in</strong>vestigated. All three prote<strong>in</strong>s were produced <strong>in</strong> E. coli andproven to be c-type cytochromes which exhibited high specific thiosulfatedehydrogenase activities.[1] Hensen et al. (2006) Mol. Microbiol.62, 794-810[2] Moreira and Amils (1997) Int. J. Syst. Bacteriol.47,522-528[3] Sorok<strong>in</strong> et al. (1999) FEMS Microbiol. Ecol.30, 113-123[4] Bakermans et al. (2006) Int. J. Syst. Evol. Microbiol.56, 1285-1291PSP017Effects of High CO 2 Concentrations on Typical AquiferMicroorganismsA. Schulz*, C. Vogt, H.H. RichnowHelmholtz Centre for Environmental Research - UFZ, IsotopeBiogeochemistry, Leipzig, GermanyThe sequestration of carbon dioxide <strong>in</strong>to the deep underground isconsidered as one option to reduce the emission of carbon dioxide <strong>in</strong>to theatmosphere. A leakage of carbon dioxide from a deep storage site <strong>in</strong>to ashallow aquifer is one of the ma<strong>in</strong> concerns connected to the CarbonCapture and Storage (CCS) technology. For a proper risk assessment it isnecessary to study the <strong>in</strong>fluence of high CO 2 concentrations, as a result ofleakage, on microorganisms, occurr<strong>in</strong>g <strong>in</strong> shallow aquifers. Therefore,growth curves and survival rates for four ecophysiologically dist<strong>in</strong>ct modelorganisms, ubiquitous <strong>in</strong> shallow aquifers, were determ<strong>in</strong>ed. CO 2concentrations <strong>in</strong> the gas phase varied between approximately 0 (refers tono amendment of CO 2) to 80% for the aerobic stra<strong>in</strong>s Pseudomonas putidaF1 and Bacillus subtilis 168 and roughly 0 to 100% CO 2 for the nitratereduc<strong>in</strong>gstra<strong>in</strong> Thauera aromatica K172 and the sulfate-reduc<strong>in</strong>g stra<strong>in</strong>Desulfovibrio vulgaris Hildenborough. Carbon dioxide that <strong>in</strong>filtrates afreshwater aquifer under oxidiz<strong>in</strong>g conditions and under atmosphericpressure will have an immediate impact on water chemistry, lead<strong>in</strong>g to areduction <strong>in</strong> pH. In our experiments, the pH of the growth mediumdecreased for about one unit from seven to six after the addition of CO 2.To dist<strong>in</strong>guish between effects caused by carbon dioxide and the <strong>in</strong>fluenceof decreas<strong>in</strong>g pH-values, parallel experiments without CO 2 addition anddecreased pH were performed. The results showed that growth andviability of all four stra<strong>in</strong>s were reduced at high CO 2 concentrations (>50%), however, the aerobic stra<strong>in</strong>s are more sensitive to CO 2 stresscompared to the anaerobic stra<strong>in</strong>s. After experiments at ambient pressure,growth experiments with <strong>in</strong>creas<strong>in</strong>g CO 2 concentrations and <strong>in</strong>creas<strong>in</strong>gpressure from 1 to 5000 kPa were performed <strong>in</strong> self constructed pressurevessels to simulate conditions typically occurr<strong>in</strong>g <strong>in</strong> deep aquifers. Thecomb<strong>in</strong>ation of pressure and high CO 2 concentrations reduced significantlythe viability of all tested stra<strong>in</strong>s. These results give first <strong>in</strong>formation for aconcrete risk evaluation of the CCS technology and potentially leakagerelatedmicrobiological changes <strong>in</strong> shallow aquifers.BIOspektrum | Tagungsband <strong>2012</strong>


180PSP018Screen<strong>in</strong>g for genes of Staphylococcus aureus that are <strong>in</strong>volved<strong>in</strong> the formation of persister cellsL. Mechler*, M. Zelder*, S. Lechner, M. Prax, R. BertramUniversity, IMIT, Microbial Genetics, Tüb<strong>in</strong>gen, GermanyPersisters are phenotypic variants of bacterial cells among a geneticallyidentical population. These slow- or non-grow<strong>in</strong>g (dormant) cells aretolerant to antibiotics and are formed both stochastically and <strong>in</strong> adaptationto adverse conditions. Persisters seem to be causative for the recalcitranceof chronic <strong>in</strong>fections to antimicrobial therapy. Notably, the molecularmechanisms underly<strong>in</strong>g this k<strong>in</strong>d of dormancy largely rema<strong>in</strong> unclearparticularly <strong>in</strong> bacteria beyond E. coli. We aimed at identify<strong>in</strong>g genesgovern<strong>in</strong>g the formation of persister cells <strong>in</strong> Staphylococcus aureus us<strong>in</strong>gtwo different strategies.First, a screen for mutants exhibit<strong>in</strong>g elevated persister levels was set up. 1to 3.5 kbp fragments of a genomic library of Staphylococcus aureusSA113 as well as S. aureus homologs of E. coli persister genes dnaJ, glpD,umuC and the tox<strong>in</strong>-antitox<strong>in</strong> (TA) RNases yoeB-sa1 and yoeB-sa2 werecloned <strong>in</strong>to plasmid pRAB11 for tetracycl<strong>in</strong>e <strong>in</strong>ducible control. Uponexpression <strong>in</strong> SA113, mutants that show a reduced growth rate andenhanced antibiotic tolerance will be isolated. Sequenc<strong>in</strong>g of respectiveDNA fragments may thus reveal new or verify suspect S. aureus persister genes.A second approach aims at generat<strong>in</strong>g S. aureus stra<strong>in</strong>s with decreasedpersister levels. To this end, s<strong>in</strong>gle and comb<strong>in</strong>ational deletion mutants ofS. aureus TA loci are constructed. These <strong>in</strong>clude the three verifiedchromosomally encoded systems mazEF, yefM-sa1/yoeB-sa1 and yefMsa2/yoeB-sa2,as well as two further putative TA-loci identified by <strong>in</strong>silico analysis. To remove resistance markers from newly generatedmutant stra<strong>in</strong>s we are establish<strong>in</strong>g the use of the yeast derived Flp/FRTrecomb<strong>in</strong>ation system <strong>in</strong> staphylococci. Obta<strong>in</strong>ed stra<strong>in</strong>s will be exam<strong>in</strong>edfor persister formation and decreased antibiotic tolerance would supportthe hypothesis that TA-systems are crucial for persister formation <strong>in</strong>staphylococci.PSP019Will not be presented!PSP020Denitrification pathway is essential for complete functionalmagnetosome crystals for magnetic orientation <strong>in</strong>Magnetospirillum gryphiswaldenseY. Li, E. Katzmann*, S. Borg, D. SchülerLudwig-Maximilians-Universität München, Department 1, MikrobiologieAG-Schüler, Planegg-Mart<strong>in</strong>sried, GermanyMagnetosomes are unique bacterial organelles used by magnetotacticbacteria (MTB) to orient <strong>in</strong> the Earth’s magnetic field. In the -proteobacterium M. gryphiswaldense (MSR-1) magnetosomes are crystalsof magnetite (Fe 3O 4) which are biom<strong>in</strong>eralized with<strong>in</strong> specific vesicles ofthe magnetosome membrane. Maximum magnetite synthesis occurs only atlow oxygen concentrations and <strong>in</strong> the presence of nitrate, suggest<strong>in</strong>g apotential metabolic l<strong>in</strong>k between denitrification and magnetitebiom<strong>in</strong>eralization. However, no genetic evidence has been available <strong>in</strong> vivo.Here we reconstructed a complete pathway of denitrification from thegenome of MSR-1, <strong>in</strong>clud<strong>in</strong>g gene functions for nitrate (nap), nitrite(nirS), nitric oxide (norCB), and nitrous oxide reduction (nosZ). Bycharacteriz<strong>in</strong>g deletion mutants of all genes, we showed that all prote<strong>in</strong>sare required for anaerobic growth. In addition, deletions of norCB,nirS andnap impaired magnetite synthesis. The loss of norCB caused shortermagnetosome cha<strong>in</strong>s <strong>in</strong> ammonium medium, suggest<strong>in</strong>g that nitric oxidereduction is <strong>in</strong>volved <strong>in</strong> magnetosome formation also <strong>in</strong> microaerobicaerobic respiration. Deletion of the nap operon resulted <strong>in</strong> fewer, smallerand irregular crystals not only dur<strong>in</strong>g denitrification but also aerobicrespiration, probably due to disturbed redox balance for magnetitesynthesis. Magnetite <strong>in</strong>duction experiments by iron addition <strong>in</strong>nonmagnetic WT and nirS cells under reduced and oxidized conditionsrevealed that the, nitrite reductase NirS is likely <strong>in</strong>volved <strong>in</strong> anaerobicmagnetosome formation by oxidiz<strong>in</strong>g ferrous to ferric iron. This processprobably takes places <strong>in</strong> the periplasm by provid<strong>in</strong>g electrons for nitritereduction, and ferric iron may subsequently be transported <strong>in</strong>tomagnetosome vesicles for magnetite synthesis.Altogether, we provide evidence that the denitrification pathway has a keyrole for magnetite biom<strong>in</strong>eralization by participat<strong>in</strong>g <strong>in</strong> redox reactions.This also shows that <strong>in</strong> addition to the various essential and accessoryfunctions encoded with<strong>in</strong> the genomic magnetosome island, also genesoutside that region are <strong>in</strong>volved <strong>in</strong> synthesis of functional magnetosomeparticles.PSP021A bluepr<strong>in</strong>t of organohalide respiration: Functional genomeanalysis of Sulfurospirillum multivoransT. Goris* 1 , T. Schubert 1 , T. Wubet 2 , M. Tarkka 2 , L. Adrian 3 , G. Diekert 11 Friedrich Schiller University, Institute of Microbiology, Department ofApplied and Ecological Microbiology, Jena, Germany2 Helmholtz Centre for Environmental Research - UFZ, Department of SoilEcology, Halle, Germany3 Helmholtz Centre for Environmental Research - UFZ, Department ofIsotope Biogeochemistry, Leipzig, GermanySome of the most frequently detected contam<strong>in</strong>ants <strong>in</strong> groundwater arehalogenated organic compounds. Among them, tetrachloroethene (PCE) isthe most abundant one. Due to its <strong>in</strong>ertness, PCE is not easily degradableand persistent under oxic conditions. However, several anaerobic bacteriaare able to couple the reductive dechlor<strong>in</strong>ation of PCE and of otherorganohalides to energy conservation via electron transportphosphorylation. Therefore, this process is often referred to asorganohalide respiration.Here, we present the functional analysis of the complete genome sequenceof Sulfurospirillum multivorans, an -proteobacterium capable ofdechlor<strong>in</strong>at<strong>in</strong>g tetrachloroethene (PCE) to dichloroethene. The latter can bereadily degraded to non-toxic compounds by aerobic microorganisms. Thehigh metabolic versatility of S. multivorans is reflected <strong>in</strong> one of thelargest genomes of the -proteobacteria, comprised of a s<strong>in</strong>gle circularchromosome 3.1 Mbp <strong>in</strong> length and <strong>in</strong>cludes more than 3,200 open read<strong>in</strong>gframes. Close to the region cod<strong>in</strong>g for the PCE dehalogenase, which is acorr<strong>in</strong>oid-conta<strong>in</strong><strong>in</strong>g Fe-S cluster enzyme, corr<strong>in</strong>oid biosynthesis genes arelocated, and surpris<strong>in</strong>gly genes cod<strong>in</strong>g for an additional putative reductivedehalogenase. Furthermore, we identified genes cod<strong>in</strong>g for all componentsof an aerobic respiratory cha<strong>in</strong> and the TCA cycle. Together with currentresults from growth experiments, the data po<strong>in</strong>t to the first known exampleof an organohalide respir<strong>in</strong>g organism capable of thriv<strong>in</strong>g <strong>in</strong> microaerobicenvironments.In order to fill <strong>in</strong> the gaps <strong>in</strong> the understand<strong>in</strong>g of anaerobic biologicaldehalogenation, this genome sequence of a gram-negative organohaliderespir<strong>in</strong>g bacterium is a big step toward to the complete elucidation of anoutstand<strong>in</strong>g way of microbial energy conservation.Acknowledgement: This work is supported by the DFG (research unit FOR1530) and the UFZ -Helmholtz centre for Environmental ResearchPSP022Genomic and transcriptomic <strong>in</strong>sights <strong>in</strong>to Allochromatiumv<strong>in</strong>osum DSM 180 T with special focus on genes <strong>in</strong>volved <strong>in</strong>dissimilatory sulfur metabolismT. Weissgerber* 1 , N. Dobler 2 , T. Polen 2 , C. Dahl 11 Universität Bonn, Institut für Mikrobiologie und Biotechnologie, Bonn,Germany2 Forschungszentrum Jülich, Institut für Bio- und Geowissenschaften IBG-1:Biotechnologie, Jülich, GermanyAnoxygenic purple sulfur bacteria like the GammaproteobacteriumAllochromatium v<strong>in</strong>osum, a member of the Chromatiaceae, flourishwherever light reaches sulfidic water layers or sediments and often occuras dense accumulations <strong>in</strong> conspicuous blooms <strong>in</strong> freshwater as well as <strong>in</strong>mar<strong>in</strong>e aquatic ecosystems. Here they are major players <strong>in</strong> the reoxidationof sulfide produced by sulfate-reduc<strong>in</strong>g bacteria <strong>in</strong> deeper anoxic layers.The capability to oxidize reduced sulfur compounds is the centralmetabolic feature of A. v<strong>in</strong>osum dur<strong>in</strong>g photolithoautotrophic growth.Light energy is used to transfer electrons from reduced sulfur compoundssuch as sulfide, polysulfide, thiosulfate, sulfur and sulfite to the level of themore highly reduc<strong>in</strong>g electron carriers NAD(P) + and ferredox<strong>in</strong> forreductive carbon dioxide fixation.Here, we present a set of features of the complete genome (Acc:CP001896.1) of A. v<strong>in</strong>osum, the first member of the Chromatiaceae, forwhich a complete genome sequence is available. The genome consists of a3,526,903 bp chromosome and two plasmids of 102,242 bp and 39,929 bp,respectively, with a total number of 3,366 predicted genes. A globaltranscriptomic analysis was performed with a special focus on oxidativedissimilatory sulfur metabolism <strong>in</strong> A. v<strong>in</strong>osum. To this end, total RNA wasisolated after photolithoautotrophic growth on sulfide, thiosulfate, sulfur orsulfite as electron donor and compared to total RNA extracted fromcultures grown photoorganoheterotrophically on malate. Firstly, theseexperiments confirmed the <strong>in</strong>creased expression of genes encod<strong>in</strong>gprote<strong>in</strong>s already known to be <strong>in</strong>volved <strong>in</strong> oxidative sulfur metabolism.Among these are the dsr genes [1] <strong>in</strong>clud<strong>in</strong>g dsrAB for dissimilatory sulfitereductase and the sgp genes for the prote<strong>in</strong>s of the sulfur globule envelope[2]. Secondly, we also detected a number of <strong>in</strong>terest<strong>in</strong>g candidate genesthat are highly upregulated <strong>in</strong> the presence of reduced sulfur compounds.Among these are several genes encod<strong>in</strong>g potential sulfur relay prote<strong>in</strong>spredicted to reside <strong>in</strong> the cytoplasm. Notably, transcription of some genesappeared to be specifically <strong>in</strong>creased on <strong>in</strong>soluble sulfur. One of thesegene products belongs to the lipocal<strong>in</strong> family of prote<strong>in</strong>s. Members of thisBIOspektrum | Tagungsband <strong>2012</strong>


181family have been reported to participate <strong>in</strong> transport of <strong>in</strong>soluble substrates<strong>in</strong> Eubacteria [3].[1] Dahl, C. et al., 2005. J. Bacteriol. 187, 1392-1404[2] Prange, A. et al., 2004. Arch. Microbiol. 182, 165-174[3] Bishop, R. E. et al., 2006. Bacterial Lipocal<strong>in</strong>s: Orig<strong>in</strong>, Structure, and Function. In: Akerström,B., Borregaard, N., Flower, D. R., Salier, J.-P., editors. Lipocal<strong>in</strong>s. Aust<strong>in</strong> (TX): Landes BiosciencePSP023Genetic evidence for a second anaerobic monoterpeneactivat<strong>in</strong>genzyme <strong>in</strong> Castellaniella defragransF. Lüddeke, M. Grünberg, R. Marmulla, J. Harder*Max-Planck-Institut für mar<strong>in</strong>e Mikrobiologie, Mikrobiologie, Bremen,GermanyMonoterpenes are natural compounds with an annual emission rate of0.127 - 0.480 Gt C <strong>in</strong>to the atmosphere, thus nearly reach<strong>in</strong>g methaneemission rates. The huge production rate is reflected <strong>in</strong> a frequentutilization of monoterpenes by bacteria. Most probable number studiesrevealed that each denitrify<strong>in</strong>g bacterium <strong>in</strong> forest soil had the capacity. Inactivated sludge, one of 150 denitrifiers can grow on monoterpenes. Thebiochemistry of anaerobic monoterpene utilization is currently <strong>in</strong>vestigatedwith Castellaniella defragrans, a betaproteobacterium. The anaerobicmonoterpene degradation of Castellaniella defragrans exhibits uniqueenzyme activities, but is still not fully elucidated. Deletion mutants werecreated lack<strong>in</strong>g the gene for the l<strong>in</strong>alool dehydratase-isomerase (ldi) aswell as for both ldi and geraniol dehydrogenase (ged). These enzymescatalyze <strong>in</strong> vitro reactions of the anaerobic -myrcene metabolism, thehydration of myrcene to geraniol and the geraniol oxidation. In thedeletion mutants, the genes were absent on the genomic as well as thetranscriptomic level without caus<strong>in</strong>g polar effect on the adjacent ORFs.The physiological characterization exhibited a substrate-dependentphenotype. The activity of the l<strong>in</strong>alool dehydratase-isomerase was requiredfor growth on -myrcene, an acyclic monoterpene, but not on cyclicmonoterpenes, i.e. -phellandrene or limonene utilization proceededwithout the presence of the l<strong>in</strong>alool dehydratase-isomerase. This <strong>in</strong>dicatesa second enzyme system <strong>in</strong> Castellaniella defragrans that activatesunsaturated hydrocarbons with cyclic structure.F.Lüddeke and J.Harder (2011) Enantiospecific (S)-(+)-l<strong>in</strong>alool formation from -myrcene byl<strong>in</strong>alool dehydratase-isomerase. Zeitschrift für Naturforschung 66c, 409-412D.Brodkorb, M.Gottschall, R.Marmulla, F.Lüddeke and J.Harder (2010) L<strong>in</strong>alool dehydrataseisomerase,a bifunctional enzyme <strong>in</strong> the anaerobic degradation of monoterpenes Journal ofBiological Chemistry 285, 30436-30442J.Harder, U.Heyen, C.Probian, S.Foß (2000) Anaerobic utilization of essential oils by denitrify<strong>in</strong>gbacteria. Biodegradation 11, 55-63PSP024Tox<strong>in</strong>-Antitox<strong>in</strong> Systems <strong>in</strong> Staphylococcus equorumC.F. Schuster* 1 , J.-H. Park 2 , N. Nolle 1 , M. Prax 1 , A. Herbig 3 , K. Nieselt 3 ,M. Inouye 2 , R. Bertram 11 Universität Tüb<strong>in</strong>gen, Microbial Genetics, Tüb<strong>in</strong>gen, Germany2 Robert Wood Johnson Medical School, Center for Advanced Biotechnology andMedic<strong>in</strong>e, Department of Biochemistry, Piscataway, NJ, USA, United States3 Universität Tüb<strong>in</strong>gen, Integrative Transcriptomics, Center for Bio<strong>in</strong>formatics,Tüb<strong>in</strong>gen, GermanyChromosomally encoded Tox<strong>in</strong>-Antitox<strong>in</strong> (TA) systems are assumed toplay an important role <strong>in</strong> physiological adaptation of bacteria toenvironmental stresses. In Staphylococcus aureus three such TA systemshave been characterized so far: One encoded by the mazEF sa locus and twoby the paralogous yefM sa/yoeB sa genes. S. equorum, a food <strong>in</strong>dustryrelevant, nonpathogenic organism has recently been sequenced and iscurrently be<strong>in</strong>g annotated. The goal of this work was to identify andcharacterize putative TA systems <strong>in</strong> S. equorum. An <strong>in</strong> silico analysisyielded a mazEF homologue with a high similarity to its S. aureuscounterpart, <strong>in</strong>clud<strong>in</strong>g co-localization with the sigB locus and twoyefM/yoeB systems. mazF se from S. equorum was cloned <strong>in</strong>to ananhydrotetracycl<strong>in</strong>e (ATc) <strong>in</strong>ducible vector and used to transform E. coliDH5. Induction of mazF se led to a ten-fold reduction of the OD 578 valuesand to a severe growth <strong>in</strong>hibition on solid media. Even more strik<strong>in</strong>gly, thenumber of CFUs was about 100-fold decreased compared to un<strong>in</strong>ducedcells. For further characterization, the mazEF se transcription start wasmapped via 5’-RACE and MazFse-(His) 6 was purified through aff<strong>in</strong>itychromatography. MazFse was <strong>in</strong>cubated <strong>in</strong> vitro with MS2 phage RNAand the result<strong>in</strong>g fragments analyzed via primer extension. F<strong>in</strong>d<strong>in</strong>gssuggest the same target sequence as elucidated for the S. aureus MazFhomologue: 5’ U^ACAU 3’. This recognition sequence is overrepresented<strong>in</strong> some genes’ mRNAs, most notably <strong>in</strong> rsbV, encod<strong>in</strong>g an anti-anti-sigmafactor of B , possibly regulat<strong>in</strong>g sigB expression. In addition, the putativeTA tox<strong>in</strong> genes yoeB se1/2 were cloned <strong>in</strong>to arab<strong>in</strong>ose <strong>in</strong>ducible E. colivectors. Overexpression of these genes leads to a growth defect and furtherwork to characterize these candidates is <strong>in</strong> progress. Based upon theseobservations, the <strong>in</strong>spected loci <strong>in</strong> S. equorum are highly <strong>in</strong>dicative ofencod<strong>in</strong>g three functional TA systems.PSP025Will not be presented!PSP026Growth by Anaerobic Sulphur Dismutation <strong>in</strong> ThermophilicArchaea and BacteriaD. Petrasch*, A. Kletz<strong>in</strong>TU Darmstadt, Institut für Mikrobiologie und Genetik, Darmstadt, GermanyAnaerobic dismutation (disproportionation) of elemental sulphur forenergy conservation is not well known. A few mesophilic bacteria<strong>in</strong>clud<strong>in</strong>g Desulfocapsa sulfoexigens were identified so far [1]. Theproducts are hydrogen sulphide and sulphate. Here we show that severalcocultures of different novel thermophilic microorganisms grow bychemolithoautotrophic sulphur dismutation.We collected environmental samples from hot spr<strong>in</strong>gs (60° to 90° C) onthe island of São Miguel (Açores). Enrichment cultures were <strong>in</strong>cubated <strong>in</strong>a m<strong>in</strong>imal salt medium with elemental sulphur as energy source and <strong>in</strong>serum bottles with def<strong>in</strong>ed gas phases (aerobic, CO 2/H 2, or CO 2) toestablish sulphur-oxidis<strong>in</strong>g, reduc<strong>in</strong>g or dismutat<strong>in</strong>g conditions,respectively.We obta<strong>in</strong>ed one sulphur-oxidis<strong>in</strong>g culture (Acidianus brierleyi) plus onecoculture (similar to Thermus scotoductus, Alicyclobacillus). Two sulphurreduc<strong>in</strong>gcultures (Acidianus brierleyi, Thermoplasma acidophilum) andone sulphur-reduc<strong>in</strong>g coculture (Thermoanaerobacter sulfurophilus,Thermoanaerobacter brockii) were discovered. Furthermore we got twococultures, which grew by sulphur dismutation under CO 2 atmosphere.The sulphur-dismutat<strong>in</strong>g cultures grew to cell densities of 5 x 10 7 ml -1with<strong>in</strong> 7 days. The maximal H 2S production was 860 M <strong>in</strong> 7 days. One ofthese cultures was microscopically homogeneous and grew at 60 °C andpH 1.5. 16S rDNA sequenc<strong>in</strong>g showed that it was 99% identical toThermoplasma acidophilum. The second culture grew at 80°C and pH 4and showed a mixture of a rod-shaped and a coccoid microorganism. The16S rDNA presumably of the rod-shaped microorganisms was 97%identical to Vulcanisaeta distributa. The coccoid microorganism could notbe assigned phylogenetically.In a second approach an Acidianus ambivalens / Sulfurisphaera MC1coculture was grown autotrophically at 70-80 C at pH 2-3 under CO 2atmosphere and elemental sulphur as energy source. The coculture showeda stable growth with a doubl<strong>in</strong>g time of 120 h and a maximal cell densityof 1 x 10 8 ml -1 . The results suggest that anaerobic sulphur dismutation is acommon mechanism of energy conservation <strong>in</strong> habitats of volcanic orig<strong>in</strong>,where sulphur is abundant and anaerobic habitats occur frequently.[1] F<strong>in</strong>ster, K. et al.(1998). Appl Environ Microbiol 64, 119-125.PSP027Biotechnological production of 1,3-propanediol (1,3-PD):Overexpression of 1,3-PD operon and stabilization of 1,3-PDdehydrogenase from Colombian Clostridium sp.S. Flüchter* 1 , J. Montoya 1 , D. Montoya 2 , P. Dürre 1 , B. Schiel-Bengelsdorf 11 Institute of Microbiology and Biotechnology, University of Ulm, Ulm,Germany2 Institute of Biotechnology, Universidad Nacional de Colombia, Bogota,ColombiaThe non-pathogen Colombian stra<strong>in</strong>s Clostridium sp. IBUN 13A andIBUN 158B are able to produce 1,3-propanediol (1,3-PD) from rawglycerol. With the aim of improv<strong>in</strong>g the 1,3-PD yield of these stra<strong>in</strong>s for<strong>in</strong>dustrial purposes, the genes <strong>in</strong>volved <strong>in</strong> the reductive pathway lead<strong>in</strong>gfrom glycerol to 1,3-PD were analyzed. The three genes dhaB1, dhaB2 anddhaT are located next to each other on the genome of the stra<strong>in</strong> IBUN 13A,lack<strong>in</strong>g promoter or term<strong>in</strong>ator sequences <strong>in</strong> between them. This suggeststhat they are coexpressed as an operon (1,3-PD operon). In order to verifythat they belong to the same transcriptional unit, the correspond<strong>in</strong>gpromoterless region was cloned <strong>in</strong> the vector pJet1.2 (Fermentas) under thecontrol of a T 7 promoter. The result<strong>in</strong>g plasmid was transformed <strong>in</strong> E. coliBL21(DE3), where overexpression of the cloned genes can be <strong>in</strong>ducedwith IPTG for Northern blot analysis of the result<strong>in</strong>g RNA.The product of the dhaT gene from IBUN 13A, a 1,3-PD dehydrogenase,was characterized after clon<strong>in</strong>g <strong>in</strong> the overexpression vector pET-28a(+)(Novagen ® ). From this plasmid, the DhaT enzyme was overproduced andanaerobically purified through Ni-NTA-agarose (Qiagen) and PD-10 (GEHealthcare) columns. The size of the active enzyme was determ<strong>in</strong>ed bynative PAGE with the help of the NativeMark prote<strong>in</strong> standard(Invitrogen), us<strong>in</strong>g polyacrylamide gels with concentrations <strong>in</strong> the range of6-18 %. Activity of the enzyme was determ<strong>in</strong>ed with 1,3-PDconcentrations from 0 to 300 mM. In this way, the K m value was calculatedand a l<strong>in</strong>ear region of the activity curve was found, which is used for 1,3-PD measurement <strong>in</strong> an enzymatic test recently established (Franz et al.,2011). To improve the stability of the isolated DhaT enzyme, alyophilisation protocol was developed, which allows activity preservationfor up to 70 days.BIOspektrum | Tagungsband <strong>2012</strong>


182In order to overproduce all enzymes from the reductive pathway <strong>in</strong> IBUN158B, the 1,3-PD operon of IBUN 13A was cloned <strong>in</strong>to the backbone ofthe conjugational vector pMTL007C-E2 (Heap et al., 2010) under thecontrol of the P fdx promoter. The result<strong>in</strong>g plasmid can be conjugated <strong>in</strong><strong>in</strong>activation mutants of IBUN 158B with a protocol based on Cai et al.(2011) to improve their 1,3-PD yield.Cai G., J<strong>in</strong> B., Sa<strong>in</strong>t C. et al., 2011. J. Biotechnol., 155, 269-274.Franz S., Montoya J., Montoya D. et al., 2011. BioSpektrum, Tagungsband zur <strong>VAAM</strong>-<strong>Jahrestagung</strong> 2011,155.Heap J., Kuehne S., Ehsaan M. et al., 2010. J. Microbiol. Methods, 80, 49-55.PSP028Molecular genetic exam<strong>in</strong>ation of 1-(4-hydroxyphenyl)-ethanoloxidation <strong>in</strong> “Aromatoleum aromaticum” EbN1I. Büs<strong>in</strong>g* 1,2 , L. Wöhlbrand 1 , R. Rabus 1,21 Institute for Chemistry and Biology of the Mar<strong>in</strong>e Environment (ICBM),General and Molecular Microbiology, Oldenburg, Germany2 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Microbiology, Bremen,GermanyThe anaerobic degradation pathway forp-ethylphenol via 1-(4-hydroxyphenyl)-ethanol and p-hydroxyacetophenone <strong>in</strong> “Aromatoleumaromaticum” EbN1 was recently proposed, based on specific metaboliteand prote<strong>in</strong> formation. Genes, encod<strong>in</strong>g respective enzyme candidates,form a large operon-like structure on the chromosome of stra<strong>in</strong> EbN1.Remarkably, this gene cluster conta<strong>in</strong>s two neighbour<strong>in</strong>g genes fordehydrogenases, which may perform the oxidation of 1-(4-hydroxyphenyl)-ethanol to p-hydroxyacetophenone. Both dehydrogenasesshare similar identity (0.3 vs. mutant: OD max


183Expression of sulfatases was studied with R. baltica SH1 T grown ondifferent sulfated polysaccharides. Transcriptome-wide gene expressionstudies apply<strong>in</strong>g a well-established microarray platform [3, 4] revealed astrong functional l<strong>in</strong>k between tested substrates and active sulfatases.Besides, further potential functions mediated by sulfatases could bededuced from the expression profiles. The transcriptomic approach wascomb<strong>in</strong>ed with a phylogenetic assessment of sulfatase genes found <strong>in</strong> eightdraft genomes of cultured stra<strong>in</strong>s represent<strong>in</strong>g five different species of thegenusRhodopirellula [5, 6]. More than 1100 sulfatase sequences revealed172 clusters of orthologous and (rare) paralogous genes. Phylogeneticanalysis of theRhodopirellula sulfatases resulted <strong>in</strong> 17 major groups, ofwhich only six <strong>in</strong>cluded sulfatases of known function as derived from theUniProtKB database. Consider<strong>in</strong>g potential applications <strong>in</strong> medic<strong>in</strong>e andbiotechnology, sulfatases can be considered a promis<strong>in</strong>g hotspot <strong>in</strong> futureresearch relat<strong>in</strong>g to the physiologically diverse PVC superphylum.1 . Glöckner FO, et al. (2003) PNAS100:8298-83032. Thrash JC, Cho J-C, Verg<strong>in</strong> KL, Morris RM, Giovannoni SJ (2010)J. Bacteriol.192:2938-29393. Wecker P, Klockow C, Ellrott A, Quast C, Langhammer P, Harder J, Gloeckner FO (2009)BMCGenomics10:4104. Wecker P, Klockow C, Schueler M, Dab<strong>in</strong> J, Michel G, Gloeckner FO (2010)Microb. Biotech.3:583-5945. W<strong>in</strong>kelmann N, Harder J (2009)J. Microbiol. Meth.77:276-2846. W<strong>in</strong>kelmann N, et al. (2010) Appl. Environ. Microbiol. 76: 776-785PSP032Solvent tolerance <strong>in</strong> Pseudomonas sp. stra<strong>in</strong> VLB120- Biofilms vs. Planktonic Cells-K. Schmutzler*, J. Volmer, B. Halan, K. Buehler, A. SchmidTU Dortmund University, Laboratory of Chemical Biotechnology,Dortmund, GermanyOne of the key bottlenecks <strong>in</strong> biocatalysis <strong>in</strong>volv<strong>in</strong>g toxic and / or organicsubstances is the stability of the chosen host organism. In the recent yearsa couple of stra<strong>in</strong>s belong<strong>in</strong>g to the Pseudomonas genus have beendescribed show<strong>in</strong>g specific properties <strong>in</strong>terest<strong>in</strong>g for the conversion oftoxic reactants [1], such as high solvent tolerance, metabolic versatility,and a high metabolic capacity for redox cofactor regeneration [2]. Another<strong>in</strong>terest<strong>in</strong>g feature of several Pseudomonas species is their ability to formbiofilms. Solvent tolerance <strong>in</strong> planktonic cells is highly related to theexistence of RND efflux pumps, especially TtgGHI <strong>in</strong> P. putida DOT-T1Eand SrpABC <strong>in</strong> P. putida S12 [3-4]. The tolerance phenomena <strong>in</strong> biofilmgrow<strong>in</strong>g cells are <strong>in</strong> part attributed to the existence of extracellularpolymeric substances (EPS). EPS are excreted by biofilm grow<strong>in</strong>gorganisms and form a sticky frame work giv<strong>in</strong>g the biofilm its threedimensional structure [5].Here, we compare different mechanisms of Pseudomonas sp. stra<strong>in</strong>VLB120 responsible for the excellent solvent tolerance of this stra<strong>in</strong> [6-7]<strong>in</strong> planktonic grow<strong>in</strong>g cultures as well as <strong>in</strong> biofilm grow<strong>in</strong>g cells with theaim to obta<strong>in</strong> a stable solvent tolerant phenotype for redox biocatalysiswith toxic reactants.Regard<strong>in</strong>g planktonic cells, different adaptation procedures with differentorganic solvents (e.g. toluene, 1-octanol) were tested and the result<strong>in</strong>gsolvent tolerant phenotypes have been characterized and compared to nonsolventtolerant phenotypes. In a second step, genetic eng<strong>in</strong>eer<strong>in</strong>g wasused to create knock-out mutants to overcome critical aspects of adaptedsolvent tolerant phenotypes such as poor reproducibility, tediousadaptation procedures, and low stability.Biofilms of Pseudomonas sp. stra<strong>in</strong> VLB120 have been cultivated <strong>in</strong> aspecifically designed flow-cell and the <strong>in</strong>fluence of the solvent styrene was<strong>in</strong>vestigated. It became obvious, that although cells suffered severedamage upon the solvent shock, the biofilm organisms recovered andadapted to high concentrations of styrene [8]. Concomitantly the excretionof EPS was boosted upon the addition of this organic solvent.[1] Ramos, J.L.et al., 2002, Annu Rev Microbiol.56: p. 743-68.[2] Blank, L.M.et al., 2008, Febs J.275(20): p. 5173-5190.[3] Rojas, A.et al., 2001, J Bacteriol.183(13): p. 3967-73.[4] Kieboom, J.et al., 1998, J Biol Chem.273(1): p. 85-91.[5] Rosche, B.et al., 2009, Trends Biotechnol.27(11): p. 636-43.[6] Halan, B.et al., 2010, Biotechnol Bioeng.106(4): p. 516-527.[7] Park, J.B.et al., 2007, Biotechnol Bioeng.98(6): p. 1219-29.[8] Halan, B.et al., 2011, Appl Environ Microbiol.77(5): p. 1563-1571.PSP033The novel subtilase SprP <strong>in</strong>fluences the lifestyle ofPseudomonas aerug<strong>in</strong>osaA. Pelzer* 1 , M. Lasch<strong>in</strong>ski 1 , F. Rosenau 2 , K.-E. Jaeger 1 , S. Wilhelm 11 Institute for Molecular Enzyme Technology, He<strong>in</strong>rich-He<strong>in</strong>e-UniversityDuesseldorf, Juelich, Germany2 Institute of Pharmaceutical Biotechnology, Ulm University, Ulm,GermanyP. aerug<strong>in</strong>osa is a very undemand<strong>in</strong>g organism that is ubiquitouslydistributed. The bacterium can be found <strong>in</strong> wet or humid surround<strong>in</strong>gs,rang<strong>in</strong>g from soil to human and produces a huge variety of extracellularprote<strong>in</strong>s. Hence, there exists a big potential for enzymes with suitableproperties for biotechnological application. Several proteases belong to thearsenal of secreted enzymes. Some of these proteases like Elastase andProtease IV are well characterized but others exist of which noth<strong>in</strong>g isknown so far (Hoge et al., 2010). Proteases <strong>in</strong> general are highly relevantfor technical enzyme applications. Subtilases for example are typicaldetergent proteases and are def<strong>in</strong>ed as ser<strong>in</strong>e proteases that belong to thepeptidase_S8 family. These subtilases are encoded as preproenzymescarry<strong>in</strong>g a signal peptide which drives their translocation through thecytoplasmic membrane and a propeptide act<strong>in</strong>g as a fold<strong>in</strong>g mediatorrequired to give the protease its f<strong>in</strong>al native conformation.By homology, we have identified the open read<strong>in</strong>g frame PA1242 <strong>in</strong> thegenome sequence of P. aerug<strong>in</strong>osa PAO1 encod<strong>in</strong>g a so far hypotheticalprote<strong>in</strong> as a putative member of the E-H-S family of subtilases. The geneproduct of PA1242 (sprP) conta<strong>in</strong>s a predicted signal sequence and apeptidase S8 doma<strong>in</strong>. Sequence analysis revealed the presence of anadditional element <strong>in</strong> the doma<strong>in</strong> organization of the protease. SprPcarries, beside its signal peptide and the S8 doma<strong>in</strong>, a doma<strong>in</strong> of unknownfunction (DUF) between both elements. After the identification of SprP,the gene was cloned, expressed <strong>in</strong> E. coli and the protease activity wasmeasured with established protease substrates.Often, proteases have an impact on different physiological processes likeprote<strong>in</strong> process<strong>in</strong>g and activation, secretion of other prote<strong>in</strong>s andpathogenicity of the host bacterium. A P. aerug<strong>in</strong>osa sprP-negative mutantwas constructed and different phenotypes were tested to elucidate thephysiological role of SprP.We were able to illustrate an em<strong>in</strong>ent role ofSprP by characterization of different phenotypes. Deletion of sprP causesan <strong>in</strong>creased biofilm formation and pyoverd<strong>in</strong>e biosynthesis, theaccumulation of cell aggregates dur<strong>in</strong>g growth, and a reduced growthunder anaerobic conditions.R. Hoge, A. Pelzer, F. Rosenau & S. Wilhelm, (2010) Weapons of a pathogen: Proteases and theirrole <strong>in</strong> virulence of Pseudomonas aerug<strong>in</strong>osa. In: Current Research, Technology and EducationTopics <strong>in</strong> Applied Microbiology and Microbial Biotechnology.A. M. Vilas (ed). Formatex ResearchCenter, pp. 383-395.PSP034Will not be presented!PSP035The structure of the NADH: ubiqu<strong>in</strong>one oxidoreductase fromVibrio chloeraeM. Casutt 1 , G. Vohl* 1 , T. Vorburger 2 , J. Steuber 2 , G. Fritz* 11 University of Freiburg, Department of Neuropathology, Freiburg, Germany2 University of Hohenheim, Department of Microbiology, Stuttgart, GermanyVibrio choleraema<strong>in</strong>ta<strong>in</strong>s a Na + -gradient across the cytoplasmic membrane(1,2). The generated sodium motive force is essential for substrate uptake,motility, pathogenicity, or efflux of antibiotics. This gradient is generatedby an NADH:ubiqu<strong>in</strong>one oxidoreductase (NQR) that is related to the RNFcomplex of archea and bacteria. NQR is an <strong>in</strong>tegral membrane prote<strong>in</strong>complex consist<strong>in</strong>g of six different subunits, NqrA-NqrF (3,4). In order toget <strong>in</strong>sights <strong>in</strong>to the redox-driven Na + -transport mechanism we haveisolated and crystallized the NQR of Vibrio cholerae (5). The crystals ofthe entire membrane complex diffract so far to 3.7 Angstrom and providefirst detailed structural <strong>in</strong>formation <strong>in</strong> this respiratory enzyme.(1) Türk K, Puhar A, Neese F, Bill E, Fritz G, Steuber J NADH oxidation by the Na + -translocat<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase from Vibrio cholerae: functional role of the NqrF subunit. (2004) JBiol Chem 279:21349-55(2) Juárez O, Morgan JE, Nilges MJ, Barquera B. Energy transduc<strong>in</strong>g redox steps of the Na+pump<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase fromVibrio cholerae. (2010) PNAS 107:12505-10.(3) Casutt MS, Nedielkov R, Wendelspiess S, Vossler S, Gerken U, Murai M, Miyoshi H, MöllerHM, Steuber J. Localization of Ubiqu<strong>in</strong>one-8 <strong>in</strong> the Na + -pump<strong>in</strong>g NADH:Qu<strong>in</strong>one Oxidoreductasefrom Vibrio cholerae. (2011) J Biol Chem 286:40075-82(4) Casutt MS, Huber T, Brunisholz R, Tao M, Fritz G, Steuber J. Localization and function of themembrane-bound riboflav<strong>in</strong> <strong>in</strong> the Na + -translocat<strong>in</strong>g NADH:qu<strong>in</strong>one oxidoreductase (Na + -NQR)fromVibrio cholerae. (2010) J Biol Chem 285:27088-99.(5) Casutt MS, Wendelspiess S, Steuber J, Fritz G. Crystallization of the Na + -translocat<strong>in</strong>gNADH:qu<strong>in</strong>one oxidoreductase from Vibrio cholerae. (2010) Acta Cryst F66:1677-9.PSP036Proteome assessment of an organohalide respir<strong>in</strong>g species:Dehalococcoides sp. CBDB1C.L. Schiffmann* 1 , L. Adrian 2 , M. von Bergen 1,3 , J. Seifert 11 UFZ - Helmholtz Centre for Environmental Research, Proteomics, Leipzig,Germany2 UFZ - Helmholtz Centre for Environmental Research, IsotopeBiogeochemistry, Leipzig, Germany3 UFZ - Helmholtz Centre for Environmental Research, Metabolomics, Leipzig,GermanyChlor<strong>in</strong>ated hydrocarbons that were released <strong>in</strong>to the environment are dueto their toxic and cancerogenic potential a threat to nature and humanhealth. The ability of anaerobic bacteria belong<strong>in</strong>g to Dehalococcoidesspp. to use a broad range of chemicals from this class as term<strong>in</strong>al electronacceptors shows potential for bioremediation use. The strictly anaerobicDehalococcoides sp. CBDB1 utilizes a wide range of electron acceptorswith the help of its reductive dehalogenase enzymes. In the sequencedgenome are 32 different reductive-dehalogenase-homologous (rdh) geneoperons annotated [1]. The high number of rdh clusters sparks a special<strong>in</strong>terest <strong>in</strong> the differences between the gene products. Strong substratespecificities of the encoded rdh genes can expla<strong>in</strong> this. To analyse theBIOspektrum | Tagungsband <strong>2012</strong>


184substrate specific expression of rdh genes, the proteome of bacteriacultivated under identical growth conditions but with different electronacceptors were analysed by us<strong>in</strong>g a liquid chromatography tandem massspectrometric (LC-MS/MS) based approach with focus on the detected rdhprote<strong>in</strong>s.A simplified sample preparation procedure was used to achieve highprote<strong>in</strong> coverage despite of low achievable cultivation densities and thesmall cell size of the bacteria. Harvested cells were lysed by mechanicaltreatment. After ultracentrifugation the membrane and cytosolic fractionwere separately digested <strong>in</strong> solution us<strong>in</strong>g tryps<strong>in</strong>. Desalted peptides weredirectly used for LC-MS/MS measurements. Shotgun mass spectrometryresulted <strong>in</strong> an average of 660 identified prote<strong>in</strong>s which is about 44% of allpredicted gene products. Three dehalogenases were identified <strong>in</strong> allCBDB1 cultures <strong>in</strong> the presence of various halogenated hydrocarbons suchas chlor<strong>in</strong>ated aromatic and non-aromatic substances. Overall 14 differentdehalogenases were detected giv<strong>in</strong>g first h<strong>in</strong>ts for different substrate-relatedexpression patterns which were determ<strong>in</strong>ed by label-free quantification. Exactquantification of rdh prote<strong>in</strong>s is planned by selected reaction monitor<strong>in</strong>g (SRM)mass spectrometry. Results from these experiments will further improve theunderstand<strong>in</strong>g of the correlation between the electron acceptors provided dur<strong>in</strong>gcultivation and expression of rdh enzymes by CBDB1.Acknowledgement: This work is supported by the DFG (research unit FOR1530).[1] Kube M. et al. (2005) Nat Biotechnol. 23: 1269-1273PSP037Identification of genes essential for anaerobic growth ofListeria monocytogenesS. Müller* 1 , A. Krementowski 1 , S. Wüstner 1 , C. Held 2 , A. Ehrenreich 2 ,S. Scherer 11 TUM, Lehrstuhl für Mikrobielle Ökologie, Freis<strong>in</strong>g, Germany2 TUM, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g, GermanyThe adaptation of L. monocytogenes to various growth conditionscontributes to its ubiquitous distribution and its role as an important foodborne pathogen. L. monocytogenes is resistant to many adverseenvironmental conditions, e.g. it growth at temperatures from 0 - 45 °C, <strong>in</strong>a pH range from pH 4.1 to 9.6 and at high salt concentrations.Furthermore, as a facultative anaerobic bacterium it can adapt to variousoxygen tensions. Although early physiological studies on the anaerobicmetabolism of L. monocytogenes have been completed with globalapproaches such as comparative genome-, transcriptome- and proteomeanalysis, aerobic growth of L. monocytogenes is still much betterunderstood than anaerobic growth. In this study, the anaerobic growth ofL. monocytogenes was further characterized.We demonstrate that the transcriptional profile changes significantly <strong>in</strong> L.monocytogenes cells either grown aerobically or anaerobically <strong>in</strong> BHImedium at 37 °C. A set of 116 genes was stronger transcribed underaerobic conditions and a set of 26 genes was stronger transcribed underanaerobic conditions. For 19 of the 26 anaerobically stronger transcribedgenes deletion or <strong>in</strong>sertion mutants were constructed. The respectivemutants are able to grow both aerobically and anaerobically, suggest<strong>in</strong>gthat their expression is not essential for anaerobic growth and proliferationof L. monocytogenes.However, a high throughput screen<strong>in</strong>g of an <strong>in</strong>sertion mutant banc (Josephet al., 2006) identified genes essential for anaerobic growth. 11 out of 1360<strong>in</strong>vestigated <strong>in</strong>sertion mutants showed an anaerobic sensitive phenotypewhile they were able to grow aerobically. Interest<strong>in</strong>gly, all these mutantsare <strong>in</strong>terrupted <strong>in</strong> the atp-locus, which showed no differential transcriptiondependent on the oxygen availability. The essential function of the atplocusfor anaerobic growth was further validated by growth analysis of thedeletion mutants L. monocytogenes/atpA, L. monocytogenes/atpB andL. monocytogenes/atpD and subsequent complementation of the deletedgenes. These results <strong>in</strong>dicate that the expression of a functional F 0F 1-ATPase is essential for growth and proliferation dur<strong>in</strong>g anaerobic but notdur<strong>in</strong>g aerobic growth <strong>in</strong> L. monocytogenes.PSP038Biochemistry of Ethylbenzene Dehydrogenase, the key enzymeof the anaerobic ethylbenzene degradation <strong>in</strong> Azoarcus sp.stra<strong>in</strong> EbN1D. Knack* 1 , A. Dudzik 2 , C. Hagel 1 , J. Heider 1 , M. Szaleniec 21 Uni Marburg, Fachbereich Biologie, Marburg, Germany2 Polish Academy of Sciences, Institute for Catalysis and SurfaceChemistry, Kraków, PolandThe <strong>in</strong>itial reaction of the anaerobic degradation pathway of ethylbenzene<strong>in</strong> Azoarcus sp. stra<strong>in</strong> EbN1 (“Aromatoleum aromaticum”) is an oxygen<strong>in</strong>dependentand stereospecific hydroxylation of ethylbenzene to (S)-1-phenylethanol by the molybdenum/iron sulfur/heme enzyme ethylbenzenedehydrogenase (EbDH, 1). EbDH is a heterotrimer of 3 subunits with atotal molecular mass of 160 kDa and belongs to the DMSO reductasefamily of molybdenum enzymes (Type II). The subunit (96 kDa) carriesa bis-molybdopter<strong>in</strong> cofactor, which is the active site of the enzyme, and aFeS cluster. The subunit (43 kDa) carries 4 FeS clusters, which areresponsible for the electron transport from the active site of the enzyme tothehemeb cofactor <strong>in</strong> the subunit (23 kDa; 2). In the last years,comparison of k<strong>in</strong>etic data of ethylbenzene analogs which act as EbDHsubstrates as well as chromatographic analysis of the formed alcohols leadto a first model of the catalytic mechanism of the enzyme (3).Furthermore, quantum chemical calculations of the EbDH reactionmechanism were performed and supported the k<strong>in</strong>etic andchromatographic data (4). Recently, new ethylbenzene analogs were testedas possible new substrates or <strong>in</strong>hibitors of the enzyme. The k<strong>in</strong>etic data ofthese new compounds together with chromatographic data of the formedalcohol products reveal new <strong>in</strong>sights <strong>in</strong>to the catalytic mechanism and theenantioselectivity of the enzyme. In addition, specifically deuteratedethylbenzene derivates where synthesized to test which of the hydrogenatoms on the C1 position of the ethyl group of ethylbenzene is abstracteddur<strong>in</strong>g catalysis and replaced by a water-derived hydroxyl group. K<strong>in</strong>etic<strong>in</strong>vestigations and mass spectrometric analysis of the products <strong>in</strong>dicate thatthe proS hydrogen is abstracted dur<strong>in</strong>g enzymatic catalysis.1. Kniemeyer, O. Heider, J. (2001) Ethylbenzene Dehydrogenase, a Novel Hydrocarbon oxidiz<strong>in</strong>gMolybdenum/Iron-Sulfur/HemeEnzyme. J Biol Chem; 276:21381-213862.Kloer, D. P.; Hagel, C.; Heider, J.; Schulz, G. E. (2006) Crystal Structure of EthylbenzeneDehydrogenase from Aromatoleum aromaticum. Structure; 14:1377-13883. Szaleniec, M.; Hagel, C.; Menke, M.; Nowak, P.; Witko, M.; Heider, J. (2007) K<strong>in</strong>etics andmechanism of oxygen-<strong>in</strong>dependent hydrocarbon-hydroxylation by ethylbenzene dehydrogenase.Biochem; 46:7637-76474. Szaleniec, M.; Borowski, T.; Schühle, K.; Witko, M.; Heider, J. (2010) Ab Inito Model<strong>in</strong>g ofEthylbenzene Dehydrogenase Reaction Mechanism. J Am Chem Soc; 132:6014-6024PSP039Norep<strong>in</strong>ephr<strong>in</strong>e and ep<strong>in</strong>ephr<strong>in</strong>e stimulate growth andmotility of Vibrio choleraeP. Halang* 1 , T. Vorburger 1 , V. Stefanski 2 , J. Steuber 11 University of Hohenheim, Institute of Microbiology, Stuttgart, Germany2 University of Hohenheim, Institute of Animal Husbandry and Breed<strong>in</strong>g,Stuttgart, GermanyUnder stress the body produces biochemical messengers likecatecholam<strong>in</strong>e hormones to adapt to the specific situation. Attenuation ofthe immune response by stress hormones, together with stimulation ofbacterial growth due to hormone exposure, leads to <strong>in</strong>creased susceptibilityof the host to bacterial <strong>in</strong>fections.A stimulatory effect of norep<strong>in</strong>ephr<strong>in</strong>e (NE) and ep<strong>in</strong>ephr<strong>in</strong>e (Epi) ongrowth ofSalmonellaserovartyphimuriumwas observed <strong>in</strong> SAPI mediumwhich conta<strong>in</strong>s serum prote<strong>in</strong>s <strong>in</strong>clud<strong>in</strong>g the Fe-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> transferr<strong>in</strong>(Pull<strong>in</strong>ger et al. 2010). Under these growth conditions, NE competes withtransferr<strong>in</strong> for Fe by complexation of Fe with its catechol moiety. Hereby,the availability of this important trace element <strong>in</strong>creases, which <strong>in</strong> turnstimulates growth of the pathogen. NE and Epi were also shown topromote swarm<strong>in</strong>g ofS. typhimuriumon plates consist<strong>in</strong>g of LB broth with0.3% agar (Moreira et al. 2010). We <strong>in</strong>vestigated the effect of NE or Epion the growth ofVibrio choleraestra<strong>in</strong> O395-N1 <strong>in</strong> SAPI-serum medium.No growth ofV. choleraestra<strong>in</strong> RIMD2203102 was observed on SAPIserummedium with added NE or Epi (Nakano et al. 2007). WithV.choleraestra<strong>in</strong> O139-N1 grown under similar conditions, NE led to a twofold<strong>in</strong>crease <strong>in</strong> growth yield after 46 h. Both catecholam<strong>in</strong>es stimulatedmotility of stra<strong>in</strong> O139-N1 on SAPI-serum swarm<strong>in</strong>g plates, but <strong>in</strong>hibitedswarm<strong>in</strong>g on plates consist<strong>in</strong>g of m<strong>in</strong>imal medium with glucose as carbonsource. We propose that <strong>in</strong> the presence of serum prote<strong>in</strong>s, the ironlimitation caused by transferr<strong>in</strong> was overcome by the catecholam<strong>in</strong>es,result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased motility ofV. choleraeO139-N1 compared to thehormone-free control. We suggest that <strong>in</strong> m<strong>in</strong>imal medium, the ironchelat<strong>in</strong>gproperties of NE and Epi led to a decrease <strong>in</strong> free iron, andresulted <strong>in</strong> dim<strong>in</strong>ished motility ofV. choleraecells when compared to cellsexposed to swarm<strong>in</strong>g plates devoid of the hormones.Moreira CG, We<strong>in</strong>shenker D, Sperandio V (2010) QseC mediatesSalmonellaentericaserovartyphimuriumvirulence <strong>in</strong> vitro and <strong>in</strong> vivo. Infect Immun 78:914-926Nakano M et al. (2007) Catecholam<strong>in</strong>e-<strong>in</strong>duced stimulation of growth <strong>in</strong> Vibrio species. Lett ApplMicrobiol 44:649-653Pull<strong>in</strong>ger GD et al. (2010) Norep<strong>in</strong>ephr<strong>in</strong>e augmentsSalmonella enterica-<strong>in</strong>duced enteritis <strong>in</strong> amanner associated with <strong>in</strong>creased net replication but <strong>in</strong>dependent of the putative adrenergic sensork<strong>in</strong>ases QseC and QseE. Infect Immun 78:372-380PSP040Three different pr<strong>in</strong>ciples of ketone carboxylation <strong>in</strong>Aromatoleum aromaticumK. Schuehle*, D. Kle<strong>in</strong>sorge, J. HeiderPhilipps-Universität Marburg, Mikrobiologie, Marburg, GermanyThe b-proteobacterium Aromatoleum aromaticum degrades aliphatic andaromatic ketones (e.g. acetone, butanone, acetophenone, 4-hydroxyacetophenone) as s<strong>in</strong>gle substrates under aerobic and denitrify<strong>in</strong>gconditions. Degradation of each substrate is <strong>in</strong>itiated by a carboxylationreaction catalysed by specific, substrate-<strong>in</strong>duced carboxylases.Acetone carboxylase (Acx) carboxylates acetone and butanone <strong>in</strong> an ATPdependent,biot<strong>in</strong>-<strong>in</strong>dependent reaction. 2 ATP are hydrolyzed to 2 AMPand 4 Pi for one acetone carboxylated. Acx is present <strong>in</strong> cells grownaerobically or anaerobically on acetone or butanone, but not <strong>in</strong> cells grownBIOspektrum | Tagungsband <strong>2012</strong>


185on acetophenone or acetate. It consists of 3 subunits (85, 75, and 20 kDa)<strong>in</strong> an () 2 composition and conta<strong>in</strong>s 2 Fe and 1 Zn per native complex.Interest<strong>in</strong>gly, known acetone carboxylases from other organisms (e.g.Paracoccus denitrificans, Rhodobacter capsulatus, Geobacillusthermoglucosidasius) differ <strong>in</strong> <strong>in</strong> metal content and ATP hydrolysisstoichiometry, despite their high sequence similarities.Acetophenone carboxylase (Apc) is present <strong>in</strong> cells grown aerobically oranaerobically on acetophenone, but not <strong>in</strong> cells grown on acetone or 4-hydroxyacetophenone. Acetophenone is carboxylated to benzoylacetateconcomitant with hydrolysis of 2 ATP to 2 ADP and 2 Pi. 4-hydroxyacetophenone is not a substrate of Apc. The enzyme consists of 5subunits (87, 75, 70,34, and 15 kDa) <strong>in</strong> an (’) 2 2 composition. Four ofthe five subunits show high sequence similarity to the subunits of Acx,while the -subunit is unique. 2 Zn per native complex were identified ascofactors, but no Fe or biot<strong>in</strong>. The observed reaction mechanisms ofacetone carboxylase and acetophenone carboxylase represent novel ATPdependent,biot<strong>in</strong>-<strong>in</strong>dependent carboxylation mechanisms <strong>in</strong> bacterialketone catabolism, which likely <strong>in</strong>volve the transient activation of bothsubstrates via phosphorylation.4-Hydroxyacetophenone carboxylase (Xcc) belongs to the class of biot<strong>in</strong>dependentcarboxylases and consists of 3 subunits: a biot<strong>in</strong> carboxyl carrierprote<strong>in</strong> (18 kDa) and 2 carboxylase subunits (50, 55 kDa). Therefore, despitethe similarity of the respective substrates, completely different carboxylationmechanisms are employed for the carboxylation of acetophenone and 4-hydroxyacetophenone.PSP041Biosynthesis and attachment of open-cha<strong>in</strong> tetrapyrroles <strong>in</strong>cryptophytesK. Overkamp, N. Frankenberg-D<strong>in</strong>kel, J. Schwach*Ruhr-University Bochum, Physiology of microorganisms, Bochum,GermanyPhycobiliprote<strong>in</strong>s are light-harvest<strong>in</strong>g prote<strong>in</strong>s, which occur <strong>in</strong>cyanobacteria, red algae and cryptophytes <strong>in</strong> addition to chlorophyllconta<strong>in</strong><strong>in</strong>g antenna complexes. They allow the organisms to efficientlyabsorb light <strong>in</strong> regions of the visible spectrum that are poorly covered bychlorophylls. Cryptophytes are unicellular, eukaryotic algae andwidespread <strong>in</strong> mar<strong>in</strong>e and limnic waters. Their phycobiliprote<strong>in</strong>s consist ofan (‘) heterotetrameric apo-prote<strong>in</strong> covalently associated withcharacteristic open cha<strong>in</strong> tetrapyrroles, which act as light absorb<strong>in</strong>gchromophores. Cryptophytes employ the six different chromophoresphycocyanobil<strong>in</strong> (PCB), phycoerythrobil<strong>in</strong> (PEB), 15,16-dihydrobiliverd<strong>in</strong>(15,16-DHBV), mesobiliverd<strong>in</strong> (MBV), bil<strong>in</strong> 584 and bil<strong>in</strong> 618 for lightharvest<strong>in</strong>g.The biosynthetic pathway of open cha<strong>in</strong> tetrapyrroles <strong>in</strong> cryptophytes isentirely unknown. The model organismGuillardia thetauses thephycobiliprote<strong>in</strong> PE545, which is associated with the chromophores 15,16-DHBV and PEB. This is an <strong>in</strong>terest<strong>in</strong>g fact, because 15,16-DHBV occursonly as an <strong>in</strong>termediate of PEB biosynthesis <strong>in</strong> cyanobacteria andcyanophages but not as a bound chromophore. This raises the question ofelucidat<strong>in</strong>g the chromophore biosynthesis and attachment <strong>in</strong> thecryptophyteG. theta. Extensive bio<strong>in</strong>formatic analyses and am<strong>in</strong>o acidsequence alignments identified a putative heme oxygenase, two putativebil<strong>in</strong> reductases and different putative phycobiliprote<strong>in</strong> lyases <strong>in</strong>G. theta.Currently, the enzymatic activities of these putative bil<strong>in</strong> biosynthesisenzymes are analyzed. First results give some <strong>in</strong>dications that the hemeoxygenase is able to cleave heme yield<strong>in</strong>g the open-cha<strong>in</strong> tetrapyrrolebiliverd<strong>in</strong> IX. Furthermore a bil<strong>in</strong> reductase reduc<strong>in</strong>g 15,16-DHBV to PEBcould be identified, which will be further <strong>in</strong>vestigated via crystallization studies.The enzymatic activity of a second bil<strong>in</strong> reductase will also be exam<strong>in</strong>ed as wellas the attachment of the PEB molecules to the PE545- subunits and especiallythe 15,16 DHBV molecules to the PE545- subunits.PSP042Itaconate degradation may be important for pathogenesisJ. Sasikaran, M. Ziemski, P. Zadora, I. Berg*Albert-Ludwigs-University, Department of Microbiology, Freiburg,GermanyItaconate (methylenesucc<strong>in</strong>ate) has recently been shown as a mammalianmetabolite whose production is <strong>in</strong>duced dur<strong>in</strong>g macrophage activation (1).This compound is a potent <strong>in</strong>hibitor of isocitrate lyase (2), which isimportant for survival of many pathogens <strong>in</strong>side the host (3). We haveshown that numerous pathogens <strong>in</strong>clud<strong>in</strong>gYers<strong>in</strong>ia pestisandPseudomonasaerug<strong>in</strong>osapossess genes for itaconate degradation, which were previouslyshown as pathogenesis-related <strong>in</strong> some species (4,5). Furthermore, weheterologously overproduced and characterized <strong>in</strong> detail a key enzyme ofthe itaconate degradation pathway, (S)-citramalyl-CoA lyase, fromY.pestisandP. aerug<strong>in</strong>osa. Besides bacteria, this enzyme is present <strong>in</strong>mammals. Interest<strong>in</strong>gly, the correspond<strong>in</strong>g gene was previously shown tobe highly expressed <strong>in</strong> some tumor cell l<strong>in</strong>es with high metastaticpotential(6). Itaconate detoxification might be important for these cells,s<strong>in</strong>ce this compound is an <strong>in</strong>direct <strong>in</strong>hibitor of phosphofructok<strong>in</strong>ase (7) andtherefore of the glycolysis, the ma<strong>in</strong> bioenergetic process <strong>in</strong> tumor cells.Thus, itaconate degradation pathway may be considered as a perspectivetarget for the development of novel therapeutic agents.1. Strelko, C.L., et al. J. Am. Chem. Soc. 133, 16386-16389 (2011).2. Williams, J.O., et al. Biochemistry 10, 1384-1390 (1971).3. Dunn, M.F., et al. Microbiology 155, 3166-3175 (2009).4. Pujol, C., et al. Proc. Natl. Acad. Sci. USA 102, 12909-12914 (2005).5. Eriksson, S., et al. Mol. Microbiol. 47, 103-118 (2003).6. Morikawa, J., et al. Biochem. Biophys. Res. Commun. 289, 1282-1286 (2001).7. Sakai, A., et al. Nutrition 20, 997-1002 (2004).PSP043Cac0116 of Clostridium acetobutylicum - a carbon monoxidedehydrogenase?R. Uhlig*, R.-J. Fischer, H. BahlInstitute of Biological Sciences, Division of Microbiology, Rostock, GermanyCarbon monoxide dehydrogenases (CODHs) of anaerobic Organisms areenzymes with a special nickel, iron and sulphur conta<strong>in</strong><strong>in</strong>g cluster,enabl<strong>in</strong>g the reversible oxidation of CO to CO 2 [1]. CODHs are <strong>in</strong>volved<strong>in</strong> several metabolic functions like energy conservation, autotrophic CO 2-fixation or reductive regeneration of NADPH. Another function waspostulated for CODH-IV of the hydrogenogenic bacteriumCarboxydothermus hydrogenoformans. Based on the fact that the CODH-IV gene is located <strong>in</strong> a cluster of genes that might be necessary for thedetoxification of reactive oxygen species (ROS), a hydrogen peroxidereduc<strong>in</strong>g role was discussed [2].In Clostridium acetobutylicum the genes cac0116 and cac2498 are annotated asCODHs. Recent studies demonstrated a highly upregulation (24 fold) of thegene cac0116 under oxidative stress lead<strong>in</strong>g to the conclusion that its geneproduct is part of the ROS detoxification system [3].Here, we report on the purification of Cac0116 after overexpression <strong>in</strong> E.coli and C. acetobutylicum. So far, our results did not reveal any CODHactivity of this enzyme. Furthermore, a specific cac0116 knock out mutantwas constructed by us<strong>in</strong>g the ClosTron ® technology [4]. Comparativecharacterisation of the phenotypes (optical density, pH, product spectrum,produced gases) of the knock out mutant, the overexpression stra<strong>in</strong> and thewild type stra<strong>in</strong> of C. acetobutylicum <strong>in</strong>dicated <strong>in</strong> the knock out mutant areduced glucose consumption. Interest<strong>in</strong>gly, the H 2:CO 2 ratio seemed to bealtered, when the cac0116 gene was <strong>in</strong>activated. This suggests a functionof Cac0116 <strong>in</strong> electron transfer processes, directly or <strong>in</strong>directly coupledwith H 2 production <strong>in</strong> C. acetobutylicum.[1] James, G. F., 1995, Annu. Rev. Microbiol. 49:305-333.[2] Wu, M.et al., 2005, PLoS Genetics 1:563-574.[3] Hillmann, F., 2009, J. Bacteriol. 191:6082-6093.[4] Heap, J.et al., 2007, J. Microbiol. Methods. 70:452-464.PSP044Sulfur metabolism <strong>in</strong> the thermoacidophilic archaeonMetallosphaera cupr<strong>in</strong>a: <strong>in</strong>sights from genome analysis andgene expression studiesL. Liu* 1,2 , Y. Stockdreher 1 , M. Josten 3 , H.-G. Sahl 3 , C.-Y. Jiang 2 , S.-J. Liu 2 ,C. Dahl 11 Universität Bonn, Institut für Mikrobiologie & Biotechnologie, Bonn, Germany2 Ch<strong>in</strong>ese Academy of Sciences, Institute of Microbiology, Beij<strong>in</strong>g, Ch<strong>in</strong>a3 Universität Bonn, Institut für Mediz<strong>in</strong>ische Mikrobiologie, Bonn, GermanyThe thermoacidophilic archaeon Metallosphaera cupr<strong>in</strong>a Ar-4, orig<strong>in</strong>allyisolated from a sulfuric hot spr<strong>in</strong>g, Tengchong, Yunnan, Ch<strong>in</strong>a, has theability to oxidize reduced <strong>in</strong>organic sulfur compounds (RISC) [1]. Thegenome has been completely sequenced and annotated. It consists of a1,840,348 bp circular chromosome (2029 ORFs) [2], <strong>in</strong>clud<strong>in</strong>g at least 35genes putatively related to sulfur metabolism.Genes potentially encod<strong>in</strong>g a heterodisulfide reductase complex HdrABCare found <strong>in</strong> several archaeal and bacterial sulfur oxidizers. Correspond<strong>in</strong>ggenes also exist <strong>in</strong> Metallospahera cupr<strong>in</strong>a and are part of a gene cluster(mcup_0681-0689) that also comprises dsrE and sirA like genes. Inbacteria, rhodanese (thiosulfate:cyanide sulfurtransferase) encod<strong>in</strong>g genesoften occur <strong>in</strong> immediate vic<strong>in</strong>ity of dsrE-sirA homologous genes. Prote<strong>in</strong>sof the DsrE and SirA families have been implicated to be <strong>in</strong>volved <strong>in</strong>sulfur transfer reactions not only dur<strong>in</strong>g biosynthesis of sulfur-conta<strong>in</strong><strong>in</strong>gcell constitutents like thiourid<strong>in</strong>e [3] but also dur<strong>in</strong>g oxidative sulfurmetabolism [4]. In both, the archaeon Metallosphaera sedula [5] and theproteobacterium Acidithiobacillus ferrooxidans [6], the hdr gene cluster<strong>in</strong>clud<strong>in</strong>g the sirA and dsrE homologs is highly upregulated by RISCfurther stress<strong>in</strong>g a potential prom<strong>in</strong>ent role of the encoded prote<strong>in</strong>s <strong>in</strong>oxidative sulfur metabolism.Mcup_0681 and Mcup_0682 from M. cupr<strong>in</strong>a share 26% identity and bothpossess characteristic features of DsrE family prote<strong>in</strong>s. Mcup_0683 is assignedas a SirA family prote<strong>in</strong>. Mcup_0681-0683 were overproduced <strong>in</strong> E. coli. Both,Mcup_0681 and Mcup_0682, were identified as homotrimers by gelpermeation chromatography while Mcup_0683 is a monomer. Strong andspecific <strong>in</strong>teraction between Mcup_0681 and Mcup_0683 was detected by cochromatographyof pairs of tagged and untagged prote<strong>in</strong>s on Strep-Tact<strong>in</strong>columns. All three prote<strong>in</strong>s conta<strong>in</strong> a strictly conserved cyste<strong>in</strong>e residue <strong>in</strong> aBIOspektrum | Tagungsband <strong>2012</strong>


186potential active site region. We demonstrated the ability of Mcup_0683 to b<strong>in</strong>dsulfur via MALDI-TOF mass spectrometry. These f<strong>in</strong>d<strong>in</strong>gs provide strongmotivation to <strong>in</strong>vestigate the potential of prote<strong>in</strong>s Mcup_0681-0683 to acttogether <strong>in</strong> a sulfur relay system <strong>in</strong>volved <strong>in</strong> dissimilatory sulfur oxidation <strong>in</strong>Metallosphaera cupr<strong>in</strong>a and possibly also <strong>in</strong> other archaea and bacteria.1. Liu, L.J., et al. 2011. Int. J. Syst. Evol. Microbiol.,61: 2395-2400.2. Liu, L.J., et al. 2011. J. Bacteriol.,193: 3387-3388.3. Ikeuchi, Y., et al. 2006. Mol. Cell,21: 97-108.4. Dahl, C., et al. 2008. J. Mol. Biol,384: 1287-1300.5. Auernik, K., et al. 2008. Appl. Environ. Microbiol.,74: 7723-7732.6. Quatr<strong>in</strong>i, R., et al. 2009. BMC Genomics,10: 394.PSP045Elucidation of the Periplasmic Cytochrome Network <strong>in</strong>Shewanella oneidensis MR-1G. Sturm*, J. GescherKarlsruher Institut für Technologie, Angewandte Biologie, Karlsruhe, GermanyShewanella oneidensis MR-1 is a Gram-negative soil bacterium whichshows an astonish<strong>in</strong>g versatility <strong>in</strong> terms of electron acceptors it can use.The predom<strong>in</strong>ant prote<strong>in</strong>s driv<strong>in</strong>g respiratory electron transfer from thecytoplasm to periplasmic space and from there to the outer membrane arec-type cytochromes. Interest<strong>in</strong>gly, S. oneidensis cells express a largenumber of periplasmic c-type cytochromes that are not primarily <strong>in</strong>volved<strong>in</strong> iron reduction (i.e. SoxA-like, NrfA and CcpA) even when they growunder iron reduc<strong>in</strong>g conditions. Furthermore, our experiments revealedthat iron grown cells are able to conduct electron transfer to a multitude ofelectron acceptors although they had not been <strong>in</strong> contact to one of theseacceptors <strong>in</strong> the growth medium. It seems fairly possible that theseperiplasmic c-type cytochromes build up a network which allows electronexchange between respiratory pathways. This feature would certa<strong>in</strong>lyenable the cell to quickly respond to changes <strong>in</strong> the availability of electronacceptors that occur <strong>in</strong> its environment. Examples for connected respiratorypathways will be presented. Still, although it is generally believed that c-typecytochromes conduct rather unspecific electron transfer it was possible to showthat is not necessarily the case. The electron transport pathway to the peroxidaseCcpA is an example for specificity with<strong>in</strong> c-type cytochrome dependentelectron transfer. The two cytochromes <strong>in</strong>volved, CcpA and ScyA, aredisconnected from other pathways. CcpA functions as a peroxidase protect<strong>in</strong>gthe cell aga<strong>in</strong>st oxidative stress caused by hydrogen peroxide possibly produceddur<strong>in</strong>g dissimilatory iron reduction via the Fenton reaction. CcpA ga<strong>in</strong>s itselectrons exclusively from ScyA, a small monoheme cytochrome. In this studythe range and dynamic of the periplasmic c-type cytochrome network will bepresented <strong>in</strong> further detail.PSP046Complete -oxidation of the acyl side cha<strong>in</strong> of cholate byPseudomonas sp. stra<strong>in</strong> Chol1 <strong>in</strong> vitroJ. Holert* 1 , O. Yücel 2 , Ž. Kuli 3 , H. Möller 3 , B. Philipp 11 WWU Münster, IMMB, Münster, Germany2 University of Konstanz, Biology, Konstanz, Germany3 University of Konstanz, Chemistry, Konstanz, GermanySteroids are ubiquitous natural compounds with diverse functions <strong>in</strong>eukaryotes. In bacteria, steroids occur only as rare exceptions but the ability oftransform<strong>in</strong>g and degrad<strong>in</strong>g steroids is widespread among bacteria.We <strong>in</strong>vestigate bacterial steroid degradation us<strong>in</strong>g the bile salt cholate as amodel compound and Pseudomonas sp. stra<strong>in</strong> Chol1 as a model organism.Cholate degradation is <strong>in</strong>itiated by oxidative reactions at the A-r<strong>in</strong>gfollowed by cleavage of the side cha<strong>in</strong> attached to C17. Mutants of stra<strong>in</strong>Chol1 with defects <strong>in</strong> the genes skt and acad are defect <strong>in</strong> the degradationof the acyl side cha<strong>in</strong>. In culture supernatants of these mutants, (22E)-7,12-dihydroxy-3-oxochola-1,4,22-triene-24-oate (DHOCTO) and7,12-dihydroxy-3-oxopregna-1,4-diene-20-carboxylate (DHOPDC),respectively, accumulate as dead end products. The structure of thesecompounds <strong>in</strong>dicates that degradation of the acyl side cha<strong>in</strong> proceeds via-oxidation but explicit <strong>in</strong> vitro data was miss<strong>in</strong>g so far. We <strong>in</strong>vestigatedthe degradation of the acyl side <strong>in</strong> vitro us<strong>in</strong>g cell extracts of stra<strong>in</strong> Chol1<strong>in</strong> the presence of co-factors (CoA, ATP, NAD + andphenaz<strong>in</strong>emetholsulfate). When cholate or 1,4 -3-ketocholate were used assubstrates, 1,4 -3-ketocholyl-CoA was the end product <strong>in</strong>dicat<strong>in</strong>g thatfurther oxidation of the acyl side cha<strong>in</strong> was not possible <strong>in</strong> vitro under theapplied conditions. When either DHOCTO or DHOPDC were used thecomplete side cha<strong>in</strong> was cleaved off <strong>in</strong> vitro lead<strong>in</strong>g to 7,12-dihydroxyandrosta-1,4-diene-3,17-dione(12-DHADD) as end product. With bothsubstrates the CoA-ester of DHOPDC accumulated transiently <strong>in</strong> the assay.With cell extracts of the skt mutant DHOCTO was converted toDHOCTO-CoA which was not further degraded to 12-DHADD. Withcell extracts of the acad mutant DHOCTO was converted to DHOPDC-CoA, which was also not further degraded. Thus, the phenotypes of bothmutants were confirmed by these <strong>in</strong> vitro assays.To our knowledge this is the first detailed <strong>in</strong> vitro demonstration of thecomplete degradation of a steroid side cha<strong>in</strong> by -oxidation <strong>in</strong> bacteria.Furthermore, our results <strong>in</strong>dicate that the dehydrogenation reactions of 1,4 -3-ketocholyl-CoA and of DHOPDC-CoA are the rate limit<strong>in</strong>g steps <strong>in</strong>this -oxidation pathway.PSP047Genomic plasticity responsible for dissimilatory iron reduction<strong>in</strong> Shewanella oneidensis MR-1S. Stephan*, M. Schicklberger, J. GescherKarlsruher Institut für Technologie, Angewandte Biologie, Karlsruhe, GermanyThe ability of the facultative anaerobic bacterium Shewanella oneidensisMR-1 to respire poorly soluble electron acceptors under anoxic conditionsrelies on a complex electron transfer network. Four dist<strong>in</strong>ct pathwayspredicted to facilitate respiratory electron flow to extracellular electronacceptors are encoded <strong>in</strong> the genome of S. oneidensis MR-1. Thesepathways share MtrA (metalreduc<strong>in</strong>g prote<strong>in</strong> A) and MtrB paralogues,which are periplasmic c-type chytochromes and <strong>in</strong>tegral outer membranebeta-barrel prote<strong>in</strong>s, respectively (1). Interest<strong>in</strong>gly gene clusters encod<strong>in</strong>gMtrA and MtrB homologs are phylogenetically distributed among allclasses of proteobacteria and the correspond<strong>in</strong>g prote<strong>in</strong>s were shown to benot only <strong>in</strong>volved <strong>in</strong> ferric iron reduction but also ferrous iron oxidation (2).A mtrB null mutant stra<strong>in</strong> <strong>in</strong> Shewanella lacks the ability to respire onFe(III)-oxides (3). Interst<strong>in</strong>gly, after prolonged <strong>in</strong>cubation supressormutations occur that rescue the mutant phenotype. In this work we isolatedand characterized such a mtrB suppressor mutant. Molecular and geneticanalysis revealed that the suppression relies on a functional replacement ofMtrB and MtrA by homologous prote<strong>in</strong>s encoded by SO4359 and SO4360respectively. This replacement underlies a transcriptional upregulation ofthe SO4362-SO4357 gene cluster which was found to be due to an<strong>in</strong>sertion sequence (ISSod1) belong<strong>in</strong>g to the IS-1 superfamily generat<strong>in</strong>ga constitutively active hybrid promoter. Here we could show for the first time afunctional replacement of the MtrAB subcomplex by a complex consistent ofhomologous prote<strong>in</strong>s and the <strong>in</strong>volvment of SO4360 as periplasmic electroncarrier <strong>in</strong> dissimilatory iron reduction <strong>in</strong> Shewanella oneidensis MR-1.(1) Gralnick JA, Vali H, Lies DP, Newman DK (2006): Extracellular respiration of dimethylsulfoxide by Shewanella oneidensis stra<strong>in</strong> MR-1.(2) Jiao Y, Newman DK (2007): ThepioOperon Is Essential for Phototrophic Fe(II) Oxidation <strong>in</strong>Rhodopseudomonas palustris TIE-1.(3) Beliaev AS, Saffar<strong>in</strong>i DA (1998): Shewanella putrefaciens mtrB Encodes an Outer MembraneProte<strong>in</strong> Required for Fe(III) and Mn(IV) Reduction.PSP048The phosphotransferase system CAC0231-CAC0234 controlsfructose utilization of Clostridium acetobutylicumC. Voigt*, H. Janssen, R.-J. FischerInstitute of Biological Sciences/University of Rostock, Division ofMicrobiology, Rostock, GermanyClostridium acetobutylicum is well characterized by its biphasicfermentation metabolism. At higher pH values exponentially grow<strong>in</strong>g cellsusually produce acetate and butyrate as ma<strong>in</strong> fermentation productswhereas when the pH has dropped below 5.0 the metabolism switches to‘solventogenesis’ with the dom<strong>in</strong>at<strong>in</strong>g fermentation products butanol andacetone. As a carbon and energy source a variety of carbohydrates likeglucose, fructose or xylose can be utilized by C. acetobutylicum.Generally, carbohydrates were taken up via three types of transporters:symporter, ATP-b<strong>in</strong>d<strong>in</strong>g cassette (ABC) transporter andphosphotransferase systems (PTS). For the uptake of hexoses, hexitols anddisaccharides thirteen PTS have been identified <strong>in</strong> C. acetobutylicum.Among them, three PTS are supposed to be responsible for the uptake offructose. The apparent primary fructose transport system is encoded by apolycistronic operon (cac0231-cac0234) <strong>in</strong>clud<strong>in</strong>g a putative DeoR-typetranscriptional regulator (CAC0231), a 1-phosphofructok<strong>in</strong>ase(CAC0232), a PTS IIA (CAC0233) and a PTS IIBC (CAC0234). Toanalyze the role of the PTS dur<strong>in</strong>g growth on fructose as sole carbonsource, each s<strong>in</strong>gle gene of the operon (cac0231-cac0234) was specifically<strong>in</strong>terrupted us<strong>in</strong>g the ClosTron® system. All mutant stra<strong>in</strong>s showedimpaired growth due to reduced fructose consumption. Interest<strong>in</strong>gly, aconcomitant loss of solvent production was monitored <strong>in</strong>dicat<strong>in</strong>g athreshold of sugar concentration for <strong>in</strong>itiation of the metabolic switch.Moreover, the transcriptional regulator CAC0231 was overexpressed <strong>in</strong> E.coli and purified for electrophoretic mobility shift assays (EMSA). Here, aputative b<strong>in</strong>d<strong>in</strong>g motif was identified and proved by a specific b<strong>in</strong>d<strong>in</strong>g ofCAC0231 to the promoter region of cac0231-cac0234.BIOspektrum | Tagungsband <strong>2012</strong>


187PSP049Characterization of plasmid pPO1 from the hyperacidophilePicrophilus oshimaeA. Angelov* 1 , J. Voss 2 , W. Liebl 11 Technische Universität München, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g,Germany2 Georg-August-Universität Gött<strong>in</strong>gen, Institut für Mikrobiologie und Genetik,Gött<strong>in</strong>gen, GermanyPicrophilus oshimae and Picrophilus torridus are free-liv<strong>in</strong>g, moderatelythermophilic and acidophilic organisms from the l<strong>in</strong>eage ofEuryarchaeota. With a pH optimum of growth at pH 0.7 and the ability toeven withstand molar concentrations of sulphuric acid, these organismsrepresent the most extreme acidophiles known. So far, noth<strong>in</strong>g is knownabout plasmid biology <strong>in</strong> these hyperacidophiles. Also, there are no genetictools available for this genus. We have mobilized the 7.6 Kbp plasmidfrom P. oshimae <strong>in</strong> E. coli by <strong>in</strong>troduc<strong>in</strong>g orig<strong>in</strong>-conta<strong>in</strong><strong>in</strong>g transposonsand describe the plasmid <strong>in</strong> terms of its nucleotide sequence, copy number<strong>in</strong> the native host, mode of replication and transcriptional start sites of theencoded ORFs. Plasmid pPO1 may encode a restriction/modificationsystem <strong>in</strong> addition to its replication functions. The <strong>in</strong>formation ga<strong>in</strong>edfrom the pPO1 plasmid may prove useful <strong>in</strong> develop<strong>in</strong>g a clon<strong>in</strong>g systemfor this group of extreme acidophiles.PSP050The three NiFe-hydrogenases of Sulfurospirillum multivorans:Insights <strong>in</strong>to the hydrogen metabolism of an organohaliderespir<strong>in</strong>g bacteriumX. Wei* 1 , C. Schiffmann 2 , J. Seifert 2 , T. Goris 1 , G. Diekert 11 Friedrich Schiller University, Department of Applied and EcologicalMicrobiology, Jena, Germany2 Helmholtz-Centre for Environmental Research - UFZ, DepartmentProteomics, Leipzig, GermanyOne of the simplest reactions <strong>in</strong> nature, the oxidation of molecularhydrogen and its reverse reaction, is catalysed by a group of enzymescalled hydrogenases. Opposed to the simplicity of this reaction,hydrogenases are complex enzymes with several metal-conta<strong>in</strong><strong>in</strong>gcofactors. They appear <strong>in</strong> multifaceted forms, often <strong>in</strong> one s<strong>in</strong>gle organism,where they fulfill different physiological roles. One of the largest groupsof hydrogenases harbour one nickel and one iron atom <strong>in</strong> their catalyticcenter. Thus, they are called NiFe-hydrogenases.Sulfurospirillum multivorans, an organohalide-respir<strong>in</strong>g -proteobacterium, harbours the genes cod<strong>in</strong>g for at least three NiFehydrogenases,none of them hitherto <strong>in</strong>vestigated. The most prom<strong>in</strong>ent roleof energy conservation via the oxidation of H 2 is fulfilled presumably by amembrane-bound uptake hydrogenase, similar to the MBH of Wol<strong>in</strong>ellasucc<strong>in</strong>ogenes. The same gene cluster comprises a second hydrogenase,whose physiological role is unclear. It is similar to hydrogenase 3 fromAquifex aeolicus and, to a lesser extent to regulatory hydrogenases andcyanobacterial uptake hydrogenases. The third hydrogenase, encoded byfour genes spatially separated from the other hydrogenase gene cluster, isrelated to H 2-evolv<strong>in</strong>g energy convert<strong>in</strong>g hydrogenases (Ech) and mightact as an electron s<strong>in</strong>k, as we have detected H 2 production dur<strong>in</strong>gmicroaerobic growth after depletion of oxygen. Remarkably, themembrane subunits normally present <strong>in</strong> these hydrogenases, referr<strong>in</strong>g to aproton pump and an electron-transferr<strong>in</strong>g subunit of complex I, are miss<strong>in</strong>gon the accord<strong>in</strong>g S. multivorans gene cluster. This raises the question,whether the enzyme b<strong>in</strong>ds to the accord<strong>in</strong>g prote<strong>in</strong>s of the respiratorycha<strong>in</strong> present <strong>in</strong> the organism, or if it resides freely <strong>in</strong> the cytoplasm. Inorder to understand the physiological role of these so far undercharacterisedNiFe-hydrogenases <strong>in</strong> S. multivorans, growth experiments,transcription analysis and subcellular localisation studies accompanied byactivity measurements were carried out, whereas purification,spectroscopical analyses and genetic modifications are planned.Acknowledgement: This work is supported by the DFG (research unit FOR1530)PSP051Analysis of the dual flagellar stator system <strong>in</strong> Shewanellaoneidensis MR-1 at the s<strong>in</strong>gle-cell levelA. Paulick*, K. ThormannMax-Planck-Institute for Terrestrial Microbiology, Ecophysiology,Marburg, GermanyFlagella are rotat<strong>in</strong>g filaments driven by a motor complex at the filamentsbase which is powered by the sodium- or proton-motive force. The motorconsists of two major structures, the rotat<strong>in</strong>g switch complex and the statorcomplexes that surround the rotor <strong>in</strong> a r<strong>in</strong>g-like fashion. The statorcomplexes with<strong>in</strong> this stator r<strong>in</strong>g system are constantly exchanged with amembrane-located pool of precomplexes that are activated upon<strong>in</strong>corporation <strong>in</strong>to the motor.Recent studies on the gammproteobacterium Shewanella oneidensis MR-1revealed that two different sets of stators, annotated as PomAB andMotAB, differentially support the rotation of a s<strong>in</strong>gle polar flagellum.PomAB, the dom<strong>in</strong>ant stator complex, is sodium-ion dependent, andMotAB, most likely acquired by lateral gene transfer, is proton dependent.Physiological and localisation studies provide evidence that the rotor-statorconfiguration <strong>in</strong> the flagellar motor is adjusted to environmental sodiumionconcentrations through an exchange of stator complexes. Both statorsappear to be simultaneously <strong>in</strong>corporated <strong>in</strong>to the flagellar motor underlow sodium-ion concentrations, suggest<strong>in</strong>g that S. oneidensis MR-1 has ahybrid motor that concurrently uses sodium-ions and protons. A globaldatabase analysis of bacterial genomes revealed that dual or multiple statorsystems are surpris<strong>in</strong>gly common among bacteria. To demonstrate, for thefirst time, the existence of a naturally occur<strong>in</strong>g flagellar hybrid motor,flagellar performance was analysed at the s<strong>in</strong>gle cell level. To this end, ‘tetheredcell’ and ‘bead’-assays were established. Us<strong>in</strong>g these assays <strong>in</strong> concert withfluorescent microscopy on labeled stator components, we performed <strong>in</strong> vivoanalysis of the stator r<strong>in</strong>g composition and dynamics. The results give <strong>in</strong>sights<strong>in</strong>to the dynamic adaption of the flagellar motor configuration <strong>in</strong> dependence ofthe environmental sodium-ion concentrations.PSP052Activity and localization of Dehydrogenases <strong>in</strong> GluconobacteroxydansS. Kokoschka*, S. Lasota, M. Enseleit, M. HoppertUniversität Gött<strong>in</strong>gen, Institut f. Mikrobiologie und Genetik, Gött<strong>in</strong>gen,GermanyBacterial cytoplasmic and <strong>in</strong>tracytoplasmic membranes are importantmount<strong>in</strong>g plates for all types of prote<strong>in</strong>s directly or <strong>in</strong>directly <strong>in</strong>volved <strong>in</strong>electron transport and generation of proton gradients. In Gluconobacteroxydans membrane-bound dehydrogenases are exposed to the periplasmand funnel reduc<strong>in</strong>g equivalents from educts to the electron transportcha<strong>in</strong>, thereby releas<strong>in</strong>g diverse <strong>in</strong>completely oxidized products. Here, weanalyze the activities and expression of membrane-bound dehydrogenasesof Gluconobacter oxydans under different growth conditions with ethanol,glucose, glycerol, mannitol and sorbitol as substrates. Osmotic stress andoxygen partial pressure <strong>in</strong>creases specific activities by up to one order ofmagnitude. Measurements of enzyme activities were also supported byimmunolocalization of two key enzymes, the PQQ-dependant membraneboundsorbitol dehydrogenase and the qu<strong>in</strong>ol oxidase <strong>in</strong> Gluconobactercells. This technique allows a semi-quantitative estimation of enzymeexpression and, at the same time, localization at subcellular level.PSP053Alternative fructose utilization <strong>in</strong> CorynebacteriumglutamicumS.N. L<strong>in</strong>dner* 1 , I. Krahn 1 , D. Stoppel 2 , J.P. Krause 1 , V.F. Wendisch 11 University of Bielefeld, Genetics of Prokaryotes, Bielefeld, Germany2 Westfalian Wilhelms University Münster, Münster, GermanyCorynebacterium glutamicum is used for the <strong>in</strong>dustrial scale production ofam<strong>in</strong>o acids, such as the feed additive L-lys<strong>in</strong>e or the flavor enhancer L-glutamate. Predom<strong>in</strong>antly the fermentation of am<strong>in</strong>o acids is carried outus<strong>in</strong>g sugar substrates, such as glucose, sucrose, and fructose, which are allsubstrates of the phosphotransferase system (PTS) <strong>in</strong> C. glutamicum. Theutilization of fructose starts by PTS mediated uptake and simultaneousphosphoenolpyruvate dependent phosphorylation to fructose-1-phosphate.Subsequently fructose-1-phosphate is phosphorylated to the glycolytic<strong>in</strong>termediate fructose-1,6-bisphosphate by 1-phosphofructok<strong>in</strong>ases.To analyze the role of the 1-phosphofructok<strong>in</strong>ases <strong>in</strong> C. glutamicumdeletion mutants of the correspond<strong>in</strong>g genes fruK1 and/or fruK2 wereconstructed. The presence of one of the 1-phosphofructok<strong>in</strong>ase genes wassufficient for growth with fructose whereas fruK1 encoded the moreimportant 1-phosphofructok<strong>in</strong>ase as only fruK1 and not fruK2 showedimpaired growth compared to the WT. Growth with fructose wascompletely <strong>in</strong>hibited when both genes fruK1 and fruK2 were deleted(fruK1fruK2).Suppressor mutants were isolated after prolonged <strong>in</strong>cubation offruK1fruK2 <strong>in</strong> fructose m<strong>in</strong>imal medium. These suppressor mutantsrega<strong>in</strong>ed the ability to grow from fructose. Growth rates of the suppressormutants were comparable to the WT with a concomittant <strong>in</strong>crease ofbiomass yields of the suppressor mutants. The biomass <strong>in</strong>crease is likelydue to the reduced acid byproduct formation. When test<strong>in</strong>g for L-lys<strong>in</strong>eproduction from fructose, the suppressor mutants showed strong <strong>in</strong>creasedL-lys<strong>in</strong>e production compared to the parental stra<strong>in</strong>.BIOspektrum | Tagungsband <strong>2012</strong>


188PSP054Elucidation of the tetrachloroethene respiratory cha<strong>in</strong> <strong>in</strong>Sulfurospirillum multivoransJ. Gadkari*, T. Schubert, G. DiekertFriedrich Schiller University Jena, Applied and EnvironmentalMicrobiology, Jena, GermanyThe composition of the electron transfer cha<strong>in</strong> lead<strong>in</strong>g from the oxidationof formate (or hydrogen) to the reduction of tetrachloroethene (PCE) <strong>in</strong> the<strong>in</strong>ner membrane of the gram-negative epsilonproteobacterium S.multivoransi s an enigma unsolved to date. Under anoxic conditions theorganism is able to couple the reductive dechlor<strong>in</strong>ation of PCE to ATPsynthesis via electron transport phosphorylation (organohalide respiration).The term<strong>in</strong>al reductase, the PCE dehalogenase (PceA), is a corr<strong>in</strong>oidconta<strong>in</strong><strong>in</strong>giron-sulfur prote<strong>in</strong>. The pceA gene is accompanied by a smallgene pceB that encodes a putative membrane anchor of the enzyme. Incells grown with PCE, PceA is located on the periplasmic face of thecytoplasmic membrane [1]. In cells cultivated with fumarate <strong>in</strong>stead ofPCE the enzyme is almost exclusively located <strong>in</strong> the cytoplasm.In this study differentially pre-conditioned cells (or membrane vesiclesthereof) with different PceA localization patterns were treated withreduced qu<strong>in</strong>one analoga (e. g. Plumbag<strong>in</strong>) to test for the <strong>in</strong>volvement ofqu<strong>in</strong>ones <strong>in</strong> the electron transfer. With 2-heptyl-4-hydroxy qu<strong>in</strong>ol<strong>in</strong>e-Noxide(HQNO) the <strong>in</strong>hibition of qu<strong>in</strong>one-dependent electron shuttl<strong>in</strong>g wastested. The previously proposed necessity of a proton gradient for thereductive dechlor<strong>in</strong>ation [2] was proven by the use of uncouplers (e. g.CCCP). The comb<strong>in</strong>ation of genomic data and results from differentialproteome analysis (together with Seifert, J. and von Bergen, M.; UFZLeipzig) allowed for the identification of membrane-associated prote<strong>in</strong>sonly found <strong>in</strong> membrane preparations of PCE-grown cells (e. g. qu<strong>in</strong>oldehydrogenase). Experiments are underway to purify and characterizethese putative components of the electron transfer pathway. Theexpression of the respective genes <strong>in</strong> PCE- or fumarate-grown cells wastested. From the results presented here an actual model of the PCErespiratory cha<strong>in</strong> <strong>in</strong> S. multivorans is derived and will be discussed.[1] John M. et al. (2006) Arch Microbiol 186:99-106[2] Miller E. et al. (1997) Arch Microbiol 166:379-387Acknowledgement: This work is supported by the DFG (research unit FOR1530).PSP055Quantitative determ<strong>in</strong>ation of <strong>in</strong> vivo ATP concentrations <strong>in</strong>Corynebacterium glutamicum us<strong>in</strong>g fluorescent <strong>in</strong>dicatorprote<strong>in</strong>sA. Eck*, G. SeiboldUniversität zu Köln, Institut für Biochemie, Köln, GermanyCorynebacterium glutamicum is a Gram-positive, non-pathogenic soilbacterium applied <strong>in</strong> the large scale <strong>in</strong>dustrial production of am<strong>in</strong>o acids.Additionally it serves as model organism with<strong>in</strong> the suborderCorynebacterianeae, which also comprises pathogenic stra<strong>in</strong>s likeCorynebacterium ulcerans and Mycobacterium tuberculosis, whichpossess a partially <strong>in</strong>tracellular life style.For the analysis of <strong>in</strong>tracellular metabolite concentrations <strong>in</strong> bacteriama<strong>in</strong>ly disruptive methods have been applied <strong>in</strong> the past. Therebyrestricted temporal resolution, dilution of the sample and contam<strong>in</strong>ation ofsamples by extracellular solutes can be major disadvantages. Furthermore,these methods are difficult to apply for the metabolite analysis of<strong>in</strong>tracellular pathogens [1].Recently genetically encoded nanosensors for different metabolites likemaltose, glucose, and sucrose have been developed, which enable thedeterm<strong>in</strong>ation of metabolite levels by optical means <strong>in</strong> a non-disruptivemanner [2]. These sensors are composed of a b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> term<strong>in</strong>allyfused to two different spectral variants of GFP like CFP and YFP. Theytranslate the b<strong>in</strong>d<strong>in</strong>g of a metabolite <strong>in</strong>to a change of Förster-Resonance-Energy-Transfer (FRET) efficiency between the two fluorescent prote<strong>in</strong>sand thus allow quantification of metabolites.We here adopt a series of genetically encoded ATP nanosensors developedby Imamura et al. [3] for the utilisation <strong>in</strong> C. glutamicum and relatedCorynebacterianeae. Therefore we cloned the genes encod<strong>in</strong>g the ATPsensors with different b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities <strong>in</strong>to suitable plasmids for theirexpression <strong>in</strong> C. glutamicum and related species. To determ<strong>in</strong>e <strong>in</strong> vivoconcentrations of ATP a novel technique for calibration of the sensors <strong>in</strong>permeabilised cells was developed. Us<strong>in</strong>g these <strong>in</strong> vivo calibration curvesas a reference, we analyzed <strong>in</strong>tracellular ATP concentrations <strong>in</strong> C.glutamicum <strong>in</strong> the course of cultivation, which corresponded well withconcentrations determ<strong>in</strong>ed enzymatically.In conclusion, we here show that genetically encoded nanosensors are apromis<strong>in</strong>g alternative for classical metabolite analysis avoid<strong>in</strong>g severerestrictions with<strong>in</strong> the application of the latter.1. Eisenreich, W., et al., Carbon metabolism of <strong>in</strong>tracellular bacterial pathogens and possible l<strong>in</strong>ksto virulence. Nat Rev Microbiol, 2010.8(6): p. 401-12.2. Fehr, M., et al., Development and use of fluorescent nanosensors for metabolite imag<strong>in</strong>g <strong>in</strong> liv<strong>in</strong>gcells.Biochem Soc Trans, 2005.33(Pt 1): p. 287-90.3. Imamura, H., et al., Visualization of ATP levels <strong>in</strong>side s<strong>in</strong>gle liv<strong>in</strong>g cells with fluorescenceresonance energy transfer-based genetically encoded <strong>in</strong>dicators.Proc Natl Acad Sci U S A,2009.106(37): p. 15651-6.PSP056Effect of temperature on nitrogen metabolism <strong>in</strong> ListeriamonocytogenesD. Kaspar*, D. Eder, S. Scherer, S. MüllerTU München, Lehrstuhl für Mikrobielle Ökologie, Freis<strong>in</strong>g, GermanyThe human pathogen L. monocytogenes is frequently found <strong>in</strong> theenvironment. Therefore, this bacterium has to adapt to various conditions,depend<strong>in</strong>g on its actual ecological niche. Besides different environmentaltemperatures, for example 37 ºC with<strong>in</strong> the host and 0 - 30 ºC <strong>in</strong> theenvironment, the availability of nutrients is another important factor thebacteria have to deal with. In the present work, the global transcriptome ofL. monocytogenes EGDe grown <strong>in</strong> a def<strong>in</strong>ed medium with glucose as solecarbon source and glutam<strong>in</strong>e as nitrogen source was analyzed andcompared at 37 ºC and 24 ºC, us<strong>in</strong>g microarray technology. Microarraydata were verified via qRT-PCR. At 24 °C the transcription level of thegenes lmo1298 (encod<strong>in</strong>g for GlnR, the glutam<strong>in</strong>e synthetase repressor),lmo1299 (encod<strong>in</strong>g for GlnA, the glutam<strong>in</strong>e synthetase), lmo1516(encod<strong>in</strong>g AmtB, an ammonium transporter) and lmo1517 (encod<strong>in</strong>g aprote<strong>in</strong> similar to nitrogen regulatory PII prote<strong>in</strong>) was much higher than at37 °C. This observation is quite <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> particular as no ammoniumwas added to the def<strong>in</strong>ed growth medium. A higher transcription ofhomologous genes <strong>in</strong> B. subtilis <strong>in</strong>dicates nitrogen, more preciselyglutam<strong>in</strong>e-starvation. These data suggest that the glutam<strong>in</strong>e-supply of L.monocytogenes is better at 37 °C compared to 24 °C. Growth analysis of L.monocytogenes <strong>in</strong> def<strong>in</strong>ed medium with glutam<strong>in</strong>e or ammonia as nitrogensource at different temperatures support this assumption. Further studieswill be carried out to characterize this temperature dependenttranscriptional regulation of genes <strong>in</strong>volved <strong>in</strong> nitrogen metabolism.PSP057Heterologous production of a bacterial Na + F 1 F o ATP synthasewith a F o V o hybrid motorD. Müller, K. Brandt*, V. MüllerMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyThe Na + F 1F o ATP synthase of the anaerobic, acetogenic bacteriumAcetobacterium woodii is unique because it has a F oV o hybrid motor madeby an 8 kDa bacterial F o-like c subunit with two transmembrane helices,and an 18 kDa eukaryal V o-like c subunit with four transmembrane helicesbut only one b<strong>in</strong>d<strong>in</strong>g site. The stoichiometry of the subunits <strong>in</strong> the c r<strong>in</strong>g asdeterm<strong>in</strong>ed by laser-<strong>in</strong>duced liquid beam ion desorption was 9 : 1 (F o:V o)(1). To beg<strong>in</strong> a molecular study, we cloned the entire atp operon <strong>in</strong>to theexpression vector pTrc99A (Amersham Bioscience), <strong>in</strong>troduced a His 6-tagat the N-term<strong>in</strong>us of the subunit and transformed the result<strong>in</strong>g plasmid<strong>in</strong>to the ATP synthase negative Escherichia coli stra<strong>in</strong> DK8. Theheterologously produced ATP synthase was purified <strong>in</strong> one step by Ni 2+ -NTA aff<strong>in</strong>ity chromatography. The presence of all subunits wasdeterm<strong>in</strong>ed by peptide mass f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g and by Western blots. The ATPsynthase was functionally coupled which was shown by <strong>in</strong>hibition of ATPhydrolysis by DCCD. ATPase activity was stimulated by Na + andaccompanied by Na + transport <strong>in</strong>to proteoliposomes. The F oV o hybridmotor was purified with the established protocol for the purification of thec r<strong>in</strong>g. Both types of c subunits were present <strong>in</strong> the c r<strong>in</strong>g. Thestoichiometry was determ<strong>in</strong>ed by laser-<strong>in</strong>duced liquid beam ion desorptionwith 9 : 1 (F o:V o).From our results we can conclude that the heterologously produced Na +F 1F o ATP synthase is functionally coupled and that E. coli is able toassemble the special F oV o hybrid motor. With this system we can now startwith mutational analysis of the c subunits to get a better understand<strong>in</strong>g ofthe physiological function of the hybrid motor.(1) Fritz M, Klyszejko AL, Morgner N, Vonck J, Brutschy B, Muller DJ, Meier T, Müller V. (2008)An <strong>in</strong>termediate step <strong>in</strong> the evolution of ATPases: a hybrid FoVo rotor <strong>in</strong> a bacterial Na + F1Fo ATPsynthase. FEBS J.275:1999-2007PSP058Functional specificity of extracellular nucleases <strong>in</strong> Shewanellaoneidensis MR-1M. Kreienbaum*, L. B<strong>in</strong>nenkade, M. Heun, K. ThormannMax-Planck-Institute for Terrestrial Microbiology, Ecophysiology,Marburg, GermanyBacterial species such as Shewanella oneidensis MR-1 requireextracellular nucleolytic activity for utiliz<strong>in</strong>g extracellular DNA (eDNA)as source of nutrients and for turnover of eDNA as structural matrixcomponent dur<strong>in</strong>g biofilm formation. We have previously characterizedtwo extracellular nucleases <strong>in</strong> S. oneidensis MR-1, ExeM and ExeS.Although both are <strong>in</strong>volved <strong>in</strong> biofilm formation, they are not specificallyrequired to utilize eDNA as nutrient. Here we identified and characterizedEndA, a third extracellular nuclease <strong>in</strong> Shewanella. The heterologouslyoverproduced and purified prote<strong>in</strong> was highly active and rapidly degradedl<strong>in</strong>ear and supercoiled DNA of various orig<strong>in</strong>s. Divalent metal ions Mg 2+BIOspektrum | Tagungsband <strong>2012</strong>


189or Mn 2+ were required for function. endA is co-transcribed with anextracellular phosphatase phoA and not upregulated uponphosphostarvation. Deletion of endA abolished extracellular degradation ofDNA by S. oneidensis MR-1 and the ability to use eDNA as sole source ofphosphorus. PhoA is not strictly required to exploit eDNA as nutrient. Theactivity of EndA prevents the formation of large cell aggregates dur<strong>in</strong>gplanktonic growth. However, <strong>in</strong> contrast to ExeM a deletion of endA hadonly m<strong>in</strong>or effects on biofilm formation. The f<strong>in</strong>d<strong>in</strong>gs underl<strong>in</strong>e theimportance of extracellular nucleolytic activity for Shewanella andstrongly suggest specific functions for the different nucleases.PSP059Caffeate respiration <strong>in</strong> the acetogenic bacteriumAcetobacterium woodii: Characterization of a caffeateactivat<strong>in</strong>gCoA transferaseV. Hess*, V. MüllerMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyThe anaerobic acetogenic bacterium Acetobacterium woodii couples thereduction of caffeate with electrons derived from molecular hydrogen tothe synthesis of ATP by a chemiosmotic mechanism with Na + as coupl<strong>in</strong>gions. This process is called caffeate respiration (1). The Na + -translocat<strong>in</strong>genzyme <strong>in</strong> this respiratory pathway was identified as a ferredox<strong>in</strong>:NAD + -oxidoreductase (Rnf) (2,3). Recently, the enzymes <strong>in</strong>volved <strong>in</strong> caffeatereduction with electrons derived from the Rnf complex could be shown tobe encoded by the so called caffeate reduction operon carABCDE (4). Thefirst gene of the operon, carA, was annotated as a putative CoAtransferase. To further elucidate the function of CarA, the gene was cloned<strong>in</strong>to pET21a, heterologously overproduced <strong>in</strong> Escherichia coli and purifiedto apparent homogenity via IMAC. In a photometric assay, CarA of A.woodii could be affirmed as a hydrocaffeyl-CoA:caffeate CoA transferase.The biochemical properties of the enzyme are described and its role <strong>in</strong> thecaffeate reduc<strong>in</strong>g process is discussed.1) Müller, V., Imkamp, F., Biegel, E., Schmidt, S., Dill<strong>in</strong>g, S. (2008) Discovery of aferredox<strong>in</strong>:NAD + -oxidoreductase (Rnf) <strong>in</strong> Acetobacterium woodii: A novel potential coupl<strong>in</strong>g site<strong>in</strong> acetogens. Ann. N.Y. Acad. Sci. 1125:137-1462) Imkamp, F., Biegel, E., Jayamani, E., Buckel, W. and Müller, V. (2007) Dissection of the caffeatrespiratory cha<strong>in</strong> <strong>in</strong> the acetogen Acetobacterium woodii: Identification of an Rnf-type NADHdehydrogenase as a potential coupl<strong>in</strong>g site. J. Bacteriol. 189:8145-81533) Biegel, E. and Müller, V. (2010) Bacterial Na + -translocat<strong>in</strong>g ferredox<strong>in</strong>:NAD + oxidoreductase.Proc. Natl. Acad. Sci. U .S. A. 107:18138-181424) Hess, V., Vitt, S. and Müller, V. (2011) A caffeyl-coenzyme A synthetase <strong>in</strong>itiates caffeateactivation prior to caffeate reduction <strong>in</strong> the acetogenic bacterium Acetobacterium woodii. J.Bacteriol. 193:971-978PSP060A bacterial electron bifurcat<strong>in</strong>g uptake hydrogenaseK. Schuchmann*, V. MüllerMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyA [FeFe]-hydrogenase conta<strong>in</strong><strong>in</strong>g four subunits (HydABCD) was purifiedfrom the cytoplasm of Acetobacterium woodii and the encod<strong>in</strong>g geneswere identified. The complex is predicted to have one [H]-cluster, three[2Fe2S]- and six [4Fe4S]-clusters consistent with the experimentaldeterm<strong>in</strong>ation of 32 mol of Fe and 30 mol of acid labile sulfur. Theenzyme catalyzed the exergonic reduction of NAD + with hydrogen asreductant only <strong>in</strong> the presence of flav<strong>in</strong> and ferredox<strong>in</strong>. A k M, app for FMNof 6 M and for ferredox<strong>in</strong> of 12 M was determ<strong>in</strong>ed. The enzyme alsocatalyzed the endergonic reduction of ferredox<strong>in</strong> with H 2 as reductant <strong>in</strong> areaction that was also strictly dependent on NAD + and FMN. Spectralanalyses revealed that ferredox<strong>in</strong> and NAD + were reduced at the same timewith a stoichiometry of 1:1. Apparently, the multimeric hydrogenase of A.woodii used the novel mechanism of electron bifurcation <strong>in</strong> which theendergonic reduction of ferredox<strong>in</strong> with electrons derived from molecularhydrogen is coupled with the exergonic electron transfer from molecularhydrogen to NAD + . The implications for the energy metabolism ofacetogenic and other bacteria are discussed.PSP061Initial <strong>in</strong>sights <strong>in</strong>to the organohalide respiratory process ofDehalococcoides sp. stra<strong>in</strong> CBDB1A. Kublik*, C. Schipp, L. AdrianUFZ, Isotope Biogeochemistry, Leipzig, GermanyMicrobial reductive dechlor<strong>in</strong>ation plays a crucial role <strong>in</strong> the detoxificationof persistent halogenated compounds <strong>in</strong> contam<strong>in</strong>ated environments.Several anaerobic bacteria like Dehalococcoides species are able to use awide range of these contam<strong>in</strong>ants as term<strong>in</strong>al electron acceptors <strong>in</strong> ananaerobic respiration with hydrogen as the so far sole known electrondonor. This specialization is also reflected <strong>in</strong> the high number of putativereductive dehalogenase genes <strong>in</strong> the available genomes (e.g. 32 reductivedehalogenase homologous genes <strong>in</strong> Dehalococcoides sp. stra<strong>in</strong> CBDB1 [1]).To understand this exceptional lifestyle, we aim to elucidate the respiratoryelectron-transfer cha<strong>in</strong> between the hydrogenase(s) and the reductivedehalogenase(s) <strong>in</strong>clud<strong>in</strong>g the identification and characterization of theelectron-conduct<strong>in</strong>g components us<strong>in</strong>g Dehalococcoides sp. stra<strong>in</strong> CBDB1as a model organism. We have assigned an enzymatic function for one ofthe reductive dehalogenase homologous genes us<strong>in</strong>g native gelelectrophoresis [2]. Also, we have now revised all cultivation, cellcount<strong>in</strong>g, cell harvest<strong>in</strong>g as well as prote<strong>in</strong> quantification and prote<strong>in</strong>enrichment procedures to provide sufficient amounts of biomass foradvanced biochemical experiments. Correlation of prote<strong>in</strong> expressionpatterns with different halogenated electron acceptors us<strong>in</strong>g enzymaticactivity tests and mass spectrometric analysis <strong>in</strong>dicates the <strong>in</strong>volvement ofa series of reductive dehalogenase prote<strong>in</strong>s <strong>in</strong> various dehalogenationreactions. On the other hand, several potential membrane soluble electronconduct<strong>in</strong>gcandidates were identified and are further studied by <strong>in</strong> vitroenzyme activity assays. We also started with a general analysis of putativerespiratory cha<strong>in</strong> components by liquid chromatography massspectrometry (LC-MS/MS) on the prote<strong>in</strong> level.Acknowledgement: This work is supported by the DFG (Research Unit FOR1530).[1] Kube et al. (2005), Nature Biotechnol. 23: 1269-1273.[2] Adrian et al. (2007), Appl. Environ. Microbiol. 73: 7717-7724.PSP062Characterisation of a peptidyl-prolyl-cis-trans-isomerase ofCorynebacterium glutamicumN. Kallscheuer, J. van Ooyen*, T. Polen, M. BottForschungszentrum Jülich GmbH, IBG-1: Biotechnologie, Jülich, GermanyS<strong>in</strong>ce the first report of the enzyme-driven cis-trans isomerization ofpetidyl-prolyl-bonds <strong>in</strong> polypetides, the peptidyl-prolyl-cis-transisomerases (PPIases) were found to be present <strong>in</strong> almost all sequencedgenomes to date. In eukaryotes PPiases play a major role <strong>in</strong> signaltransduction of the immune system, thus the mechanisms and <strong>in</strong>hibitors arewidely <strong>in</strong>vestigated. PPIases are classified <strong>in</strong> three dist<strong>in</strong>ct familiesreflect<strong>in</strong>g their biochemical properties of b<strong>in</strong>d<strong>in</strong>g to dist<strong>in</strong>ct classes of<strong>in</strong>hibitor molecules. In prokaryotes, however, many PPIases were<strong>in</strong>vestigated <strong>in</strong> vitro, but only <strong>in</strong> a few cases <strong>in</strong> vivo effects had beenpursued. We here present evidence for the <strong>in</strong> vivo function of theprokaryotic PPiase FkpA of the soil bacterium and model microorganismCorynebacterium glutamicum. FkpA belongs to the family of FK-506b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>s (FKBPs) which are <strong>in</strong>hibited by FK-506 (Tacrolimus).At temperatures below 25°C and above 35°C FkpA has a positive effect oncitrate synthase (CS) activity<strong>in</strong> vitroand delayed aggregation of CS at 37°Cand above. In vivo, deletion of fkpA leads to decreased cell growth and thespecific CS activities of C. glutamicumfkpA were found to be reduced byabout 40%, when cells were cultivated <strong>in</strong> synthetic media conta<strong>in</strong><strong>in</strong>g eitherglucose or acetate as carbon source. DNA microarray analyses compar<strong>in</strong>gthe transcriptomes of C. glutamicumfkpA and the wild type revealed,amongst others, that the RNA level of lactate dehydrogenase (ldh) was 10-fold <strong>in</strong>creased <strong>in</strong> the deletion mutant, whereas the specific Ldh-activitywas solely slightly <strong>in</strong>creased, which could be <strong>in</strong>terpreted as a direct effectof miss<strong>in</strong>g PPiase activity. Taken together we provide evidence thatPPiases play a major role <strong>in</strong> prote<strong>in</strong> stability and fold<strong>in</strong>g and therebymodulate enzyme activity <strong>in</strong> prokaryotes. Additionally, PPiases maybroaden the optimal temperature range of their substrate enzymes.PSP063Differentiation of respiratory molybdopter<strong>in</strong>-conta<strong>in</strong><strong>in</strong>goxidoreductases: <strong>in</strong>sight multiple functions, structures andgenetic compositionO. KlimmekInstitute of Microbiology + Genetics, Department of Biology, Darmstadt,GermanyBacteria commonly perform anaerobic respiration driven by electrontransport cha<strong>in</strong>s. Such respiratory cha<strong>in</strong>s consist of membrane-bound andsoluble electron transport prote<strong>in</strong>s that are <strong>in</strong>volved <strong>in</strong> proton motive forcegeneration. A high number of these prote<strong>in</strong>s are molybdopter<strong>in</strong>-conta<strong>in</strong><strong>in</strong>goxidoreductases that belong to the dimethyl sulfoxide (DMSO) reductasefamily. From an evolutionary po<strong>in</strong>t of view, it is assumed that thesemolybdoprote<strong>in</strong>s are ancient enzymes <strong>in</strong>volved, for example, <strong>in</strong> conversionof sulfur conta<strong>in</strong><strong>in</strong>g compounds.Due to the homology with<strong>in</strong> this group of molybdoenzymes it ischalleng<strong>in</strong>g to predict the substrate range of such enzymes from genomedata only. In particular, high similarities exist with<strong>in</strong> the hydrophilicsubunits of the DMSO reductase family compris<strong>in</strong>g catalytic subunitsconta<strong>in</strong><strong>in</strong>g the MGD ligated molybdenum ion as well as electron transfersubunits conta<strong>in</strong><strong>in</strong>g Fe/S clusters. In contrast the qu<strong>in</strong>one- / qu<strong>in</strong>ol-reactivemembrane subunits show differences [1,2].The aim of this study was to functionally discrim<strong>in</strong>ate molybdoenzymesconta<strong>in</strong><strong>in</strong>g membrane subunits of the PsrC/NrfD family. The genome ofthe model organism Wol<strong>in</strong>ella succ<strong>in</strong>ogenes encodes 11 differentrespiratory molybdoenzymes [3], several of which have unknownfunctions. Five of them are predicted to conta<strong>in</strong> subunits of the PsrC/NrfDBIOspektrum | Tagungsband <strong>2012</strong>


190family, but only one of these, the polysulfide reductase, has beencharacterized <strong>in</strong> the past [4].Enzymatic, genetic and structural approaches were used to explore thefunctions of molybdoenzymes <strong>in</strong> anaerobic respiration of Wol<strong>in</strong>ellasucc<strong>in</strong>ogenes, focus<strong>in</strong>g ma<strong>in</strong>ly on substrate specificities towards sulfide,polysulfide, thiosulfate, tetrathionate, dimethyl sulfoxide, trimethylam<strong>in</strong>e N-oxide, chlorate, perchlorate, selenate and arsenate.Results confirm the present of a sulfide dehydrogenase, a second polysulfidereductase and an arsenate reductase coded by different operons.[1] Rotheryet al.(2008) Biochim Biophys Acta 1778: 1897-1929[2] Dietrich and Klimmek (2002) Eur J Biochem 269: 1086-1095[3] Baaret al.(2003) Proc Natl Acad Sci USA 100: 11690-11695[4] Klimmek (2005) Met Ions Biol Syst 43: 105-130PSP064Spr<strong>in</strong>gs of life <strong>in</strong> a “Dead Sea”*S. Häusler 1 , Y.Y. Munwes 2 , C. Lott 1,3 , C. Siebert 4 , M. Biži-Ionescu 1,5 ,L. Polerecky 1 , C. Quast 1 , J. Peplies 1,6 , F.-O. Glöckner 1,7 , A. Ramette 1 ,T. Dittmar 1,8 , A. Oren 9 , S. Geyer 4 , M. Sauter 10 , T. Licha 10 , J.B. Laronne 2 ,D. de Beer 1 , D. Ionescu 11 The Max Planck Institute for Mar<strong>in</strong>eMicrobiology, Bremen, Germany2 Ben Gurion University of the Negev, Dept. of Geography &Environmental Development, Beer Sheva, Israel3 HYDRA Institute for Mar<strong>in</strong>e Sciences, Elba Field Station, Campo nel Elba,Germany4 Helmholtz Centre For Environmental Research (UFZ), HydrogeologyDepartment, Halle/Saale, Germany5 Leibniz-Institute of Freshwater Ecology and Inland Fisheries Berl<strong>in</strong> (IGB),Department of Stratified Lakes, Stechl<strong>in</strong>, Germany6 Ribocon GmbH, Bremen, Germany7 Jacobs University Bremen gGmbH, Bremen, Germany8 Carl von Ossietzky University, Institute for Chemistry and Biology of theMar<strong>in</strong>e Environment (ICBM), Oldenburg, Germany9 The Hebrew University of Jerusalem, The Institute of Life Sciences,Department of Plant and Environmental Sciences, Jerusalem, Israel10 University of Gött<strong>in</strong>gen, Geoscientific Centre, Gött<strong>in</strong>gen, GermanyThe Dead Sea is a term<strong>in</strong>al lake located on the border between Jordan andIsrael. Until 1979 the Dead Sea was a meromictic lake with hypersal<strong>in</strong>e,anoxic and sulfidic deep waters and a seasonally vary<strong>in</strong>g mixolimnion(Anati et al., 1987). S<strong>in</strong>ce then the water column is mixed and the sal<strong>in</strong>ityis approximately 350 g L -1 . Surface spr<strong>in</strong>gs runn<strong>in</strong>g <strong>in</strong>to the Dead Sea havebeen documented along the western and eastern shore of the lake(LaronneBen-Itzhak and Gvirzman, 2005, Lensky et al., 2005). InSeptember 2009 we detected a large system of underwater spr<strong>in</strong>gs on thewestern coast of the Dead Sea. Due to their deep emergence (down to 30 mdepth), these spr<strong>in</strong>gs cannot be detected by visual <strong>in</strong>spection of surfacewaters or by low resolution aerial thermal imag<strong>in</strong>g.In a prelim<strong>in</strong>ary research we explored the biological potential of thesespr<strong>in</strong>gs. Whereas the water column and sediments of the Dead Sea arelargely devoid of life, dense microbial mats were found <strong>in</strong> the vic<strong>in</strong>ity ofthe freshwater spr<strong>in</strong>gs. The mats harbor a great diversity ofmicroorganisms as shown by microscopy, hyperspectral imag<strong>in</strong>g and nextgeneration sequenc<strong>in</strong>g. Besides heterotrophic bacteria the mats consistedof diatoms, green sulfur bacteria, cyanobacteria, sulfide oxidiz<strong>in</strong>g andsulfate reduc<strong>in</strong>g bacteria. The microbial mats may thrive on highconcentrations of organic matter and sulfide from the spr<strong>in</strong>gs, and localprimary production. In-situmicrosensor measurements us<strong>in</strong>g oxygen andsulfide electrodes as well as measurements of sulfate reduction give first<strong>in</strong>sights <strong>in</strong>to the biological activities <strong>in</strong> these unique microbial consortia.We found evidence for an active sulfur cycle with<strong>in</strong> the microbial mats, noactivities were found <strong>in</strong> reference Dead Sea habitats. CO 2 fixation wasdetected by stable isotope <strong>in</strong>cubations. Fluctuations <strong>in</strong> temperature <strong>in</strong>dicatea chang<strong>in</strong>g flow of the freshwater streams thus the microorganisms have tocope with fast changes of sal<strong>in</strong>ity from hypersal<strong>in</strong>e to freshwater.We will present new details on the microbial community composition andactivity of these oases of life <strong>in</strong> an otherwise extremely hostileenvironment.Anati DA, Stiller M, Shasha S, Gat JR (1987) Changes <strong>in</strong> the thermo-hal<strong>in</strong>e structure of the DeadSea: 1979-1984. Earth Planet Sci Lett,84: 109-121.Laronne Ben-Itzhak L, Gvirtzman H (2005) Groundwater flow along and across structural fold<strong>in</strong>g:an example from the Judean Desert, Israel. J Hydrol,312: 51-69.Lensky NG, Dvork<strong>in</strong> Y, Lyakhovsky V (2005) Water, salt, and energy balance of the Dead Sea.Water Resour Res,41: W12418QDV1-FGDevelopment of hygiene monitor<strong>in</strong>g media with non-animalorig<strong>in</strong> – bachelor thesis written <strong>in</strong> <strong>in</strong>dustryS. Per<strong>in</strong>g*, B. GertenMerck KGaA, Merck Millipore Biomonitor<strong>in</strong>g, Darmstadt, GermanyWith<strong>in</strong> the pharmaceutical hygiene monitor<strong>in</strong>g microbiological test<strong>in</strong>g ofthe air, personnel and surfaces are carried out traditionally with TrypticSoy Agar (TSA) and/or Sabouraud Dextrose Agar (SDA). Both media areconta<strong>in</strong><strong>in</strong>g peptones from animal orig<strong>in</strong> – case<strong>in</strong> peptone <strong>in</strong> TSA and meatand case<strong>in</strong> peptone <strong>in</strong> SDA.Due to the BSE risk of peptone from animal orig<strong>in</strong>, the use of rawmaterials from non-animal orig<strong>in</strong> would be advantageous formicrobiological hygiene monitor<strong>in</strong>g <strong>in</strong> pharmaceutical plants.The aim of this bachelor thesis <strong>in</strong>cluded the development of a new TSAand a new SDA both based on strictly non-animal orig<strong>in</strong>ated rawmaterials. Test<strong>in</strong>g of the microbiological growth performance followed thespecifications given <strong>in</strong> the pharmacopoeias (EP/USP/JP). Also commonenvironmental isolates were <strong>in</strong>cluded dur<strong>in</strong>g test<strong>in</strong>g different formulations.TSA and SDA from EP/USP/JP formulation were used as referencesdur<strong>in</strong>g all steps of the development. The new TSA and SDA from nonanimalorig<strong>in</strong> had to show the same or better performance characteristicsas the traditional formulations us<strong>in</strong>g animal-orig<strong>in</strong> peptones.In addition to the presentation of the technical part, a short summery ofexperiences writ<strong>in</strong>g the bachelor thesis <strong>in</strong> <strong>in</strong>dustry will be given.1.European Pharmacopoeia 7.0 (2011) chapter 2.6.12 and 2.6.13.2.United States Pharmacopeia XXXIV (2010) chapter and .3.Japanese Pharmacopeia 16th Edition (2011) chapter 4.05.QDV2-FGErfahrungen als EMbaRC-Stipendiat<strong>in</strong> bei der BCCM/LMG<strong>in</strong> Gent – Nutzen für das eigene Forschungsprojekt"S. WickertBeuth Hochschule für Technik Berl<strong>in</strong>, FB V "Life Sciences andTechnology", Studiengang Biotechnologie, AG Prof. Dr. ProweDas „Tra<strong>in</strong><strong>in</strong>g und Outreach Programme“ des „European Consortium ofMicrobial Resource Centres“ (EmbaRC) ermöglichte mir die Teilnahmeam Kurs: „Taxonomy, identification and typ<strong>in</strong>g of prokaryotes“ im Laborfür Mikrobiologie der „Belgian Co-ord<strong>in</strong>ated Collections of Microorganisms“(BCCM/LMG) <strong>in</strong> Gent, Belgien.Dabei handelte es sich um e<strong>in</strong> zweiwöchiges Tra<strong>in</strong><strong>in</strong>g, durch das ich e<strong>in</strong>enerweiterten E<strong>in</strong>blick <strong>in</strong> die polyphasische Taxonomie und die Anwendungspezieller Techniken zur Klassifizierung und Identifizierung von Bakterienerhielt. Diese Themen wurden im Vorfeld auf me<strong>in</strong> Projekt zugeschnittenund somit im H<strong>in</strong>blick auf Bacillus-Stämme behandelt, weil ich mich <strong>in</strong>me<strong>in</strong>em Projekt an der Beuth Hochschule für Technik <strong>in</strong> Berl<strong>in</strong> <strong>in</strong> der AGProwe mit der Entwicklung e<strong>in</strong>es Nachweises des Bacillus-Genus undgleichzeitiger Identifikation e<strong>in</strong>zelner Bacillus-Spezies mittels real-timePCR beschäftige. Dazu wurde der Zugriff auf Stämme der BCCM/LMGSammlung gewährt.Während des Programms erhielt ich e<strong>in</strong>e praktische und theoretischeVertiefung me<strong>in</strong>es Wissens zu Detektionsmethoden von Bakterien. DieseInhalte wurden im Labor durch die Kultivierung von Bacillus-Stämmenund die Identifizierung derselben mittels biochemischer Tests vermittelt.Zudem wurden verschiedene DNA Extraktionsmethoden und e<strong>in</strong>eQualitätskontrolle der Extrakte durchgeführt. Die theoretischen Inhaltewurden durch Vorlesungen zur Taxonomie und Klassifizierung vonBakterien, zu 16S rDNA Sequenz-Datenbanken und, aufgrund derprojektbezogenen Inhaltsanpassung, zur real-time PCR vertieft.Durch dieses Programm wurde der erste Kontakt zwischenWissenschaftlern beider Institutionen hergestellt und zukünftigeKooperationen werden angestrebt.Me<strong>in</strong> Dank gilt BCCM für die exzellente Organisation sowie EmbaRC fürdie F<strong>in</strong>anzierung durch den Transnational Access Grant.QDV3-FGDas Berufsfeld des Mikrobiologen <strong>in</strong> e<strong>in</strong>er Behörde –Diagnostik im Rahmen der biologischen ArbeitssicherheitA.Kolk* 1 , U. Jäckel 2 , E. Mart<strong>in</strong> 2 , J. Schäfer 2 , G. Schneider 11 Institut für Arbeitsschutz (IFA) der Deutschen GesetzlichenUnfallversicherung (DGUV), Sankt August<strong>in</strong>, Germany2 Bundesanstalt für Arbeitsschutz und Arbeitsmediz<strong>in</strong> (BAuA), Berl<strong>in</strong>,GermanyUnsere Aufgabe im Arbeitsschutz im Bereich der mikrobiologischenDiagnostik besteht vorran-gig dar<strong>in</strong>, sogenannte „BiologischeArbeitsstoffe“, worunter nach der Biostoff-Verordnung Mik-roorganismene<strong>in</strong>schließlich gentechnisch veränderter Mikroorganismen, Zellkulturenund hu-manpathogene Endoparasiten sowie auch mit transmissiblenspongiformen Enzephalopathien assoziierte Agenze<strong>in</strong> verstanden werden,<strong>in</strong> der Luft am Arbeitsplatz oder <strong>in</strong> unterschiedlichsten Materialprobennachzuweisen, ggf. ihre Konzentration zu bestimmen und die möglicheAuswir-kung ihres Vorhandense<strong>in</strong>s im Rahmen der Ausübung e<strong>in</strong>erberuflichen Tätigkeit zu beurteilen.Biostoff-Verordnung ? siehehttp://www.bmas.de/DE/Service/Gesetze/biostoffv.htmlDie Ergebnisse aus solchen Untersuchungen dienen dazu Arbeitsplätze mitBlick auf e<strong>in</strong>e mög-liche Gefährdung der Beschäftigten bei Ausübungihrer Tätigkeit durch e<strong>in</strong>e Exposition gegen-über biologischenArbeitsstoffen zu beurteilen. Das ist e<strong>in</strong>e allgeme<strong>in</strong>e Forderung derBiostoff-Verordnung, der jeder Arbeitgeber nachkommen muß, dessenBeschäftigte Tätigkeiten aus-üben, bei denen biologische Arbeitsstoffefreigesetzt werden wodurch sie direkt mit diesen <strong>in</strong> Kontakt kommenkönnen.BIOspektrum | Tagungsband <strong>2012</strong>


191Bei den verschiedenen Unfallversicherungsträgern (z. B. Unfallkassen desBundes und der Länder oder gewerbliche Berufsgenossenschaften wie dieBG RCI = Berufsgenossenschaft der chemischen Industrie) fließen unsereErgebnisse <strong>in</strong> branchenbezogene Handlungsanleitungen,Informationsschriften und Regeln e<strong>in</strong>. Mikrobiologische Untersuchungenwerden von diesen Institutionen auch durchgeführt, um denZusammenhang zwischen dem Auftreten e<strong>in</strong>er berufs-bed<strong>in</strong>gtenInfektionskrankheit oder auch allergisch oder toxisch bed<strong>in</strong>gtenAtemwegserkrankung und dem Vorhandense<strong>in</strong> von bestimmtenInfektionserregern, Allergenen oder toxisch wirkenden Substanzenmikrobiologischen Ursprungs aufzuzeigen.In verschiedenen staatlichen Gremien, wie dem Ausschuss für biologischeArbeitsstoffe (ABAS) mit se<strong>in</strong>en verschiedenen Unterausschüssen undArbeitskreisen (http://www.baua.de/de/Themen-von-A-Z/Biologische-Arbeitsstoffe/ABAS/ABAS.html), werden Ergebnisse ausmikrobiologischen Untersuchungen herangezogen um technische Re-gelnzu biologischen Arbeitsstoffen zu erstellen(http://www.baua.de/de/Themen-von-A-Z/Biologische-Arbeitsstoffe/TRBA/TRBA.html).Die Untersuchungen zur Gefährdungsbeurteilung von Beschäftigten durchExposition gegenüber biologischen Arbeitsstoffen am Arbeitsplatzerfolgen mit Hilfe e<strong>in</strong>es klassischen mikrobio-logischen Verfahrens: derAnzucht von Mikroorganismen (i. d. R. Bakterien, Hefen und Schimmelpilze)auf Nährböden und Bestimmung e<strong>in</strong>er Koloniezahl als AnzahlKolonie bildender E<strong>in</strong>-heiten, KBE bzw. englisch: colony form<strong>in</strong>g units,cfu) bezogen auf e<strong>in</strong> Aliquot des Materials, aus dem die Organismenisoliert wurden (häufig Luft, aber auch Wasser u. a. Flüssigkeiten oderunterschiedliche feste Materialien, die als Mikroorganismenquelle <strong>in</strong>Betracht kommen).Insbesondere wenn es um e<strong>in</strong>en raschen Nachweis des Vorhandense<strong>in</strong>svon Mikroorganismen überhaupt oder aber um den gezielten Nachweisausgewählter Organismen wie z. B. von Legionella pneumophila,Serogruppe 1 aus dem Befeuchterwasser e<strong>in</strong>er sogenannten Klimaan-lageoder von Mycobacterium immunogenum im Kühlschmierstoff e<strong>in</strong>esMetallfertigungsbetrie-bes geht, kommen auch modernemolekularbiologische Verfahren oder Fluoreszenzmikroskopi-scheTechniken zum E<strong>in</strong>satz.QDV4-FGFrom academia to <strong>in</strong>dustry, and back: Microbiologicalresearch to make life easier, better and more beautifulM. EgertHochschule Furtwangen University, Department of Mechanical andProcess Eng<strong>in</strong>eer<strong>in</strong>g, Vill<strong>in</strong>gen-Schwenn<strong>in</strong>gen, GermanyThe consumer goods produc<strong>in</strong>g <strong>in</strong>dustry represents an attractive employerfor microbiologist, that are <strong>in</strong>terested to use their knowledge andtechnological skills not only <strong>in</strong> the field of quality control, but also forresearch and development of novel products for very dynamic and profitorientedmarkets.The aim of this presentation is to provide some personal <strong>in</strong>sight <strong>in</strong>to thenature of the job of a microbiologist (with a strong background <strong>in</strong>molecular microbial ecology), work<strong>in</strong>g <strong>in</strong> the area of consumer goods,us<strong>in</strong>g the Henkel AG & Co. KGaA as an example. Henkel, headquartered<strong>in</strong> Düsseldorf / Germany, has about 48,000 employees worldwide andcounts among the most <strong>in</strong>ternationally aligned German-based companies<strong>in</strong> the global marketplace. The company has three globally operat<strong>in</strong>gbus<strong>in</strong>ess sectors: Laundry & Homecare, Cosmetics & Toiletries andAdhesive Technologies.Us<strong>in</strong>g selected studies from the fields of sk<strong>in</strong> microbiology [1], householdhygiene [2], and rapid methods for quality control, the talk will provide abrief overview of the diversity of factors and topics driv<strong>in</strong>gmicrobiological projects at a company like Henkel. In addition, somepersonal comments on the requirements for a successful application andsome general pros and cons of start<strong>in</strong>g a career <strong>in</strong> the consumer goodsproduc<strong>in</strong>g <strong>in</strong>dustry will be given. F<strong>in</strong>ally, the job profile of a professorwork<strong>in</strong>g at an University of Applied Sciences will be presented as a careeroption that comb<strong>in</strong>es several aspects of an <strong>in</strong>dustrial and academic career.1.M. Egert, I. Schmidt, H. Höhne, T. Lachnit, R.A. Schmitz and R. Breves. Ribosomal RNA-basedprofil<strong>in</strong>g of bacteria <strong>in</strong> the axilla of healthy males <strong>in</strong>dicates right-left asymmetry <strong>in</strong> bacterialactivity. FEMS Microbiol. Ecol. 77 (2011), p. 146-153.2.M. Egert, I. Schmidt, K. Bussey and R. Breves. A glimpse under the rim – the composition ofmicrobial biofilm communities <strong>in</strong> domestic toilets. J. Appl. Microbiol. 108 (2010), p. 1167-1174.RSV001Functional <strong>in</strong>teraction of the Escherichia coli transportersDctA and DcuB with the sensor k<strong>in</strong>ase DcuSJ. Witan*, G. UndenJohannes Gutenberg-Universität, Institut für Mikrobiologie undWe<strong>in</strong>forschung, Ma<strong>in</strong>z, GermanyEscherichia coli can use C 4-dicarboxylates as carbon and energy sourcesfor aerobic or anaerobic respiration. The two component system DcuSRactivates the transcription of dctA (succ<strong>in</strong>ate import), dcuB (fumaratesucc<strong>in</strong>ateantiport), fumB (fumarase) and frdABCD (fumarate reductase) <strong>in</strong>the presence of C 4-dicarboxylates [1]. DcuSR consists of the membrane<strong>in</strong>tegral sensor k<strong>in</strong>ase DcuS and the cytoplasmic response regulator DcuR.DcuS conta<strong>in</strong>s a periplasmic PAS doma<strong>in</strong> which responds to the presenceof C 4-dicarboxylates.DctA is the ma<strong>in</strong> transporter for the uptake of C 4-dicarboxylates underaerobic conditions. Under anaerobic conditions the DcuB transportercatalyses a fumarate/succ<strong>in</strong>ate antiport which is essential for the fumaraterespiration [1]. DctA and DcuB function as essential co-sensors of DcuS.Deletion of the carriers causes constitutive activation of DcuSR [2, 3].Overproduction of DctA under anaerobic conditions allowed it to replaceDcuB <strong>in</strong> co-sens<strong>in</strong>g, suggest<strong>in</strong>g that DcuB and DctA are functionallyequivalent <strong>in</strong> this capacity. Interaction of the <strong>in</strong>tegral membrane prote<strong>in</strong>DcuS with DctA and DcuB was analysed<strong>in</strong> vivowith a bacterial twohybridsystem based on theBordetella pertussisadenylate cyclase (BACTH)and by fluorescence resonance energy transfer (FRET). Direct <strong>in</strong>teractionof DctA and DcuB with DcuS was observed. DctA conta<strong>in</strong>s a cytosolicamphipathic helix follow<strong>in</strong>g its last transmembrane helix. Mutationalanalysis demonstrated the importance of this helix <strong>in</strong> <strong>in</strong>teractions, cosens<strong>in</strong>gand transport.1. Zientzet al.J. Bacteriol.180(1998), p. 5421-54252. Golbyet al.J. Bacteriol.181(1999), p. 1238-12483. Kleefeldet al.J. Biol. Chem.284(2009), p. 265-275RSV002YhbJ - a novel RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> functions as mediator ofsignal transduction<strong>in</strong> the hierarchically act<strong>in</strong>g GlmYZ sRNAcascadeY. Göpel* 1 , B. Reichenbach 1 , K. Papenfort 2 , C. Sharma 2 , J. Vogel 2 , B. Görke 11 Institute for Mikrobiology & Genetics, General Mikrobiology, Gött<strong>in</strong>gen,Germany2 Institute for Molecular Infection Biology, RNA Biology, Würzburg, GermanyIn Escherichia coli, expression of key enzyme glucosam<strong>in</strong>e-6-phosphatesynthase (GlmS) is feedback-regulated by two homologous sRNAs, GlmYand GlmZ, <strong>in</strong> a hierarchical manner [1,2,3,4]. GlmS catalyzes formation ofglucosam<strong>in</strong>e-6-phosphate (GlcN6P), an essential precursor for cell wallbiosynthesis. Depletion of cellular GlcN6P <strong>in</strong>duces accumulation of GlmYby a post-transcriptional mechanism [5]. GlmY counteracts process<strong>in</strong>g ofGlmZ. Exclusively unprocessed GlmZ can base-pair with the glmS 5’ UTRand activate translation. Subsequently, GlmS is synthesized and refills theGlcN6P pool <strong>in</strong> the cell. The mechanism of signal transduction fromGlmY to GlmZ <strong>in</strong>volves the novel RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> YhbJ. In mutantslack<strong>in</strong>g yhbJ process<strong>in</strong>g of GlmZ is abolished and glmS is chronicallyactivated [1,4]. Here we show that GlmZ is processed by RNase E and thatYhbJ and RNase E <strong>in</strong>teract. Furthermore, YhbJ drastically stimulates theRNase E-dependent process<strong>in</strong>g of GlmZ <strong>in</strong> vitro suggest<strong>in</strong>g that YhbJrecruits GlmZ to its process<strong>in</strong>g mach<strong>in</strong>ery. Indeed, YhbJ specifically b<strong>in</strong>dsboth sRNAs <strong>in</strong> vivo and <strong>in</strong> vitro and this b<strong>in</strong>d<strong>in</strong>g appears to be modulatedby cellular GlcN6P levels. Upon GlcN6P-starvation GlmY accumulatesand sequesters YhbJ thereby outcompet<strong>in</strong>g GlmZ. Under these conditionsGlmZ is protected from process<strong>in</strong>g and able to activate glmS expression.Our data <strong>in</strong>dicate that YhbJ could be a novel specificity factor guid<strong>in</strong>gRNase E to its substrate GlmZ.1. Kalamorz, F.et al.,2007 Mol.Microbiol. 65:1518-15332. Urban, J.H.et al.,2007 J.Mol.Biol. 373:521-5283. Reichenbach, B.et al.,2008 Nucleic Acids Res. 36:2570-25804. Urban, J.H. and J. Vogel, 2008 PLoS Biol.6:e645. Reichenbach, B., Göpel, Y. and B. Görke, 2009 Mol. Microbiol. 75:1054-1070RSV003Structural <strong>in</strong>sights <strong>in</strong>to the redox-switch mechanism of HypR, adisulfide stress-sens<strong>in</strong>g MarR/DUF24-family regulator of BacillussubtilisH. Antelmann* 1 , B.K. Chi 1 , P. Waack 2 , K. Gronau 1 , D. Becher 1 ,D. Albrecht 1 , W. H<strong>in</strong>richs 2 , R.J. Read 3 , G. Palm 21 University of Greifswald, Institute for Microbiology, Greifswald, Germany2 University of Greifswald, Institute for Biochemistry, Greifswald, Germany3 University of Cambridge, CIMR Haematology, Cambridge, United K<strong>in</strong>gdomBacillus subtilis encodes redox-sens<strong>in</strong>g MarR-type regulators belong<strong>in</strong>g tothe 1-Cys OhrR and 2-Cys DUF24-families that are conserved amongbacteria and control virulence functions <strong>in</strong> pathogens via thiol-basedredox-switches. While OhrR prote<strong>in</strong>s respond to organic hydroperoxides,the DUF24-family senses electrophiles such as diamide, qu<strong>in</strong>ones oraldehydes [1]. Here, we characterize the novel redox-sens<strong>in</strong>gMarR/DUF24-family regulator HypR (YybR) that is activated by disulfidestress caused by diamide and NaOCl <strong>in</strong> B. subtilis. HypR controlspositively a flav<strong>in</strong> oxidoreductase HypO that confers protection aga<strong>in</strong>stNaOCl stress [2]. The conserved N-term<strong>in</strong>al Cys14 residue of HypR has alower pK a of 6.4 and is essential for activation of hypO transcription bydisulfide stress. HypR resembles a 2-Cys-type regulator that is activated byCys14-Cys49' <strong>in</strong>tersubunit disulfide formation. The crystal structures ofreduced and oxidized HypR prote<strong>in</strong>s were resolved reveal<strong>in</strong>g themechanism of HypR activation. In reduced HypR a hydrogen-bond<strong>in</strong>gBIOspektrum | Tagungsband <strong>2012</strong>


192network stabilizes the reactive Cys14 thiolate that is 8-9 Å apart fromCys49'. HypR oxidation breaks these H-bonds, reorients the monomersand moves the major groove recognition alpha4 and alpha4' helices ~4 Åtowards each other. This is the first crystal structure of a redox-sens<strong>in</strong>gMarR/DUF24 family prote<strong>in</strong> <strong>in</strong> bacteria that is activated by NaOCl stress.S<strong>in</strong>ce hypochloric acid is released by activated macrophages as majordefense mechanism, related HypR-like regulators could function to protectpathogens aga<strong>in</strong>st the host immune defense.[1] Antelmann, H., and Helmann, J.D. (2011) Thiol-based redox switches and gene regulation.Antioxid Redox Signal. 14: 1049-1063. Review.[2] Palm, G., Chi, B.K., Waack, P., Gronau, K., Becher, D., Albrecht, D., H<strong>in</strong>richs, W., Read, R.J.and Antelmann, H. Structural Insights <strong>in</strong>to the redox-switch mechanism of the MarR/DUF24 familyregulator HypR. Nucleic Acid Research, In Revision.RSV004How the P II prote<strong>in</strong> from Synechococcus <strong>in</strong>tegrates metabolicwith energy signals to control its targets.O. Fok<strong>in</strong>a*, K. ForchhammerUniversity Tüb<strong>in</strong>gen, Organismic Interactions, Tüb<strong>in</strong>gen, GermanyP II signal transduction prote<strong>in</strong>s have key functions <strong>in</strong> coord<strong>in</strong>ation ofcentral metabolism by <strong>in</strong>tegrat<strong>in</strong>g signals from carbon, nitrogen andenergy status of the cell. They b<strong>in</strong>d the metabolites ATP, ADP and 2-oxoglutarate (2-OG) and control enzymes, transporters and transcriptionfactors <strong>in</strong>volved <strong>in</strong> nitrogen metabolism. Depend<strong>in</strong>g on its effectormolecule b<strong>in</strong>d<strong>in</strong>g status, P II from Synechococcus elongatus b<strong>in</strong>ds a smallprote<strong>in</strong> termed PipX, which is a co-activator of the transcription factorNtcA, and regulates the key enzyme of the cyclic ornith<strong>in</strong>e pathway, N-acetyl-L-glutamate k<strong>in</strong>ase (NAGK). P II b<strong>in</strong>ds ATP and 2-OG <strong>in</strong> asynergistic manner, with the ATP-b<strong>in</strong>d<strong>in</strong>g sites also accept<strong>in</strong>g ADP.Different ADP/ATP ratios strongly affect the properties of P II signal<strong>in</strong>g<strong>in</strong>clud<strong>in</strong>g 2-OG b<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>teractions with its target prote<strong>in</strong>s. ADPmodulates P II signal<strong>in</strong>g to the receptor NAGK primarily at low 2-OGlevels and antagonises the <strong>in</strong>hibitory effect of 2-OG for P II-PipX<strong>in</strong>teraction. Apparently P II has a f<strong>in</strong>e-tuned mechanism of sens<strong>in</strong>g bothchang<strong>in</strong>g energy charge and carbon/nitrogen balance at the same time.Fok<strong>in</strong>a O., Chellamuthu VR., Zeth K., & Forchhammer K. (2010) A novel signal transduction prote<strong>in</strong> PIIvariant from Synechococcus elongatus PCC 7942 <strong>in</strong>dicates a two-step process for NAGK-PII complexformation. J. Mol. Biol. 399:410-421.Fok<strong>in</strong>a O., Herrmann C. & Forchhammer K. (2011) Signal transduction prote<strong>in</strong> PII from Synechococcuselongatus PCC 7942 senses low adenylate energy charge <strong>in</strong> vitro. Biochem. J. 440:147-56.RSV005Post-translational modification determ<strong>in</strong>es the substratespecificity of a carboxylic acid-coenzyme A ligaseJ. Oberender*, M. BollUni Leipzig, Biochemie, Leipzig, GermanyIn anaerobic bacteria most aromatic growth substrates are converted to thecentral <strong>in</strong>termediate benzoyl-CoA. E.g., <strong>in</strong> case of benzoate and p-hydroxybenzoate degradation, the <strong>in</strong>itial steps are usually catalyzed by<strong>in</strong>dividual, highly specific carboxylic acid CoA ligases 1 . We established afirst genetic system for the obligately anaerobic model organismGeobacter metallireducens and disrupted the gene encod<strong>in</strong>g benzoate-CoAligase (bamY) as a proof of pr<strong>in</strong>ciple. This enzyme is highly specific forbenzoate as substrate 2 . Unexpectedly, a bamY - mutant was still able togrow on benzoate with a growth rate similar to that of the wild type. Inagreement, we identified a previously unknown succ<strong>in</strong>yl-CoA:benzoateCoA transferase, which obviously fully compensated for the bamYknockout. Surpris<strong>in</strong>gly, the bamY - mutant was no longer able to utilize p-hydroxybenzoate as carbon source, although isolated BamY was unable toactivate p-hydroxybenzoate. Growth on p-hydroxybenzoate was observedaga<strong>in</strong> <strong>in</strong> the presence of a plasmid express<strong>in</strong>g <strong>in</strong>tact bamY, suggest<strong>in</strong>g thatbamY is <strong>in</strong>volved <strong>in</strong> p-hydroxybenzoate catabolism. Strictly dependent onacetyl-CoA, <strong>in</strong>cubation of purified BamY with dialyzed extract of cellsgrown on p-hydroxybenzoate converted BamY to a p-hydroxybenzoate-CoA ligase. Results of MS-analysis of tryptic digests suggest that differentpatterns of N -lys<strong>in</strong>e acetylation were responsible for altered substratespecificities of BamY. Though N -acetylation of active site lys<strong>in</strong>es hasbeen reported to switch the activity of carboxylic acid CoA ligases off 3 , themodulation of substrate specificity via post-translational N -lys<strong>in</strong>eacetylation was previously known.1 Fuchs G (2008), Ann N Y Acad Sci 1125:82-992 Wischgoll et al. (2005), Mol Microbiol 58:1238-12523 Crosby et al. (2010), Mol Microbiol 76:874-888RSV006Hot signal transduction <strong>in</strong> the thermoacidophiliccreanarchaeum Sulfolobus acidocaldariusD. Esser* 1 , J. Reimann 2 , T.K. Pham 3 , S.V. Albers 2 , P.C. Wright 2 , B. Siebers 1,21 Universitiy of Duisburg-Essen, Molecular Enzyme Technology &Biochemistry, Essen, Germany2 Molecular Biology of Archaea, Max Planck Institute for TerrestrialMicrobiology, Marburg, Germany3 ChELSI Institute, Department of Chemical and Biological Eng<strong>in</strong>eeri, Sheffield,United K<strong>in</strong>gdomPosttranslational modifications are of major <strong>in</strong>terest for the regulation ofcellular processes. Reversible prote<strong>in</strong> phosphorylation is the ma<strong>in</strong>mechanism to control the functional properties of prote<strong>in</strong>s <strong>in</strong> response toenvironmental stimuli [1]. In the 80’s prote<strong>in</strong> phosphorylation has beendemonstrated <strong>in</strong> the third doma<strong>in</strong> of life, the Archaea [2]. However, so faronly few phospho(p) prote<strong>in</strong>s were identified and few prote<strong>in</strong> k<strong>in</strong>ases andprote<strong>in</strong> phosphatases were <strong>in</strong>vestigated. The archaeal phosphorylationmach<strong>in</strong>ery <strong>in</strong> general resembles more the eucaryal (Ser, Thr and Tyrphosphorylation) than the bacterial mach<strong>in</strong>ery (two- and one-componentsystems, Asp and His phosphorylation). Bio<strong>in</strong>formatic analysis revealedthat Ser, Thr and Tyr phosphorylation is ubiquitous <strong>in</strong> Archaea, whereastwo- and one-component systems are only present <strong>in</strong> the euryarchaeota(e.g. CheA/CheY <strong>in</strong> Halobacterium sal<strong>in</strong>arium) [1,3].Model organism of this study is the thermoacidophilic CreanarchaeonSulfolobus acidocaldarius, with optimal growth at 78°C and pH of 2-3 [4].Bio<strong>in</strong>formatic <strong>in</strong>vestigation revealed that S.acidocaldarius harbors twelveprote<strong>in</strong> k<strong>in</strong>ases and two prote<strong>in</strong> phosphatases [1]. N<strong>in</strong>e of the twelveidentified prote<strong>in</strong> k<strong>in</strong>ases (PK) show high sequence similarity to eukaryaltype like prote<strong>in</strong> k<strong>in</strong>ases and the rema<strong>in</strong><strong>in</strong>g three to atypical prote<strong>in</strong>k<strong>in</strong>ases. The two prote<strong>in</strong> phosphatases (PP) show similarity to prote<strong>in</strong>tyros<strong>in</strong>e phosphates (PTP) and prote<strong>in</strong> phosphatases (PPP). Furthermore,Sulfolobus species itself have an unusual high PK to PP ratio (12:2)compared to other archaea (3:1 to 1:1) [1]. First analysis of the p-proteomerevealed a high no. of p-prote<strong>in</strong>s and a high no. of p-Tyr (Ser 31.8%, Thr24.8%, Tyr 43.3%). The detected p-prote<strong>in</strong>s are found <strong>in</strong> all major arCOGcategories.In order to <strong>in</strong>vestigate signal transduction <strong>in</strong> S. acidocaldarius we clonedand characterized the PP2A catalytic subunit from S. acidocaldarius. Untilknow, all <strong>in</strong>vestigated archaeal PPPs are members of the PP1-arch [5-7]and so far no member of the PP2-arch was characterized. This is the firstdetailed characterization of an archaeal PP2A. The current understand<strong>in</strong>gof signal transduction <strong>in</strong> S. acidocaldarius with focus on the PP2A will bepresented.1. Kennelly, P.J., Biochemical Journal, 2003. 370(2): p. 373-389.2. Spudich, J.L. and W. Stoeckenius, Journal of Biological Chemistry, 1980. 255(12): p. 5501-5503.3. Rudolph, J. and D. Oesterhelt, EMBO Journal, 1995. 14(4): p. 667-673.4. Grogan, D.W., Journal of Bacteriology, 1989. 171(12): p. 6710-6719.5. Mai, B., et al., Journal of Bacteriology, 1998. 180(16): p. 4030-4035.6. Solow, B., J.C. Young, and P.J. Kennelly, Journal of Bacteriology, 1997. 179(16): p. 5072-5075.7. Leng, J., et al., Journal of Bacteriology, 1995. 177(22): p. 6510-6517.RSV007A novel LuxR-based cell-to-cell communication system <strong>in</strong> theentomopathogen Photorhabdus lum<strong>in</strong>escensI. Hitkova 1 , C. Manske 1 , S. Brameyer 1 , K. Schubert 1 , C. Harmath 1 ,S. L<strong>in</strong>nerbauer 1 , S. Joyce 2 , D. Clarke 2 , R. Heermann* 11 Ludwig-Maximilians-Universität München, Biozentrum, BereichMikrobiologie, Mart<strong>in</strong>sried/München, Germany2 University College Cork, Department of Microbiology and AlimentaryPharmabiotic Centre, Cork, Ireland, IrelandCell-to-cell communication via acyl-homoser<strong>in</strong>e lactones (AHL) is wellstudied <strong>in</strong> many Gram-negative bacteria. The prototypical communicationsystem consists of a LuxI-type auto<strong>in</strong>ducer synthase and a LuxR-typereceptor that detects the endogenously produced signal. The symbiotic andentomopathogenic enteric bacterium Photorhabdus lum<strong>in</strong>escens harbors39 LuxR-like receptors, but lacks any LuxI-type auto<strong>in</strong>ducer synthase andis unable to produce AHL. It is unclear whether P. lum<strong>in</strong>escens uses theseorphan LuxR homologues for the detection of exogenous or endogenoussignals. In this study we demonstrate that P. lum<strong>in</strong>escens does engage <strong>in</strong>endogenous LuxR-based cell-cell communication. We show that one of theLuxR homologues, Plu4562 (PluR), detects an endogenously producedsignal<strong>in</strong>g molecule (PLAI-1) that is not an AHL but, rather, a 2-pyronederivative named photopyrone. We also show that PluR positivelyregulates the expression of the plu4568-plu4563 operon, encod<strong>in</strong>g genes<strong>in</strong>volved <strong>in</strong> cell clump<strong>in</strong>g. However plu4568-plu4563 is not responsiblefor the production of PLAI-1 and the nature of the clump<strong>in</strong>g factorproduced by this operon rema<strong>in</strong>s unidentified. We also show that theLysR-type regulator HexA, which is a global repressor of symbiosis genes<strong>in</strong> P. lum<strong>in</strong>escens, represses plu4568-plu4563 expression. This suggeststhat the plu4568-plu4563 operon may be <strong>in</strong>volved <strong>in</strong> the mutualistic<strong>in</strong>teraction between P. lum<strong>in</strong>escens and the nematode. Indeed we haveshown that colonization of the symbiotic partner Heterorhabditisbacteriophora by a P. lum<strong>in</strong>escens pluR mutant does appear to beBIOspektrum | Tagungsband <strong>2012</strong>


193reduced. Summariz<strong>in</strong>g, P. lum<strong>in</strong>escens does produce a novel cell-cellsignal<strong>in</strong>g molecule, PLAI-1, that controls the expression of the plu4568-plu4563 operon <strong>in</strong> a manner that is dependent on the orphan LuxR-likeregulator, PluR.RSV008-Hydroxyketone-mediated signal transduction <strong>in</strong> LegionellapneumophilaA. Kessler*, U. Schell, C. Harrison, H. HilbiMax von Pettenkofer Institute, LMU München, München, GermanyThe causative agent of Legionnaires' disease, Legionella pneumophila, is aparasite of environmental protozoa. L. pneumophila employs a biphasiclife cycle to replicate with<strong>in</strong> and spread to new host cells. The switch fromthe replicative to the transmissive (virulent) state is coord<strong>in</strong>ated by acomplex regulatory network, <strong>in</strong>clud<strong>in</strong>g signal<strong>in</strong>g through endogenouslysynthesized small molecules (“auto<strong>in</strong>ducers”) <strong>in</strong> a process termed “quorumsens<strong>in</strong>g”. L. pneumophila produces and likely responds to -hydroxyketone signal<strong>in</strong>g molecules [1].The lqs (Legionella quorum sens<strong>in</strong>g) gene cluster harbors homologs of theVibrio cholerae cqsAS genes, i.e. lqsA and lqsS, flank<strong>in</strong>g a gene calledlqsR. The auto<strong>in</strong>ducer synthase LqsA catalyzes the production of LAI-1(Legionella auto<strong>in</strong>ducer-1, 3-hydroxypentadecan-4-one), which ispresumably recognized by the sensor k<strong>in</strong>ase LqsS, and LqsR is a novelputative response regulator that controls bacterial virulence andreplication. Functional studies and transcriptome analysis revealed thatlqsR, lqsS and lqsA regulate L. pneumophila-host cell <strong>in</strong>teractions,extracellular filaments and a genomic “fitness island” [1].Through bio<strong>in</strong>formatic analysis an “orphan” homolog of the sensor k<strong>in</strong>aselqsS was identified <strong>in</strong> the L. pneumophila genome and termed lqsT. L.pneumophila lack<strong>in</strong>g lqsT is impaired for virulence and <strong>in</strong>tracellularreplication. Biochemical studies <strong>in</strong>dicate that LqsS and LqsT are sensork<strong>in</strong>ases, which <strong>in</strong>teract with the putative response regulator LqsR. Theseresults suggest that L. pneumophila responds to -hydroxyketone signalssensed by LqsS and LqsT, which converge on LqsR. Us<strong>in</strong>g biochemical,genetic and cellular microbial approaches, the role of LqsS, LqsT andLqsR <strong>in</strong> -hydroxyketone-mediated signal transduction and generegulation is further analyzed <strong>in</strong> detail.[1] Tiaden A., Spirig, T. and Hilbi, H. (2010) Bacterial gene regulation by -hydroxyketonesignal<strong>in</strong>g. Trends Microbiol.18, 288-297.RSV009A high-frequency mutation <strong>in</strong> Bacillus subtilis: Requirements forthe decryptification of the gudB glutamate dehydrogenase geneF. Commichau*, S. Tholen, K. GunkaMicrobiology and Genetics, General Microbiology, Gött<strong>in</strong>gen, GermanyCommon laboratory stra<strong>in</strong>s of Bacillus subtilis encode two catabolicglutamate dehydrogenases, the enzymatically active prote<strong>in</strong> RocG and thecryptic enzyme GudB that is <strong>in</strong>active due to a duplication of three am<strong>in</strong>oacids <strong>in</strong> its active centre (1, 2). The <strong>in</strong>activation of the rocG gene results <strong>in</strong>poor growth of the bacteria on complex media due to the accumulation oftoxic <strong>in</strong>termediates. Therefore, rocG mutants readily acquire suppressormutations that decryptify the gudB gene. We showed that thedecryptification occurs by a precise deletion of one part of the n<strong>in</strong>e basepair direct repeat that causes the am<strong>in</strong>o acid duplication. The deletionoccurs at the extremely high rate of 10 -4 (3). This is the highest mutationrate that was observed for a specific allele <strong>in</strong> B. subtilis. Mutationsaffect<strong>in</strong>g the <strong>in</strong>tegrity of the direct repeat result <strong>in</strong> a strong reduction of themutation rate; however, the actual sequence of the repeat is not essential(3). We also demonstrated that the mutation rate of gudB is not affected bythe position of the gene on the chromosome. When the direct repeat wasplaced <strong>in</strong> the completely different context of an artificial promoter, theprecise deletion of one part of the repeat was also observed, but themutation rate was reduced by three orders of magnitude. Thus,transcription of the gudB gene seems to be essential for the high rate of theappearance of the gudB1 mutation. This idea is supported by the f<strong>in</strong>d<strong>in</strong>gthat the transcription-repair coupl<strong>in</strong>g factor Mfd is required for thedecryptification of gudB. The Mfd-mediated coupl<strong>in</strong>g of transcription tomutagenesis can be regarded as a built-<strong>in</strong> precaution that facilitates theaccumulation of mutations preferentially <strong>in</strong> transcribed genes (4).1) Belitsky and Sonenshe<strong>in</strong>, 1998. J. Bacteriol. 180: 6298-6305.2) Zeigler et al., 2008. J. Bacteriol. 190: 6983-6995.3) Gunka et al., <strong>2012</strong>. J. Bacteriol. In press.4) Ayora et al., 1996. J. Mol. Biol. 256: 301-318.RSV010The PpsR Prote<strong>in</strong> <strong>in</strong> Rhodospirillum rubrum: A majormetabolism coord<strong>in</strong>atorA. Carius*, L. Carius, H. GrammelMax Planck Institut, BMBF Nachwuchsgruppe Redoxphänomene <strong>in</strong>Purpurbakterien, Magdeburg, GermanyBe<strong>in</strong>g a facultative anoxygenic photosynthetic bacterium, Rhodospirillumrubrum is able to adapt to various environmental conditions. Especially,the availability of oxygen demands for a precise regulatory response <strong>in</strong>purple bacteria. Under anaerobic conditions anoxygenic photosynthesis isa very important energy source, but under aerobic conditions thephotosynthetic membranes (PM) can produce highly toxic reactive oxygenspecies. The switch between aerobic respiratory metabolism and anaerobicphotosynthetic metabolism is a great regulatory challenge for all purplebacteria so that many regulators are <strong>in</strong>volved and several <strong>in</strong>terest<strong>in</strong>gstrategies have evolved.In most purple bacteria, two major regulatory systems, the RegB/RegAsystem and the PpsR system control photosynthetic gene expression. Bothsystems are well <strong>in</strong>vestigated <strong>in</strong> Rhodobacter species, often compared withR. rubrum. Basically, the RegB/RegA system activates photosyntheticgene expression when oxygen concentration is low, whereas PpsRrepresses the expression under aerobic conditions.Generally, <strong>in</strong> purple bacteria, the application of semiaerobic darkconditions results <strong>in</strong> basal expression of photosynthetic genes. However,so far only observed <strong>in</strong> R. rubrum, this PM-level can be strongly <strong>in</strong>creasedby the addition of fructose or reduced glutathione to the culture medium(1). It is tempt<strong>in</strong>g to assume that both compounds provide additionalreduc<strong>in</strong>g equivalents thereby affect<strong>in</strong>g identical redox regulatorypathways. Furthermore, no homologues of RegB/RegA can be found bygene sequence analysis <strong>in</strong> R. rubrum. This suggests a more central role ofthe PpsR-homologue <strong>in</strong> this bacterium.In this work, we show that PpsR <strong>in</strong> R. rubrum is most likely an activatorprote<strong>in</strong> for the photosynthetic genes. We used PpsR from heterologousexpression <strong>in</strong> E. coli for DNA-b<strong>in</strong>d<strong>in</strong>g assays and overexpression stra<strong>in</strong>sfor the elucidation of the role of PpsR <strong>in</strong> R. rubrum. The significance ofPpsR is underl<strong>in</strong>ed by the fact that no stable deletion stra<strong>in</strong> could be created.1. Carius, A., M. Henkel, and H. Grammel. 2011. A glutathione redox effect on photosyntheticmembrane expression <strong>in</strong> Rhodospirillum rubrum. J. Bacteriol. 193(8):1893-1900.RSV011F<strong>in</strong>e-tun<strong>in</strong>g of sulfur metabolism by a peptide-cod<strong>in</strong>g sRNA <strong>in</strong>the photooxidative stress response of RhodobacterB. Berghoff*, Y. Hermanns, G. KlugJustus-Liebig-University, Microbiology and Molecular Biology, Gießen,GermanyThe photosynthetic model organism Rhodobacter sphaeroides facesphotooxidative stress due to the bacteriochlorophyll-mediated generation ofs<strong>in</strong>glet oxygen ( 1 O 2) <strong>in</strong> the light. In recent years several regulatory factors wereidentified which guide adaptation to these harmful conditions. The alternativesigma factor RpoE, which is on top of 1 O 2-dependent regulation, <strong>in</strong>ducesamongst others the 219 nt long sRNA RSs0019 (1). RSs0019 conta<strong>in</strong>s a smallORF (150 nt), which was shown to be strongly translated under 1 O 2 stress.Overexpression of RSs0019 comb<strong>in</strong>ed with microarray analysis suggested arole <strong>in</strong> f<strong>in</strong>e-tun<strong>in</strong>g of sulfur metabolism. To dist<strong>in</strong>guish between peptide- versussRNA-driven effects, an RSs0019 variant with an <strong>in</strong>ternal stop-codon wasdesigned and compared to the genu<strong>in</strong>e sRNA by real time RT-PCR. Theseexperiments both verified the microarray data and suggested RSs0019 to be abifunctional RNA. To ga<strong>in</strong> further <strong>in</strong>sights <strong>in</strong>to the regulatory mechanisms,more precisely the RNA b<strong>in</strong>d<strong>in</strong>g and potential translational effects of RSs0019,we made use of a lacZ-based <strong>in</strong> vivo reporter system for Rhodobacter. In thiscontext, mutational analyses of both RSs0019 and potential target mRNAs wereconstructed to uncover dist<strong>in</strong>ct <strong>in</strong>teractions and outputs. Our data provideevidence that RSs0019 is a riboregulator which encodes a small peptide andf<strong>in</strong>e-tunes the sulfur metabolism <strong>in</strong> Rhodobacter when sulfur stress orig<strong>in</strong>atesafter 1 O 2 generation.(1) Berghoff, B.A., Glaeser, J., Sharma, C.M., Vogel, J. and Klug, G. (2009) Photooxidative stress<strong>in</strong>ducedand abundant small RNAs <strong>in</strong>Rhodobacter sphaeroides.Mol. Microbiol., 74(6), 1497-1512.RSV012The conserved sRNA scr5239 controls DagA expression bytranslational repressionM. Vockenhuber*, B. SuessGoethe Universität Frankfurt, RNA Biochemie, Frankfurt, GermanyWe were <strong>in</strong>terested <strong>in</strong> the identification and characterization of sRNAs <strong>in</strong>Streptomyces coelicolor. To f<strong>in</strong>d such transcripts we performed deepsequenc<strong>in</strong>g of the S. coelicolor transcriptome. That way we identified 63new non-cod<strong>in</strong>g RNAs and confirmed the expression for 11 [1].One sRNA - called scr5239 - found <strong>in</strong> the sequenc<strong>in</strong>g data especiallyattracted our <strong>in</strong>terest because of its high degree of sequence and structureconservation. It is a 159 nt long sRNA with >90% conservation <strong>in</strong> 15streptomyces genomes and is constitutively expressed under mostBIOspektrum | Tagungsband <strong>2012</strong>


194conditions tested. Its 2D structure - as validated by enzymatic prob<strong>in</strong>g -consists of five <strong>in</strong>dependent stem-loops.Overexpression or knockdown of scr5239 results <strong>in</strong> dist<strong>in</strong>ct macroscopicphenotypes. The scr5239 overproduction stra<strong>in</strong> can not express the agaraseDagA and therefore cannot use agar as carbon source (Fig. 1A).Interest<strong>in</strong>gly, the level ofdagAmRNA is not <strong>in</strong>fluenced by scr5239.Nevertheless, we identified a direct and specific <strong>in</strong>teraction of the dagAmRNA with scr5239 us<strong>in</strong>g competitive gel mobility shift assays andchemical prob<strong>in</strong>g. The <strong>in</strong>teraction occurs <strong>in</strong> the cod<strong>in</strong>g region of theagarase mRNA ~ 40 nt downstream of the start codon possibly block<strong>in</strong>gtranslation [2].DagA, however, is not the only target of scr5239. Currently, we <strong>in</strong>vestigatepossible further targets of scr5239 regulation <strong>in</strong> the central metabolism ofS. coelicolor.1. Vockenhuber M-P, Sharma CM, Statt MG, Schmidt D, Xu Z, et al. (2011) Deep sequenc<strong>in</strong>gbasedidentification of small non-cod<strong>in</strong>g RNAs <strong>in</strong> Streptomyces coelicolor. RNA Biol 8.2. Vockenhuber M-P & Suess B, (2011) Streptomyces coelicolor sRNA scr5239 <strong>in</strong>hibits agaraseexpression by direct base pair<strong>in</strong>g to dagA cod<strong>in</strong>g region. Microbiology, acceptedRSV013Two hybrid histid<strong>in</strong>e k<strong>in</strong>ases utilize <strong>in</strong>ter- and <strong>in</strong>tra-prote<strong>in</strong>phosphorylation to regulate developmental progression <strong>in</strong>Myxococcus xanthusA. Schramm*, B. Lee, T. Jeganathan, P.I. HiggsMax Planck Institute Marburg, Ecophysiology, Marburg, GermanySignal transduction <strong>in</strong> bacteria is primarily mediated by histid<strong>in</strong>e-aspartate(His-Asp) phosphorelay [often termed two-component signal transduction(TCST)] prote<strong>in</strong>s. In the paradigm two-component system, the signal<strong>in</strong>gprocess is mediated by two prote<strong>in</strong>s: a histid<strong>in</strong>e prote<strong>in</strong> k<strong>in</strong>ase (HPK) anda response regulator (RR). Signal perception by the HPK leads tophosphorylation of an <strong>in</strong>variant histid<strong>in</strong>e residue, which then serves as aphosphoryl donor for the aspartic acid residue <strong>in</strong> the RR. RRphosphorylation modulates a cellular response. In addition to these simpletwo-component systems, the highly adaptable histid<strong>in</strong>e k<strong>in</strong>ase and receivermodules can be arranged <strong>in</strong>to more sophisticated signal<strong>in</strong>g systems whichprovide additional sites for regulation, and <strong>in</strong>tegration of disperse signals<strong>in</strong>to a common response. These more complex systems are favored <strong>in</strong>microorganisms with complex lifestyles.Upon nutrient limitation, Myxococcus xanthus undergoes a developmentalprocess <strong>in</strong> which the cells of the swarm<strong>in</strong>g community aggregate <strong>in</strong>tomulticellular fruit<strong>in</strong>g bodies and then differentiate <strong>in</strong>to environmentallyresistant spores. M. xanthus encodes a large repertoire of His-Aspphosphorelay prote<strong>in</strong>s, many of which are <strong>in</strong>volved <strong>in</strong> complex signal<strong>in</strong>gpathways. Several of these complex signal<strong>in</strong>g systems have been shown tobe negative regulators of developmental progression, because therespective mutants develop earlier than the wild type.In this study, we demonstrate that two orphan HyHPK, EspA and EspC,<strong>in</strong>timately function together <strong>in</strong> a s<strong>in</strong>gle signal<strong>in</strong>g system. Us<strong>in</strong>g acomb<strong>in</strong>ation of genetic, biochemical, and bio<strong>in</strong>formatic analyses, wedemonstrate that EspC’s k<strong>in</strong>ase region does not act as a phosphor donorfor the Esp system. Interest<strong>in</strong>gly however, EspA’s k<strong>in</strong>ase performs <strong>in</strong>traand<strong>in</strong>ter-molecular phosphorylation of both its own and EspC’s receiverdoma<strong>in</strong>, which together control developmental progression. Additionally,we demonstrate that the Esp system regulates developmental progressionby controll<strong>in</strong>g the proteolytic turnover of MrpC an importantdevelopmental transcription factor. We speculate that this regulateddegradation of MrpC ensures a gradual accumulation of MrpC which isnecessary for coord<strong>in</strong>ated fruit<strong>in</strong>g body formation.RSV014Studies of an Fnr-like transcriptional regulator <strong>in</strong>Gluconobacter oxydans 621HS. Schweikert*, S. Br<strong>in</strong>ger, M. BottForschungszentrum Jülich GmbH, IBG-1: Biotechnologie, Jülich, GermanyThe strictly aerobic -proteobacterium Gluconobacter oxydans is used fora wide variety of <strong>in</strong>dustrial applications such as vitam<strong>in</strong> C synthesis. Onespecial characteristic is the <strong>in</strong>complete oxidation of substrates like sugarsor sugar alcohols <strong>in</strong> the periplasm. Despite its <strong>in</strong>dustrial importance,knowledge of the metabolism of G. oxydans and its regulation, especiallyconcern<strong>in</strong>g the sugar metabolism, is still very scarce. Transcriptionalregulators participat<strong>in</strong>g <strong>in</strong> energy and redox metabolism have not beendescribed yet. In silico analysis of the genome sequence revealed 117genes from 38 different regulator families cod<strong>in</strong>g for putativetranscriptional regulators (TRs).Concern<strong>in</strong>g the genomic proximity to important genes of the carbonmetabolism or the potential function of the members of the TR repertoire,we selected candidates for further exam<strong>in</strong>ation. As a consequence of TRdeletion mutant studies we have chosen an Fnr-like regulator, GOX0974,for further characterisation. Fnr (fumarate-nitrate reduction regulator) <strong>in</strong>Escherichia coli is a switch between aerobic and anaerobic respiration.However, G. oxydans is strictly aerobic and so far no biochemistry foranaerobic respiration has been identified. With regard to these facts, adifferent function of GOX0974 is very likely that does not <strong>in</strong>volve theswitch to anoxic metabolism. The characterisation of this regulator<strong>in</strong>cluded microarray and physiological analyses of GOX0974 to identifytarget genes and phenotype. Additionally the biochemistry of this prote<strong>in</strong>was studied, such as regulator activity and spectral properties. As a result,these experiments gave evidences for a new function of an Fnr-likeprote<strong>in</strong>.The experimental studies of this regulator are the first presented of atranscriptional regulator from Gluconobacter oxydans.Prust, C., Hoffmeister, M., Liesegang, H., Wiezer, A., Fricke, W.F., Ehrenreich, A., Gottschalk, G.,Deppenmeier, U.: Complete genome sequence of the acetic acid bacterium Gluconobacteroxydans.Nat Biotechnol 2005, 23:195-200.RSV015EIIA Ntr of the nitrogen phosphotransferase system regulatesexpression of the pho regulon via <strong>in</strong>teraction with histid<strong>in</strong>ek<strong>in</strong>ase PhoR <strong>in</strong> Escherichia coliD. Lüttmann*, B. GörkeInstitut für Mikrobiologie und Genetik, Allgeme<strong>in</strong>e Mikrobiologie, Gött<strong>in</strong>gen,GermanyIn addition to the phosphotransferase system (PTS) dedicated to sugartransport, many Proteobacteria possess the paralogous PTS Ntr . In the PTS Ntrphosphoryl-groups are transferred from PEP to prote<strong>in</strong> EIIA Ntr via thephosphotransferases EI Ntr and NPr. The PTS Ntr has been implicated <strong>in</strong>regulation of diverse physiological processes <strong>in</strong> different species (1). In E.coli PTS Ntr plays a role <strong>in</strong> potassium homeostasis. In particular, EIIA Ntr<strong>in</strong>creases expression of the genes encod<strong>in</strong>g the high-aff<strong>in</strong>ity K + transporterKdpFABC. To this end, EIIA Ntr b<strong>in</strong>ds to and stimulates activity of histid<strong>in</strong>ek<strong>in</strong>ase KdpD, which <strong>in</strong> turn controls expression of kdpFABC (2). Here weshow that the genes belong<strong>in</strong>g to the phosphate (pho) regulon are likewiseregulated by PTS Ntr . The pho regulon is activated by the two-componentsystem PhoR/PhoB under conditions of phosphate starvation (3). However,maximum expression of the pho genes requires EIIA Ntr . The data reveal adirect <strong>in</strong>teraction between EIIA Ntr and PhoR that ultimately stimulatesphosphorylation of response regulator PhoB. Thus, the PTS Ntr modulatesthe activity of two central sensor histid<strong>in</strong>e k<strong>in</strong>ases by direct <strong>in</strong>teraction.(1) Pflüger-Grau und Görke, 2010 Trends Microbiol.18:205-14(2) Lüttmann et al., 2009 Mol.Microbiol.72:978-94(3) Hsieh and Wanner, 2010 Curr Op<strong>in</strong> Microbiol.13:198-203RSV016A Pseudomonas putida bioreporter stra<strong>in</strong> for the detection ofalkylqu<strong>in</strong>olone-convert<strong>in</strong>g enzymesC. Müller*, S. FetznerWestfälische Wilhelms-Universität Münster, Institut für MolekulareMikrobiologie und Biotechnologie, Münster, GermanyPseudomonas aerug<strong>in</strong>osa is an opportunistic pathogen which regulates itsvirulence via a complex quorum sens<strong>in</strong>g (QS) network. This network<strong>in</strong>corporates N-acylhomoser<strong>in</strong>e lactones as well as 2-heptyl-3-hydroxy-4(1H)-qu<strong>in</strong>olone (the Pseudomonas qu<strong>in</strong>olone signal, PQS) and 2-heptyl-4(1H)-qu<strong>in</strong>olone (HHQ). PQS and HHQ belong to the over 50 different 2-alkyl-4(1H)-qu<strong>in</strong>olone (AQ) compounds which are produced by P.aerug<strong>in</strong>osa. They differ ma<strong>in</strong>ly <strong>in</strong> the length and degree of saturation ofthe alkyl cha<strong>in</strong> and the presence or absence of a hydroxyl substituent at theC3-position [1]. Both PQS and HHQ act as the effectors of the LysR-typetranscriptional regulator PqsR and operate as auto<strong>in</strong>ducers <strong>in</strong> QS [2, 3].We constructed the bioreporter stra<strong>in</strong> P. putida KT2440 [pBBR1-pqsR-P pqsA::lacZ] which constitutively expresses the pqsR gene, whereas the lacZreporter gene is fused to the PqsR-responsive pqsA promoter. Therefore, -galactosidase activity is a function of the PqsR-stimulated transcription,which is dependent on the concentration of HHQ or PQS. The bioreporterstra<strong>in</strong> is highly sensitive for HHQ (EC 50 1.44 ± 0.23 M) and PQS (EC 500.14 ± 0.02 M).To test whether the bioreporter stra<strong>in</strong> can be used for the detection of AQdegrad<strong>in</strong>genzymes, the hod gene cod<strong>in</strong>g for 1H-3-hydroxy-4-oxoqu<strong>in</strong>ald<strong>in</strong>e 2,4-dioxygenase was expressed <strong>in</strong> the bioreporter. Hod is anenzyme <strong>in</strong>volved <strong>in</strong> the qu<strong>in</strong>ald<strong>in</strong>e (2-methylqu<strong>in</strong>ol<strong>in</strong>e) degradationpathway of Arthrobacter nitroguajacolicus Rü61a and catalyzes thecleavage of 1H-3-hydroxy-4-oxoqu<strong>in</strong>ald<strong>in</strong>e to carbon monoxide and N-acetylanthranilate. It has been shown that Hod is also active towards thestructurally related PQS, form<strong>in</strong>g carbon monoxide and N-octanoylanthranilate [4].P. putida KT2440 [pBBR1-pqsR-P pqsA::lacZ] harbor<strong>in</strong>g pME6032-hod wascultivated <strong>in</strong> the presence of different PQS concentrations. The coexpressionof hod significantly decreased the -galactosidase activity <strong>in</strong>comparison to the correspond<strong>in</strong>g control stra<strong>in</strong> which conta<strong>in</strong>ed thepME6032 vector. These results provide proof of pr<strong>in</strong>ciple that thebioreporter stra<strong>in</strong> will be useful for the screen<strong>in</strong>g of AQ-convert<strong>in</strong>genzymes.[1] Lép<strong>in</strong>e F, Milot S, Déziel E, He J, Rahme LG (2004) J. Am. Soc. Mass. Spectrom. 15:862-869[2] Wade DS, Calfee MW, Rocha ER, L<strong>in</strong>g EA, Engstrom E, Coleman JP, Pesci EC (2005) J.Bacteriol. 187:4372-4380[3] Xiao G, Déziel E, He J, Lép<strong>in</strong>e F, Lesic B, Castonguay MH, Milot S, Tampakaki AP, StachelSE, Rahme LG (2006) Mol. Microbiol. 62:1689-1699BIOspektrum | Tagungsband <strong>2012</strong>


195[4] Pustelny C, Albers A, Büldt-Karentzopoulos K, Parschat K, Chhabra SR, Cámara M, WilliamsP, Fetzner S (2009) Chem. Biol. 16:1259-1267RSP001Development of <strong>in</strong> vitro transcription system forCorynebacterium glutamicumJ. Holatko, R. Šilar, A. Rabat<strong>in</strong>ova, H. Sanderova 1 , L. Krasny, J. Nasvera,M. Patek*Institute of Microbiology, Laboratory of Molecular Genetics of Bacteria,Prague 4, Czech RepublicIn vitro transcription analysis is a powerful tool to study various aspects oftranscriptional regulation of gene expression. We have developed the first<strong>in</strong> vitro transcription system for Corynebacterium glutamicum, a producerof am<strong>in</strong>o acids used <strong>in</strong> biotechnological processes. A bacterial RNApolymerase(RNAP) holoenzyme consists of a five-subunit ( 2, , ´, )core and a dissociable sigma subunit (factor), which is responsible for therecognition of specific promoter DNA sequences. The genome of C.glutamicum codes for 7 sigma subunits of RNAP. Most of the C.glutamicum promoters driv<strong>in</strong>g transcription of housekeep<strong>in</strong>g genes arerecognized by RNAP with the primary sigma factor SigA. The primarylikefactor SigB is ma<strong>in</strong>ly <strong>in</strong>volved <strong>in</strong> transcription of genes dur<strong>in</strong>g thetransition phase between exponential and stationary growth phases. SigC,SigD, SigE, SigH and SigM of C. glutamicum are ECF (extracytoplasmicfunction) sigma factors <strong>in</strong>volved <strong>in</strong> responses to various stress conditions(e.g. heat shock, oxidative and surface stresses). To determ<strong>in</strong>e, whichsigma factors are <strong>in</strong>volved <strong>in</strong> expression of particular genes, we used thedeveloped <strong>in</strong> vitro transcription system for C. glutamicum. Thei n vitrotranscription system consists of RNAP holoenzyme reconstituted from thepurified His-tagged core RNAP and a separately isolated sigma factor.Plasmid pRLG770 constructs carry<strong>in</strong>g promoters of various classes servedas templates. Us<strong>in</strong>g the <strong>in</strong> vitro analysis, RNAP+SigA recognizedspecifically the housekeep<strong>in</strong>g promoters Pper from the C. glutamicumplasmid pGA1 and Pveg from Bacillus subtilis, whereas no transcriptionalactivity of RNAP+SigA on the SigH-dependent PdnaK promoter wasobserved. On the other hand, RNAP+SigH recognized specifically SigHdependentpromoters PdnaK and PsigB but not the housekeep<strong>in</strong>gpromoters. Efficiency of the <strong>in</strong> vitro transcription system was optimizedus<strong>in</strong>g various concentrations of RNAP and various ratios RNAP/sigmafactor. Analyses of further promoters recognized by isolated sigma factorsSigB, SigE and SigM are <strong>in</strong> progress.RSP002Identification and characterization of the LysR-typetranscriptional regulator HsdR for steroid-<strong>in</strong>ducible expression ofthe 3-Hydroxysteroid dehydrogenase/carbonyl reductase gene <strong>in</strong>Comamonas testosteroniG. Xiong*, W. Gong, E. MaserInstitute of Toxicology and Pharmacology, Kl<strong>in</strong>ikum, Uni. Kiel, Kiel, Germany3-hydroxysteroid dehydrogenase/carbonyl reductase (3-HSD/CR) fromComamonas testosteroni (C. testosteroni) is a key enzyme <strong>in</strong> steroiddegradation <strong>in</strong> soil and water. 3-HSD/CR gene (hsdA) expression can be<strong>in</strong>duced by steroids like testosterone and progesterone. Previously, wehave shown that <strong>in</strong>duction of hsdA expression by steroids is a derepressionwhere steroidal <strong>in</strong>ducers b<strong>in</strong>d to two repressors, RepA and RepB, therebyprevent<strong>in</strong>g block<strong>in</strong>g of hsdA transcription and translation, respectively. Inthe present study, a new LysR-type transcriptional factor HsdR for 3-HSD/CR expression <strong>in</strong> C. testosteroni has been identified. The hsdR genelocates 2.58 kb downstream from hsdA on the C. testosteroni ATCC 11996chromosome with an orientation opposite to hsdA. The hsdR gene wascloned and recomb<strong>in</strong>ant HsdR prote<strong>in</strong> was produced, as well as anti-HsdRpolyclonal antibodies. While heterologous transformation systems revealedthat HsdR activates the expression of hsdA gene, electrophoresis mobilityshift assays (EMSA) showed that HsdR specifically b<strong>in</strong>ds to the hsdApromoter region. Interest<strong>in</strong>gly, the activity of HsdR is dependent ondecreased repression by RepA. Furthermore, <strong>in</strong> vitro b<strong>in</strong>d<strong>in</strong>g assays<strong>in</strong>dicated that HsdR can contact with RNA polymerase. As expected, anhsdR knock-out mutant expressed low levels of 3-HSD/CR compared towild type C. testosteroni after testosterone <strong>in</strong>duction. In conclusion, HsdRis a positive transcription factor for the hsdA gene and promote <strong>in</strong>ductionof 3-HSD/CR expression <strong>in</strong> C. testosteroni.RSP003The transcriptional regulatory network of Corynebacterium jeikeiumK411 and its <strong>in</strong>teraction with fatty acid degradation pathwaysH. Barzantny*, J. Schröder, I. Brune, A. TauchUniversität Bielefeld, Center for Biotechnology, Bielefeld, GermanyCorynebacterium jeikeium is a natural resident of the human sk<strong>in</strong> and isnowadays frequently recognized as nosocomial pathogen <strong>in</strong> medicalfacilities. It causes severe <strong>in</strong>fections <strong>in</strong> immunocompromised patients andthe treatment is often complicated by the comprehensive antibioticresistance of the organism 1,2 . The most prom<strong>in</strong>ent feature of C. jeikeium isits lipophilic lifestyle orig<strong>in</strong>at<strong>in</strong>g from the lack of a fatty acid synthasegene. Fatty acids are essential build<strong>in</strong>g blocks for cellular metabolites andmembrane or mycolic acid biosynthesis, s<strong>in</strong>ce C. jeikeium is unable togrow solely on other carbon sources such as glucose or acetate 2 . Therefore,the organism encodes a large set of genes <strong>in</strong>volved <strong>in</strong> -oxidation, whereofmost enzymatic functions relevant for the degradation of fatty acids areencoded by several paralogs 2 . Additionally, C. jeikeium encodes a uniquegene cluster that is potentially l<strong>in</strong>ked to fatty acid degradation 3 .To understand the transcriptional control of the essential pathway of -oxidation, the transcriptional regulatory network of the axilla isolate C.jeikeium K411 was reconstructed from the complete genome sequence.The current network reconstruction comprises 48 transcriptional regulatorsand 674 gene-regulatory <strong>in</strong>teractions that can be assigned to five<strong>in</strong>terconnected functional modules. The analyses revealed that most genes<strong>in</strong>volved <strong>in</strong> lipid degradation are under the comb<strong>in</strong>ed control of the globalcAMP-sens<strong>in</strong>g transcriptional regulator GlxR and the LuxR-familyregulator RamA, probably reflect<strong>in</strong>g the essential role of lipid degradation<strong>in</strong> C. jeikeium.1 Funke G, von Graeventiz A, Clarridge III, JE and Bernard KA. 1997. Cl<strong>in</strong>ical microbiology of coryneformbacteria. Cl<strong>in</strong> Microbiol Rev. 10:125-1592 Tauch A, Kaiser O, Ha<strong>in</strong> T, Goesmann A, Weisshaar B, Albersmeier A, Bekel T, Bischoff N, Brune I,Chakraborty T, Kal<strong>in</strong>owski J, Meyer F, Rupp O, Schneiker S, Viehoever P and Pühler A. Complete genomesequence and analysis of the multiresistant nosocomial pathogenCorynebacterium jeikeiumK411, a lipidrequir<strong>in</strong>gbacterium of the human sk<strong>in</strong> flora. 2005. J Bacteriol. 187:4671-82.3Barzantny H, Brune I and Tauch A. Molecular basis of human body odour formation: <strong>in</strong>sights deducedfrom corynebacterial genomes. 2011. Int J Cosmet Sci. doi: 10.1111/j.1468-2494.2011.00669.x. [Epubahead of pr<strong>in</strong>t]RSP004Heterogeneity and tim<strong>in</strong>g <strong>in</strong> auto<strong>in</strong>ducer regulated processesof Vibrio harveyiC. Anetzberger*, K. JungLMU Munich, Biology I, Planegg-Mart<strong>in</strong>sried, GermanyBacteria produce and excrete signal<strong>in</strong>g molecules, so called auto<strong>in</strong>ducers(AIs), which allow them to monitor their population density and/or theirenvironment <strong>in</strong> a process best known as quorum sens<strong>in</strong>g (QS). The mar<strong>in</strong>ebacterium Vibrio harveyi uses QS to regulate pathogenicity, biofilmformation, and biolum<strong>in</strong>escence. The bacterium synthesizes and respondsto three different classes of AIs, an acyl-homoser<strong>in</strong>e lactone (HAI-1), afuranosylborate diester (AI-2) and a long-cha<strong>in</strong> ketone (CAI-1).In order to understand how s<strong>in</strong>gle cells behave with<strong>in</strong> an AI activatedcommunity, AI <strong>in</strong>duced processes were <strong>in</strong>vestigated <strong>in</strong> a homogeneousenvironment over time. Analysis of wild type s<strong>in</strong>gle cells revealed thateven at high cell densities only 70% of the cells of a population producedbiolum<strong>in</strong>escence. Moreover, fractionation of the population was found fortwo other AI controlled promoters of genes encod<strong>in</strong>g virulence factors.These results <strong>in</strong>dicate phenotypic heterogeneity of a genetic homogeneouspopulation. An artificial <strong>in</strong>crease of the AI concentrations <strong>in</strong> the wild typeresulted <strong>in</strong> an all-bright population similarly to a luxO deletion mutant,which is AI <strong>in</strong>dependent. The capability of this mutant to produce biofilmwas significantly reduced. These data suggest that the non-differentiat<strong>in</strong>gbacterium V. harveyi takes advantage of division of labor.In addition, results are provided for the temporal variation of theextracellular AI concentrations over time. AI concentrations and QSregulated functions of V. harveyi were monitored simultaneously <strong>in</strong> agrow<strong>in</strong>g culture. In the early exponential growth phase only AI-2 wasdetectable and biolum<strong>in</strong>escence was <strong>in</strong>duced. In the exponential growthphase both HAI-1 and AI-2 reached their maximum values,biolum<strong>in</strong>escence further <strong>in</strong>creased and exoproteolytic activity was<strong>in</strong>duced. In the stationary growth phase HAI-1 and AI-2 were adjusted toequal concentrations, exoproteolytic activity reached its maximum, andCAI-1 was detectable. Furthermore, formation of a stable and maturebiofilm was dependent on a correct tim<strong>in</strong>g of HAI-1 and AI-2concentrations. Our results demonstrate that not the cell density per se isimportant, but that AIs rather control the development of a V. harveyipopulation.RSP005Role of the small RNA RSs2430 <strong>in</strong> the regulation ofphotosynthesis genes <strong>in</strong> Rhodobacter sphaeroidesN. Mank*, B. Berghoff, Y. Hermanns, G. KlugInstitut f. Mikro- und Molekularbiologie, Klug, Gießen, GermanySmall RNAs (sRNAs) play a regulatory role <strong>in</strong> the adaptation of variousbacteria to chang<strong>in</strong>g environmental conditions. The identification ofsRNAs, us<strong>in</strong>g RNA-seq based on 454 pyrosequenc<strong>in</strong>g, <strong>in</strong> the phototrophicbacterium Rhodobacter sphaeroides (1) was of major <strong>in</strong>terest because ofits high metabolic versatility. In particular, synthesis of the photosyntheticapparatus is regulated <strong>in</strong> an oxygen- and light-dependent manner. In aphysiological screen the sRNA RSs2430 was also found to be <strong>in</strong>fluencedby the oxygen tension. Induction of RSs2430 depends on the PrrB/PrrAsystem, which is a major regulatory system for redox control ofphotosynthesis genes. Here we present how overexpression and knockBIOspektrum | Tagungsband <strong>2012</strong>


196down of RSs2430 <strong>in</strong>fluences the expression of photosynthesis genes <strong>in</strong>Rhodobacter sphaeroides.Northern blots showed that RSs2430 is processed, whereby different3’ends are generated. The different 3’ends were identified by 3’RACE.Interest<strong>in</strong>gly, only the processed RSs2430-fragments, not the primarytranscript, were enriched <strong>in</strong> the overexpression stra<strong>in</strong>. By us<strong>in</strong>g real timeRT-PCR and microarray analyses we showed that overexpression ofRSs2430 results <strong>in</strong> a decreased expression of photosynthesis genes.To study the <strong>in</strong>teraction of RSs2430 and its target mRNAs, a lacZ based <strong>in</strong>vivo reporter system was used. We observed specific translation repressionof a light-<strong>in</strong>dependent protochlorophyllide reductase subunit N (bchN)under high and low oxygen growth conditions.1. Berghoff, B.A., Glaeser, J., Sharma, C.M., Vogel, J. and Klug, G. (2009) Photooxidative stress<strong>in</strong>ducedand abundant small RNAs <strong>in</strong> Rhodobacter sphaeroides. Mol. Microbiol.,74(6), 1497-512.RSP006Exam<strong>in</strong>ation of a tim<strong>in</strong>g mechanism <strong>in</strong> Rhodobacter sphaeroidesY. Hermanns* 1 , N. Schürgers 2 , K. Haberzettl 1 , A. Wilde 2 , G. Klug 11 Institut f. Mikro- und Molekularbiologie, Klug, Giessen, Germany2 Institut f. Mikro- und Molekularbiologie, Wilde, Giessen, GermanyTim<strong>in</strong>g mechanisms are known for over 250 years <strong>in</strong> eukaryotes. Untilnow amongst prokaryotes only cyanobacteria could be shown to possess asystem to measure time. In Synechococcus elongatus a circadian clockbuilds upon an oscillator of three prote<strong>in</strong>s, KaiA, KaiB and KaiC. Aphosphorylation of KaiC <strong>in</strong> a circadian manner could be shown <strong>in</strong> vitro[1]. All three prote<strong>in</strong>s are essential for clock function. Accord<strong>in</strong>gly, mostcyanobacteria possess at least one copy of each gene. An exception is themar<strong>in</strong>e cyanobacterium Prochlorococcus mar<strong>in</strong>us, which has suffered astepwise deletion of the kaiA gene [2] but reta<strong>in</strong>s a 24 hour rhythm <strong>in</strong>DNA replication, which is strongly synchronized by alternation of day andnight cycles. Surpris<strong>in</strong>gly, the facultative phototrophic proteobacteriumRhodobacter sphaeroides possesses a cluster of kaiBC genes similar toProchlorococcus. Therefore it has been hypothesized that R. sphaeroidesmay exhibit a rhythmic behavior <strong>in</strong> gene expression. Such a rhythm hasbeen reported earlier via a luciferase reporter gene system [3]. Bymicroarray analysis, we were able to show a decrease <strong>in</strong> the expression ofphotosynthesis genes <strong>in</strong> a cont<strong>in</strong>uously grow<strong>in</strong>g R. sphaeroides cultureafter 12 hours of illum<strong>in</strong>ation with white light. Preveniently this culturehad been put under a 12 hour light/dark rhythm for two days. This datasuggests an adaptation to a return<strong>in</strong>g environmental cycle and theexistence of a functional tim<strong>in</strong>g mechanism <strong>in</strong> purple photosyntheticbacteria. Furthermore, by an <strong>in</strong> vitro phosphorylation assay an autok<strong>in</strong>aseactivity for RspKaiC could be shown which is not altered by the presenceof RspKaiB. Future results may shed some light on the existence andevolution of clock systems and circadian rhythms <strong>in</strong> prokaryotes other thancyanobacteria.[1] M. Nakajima, Science.(2005),308, 414-415. [2] J. Holtzendorff, Journal of BiologicalRhythms(2008),23, 187-199. [3] H. M<strong>in</strong>, FEBS letters.(2005),579808-812.RSP007Role of the Irr prote<strong>in</strong> <strong>in</strong> the regulation of iron metabolism <strong>in</strong>Rhodobacter sphaeroidesB. Remes*, V. Peuser, G. KlugInstitut für Mikro- und Molekularbiologie, AG Klug, Gießen, GermanyIron is an essential element for all liv<strong>in</strong>g organisms. However, s<strong>in</strong>ce ironpotentiates oxygen toxicity by the production of hydroxyl radicals <strong>in</strong> theFenton reaction, life <strong>in</strong> the presence of oxygen requires a strict regulationof iron metabolism.The Fur family of prote<strong>in</strong>s are well analyzed prote<strong>in</strong>s that regulatetranscription of genes <strong>in</strong> response to iron availability <strong>in</strong> bacteria (1). Inalpha-proteobacteria little is known about the iron mediated generegulation. The available experimental data suggest that iron regulationma<strong>in</strong>ly occurs by regulators different from Fur (2). The Irr (iron responseregulator) prote<strong>in</strong> and its orthologues form a dist<strong>in</strong>ct sub-branch of the Fursuperfamily but occur only <strong>in</strong> members of the Rhizobiales andRhodobacterales and few other genera. Most iron-dependent genes <strong>in</strong>alpha-proteobacteria are regulated positively or negatively by Irr (3). Athigh iron concentration Irr is degraded. ROS seem to promote thisdegradation <strong>in</strong>dicat<strong>in</strong>g another l<strong>in</strong>k between iron metabolism and oxidativestress (4). We studied the role of the Irr homologue RSP_3179 <strong>in</strong> thephotosynthetic alpha-proteobacterium Rhodobacter sphaeroides.While Irr had little effect on growth under iron-limit<strong>in</strong>g or non-limit<strong>in</strong>gconditions its deletion resulted <strong>in</strong> <strong>in</strong>creased resistance to hydrogenperoxide and s<strong>in</strong>glet oxygen. This correlates with an elevated expression ofkatE for catalase <strong>in</strong> the Irr mutant compared to the wild type under nonstressconditions. Transcriptome studies revealed that Irr strongly affectsthe expression of genes for iron metabolism, but also has some <strong>in</strong>fluenceon genes <strong>in</strong>volved <strong>in</strong> stress responses, citric acid cycle, oxidativephosphorylation, transport, and photosynthesis. Most genes showed higherexpression levels <strong>in</strong> the wild type than <strong>in</strong> the mutant under normal growthconditions <strong>in</strong>dicat<strong>in</strong>g an activator function of Irr. Irr was however notrequired to activate genes of the iron metabolism <strong>in</strong> response to ironlimitation. This was also true for genes mbfA and ccpA, which wereverified as direct targets of Irr.1. Hantke, K. (2001) Iron and metal regulation <strong>in</strong> bacteria. Curr Op<strong>in</strong> Microbiol 4: 172-177.2. Johnston, A.W., Todd, J.D., Curson, A.R., Lei, S., Nikolaidou-Katsaridou, N., Gelfand, M.S., andRodionov, D.A. (2007) Liv<strong>in</strong>g without Fur: the subtlety and complexity of iron-responsive gene regulation<strong>in</strong> the symbiotic bacterium Rhizobium and other alpha-proteobacteria. Biometals 20: 501-511.3. Rudolph G, Sem<strong>in</strong>i G, Hauser F, L<strong>in</strong>demann A, Friberg M, et al. (2006) The Iron control element, act<strong>in</strong>g<strong>in</strong> positive and negative control of iron-regulated Bradyrhizobium japonicum genes, is a target for the Irrprote<strong>in</strong>. J Bacteriol 188: 733-744.4. Yang, J., Panek, H.R., and O'Brian, M.R. (2006a) Oxidative stress promotes degradation of the Irr prote<strong>in</strong>to regulate haem biosynthesis <strong>in</strong> Bradyrhizobium japonicum. Mol Microbiol 60: 209-218.RSP008Anaerobic toluene metabolism: First evidences for twosubtypes of benzylsucc<strong>in</strong>ate synthaseS. Kümmel* 1 , K. Kuntze 2 , C. Vogt 1 , M. Boll 2 , H.-H. Richnow 11 Helmholtz Centre for environmental research - UfZ, Isotope Biogeochemistry,Leipzig, Germany2 Universität Leipzig, Institut für Biochemie, Leipzig, GermanyThe aromatic hydrocarbon toluene can be degraded <strong>in</strong> the absence ofoxygen by various facultative or obligate anaerobic bacteria us<strong>in</strong>g nitrate,sulphate or Fe(III) as term<strong>in</strong>al electron acceptor. In all tested stra<strong>in</strong>s so far,toluene is activated by an addition reaction of the toluene methyl group tothe double bond of fumarate to form benzylsucc<strong>in</strong>ate. This reaction iscatalyzed by the benzylsucc<strong>in</strong>ate synthase (Bss), which is a member of theglycyl radical family of enzymes. Even if the overall reaction, catalysed bythe Bss, is <strong>in</strong> all tested stra<strong>in</strong>s the same, the alignment of available Bssgene sequences reveals that they slightly differ. This result leads to apossibility to dist<strong>in</strong>guish between several Bss isoenzymes on a geneticlevel.In previous <strong>in</strong> vivo studies, data from two dimensional compound specificstable isotope analyses (2D-CSIA) <strong>in</strong>dicated that the reaction mechanismof Bss subtypes <strong>in</strong> facultative and obligate anaerobes may differ. To testwhether the observed isotope fractionation effects are directly due to theBss reaction mechanisms, <strong>in</strong> vitro assays were performed us<strong>in</strong>g cell-freeextracts of different facultative and obligate anaerobic toluene degraders.In addition, the enzymatically mediated exchange of hydrogen atomsbetween toluene and the solvent was <strong>in</strong>vestigated. The results of bothapproaches confirmed the hypothesis that at least two mechanisticallydifferent subtypes of Bss exist: one occurr<strong>in</strong>g <strong>in</strong> facultative anaerobes andone occurr<strong>in</strong>g <strong>in</strong> obligate anaerobes. Thus, 2D-CSIA may allowspecifically detect<strong>in</strong>g toluene degradation by facultative or obligateanaerobes at contam<strong>in</strong>ated field sites.RSP009Characterization of AHL-lactonases and their <strong>in</strong>fluence on thequorum sens<strong>in</strong>g system of Vibrio harveyiM. Reiger*, C. Anetzberger, K. JungBiozentrum LMU München, Biologie I, Mikrobiologie, Planegg-Mart<strong>in</strong>sried, GermanyBacteria use signal<strong>in</strong>g molecules, so called auto<strong>in</strong>ducers (AIs) tocommunicate and to monitor their environment. The mar<strong>in</strong>e -proteobacterium Vibrio harveyi uses three different classes of AIs forcommunication, HAI-1, a N-(3-hydroxybutyryl)-D-homoser<strong>in</strong>e lactone(AHL), AI-2, a furanosylborate diester and CAI-1, a (Z)-3-am<strong>in</strong>oundec-2-en-4-on. Thereby type III secretion, siderophore production, exoproteolyticactivity, biofilm formation, and biolum<strong>in</strong>escence are regulated.Heterogeneous behavior of the wild type population with respect tobiolum<strong>in</strong>escence was shown before (Anetzberger et al., 2009). Theaddition of an excess of exogenous AIs resulted <strong>in</strong> a homogeneouspopulation. It is suggested that the population is able to tightly control theextracellular AI concentrations. V. harveyi has five genes encod<strong>in</strong>gputative lactonases.The putative lactonase VIBHAR_02708, which is highly conserved amongVibrio species, was purified and characterized. UPLC coupled MS analysisof the HAI-1 cleavage products confirmed that VIBHAR_02708 is a lactonase.Subsequently, the correspond<strong>in</strong>g deletion mutant was constructed andcharacterized. The HAI-1 concentration <strong>in</strong> the culture fluid was about 30%higher <strong>in</strong> the VIBHAR_02708 mutant than <strong>in</strong> the wild type. These dataclearly show an <strong>in</strong>fluence of the lactonase VIBHAR_02708 on the QS systemof V. harveyi via the adjustment of the HAI-1 concentration.Anetzberger, C., Pirch, T. and Jung, K. (2009), Heterogeneity <strong>in</strong> quorum sens<strong>in</strong>g-regulatedbiolum<strong>in</strong>escence of Vibrio harveyi. Molecular Microbiology, 73: 267-277.RSP010Targeted proteome analysis of Corynebacterium glutamicumR. Voges*, B. Kle<strong>in</strong>, M. Oldiges, W. Wiechert, S. NoackFZ Juelich, IBG1:Biotechnology, Juelich, GermanyThe Gram positive soil bacterium C. glutamicum is a widely used hostorganism <strong>in</strong> <strong>in</strong>dustrial biotechnology [1]. Ma<strong>in</strong> products are the am<strong>in</strong>oacids L-glutamate, L-lys<strong>in</strong>e and L-threon<strong>in</strong>e. New desired products <strong>in</strong>cludebuild<strong>in</strong>g blocks for chemical <strong>in</strong>dustry, biofuels and heterologous prote<strong>in</strong>s.BIOspektrum | Tagungsband <strong>2012</strong>


197Through <strong>in</strong>tensive <strong>in</strong>vestigations aim<strong>in</strong>g at <strong>in</strong>creased production, C.glutamicum has become a model organism for systems biology as well [2].We will present a targeted approach for direct quantification of keyenzymes from the central carbon metabolism <strong>in</strong> C. glutamicum rawextracts by high performance liquid chromatography coupled tandem massspectrometry [LC-MS/MS, 3]. Focus<strong>in</strong>g on glycolysis, TCA, anaplerosisand glyoxylate shunt our method provides a quantitative overview of theenzymes build<strong>in</strong>g the core metabolic pathways <strong>in</strong> C. glutamicum. Ametabolic label<strong>in</strong>g strategy with the stable nitrogen isotope 15 N is used toovercome measurement errors orig<strong>in</strong>at<strong>in</strong>g from sample handl<strong>in</strong>g and trypticdigestion of prote<strong>in</strong> extracts by isotope dilution mass spectrometry [IDMS, 4].Sampl<strong>in</strong>g batch cultivations of C. glutamicum <strong>in</strong> microtiter plates, ourstudy comprises proteome adaptations to different growth phases andalternative carbon sources. Results show massive reconstitutions of prote<strong>in</strong>levels well agree<strong>in</strong>g to known changes of metabolic fluxes. Furthermore,we conducted time resolved measurements of prote<strong>in</strong> expression aftermetabolic switch from glycolytic to gluconeogenetic carbon sources under<strong>in</strong>dustrial relevant conditions <strong>in</strong> stirred tank reactors. Significant changes<strong>in</strong> prote<strong>in</strong> levels could be detected with<strong>in</strong> 15 m<strong>in</strong> after substrate pulse.In conclusion we will present a rapid and reliable methodology forquantitative analysis of prote<strong>in</strong> expression and dynamics provid<strong>in</strong>g new<strong>in</strong>sights <strong>in</strong>to metabolic regulation of C. glutamicum.[1] Eggel<strong>in</strong>g, L., Bott, M.,Handbook of Corynebacterium glutamicum, Academic Press, Inc., BocaRaton, FL 2005.[2] Wendisch, V. F., Bott, M., Kal<strong>in</strong>owski, J., Oldiges, M., Wiechert, W., Emerg<strong>in</strong>gCorynebacterium glutamicum systems biology. J Biotechnol 2006, 124, 74-92.[3] Lange, V., Picotti, P., Domon, B., Aebersold, R., Selected reaction monitor<strong>in</strong>g for quantitativeproteomics: a tutorial. Mol Syst Biol 2008, 4, 222.[4] Mayya, V., K Han, D., Proteomic applications of prote<strong>in</strong> quantification by isotope-dilution massspectrometry. Expert Rev Proteomics 2006, 3, 597-610.RSP011Unusual reactions <strong>in</strong>volved <strong>in</strong> cyclohexanecarboxylate formationdur<strong>in</strong>g crotonate fermentation <strong>in</strong> Syntrophus aciditrophicusL. Ebelt* 1 , J.W. Kung 1 , A. Schmidt 2 , M. Boll 11 Universität Leipzig, Institut für Biochemie, Leipzig, Germany2 Universität Konstanz, Dept für Biologie - Mikrobielle Ökologie,Konstanz, GermanyThe obligately anaerobic Deltaproteobacterium Syntrophus aciditrophicuscan feed on crotonate as its sole carbon and electron source without asyntrophic partner. The ma<strong>in</strong> products of the fermentation pathway areacetate and cyclohexanecarboxylate [1]. The reduc<strong>in</strong>g equivalents formeddur<strong>in</strong>g crotonate oxidation to acetate are recycled by concomitantreduction of crotonate <strong>in</strong> reverse -oxidation-like reactions of the benzoyl-CoA degradation pathway. The transiently formed benzoyl-CoA isbelieved to serve as electron acceptor for recycl<strong>in</strong>g redox equivalentsyield<strong>in</strong>g six-electron reduced cyclohexanecarboxyl-CoA. We demonstratethat disproportionation reactions of cyclohexa-1,5-diene-1-carboxyl-CoA(1,5-dienoyl-CoA) and cyclohex-1-ene-1-carboxyl-CoA (1-monoenoyl-CoA) are <strong>in</strong>volved <strong>in</strong> benzoyl-CoA and cyclohexanecarboxyl-CoAformation. These reactions are most likely catalyzed by tungstenconta<strong>in</strong><strong>in</strong>g class II benzoyl-CoA reductases [2]. The cyclohexanecarboxyl-CoA is converted <strong>in</strong>to the end product cyclohexanecarboxylate by athioesterase or a CoA transferase. The endergonic reductivedearomatization of benzoyl-CoA to 1,5-dienoyl-CoA by NADH (G°’ =+58 kJ mol -1 ) can be expla<strong>in</strong>ed by an electron bifurcation mechanism. Wepropose that this reaction is driven by the concomitant reduction of 1,5-dienoyl-CoA to 1-monoenoyl-CoA and/or 1-monoenoyl-CoA tocyclohexanecarboxyl-CoA by NADH to (G°’ < -50 kJ mol-1).[1] Mouttaki, H. et al (2008): Use of benzoate as an electron acceptor bySyntrophusaciditrophicusgrown <strong>in</strong> pure culture with crotonate. Env Microbiol 10(12):3265-3274.[2] Kung, J.W. et al (2010): Reversible Biological Birch Reduction at an Extremely Low RedoxPotential. Proc Nat Acad Sci 132:9850-9856.RSP012Mutational analysis of the transcriptional regulator AlsR ofBacillus subtilisC. Frädrich*, E. HärtigTU Braunschweig, Mikrobiologie, Braunschweig, GermanyAceto<strong>in</strong> formation <strong>in</strong> Bacillus subtilis requires acetolactate synthase and -decarboxylase encoded by the alsSD operon. The alsSD expression isactivated <strong>in</strong> response to fermentative growth conditions, addition ofacetate, low pH <strong>in</strong> the growth medium and aerobic stationary growth. Thetranscriptional regulator AlsR is essential for alsS-lacZ reporter geneexpression under all growth conditions tested. The AlsR regulator is amember of the LysR-type transcriptional regulators (LTTR) and composedof two doma<strong>in</strong>s: an N-term<strong>in</strong>al DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> with a w<strong>in</strong>ged HTHmotif and a C-term<strong>in</strong>al regulatory doma<strong>in</strong> which is <strong>in</strong>volved <strong>in</strong> co-<strong>in</strong>ducerb<strong>in</strong>d<strong>in</strong>g and oligomerization.To identify functional relevant am<strong>in</strong>o acid residues for effector-b<strong>in</strong>d<strong>in</strong>gand oligomerization we mutagenized the alsR gene <strong>in</strong> the C-term<strong>in</strong>alregulatory doma<strong>in</strong> and tested the activity of the produced AlsR mutantprote<strong>in</strong>s <strong>in</strong> an <strong>in</strong> vivo complementation system. Here, mutated alsR geneswere <strong>in</strong>tegrated <strong>in</strong>to the amyE locus of a B. subtilis alsR knock out mutantstra<strong>in</strong> and expressed under the control of the xylose-<strong>in</strong>ducible xylApromoter. AlsR activity was monitored by ß-galactosidase activitiesderived from an AlsR-dependent alsS-lacZ reporter gene fusion. SeveralAlsR mutants tested showed reduced alsS-lacZ expression <strong>in</strong> vivo.In addition, we produced and purified the AlsR mutant prote<strong>in</strong>s asTrx/Strep-AlsR fusion prote<strong>in</strong>s and after cleavage with the HRV-3Cprotease we f<strong>in</strong>ally obta<strong>in</strong>ed pure AlsR prote<strong>in</strong>. We analyzed the <strong>in</strong> vitrob<strong>in</strong>d<strong>in</strong>g ability by EMSA analyses and performed <strong>in</strong> vitro transcriptionstudies with the purified AlsR mutant prote<strong>in</strong>s. The am<strong>in</strong>o acid exchangefrom ser<strong>in</strong>e at position 100 of AlsR to alan<strong>in</strong>e <strong>in</strong>activated the AlsR prote<strong>in</strong>for transcriptional activation <strong>in</strong> vivo and <strong>in</strong> vitro. Compared to the wildtype prote<strong>in</strong>, the AlsRS100A mutant prote<strong>in</strong> has a defect <strong>in</strong> DNA-prote<strong>in</strong>complex formation. Whereas, wild type AlsR formed 3 different migrat<strong>in</strong>gcomplexes, AlsRS100A is no longer able to form the slowest migrat<strong>in</strong>gcomplex III <strong>in</strong> EMSA analyses. Therefore, we deduced complex III as thetranscriptional active form. A model of transcriptional active complexformation of AlsR is given.RSP013Interconnectivity between two histid<strong>in</strong>e k<strong>in</strong>ase / responseregulator systems <strong>in</strong> Escherichia coliS. Behr*, L. Fried, T. Kraxenberger, K. JungLudwig-Maximilians-Universität, Biology I - Microbiology, München, GermanyBacteria use two-component systems (TCSs) to encounter fluctuat<strong>in</strong>genvironmental conditions. A membrane-bound histid<strong>in</strong>e k<strong>in</strong>ase (HK)senses a stimulus and transduces it <strong>in</strong>to a cellular signal viaphosphorylation. The transfer of this phosphoryl group to a responseregulator (RR) with DNA-b<strong>in</strong>d<strong>in</strong>g properties mediates the <strong>in</strong>ert reaction,generally an alteration <strong>in</strong> gene expression (1). Based on the limited numberof TCSs <strong>in</strong> Escherichia coli (30/32 HK/RR) it is necessary to coord<strong>in</strong>atecellular adaptions <strong>in</strong> order to respond to a multitude of environmentalsignals. To this end many so called auxiliary prote<strong>in</strong>s have been describedrecently (2). These prote<strong>in</strong>s can be <strong>in</strong>volved <strong>in</strong> sens<strong>in</strong>g, scaffold<strong>in</strong>g orconnect<strong>in</strong>g TCSs and evolved to an emerg<strong>in</strong>g field of bacterial signaltransduction.Although many TCSs <strong>in</strong> Escherichia coli are well characterized, theYehU/YehT and YpdA/YpdB TCSs are largely unknown. Both belong tothe group of LytS/LytR-like TCSs compris<strong>in</strong>g of a HK with GAF-doma<strong>in</strong>and a RR with LytTR-DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. Based on bio<strong>in</strong>formaticaldata these two TCSs share an am<strong>in</strong>o acid identity of more than 30%. Theyare wide-spread and co-occure <strong>in</strong> many -proteobacteria (3).The characterization of the YehU/YehT and the YpdA/YpdB systemsrevealed reversed transcriptional effects on target genes. Us<strong>in</strong>g thebacterial adenylate cyclase-based two-hybrid system YehS was uncoveredas hub connect<strong>in</strong>g the two TCSs via prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teractions. Surfaceplasmon resonance measurements with purified YehS and the RRsconfirmed the <strong>in</strong>teractions and suggest an <strong>in</strong>terconnectivity betweenYehU/YehT and YpdA/YpdB.1) Stock et al. (2000): Two-component signal transduction. Annu Rev Biochem 69:183-2152) Jung et al. (2011): Histid<strong>in</strong>e k<strong>in</strong>ases and response regulators <strong>in</strong> networks. Curr. Op<strong>in</strong>. Microbiol. In press3) Szklarczyk et al. (2011): The STRING database <strong>in</strong> 2011: functional <strong>in</strong>teraction networks of prote<strong>in</strong>s,globally <strong>in</strong>tegrated and scored. Nucleic Acids Res.39:561-568RSP014Identification of Mar<strong>in</strong>obacter adhaerens HP15 genes required forthe <strong>in</strong>teraction with the diatom Thalassosira weissflogii by In vivoexpression technologyI. Torres-Monroy*, M. UllrichJacobs University Bremen, Molecular Life Science Research Center,Bremen, GermanyAggregate formation by liv<strong>in</strong>g cells and organic matter <strong>in</strong> the ocean is animportant mechanism that mediates s<strong>in</strong>k<strong>in</strong>g of organic carbon. Diatombacteria<strong>in</strong>teractions play an important role dur<strong>in</strong>g this process by <strong>in</strong>duc<strong>in</strong>gsecretion of different extra-cellular polysaccharides, which <strong>in</strong>crease thesize of mar<strong>in</strong>e aggregates. To study cell-to-cell diatom-bacteria<strong>in</strong>teractions, a bilateral<strong>in</strong> vitromodel system has been establishedconsist<strong>in</strong>g of the diatom Thalassosira weissflogii and the mar<strong>in</strong>e bacteriumMar<strong>in</strong>obacter adhaerens HP15. The bacterium was previously shown tospecifically attach to T. weissflogii cells, to <strong>in</strong>duce transparentexopolymeric particle formation, and to <strong>in</strong>crease aggregation. In addition,it has been shown that M. adhaerens HP15 is genetically accessible, itsgenome has been sequenced, and several bacterial genes potentiallyimportant dur<strong>in</strong>g the <strong>in</strong>teraction are currently be<strong>in</strong>g <strong>in</strong>vestigated. However,genes specifically expressed<strong>in</strong> vivoare still unknown. The aim of this workwas to establish anIn Vivo Expression Technology (IVET) screen<strong>in</strong>g toidentify bacterial genes specifically <strong>in</strong>duced when M. adhaerens HP15<strong>in</strong>teracts with T. weissflogii. The IVET vector was constructed by clon<strong>in</strong>gthe full-size promoterlesslacZ gene downstream of a promoterless pyrBgene, which encodes an essential growth factor fundamental forpyrimid<strong>in</strong>es biosynthesis. A site-directed mutagenesis approach was usedto generate apyrB-deficient mutant <strong>in</strong> M. adhaerens HP15. This mutantwas unable to grow <strong>in</strong> the absence of uracil and <strong>in</strong> presence of the diatom,BIOspektrum | Tagungsband <strong>2012</strong>


198demonstrat<strong>in</strong>g its suitability as a selection marker. The <strong>in</strong>troduction of afunctional promoter of M. adhaerens HP15 <strong>in</strong>to the IVET vector and itssubsequent transformation <strong>in</strong>topyrB-deficient mutant allowed itscomplementation. Transformants express<strong>in</strong>g the pyrB gene and lacZ grew<strong>in</strong> absence of uracil <strong>in</strong>dicat<strong>in</strong>g that the system wass functional. Thestandardization of the IVET screen<strong>in</strong>g is currently be<strong>in</strong>g tested. Promis<strong>in</strong>ggenes obta<strong>in</strong>ed will be cloned, mutagenized, and characterized <strong>in</strong> terms oftheir role <strong>in</strong> diatom-bacteria <strong>in</strong>teraction. Results of this study willcontribute to a better understand<strong>in</strong>g of the molecular mechanisms ofdiatom-bacteria <strong>in</strong>teractions.RSP015Functional analyses of small RNAs <strong>in</strong> Agrobacterium tumefaciensA. Overlöper* 1 , P. Möller 1 , B. Voss 1,2 , W. Hess 2 , C. Sharma 3 , F. Narberhaus 11 Ruhr-University, Biology of Microorganisms, Bochum, Germany 2 Institute ofBiology III, University Freiburg, Freiburg, Germany3 Institute for Molecular Infection Biology, University Würzburg, Würzburg,GermanyOver the last decade, sRNAs have been recognized as widespreadregulators of gene expression <strong>in</strong> bacteria (1). The largest and mostextensively studied set of sRNAs act through base pair<strong>in</strong>g with targetRNAs, usually modulat<strong>in</strong>g the translation and stability of mRNAs (2).Us<strong>in</strong>g a comparative bio<strong>in</strong>formatic approach (3) we identified diversesRNAs <strong>in</strong> the plant pathogen Agrobacterium tumefaciens. One sRNA,called AbcR1, controls the expression of at least three ABC transportersamong them the periplasmic b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> of the GABA transporter. It isthe first described bacterial sRNA that controls uptake of a plant-generatedsignal<strong>in</strong>g molecule (4). The molecular details of the sRNA-mRNA<strong>in</strong>teraction will be presented.By us<strong>in</strong>g a differential RNA sequenc<strong>in</strong>g (dRNA-seq) technology, wediscovered many new sRNA on all four A. tumefaciens replicons, thecircular chromosome, the l<strong>in</strong>ear chromosome, the At-plasmid and the Tiplasmid(5). Northern blot analyses revealed that several sRNAs weredifferentially expressed <strong>in</strong> response to different growth conditions. OnesRNA from the Ti-plasmid was massively <strong>in</strong>duced under virulenceconditions. Experiments to identify targets of selected sRNAs are underway.1. Narberhaus, F. and J. Vogel, Regulatory RNAs <strong>in</strong> prokaryotes: here, there and everywhere. MolMicrobiol, 2009. 74(2): p. 261-9.2. Waters, L.S. and G. Storz, Regulatory RNAs <strong>in</strong> bacteria. Cell, 2009. 136(4): p. 615-28.3. Voss, B., et al., Biocomputational prediction of non-cod<strong>in</strong>g RNAs <strong>in</strong> model cyanobacteria. BMCGenomics, 2009. 10: p. 123.4. Wilms, I., et al., Small RNA-mediated control of the Agrobacterium tumefaciens GABA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong>.Mol Microbiol, 2011. 80(2): p. 492-506.5. Wilms, I., et al., Deep sequenc<strong>in</strong>g uncovers numerous small RNAs on all four replicons of the plantpathogen Agrobacterium tumefaciens. RNA Biology, <strong>in</strong> pressRSP016Signal transduction <strong>in</strong> the thermoacidophilic crenarchaeonSulfolobus acidocaldariusJ. Reimann*, K. Lassak, S. Khadouma, S.-V. AlbersMax Planck Institute for Terrestrial Microbiology, Molecular Biology ofArchaea, Marburg, GermanySignal transduction from extracellular stimuli to the <strong>in</strong>side and with<strong>in</strong> thecell is essential for survival of microorganisms. In this process prote<strong>in</strong>k<strong>in</strong>ases and phosphatases often play a key-role and are found <strong>in</strong> all threedoma<strong>in</strong>s of life. These enzymes catalyze one of the most importantposttranslational modifications, the reversible phosphorylation anddephosphorylation of prote<strong>in</strong>s. Whereas <strong>in</strong> many Euryarchaeota both,potential histid<strong>in</strong>e k<strong>in</strong>ases and Ser/Thr/Tyr k<strong>in</strong>ases, were found, <strong>in</strong> theCrenarchaeota just the latter are present.To date, the knowledge about signal transduction pathways, the <strong>in</strong>duc<strong>in</strong>gconditions and <strong>in</strong>volved prote<strong>in</strong>s <strong>in</strong> the Crenarchaeota is rather scarce.Therefore, we want to <strong>in</strong>vestigate the processes of signal transduction <strong>in</strong>Sulfolobus acidocaldarius. The advantage of this important crenarchaealmodel organism is the availability of various genetic tools to perform<strong>in</strong>vivoand<strong>in</strong> vitrostudies. These tools were used to exam<strong>in</strong>eautophosphorylation of some prote<strong>in</strong> k<strong>in</strong>ases and phosphorylation ofpotential <strong>in</strong>teraction partners. Experimental <strong>in</strong>vestigations revealed aconnection between motility via the archaeal flagellum and different signaltransduction prote<strong>in</strong>s <strong>in</strong> S. acidocaldarius. These results underl<strong>in</strong>e theimportance of prote<strong>in</strong> phosphorylation <strong>in</strong> cellular processes of theArchaea.RSP017NreA, the third component of the three-component systemNreABC of Staphylococcus carnosusM. S<strong>in</strong>genstreu*, S. Nilkens, G. UndenJohannes Gutenberg University, Institute for Microbiology and W<strong>in</strong>eResearch, AG Unden, Ma<strong>in</strong>z, GermanyIn the facultative anaerobic Staphylococcus carnosus the NreABC threecomponent system is required for <strong>in</strong>itiation of nitrate respiration [1]. NreA,NreB, and NreC are encoded with<strong>in</strong> one operon (nreABC). The twocomponentsystem NreBC is <strong>in</strong>volved <strong>in</strong> O 2 sens<strong>in</strong>g. NreB acts as a directoxygen sensor, and the regulator NreC <strong>in</strong>duces the expression of narGHJIencod<strong>in</strong>g nitrate reductase under anaerobic conditions [1].Oxygen sens<strong>in</strong>g by NreB is based on the conversion of the [4Fe-4S] 2+cluster to a [2Fe-2S] 2+ cluster by O 2 followed by complete degradation andformation of FeS-less apoNreB [2].The function of the third component, NreA, was analyzed. NreA is a GAFdoma<strong>in</strong> prote<strong>in</strong>. Deletion of NreA leads to a permanent activation ofnitrate respiration.S<strong>in</strong>gle-po<strong>in</strong>t mutants <strong>in</strong> NreA were obta<strong>in</strong>ed with either loss of nitrate<strong>in</strong>duction, or aerobic derepression, suggest<strong>in</strong>g that NreA controls NreBCfunction <strong>in</strong> response to oxygen and nitrate availability.[1] Kamps et al. (2004) Mol. Microbiol. 52, 713-723[2] Müllner et al. (2008) Biochemistry 47, 13921-13932RSP018B<strong>in</strong>d<strong>in</strong>g properties of the transcriptional regulator AlsR ofBacillus subtilisE. Härtig*, C. Frädrich, K. HaufschildtTU Braunschweig, Microbiology, Braunschweig, GermanyThe transcriptional regulator AlsR is essential for alsSD expression <strong>in</strong>Bacillus subtilis. The alsSD expression is activated <strong>in</strong> response tofermentative growth conditions, addition of acetate, low pH <strong>in</strong> the growthmedium and aerobic stationary growth. The alsSD operon encodes theacetolactate synthase and -decarboxylase catalys<strong>in</strong>g the production ofaceto<strong>in</strong> from pyruvate. The AlsR regulator is a member of the LysR-typetranscriptional regulators (LTTR) composed of two doma<strong>in</strong>s: an N-term<strong>in</strong>al DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong> with a w<strong>in</strong>ged HTH motif and a C-term<strong>in</strong>alregulatory doma<strong>in</strong> which is <strong>in</strong>volved <strong>in</strong> co-<strong>in</strong>ducer b<strong>in</strong>d<strong>in</strong>g andoligomerization.We analyzed the relevance of s<strong>in</strong>gle am<strong>in</strong>o acid residues of the DNAb<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong> by site directed mutagenesis and <strong>in</strong> vivo functionalanalysis of produced AlsR mutant prote<strong>in</strong>s <strong>in</strong> an <strong>in</strong> vivo complementationsystem. Here, mutated alsR genes were <strong>in</strong>tegrated <strong>in</strong>to the amyE locus ofan B. subtilis alsR knock out mutant stra<strong>in</strong> and expressed under the controlof the xylose-<strong>in</strong>ducible xylA promoter. AlsR activity was monitored by ß-galactosidase activities derived from an AlsR-dependent alsS-lacZ reportergene fusion. Several AlsR mutants tested showed reduced alsS-lacZexpression <strong>in</strong> vivo. In addition, we produced and purified the AlsR mutantprote<strong>in</strong>s as AlsR-Strep fusion prote<strong>in</strong>s and analyzed their <strong>in</strong> vitro b<strong>in</strong>d<strong>in</strong>gability by gel retardation analyses.Us<strong>in</strong>g DNase I footpr<strong>in</strong>t analyses AlsR b<strong>in</strong>d<strong>in</strong>g regions were identified <strong>in</strong>the alsS promoter. A detailed analysis of the DNA sequence revealedseveral potential pal<strong>in</strong>dromic b<strong>in</strong>d<strong>in</strong>g sites conta<strong>in</strong><strong>in</strong>g a T-N 11-A coremotif typical for LTTR prote<strong>in</strong>s. To identify the DNA sequences necessaryfor AlsR b<strong>in</strong>d<strong>in</strong>g we changed several TA bases with<strong>in</strong> the proposed AlsRb<strong>in</strong>d<strong>in</strong>g region to GG. For this purpose a p-86alsS-lacZ reporter genefusion with 86 bp promoter sequences upstream the transcriptional startsite were used. The ß-galactosidase activities mediated by those mutantpromoters were determ<strong>in</strong>ed and compared to the activity of B. subtiliscarry<strong>in</strong>g the wild type alsS-lacZ fusion. In order to directly relate theresults of the <strong>in</strong> vivo tested mutated promoter to AlsR b<strong>in</strong>d<strong>in</strong>g, we alsoemployed gel retardation assays.RSP019The LuxR solo PluR of Photorhabdus lum<strong>in</strong>escens sensesPLAI-1, a novel endogenous signal<strong>in</strong>g moleculeS. Brameyer* 1 , A.O. Brachmann 2 , Q. Zhou 2 , H. Bode 2 , R. Heermann 11 Ludwig-Maximilians-Universität München, Mikrobiologie, München, Germany2 Goethe-Universität Frankfurt, Institut für Molekulare Biowissenschaften,Frankfurt am Ma<strong>in</strong>, GermanyCell-to-cell communication via acyl-homoser<strong>in</strong>e lactones (AHL) is wellstudied <strong>in</strong> many Gram-negative bacteria. The prototypical communicationsystem consists of a LuxI-type auto<strong>in</strong>ducer synthase and a LuxR-typereceptor that detects the endogenously produced signal. The symbiotic andentomopathogenic enteric bacterium Photorhabdus lum<strong>in</strong>escens harborsthe plenty of 39 LuxR-like receptors, but lacks any LuxI-type auto<strong>in</strong>ducersynthase and is unable to produce AHL. Here we show that one of theseLuxR solos, Plu4562 (PluR), detects an endogenously produced signal<strong>in</strong>gmolecule (PLAI-1) that is not an AHL, but a 2-pyrone derivative. Wetested different 2-pyrones for <strong>in</strong>duction of plu4568-promoter activity, andshowed that a novel class of 2-pyrones named photopyrones is producedby different Photorhabdus species are the specific signal for PluR. Hence asignal<strong>in</strong>g function for the chemical widespread group of pyrones wasidentified for the first time for P. lum<strong>in</strong>escens. Via PluR, expression of theplu4568-plu4563 operon is activated, which encodes a putative synthesispathway correlated with cell clump<strong>in</strong>g. Expression of the plu4568-plu4563operon <strong>in</strong>duced cell clump<strong>in</strong>g <strong>in</strong> P. lum<strong>in</strong>escens by addition of PLAI-1 aswell as <strong>in</strong> E. coli when <strong>in</strong>duced heterologously. PLAI-1-dependent cell-tocellcommunication and the result<strong>in</strong>g cell clump<strong>in</strong>g seem to be importantfor colonization of the nematodes by P. lum<strong>in</strong>escens.BIOspektrum | Tagungsband <strong>2012</strong>


199RSP020Regulation of anaerobic aromatic hydrocarbons degradation <strong>in</strong>Aromatoleum aromaticum under anaerobic growth conditionA. Ashraf*, J. Heider, T. KraushaarPhilipps Universität Marburg, Biologie/Mikrobiologie, Marburg, GermanyThe denitrify<strong>in</strong>g Betaproteobacterium Aromatoleum aromaticum utilizes awide range of aromatic compounds under anoxic condition, among themthe hydrocarbons ethylbenzene or toluene. The genes cod<strong>in</strong>g for theenzymes of anaerobic toluene metabolism are <strong>in</strong>duced coord<strong>in</strong>ately <strong>in</strong> thepresence of toluene, whereas those cod<strong>in</strong>g for the enzymes of anaerobicethylbenzene metabolism are <strong>in</strong>duced sequentially <strong>in</strong> the presence ofethylbenzene and the <strong>in</strong>termediate acetophenone, respectively. Threeoperons cod<strong>in</strong>g for two-component regulatory systems were identified <strong>in</strong>the genome sequence of A.aromaticum as possible candidates for affect<strong>in</strong>gthe <strong>in</strong>duction of all toluene-catabolic genes (tdiSR) and the <strong>in</strong>duction ofethylbenzene-catabolic genes by ethylbenzene (ediSR) and the<strong>in</strong>termediate acetophenone (adiRS). We show here that the (adiRS) operonis <strong>in</strong>deed <strong>in</strong>volved <strong>in</strong> the acetophenone-dependent regulation of geneexpression. The function of these gene products was <strong>in</strong>vestigated bygenetic and biochemical studies: adiSR deletion mutant of A. aromaticumwas unable to grow on either ethylbenzene or acetophenone and wascomplemented by add<strong>in</strong>g the adiRS genes. Moreover, the predictedacetophenone-sens<strong>in</strong>g histid<strong>in</strong>e k<strong>in</strong>ase (AdiS) was overproduced <strong>in</strong> E. coliand its biochemical properties, i.e. ligand b<strong>in</strong>d<strong>in</strong>g, are <strong>in</strong> l<strong>in</strong>e with itsproposed function.[1]-Heider, J., and G. Fuchs.1997. Anaerobic metabolism of aromatic compounds. Eur JBiochem243:577-96[2]-R. Rabus, M. Kube, A. Beck,,F. Widdel and R. Re<strong>in</strong>hardt. Genes <strong>in</strong>volved <strong>in</strong> the anaerobicdegradation of ethylbenzene <strong>in</strong> a denitrify<strong>in</strong>g bacterium, stra<strong>in</strong> EbN1. Arch Microbiol (2002)178:506-516RSP021The W-/Se-conta<strong>in</strong><strong>in</strong>g class II benzoyl-CoA reductase complex<strong>in</strong> obligately anaerobic bacteriaC. Löffler* 1 , J. Seifert 2 , H.-J. Stärk 3 , M. Boll 11 University , Biochemistry, Leipzig, Germany2 Helmholtz Centre for Environmental Research, Proteomic, Leipzig, Germany3 Helmholtz Centre for Environmental Research, Analytic, Leipzig, GermanyBenzoyl-Coenzyme A (CoA) is a central <strong>in</strong>termediate <strong>in</strong> the anaerobicdegradation of aromatic compounds and serves as substrate for benzoyl-CoA reductases (BCRs). There are two completely different classes ofBCRs which both yield the nonaromatic product cyclohexa-1,5-diene-1-carbonyl-CoA [1,2]. Class I BCRs of facultative anaerobes, referred to asBcrABCD, are ATP-dependent, [4Fe-4S] clusters conta<strong>in</strong><strong>in</strong>g enzymes. Incontrast, strictly anaerobic bacteria are proposed to employ a W-/Zn-/FeS-/Flav<strong>in</strong>-/Se-conta<strong>in</strong><strong>in</strong>g, ATP-<strong>in</strong>dependent BamBCDEFGHI complex. Theactive site conta<strong>in</strong><strong>in</strong>g components BamBC were purified and characterizedfrom the aromatic compound degrad<strong>in</strong>g model organism Geobactermetallireducens [1]. The rema<strong>in</strong><strong>in</strong>g BamDEFGHI subunits are consideredto be <strong>in</strong>volved <strong>in</strong> the ATP-<strong>in</strong>dependent electron activation reaction. Weprovide evidence that class II BCRs are composed of the predicted highmolecular BamBCDEFGHI complex. Initial data <strong>in</strong>dicate that the electrontransfer to the aromatic r<strong>in</strong>g is driven by an electron bifurcation process.(1) Kung et al. (2009), PNAS 106 : 17687-92(2) Löffler et al. (2011) Environ Microbiol 13(3) : 696-709RSP022Metabolome and transcriptome analysis of P. aerug<strong>in</strong>osa <strong>in</strong> achronic lung <strong>in</strong>fection modelA. Pelnikevich* 1 , L. Whielmann 1 , D. Schomburg 2 , B. Tümmler 11 Mediz<strong>in</strong>ische Hochschule Hannover, Hannover, Germany2 Technical University Braunschweig, Braunschweig, GermanyPseudomonas aerug<strong>in</strong>osais an ubiquitous environmental soil bacteriumand an opportunistic pathogen of humans, animals and plants. It causeschronic <strong>in</strong>fections <strong>in</strong> patients with cystic fibrosis (CF), chronic obstructivepulmonary disease and bronchiectasis.We studied the control of virulence factor production depend<strong>in</strong>g onmetabolic pathways and the transcriptomic state of the organism tounderstand the activation of specific virulence programs of P. aerug<strong>in</strong>osa.We analysed the metabolome and transcriptome of P. aerug<strong>in</strong>osa <strong>in</strong>various media and growth phases.P. aerug<strong>in</strong>osa PA14 is an acute <strong>in</strong>fection cl<strong>in</strong>ical isolate obta<strong>in</strong>ed from aburnwound of a patient. It displays pathogenicity <strong>in</strong> a variety of geneticallytractable model hosts and mice.P. aerug<strong>in</strong>osa RN7 is a clone of PA14 stra<strong>in</strong>. It is a CF-isolate, which wasisolated short after the <strong>in</strong>fection of a patient. RN7 causes chronic disease <strong>in</strong>experiments with mice.P. aerug<strong>in</strong>osa TBCF10839 is a highly virulent stra<strong>in</strong>, which belongs to amajor clone <strong>in</strong> the P. aerug<strong>in</strong>osa population. It is a pil<strong>in</strong>-deficient stra<strong>in</strong>that produces large amounts of alg<strong>in</strong>ate and shows high resistance aga<strong>in</strong>stphagocytosis. Be<strong>in</strong>g a strong producer of virulence effector prote<strong>in</strong>s, itcauses substantial airway pathology <strong>in</strong> mice after <strong>in</strong>tratracheal <strong>in</strong>stillation.In an <strong>in</strong>tegrative approach of both data sets will be comb<strong>in</strong>ed to reveal aholistic picture of the adaptive pathway regulation of P. aerug<strong>in</strong>osa <strong>in</strong> alung <strong>in</strong>fection and identificate key determ<strong>in</strong>ants for the chroniccolonization of the human lung.RSP023The importance of the GAF doma<strong>in</strong> for K + -sens<strong>in</strong>g <strong>in</strong> thesensor k<strong>in</strong>ase KdpD <strong>in</strong> Escherichia coliH. Schramke* 1 , G. Gabriel 1 , C. Vilhena 2 , R. Heermann 1 , K. Jung 11 Ludwig-Maximilians-Universität, Department 1, Mikrobiologie,Mart<strong>in</strong>sried/München, Germany2 Universidade de Lisboa, Faculdade de Farmácia, Lisbon, PortugalPotassium is the most abundant cation <strong>in</strong> bacteria and important fordifferent cellular functions. The high aff<strong>in</strong>ity K + transporter KdpFABC ofE. coli assures the uptake of K + when it is limited <strong>in</strong> the environment. Theproduction of KdpFABC is regulated by the two-component systemKdpD/KdpE, which comprises the membrane-<strong>in</strong>tegrated histid<strong>in</strong>e k<strong>in</strong>aseKdpD and the soluble response regulator KdpE. KdpD specificallyphosphorylates and dephosphorylates KdpE and therefore regulates theactivation and term<strong>in</strong>ation of kdpFABC transcription, respectively [1]. K +has an <strong>in</strong>hibitory effect on the k<strong>in</strong>ase activity of KdpD <strong>in</strong> vitro, but a K + -b<strong>in</strong>d<strong>in</strong>g site is yet unknown. The k<strong>in</strong>ase activity is also <strong>in</strong>hibited by Rb + ,but not by Cs + . New bio<strong>in</strong>formatic methods revealed that KdpD conta<strong>in</strong>s aGAF doma<strong>in</strong> <strong>in</strong> the C-term<strong>in</strong>al cytoplasmic region. GAF doma<strong>in</strong>s areprom<strong>in</strong>ent ligand b<strong>in</strong>d<strong>in</strong>g sites and were first identified <strong>in</strong> cGMP-specificcyclic nucleotide phosphodiesterase, adenylyl cyclase and the transcriptionfactor FhlA. The replacement of the GAF doma<strong>in</strong> of KdpD with the GAFdoma<strong>in</strong> of a conserved prote<strong>in</strong> 3e0Y of Geobacter sulfurreducens led to aKdpD variant, which caused kdpFABC transcription <strong>in</strong>dependent of theextracellular K + concentration. Hence this KdpD variant was unable tosense K + . By us<strong>in</strong>g site-directed and random mutagenesis three am<strong>in</strong>oacids were identified - two <strong>in</strong>side and one outside of the GAF doma<strong>in</strong> -which might form a K + -b<strong>in</strong>d<strong>in</strong>g site.[1] Heermann and Jung, FEMS Microbiol Lett. 2010 Mar; 304(2):97-106.RSP024The histid<strong>in</strong>e k<strong>in</strong>ase SgmT is a c-di-GMP receptor andregulates synthesis of an extracellular matrix proteaseT. Petters* 1 , X. Zhang 1 , J. Nesper 2 , A. Treuner-Lange 1 , N. Gomez Santos 1 ,M. Hoppert 3 , U. Jenal 2 , L. Søgaard-Andersen 11 MPI for terrestrial Microbiology, Ecophysiology, Marburg, Germany2 Biozentrum, Basel, Switzerland3 Georg-August-Universität, Gött<strong>in</strong>gen, GermanyMyxococcus xanthus cells are covered by an extracellular matrix composedof exopolysaccharides and prote<strong>in</strong>s, which is <strong>in</strong>dispensable for type pilidependentmotility and fruit<strong>in</strong>g body formation <strong>in</strong> response to starvation.The orphan DNA b<strong>in</strong>d<strong>in</strong>g response regulator DigR plays a role <strong>in</strong> theregulation of extracellular matrix composition. Us<strong>in</strong>g a two-tiered strategy,we genetically and biochemically identify the orphan hybrid histid<strong>in</strong>ek<strong>in</strong>ase SgmT, which conta<strong>in</strong>s an N-term<strong>in</strong>al GAF doma<strong>in</strong> and a C-term<strong>in</strong>alGGDEF doma<strong>in</strong>, as the partner k<strong>in</strong>ase of DigR. By EMSA and DNase Ifootpr<strong>in</strong>t<strong>in</strong>g experiments, we identify the DigR b<strong>in</strong>d<strong>in</strong>g site <strong>in</strong> thepromoter of the fibA gene, which encodes a metalloprotease and is themost abundant prote<strong>in</strong> <strong>in</strong> the extracellular matrix. Whole-genomeexpression profil<strong>in</strong>g experiments <strong>in</strong> comb<strong>in</strong>ation with the identified DigRb<strong>in</strong>d<strong>in</strong>g site allowed the identification of candidate members of the DigRregulon and suggest that SgmT/DigR regulate the expression of genescod<strong>in</strong>g for secreted prote<strong>in</strong>s of unknown function, FibA as well asenzymes <strong>in</strong>volved <strong>in</strong> secondary metabolite synthesis. Our data demonstratethat the N-term<strong>in</strong>al GAF doma<strong>in</strong> is the primary sensor doma<strong>in</strong> <strong>in</strong> SgmTand that the C-term<strong>in</strong>al GGDEF doma<strong>in</strong> b<strong>in</strong>ds the second messenger bis-(3’-5’)-dimeric cyclic-GMP (c-di-GMP) <strong>in</strong> vitro and functions as a c-di-GMP receptor <strong>in</strong> vivo to spatially sequester SgmT upon c-di-GMP b<strong>in</strong>d<strong>in</strong>g.We suggest that SgmT activity is regulated by two sensor doma<strong>in</strong>s, theGAF doma<strong>in</strong> and the GGDEF doma<strong>in</strong>, and that b<strong>in</strong>d<strong>in</strong>g of ligand to theGAF doma<strong>in</strong> results <strong>in</strong> SgmT activation and b<strong>in</strong>d<strong>in</strong>g of c-di-GMP to theGGDEF doma<strong>in</strong> results <strong>in</strong> spatial sequestration of SgmT <strong>in</strong>sulat<strong>in</strong>g theSgmT/DigR from cross-talk from other signall<strong>in</strong>g systems.BIOspektrum | Tagungsband <strong>2012</strong>


200RSP025The pH-responsive transcriptional activator CadC and itslys<strong>in</strong>e-dependent co-sensor LysP <strong>in</strong> E. coli: New <strong>in</strong>sights <strong>in</strong>toregulatory <strong>in</strong>terplay and signal transductionS. Buchner*, M. Rauschmeier*, I. Haneburger, V. Schüppel, L. Tetsch, K. JungLudwig-Maximilians-Universität München, Department Biologie I,Microbiology, Mart<strong>in</strong>sried, GermanyCadC belongs to the ToxR-like transcriptional activators. This type ofregulators is characterized by a N-term<strong>in</strong>al cytoplasmic DNA-b<strong>in</strong>d<strong>in</strong>geffector doma<strong>in</strong> and a C-term<strong>in</strong>al periplasmic sensor doma<strong>in</strong> separated bya s<strong>in</strong>gle transmembrane helix. ToxR-like prote<strong>in</strong>s comb<strong>in</strong>e sensoryfunction and DNA-b<strong>in</strong>d<strong>in</strong>g activities <strong>in</strong> a s<strong>in</strong>gle polypeptide and lack sitesfor chemical modification. CadC regulates the expression of the cadBAoperon and <strong>in</strong>duces transcription under conditions of low external pH andconcomitantly available lys<strong>in</strong>e. This <strong>in</strong> turn allows E. coli to adapt toacidic stress. Recently, it was demonstrated that the periplasmic doma<strong>in</strong> ofCadC is responsible for pH sens<strong>in</strong>g [1,2]. However, almost noth<strong>in</strong>g isknown about the mechanism of signal transduction across the membrane tothe cytoplasmic effector doma<strong>in</strong> of CadC. Secondary structure analysisrevealed a large unstructured cytosolic loop of unknown function betweenthe transmembrane helix and the DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. To <strong>in</strong>vestigate therole of the loop <strong>in</strong> terms of signal transduction, it was gradually truncatedor elongated. Result<strong>in</strong>g CadC-variants activated cadBA expression<strong>in</strong>dependent of external pH, implicat<strong>in</strong>g that the cytoplasmic loop plays animportant role <strong>in</strong> transduc<strong>in</strong>g the signal to the DNA-b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>. ThepH sensor CadC is not a direct lys<strong>in</strong>e sensor, but senses exogenous lys<strong>in</strong>evia an <strong>in</strong>terplay with the lys<strong>in</strong>e transporter LysP. Random and directedmutagenesis was performed to f<strong>in</strong>d LysP/CadC <strong>in</strong>teraction sites and to<strong>in</strong>vestigate the <strong>in</strong>terconnectivity of the two functions, regulation andtransport, of the trigger transporter LysP. This approach led to theidentification of LysP variants, which evoke altered <strong>in</strong>teraction patternswith CadC and/or defects <strong>in</strong> transport activity. Further, transmembrane<strong>in</strong>teractions between LysP and CadC were analyzed <strong>in</strong> vivo us<strong>in</strong>g abacterial two hybrid (BACTH) system. The BACTH-study providedevidence for a constitutive <strong>in</strong>teraction between sensor and triggertransporter. It is proposed that lys<strong>in</strong>e-<strong>in</strong>duced conformational changes ofLysP upon lys<strong>in</strong>e b<strong>in</strong>d<strong>in</strong>g and/or transport transduce the external lys<strong>in</strong>esignal to CadC by weaken<strong>in</strong>g the persist<strong>in</strong>g prote<strong>in</strong>-prote<strong>in</strong> <strong>in</strong>teraction.1. Eich<strong>in</strong>ger A., Haneburger I., Koller C., Jung. K and Skerra A., Prote<strong>in</strong> Sci. 20 (2011), p. 656-6692. Haneburger I., Eich<strong>in</strong>ger A., Skerra A. and Jung K., J. Biol. Chem. 286 (2011), p. 10681-1068RSP026Copper homeostasis <strong>in</strong> Corynebacterium glutamicumX. Schuplezow*, S. Schelder, M. Bott, M. BrockerForschungszentrum Jülich GmbH, IBG-1: Biotechnologie, Jülich, GermanyCopper ions can easily alternate between an oxidised (Cu 2+ ) and a reducedstate (Cu + ) and are therefore used as cofactor of enzymes <strong>in</strong>volved <strong>in</strong>electron transport or redox reactions, such as cytochrome c oxidases ormulticopper oxidases. As high concentrations of uncomplexed copper ionscan become toxic for the cell by generat<strong>in</strong>g reactive oxygen species or bysulfhydryl depletion, the <strong>in</strong>tracellular concentration of copper must betightly regulated to prevent toxic levels on the one hand and copperstarvation on the other hand. In prokaryotes several copper resistancesystems have been identified and characterised, but only little is knownabout the response to copper starvation conditions.Here, we have <strong>in</strong>vestigated the <strong>in</strong>fluence of elevated copper concentrationsas well as of copper starvation conditions on Corynebacteriumglutamicum, a non-pathogenic Gram-positive soil bacterium, which servesas model organism for closely related pathogenic species such asMycobacterium tuberculosis. To ga<strong>in</strong> first <strong>in</strong>sights <strong>in</strong>to copperhomeostasis, growth and global gene expression were followed <strong>in</strong> thepresence of different copper concentrations (0 - 500 M). In this way, thecopper excess and the copper starvation stimulon were determ<strong>in</strong>ed. Theseand subsequent experiments revealed that the recognition of and responseto elevated extracellular copper concentrations is mediated by the twocomponentsystem CopRS [1] , whereas a one-component transcriptionalregulator is responsible for adaption to <strong>in</strong>creased <strong>in</strong>tracellular copperconcentrations [2] . Growth of the wild type is only hardly affected undercopper starvation, whereas a deletion stra<strong>in</strong> lack<strong>in</strong>g the copper<strong>in</strong>dependentcytochrome bd oxidase (cydAB) of the branched respiratorycha<strong>in</strong> of C. glutamicum [3] exhibits a strong growth defect. The cydABmutant is strictly dependent on the copper-dependent cytochrome aa 3oxidase, which presumably is at least partially dysfunctional under copperstarvation conditions. The phenotype of the cydAB mutant and the<strong>in</strong>duction of the cydAB genes under copper starvation show thatcytochrome bd oxidase plays an important role <strong>in</strong> electron transfer frommenaqu<strong>in</strong>ol to oxygen under these conditions.[1] Schelder et al., 2011[2] Schelder et al., to be submitted[3] Bott and Niebisch, 2003RSP027Generat<strong>in</strong>g a “Gene Knock-out through Allelic Exchange” <strong>in</strong>Clostridium acetobutylicumS.K. Flitsch* 1 , A. Arndt 2 , S. Noack 3 , P. Dürre 11 Universität Ulm, Institut für Mikrobiologie und Biotechnologie, Ulm, Germany2 Bundeswehrkrankenhaus Ulm, Institut für Pathologie, Ulm, Germany3 Bundesanstalt für Materialforschung, Berl<strong>in</strong>, GermanyClostridium acetobutylicum is an anaerobic, Gram-positive soil bacteriumand possesses a characteristic biphasic fermentation metabolism. Grow<strong>in</strong>gexponentially, the sugar substrates are metabolised to acetate and butyrate,and dur<strong>in</strong>g the late exponential and stationary phase these acids areconverted <strong>in</strong>to the solvents acetone and butanol. The aim of our work isthe construction of artificially controlled genes required for solventproduction/regulation. So, with<strong>in</strong> the “COSMIC2 SysMO-project” severalgenes <strong>in</strong> C. acetobutylicum are planned to be deleted by the new “knockoutsystem”.Aldehyde ferredox<strong>in</strong> oxidoreductase (AOR) (CA_C2018) is an oxygensensitiveenzyme that catalyses the oxidation of aldehydes to theircorrespond<strong>in</strong>g acids.Previous transcriptome studies for microarray shift experiments showed anupregulation of several genes of solventogenic and acidogenic metabolism,among them the CA_C2018-gene, dur<strong>in</strong>g shift from pH 6.5 to pH 5.5. Adeletion of this aor gene <strong>in</strong> C. acetobutylicum was constructed.The “allelic exchange system” based on a homologous recomb<strong>in</strong>ation wasused to knock-out the aor gene [1]. First, a knock-out cassette wasgenerated and then ligated <strong>in</strong>to the pseudo-suicide vector pMTL-SC7515.After methylation <strong>in</strong> Escherichia coli pANS1 the vector was transformed<strong>in</strong>to C. acetobutylicum. After two <strong>in</strong>dependent homologousrecomb<strong>in</strong>ations a double-crossover C. acetobutylicum-mutant wasestablished. In further experiments, a complementation of theaorgene willbe created. Also, an overexpression mutant for this gene of C.acetobutylicum will be generated.[1] J.T. Heap, O.J. Penn<strong>in</strong>gton, S.T. Cartman, N.P. M<strong>in</strong>ton. 2009. A modular system forClostridium shuttle plasmids. Journal of Microbiological Methods 78: 79-85.RSP028Characterization of radical SAM enzymes <strong>in</strong>volved <strong>in</strong> theheme biosynthesis pathway <strong>in</strong> Methanosarc<strong>in</strong>a barkeriM. Kühne*, G. LayerTechnical University of Braunschweig, Institute for Microbiology,Braunschweig, GermanyThe cyclic tetrapyrrole heme is an important cofactor for almost all liv<strong>in</strong>gorganisms. The heme biosynthetic pathway is partly conserved among thethree k<strong>in</strong>gdoms. Thus, <strong>in</strong> eukaryotes, bacteria and archaea 5-am<strong>in</strong>olevul<strong>in</strong>ic acid serves as the first common precursor for hemebiosynthesis. The first cyclic tetrapyrrole of the pathway isuroporphyr<strong>in</strong>ogen III which is converted <strong>in</strong>to coproporphyr<strong>in</strong>ogen III <strong>in</strong>eukaryotes and most bacteria to generate heme via three further steps. Incontrast, <strong>in</strong> archaea and some bacteria an alternative heme biosynthesispathway is operative <strong>in</strong> which uroporphyr<strong>in</strong>ogen III is converted <strong>in</strong>toprecorr<strong>in</strong>-2 which is then further transformed <strong>in</strong>to heme [1], [2]. Recently,it was shown that <strong>in</strong> sulfate-reduc<strong>in</strong>g bacteria such as Desulfovibriodesulfuricans the alternative route to heme proceeds via siroheme, 12,18-didecarboxysiroheme and iron-coproporphyr<strong>in</strong> III [3]. The enzymescatalyz<strong>in</strong>g the respective transformations of the <strong>in</strong>termediates representhomologs to enzymes <strong>in</strong>volved <strong>in</strong> heme d 1 biosynthesis and are also found<strong>in</strong> heme produc<strong>in</strong>g archaea such as the methanogen Methanosarc<strong>in</strong>abarkeri.Our studies are focused on the two heme biosynthesis enzymes NirJ1 andNirJ2 from M. barkeri which catalyze the last steps of the alternative hemebiosynthesis pathway, namely the removal of two acetate side cha<strong>in</strong>s from12,18-didecarboxysiroheme to form iron-coproporphyr<strong>in</strong> III (NirJ2) andthe subsequent formation of v<strong>in</strong>yl-groups at tetrapyrrole positions C3 andC8 to synthesize heme (NirJ1). Both, NirJ1 and NirJ2, belong to theradical SAM enzyme family. They conta<strong>in</strong> a CxxxCxxC am<strong>in</strong>o acid motifwhich is typical for members of the radical SAM superfamily and thusconta<strong>in</strong> a [4Fe-4S] cluster. Additionally, both prote<strong>in</strong>s exhibit a cyste<strong>in</strong>erichC-term<strong>in</strong>us which might harbour a second iron-sulfur cluster <strong>in</strong>volved<strong>in</strong> catalysis or substrate b<strong>in</strong>d<strong>in</strong>g. Strik<strong>in</strong>gly, HemN, the enzyme thatcatalyzes the v<strong>in</strong>yl-group formation dur<strong>in</strong>g the classical heme biosynthesispathway <strong>in</strong> bacteria, is also a radical SAM enzyme but conta<strong>in</strong>s only as<strong>in</strong>gle [4Fe-4S] cluster. Therefore, NirJ1 and HemN catalyze an identicalreaction but use different substrates and dist<strong>in</strong>ct mechanisms.[1] T. Ishida, L. Yu, H. Akutsu et al. (1998) A primitive pathway of porphyr<strong>in</strong> biosynthesis and enzymology<strong>in</strong> Desulfovibrio vulgaris. Proc Natl Acad of Sci USA 95, 4853-4858.[2] B. Buchenau, J. Kahnt, I. U. He<strong>in</strong>emann, D. Jahn, and R. K. Thauer (2006) Heme biosynthesis <strong>in</strong>Methanosarc<strong>in</strong>a barkeri via a pathway <strong>in</strong>volv<strong>in</strong>g two methylation reactions.J Bacteriol 188, 8666-8668.[3] S. Bali, A. D. Lawrence et al.(2011) Molecular hijack<strong>in</strong>g of siroheme for the synthesis of heme and d1heme. Proc Natl Acad Sci USA Early Edition.BIOspektrum | Tagungsband <strong>2012</strong>


201RSP029Mutational Analysis with<strong>in</strong> the Periplasmic PAS Doma<strong>in</strong> ofthe Escherichia coli Sensor K<strong>in</strong>ase DcuSC. Monzel*, G. UndenJohannes Gutenberg-Universität Ma<strong>in</strong>z, Institut für Mikrobiologie undWe<strong>in</strong>forschung, Ma<strong>in</strong>z, GermanyE. coli utilizes C 4-dicarboxylates as a carbon source or as an electronacceptor under aerobic and anaerobic conditions, respectively. Metabolicregulation is effected by the two-component system DcuSR, consist<strong>in</strong>g ofthe membrane-embedded sensor histid<strong>in</strong>e k<strong>in</strong>ase DcuS and the responseregulator DcuR. Sens<strong>in</strong>g of C 4-dicarboxylates generates a signal that leadsto an autophosphorylation of a conserved histid<strong>in</strong>e residue <strong>in</strong> the k<strong>in</strong>asedoma<strong>in</strong> of DcuS.Study<strong>in</strong>g the periplasmic PAS doma<strong>in</strong> (PAS P) of DcuS revealed both, ONmutantswith a dist<strong>in</strong>ct fumarate-<strong>in</strong>dependent expression of a dcuB-lacZreporter gene fusion and OFF-mutants show<strong>in</strong>g a considerable loss ofDcuS-activation by the effector. ON- and OFF-mutations located outsidethe b<strong>in</strong>d<strong>in</strong>g pocket, were studied <strong>in</strong> more detail. For these def<strong>in</strong>ded sitesthe chemical and sterical requirements were probed by site-directedmutagenesis, <strong>in</strong>troduc<strong>in</strong>g variable residues at one and the same position. Inaddition the impact of ON- and OFF-mutations on oligomerization andsubcelluar localization were tested, us<strong>in</strong>g the bacterial two-hybrid system(BACTH) and <strong>in</strong> vivo fluorescence microscopy.[1] Zientz et al. (1998) J Bacteriol 178(24):7241-7247[2] Scheu et al. (2010) J Bacteriol 192(13):3474-3483RSP030The transmembrane doma<strong>in</strong> of the sensory histid<strong>in</strong>e k<strong>in</strong>aseDcuS: role <strong>in</strong> dimerizationP.A. Ste<strong>in</strong>metz*, G. UndenInstitut für Mikrobiologie und We<strong>in</strong>forschung, AG Unden, Ma<strong>in</strong>z, GermanyBacteria are capable of adjust<strong>in</strong>g to chang<strong>in</strong>g environmental conditions. Toensure quick adaptation among various conditions, sensors detect stimuliand regulators trigger the cellular response. Two-component systems arewidespread <strong>in</strong> bacteria, consist<strong>in</strong>g of a sensory histid<strong>in</strong>e k<strong>in</strong>ase and aresponse regulator. The DcuS/DcuR two-component regulatory system ofEscherichia coli senses C 4-dicarboxylates and stimulates the expression ofgenes for anaerobic fumarate respiration [1]. The oligomeric state of thesensor DcuS is supposed to be an important parameter for its function [2].Transmembrane doma<strong>in</strong>s (TMDs) of membrane prote<strong>in</strong>s have crucial rolesas <strong>in</strong>teraction sites. Dimerization sites <strong>in</strong> the TMDs of DcuS wereanalyzed. A tandem SxxxGxxxG motif was identified <strong>in</strong> TMD2 of DcuS.A comb<strong>in</strong>ation of bacterial two-hybrid system (BACTH) and GALLEX [3]<strong>in</strong>teraction studies with DcuS variants suggest a role of the GxxxG motifand the TMD <strong>in</strong> the dimerization of DcuS.(1) Zientz E., Bongaerts J., Unden G. (1998) J. Bacteriol 180: 5421-5425(2) Scheu PD, Liao YF, Bauer J, Kneuper H, Basché T, Unden G, Erker W. (2010) J Bacteriol.192(13):3474-83.(3) Schneider D, Engelman DM. (2003) J Biol Chem. 31;278(5):3105-11.RSP031HtrA-mediated control of nitrate/nitrite assimilation <strong>in</strong> S.coelicolorR. Am<strong>in</strong>*, J. Reuther, A. Bera, W. Wohlleben, Y. MasUniversity of Tüb<strong>in</strong>gen, IMIT, Microbiology and Biotechnology, Tüb<strong>in</strong>gen,GermanyStreptomyces usually grow <strong>in</strong> nutritional limit<strong>in</strong>g environment oftenlack<strong>in</strong>g essential elements for growth. Streptomyces coelicolor, a modelorganism for study<strong>in</strong>g the regulation of nitrogen metabolism exhibits aspecific regulatory network. In this control system, OmpR-liketranscriptional regulation GlnR plays a central role by controll<strong>in</strong>g thetranscription of at least 14 genes 9 of which are directly implicated <strong>in</strong>nitrogen assimilation. Dur<strong>in</strong>g this study, we identified a new GlnR targetgene SCO2958 named htrA. In silico analysis revealed the presence of twodist<strong>in</strong>ct doma<strong>in</strong>s <strong>in</strong> HtrA sequence: an N-term<strong>in</strong>al uroporphyr<strong>in</strong>ogen-IIIsynthase (HemD)-like enzymatic doma<strong>in</strong> and a C-term<strong>in</strong>al DNA b<strong>in</strong>d<strong>in</strong>gdoma<strong>in</strong>. Complementation experiments with a hem<strong>in</strong> auxotroph E.colihemD mutant stra<strong>in</strong> showed that HtrA has no HemD activity.Physiological studies of a S. coelicolor htrA::Tn5062 mutant showed thatHtrA is <strong>in</strong>volved <strong>in</strong> regulation of nitrite reduction. By electrophoreticmobility shift assays the functionality of the HtrA DNA b<strong>in</strong>d<strong>in</strong>g doma<strong>in</strong>was confirmed and found that HtrA b<strong>in</strong>ds <strong>in</strong> front of the genes narK(putative nitrate extrusion prote<strong>in</strong>), nirB (nitrite reductase), nirA (putativenitrite/sulphite reductase), and nasC (putative nitrate reductase), which areassociated with nitrate/nitrite assimilation. Furthermore, a cooperativeb<strong>in</strong>d<strong>in</strong>g of HtrA together with GlnR to the nirB promoter was observed,suggest<strong>in</strong>g that HtrA may act as a “GlnR-helper prote<strong>in</strong>”.RSP032Posttranslational modification of global response regulatorGlnR l<strong>in</strong>ks nitrogen metabolism and transcription of GlnRtarget genes <strong>in</strong> S. coelicolorA. Bera*, Y. Ahmed, R. Am<strong>in</strong>, W. WohllebenUniversity of Tüb<strong>in</strong>gen, IMIT, Microbiology and Biotechnology, Tüb<strong>in</strong>gen,GermanyTranscriptional regulation of nitrogen assimilation genes<strong>in</strong>Streptomycescoelicoloris mediated by a global response regulator GlnR.GlnR was shown to act as both a transcriptional repressor and activatorunderN-limit<strong>in</strong>g conditions. The GlnR-<strong>in</strong>duced genes<strong>in</strong>cludeglnAandglnIIwhich encode key enzymes of ammoniumassimilation: glutam<strong>in</strong>e synthetases GSI and GSII, respectively. GlnRrepresses expression of thegdhAgene encod<strong>in</strong>g the glutamatedehydrogenase GDH, which is able to assimilate ammonium <strong>in</strong>toglutamate only under conditions of high ammonium concentrations.Therefore a repression under nitrogen-limit<strong>in</strong>g conditions is reasonable.F<strong>in</strong>ally, GlnR controls reactions for the uptake of ammonium and theutilization other nitrogen sources like nitrate/nitrite or urea. GlnR regulatestranscription of the amtB operon,nirBDencod<strong>in</strong>g a nitrite reductaseandureAencod<strong>in</strong>g a urease [1]. The mechanism for this repressor/activatorfunction of GlnR was unknown and itself regulation was not <strong>in</strong>vestigatedtill now. We were able to show how the nitrogen status of the cell isconnected to the control ofglnRexpression and GlnR activity. Western blotanalyses provided evidence that GlnR undergoes posttranslationalmodification viaSer/Thrphosphorylation andLysacetylation <strong>in</strong>S.coelicolorM145. LC-MS/MS analyses revealed that underN-excess fourser<strong>in</strong>e residues and three threon<strong>in</strong>eresidues were phosphorylated.Additionally two lys<strong>in</strong>e residues were acetylated. The pattern of themodification underN-limited conditions differed significantly (noacetylation and only two phosphorylated ser<strong>in</strong>e residues). This k<strong>in</strong>d ofregulation is surpris<strong>in</strong>g and somehow unusual s<strong>in</strong>ce GlnR belongs toOmpR-like family and as might be expected it should <strong>in</strong>teract with till nowunknown cognate histid<strong>in</strong>e k<strong>in</strong>ase. Various acetylation andphosphorylation patterns <strong>in</strong>fluence GlnR´s DNA b<strong>in</strong>d<strong>in</strong>g activity.Acetylation seems to completely abolish the b<strong>in</strong>d<strong>in</strong>g of GlnR to promoterregions of its target genes. Regulation via acetylation seems to bedepend<strong>in</strong>g on concentration of nitrogen source however phosphorylation isf<strong>in</strong>e-tun<strong>in</strong>g regulation and depends on type of theN-source. To ourknowledge this is the first report aboutLysacetylation andSer/Thrphosphorylation of the response regulator <strong>in</strong> act<strong>in</strong>obacteria.1. Tiffert, Y., Supra, P., Wurm, R., Wohlleben, W., Wagner, R.,Reuther, J.,Mol.Microbiol.67(2008) p.861-880RSP033Quorum sens<strong>in</strong>g <strong>in</strong> Pseudomonas putida colonies under flowconditionsB. HenseHelmholtz Zentrum München, Institute of Biomathematics and Biometry,Neuherberg, GermanyBacterial communication via release and sens<strong>in</strong>g of signal molecules(auto<strong>in</strong>ducer, AI) has been ma<strong>in</strong>ly <strong>in</strong>vestigated <strong>in</strong> batch cultures. Hereusually coord<strong>in</strong>ated response of the whole population is <strong>in</strong>duced <strong>in</strong> a celldensity dependent manner (quorum sens<strong>in</strong>g, QS). However, most bacterialive heterogeneously distributed <strong>in</strong> aggregates or biofilms attached tosurfaces. Under these conditions, functionality of the signall<strong>in</strong>g system isless well understood and more difficult to approach experimentally. Wethus use a comb<strong>in</strong>ed experimental/mathematical modell<strong>in</strong>g strategy to<strong>in</strong>vestigate the <strong>in</strong>duction dynamics of the PpuI/R QS system <strong>in</strong>Pseudomonas putida IsoF. Induction of AI controlled expression ofagfpgene was followed with high spatio-temporal (s<strong>in</strong>gle cell or colonylevel) resolution. The <strong>in</strong>fluence of flow respectively addition of externalAI was exam<strong>in</strong>ed. Ma<strong>in</strong> results were: Mass transfer (flow) delays the<strong>in</strong>duction behaviour, probably by removal of AIs. A compartmentation ofyet unkown orig<strong>in</strong> occurs, limit<strong>in</strong>g the <strong>in</strong>fluence of AI from outside thecolony. AI regulation promoted <strong>in</strong>tra- as well as <strong>in</strong>tercolonialheterogeneity. Summarized, there were fundamental differences betweenthe AI functionality <strong>in</strong> cell aggregates and planktonic batch cultures, whichhave been analysed before [1]. These differences have consequences forthe ecological functionality of auto<strong>in</strong>ducers.[1] Fekete A, Kuttler C, Rothballer M, Hense BA, Fischer D, Buddrus-Schiemann K, Lucio M,Müller J, Schmitt-Koppl<strong>in</strong> P, Hartmann A. (2010) FEMS Microbiol. Ecol. 72, 22-34.RSP034An essential role for cyclic d<strong>in</strong>ucleotide signal<strong>in</strong>g <strong>in</strong> Bacillus subtilisF. Mehne* 1 , K. Gunka 1 , A. Garbe 2 , V. Kaever 2 , J. Stülke 11 University of Gött<strong>in</strong>gen, Dept. of General Microbiology, Gött<strong>in</strong>gen, Germany2 Hannover Medical School, Institute of Pharmacology, Hannover, GermanyCyclic d<strong>in</strong>ucleotides (c-di-AMP and c-di-GMP) act as second messengers<strong>in</strong> several bacterial species. In the last decade these messengers haveBIOspektrum | Tagungsband <strong>2012</strong>


202attracted the attention of molecular microbiologists and there have beenseveral approaches to uncover their signal<strong>in</strong>g landscape.Bacillus subtilis encodes three putative diadenylate cyclases. One of them,DisA, checks DNA <strong>in</strong>tegrity to control cell division and sporulation. Incontrast, the function of the other prote<strong>in</strong>s, CdaA and CdaS, is stillunknown. Moreover, B. subtilis encodes two diguanylate cyclases, CdgAand CdgB. In many bacteria, c-di-GMP governs the lifestyle switchbetween biofilm formation and motility. However, noth<strong>in</strong>g is known aboutthe function of c-di-GMP <strong>in</strong> B. subtilis.We have studied the role of these enzymes <strong>in</strong> the metabolism of cyclicd<strong>in</strong>ucleotides <strong>in</strong> B. subtilis. Both signal<strong>in</strong>g molecules have a tremendouseffect on the production of flagell<strong>in</strong> (Hag), thus they are <strong>in</strong>volved <strong>in</strong> thecontrol of motility. In contrast, cyclic d<strong>in</strong>ucleotides have no effect onbiofilm formation. This similarity of the phenotypes of the mutants hasnever been observed before and suggests a l<strong>in</strong>k between the signal<strong>in</strong>gpathways of the two cyclic signal<strong>in</strong>g molecules.Another unprecedented result of our studies is the essential function of B.subtilis for the formation of c-di-AMP. The genes encod<strong>in</strong>g the twovegetative diadenylate cyclases, DisA and CdaA, could be deleted onlywhen the sporulation-specific enzyme CdaS was artificially expressed <strong>in</strong>the logarithmic phase. Thus, our results <strong>in</strong>dicate a key role for cyclicd<strong>in</strong>ucleotide signal<strong>in</strong>g <strong>in</strong> B. subtilis.RSP035Role of alternative sigma factor PP4553 <strong>in</strong> stress response andbiofilm formation ofPseudomonas putidaKT2440B. Bugert*, J. OverhageKarlsruhe Institute of Technology - KIT, Institute of Functional Interfaces,Eggenste<strong>in</strong>-Leopoldshafen, GermanyPseudomonas putidais a Gram-negative, aerobic, flagellated and nonpathogenicsoil bacterium, which is well known for its extremelymetabolic versatility. Because of this, P. putidaoffers a considerablepotential for biotechnological applications. The remarkable versatility ofthis bacterium is at least <strong>in</strong> parts driven by sophisticated and coord<strong>in</strong>atedregulation of gene expression mediated by a repertoire of transcriptionalregulators, <strong>in</strong> particular the so called sigma factors. Sigma factors areessential for prokaryotic transcription <strong>in</strong>itiation and enable specific b<strong>in</strong>d<strong>in</strong>gof the RNA polymerase to the respective promoter recognition sites.Bacteria generally conta<strong>in</strong> one housekeep<strong>in</strong>g sigma factor and a pool ofalternative sigma factors which are activated <strong>in</strong> response to different andoften stressful conditions. The genome of P. putida exhibits with 24 astrik<strong>in</strong>g number of putative sigma factors, one of which is open read<strong>in</strong>gframe PP4553. To analyze this putative sigma factor <strong>in</strong> more detail, weconstructed a gene knock-out deletion mutant of PP4553 <strong>in</strong>P. putida KT2440. Further characterization of this PP4553-mutant revealeda twofold <strong>in</strong>crease <strong>in</strong> attachment as well as biofilm formation on abioticsurfaces <strong>in</strong> comparison to the wild type stra<strong>in</strong>. Moreover, growth analysesof wild type and PP4553-mutant stra<strong>in</strong> under different stressful conditionssuggested that PP4553 is also <strong>in</strong>volved <strong>in</strong> stress response ofP. putidaKT2440. To ga<strong>in</strong> a deeper <strong>in</strong>sight <strong>in</strong>to the regulatory circuit of the putativesigma factor PP4553, we performed transcriptome analysis us<strong>in</strong>g Illum<strong>in</strong>asequenc<strong>in</strong>g.RSP036Clon<strong>in</strong>g and heterologous expression of naphthoate-CoA ligasefrom the sulphate-reduc<strong>in</strong>g culture N47P. Tarouco* 1 , H. Mouttaki 1 , J. Kölschbach 1 , A. Geerlof 2 , R. Meckenstock 11 Helmholtz Zentrum München, Institute of Groundwater Ecology, Munich,Germany2 Helmholtz Zentrum München, Institute of Structural Biology, Munich,GermanyThe anaerobic metabolism of naphthalene by the sulphate-reduc<strong>in</strong>g cultureN47 is <strong>in</strong>itiated by carboxylation to 2- naphtoic acid. N47 is an enrichmentculture composed ma<strong>in</strong>ly of one member of the deltaProteobacteria. In cellextracts of this culture we have been able to measure a specific 2-naphthoate-CoA-ligase activity which is responsible for the activation ofthe carboxyl group with HS-CoA. Blast<strong>in</strong>g the am<strong>in</strong>o acid sequence ofbenzoate-CoA ligase of Rhodopseudomonas palustris[1] aga<strong>in</strong>st the N47genome were identified 9 putative 2-naphthoate-CoA ligase candidates.Here, we aim at the purification and characterization of the N47 2-naphthoate-CoA-ligase. The putative genes will be cloned and expressed<strong>in</strong>E. coli. Primers were designed to remove the native stop codon and toplace the gene of <strong>in</strong>terest <strong>in</strong> frame with an N-term<strong>in</strong>al His-tag of theexpression vector. The gene will be amplified and transferred <strong>in</strong>to anexpression system. Functional naphthoate-CoA ligase shall be purified viathe His-tag and characterized.1. Gibson J, Dispensa M, Fogg GC, Evans DT & Harwood CS. 4-Hydroxybenzoatecoenzyme Aligase fromRhodopseudomonas palustris: purification, gene sequence, and role <strong>in</strong> anaerobicdegradation.J Bacteriol.176(1994) 634-641.RSP037The sensor k<strong>in</strong>ase PA4398 of Pseudomonas aerug<strong>in</strong>osa PA14regulates swarm<strong>in</strong>g motility and biofilm formationJ. Strehmel*, J. OverhageKIT, Institute for Functional Interfaces, Eggenste<strong>in</strong>-Leopoldshafen,GermanyMulticellular behavior is an important process central to the pathogenesisof P. aerug<strong>in</strong>osa. In addition to biofilm formation, swarm<strong>in</strong>g motilityrepresents a second surface-associated community behavior of this humanpathogen. Recently, we have shown that swarm<strong>in</strong>g can be considered as adist<strong>in</strong>ct physiological state with a tailored metabolic lifestyle or a complexadaptation of P. aerug<strong>in</strong>osa <strong>in</strong> response to a viscous environment(arguably similar to the mucus rich CF lung) lead<strong>in</strong>g to <strong>in</strong>creased antibioticresistance and virulence gene expression. Dur<strong>in</strong>g an extensive mutantlibrary screen<strong>in</strong>g for swarm<strong>in</strong>g deficient mutants, we identified a twocomponentsensor k<strong>in</strong>ase transposon mutant (PA4398) <strong>in</strong> P. aerug<strong>in</strong>osaPA14 with defects <strong>in</strong> the ability to swarm on semisolid surfaces (1). Toanalyze the function of this sensor k<strong>in</strong>ase <strong>in</strong> more detail, we constructed aknock-out deletion mutant of PA4398 <strong>in</strong> P. aerug<strong>in</strong>osa PA14 andphenotypically characterized this sensor k<strong>in</strong>ase mutant. In addition to itsswarm<strong>in</strong>g defect, this mutant also exhibited a decreased production ofbiofilm mass <strong>in</strong> comparison to wildtype cells after 24 hours of growth. Incontrast, no differences regard<strong>in</strong>g growth rate, twitch<strong>in</strong>g and swimm<strong>in</strong>gmotility were observed. First prelim<strong>in</strong>ary microarray analysis revealed the<strong>in</strong>volvement of this sensor k<strong>in</strong>ase <strong>in</strong> the regulation of nitrogen and ironmetabolism.(1) Yeung AT et al., 2009. J. Bacteriol. 191:5592-602.RSP038Will not be presented!RSP039Explor<strong>in</strong>g subtil<strong>in</strong>/nis<strong>in</strong> hybrid-peptidesT. Spieß* 1 , B. Sattler 1 , K.-D. Entian 1,21 Goethe Universität Frankfurt, Institute of Molekular Biosiences, Frankfurt a.M., Germany2 Goethe Universität Frankfurt, Cluster of Excellence:MacromolecularComplexes, Frankfurt a. M., GermanyLantibiotics [1], such as subtil<strong>in</strong> and nis<strong>in</strong> are gene-encoded antimicrobialactive peptides [2]. These peptides are ribosomally synthesized by Bacillussubtilis and Lactococcus lactis, as <strong>in</strong>active prepeptides [1]. The <strong>in</strong>activeprepeptides undergo an extensive posttranslational modification togenerate active peptides [3, 4]. The posttranslational modifications result<strong>in</strong> the formation of non-prote<strong>in</strong>ogenic am<strong>in</strong>o acids lanthion<strong>in</strong>e and 3-methyllanthion<strong>in</strong>, as well as didehydroam<strong>in</strong>o acids. Nis<strong>in</strong> and subtil<strong>in</strong> havea similar lanthion<strong>in</strong> r<strong>in</strong>g structure and they differ <strong>in</strong> 14 am<strong>in</strong>o acids.Despite their structural similarity, they are highly specific for theirrespective auto<strong>in</strong>duction system. In the presence of extracellular subtil<strong>in</strong> ornis<strong>in</strong>, a two component system consistent of a histid<strong>in</strong>e k<strong>in</strong>ase and aresponse regulator <strong>in</strong>teracts with the respective lantibiotic. The histid<strong>in</strong>ek<strong>in</strong>ase is auto<strong>in</strong>duced <strong>in</strong> a quorum sens<strong>in</strong>g manner and phosphorylates theresponse regulator, which <strong>in</strong> turn <strong>in</strong>duces the expression of the lantibioticstructural gene, the genes of the lantibiotic biosynthesis mach<strong>in</strong>ery and theself immunity genes[5].So far the <strong>in</strong>teraction between subtil<strong>in</strong> or nis<strong>in</strong> with their correspond<strong>in</strong>ghistid<strong>in</strong>e k<strong>in</strong>ases has not been characterized. To identify the specificb<strong>in</strong>d<strong>in</strong>g motif of subtil<strong>in</strong> and nis<strong>in</strong>, a -galactosidase based reporter systemfor lantibiotic auto<strong>in</strong>duction was constructed. In addition, a plasmid basedexpression system was created, which enables the heterologous expressionof subtil<strong>in</strong>/nis<strong>in</strong> hybrid peptides. These hybrid molecules will be used toanalyse and optimize the lantibiotic properties with respect to the activity,stability and solubility. Additionally, these molecules will also identify thespecific b<strong>in</strong>d<strong>in</strong>g motif between the lantibiotic and its histid<strong>in</strong>e k<strong>in</strong>ase byvirtue of their specific auto<strong>in</strong>duction.1. Schnell, N., et al.,Prepeptide sequence of epiderm<strong>in</strong>, a ribosomally synthesized antibiotic withfour sulphide-r<strong>in</strong>gs.Nature, 1988.333(6170): p. 276-8.2. Chatterjee, C., et al.,Biosynthesis and mode of action of lantibiotics.Chem Rev, 2005.105(2): p.633-84.3. Siegers, K., S. He<strong>in</strong>zmann, and K.D. Entian,Biosynthesis of lantibiotic nis<strong>in</strong>. Posttranslationalmodification of its prepeptide occurs at a multimeric membrane-associated lanthion<strong>in</strong>e synthetasecomplex.J Biol Chem, 1996.271(21): p. 12294-301.4. Kiesau, P., et al.,Evidence for a multimeric subtil<strong>in</strong> synthetase complex.J Bacteriol, 1997.179(5):p. 1475-81.5. Kleerebezem, M.,Quorum sens<strong>in</strong>g control of lantibiotic production; nis<strong>in</strong> and subtil<strong>in</strong>autoregulate their own biosynthesis.Peptides, 2004.25(9): p. 1405-14.RSP040The phytochrome regulon of Pseudomonas aerug<strong>in</strong>osaS. He<strong>in</strong>e* 1 , K. Barkovits 1 , M. Sheer 2 , N. Frankenberg-D<strong>in</strong>kel 11 Ruhr-University Bochum, Physiology of Microorganisms, Bochum, Germany2 Technical University , Institue of Microbiology, Braunschweig, GermanyPhotoreceptors are able to sense light with specific wavelengths. One ofthe most familiar biliprote<strong>in</strong>s are red/far-red light sens<strong>in</strong>g phytochromes.BIOspektrum | Tagungsband <strong>2012</strong>


203First they were discovered <strong>in</strong> plants, but later were also described <strong>in</strong> fungi,cyanobacteria and other prokaryotes. In plants, phytochromes control awide variety of developmental processes, while their function <strong>in</strong>prokaryotes is widely unknown. Most bacterial phytochromes conta<strong>in</strong> ahistd<strong>in</strong>e-k<strong>in</strong>ase doma<strong>in</strong> suggest<strong>in</strong>g that signal transduction occurs via atwo-component regulatory system.Pseudomonas aerug<strong>in</strong>osais one of thefirst heterotrophic bacteria <strong>in</strong> which a phytochrome has been identified.With the two genes bphO and bphP P. aerug<strong>in</strong>osa possesses the twonecessary components to assemble a red-light photoreceptor system:bphOcodes for the heme oxygenase to generate the chromophore biliverd<strong>in</strong> IXand bphP,encod<strong>in</strong>g the apo-phytochrome. So far, no correspond<strong>in</strong>gphytochrome response regulator has been identified yet.bphO and bphP form a bicistronic operon whose expression is controlledby the alternative sigma factor RpoS. New analyses provide an additionalregulation of bphP by the quorum sens<strong>in</strong>g-regulator LasR.This exceptionalregulation is currently addressed to study <strong>in</strong> more detail. To <strong>in</strong>vestigate thefunction of bphO and bphP chromosomal knock-out mutants wereconstructed and analysed. However, no significant phenotypical differencebetween the mutants and wild type were observed. A comb<strong>in</strong>ation ofexpression profile experiments and proteome analyses revealed a l<strong>in</strong>k to abphP-mediated stress response. The most downregulated genes are used <strong>in</strong>a genetic screen to identify the correspond<strong>in</strong>g response regulator of BphPto ga<strong>in</strong> further <strong>in</strong>sight <strong>in</strong>to the function of the phytochrome <strong>in</strong>P.aerug<strong>in</strong>osa and the components of its regulon. In addition someproteome phosphorylation studies will be presented.RSP041A heme-based redox sensor <strong>in</strong> the methanogenic archaeonMethanosarc<strong>in</strong>a acetivoransB. Molitor* 1 , M. Staßen 2 , M. Rother 2 , N. Frankenberg-D<strong>in</strong>kel 11 Ruhr University Bochum, Physiology of Microorganisms, Bochum, Germany2 TU Dresden, Institute for Microbiology, Dresden, GermanyBased on a bio<strong>in</strong>formatics study, the prote<strong>in</strong> MA4561 fromMethanosarc<strong>in</strong>a acetivorans was orig<strong>in</strong>ally predicted to be aphytochrome-like prote<strong>in</strong> [1]. Phytochromes are red light sens<strong>in</strong>gphotoreceptors with a bound l<strong>in</strong>ear tetrapyrrole chromophore at aconserved cyste<strong>in</strong>e residue <strong>in</strong> either a PAS or a GAF doma<strong>in</strong>. MA4561consists of two alternat<strong>in</strong>g PAS and GAF doma<strong>in</strong>s fused to a C-term<strong>in</strong>alk<strong>in</strong>ase doma<strong>in</strong>.While we were able to show that recomb<strong>in</strong>antly produced and purifiedprote<strong>in</strong> does not b<strong>in</strong>d any l<strong>in</strong>ear tetrapyrrole chromophores, UV-visspectroscopy revealed the presence of a heme tetrapyrrole cofactor. Incontrast to many other known heme-conta<strong>in</strong><strong>in</strong>g prote<strong>in</strong>s, the heme wasfound to be covalently bound via one v<strong>in</strong>yl side cha<strong>in</strong> to cyste<strong>in</strong>e 656 <strong>in</strong>the second GAF doma<strong>in</strong>. This GAF doma<strong>in</strong> by itself is sufficient forcovalent attachment. The heme cofactor is redox active and is able tocoord<strong>in</strong>ate carbon monoxide <strong>in</strong> its reduced state. Interest<strong>in</strong>gly, the redoxstate of the heme cofactor has a strong <strong>in</strong>fluence on autophosphorylationactivity. While reduced and CO-bound prote<strong>in</strong> does not autophosphorylate,the oxidized prote<strong>in</strong> gives a strong autophosphorylation signal. Twodimensionalth<strong>in</strong>-layer chromatography identified ser<strong>in</strong>e and tyros<strong>in</strong>eresidues as phosphorylation sites.Based on its genomic localization, MA4561 is most likely a sensor k<strong>in</strong>aseof a two-component system. The transcriptional regulator MA4560 (MsrG)encoded downstream of MA4561is directly <strong>in</strong>volved <strong>in</strong> transcriptionalactivation ofmtsH, which encodes a methyltransferase/corr<strong>in</strong>oid fusionprote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> methylsulfide metabolism [2, 3]. On the basis of ourresults a model <strong>in</strong> which MA4561 acts as a heme-based redox sensor ispresented.[1] Karniol, B. et al.,Biochem J(2005)392(1), 103-116[2] Bose, A.et al.,Mol Microbiol (2009)74(1), 227-238[3] Oelgeschläger, E., and Rother, M., Mol Microbiol (2009) 72(5), 1260-1272RSP042Functional Analysis of Additional Circadian Clock Prote<strong>in</strong>s <strong>in</strong>Synechocystissp. PCC 6803H.-T. De<strong>in</strong>zer*, J. Holtzendorff, A. Wilde, A.K. BäckerUni Giessen, Mikrobiology, Giessen, GermanyCircadian rhythms, oscillations with approximately 24 h periods driv<strong>in</strong>gmany physiological activities, are found <strong>in</strong> most eukaryotes. Amongprokaryotes, exclusively cyanobacteria are known to harbour an <strong>in</strong>ternalclock. Work on the model stra<strong>in</strong> for the circadian clock, Synechococcuselongatus PCC 7942 has shown that the <strong>in</strong>teraction of only 3 prote<strong>in</strong>s,KaiA, KaiB and KaiC encoded by the kaiABC gene cluster is essential forthe generation of circadian rhythms of gene expression. The tim<strong>in</strong>g processitself is based on rhythmic changes <strong>in</strong> the autophosphatase-, autok<strong>in</strong>aseandATPase- activity of the hexameric KaiC prote<strong>in</strong>.A few cyanobacteria show variations among their circadian clock genecomposition, such as the loss of kaiA <strong>in</strong> the case of Prochlorococcus. Incontrast, the genome of Synechocystissp. PCC 6803 holds an additionalkaiC2B2 operon and two orphan kaiB3 and kaiC3 genes <strong>in</strong> addition to thekaiABC gene cluster. We are currently <strong>in</strong>vestigat<strong>in</strong>g the function of theseadditional kai genes.Analysis of Synechocystis kai mutants <strong>in</strong>dicates that kaiC2 is an essentialgene. Knockdown mutants of the kaiC2B2 operon display a bleachedphenotype. Biochemical characterization of purified KaiC2 prote<strong>in</strong>suggests that it possesses k<strong>in</strong>ase activity and might <strong>in</strong>teract withcomponents of the phycobilisome as well as with the transcriptionmach<strong>in</strong>ery. Further biochemical characterization will yield <strong>in</strong>sights <strong>in</strong>toKai prote<strong>in</strong> complex formation, as well as ATPase activity andphosphorylation cycles of the three different KaiC prote<strong>in</strong>s fromSynechocystis.RSP043Model of the synthesis of trisporic acid <strong>in</strong> Mucorales show<strong>in</strong>gbistabilityS. Werner 1 , A. Schroeter 1 , C. Schimek 2 , J. Wöstemeyer 2 , S. Schuster* 11 University of Jena, Dept. of Bio<strong>in</strong>formatics, Jena, Germany2 University of Jena, Institute of General Microbiology and MicrobialGenetics, Jena, GermanyAn important substance <strong>in</strong> the signal<strong>in</strong>g between <strong>in</strong>dividuals of Mucor-likefungi is trisporic acid (TA). This compound, as well as some of itsprecursors, serves as a pheromone <strong>in</strong> mat<strong>in</strong>g between (+)- and (-)-mat<strong>in</strong>gtypes. Moreover, <strong>in</strong>termediates of the TA pathway are exchanged betweenthe two mat<strong>in</strong>g partners. Here, we present mathematical modelsof the synthesis pathways of TA <strong>in</strong> the two mat<strong>in</strong>g types of an idealizedMucor-fungus, based on differential equations. These models <strong>in</strong>clude thepositive feedback of TA on its own synthesis. We compare three submodels<strong>in</strong> view of bistability, robustness and the reversibility oftransitions. Our modell<strong>in</strong>g study showed that, <strong>in</strong> a system where<strong>in</strong>termediatesare exchanged, a reversible transition between the two stable steady statesoccurs, while an exchange of the end product leads to an irreversibletransition. The reversible transition is physiologically favoured, becausethe high-production state of TA must come to an end eventually.Moreover, the exchange of <strong>in</strong>termediates and TA is compared with the 3-way handshake widely used by computers l<strong>in</strong>ked <strong>in</strong> a network.RSP044Cyste<strong>in</strong>e formation with Corynebacterium glutamicum and<strong>in</strong>tracellular sens<strong>in</strong>g of O-acetyl-ser<strong>in</strong>eK. Hoffmann*, M. Bott, L. Eggel<strong>in</strong>gFZ Jülich GmbH, Institute of Bio- and Geosciences, IBG I: Biotechnology,Jülich, GermanyWe succeeded to eng<strong>in</strong>eer Corynebacterium glutamicum <strong>in</strong>to a superior L-ser<strong>in</strong>e produc<strong>in</strong>g microorganism. L-Ser<strong>in</strong>e is a precurser of L-cyste<strong>in</strong>e andboth am<strong>in</strong>o acids are required for pharmaceutical purposes. Consequently,it is of <strong>in</strong>terest to study the two step conversion of L-ser<strong>in</strong>e to L-cyste<strong>in</strong>emediated by ser<strong>in</strong>e acetyltransferase (SAT, cysE) and O-acetylser<strong>in</strong>esulfhydrylase (OASS, cysK). The L-cyste<strong>in</strong>e synthesis <strong>in</strong>volves the<strong>in</strong>termediate O-acetyl-ser<strong>in</strong>e (OAS) which is demonstrated to <strong>in</strong>teract <strong>in</strong>vitro with the transcriptional regulator CysR. We fused the CysR targetcysI to EYFP to construct pSenOAS. Presence of pSenOAS resulted <strong>in</strong><strong>in</strong>creased fluorescence of cultures with elevated OAS levels, illustrat<strong>in</strong>gthat <strong>in</strong> vivo OAS <strong>in</strong>teracts with CysR to cause <strong>in</strong>creased cysI transcription.The system established allows the detection of cells with elevated OASlevels at the s<strong>in</strong>gle cell-level and the differentiation and sort<strong>in</strong>g of s<strong>in</strong>glecells accord<strong>in</strong>g to their cytosolic OAS concentration via FACS(Fluorescence Activated Cell Sort<strong>in</strong>g).The L-ser<strong>in</strong>e producer accumulated already 1 mM L-cyste<strong>in</strong>e. Uponoverexpression of cysE 5.8 mM L-cyste<strong>in</strong>e accumulated, and upon thecomb<strong>in</strong>ed expression of cysE plus cysK 7.3 mM L-cyste<strong>in</strong>e was found. Thework illustrates that C. glutamicum is a promis<strong>in</strong>g candidate for theoverproduction of L-cyste<strong>in</strong>e, and that FACS selection is a tool for furtherstra<strong>in</strong> development.RSP045Identification of the target promoters of Qdr1 and Qdr2, twotranscriptional regulators of 2-methylqu<strong>in</strong>ol<strong>in</strong>e degradationby Arthrobacter nitroguajacolicus Rü61aH. Niewerth*, S. FetznerWestfälische Wilhelms-Universität Münster, Institut für MolekulareMikrobiologie und Biotechnologie, Münster, GermanyArthrobacter nitroguajacolicus Rü61a is a Gram-positive soil bacteriumwhich is able to utilize 2-methylqu<strong>in</strong>ol<strong>in</strong>e as source of carbon and energy.The genes that are required for the conversion of 2-methylqu<strong>in</strong>ol<strong>in</strong>e toanthranilate are clustered <strong>in</strong> two divergently oriented “upper pathway”operons (pAL1.003-006 and pAL1.007-011). A third operon (pAL1.019-023) codes for enzymes <strong>in</strong>volved <strong>in</strong> anthranilate degradation via coenzymeBIOspektrum | Tagungsband <strong>2012</strong>


204A (CoA)-thioester <strong>in</strong>termediates. All three operons are located on thel<strong>in</strong>ear 113 kbp plasmid pAL1 [1].The DNA region compris<strong>in</strong>g the catabolic operons also conta<strong>in</strong>s twogenes, qdr1 (qu<strong>in</strong>ald<strong>in</strong>e degradation repressor) (pAL1.016) and qdr2(pAL1.024), which code for prote<strong>in</strong>s similar to PaaX, a GntR familytranscriptional regulator. This family conta<strong>in</strong>s more than 250 memberswhich recognize highly diverse pal<strong>in</strong>dromic operator regions [2]. PaaX isthe ma<strong>in</strong> regulator of the phenylacetate catabolon of Escherichia coli [3]and Pseudomonas putida [4] and acts as transcriptional repressor <strong>in</strong> theabsence of its specific effector phenylacetyl-CoA.Electrophoretic mobility shift assays (EMSA) with recomb<strong>in</strong>ant Qdr1 andQdr2 showed that both regulators b<strong>in</strong>d specifically to the promoter regionsof the catabolic operons, and revealed that the dissociation of Qdr-DNAcomplexes is mediated by anthraniloyl-CoA, i.e., a very late <strong>in</strong>termediateof 2-methylqu<strong>in</strong>ol<strong>in</strong>e degradation. Interest<strong>in</strong>gly, Qdr2 also retards themigration of qdr1 and qdr2 promoter fragments. Analysis of the promoterregion of the operon compris<strong>in</strong>g pAL1.007-011 by EMSA with differentcompetitor DNA fragments enabled us to narrow down the recognition siteof Qdr2 to a 40 nt region. However, consensus sequences for PaaX-like orother GntR regulators as reported by Rigali et al. [2] were not evident.The differential roles of Qdr1 and Qdr2 <strong>in</strong> the regulation of the 2-methylqu<strong>in</strong>ol<strong>in</strong>e degradation pathway of A. nitroguajacolicus Rü61a arenot yet fully understood. Particularly the presumed auto- and/or reciprocalregulation of the qdr genes by their own gene products requires further<strong>in</strong>vestigations. For this purpose the <strong>in</strong>teractions between Qdr1 and Qdr2and all promoter regions are currently be<strong>in</strong>g studied by EMSA, antibodysupershift analysis and exonuclease III footpr<strong>in</strong>t<strong>in</strong>g.[1] Parschat K, Overhage J, Strittmatter A, Henne A, Gottschalk G, Fetzner S (2007) J. Bacteriol. 189:3855-3867[2] Rigali S, Derouaux A, Giannotta F, Dusart J (2002) J. Biol. Chem. 277:12507-12515[3] Ferrandez A, Garcia JL, Prieto MA (2000) J. Biol. Chem. 275:12214-12222[4] Garcia B, Olivera ER, M<strong>in</strong>ambres B, Carnicero D, Muniz C, Naharro G, Luengo JM (2000) Appl.Environ. Microbiol. 66:4575-4578RSP046The redox sensor Rex controls product formation <strong>in</strong>Clostridium acetobutylicumM. Wietzke*, H. BahlUniversity of Rostock, University of Rostock, Rostock, GermanyThe anaerobic bacterium Clostridium acetobutylicum is well known for itsbiphasic fermentation metabolism. The exponential growth ischaracterized by acetic and butyric acid formation and dur<strong>in</strong>g thestationary phase the solvents acetone, butanol and ethanol are the ma<strong>in</strong>products. However, very little is known about regulatory and molecularmechanisms controll<strong>in</strong>g the carbon and electron flow dur<strong>in</strong>g the metabolicshift. The sens<strong>in</strong>g of the redox status of the cell is expected to play animportant role with<strong>in</strong> this regulatory network.The genome of Clostridiumacetobutylicum encodes the prote<strong>in</strong> Cac2713, which is annotated as “redoxsens<strong>in</strong>g transcriptional repressor Rex“. The deduced am<strong>in</strong>o acid sequenceof Rex shows a high similarity to well-known NADH/NAD + redoxregulators. To analyze the function of Rex <strong>in</strong> C. acetobutylicum, a Rexnegative mutant of C. acetobutylicum was constructed by <strong>in</strong>sertional<strong>in</strong>activation of the gene. The mutant exhibited an <strong>in</strong>terest<strong>in</strong>g phenotype. Inbatch culture this stra<strong>in</strong> produced high amounts of ethanol and butanolproduction started earlier at higher pH-value compared to the parentalstra<strong>in</strong>. The production of butyric acid and acetone was significantlyreduced. In agreement with the physiological data the genes of severaldehydrogenases, <strong>in</strong>clud<strong>in</strong>g the bifunctional aldehyde/alcoholdehydrogenase AdhE2 (Cap0035) were upregulated as shown by Northernblot analysis. Furthermore, the purified Rex prote<strong>in</strong> was able to b<strong>in</strong>d toputative Rex boxes <strong>in</strong> front of these genes.We concluded that Rex plays an important role <strong>in</strong> product formation bysens<strong>in</strong>g the redox status of the cell and adjust<strong>in</strong>g the metabolic fluxaccord<strong>in</strong>gly.RSP047The impact of the str<strong>in</strong>gent response on rRNA transcription <strong>in</strong>Staphylococcus aureusB. Kästle*, T. Geiger, R. Reis<strong>in</strong>ger, C. Goerke, C. WolzInterfaculty Institute for Microbiology and Infection Medic<strong>in</strong>e, MedicalMicrobiology, Tüb<strong>in</strong>gen, GermanyThe str<strong>in</strong>gent response is a conserved regulatory system present <strong>in</strong> almostall bacterial species. Nutrient limitation provokes the synthesis of(p)ppGpp. The mechanisms by which these molecules result <strong>in</strong> theprofound reprogramm<strong>in</strong>g of the cell physiology are still much debated.The most conserved feature of the str<strong>in</strong>gent control, namely downregulationof rRNA synthesis, seems to be regulated by fundamentallydifferent mechanisms dependent on the organisms analysed. For Bacillussubtilis it was proposed that a lower<strong>in</strong>g of the <strong>in</strong>tracellular GTP pool leadsto transcriptional <strong>in</strong>activation of the rRNA operons, which are <strong>in</strong>itiated byiGTP. In Staphylococcus aureus three (p)ppGpp synthetases (RSH, RelPand RelQ) are present. We have constructed <strong>in</strong>-frame deletion mutants <strong>in</strong>rsh, relP and relQ as well as a double and a triple mutant. The (p)ppGppsynthesis provoked by am<strong>in</strong>o acid deprivation is accompanied by a drop ofthe GTP pool. To analyse rRNA regulation <strong>in</strong> S. aureus we firstdeterm<strong>in</strong>ed the transcriptional start sites of the rrn1 operon by RACE(rapid amplification of cDNA ends). The ma<strong>in</strong> promoter <strong>in</strong>itiates with aniGTP (P1), the other with an iTTP (P2). For measurement of promoteractivity we cloned the s<strong>in</strong>gle promoters (P1, P2) of the rrn1 operon <strong>in</strong> frontof a truncated gfp gene and <strong>in</strong>tegrated these constructs <strong>in</strong>to thechromosome. Rrn1 transcription was assessed <strong>in</strong> the WT and <strong>in</strong> the(p)ppGpp synthetase mutants under different conditions. Analysis of thes<strong>in</strong>gle promoters revealed that: I) In the WT both the P1 and P2 promotersare clearly down-regulated with<strong>in</strong> 1 h of am<strong>in</strong>o acid deprivation. II) Thisdown-regulation is RSH-dependent, s<strong>in</strong>ce <strong>in</strong> the rsh mutant the P1 and P2orig<strong>in</strong>at<strong>in</strong>g transcripts are even up-regulated under str<strong>in</strong>gent conditions.III) Such an effect was not observed us<strong>in</strong>g a control promoter driv<strong>in</strong>g thetwo-component system saeRS and <strong>in</strong>itiat<strong>in</strong>g with iATP. Thus, both rrn1promoters are specifically down-regulated <strong>in</strong> a RSH-dependent manner. Inconclusion, s<strong>in</strong>ce only one of them <strong>in</strong>itiates with an iGTP, the lower<strong>in</strong>g ofthe GTP pool can only partially expla<strong>in</strong> the RSH-dependent downregulationof rRNA synthesis <strong>in</strong> the human pathogen S. aureus.RSP048A deep sequenc<strong>in</strong>g approach to identify sRNAs <strong>in</strong>Streptomyces coelicolorM. Statt*, B. Suess, M. Vockenhuber, N. Heueis, S. DietzUniversität Frankfurt, Institut für molekulare Biowissenschaften,Frankfurt am Ma<strong>in</strong>, GermanyLatest studies have revealed that bacteria encode a wide range of smallnoncod<strong>in</strong>g RNAs (sRNAs) and more and more are be<strong>in</strong>g discovered. Thefunction of most of these sRNAs is still unclear though they are<strong>in</strong>creas<strong>in</strong>gly recognized as important regulators <strong>in</strong> bacteria. In the majorityof cases they act as antisense riboregulators at the post-transcriptionallevel. They are usually encoded <strong>in</strong> the <strong>in</strong>tergenic regions of the genomeand their expression pattern is often l<strong>in</strong>ked to different po<strong>in</strong>ts <strong>in</strong> timedur<strong>in</strong>g development or to specific stress conditions.We were <strong>in</strong>terested <strong>in</strong> sRNAs of Streptomyces coelicolor.Streptomycetesare filamentous Gram + bacteria with a high G+C contentwhich produce a large variety of secondary metabolites, especiallyantibiotics.We took an RNomics approach to identify sRNAs <strong>in</strong> S. coelicolor. Weisolated total RNA and performed deep sequenc<strong>in</strong>g us<strong>in</strong>g the 454technology. RNA was prepared from bacteriagrown <strong>in</strong> rich media tostationary phase. We obta<strong>in</strong>ed 58,000 reads from the sequenc<strong>in</strong>g andcompared them to the S. coelicolor genome. After bio<strong>in</strong>formatic analysis,we obta<strong>in</strong>ed 63 candidates with a length from 82-494 nt. In addition, wewere able to detect 192 transcriptional start sites.We selected 24 <strong>in</strong>terest<strong>in</strong>g candidates, which are located <strong>in</strong> <strong>in</strong>tergenicregions of the genome and are at least 80 nt <strong>in</strong> length and highly expressed,for further experiments. The expression of the putative sRNAs wasvalidated by Northern Blot.We will present data of sRNA candidates which show a growth phasedependent expression. We now <strong>in</strong>tend to identify their targets by analyz<strong>in</strong>gknock down and overexpression mutants.Vockenhuber MP., Scharma CM., Statt MG., Schmidt D., Xu Z., Dietrich S., Liesegang H.,Mathews DH., Suess B. (2011) Deep sequenc<strong>in</strong>g-based identification of small non-cod<strong>in</strong>g RNAs<strong>in</strong>Streptomyces coelicolor.RNA Biol.,1; 8(3).RSP049The <strong>in</strong>teraction of transcription factor TnrA with glutam<strong>in</strong>esynthetase and PII-like prote<strong>in</strong> GlnKK. Fedorova* 1 , A. Kayumov 1 , K. Forchhammer 21 Kazan (Volga Region) Federal University, Microbiology, Kazan, RussianFederation2 Eberhard-Karls-Universität Tüb<strong>in</strong>gen, Interfaculty Institute of Microbiologyand Infection Medic<strong>in</strong>e, Tüb<strong>in</strong>gen, GermanyTnrA is the major transcription factor <strong>in</strong> Bacillus subtilis that controls geneexpression <strong>in</strong> response to nitrogen availability [Wray et al., 2001]. Whenthe preferred nitrogen source is <strong>in</strong> excess, feedback-<strong>in</strong>hibited glutam<strong>in</strong>esynthetase (GS) was earlier shown to b<strong>in</strong>d TnrA and disable its activity.Dur<strong>in</strong>g nitrogen-limited growth TnrA is fully membrane bound via anAmtB-GlnK complex [He<strong>in</strong>rich et al., 2006]. The complete removal ofnitrate from the medium leads to rapid degradation of TnrA <strong>in</strong> wild-typecells. We suppose that b<strong>in</strong>d<strong>in</strong>g of TnrA to GlnK or GS is required for bothregulation of TnrA activity and its protection from proteolysis.In the AmtB- or GlnK-deficient stra<strong>in</strong>s, TnrA is present <strong>in</strong> a soluble state<strong>in</strong> cytoplasm and does not degrade <strong>in</strong> response to nitrate depletion. Wehave found that TnrA forms either a stable soluble complex with GlnK <strong>in</strong>the absence of AmtB or constitutively b<strong>in</strong>ds to GS <strong>in</strong> the absence of GlnK,and is protected thereby from proteolysis. It was shown previously that theTnrA C-term<strong>in</strong>us is responsible for <strong>in</strong>teractions with (GS) [Wray et al.,2007]. To check whether the C-term<strong>in</strong>us of TnrA is also required for<strong>in</strong>teraction with GlnK, various truncations of N-term<strong>in</strong>ally His 6-taggedTnrA (lack<strong>in</strong>g 6, 20 and 35 am<strong>in</strong>o acids from C-term<strong>in</strong>us) wereBIOspektrum | Tagungsband <strong>2012</strong>


205constructed and overexpressed <strong>in</strong> E.coli cells. By pull-down analysis it wasestablished that deletion of already 6 C-term<strong>in</strong>al am<strong>in</strong>o acids abrogate GSb<strong>in</strong>d<strong>in</strong>g. The region between 20 and 35 am<strong>in</strong>o acids from the C-term<strong>in</strong>us isrequired for GlnK <strong>in</strong>teraction as well as for proteolysis of TnrA. Thesedata confirm that the <strong>in</strong>teraction of GS or GlnK with TnrA protects it fromdegradation. Alternatively, if ammonium was added to nitrogen starvedcells, TnrA dissociates from GlnK and b<strong>in</strong>ds to GS. Interaction of TnrAwith GS <strong>in</strong>activates the transcription factor. Conversely, TnrA <strong>in</strong>hibits theGS activity; TnrA represses <strong>in</strong> vitro the biosynthetic activity of GS,<strong>in</strong>dependently of the presence of AMP or glutam<strong>in</strong>e.This work was supported by the Russian-German program ‘MichailLomonosov’ A/10/73337 and A/10/74537.RSP050Cross-<strong>in</strong>teractions between two-component signal transductionsystems <strong>in</strong> E. coliE. Sommer*, A. Müller, V. SourjikUniversität Heidelberg, Zentrum für Molekulare Biologie Heidelberg,Heidelberg, GermanyMicroorganisms commonly use ‘two-component’ signal<strong>in</strong>g systems forsens<strong>in</strong>g environmental conditions. Prototypical two-component systemsare comprised of a sensory histid<strong>in</strong>e k<strong>in</strong>ase and a response regulatorprote<strong>in</strong> that is phosphorylated by the k<strong>in</strong>ase. The regulator typically acts asa transcription factor regulat<strong>in</strong>g gene expression. Apart from a few studiesperformed <strong>in</strong> vitro, the signal<strong>in</strong>g properties of a whole prokaryotic twocomponentnetwork <strong>in</strong> vivo rema<strong>in</strong>s largely unclear. We use a system levelapproach to characterize the <strong>in</strong>teractions between sensors, regulators andpromotors <strong>in</strong> the model bacterium Escherichia coli on different levels,us<strong>in</strong>g <strong>in</strong> vivo fluorescence resonance energy transfer (FRET) microscopyand flow cytometry. We measure a set of labelled sensor dimers andsensor-regulator comb<strong>in</strong>ations at physiological expression levels anddescribe quantitatively their <strong>in</strong>teraction strength and k<strong>in</strong>etics us<strong>in</strong>g FRET.Additionally, we identify mixed complexes between different sensors andnon-cognate sensor-regulator pairs exhibit<strong>in</strong>g <strong>in</strong> vivo <strong>in</strong>teractions. Thesef<strong>in</strong>d<strong>in</strong>gs <strong>in</strong>dicate possible <strong>in</strong>terconnections between different signal<strong>in</strong>gpathways. We demonstrate that <strong>in</strong> some of the cases <strong>in</strong>teractions aresensitive to specific stimulation, suggest<strong>in</strong>g that changes <strong>in</strong> prote<strong>in</strong>arrangement play a role <strong>in</strong> signal process<strong>in</strong>g. Us<strong>in</strong>g flow cytometry andtranscriptional reporters, we further observe several cases where sensorshave an effect on non-cognate promotor regulation, <strong>in</strong>dicat<strong>in</strong>g thephysiological relevance of the identified <strong>in</strong>terconnections betweendifferent signal transduction pathways. Our results should help to establishan <strong>in</strong>tegral picture of cell signall<strong>in</strong>g, which is of general importance fors<strong>in</strong>gle cellular organisms.RSP051SyR1 - a sRNA regulat<strong>in</strong>g photosynthesis <strong>in</strong> cyanobacteria*N. Schürgers 1 , E. Kutchm<strong>in</strong>a 1 , D. Dienst 2 , J. Georg 3 , W. Hess 3 , A. Wilde 11 JLU Giessen, Molekular & Mikrobiologie, AG Wilde, Giessen, Germany2 Humboldt Universität, Genetics, Berl<strong>in</strong>, Germany3 Universität Freiburg, Genetics, Freiburg, GermanyPost-transcriptional gene regulation by trans encoded small RNAs (sRNA)emerges as an regulatory feature common to most prokaryotes. Recently,biocomputational prediction [1], comparative transcriptional analysis [2]and high throughput pyrosequenc<strong>in</strong>g of Synechocystis sp. PCC6803 [3]revealed the existence of many new sRNAs <strong>in</strong> this cyanobacterial modelorganism. One of these candidates is the strongly accumulat<strong>in</strong>g sRNASyR1 (Synechocystis ncRNA 1), which is a 130nt long transcript from the<strong>in</strong>tergenic region between the fabX and hoH genes. More detailed<strong>in</strong>vestigation on SyR1 showed that this sRNA is upregulated under highlightstress and CO2 depletion [2] and that a stra<strong>in</strong> overexpress<strong>in</strong>g Syr1exhibits a bleach<strong>in</strong>g-phenotype lack<strong>in</strong>g photosynthetic pigments. Ahomology search revealed SyR1 candidates <strong>in</strong> other cyanobacteria while abio<strong>in</strong>formatical target prediction implies that the predom<strong>in</strong>ant <strong>in</strong>teractionsite, which is also the most conserved sequence element of SyR1,potentially b<strong>in</strong>ds to the transcripts of photosynthesis genes. Moreover, gelmobility shift assays provide evidence for a direct <strong>in</strong>teraction betweenSyR1 and psaL and ongo<strong>in</strong>g mutational analysis of the putative SyR1b<strong>in</strong>d<strong>in</strong>g site aims to verify the post-transcriptional regulation of this targetgene. Furthermore, prelim<strong>in</strong>ary results <strong>in</strong>dicate that long-term SyR1overexpression leads to a down-regulation of genes <strong>in</strong>volved <strong>in</strong> the highaff<strong>in</strong>ityuptake of <strong>in</strong>organic carbon (Ci) while the aeration of cultures with5% CO2 quickly abolishes SyR1 accumulation <strong>in</strong> the overexpression stra<strong>in</strong>and complements the bleach<strong>in</strong>g-phenotype. For these f<strong>in</strong>d<strong>in</strong>gs wespeculate that SyR1-dependent gene regulation affects photosystembiosynthesis and homeostasis and possibly <strong>in</strong>tegrates light and Cisignal<strong>in</strong>gpathways.[1] Voss B, Georg J, Schön V, Ude S, Hess WR (2009) Biocomputational prediction of non-cod<strong>in</strong>gRNAs <strong>in</strong> model cyanobacteria. BMC Genomics 10:123[2] Georg J, Voss B, Scholz I, Mitschke J, Wilde A, Hess WR (2009) Evidence for a major role ofantisense RNAs <strong>in</strong> cyanobacterial gene regulation. Mol Syst Biol 5:305.[3] Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D, Bantscheff J, Voß B, Steglich C, Wilde A,Vogel J,Hess WR (2011) An experimentally anchored map of transcriptional start sites <strong>in</strong> the modelcyanobacterium Synechocystis sp. PCC6803. PNAS 1015154108v1-201015154RSP052Utilization of metabolic regulation for the production ofheterologous prote<strong>in</strong>s <strong>in</strong> Burkholderia glumaeA. Knapp* 1 , A. Pelzer 1 , R. Hahn 1 , F. Rosenau 2 , S. Wilhelm 1 , K.-E. Jaeger 11 Institute for Molecular Enzyme Technology, He<strong>in</strong>rich-He<strong>in</strong>e-UniversityDuesseldorf, Juelich, Germany2 Institute of Pharmaceutical Biotechnology, Ulm University, Ulm, GermanyBurkholderia glumae is a Gram-negative proteobacteria. Although <strong>in</strong>itiallyproposed to be part of the Pseudomonas genus, this stra<strong>in</strong> was transferredalong with others like Pseudomonas cepacia and Pseudomonas gladioli tothe new genus Burkholderia. S<strong>in</strong>ce the rice pathogen B. glumae is nonhumanpathogenic and therefore classified as S1-organism, it could beused as model organism for related pathogenic bacteria like Pseudomonasaerug<strong>in</strong>osa.Due to its relevancy for agriculture, most of the scientific <strong>in</strong>vestigationswith regard to B. glumae focused on the mechanisms the ricepathogenicityis based on. Besides, B. glumae has an <strong>in</strong>terest<strong>in</strong>g <strong>in</strong>dustrialapplication range: The BASF company has developed B. glumae byclassical stra<strong>in</strong> improvement as a lipase over-production stra<strong>in</strong> 1,2 . Thus,there is the possibility to produce large amounts of functional enzyme andwe want to ga<strong>in</strong> access to this production capacity for heterologous prote<strong>in</strong>production by establish<strong>in</strong>g B. glumae as a novel expression stra<strong>in</strong>.Expression systems based on the T7-Polymerase are able to produce largeamounts of prote<strong>in</strong>s, for example <strong>in</strong> E. coli, but lead <strong>in</strong> some cases to<strong>in</strong>active enzymes accumulated <strong>in</strong> <strong>in</strong>clusion bodies. Here, posttranslationalmodification, fold<strong>in</strong>g, and secretion of prote<strong>in</strong>s may be crucial steps <strong>in</strong>successful production of prote<strong>in</strong>s and active enzymes. We want to avoidthese problems by <strong>in</strong>duc<strong>in</strong>g the T7-Polymerase expression at a time B.glumae is able to handle large amounts of produced prote<strong>in</strong>s, like itslipase. Therefore, we have created an expression stra<strong>in</strong> which exhibits alipase promoter controlled T7-Polymerase gene. The transcription of genesdownstream this lipase promoter can be <strong>in</strong>duced for example by olive oil 3 .S<strong>in</strong>ce we have shown that the lipase promoter is controllable and <strong>in</strong>ducibleby the choice of additional carbon sources <strong>in</strong> the culture medium, we havealso constructed a vector-based expression system for B. glumaeconta<strong>in</strong><strong>in</strong>g a lipase promoter. The production capacity and prevention of<strong>in</strong>clusion bodies for difficult-to-express genes will be determ<strong>in</strong>ed <strong>in</strong> furtherstudies.1: Braatz, R., Kurth, R., Menkel-Conen, E., Rettenmaier, H., Friedrich, T. and Subkowski, T., WO9300924 A1 (23.06.92). Chem. Abstr. 118 (1993): 175893.2: Balkenhohl, F., Ditrich, K., Hauer, B. and Ladner, W. (1997). Optisch aktive Am<strong>in</strong>e durchLipase-katalysierte Methoxyacetylierung. J. Prakt. Chem. 339: 381-384.3: Boekema, B. K. H. L., Besel<strong>in</strong>, A., Breuer, M., Hauer, B., Koster, M., Rosenau, F., Jaeger, K.-E.and Tommassen, J. (2007). Hexadecane and Tween 80 stimulate lipase production <strong>in</strong> Burkholderiaglumae by different mechanisms. Appl. Environ. Microbiol. 73: 3838-3844RSP053An expression system for the W-conta<strong>in</strong><strong>in</strong>g class II benzoylcoenzymeA reductases <strong>in</strong> Geobacter metallireducensS. Huwiler*, J. Oberender, J. Kung, M. BollUniversity of Leipzig, Institut of Biochemistry, Leipzig, GermanyIn anaerobic bacteria most aromatic growth substrates are converted <strong>in</strong>tothe central <strong>in</strong>termediate benzoyl-coenzyme A (benzoyl-CoA). Benzoyl-CoA reductases (BCRs) dearomatize benzoyl-CoA to cyclohexa-1,5-diene-1-carboxyl-CoA (dienoyl-CoA). Obligately anaerobic bacteria such asGeobacter metallireducens employ class II benzoyl-CoA reductases. Theactive site components of this W-enzyme, BamBC, have recently beenisolated and characterized 1 . A genetic system compris<strong>in</strong>g a suitableexpression plasmid was established <strong>in</strong> Geobacter metallireducens thatenabled the active production of Strep-tagged BamB, which supposedlyconta<strong>in</strong>s tungsten. Surpris<strong>in</strong>gly, the electron transferr<strong>in</strong>g wild type BamCsubunit, conta<strong>in</strong><strong>in</strong>g 3 [4Fe-4S] clusters, was co-purified with Strep-taggedBamB <strong>in</strong>dicat<strong>in</strong>g a strong but reversible <strong>in</strong>teraction of the two subunits.The established system enables the efficient production and purification ofclass II benzoyl-CoA reductase subunits and may enable expression ofother W-/metallo enzymes from obligately anaerobic Deltaproteobacteria.(1) Kung JW, Löffler C, Dörner K, He<strong>in</strong>tz D, Gallien S, Van Dorsselaer A, Friedrich T, Boll M(2009) Identification and characterization of the tungsten-conta<strong>in</strong><strong>in</strong>g class of benzoyl-coenzyme Areductases. Proc Natl Acac Sci U.S.A.106:17687-17692.RSP054Insight <strong>in</strong>to the (de)phosphorylation of the phosphotransferaseprote<strong>in</strong>s HPr and Crh <strong>in</strong> Bacillus subtilisC. Zschiedrich*, J. Landmann, J. Stülke, B. GörkeGeorg-August Universität Gött<strong>in</strong>gen, Department of GeneralMicrobiology, Gött<strong>in</strong>gen, GermanyIn Bacillus subtilis uptake and utilization of different carbon sources aretightly regulated by carbon catabolite repression (CCR) (1). The globalplayers <strong>in</strong>volved <strong>in</strong> CCR are HPr and the HPr k<strong>in</strong>ase/phosphorylase. Uponphosphorylation of HPr at Ser~46, CCR is mediated by the CcpA-HPr-BIOspektrum | Tagungsband <strong>2012</strong>


206Ser46~P complex. Additionally, B. subtilis possesses the carbon-fluxregulator Crh. Like HPr, Crh can be phoshorylated at the regulatory siteSer~46. However, the <strong>in</strong>fluence of Crh on CCR is weak. Recent studiesshowed that Crh senses the metabolic state of B. subtilis, therebycontroll<strong>in</strong>g flux through the toxic methylglyoxal pathway (2).Different carbohydrates form a hierarchy <strong>in</strong> their ability to triggerphosphorylation of HPr and Crh by HPrK/P. Upon utilization of preferredcarbon sources HPr and Crh are predom<strong>in</strong>antly phosphorylated. Incontrast, the non-phosphorylated forms prevail <strong>in</strong> the presence ofsecondary substrates (3, 4).Here we are focus<strong>in</strong>g on conditions lead<strong>in</strong>g to dephosphorylation of HPrand Crh at Ser~46. Both, Crh and HPr accumulate <strong>in</strong> their nonphosphorylatedforms upon entry <strong>in</strong> the stationary phase. We demonstratethat phosphorylation as well as dephosphorylation of Crh is carried out bythe s<strong>in</strong>gle enzyme, HPrK/P. In contrast, it turned out thatdephosphorylation of HPr depends on a different enzyme, namely aphosphatase of the PP2C family. The physiological consequences of the<strong>in</strong>volvement of this phosphatase are discussed.(1) Görke, B. and J. Stülke (2008). Carbon catabolite repression <strong>in</strong> bacteria: many ways to make themost out of nutrients.Nature Reviews Microbiology6, 613-624.(2) Landmann, J.J., Busse, R.A., Latz, J.H., S<strong>in</strong>gh, K.D., Stülke, J. and B. Görke (2011). Crh, theparaloque of the phosphocarrier prote<strong>in</strong> HPr, controls the methylglyoxal bypass of glycolysis <strong>in</strong>Bacillus subtilis.Molecular Microbiology 82(3), 770-787.(3) S<strong>in</strong>gh, K.D., Schmalisch, M.H., Stülke, J. and B. Görke (2008). Carbon catabolite repression <strong>in</strong>Bacillus subtilis: Quantitative analysis of repression exerted by different carbon sources.Journal ofBacteriology 190, 7275-7248.(4) Landmann, J.J., Werner, S., Hillen, W., Stülke, J. and B. Görke (2011). Carbon source control ofthe phosphorylation state of the Bacillus subtilis carbon-flux regulator Crh <strong>in</strong> vivo.FEMS MicrobiolLetters.RSP055Novel structures of PII signal transduction prote<strong>in</strong>s fromoxygenic phototropic organismsV.R. Chellamuthu* 1,2 , M. Hartmann 2 , K. Forchhammer 11 University of Tueb<strong>in</strong>gen, Department of Microbiology/ OrganismicInteractions, Tueb<strong>in</strong>gen, Germany2 MPI for Developmental Biology, Prote<strong>in</strong> Evolution, Tueb<strong>in</strong>gen, GermanyPII prote<strong>in</strong>s constitute one of the most widely distributed families of signaltransduction prote<strong>in</strong>s, whose representatives are present <strong>in</strong> archaea,bacteria and plants. They play a pivotal role to control the nitrogenmetabolism <strong>in</strong> response to the central metabolites ATP, ADP and 2-oxoglutarate (2-OG). These signals from energy status, carbon andnitrogen metabolism are <strong>in</strong>tegrated and transmitted to the regulatorytargets (key enzymes, transporters and transcription factors). In oxygenicphototrophic organisms, from cyanobacteria to higher plants, thecontroll<strong>in</strong>g enzyme of arg<strong>in</strong><strong>in</strong>e synthesis, N-acetyl-glutamate k<strong>in</strong>ase(NAGK), is a major PII target, whose activity responds to the cellular 2-OG and energy status via PII signall<strong>in</strong>g. Novel crystal structures of PIIsignal transduction prote<strong>in</strong>s from oxygenic phototrophs <strong>in</strong> the presence ofsignal<strong>in</strong>g metabolites and <strong>in</strong> complex with NAGK give deeper <strong>in</strong>sights<strong>in</strong>to their control mechanism and sheds light on the evolutionaryadaptation of PII signal transduction.RSP056Hierarchy of Selenoprote<strong>in</strong> Gene Expression <strong>in</strong> the ArchaeonMethanococcus maripaludisM. Rother* 1 , T. Stock 2 , M. Selzer 3 , S. Connery 4 , D. Seyhan 2 , A. Resch 51 Technische Universität Dresden, Institut für Mikrobiologie, Dresden, Germany2 Institute for Molecular Biosciences, Goethe-University Frankfurt, Frankfurt,Germany3 Universität Bayreuth, Department of Ecological Microbiology, Bayreuth,Germany4 School of Crystallography, Birbeck College London, London, United K<strong>in</strong>gdom5 Deparment of Microbiology, Immunobiology and Genetics, University ofVienna, Vienna, AustriaProte<strong>in</strong>s conta<strong>in</strong><strong>in</strong>g selenocyste<strong>in</strong>e are found <strong>in</strong> members of all threedoma<strong>in</strong>s of life, Bacteria, Eukarya and Archaea. A dedicated tRNA(tRNA sec ) serves as a scaffold for selenocyste<strong>in</strong>e synthesis. However,sequence and secondary structures differ <strong>in</strong> tRNA sec from the differentdoma<strong>in</strong>s. An Escherichia coli stra<strong>in</strong> lack<strong>in</strong>g the gene for tRNA sec couldonly be complemented with the homolog from Methanococcus maripaludiswhen a s<strong>in</strong>gle base <strong>in</strong> the anticodon loop was exchanged demonstrat<strong>in</strong>gthat this base is a crucial determ<strong>in</strong>ant for archaeal tRNA sec to function <strong>in</strong> E.coli. Complementation <strong>in</strong> trans of M. maripaludis JJ mutants lack<strong>in</strong>gtRNA sec , O-phosphoseryl-tRNA sec k<strong>in</strong>ase, or O-phosphoseryltRNAsec :selenocyste<strong>in</strong>e synthase with the correspond<strong>in</strong>g genes from M.maripaludis S2 restored the mutant’s ability to synthesize selenoprote<strong>in</strong>s.However, only partial restoration of the wild-type selenoproteome wasobserved as only selenocyste<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g formate dehydrogenase wassynthesized. Quantification of transcripts showed that disrupt<strong>in</strong>g thepathway of selenocyste<strong>in</strong>e synthesis leads to down-regulation ofselenoprote<strong>in</strong> gene expression, concomitant with up-regulation of aselenium-<strong>in</strong>dependent backup system, which is not re-adjusted uponcomplementation. This transcriptional arrest was <strong>in</strong>dependent ofselenophosphate but depended on the “history” of the mutants and was<strong>in</strong>heritable, which suggests that a stable genetic switch may cause theresult<strong>in</strong>g hierarchy of selenoprote<strong>in</strong>s synthesized.RSV1-FGSignal recognition and transmission by the CpxAR-twocomponent systemS. Hunke* 1 , V.S. Müller 1 , K. Tschauner 1 , P. Scheerer 1,21 Universität Osnabrück, Molekulare Mikrobiologie, Osnabrück, Germany2 Charité - Universitätsmediz<strong>in</strong> Berl<strong>in</strong>, Institut für Mediz<strong>in</strong>ische Physik undBiophysik (CC2), Berl<strong>in</strong>, GermanyTwo-component systems (TCS) are the predom<strong>in</strong>ant signall<strong>in</strong>g systemsallow<strong>in</strong>g bacteria to communicate with their environment [1]. In general, aTCS comprises of a sensor k<strong>in</strong>ase (SK) and a response regulator (RR).Upon stimulation the SK is autophosphorylated and transfers thephosphoryl group to the RR which acts now a transcription regulator oftarget genes. To balance the response some SKs also dephosphorylate thephosphorylated RR. However, the mechanistic details <strong>in</strong> signal recognitionand transmission by TCS are still only poorly understood.The Cpx-TCS is a well established model ubiquitous <strong>in</strong> Gram-negativebacteria that <strong>in</strong>tegrates a broad variety of different signals <strong>in</strong>clud<strong>in</strong>g saltstress, pH stress, lipids and misfolded prote<strong>in</strong>s that cause envelope stress[2]. The Cpx-TCS is made up of the SK CpxA, the RR CpxR and theaccessory prote<strong>in</strong> CpxP. CpxP is known to shut off the Cpx-TCS by<strong>in</strong>hibit<strong>in</strong>g CpxA autophosphorylation [3] and to promote degradation ofmisfolded pilus subunits [4]. Recent structural and functional studiesprovide first <strong>in</strong>sight <strong>in</strong>to how CpxP <strong>in</strong>hibits CpxA and serves as sensor formisfolded pilus subunits, pH and salt [5]. Now, we have used membrane-SPINE [6] to demonstrate not only the direct <strong>in</strong>teraction between CpxPand CpxA under non-stress conditions but also the release of CpxP fromCpxA under certa<strong>in</strong> stress conditions <strong>in</strong> vivo.Other signals are CpxP-<strong>in</strong>dependent recognized by CpxA as a misfoldedvariant of the maltose b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that activates phophotransfer toCpxR [2] and lipids that <strong>in</strong>hibit dephosphorylation of activated CpxR.Hence, <strong>in</strong>dependent entry po<strong>in</strong>ts for the Cpx-TCS exist that result <strong>in</strong>specific activities of CpxA. In addition, we will present a structurehomology model of the catalytic doma<strong>in</strong> of CpxA <strong>in</strong> complex with CpxRthat we have proved for critical residues <strong>in</strong> the <strong>in</strong>terface between bothprote<strong>in</strong>s <strong>in</strong> vivo. Thus, we have now the system and methods <strong>in</strong> hand toga<strong>in</strong> a deeper understand<strong>in</strong>g of signal recognition and transmission overthe membrane <strong>in</strong> a TCS <strong>in</strong> general.1. A.M. Stock, V.L. Rob<strong>in</strong>son and P.N. Goudreau, Annu. Rev. Biochem.69(2000), p. 183.2. S. Hunke, R. Keller and V.S. Müller, FEMS Microbiol. Lett (2011) doi: 10.1111/j.1574-6968.2011.02436.x.3. R. Fleischer, K. Jung, R. Heermann and S. Hunke, J. Biol. Chem.282(2007), p. 8583.4. D.D. Isaac, J.S. Pickner, S.J. Hultgren and T.J. Silhavy, PNAS102(2005), p. 17775.5. X. Zhou, R. Keller, Volkmer, R., Krauss, N., Scheerer, P. and S. Hunke, J. Biol. Chem.286(2011), p.9805.6. V.S. Müller, P.R. Jungblut, T.F. Meyer and S. Hunke, Proteomics11(2011), p. 2124.RSV2-FGMechanism of signal transfer by the tandem hamp doma<strong>in</strong>from Natronomonas pharaonisJ. Natarajan*, J. SchultzUniversity of Tüb<strong>in</strong>gen, Department of Pharmaceutical Biochemistry,Tüb<strong>in</strong>gen, GermanyChemotaxis and phototaxis <strong>in</strong> bacteria share most steps <strong>in</strong> signaltransduc<strong>in</strong>g mechanisms. External stimuli are converted via a HAMPdoma<strong>in</strong> (Histid<strong>in</strong>e k<strong>in</strong>ases, Adenylyl cyclases [ACs], Methyl-accept<strong>in</strong>gchemotaxis prote<strong>in</strong>s [MCP] and Phosphatases) <strong>in</strong>to a conformationalresponse of the output mach<strong>in</strong>ery, mostly k<strong>in</strong>ases or k<strong>in</strong>ase control unitswhich imp<strong>in</strong>ge on the flagellar motor to affect swimm<strong>in</strong>g behaviour.Hitherto, more than 12,000 HAMP doma<strong>in</strong>s are annotated <strong>in</strong> the EMBLdata bank; only a few have been functionally characterized (1).The phototransducer from Natronomonas pharaonis (NpHtrII) belongs tothe group of MCP´s. It receives its signal from the light excited sensoryrhodops<strong>in</strong> (SR II) which forms a complex with the transducer Htr II (2).SRII <strong>in</strong>itiates a slid<strong>in</strong>g of the second transmembrane helix of HtrII (3)result<strong>in</strong>g <strong>in</strong> a conformational change <strong>in</strong> the HAMP doma<strong>in</strong> (rotation andtranslation) which sets off the signall<strong>in</strong>g cascade. HtrII, unlike many of thewell studied MCP’s has a tandem HAMP doma<strong>in</strong> (HAMP HtrI and II).We study signal conversion through such a tandem HAMP doma<strong>in</strong> bygenerat<strong>in</strong>g chimeras with Tsr, the E. coli ser<strong>in</strong>e receptor, and themycobacterial AC Rv3645 as a reporter enzyme. Such chimeras have beenshown to be regulated by ser<strong>in</strong>e us<strong>in</strong>g the HAMP doma<strong>in</strong> of either Tsr orof Rv3645 (4). After sequence comparisons with positively operat<strong>in</strong>gHAMP doma<strong>in</strong>s two chimeras with mutated Htr II tandem HAMP weregenerated, which responded differently to the ser<strong>in</strong>e signal between sensorand output-doma<strong>in</strong>s i.e an <strong>in</strong>version of signal was observed. Themechanistic differences <strong>in</strong> these two chimeras, which lead to completelyopposite output, are be<strong>in</strong>g actively <strong>in</strong>vestigated.1. Hulko, M., F. Berndt, M. Gruber, J.U. L<strong>in</strong>der, V. Truffault, A. Schultz, J.Mart<strong>in</strong>, J.E. Schultz, A.N. Lupas,M. Coles. Cell,2006,126, 929-940.2. Wegener, A. A., Chizhov, I., Engelhard, M. & Ste<strong>in</strong>hoff, H. J. J. Mol. Biol,2000,301, 881-891.BIOspektrum | Tagungsband <strong>2012</strong>


2073. Wegener, A. A., Klare, J. P., Engelhard, M. & Ste<strong>in</strong>hoff, H. J.EMBO J,2001, 20, 5312-5319.4. Kajal Kanchan, Jürgen L<strong>in</strong>der, Kar<strong>in</strong> W<strong>in</strong>kler, Klaus Hantke, Anita Schultz, and Joachim E.Schultz,JBC,2010, 285, NO. 3, 2090-2099RSV3-FGSignall<strong>in</strong>g with<strong>in</strong> resistance modules aga<strong>in</strong>st peptide antibiotics -regulatory <strong>in</strong>terplay between ABC-transporters and twocomponentsystemsD.J. Leslie 1 , S. D<strong>in</strong>tner 2 , A. Starón 2 , T. Petri 3 , F. Kalamorz 1 , G.M. Cook 1 ,T. Mascher 2 , S. Gebhard* 21 University of Otago, Department of Microbiology and Immunology, Duned<strong>in</strong>,New Zealand2 Ludwig-Maximilians-Universität München, Department of Biology I,Microbiology, Planegg-Mart<strong>in</strong>sried, Germany3 Ludwig-Maximilians-Universität München, Department of Informatics,Research and Teach<strong>in</strong>g Unit Bio<strong>in</strong>formatics, München, GermanyOver the last decade, a number of ABC-transporters have been identifiedas resistance determ<strong>in</strong>ants aga<strong>in</strong>st antimicrobial peptides. Their regulationgenerally occurs via two-component systems (TCSs), which are mostcommonly encoded <strong>in</strong> the same genetic loci as the transporters. Both thetransport permease and sensor k<strong>in</strong>ase components of these modules showunusual doma<strong>in</strong> architecture: the permeases conta<strong>in</strong> ten transmembranehelices and a large extracellular loop, while the sensor k<strong>in</strong>ases lack anyobvious <strong>in</strong>put doma<strong>in</strong>. Strik<strong>in</strong>gly, <strong>in</strong> these systems the ABC-transporterand TCS have an absolute and mutual requirement for each other <strong>in</strong> bothsens<strong>in</strong>g of and resistance to antimicrobial peptides, suggest<strong>in</strong>g a novelmode of signal transduction <strong>in</strong> which the transporter constitutes the actualsensor. A search of several non-redundant prote<strong>in</strong> databases revealed theexistence of over 250 such systems, predom<strong>in</strong>antly among Firmicutesbacteria. Parallel phylogenetic analysis of the permease and sensor k<strong>in</strong>asecomponents revealed a tight evolutionary correlation, suggest<strong>in</strong>g afunctional conservation of their unusual signall<strong>in</strong>g mechanism.Additionally, based on the observed co-cluster<strong>in</strong>g, we could identifyputative correspond<strong>in</strong>g TCSs for those transporters lack<strong>in</strong>g a regulatorysystem <strong>in</strong> their immediate neighbourhood.To test our predictions experimentally, Enterococcus faecalis was chosenas model organism, because it possesses two such ABC-transporters andone TCS, which are located <strong>in</strong> three separate genetic loci, and cocluster<strong>in</strong>gwas observed for the TCS with one of the transporters.Expression of both transporters was <strong>in</strong>duced by the peptide antibioticsbacitrac<strong>in</strong> and mersacid<strong>in</strong>. Interest<strong>in</strong>gly, the transporter which matched theTCS <strong>in</strong> the phylogenetic classification was required for regulation, whilethe second transporter appeared to mediate the actual resistance aga<strong>in</strong>st thetarget compounds. In summary, our results show that these types of ABCtransportersand TCSs have co-evolved to form self-sufficientdetoxification modules aga<strong>in</strong>st antimicrobial peptides, and suggest a novelsignall<strong>in</strong>g mechanism <strong>in</strong>volv<strong>in</strong>g communication between transportpermease and histid<strong>in</strong>e k<strong>in</strong>ase. Furthermore, our phylogeneticclassification can be applied to the prediction of such regulatory<strong>in</strong>teractions among previously uncharacterized systems.RSV4-FGThe one-component regulator CadC of E. coli is a targetof theelongation factor PJ. Lassak*, S. Ude, T. Kraxenberger, K. JungLudwig-Maximilians-University Munich, Munich Center for <strong>in</strong>tegratedProte<strong>in</strong> Science (CiPSM) at the Department of Biology I, Microbiology,Mart<strong>in</strong>sried, GermanyThe bacterial elongation factor P (EF-P) has been extensively <strong>in</strong>vestigatedfor more than 30 years (1,2). The prote<strong>in</strong> is known to stimulate theribosomal peptidyl transferase activity <strong>in</strong> vitro (2,3). EF-P is suggested tohave a translational effect on a limited number of mRNAs and plays a role<strong>in</strong> bacterial virulence (4,5). Neither a direct target nor the <strong>in</strong> vivo functionis known yet. Here we report a translational effect of EF-P on the onecomponentregulatory prote<strong>in</strong> CadC. To ma<strong>in</strong>ta<strong>in</strong> <strong>in</strong>ternal homeostasis atlow external pH CadC activates transcription of the cadAB operonencod<strong>in</strong>g the lys<strong>in</strong>e decarboxylase CadA and the lys<strong>in</strong>e/cadaver<strong>in</strong>eantiporter CadB, respectively.A transposon screen was used to identify genes <strong>in</strong>volved <strong>in</strong> CadCregulation. One <strong>in</strong>sertion was found <strong>in</strong> yjeK encod<strong>in</strong>g a 2,3-lys<strong>in</strong>eam<strong>in</strong>omutase. YjeK together with the lysyl-tRNA-synthase YjeA catalysethe post-translational modification of EF-P at position Lys34 (4,6,7). Bytest<strong>in</strong>g E. coli <strong>in</strong> frame deletions stra<strong>in</strong>s of yjeA, yjeK and efp we couldshow that active EF-P is essential for cadBA expression. Moreover, prote<strong>in</strong>levels of CadC were significantly reduced <strong>in</strong> an efp mutant. Subsequently,a series of cadC-lacZ-translational reporter fusions stra<strong>in</strong>s was constructed.Based on the pattern of ß-galactosidase activities it is suggested that EF-Paffects elongation but not <strong>in</strong>itiation of CadC translation. The identificationof EF-P as direct translational effector on CadC represents not only a newregulatory pr<strong>in</strong>ciple, but provides new <strong>in</strong>sights <strong>in</strong>to the role of EF-P and itshighly conserved eukaryotic ortholog eIF5a.1. Glick, B. R., and Ganoza, M. C. (1975) Proc Natl Acad Sci U S A 72, 4257-42602. Glick, B. R., Chladek, S., and Ganoza, M. C. (1979) Eur J Biochem 97, 23-283. Ganoza, M. C., and Aoki, H. (2000) Biol Chem 381, 553-5594. Navarre, W. W., Zou, S. B., Roy, H., Xie, J. L., Savchenko, A., S<strong>in</strong>ger, A., Edvokimova, E., Prost, L. R.,Kumar, R., Ibba, M., and Fang, F. C. (2010) Mol Cell 39, 209-2215. Peng, W. T., Banta, L. M., Charles, T. C., and Nester, E. W. (2001) J Bacteriol 183, 36-456. Bailly, M., and de Crecy-Lagard, V. (2010) Biol Direct 5, 37. Yanagisawa, T., Sumida, T., Ishii, R., Takemoto, C., and Yokoyama, S. (2010) Nat Struct Mol Biol 17,1136-1143RSV5-FGA Zn 2+ -sensory diguanylate-cyclase from Escherichia coliF. Zähriger 1 , E. Lacanna 2 , U. Jenal 1 , T. Schirmer 1 , A. Böhm* 21 University of Basel, Biozentrum, Basel, Germany2 University of Würzburg, Institute for Molecular Infection Biology,Würzburg, GermanyThe bacterial second messenger cyclic dimeric GMP (c-di-GMP) is a keyfactor controll<strong>in</strong>g biofilm formation <strong>in</strong> many bacterial species. C-di-GMPis produced from two GTP molecules by diguanylate cyclases anddegraded by specific phosphodiesterases. Typically, bacterial genomesencode for many of these signal<strong>in</strong>g enzymes and almost all of them harborsignal <strong>in</strong>put-doma<strong>in</strong>s of various types at their N-term<strong>in</strong>i. Upon perceptionof largely unknown physicochemical stimuli the <strong>in</strong>put-doma<strong>in</strong>s modulatethe enzymatic activity of the output doma<strong>in</strong>s and by this <strong>in</strong>fluence the<strong>in</strong>tracellular concentration of c-di-GMP.Here we show that the E. coli diguanylate cyclase YdeH is a bona fidehigh aff<strong>in</strong>ity sensor for Zn 2+ .The crystal structure of the widely conservedZn 2+ -bound <strong>in</strong>put doma<strong>in</strong> of YdeH shows coord<strong>in</strong>ation of the cation viathree completely conserved histid<strong>in</strong>e and one conserved cyste<strong>in</strong>e residue.Z<strong>in</strong>c removal <strong>in</strong> vitro strongly and reversibly stimulates YdeH-activity.Addition of Z<strong>in</strong>c to the growth medium downregulates E. coli biofilmformation via reduced production of the extracellular matrix componentpoly-b-1,6-N-acetyl-glucosam<strong>in</strong>e and <strong>in</strong> a YdeH-dependent manner.Mutation of the Z<strong>in</strong>c-coord<strong>in</strong>at<strong>in</strong>g am<strong>in</strong>o acids leads to strong andconstitutive activation of YdeH by mimick<strong>in</strong>g a Z<strong>in</strong>c-deprived state andcauses hyperbiofilm formation. YdeH represents the first example of abiological z<strong>in</strong>c-sensor that exerts its downstream effectsposttranscriptionally and it is the first example of a metal sensory c-di-GMP signal<strong>in</strong>g prote<strong>in</strong>.RSV6-FGReactive oxygen species-<strong>in</strong>ducible ECF factors ofBradyrhizobium japonicumN. Masloboeva* 1 , L. Reutimann 1 , P. Stiefel 1 , H. Hennecke 1 , S. Mesa 2 , H.-M. Fischer 11 ETH Zurich, Institute of Microbiology, Zurich, Switzerland2 Estación Experimental del Zaidín, Department of Soil Microbiology andSymbiotic Systems, Granada, Spa<strong>in</strong>Extracytoplasmic function (ECF) factors control the transcription ofgenes <strong>in</strong>volved <strong>in</strong> different features, such as stress responses, metalhomeostasis, virulence-related traits, and cell envelope structure. Thegenome of Bradyrhizobium japonicum, the nitrogen-fix<strong>in</strong>g soybeanendosymbiont, encodes 17 predicted ECF factors. Genes for two ofthem, bll1028 and blr3038, are highly <strong>in</strong>duced <strong>in</strong> response to the reactiveoxygen species (ROS) hydrogen peroxide (H 2O 2) and s<strong>in</strong>glet oxygen ( 1 O 2).The blr3038 gene, but not bll1028, is associated with the predicted anti-factor gene blr3039. Mutants lack<strong>in</strong>g Bll1028, Blr3038 and Blr3039,Blr3039 or both factors were constructed and phenotypicallycharacterized. Although host legume plants are known to exert oxidativestress on <strong>in</strong>fect<strong>in</strong>g rhizobia, the mutants are symbiotically proficient whentested on three different host plants (soybean, mungbean, cowpea). In freeliv<strong>in</strong>gconditions, the mutants are more sensitive to s<strong>in</strong>glet oxygen than thewild type. Potential target genes of Bll1028 and Blr3038 were determ<strong>in</strong>edby microarray analyses. These data disclosed that each of the two ECF factors controls a dist<strong>in</strong>ct, rather small set of genes with about half of thembelong<strong>in</strong>g to the much larger regulon of H 2O 2-<strong>in</strong>ducible genes.SIV1-FGThe regulation of cnidarian-d<strong>in</strong>oflagellate mutualisms: <strong>in</strong>sickness and <strong>in</strong> healthV. WeisOregon State University Department of Zoology. Corvallis, Oregon, USACnidarians such as reef-build<strong>in</strong>g corals engage <strong>in</strong> a mutualistic symbiosiswith <strong>in</strong>tracellular photosynthetic d<strong>in</strong>oflagellates. This <strong>in</strong>timate partnershipforms the trophic and structural foundation of coral reef ecosystems. Thispresentation exam<strong>in</strong>e the cellular and molecular mechanisms underly<strong>in</strong>gthe establishment, ma<strong>in</strong>tenance and breakdown of the symbiosis <strong>in</strong> coralandanemone-d<strong>in</strong>oflagellate partnerships. There is <strong>in</strong>creas<strong>in</strong>g evidencefrom both genomics and functional studies that host <strong>in</strong>nate immunity andsymbiont strategies for modulat<strong>in</strong>g this immune response are central to thestability of the symbiosis. Dur<strong>in</strong>g onset of symbiosis these mechanisms<strong>in</strong>clude, lect<strong>in</strong>-glycan signal<strong>in</strong>g, host <strong>in</strong>nate immunity, host cell apoptosisand changes <strong>in</strong> host membrane traffick<strong>in</strong>g. Coral bleach<strong>in</strong>g, a severeBIOspektrum | Tagungsband <strong>2012</strong>


208threat to the health of reefs worldwide, results from the dysfunction andcollapse of the symbiosis. Several studies suggest that coral bleach<strong>in</strong>g is ahost <strong>in</strong>nate immune response to a symbiont compromised by severeoxidative stress. This evidence <strong>in</strong>cludes <strong>in</strong>creased nitric oxide levels, andhost cell apoptosis and autophagy <strong>in</strong> heat-stressed animals, all well-knownimmune mechanisms <strong>in</strong> other systems to elim<strong>in</strong>ate detrimental microbial<strong>in</strong>vaders.SIV2-FGAmount, activity and mode of transmission of microbialsymbionts associated with the Caribbean sponge Ectyoplasia feroxV. Gloeckner* 1 , S. Schmitt 1 , N. L<strong>in</strong>dquist 2 , U. Hentschel 11 University of Wuerzburg, Julius von Sachs Institute for BiologicalSciences, Wuerzburg, Germany2 University of North Carol<strong>in</strong>a at Chapel Hill, Institute of Mar<strong>in</strong>e Sciences,Chapel Hill, United StatesMany mar<strong>in</strong>e sponges conta<strong>in</strong> large amounts of phylogenetically complexyet highly sponge-specific microbial consortia with<strong>in</strong> the mesohyl matrix.While vertical transmission has been shown <strong>in</strong> various mar<strong>in</strong>e sponges[1,2,3], the impact of horizontal/ environmental transmission has not been<strong>in</strong>vestigated so far. This study provides <strong>in</strong>sights <strong>in</strong>to vertical andhorizontal/ environmental transmission of sponge symbionts us<strong>in</strong>g adult,embryonic and larval material of the Caribbean sponge Ectyoplasia ferox.Transmission-electron microscopy revealed large amounts ofmorphologically diverse microorganisms <strong>in</strong> the adult and embryonictissue. Count<strong>in</strong>g of DAPI sta<strong>in</strong>ed bacteria <strong>in</strong> adult sponge tissuehomogenates displayed a loss of 50% of the sponge microorganismsdur<strong>in</strong>g spawn<strong>in</strong>g. By sequenc<strong>in</strong>g approximately 250 16S rRNA genelibrary clones and by us<strong>in</strong>g a 99% similarity threshold, OTUs wereobta<strong>in</strong>ed for adult (44), embryonic (13) and larval (12) sponge material.Denatur<strong>in</strong>g gradient gel electrophoresis (DGGE) showed highly similarband<strong>in</strong>g patterns between the three developmental stages, <strong>in</strong>dicat<strong>in</strong>g thatsponge specific symbionts are transmitted vertically. Activity profil<strong>in</strong>g bycompar<strong>in</strong>g 16S rRNA and 16S rRNA genes via DGGE revealed, thatnearly all symbionts are metabolically active <strong>in</strong> all three developmentalstages. Initial attempts to create symbiont-free sponge larvae by theaddition of antibiotics were promis<strong>in</strong>g. As observed by DGGE, the amountof bacteria <strong>in</strong>side the larvae could be reduced significantly. Howeversymbiont free sponge larvae were not obta<strong>in</strong>ed, likely because of the short<strong>in</strong>cubation time of four days. In summary, it was shown, that the three E.ferox developmental stages conta<strong>in</strong>ed highly similar microbial consortia,which confirms previous observations that sponge-specific microbialconsortia are passed on via vertical transmission. These symbionts arefurthermore metabolically active <strong>in</strong> all developmental stages. In addition,the expulsion of up to 50% of sponge symbiont biomass <strong>in</strong>to theenvironment dur<strong>in</strong>g spawn<strong>in</strong>g and their potential uptake aga<strong>in</strong> by othersponges renders horizontal/ environmental transmission at least as anotherpossibility.1. Enticknap, J., Kelly, M., Peraud, O. and Hill, R. (2006). Appl. Environ. Microbiol. 72: 3724-32.2. Schmitt, S., Weisz, J.B., L<strong>in</strong>dquist, N. and Hentschel, U. (2007). Appl. Environ. Microbiol. 73: 2067-78.3. Sharp, K., Eam, B., Faulkner, D. and Haygood, M. (2007). Appl. Environ. Microbiol. 73: 622-29.SIV3-FGHighly specific nematode symbioses from the North Sea andthe benefits of harbour<strong>in</strong>g ectosymbiontsJ. Zimmermann* 1 , J.M. Petersen 1 , J. Ott 2,3 , N. Musat 1 , N. Dubilier 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Molecular Ecology,Symbiosis Group, Bremen, Germany2 University of Vienna, Department of Molecular Ecology, Vienna, Austria3 University of Vienna, Department of Mar<strong>in</strong>e Biology, Vienna, AustriaEctosymbiotic bacteria are widespread on mar<strong>in</strong>e organisms but thespecificity of these associations and the beneficial role of the symbiontsare still poorly understood. Stilbonematid nematodes from sulfidic coastalsediments carry a characteristic coat of sulfur-oxidiz<strong>in</strong>g ectosymbionts ontheir cuticle. It is widely believed that these ectosymbionts providenutrition to their hosts but no clear evidence has been provided so far. To<strong>in</strong>vestigate specificity and the role of ectosymbiotic bacteria we looked atstilbonematid nematodes of the genus Leptonemella from <strong>in</strong>tertidal sandysediments of the North Sea island of Sylt. To date, three co-occur<strong>in</strong>gLeptonemella species have been described from Sylt based on theirmorphology. Our first aim was to <strong>in</strong>vestigate the specificity of theLeptonemella symbioses by us<strong>in</strong>g molecular methods. Phylogeneticanalysis based on the 18S rRNA marker gene of the nematodes revealed anunexpectedly high diversity of at least five Leptonemella species that areclosely related to Leptonemella species from the Mediterranean Sea. Clonelibraries of the 16S rRNA gene and the ribosomal <strong>in</strong>tergenic spacer region(ITS) of the ectosymbionts showed that these are closely related to thegammaproteobacterial sulfur-oxidiz<strong>in</strong>g ectosymbionts of other nematodehost species as well as the endosymbionts of gutless mar<strong>in</strong>e andoligochaetes (the so-called MONTS clade for Mar<strong>in</strong>e Oligochaete andNematode Symbionts). Remarkably, each of the five host species has itsown dist<strong>in</strong>ct 16S-ITS rRNA symbiont phylotype, <strong>in</strong>dicat<strong>in</strong>g that theseectosymbioses are highly specific, despite the fact that the hosts co-occurand acquire their symbionts from the environment. Our second aim was totest the hypothesis that the ectosymbionts provide their hosts withnutrition. We <strong>in</strong>cubated the worms and their symbionts with radiolabelledbicarbonate and measured <strong>in</strong>organic carbon fixation by the symbionts andtransfer of fixed carbon to the host. We developed a method to separate theectosymbionts from the worms so that the radioactive label could bemeasured <strong>in</strong> each separately. With this method we showed that thesymbionts <strong>in</strong>corporate radiolabelled carbon, which is then transferred to thehost. We are currently us<strong>in</strong>g nanoscale secondary ion mass spectrometry(NanoSIMS) on Leptonemella tissue sections to exam<strong>in</strong>e the transfer of carbon<strong>in</strong> more detail. Our results show that there is a high degree of specificity <strong>in</strong> theectosymbiotic associations of these very closely related co-occurr<strong>in</strong>g hostspecies and that the hosts benefit nutritionally from their symbionts.SIV4-FGDigest<strong>in</strong>g the diversity - evolutionary patterns <strong>in</strong> the gutmicrobiota of termites and cockroachesT. Köhler*, C. Dietrich, A. BruneMax Planck Institute for Terrestrial Microbiology, Department ofBiogeochemistry, Marburg, GermanyFrom a phylogenetic viewpo<strong>in</strong>t, termites are a family of socialcockroaches. In addition, close relatives of bacterial l<strong>in</strong>eages consideredtypical for termite <strong>in</strong>test<strong>in</strong>al tracts have also been occasionally found <strong>in</strong>cockroach guts. This gives rise to the hypothesis that elements of the gutmicrobiota found <strong>in</strong> different termite l<strong>in</strong>eages are derived from theircommon evolutionary ancestors. However, the microbial diversity <strong>in</strong> theguts of every termite family has not been fully explored, and even less isknown about the microbiota of cockroach guts. We comprehensivelyanalyzed the bacterial communities <strong>in</strong> the microbe-packed h<strong>in</strong>dguts of 34dictyopteran species by amplification of the V3-V4 region of bacterial 16SrRNA genes with a modified primer set and subsequent 454 pyrotagsequenc<strong>in</strong>g. The communities were analyzed both on the basis of sequencesimilarity and accord<strong>in</strong>g to hierarchical classification. Thorough statisticaland community analyses revealed that the cockroach gut microbiota ismore diverse and less specialized than that of termites. The bacterialcommunity compositions differed significantly already at the phylumlevel. Nevertheless, we found a core microbiota of groups ofLachnospiraceae, Synergistaceae, and other taxa <strong>in</strong> all <strong>in</strong>sects<strong>in</strong>vestigated, which strongly supports the hypothesis that elements of thetermite gut microbiota were present already <strong>in</strong> the common ancestor. Aremarkable <strong>in</strong>crease <strong>in</strong> relative abundance of certa<strong>in</strong> bacterial l<strong>in</strong>eagescorrelates with the feed<strong>in</strong>g guilds, which <strong>in</strong>dicates that the gut microbiotaprovides a reservoir of bacterial diversity that is exploited when newfunctions are required, e.g., for the degradation of particular dietarycomponents. Taken together, the emerg<strong>in</strong>g patterns document a longhistory of (co)evolution between the gut microbiota and their dictyopteranhost species, result<strong>in</strong>g <strong>in</strong> a clear and dist<strong>in</strong>ct cluster<strong>in</strong>g of the bacterialcommunities that reflects both the phylogeny and the feed<strong>in</strong>g guild of theirhosts.SIV5-FGMetabolic activity of the obligate <strong>in</strong>tracellular amoeba symbiontProtochlamydia amoebophila <strong>in</strong> a host-free environmentA. Siegl* 1 , B.S. Sixt 1 , C. Müller 2 , M. Watzka 3 , A. Richter 3 , P. Schmitt-Koppl<strong>in</strong> 2 , M. Horn 11 University of Vienna, Department of Microbial Ecology, Vienna, Austria2 Helmholtz-Zentrum Muenchen - German Research Center for EnvironmentalHealth, Institute of Ecological Chemistry, Department of MolecularBioGeoChemistry and Analytics, Neuherberg3 University of Vienna, Department of Chemical Ecology and EcosystemResearch, ViennaPrior to 1997, chlamydiae were exclusively perceived as pathogens ofhumans and animals, and our knowledge about their biology was restrictedto members of the family Chlamydiaceae, <strong>in</strong>clud<strong>in</strong>g the human pathogensChlamydia trachomatis and Chlamydia pneumoniae. Today we know thatthe true diversity with<strong>in</strong> the phylum Chlamydiae is larger than everthought before. Many of the more recently discovered chlamydiae exist <strong>in</strong>phylogenetically diverse hosts <strong>in</strong> the environment. One of the eightcurrently known chlamydial families, the Parachlamydiaceae, is wellknown to comprise natural symbionts of free-liv<strong>in</strong>g amoebae. A commonfeature of all chlamydiae is their obligate <strong>in</strong>tracellular lifestyle whichcomes along with a unique biphasic developmental cycle. The so calledelementary body (EB) constitutes the <strong>in</strong>fective form and was perceived asa spore-like stage which is metabolically <strong>in</strong>ert. However, recent studieschallenged this dogma and provided first evidence for an extracellularactivity of EBs. The aim of this study was the characterization of themetabolic capabilities of EBs of the amoeba symbiont Protochlamydiaamoebophila. For this purpose, EBs were purified from their host cells and<strong>in</strong>cubated with isotope-labeled substrates <strong>in</strong> a host-free environment.Isotope-ratio mass spectrometry (IRMS) and fourier transform ionBIOspektrum | Tagungsband <strong>2012</strong>


209cyclotron resonance mass spectrometry (FTICR-MS) provided first<strong>in</strong>sights <strong>in</strong>to the metabolic pathways active <strong>in</strong> P. amoebophila EBs andshowed that: (I) P. amoebophila EBs take up D-glucose and several am<strong>in</strong>oacids <strong>in</strong> host free environments and <strong>in</strong>corporate carbon and nitrogen <strong>in</strong>totheir biomass. (II) Host free-<strong>in</strong>cubated P. amoebophila EBs release 13CO2from 13C-D-glucose, which is a clear <strong>in</strong>dication for respiration. (III) Bioconversionof glucose was observed and suggested synthesis of sugarpolymers, which likely serve as storage compounds. (IV) The availabilityof D-glucose dur<strong>in</strong>g host-free <strong>in</strong>cubation significantly affects ma<strong>in</strong>tenanceof <strong>in</strong>fectivity. In summary, our data clearly demonstrate metabolic activityof P. amoebophila EBs. Intrigu<strong>in</strong>gly, this active metabolism seems to playa key role for ma<strong>in</strong>tenance of <strong>in</strong>fectivity and establishment of a symbioticrelationship with its amoeba host.SIV6-FGBacteria-zooplankton <strong>in</strong>teractions: a key to understand<strong>in</strong>gbacterial dynamics and biogeochemical processes <strong>in</strong> lakes?H.-P. Grossart* 1,2 , C. Dziallas 1 , K.T. Tang 1,31 Leibniz Institute of Freshwater Ecology and Inland Fisheries, Stechl<strong>in</strong>, UnitedStates2 University of Potsdam, Institute for Biochemistry and Biology , Potsdam,Germany3 College of William & Mary, Virg<strong>in</strong>ia Institute of Mar<strong>in</strong>e Science, Gloucester,United StatesWorldwide, metazoan zooplankton represents an enormous surface andbiomass <strong>in</strong> pelagic systems but their l<strong>in</strong>kage with bacteria has beenassumed to be rather <strong>in</strong>direct (via nutrient cycl<strong>in</strong>g and trophic cascades).However, a zooplankter’s body carries a high abundance of diversebacteria, which can account for a substantial fraction and diversity ofpelagic bacteria. Zooplankton bodies are organic-rich micro-environmentsthat support fast bacterial growth. Their physical-chemical conditionsdiffer from those <strong>in</strong> the surround<strong>in</strong>g water and hence select for differentbacterial communities. Until now, <strong>in</strong>formation on bacteria-zooplankton<strong>in</strong>teractions is still limited to only a few zooplankton groups andenvironments, <strong>in</strong> particular copepods <strong>in</strong> coastal and estuar<strong>in</strong>e waters.Therefore, our proposal focuses on bacteria-zooplankton <strong>in</strong>teractions <strong>in</strong>lakes. S<strong>in</strong>ce zooplankton taxa can have very different life history traits wewill compare a large number of zooplankton taxa <strong>in</strong> a variety of lakes. Infield and lab studies we will <strong>in</strong>vestigate these <strong>in</strong>teractions with a highspatial and temporal resolution. We will address 4 topics: A) spatial andtemporal variations <strong>in</strong> bacteria-zooplankton association, B) microbialdynamics <strong>in</strong> the zooplankton gut microhabitat, C) bacterial dispersal bymigrat<strong>in</strong>g zooplankton and D) effects on microbial activities dur<strong>in</strong>g themid-summer zooplankton decl<strong>in</strong>e. We aim to fundamentally change theway we understand pelagic food webs and the ecological role of bacteriametazoan<strong>in</strong>teractions.SIV7-FGEfflux pumps and TetR-like regulators <strong>in</strong> rhizobial<strong>in</strong>teractions with plantsB. Kranzusch 1 , S. Albert 1 , K. Kunze 1 , M. Kunke 1 , A. Weiss 1 ,E. Szentgyörgyi 1 , O. Walser 2 , M. Göttfert 1 , S. Rossbach* 11 Technische Universität Dresden, Institut für Genetik, Dresden, Germany2 Western Michigan University, Department of Biological Sciences,Kalamazoo, United StatesOur goal is to analyze the importance of efflux pumps that are be<strong>in</strong>g usedby plant-associated bacteria to defend themselves aga<strong>in</strong>st secondary plantmetabolites. In Bradyrhizobium japonicum and <strong>in</strong> S<strong>in</strong>orhizobium meliloti,the nitrogen-fix<strong>in</strong>g symbionts of soybean and alfalfa, respectively, genesencod<strong>in</strong>g efflux pumps of the major facilitator superfamily have beenfound to be <strong>in</strong>duced by plant flavonoids. Interest<strong>in</strong>gly, adjacent to thesegenes are genes encod<strong>in</strong>g TetR-like regulators. The respective <strong>in</strong>tergenicregions conta<strong>in</strong> several pal<strong>in</strong>dromic structures, presumably b<strong>in</strong>d<strong>in</strong>g sitesfor the TetR-like prote<strong>in</strong>s. Our comparative analysis, concomitantlycarried out with B. japonicum and S. meliloti, characterizes the b<strong>in</strong>d<strong>in</strong>g ofpurified regulator prote<strong>in</strong>s to the operator regions, determ<strong>in</strong>es the <strong>in</strong>fluenceof flavonoids on the b<strong>in</strong>d<strong>in</strong>g aff<strong>in</strong>ities, analyzes the expression of theefflux pump genes <strong>in</strong> dependence of flavonoids, and determ<strong>in</strong>es thephenotype of bacterial mutants concern<strong>in</strong>g their resistance towards plantderivedcompounds and their competitiveness <strong>in</strong> plant-bacteria<strong>in</strong>teractions. These studies will shed further light on the <strong>in</strong>tricacies of themolecular signal exchange between rhizobia and their legume host plants.SIV8-FGHost colonization of bifidobacteria - from genome sequence toprote<strong>in</strong> functionD. Zhur<strong>in</strong>a, M. Gleisner, C. Westermann, J. Schützner, C.U. Riedel*University of Ulm, Institute of Microbiology and Biotechnology, Ulm,GermanyBifidobacteria are one of the major bacterial groups of the human colonicmicroflora and are widely used as probiotics due to their reported healthpromot<strong>in</strong>geffects. Bifidobacterium bifidum S17, B. longum ssp. <strong>in</strong>fantisE18 and B. breve S27 were shown to have oppos<strong>in</strong>g phenotypes regard<strong>in</strong>gadhesion to <strong>in</strong>test<strong>in</strong>al epithelial cells (IECs) and anti-<strong>in</strong>flammatory effects.While B. bifidum S17 tightly adheres to cultured IECs and showsprom<strong>in</strong>ent anti-<strong>in</strong>flammatory effects both <strong>in</strong> vitro and <strong>in</strong> several mur<strong>in</strong>emodels of colitis, the other two stra<strong>in</strong>s show week adhesion and no anti<strong>in</strong>flammatorycapacity [1, 2].In order to study these differences <strong>in</strong> more detail, we sequenced thegenomes of these stra<strong>in</strong>s [3, unpublished data] and analysed them with aspecial focus on factors <strong>in</strong>volved <strong>in</strong> adhesion and host colonization. Alarge number of prote<strong>in</strong>s were identified <strong>in</strong> all stra<strong>in</strong>s that display doma<strong>in</strong>spotentially <strong>in</strong>volved <strong>in</strong> adhesion to host tissues. All stra<strong>in</strong>s possess geneclusters, which show high similarity to genes encod<strong>in</strong>g for pili structures <strong>in</strong>Gram-positive bacteria, and the correspond<strong>in</strong>g genes are differentiallyexpressed <strong>in</strong> the tested bifidobacteria under <strong>in</strong> vitro conditions.Comparison to other genome sequences led to the identification of alipoprote<strong>in</strong> of the bacterial cell envelope, which is specific for the speciesB. bifidum. Functional analysis revealed that this prote<strong>in</strong> plays animportant role <strong>in</strong> adhesion of B. bifidum stra<strong>in</strong>s to IECs. Furthermore, agene encod<strong>in</strong>g a subtilis<strong>in</strong>-family protease was identified <strong>in</strong> the genome ofB. bifidum S17, which might be <strong>in</strong>volved <strong>in</strong> host colonization and/orprobiotic effects. The correspond<strong>in</strong>g gene was cloned and expressed <strong>in</strong> E.coli and purified prote<strong>in</strong> was analysed for its substrate specificity.Us<strong>in</strong>g genome sequenc<strong>in</strong>g, comparative analysis and functionalcharacterisation, a number of factors were identified <strong>in</strong> different stra<strong>in</strong>s ofbifidobacteria, which could play an important role <strong>in</strong> host colonization ofthese important human symbiotic bacteria.1. J. Preis<strong>in</strong>g, D. Philippe, M. Gle<strong>in</strong>ser, H. Wei, S. Blum, B.J. Eikmanns, J.H. Niess, C.U. Riedel. Appliedand Environmental Microbiology 76 (2010): 3048-51.2. D. Philippe, E. Heupel, S. Blum-Sperisen, C.U. Riedel. International Journal of Food Microbiology 149(2011): 45-9.3. D. Zhur<strong>in</strong>a, A. Zomer, M. Gle<strong>in</strong>ser, V.F. Brancaccio, M. Auchter, M.S. Waidmann, C. Westermann, D.van S<strong>in</strong>deren, C.U. Riedel. Journal of Bacteriology 193 (2011): 301-2.SIP1-FGHost species-specific Thiothrix ectosymbionts on cave-dwell<strong>in</strong>gamphipodsJ. Bauermeister* 1 , D. Ionescu 2 , A. Ramette 3 , T. Vagner 4 ,M.M.M. Kuypers 4 , S. Dattagupta 11 Georg-August University Gött<strong>in</strong>gen, Courant Research CenterGeobiology, Gött<strong>in</strong>gen, Germany2 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Microsensor Group,Bremen, Germany3 Max Planck Institute for Mar<strong>in</strong>e Microbiology, HGF-MPG Group forDeep Sea Ecology and Technology, Bremen, Germany4 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Department ofBiogeochemistry, Bremen, GermanySymbioses between <strong>in</strong>vertebrates and chemoautotrophic microbes arecommon <strong>in</strong> the mar<strong>in</strong>e environment, and ecologically dom<strong>in</strong>ant at deepseahydrothermal vents, cold seeps, and coastal sediments. The associationbetween Niphargus ictus amphipods and Thiothrix bacteria, found <strong>in</strong> theFrasassi caves of central Italy, is the first known example of achemoautotrophic symbiosis from a freshwater habitat. The Frasassi cavesystem is form<strong>in</strong>g by sulfuric acid-driven limestone dissolution and hostsan underground ecosystem susta<strong>in</strong>ed by chemoautotrophy. Thick mats offilamentous sulfur-oxidiz<strong>in</strong>g gamma- and epsilonproteobacteria cover thesulfidic cave water bodies. Gammaridean amphipods of the genusNiphargus <strong>in</strong>teract directly with these bacterial mats, but only a specificThiothrix phylotype, which is rarely found <strong>in</strong> the mats, has been identifiedon their exoskeletons [1].When the symbiosis was first described, it was assumed to <strong>in</strong>volve onlyone host species, N. ictus. Subsequent molecular and morphologicalanalyses revealed that there are two other Niphargus species <strong>in</strong> Frasassi,and that the three species have <strong>in</strong>dependently <strong>in</strong>vaded the cave ecosystem[2]. Scann<strong>in</strong>g Electron Microscopy (SEM) showed that these twoadditional species also harbor filamentous bacteria, and their assignment tothe sulfur-oxidiz<strong>in</strong>g Thiothrix clade was confirmed based on their 16SrRNA gene sequences. Phylogenetic analyses and Fluorescence In SituHybridization (FISH) revealed that the three Niphargus species harborthree different Thiothrix symbionts, one of which is specific to one host,and two of which are shared between two hosts. Automated RibosomalIntergenic Spacer Analyses (ARISA) showed that the distribution of theseThiothrix symbionts among Niphargusis strongly host species-specific.The three Niphargusspecies display different locomotive behaviors and occupydist<strong>in</strong>ct microhabitats with<strong>in</strong> the cave system. Consequently, they might exposeBIOspektrum | Tagungsband <strong>2012</strong>


210their ectosymbionts to vary<strong>in</strong>g sulfide and oxygen regimes. Us<strong>in</strong>g <strong>in</strong>cubationswith 13 C-labeled carbon compounds and 15 N-labeled nitrogen gas followed byNanoSIMS analyses, we found that symbiont metabolism reflects thegeochemical niches provided by the host amphipods.1. S. Dattagupta et al., ISME J3(2009), 935-9432. J.-F. Flot, G. Wörheide and S. Dattagupta, BMC Evol Biol10(2010), 171SIP2-FGEnrichment of a novel l<strong>in</strong>eage of methanogenic archaeadistantly related to the Thermoplasmatales from the <strong>in</strong>test<strong>in</strong>altract of termitesK. Paul*, J. Nonoh, A. BruneMax Planck Institute for Terrestrial Microbiology, Department ofBiogeochemistry, Marburg, GermanyThe subdoma<strong>in</strong> Euryarchaeota comprises both methanogenic and nonmethanogenicarchaea, and several l<strong>in</strong>eages of uncultivated archaea withunknown properties. One of these deep-branch<strong>in</strong>g l<strong>in</strong>eages was firstdiscovered <strong>in</strong> the gut of termites and was shown to be distantly related tothe Thermoplasmatales. By comparative phylogenetic analysis, weconnected this l<strong>in</strong>eage of 16S rRNA genes to a large clade of unknownsequences of mcrA genes, a functional marker for methanogenesis thatshows the same tree topology as the 16S rRNA. The evidence for a neworder of methanogenic archaea was corroborated by methanogenicenrichment culture from the gut of a Cubitermes species, which yielded as<strong>in</strong>gle archaeal 16S rRNA gene and a s<strong>in</strong>gle mcrA gene by direct DNAsequenc<strong>in</strong>g. The sequence data confirmed the congruence of both l<strong>in</strong>eages<strong>in</strong> the respective trees. Related sequences were found <strong>in</strong> the guts of othertermites and cockroaches, but are also encountered <strong>in</strong> the <strong>in</strong>test<strong>in</strong>al tractsof mammals and <strong>in</strong> various environmental samples.SIP3-FGAre you cereus? -Arthromitus filaments <strong>in</strong> the guts of arthropodsC.L. Thompson*, R. Vier, A. Mikaelyan, T. Wienemann, A. BruneMax Planck Institute for Terrestrial Microbiology, Department ofBiogeochemistry, Marburg, GermanyFilamentous bacteria attached to the gut wall of many arthropods were firstdescribed and collectively named Arthromitus by Joseph Leidy more than160 years ago. S<strong>in</strong>ce then their identity has rema<strong>in</strong>ed contentious.Arthromitus was controversially claimed to be a life stage ofBacilluscereusby Lynn Margulis and colleagues based on cultivation attempts.Others have merely assumed that Arthromitus belongs to the same l<strong>in</strong>eageas the segmented filamentous bacteria (SFB) of vertebrate guts, the onlycommensal micro-organisms known to specifically modulate the hostimmune response. We used s<strong>in</strong>gle cell manipulation and a full-cycle rRNAapproach to show unequivocally that Arthromitus belongs neither to B.cereus nor is it closely related to the SFB. Instead, Arthromitus representsa diverse l<strong>in</strong>eage of exclusively arthropod-associated sequences with<strong>in</strong> thefamily Lachnospiraceae. Based on the dist<strong>in</strong>ct taxonomic positions ofArthromitus and SFB, we propose to no longer use the provisional name“Candidatus Arthromitus” for SFB but to reserve it for the filaments ofarthropods orig<strong>in</strong>ally described by Leidy. Although the function ofArthromitus rema<strong>in</strong>s unknown, these bacteriaseem to be restricted totermites, cockroaches, scarab beetle larvae, and millipedes - the onlyterrestrial arthropods that produce methane.SIP4-FGThe Bradyrhizobium japonicum prote<strong>in</strong> NopE1 - a type IIIsecretedeffector prote<strong>in</strong> with self-cleavage activityJ. Schirrmeister*, S. Zehner, L. Flor, S. Zocher, M. Hoppe, M. GöttfertDresden University of Technology, Institute of Genetics, Dresden,GermanyBradyrhizobium japonicum is a symbiont of soybean and secretes prote<strong>in</strong>s<strong>in</strong>duced by the isoflavone geniste<strong>in</strong>. Two of these type III-secretedprote<strong>in</strong>s are the homologs NopE1 and NopE2, which exhibit 77%sequence identity. In plant experiments, it was shown that the prote<strong>in</strong>saffect nodulation positively or negatively depend<strong>in</strong>g on the host [1].Reporter assays revealed that NopE1 and NopE2 are translocated <strong>in</strong>to theplant cell. Both prote<strong>in</strong>s conta<strong>in</strong> two similar doma<strong>in</strong>s of unknown function(DUF1521). NopE1 and truncated derivatives were expressed <strong>in</strong> E. coli asGST fusion prote<strong>in</strong>s and purified with glutathione sepharose aff<strong>in</strong>itychromatography. NopE1 conta<strong>in</strong>s an autoproteolytic cleavage site betweenan aspartate and prol<strong>in</strong>e with<strong>in</strong> each of the DUF1521 doma<strong>in</strong>s [1]. Selfprocess<strong>in</strong>gof the prote<strong>in</strong> can be <strong>in</strong>duced by calcium and is not <strong>in</strong>fluencedby protease <strong>in</strong>hibitors that do not complex the calcium ions [2].Experiments with truncated derivatives show that the m<strong>in</strong>imal doma<strong>in</strong>required for autocleavage is the DUF1521 doma<strong>in</strong>. Under nativeconditions, NopE1 forms dimers and the fragmented prote<strong>in</strong> parts adhereto each other. Database searches <strong>in</strong>dicate the presence of the DUF1521doma<strong>in</strong> <strong>in</strong> prote<strong>in</strong>s from different Proteobacteria, e.g. Vibrio coralliilyticusand Burkholderia phytofirmans. Therefore, this doma<strong>in</strong> probably serves afunction <strong>in</strong> several non-related <strong>in</strong>teractions between bacteria and theireukaryotic host.[1] Wenzel et al. (2010). The type III-secreted prote<strong>in</strong> NopE1 affects symbiosis and exhibits acalcium-dependent autocleavage activity. Mol. Plant-Microbe Interact., 23, 124-129.[2] Schirrmeister et al.(2011) Characterization of NopE1 a self-cleav<strong>in</strong>g nodulation effector prote<strong>in</strong>of Bradyrhizobium japonicum. J. Bacteriol., 193(15):3733-3739SMV001Will not be presented!SMV002Distribution, diversity, and activity of anaerobic ammoniumoxidiz<strong>in</strong>g bacteria <strong>in</strong> soilsZ. Jakob* 1,2 , H. Sylvia 2 , B. Alexandre 2 , T. Sonia 2 , C. Franz 11 Universität Basel, Umweltgeowissenschaften, Basel, Switzerland2 Universität Neuchâtel, Mikrobiologie, Neuchâtel, SwitzerlandDenitrification and anammox, the anaerobic microbiological conversion ofammonium with nitrite (or nitrate) to N 2, are the only processes clos<strong>in</strong>g theglobal nitrogen cycle. Anammox is <strong>in</strong>creas<strong>in</strong>gly recognized as animportant process for wastewater treatment and nitrogen cycl<strong>in</strong>g <strong>in</strong> mar<strong>in</strong>eecosystems [1]. Conversely, knowledge about distribution, diversity, andactivity of anammox bacteria <strong>in</strong> the terrestrial realm is only start<strong>in</strong>g toemerge [2]. A variety of soils were tested for the presence of anammoxbacteria us<strong>in</strong>g standard and quantitative PCR. The diversity of anammoxbacteria was assessed by clon<strong>in</strong>g/sequenc<strong>in</strong>g of the 16S rRNA gene, andanoxic soil <strong>in</strong>cubations with 15 N-labeled substrates were employed toquantify anammox activity.Anammox bacteria were detect <strong>in</strong> wetland soils, lakeshores, acontam<strong>in</strong>ated porous aquifer, permafrost soil, marsh sediment, and <strong>in</strong> soilsamples associated with nitrophilic plants. Candidate genera “Brocadia”,“Kuenenia”, “Scal<strong>in</strong>dua”, “Anammoxoglobus”, “Jettenia”, and sequencesof two new clusters were identified, represent<strong>in</strong>g a higher genus leveldiversity than <strong>in</strong> mar<strong>in</strong>e environments where mostly “Scal<strong>in</strong>dua” is found.Changes <strong>in</strong> the phylogenetic structure of the anammox guild along the soilprofile suggest that the different candidate species occupy separate niches.Moreover, anammox bacteria were not present <strong>in</strong> every tested soil type orsoil fraction, demonstrat<strong>in</strong>g their heterogeneous distribution and theirspecific ecological requirements. Abundance and activity of anammox<strong>in</strong>creased with soil depth yet varied little with season. Data show thatanammox can be a significant process <strong>in</strong> certa<strong>in</strong> soils althoughdenitrification rema<strong>in</strong>s so far the dom<strong>in</strong>ant N 2-elim<strong>in</strong>at<strong>in</strong>g process.[1] Kuenen J.G. (2008) Nat. Rev. Microbiol. 6:320-326.[2] Humbert S. et al. (2010) ISME J. 4:450-454.SMV003Denitrification activity of a new and diverse denitrifiercommunity <strong>in</strong> a pH neutral fen soil <strong>in</strong> F<strong>in</strong>nish Lapland is nitratelimitedK. Palmer*, M.A. HornUniversity of Bayreuth, Department of Ecological Microbiology, Bayreuth,GermanyWetlands are sources of the greenhouse gas N 2O. Peatlands cover about25% of the F<strong>in</strong>nish land area and might significantly impact on N 2Ofluxes. Denitrifiers release N 2O as an <strong>in</strong>termediate. The denitrifiercommunity <strong>in</strong> a pH-neutral fen (pH app. 6.9) <strong>in</strong> F<strong>in</strong>nish Lapland was<strong>in</strong>vestigated. N 2O emission was not observed <strong>in</strong> situ from unsupplementedfen soil dur<strong>in</strong>g gas chamber measurements, but nitrate and ammoniumaddition significantly <strong>in</strong>creased <strong>in</strong> situ N 2O emissions. Stimulation withnitrate was stronger than with ammonium, <strong>in</strong>dicat<strong>in</strong>g denitrification ratherthan nitrification as a potential source of N 2O <strong>in</strong> situ. N 2O was producedand subsequently consumed <strong>in</strong> gas chambers, <strong>in</strong>dicat<strong>in</strong>g completedenitrifcation to N 2. In unsupplemented anoxic microcosms, fen soilproduced N 2O only when acetylene was added to block nitrous oxidereductase, likewise <strong>in</strong>dicat<strong>in</strong>g complete denitrification. Nitrate and nitritestimulated denitrification <strong>in</strong> fen soil, and maximal reaction velocities (v max)of nitrate or nitrite dependent denitrification where 18 and 52 nmol N 2O h -1g DW -1 , respectively. N 2O was below 30% of total produced N gases <strong>in</strong> fensoil when concentrations of nitrate and nitrite were


211potential, and (ii) a highly diverse, nitrate limted denitrifier communityassociated with potential N 2O fluxes <strong>in</strong> a pH-neutral fen soil.SMV004Emission of Denitrification-derived Nitrogenous Gases byBrazilian EarthwormsP.S. Depkat-Jakob* 1 , G.G. Brown 2 , S.M. Tsai 3 , M.A. Horn 1 , H.L. Drake 11 University of Bayreuth, Ecological Microbiology, Bayreuth, Germany2 Embrapa Florestas, Colombo, Brazil3 University of São Paulo, Center of Nuclear Energy <strong>in</strong> Agriculture,Piracicaba, BrazilEarthworms are an abundant soil macrofauna. Small to medium sizedearthworms belong<strong>in</strong>g to the family Lumbricidae emit the greenhouse gasnitrous oxide (N 2O) and d<strong>in</strong>itrogen (N 2) produced by <strong>in</strong>gested denitrifiy<strong>in</strong>gsoil bacteria. The large earthworm Octochaetus multiporus(Megascolecidae) from New Zealand does not emit nitrogenous gases butits gut displays a high denitrification potential. To extend the knowledgeabout the emission of nitrogenous gases (i.e., N 2O and N 2) by earthworms,n<strong>in</strong>e small, medium and large earthworm species belong<strong>in</strong>g to the familiesGlossoscolecidae (Rh<strong>in</strong>odrilus alatus, Glossoscolex paulistus,Glossoscolex sp., Pontoscolex corethrurus), Megascolecidae (Amynthasgracilis, Perionyx excavatus), Acanthodrilidae (Dichogaster annae,Dichogaster sp.), and Eudrilidae (Eudrilus eugeniae) from Brazil wereanalyzed. All earthworm species except for G. paulistus and G. sp. emittedN 2O. Except for D. sp., acetylene greatly <strong>in</strong>creased the emission of N 2O<strong>in</strong>dicat<strong>in</strong>g denitrification as the ma<strong>in</strong> source of N 2O. On a per worm basis,the up to 63 cm long R. alatus emitted the highest amounts of nitrogenousgases, primarily N 2 <strong>in</strong>dicative of complete denitrification. Nitrite greatlystimulated the emission of N 2O and N 2 by A. gracilis and resulted <strong>in</strong> am<strong>in</strong>or emission of N 2O and N 2 by G. paulistus. Gut nitrate reducers anddenitrifiers of gut content and soil of G. paulistus (large) and A. gracilis(small) were analyzed via barcoded amplicon pyrosequenc<strong>in</strong>g with thestructural gene markers narG, nirK, and nosZ, encod<strong>in</strong>g for a subunit ofthe nitrate reductase, nitrite reductase, and N 2O reductase, respectively.Gene sequences of narG, nirK, and nosZ <strong>in</strong> the gut and soil of G. paulistuswere highly similar. Sequences <strong>in</strong> gut and soil of A. gracilis weresignificantly different from each other and from gut and soil of G.paulistus. However, gene analysis <strong>in</strong>dicated a soil derived nitrate reduc<strong>in</strong>ggut microbiota for both earthworms, ma<strong>in</strong>ly consist<strong>in</strong>g of members of theRhizobiales. The collective results suggest that the emission of N 2O and N 2is a common feature of earthworms. It rema<strong>in</strong>s unresolved whether gutsize, feed<strong>in</strong>g guild, or other factors contribute to the apparent <strong>in</strong>ability ofG. paulistus to emit nitrogenous gases.SMV005Anaerobic methane oxidizers prevent methane emissions froma m<strong>in</strong>erotrophic peatlandB. Zhu 1 , G. van Dijk 2 , C. Fritz 2 , M.S.M. Jetten 1 , K.F. Ettwig* 11 RU, IWWR, Dept. of Microbiology, Nijmegen, Netherlands2 RU, IWWR, Dept of Aquatic Ecology, Nijmegen, NetherlandsFreshwater sediments which receive nitrate fluxes from agricultural runoffand methane from methanogenesis theoretically provide ideal conditionsfor the recently discovered process of anaerobic methane oxidationcoupled to denitrification. Methylomirabilis oxyfera, the responsiblebacterium, employs a novel pathway, whereby N 2 and O 2 are formed fromnitrite without N 2O as an <strong>in</strong>termediate; the oxygen is then used <strong>in</strong> thecanonical aerobic methane oxidation pathway [1]. To further ourunderstand<strong>in</strong>g of the role of M. oxyfera <strong>in</strong> the environment, we determ<strong>in</strong>edmethane and nitrate depth profiles <strong>in</strong> a m<strong>in</strong>erotrophic peatbog dur<strong>in</strong>gseveral seasons. Methane was depleted before reach<strong>in</strong>g the oxic zone, andthe depth where nitrate and methane coexisted displayed anaerobicmethane oxidation activity. As measured by quantitiative PCR, alsobacteria related to M. oxyfera were most abundant <strong>in</strong> this depth. It wassubsequently used as an <strong>in</strong>oculum for an anaerobic, methanotrophicenrichment culture, us<strong>in</strong>g <strong>in</strong> situ water with nitrite and nitrate as electronacceptors and a pH of 6.2. Dur<strong>in</strong>g <strong>in</strong>cubation, methane oxidation andnitrite conversion were regularly monitored. Stable-isotope experimentsshowed that nitrite was preferred over nitrate, and methane oxidationceased without either electron acceptor. FISH microscopy and PCRamplification of the 16S rRNA (95% similarity) and particulate methanemonooxygenase (pmoA) gene (90% similarity) revealed that newMethylomirabilis-like bacteria had been enriched. Taken together, theseresults suggest that novel M. oxyfera-like bacteria are responsible formethane depletion <strong>in</strong> the anaerobic zone of the <strong>in</strong>vestigated peatland.[1] Ettwig et al. (2010) Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature 464, 543-548.SMV006Microorganisms affect<strong>in</strong>g the stabilisation of soil organiccarbon <strong>in</strong> cryoturbated soils of the Siberian ArcticA. Gittel* 1 , J. Barta 2 , I. Lacmanova 2 , V. Torsvik 1 , A. Richter 3 , S. Owens 4 ,J. Gilbert 4 , C. Schleper 3,1 , T. Urich 31 University of Bergen, Bergen, Austria2 University of South Bohemia, Ceske Budejovice, Czech Republic3 University of Vienna, Vienna, Austria4 Argonne National Laboratory, Argonne, Ill<strong>in</strong>ois, United StatesPermafrost underlies ~26% of terrestrial ecosystems and is estimated toconta<strong>in</strong> around 50% of the world’s soil organic carbon (SOC). Asignificant proportion of this SOC is stored <strong>in</strong> the subducted organic matterof cryosols. SOC decomposition <strong>in</strong> cryosols is strongly retarded suggest<strong>in</strong>gthat cryoturbation (= mix<strong>in</strong>g of soil layers due to freez<strong>in</strong>g and thaw<strong>in</strong>g)may be one of the most important mechanisms of Arctic carbon storageand long term stabilization. To eventually identify potential microbial keyfactors <strong>in</strong> the stabilization of SOC with<strong>in</strong> cryoturbated soils, approximatelya hundred soil samples were collected from three different landscapes <strong>in</strong>the East Siberian tundra (Cherskii, Northern Siberia; 69°N, 162°E).Samples covered organic topsoils, cryoturbated soils and its adjacentm<strong>in</strong>eral horizons, and the underly<strong>in</strong>g permafrost. Cryoturbated horizonsshowed similar soil characteristics as the topsoil horizons and were clearlydist<strong>in</strong>guishable from the subsoils. Bacterial and archaeal abundances <strong>in</strong>cryoturbated horizons were found to be several orders of magnitude higherthan <strong>in</strong> the surround<strong>in</strong>g m<strong>in</strong>eral soils. However, the relative reduction offungi <strong>in</strong> cryoturbations resulted <strong>in</strong> lower fungal:bacterial ratios comparedto the top- and subsoil. This might be a key factor for elevated SOCstabilisation and its retarded decomposition <strong>in</strong> cryoturbated layers.Community profil<strong>in</strong>g on the Illum<strong>in</strong>a GAIIx genome analyzer identifiedmembers of the Act<strong>in</strong>obacteria, Proteobacteria, Firmicutes and theVerrucomicrobia as the most abundant phyla. Additionally, phylogeneticanalyses revealed a community shift of potential <strong>in</strong>dicator taxa andfunctional groups (e.g., Firmicutes, Desulfuromonadales) from the topsoilto the subsoil reflect<strong>in</strong>g a change <strong>in</strong> redox conditions and a shift fromaerobic/microaerophilic to anaerobic microorganisms. The communitycomposition of cryoturbated soils was highly variable be<strong>in</strong>g rather similarto the subsoil or represent an <strong>in</strong>termediate stage from the top- to thesubsoil. This variability presumably reflected differences <strong>in</strong> the parent soil,age and history of the cryoturbation and the degrees of SOC stabilisation.SMV007Could bacterial residues be an important source of SOM? - acase study from a glacier forefieldC. Schurig* 1 , R. Smittenberg 2 , J. Berger 3 , F. Kraft 1 , S.K. Woche 4 , M.-O. Göbel 4 , H.J. Heipieper 1 , A. Miltner 1 , M. Kästner 11 Helmholtz Institute for Environmental Research - UFZ, EnvironmentalBiotechnology, Leipzig, Germany2 Stockholm University, Geological Sciences, Stockholm, Sweden3 Max Planck Insitute for Developmental Biology, Electron MicroscopyUnit, Tüb<strong>in</strong>gen, Germany4 Leibniz Universität Hannover, Insitute of Soil Science, Hannover,GermanyRecently, stocks of soil organic matter (SOM) have been shown to decrease <strong>in</strong>European soils and also worldwide, which compromises soil fertility andenhances emissions of carbon dioxide and other, even worse green-house gases,to the atmosphere. However, the general structure of SOM, and thereby themechanisms beh<strong>in</strong>d its genesis and loss, rema<strong>in</strong> unclear.In this framework, microbial biomass is generally regarded to be of lowimportance for SOM formation. In particular on freshly exposed surfaces,however, bacteria colonize barren m<strong>in</strong>eral surfaces faster than fungi orhigher plants. Moreover, recent results <strong>in</strong>dicate that bacterial cell wallfragments frequently occur on soil m<strong>in</strong>eral surfaces and also accompanythe microbial colonization of previously clean and sterile activated carbonsurfaces after <strong>in</strong>cubation <strong>in</strong> groundwater. Hence, we hypothesized that, atleast, <strong>in</strong> the <strong>in</strong>itial stages of soil formation bacteria and their fragmentsmay play an important role <strong>in</strong> particulate SOM formation bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>dthat most dead organic matter enter<strong>in</strong>g the soil is processed by bacteria.This hypothesis was proven by trac<strong>in</strong>g the development of SOM <strong>in</strong> achronosequence with samples from the forefield of a reced<strong>in</strong>g glacier(Damma-glacier, Canton Uri,Switzerland) by scann<strong>in</strong>g electronmicroscopy and other methods. The <strong>in</strong>itially barren m<strong>in</strong>eral surfaces havebeen shown to be rapidly covered with microbial residues as soil age<strong>in</strong>creases. Moreover, this data compares well to grow<strong>in</strong>g C/N-ratios, watercontact angles and fatty acid contents <strong>in</strong> earlier deglaciated samples.BIOspektrum | Tagungsband <strong>2012</strong>


212SMV008Methanol Consumption by Methylotrophs <strong>in</strong> TemperateAerated SoilsA. Stacheter*, H.L. Drake, S. KolbUniversity of Bayreuth, Department of Ecological Microbiology, Bayreuth,GermanyMethanol is the second most abundant organic molecule <strong>in</strong> the atmosphere.The ma<strong>in</strong> source of atmospheric methanol is plant material. Methanoloxidation by aerobic microorganisms <strong>in</strong> soils might be an important s<strong>in</strong>k <strong>in</strong>the global methanol cycle. Aerobic methylotrophs use methanol as asource of carbon and energy. Methanol oxidation k<strong>in</strong>etics were previouslyunknown. Currently, only few studies addressed structures of methanolutilis<strong>in</strong>gmicrobial communities <strong>in</strong> aerated soils. Apparent Michaelis-Menten-K<strong>in</strong>etics were experimentally determ<strong>in</strong>ed <strong>in</strong> soil slurries that weresupplemented with 14 C-methanol. 14 CO 2 production was measured, andrecovery of 14 C was calculated. Soil slurries with supplemental cyanideserved as controls for abiotic activity, and were not substantially activecompared to cyanide-free and methanol-supplemented slurries. Thus,methanol oxidation was primarily a biotic process. Washed roots from agrassland soil, and sterile grown Arabidopsis sp. plants exhibited lowermethanol oxidation rates than root-free soil. Thus, not plant tissue butlikely soil microorganisms were the ma<strong>in</strong> drivers of methanol oxidation.The K M(app) <strong>in</strong> a grassland soil (National Park Ha<strong>in</strong>ich) was 0.2 mmol perL. It is <strong>in</strong> the range of K M-values of purified methanol dehydrogenases ofthe soil-borne methylotroph Hyphomicrobium denitrificans (0.2-168 mmolper L), which implies that likely methanol oxidation of the grassland soilwas catalysed by methylotrophs. The <strong>in</strong> situ methylotroph communitycomposition will be analysed <strong>in</strong> soil samples from the National ParkHa<strong>in</strong>ich by pyrosequenc<strong>in</strong>g of functional genes (mxaF, fae, mch) that aremandatory for methanol metabolism of methylotrophs. An analysis ofmxaF genotype composition over the <strong>in</strong>cubation period of the 14 C-methanol-experiment will provide <strong>in</strong>formation on respond<strong>in</strong>g keymethylotrophs.SMV017Effects of elevated CO 2 concentrations on microbial ecosystemat the artificial test site ASGARD, EnglandS. Gwosdz* 1 , J. West 2 , D. Jones 2 , K. Smith 3 , M. Krüger 11 Bundesanstalt für Geowissenschaften und Rohstoffe, Geochemie undRohstoffe, Hannover, Germany2 British Geological Survey, Nott<strong>in</strong>gham, United K<strong>in</strong>gdom3 University of Nott<strong>in</strong>gham, Nott<strong>in</strong>gham, United K<strong>in</strong>gdomIncreas<strong>in</strong>g anthropogenic CO 2 emissions will lead to climate change andocean acidification with severe consequences for ecosystems(Intergovernmental Panel on Climate Change, 2007). CO 2 capture andstorage <strong>in</strong>to geological formations like deep sal<strong>in</strong>e aquifers or depleted gasand oil reservoirs is one option to reduce greenhouse gas emissions.As part of the EU funded “RISCS” project (Research <strong>in</strong>to Impacts andSafety <strong>in</strong> CO 2 storage), a study <strong>in</strong>vestigat<strong>in</strong>g the impacts of potential CO 2leakages on near-surface environments is be<strong>in</strong>g undertaken. To assesseffects of potential CO 2 release at CO 2-non-adapted sites, microbialabundance, diversity and plant coverage at the ASGARD site (Artificial SoilGass<strong>in</strong>g and Response Detection, Nott<strong>in</strong>gham) before, dur<strong>in</strong>g and after CO 2exposure are be<strong>in</strong>g studied.Exam<strong>in</strong>ation of environmentally important metabolic pathways and microbialgroups showed clear differences between CO 2 <strong>in</strong>jected plots with high (100%),medium (70%) and low (10%) CO 2 concentrations and control plots.Increas<strong>in</strong>g rates of methanogenesis and methane oxidation at high CO 2concentrations were provided. CO 2 production rates as an important<strong>in</strong>dicator for microbial activity showed decreas<strong>in</strong>g trends under elevatedCO 2 concentrations. Analysis of the microbial community composition byquantitative real time PCR and <strong>in</strong>vestigations of the microbial diversity(e.g. sequenc<strong>in</strong>g, TRFLP) illustrate alterations <strong>in</strong> microbial abundancesunder CO 2 <strong>in</strong>fluence.Our results <strong>in</strong>dicate a shift towards anaerobic and acid tolerant microbialpopulations.SMV009Evidence of aerobic polycyclic aromatic hydrocarbon (PAH)biodegradation <strong>in</strong> a contam<strong>in</strong>ated aquifer by comb<strong>in</strong><strong>in</strong>gBACTRAP ® s and laboratory microcosms.A. Bahr* 1 , P. Bombach 1,2 , A. Fischer 21 Helmholtz Centre for Environmental Research - UFZ, Department ofIsotope Biogeochemistry, Leipzig, Germany2 Isodetect GmbH, Leipzig, GermanyPolycyclic aromatic hydrocarbons (PAH) are among the most abundantgroundwater contam<strong>in</strong>ants, mostly as a result of petroleum and diesel spillsand <strong>in</strong>dustrial processes. Due to their toxic, carc<strong>in</strong>ogenic and mutageniccharacteristics, cost-effective clean up strategies such as MonitoredNatural Attenuation (MNA) are required for their removal fromcontam<strong>in</strong>ated field sites. PAHs have been shown to be biodegradabledespite the high activation energy needed to attack the aromatic r<strong>in</strong>g andtheir tendency to sorb on hydrophobic surfaces thus hamper<strong>in</strong>g thebiodegradation. Evidence for active PAH biodegradation <strong>in</strong> situ is difficultto obta<strong>in</strong> and requires suitable approaches for the rout<strong>in</strong>e application <strong>in</strong> theevaluation of NA potentials.In this study, biodegradation of four polycyclic aromatic hydrocarbons(naphthalene, acenaphthene, fluorene, and phenanthrene) wasdemonstrated at a PAH-contam<strong>in</strong>ated aquifer. In situ microcosms(BACTRAP ® s) consist<strong>in</strong>g of activated carbon pellets were loaded with[ 13 C 6]-naphthalene or [ 13 C 5/ 13 C 6]-fluorene (50:50) and <strong>in</strong>cubated for over 2months <strong>in</strong> monitor<strong>in</strong>g wells to collect <strong>in</strong>digenous groundwatercommunities. Am<strong>in</strong>o acids extracted from the developed microbialcommunities showed 13 C-<strong>in</strong>corporation of up to 30.4 atom%, thusdemonstrat<strong>in</strong>g a highly active PAH-degrad<strong>in</strong>g microbial community at thefield site. To further assess the biodegradation potential for the PAHs,laboratory microcosms were set up with [ 13 C 6]-naphthalene, [ 13 C 5/ 13 C 6]-fluorene (50:50), [ 13 C 1]-acenaphthene or [ 13 C 1]-phenanthrene. In situmicrocosms exposed over a period of 99 days <strong>in</strong> field monitor<strong>in</strong>g wellsand groundwater samples served as <strong>in</strong>oculum for the laboratorymicrocosms. Analysis of 13 C-<strong>in</strong>corporation <strong>in</strong>to the produced CO 2 us<strong>in</strong>ggas chromatography coupled to isotope ratio mass spectrometry (GC-IRMS) revealed a high degradation potential for all tested PAHs. Thecomb<strong>in</strong>ed application of BACTRAP ® s and laboratory microcosms can be apowerful tool for evaluat<strong>in</strong>g PAH biodegradation at subsurface impactedsites. The BACTRAP ® system turned out to be suitable to study thedegradation activity directly at the field site, but also facilitated enrichmentof PAH-degrad<strong>in</strong>g communities for further laboratory cultivationexperiments.SMV010Cobalt trace metal requirement for reductive dechlor<strong>in</strong>ationof trichloroethene by DehalococcoidesM.B. Loganathan, A. Kappler, S. Behrens*Center for Applied Geosciences, Geosciences, Tüb<strong>in</strong>gen, GermanyThe genus Dehalococcoides plays a key role <strong>in</strong> the completedechlor<strong>in</strong>ation of chlor<strong>in</strong>ated ethenes because these bacteria are the onlymicroorganisms known that are capable of reductive dechlor<strong>in</strong>ationbeyond dichloroethene (DCE) to v<strong>in</strong>yl chloride (VC) and ethene. Thereduction of chloroethenes by Dehalococcoides spp. is catalyzed byreductive dehalogenase (RDase) enzymes. The RDases <strong>in</strong>Dehalococcoides spp. are monomeric, vitam<strong>in</strong> B 12-dependent enzymes. Acomparative genome analyses of trace element utilization <strong>in</strong> prokaryotesand eukaryotes revealed that Dehalococcoides have the largest cobaltrequir<strong>in</strong>gmetalloproteome among all sequenced prokaryotic genomeswhich is consistent with the high number of non-identical RDasehomologs per genome (up to 36 <strong>in</strong> stra<strong>in</strong> VS). Here we describe reductivedechlor<strong>in</strong>ation of trichloroethene (TCE) by a microbial mixed cultureconta<strong>in</strong><strong>in</strong>g Dehalococcoides spp. <strong>in</strong> a def<strong>in</strong>ed m<strong>in</strong>eral medium amendedwith vary<strong>in</strong>g concentrations of cobalt (0.6 M to 2064 M). We observedthat elevated cobalt concentrations have a positive effect on cell growthand the rate of dechlor<strong>in</strong>ation by Dehalococcoides spp.. However,complete dechlor<strong>in</strong>ation of TCE to ethene and the highest cell yields wereonly obta<strong>in</strong>ed <strong>in</strong> enrichment cultures conta<strong>in</strong><strong>in</strong>g 36 M cobalt. Enrichmentcultures with significantly higher or lower cobalt concentrations showedma<strong>in</strong>ly <strong>in</strong>complete dechlor<strong>in</strong>ation lead<strong>in</strong>g to the accumulation of cis-DCEand VC. qPCR analysis showed that def<strong>in</strong>ed cobalt concentrations can leadto the selective enrichment of Dehalococcoides spp.. We also observedthat Dehalococcoides conta<strong>in</strong><strong>in</strong>g different sets of chloroethene reductivedehalogenases react differently to cobalt. While 36 M cobalt lead to theenrichment of VC and TCE reductive dehalogenase (vcrA/tceA)-conta<strong>in</strong><strong>in</strong>gDehalococcoides other cobalt concentrations favoured only TCE reductivedehalogenase (tceA)-conta<strong>in</strong><strong>in</strong>g Dehalococcoides stra<strong>in</strong>s. Our experimentsdemonstrate how careful evaluation of f<strong>in</strong>d<strong>in</strong>gs from comparativegenomics can further our understand<strong>in</strong>g of the physiological requirementsof environmental microorganisms with implications for their application <strong>in</strong>bioremediation.SMV011Anaerobic transformation of chlorobenzene and dichlorobenzene<strong>in</strong> highly contam<strong>in</strong>ated groundwaterM. Schmidt*, I. Nijenhuis, D. Wolfram, S. Devakota, J. Birkigt, B. Kle<strong>in</strong>,H.H. RichnowHelmholtz Centre for Environmental Research - UFZ , IsotopeBiogeochemistry, Leipzig, GermanyThe halogenated groundwater pollutants chlorobenzene (MCB) anddichlorobenzene (DCB) are ubiquitous <strong>in</strong> the environment and seem to bepersistent and accumulat<strong>in</strong>g under anoxic aquifer conditions. However, ourgroup could provide evidence for the transformation of chlorobenzeneunder anoxic conditions [1]. Futhermore Fung et al. [2]described thedehalogenation of DCB and MCB <strong>in</strong> anoxic microcosms.BIOspektrum | Tagungsband <strong>2012</strong>


213Therefore, we hypothesize that both anoxic oxidation and reductivedechlor<strong>in</strong>ation may be parallelly occurr<strong>in</strong>g pathways for the removal ofMCB and DCB<strong>in</strong> situ. This study aimed to <strong>in</strong>vestigate the microbialtransformation of MCB and DCB <strong>in</strong> the complex environment of aconstructed planted (Juncus effusus) model scale wetland. Additionallydifferent redox conditions were compared <strong>in</strong> a laboratory microcosmstudy. After more than 365 days of cont<strong>in</strong>uous operation, the overallremoval of MCB was >90% while DCB was completely removed <strong>in</strong> themodel scale wetland. Concurrent sulphate and iron reduction wasobserved. The orig<strong>in</strong>al groundwater pumped <strong>in</strong>to the wetland was anoxicand conta<strong>in</strong>ed ferrous iron and high concentrations of sulphate. Along theflow path, the geochemistry changed. We observed <strong>in</strong>creas<strong>in</strong>g sulphideand iron(II) concentrations <strong>in</strong> the anoxic and deeper sediment part whereasthe upper zone became oxic and less sulfidic. In the microcosms, MCBm<strong>in</strong>eralisation was observed under nitrate and iron reduc<strong>in</strong>g conditions.Microbial community analysis showed the presence of a diversecommunity which could be l<strong>in</strong>ked to methanogenic, sulphate or ironreduc<strong>in</strong>g (Geobacter) activity as well as to potential aerobic processes(Burkholderia). We identified representatives of the phylum Chloroflexirelated to Dehalogenimonas which could be <strong>in</strong>volved <strong>in</strong> thedehalogenation of chlor<strong>in</strong>ated contam<strong>in</strong>ants.1. Nijenhuis, I., et al.,Sensitive detection of anaerobic monochlorobenzene degradation us<strong>in</strong>g stableisotope tracers.Environmental Science & Technology, 2007.41(11): p. 3836-3842.2. Fung, J.M., et al.,Reductive dehalogenation of dichlorobenzenes and monochlorobenzene tobenzene <strong>in</strong> microcosms.Environ Sci Technol, 2009.43(7): p. 2302-7.SMV012On the dist<strong>in</strong>ct physiological capabilities of so far unculturedarchaea <strong>in</strong> acidophilic biofilmsS. Ziegler* 1,2 , K. Dolch 1 , J. Majzlan 3 , J. Gescher 11 KIT Karlsruhe, Department for Applied Biology, Karlsruhe, Germany2 Albert Ludwigs University Freiburg, Department for Microbiology, Freiburg,Germany3 Friedrich-Schiller University, Depertment for M<strong>in</strong>eralogy, Jena, GermanyBiofilms can provide a number of different ecological niches formicroorganisms. The here studied snotite biofilms <strong>in</strong> which pyriteoxidiz<strong>in</strong>g microbes are the primary producers are outstand<strong>in</strong>g objects tostudy multispecies biofilms. This is due to their stability that allows <strong>in</strong> situmeasurements as well as detailed fluorescence <strong>in</strong> situ hybridization (FISH)based characterization of the microbial population <strong>in</strong> different areas of thebiofilm. Consequently, catalyzed reporter deposition (CARD) FISH wasused to exam<strong>in</strong>e niches of archaea and bacteria <strong>in</strong> an acidic snotite biofilm.These results were comb<strong>in</strong>ed with oxygen microsensor measurements tocorrelate the abundance of different phylogenetic groups to the availableoxygen concentration. This concentration decl<strong>in</strong>ed rapidly from the outsideto the <strong>in</strong>side of the biofilm. Hence, part of the population lives undermicrooxic or anoxic conditions. Leptospirillum ferrooxidans stra<strong>in</strong>sdom<strong>in</strong>ate the microbial population but are only located <strong>in</strong> the oxicperiphery of the snotite structure. Acidithiobacillus species were alsodetected but occurred <strong>in</strong> the oxic periphery as well as the anoxic core.Interest<strong>in</strong>gly, archaea were identified only <strong>in</strong> anoxic areas of the biofilm.The archaeal community consists of so far uncultured Thermoplasmatalesas well as novel ARMAN species. In addition to CARD FISH and oxygenmicrosensor measurements, <strong>in</strong> situ microautoradiographic (MAR) FISHwas used to identify areas <strong>in</strong> which acitive CO 2 fixation took place.Leptospirilla as well as acidithiobacilli were identified as the primaryproducers. CO 2 fixation was revealed to proceed <strong>in</strong> the outer rim of thematrix. Hence, archaea <strong>in</strong>habit<strong>in</strong>g the snotite core do not seem tocontribute to primary production. This work gives <strong>in</strong>sight <strong>in</strong> the ecologicalniches of acidophilic microorganisms and their role <strong>in</strong> a consortium. Thedata suggests so far unprecedented capabilities of ARMAN species andcan provide the basis for the isolation of so far uncultured archaea.SMV013Effects of sulfadiaz<strong>in</strong>e enter<strong>in</strong>g via manure <strong>in</strong>to soil onabundance and transferability of antibiotic resistance <strong>in</strong> therhizosphere of grass and maizeS. Jechalke* 1 , C. Kopmann 1 , I. Rosendahl 2 , J. Grooneweg 3 ,E. Krögerrecklenfort 1 , U. Zimmerl<strong>in</strong>g 1 , V. Weichelt 1 , G.-C. D<strong>in</strong>g 1 ,J. Siemens 2 , W. Amelung 2 , H. Heuer 1 , K. Smalla 11 Julius Kühn-Institute - Federal Research Centre for Cultivated Plants(JKI), Epidemiology and Pathogen Diagnostics, Braunschweig, Germany2 Institute of Crop Science and Resource Conservation, University of Bonn,Soil Science and Soil Ecology, Bonn, Germany3 Institute of Bio- and Geosciences 3, Agrosphere, ForschungszentrumJülich GmbH, Jülich, GermanyVeter<strong>in</strong>ary antibiotics <strong>in</strong>troduced <strong>in</strong>to soil via manure are assumed topromote the spread<strong>in</strong>g of antibiotic resistance genes and selection ofresistant bacterial populations. The rhizosphere is a hot spot of microbial<strong>in</strong>teractions like horizontal gene transfer, as root exudates are a foodsource for microorganisms and a driv<strong>in</strong>g force of population density andactivity. For example, it was shown that the addition of artificial rootexudates <strong>in</strong>creased the bacterial community tolerance towards theveter<strong>in</strong>ary antibiotic compound sulfadiaz<strong>in</strong>e (SDZ) [1]. On the other hand,the exposure of bacteria to SDZ is presumably reduced <strong>in</strong> the rhizospheres<strong>in</strong>ce the dissipation of bioaccessible SDZ-concentrations was recentlyshown to be accelerated <strong>in</strong> rhizosphere soil, <strong>in</strong>dicat<strong>in</strong>g an enhanceddegradation of the compound [2]. However, so far little is known about theabundance and dynamics of sulfonamide resistance genes <strong>in</strong> therhizosphere. We therefore compared the fate and effect of SDZ <strong>in</strong> bulkandrhizosphere soil <strong>in</strong> mesocosms planted with maize and <strong>in</strong> field plotsplanted with maize or grass. In both experiments, manure was appliedwhich was collected from pigs treated with SDZ or not. SDZconcentrations over time were analyzed by a sequential extraction protocolfor soil yield<strong>in</strong>g antibiotic fractions of different b<strong>in</strong>d<strong>in</strong>g strength, whichserved as a proxy for the bioaccessible concentration. Follow<strong>in</strong>g theapplication of manure, CaCl 2-extractable concentrations of SDZ and itsmetabolites tended to decrease faster <strong>in</strong> rhizosphere soil than <strong>in</strong> bulk soilwhereas the dissipation rates of residual microwave-extractable SDZ weresimilar. Quantitative real-time PCR of total community DNA showed thatthe application of manure conta<strong>in</strong><strong>in</strong>g SDZ <strong>in</strong>creased the relative abundanceof the SDZ resistance genes sul1 and sul2 <strong>in</strong> bulk- and rhizosphere soil ofmaize, which may be associated with a propagation of LowGC-typeplasmids. In the rhizosphere of the field experiment, the difference ofrelativesul abundance between the treatments <strong>in</strong>creased over time, even atbioaccessible SDZ-concentrations below previously reported effectivedoses.1. Brandt, K. K.; Sjoholm, O. R.; Krogh, K. A.; Hall<strong>in</strong>g-Sorensen, B.; Nybroe, O., IncreasedPollution-Induced Bacterial Community Tolerance to Sulfadiaz<strong>in</strong>e <strong>in</strong> Soil Hotspots Amended withArtificial Root Exudates. Environmental Science & Technology 2009, 43, (8), 2963-2968.2. Rosendahl, I.; Siemens, J.; Groeneweg, J.; L<strong>in</strong>zbach, E.; Laabs, V.; Herrmann, C.; Vereecken,H.; Amelung, W., Dissipation and Sequestration of the Veter<strong>in</strong>ary Antibiotic Sulfadiaz<strong>in</strong>e and ItsMetabolites under Field Conditions. Environmental Science & Technology 2011, 45, (12), 5216-5222.SMV014The 'rare biosphere' contributes to wetland sulfate reduction -fameless actors <strong>in</strong> carbon cycl<strong>in</strong>g and climate changeM. Pester*, B. Hausmann, N. Bittner, P. Deevong, M. Wagner, A. LoyUniversity of Vienna, Department of Microbial Ecology, Vienna, AustriaWetlands are a major source of the greenhouse gas methane and theirresponse to global warm<strong>in</strong>g and <strong>in</strong>creas<strong>in</strong>g aerial sulfur pollution is one ofthe largest unknowns <strong>in</strong> the upcom<strong>in</strong>g decades to centuries. Althoughregarded as primarily methanogenic environments, biogeochemical studieshave revealed a hidden sulfur cycle <strong>in</strong> wetlands that can susta<strong>in</strong> rapidrenewal of the small stand<strong>in</strong>g pools of sulfate. Here, we show by 16SrRNA gene stable isotope prob<strong>in</strong>g that a Desulfosporos<strong>in</strong>us species, whichconstitutes only 0.006% of the total microbial community, is a majorsulfate reducer <strong>in</strong> a long-term experimental peatland field site whensupplied with <strong>in</strong> situ concentrations of short-cha<strong>in</strong>ed fatty acids andlactate. Parallel stable isotope prob<strong>in</strong>g us<strong>in</strong>g dsrAB [encod<strong>in</strong>g subunit Aand B of the dissimilatory (bi)sulfite reductase] identified no additionalsulfate reducers under the conditions tested despite the high diversity ofthis functional marker gene <strong>in</strong> the studied peatland. Subsequent s<strong>in</strong>glesubstrate <strong>in</strong>cubations revealed that sulfate reduction was stimulated bestwith lactate, propionate, and butyrate but not with acetate or formate. Forthe identified Desulfosporos<strong>in</strong>us species, a high cell-specific sulfate2-reduction rate of 341 fmol SO 4 cell -1 day -1 was determ<strong>in</strong>ed. Thus, thesmall Desulfosporos<strong>in</strong>us population has the potential to reduce sulfate <strong>in</strong>situ at a rate of up to 36.8 nmol (g soil w. wt.) -1 day -1 , sufficient to accountfor a substantial part of sulfate reduction <strong>in</strong> the peat soil. Model<strong>in</strong>g ofsulfate diffusion to such highly active cells identified no limitation <strong>in</strong>sulfate supply even at bulk concentrations as low as 10 M. These datashow that the identified Desulfosporos<strong>in</strong>us species, despite be<strong>in</strong>g amember of the 'rare biosphere', can contribute substantially to sulfatereduction, which diverts the carbon flow <strong>in</strong> peatlands from methane to CO 2and, thus, alters their contribution to global warm<strong>in</strong>g.SMV015Microbial iron cycl<strong>in</strong>g <strong>in</strong> freshwater sedimentsC. Schmidt*, E.-D. Melton, A. KapplerUniversity Tueb<strong>in</strong>gen, Geomicrobiology, Tueb<strong>in</strong>gen, GermanyIron belongs to the dom<strong>in</strong>ant chemical elements <strong>in</strong> the Earth’s crust and istherefore an important constituent <strong>in</strong> all environmental systems. Iron redoxtransformations and elemental cycl<strong>in</strong>g are strongly controlled by localgeochemical conditions, as well as by the abundance and activity of ironoxidiz<strong>in</strong>gand iron-reduc<strong>in</strong>g microorganisms. Apply<strong>in</strong>g a coupledgeochemical-microbiological approach we attempted to determ<strong>in</strong>e thespatial distribution of the different iron transformation processes as afunction of substrate, energy and electron donor/acceptor availability <strong>in</strong>freshwater sediments. As the microbial distribution is a function of localgeochemical conditions we have determ<strong>in</strong>ed the distribution of readilyavailable electron acceptors (O 2, NO 3 - ) and donors (Fe II ), as well as theabundance of iron-convert<strong>in</strong>g microorganisms with high spatial resolution.In addition, the bioavailable fractions of ferriferrous m<strong>in</strong>erals wereBIOspektrum | Tagungsband <strong>2012</strong>


214determ<strong>in</strong>ed as a function of the redox gradient. Moreover, the energy thatis available to iron-convert<strong>in</strong>g microorganisms has been quantified withrespect to local geochemical gradients. The comb<strong>in</strong>ation of geochemical,m<strong>in</strong>eralogical, energetical and microbiological data allowed a detailed<strong>in</strong>vestigation of the spatial structure of the iron cycl<strong>in</strong>g throughout naturalredox gradients. First microcosm studies have been performed to<strong>in</strong>vestigate the competition for ferrous iron as electron donor for ironoxidiz<strong>in</strong>gbacteria. The obta<strong>in</strong>ed data allow to construct a conceptualmodel describ<strong>in</strong>g the substrate and electron donor/acceptor flux betweenthe areas of pronounced metabolic activity (i.e. different iron convert<strong>in</strong>gprocesses) <strong>in</strong> the elemental iron cycl<strong>in</strong>g throughout natural redox gradientsand the <strong>in</strong>terspecies substrate competition.SMV016Autotrophic Fe(II) oxidiz<strong>in</strong>g bacteria <strong>in</strong> the littoral sedimentof Lake Große FuchskuhleD. Kanaparthi* 1 , M. Dumont 1 , B. Pommerenke 1 , P. Casper 1,21 Max Plank Institute for Terrestrial Microbiology, Department ofBiogeochemistry, Marburg, Germany2 Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Stechl<strong>in</strong>,GermanyLake Große Fuchskuhle is a dystrophic acidic bog lake located <strong>in</strong> northernGermany. The primary objective of this study was to <strong>in</strong>vestigate theprocesses and microorganisms responsible for anaerobic CO 2 fixation <strong>in</strong>the littoral sediment. A time-course DNA-SIP approach was used us<strong>in</strong>g13 CO 2. Little or no CH 4 production was observed dur<strong>in</strong>g 12-week<strong>in</strong>cubation, suggest<strong>in</strong>g that conditions were not suitable formethanogenesis. Analysis of labeled 16S rRNA genes <strong>in</strong>dicated that only afew species had <strong>in</strong>corporated the13 CO 2, <strong>in</strong>clud<strong>in</strong>g a group ofBetaproteobacteria related to Gallionella and Sideroxydans species and agroup with<strong>in</strong> the Act<strong>in</strong>obacteria related to Acidimicrobium ferrooxidans.Previous studies have reported a high abundance of similar act<strong>in</strong>obacterial16S rRNA sequences <strong>in</strong> this and other humic bog lakes, but the ecologicalfunction and physiology of these organisms is unknown. As most of the16S rRNA genes sequenced from the heavy fraction are related toGallionella, Sideroxydans and Acidimicrobium which are known ironoxidiz<strong>in</strong>g bacteria (FeOB), we <strong>in</strong>vestigated the possibility that the labeledorganisms <strong>in</strong> this study were chemoautotrophic FeOB. Fe 2+ concentrationswere measured <strong>in</strong> the sediment and found to be 1.8 mM and enumerationby MPN method have shown the presence of 1x10 4 autotrophic and 1x10 7heterotrophic FeOB <strong>in</strong> the sediment. Anaerobic enrichment <strong>in</strong>cubationswere performed and it was shown that the Act<strong>in</strong>obacteria could be highlyenriched <strong>in</strong> the presence of Fe 2+ , CO 2 and NO - 3 , suggest<strong>in</strong>g they areautotrophic FeOB and could be us<strong>in</strong>g NO - 3 as a term<strong>in</strong>al electron acceptor.This study suggests that anaerobic chemoautotrophic FeOB may bedom<strong>in</strong>ant autotrophic bacteria <strong>in</strong> this lake and to our knowledge our resultsare the first to <strong>in</strong>dicate the autotrophy and a probable Nitrate dependentferrous iron oxidiz<strong>in</strong>g nature of theseAct<strong>in</strong>obacteria.SMP001Microbial iron(II) oxidation <strong>in</strong> littoral freshwater lakesediments: Competition between phototrophic vs. nitratereduc<strong>in</strong>giron(II)-oxidizersE.D. Melton*, C. Schmidt, A. KapplerUniversität Tüb<strong>in</strong>gen, Geowissenschaften, Tüb<strong>in</strong>gen, GermanyThe temporal and spatial distribution of neutrophilic microbial ironoxidation is ma<strong>in</strong>ly determ<strong>in</strong>ed by local physico-chemical gradients ofoxygen, light, nitrate and ferrous iron. In the anoxic part of the top layer oflittoral freshwater lake sediments, nitrate-reduc<strong>in</strong>g and phototrophiciron(II)-oxidizers compete for the same electron donor; reduced iron.Though a conceptual framework for biogeochemical iron cycl<strong>in</strong>g has beenproposed 1 , it is not yet understood how these microbes co-exist <strong>in</strong> thesediment, what their spatial distribution is relative to one another and whatrole they play <strong>in</strong> the overall iron cycle. In this study we show that bothmetabolic types of anaerobic Fe(II)-oxidiz<strong>in</strong>g microorganisms are present<strong>in</strong> the same sediment layer directly beneath the oxic-anoxic sediment<strong>in</strong>terface. The photoferrotrophic MPNs counted 3.4·10 5 cells·g -1 and theautotrophic and mixotrophic nitrate-reduc<strong>in</strong>g Fe(II)-oxidizers totalled1.8·10 4 and 4.5·10 4 cells·g -1 dry weight sediment, respectively.Additionally, <strong>in</strong> order to dist<strong>in</strong>guish between the two microbial Fe(II)oxidation processes and to assess their <strong>in</strong>dividual contribution to thesedimentary iron cycle, littoral lake sediment was <strong>in</strong>cubated <strong>in</strong> microcosmswith various additives. We found that nitrate-reduc<strong>in</strong>g Fe(II)-oxidiz<strong>in</strong>gbacteria exhibited a higher maximum Fe(II) oxidation rate per cell <strong>in</strong> bothpure cultures and microcosms than achieved by photoferrotrophs.However, where photoferrotrophs <strong>in</strong>stantly started oxidiz<strong>in</strong>g Fe(II),nitrate-reduc<strong>in</strong>g Fe(II)-oxidizers showed a significant lag-phase <strong>in</strong>microcosms dur<strong>in</strong>g which time they probably use organics as electrondonor before they <strong>in</strong>itiated Fe(II) oxidation. This suggests that nitratereduc<strong>in</strong>gFe(II)-oxidizers will be outcompeted by photoferrotrophic Fe(II)-oxidizers dur<strong>in</strong>g optimal light conditions due to Fe(II) limitations, asphototrophs deplete Fe(II) before nitrate-reduc<strong>in</strong>g Fe(II)-oxidizers startFe(II) oxidation. Thus, the co-existence of the two anaerobic Fe(II)-oxidizers may be possible due to a niche space separation <strong>in</strong> time by theday night cycle, where nitrate-reduc<strong>in</strong>g Fe(II)-oxidizers oxidize Fe(II)dur<strong>in</strong>g the night and phototrophs play a dom<strong>in</strong>ant role <strong>in</strong> Fe(II) oxidationdur<strong>in</strong>g daylight hours. Furthermore, metabolic flexibility of Fe(II)-oxidiz<strong>in</strong>g microorganisms may play a paramount role <strong>in</strong> the conservationof the sedimentary Fe cycle.1. C. Schmidt, S. Behrens and A. Kappler, Environmental Chemistry7(2010), p399-405SMP002Intermediary Ecosystem Metabolism <strong>in</strong> Different CH 4 -emitt<strong>in</strong>g Peatland SoilsS. Hunger*, C. Bruß, M. Eppendorfer, A.S. Gößner, H.L. DrakeUniversity Bayreuth, Department of Ecological Microbiology, Bayreuth,GermanyNatural wetlands such as bogs and fens contribute up to approximately40% to the global emission of methane. Biopolymers <strong>in</strong> peatland soils areanaerobically degraded via <strong>in</strong>termediary events that term<strong>in</strong>ate <strong>in</strong> theemission of methane (i.e., collectively ‘<strong>in</strong>termediary ecosystemmetabolism’). Glucose, acetate, and H 2-CO 2 have been observed tostimulate <strong>in</strong>termediary events (i.e., fermentation, acetogenesis) andterm<strong>in</strong>al events (i.e., methanogenesis) <strong>in</strong> anoxic microcosms of soils fromthe regional fen Schlöppnerbrunnen. The stimulation of glucose-, acetate-,and H 2-CO 2-dependent processes were analyzed <strong>in</strong> different regionalpeatland soils and compared to the <strong>in</strong>termediary ecosystem metabolism ofthe fen Schlöppnerbrunnen. Peatland soils were diluted with m<strong>in</strong>eralmedium and <strong>in</strong>cubated <strong>in</strong> the dark under anoxic conditions. The microbialcommunity <strong>in</strong> soil microcosms were evaluated with mcrA/mrtA (encodefor the alpha-subunit of methyl-CoM reductases I and II) and bacterial 16SrRNA genes. Glucose-dependent fermentation was stimulated <strong>in</strong> all soilmicrocosms, but product profiles differed between sampl<strong>in</strong>g sides.Propionate, butyrate, and CO 2 accumulated as end products <strong>in</strong> all soilmicrocosms. Ethanol, H 2, and acetate accumulated as end products <strong>in</strong> soilmicrocosms from some peatland soils or were partially degraded <strong>in</strong> others.Formate was transiently detected <strong>in</strong> glucose-supplemented soilmicrocosms from some peatland soils. Hydrogenotrophic methanogenesiswas stimulated <strong>in</strong> all soil microcosms, whereas acetoclasticmethanogenesis and H 2-dependent acetogenesis were stimulated <strong>in</strong> most ofthe soil microcosms. Most abundant taxa under <strong>in</strong> situ conditions <strong>in</strong> one ofthe fen soils were Acidobacteria, Anaerol<strong>in</strong>eae, unclassified and noveltaxa, whereas Acidobacteria, Alphaproteobacteria, unclassified and novel taxawere most abundant <strong>in</strong> one of the peat bog soils under <strong>in</strong> situ conditions.Methanogens of the contrast<strong>in</strong>g soils were also resolved. The collective resultsre<strong>in</strong>force the likelihood that the <strong>in</strong>termediary ecosystem metabolism differsbetween different peatland soils and that Acidobacteria-related taxa as well ashitherto unknown taxa are <strong>in</strong>tegrated to the ‘<strong>in</strong>termediary ecosystemmetabolism’ and the emission of methane <strong>in</strong> the peatland soils.SMP003Mobilization of cadmium from Fe(III) (oxyhydr)oxides dur<strong>in</strong>gmicrobial Fe(III) reduction <strong>in</strong> cadmium-contam<strong>in</strong>ated soilE.M. Muehe* 1 , U. Kraemer 2 , A. Kappler 11 University of Tueb<strong>in</strong>gen, Geomicrobiology, Tueb<strong>in</strong>gen, Germany2 Ruhr-University Bochum, Plant Physiology, Bochum, GermanySoils worldwide have <strong>in</strong>creas<strong>in</strong>gly been contam<strong>in</strong>ated with <strong>in</strong>dustrialwaste metals, <strong>in</strong>clud<strong>in</strong>g cadmium, which may subsequently enter the foodcha<strong>in</strong> through agriculturally used plants. These contam<strong>in</strong>ant metals<strong>in</strong>fluence the natural ecosystem drastically and can have dramatic effectson human health. Hence, there is a need for the development andapplication of new techniques to efficiently remediate contam<strong>in</strong>ated soils.In the study presented here, we comb<strong>in</strong>ed phytoremediation andmicrobially enhanced natural attenuation to determ<strong>in</strong>e whether a moretime- and cost-efficient removal of cadmium from contam<strong>in</strong>ated sites isachieved. A cadmium-tolerant Fe(III)-reduc<strong>in</strong>g bacterium oftheGeobactergroup was enriched and isolated from a highly cadmiumcontam<strong>in</strong>atedsite <strong>in</strong> Germany. By design<strong>in</strong>g specific primers theisolatedGeobacterstra<strong>in</strong> was quantified <strong>in</strong> cadmium-contam<strong>in</strong>ated sites andlaboratory experiments. In batch experiments this cadmium-tolerantFe(III)-reducer was shown to mobilize cadmium from Fe(III) (hydr)oxidesthrough reductive dissolution. Subsequently, the phytoavailable cadmiumwas actively be taken up by the metallophyte cadmium hyperaccumulatorplantArabidopsis halleriand accumulated <strong>in</strong> the above ground tissue. Inplant-microbe-soil mesocosms, geochemical and microbial parameterswere determ<strong>in</strong>ed to trace the microbial release of cadmium from cadmiumbear<strong>in</strong>gFe(III) m<strong>in</strong>erals by the natural microbial community <strong>in</strong>comparison to sterile setups. Additionally, the cadmium uptake andaccumulation by the plantA.halleri<strong>in</strong> the presence and absence of thesebacteria was quantified. By harvest<strong>in</strong>g the plant regularly, an efficientremoval of cadmium from contam<strong>in</strong>ated sites may be achieved.BIOspektrum | Tagungsband <strong>2012</strong>


215SMP004Physiological constra<strong>in</strong>ts of microbial electron shuttl<strong>in</strong>g frombacteria via redox-active humic substances to poorly solubleFe(III) m<strong>in</strong>eralsN. Rohrbach* 1 , M. Obst 2 , A. Kappler 11 University of Tueb<strong>in</strong>gen, Geomicrobiology, Tueb<strong>in</strong>gen, Germany2 University of Tueb<strong>in</strong>gen, Env. Analytical Microscopy, Tueb<strong>in</strong>gen,GermanyMicrobial redox processes <strong>in</strong> soils and sediments impact biogeochemicalcycl<strong>in</strong>g of elements and nutrients and are controlled by the availability ofdifferent electron acceptors. Reduction of Fe(III) poses a challenge tomicrobes, s<strong>in</strong>ce Fe(III) is present at neutral pH <strong>in</strong> form of poorly solublem<strong>in</strong>erals. However, Fe(III)-reduc<strong>in</strong>g bacteria are known to overcome thissolubility problem and several mechanisms have been suggested forelectron transfer from the outer membrane to the surface of the ferric(oxyhydr)oxides: (i) direct electron transfer from outer membrane c-typecytochromes requir<strong>in</strong>g direct cell-m<strong>in</strong>eral contact, (ii) <strong>in</strong>direct reduction ofFe(III) via solubilization of the Fe(III) by organic chelators and uptake andreduction of the Fe(III) <strong>in</strong> the cell, or (iii) <strong>in</strong>direct reduction of the Fe(III)m<strong>in</strong>erals via electron shuttles such as dissolved or solid-phase humicsubstances (HS) (Konhauser et al., 2011). HS are ubiquitous <strong>in</strong> theenvironment and can be used by a variety of microbes as electron acceptoras well as electron mediator to transfer electrons from the cell to otherelectron acceptors. However, it is currently unknown whether bothm<strong>in</strong>eral-surface-associated and planktonic cells benefit from HS aselectron mediators and how microbes, m<strong>in</strong>erals and HS are spatiallyarranged as a function of cell density.We studied the extent of microbial reduction of the Fe(III) m<strong>in</strong>eralferrihydrite [Fe(OH) 3] by Shewanella oneidensis stra<strong>in</strong> MR-1 at differentconcentrations of cells <strong>in</strong> the presence and absence of HS. As expected,HS stimulated Fe(III) reduction <strong>in</strong> high-cell-number systems <strong>in</strong> whichexcess planktonic cells transfer electrons via dissolved HS to the Fe(III)m<strong>in</strong>eral surface that is otherwise <strong>in</strong>accessible to them. Unexpectedly, wefound that the presence of HS also stimulated Fe(III) reduction <strong>in</strong> low-cellnumbersystems where all cells present had direct access to the m<strong>in</strong>eralsurface. This suggests that even small spatial gaps between electronreleas<strong>in</strong>gcell-surface prote<strong>in</strong>s and the m<strong>in</strong>eral surface can be bridged viaredox-active HS. Confocal laser scann<strong>in</strong>g microscopy (CLSM) was used toimage cell-m<strong>in</strong>eral-HS-aggregates and to visualize how the microbial cellswere distributed <strong>in</strong> the setups. These results emphasize the relevance of HS<strong>in</strong> biogeochemical redox processes <strong>in</strong> soils and sediments.Konhauser, K.O., Kappler, A., Roden, E.E. (2011) Iron <strong>in</strong> microbial metabolism. Elements, 7, 89-93.SMP005Study<strong>in</strong>g colonization on stone surfaces by a model biofilm <strong>in</strong>a flow-through chamber approachF. Seiffert* 1 , A. Friedmann 2 , A. Heilmann 2 , A. Gorbush<strong>in</strong>a 11 Federal Institute for Materials Research and Test<strong>in</strong>g, 4.0: Model Biofilms<strong>in</strong> Materials Research, Berl<strong>in</strong>, Russian Federation2 Fraunhofer Institute for Mechanics of Materials IWM, Department ofBiological and Macromolecular Materials, Halle, GermanySoil formation on weather<strong>in</strong>g rock surfaces is <strong>in</strong>tr<strong>in</strong>sically connected withprimary microbial colonization at the atmosphere-lithosphere <strong>in</strong>terface.Rock-<strong>in</strong>habit<strong>in</strong>g life is ubiquitous on rock surfaces all around the world,but the laws of its establishment, and more important, quantification of itsgeological <strong>in</strong>put are possible only <strong>in</strong> well-controlled and simplifiedlaboratory models. In a previous study [1] a model rock biofilm consist<strong>in</strong>gof the heterotrophic black yeast Sarc<strong>in</strong>omyces petricola and thephototrophic and nitrogen-fix<strong>in</strong>g cyanobacterium Nostoc punctiforme wasestablished.In the present work the growth of this model biofilm on diverse materialswith different physical and chemical properties was <strong>in</strong>vestigated underwell controlled laboratory conditions. To clarify the role of environmentalfactors, the parameters temperature, light <strong>in</strong>tensity, CO 2 content andrelative humidity were varied <strong>in</strong> growth test series. For an acceleratedstone colonization and to <strong>in</strong>crease the biomass yield different flow-throughchamber systems with semi-cont<strong>in</strong>uous cultures have been applied,simulat<strong>in</strong>g weather<strong>in</strong>g conditions like flood<strong>in</strong>g, desiccation and nutrient<strong>in</strong>put. The biofilm development was studied by (i) light and electronmicroscopy and (ii) qualitatively and quantitatively with respect to cellforms and biomass. Mixed and s<strong>in</strong>gle cultures of the model biofilmprotagonists were compared to elucidate possible growth <strong>in</strong>fluenc<strong>in</strong>geffects by the respective symbiotic partner.Under the mentioned environmental conditions two types of flow-throughchambers have been applied (i) with a neutral growth support<strong>in</strong>gmembrane and (ii) <strong>in</strong>clud<strong>in</strong>g m<strong>in</strong>eral materials to explore possible rocksurface colonization. The first flow-through chamber type is directlyobservable under the light microscope and can be divided <strong>in</strong>to twocompartments via a semi-permeable membrane allow<strong>in</strong>g co-cultivation ofs<strong>in</strong>gle cultures and a regular control of their cell morphology. With thissystem it is possible to determ<strong>in</strong>e if a metabolite exchange between themodel biofilm partners is sufficient for the symbiosis or if there is a needfor a direct cell-cell-contact. Possible biologically <strong>in</strong>duced m<strong>in</strong>eral surfacealterations were followed on various rock substrates exposed <strong>in</strong> the secondflow-through chamber system.[1] A.A. Gorbush<strong>in</strong>a and W.J. Broughton (2009). Annu. Rev. Microbiol.63: 431-450.SMP006Composition of methanogenic archaea of the El’gygytgynCrater Lake NE-SiberiaJ. Görsch*, J. Griess, D. WagnerAWI, Potsdam, Potsdam, GermanyArctic lakes are an important source of methane, which has a 26 timesstronger greenhouse gas effect than CO 2. An <strong>in</strong>crease of abundance andsurface of North Siberian lakes has lead to a rise of methane emission upto 58% from 1974 to 2000 [1]. Nevertheless, the knowledge about methanedynamics <strong>in</strong> arctic lakes and methanogenic archaea <strong>in</strong> deeper sedimentdeposits is still limited.To deepen the understand<strong>in</strong>g of methane dynamics <strong>in</strong> arctic lakes, amolecular biological characterization of methanogenic archaea was carriedout <strong>in</strong> 10.000 to 400.000 years old sediment deposits of the El’gygytgynCrater Lake drilled <strong>in</strong> scope of the ICDP-project ‘Scientific Drill<strong>in</strong>g <strong>in</strong>El’gygytgyn Crater Lake’ [2]. Archaeal DNA was successfully amplifiedthroughout deposits of Middle and Late Pleistocene as well as Holocene.Furthermore, on the base of 16S rRNA, denatur<strong>in</strong>g gradient gelelectrophoresis and clone libraries of selected samples showed a diversityof methanogens affiliated with Methanosarc<strong>in</strong>ales, Methanocellales andMethanomicrobiales. The methanogenic diversity strongly variedthroughout the sediment depths with two areas of high diversity <strong>in</strong> 250.000and 320.000 years old sediments. Additionally, a positive correlationbetween the diversity and the amount of organic carbon was discovered.Application of propidium monoazide helped to dist<strong>in</strong>guish between viablecells and free DNA and showed that a great proportion of amplified DNAcame from <strong>in</strong>tact cells. The oldest liv<strong>in</strong>g archaea was isolated out of390.000 years old sediment deposits. Moreover, a higher methaneproduction rate was detected <strong>in</strong> areas of high diversity. Conclusively,methanogenic archaea are able to survive <strong>in</strong> a metabolic active stage overhundreds of thousand years under lake conditions. As the temperature ofdeeper lake sediments is ris<strong>in</strong>g <strong>in</strong> the context of climate change, it is to beexpected that their activity and consequently the methane emission will<strong>in</strong>crease. Summaris<strong>in</strong>g the results give valuable <strong>in</strong>sights <strong>in</strong> the methanedynamic <strong>in</strong> deeper sediment deposits and confirm the <strong>in</strong>fluence of oldcarbon source to positive feedback loop of climate change.[1] K.M. Walter et al., Nature 443 (2006), p. 71-75.[2] M. Melles et al., Scientific Drill<strong>in</strong>g 11 (2011), p. 29-40.SMP007Population analysis and Fluorescence <strong>in</strong> situ Hybridisation ofaerobic chloroethene degrad<strong>in</strong>g bacteriaT. Teutenberg* 1 , S. Kanukollu 1 , S. Mungenast 2 , A. Tiehm 2 , T. Schwartz 11 KIT Campus North, IFG, Microbiology of Natural and TechnicalInterfaces Department, Eggenste<strong>in</strong>-Leopoldshafen, Germany2 DVGW - Water Technology Center (TZW), Department of EnvironmentalBiotechnology, Karlsruhe, GermanyChloroethenes are a major source of groundwater and soil contam<strong>in</strong>ation.Several mixed cultures and pure bacterial stra<strong>in</strong>s, which grow underanaerobic conditions us<strong>in</strong>g chloroethenes as electron acceptor <strong>in</strong> additionto auxiliary substrates, have been published and exam<strong>in</strong>ed <strong>in</strong> regard toapplication as bioremediation agent. However, aerobic microorganismsthat use the target pollutant like v<strong>in</strong>yl chloride (VC) as growth substratewould be favourable for bioremediation processes.This study has the aim to identify microorganisms <strong>in</strong>volved <strong>in</strong> aerobicdegradation of chloroethenes to use them for bioremediation ofcontam<strong>in</strong>ated sites.Different species were identified via 16S-rRNA PCR-DGGE experimentsus<strong>in</strong>g eubacterial primers and subsequent sequence analysis us<strong>in</strong>g BLASTof the NCBI database. Based on these results species specific primers forPCR and specific gene probes for fluorescence <strong>in</strong>-situ hybridisation (FISH)were designed.Accord<strong>in</strong>g to the sequence analysis results, five different species, whichbelong to the ß-proteobacteria sub-family, were identified <strong>in</strong> metabolicchloroethene degrad<strong>in</strong>g batch cultures <strong>in</strong>oculated with ground watersamples of contam<strong>in</strong>ated sites. Focuss<strong>in</strong>g on these species, conventionalPCR approaches with specific primers were performed.FISH analysis can determ<strong>in</strong>e the presence of the specific bacteria <strong>in</strong>samples from the contam<strong>in</strong>ated site us<strong>in</strong>g the previously designed geneprobes. For that, a preced<strong>in</strong>g treatment regard<strong>in</strong>g the cell wall permeabilitywas established and the hybridization conditions were optimized for eachFISH probe. To verify the quality and specificity of the gene probesdifferent reference bacteria were used as positive and negative control.Quantitative PCR experiments target<strong>in</strong>g possible candidate genes forchloroethene biotransformation will be performed for molecularcharacterization of aerobic decontam<strong>in</strong>ation processes.BIOspektrum | Tagungsband <strong>2012</strong>


216Fund<strong>in</strong>g by BMWi (AiF project no. 16224 N) is gratefully acknowledged.SMP008Will be presented as SMV017!SMP009Role of nitrite accumulation and m<strong>in</strong>eral nucleation sites forFe(II) oxidation by the nitrate-reduc<strong>in</strong>g Acidovorax sp. stra<strong>in</strong>BoFeN1N. Kluegle<strong>in</strong>*, U. Dippon*, C. Pantke, A. KapplerCenter for Applied Geoscience, Geomicrobiology, Tueb<strong>in</strong>gen, GermanyAnaerobic, neutrophilic nitrate-reduc<strong>in</strong>g Fe(II)-oxidiz<strong>in</strong>g bacteria can befound <strong>in</strong> anoxic environments and were suggested to play a key role <strong>in</strong> ironm<strong>in</strong>eral formation and N-cycl<strong>in</strong>g under these conditions. In order tounderstand the coupl<strong>in</strong>g of the microbial iron and nitrogen cycles <strong>in</strong> anoxicenvironments as well as the effect of m<strong>in</strong>eral nucleation sites on ironm<strong>in</strong>eral formation, we conducted batch experiments with the nitratereduc<strong>in</strong>g,iron(II)-oxidiz<strong>in</strong>g bacterium Acidovorax sp. BoFeN1, which wasisolated from anoxic littoral sediments <strong>in</strong> Lake Constanze [1].Dur<strong>in</strong>g denitrifaction nitrite can be formed, which is known to oxidizeFe(II) abiotically [2]. This raises the question whether the oxidation offerrous iron is <strong>in</strong>deed enzymatically catalyzed or whether it is just achemical reaction as a consequence of microbial nitrite formation dur<strong>in</strong>gacetate oxidation by the mixotrophic Fe(II)-oxidiz<strong>in</strong>g stra<strong>in</strong>s. In order toshed light on this question we grew stra<strong>in</strong> BoFeN1<strong>in</strong> the absence andpresence of iron and quantified nitrite formation dur<strong>in</strong>g denitrification.Additionally, we <strong>in</strong>cubated BoFeN1 with nitrous oxide (N 2O) as electronacceptor and either acetate or acetate/Fe(II) as electron donors tocircumvent the problem of nitrite formation. These experiments showedthat microbially formed nitrite contributes significantly to Fe(II) oxidationand has to be considered <strong>in</strong> the overall Fe(II) oxidation budget.In order to identify the <strong>in</strong>fluence of m<strong>in</strong>eral surfaces of microbial Fe(II)oxidation products, we used 57 Fe-specific Mössbauer spectroscopy and57 Fe(II)-spiked growth medium <strong>in</strong> comb<strong>in</strong>ation with seed<strong>in</strong>g m<strong>in</strong>erals ofnatural isotopic composition to identify the m<strong>in</strong>eral products formed fromthe dissolved Fe(II) dur<strong>in</strong>g Fe(II) oxidation. Analysis of Mössbauer spectraof microbial products showed that <strong>in</strong> the absence of nucleation sitem<strong>in</strong>erals, stra<strong>in</strong> BoFeN1 produces goethite (-FeOOH). The presence ofmagnetite (Fe 3O 4) <strong>in</strong>duced the formation of magnetite besides goethitewhile the presence of hematite (-Fe 2O 3) nucleation sites did not <strong>in</strong>ducehematite formation but only goethite was formed. This study showed thatm<strong>in</strong>eral formation not only depends on geochemical conditions but canalso be controlled by the presence of m<strong>in</strong>eral nucleation sites that <strong>in</strong>itiateprecipitation of certa<strong>in</strong> m<strong>in</strong>eral phases.1 A. Kappler, B. Sch<strong>in</strong>k, D. K. Newman, Geobiology, 3 (2005) 235-245.2 O. Van Cleemput & L. Baert, Soil Biol. Biochem., 15 (1983) 137-140.SMP010Molecular characterization of nitrogen-fix<strong>in</strong>g bacteria andtheir colonization pattern <strong>in</strong> mangrove rootsG. Alfaro-Esp<strong>in</strong>oza*, M. UllrichJacobs University Bremen gGmbH, Molecular Microbiology, Research II,Bremen, GermanyNitrogen-fix<strong>in</strong>g bacteria play a major role <strong>in</strong> re-m<strong>in</strong>eralization processes <strong>in</strong>mangrove ecosystems. Anaerobic processes like denitrification take place<strong>in</strong> the anoxic layers of mangrove sediments. Consequently, most of thenitrogen is lost and thus no longer available for metabolic processes <strong>in</strong>plants. Previous studies had shown that nitrogen-fix<strong>in</strong>g bacteria <strong>in</strong>teractwith mangrove roots mak<strong>in</strong>g nitrogen available for plants. Although,nitrogen fixation is a very important process <strong>in</strong> mangrove ecosystems, verylittle is known about bacterial colonization strategies and physiologicalimpacts on mangrove roots. Additionally, virtually noth<strong>in</strong>g is known aboutbacterial genes particularly required and expressed dur<strong>in</strong>g the <strong>in</strong>teractionof bacteria with mangrove plants. The establishment of a nitrogen-fix<strong>in</strong>gbacterium-mangrove <strong>in</strong>teraction model system is necessary to study themolecular mechanisms of this <strong>in</strong>teraction. The aim of the current<strong>in</strong>vestigation was to first isolate and characterize nitrogen-fix<strong>in</strong>g bacteriaassociated with root material of Avicennia sp. and Rhizophora mangle.Subsequently, the colonization patterns of selected bacterial stra<strong>in</strong>s onmangrove roots had to be <strong>in</strong>vestigated. Nitrogen-free medium was used forthe isolation of 9 bacterial stra<strong>in</strong>s assigned to two different phylogeneticclasses. Isolates were characterized <strong>in</strong> terms of their ability to fixatmospheric nitrogen, their phylogenetic affiliation us<strong>in</strong>g 16S rRNA genesequenc<strong>in</strong>g, their genetic accessibility, and their ability to survive andcolonize mangrove roots when <strong>in</strong>oculated with different other sedimentborne<strong>in</strong>digenous bacterial stra<strong>in</strong>s (fitness test). The mangrove rootcolonization patterns of two isolates, Halomonas sp. and Vibrio sp., werefollowed by confocal laser scann<strong>in</strong>g microscopy. Here<strong>in</strong>, it was demonstratedthat some of the diazotrophs were genetically accessible and were coloniz<strong>in</strong>gmangrove plants. These isolates are promis<strong>in</strong>g candidates to establish a cell-tocellbacteria-mangrove model system to cont<strong>in</strong>ue our <strong>in</strong>vestigation of themolecular mechanisms determ<strong>in</strong><strong>in</strong>g bacteria-mangrove <strong>in</strong>teractions.SMP011Effect of Oxygen Availability on Microbial Chit<strong>in</strong> Degraders<strong>in</strong> an Agricultural SoilA. Wieczorek*, S. Hetz, H.L. Drake, S. KolbUniversity of Bayreuth, Ecological Microbiology, Bayreuth, GermanyChit<strong>in</strong> is a biopolymer consist<strong>in</strong>g of alternat<strong>in</strong>g -1,4-l<strong>in</strong>ked N-acetylglucosam<strong>in</strong>e residues, and is the second most abundant organiccompound of terrestrial biomass. In an unsaturated soil, oxygendistribution is highly heterogeneous, and dynamic on the micro- tomillimeter scale. Therefore, different redox processes, such asfermentation or oxygen respiration, can simultaneously be active on thedegradation of chit<strong>in</strong>. In a wheat-planted soil from KlostergutScheyern,oxygen availability impacted differentially on the activation ofredox processes and activity of bacterial taxa dur<strong>in</strong>g cellulose degradation.The objective of the current study was to evaluate the effect of oxygenavailability on microbial processes and taxa dur<strong>in</strong>g degradation of chit<strong>in</strong>and its hydrolysis products N-acetylglucosam<strong>in</strong>e and glucosam<strong>in</strong>e.Supplemental chit<strong>in</strong>, N-acetylglucosam<strong>in</strong>e, and glucosam<strong>in</strong>e werecompletely m<strong>in</strong>eralized to carbon dioxide under oxic conditions.Concentrations of ammonium and nitrate <strong>in</strong>creased <strong>in</strong> the chit<strong>in</strong>supplementedtreatment, which suggested a release of ammonium byammonification, and subsequent oxidation of ammonium to nitrate bynitrifiers. Chit<strong>in</strong>, N-acetylglucosam<strong>in</strong>e, and glucosam<strong>in</strong>e wereanaerobically metabolized to carbon dioxide, molecular hydrogen,methane, acetate, propionate, and butyrate. Nitrate was completelyconsumed dur<strong>in</strong>g the experiment, and the soil microcosms went black,which <strong>in</strong>dicated precipitation of ferrous iron. Thus, respiration of nitrateand ferric iron by soil microbes was active. The f<strong>in</strong>d<strong>in</strong>gs suggest thatoxygen availability differentially activated redox guilds (aerobes,fermenters, nitrate and ferric iron reducers) dur<strong>in</strong>g the degradation ofchit<strong>in</strong>. The identity of the activated chit<strong>in</strong>olytic taxa is currently under<strong>in</strong>vestigation by analysis of 16S rRNA and chit<strong>in</strong>ase genes.SMP012Ammonification and nitrification rates depend on soil andland use type of subtropical savannah soilsK. Huber*, P. Wüst, B. Fösel, J. OvermannLeibniz Institute DSMZ-German Collection of Microorganisms and CellCultures, Department of Microbial Ecology and Diversity Research,Braunschweig, GermanyDrylands (i.e., arid, semiarid, and subhumid areas) cover approximately40% of earth´s terrestrial surface and the percentage <strong>in</strong>creases due toclimate change. However, over one billion people depend on agriculture <strong>in</strong>these disadvantaged regions. Besides water supply, nutrients likeammonium and nitrate limit plant production <strong>in</strong> these areas. In the presentstudy, ammonification and nitrification - N-liberat<strong>in</strong>g processes that arema<strong>in</strong>ly driven by microorganisms - were quantified by the Pool DilutionTechnique (PDT). In this approach, 15 N-ammonium and 15 N-nitrate areadded to the soil to <strong>in</strong>crease the 15/14 N ratio and changes of the 15/14 N ratiodur<strong>in</strong>g an <strong>in</strong>cubation experiment allow the calculation of grossammonification and nitrification rates. Sampl<strong>in</strong>g sites were located <strong>in</strong>North-Eastern Namibia south of the Okavango river. The soil samplesdiffered with respect to soil type (sand, i.e., Kalahari sands, and loamysand, i.e., old flood pla<strong>in</strong> soils) and land use type (fallow, drought andirrigation agriculture, bushland, and riparian woodland). First results of thePDT <strong>in</strong>dicate that microorganisms responsible for ammonification andnitrification seem to be ma<strong>in</strong>ly <strong>in</strong>fluenced by soil type rather than land usetype. Ammonification rates were highest <strong>in</strong> woodlands on loamy sands andlowest <strong>in</strong> fallow and drought agricultures. In contrast, nearly noammonification and nitrification was detected <strong>in</strong> the Kalahari sands. Theseresults are <strong>in</strong> agreement with CO 2 production rates which were highest <strong>in</strong>woodland soils from old flood pla<strong>in</strong>s, <strong>in</strong>dicat<strong>in</strong>g highest microbialactivities <strong>in</strong> these undisturbed soils.SMP013Culturability of novel Acidobacteria <strong>in</strong> German grass- andwoodland soilsV. Baumgartner*, P. Wüst, B. Fösel, J. OvermannLeibniz Institute DSMZ - German Collection of Microorganisms and CellCultures, Braunschweig, Department of Microbial Ecology and DiversityResearch, Braunschweig, GermanyAcidobacteria on average account for 20% of all soil bacteria and arephysiologically active <strong>in</strong> situ. Culture-<strong>in</strong>dependent studies <strong>in</strong>dicate thatAcidobacteria are nearly as diverse as the Proteobacteria and currentlycomprise 26 dist<strong>in</strong>ct phylogenetic subdivisions (sd). However, until nowonly a few stra<strong>in</strong>s from sd 1, 3, and 8, have been validly described.Genome analysis revealed the ability of Acidobacteria to use complexBIOspektrum | Tagungsband <strong>2012</strong>


217substrates as carbon sources. With<strong>in</strong> the German BiodiversityExploratories project we focus on functional <strong>in</strong>terrelations betweenAcidobacteria and land use. Six extensively managed sites from theExploratories Schwäbische Alb, Ha<strong>in</strong>ich-Dün, and Schorfheide-Chor<strong>in</strong>,one grassland and one woodland soil per exploratory, were selected for ahigh throughput cultivation approach. Microtiter plates were <strong>in</strong>oculatedwith 10 and 50 cells per well, respectively, us<strong>in</strong>g five media at<strong>in</strong> situpH.The media tested conta<strong>in</strong>ed (i) highly diluted carbon sources (HD1:10), (ii)low amounts of sugars, fatty acids, and am<strong>in</strong>o acids (C-Mix), (iii) solublehumic acids (e.g., sodium salicylate, furfural, phthalic acid), (iv) <strong>in</strong>solublehumic acids (e.g., quercet<strong>in</strong>, coumestrol, solan<strong>in</strong>e), and (v) a mix ofpolymeric substrates (e.g., chit<strong>in</strong>, pect<strong>in</strong>, cellulose). Culturability of totalaerobes ranged from below 0.2% (Schorfheide-Chor<strong>in</strong>, grassland, solublehumic acids) to 9.2% (Schwäbische Alb, woodland, HD1:10).Acidobacteria-positve wells were identified via a specific PCR approach.The percentages of cultured Acidobacteria among all cultured Bacteriaranged from 0% (Schorfheide-Chor<strong>in</strong>, woodland, polymeric substrates) to19.5% (Schwäbische Alb, woodland, polymeric substrates). TheAcidobacteria recovered were affiliated with sd 1, 3, 4, and 6. Inpolymers-supplemented media, only representatives of sd 1 were detected.In contrast, most members of sd 6 Acidobacteria were cultivated <strong>in</strong> C-mixmedium. For both, total aerobes and Acidobacteria, cultivation successwas highest with media conta<strong>in</strong><strong>in</strong>g easily available carbon sources,<strong>in</strong>dicat<strong>in</strong>g that low amounts of these substrates favor growth of soilbacteria, <strong>in</strong> particular Acidobacteria.Characterization of novelAcidobacteria as relevant members of the soil microbial community willimprove our knowledge about biogeochemical cycl<strong>in</strong>g <strong>in</strong> soils.SMP014Carbon Isotope Fractionation of Italian Rice Field Soil underH 2 /CO 2 and different temperature regimes.M. Blaser*, R. ConradMax-Planck-Institute for terrestrial microbiology, biogeochemistry,Marburg, GermanyIn anoxic environments organic matter is fermented to short cha<strong>in</strong> fattyacids, alcohols as well as CO 2 and H 2. The two gaseous products can befurther converted to either methane by methanogenic archaea or to acetateby acetogenic bacteria. Methanogenesis is energetically more favourablethan acetogenesis. Nevertheless acetogens can outcompete methanogens atlow temperatures. To <strong>in</strong>vestigate the contribution of both processes we<strong>in</strong>cubated anoxic rice slurry under H 2/CO 2 at 15°, 30° and 50° C andfollowed the isotopic signatures of the carbon compounds (CO 2, CH 4,acetate) by mass spectrometry. For better differentiation of the twoprocesses a second <strong>in</strong>cubation was performed with bromoethanesulfonatean <strong>in</strong>hibitor of methanogenesis.SMP015Methanogens at the top of the worldK. Aschenbach* 1 , R. Angel 1 , K. Rehakova 2 , K. Janatkova 2 , R. Conrad 11 Max-Planck-Institute for terrestrial microbiology, biogeochemistry, Marburg,Germany2 Institute of Botany As CR, Trebon, Czech RepublicDeserts (semiarid, arid and hyperarid regions) cover around one third ofthe Earth´s surface. Desert soils are typically covered by a unique layertermed biological soil crust (BSC), a few millimetres thick and denselycolonized by microorganisms. Dur<strong>in</strong>g dry periods the BSC is mostly<strong>in</strong>active, but follow<strong>in</strong>g wett<strong>in</strong>g the microbial activity <strong>in</strong>creases and oxygenbecomes limit<strong>in</strong>g. It was previously shown that BSC from hot deserts canthen produce methane (1). We wanted to <strong>in</strong>vestigate whether thisphenomenon can also be observed <strong>in</strong> high-altitude cold deserts <strong>in</strong> theHimalayas (Ladakh, India). For this purpose, soil samples from threedifferent vegetation zones: semiarid, steppe, and subglacial, as well asfrom front and lateral mora<strong>in</strong>es of a reced<strong>in</strong>g glacier were collected andtested for the production of methane.We <strong>in</strong>cubated 5 g soil with 5 ml water at 25 °C under anoxic conditionsand followed up gas production (CH 4, CO 2 and H 2) and the isotopicsignature of the carbon <strong>in</strong> the CH 4 and CO 2. Almost each sample from thevegetation zones produced methane, and also some from the mora<strong>in</strong>etransects. Methane production was faster <strong>in</strong> the BSC compared to thedeeper soil layers, demonstrat<strong>in</strong>g that most methanogens are likely to beconcentrated at the top layer. The isotopic analysis showed that methaneprobably developed from both acetate and CO 2 with no significantdifference between the layers. Our results demonstrate the existence of anactive methanogenic community even at such extreme oxic environment.1. Angel R, Matthies D, Conrad R (2011) Activation of Methanogenesis <strong>in</strong> Arid Biological SoilCrusts Despite the Presence of Oxygen. PLoS ONE 6(5): e20453SMP016Community analyses of fermentative hydrogen producers <strong>in</strong>environmental samplesO. Schmidt*, M.A. Horn, H.L. DrakeUniversity of Bayreuth, Department of Ecological Microbiology, Bayreuth,United StatesFermenters produce Hydrogen (H 2) to excrete excess reductant.Fermentative H 2 production is catalyzed by either [FeFe]-hydrogenases(e.g., dur<strong>in</strong>g butyrate fermentation of Clostridium butyricum) or Group 4[NiFe]-hydrogenases (e.g., dur<strong>in</strong>g mixed acid fermentation of Escherichiacoli). Similarity correlations between <strong>in</strong> silico translated am<strong>in</strong>o acidsequences from publicly available hydrogenase genes and correspond<strong>in</strong>g16S rRNA genes showed that closely related hydrogenases (i.e., 80%am<strong>in</strong>o acid sequence similarity) belonged to host organisms with<strong>in</strong> thesame family. However, due to gene duplication and subsequentdiversification, distantly related hydrogenases did not necessarily belong tohosts of different families. Degenerate primers target<strong>in</strong>g [FeFe]- andGroup 4 [NiFe]-hydrogenase genes were developed to identify potentiallyactive hydrogen producers <strong>in</strong> environmental samples. [FeFe]-hydrogenasegene sequences obta<strong>in</strong>ed from a methane emitt<strong>in</strong>g fen were affiliated to theClostridia, Alpha- and Deltaproteobacteria, Chloroflexi, Bacteroidetes,Verrucomicrobia and Negativicutes. Group 4 [NiFe]-hydrogenase genesequences obta<strong>in</strong>ed from H 2-emmit<strong>in</strong>g earthworm gut content wereaffiliated to the Gammaproteobacteria, Clostridia and Verrucomicrobia.These results demonstrated that the new hydrogenase primers are usefulfor the detection of a wide range of [FeFe]- and Group 4 [NiFe]-hydrogenases <strong>in</strong> environmental samples and that 80% am<strong>in</strong>o acid sequencesimilarity is a reasonable cut-off to group hydrogenases from fermentativehydrogen producers on the family level.SMP017Electrochemical Quantification of Microbial Humic SubstanceReductionA. Piepenbrock* 1 , M. Sander 2 , A. Kappler 11 University of Tueb<strong>in</strong>gen, Geomicrobiology, Tüb<strong>in</strong>gen, Germany2 ETH Zurich, Institute of Biogeochemistry and Pollutant Dynamics,Zurich, SwitzerlandHumic substances (HS) are ubiquitous <strong>in</strong> soils, sediments and waters andhave been shown to shuttle electrons between microorganisms and poorlysoluble electron acceptors such as Fe(III) m<strong>in</strong>erals. S<strong>in</strong>ce HS can bereduced by a variety of microorganisms <strong>in</strong>clud<strong>in</strong>g Fe(III)-reduc<strong>in</strong>g,sulfate-reduc<strong>in</strong>g and dechlor<strong>in</strong>at<strong>in</strong>g bacteria, but also chemically forexample by sulfide, electron transfer via HS has the potential to contributesignificantly to the electron fluxes <strong>in</strong> the environment. While microbial HSreduction has been studied for a variety of different HS andmicroorganisms, these results were semi-quantitative due to <strong>in</strong>directquantification of HS redox states.We quantitatively followed the microbial reduction of HS of differentorig<strong>in</strong> (soil, peat, and aquatic) by the dissimilatory Fe(III)-reduc<strong>in</strong>gbacterium Shewanella oneidensis MR-1 us<strong>in</strong>g mediated electrochemicalreduction and oxidation. Microbial HS reduction resulted <strong>in</strong> a decrease <strong>in</strong>the number of electrons that could be transferred to the HSelectrochemically (electron accept<strong>in</strong>g capacity, EAC) and <strong>in</strong> a concomitant<strong>in</strong>crease <strong>in</strong> the number of electrons donated from the same HS to thework<strong>in</strong>g electrode (electron donat<strong>in</strong>g capacity, EDC). Thus, microbial HSreduction could be shown and the amount of electrons transferred from themicrobes to the HS could be quantified over time. Aeration of the cultureswith air resulted <strong>in</strong> an <strong>in</strong>crease <strong>in</strong> the EAC and a decrease <strong>in</strong> the EDC,<strong>in</strong>dicat<strong>in</strong>g the re-oxidation of the previously reduced moieties <strong>in</strong> the HS.Subsequently, the HS were re-reduced by the bacteria as could be seen <strong>in</strong> adecrease <strong>in</strong> the EAC and <strong>in</strong>crease <strong>in</strong> the EDC. These f<strong>in</strong>d<strong>in</strong>gs demonstratethe reversibility of the microbial HS reduction. Throughout the entireexperiment, the sum of EAC and EDC rema<strong>in</strong>ed constant, demonstrat<strong>in</strong>g thatmicrobial reduction did not alter the total number of redox active moieties <strong>in</strong> theHS. Overall, our results provide important new quantitative <strong>in</strong>sights <strong>in</strong>to theextent of microbial HS reduction and give new <strong>in</strong>dications about thesignificance of this process <strong>in</strong> environmental systems: HS redox reactions cancontribute significantly to the (trans)formation of iron m<strong>in</strong>erals and the(im)mobilization and reductive degradation of organic and <strong>in</strong>organic pollutantsand to the redox buffer capacity of systems such as peats.SMP018Biogeography of soil Burkholderia populationsN. Stopnisek* 1 , N. Fierer 2 , L. Eberl 1 , L. Weisskopf 11 University of Zurich, Institute of Plant Biology, Department ofMicrobiology, Zurich, Switzerland2 University of Colorado, Department of Ecology and EvolutionaryBiology, Boulder, CO, USA, United StatesThe genus Burkholderia is an important component of soil microbialcommunities and comprises over 60 species. Burkholderia species have aBIOspektrum | Tagungsband <strong>2012</strong>


218broad distribution <strong>in</strong> nature, occurr<strong>in</strong>g commonly <strong>in</strong> soil and <strong>in</strong> associationwith plants, fungi and animals, where mutualistic as well as parasitic<strong>in</strong>teractions can be found. The importance of Burkholderia species asopportunistic pathogens (e.g. <strong>in</strong> cystic fibrosis patients) is <strong>in</strong>creas<strong>in</strong>glyrecognized and the molecular mechanisms underly<strong>in</strong>g virulence have beenextensively studied. However, little is known so far about the abundance,the diversity and the biogeography of the genus Burkholderia <strong>in</strong> naturalenvironments such as soils. Reports from the literature <strong>in</strong>dicate thatBurkholderia species are often isolated from acidic environments, whichsuggests that pH could be an important factor <strong>in</strong> shap<strong>in</strong>g the biogeographyof Burkholderia. To assess this question, 46 soil DNA samples collectedacross North and South America were used (Fierer and Jackson, 2006). Aspecific real time PCR protocol target<strong>in</strong>g Burkholderia 16S rRNA genewas developed to analyse the relative abundance of Burkholderia sp. <strong>in</strong>these soil samples. Results suggest that pH has a significant effect onBurkholderia relative abundance <strong>in</strong> soils: the highest relative abundancewas observed <strong>in</strong> soils rang<strong>in</strong>g between pH 5 and pH 6 where up to 6.7 %of total bacterial 16S rRNA genes were represented by Burkholderiaspecies. Lower pH soils also showed high relative abundance ofBurkholderia (up to 2.8%). However, Burkholderia 16S rRNA copynumbers were not detected <strong>in</strong> alkal<strong>in</strong>e soils. We are currently <strong>in</strong>vestigat<strong>in</strong>gthe diversity of Burkholderia <strong>in</strong> a subset of 15 selected sites vary<strong>in</strong>g <strong>in</strong> pH,C:N ratio, location of sampl<strong>in</strong>g and relative abundance of Burkholderia.This will allow us to better understand which populations are particularlyaffected by pH and which other factors are shap<strong>in</strong>g the abundance, thediversity and the biogeography of soil Burkholderia species.1. N. Fierer and R.B. Jackson, The diversity and biogeography of soil bacterial communities,PNAS,103(2006), p. 626-631.SMP019Characterization of microbial dehalogenation us<strong>in</strong>g compoundspecific stable isotope analysisJ. Renpenn<strong>in</strong>g*, J. Kaesler, I. NijenhuisHelmholtz Centre for Environmental Research - UFZ, Department ofIsotope Biogeochemistry, Leipzig, GermanyChlor<strong>in</strong>ated ethenes are the most common soil and groundwatercontam<strong>in</strong>ants worldwide. Technical application of tetra- andtrichloroethenes (PCE, TCE) <strong>in</strong> the dry clean<strong>in</strong>g <strong>in</strong>dustry and metaldegreas<strong>in</strong>g resulted <strong>in</strong> big scale production and release <strong>in</strong> the environment.Chloroethenes are an issue of serious risk for human health and suspectedto be carc<strong>in</strong>ogenic. Dur<strong>in</strong>g the last decade several bacterial stra<strong>in</strong>s wereisolated from contam<strong>in</strong>ated soil and groundwater capable of reductivedehalogenation of chlor<strong>in</strong>ated ethenes. However, the actual reactionmechanism and the <strong>in</strong>volved genes responsible for specific dehalogenationare still a po<strong>in</strong>t of <strong>in</strong>terest.We aim to <strong>in</strong>vestigate and characterize the reductive dehalogenationreaction <strong>in</strong> several stra<strong>in</strong>s, us<strong>in</strong>g stable isotope techniques. Compoundspecific stable isotope analysis can be used to analyze the reactionmechanism and degradation pathway. Previously, we observed that thecarbon stable isotope fraction was highly variable when compar<strong>in</strong>gdifferent stra<strong>in</strong>s capable of the reductive dehalogenation of the chlor<strong>in</strong>atedethenes [1]. These differences may either be due to differences <strong>in</strong> enzymemechanism or to e.g. rate limit<strong>in</strong>g effects and substrate uptake processes asobserved for Sulfurospirillum multivorans and Desulfitobacteriumsp. stra<strong>in</strong>PCE-S [2]. Our prelim<strong>in</strong>ary experiment have shown that rate limitationdoes not appear to play a role <strong>in</strong> Dehalobacter restrictus and that highlysimilar enzymes, although present <strong>in</strong> different organisms i.e. D. restrictusand Desulfitobacterium sp. PCE-S, produced similar isotope effects,contrary to previous publications. Further studies should allow analysis ofthe causes for different isotope fractionation of the chlor<strong>in</strong>ated ethenes byother bacteria such as Geobacter or Desulfuromonas.Acknowledgement: This work is supported by the DFG (research unit FOR1530)1. Cichocka, D., et al.,Variability <strong>in</strong> microbial carbon isotope fractionation of tetra-and trichloroethene uponreductive dechlor<strong>in</strong>ation.Chemosphere, 2008.71(4): p. 639-648.2. Nijenhuis, I., et al.,Stable isotope fractionation of tetrachloroethene dur<strong>in</strong>g reductive dechlor<strong>in</strong>ation bySulfurospirillum multivorans and Desulfitobacterium sp. stra<strong>in</strong> PCE-S and abiotic reactions withcyanocobalam<strong>in</strong>.Applied and Environmental Microbiology, 2005.71(7): p. 3413.SMP020Abundance, distribution, and activity of Fe(II)-oxidiz<strong>in</strong>g andFe(III)-reduc<strong>in</strong>g microorganisms <strong>in</strong> hypersal<strong>in</strong>e sediments ofLake Kas<strong>in</strong>, Southern RussiaM. Emmerich*, A. Bhansali, T. Lösekann-Behrens, C. Schröder, A. Kappler,S. BehrensCenter for Applied Geosciences, Geosciences, Tüb<strong>in</strong>gen, GermanyThe extreme osmotic conditions prevail<strong>in</strong>g <strong>in</strong> hypersal<strong>in</strong>e environmentsresult <strong>in</strong> decreas<strong>in</strong>g metabolic diversity with <strong>in</strong>creas<strong>in</strong>g sal<strong>in</strong>ity. Variousmicrobial metabolisms have been shown to occur even at high sal<strong>in</strong>ity,<strong>in</strong>clud<strong>in</strong>g photosynthesis, sulfate and nitrate reduction. However,<strong>in</strong>formation about anaerobic microbial iron metabolism <strong>in</strong> hypersal<strong>in</strong>eenvironments is scarce. We studied the phylogenetic diversity, distribution,and metabolic activity of iron(II)-oxidiz<strong>in</strong>g and iron(III)-reduc<strong>in</strong>g bacteriaand archaea <strong>in</strong> iron-rich salt lake sediments (Lake Kas<strong>in</strong>, Southern Russia;sal<strong>in</strong>ity 348.6 g L -1 ) us<strong>in</strong>g a comb<strong>in</strong>ation of culture-dependent and-<strong>in</strong>dependent techniques. 16S rRNA gene clone libraries for Bacteria andArchaea revealed a microbial community composition typical forhypersal<strong>in</strong>e sediments. Most probable number experiments and enrichmentcultures confirmed the presence of microbial iron(II) oxidation andiron(III) reduction <strong>in</strong> the salt lake sediments. Microbial iron(III) reductionwas detected <strong>in</strong> the presence of 5 M NaCl, thereby extend<strong>in</strong>g the naturalhabitat boundaries for this important microbial respiratory process.Quantitative real-time PCR showed that 16S rRNA gene copy numbers oftotal Bacteria, total Archaea, and species dom<strong>in</strong>at<strong>in</strong>g the iron(III)-reduc<strong>in</strong>genrichment cultures (relatives of Halobaculum gomorrense, Desulfosporos<strong>in</strong>uslacus, and members of the Bacilli) were highest <strong>in</strong> an iron oxide-rich sedimentlayer. Comb<strong>in</strong>ed with the presented geochemical and m<strong>in</strong>eralogical data, ourf<strong>in</strong>d<strong>in</strong>gs suggest the presence of an active microbial iron cycle at saltconcentrations close to the solubility limit of NaCl.SMP021Microbial, geochemical, and m<strong>in</strong>eralogical contributions toarsenic removal from dr<strong>in</strong>k<strong>in</strong>g water <strong>in</strong> house hold sand filters<strong>in</strong> VietnamA. Bhansali*, K. Nitzsche*, A. Kappler, S. BehrensCenter for Applied Geosciences, Geosciences, Tüb<strong>in</strong>gen, GermanyWorldwide more than 100 million people <strong>in</strong>gest detrimental concentrationsof arsenic by consum<strong>in</strong>g groundwater contam<strong>in</strong>ated from natural geogenicsources. Many Asian countries, <strong>in</strong> particular Vietnam, Bangladesh, India,and Cambodia are known to be affected by high groundwater arsenicconcentrations as a result of chemically reduc<strong>in</strong>g aquifer conditions.Household sand filters are simple to operate and remove on average 80%of arsenic from groundwater conta<strong>in</strong><strong>in</strong>g 1 mg/L of ferrous iron or aniron/arsenic ratio of about 50. The <strong>in</strong>stallation and operation costs ofhousehold sand filters are low and the construction materials are locallyavailable. The filters can treat a reasonable amount of groundwater with<strong>in</strong>a short time and they can easily be <strong>in</strong>stalled by the affected communities.Oxidation of dissolved iron present <strong>in</strong> the groundwater leads to theformation of sparsely soluble iron(hydr)oxide particles <strong>in</strong> the sand filters,which b<strong>in</strong>d negatively charged arsenic species and reduce arsenicconcentrations <strong>in</strong> the water. Although household sand filters have beenproven to be an effective technical solution for mitigat<strong>in</strong>g arsenicexposure, not much is known about microbial iron, manganese, arsenicredox-processes occurr<strong>in</strong>g <strong>in</strong> the filters and their effect on filter efficiency.Therefore, one of the goals of this study was to isolate, identify, andquantify Fe, Mn, and As-oxidiz<strong>in</strong>g and -reduc<strong>in</strong>g microorganisms from aarsenic removal sand filter and to study their specific Fe, Mn, and Asredox activities. Water samples and filter solids were collected from alocal sand filter close to the city of Hanoi, Vietnam. The samples weregeochemically and m<strong>in</strong>eralogically characterized. Total iron, arsenic,manganese, and phosphate concentrations, pH, TOC, TIC measurements,as well as total cell counts were performed on samples from various depth ofthe sand filter. Most probable number counts confirmed the presence andactivity of various iron, manganese, arsenic redox-processes and theirdistribution with<strong>in</strong> the water filter. The goals of this research project are tobetter understand the microbial redox transformation processes that drivearsenic/manganese/iron m<strong>in</strong>eral <strong>in</strong>teractions <strong>in</strong> household sand filters and togive recommendations for improved filter use and filter material disposal.SMP022Impact of Biochar Amendment on Microbial Nitrogen-Cycl<strong>in</strong>g<strong>in</strong> Agricultural SoilS. Schüttler*, N. Hagemann*, J. Harter, H.-M. Krause, A. Kappler, S. BehrensCenter for Applied Geosciences, Geosciences, Tüb<strong>in</strong>gen, GermanyN 2O is a major greenhouse gas (GHG) contribut<strong>in</strong>g 8% to global GHGemissions with agricultural sources represent<strong>in</strong>g 84% of anthropogenicN 2O emissions. N 2O is a product of microbial denitrification and itsformation is correlated to fertilizer use. Soil biochar amendment has beenobserved to decrease soil N 2O emissions. Biochar is a stable, carbon richproduct that is manufactured by thermal decomposition of organic materialunder limited oxygen supply. Although the effect of biochar on nitrousoxide emissions from soil has been studied previously the mechanismsbeh<strong>in</strong>d the reduced N 2O emission from biochar amended soil are not yetunderstood. We <strong>in</strong>vestigated whether the decrease <strong>in</strong> N 2O emissionscaused by biochar amendment is due to changes <strong>in</strong> the functionalcomposition of the nitrogen-cycl<strong>in</strong>g microbial community. For this reasonagricultural soil was <strong>in</strong>cubated <strong>in</strong> microcosms with different amounts ofbiochar under oxic (60% WFPS - water filled pore space) and anoxic(100% WFPS) conditions over a period of 3 month. Copy numbers ofdifferent functional genes <strong>in</strong>volved <strong>in</strong> the microbial nitrogen cycle werequantified by real-time PCR. Gene abundance and expression werecorrelated to N 2O, CO 2, CH 4 emissions as well as soil NH + -4 , NO 2 and-NO 3 concentrations. Differences <strong>in</strong> microbial respiration rates <strong>in</strong> thepresence of various nitrogen compounds <strong>in</strong> the treatments with andwithout biochar were quantified <strong>in</strong> BIOLOG assays. Our experimentsBIOspektrum | Tagungsband <strong>2012</strong>


219showed reduced N 2O emissions <strong>in</strong> the biochar treatments up to 84%. Ingeneral N 2O emissions were 30 times higher under anoxic conditionscompared to the emissions from the oxic microcosms. Decreased N 2Oemissions were correlated to an <strong>in</strong>crease <strong>in</strong> the relative abundance of nitrousoxide reductase (nosZ) gene copy numbers dur<strong>in</strong>g the first two weeks afterbiochar addition. Our results further showed that reduced N 2O emissions frombiochar amended soils were directly l<strong>in</strong>ked to changes <strong>in</strong> the functionalcomposition, nitrogen compound utilization, and activity of the nitrogentransform<strong>in</strong>gmicrobial community. Overall, soil biochar amendment promotedcomplete denitrification via stimulation of growth and activity of nosZconta<strong>in</strong><strong>in</strong>g,nitrous oxide reduc<strong>in</strong>g denitrifiers. Our f<strong>in</strong>d<strong>in</strong>gs will facilitate thedevelopment of new mitigation strategies for anthropogenic GHGs.SMP023Microbial and metabolic analysis and optimization of CH 4production from wheat stillage at elevated temperaturesI. Röske* 1 , W. Sabra 2 , A. Sorger 1 , K. Sahm 1 , R. Daniel 3 , A.-P. Zeng 2 ,G. Antranikian 11 Hamburg University of Technology, Institute of Technical Microbiology,Hamburg, Germany2 Hamburg University of Technology, Institute for Bioprocess and BiosystemsEngeneer<strong>in</strong>g, Hamburg, Germany3 Georg-August-University, Department of Genomic and Applied Microbiology,Gött<strong>in</strong>gen, GermanyDevelopment of an efficient bioethanol production plant based on biomassrequires the <strong>in</strong>tegration of various biological and non-biological processes.After the bioconversion of wheat to ethanol and the distillation processhigh amounts of lignocellulose and dead yeast cells still rema<strong>in</strong> untreated(stillage). From a high-temperature biogas plant, us<strong>in</strong>g corn and chickenmanure as biogas substrates, a microbial community was enriched able toconvert wheat stillage to methane at 55°C.In order to <strong>in</strong>vestigate the microbial community <strong>in</strong> the model biogasreactor pyrosequence analysis of 16S rRNA gene-tags was conductedresult<strong>in</strong>g <strong>in</strong> 23,000 gene sequences. The studies <strong>in</strong>dicate the predom<strong>in</strong>anceof Archaea of the genera Methanosaeta and Methanothermobacter andBacteria of the families Thermotogaceae, Anaerol<strong>in</strong>eaceae,Synergistaceae and Thermodesulfobiaceae.The archaeon Methanothermobacter thermautotrophicus and the bacteriaLutispora thermophila, Thermoanaerobacter thermosaccharolyticum,Clostridium succ<strong>in</strong>ogenes and Thermohydrogenium kirishiense wereisolated by anaerobic serial dilution techniquesTo improve biogas production we <strong>in</strong>vestigated different stra<strong>in</strong>s for theirbioaugmentation potential. We could demonstrate that the addition of apure culture of Caldicellulosiruptor saccharolyticus to the exist<strong>in</strong>g biogascommunity resulted <strong>in</strong> a considerable biogas <strong>in</strong>tensification rate with aconstant CO 2/CH 4 ratio.To <strong>in</strong>vestigate dynamics and stability of the microbial community dur<strong>in</strong>gprocess modifications such as <strong>in</strong>crease <strong>in</strong> load<strong>in</strong>g rate and addition ofaccumulat<strong>in</strong>g <strong>in</strong>termediates, denatur<strong>in</strong>g gradient gel electrophoresis andfluorescence <strong>in</strong>-situ hybridization was employed. The results revealed thepresence of a robust consortium of methanogenic Archaea.The set of primers developed <strong>in</strong> this study provides a tool for monitor<strong>in</strong>gmethanogenic communities from a wide range of biogas processes.SMP024Methanogenic communities and their response to Holoceneand Late Pleistocene climate changes <strong>in</strong> permafrostenvironmentsD. Wagner* 1 , J. Griess 1 , K. Mangelsdorf 21 Alfred Wegener Institute for Polar and Mar<strong>in</strong>e Research, Research UnitPotsdam, Potsdam, Germany2 Helmholtz Zentrum Potsdam Deutsches Geoforschungszentrum, Section 4.3,Potsdam, GermanyThe currently observed climate change due to global warm<strong>in</strong>g is expectedto have a strong impact, notably on Arctic permafrost environments. Thethaw<strong>in</strong>g of permafrost is suggested to be associated with a massive releaseof greenhouse gases, <strong>in</strong> particular methane. Thus, Arctic permafrostregions play a fundamental role with<strong>in</strong> the global carbon cycle and thefuture development of Earth’s climate. To understand how the system willrespond to climate changes it is not only important to <strong>in</strong>vestigate thecurrent status of carbon turnover but also how the system reacted toclimate changes <strong>in</strong> the past.This presentation therefore takes a journey through time from the recentactive layer of permafrost to Holocene and Late Pleistocene permafrostdeposits <strong>in</strong> the Siberian Arctic, to reconstruct the microbial driven methanedynamics. Generally, <strong>in</strong>-situ methane contents of the deposits reflect theTOC profile with depth underl<strong>in</strong><strong>in</strong>g the correlation of the distribution oforganic matter and methanogenesis. Significant amounts of methane couldalso be found <strong>in</strong> Late Pleistocene deposits of an age of 30 and 41 ka,respectively. Lipid biomarkers and amplifiable DNA were successfullyrecovered throughout the whole permafrost sequences with an age of up to42 ka. Analysis of the abundance and distribution of archaeol, an <strong>in</strong>dicatorfor fossil methanogenic communities, revealed a temperature response toclimate changes dur<strong>in</strong>g the Late Pleistocene and Holocene. Past warm<strong>in</strong>gtrends seem to cause an enhanc<strong>in</strong>g of methanogenic communities, whilecool<strong>in</strong>g trends conversely caused them to decrease. Furthermore,<strong>in</strong>dications for recently liv<strong>in</strong>g archaeal communities <strong>in</strong> frozen groundcould be found, us<strong>in</strong>g phospholipid ether lipids (PLEL) and 16S rRNAf<strong>in</strong>gerpr<strong>in</strong>ts as specific markers. The obta<strong>in</strong>ed data on present and pastmethanogenic communities suggest a response to future warm<strong>in</strong>g events aswas reconstructed from previous warmer periods.SMP025FISH <strong>in</strong> soil: applications for the <strong>in</strong> situ <strong>in</strong>vestigation ofmicroorganismsH. Schmidt*, T. EickhorstUniversity of Bremen, Soil Science, Bremen, GermanyFluorescence <strong>in</strong> situ hybridization (FISH) represents a powerful methodfor the phylogenetic identification, enumeration, and visualization ofs<strong>in</strong>gle microbial cells <strong>in</strong> soil. The applicability of this tool for studies <strong>in</strong>soil microbiology is exemplarily shown on the basis of several FISHapproaches which are used <strong>in</strong> our lab.For rout<strong>in</strong>e applications of FISH <strong>in</strong> soil, the amplification of fluorescentsignals (CARD) is necessary for a clear discrim<strong>in</strong>ation of target signalsfrom the <strong>in</strong>tense background <strong>in</strong>duced by organic matter, high contents ofclay, and plant tissue. CARD-FISH <strong>in</strong> soil provides quantitative data ofs<strong>in</strong>gle microbial cells, and thus gives <strong>in</strong>sight <strong>in</strong>to the composition ofmicrobial consortia associated with different microenvironments (e.g. bulksoil and rhizosphere).With CARD-FISH applied to roots, the enumeration of s<strong>in</strong>gle cells as wellas the analysis of the spatial distribution of these microbes on therhizoplane gives additional <strong>in</strong>formation for comprehensive studies <strong>in</strong> thesoil-root <strong>in</strong>terface. Especially on roots, sequential hybridizations withfluorochromes of different spectral characteristics have shown to be usefulfor the analysis of microorganisms on doma<strong>in</strong> specific or hierarchic levels.The comb<strong>in</strong>ation of FISH and micropedology (res<strong>in</strong> embedd<strong>in</strong>g and th<strong>in</strong>section<strong>in</strong>g of soil samples) allows for the <strong>in</strong> situ detection of s<strong>in</strong>glemicroorganisms <strong>in</strong> the undisturbed soil matrix. The simultaneous use ofmultiple oligonucleotide probes thereby provides <strong>in</strong>formation on thespatial distribution of microorganisms belong<strong>in</strong>g to different taxonomicdivisions.In the recently developed gold-FISH protocol, conjugates labelled withfluorochromes and nanogold particles allow the comb<strong>in</strong>ative approach ofanalyz<strong>in</strong>g microorganisms by epifluorescence and scann<strong>in</strong>g electronmicroscopy. It is therefore possible to identify and localize s<strong>in</strong>gle microbialcells <strong>in</strong> situ on an ultrastructural level. Furthermore, the biochemical conditions<strong>in</strong> the microbial habitat of gold-FISH detected cells can be characterized byelement mapp<strong>in</strong>g generated with energy dispersive X-ray spectroscopy.SMP026Bacterial communities change along a glacier forefieldtransect - A comb<strong>in</strong>ed approach of molecular f<strong>in</strong>gerpr<strong>in</strong>ts (T-RFLP) and environmental analysesF. Bajerski*, D. WagnerAlfred Wegener <strong>in</strong>stitute for polar and mar<strong>in</strong>e research, PeriglacialResearch, Potsdam, GermanyGlacier forefields are known to be a pioneer site for primary successionand <strong>in</strong>habit extreme climatic and environmental conditions. Retreat<strong>in</strong>gglaciers expose new terrestrial terra<strong>in</strong> that becomes accessible for soilformation and microbial colonisation. Pioneer microorganisms supportweather<strong>in</strong>g processes and the colonisation of more complex microbialcommunities or plants. Because <strong>in</strong>creas<strong>in</strong>g temperatures due to climatechange enhance glacial degradation, it is important to understand howbacterial communities react to chang<strong>in</strong>g environmental conditions. Acomb<strong>in</strong>ed approach of geochemical and microbiological exam<strong>in</strong>ations willbe used to describe the habitat characteristics and the complex system ofmicrobial communities <strong>in</strong> two glacier forefields on Larsemann Hills, EastAntarctica. Term<strong>in</strong>al Restriction Length Polymorphism Analyses showthat bacterial community structures vary significantly between glacierforefields of different development status. Although relatively low,enzyme activities <strong>in</strong>crease with an advanced forefield development anddecrease with <strong>in</strong>creas<strong>in</strong>g depth. The extreme habitat conditions becomeapparent with<strong>in</strong> the geochemical and geochemical properties. The studysite is characterised by very low nutrient and water availability and acoarse gra<strong>in</strong> size. Statistics reveal a connection between environmental andbiological data and the position of the sample <strong>in</strong> the glacier forefield.Altogether our results show a high abundance and variability ofmicroorganisms <strong>in</strong> the hardly developed habitat glacier forefield.BIOspektrum | Tagungsband <strong>2012</strong>


220SMP027Contrast<strong>in</strong>g assimilators of 2,4-dichlorophenol derived carbonoccur <strong>in</strong> soil and drilosphereA. Ramm, M. Horn*University of Bayreuth, Ecological Microbiology, Bayreuth, GermanyChlorophenols are frequently detected <strong>in</strong> terrestrial and freshwaterecosystems, are carc<strong>in</strong>ogenic, mutagenic, and recalcitrant. Thus,chlorophenols are of major environmental concern. 2,4-dichlorophenol(2,4-DCP) has been extensively used as wood preservative, is an<strong>in</strong>termediate <strong>in</strong> the degradation of the herbicide 2,4-dichlorophenoxyaceticacid, and was chosen as model compound. Degradation occurs <strong>in</strong> soil,ma<strong>in</strong>ly due to aerobic microbial processes. Degradation ‘hot spots’ <strong>in</strong> soils<strong>in</strong>clude the drilosphere, i.e., earthworm gut content, cast, and burrows.Assimilators of [U 13 C]-2,4-DCP were identified <strong>in</strong> soil columns with andwithout soil-feed<strong>in</strong>g earthworms (Aporrectodea calig<strong>in</strong>osa). [ 12 C]-2,4-DCPtreatments served as controls for SIP. Disappearance of low, <strong>in</strong> siturelevant concentrations of 2,4-DCP (20 g g DW -1 ) was stimulated byearthworms. Barcoded amplicon pyrosequenc<strong>in</strong>g coupled to 16S rRNAstable isotope prob<strong>in</strong>g (SIP) yielded app. 337,000 sequences and identified39 family level taxa of 2,4-DCP-[ 13 C] assimilators relative to [ 12 C]-2,4-DCP controls. Alpha-, Beta-, Gamma - and Deltaproteobacteria,Firmicutes, Acidobacteria, Bacteroidetes, Chloroflexi, Act<strong>in</strong>obacteria andCyanobacteria were 2,4-DCP-[ 13 C] labelled. Sph<strong>in</strong>gomonadaceae,Comamonadaceae, Pseudomonadaceae and Flavobacteriaceae dom<strong>in</strong>atedassimilators of [U 13 C]-2,4-DCP. Many detected 16S rRNA genes wereonly distantly related to publicly available sequences. LabelledClostridiaceae were exclusively detected <strong>in</strong> the anoxic earthworm gut andcast, labelled Flavobacteriaceae occurred only <strong>in</strong> cast, labelledPseudomonadaceae dom<strong>in</strong>ated <strong>in</strong> burrow walls, while labelledSph<strong>in</strong>gomonadaceae were detected <strong>in</strong> earthworm-unaffected soil only.[U 13 C]-2,4-DCP 16S rRNA SIP of enrichment cultures set up with soil anddrilosphere material from soil coulmn experiments <strong>in</strong>dicated thatComamonadaceae and Sph<strong>in</strong>gomonadaceae reacted to cont<strong>in</strong>uous supply overa long time period of 2,4-DCP (50 days, puls<strong>in</strong>g of 5 x 60 g g DW -1 every 10days) <strong>in</strong> liquid media. The collective data <strong>in</strong>dicates that (a) earthwormsstimulate the degradation of 2,4-DCP <strong>in</strong> soil and drilosphere, (b) earthwormsselect for dist<strong>in</strong>ct microbial degraders of 2,4-DCP <strong>in</strong> the drilosphere, and (c)soils <strong>in</strong>fluenced by earthworms harbor highly diverse and hitherto unknown2,4-DCP-utiliz<strong>in</strong>g microorganisms. Thus, vermiremediation may prove to be anenvironmentally susta<strong>in</strong>able way to treat contam<strong>in</strong>ated soils.SMP028Behaviour of act<strong>in</strong>omycete communities <strong>in</strong> soils fertilized withbiotransformed Dry Olive ResidueJ. Siles Martos* 1 , P. Hernández Suárez 1 , V. Menéndez González 2 ,G. Bills 2 , I. García Romera 1 , I. Sampedro Quesada 11 Estación Experimental del Zaidín, Microbiología del Suelo y SistemasSimbióticos, Granada, Spa<strong>in</strong>2 Fundación Med<strong>in</strong>a, Microbiología, Armilla, Spa<strong>in</strong>The Spanish olive oil <strong>in</strong>dustry generates huge amounts of Dry OliveResidue (DOR). This waste is a major environmental problem. Despite itspotential fertilizer value, its <strong>in</strong>corporation <strong>in</strong>to soil results <strong>in</strong> a variety ofnegative effects related with its toxicity caused by several phenolicsubstances (Sampedro et al., 2004). These and others components havebeen l<strong>in</strong>ked with the phytotoxic and antimicrobial this residue’s effects(Paredes et al., 1986; L<strong>in</strong>ares et al., 2003; Sampedro et al., 2008). Treat<strong>in</strong>gthis waste with saprobic fungi could transform DOR <strong>in</strong>to organic fertilizer(Sampedro et al., 2005). Knowledge about the impact of biotransformedDOR on soil microbial ecology is scarce. This work aimed to characterizethe physico-chemical properties of DOR bioremediated with the saprobicfungus Coriolopsis rigida after 30 days of <strong>in</strong>cubation at 28ºC and tomeasure the effect of the application of this residue for 0, 30 and 60 dayson the act<strong>in</strong>omycete communities of sorghum rhizospheric soil. The totalpolyphenols <strong>in</strong> C. rigida-treated DOR decreased by 75% and the C/N wasreduced. The concentration of some microelements like alum<strong>in</strong>ium, iron,chrome and z<strong>in</strong>c was significantly differed. To further understand theeffects of residues on the act<strong>in</strong>omycete communities, 200 bacterial stra<strong>in</strong>swere isolated <strong>in</strong> gellan gum-solidified VL70 modified medium (Sait et al.,2002; Joseph et al., 2003; David et al., 2005) from a control soil, a soil<strong>in</strong>cubated with untreated DOR and soil <strong>in</strong>cubated with C. rigida-treatedDOR over time. The population of filamentous act<strong>in</strong>omycetes from eachtreatment were morphologically dist<strong>in</strong>guished. Soil populations ofact<strong>in</strong>omycetes were 90% lower <strong>in</strong> soil amended with untreated DORrespect to the control soil across all times. However, this decrease was lessevident <strong>in</strong> the soil treated with C. rigida-treated DOR. The 16S rRNA gene ofall the act<strong>in</strong>omycetes was analyzed with act<strong>in</strong>omycete-specific primer (Xiao etal., 2011) by PCR-DGGE. The data showed that C. rigida-treated DOR appliedto soil reduced the negative impact on act<strong>in</strong>omycete microbial communities.SMP029Characterization of the microbial community <strong>in</strong> a deep sal<strong>in</strong>eaquifer used for geothermal heat storage - Thermal effects onmicrobial composition and microbial <strong>in</strong>duced corrosive andprecipitative processes affect<strong>in</strong>g plant operationS. Lerm*, M. Alawi, R. Miethl<strong>in</strong>g-Graff, A. Seibt, M. Wolfgramm,H. WürdemannHelmholtz-Zentrum PotsdamDeutsches GeoForschungsZentrum GFZ,Mikrobielles Geoeng<strong>in</strong>eer<strong>in</strong>g, Potsdam, GermanyThe microbial diversity of a sal<strong>in</strong>e aquifer (m<strong>in</strong>eralisation 131 g/L) usedfor geothermal heat storage <strong>in</strong> the North German Bas<strong>in</strong> was characterizedover a period of two years. Results of SSCP- and DGGE- f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>gand scann<strong>in</strong>g electron microscopic (SEM) analyses <strong>in</strong>dicated dist<strong>in</strong>ctdifferences <strong>in</strong> the microbial community composition <strong>in</strong> the cold and thewarm well, with temperatures rang<strong>in</strong>g between 45-54°C and 65-80°C,respectively. High temperature <strong>in</strong> the warm well probably enhancedorganic matter availability and set off a cascade of organic mattertransformation favour<strong>in</strong>g diverse heterotrophic bacteria <strong>in</strong> the warm welland fermentative bacteria after temperature reduction due to heatextraction <strong>in</strong> the topside facility. In contrast, a high diversity of sulphatereduc<strong>in</strong>g bacteria (SRB), affiliated to members of the generaDesulfotomaculum, Desulfohalobium and Candidatus Desulforudisaudaxviator, was detected <strong>in</strong> the cold well. They were accounted for thecorrosion damage to the submersible pump <strong>in</strong> the cold well and ironsulphide precipitations <strong>in</strong> the near well bore area and topside facility filtersof the cold well. This study reflects the thermal effects on microbialcomposition <strong>in</strong> a geothermally used aquifer, whereas the microbial <strong>in</strong>ducedprocesses adversely affect plant operation; and this applies particularly tothe cold well.SMP030Influence of manure and Sulfadiaz<strong>in</strong>e on microbial diversitypattern and the distribution of resistance genes aga<strong>in</strong>stantimicrobials <strong>in</strong> an artificial rhizosphereM. ZieglerHelmholtz Zentrum München, Environmental Genetics, Neuherberg,GermanySulfadiaz<strong>in</strong>e (SDZ) is a veter<strong>in</strong>ary antibiotic which is widely used <strong>in</strong>animal livestock. Farm<strong>in</strong>g animals excrete residues of SDZ and resistantmicrobiota which are <strong>in</strong>troduced <strong>in</strong>to the environment by manureapplication to arable land. This process is argued to lead to the spread<strong>in</strong>gof antibiotic resistance genes <strong>in</strong> the environment and f<strong>in</strong>ally causes<strong>in</strong>creas<strong>in</strong>g untreatable bacterial <strong>in</strong>fections <strong>in</strong> humans. The plant rootsurface - also called rhizoplane - is a hotspot of microorganisms due toplant root exudation. Bacterial cells attached to the plant root formcommunity-like structures enclosed by an extrapolymeric matrix.Therefore, microorganisms are protected from abiotic and biotic stressesand due to the high proximity of the cells the chance for horizontal genetransfer <strong>in</strong>creases. This leads to our hypothesis, that the rhizoplane couldbe an ideal environment for spread<strong>in</strong>g antibiotic resistance genes.To address this question, we used an artificial root model (ARM) whichconsisted of a glass slide covered with an artificial root exudate mix<strong>in</strong>cubated <strong>in</strong> soil. For pre-<strong>in</strong>cubation, both piggery manure and SDZ wereadded to the soil, and after one and two weeks <strong>in</strong>cubation of the ARMrespectively, we harvested the attached microorganisms. To detect the<strong>in</strong>fluence of manure and SDZ application to the bacterial communities onthe ARM, we performed T-RFLP based on 16S rRNA genes andquantified the SDZ-resistance genes sul1 and sul2 by quantitative PCR.The results show an <strong>in</strong>crease of SDZ resistance <strong>in</strong> bacterial communitiesattached to the ARM, but no shift <strong>in</strong> community structure whenpre<strong>in</strong>cubated with manure and SDZ.SMP031Metabolic networks <strong>in</strong> soil microbial communities <strong>in</strong>vestigatedby prote<strong>in</strong>-stable isotope prob<strong>in</strong>g (prote<strong>in</strong>-SIP)R. Kermer* 1 , T. Wubet 2 , F. Buscot 2,3 , M. von Bergen 1,4 , J. Seifert 11 Helmholtz Centre for Environmental Research, Proteomics, Leipzig, Germany2 Helmholtz Centre for Environmental Research, Soil Ecology, Halle/Saale,Germany3 University of Leipzig, Institute of Biology, Chair of Soil Ecology, Leipzig,Germany4 Helmholtz Centre for Environmental Research, Metabolomics, Leipzig,GermanyThe degradation of plant-derived materials like leaf litter, consist<strong>in</strong>g ofcellulose, lign<strong>in</strong>, hemicellulose, pect<strong>in</strong> and prote<strong>in</strong>s, is an <strong>in</strong>terest<strong>in</strong>gsubject to study complex m<strong>in</strong>eralization cycles <strong>in</strong> nature [1]. Consortia ofbacteria and especially fungi greatly contribute to this key ecosystemprocess by express<strong>in</strong>g a suite of various extracellular enzymes. In fact,these microorganisms decompose almost 90% of the plant biomassBIOspektrum | Tagungsband <strong>2012</strong>


221produced <strong>in</strong> terrestrial ecosystems [2]. The goal of the present project is toprovide a closer <strong>in</strong>sight towards the structure and function of thesecommunities by identify<strong>in</strong>g metabolically active species, <strong>in</strong>teractions andmetabolic networks. For the detection of metabolic key players prote<strong>in</strong>-SIPis applied, a method based on the metabolic <strong>in</strong>corporation of isotopicallylabeled substrates, e.g. with 13 C, 15 N or 36 S, <strong>in</strong>to the proteome ofmicroorganisms [3].Prote<strong>in</strong>-SIP experiments were performed <strong>in</strong> which soil from a tobaccofield <strong>in</strong> Germany was <strong>in</strong>cubated with leaf litter from either 15 N-labeledtobacco or 13 C-labeled corn plants as substrate over 14 days. The microbialgrowth with<strong>in</strong> the approaches was monitored by measur<strong>in</strong>g the biologicaloxygen demand. Immediate oxygen consumption was measured <strong>in</strong> the leaflitter-soil <strong>in</strong>cubations and sampl<strong>in</strong>g took place three times <strong>in</strong> the first threedays and three times with<strong>in</strong> the rema<strong>in</strong><strong>in</strong>g 11 days. The samples wereconducted to two prote<strong>in</strong> extraction steps: one for the extracellular andanother one for the <strong>in</strong>tracellular proteome. Prote<strong>in</strong>s were separated by 1-dimensional SDS gel electrophoresis and peptides were analyzed by UPLCOrbitrap MS/MS measurements. For prote<strong>in</strong> identification themetagenome sequence of the soil from the tobacco field was conducted.454 pyrosequenc<strong>in</strong>g resulted <strong>in</strong> about 390 Mb distributed over about871,000 reads with an average length of 450 bp. MG-RAST analysisshowed that a large proportion of the functional genes belong to bacterialprote<strong>in</strong>s (~97%) and to eukaryotic prote<strong>in</strong>s (~2%). In addition to theassessment of the phylogeny of organism <strong>in</strong> the soil the metagenome willfacilitate the identification rate of the metaproteome approach andtherefore will <strong>in</strong>crease the number of prote<strong>in</strong>s for which the 13 C and 15 N<strong>in</strong>corporation patterns can be determ<strong>in</strong>ed.1. Yadav V, Malanson G (2007) Progress <strong>in</strong> soil organic matter research: litter decomposition, modell<strong>in</strong>g,monitor<strong>in</strong>g and sequestration. Progress <strong>in</strong> Physical Geography 31: 131-1542. Zhang Q, Zak JC (1998) Potential Physiological Activities of Fungi and Bacteria <strong>in</strong> Relation to PlantLitter Decomposition along a Gap Size Gradient <strong>in</strong> a Natural Subtropical Forest. Microb Ecol 35: 172-1793. Jehmlich N, Schmidt F, Taubert M, Seifert J, Bastida F, von Bergen M, Richnow HH, Vogt C (2010)Prote<strong>in</strong>-based stable isotope prob<strong>in</strong>g. Nat Protoc 5: 1957-1966SMP032Horizontal gene transfer <strong>in</strong> wastewater irrigated soils <strong>in</strong> theMézquital Valley, MexicoM. Broszat* 1,2 , T. Sak<strong>in</strong>c 1 , Y. López Vidal 3 , J. Huebner 1 , E. Grohmann 11 University Medical Centre Freiburg, Department of Infectious Diseases,Freiburg, Germany2 University Freiburg, Institute of Microbiology, Freiburg, Germany3 Universidad Nacional Autónoma de México, Departamento de Microbiologíay Parasitología, Mexico City, MexicoThe Mézquital Valley (60 km north of Mexico City) is the world´s largestwastewater (WW) irrigation area. There, untreated WW from Mexico Cityis reused for crop irrigation. This practise might pose risks for fieldworkers and consumers of agricultural products, because of the presence ofpharmaceuticals, pathogens and antibiotic resistance genes <strong>in</strong> the WW. Weperformed soil column experiments with two different types of soil (soilirrigated with WW for 100 years and ra<strong>in</strong>-fed soil) to <strong>in</strong>vestigate thespread of resistance genes by horizontal gene transfer (HGT) <strong>in</strong> WWirrigated soils. To visualize plasmid transfer an Enterococcus faecalisdonor harbour<strong>in</strong>g a mobilizable broad host range plasmid labeled with theGreen Fluorescent Prote<strong>in</strong> (GFP) [1] and a second non-mobilizableplasmid labelled with the Red Fluorescent Prote<strong>in</strong> (RFP) [2] were added tora<strong>in</strong>-fed and 100 years-irrigated soil, each <strong>in</strong> soil columns of 20 cm heightand 15 cm diameter. The mobilizable plasmid conta<strong>in</strong>s a replication orig<strong>in</strong>for Gram-positive and Gram-negative bacteria, the gfp gene under controlof the <strong>in</strong>ducible nis<strong>in</strong> promoter and the pIP501 orig<strong>in</strong> of transfer. Soilcolumns were irrigated once a week, <strong>in</strong> total three times. At each irrigation10 9 donors were applied to the columns with one pore volume of artificialra<strong>in</strong>water (for ra<strong>in</strong>-fed soil) or WW (for WW-irrigated soil). Dur<strong>in</strong>girrigation leachate water was collected. Furthermore pore water wassampled at 4 heights with suction cups. Soil samples from the top weretaken daily. After 4 weeks soil samples were taken from different heights(every 2.5 cm). Bacteria <strong>in</strong> soil and water which have acquired themobilizable resistance plasmid via plasmid transfer are detectable throughtheir green fluorescence while their donors are identified by their greenand red fluorescence. Transfer rates for both types of soil and <strong>in</strong> water willbe presented. The soil column experiment will help assess the risk posedby HGT of resistance determ<strong>in</strong>ants <strong>in</strong> WW-irrigated soil.[1] Arends, K., Schiwon, K., Sak<strong>in</strong>c, T., Huebner, J., and Grohmann, E. A GFP-labelled monitor<strong>in</strong>g tool toquantify conjugative plasmid transfer between G+ and G- bacteria. Appl. Environ. Microbiol. (accepted)[2] Paprotka, K., Giese, B., Fraunholz, M. J. 2010. Codon-improved fluorescent prote<strong>in</strong>s <strong>in</strong> <strong>in</strong>vestigation ofStaphylococcus aureus host pathogen <strong>in</strong>teractions. J. Microbiol. Methods. 83: 82-86.SMP033Understand<strong>in</strong>g factors which shape the community ofnitrifiers: structural and functional analysesA. Meyer* 1 , M. Schloter 2 , A. Focks 31 Technische Universität München, soil ecology, Neuherberg, Germany2 HelmholtzZentrum München, Enviromental Genomics, Neuherberg, Germany3 Wagen<strong>in</strong>gen University, Aquatic Ecology and Water Quality Management,Wagen<strong>in</strong>gen, NetherlandsUnderstand<strong>in</strong>g factors which drive the ecology of microbial communities<strong>in</strong>volved <strong>in</strong> nitrogen turnover is of central importance for susta<strong>in</strong>able landuse. As a model system grassland sites treated with different land use<strong>in</strong>tensities were studied: (I) <strong>in</strong>tensely used meadows, (II) <strong>in</strong>tensely usedmown pastures and (III) extensively used pastures. Samples were taken <strong>in</strong>spr<strong>in</strong>g and <strong>in</strong> the summer to <strong>in</strong>vestigate the seasonal as well as the land use<strong>in</strong>tensity effect. In the last years it was found that <strong>in</strong> many soils ammoniaoxidiz<strong>in</strong>garchaea (AOA) are more abundant than ammonia-oxidiz<strong>in</strong>gbacteria. However, till now the contribution of AOA to total ammoniaturnover rates are not clear. In order to address this question we estimateda theoretical potential nitrification rate (PNR) based on the actualmeasured abundances of archaeal and bacterial ammonia monooxygenasegenes (amoAAOA andamoAAOB) and hypothetical maximum oxidationrate constants. This approach offers the possibility to estimate not only thetheoretical PNR values but also the respective contributions of AOA andAOB. A comparison between the theoretical and the measured PNR valuesshows that they fit quiet well together. In order to assess the correlationbetween the observed temporal changes <strong>in</strong> nitrification activities, but alsothe found variability between the s<strong>in</strong>gle grassland plots, a diversity analysisbased onamoAAOA genes was performed. The results showed that the s<strong>in</strong>gletreatments are statistically well separated but surpris<strong>in</strong>gly no clear differencesbetween the two time po<strong>in</strong>ts could be found. Summariz<strong>in</strong>g, our results strike outthat AOAs deliver a high ammonium turnover potential to the soils. Changes <strong>in</strong>nitrification potentials are seem<strong>in</strong>gly not due to AOA diversity, but driven bythe activity state of the AOAs, which probably has changed between spr<strong>in</strong>g andsummer. Based on the above results, we assume that diversity of theamoAAOAgene is shaped by long-term changes <strong>in</strong> environmental parameters, whereas theactivity is probably driven by seasonal changes of environmental conditions.SMP034Metagenomic and metatranscriptomic analysis of German soilsamplesH. Nacke* 1 , C. Fischer 1 , A. Thürmer 2 , R. Daniel 1,21 Institute of Microbiology and Genetics, Department of Genomic andApplied Microbiology, Gött<strong>in</strong>gen, Germany2 Institute of Microbiology and Genetics, Gött<strong>in</strong>gen Genomics Laboratory,Gött<strong>in</strong>gen, GermanyPhylogenetic, transcriptomic, and functional analyses of microbialcommunities present <strong>in</strong> soil samples from the German BiodiversityExploratories Schorfheide-Chor<strong>in</strong>, Ha<strong>in</strong>ich-Dün, and Schwäbische Albwere performed (see www.biodiversity-exploratories.de). Theexperimental procedure <strong>in</strong>cluded the isolation of whole genomic DNAfrom the A horizon and B horizon of selected forest and grassland sites.The prokaryotic diversity present <strong>in</strong> the different samples was assessed bypyrosequenc<strong>in</strong>g of amplicons us<strong>in</strong>g hypervariable regions of 16S rRNAgenes as target. Differences <strong>in</strong> prokaryotic community compositionsbetween A- and B-horizons as well as between forest and grasslandsamples were detected. Additionally, we extracted total RNA from soilsamples, enriched mRNA, and used it for the synthesis of cDNA.Pyrosequenc<strong>in</strong>g of the generated cDNA and subsequent sequence analysisallowed to assess soil microbial gene expression profiles.Metagenomic small-<strong>in</strong>sert and large-<strong>in</strong>sert libraries were constructed us<strong>in</strong>ggenomic DNA extracted from the different soil samples. Comparativescreen<strong>in</strong>g of the libraries for key microbial functions, such as cellulolytic,hemicellulolytic, and lipolytic activities was carried out. Several clonesexpress<strong>in</strong>g cellulase-, hemicellulase-, and lipase/esterase- activity wereobta<strong>in</strong>ed dur<strong>in</strong>g function-driven screen<strong>in</strong>g of the libraries. Genes encod<strong>in</strong>g(hemi)cellulolytic or lipolytic activity were recovered from thecorrespond<strong>in</strong>g clones and sequenced. So far, analyzed (hemi)cellulolyticenzymes were assigned to glycosidhydrolase families 9 and 11. Thirty-fiveof the 37 analyzed lipases/esterases grouped <strong>in</strong>to superfamilies I, IV, V,VI, and VIII of lipolytic enzymes. The rema<strong>in</strong><strong>in</strong>g two represent putativelynovel families. Biochemical characterization of (hemi)cellulolytic andlipolytic enzymes was carried out.SMP035Characterization of Paenibaciilus polymyxa RCP6 isolatedfrom root nodules of Blue peaA. AeronKurukshetra University, Department of Microbiology, Kurukshetra, IndiaQuestion: Clitoria purpurea L. (blue pea) is a slender climber legumeknown for its beautiful bluish-crimson coloured flowers. This is foundBIOspektrum | Tagungsband <strong>2012</strong>


222grow<strong>in</strong>g all over the North, Central and East India <strong>in</strong> a variety of habitatsand soil types. The capability of native bacterial stra<strong>in</strong>s from root nodulesto behave as plant growth promot<strong>in</strong>g bacteria and biocontrol agents was<strong>in</strong>vestigated.Methodology: Isolation of root-nodule symbiont (Palnaippan et al., 2010)Basic characters of isolate (Palnaippan et al., 2010)Genomic DNA isolation, 16S rRNA amplification, 16S rRNA sequenc<strong>in</strong>g,Phylogeny and accession number (Palnaippan et al., 2010)Plant Growth Promot<strong>in</strong>g Characters (Li et al., 2008)Antagonistic characters (Senthilkumar et al., 2009)Germ<strong>in</strong>ation AssayResults: One stra<strong>in</strong> (RCP6) over 21 isolates from the root nodules of C.purpurea were able to grow on Ashby`s N free media over sevensuccessive generation <strong>in</strong>dicative of presumptive N 2-fixation, an IAAproducer, solubilised organic P from calcium phytate, able to release watersoluble <strong>in</strong>organic phosphate from tri-calcium phosphate, di-calciumphosphate and z<strong>in</strong>c phosphate with organic acid production on MM9medium, show halo on ZnPo 4 tris-m<strong>in</strong>imal media <strong>in</strong>dicative of z<strong>in</strong>csolubilisation apart from zone on Aleksandrov`s medium exhibit<strong>in</strong>gsolubilisation of potassium. Isolate had the capability to antagonizeMacrophom<strong>in</strong>a phaseol<strong>in</strong>a, Fusarium udum, F. oxysporum, F. solani,Rhizoctania solani, Sclerot<strong>in</strong>ia sclerotiorum <strong>in</strong> dual culture as well as cellfreeculture filtrate but show no activity aga<strong>in</strong>st Colletotrichum spp.Conventional identification tests, Hi-media Carbokit TM <strong>in</strong>dicated thatRCP6 behaves like the Paenibacillus genus. Molecular identication by16S rRNA sequence analysis identified the stra<strong>in</strong> as Paenibacilluspolymyxa. The 1492 base pair sequence of P. polymyxa RCP6(GU369972) showed maximum similarity to P. polymyxa IAM 13419T(D16276). Stra<strong>in</strong> also showed the ability to improve early vegetativegrowth of C. purpurea <strong>in</strong> germ<strong>in</strong>ation assay.Conclusion: This study disclosed features of Plant growth promot<strong>in</strong>g andantagonistic stra<strong>in</strong> P.polymyxa RCP6 that deserve further studies aimed atconfirm<strong>in</strong>g its importance as a putative endophyte.Palaniappan, P., Chauhan, P. S., Saravanan, V. S., Anandham, R. and Sa, T.-M. (2010). Isolationand characterization of plant growth promot<strong>in</strong>g endophytic bacterial isolates from root noduleofLespedezasp.Biol.Fert.Soil. 46: 807-816.Li, J. H., Wang, E. T., Chen, W. F. and Chen, W. X. (2008). Genetic diversity and potential forpromotion of plant growth detected <strong>in</strong> nodule endophytic bacteria of soybean grown <strong>in</strong>Heliongjiang prov<strong>in</strong>ce of Ch<strong>in</strong>a.Soil.Biol.Biochem. 40: 238-246.Senthilkumar, M., Gov<strong>in</strong>dasamy, V. and Annapurna, K. (2007). Role of antibiosis <strong>in</strong> suppression ofcharcoal rot disease by soybean endophytePaenibacillussp. HKA-15.Curr.Microbiol. 55: 25-29.SMP036Competition between subalp<strong>in</strong>e plants and microbes fornitrogen under different redox conditions and nitrogenfertilization regimes - a greenhouse approachE.-M. Kastl* 1 , S. Gschwendtner 2 , J.C. Munch 2 , M. Schloter 11 Helmholtz Zentrum München, Research Unit Environmental Genomics,Neuherberg, Germany2 Technische Universität München, Chair of soil ecology, Neuherberg, GermanyNatural grasslands are important hotspots for biodiversity and otherecosystem services of soils. The gram<strong>in</strong>eous species of these naturalgrasslands differ greatly <strong>in</strong> nitrogen uptake strategies: Whereasexploitative plants need high amounts of nitrogen compounds for grow<strong>in</strong>g,conservative plants require lower amounts. So far, the <strong>in</strong>fluence of plantnitrogen uptake strategies on microbial community is largely unknown.However, it can be hypothesized that the microbial rhizosphere communityof exploitative plants differ from that of conservative plants due to highcompetition between exploitative plants and microbes for availablenitrogen.The aim of this study was to <strong>in</strong>vestigate the microbial rhizospherecommunity of subalp<strong>in</strong>e gram<strong>in</strong>eous plants with different nitrogen uptakestrategies. Furthermore, the <strong>in</strong>fluence of low oxygen content due to highsoil water content was exam<strong>in</strong>ed, as anoxic conditions are known to favourdenitrification processes and thus might facilitate microbes dur<strong>in</strong>g thecompetition for nitrate. Therefore, a greenhouse experiment with Achilleamillefolium(exploitative), Bromus erectus (<strong>in</strong>termediary) and Brizamedia(conservative) was performed <strong>in</strong> sandy, nutrient poor soil. Plantsreceived 40 kg NH 4NO 3 ha -1 after 7 days and 60 kg NH 4NO 3 ha -1 after 21days of growth. After 28 days plants were sampled. The microbialrhizosphere community was <strong>in</strong>vestigated by quantification of functionalgenes <strong>in</strong>volved <strong>in</strong> nitrification (bacterial and archaeal amoA) anddenitrification (nirK,nirS and nosZ) by real-time PCR. Soil ammonium andnitrate concentrations were determ<strong>in</strong>ed. Furthermore potential enzymeactivities of nitrification and denitrification were analyzed. Thepresentation will give detailed results on the allocation pattern.SMP037Population analysis of iron deposit<strong>in</strong>g bacterial communities<strong>in</strong> technical water systemsJ. Schröder*, H. Danner, B. Braun, U. SzewzykTechnische Universität Berl<strong>in</strong>, Fachgebiet Umweltmikrobiologie, Berl<strong>in</strong>,GermanyThis subproject of the BMBF project „Antiocker“ focuses on theidentification and characterization of iron deposit<strong>in</strong>g bacteria under neutralpH. Iron bacteria have caused problems <strong>in</strong> water s<strong>in</strong>ce the 19th century andthere have been many references to red water becom<strong>in</strong>g undr<strong>in</strong>kablepresumably due to the growths of iron bacteria. The aim of this project isto identify the key bacteria which are <strong>in</strong>volved <strong>in</strong> deposition of oxidizediron compounds. Their activity becomes a very important economicconcern as a result of the <strong>in</strong>tense deposition of iron oxides <strong>in</strong> technicalwater systems. Examples are the process<strong>in</strong>g of groundwater, dr<strong>in</strong>k<strong>in</strong>gwater production or operation of water wells. Therefore ochreous samplesfrom several technical water systems were exam<strong>in</strong>ed to get an overview ofthe composition of the bacterial population.For this purpose, traditional cultivation techniques such as bacterialisolation and molecular methods like PCR-DGGE, FISH <strong>in</strong> comb<strong>in</strong>ationwith epifluorescence-and confocal laser scann<strong>in</strong>g microscopy werecomb<strong>in</strong>ed. The isolation of different iron precipitat<strong>in</strong>g bacteria has beensuccessful and their liv<strong>in</strong>g conditions can be characterized now. In additionto that a 16S rDNA genomic clone library of seven different samples fromochreous water wells (opencast m<strong>in</strong>e and well reactors) was generated. 384clones based on the 16S rDNA are available to make a molecularevolutionary analysis. Besides classical iron bacteria like Gallionella andLeptothrix, representatives of typical soil bacteria of the generaSph<strong>in</strong>gomonas, Novosph<strong>in</strong>gobium, Hyphomicrobium and Arthrobacterwere <strong>in</strong>side.Based on this data, different specific oligonucleotide probes and primerswill be developed for iron bacteria to detect them <strong>in</strong> their natural habitatand make a fast sample screen<strong>in</strong>g possible.SMP038Hydrolytic bacteria <strong>in</strong>volved <strong>in</strong> degradation of plant biomass<strong>in</strong> the biogas processT. Köllmeier*, V.V. Zverlov, W.H. SchwarzTU München, Lehrstuhl für Mikrobiologie, Freis<strong>in</strong>g, GibraltarAs fossil energy supplies are on a decl<strong>in</strong>e, technologies that employregrow<strong>in</strong>g resources have become of mutual <strong>in</strong>terest. Biogas plants employsuch resources as substrate for microbial fermentation processes whichconverte the conta<strong>in</strong>ed energy <strong>in</strong> the energy carrier biogas. Improvementof these processes is of general <strong>in</strong>terest. The aim of this work is to get<strong>in</strong>sights <strong>in</strong>to the composition of hydrolytic bacteria <strong>in</strong> biogas plants tooptimize the hydrolysis of lignocellulosic material. This leads to improvedmethan yield and <strong>in</strong>creased efficiency of the biogas process. We focusedon the development of hydrolytic mixed cultures, their analysis and thedevelopment of monitor<strong>in</strong>g methods to <strong>in</strong>vestigate the abundance ofhydrolytic bacteria <strong>in</strong> (<strong>in</strong>oculated) biogas fermenter. Another approach wasto purify cellulolytic cultures to <strong>in</strong>vestigate their capabilities.SMP039Selective transport of bacterial populations through thevadose zone dur<strong>in</strong>g groundwater rechargeD. Dibbern* 1 , A. Schmalwasser 2 , K.U. Totsche 2 , T. Lueders 11 Helmholtz Center Munich, Institute of Groundwater Ecology, München,Germany2 University of Jena, Department of Hydrogeology, Jena, GermanyPlants <strong>in</strong>troduce abundant carbon <strong>in</strong>to soil, were it can be sequestered <strong>in</strong>microbial biomass and recalcitrant organic matter. However, proportionsof these pools can be relocated, by event-driven transport to deeper vadosezones and even to the groundwater dur<strong>in</strong>g groundwater recharge, such asheavy ra<strong>in</strong>falls or after snowmelt. It is postulated that large fractions of thisefflux are biocolloids, or microbial biomass <strong>in</strong> specific. Relevant questionsare, whether only selected microbial populations are exported from topsoils and what is the fate of this biomass <strong>in</strong> deeper zones and groundwater.Is it merely a carbon <strong>in</strong>put for subsurface microbial food webs or dotransported populations survive?Here, at an agricultural experimental field site, we analyzed thecomposition of mobile bacterial communities collected <strong>in</strong> seepage waterdirectly after recharge events at different depths (35 and 65 cm) andcompared it to the correspond<strong>in</strong>g bacterial communities from soil andvadose depths. Us<strong>in</strong>g T-RFLP and high-throughput pyrotag sequenc<strong>in</strong>g,we reveal that top soil bacteria are washed out selectively, and that theirfate <strong>in</strong> deeper zones may be dist<strong>in</strong>ct, but taxon-specific. These f<strong>in</strong>d<strong>in</strong>gsgreatly extend our understand<strong>in</strong>g of the event-driven and organismic flowof carbon from soil <strong>in</strong>to the subsurface.BIOspektrum | Tagungsband <strong>2012</strong>


223SMP040amoA-based consensus phylogeny of ammonia-oxidiz<strong>in</strong>garchaea and deep sequenc<strong>in</strong>g of amoA genes from soils of fourdifferent geographic regionsM. Pester* 1 , T. Rattei 2 , S. Flechl 1 , A. Gröngröft 3 , A. Richter 4 , J. Overmann 5 ,B. Re<strong>in</strong>hold-Hurek 6 , A. Loy 1 , M. Wagner 11 University of Vienna, Department of Microbial Ecology, Vienna, Austria2 University of Vienna, Department of Computational Systems Biology, Vienna,Austria3 University of Hamburg, Institute of Soil Science, Hamburg, Germany4 University of Vienna, Department of Chemical Ecology and EcosystemResearch, Vienna, Austria5 Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen undZellkulturen, Braunschweig, Germany6 University of Bremen, Department of Microbe-Plant Interactions, Bremen,GermanyAmmonia-oxidiz<strong>in</strong>g archaea (AOA) play an important role <strong>in</strong> nitrificationand many studies exploit their amoA genes as marker for their diversityand abundance. We present an archaeal amoA consensus phylogeny basedon all publicly available sequences (status June 2010) and provideevidence for the diversification of AOA <strong>in</strong>to four previously recognizedclusters and one newly identified major cluster. These clusters, for whichwe suggest a new nomenclature, harbored 83 AOA species-level OTUs(us<strong>in</strong>g an <strong>in</strong>ferred species threshold of 85% amoA identity). 454pyrosequenc<strong>in</strong>g of amoA amplicons from 16 soils sampled <strong>in</strong> Austria,Costa Rica, Greenland, and Namibia revealed that only 2% of retrievedsequences had no database representative on the species-level andrepresented 30-37 additional species-level OTUs. With the exception of anacidic soil from which mostly amoA amplicons of the Nitrosotalea clusterwere retrieved, all soils were dom<strong>in</strong>ated by amoA amplicons from theNitrososphaera cluster (also called group I.1b), <strong>in</strong>dicat<strong>in</strong>g that thepreviously reported AOA from the Nitrosopumilus cluster (also calledgroup I.1a) are absent or represent m<strong>in</strong>or populations <strong>in</strong> soils. AOArichness estimates on the species level ranged from 8-83 co-exist<strong>in</strong>g AOAsper soil. Presence/absence of amoA OTUs (97% identity level) correlatedwith geographic location, <strong>in</strong>dicat<strong>in</strong>g that besides contemporaryenvironmental conditions also dispersal limitation across differentcont<strong>in</strong>ents and/or historical environmental conditions might <strong>in</strong>fluenceAOA biogeography <strong>in</strong> soils.SMP041Organic propagation of olive nursery plants us<strong>in</strong>g Pantoeaeucr<strong>in</strong>a stra<strong>in</strong> AG9M.D.C. Montero-Calasanz* 1,2 , C. Santamaría 2 , A. Daza 2 , E. Lang 1 , H.-P. Klenk 1 , M. Camacho 21 Leibniz Institute DSMZ- Deutsche Sammlung von Mikroorganism undZellKulturen GmbH , Department of Microbiology, Braunschweig, Germany2 IFAPA Centro Las Torres-Tomejil. Junta de Andalucia., Department ofNatural Resources and Organic Production, Alcala del Rio (Sevilla). SPAIN.,Spa<strong>in</strong>The demand for organic olive oil is <strong>in</strong>creas<strong>in</strong>g exponentially each year(MARM, 2010). However, nowadays there is not a commercial methodthat can replace the use of a synthetic hormone <strong>in</strong> organic propagation ofolive nursery plants.The goal of this work is the development of an organic olive propagationmethod based on the use of the stra<strong>in</strong> AG9 (Pantoea eucr<strong>in</strong>a), previouslycharacterized as a Plant Growth Promot<strong>in</strong>g Rhizobacteria (PGPR). Thisstra<strong>in</strong> has been used <strong>in</strong> monoxenic model systems show<strong>in</strong>g both, higherroot<strong>in</strong>g <strong>in</strong>duction and root elongation than negative controls, <strong>in</strong> mung beanand canola assays. Moreover, this bacterium has been tested <strong>in</strong> four olivecultivars, under nursery conditions, display<strong>in</strong>g higher or similareffectiveness than the hormonal treatments. These results underwrite theworth of this method.On the other hand, by means of Confocal Laser Scann<strong>in</strong>g Microscope(CLSM) and GFP tagged bacterial cells, it was confirmed that this stra<strong>in</strong> isable to colonize the plant roots permanently as an endophyte and topromote the plant growth a long-term.MARM. Anuario de Estadística. M<strong>in</strong>isterio de Medio Ambiente, MedioRural y Mar<strong>in</strong>o. Gorbierno de Espana (2010).SMP042Temperature effects of geothermal energy use on themicrobial community <strong>in</strong> subsurface environmentsF. Hegler* 1 , T. Lüders 1 , G. Bisch 2 , P. Blum 3 , C. Griebler 11 Helmholtz Zentrum München, Institute of Groundwater Ecology, Neuherberg,Germany2 University of Stuttgart, VEGAS - Institut für Wasser- undUmweltsystemmodellierung, Stuttgart, Germany3 Karlsruhe Institute of Technology (KIT), Institute for Applied Geosciences,Karlsruhe, GermanyGeothermal energy use has boomed <strong>in</strong> the last years. In w<strong>in</strong>ter, theexploitation of geothermal energy can be used to heat build<strong>in</strong>gs and <strong>in</strong>summer to cool them. Especially geothermal heat exchangers up to 100 mdepth are <strong>in</strong>stalled frequently. Although geothermal energy use is acceptedas be<strong>in</strong>g environmentally friendly, several aspects need to be considered <strong>in</strong>an evaluation of its use. While complications dur<strong>in</strong>g drill<strong>in</strong>g (e.g. lead<strong>in</strong>gto cracks <strong>in</strong> houses) or dur<strong>in</strong>g the operation of geothermal heat systems(e.g. leakage of anti-freez<strong>in</strong>g agents to the aquifer) are caused bymisjudgment or accidents, other effects cannot be avoided.Generally, temperature <strong>in</strong> the subsurface deeper than 15 m is constant overthe year. Geothermal heat exchangers may decrease or <strong>in</strong>crease thetemperature locally. Therefore, <strong>in</strong> our study we focus on the effects oftemperature changes on the subsurface environment adjacent togeothermal heat exchangers. Temperature shifts <strong>in</strong>fluence the viscosity anddensity of water but also the solubility of liquids, solids, gases andgenerally the geochemical equilibrium. Not only may geochemicalequilibria shift but also the microbial communities and fauna may be<strong>in</strong>fluenced by temperature. While temperature effects on the microbialcommunity for open, nearer surface geothermal systems are documented[1,2] the current project aims to evaluate possible shifts <strong>in</strong>duced bygeothermal heat exchangers.With this study we are present<strong>in</strong>g first results for the effect of chang<strong>in</strong>gtemperatures on the microbial community <strong>in</strong> a usually constanttemperature environment such as the subsurface.1. Brielmann, H., et al., Oberflächennahe Geothermie und ihre potentiellen Auswirkungen aufGrundwasserökologie. Grundwasser, 2011.16: p. 77-91.2. Brielmann, H., et al., Effects of thermal energy discharge on shallow groundwater ecosystems.FEMS Microbiology Ecology, 2009.68: p. 273-286.SMP043Microbial carbon decomposition under anoxic conditions <strong>in</strong>permafrost-affected soil of the Q<strong>in</strong>ghai-Xizang PlateauS. Yang*, D. WagnerAlfred Wegener Institute for Polar and Mar<strong>in</strong>e Research,Geomicrobiology, Potsdam, GermanyThe Q<strong>in</strong>ghai-Xizang Plateau (QXP) <strong>in</strong> high Asia is the third permafrostunit outside polar regions, about 54.3% of it is covered by permafrost,reta<strong>in</strong><strong>in</strong>g 23% SOM of Ch<strong>in</strong>ese soils or 2.5% of the global pool (Wang etal., 2002). Affected by India and Asian monsoon, the plateau differs <strong>in</strong>temperature and moisture gradients along the monsoon routes, mak<strong>in</strong>g thefate of SOM with<strong>in</strong> QXP soil more complicated. The SOM turnover isma<strong>in</strong>ly driven by microbial communities which decompose permafrostSOM via a sequence of microbial processes to CH 4 under anaerobicconditions (methanogenesis), which is a rather strong greenhouse gas. Inresponse to climate warm<strong>in</strong>g, QXP permafrost degradation has beenenhanced over the past decades, the methane turnover via methanogens istherefore our focus from the view of global change research. An<strong>in</strong>terdiscipl<strong>in</strong>ary project is conducted along the two different monsoongradients to l<strong>in</strong>k the<strong>in</strong>-situ methane flux with temporal and spatialvariations of permafrost soil carbon (e.g. ST, SM, SRP, SOMs, TOC, pH)and dynamics of methanogenic consortia. Attention will be paid on theanaerobic carbon decomposition, dynamics of archaeal communities andtheir reaction to global change by us<strong>in</strong>g methane produc<strong>in</strong>g rate analysisand a diverse molecular biotechniques <strong>in</strong>clud<strong>in</strong>g DGGE and t-RFLPf<strong>in</strong>gerpr<strong>in</strong>ts, clon<strong>in</strong>g, FISH and real-time PCR to quantitatively andqualitatively <strong>in</strong>vestigate the diversity, abundance and the changes of thecomposition of archaeal communities. On this basis, it is expected to beable to improve our understand<strong>in</strong>g about the potential anoxicdecomposition of permafrost SOMs under different the climate gradientsand its future development under global warm<strong>in</strong>g.Wang G.X., Ju Q., Cheng G.D., and Lai Y.M.. 2002. Soil organic carbon pool of grassland soils onthe Q<strong>in</strong>ghai-Tibetan Plateau and its global implication. Science of The Total Environment,291(1-3):207-217.BIOspektrum | Tagungsband <strong>2012</strong>


224SMP044RNase J and RNase E <strong>in</strong> S<strong>in</strong>orhizobium meliloti: specific andcommon roles <strong>in</strong> rRNA maturation, RNA modification,motility and quorum sens<strong>in</strong>gK. Baumgardt 1 , S. Thalmann 1 , R. Madhugiri 1 , A. Schikora 2 , K.-H. Kogel 2 ,G. Klug 1 , A. Becker 3 , E. Evguenieva-Hackenberg* 11 Justus-Liebig-Universität Giessen, Institut für Mikrobiologie undMolekularbiologie, Gießen, Germany2 Justus-Liebig-Universität Giessen, Institute of Phytopathology andApplied Zoology, Gießen, Germany3 Albert-Ludwigs-Universität Freiburg, Institute of Biology III, Freiburg,GermanyS<strong>in</strong>orhizobium meliloti Rm2011, a nitrogen-fix<strong>in</strong>g plant symbiont,harbours RNase E and RNase J, two pr<strong>in</strong>cipal RNases of Bacillus subtilisand Escherichia coli, respectively (1). To address the mechanisms forposttranscriptional regulation of gene expression <strong>in</strong>S. meliloti, weanalyzed mutants with m<strong>in</strong>i-Tn5 <strong>in</strong>sertions <strong>in</strong> the genes encod<strong>in</strong>g RNase Eand RNase J (2) <strong>in</strong> comparison to the wild type. Only the RNase J mutantbut not the RNase E mutant was impaired <strong>in</strong> growth, motility and rRNAmaturation (3). However, small RNAs, tRNAs and mRNAs were affected<strong>in</strong> both mutants. Small RNAs and tRNAs have identical lengths butmigrate differently <strong>in</strong> denatur<strong>in</strong>g gels when compared to the wild type,suggest<strong>in</strong>g hypermodification of RNA <strong>in</strong> the two mutants. Consistent withthis, the gene SMc00649 encod<strong>in</strong>g a probable RNA methylase was upregulated<strong>in</strong> the mutant stra<strong>in</strong>s. Additional microarray and qRT-PCRanalyses revealed specific and overlapp<strong>in</strong>g effects on mRNA level. Thedetected down-regulation of genes <strong>in</strong>volved <strong>in</strong> motility and chemotaxis <strong>in</strong>the two mutants suggested differences <strong>in</strong> the quorum-sens<strong>in</strong>g response <strong>in</strong>comparison to the wild type. Indeed, production of AHLs was <strong>in</strong>creased <strong>in</strong>the mutant stra<strong>in</strong>s, while overproduction of RNase E resulted <strong>in</strong> a strongdecrease of the AHL amounts. Analysis of genes <strong>in</strong>volved <strong>in</strong> AHLs productionshowed that balanced expression of RNase E ans RNase J is important for theposttranscriptional control of quorum sens<strong>in</strong>g <strong>in</strong> S. meliloti.1. Evguenieva-Hackenberg E, Klug G. (2009) New aspects of RNA process<strong>in</strong>g <strong>in</strong> prokaryotes.Curr. Op<strong>in</strong>.Microbiol. 14(5):587-92.2. Pobigaylo, N, Wetter, D, Szymczak, S, Schiller, U, Kurtz, S, Meyer, F, Nattkemper, TW, Becker, A.(2006) Construction of a large signature-tagged m<strong>in</strong>i-Tn5 transposon library and its application tomutagenesis ofS<strong>in</strong>orhizobium meliloti.Appl Environ Microbiol, 72, 4329-4337.3. Madhugiri R, Evguenieva-Hackenberg E. (2009) RNase J is <strong>in</strong>volved <strong>in</strong> the 5'-end maturation of 16SrRNA and 23S rRNA <strong>in</strong>S<strong>in</strong>orhizobium meliloti.FEBS Lett, 583, 2339-2342.SMP045Change of microbial community composition due togeothermal use of the subsurfaceA. Westphal* 1 , A. Jesußek 2 , M. Alawi 1 , A. Dahmke 2 , H. Würdemann 11 GeoForschungsZentrum Potsdam, ICGR, Potsdam, Germany2 Universität Kiel, Angewandte Geowissenschaften, Kiel, GermanySeasonal heat storage systems for district heat<strong>in</strong>g and build<strong>in</strong>gclimatisation are of <strong>in</strong>creas<strong>in</strong>g importance to secure a susta<strong>in</strong>able energyuse and supply. For an efficient and permanent reliable use of geothermalenergy the impact on the environment has to be evaluated.Our presentation encompasses a study of a lab-scale column experiment toquantify the effects of different temperatures on solution, precipitation andmicrobially catalysed redox processes.Four different tempered columns (10, 25, 40, 70°C) were operated andsodium actetate was added cont<strong>in</strong>uously. To characterize the microbialbiocenosis of the <strong>in</strong>itial sediment samples, fluid samples from the upperexit and also over the profile (9 sampl<strong>in</strong>g ports) were collected. Allsamples were analysed based on partial 16S rDNA. Among f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>gmethods (PCR-DGGE) for the characterization of the microbialbiocenosis, qPCR and FISH will be applied for the quantification ofmicroorganisms and the determ<strong>in</strong>ation of their metabolic activity.Sulfate reduction <strong>in</strong> all columns was detected with the highest reductionrates at 40°C. First f<strong>in</strong>gerpr<strong>in</strong>t<strong>in</strong>g results show a shift of the dom<strong>in</strong>antmicroorganisms due to the different temperatures. Additionally, themicrobial composition <strong>in</strong> the 10°C column changed clearly <strong>in</strong> between thedifferent sampl<strong>in</strong>g ports of the column. Methane production was measured at25°C correlat<strong>in</strong>g with Archaea occurrence.Lab-scale column experiments showed an alteration <strong>in</strong> the microbial biocenosisdue to geothermal <strong>in</strong>duced temperature effects. The identification ofmicroorganisms enables the correlation to metabolic classes and provides<strong>in</strong>formation about biochemical processes <strong>in</strong> the used groundwater system andtherewith the impact on plant operation as well as environment.Consequently, plasmids play a major role <strong>in</strong> enhanc<strong>in</strong>g the geneticdiversity and adaptation of bacteria as agents of horizontal gene transfer(HGT). IncP-9 plasmids are very important vehicles for degradation andresistance genes that are assumed to contribute to the adaption of bacterialcommunities <strong>in</strong> environments contam<strong>in</strong>ated with xenobiotic compoundssuch as biofilters that are used for microbial degradation of pesticides. Inthis study the abundance and diversity of IncP-9 plasmids <strong>in</strong> six differentbiofilters (three replicates per biofilter) from Belgium was analyzed.Anewly developed primer system target<strong>in</strong>g therep-oriVregion (S1: 610 bp)was used for PCR amplification from total community DNA. Southern blothybridization confirmed the presence of IncP-9 plasmid specific sequences<strong>in</strong> all biofilters with one exception. In order to obta<strong>in</strong> <strong>in</strong>sights <strong>in</strong>to thediversity of the IncP-9 plasmids, amplicons obta<strong>in</strong>ed from biofilters 1(Leefdaal), 2 (Pcfruit) and 5 (Kortrijk), that showed the strongest IncP-9signals, were cloned and sequenced. In addition, a quantitative real timePCR system (S2: ~200 bp) was established <strong>in</strong> order to quantify IncP-9abundance. The log10 transformed ratio of IncP-9 to16S rRNA genecopies varied from -3.1 to -2.65. To validate the specificity of the qPCRprimer system, the amplicons were also cloned and sequenced. Bothsystems specifically amplified IncP-9 sequences from total communityDNA. While all sequences amplified with both primer systems frombiofilter 5 showed a high sequence similarity to IncP-9 (pNL15),sequences obta<strong>in</strong>ed from biofilter 1 and biofilter 2 were more diverse,affiliated to the IncP-9a (pMT3 - biofilter 2), IncP-9b (pWW0 - biofilter1), IncP-9d (pNAH7; only obta<strong>in</strong>ed with S1- biofilter 2) and IncP-9 (pNL15 - biofilters 1 and 2). In addition several novel sequences onlydistantly affiliated to the clusters def<strong>in</strong>ed by Sevastsyanovich et al., 2008were obta<strong>in</strong>ed from biofilters 1 and 2. Interest<strong>in</strong>gly only a small number ofidentical sequences were picked up with both systems <strong>in</strong>dicat<strong>in</strong>g asurpris<strong>in</strong>gly high sequence diversity of IncP-9 plasmids <strong>in</strong> biofilters.This work was supported by the EU project METAEXPLORE and the DFG project SM59/8-1Sevastsyanovich, Y.R., R. Krasowiak, L.E.H. B<strong>in</strong>gle, A.S. Ha<strong>in</strong>es, S.L. Sokolov, I.A. Kosheleva,A.A. Leuchuk, M.A. Titok, K. Smalla, and C.M. Thomas.2008. Diversity of IncP-9 plasmids ofPseudomonas. Microbiology 154, 2929-2941.SMP047M<strong>in</strong>erals and charcoal - factors shap<strong>in</strong>g microbial communitycomposition and bacterial response to phenanthrene <strong>in</strong>artificial soilsD. Bab<strong>in</strong>* 1 , G.-C. D<strong>in</strong>g 1 , G.J. Pronk 2 , H. Heuer 1 , K. Heister 2 , I. Kögel-Knabner 2 , K. Smalla 11 Julius Kühn-Institut, Bundesforschungs<strong>in</strong>stitut für Kulturpflanzen, Institut fürEpidemiologie und Pathogendiagnostik, Braunschweig, Germany2 Technische Universität München, Lehrstuhl für Bodenkunde, Freis<strong>in</strong>g,GermanyIn soil, different organic, <strong>in</strong>organic and biological constituents arecontact<strong>in</strong>g each other and form<strong>in</strong>g large biogeochemical <strong>in</strong>terfaces. Their<strong>in</strong>teractions are poorly understood and therefore this study explored the<strong>in</strong>fluences of soil m<strong>in</strong>erals and charcoal on microbial communities. Due toproblematic comparison of natural soils, <strong>in</strong> a microcosm experiment sevenartificial soils were composed vary<strong>in</strong>g <strong>in</strong> clay m<strong>in</strong>erals (illite,montmorillonite), metal oxides (ferrihydrite, boehmite) and charcoal. Thesame aliquots of the microbial fraction extracted from Cambisol were usedas <strong>in</strong>itial microbial community and autoclaved manure as nutrient sourcefor each artificial soil. Incubation took place under constant environmentalconditions up to 18 months (sampl<strong>in</strong>g on day 1, 9, 31, 90, 180, 460, 450).Total community DNA was extracted and the 16S rRNA gene and ITSamplicons for Bacteria or Fungi, respectively, were used <strong>in</strong> denatur<strong>in</strong>ggradient gel electrophoresis (DGGE) to generate molecular f<strong>in</strong>gerpr<strong>in</strong>ts.DGGE analysis showed that m<strong>in</strong>eral composition and charcoal <strong>in</strong>fluencethe establishment of microbial communities <strong>in</strong> artificial soils, even after along <strong>in</strong>cubation time. Especially the charcoal soil showed pronounceddifferences <strong>in</strong> the DGGE pattern compared to other artificial soils withoutcharcoal.To explore the response of the established microbial communities topersistent organic pollutants, one-year old artificial soils were spiked withphenanthrene (2 g/kg) and <strong>in</strong>cubated for another 70 days. By DGGE, shifts<strong>in</strong> the bacterial but not fungal communities were revealed between nonspikedand phenanthrene-contam<strong>in</strong>ated samples. Interest<strong>in</strong>gly, bacterialcommunities of different artificial soils showed dist<strong>in</strong>ct phenanthreneresponses. By plat<strong>in</strong>g, higher bacterial counts were found <strong>in</strong> soils treated withphenanthrene.In conclusion, m<strong>in</strong>erals and charcoal <strong>in</strong> artificial soils shaped the compositionof microbial communities and the bacterial response to phenanthrene.SMP046Characterization of IncP-9 <strong>in</strong> different biofilters from Belgiumcontam<strong>in</strong>ated with pesticidesS. DealtryJulius Kühn-Institut , EP, Braunschweig, GermanyConjugative plasmids seem to be one of the mobile genetic elements mostresponsible for the rapid adaptation to environmental selective pressure.BIOspektrum | Tagungsband <strong>2012</strong>


225SMP048Interactions between bacteria antagonistic towards Rhizoctoniasolani, lettuce and <strong>in</strong>digenous rhizosphere communities <strong>in</strong> threesoil typesS. Schreiter*, E. Scholz, U. Zimmerl<strong>in</strong>g, P. Zocher, R. Grosch, K. SmallaJulius Kühn Institute, Institute for Epidemiology and PathogenDiagnostics, Braunschweig, GermanyRhizoctonia solani is a soil-borne plant pathogen which causes bottom rotdisease and leads to a massive loss of lettuce and potato every year. Thelack of effective fungicides makes it difficult to control this and other plantpathogens. So it is necessary to f<strong>in</strong>d alternative strategies. A promis<strong>in</strong>gapproach is the use of natural antagonists of the plant pathogen. Underlaboratory and greenhouse conditions, two isolates, Pseudomonas jesseniiRU47 and Serratia plymuthica 3Re4-18, showed the ability to reducedisease symptoms. But the efficiency of biocontrol agents was reported asvery variable and the reason for this variability is largely unknown.Therefore, a better understand<strong>in</strong>g of the <strong>in</strong>teraction of the microbialcommunity, the plant rhizosphere and the bulk soil is required for asuccessful exploitation of this antagonistic potential. With<strong>in</strong> the frame of aDFG-Project a field experiment has been set up with a uniqueexperimental plot system <strong>in</strong> Großbeeren compar<strong>in</strong>g three different soiltypes. This made it possible to analyze the <strong>in</strong>fluence of the soil type<strong>in</strong>dependently from other factors such as climate and cropp<strong>in</strong>g history.First results showed a different survival of the two antagonistic stra<strong>in</strong>s <strong>in</strong>the tree soil types. Also the damages caused by the pathogen are different<strong>in</strong> the soil types. We assume that these observations are related withdifferences <strong>in</strong> the microbial communities of the three soils. Indeed highlysignificant differences between the soil types were revealed by denatur<strong>in</strong>ggradient gel electrophoresis analysis of bacterial and fungal communities.Look<strong>in</strong>g at the rhizosphere, it could be confirmed that after three weeks,when lettuce is especially susceptible to the pathogen, the antagonisticstra<strong>in</strong>s are dom<strong>in</strong>ant populations. The antagonists compensated the damagecaused by the pathogen similarly <strong>in</strong> all soils as revealed by dry weight andrat<strong>in</strong>g of the lettuce. Also the antagonistic stra<strong>in</strong>s did not affect the<strong>in</strong>digenous microbial community. Therefore a negative ecological effect is notexpected. The antagonistic stra<strong>in</strong>s had a positive <strong>in</strong>fluence on lettuce<strong>in</strong>dependent from the <strong>in</strong>digenous microbial community and the pathogen so thebiological mechanism rema<strong>in</strong>s unknown. In conclusion the stra<strong>in</strong>s arepromis<strong>in</strong>g biocontrol agents to compensate the lack of effective fungicides.SMP049Effects of resource quality and quantity on fungalcommunities <strong>in</strong> an agricultural soilJ. Moll* 1 , K. Goldmann 1 , D. Krüger 1 , F. Buscot 1,21 UFZ-Helmholtz Centre for Environmental Research GmbH, Soil Ecology,Halle, Germany2 University of Leipzig, Institute of Biology I, Leipzig, GermanyDue to their high diversity and a wide decomposition potential, fungi arewell adapted to the heterogeneous soil environment and are a majorcomponent of soil microbial communities.In the frame of the DFG-funded (German Research Foundation) researchunit FOR 918 „Carbon flow <strong>in</strong> belowground food webs assessed byisotope tracers“ we <strong>in</strong>vestigate the role of saprobiotic fungi <strong>in</strong> the transferof organic carbon from plant orig<strong>in</strong> to belowground food webs of anagricultural soil. To tackle how carbon quality and availability <strong>in</strong>fluencethe fungal communities, a field experiment has been <strong>in</strong>stalled where twocrops, maize (Zea mays L.) und wheat (Triticum aestivum L.), arecultivated <strong>in</strong> a design cross manipulat<strong>in</strong>g addition of maize litter. Soil fromthree depths was sampled <strong>in</strong> July, September and December <strong>in</strong> 2009 and2010 to analyze seasonal shifts <strong>in</strong> the fungal community composition.ARISA (automated ribosomal <strong>in</strong>tergenic spacer analysis) which was usedas DNA-f<strong>in</strong>gerpr<strong>in</strong>t method resulted <strong>in</strong> 198 OTUs (operational taxonomicunits). Univariate statistical analysis revealed that fungal species richnessvaries accord<strong>in</strong>g to the crop and the manipulated carbon <strong>in</strong>put <strong>in</strong> terms ofadded litter. Furthermore fungal species richness was highest <strong>in</strong> September<strong>in</strong> both years. Despite a reduced carbon availability <strong>in</strong> the B-horizon nodecl<strong>in</strong>e <strong>in</strong> species richness with <strong>in</strong>creas<strong>in</strong>g depth was found.Multivariate statistical analysis demonstrated that the soil fungalcommunity is mostly affected by soil depth, followed by the impact of theplants and related root exudates. These results <strong>in</strong>dicate strong reactions ofthe fungi to different nutrient supplies.In follow up microcosm experiments with variable nutrient availabilityfungal key players actively assimilat<strong>in</strong>g carbon will be identified us<strong>in</strong>grRNA-SIP (stable isotope prob<strong>in</strong>g).SMP050M<strong>in</strong>imal nutrient requirements of Myxococcus xanthusDK1622R. Pietsch*, L. Blaß, E. He<strong>in</strong>zleSaarland University, Biochemical Eng<strong>in</strong>eer<strong>in</strong>g, Saarbrücken, GermanyThe soil bacterium Myxococcus xanthus DK1622 naturally feeds on lysedmicroorganisms by secretion of proteases [1, 2]. S<strong>in</strong>ce the growth is pooron def<strong>in</strong>ed media like A1 or M1 [3, 4, 5], but good on case<strong>in</strong> and case<strong>in</strong>hydrolysates, we studied the degradation and uptake of related peptides. Itslack of a hexose uptake system [1] does not allow utiliz<strong>in</strong>g mono- orpolysaccharides. Isoleuc<strong>in</strong>e, leuc<strong>in</strong>e and val<strong>in</strong>e are essential because theycannot be synthesized [3], but their uptake is enabled by the branchedcha<strong>in</strong> am<strong>in</strong>o acid transport system [6].Like <strong>in</strong> the degradation of -case<strong>in</strong> by Lactococcus lactis [7], uptake ofpeptides should be possible with a maximal length of 18 am<strong>in</strong>o acids viathe oligopeptide permease [8]. The biological fate of peptides <strong>in</strong> theculture supernatant of M. xanthus was followed via Matrix-assisted laserdesorption/ionisation mass spectrometry (Maldi-MS) with bradyk<strong>in</strong><strong>in</strong> 1-7as <strong>in</strong>ternal standard (any occurrence of m/z=757 <strong>in</strong> supernatant). Thesequences of s<strong>in</strong>gle peptides were confirmed by tandem measurements(MS/MS) with collision <strong>in</strong>duced decay and a novel software tool(PeptideChopper 2.0) which aligns the found masses of peptides andfragment ions to all four case<strong>in</strong> subtype sequences.Ma<strong>in</strong> degradation detectable by Maldi-MS takes place at -case<strong>in</strong> 59-92and 144-162. We identified ma<strong>in</strong> and alternative degradation pathways byboth C- and N-term<strong>in</strong>al exopeptidases. A k<strong>in</strong>etic model was developed todescribe the degradation of peptides.To observe whether uptake of peptides with a length of n<strong>in</strong>e am<strong>in</strong>o acids ispossible without further degradation, synthesized -case<strong>in</strong> peptides 74-82and 145-153 which conta<strong>in</strong> all am<strong>in</strong>o acids essential for growth were<strong>in</strong>cubated with concentrated proteases from the culture supernatant to f<strong>in</strong>dthe putative degradation products. In a second experiment, they were usedas the only carbon and nitrogen sources.This way, we elucidated degradation pathways of -case<strong>in</strong> by M. xanthusDK1622. Offer<strong>in</strong>g a high amount of synthetic peptides conta<strong>in</strong><strong>in</strong>g all essentialam<strong>in</strong>o acids is not sufficient for efficient growth of M. xanthus DK1622 even ifthey are parts of the major degradation pathways of casitone.1. L. J. Shimkets, M. Dwork<strong>in</strong> and H. Reichenbach <strong>in</strong> “The Procaryotes”, ed. M. Dwork<strong>in</strong> (Spr<strong>in</strong>ger, NewYork) (2006), p. 60.2. A. Konovalova, T. Petters and L. Søgaard-Andersen, FEMS Microbiol Rev 34 (2010), p. 99.3. A. P. Bretscher and D. J. Kaiser, J Bacteriol 133 (1978), p. 763.4. S. S. Witk<strong>in</strong> and E. Rosenberg, J Bacteriol 103 (1970), p. 641-649.5. M. Dwork<strong>in</strong>, J Bacteriol 84 (1962), p. 250-257.6. H. B. Bode, M. W. R<strong>in</strong>g, G. Schwär, M. O. Altmeyer, C. Kegler, I. R. Jose, M. S<strong>in</strong>ger and R. Müller,Chem Bio Chem 10 (2009), p. 128-140.7. E. R. S. Kunji, G. Fang, C. M. Jeronimus-Strat<strong>in</strong>gh, A. P. Bru<strong>in</strong>s, B. Poolman and W. N. Kon<strong>in</strong>gs MolMicrobiol 27 (1998), p. 1107-11188. K. Savijoki, H. Ingmer and P. Varmanen Appl Microbiol Biotechnol 71 (2006), p. 398SMP051Insights <strong>in</strong> anaerobic hydrocarbon biodegradation undermethanogenic conditionsF. Gründger* 1 , F. von Netzer 2 , N. Jimenez-Garcia 3 , T. Lüders 2 , H.-H. Richnow 3 , M. Krüger 11 Bundesanstalt für Geowissenschaften und Rohstoffe, Geomikrobiologie,Hannover, Germany2 Helmholtz Zentrum München, Institut für Grundwasserökologie, Neuherberg,Germany3 Helmholtz Zentrum für Umweltforschung, Isotopenbiogeochemie, Leipzig,GermanyEnrichment, isolation and characterisation of hydrocarbon degrad<strong>in</strong>gmicroorganisms are of great importance to understand the biochemicalmechanisms responsible for oil biodegradation <strong>in</strong> contam<strong>in</strong>atedenvironments and <strong>in</strong> petroleum reservoirs. With respect to decreas<strong>in</strong>gconventional energy resources this understand<strong>in</strong>g also helps <strong>in</strong> the searchfor methods of enhanced hydrocarbon recovery, like the microbialconversion of oil or coal to recoverable methane.The ma<strong>in</strong> focus of this work therefore is the biodiversity of hydrocarbondegraders and their metabolic processes of methanogenesis. We started to<strong>in</strong>vestigate the physiological characteristics and activities of microbialconsortia enriched from freshwater and mar<strong>in</strong>e sediments as well as fromoil and coal reservoirs.Stable isotope measurements showed the conversion of 13 C-labelledhydrocarbons <strong>in</strong>to methane. With the use of T-RFLP and Q-PCR a largebacterial diversity was detected while the archaeal was limited to three orfour dom<strong>in</strong>ant species. Both doma<strong>in</strong>s were highly abundant <strong>in</strong> allenrichment cultures. Genes <strong>in</strong>dicative of metal reduction, sulphatereduction, and methanogenesis were also detected <strong>in</strong> high numbers <strong>in</strong> these<strong>in</strong>cubations. The sequenc<strong>in</strong>g analysis revealed a low phylogenetic diversityof Archaea comprised of Euryarchaeota and Crenarchaeota. Members ofMethanosarc<strong>in</strong>ales and Methanomicrobiales dom<strong>in</strong>ated the archaeal partof the community <strong>in</strong> the enrichment cultures. The ma<strong>in</strong> bacterialrepresentatives were Syntrophus spp., Desulfovibrio spp. andSyntrophomonas spp.. Us<strong>in</strong>g stable isotope prob<strong>in</strong>g with different 13 C-BIOspektrum | Tagungsband <strong>2012</strong>


226labelled hydrocarbons or potential <strong>in</strong>termediates of the methanogenicdegradation pathway, comb<strong>in</strong>ed with molecular and biochemical analyses,we are attempt<strong>in</strong>g to reveal the carbon flow as well as the active microbialcommunity <strong>in</strong> the enrichment cultures.SSV001Metabolic pathway fluxes of the mar<strong>in</strong>e model bacteriumD<strong>in</strong>oroseobacter shibae under chang<strong>in</strong>g environmental conditionsA. Bartsch*, A. Kl<strong>in</strong>gner, J. Becker, C. WittmannInstitut für Bioverfahrenstechnik, TU Braunschweig, Braunschweig, GermanyThe Roseobacter clade is one of the most prevalent bacteria <strong>in</strong> mar<strong>in</strong>ehabitats and is liv<strong>in</strong>g <strong>in</strong> various ecological niches [1]. As <strong>in</strong>dicated fromrecently sequenced genomes, they comprise a rich repertoire of metabolicpathways [2, 3]. D<strong>in</strong>oroseobacter shibae as prom<strong>in</strong>ent member of theRoseobacterclade is additionally known for its ability to grow <strong>in</strong> asymbiotic relationship with algae, to produce acetylated homoser<strong>in</strong>elactones (AHL), and to perform aerobic anoxygenic photosynthesis. Firststudies of the central carbon metabolism showed that glucose ismetabolized exclusively via the Entner-Doudoroff pathway [3]. Thisunusual flux distribution differs from most terrestrial microorganisms [3,4]. For a more detailed view <strong>in</strong>to the carbon core metabolism of D. shibae,state of art 13 C metabolic flux analysis was applied [5]. This comprised thecreation of a metabolic network model from available pathway <strong>in</strong>formation(databases from Kyoto Encyclopedia of Genes and Genomes and Jo<strong>in</strong>tGenome Institute). The model was then <strong>in</strong>tegrated <strong>in</strong>to the modell<strong>in</strong>gsoftware platform OpenFLUX [6]. For the first time, this allowed to<strong>in</strong>vestigate the physiological response of D. shibae on the flux level tochanges <strong>in</strong> environmental conditions such as nutrient status, temperature orsalt level, provid<strong>in</strong>g a first systems level <strong>in</strong>sight <strong>in</strong>to this important mar<strong>in</strong>emodel organism. In conclusion fluxes rema<strong>in</strong>ed quite unaffected byenvironmental perturbation, which <strong>in</strong>dicates a dist<strong>in</strong>ct homeostasis as wellas a high robustness of D.shibae. This might partly expla<strong>in</strong> the enormoussuccess of this bacteria and its related species <strong>in</strong> the mar<strong>in</strong>e realm.Acknowledgements: The work is funded by the German ResearchFoundation with<strong>in</strong> the subproject C4 <strong>in</strong> the SFB TRR51 “Ecology,Physiology and Molecular Biology of the Roseobacter clade: Towards aSystems Biology Understand<strong>in</strong>g of a Globally Important Clade of Mar<strong>in</strong>eBacteria”.[1] Buchan et al. (2005): Overview of the mar<strong>in</strong>e Roseobacter l<strong>in</strong>eage. Appl Environ Microbiol, 71(10):5665-5677[2] Wagner-Döbler et al. (2010): The complete genome sequence of the algal symbiont D<strong>in</strong>oroseobactershibae: a hitchhiker's guide to life <strong>in</strong> the sea. ISME J, 4: 61-77[3] Fürch et al. (2009): Metabolic fluxes <strong>in</strong> the central carbon metabolism of D<strong>in</strong>oroseobacter shibae andPhaeobacter gallaeciensis, two members of the mar<strong>in</strong>e Roseobacter clade. BMC Microbiology, 9: 209[4] Tang et al. (2009): Carbohydrate Metabolism and Carbon Fixation <strong>in</strong> Roseobacter denitrificans OCh114.PLoS ONE, 4:12[5] Kohlstedt et al. (2010): Metabolic fluxes and beyond-systems biology understand<strong>in</strong>g and eng<strong>in</strong>eer<strong>in</strong>g ofmicrobial metabolism. Appl Microbiol Biotech, 88:1065-1075.[6] Quek et al. (2009): OpenFLUX: efficient model<strong>in</strong>g software for 13 C-based metabolic flux analysis.Microbial Cell Factories, 8:25.SSV002Glucosyl-glycerate is a nitrogen stress-dependent carboncapacitator<strong>in</strong> Mycobacterium smegmatisV. Behrends* 1 , K.J. Williams 2 , V.A. Jenk<strong>in</strong>s 2 , B.D. Robertson 2 , J.G. Bundy 21 Imperial College, Biomolecular Medic<strong>in</strong>e, London, United K<strong>in</strong>gdom2 Imperial College, London, United K<strong>in</strong>gdomQuestion: Nutrient depletion often requires an organism to drastically alterits physiology and metabolism. We <strong>in</strong>vestigated the response to nutrientdepletion <strong>in</strong> the form of nitrogen starvation of the bacteriumMycobacterium smegmatis, an important model for the study of the humanpathogen M. tuberculosis.Methods: We profiled the metabolic response of M. smegmatis to nitrogenstarvation, by quantify<strong>in</strong>g the changes <strong>in</strong> exo- and endometabolome overtime us<strong>in</strong>g NMR spectroscopy as well as mass spectrometry. Additionally,we replenished nitrogen and quantified the metabolic consequences of thisnitrogen up-shift.Results: Interest<strong>in</strong>gly, cells of M. smegmatis cont<strong>in</strong>ued to divide and growafter the extracellular nitrogen source is depleted (albeit at a slower rate)h<strong>in</strong>t<strong>in</strong>g at the presence of an <strong>in</strong>tracellular storage molecule. Concomitantwith extracellular nitrogen run-out, levels of glycerone showed a transient<strong>in</strong>crease. Inside the cells, low nitrogen triggers the accumulation ofglycogen and other carbon storage molecules <strong>in</strong>clud<strong>in</strong>g the disaccharidetrehalose and the hexose-conjugate glycosyl-glycerate (GGA), whichaccumulates to high (approx. 500 mM) concentrations <strong>in</strong>side the cytosol.Follow<strong>in</strong>g nitrogen up-shift, the metabolism of the cells was drasticallyaltered, lead<strong>in</strong>g to a sharp <strong>in</strong>crease <strong>in</strong> glutamate and trans-aconitate. Thisco<strong>in</strong>cided with a decrease <strong>in</strong> GGA. Interest<strong>in</strong>gly, a mutant unable tosynthesise GGA is not viable <strong>in</strong> low nitrogen concentrations despite themolecule itself not conta<strong>in</strong><strong>in</strong>g any nitrogen.Conclusion: Our study shows that the mycobacterial responses to nitrogenstarvation are not yet fully understood, and potentially <strong>in</strong>volve novelmetabolic regulation. We found that extracellular nitrogen availabilitycontrols <strong>in</strong>tracellular carbon turnover, but surpris<strong>in</strong>gly is not an absoluteprerequisite for growth. Instead, the ability to synthesise a carbon storagemolecule that accumulates dur<strong>in</strong>g nitrogen shortage is essential for growth<strong>in</strong> low nitrogen concentrations.SSV003Flavohemoprote<strong>in</strong> Hmp of Corynebacterium glutamicum is<strong>in</strong>volved <strong>in</strong> nitrosative stress resistanceL. Platzen*, A. Michel, B. Weil, M. Brocker, M. BottInstitut für Bio- und Geowissenschaften, Forschungszentrum JülichGmbH, IBG-1: Biotechnologie, Jülich, GermanyCorynebacterium glutamicum is a Gram-positive soil bacterium, which isused <strong>in</strong> <strong>in</strong>dustrial biotechnology for the production of am<strong>in</strong>o acids [1].Only recently it was discovered that it can also grow under anaerobicconditions by means of nitrate respiration [2,3]. In this process nitrite isformed, which cannot be reduced further by C. glutamicum and thereforeaccumulates <strong>in</strong> the medium. Nitrate respiration and the presence of nitritecan trigger the formation of reactive nitrogen species, which are toxic forthe cell. Hence, nitrosative stress tolerance has become of <strong>in</strong>terest <strong>in</strong> orderto improve anaerobic growth of C. glutamicum. We could show that nitrite<strong>in</strong>hibited aerobic growth of C. glutamicum <strong>in</strong> a concentration-dependentmanner. The NO-donat<strong>in</strong>g agent sodium nitroprusside (SNP) alsodecelerated aerobic growth. Studies on the impact of nitrite on global geneexpression under aerobic conditions revealed that the gene cg3141 (hmp)was 10-fold upregulated. In other organisms, e.g. E. coli, flavohemoprote<strong>in</strong>Hmp has been shown to mediate resistance towards nitric oxide [4].Deletion of hmp <strong>in</strong> C. glutamicum ATCC13032 resulted <strong>in</strong> a stra<strong>in</strong> (hmp)which is more sensitive towards nitrite and SNP than the wild type. Thisphenotype was complemented successfully by plasmid-based expression ofhmp. Anaerobic growth with nitrate of the hmp mutant was also retarded<strong>in</strong> comparison to the wild type. These results demonstrate that theflavohemoprote<strong>in</strong> Hmp of C. glutamicum is important for nitrosative stresstolerance under aerobic and anaerobic conditions.1. Eggel<strong>in</strong>g, L. and M. Bott, Handbook of Corynebacterium glutamicum 2005: CRC Press, Taylor & FrancisGroup, Boca Raton, Florida, USA.2. Nishimura, T., et al., Anaerobic growth of Corynebacterium glutamicum us<strong>in</strong>g nitrate as a term<strong>in</strong>alelectron acceptor. Appl Microbiol Biotechnol, 2007.75(4): p. 889-97.3. Takeno, S., et al., Anaerobic growth and potential for am<strong>in</strong>o acid production by nitrate respiration <strong>in</strong>Corynebacterium glutamicum. Appl Microbiol Biotechnol, 2007.75(5): p. 1173-82.4. Gardner, P.R., et al., Nitric oxide dioxygenase: an enzymic function for flavohemoglob<strong>in</strong>. Proc Natl AcadSci U S A, 1998.95(18): p. 10378-83.SSV004Drug efflux as a surviv<strong>in</strong>g strategy <strong>in</strong> response to theanaerobic stress <strong>in</strong> E. coliA. YanThe University of Hong Kong, School of Biological Sciences, Hong Kong,Hong KongMultidrug efflux pumps are well known for their ability of remov<strong>in</strong>g<strong>in</strong>tracellular antibiotics from bacteria and caus<strong>in</strong>g antibiotic and multidrugresistance dur<strong>in</strong>g the <strong>in</strong>fectious diseases treatment. Bio<strong>in</strong>formatics andgenome-wide studies have revealed that efflux genes <strong>in</strong>deed are widelydistributed <strong>in</strong> all liv<strong>in</strong>g organisms and constitute from 6% to 18% of alltransporters <strong>in</strong> bacterial genomes, suggest<strong>in</strong>g a more general role of thisclass of gene products <strong>in</strong> bacterial physiology beyond just caus<strong>in</strong>gantibiotic resistance. In pursue of these physiological functions especiallydur<strong>in</strong>g the process of bacterial stress response, we exam<strong>in</strong>ed the expressionof all 20 efflux systems encoded <strong>in</strong> E. coli genome under the anaerobicstress conditions. This led to the identification of a dramatic up-regulationof an efflux pump, MdtEF, under this condition, which is <strong>in</strong>dependent ofantibiotic exposure. Expression of MdtEF is found to be up-regulated morethan 20 fold by the global regulator ArcA under anaerobic conditions,result<strong>in</strong>g <strong>in</strong> <strong>in</strong>creased efflux activity and enhanced drug tolerance <strong>in</strong>E. coliunder this condition. To explore physiological functions of MdtEF, weconstructed mdtEF stra<strong>in</strong> and found that E. coli K-12 cells lack<strong>in</strong>g theMdtEF efflux pump display a significantly decreased survival rate whencells reduce nitrate via anaerobic respiration. Replac<strong>in</strong>g nitrate withfumarate as the term<strong>in</strong>al electron acceptor, or deletion of the genes tnaABwhich are responsible for the biosynthesis of <strong>in</strong>dole, restores the viabilityof the mdtEF stra<strong>in</strong> under anaerobic respiratory conditions. Further<strong>in</strong>vestigation revealed that cells lack<strong>in</strong>g the MdtEF efflux pump aresusceptible to <strong>in</strong>dole nitrosated compounds, a class of toxic by-productswhich are formed and accumulated dur<strong>in</strong>g the nitrate respiration <strong>in</strong> E. coliow<strong>in</strong>g to the generation of reactive nitrogen species (RNS) under thiscondition. Taken together, we propose that E. coli activates the multidrugefflux pump MdtEF to remove the toxic nitrosated <strong>in</strong>dole derivativesdur<strong>in</strong>g its anaerobic respiration of nitrate, thus provid<strong>in</strong>g a surviv<strong>in</strong>gstrategy aga<strong>in</strong>st nitrosative damages dur<strong>in</strong>g its lifestyle <strong>in</strong> the anaerobicecological niches.BIOspektrum | Tagungsband <strong>2012</strong>


227SSV005Metabolic adaptation of Ac<strong>in</strong>etobacter to chang<strong>in</strong>genvironmental conditionsS. Miriam*, B. AverhoffMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyMembers of the genus Ac<strong>in</strong>etobacter are metabolic versatile, ubiquitousorganisms occur<strong>in</strong>g <strong>in</strong> soil and aquatic ecosystems but many have alsobeen recovered from human cl<strong>in</strong>ical specimens. Persistence ofAc<strong>in</strong>etobacter stra<strong>in</strong>s <strong>in</strong> their environments does not only <strong>in</strong>volve theability to f<strong>in</strong>d nutrients, but also to cope with physiochemical changes.Among those are changes <strong>in</strong> water availability as, for example, caused bysal<strong>in</strong>ity or desiccation. In previous studies we could already show that A.baylyi can cope with high sal<strong>in</strong>ities by uptake and accumulation of the wellknown compatible solute glyc<strong>in</strong>e beta<strong>in</strong>e (Sand et al. 2011)[1].Here we have adressed the question whether A. baylyi can use chol<strong>in</strong>e asprecursor for glyc<strong>in</strong>e beta<strong>in</strong>e synthesis <strong>in</strong> order to adapt to highosmolarities. In A. baylyi the uptake of chol<strong>in</strong>e was found to depend on thepresence of chol<strong>in</strong>e <strong>in</strong> the growth medium, but not on high sal<strong>in</strong>ities. Athigh sal<strong>in</strong>ities chol<strong>in</strong>e was accumulated <strong>in</strong> the cells and oxidized to glyc<strong>in</strong>ebeta<strong>in</strong>e whereas <strong>in</strong> the absence of osmotic stress chol<strong>in</strong>e was taken up,oxidized and subsequently exported out of the cells. Inspection of thegenome sequence revealed a bet-cluster compris<strong>in</strong>g of two genes forputative chol<strong>in</strong>e transporters (ACIAD1011, betT), one regulator gene(betI), and two genes encod<strong>in</strong>g dehydrogenases for the oxidation ofchol<strong>in</strong>e to glyc<strong>in</strong>e beta<strong>in</strong>e (betA, betB). Mutant studies, chol<strong>in</strong>e transportand oxidation studies as well as transcriptional analyses of the bet genesled to the identification of two dist<strong>in</strong>ct chol<strong>in</strong>e transporters: anosmoregulated and a salt-<strong>in</strong>dependent transporter. Both, the structuralgenes for chol<strong>in</strong>e oxidation and the chol<strong>in</strong>e transporter genes undergotranscriptional regulation by BetI.[1]Sand M.,de Berard<strong>in</strong>is V.,M<strong>in</strong>gote A.,Santos H.,Göttig S.,Müller V.,Averhoff B. (2011). Saltadaptation <strong>in</strong> Ac<strong>in</strong>etobacter baylyi: identification and characterization of a secondary glyc<strong>in</strong>ebeta<strong>in</strong>e transporter. Arch. Microbiol.193:723-730SSV006The <strong>in</strong>compatible solute creat<strong>in</strong>e <strong>in</strong>hibits bacterial Na + /H +antiportersK. Sell*, E.A. Gal<strong>in</strong>skiUniversität Bonn, Institut für Mikrobiologie und Biotechnologie, Bonn,GermanyThe accumulation of compatible solutes (organic osmolytes) from theenvironment is an organism´s prime rapid stress response aga<strong>in</strong>st <strong>in</strong>creasedsal<strong>in</strong>ity (osmolarity). In previous studies it has been shown that thisresponse can go seriously wrong when structurally related but <strong>in</strong>hibitorycompounds (named <strong>in</strong>compatible solutes) are "mistaken" for the mostcommon compatible solutes glyc<strong>in</strong>e beta<strong>in</strong>e and ecto<strong>in</strong>e [1]. Such<strong>in</strong>hibitory compounds are the naturally occur<strong>in</strong>g creat<strong>in</strong>e and the syntheticecto<strong>in</strong>e derivative guanid<strong>in</strong>o-ecto<strong>in</strong>e, both of which are characterized by aguanid<strong>in</strong>ium moiety [2].S<strong>in</strong>ce 2-am<strong>in</strong>operimid<strong>in</strong>e (a guanid<strong>in</strong>ium-conta<strong>in</strong><strong>in</strong>g naphthalenederivative) was shown to act as specific <strong>in</strong>hibitor of NhaA-type Na + /H +antiporters from Escherichia coli [3], we <strong>in</strong>vestigated the effect of theabove <strong>in</strong>compatible solutes on the activity of such antiporters. Inside-outmembrane vesicles of E. coli K-12 were used to measure the antiportactivity with the help of acrid<strong>in</strong>e orange, a fluorescent probe for pHdifference across the membrane.Thus we were able to demonstrate that creat<strong>in</strong>e clearly <strong>in</strong>hibits Nhaactivity at M concentrations while neither its correspond<strong>in</strong>g compatiblesolutes beta<strong>in</strong>e nor ecto<strong>in</strong>e-type compatible solutes affected antiportactivity. The fact that creat<strong>in</strong>e is actively accumulated <strong>in</strong>to the cytoplasmdist<strong>in</strong>guishes it from other <strong>in</strong>hibitors of Na + /H + antiporters (so far only<strong>in</strong>vestigated at <strong>in</strong>side-out vesicles) and opens up potential applications asselective growth-<strong>in</strong>hibitory compound for a range of Gram-negativebacteria (exhibit<strong>in</strong>g osmolyte uptake systems and Nha-type antiporters).Although the guanid<strong>in</strong>o group is believed to be the critical function for its<strong>in</strong>hibitory effect on sodium-proton antiporters, mimick<strong>in</strong>g a tri-hydratedsodium ion, we must, however, conclude from our studies that guanid<strong>in</strong>oecto<strong>in</strong>ehas a different mode of action.[1] Sell K, Gal<strong>in</strong>ski EA (2011) Guanid<strong>in</strong>o-ecto<strong>in</strong>e: a new member of the <strong>in</strong>compatible solute family. Poster<strong>VAAM</strong> 2011[2] Gal<strong>in</strong>ski EA, Amendt B, Mann T, McMeek<strong>in</strong> T, Ste<strong>in</strong> M (2008) Zwitterionische Guanid<strong>in</strong>iumverb<strong>in</strong>dungenals selektive antimikrobielle Wirkstoffe. DE 10 2008 009 591 A1, 15.02.2008; PCT/EP2009/001075[3] Dibrov, P. et al. 2-Am<strong>in</strong>operimid<strong>in</strong>e, a specific <strong>in</strong>hibitor of bacterial NhaA Na + /H + antiporters, FEBSLetters 2, 373-378, (2005/1/17/).SSV007How Cupriavidus metallidurans deals with toxic transition metalsA. Kirsten*, M. Herzberg, D.H. NiesMart<strong>in</strong> Luther University, Molecular Microbiology, Halle, GermanyCupriavidus metallidurans is one of the model organisms forunderstand<strong>in</strong>g metal homeostasis <strong>in</strong> heavy metal conta<strong>in</strong><strong>in</strong>g environments.Toxic-only metal cations such as Cd 2+ (with one beneficial exception) areremoved from the cytoplasm by metal efflux when the concentration ofsuch a cation <strong>in</strong>creases above a threshold. In contrast, an <strong>in</strong>trigu<strong>in</strong>g metalhomeostasis system has to keep the concentration of essential-but-alsotoxiccations such as Zn 2+ , Co 2+ and Ni 2+ <strong>in</strong> the cytoplasm <strong>in</strong> the correctalbeit narrow range. Homeostasis is achieved by metal-b<strong>in</strong>d<strong>in</strong>g reactionsbased upon a thermodynamical flow equilibrium of metal uptake andefflux reaction. To def<strong>in</strong>e a standard, we measured first how many metalatoms are present <strong>in</strong> a C. metallidurans cell after growth <strong>in</strong> m<strong>in</strong>eral saltsmedium. The <strong>in</strong>vestigation of the metal content <strong>in</strong>side the cells revealed nochange <strong>in</strong> the Z<strong>in</strong>k content but a nearly 12fold lower concentration ofmanganese <strong>in</strong> C. metallidurans than <strong>in</strong> E. coli probably due to the absenceof an NRAMP uptake system for manganese and the absence of amanganese dependent superoxide dismutase. The orchestra of metal effluxsystems <strong>in</strong> C. metallidurans has been <strong>in</strong>vestigated <strong>in</strong> details <strong>in</strong> the past andcomprises a set of RND-driven transmembrane prote<strong>in</strong> complexes thattransport cations from the periplasm to the outside plus primary exportersof the P-type ATPase prote<strong>in</strong> family and secondary transporters fromvarious prote<strong>in</strong> families. These could be assigned to central substrates, e.g.DmeF to cobalt, CadA to cadmium, ZntA to z<strong>in</strong>c, PbrA to lead, FieF toiron and CnrT to nickel. Additionally, an <strong>in</strong>-depth characterization of themetal uptake systems by stepwise multiple deletion was carried out,<strong>in</strong>clud<strong>in</strong>g the genes for the follow<strong>in</strong>g transporters: ZupT of the ZRT/IRT,PitA of the phosphate <strong>in</strong>organic transporter, four CorA paralogs of theMIT, HoxN of the NiCoTprote<strong>in</strong> family and two P-type ATPases. All ofthese seem to transport a wide range of metal cations <strong>in</strong>clud<strong>in</strong>g Zn 2+ . Incontrast to the exporters, these importers could not be assigned to centralsubstrates. Thus, metal homeostasis <strong>in</strong> C. metallidurans is achieved byhighly redundant metal uptake systems, which have only m<strong>in</strong>imal cationselectitivy and are <strong>in</strong> comb<strong>in</strong>ation with metal efflux systems that “worrylater” about surplus cations.[1]Kirsten et al 2011 J Bacteriol 193(18): 4652-63SSV008Accept your fate? Defence strategies of yeast and filamentousfungi aga<strong>in</strong>st the chit<strong>in</strong> synthase <strong>in</strong>hibitor AFPJ.-P. Ouedraogo*, S. Hagen, V. MeyerBerl<strong>in</strong> University of Technology, Applied and Molecular Microbiology,Berl<strong>in</strong>, GermanyThe emergence and spread of pathogenic bacteria and fungi that areresistant to virtually all available antimicrobials represents a seriouschallenge for medic<strong>in</strong>e and agriculture and has stepped up efforts todevelop new antimicrobials. The use of smarter antibiotics, alsocalled“dirty drugs”affect<strong>in</strong>g multiple cellular targets is one discussedstrategy to prevent the development of resistance mechanisms. Of special<strong>in</strong>terest is the exploitation of antimicrobial peptides (AMPs), which arenatural products of pro- and eukaryotic organisms and function as defensemolecules to combat nutrient competitors, colonizers or <strong>in</strong>vaders. Theactivities of signal<strong>in</strong>g pathways are critical for fungi to survive antifungalattack and to ma<strong>in</strong>ta<strong>in</strong> cell <strong>in</strong>tegrity.However, little is known about howfungi respond to antifungals, particularly if these <strong>in</strong>teract with multiplecellular targets.The antifungal prote<strong>in</strong> AFP is a very potent <strong>in</strong>hibitor of chit<strong>in</strong> synthesisand membrane <strong>in</strong>tegrity <strong>in</strong> filamentous fungi and has so far not beenreported to <strong>in</strong>terfere with the viability of yeast stra<strong>in</strong>s. With the hypothesisthat the susceptibility of fungi toward AFP is not merely dependent on thepresence of an AFP-specific target at the cell surface but relies also on thecell’s capacity to counteract AFP, we used a genetic approach to decipherdefense strategies of the naturally AFP-resistant stra<strong>in</strong> Saccharomycescerevisiae.The screen<strong>in</strong>g of selected stra<strong>in</strong>s from the yeast genomicdeletion collection for AFP-sensitive phenotypes revealed that a concertedaction of four signall<strong>in</strong>g pathways is likely to safeguard S. cerevisiaeaga<strong>in</strong>st AFP. Our studies uncovered that the yeast cell wall gets fortifiedwith chit<strong>in</strong> to defend aga<strong>in</strong>st AFP and that this response is largelydependent on calcium/Crz1p signal<strong>in</strong>g. Most importantly, we observedthat stimulation of chit<strong>in</strong> synthesis is characteristic for AFP-resistant fungibut not for AFP-sensitive fungi, suggest<strong>in</strong>g that this response is asuccessful strategy to protect aga<strong>in</strong>st AFP. We thus propose the adoptionof the damage-response framework of microbial pathogenesis for the<strong>in</strong>teractions of antimicrobial drugs and microorganisms <strong>in</strong> order tocomprehensively understand the outcome of antimicrobial treatments.Ouedraogo JP, Hagen S, Spielvogel A, Engelhardt S, Meyer V (2011) Survival strategies of yeastand filamentous fungi aga<strong>in</strong>st the antifungal prote<strong>in</strong> AFP. J Biol Chem 286(16):13859-68.BIOspektrum | Tagungsband <strong>2012</strong>


228SSV009Mathematical modell<strong>in</strong>g of cooperation and cheat<strong>in</strong>g <strong>in</strong>survival strategies of microorganismsS. SchusterUniversity of Jena, Dept. of Bio<strong>in</strong>formatics, Jena, GermanyMicroorganisms are often eng<strong>in</strong>eered to produce a extracellular enzymes,for example, for produc<strong>in</strong>g renewable fuels and <strong>in</strong> biodegradation ofxenobiotics. Productivity is often reduced by "cheater" mutants, which aredeficient <strong>in</strong> exoenzyme production and benefitt<strong>in</strong>g from the productprovided by the "cooperat<strong>in</strong>g" cells. The <strong>in</strong>terplay between cooperationand cheat<strong>in</strong>g can be described theoretically by game theory [1,2]. Wepresent a game-theoretical model to analyze population structure andexoenzyme productivity [3]. Three dist<strong>in</strong>ct regimes are predicted: whenthe metabolic effort for exoenzyme production and secretion is low, allcells cooperate; at <strong>in</strong>termediate metabolic costs, cooperators and cheaterscoexist, while at high costs, all cells use the cheat<strong>in</strong>g strategy [2-4]. Theseregimes correspond to the harmony game, snowdrift game, and Prisoner’sDilemma, respectively. Thus, microbial stra<strong>in</strong>s eng<strong>in</strong>eered for exoenzymeproduction will not normally be outcompeted by cheater mutants.Moreover, our model provides an estimate of the cell density maximiz<strong>in</strong>gexoenzyme production [3].Another example of different survival strategies that can be modelled bygame theory concerns the polymorphic fungus Candida albicans. Twostrategies are available for each pathogenic yeast cell once be<strong>in</strong>gphagocytosed: avoid<strong>in</strong>g lysis transiently (called silenc<strong>in</strong>g here) or form<strong>in</strong>ghyphae and escap<strong>in</strong>g (called pierc<strong>in</strong>g). Two different outcomes can bederived from our model: when the difference of the costs of the twostrategies is low, all fungal cells <strong>in</strong>side a macrophage will play the pierc<strong>in</strong>gstrategy, while <strong>in</strong> the high-cost case, pierc<strong>in</strong>g and silenc<strong>in</strong>g cellscancoexist [5]. Further, the role of theSAPgene family encod<strong>in</strong>g secretedprote<strong>in</strong>ases and the Sap prote<strong>in</strong>s is <strong>in</strong>vestigated and is put <strong>in</strong> relation to thecosts of the strategies. Our results are <strong>in</strong> agreement with wet-lab resultspresented by other groups and the model parameters can be estimated fromexperimental data.1. T. Pfeiffer, S. Schuster. Trends Biochem.Sci. 30 (2005) 20.2. E. Rupp<strong>in</strong> et al. Curr.Op<strong>in</strong>. Biotechnol. 21 (2010) 502-510.3. S. Schuster et al. Biotechnol. J. 5 (2010) 751-758.4. Y. Elhanati et al. Theor. Popul. Biol. 80 (2011) 49-63.5. S. Hummert et al. J. theor. Biol. 264 (2010) 312-318SSV010Staphylococcus aureus persister cells tolerant to bactericidalantibioticsR. Bertram*, K. Lewis, S. Lechner1 Universität Tüb<strong>in</strong>gen, Lehrbereich Mikrobielle Genetik, Tüb<strong>in</strong>gen, Germany2 Northeastern University, Antimicrobial Discovery Center, Boston, UnitedStatesBacterial cultures conta<strong>in</strong> a subpopulation of persister cells, non- or slowgrow<strong>in</strong>g reversible phenotypic variants of the wild type, tolerant tobactericidal antibiotics. To establish parameters for selection ofStaphylococcus aureus persisters, we monitored CFU counts ofplanktonically grown cells treated with a number of antibiotics over time.Stra<strong>in</strong>s SA113, HG001, HG002, and HG003 and small colony variants(SCVs) hemB and menD were challenged by the drugs added at differentlogs of MIC <strong>in</strong> exponential- or stationary growth phase. Generally,antibiotic tolerance was elevated <strong>in</strong> SCV stra<strong>in</strong>s compared to normallygrow<strong>in</strong>g cells and <strong>in</strong> stationary vs. exponential growth phase, but biphasickill<strong>in</strong>g k<strong>in</strong>etics, typical for persister cell selection, were observed <strong>in</strong> bothtypes of cultures. Treatment of stra<strong>in</strong>s HG001-HG003 <strong>in</strong> exponential phasewith 10-fold the MIC of tobramyc<strong>in</strong> resulted <strong>in</strong> the selection for bothpersisters and phenotypically stable SCVs. Trajectories of different kill<strong>in</strong>gcurves <strong>in</strong>dicated physiological heterogeneity of fitness with<strong>in</strong> a pool ofpersisters. 100-fold MIC of daptomyc<strong>in</strong> added to stationary phase SA113cells rapidly selected for very robust persisters. Although cells pretreatedwith an antibiotic exhibited elevated tolerance upon immediate reexposureto the same drug, the persister state was not vertically transmitted. A shiftof persisters to non-selective media evoked resuscitation and resumption ofgrowth after about three hours. Our data provide <strong>in</strong>sights <strong>in</strong>to persisterdynamics and reveal important roles of growth phase, stra<strong>in</strong> backgroundand genotype on persister levels of S. aureus.SSV011Sodium hypochlorite stimulates c-di-GMP synthesis andbiofilm formation <strong>in</strong> Pseudomonas aerug<strong>in</strong>osaN. Strempel*, M. Nusser, G. Brenner-Weiß, J. OverhageKarlsruhe Institute of Technology (KIT), Institute of Functional Interfaces,Eggenste<strong>in</strong>-Leopoldshafen, GermanyThe Gram-negative bacterium Pseudomonas aerug<strong>in</strong>osa plays animportant role as an opportunistic pathogen <strong>in</strong> <strong>in</strong>fectious diseases. Due tothe size and complexity of its genome as well as the sophisticated andcoord<strong>in</strong>ated regulation of gene expression mediated by a large number ofregulatory elements, P. aerug<strong>in</strong>osa is able to adapt to variousenvironments. One important strategy <strong>in</strong> order to survive stressfulenvironmental conditions e.g. growth <strong>in</strong> the presence of antimicrobialagents such as antibiotics or biocides is the formation of resistant biofilms.To <strong>in</strong>vestigate the stress response of P. aerug<strong>in</strong>osa PAO1 to sodiumhypochlorite, a dis<strong>in</strong>fectant which is commonly used <strong>in</strong> hospitals anddr<strong>in</strong>k<strong>in</strong>g water treatment, we analyzed bacterial growth and biofilmformation <strong>in</strong> the presence of free chlor<strong>in</strong>e at different concentrations. Instatic biofilm assays, free chlor<strong>in</strong>e at sub<strong>in</strong>hibitory concentrations led to atwo-fold <strong>in</strong>crease <strong>in</strong> attachment after two hours of <strong>in</strong>cubation compared tothe non-treated controls. The altered biofilm structure caused by sodiumhypochlorite treatment was further studied by fluorescence microscopy.Microarray analyses of chlor<strong>in</strong>e treated cells compared to untreatedcontrols revealed a significant upregulation <strong>in</strong> the expression of differentgenes which are known to be <strong>in</strong>volved <strong>in</strong> attachment and biofilmformation, e.g. genes implicated <strong>in</strong> type IV-pili, flagella and alg<strong>in</strong>atebiosynthesis and function. Moreover we found an enhanced expression ofORF PA3177 which codes for a putative di-guanylate-cyclase. Diguanylate-cyclasescatalyze the synthesis of the second messenger c-di-GMP which is an important factor <strong>in</strong> biofilm formation and persistence <strong>in</strong>P. aerug<strong>in</strong>osa. Subsequent LC-MS/MS analyses of bacterial lysatesshowed <strong>in</strong>deed a more than 5-fold <strong>in</strong>crease <strong>in</strong> c-di-GMP levels <strong>in</strong> responseto chlor<strong>in</strong>e treatment suggest<strong>in</strong>g a key role of this second messenger <strong>in</strong>chlor<strong>in</strong>e <strong>in</strong>duced biofilm formation. The function of PA3177 <strong>in</strong> the stressresponse of P. aerug<strong>in</strong>osa towards biocides was further <strong>in</strong>vestigated <strong>in</strong>more detail.SSV012SiaABCD, a signal<strong>in</strong>g pathway controll<strong>in</strong>g autoaggregation <strong>in</strong>Pseudomonas aerug<strong>in</strong>osaB. Colley 1 , S. Kjelleberg 1 , J. Klebensberger* 21 Centre for Mar<strong>in</strong>e Bio-Innovation/University of New South Wales, Schoolof Biotechnology and Biomolecular Sciences, Sydney, Australia2 Institute of Technical Biochemistry/Universitaet Stuttgart, Chemistry,Stuttgart, GermanyThe formation of biofilms and cell aggregates is environmentallyresponsive, often proceed<strong>in</strong>g <strong>in</strong> a sequential manner <strong>in</strong>volv<strong>in</strong>g complexregulatory mechanisms. The lack of knowledge regard<strong>in</strong>g environmentalstimuli and the apparent redundancy of pathways lead<strong>in</strong>g to biofilmformation provide challenges for study<strong>in</strong>g its genetic regulation.Previously, we showed that Pseudomonas aerug<strong>in</strong>osa forms freely float<strong>in</strong>gaggregates as an adaptive survival strategy <strong>in</strong> the presence of the toxicsurfactant sodium dodecyl-sulfate(SDS). While aggregate formation wastriggered by SDS exposure, it was not a prerequisite for survival undergrowth permissive conditions, mak<strong>in</strong>g this a suitable model system toanalyze the molecular mechanisms <strong>in</strong>volved <strong>in</strong> aggregate formation. Wefound that expression of the adhesive fimbriae CupA and the extracellularpolysaccharide Psl is essential for autoaggregation <strong>in</strong> response to SDSstress and that this phenotype is regulated by the novel signal<strong>in</strong>g pathwaySiaABCD.We now report that the gene PA4623, located immediately upstream of thepreviously described two-partner secretion system encoded by cdrAB, isessential for SDS-<strong>in</strong>duced aggregate formation. This is <strong>in</strong> agreement withprevious microarray data show<strong>in</strong>g <strong>in</strong>creased expression of PA4623 andcdrAB, exclusively for aggregated cells dur<strong>in</strong>g SDS exposure. To further<strong>in</strong>vestigate the molecular mechanisms of SDS-<strong>in</strong>duced aggregation, weperformed a systematic mutational analysis of the siaABCD operon andcharacterized the correspond<strong>in</strong>g mutants. While a siaB deletion promotedautoaggregation, a non-functional siaC allele completely abolishedaggregation dur<strong>in</strong>g SDS exposure. Interest<strong>in</strong>gly, stra<strong>in</strong>s overexpress<strong>in</strong>gsiaB generally exhibited a non-aggregative phenotype, <strong>in</strong>dicat<strong>in</strong>g animportant regulatory function of the SiaB prote<strong>in</strong>. Further, secondarymutation analysis suggest that the SiaABCD pathway may operate via a bifunctionalmechanism, <strong>in</strong>volv<strong>in</strong>g c-di-GMP signal<strong>in</strong>g and the regulation ofmRNA stability.SSP001Microbial species show adaption for survival <strong>in</strong> adversemedium by <strong>in</strong>duc<strong>in</strong>g changes to glycosidic products before anddur<strong>in</strong>g the sporulation stage.S. LawrenceUniversity of Cambridge and Sci-Tech(South), Earth Sciences andBiochemistry Research, Cambridge, United K<strong>in</strong>gdomMost microbial species have a life cycle pathway that <strong>in</strong>volves cont<strong>in</strong>uousadaption of the nutrients <strong>in</strong> the surround<strong>in</strong>g media.This depends on theimmediate needs of the organism at any particular <strong>in</strong>stant <strong>in</strong> the life cycleprocess.Many microbial species use the method of chang<strong>in</strong>g glycosidicand polysaccharidic related products both <strong>in</strong>side the organism and <strong>in</strong> thesurround<strong>in</strong>g milieu to their needs at any particular po<strong>in</strong>t <strong>in</strong> thepathway.These changes are made by vary<strong>in</strong>g the structure of glycosidicproducts and the polymeric length of products accord<strong>in</strong>g to the basicBIOspektrum | Tagungsband <strong>2012</strong>


229chemical constituents are avaliable.This adaption cont<strong>in</strong>ues to the stage ofsporulation where the structure and size of the sporulat<strong>in</strong>g entity is vital tothe next stage <strong>in</strong> the life cycle pathway.Two species that show thisadaption well are xanthomonas and clostridia <strong>in</strong> the stra<strong>in</strong>s xanthomonascampestris pv campestris and clostridia fels<strong>in</strong>eum pv fels<strong>in</strong>eum.It can beseen both <strong>in</strong> structural analysis of the pathway products of these twoexamples by various methods how this adaption occurs.This process ofadaption gives a deep <strong>in</strong>sight <strong>in</strong>to the microbial organisms selfmodification with<strong>in</strong> the life cycle pathway.SSP002Membrane-active antimicrobial peptides can trigger thetransition of bacteria <strong>in</strong>to a dormant stageM. Berditsch* 1 , T. Vladimirova 1 , T. Jäger 1 , P. Wadhwani 2 , A.S. Ulrich 1,21 Karlsruhe Institute of Technology, Institute of Organic Chemistry/Chairof Biochemistry, Karlsruhe, Germany2 Karlsruhe Institute of Technology, Institute of Biological Interfaces (IBG-2), Karlsruhe, GermanyQuestion: One of the survival strategies of bacterial populations is theproduction of a small number of dormant persister cells that grow <strong>in</strong> aform of small-colony variants (SCVs) [1]. These are tolerant to antibioticsand represent an attached bacterial growth <strong>in</strong> microbiofilm mode. Thetransition <strong>in</strong>to the dormant stage occurs dur<strong>in</strong>g the SOS response and ismodulated <strong>in</strong> E.coli by the membrane associated TisB peptide, whichdecreases proton motive force and ATP biosynthesis [2]. We observed thatantimicrobial peptides (AMPs), which <strong>in</strong>teract with the bacterial plasmamembrane and perturb its <strong>in</strong>tegrity [3], can have a similar effect as TisBand lead to the generation of undesirable persister cells. S<strong>in</strong>ce these cellsreduce their metabolic activity, we suggest that cell respiration may serveas a possible <strong>in</strong>dicator of the transition of cells <strong>in</strong>to the dormant stage.Method: We developed a microdilution alamarBlue respiration assayfor monitor<strong>in</strong>g the Bacterial Respiration (BR) as a cellular response tounfavourable conditions. The respiration activity of four bacterial stra<strong>in</strong>swas measured as a difference <strong>in</strong> the absorption between reduced andoxidized forms of the redox <strong>in</strong>dicator alamarBlue dur<strong>in</strong>g 3 hours after<strong>in</strong>oculation. The microtiter plates were then <strong>in</strong>cubated for 24 hours at 37°Cto evaluate the ability of cells to grow.Results: By monitor<strong>in</strong>g of BR, we observed three different k<strong>in</strong>ds ofrespiration activity with respect to bacterial growth: activation, correlation,or shutdown, - depend<strong>in</strong>g on the comb<strong>in</strong>ation of bacteria and AMP.Shutdown of <strong>in</strong>itial BR at sub-MIC and subsequent growth at higherpeptide concentrations was observed for S.aureus upon exposure to MAP,PGLa, Maga<strong>in</strong><strong>in</strong> and a comb<strong>in</strong>ation of PGLa/Maga<strong>in</strong><strong>in</strong>. In those cases,s<strong>in</strong>gle cells of S.aureus were found to survive and form SCVs, which werevisible by magnification and were detectable via dye reduction.Conclusion: These f<strong>in</strong>d<strong>in</strong>gs suggest that exposure of S.aureus to thesemembrane-active AMPs <strong>in</strong>duces a transition of s<strong>in</strong>gle cells <strong>in</strong>to thedormant stage, which can enhance risk of persistent <strong>in</strong>fections.1. R. S<strong>in</strong>gh, et al., 2009.J Med Microbiol., 58(8): 1067-73.2. T. Doerr et al., 2010.PLoS Biology, 8(2): 1-8.3. M. Hartmann et al., 2010.Antimicrob Agents Chemother., 54(8): 3132-3142.SSP003About a mechanism of stress dependent enzyme activityregulation via <strong>in</strong>teraction with nucleic acids - salt dependentGG-synthesis <strong>in</strong> Synechocystis sp. PCC 6803B. Roenneke*, K. Mar<strong>in</strong>Universität zu Köln, Institut für Biochemie, Köln, GermanyUnder osmotic stress the synthesis and accumulation of the compatiblesolute glucosylglycerol <strong>in</strong> the cyanobacterium Synechocystis sp. PCC 6803is facilitated by the activation and f<strong>in</strong>e tun<strong>in</strong>g of the key enzyme of thepathway the Glucosylglycerole phosphate synthase (GgpS). At low saltconcentrations GgpS is <strong>in</strong>hibited via an electrostatic <strong>in</strong>teraction withnucleic acids (Novak et. al 2010). Upon a sudden <strong>in</strong>crease of the saltconcentration GgpS is liberated and present <strong>in</strong> its active form. Dur<strong>in</strong>g saltacclimation the largest fraction of GgpS is rebound by nucleic acids whilethe rema<strong>in</strong><strong>in</strong>g active molecules ensure the ongo<strong>in</strong>g GG-Synthesisaccord<strong>in</strong>g to the external salt concentration and growth rate.Biot<strong>in</strong>ylation assays revealed the possible b<strong>in</strong>d<strong>in</strong>g site for nucleic acids an-helix near the active centre of GgpS. Four positively charged am<strong>in</strong>oacids might contribute to the <strong>in</strong>teraction, s<strong>in</strong>ce an exchanged of theseam<strong>in</strong>o acids aga<strong>in</strong>st alan<strong>in</strong>e caused a reduced aff<strong>in</strong>ity for the b<strong>in</strong>d<strong>in</strong>g andhad an impact on enzyme activity. We found that b<strong>in</strong>d<strong>in</strong>g to nucleic acidsleads to a conformational change of the prote<strong>in</strong> and characterised theb<strong>in</strong>d<strong>in</strong>g and <strong>in</strong>hibition k<strong>in</strong>etics.Additionally, we compared regulatory features of GgpS enzymes orsimilar trehalose phosphate synthases (TPS) orig<strong>in</strong>at<strong>in</strong>g from organismsadapted to different environments with respect to fluctuations of the saltconcentration. We found prote<strong>in</strong>s that do or do not b<strong>in</strong>d to nucleic acidsand are or are not <strong>in</strong>hibited accord<strong>in</strong>gly. The structural differences and theimpact of the regulatory circuit of osmolyte synthesis will be discussed.SSP004MscCG of Corynebacterium glutamicum - a mechanosensitivechannel with dual function <strong>in</strong> osmotic stress response andglutamate productionM. Becker*, K. Börngen, R. KrämerUniversität zu Köln, Institut für Biochemie, Köln, GermanyCorynebacterium glutamicum is a gram-positive, biot<strong>in</strong> auxotroph andapathogenic soil bacterium with exceptional importance for the <strong>in</strong>dustrialproduction of various am<strong>in</strong>o acids, especially L-glutamate. Themechanism of glutamate export is not fully understood so far, although C.glutamicum has been used for the <strong>in</strong>dustrial production of am<strong>in</strong>o acids fordecades. Glutamate excretion can be <strong>in</strong>duced by several differenttreatments, all alter<strong>in</strong>g the cell envelope. Recently, evidence was providedthat the small MS channel prote<strong>in</strong> MscCG of C. glutamicum is l<strong>in</strong>ked toglutamate excretion under glutamate production conditions. MscCGbelongs to the MscS-type family of mechanosensitive channels,function<strong>in</strong>g as emergency valves upon an osmotic downshift. The prote<strong>in</strong>is a close relative of the mechanosensitive channel MscS from E. coli (286AA) concern<strong>in</strong>g its N-term<strong>in</strong>al and pore region. In addition, MscCGcarries a long C-term<strong>in</strong>al doma<strong>in</strong> of 247 am<strong>in</strong>o acids <strong>in</strong>clud<strong>in</strong>g a fourthtransmembrane doma<strong>in</strong>. The electrophysiological analysis of MscCGshowed the typical pressure dependent gat<strong>in</strong>g behavior of a stretchactivatedchannel with a current/voltage dependence <strong>in</strong>dicat<strong>in</strong>g a stronglyrectify<strong>in</strong>g behavior. To unravel the dual function of MscCG as amechanosensitive channel and as a glutamate exporter, the wellcharacterized E. coli homolog of MscCG, MscS, was used and expressed<strong>in</strong> a mscCG stra<strong>in</strong>. We also generated selected C-term<strong>in</strong>al truncations ofMscCG <strong>in</strong> C. glutamicum, ga<strong>in</strong>-of-function and loss-of-function constructsof both E. coli MscS and C. glutamicum MscCG, as well as fusionconstructs of these two prote<strong>in</strong>s, and we have <strong>in</strong>vestigated the properties ofthese constructs with respect to mechanosensitive efflux, electricalconductance, gat<strong>in</strong>g properties, as well as glutamate excretion. Variousrecomb<strong>in</strong>ant forms of MscCG were shown to be closely similar withrespect to conductance, but we found significantly differences concern<strong>in</strong>gglutamate excretion. The results of these experiments argue for MscCGbe<strong>in</strong>g both a relevant mechanosensitive channel <strong>in</strong> C. glutamicum uponhypoosmotic stress as well as the major efflux pathway for glutamateexcretion <strong>in</strong> response to particular physiologic conditions. Moreover, theresults obta<strong>in</strong>ed <strong>in</strong>dicate the C-term<strong>in</strong>al doma<strong>in</strong> of MscCG be<strong>in</strong>g ofsignificant impact for function and/or regulation of MscCG activity.SSP005Insights <strong>in</strong>to biofilm formation by <strong>in</strong>itial proteome analysisof a novel Antarctic haloarchaeal isolateS. Fröls* 1 , G. Losensky 1 , M. Dyall-Smith 2 , F. Pfeifer 11 TU Darmstadt, Institut für Mikrobiologie und Genetik , Darmstadt, Germany2 Charles Sturt University, School of Biomedical Sciences, Wagga Wagga,AustraliaThe formation of biofilms <strong>in</strong>itiated by the adhesion to surfaces turns out tobe the most dom<strong>in</strong>ant mode of life of microorganisms <strong>in</strong> nature. Thescreen<strong>in</strong>g and characterisation of various haloarchaea stra<strong>in</strong>s and isolatesdemonstrated that the ability for adhesion is widely distributed with<strong>in</strong> thegenera Halobacterium sal<strong>in</strong>arumand Haloferax. Further characterisationshowed that the adhesive stra<strong>in</strong>s were able to form biofilms. Based on thisobservation we tested seven novel isolates from water samples of ahypersal<strong>in</strong>e Antarctic deep lake by a fluorescence-based assay foradhesion. In comparison to the other haloarchaea the novel Antarcticisolate DL24 showed the highest adhesion signal and was chosen for moredetailed analyses. Isolate DL24 is a rod shaped, motile, extremelyhalophilic archaeon, represent<strong>in</strong>g a new genus of the Halobacteriaceae.Thecells are able to adhere on glass and plastic surfaces form<strong>in</strong>g biofilms ofdense packed multi cell layers with tower<strong>in</strong>g macrocolonies up to 50 m <strong>in</strong>height. Extra polymeric substances (EPS) were composed of free nucleicacids and glycoconjugates.To identify factors <strong>in</strong>volved <strong>in</strong> adhesion a proteome analyses of wholeprote<strong>in</strong> fractions were carried out by mass spectrometry. By comparativeanalysis 220 prote<strong>in</strong>s were exclusively identified <strong>in</strong> the prote<strong>in</strong> fraction ofadherent cells. Among these were transcriptional regulators, differentfactors of two-component systems, a glycosyltransferase, a surfaceglycoprote<strong>in</strong> as well as prote<strong>in</strong>s required for a functional type IV pilisystem. The largest group of prote<strong>in</strong>s corresponded to transport systemssuch as sugar, ion and multidrug transporters. In addition prote<strong>in</strong>sdemonstrat<strong>in</strong>g a transition from aerob to anaerobic energy conversion werefound. This <strong>in</strong>itial proteome analyses showed dist<strong>in</strong>ct differences betweenthe adherent and planktonic lifestyle belong to environmental response,transcriptional differentiation, adhesion and biofilm maturation.BIOspektrum | Tagungsband <strong>2012</strong>


230SSP006Initial proteome analysis of a novel Antarctic haloarchaeal biofilmG. Losensky* 1 , M. Dyall-Smith 2 , F. Pfeifer 1 , S. Fröls 11 Technische Universität Darmstadt, Institut für Mikrobiologie und Genetik,Darmstadt, Germany2 Charles Sturt University, School of Biomedical Sciences, Wagga Wagga,AustraliaAlthough biofilm formation is the predom<strong>in</strong>ant modus vivendi ofmicroorganisms <strong>in</strong> nature it is only poorly characterized <strong>in</strong> terms ofarchaea. It was recently shown that several haloarchaea are able to adhereto surfaces and form biofilms. S<strong>in</strong>ce the underly<strong>in</strong>g mechanisms are stillunknown we used a proteomic approach for an <strong>in</strong>itial <strong>in</strong>vestigation offactors <strong>in</strong>volved <strong>in</strong> biofilm formation of the novel Antarctic isolate t-ADLDL24 which is able to form densely packed multilayer biofilms.Static liquid cultures of t-ADL DL24 were cultivated for 28 days <strong>in</strong> petridishes before planktonic and adherent cells were harvested separately.Cytoplasmic and membrane fractions were separated by sedimentation.Comparative prote<strong>in</strong> analysis us<strong>in</strong>g SDS-PAGE yielded differential prote<strong>in</strong>patterns for planktonic and adherent cells. MS-analyses were performed toidentify the prote<strong>in</strong> sets of both phenotypes. Altogether 801 differentprote<strong>in</strong>s were identified <strong>in</strong> cytoplasmic and membrane fractions ofadherent cells, correspond<strong>in</strong>g to 23 % of the predicted ORFs, whereas atotal of 678 prote<strong>in</strong>s were detected <strong>in</strong> planktonic cells (20 %). While anoverlap of 573 prote<strong>in</strong>s was found <strong>in</strong> both phenotypes, 228 Prote<strong>in</strong>s weresolely detected <strong>in</strong> adherent cells and 105 prote<strong>in</strong>s were associated withplanktonic lifestyle. Categorisation of the phenotype specific prote<strong>in</strong>saccord<strong>in</strong>g to their cluster of orthologous groups of prote<strong>in</strong>s (COG)provided first <strong>in</strong>sights <strong>in</strong>to the biological processes contribut<strong>in</strong>g to biofilmformation of t-ADL DL24. Evidence for an adjustment of energymetabolism <strong>in</strong> biofilm cells was found, especially prote<strong>in</strong>s <strong>in</strong>dicat<strong>in</strong>g achangeover from aerobic to anaerobic energy conversion and multipletransport prote<strong>in</strong>s. Concern<strong>in</strong>g <strong>in</strong>formation process<strong>in</strong>g a couple oftranscriptional activators as well as components of signal transductionsystems and stress responses were exclusively detected <strong>in</strong> adherent cells.Furthermore a number of biofilm specific prote<strong>in</strong>s related to cellularprocesses like synthesis of the cell envelope, type IV pili and biofilmmatrix were identified.The results of this first proteome analysis demonstrate that the biofilmlifestyle goes along with fundamental cellular rearrangements on theprote<strong>in</strong> level affect<strong>in</strong>g diverse biological processes <strong>in</strong> haloarchaea.SSP007The role of myo-<strong>in</strong>ositol-1-phosphate synthase <strong>in</strong> theadaptation of the thermoalkaliphile Caldalkalibacillusthermarum to supraoptimal temperatureF. Kalamorz* 1 , A. Carne 2 , G.M. Cook 31 Institute of Biology / Microbiology, Division of Molecular Microbiology,Halle (Saale), Germany2 Otago School of Medical Sciences, Department of Biochemistry, Duned<strong>in</strong>,NZ, New Zealand3 Otago School of Medical Sciences, Department of Microbiology andImmunology, Duned<strong>in</strong>, NZ, New ZealandMicroorganisms encounter rapid and dramatic changes <strong>in</strong> theirenvironment on a regular basis. One of the most likely and threaten<strong>in</strong>g ofthese changes is an <strong>in</strong>crease <strong>in</strong> temperature, impair<strong>in</strong>g prote<strong>in</strong> function,membrane and cell envelope <strong>in</strong>tegrity and the performance of chemicalprocesses. Bacteria have evolved several systems to counteract transientand persist<strong>in</strong>g <strong>in</strong>creases <strong>in</strong> temperatures, universally called the heat shockresponse for short term, transient mechanisms, and heat adaptation forprolonged survival at supraoptimal temperatures. We studied theadaptation of the thermoalkaliphile Caldalkalibacillus thermarum tosupraoptimal temperature. Cultures of C. thermarum <strong>in</strong>cuabted at theoptimal growth temperature of 60C and then exposed to the supraoptimaltemperature of 70C showed a significant <strong>in</strong>crease <strong>in</strong> the expression ofmetabolic enzymes, <strong>in</strong>clud<strong>in</strong>g a 256-fold <strong>in</strong>crease <strong>in</strong> myo-<strong>in</strong>ositol-1-phosphate synthase (mccI) prote<strong>in</strong> levels. This enzyme catalyzes theconversion of glucose-6-phosphate to myo-<strong>in</strong>ositol-1-phosphate and is<strong>in</strong>volved <strong>in</strong> the synthesis of the thermoprotectant di-myo-<strong>in</strong>ositol-1,3’-phosphate (DIP). The gene encod<strong>in</strong>g myo-<strong>in</strong>ositol-1-phosphate synthase <strong>in</strong>C. thermarum is part of the mccXIC operon encod<strong>in</strong>g a putative CDPalcoholphosphatidyltransferase (mccC), another enzyme of the DIPsynthesis pathway.A degenerated CIRCE element overlaps the start codon of mccX, and thek<strong>in</strong>etics of mccI <strong>in</strong>duction after exposure to 70C <strong>in</strong>dicate that this operonis regulated by HrcA, the negative regulator of class I heat shock response<strong>in</strong> Gram-positive bacteria.Further, expression of enzymes <strong>in</strong>volved <strong>in</strong> the degradation of myo<strong>in</strong>ositol-1-phosphateto D-glyceraldehyde 3-phosphate and acetyl-coA wasfound to be upregulated at 70C. At the same time, the activity ofphosphofructok<strong>in</strong>ase Pfk, an enzyme of the upper part of glycolysis,showed a 20-fold decrease. This suggests that exposure of C. thermarum tosupraoptimal temperature leads to a re-rout<strong>in</strong>g of glucose-6-phosphatefrom glycolysis <strong>in</strong>to <strong>in</strong>ositol synthesis and degradation.SSP008S-bacillithiolation protects aga<strong>in</strong>st hypochlorite stress <strong>in</strong> Bacillussubtilis as revealed by transcriptomics and redox proteomicsB. Khanh Chi* 1 , K. Gronau 1 , U. Mäder 2 , B. Hessl<strong>in</strong>g 1 , D. Becher 1 ,H. Antelmann 11 University of Greifswald, Institute for Microbiology, Greifswald, Germany2 University of Greifswald, Interfaculty Institute for Genetics and FunctionalGenomics, Greifswald, GermanyProte<strong>in</strong> S-thiolation is a post-translational thiol-modification that controlsredox-sens<strong>in</strong>g transcription factors and protects active site Cys residues ofessential enzymes aga<strong>in</strong>st irreversible overoxidation to sulfonic acids. InBacillus subtilis the MarR-type repressor OhrR was shown to senseorganic hydroperoxides via formation of mixed disulfides with the redoxbuffer bacillithiol (Cys-GlcN-Malate, BSH), termed as S-bacillithiolation[1]. We have studied changes <strong>in</strong> the transcriptome and redox proteomecaused by the strong oxidant hypochloric acid <strong>in</strong> B. subtilis [2]. Theexpression profile of NaOCl stress is <strong>in</strong>dicative of disulfide stress asshown by the <strong>in</strong>duction of the thiol- and oxidative stress-specific Spx,CtsR and PerR regulons. Thiol redox proteomics identified only fewcytoplasmic prote<strong>in</strong>s with reversible thiol-oxidations <strong>in</strong> response to NaOClstress that <strong>in</strong>clude GapA and MetE. Shotgun-LC-MS/MS analysesrevealed that GapA, Spx and PerR are oxidized to <strong>in</strong>tramoleculardisulfides by NaOCl stress. Furthermore, we identified six S-bacillithiolated prote<strong>in</strong>s <strong>in</strong> NaOCl-treated cells, <strong>in</strong>clud<strong>in</strong>g the OhrRrepressor, two methion<strong>in</strong>e synthases MetE and YxjG, the <strong>in</strong>organicpyrophosphatase PpaC, the 3-D-phosphoglycerate dehydrogenase SerAand the putative bacilliredox<strong>in</strong> YphP. S-bacillithiolation of the OhrRrepressor leads to up-regulation of the OhrA peroxiredox<strong>in</strong> that conferstogether with BSH specific protection aga<strong>in</strong>st NaOCl. S-bacillithiolation ofMetE, YxjG, PpaC and SerA causes hypochlorite-<strong>in</strong>duced methion<strong>in</strong>estarvation as supported by the <strong>in</strong>duction of the S-box regulon. Themechanism of S-glutathionylation of MetE has been described <strong>in</strong>Escherichia coli also lead<strong>in</strong>g to enzyme <strong>in</strong>activation and methion<strong>in</strong>eauxotrophy. In summary, our studies discover an important role of theBSH redox buffer <strong>in</strong> protection aga<strong>in</strong>st hypochloric acid by S-bacillithiolation of the redox-sens<strong>in</strong>g regulator OhrR and of key enzymesof the methion<strong>in</strong>e biosynthesis pathway.[1] Lee, J. W., Soonsanga, S., and Helmann, J. D. (2007) A complex thiolate switch regulatestheBacillus subtilisorganic peroxide sensor OhrR. Proc Natl Acad Sci U S A, 104, 8743-8748.[2] Chi BK, Gronau K, Mäder U, Hessl<strong>in</strong>g B, Becher D, Antelmann H. (2011)S-BacillithiolationProtects Aga<strong>in</strong>st Hypochlorite Stress <strong>in</strong>Bacillus subtilisas Revealed by Transcriptomics and RedoxProteomics. Mol Cell Proteomics 10, M111.009506.SSP009How bacteria take care of their kids: Evidence for controlledand fair distribution of PHB granules to daughter cells <strong>in</strong>Ralstonia eutropha H16D. Pfeiffer*, D. JendrossekInstitut für Mikrobiologie, Universität Stuttgart, Stuttgart, GermanyRalstonia eutropha H16 has become the model organism for study<strong>in</strong>gmetabolism of poly(3-hydroxybutyrate) (PHB), an importantbiodegradable biopolymer that is susta<strong>in</strong>able produced worldwide <strong>in</strong> thescale of 10 5 t/a from renewable resources such as sugars [1].R. eutrophacells usually accumulate about a dozen PHB granules dur<strong>in</strong>g growth athigh C/N-ratios. While biochemistry and molecular biology of PHBaccumulation and PHB biodegradation have been <strong>in</strong>vestigated <strong>in</strong> greatdetail dur<strong>in</strong>g the last two decades only little is known whether and howsubcellular localization of PHB granules is controlled by the bacteria. Weaddressed this question by perform<strong>in</strong>g a two-hybrid approach to screen forprote<strong>in</strong>s with the ability to <strong>in</strong>teract with prote<strong>in</strong>s of the PHB granulesurface [2,3]. Two novel Pha prote<strong>in</strong>s were identified which controlsubcellullar localization of PHB granules and ensure almost equaldistribution of PHB granules to daughter cells after cell division asrevealed by fluorescence microscopy and transmission electronmicroscopy. A revised model for PHB granule formation will be proposed.[1] Re<strong>in</strong>ecke, F., Ste<strong>in</strong>büchel, A. (2009). J. Mol. Microbiol. Biotechnol.16:91-108[2] Pfeiffer D., Jendrossek D. (2011).Microbiology.157:2795-807.[3] Pfeiffer D., Wahl A., Jendrossek D. (2011).Mol Microbiol.82:936-51.SSP010Food Safety: Is there a positive relationship between heatresistance and dehydration stress of <strong>in</strong>fant pathogen Cronobacter?S. Baumann, C. Hallo<strong>in</strong>, C. Heck, J. Rudat*Karlsruhe Institute of Technology (KIT), Chemical and ProcessEng<strong>in</strong>eer<strong>in</strong>g, Karlsruhe, GermanyCronobacter bacteria, formerly classified as Enterobacter sakazakii, havebeen implicated <strong>in</strong> several <strong>in</strong>cidents as the cause of men<strong>in</strong>gitis andenterocolitis with high mortality rates <strong>in</strong> premature <strong>in</strong>fants result<strong>in</strong>g fromBIOspektrum | Tagungsband <strong>2012</strong>


231feed<strong>in</strong>g with contam<strong>in</strong>ated powdered <strong>in</strong>fant formula (PIF) [1]. PIFtherefore is strictly recommended to be “sakazakii-free” which is def<strong>in</strong>edas the absence of any colony form<strong>in</strong>g unit <strong>in</strong> 30 samples of 10g of PIF [2].Recent studies e.g. [3] noticed a cross-resistance of Cronobacter stra<strong>in</strong>spo<strong>in</strong>t<strong>in</strong>g to common regulation mechanisms for cop<strong>in</strong>g with heat and dryresistance which both play a key role <strong>in</strong> the production of PIF.Investigat<strong>in</strong>g these mechanisms, we are go<strong>in</strong>g to develop a modifiedproduction process <strong>in</strong> cooperation with the Food Process Eng<strong>in</strong>eer<strong>in</strong>gsection of our <strong>in</strong>stitute and the Milchwerke “Mittelelbe” GmbH, an<strong>in</strong>dustrial producer of PIF.[1] Friedemann M (2008), Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 51, 664[2] Besse NG, Leclercq A, Maladen V (2006), J AOAC Int 89, 1309[3] Dancer GI, Mah JH, Rhee MS, Hwang IG, Kang DH (2009), J. Appl. Microbiol. 107, 1606SSP011Characterization of Staphylococcus aureus persister cells upondaptomyc<strong>in</strong> treatmentS. Lechner* 1 , W. Eisenreich 2 , I. Maldener 3 , A. Herbig 4 , K. Nieselt 4 , R. Bertram 11 Universität Tüb<strong>in</strong>gen/IMIT, Mikrobielle Genetik, Tüb<strong>in</strong>gen, Germany2 Technische Universität München/Chemie, Biochemie, Garch<strong>in</strong>g, Germany3 Universität Tüb<strong>in</strong>gen/IMIT, Organismische Interaktionen, Tüb<strong>in</strong>gen, Germany4 Universität Tüb<strong>in</strong>gen/ZBIT, Integrative Transkriptomik, Tüb<strong>in</strong>gen, GermanyBacterial cultures conta<strong>in</strong> a subpopulation of dormant cells, persisters.These non-grow<strong>in</strong>g cells are phenotypic variants of the wild type that aretolerant but not resistant to antibiotics. As persistence is a transientphenotype it is <strong>in</strong>herently difficult to study the molecular mechanismsassociated with this k<strong>in</strong>d of bacterial dormancy.Growth phase, stra<strong>in</strong> background, and genotype are critical for theformation of Staphylococcus aureus persister cells. Accord<strong>in</strong>g to ourresults, S. aureus cells <strong>in</strong> stationary growth phase are generally lessvulnerable by antibiotics than exponential cultures presumably due toelevated persister levels. We previously identified parameters for theselection of S. aureus persister cells. Biphasic kill<strong>in</strong>g k<strong>in</strong>etics, highly<strong>in</strong>dicative of persisters, were observed by exponential-phase cells treatedwith 10- and 100-fold MIC of tobramyc<strong>in</strong> and ciprofloxac<strong>in</strong>, respectively.Under stationary growth phase cells challenged with 100-fold MIC ofdaptomyc<strong>in</strong> showed an <strong>in</strong>itial reduction of viable cell counts with<strong>in</strong> thefirst hour (99.98%) followed by a plateau of surviv<strong>in</strong>g cells with a ratherslowly decrease <strong>in</strong> the amount of CFUs. S. aureus SA113 stationary-phasepersisters selected by daptomyc<strong>in</strong> treatment are currently be<strong>in</strong>g analyzedfor alterations <strong>in</strong> transcriptional and metabolic patterns by microarray and13 C isotopologue profil<strong>in</strong>g, and <strong>in</strong> morphology via transmission electronmicroscopy.The new f<strong>in</strong>d<strong>in</strong>gs may aid <strong>in</strong> reveal<strong>in</strong>g persister genes <strong>in</strong> S. aureus as wellas <strong>in</strong> decipher<strong>in</strong>g physiologic and cellular states of S. aureus persisters.SSP012The <strong>in</strong>fluence of supercritical CO 2 on sulphate reduc<strong>in</strong>g andmethanogenic enrichment cultures from hydrocarbon reservoirs<strong>in</strong> GermanyJ. Frerichs* 1,2 , C. Gniese 3 , C. Ostertag-Henn<strong>in</strong>g 1 , M. Krüger 11 Bundesanstalt für Geowissenschaften und Rohstoffe, Geochemie derRohstoffe, Hannover, Germany2 BGR-Hannover Geomikrobiologie, Germany3 TU Bergakademie Freiberg, Institut für Biowissenschaften, Freiberg, GermanyLarge-scale solutions are needed to reduce the emissions of greenhousegases such as CO 2 or CH 4 <strong>in</strong> consequence of their global warm<strong>in</strong>gpotential. Carbon capture and storage (CCS) offers one option for reduc<strong>in</strong>gsuch emissions with the storage of CO 2 with<strong>in</strong> depleted gas and oil fields.Our study is focus<strong>in</strong>g on the direct <strong>in</strong>fluence of high CO 2 concentrationson the autochthonous microbial population and environmental parametersat such sites.The reservoir with<strong>in</strong> the Schneeren-Husum formation was <strong>in</strong>vestigated forits chemical properties, activity profile and microbial communitycomposition via T-RFLP, clone libaries and quantitative-PCR (qPCR).Even with<strong>in</strong> one reservoir differences between two well heads wereobserved <strong>in</strong> the <strong>in</strong>ducible activity after substrate addition. Also qPCRanalysis showed two dist<strong>in</strong>ct communities with vary<strong>in</strong>g copy numbers ofseveral bacterial and archaeal genes (16S rRNA, dsrA, mcrA etc.).Pyrosequenc<strong>in</strong>g data gave <strong>in</strong>sights <strong>in</strong>to the reservoir community <strong>in</strong> a directcomparison of produced well head fluids and deep reservoir samples(down hole sampl<strong>in</strong>g).High CO 2 had a negative effect on methane and sulphide production <strong>in</strong>experiments conducted with amended orig<strong>in</strong>al fluids and enrichmentcultures. In a second step orig<strong>in</strong>al fluids (amended with substrate) from thereservoir were <strong>in</strong>cubated for several weeks under near <strong>in</strong> situ temperature(~50°C) with supercritical CO 2 (100 bar). In this experiment the viabilityof microorganisms together with community changes were <strong>in</strong>vestigatedus<strong>in</strong>g quantitative PCR, DGGE and CARD-FISH. In conclusion thisexperiment provides <strong>in</strong>formation on possible microbiological changes <strong>in</strong>the reservoir dur<strong>in</strong>g and after storage of CO 2.SSP013Biogenesis of PHB granules <strong>in</strong> Ralstonia eutropha H16 and <strong>in</strong>mutants with overexpressed or deleted PhaM and PhaP5 prote<strong>in</strong>sA. Wahl* 1 , N. Schuth 1 , S. Nußberger 2 , D. Pfeiffer 1 , D. Jendrossek 11 Universität Stuttgart, Institut für Mikrobiologie, Stuttgart, Germany2 Universität Stuttgart, Biologisches Institut - Abteilung Biophysik,Stuttgart, GermanyPoly(3-hydroxybutyrate), PHB, is the most commonpolyhydroxyalkanoate and is important for many bacterial species as acarbon and energy source dur<strong>in</strong>g times of starvation. Prior to this work, atwo-hybrid approach was applied to screen for uncharacterized prote<strong>in</strong>swith the ability to <strong>in</strong>teract with PHB synthase (PhaC1) and other PHBrelatedprote<strong>in</strong>s of R. eutropha. As a result, two new prote<strong>in</strong>s - PhaM andPhaP5 - were identified that are <strong>in</strong>volved <strong>in</strong> biosynthesis of PHB. Bothprote<strong>in</strong>s showed <strong>in</strong>teractions with other PHB-associated prote<strong>in</strong>s and witheach other and colocalized with PHB granules <strong>in</strong> vivo (as fusion with eYfp).A phaM mutant accumulated only one or two large PHB granules <strong>in</strong>steadof several medium-sized PHB granules of the wild type, and distribution ofgranules to daughter cells was disordered. This phenotype was reversibleby substitution of phaM <strong>in</strong> trans. When PhaM was constitutivelyoverexpressed the cells formed many small PHB granules that wereassociated with the cell pole-fac<strong>in</strong>g side of the nucleoid region. PurifiedPhaM revealed strong but sequence-<strong>in</strong>dependent DNA-b<strong>in</strong>d<strong>in</strong>g ability <strong>in</strong>EMSA experiments <strong>in</strong> vitro.A phaP5 mutant showed no significant effect on size and localization ofaccumulated PHB granules. However, when PhaP5 was constitutivelyoverexpressed, cells formed smaller PHB granules than the wild type andthe granules were organized <strong>in</strong> tight bundles always associated to both cellpoles. This phenotype is similar to that of a phaP1-4 mutant. Inconclusion, PhaM and PhaP5 determ<strong>in</strong>e number, surface to volume ratio,subcellular localization and distribution to daughter cells of PHB granules<strong>in</strong> R. eutropha H16. Subcellular localization of PHB granules <strong>in</strong> R.eutropha depends on a concerted expression of at least three PHB-granuleassociatedprote<strong>in</strong>s, namely PhaM, PhaP5 and PHB synthase PhaC1.SSP014Kill<strong>in</strong>g of Biothreat agents on metallic copper surfacesP. Bleichert* 1 , C. Espirito Santo 1,2 , G. Grass 11 Bundeswehr Institute of Microbiology, Department of Medical BiologicalSpecial Diagnostics and High Security, Munich, Germany2 Universidade de Coimbra, Departamento de Ciências da Vida e Insititutodo Mar (IMAR), Coimbra, PortugalCurrently there is an <strong>in</strong>creas<strong>in</strong>g <strong>in</strong>terest <strong>in</strong> metallic copper (Cu) surfacesdue to their antimicrobial properties. Us<strong>in</strong>g surfaces that might dim<strong>in</strong>ishsurface related contam<strong>in</strong>ation is of great <strong>in</strong>terest <strong>in</strong> order to improvehygiene. Dry Cu surfaces demonstrated that at both laboratory conditionsand hospital trials a wide variety of microorganisms get <strong>in</strong>activated. Themechanism by which microbes are killed by dry Cu surfaces is still notfully understood. Nonetheless, a microbe faced with Cu surfaces, is rapidly<strong>in</strong>activated with<strong>in</strong> m<strong>in</strong>utes by a quick and high copper uptake. Bacterialspecies able to evade the host immune system are among the most seriouslethal microbial challenges to human health. This group of pathogenscomprises biothreat species classified by the Center for Disease andControl and Prevention (CDC) as bacterial select agents with the potentialto be misused as bioterroristic weapons.We <strong>in</strong>vestigated the kill<strong>in</strong>g effectiveness of Cu surfaces aga<strong>in</strong>st Gramnegativebacteria that cause high morbidity and mortally rates <strong>in</strong> humans(Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei,Francisella tularensis and Yers<strong>in</strong>ia pestis). The pathogens’ <strong>in</strong>activationk<strong>in</strong>etics validates efficient and rapid <strong>in</strong>activation on dry Cu surfaces. Ascontrol surface we used sta<strong>in</strong>less steel that is known not to beantimicrobial. Furthermore we tested the ability of Cu surfaces to affectthe membrane-<strong>in</strong>tegrity of bacteria after different Cu-exposition times withso called LIVE/DEAD ® sta<strong>in</strong><strong>in</strong>g. By this technique we demonstrated thatCu surfaces damage the membranes of Gram-negative bacteria.These results can be expected to help re<strong>in</strong>forc<strong>in</strong>g the idea of apply<strong>in</strong>g Cusurfaces, for improv<strong>in</strong>g hygiene and to aid <strong>in</strong> the war aga<strong>in</strong>st nosocomialandother <strong>in</strong>fections.SSP015Unravell<strong>in</strong>g the function of multiple PHB depolymerases <strong>in</strong> R.eutrophaA. Sznajder*, D. Leuprecht, D. JendrossekUniversität Stuttgart, Inst. f. Mikrobiologie, Stuttgart, GermanyPoly(3-hydroxybutyrate) (PHB) is a biodegradable thermoplast that isproduced by fermentation of the Gram-negative “Knallgasbakterium”Ralstonia eutropha <strong>in</strong> an <strong>in</strong>dustrial scale ( 50.000t/a). More than a dozenof prote<strong>in</strong>s that are relevant for PHB metabolism have been previouslyidentified. Nevertheless many problems especially <strong>in</strong> understand<strong>in</strong>g theprocesses of <strong>in</strong>tracellular PHB degradation rema<strong>in</strong> unsolved. Up to now,BIOspektrum | Tagungsband <strong>2012</strong>


232n<strong>in</strong>e putative PHB depolymerases have been postulated to exist <strong>in</strong> R.eutropha. However, except for PHB depolymerase PhaZa1 [1] only little isknown about subcellular localization and <strong>in</strong> vivo activity of the respectivegene products. In this contribution, fusions of candidate phaZ genes witheyfp were generated and conjugatively transfered to R. eutropha HF39.Localization of expressed fusion prote<strong>in</strong>s was determ<strong>in</strong>ed under conditionpermissive for PHB accumulation and PHB mobilization. Colocalizationof PhaZa1-eYfp with PHB granules was confirmed for PhaZa1 and wasalso found for PhaZa3, PhaZa4 and PhaZa5 but not for PhaZa2. Fusionswith 3HB-oligomer hydrolases (PhaZb, PhaZc) were homogenouslydistributed <strong>in</strong> the cytoplasm and a colocalization with PHB granules wasnever observed. Moreover, PhaZd1, a putative PHB depolymerase with sofar highest <strong>in</strong> vitro depolymerase activity with nPHB granules [2], did alsonot colocalize with PHB <strong>in</strong> vivo. While it is reasonable to assume soluble3HB-oligomer hydrolases, because 3HB oligomers are water-soluble, thefunction of soluble PHB depolymerases rema<strong>in</strong>s unclear.[1] K. Uch<strong>in</strong>o, T. Saito, D. Jendrossek, Appl. Environ. Microbiol. 2008;74(4):1058-1063.[2] T.Abe, T. Kobayashi, T. Saito, J. Bacteriol. 2005;187(20):6982-6990.SSP016Elucidation and studies of a new prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> anaerobicphosphite oxidationD. Simeonova*, A. Schmidt, B. Sch<strong>in</strong>kUniversity of Konstanz, Biology, Konstanz, GermanyProte<strong>in</strong> identification is based on the availability of genomic data. Us<strong>in</strong>g“bottom-up” proteomics approaches the identification of prote<strong>in</strong>s is oftenstraightforward. In the absence of genomic data it is highly complex orunfeasible and/or typically requires “de novo”- identification approaches.Here we present the identification approach and some prelim<strong>in</strong>ary studiesof a new enzyme <strong>in</strong>volved <strong>in</strong> the anaerobic phosphite oxidation processbyDesulfotignum phosphitoxidans(stra<strong>in</strong> FiPS-3), a strictly anaerobic andsulfate-reduc<strong>in</strong>g bacterium [1].In the presense of phosphite as e-donnor we found a specifically expressedprote<strong>in</strong> of a molecular mass around 40 kDa on SDS-PAGE gels. Furtherproteomic and genetic studies revealed that this is a new prote<strong>in</strong> which wehave identified as a putative NAD(P)-dependent epimerase/dehydratase[2], with calculated MW mass of 35.8 kDa. The prote<strong>in</strong> was found <strong>in</strong> themembrane and <strong>in</strong> the soluble prote<strong>in</strong> fractions ofD. phosphitoxidans. Inaddition we have found that 20% of the total phosphite oxidiz<strong>in</strong>g activitywas <strong>in</strong> the washed membrane fractions ofD. phosphitoxidans. Theestimated molecular weight on 6% native PAGE of this prote<strong>in</strong> is about140 kDa, which suggests that the prote<strong>in</strong> of <strong>in</strong>terest is a homotetramer.This corresponds to the specific differentially phosphorylated pattern thatthis prote<strong>in</strong> showed on 2D SDS PAGE. A more detailed functionalcharacterization of the new prote<strong>in</strong> is presently carried out.[1] Sch<strong>in</strong>k B, Thiemann V, Laue H, Friedrich MW. Desulfotignum phosphitoxidans sp. nov., a new mar<strong>in</strong>esulfate reducer that oxidizes phosphite to phosphate. Arch Microbiol 2002 May 177 (55): 381-391.[2] Simeonova D.D.,SusneaI., Moise A., Sch<strong>in</strong>k B., Przybylski M. (2009) “Unknown-genome”-proteomics:A new NAD(P)-dependent epimerase/dehydratase revealed by N-term<strong>in</strong>al sequenc<strong>in</strong>g, <strong>in</strong>verted PCR andhigh resolution mass spectrometry. Mol Cell Proteomics 8 (1): 122-131.SSP017Effect of Salt and Matric stress on Growth, Cell SufaceProperties, Membrane Composition and Gene Expression ofPseudomonas putida mt-2M. Schweigert*, J.A. Müller, H.J. HeipieperHelmholtz Centre for Environmental Research, EnvironmentalBiotechnology, Leipzig, GermanyWith<strong>in</strong> the framework of the EU-project BACSIN (Bacterial Abiotic Stressand Survival Improvement Network) effects of different environmentalstressors on ubiquitously occurr<strong>in</strong>g and metabolically versatilemicroorganisms are <strong>in</strong>vestigated <strong>in</strong> order to enable biotechnologicalapplications for bioremediation or biotransformation. The ubiquitouslyoccurr<strong>in</strong>g bacterium Pseudomonas putida fulfills these requirements.Therefore, adaptive mechanisms of P. putida mt-2 to salt (sodiumchloride) and matric stress [polyethylene glycol 6000 (PEG 6000)] were<strong>in</strong>vestigated on the physiological and transcriptional level. Changes <strong>in</strong> thephysiology of the cell were recorded by the analysis of growth, cellenvelope hydrophobicity (contact angle measurements) and the charge ofthe cell envelope (zeta potential measurements). Global transcriptionalchanges were monitored via DNA-microarrays. The experiments lead tothe follow<strong>in</strong>g results:(i) Salt-stressed P. putida mt-2 grew at lower water activities compared tomatric-stressed cells. This suggests that adaptive strategies are moreeffective dur<strong>in</strong>g exposition to high salt concentrations. (ii) NaCl had aneffect on the fatty acid composition, the hydrophobicity and the surfacecharge of the cell envelope whereas the matric stressor PEG 6000 had no<strong>in</strong>fluence. With <strong>in</strong>creas<strong>in</strong>g salt concentrations the cell envelope becamemore hydrophobic, more charged and more rigid. (iii) With the help of theDNA-microarray technology general <strong>in</strong>sights <strong>in</strong> the household of the cellwere obta<strong>in</strong>ed. The metabolic activity was restructured due to the <strong>in</strong>fluenceof the stressor. Generally, several enzymes of the citric acid cycle, thearg<strong>in</strong><strong>in</strong>e fermentation, the lipid and the pentose phosphate pathway weredown regulated, whereas enzymes of the lactic acid fermentation(lctP,lldD) and aerobic compound degrad<strong>in</strong>g enzymes were up regulated.(iv) F<strong>in</strong>ally, taur<strong>in</strong>e or a similar aliphatic sulphate was identified as apossible compatible solute based on the up-regulation of aliphatic sulphatetransport systems.SSP018Bacterial Interaction Lead<strong>in</strong>g to Pattern FormationG. Poxleitner* 1 , A. Bosch<strong>in</strong>i 2 , E. Hebisch 1 , J. Rädler 1 , E. Frey 2 , M. Leisner 11 Ludwig-Maximilians-Universität, Lehrstuhl für Experimentalphysik, München,Germany2 Ludwig-Maximilians-Universität, Arnold Sommerfeld Center für TheoretischePhysik, München, GermanyBacterial communities represent complex and dynamic ecological systems.Different environmental conditions as well as bacterial <strong>in</strong>teractions havedeterm<strong>in</strong><strong>in</strong>g <strong>in</strong>fluence on establishment and conservation of bacterialdiversity and can lead to so-called pattern formation. Stable coexistence ofseveral bacterial stra<strong>in</strong>s is often only possible under well-def<strong>in</strong>edconditions.To study the development of bacterial populations we use time-lapsemicroscopy to <strong>in</strong>vestigate the colic<strong>in</strong> E2 system of threeEscherichiacolistra<strong>in</strong>s labeled with different fluorescent prote<strong>in</strong>s. Comb<strong>in</strong>ations ofthese stra<strong>in</strong>s, with dist<strong>in</strong>ct growth parameters, lead to either <strong>in</strong>stable,metastable or stable coexistence. Besides growth rate and colic<strong>in</strong>production, coexistence was ma<strong>in</strong>ly <strong>in</strong>fluenced by lag time variations. Inaccordance with the results, two ma<strong>in</strong> strategies lead to survival: sensitivestra<strong>in</strong>s need short lag phases and rapid growth rates, while tox<strong>in</strong> produc<strong>in</strong>gstra<strong>in</strong>s even with extended lag phases and slower growth rates can prevail.Specific growth parameters enable cyclic dom<strong>in</strong>ance, where the colic<strong>in</strong>produc<strong>in</strong>gstra<strong>in</strong> kills the sensitive stra<strong>in</strong>, outgrows the resistant one. This<strong>in</strong> turn has a growth advantage over the first.SSP019RecA-mediated LambdaSo prophage <strong>in</strong>duction <strong>in</strong> Shewanellaoneidensis MR-1 biofilmsL. B<strong>in</strong>nenkade* 1 , J. Gödeke 2 , K. Thormann 1 , *L. B<strong>in</strong>nenkade 1 , J. Gödeke 2 ,K. Thormann 11 Max Planck Institute for Terrestrial Microbiology, Ecophysiology, Marburg,Germany2 Tw<strong>in</strong>core - Zentrum für Experimentelle und Kl<strong>in</strong>ische InfektionsforschungGmbH -, Pathophysiologie bakterieller Biofilme, Hannover, GermanyThe respiratory versatile -proteobacterium Shewanella oneidensis MR-1has emerged as a model system for biofilm formation of environmentalbacteria. Our laboratory recently demonstrated that extracellular DNA isan important structural component <strong>in</strong> all stages of biofilm formation, andthat deletion of prophages (LambdaSo, MuSo1, MuSo2) correlates with asignificant reduction <strong>in</strong> cell lysis and eDNA release. In order tocharacterize LambdaSo prophage <strong>in</strong>duction <strong>in</strong> S. oneidensis MR-1 biofilms<strong>in</strong> time and space, we generated MR-1 stra<strong>in</strong>s carry<strong>in</strong>g venus astranscriptional fusion to regulatory and assembly genes <strong>in</strong> the LambdaSoprophage genome. Biofilm development under hydrodynamic conditionsand prophage <strong>in</strong>duction was monitored by confocal laser scann<strong>in</strong>gmicroscopy. Our results strongly <strong>in</strong>dicate that <strong>in</strong>duction of prophageLambdaSo occurs 24 hours after <strong>in</strong>itial attachment. Interest<strong>in</strong>gly,significant fluorescence correlated with a filamentous morphology of cellsthat were evenly distributed <strong>in</strong> the biofilm, but absent <strong>in</strong> microcolonies.Similar filamentous structures that were mutually exclusive to cellsexhibit<strong>in</strong>g Venus fluorescence were also visible after sta<strong>in</strong><strong>in</strong>g eDNA,suggest<strong>in</strong>g <strong>in</strong>duction of cell lysis after filamentation. S<strong>in</strong>ce activation ofthe RecA-mediated SOS-response <strong>in</strong> E. coli <strong>in</strong>duces filamentation andLambda prophage <strong>in</strong>duction, we determ<strong>in</strong>ed whether recA is responsiblefor LambdaSo <strong>in</strong>duction <strong>in</strong> S. oneidensis MR-1 biofilms. Deletion of recAcompletely abolished venus expression dur<strong>in</strong>g all stages of biofilmdevelopment, <strong>in</strong>dicat<strong>in</strong>g suppression of LambdaSo <strong>in</strong>duction. Addition ofhydrogen peroxide to planktonic cultures strongly <strong>in</strong>creased bothfilamentation and prophage <strong>in</strong>duction, and moreover, considerablehydrogen peroxide levels were detected <strong>in</strong> biofilm associated cells. Basedon these results, we hypothesize that LambdaSo <strong>in</strong>duction is under controlof RecA under biofilm conditions and that oxidative stress may be a directstimulus.BIOspektrum | Tagungsband <strong>2012</strong>


233SSP020Hot trehalose: A report about the unusual bifunctional TPSPpathway <strong>in</strong> Thermoproteus tenaxA. Hagemann* 1 , M. Zaparty 2 , C. Bräsen 1 , B. Siebers 11 University of Duisburg-Essen, Biofilm Centre, Molecular Enzymetechnologyand Biochemistry, Essen, Germany2 University of Regensburg, Institute for Molecular and Cellular Anatomy,Regensburg, GermanyThe widespread non-reduc<strong>in</strong>g disaccharide trehalose, consist<strong>in</strong>g of two a-1,1 l<strong>in</strong>ked glycosyl-glucose molecules, is known to function as compatiblesolute <strong>in</strong> Eucarya and Bacteria, protect<strong>in</strong>g the cell aga<strong>in</strong>st a wide range ofdifferent stress conditions [1]. Trehalose has been identified <strong>in</strong> Archaea,but its function is still unknown.The (OtsA/OtsB) TPS/TPP pathway via trehalose-6-phosphate synthase(TPS) and trehalose-6-phosphate phosphatase (TPP) is the most commonpathway for trehalose synthesis. UDP (ADP-) glucose and glucose-6-phosphate are transformed <strong>in</strong>to trehalose-6-phosphate by TPS andsubsequently dephosphorylated by TPP form<strong>in</strong>g trehalose and P i [2]. In thegenome of the hyperthermophilic Crenarchaeon Thermoproteus tenax anoperon compris<strong>in</strong>g a gene cod<strong>in</strong>g for a trehalose-6-phosphatesynthase/phosphatase (tpsp), with a C-term<strong>in</strong>al TPS- and N-term<strong>in</strong>al TPPdoma<strong>in</strong>was identified [3]. This operon also harbors a putative glycosyltransferase (gt) and a putative small conductive mechanosensitve channel(msc). The two-doma<strong>in</strong> TPSP structure has already been described forplants (e.g. Selag<strong>in</strong>ella leptophylla, Arabidopsis thaliana) and forSaccharomyces cerevisiae, but these TPSPs only possesses one activity,either TPS or TPP. Only recently a bifunctional TPSP activity has beenreported from Cytophaga hutch<strong>in</strong>sonii [4]. For the Archaeon T. tenax,biochemical studies of the recomb<strong>in</strong>ant prote<strong>in</strong> revealed a TPSP with fullTPP activity and only <strong>in</strong> the presence of GT bifunctional TPSP activitywas observed. In our current model, we suggest that GT activates TPSP bycomplex formation. The MCS might function as the emergency valvewhich allows the ma<strong>in</strong>tenance of the cell turgor <strong>in</strong> order to respond toenvironmental cues (e.g. osmotic stress).[1] Elbe<strong>in</strong>et al., Glycobiology,13, 4 (2003)[2] Avonce,et al., BMC Evolutionary Biology.6(2006), p.109[3] Siebers, B.et al., J. Bacteriol.186(2004), p.2179-2194[4] Avonce, N.et al., Mol. Biol. Evol.27(2) (2010), p.359-369.SSP021Evolutionary stabilisation of bacterial cooperation by switchesbetween microcolonial and planktonic life styleB.A. Hense* 1 , A. Mund 1,2 , C. Kuttler 2 , M. Ehler 11 Helmholtz Zentrum München, Institute of Biomathematics and Biometry,Neuherberg, Germany2 Technische Universität München, Centre for Mathematical Science ,Munich, GermanyMechanisms ensur<strong>in</strong>g evolutionary stability of bacterial cooperation arenot well understood. Bacterial auto<strong>in</strong>ducer (AI) signals, i.e., diffusiblemolecules released by bacterial cells, enable a cooperative and coord<strong>in</strong>atedgene expression on population level [1]. This behaviour has been describedas quorum sens<strong>in</strong>g or efficiency sens<strong>in</strong>g. Cheater mutants save costs by notproduc<strong>in</strong>g the signal molecule or by avoid<strong>in</strong>g the AI regulated cooperativephenotype expression. Therefore, they should outcompete cooperativecells. It has been proposed that k<strong>in</strong> selection mechanisms with<strong>in</strong>microcolonies, grown from common ancestors and thus composed ofclosely related cells, may promote the stability of AI systems. As AIsystems have also been described <strong>in</strong> plankton, and many bacteria speciesswitch between colonial and planktonic life style, a natural question arises:Can life style changes evolutionary stabilize AI functionality <strong>in</strong> plankton?As a first approach, we analyze this theoretically with<strong>in</strong> a mathematicalmodel. We assume costly AI production, an AI regulated costly phenotypeexpression (as e.g. exoenzyme production), phenotype dependent logisticgrowth of the colonies and plankton, stochastic changes betweenmicrocolonial and planktonic life styles, cell as well as colony death, andmutation from wildtype to AI resp. exoenzyme deficient mutants. Firstresults <strong>in</strong>dicate that life style switches can have stabiliz<strong>in</strong>g effects thatsupport an equilibrium between wildtype and cheater cells. The fraction ofcheater <strong>in</strong> the stationary state depends, among others, on the exchange ratebetween microcolonies and plankton as well as the colony death rate.[1] Hense et al. (2007) Does efficiency sens<strong>in</strong>g unify diffusion and quorum sens<strong>in</strong>g? Nat. Rev.Microbiol. 5: 230-239SSP022Fatty acid-<strong>in</strong>dependent adaptation of bacterial membranes tocold temperaturesJ. Derichs*, A. LipskiRhe<strong>in</strong>ische Friedrich-Wilhelms-Universität, Lebensmittelmikrobiologieund -hygiene, Bonn, GermanyThe adaptation of microorganisms to low temperatures is one of the mostimportant adaptations to extreme conditions because cold environmentsrepresent the majority of the biosphere on earth. Furthermore,psychrotolerant and psychrophilic microorganisms are of special <strong>in</strong>terest <strong>in</strong>the food <strong>in</strong>dustry with respect to food protection, safety and quality.One of the most significant adaptations of microorganisms to coldtemperatures is the control of cell membrane fluidity. Membrane fluidity isusually controlled by adaptations of the fatty acid profiles. However,dur<strong>in</strong>g the last years we analyzed psychrotolerant bacterial isolates fromdifferent sources, Arctic and Antarctic soil samples, chilled food samplesand refrigerators, which show no or unexpected adaptations of their fattyacid profiles when grown under low temperatures. For these isolates weexpect other mechanisms <strong>in</strong>volved <strong>in</strong> the modulation of membranefluidity.In this study we focused on the alteration of the cell qu<strong>in</strong>one content asmechanism of membrane adaptation. We hypothesize that <strong>in</strong>crease ofqu<strong>in</strong>one concentration may result <strong>in</strong> an <strong>in</strong>crease of the disorder ofmembrane fatty acid acyl cha<strong>in</strong>s disorder analogue to other lipophilicmembrane fluidizers. Therefore, qu<strong>in</strong>ones may be an alternative to fattyacid related effects like <strong>in</strong>crease of monounsaturated fatty acids. Weanalysed several psychrotolerant bacterial stra<strong>in</strong>s for changes of their fattyacid profiles and qu<strong>in</strong>one content when grown under differenttemperatures. For most stra<strong>in</strong>s we found a decrease <strong>in</strong> the qu<strong>in</strong>one contentunder low temperature conditions. However, some stra<strong>in</strong>s of theBacillaceae showed <strong>in</strong>crease of their qu<strong>in</strong>one content under lowtemperature growth conditions <strong>in</strong> accord with our work<strong>in</strong>g hypothesis.From there, we hypothesize that for some bacterial taxa qu<strong>in</strong>ones play arole <strong>in</strong> the adaptation to cold temperatures and <strong>in</strong> the control of cellmembrane fluidity.SSP023Essential oils show specific <strong>in</strong>hibit<strong>in</strong>g effects on biofilmformation by bacteriaS. Szczepanski*, A. LipskiRhe<strong>in</strong>ische Friedrich-Wilhelms-Universität, LebensmittelmikrobiologieundHygiene, Bonn, GermanyThe use of essential oils as food preservatives gets more and more<strong>in</strong>terest<strong>in</strong>g <strong>in</strong> the food process<strong>in</strong>g <strong>in</strong>dustry. We analysed the <strong>in</strong>hibit<strong>in</strong>geffects of thyme, oregano and c<strong>in</strong>namon essential oil on biofilm formationby stra<strong>in</strong>s of the genus Ac<strong>in</strong>etobacter, Sph<strong>in</strong>gomonas andStenotrophomonas. These biofilm form<strong>in</strong>g test stra<strong>in</strong>s were isolated fromauthentic biofilms <strong>in</strong> the food <strong>in</strong>dustry dur<strong>in</strong>g a previous study.M<strong>in</strong>imal <strong>in</strong>hibitory concentrations (MIC´s) for growth and biofilm form<strong>in</strong>gactivity were tested <strong>in</strong> a 96-well microtiter plate assay. Biofilm form<strong>in</strong>gactivity was tested based on a crystal violet assay. For some stra<strong>in</strong>s<strong>in</strong>hibition of growth and <strong>in</strong>hibition of the biofilm formation by theessential oils are <strong>in</strong>itiated at the same concentration. However, for stra<strong>in</strong>sof the genus Ac<strong>in</strong>etobacter and Sph<strong>in</strong>gomonas we found an <strong>in</strong>hibit<strong>in</strong>geffect of essential oils on biofilm formation considerably below the MICfor growth of these stra<strong>in</strong>s. Thyme oil is capable to <strong>in</strong>hibit the developmentof a biofilm at low concentrations up to 0,002 %. This natural substanceseems to be the most efficient specific <strong>in</strong>hibitor compared with the othertested essential oils aga<strong>in</strong>st the biofilm formation of all tested isolates.Controls showed that the detergent used, Tween 20, was not responsiblefor this effect. The same tests were carried out with the ma<strong>in</strong> componentsof the essential oils. Fluorescence microscopy was performed to visualizethe structural change of the biofilm after application of sublethalconcentrations of essential oils.The effective concentration of the natural substances was dependent on thetype of essential oil. The stra<strong>in</strong>s showed different sensitivity depend<strong>in</strong>g onthe oil.SSP024Thermal stabilization of procaryotic ribosomes by compatiblesolutesB. Seip*, E.A. Gal<strong>in</strong>ski, M. KurzUniversität Bonn, Institut für Mikrobiologie und Biotechnologie, Bonn,GermanyRibosomes play an important role <strong>in</strong> cell metabolism. Besides <strong>in</strong>tegrity ofthe cell membrane, ribosomal function is supposed to determ<strong>in</strong>e thetemperature limit of life [Gaucher 2008, Lee 2002]. Ribosome stabilityunder physical stress has been <strong>in</strong>vestigated for some time but so far the<strong>in</strong>fluence of the solvent water and its modulation by co-solvents has beenignored.In this context the well-known stabiliz<strong>in</strong>g effect of compatible solutes(osmolytes) on prote<strong>in</strong>s is subjected to scrut<strong>in</strong>y because ribosomes alsocomprise base-paired nucleic acids, for which a destabiliz<strong>in</strong>g effect had tobe expected (Lambert 2007).Here we present a first <strong>in</strong>sight <strong>in</strong>to the effects of some prote<strong>in</strong>-stabiliz<strong>in</strong>gand -destabiliz<strong>in</strong>g low molecular weight osmolytes on E. coli and H.elongata ribosomes under thermal stress. Ribosomal stability <strong>in</strong> thepresence and absence of co-solutes was <strong>in</strong>vestigated us<strong>in</strong>g differentialscann<strong>in</strong>g calorimetry accord<strong>in</strong>g to the methods of Lee [2002] and MackeyBIOspektrum | Tagungsband <strong>2012</strong>


234[1991]. We were able to demonstrate that solute-<strong>in</strong>duced prote<strong>in</strong>stabilization does not always correlate with ribosome stabilization.Furthermore, depend<strong>in</strong>g on the solute, we observed different effects <strong>in</strong>relation to the subunits (30S and 50S) as compared to the fully functional70S ribosome.Gaucher EA, Gov<strong>in</strong>drajan S & Ganesh OK (2008) Nature. 451:704-708Lambert D & Draper DE (2007) J Mol Biol. 370:993-1005Lee J & Kaletunç G (2002) Appl Env Microbiol. 68:5379-5386Mackey BM, Miles CA et al. (1991) J Gen Microbiol. 137:2361-2374SSP025Elucidation of potential vitrificants of Halomonas elongata DSM2581 T with regard to desiccation tolerance and bio-<strong>in</strong>spired use as<strong>in</strong>terface protectantsC. Tanne*, E.A. Gal<strong>in</strong>skiUniversity of Bonn, Institute of Microbiology & Biotechnology, Bonn, GermanyThe loss of water is a general stress phenomenon for life on earth.However, some extremophilic organisms are able to survive almostcomplete desiccation by vitrification, a process termed anhydrobiosis orcryptobiosis. Under these conditions the whole metabolism is arrested andthe cells can rema<strong>in</strong> dormant for a long period of time until they arerehydrated. This survival mechanism preserves macromolecules (e.g.prote<strong>in</strong>s, DNA, membranes) by the formation of biological glasses at thenano-structured <strong>in</strong>terface to the environment. Well-known glass-form<strong>in</strong>gsubstances (sugars and other hydroxyl-group carry<strong>in</strong>g compounds) arebelieved to replace water molecules <strong>in</strong> the hydration shell of biologicalboundaries and thus prevent complete <strong>in</strong>activation by the lack of water.The present work aimed at the identification of such glass-form<strong>in</strong>gcompounds <strong>in</strong> Halomonas elongata and other factors <strong>in</strong>volved <strong>in</strong>vitrification. Molecular candidates are hydroxylated derivatives of ecto<strong>in</strong>e(S,S-beta-hydroxecto<strong>in</strong>e), highly hydrophilic and <strong>in</strong>tr<strong>in</strong>sically unstructuredprote<strong>in</strong>s (so-called hydrophil<strong>in</strong>s), but also <strong>in</strong>organic ions and salts oforganic acids [1-4]. As an experimental approach to elucidate theorganism´s response to a forthcom<strong>in</strong>g dehydration event the exponentiallygrow<strong>in</strong>g culture was exposed to gradually <strong>in</strong>creas<strong>in</strong>g temperature beyondmaximum. In addition, bio<strong>in</strong>formatic data were exploited to predictpotential hydrophil<strong>in</strong>s and to <strong>in</strong>vestigate other characteristics of theHalomonas elongata proteome.It was shown that, besides the expected accumulation of hydroxylatedforms of compatible solutes, H. elongata is also able to express so-calledhydrophil<strong>in</strong>s to support vitrification. In addition, its moderately acidicproteome may provide an additional basis for <strong>in</strong>creased water stresstolerance.Detailed understand<strong>in</strong>g of all factors <strong>in</strong>volved <strong>in</strong> vitrification andpreservation of biological surfaces which depend on water for function and<strong>in</strong>tegrity will ultimately enable us to apply such knowledge for the longtermstabilization of immobilised enzymes and biohybrid <strong>in</strong>terfaces as forexample <strong>in</strong> technical biosensors.[1] J.J. Caramelo, N.D. Iusem. When cells lose water: Lessons from biophysics and molecular biology.Progress <strong>in</strong> Biophysics and Molecular Biology 99(1):1-6. 2009[2] A. Kriško, Z. Smole, G. Debret, N. Nikolic, M. Radman. (2010).Unstructured hydrophilic sequences <strong>in</strong>prokaryotic proteomes correlate with dehydration tolerance and host association. Journal of MolecularBiology 402(5):775-82.[3] J. Buit<strong>in</strong>k, I.J. van den Dries, F.A. Hoekstra, M. Alberda, M.A. Hemm<strong>in</strong>ga (2000). High criticaltemperature above Tg may contribute to the stablity of biological systems. Biophysical Journal 79(2): 1119-1128.[4] U.S. Patent 6,653,062SSP026The CRISPR/Cas system of Haloferax volcanii: requirements forthe defenceS. FischerUniversität Ulm, Biologie II, Ulm, GermanyThe CRISPR/Cas system is a prokaryotic defence system that providesadaptive and heritable immunity aga<strong>in</strong>st foreign genetic elements <strong>in</strong> mostArchaea and many Bacteria. This system is widespread and diverse, but asit was only recently discovered, the precise molecular details for thedefence directed aga<strong>in</strong>st <strong>in</strong>vad<strong>in</strong>g plasmids or viruses are far fromunderstood. Clustered regularly <strong>in</strong>terspaced short pal<strong>in</strong>dromic repeats(CRISPRs) together with CRISPR associated genes (casgenes) build thebasis of the system. The so-called spacer sequences <strong>in</strong> a CRISPR locus arederived from the <strong>in</strong>vad<strong>in</strong>g nucleic acids (protospacer) <strong>in</strong> the adaptationstage, to enable recognition and degradation <strong>in</strong> case of re-<strong>in</strong>fection(<strong>in</strong>terference stage). Furthermore, specific short sequences called PAMs(protospacer adjacent motifs) are essential for the adaptation and<strong>in</strong>terference of most CRISPR/Cas types. We <strong>in</strong>vestigate the mechanisms ofthe CRISPR/Cas-mediated defence <strong>in</strong> the Euryarchaeon Haloferaxvolcanii- an organism for which the orig<strong>in</strong> of spacer sequences rema<strong>in</strong>stotally elusive and thus the role and identity of PAM sequences wasunknown until now. Us<strong>in</strong>g a plasmid assay for which a protospaceridentical to the first spacer of oneH. volcaniiCRISPR locus is comb<strong>in</strong>edwith all potential 2 nt- or 3 nt-PAM sequences, we identified two PAMsequences so far. We further <strong>in</strong>vestigate, to which extent sequence identitybetween spacer and protospacer must be given to ensure a successful<strong>in</strong>terference reaction.SSP027Succession patterns of dist<strong>in</strong>ct flavobacterial groups afterspr<strong>in</strong>g algal blooms <strong>in</strong> the North SeaC. Bennke* 1 , B. Fuchs 1 , A. Kl<strong>in</strong>dworth 2 , F.O. Glöckner 2 , G. Gerdts 3 ,A. Wichels 3 , K. Wiltshire 3 , M. Zeder 1,4 , R. Amann 11 MPI-für Mar<strong>in</strong>e Mikrobiologie, Molekulare Ökologie, Bremen, Germany2 MPI-für Mar<strong>in</strong>e Mikrobiologie, Microbial Genomic Group, Bremen, Germany3 AWI, Mikrobielle Ökologie, Helgoland, Germany4 Technobiology GmbH, Buchra<strong>in</strong>, SwitzerlandAlgae blooms are known to cause significant changes <strong>in</strong> bacterioplanktoncomposition. Dur<strong>in</strong>g and after the algal spr<strong>in</strong>g bloom <strong>in</strong> 2009 a largemicrobial community shift was observed <strong>in</strong> the North Sea. 16S rRNA tagsequenc<strong>in</strong>g at different timepo<strong>in</strong>ts revealed that Alphaproteobacteria andGammaproteobacteria as well as the Bacteroidetes, here <strong>in</strong> particular theclass Flavobacteria, dom<strong>in</strong>ate the bacterioplankton community <strong>in</strong> theNorth Sea at Helgoland Roads. In this study we dissected theflavobacterial response on algal blooms. Specific oligonucleotide probesfor Flavobacteria clades were designed, and these clades were quantifiedby catalyzed reporter deposition-fluorescence <strong>in</strong> situ hybridization(CARD-FISH) and automated microscopy.In spr<strong>in</strong>g 2009 a tight succession of dist<strong>in</strong>ct Flavobacteria clades wasobserved. Members of the genera Ulvibacter and Formosa reached relativeabundances of up to 20% and 24%, respectively, with<strong>in</strong> one to two weeksafter the peak of the algal bloom. These groups seem to respond to specificsubstrates released by the algae after the bloom (bottom-up effect). Later,while Ulvibacter and Formosa subgroups dropped the Polaribacter clade<strong>in</strong>creased up to 27% of the entire microbial community. Interest<strong>in</strong>gly, allanalysed subgroups were present throughout the rest of the year 2009 only<strong>in</strong> low abundances, except for the Polaribacter clade which showedseveral peaks dur<strong>in</strong>g the course of the year <strong>in</strong> response to the summer andautumn algal blooms. All flavobacterial subgroups responded morestrongly to the diatom-dom<strong>in</strong>ated spr<strong>in</strong>g bloom than to the autumn bloomcomposed ma<strong>in</strong>ly of green algae.In 2010 the spr<strong>in</strong>g phytoplankton bloom occurred one month later than <strong>in</strong>2009, but a similar succession of the flavobacterial groups could beobserved reach<strong>in</strong>g similar cell numbers. Our f<strong>in</strong>d<strong>in</strong>gs suggest that the waxand wane of specific bacterioplankton clades might be an annuallyrecurr<strong>in</strong>g phenomenon <strong>in</strong> the North Sea, and therefore rather adeterm<strong>in</strong>istic than stochastic process.SSP028Host- and cell type-specific adhesion of human and animalEscherichia coli <strong>in</strong> association to their virulence-associated genesU. Frömmel* 1 , S. Rödiger 1 , A. Böhm 1 , J. Nitschke 1 , J. We<strong>in</strong>reich 1 , J. Groß 1 ,O. Z<strong>in</strong>ke 2 , H. Ansorge 3 , P. Klemm 4 , W. Lehmen 5 , S. Vogel 6 , T. Wex 7 ,C. Schröder 1 , P. Schierack 11 Hochschule Lausitz (FH) , FB Bio-, Chemie- und Verfahrenstechnik; AGMolekularbiologie, Senftenberg, Germany2 Museum der Westlausitz, Kamenz, Germany3 Senckenberg Museum für Naturkunde, Görlitz, Germany4 Technical University of Denmark, Lyngby, Denmark5 Attomol GmbH, Bronkow, Germany6 Lausitzer Seenland Kl<strong>in</strong>ikum GmbH, Hoyerswerda, Germany7 Otto-von-Guericke Universitiy, Magdeburg, GermanyEscherichia coli (E. coli) is a common bacterium of the <strong>in</strong>test<strong>in</strong>almicroflora of mammals and birds but also can cause <strong>in</strong>test<strong>in</strong>al as well asextra<strong>in</strong>test<strong>in</strong>al disease. Pathogenic E. coli can be grouped <strong>in</strong>to severalpathovars <strong>in</strong>clud<strong>in</strong>g host-specific and zoonotic bacteria.Successful colonization and <strong>in</strong>fection of epithelial cells depend on <strong>in</strong>itialadhesion which is mediated by fimbriae and other adhes<strong>in</strong>s or colonizationfactors. Adhes<strong>in</strong>s promote host- and tissue specificity or enable bacteria tocolonize a broader range of hosts and tissues which are two differentsurvival strategies.We sampled 410 pathogenic and commensal E. coli isolates from humansand 19 mammalian and avian species <strong>in</strong>clud<strong>in</strong>g domestic and wild animalsand <strong>in</strong>clud<strong>in</strong>g isolates from faeces and the ur<strong>in</strong>ary tract.All stra<strong>in</strong>s were tested for hemolysis on blood agar plates and for 42virulence-associated genes (VAGs) <strong>in</strong>clud<strong>in</strong>g several adhes<strong>in</strong>s with aVideoScan Multiplex-PCR-Bead-Assay which was developed <strong>in</strong> ourlaboratory. All non-hemolytic isolates (n= 296) were analyzed foradhesion to four epithelial cell l<strong>in</strong>es (Caco2: human <strong>in</strong>test<strong>in</strong>al, 5637:human ur<strong>in</strong>ary bladder, IPEC-J2: porc<strong>in</strong>e <strong>in</strong>test<strong>in</strong>al, PK15: porc<strong>in</strong>e kidney)automatically with our new developed VideoScan technology. Adhesionpattern were correlated with the presence of VAGs and VAG pattern.In average, hemolytic isolates carried twice as many VAGs compared tonon-hemolytic isolates. Isolates had a species-specific repertoire of VAGs.Adhesion pattern strongly varied between isolates <strong>in</strong>dependent fromspecies orig<strong>in</strong>. Adhesion of bacteria could be divided <strong>in</strong>to non-adherent,BIOspektrum | Tagungsband <strong>2012</strong>


235cell l<strong>in</strong>e-un-specific adherent and cell l<strong>in</strong>e-specific adherent. We def<strong>in</strong>edVAGs (e.g.sfa/foc,malX) which presence was associated with higheradhesion to one specific cell l<strong>in</strong>e and thus host and/or tissue specificity.However, there were no differences <strong>in</strong> adhesion rates between pathogenicand commensal isolates.In conclusion, we show a broad variety of VAG and adhesion pattern <strong>in</strong>human and animal E. coli isolates. Adhesion is host- and cell type-specificenabl<strong>in</strong>g colonization of different microhabitats. There are confirmedadhes<strong>in</strong>s but other hypothetical and yet unknown adhes<strong>in</strong>s and their hostand tissue specificity have to be identified and characterized <strong>in</strong> futurestudies.SSP029A role for glutam<strong>in</strong>e synthetase <strong>in</strong> regulation of prol<strong>in</strong>ebiosynthesisS. Köcher, M. Thompson*, V. MüllerMolecular Microbiology & Bioenergetics, Institute for MolecularBiosciences, Goethe University, Frankfurt/Ma<strong>in</strong>, Germany, GermanyGlutam<strong>in</strong>e and glutamate are the major compatible solutes <strong>in</strong> the moderatehalophile Halobacillus halophilus under moderate sal<strong>in</strong>ities and prol<strong>in</strong>e athigh sal<strong>in</strong>ities (1). One of the isogenes/-enzymes of glutam<strong>in</strong>e synthetase(glnA2) was shown before to be the osmoregulated key player <strong>in</strong> sal<strong>in</strong>itydependentglutam<strong>in</strong>e and glutamate biosynthesis (2). Here, we havedeleted glnA2 from the chromosome of H. halophilus. Growth of themutant was not impaired, neither at low nor at high salt, and the mutant didnot have reduced levels of glutam<strong>in</strong>e or glutamate, <strong>in</strong>dicat<strong>in</strong>g a metabolicbypass for glutam<strong>in</strong>e and gutamate production. Much to our surprise, themutant did no longer produce prol<strong>in</strong>e as compatible solute. The loss ofprol<strong>in</strong>e was compensated for by <strong>in</strong>creased ecto<strong>in</strong>e production. Consistentwith this is the observation that the transcript levels for ectA (and glnA1)were <strong>in</strong>creased <strong>in</strong> the mutant.Our data demonstrate a regulatory role of glutam<strong>in</strong>e synthetase 2 <strong>in</strong> prol<strong>in</strong>ebiosynthesis. Possible regulatory scenarios are discussed.(1) Saum, S.H. & Müller, V., (2008) Regulation of osmoadaption <strong>in</strong> the moderate halophileHalobacillus halophilus: chloride, glutamate and switch<strong>in</strong>g osmolyte stategies. Sal<strong>in</strong>e Systems 4: 4(2) Saum, S.H., Sydow, S.F., Palm, P., Pfeiffer, F., Oesterhelt, D., and Müller, V., (2006)Biochemical and molecular characterization of the biosynthesis of glutam<strong>in</strong>e and glutamate, twomajor compatible solutes <strong>in</strong> the moderately halophilic bacterium Halobacillus halophilus. J.Bacteriol. 188: 6808-6815SSP030The impact of a typical biofilm flora on the VBNC-state ofpathogens <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water biofilmsM. Kliefoth*, U. SzewzykTechnische Universität Berl<strong>in</strong>, FG Umweltmikrobiologie, Berl<strong>in</strong>, GermanyPathogens like Legionella pneumophilaand Pseudomonas aerug<strong>in</strong>osa areknown for their ability to persist <strong>in</strong> house <strong>in</strong>stallations and pose a risk of<strong>in</strong>fections for humans. The standard approach for detection is still theheterotrophic plate count. But it is also common, that over 90 % of themicroorganisms <strong>in</strong> such oligothrophic environment are not grow<strong>in</strong>g onknown media.Only a few studies focus on the typical biofilm flora <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g water,which is shown to be a mixture of ma<strong>in</strong>ly - , - and -subclasses ofProteobacteria. These bacteria can turn <strong>in</strong>to a physiological state called“viable-but-not-culturable” (VBNC), <strong>in</strong> which no growth can be observedon plates. The bacteria show dwarfish cell forms and reduced metabolicactivity.In our <strong>in</strong>vestigations we study how these bacteria have an impact on theentrance or exit of P. aerug<strong>in</strong>osa <strong>in</strong> the VBNC-state. Therefore a biofilmreactor was developed to simulate a low nutrient environment and to<strong>in</strong>duce VBNC <strong>in</strong> P. aerug<strong>in</strong>osa as well as other selected bacteria, whichwere isolated <strong>in</strong> our group from native biofilms.Mono-species biofilms and multi-species biofilms with <strong>in</strong>tegratedpathogens are compared by us<strong>in</strong>g culture- (e.g. CFU) and culture<strong>in</strong>dependentmethods like Live/Dead sta<strong>in</strong><strong>in</strong>g, PAC (a direct- viable-countmethod), qPCR, FISH and CLSM. The aim of this project is to ga<strong>in</strong><strong>in</strong>sights <strong>in</strong> which manner P. aerug<strong>in</strong>osa can persist <strong>in</strong> dr<strong>in</strong>k<strong>in</strong>g waterbiofilms and how native bacteria <strong>in</strong>fluences the resistance of P. aerug<strong>in</strong>osa<strong>in</strong> water plumb<strong>in</strong>g. Furthermore the reproducible <strong>in</strong>duction of VBNC bylow nutrients (carbon, phosphate or trace elements) are be<strong>in</strong>g consideredand <strong>in</strong>vestigated.SSP031The CRISPR-Cas system of Haloferax volcaniiB. Stoll*, J. Brendel, A. MarchfelderUniversity of Ulm, Bio II, Ulm, GermanyThe recently discovered CRISPR-Cas system (CRISPR:clustered regularly<strong>in</strong>terspaced short pal<strong>in</strong>dromic repeats, Cas: CRISPR-associated) is anadaptive and heritable resistance mechanism aga<strong>in</strong>st foreign geneticelements. The CRISPR-Cas system consists of clusters of repetitivechromosomal DNA <strong>in</strong> which short pal<strong>in</strong>dromic DNA repeats are separatedby short spacers, the latter be<strong>in</strong>g sequences derived from the <strong>in</strong>vader. Inaddition, a set of prote<strong>in</strong>s, the Cas prote<strong>in</strong>s, is <strong>in</strong>volved. We are<strong>in</strong>vestigat<strong>in</strong>g the CRISPR-Cas system <strong>in</strong> the halophilic archaeon Haloferaxvolcanii. H. volcanii is an archaeal model organism which requires about2.1 M NaCl for optimal growth and raises the <strong>in</strong>tracellular saltconcentration to similar values to cope with high salt concentration <strong>in</strong> themedium. The genome is sequenced and Haloferax is one of the fewarchaeal organisms where genetic systems are available.H. volcanii has three CRISPR loci, one located on the chromosome andtwo located on one of the chromosomal plasmids. Next to one of theCRISPR loci the Cas prote<strong>in</strong>s are encoded <strong>in</strong> one long multicistronicoperon <strong>in</strong>clud<strong>in</strong>g genes for Cas1-8.We are analys<strong>in</strong>g the expression and process<strong>in</strong>g of the CRISPR RNA. Tothat end we generated a deletion stra<strong>in</strong> for the cas6 gene and <strong>in</strong>vestigatedits effect on CRISPR RNA process<strong>in</strong>g.SSP032Copper impacts the gold toxicity <strong>in</strong> Cupriavidus metalliduransN. Wiesemann* 1 , G. Hause 2 , J. Mohr 3 , F. Reith 4 , C. Große 1 , D.H. Nies 11 Mart<strong>in</strong>-Luther-University, Moleculare Microbiology, Halle (Saale), Germany2 Biocenter of the Mart<strong>in</strong>-Luther-University Halle-Wittenberg, Microscopy Unit,Halle (Saale), Germany3 Hannover Medical School, Hannover, Germany4 University of Adelaide, School of Earth and Environmental Sciences ,Adelaide, AustraliaCupriavidus metallidurans could be responsible for the formation ofbacteriogenic secondary gold nanoparticles 1,2 . We <strong>in</strong>vestigated if geneclusters that are up-regulated after treatment with gold complexes might be<strong>in</strong>volved <strong>in</strong> this process. The megaplasmids of stra<strong>in</strong> CH34, pMOL28 witha chromate and pMOL30 with an extensive copper resistance determ<strong>in</strong>ant,are not required for the formation of colloidal particles visible <strong>in</strong> TEM,which might be gold nanoparticles. A hypothesis that considered a goldtransformation process by the gig (gold <strong>in</strong>duces genes) cluster productsrem<strong>in</strong>iscent to mercury transformation by mer gene products could not beverified. Cells pre-<strong>in</strong>cubated with non toxic concentrations of copperdisplayed <strong>in</strong>creased copper resistance as expected, however, <strong>in</strong> some C.metallidurans stra<strong>in</strong>s, gold resistance decreased <strong>in</strong> parallel to <strong>in</strong>creas<strong>in</strong>gcopper resistance <strong>in</strong> the copper-treated cells. This demonstrated thathandl<strong>in</strong>g of gold ions by some - but not all - prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> copperresistance led to enhanced toxicity of gold. Deletion of other genes<strong>in</strong>volved <strong>in</strong> copper resistance led to a simultaneous decrease of copper andgold resistance but not <strong>in</strong> all stra<strong>in</strong>s. All these data demonstrated thatcopper resistance systems <strong>in</strong> C. metallidurans are <strong>in</strong>volved <strong>in</strong>transformation of gold, however, not always to the advantage of the cells.The <strong>in</strong>trigu<strong>in</strong>g network of the copper and gold-handl<strong>in</strong>g factors <strong>in</strong> C.metallidurans is thus very complicated and needs a detailed <strong>in</strong>-depthanalysis.1 Reith, F., B. Etschmann, C. Grosse, H. Moors, M. A. Benotmane, P. Monsieurs, G. Grass, C. Doonan, S.Vogt, B. Lai, G. Mart<strong>in</strong>ez-Criado, G. N. George, D. H. Nies, M. Mergeay, A. Pr<strong>in</strong>g, G. Southam, and J.Brugger. 2009. Mechanisms of gold biom<strong>in</strong>eralization <strong>in</strong> the bacterium Cupriavidus metallidurans. ProcNatl Acad Sci U S A 106:17757-17762.2 Reith, F., S. L. Rogers, D. C. McPhail, and D. Webb. 2006. Biom<strong>in</strong>eralization of gold: biofilms onbacterioform gold. Science 313:233-236.SSP033A comb<strong>in</strong>ed transcriptomic and proteomic <strong>in</strong>vestigation <strong>in</strong>to theosmoregulatory mechanisms of Halomonas elongata DSM 2581 TS. Faßbender 1 , B. Scheffer 2 , D. Oesterhelt 2 , F. Siedler 2 , H.J. Kunte* 11 Federal Institute for Materials Research and Test<strong>in</strong>g (BAM), Materialsand Environment Division, Berl<strong>in</strong>, Germany2 Max Planck Institute of Biochemistry, Department of MembraneBiochemistry, Mart<strong>in</strong>sried, GermanyThe halophilic -proteobacterium Halomonas elongata thrives at a widerange of salt concentrations by accumulat<strong>in</strong>g the compatible solute ecto<strong>in</strong>e.Ecto<strong>in</strong>e can be amassed <strong>in</strong> the cytoplasm either by synthesis or bytransport from the medium. To enable ecto<strong>in</strong>e uptake, H. elongata isequipped with a specific transport system, named TeaABC. TeaABC is notonly required for the accumulation of ecto<strong>in</strong>e, but also functions as asalvage system for ecto<strong>in</strong>e leak<strong>in</strong>g out of the cell. This observation led tothe hypothesis that TeaABC and potential efflux prote<strong>in</strong>(s) might be<strong>in</strong>volved <strong>in</strong> regulat<strong>in</strong>g the cytoplasmic ecto<strong>in</strong>e concentration. In order toidentify membrane prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> the efflux of compatible solutesand to ga<strong>in</strong> more <strong>in</strong>formation about the changes <strong>in</strong> the prote<strong>in</strong> compositionof halophiles <strong>in</strong> response to salt stress, we analyzed i) the transcriptomeand ii) the membrane-proteome of H. elongata. By apply<strong>in</strong>g a 15 N isotopemetabolic label<strong>in</strong>g strategy, a total of 135 membrane prote<strong>in</strong>s wereidentified and quantified which are significantly up or down regulated <strong>in</strong>response to changes of the external sal<strong>in</strong>ity. In cells adapted to low saltmedium (100 mM NaCl) the level of 90 prote<strong>in</strong>s has changed significantlycompared to cells adapted to the optimal salt concentration of 1 M NaCl.The content of only 45 prote<strong>in</strong>s was changed when cells were adapted tohigh salt medium of 2 M NaCl compared to cells grown at 1 M NaCl. Themajority of the 135 regulated prote<strong>in</strong>s are putative transport prote<strong>in</strong>s. FourBIOspektrum | Tagungsband <strong>2012</strong>


236of these prote<strong>in</strong>s are putative mechano-sensitive channels, of which twowere mutated and further analyzed concern<strong>in</strong>g their role <strong>in</strong> ecto<strong>in</strong>e efflux.SSP034The ZIP (ZRT/IRT prote<strong>in</strong> family) member ZupT fromCupriavidus metallidurans CH34 has pleiotropic effects on z<strong>in</strong>chomeostasisM. Herzberg*, D.H. NiesMart<strong>in</strong>-Luther-Universität Halle-Wittenberg, Molekulare Mikrobiologie,Halle (Saale), GermanyThe well-studied heavy-metal resistant bacteria Cupriavidus metalliduransharbors a network of metal efflux systems, which allow survival <strong>in</strong> heavymetalpolluted environments. These efflux systems remove <strong>in</strong> a “worrylater” scenario surplus cytoplasmic metal cations that were previouslyimported <strong>in</strong>to the cell by a variety of highly redundant metal uptakesystems. To understand the contribution of these metal uptake systems tometal resistance, a systematic deletion analysis of the genes zupT, pitA,corA 1, corA 2, corA 3, zntB, hoxN, mgtA and mgtB was performed.Expression of the genes for all of these transporters was down-regulated by<strong>in</strong>creas<strong>in</strong>g z<strong>in</strong>c concentration while that of zupT was up-regulated by z<strong>in</strong>cstarvation. ZupT was required for import of z<strong>in</strong>c at conditions of z<strong>in</strong>cstarvation. The zupT deletion stra<strong>in</strong> produced the largest and z<strong>in</strong>cconta<strong>in</strong><strong>in</strong>gsubunit of the DNA-dependent RNA polymerase, RpoC (betaprime) <strong>in</strong> excess, and accumulated this prote<strong>in</strong> <strong>in</strong> <strong>in</strong>clusion bodies,<strong>in</strong>dicat<strong>in</strong>g disturbance of z<strong>in</strong>c homeostasis, although growth of the mutantstra<strong>in</strong> was not impaired. Additionally, plasmid-bound expression of theczcCBA genes encod<strong>in</strong>g the Czc transenvelope efflux prote<strong>in</strong> complex ledto disappearance of CzcA <strong>in</strong> various zupT-conta<strong>in</strong><strong>in</strong>g mutant stra<strong>in</strong>s. Thisall <strong>in</strong>dicated a central role of ZupT <strong>in</strong> z<strong>in</strong>c homeostasis.SSP035BapA is required for biofilm formation <strong>in</strong> poor-phosphatemedium and modifies the structure of the biofilm produced bySalmonella enterica sv. TyphimuriumB. Haß<strong>in</strong>g, A. Felipe-López*, M. HenselUniversität Osnabrück, Abt. Mikrobiologie, Osnabrück, GermanySalmonella Pathogenicity Island 9 (SPI9) encodes a type 1 secretionsystem (T1SSs) and its substrate BapA. BapA was associated with biofilmformation but its role dur<strong>in</strong>g host <strong>in</strong>fection rema<strong>in</strong>s unknown. In order tof<strong>in</strong>d out the expression conditions and its role <strong>in</strong> biofilm formation,luciferase reporter and mutant stra<strong>in</strong>s of the bap-operon as well as csgDBAmutant stra<strong>in</strong>s were created by lambda-red recomb<strong>in</strong>ation us<strong>in</strong>g asbackground the NCTC 12023 (WT) stra<strong>in</strong>. Western Blot (WB) andimmunofluorescence (IF) were performed us<strong>in</strong>g a rabbit antibody anti-BapA, k<strong>in</strong>dly provided by Dr. Lasa, Spa<strong>in</strong>. Stra<strong>in</strong>s were <strong>in</strong>cubated eitherwith rigorous shak<strong>in</strong>g or <strong>in</strong> static conditions for 72 h at 37° or 30° C. Asphosphate concentration was described to <strong>in</strong>duce the biofilm formation,PCN with 0.4, 1 and 25 mM PO 4 -3 was used <strong>in</strong> addition to LB. Biofilmformation was evaluated with crystal violet <strong>in</strong> 96 well plates. Bacterialpellets and their supernatant were taken from 2 to 72 h at several time<strong>in</strong>tervals for WB and expression k<strong>in</strong>etics. Luciferase activity demonstratedthat <strong>in</strong> static conditions bapA and bapD was around 10-fold higher at 30°C than at 37° C <strong>in</strong> static conditions after 8 h <strong>in</strong> WT background. bapAdeficientstra<strong>in</strong> was produced 4.0-fold less biofilm, as evaluated by crystalviolet, <strong>in</strong> PCN 0.4 or 1.0 mM PO 4 -3 than <strong>in</strong> LB or PCN 25mM PO 4 -3 <strong>in</strong>which the mutation did not have any effect. Biofilm formation on glassslides revealed several cluster patterns.bapA-decifient stra<strong>in</strong>s formedcolumnar clusters after 96 h which were 10-fold larger than those formedat the same time by the WT stra<strong>in</strong>. Secretion of BapA <strong>in</strong> WT stra<strong>in</strong> wasobserved after 120h of static <strong>in</strong>cubation <strong>in</strong> LB. BapA-positive bacterialcells showed a decreased signal of GFP, which was used as marker forbacterial cells, <strong>in</strong> contrast to those bacterial cells without BapA. BapApsoitivecells were also featured by form<strong>in</strong>g isolated groups of bacteriaconsist<strong>in</strong>g of approx. 10 cells. These results showed that BapA is requiredfor biofilm formation under restrictive low phosphate conditions and thatthe secretion of BapA is associated with the architecture of the biofilm.Current work is on progress to understand how BapA can modify thearchitecture of the biofilm and what regulation mechanism controls theexpression and secretion of BapA.SSP036Molecular approaches to determ<strong>in</strong>e the diversity of humanadenoviruses present <strong>in</strong> sewage-contam<strong>in</strong>ated waterN. Hartmann*, M. Dartscht, H.-C. Sel<strong>in</strong>ka, R. SzewzykUmweltbundesamt, II 1.4 Microbiological Risks, Berl<strong>in</strong>, GermanyHuman adenoviruses (hAdVs) are promis<strong>in</strong>g candidates for monitor<strong>in</strong>gviral health risk from environmental water sites. Relatively harmless butcommon these DNA viruses persist cont<strong>in</strong>uously with<strong>in</strong> the population andare rout<strong>in</strong>ely detected <strong>in</strong> polluted surface and wastewater. The 58 currentlyknown serotypes, classified <strong>in</strong>to seven subgenera (subgenus A to G) on thebasis of biochemical and biophysical properties, cause a wide range of<strong>in</strong>fections with manifold cl<strong>in</strong>ical manifestations such as gastroenteritis,conjunctivitis and respiratory diseases. Different serotypes were reportedwith different frequencies, show<strong>in</strong>g a prevalence of enteric adenoviruses <strong>in</strong>water samples, though other serotypes were occasionally detected. TheUBA stream and pond simulation system (FSA) allows for track<strong>in</strong>g ofviruses <strong>in</strong> sewage-contam<strong>in</strong>ated surface water under def<strong>in</strong>edenvironmental conditions. Adenoviruses do not display strong seasonalfluctuations, but the prevalence of certa<strong>in</strong> serotypes <strong>in</strong> sewage may changeover time, both for epidemiological and virus stability reasons. Thereforethe diversity patterns of human adenoviruses from sewage contam<strong>in</strong>atedwater were <strong>in</strong>vestigated dur<strong>in</strong>g four long time-experiments carried out <strong>in</strong>the FSA from 2009 to 2010 us<strong>in</strong>g different molecular biological methods,<strong>in</strong>clud<strong>in</strong>g denatur<strong>in</strong>g gradient gel electropheresis (DGGE) adapted for thedetection of human adenoviruses by our group. Additionally,representatives from every subgenus were characterized regard<strong>in</strong>g theirstability with<strong>in</strong> the water used. Accord<strong>in</strong>g to our results, human adenovirusserotype 41 was the most prom<strong>in</strong>ent adenovirus detected <strong>in</strong> the samples.S<strong>in</strong>ce quantification was connected to PCR amplification the melt<strong>in</strong>gpo<strong>in</strong>ts of adenoviral qRT-PCR products were also determ<strong>in</strong>ed, promis<strong>in</strong>gyet another method for rapid diversity <strong>in</strong>vestigations. The results <strong>in</strong>dicateapplicability of the approaches for other virus groups, <strong>in</strong>clud<strong>in</strong>g humannorovirus genotype analysis from sewage samples and may support thesearch for viral <strong>in</strong>dicators.SSP037Miss<strong>in</strong>g protection of DNA by Dps does not enhance toxicity ofmetallic copper <strong>in</strong> Escherichia coliC. GrosseUni Halle, Mikrobiologie, Halle, GermanyEscherichia coli protects itself from toxic copper ions by several systems.The cytoplasmic membrane localized, coppertransport<strong>in</strong>g P-type ATPaseCopA extrude Cu(I) out of the cytoplasm (1). The copper efflux systemCusCFBA as well as the multicopper oxidase CueO detoxify theperiplamic space from excess copper. The cytoplasmic factor Dps which isabundant <strong>in</strong> the stationary phase, seems to be <strong>in</strong>volved <strong>in</strong> copperhomeostasis too (2). Dps (DNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> of starved cells) is able tob<strong>in</strong>d the DNA to protect it from oxidative damage (3). Recent studies ofsurvival of E. coli on metallic copper leads to the assumption that kill<strong>in</strong>gof the bacteria is proceeds by membrane damage, cell death and DNAdamage (4). Another study contrary concluded the DNA as the ma<strong>in</strong> targetof copper toxicity followed by rapid DNA degradation and cell death (5).The role of Dps <strong>in</strong> copper toxicity mechanisms <strong>in</strong> E. coli was determ<strong>in</strong>edby growth experiments under the <strong>in</strong>fluence of ionic copper as well as onmetallic copper surfaces.(1) Rens<strong>in</strong>g C, Grass G. 2003. FEMS Microbiol Rev 27:197-213(2) Thieme D, Grass G. 2010. Microbiol Res 165:108-115(3) Ilari A, Ceci P. 2002. J Biol Chem 277:37619-23(4) Espirito Santo C, et al. 2011. Appl Environ Microbiol 77:794-802(5) Warnes SL, Green SM, Michels HT, Keevil CW. 2010. Appl Environ Microbiol 76:5390-5401SSP038Clon<strong>in</strong>g, expression and purification of extracellular ser<strong>in</strong>eprotease Esp, a biofilm-degrad<strong>in</strong>g enzyme, from StaphylococcusepidermidisK. Okuda 1 , S. Sugimoto 1 , T. Iwase 1 , F. Sato 2 , A. Tajima 1 , H. Sh<strong>in</strong>ji 1 ,Y. Mizunoe* 11 The Jikei University School of Medic<strong>in</strong>e, Department of Bacteriology, Tokyo,Japan2 The Jikei University School of Medic<strong>in</strong>e, Division of Infectious Diseaseand Control, Tokyo, JapanStaphylococcus epidermidis Esp, an extracellular ser<strong>in</strong>e protease, <strong>in</strong>hibitsStaphylococcus aureus biofilm formation and nasal colonization. Tofurther expand the biotechnological applications of Esp, we developed ahighly efficient and economic method for the purification of recomb<strong>in</strong>antEsp based on a Brevibacillus chosh<strong>in</strong>ensis expression-secretion system.Theespgene was fused with the N-term<strong>in</strong>al Sec-dependent signal sequenceof the B. chosh<strong>in</strong>ensis cell wall prote<strong>in</strong> and a C-term<strong>in</strong>al hexa-histid<strong>in</strong>e-taggene. The recomb<strong>in</strong>ant Esp was expressed and secreted <strong>in</strong>to the optimizedmedium as an immature form and subsequently activated by thermolys<strong>in</strong>.The mature Esp was easily purified by a s<strong>in</strong>gle purification step us<strong>in</strong>gnickel aff<strong>in</strong>ity chromatography and showed proteolytic activity as well asS. aureus biofilm destruction activity. The purification yield of thedeveloped extracellular production system was 5 mg recomb<strong>in</strong>ant matureEsp per 20-ml culture, which was much higher than that of an <strong>in</strong>tracellularproduction system <strong>in</strong> Escherichia coli (3 mg recomb<strong>in</strong>ant Esp per 1-lculture). Our f<strong>in</strong>d<strong>in</strong>gs will be a powerful tool for the production andpurification of recomb<strong>in</strong>ant Esp and also applicable to a large variety ofrecomb<strong>in</strong>ant prote<strong>in</strong>s used for basic researches and biotechnologicalapplications.BIOspektrum | Tagungsband <strong>2012</strong>


237SYV1-FGThe road ahead for microbial systematics: rais<strong>in</strong>g our game <strong>in</strong>the post-genomic eraI.C. SutcliffeNorthumbria University, School of Life Sciences, Newcastle upon Tyne,United K<strong>in</strong>gdomMicrobial systematics and taxonomy are vital <strong>in</strong> provid<strong>in</strong>g a soundramework for the activities of all microbiologists. Understand<strong>in</strong>g microbialdiversity can be considered one of the key goals of systematics and thisactivity has been revolutionised by molecular sequence-based approaches.Although formal descriptions of novel taxa rightly rema<strong>in</strong> a cornerstone oftaxonomy, it is a concern that most 'traditional' practice now consists ofsimply describ<strong>in</strong>g novel taxa (typically at the genus/species levels). As thevast majority (>75%) of novel descriptions are based on s<strong>in</strong>gle stra<strong>in</strong>s, apragmatic assessment of current practice <strong>in</strong>dicates that many of thephenotypic tests performed are of questionable taxonomic value andnecessity. In this context, it is therefore disappo<strong>in</strong>t<strong>in</strong>g that there arerelatively few synoptic studies performed that re-evaluate or extendestablished taxonomies, <strong>in</strong>clud<strong>in</strong>g plac<strong>in</strong>g the taxonomy <strong>in</strong> an ecologicalcontext. Moreover, the pr<strong>in</strong>ciples and practice of prokaryotic systematicshave not yet successfully accommodated the dramatic impact of theavailability of rapidly <strong>in</strong>creas<strong>in</strong>g numbers of whole genome sequences.This technological shift suggests that a significant reappraisal of theprocedures used to describe novel prokaryotic taxa is needed, <strong>in</strong>clud<strong>in</strong>gdef<strong>in</strong><strong>in</strong>g new m<strong>in</strong>imal standards and the likely <strong>in</strong>troduction of newpublication formats. Action is urgently needed if an authoritativeframework (<strong>in</strong>clud<strong>in</strong>g the type system) is to be ma<strong>in</strong>ta<strong>in</strong>ed and <strong>in</strong> order tosusta<strong>in</strong> systematics as an attractive career choice for 21st centurymicrobiologists.SYV2-FGThe purpose of prokaryote systematics; clarify<strong>in</strong>g muddy watersB.J. T<strong>in</strong>dallLeibniz Institut DSMZ - Deutsche Sammlung von Mikroorganismen undZellkulturen GmbH, Braunschweig, GermanyIt is now generally accepted that prokaryotes (members of the Bacteria andArchaea) constitute one of the most diverse and on an evolutionary scalethe oldest groups of organisms on this planet. At the same time"microbiology" is one of the younger of the biological sciences. Thecomb<strong>in</strong>ation of exist<strong>in</strong>g technologies (and the associated knowledge)together with the development of new methodologies presents themicrobiologist with the opportunity to gather new <strong>in</strong>formation onprokaryotes, to re-evaluate exist<strong>in</strong>g data as well as to bridge the gapbetween exist<strong>in</strong>g <strong>in</strong>formation and that which is be<strong>in</strong>g gathered from newermethods. While systematics has a clear role to play this can only take placeif one appreciates the scope of this branch of the natural sciences. Thepurpose of this talk is to fathom the depths and chart the waters ofprokaryote systematics.SYV3-FGA s<strong>in</strong>gle-cell sequenc<strong>in</strong>g approach to the classification of large,vacuolated sulfur bacteriaV. Salman* 1 , R. Amann 1 , A.-C. Girnth 1 , L. Polerecky 1 , J. Bailey 2 , S. Høgslund 3 ,G. Jessen 4 , S. Pantoja 4 , H.N. Schulz-Vogt 11 Max Planck Institute for Mar<strong>in</strong>e Microbiology, Microbiology, EcophysiologyGroup, Bremen, Germany2 University of M<strong>in</strong>nesota – Tw<strong>in</strong> Cities, Department of Geology andGeophysics, Tw<strong>in</strong> Cities, United States3 Aarhus University, Department of Biological Sciences, Aarhus, Denmark4 University of Concepción, Department of Oceanography and Center forOceanographic Research <strong>in</strong> the Eastern South Pacific, Concepción, ChileThe colorless, large sulfur bacteria have an <strong>in</strong>trigu<strong>in</strong>g appearance as theycan be enormous <strong>in</strong> size and extremely abundant <strong>in</strong> sulfidic habitats 1-3 .They were first discovered <strong>in</strong> 1803 4 and have hence been classifiedaccord<strong>in</strong>g to their conspicuous morphology. However, morphologicalcriteria have frequently proven to be mislead<strong>in</strong>g for the prediction ofphylogenetic relatedness <strong>in</strong> microbiology. Sequenc<strong>in</strong>g of several 16SrRNA genes of large sulfur bacteria <strong>in</strong>dicated <strong>in</strong>consistencies between themorphologically determ<strong>in</strong>ed taxonomy and the genetically derivedclassification, lead<strong>in</strong>g to polyphyletic taxa 5-6 . However, a major obstacleto properly reclassify this group is the general failure <strong>in</strong> grow<strong>in</strong>g most ofthem <strong>in</strong> pure culture. In the present study, we sequenced nearly full-length16S rRNA genes and the <strong>in</strong>ternal transcribed spacer (ITS) regions from<strong>in</strong>dividual hand-picked s<strong>in</strong>gle cells and filaments of large sulfur bacteria.For each <strong>in</strong>dividual, the specific morphology was recorded as well. Wefound that morphology was strongly mislead<strong>in</strong>g <strong>in</strong> this group of bacteria ason the one hand several morphologies clustered with<strong>in</strong> one species and, onthe other hand, some morphological features clustered <strong>in</strong>to several species,genera or even families.In this study, we <strong>in</strong>cluded the yet partially sequenced membersThiomargarita namibiensis, Thioploca araucaeand Thioploca chileae, andsequenced also newly identified types of large sulfur bacteria. Based on128 nearly full-length 16S rRNA-ITS sequences and <strong>in</strong>tend<strong>in</strong>g aprospective reclassification we propose n<strong>in</strong>e novel Candidatusspeciesalong with seven Candidatusgenera. We furthermore suggest the retentionof the family Beggiatoaceae, as opposed to Thiotrichaceae 7 .1V.A. Gallardo, Nature268 (1977) p. 331-332.2 B. B. Jørgensen, Mar<strong>in</strong>e Biology41 (1977) p. 19-28.3 H. N.Schulz, T. Br<strong>in</strong>khoff, T. G. Ferdelman, M. H. Mar<strong>in</strong>e, A. Teske, B. B. Jørgensen, Science284 (1999)p. 493-495.4 J. P. Vaucher, Paschoud, Geneva (1803) p. 1-285.5A. Ahmad, J. P. Barry, D. C. Nelson, Applied and Environmental Microbiology65 (1999) p. 270-277.6M. Mussmann, H. N. Schulz, B. Strotmann, T., Kjaer, L. P. Nielsen, R. A. Rosselló-Mora, R. I. Amann, B.B. Jørgensen, Environmental Microbiology5 (2003) p. 523-533.7G. M. Garrity, J. A. Bell, T. Lilburn <strong>in</strong> Bergey´s Manual of Systematic Bacteriology, ed. Garrity, G.M.,Brenner, D.J., Krieg, N.R., Staley, J.T. (Spr<strong>in</strong>ger, New York) (2005) p. 131.8 This study was funded by the Max Planck Society.SYV4-FGA phylogeny-compliant revision of the systematics for thebasal fungal l<strong>in</strong>eages: Chytridiomycota and ZygomycotaK. Voigt* 1,2 , P.M. Kirk 31 Leibniz Institute for Natural Product Research and Infection Biology,Jena Microbial Resource Collection, Jena, Germany2 University of Jena, Dept. Microbiology and Molecular Biology, Jena,Germany3 CABI UK Centre, Bakeham Lane, Egham, United K<strong>in</strong>gdomhe goal of modern taxonomy is to understand the relationships of liv<strong>in</strong>gorganisms <strong>in</strong> terms of evolutionary descent. Thereby, the relationshipsbetween liv<strong>in</strong>g organisms are understood <strong>in</strong> terms of nested clades - everytime a speciation event takes place, two new clades are produced. Lifecomprises three doma<strong>in</strong>s of liv<strong>in</strong>g organisms, these are theBacteria,theArchaeaand theEukaryota. With<strong>in</strong> the eukaryotic doma<strong>in</strong> the fungi forma monophyletic group of the eukaryotic crown group, and are thus high up<strong>in</strong> the evolutionary hierarchy of life. Fungus-like organisms possess certa<strong>in</strong>morphological features of fungi, such as the hyphal organization oftheOomycotaor the spores and reproductive structures <strong>in</strong>side afructification of plasmodiophorids (Plasmodiophoromycota) and slimemoulds (Mycetozoa). TheFungisensu strictocomprise a heterogenousgroup of microorganisms which (i) are primarily heterotrophic with an (ii)osmotrophic style of nutrition conta<strong>in</strong><strong>in</strong>g (iii) chit<strong>in</strong> and its derivativesrepresent<strong>in</strong>g key compounds <strong>in</strong> a rigid cell wall dur<strong>in</strong>g major stages oftheir life cycle. The most basal fungal l<strong>in</strong>eages are the zoosporic chytridsand the zygosporic fungi form<strong>in</strong>g the transition <strong>in</strong> evolution of aquatic andterrestrial life style. The systematics of basal fungi is subject to scientificdebate. Here, a novel concept, which resolves the systematics <strong>in</strong> aphylogeny-compliant manner [1-4], will be presented and discussed withrespect to concepts of the past [5, 6] and their impact on fungalnomenclature.C. Schoch, K.A. Seifert, S. Huhndorf et al., PNAS (2011), <strong>in</strong> press.I. Ebersberger, R. de Matos Simoes, A. Kupczok et al. Mol. Biol. Evol (2011), <strong>in</strong> press.K. Voigt <strong>in</strong> “Syllabus of Plant Families”, ed. W. Frey et al., (Bornträger Verlag) (<strong>2012</strong>), <strong>in</strong> press.K. Voigt and P.M. Kirk <strong>in</strong> „Encyclopedia of Food Microbiology“, 2 nd ed., (Elsevier) (<strong>2012</strong>), <strong>in</strong> press.D.S. Hibbett, M. B<strong>in</strong>der, J.F. Bischoff. et al., Mycol. Res.111(2007), p. 509-547.K. Voigt and P.M. Kirk, Appl. Microbiol. Biotechnol. (2011), p. 41-57.We k<strong>in</strong>dly acknowledge the Fungal Work<strong>in</strong>g Group of the International Fungal Barcod<strong>in</strong>g Consortium andthe Assembl<strong>in</strong>g the Fungal Tree of Life Consortium for <strong>in</strong>tegration <strong>in</strong>to their global network. We thank IngoEbersberger (CIBIV, University of Vienna, Austria), Rytas Vilgalys and Andrij Gryganski (Duke UniversityDurham, NC, USA), Conrad Schoch (NCBI, NIH, Bethesda, Maryland, USA), Yi-Jian Yao and Xiao-yongLiu (Ch<strong>in</strong>ese Academy of Sciences, Beij<strong>in</strong>g, Ch<strong>in</strong>a), Hsiao-man Ho (National University of Taiwan, Taipei,Taiwan), Gerald L. Benny (University of Ga<strong>in</strong>sville, FL, USA), Scott E. Baker (Pacific Northwest NationalLaboratory, Richland, WA, USA), Gareth W. Griffith and Joan Edwards (University of Aberythswyth,Wales, U.K), Kater<strong>in</strong>a Fliegerova (Czech Academy of Sciences, Prague, Czech Republic) and the Thür<strong>in</strong>gerArbeitsgeme<strong>in</strong>schaft für Mykologie (ThAM) for stra<strong>in</strong> and data share.YEV1-FGNew and old tricks <strong>in</strong> the biogenesis of mitochondrial outermembrane prote<strong>in</strong>sD. RapaportUniversity of Tüb<strong>in</strong>gen, Interfaculty Institute of Biochemistry, Tüb<strong>in</strong>gen,GermanyThe mitochondrial outer membrane conta<strong>in</strong>s a diverse set of prote<strong>in</strong>s thatmediate numerous <strong>in</strong>teractions between the metabolic and genetic systemsof mitochondria and the rest of the eukaryotic cell. All these prote<strong>in</strong>s arenuclear-encoded, synthesized <strong>in</strong> the cytosol and harbor signals that areessential for their subsequent import <strong>in</strong>to mitochondria. We <strong>in</strong>vestigate themolecular mechanisms by which mitochondrial outer membrane prote<strong>in</strong>sare targeted to mitochondria, <strong>in</strong>serted <strong>in</strong>to the outer membrane andassembled <strong>in</strong>to functional complexes. Evolutionary conserved importpathway for -barrel prote<strong>in</strong>s as well as novel biogenesis processes forhelical prote<strong>in</strong>s will be discussed.BIOspektrum | Tagungsband <strong>2012</strong>


238YEV2-FGMechanistic <strong>in</strong>sight <strong>in</strong>to receptor endocytosis and endosomalA/B tox<strong>in</strong> traffick<strong>in</strong>g <strong>in</strong> yeastE. Gießelmann, J. Dausend, B. Becker, M.J. Schmitt*Saarland University, Department of Biosciences (FR 8.3), Molecular &Cell Biology, Saarbrücken, GermanyYeast stra<strong>in</strong>s <strong>in</strong>fected with the M28 dsRNA killer virus secrete aheterodimeric killer tox<strong>in</strong> (K28) belong<strong>in</strong>g to the family of microbial A/Btox<strong>in</strong>s. After receptor-mediated cell entry, the tox<strong>in</strong> reaches the cytosol ofa target cell by travell<strong>in</strong>g the secretion pathway <strong>in</strong> reverse [1]. The alphatox<strong>in</strong> <strong>in</strong>hibits DNA synthesis <strong>in</strong> the nucleus and causes apoptotic cell death[1]. Key components <strong>in</strong> the <strong>in</strong>toxification process are the -C-term<strong>in</strong>alHDEL motiv of the tox<strong>in</strong> and its <strong>in</strong>teraction with the HDEL receptorErd2p of the target cell. Most recent CSLM data <strong>in</strong> conjunction withErd2p-based reporter assays <strong>in</strong>dicated that Erd2p colocalizes to the plasmamembrane where it functions as membrane receptor for tox<strong>in</strong> endocytosis.Sequence analysis of Erd2p revealed N- and C-term<strong>in</strong>al endocytic motifsrelevant for receptor <strong>in</strong>ternalization. Physical Erd2p/Rsp5p <strong>in</strong>teractionidentified via BiFC analysis <strong>in</strong>dicated that receptor (mono)ubiquitiationtriggers the <strong>in</strong>ternalization of receptor-bound tox<strong>in</strong>. Additional studiesverified the importance of early mediators of endocytosis, <strong>in</strong>clud<strong>in</strong>g thecoat build<strong>in</strong>g complex and the act<strong>in</strong> mach<strong>in</strong>ery for tox<strong>in</strong> uptake as well asAP2-complex components, which so far have only been described to be<strong>in</strong>volved <strong>in</strong> the endocytosis of mammalian cells [2]. To further dissecttox<strong>in</strong> traffick<strong>in</strong>g, biologically active K28/mCherry fusions were expressed<strong>in</strong> Pichia pastoris and used to track the tox<strong>in</strong>'s transit through theendocytic pathway, <strong>in</strong>clud<strong>in</strong>g TIRF microscopy for quantitative analysesof Erd2-GFP mobility <strong>in</strong> wild-type yeast and selected endocytic mutants.Our studies were extended by <strong>in</strong>vestigat<strong>in</strong>g uptake and endocytic transportof the plant A/B tox<strong>in</strong> ric<strong>in</strong>. This heteromeric glycoprote<strong>in</strong> belongs to thefamily of ribosome <strong>in</strong>activat<strong>in</strong>g prote<strong>in</strong>s (RIPs) whose <strong>in</strong> vivo toxicityresults from the depur<strong>in</strong>ation of 28S rRNA catalyzed by the A-cha<strong>in</strong> ofric<strong>in</strong>, RTA. S<strong>in</strong>ce extention of RTA by a mammalian-specific ER retentionsignal (KDEL) significantly <strong>in</strong>creases RTA toxicity aga<strong>in</strong>st mammaliancells, we analyzed the phenotypic effect of RTA carry<strong>in</strong>g the yeast-specificER retention motif HDEL. Interest<strong>in</strong>gly RTA HDEL showed a similarcytotoxic effect on yeast as a correspond<strong>in</strong>g RTA KDEL variant on HeLacells. Furthermore, we established a powerful yeast bioassay for RTA <strong>in</strong>vivo uptake and traffick<strong>in</strong>g. The assay verified the RTA resistantphenotype seen <strong>in</strong> yeast mutants defective <strong>in</strong> early steps ofendocytosis(end3) and/or <strong>in</strong> RTA depur<strong>in</strong>ation activity(rpl12B) [3].Thus K28 and RTA represent powerful tools and substrates for generalstudies of endocytosis and endosomal traffick<strong>in</strong>g <strong>in</strong> eukaryotic cells.K<strong>in</strong>dly supported by grants from the Deutsche Forschungsgeme<strong>in</strong>schaft.1. M.J. Schmitt and F. Bre<strong>in</strong>ig (2006). Nat. Rev. Microbiol.4:, 212.2. S.Y. Carroll et al. (2009). Dev. Cell17: 552.3. B. Becker and M.J. Schmitt (2011). Tox<strong>in</strong>s7: 834.YEV3-FGThe conjunction of mRNA export and translationA. Hackmann, T. Gross, C. Baierle<strong>in</strong>, H. Krebber*University of Gött<strong>in</strong>gen, Institute for Microbiology and Genetics,Department Molecular Genetics, Gött<strong>in</strong>gen, GermanyIn recent years it has been shown that some mRNA export factors are also<strong>in</strong>volved <strong>in</strong> translation. Here we report on the identification of a noveltransport function of the yeast mRNA export factor Npl3 <strong>in</strong> the export oflarge ribosomal subunits from the nucleus to the cytoplasm. Interest<strong>in</strong>gly,while mRNAs are exported via the RNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> Npl3 and its<strong>in</strong>teract<strong>in</strong>g export receptor Mex67, the export of large ribosomal subunitsalso requires Mex67, however, <strong>in</strong> this case Mex67 directly b<strong>in</strong>ds to the 5SrRNA and does not require the Npl3-adapter. We discovered a novelfunction of Npl3 <strong>in</strong> mediat<strong>in</strong>g pre-60S ribosomal subunit export<strong>in</strong>dependent of Mex67. Npl3 <strong>in</strong>teracts with the 25S rRNA, ribosomal andribosome associated prote<strong>in</strong>s and with the NPC. Mutations <strong>in</strong> NPL3 lead toexport defects of the large subunit and genetic <strong>in</strong>teractions with other pre-60S export factors.YEV4-FGLocalization of mRNAs and endoplasmic reticulum <strong>in</strong> budd<strong>in</strong>gyeastJ. Fundakowski 1 , M. Schmid 2 , C. Genz 1 , S. Lange 2 , R.-P. Jansen* 11 Eberhard-Karls-Universität, Interfaculty Institute for Biochemistry, Tüb<strong>in</strong>gen,Germany2 Ludwig-Maximilians-Universität München, GeneCenter, Munich, GermanyLocalization of mRNAs contributes to generation and ma<strong>in</strong>tenance ofcellular asymmetry, embryonic development and neuronal function [1]. Itis a widely distributed process <strong>in</strong> s<strong>in</strong>gle-celled and multicellular eukaryotesbut has also been described for prokaryotes. In the budd<strong>in</strong>g yeastSaccharomyces cerevisiae, a m<strong>in</strong>imal prote<strong>in</strong> complex comprised of themyos<strong>in</strong> motor Myo4p, the RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She2p, and the adapterand RNA b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She3p localizes >30 mRNAs to the bud tip [2].This set of mRNAs <strong>in</strong>cludes 13 mRNAs encod<strong>in</strong>g membrane or secretedprote<strong>in</strong>s. It has been observed that ribonucleoprote<strong>in</strong> (RNP) particlesconta<strong>in</strong><strong>in</strong>g one of these mRNAs can co-localize with tubular ER structures.Such ER tubules form the <strong>in</strong>itial elements for segregation of cortical ER(cER) [3]. Co-localization has therefore been suggested to illustrate acoord<strong>in</strong>ation of mRNA localization and cER distribution [4]. By<strong>in</strong>vestigat<strong>in</strong>g mRNA localization <strong>in</strong> yeast mutants defective <strong>in</strong> cERsegregation, we demonstrate that proper cER segregation is required forlocalization of a subset of mRNAs. These mRNAs are expressed at thetime of tubular ER movement <strong>in</strong>to the bud. Localization of ASH1 mRNAthat is expressed after tubular movement has ceased is not affected <strong>in</strong> anyof these mutants. Co-localization of RNPs and tubular ER depends on theRNA-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> She2p and requires its tetramerization. She2p canb<strong>in</strong>d to artificial, prote<strong>in</strong>-free liposomes <strong>in</strong> a membrane curvaturedependentmanner with a preference for small liposomes with a diameterresembl<strong>in</strong>g yeast ER tubules. In support of this f<strong>in</strong>d<strong>in</strong>g, loss of prote<strong>in</strong>srequired for tubule formation result <strong>in</strong> defective mRNA localization <strong>in</strong>vivo. Our results demonstrate that She2p is not only an RNA- but alsolipid-b<strong>in</strong>d<strong>in</strong>g prote<strong>in</strong> that recognizes membrane curvature, which makes itan ideal coord<strong>in</strong>ator of ER tubule and mRNA co-transport1. K. Mart<strong>in</strong> and A. Ephrussi, Cell136(2009), p. 719.2. G. Gonsalez, C.R. Urb<strong>in</strong>ati, and R.M. Long, Biol. Cell97 (2005), p. 75.3. Y. Du, S. Ferro-Novick, and P. Novick, J. Cell Sci.117(2004), p. 2871.4. M. Schmid, A. Jaedicke, T.-G. Du, and R.-P. Jansen, Curr. Biol16(2006), p. 1538.YEV5-FGEukaryotic Ribosome Biogenesis: Analysis of the NucleolarEssential Yeast Nep1 Prote<strong>in</strong> and Mutations Caus<strong>in</strong>g theHuman Bowen-Conradi SyndromeK.-D. Entian*, B. MeyerJohann Wolfgang Goethe University, Cluster of Excellence: MacromolecularComplexes and Institute for Molecular Biosciences, Frankfurt a.M., GermanyIn eukaryotes, ribosome biogenesis needs the coord<strong>in</strong>ated <strong>in</strong>teraction ofrRNAs and prote<strong>in</strong>s. We identified the Nep1 (Emg1) prote<strong>in</strong> family as anessential prote<strong>in</strong> <strong>in</strong>volved <strong>in</strong> ribosome biogenesis. The yeast and thehuman Nep1 prote<strong>in</strong>s are localized <strong>in</strong> the nucleolus and the humanHsNep1 can complement the Nep1 function <strong>in</strong> a yeast nep1 mutant.A mutation which abolished the yeast Nep1 RNA b<strong>in</strong>d<strong>in</strong>g was responsiblefor the human Bown-Conradi-Syndrome (BCS) which causes early childdeath. Analysis of yeast and human mutations showed that the mutatedprote<strong>in</strong>s lost their nucleolar location and their RNA-b<strong>in</strong>d<strong>in</strong>g activity.Structure analysis of the Nep1 prote<strong>in</strong> suggested its function as a methyltransferase and, recently, we could confirm that Nep1 methylated 1191 <strong>in</strong>the decod<strong>in</strong>g center of the 18S rRNA. Additionally, the Nep1 prote<strong>in</strong> has adual function <strong>in</strong> ribosome biogenesis and supports Rps19 assembly to thepre-ribosome.Buchhaupt et al. (2006) Mol. Genet. Genomics. 276: 273; Buchhaupt et al. (2007) FEMS Yeast Res.7: 771,. Eschrich et al. (2002) Curr. Genet. 40: 326; Taylor et al. (2007) NAR 36: 1542; Armisteadet al. (2009) Am. J. Hum. Genet. 84, 728;Wurm et al. (2010) NAR 38: 2387, Meyer et al.(2011)NAR39: 1524.YEV6-FGHigh-level production of tetraacetyl phytosph<strong>in</strong>gos<strong>in</strong>e (TAPS)by comb<strong>in</strong>ed genetic eng<strong>in</strong>eer<strong>in</strong>g of sph<strong>in</strong>goid basebiosynthesis and L-ser<strong>in</strong>e availability <strong>in</strong> the non-conventionalyeast Pichia ciferriiC. Schorsch, E. Boles*Johann Wolfgang Goethe University, Institute of Molecular Biosciences,Frankfurt a.M., GermanyThe non-conventional yeast Pichia ciferrii (formerly known as Hansenulaciferri) is the only known organism that is specialized <strong>in</strong> produc<strong>in</strong>g andsecret<strong>in</strong>g large quantities of tetraacetyl phytosph<strong>in</strong>gos<strong>in</strong>e (TAPS), a fullyacetylated form of the sph<strong>in</strong>golipid <strong>in</strong>termediate phytosph<strong>in</strong>gos<strong>in</strong>e.Because of its unique feature this yeast is an attractive microorganism forthe <strong>in</strong>dustrial production of TAPS. Sph<strong>in</strong>golipids are important <strong>in</strong>gredients<strong>in</strong> cosmetic applications and formulations. They play important roles <strong>in</strong>human stratum corneum as they are <strong>in</strong>volved <strong>in</strong> sk<strong>in</strong> permeability andantimicrobial barrier homeostatic functions.Our work aimed to improve TAPS production by genetic eng<strong>in</strong>eer<strong>in</strong>g of P.ciferrii. In a first step, we could <strong>in</strong>crease TAPS production by improv<strong>in</strong>gprecursor availability. This was achieved by block<strong>in</strong>g degradation of L-ser<strong>in</strong>e which - <strong>in</strong> the first committed step of sph<strong>in</strong>golipid biosynthesis - iscondensed with palmitoyl-CoA by ser<strong>in</strong>e palmitoyltransferase. Moreover,genetic eng<strong>in</strong>eer<strong>in</strong>g of the sph<strong>in</strong>golipid pathway further <strong>in</strong>creasedsecretion of TAPS considerably. The f<strong>in</strong>al recomb<strong>in</strong>ant P. ciferrii stra<strong>in</strong>produced up to 199 mg (TAPS) * g -1 (cdw) with a maximal production rate of8.42 mg * OD 600nm -1 * h -1 and a titer of about 2 g * L -1 , and should beapplicable for <strong>in</strong>dustrial TAPS production.We would like to thank Evonik Industries and the German FederalM<strong>in</strong>istry of Education and Research (Bundesm<strong>in</strong>isterium für Bildung undForschung, BMBF; Bio<strong>in</strong>dustrie 2021, “FerDi”) for support.BIOspektrum | Tagungsband <strong>2012</strong>


239YEV7-FGThe genetics of ester synthesis <strong>in</strong> Hanseniaspora uvarumdur<strong>in</strong>g w<strong>in</strong>emak<strong>in</strong>gS. Fischer 1 , E. Sieber 2 , Z. Zhang 2 , J. He<strong>in</strong>isch 3 , C. von Wallbrunn* 11 Geisenheim Research Center, Department of Microbiology andBiochemistry, Geisenheim, Germany2 Hochschule Rhe<strong>in</strong>Ma<strong>in</strong>, Fachbereich Geisenheim, Geisenheim, Germany3 University of Osnabrück, Department of Genetics, Faculty of Biology,Osnabrück, GermanyIt is well known that the so called Non-Saccharomycetes have a strong<strong>in</strong>fluence on the chemical composition and the sensorical quality of w<strong>in</strong>es.Hanseniaspora uvarum is a common yeast found <strong>in</strong> the early stages ofspontaneous w<strong>in</strong>e fermentations but also sometimes <strong>in</strong> starter cultures<strong>in</strong>oculated fermentations. Depend<strong>in</strong>g on the phytosanitary status of thegrapes <strong>in</strong> a v<strong>in</strong>eyard dur<strong>in</strong>g ripen<strong>in</strong>g up to 90% of a yeast population at thebeg<strong>in</strong>n<strong>in</strong>g of fermentation can belong to this species. In some cases,fermentations with stra<strong>in</strong>s of this organism show <strong>in</strong>terest<strong>in</strong>gly positivebouquets affected by positive esters flavours. But it is also known thatfermentations with high amounts of H. uvarum dur<strong>in</strong>g the beg<strong>in</strong>n<strong>in</strong>g canbe characterized by high amounts of acidic acid and the result<strong>in</strong>g ethylacetate ester, both typical off flavours <strong>in</strong> w<strong>in</strong>e.The composition and pH of musts, availability of nutrients for yeastgrowth, the temperature dur<strong>in</strong>g fermentation and viticultural andoenological methods are parameters which can <strong>in</strong>fluence differentpathways of the yeast metabolism <strong>in</strong>volved <strong>in</strong> the production of flavoursand aromas, for example esters (Lilly et al., 2000)In S. cerevisiae, esters are produced by two alcohol acyltransferases ATF1and ATF2 and an acyl-coenzyme A: ethanol O-acyltransferase EEB1.These enzymes and genes are well characterized.The question is <strong>in</strong> which metabolic pathway(s) are esters produced by H.uvarum and how potential genes are regulated to show the formerlydescribed observations concern<strong>in</strong>g the ester production <strong>in</strong> a positive ornegative way.In contrast to S. cerevisiae genomic data of H. uvarum were not availableso far. In a cooperation project with J. He<strong>in</strong>isch, Department of Genetics,University of Osnabrück, a type stra<strong>in</strong> was sequenced. Us<strong>in</strong>g thesesequences possible candidates of ATF and EEB genes <strong>in</strong> H. uvarum wereidentified. Derived primers were used to amplify these genes by PCR. ThePCR products were characterized by sequenc<strong>in</strong>g and cloned <strong>in</strong> E. coli. Onepart of the work was to reconstitute the correspond<strong>in</strong>g EuroScarf knockout-mutantsand aftergrape must fermentations the ester formation byanalyzed by GC-MS. Another part of this work was to observe underwhich conditions high amounts of several ester compounds are produced.The next steps will be the development of an efficient transformationprotocol, the generation of knock-out and over expression mutants and theanalysis of the promotor sequences.1. M. Lilly, M.G. Lambrechts, I.S. Pretorius, Yeast 23 (2000), p. 641-659YEV8-FGFeel me, thrill me, kill me - when K. lactis meets S. cerevisiaeR. Schaffrath* 1,2 , C. Bär 1,2 , D. Jablonowski 1,21 Universität Kassel, Institut für Biologie, Abteilung Mikrobiologie, Kassel,Germany2 University of Leicester, Department of Genetics, Leicester, GermanyRecent studies have shown that transfer RNAs (tRNAs) are not onlyessential for decod<strong>in</strong>g messenger RNAs (mRNAs) but also serve aspathorelevant targets for microbial endoribonuclease tox<strong>in</strong>s (ribotox<strong>in</strong>s)from bacteria, yeast and fungi that cleave with<strong>in</strong> tRNA anticodons andthereby <strong>in</strong>hibit growth of sensitive target cells. Strik<strong>in</strong>gly, these tRNaseribotox<strong>in</strong>s ensure survival of their producers aga<strong>in</strong>st other microbialcompetitors <strong>in</strong> the same ecological niche and often, their attacks on tRNAslead to cell death by way of tRNA depletion. Antifungal tRNase ribotox<strong>in</strong>s<strong>in</strong>clude the zymoc<strong>in</strong> complex from dairy yeast Kluyveromyces lactis whichkills sensitive cells of baker’s yeast Saccharomyces cerevisiae.Intrigu<strong>in</strong>gly, zymoc<strong>in</strong>’s tRNase activity targets tRNA species that possessspecific nucleobase modifications at their anticodon wobble position andthese modifications are functionally conserved among prokaryal andeukaryal organisms. Therefore, our idea was to take the basic biology oftRNase ribotox<strong>in</strong>s and apply this to cell systems, <strong>in</strong>clud<strong>in</strong>g HeLa tumourcells, whose proliferation heavily relies on proper tRNA functions <strong>in</strong>mRNA translation and de novo prote<strong>in</strong> synthesis. Our pilot f<strong>in</strong>d<strong>in</strong>gs<strong>in</strong>dicate that expression of the zymoc<strong>in</strong> tRNase from K. lactis not onlykills sensitive cells of S. cerevisiae but also affects the growth and viabilityof higher eukaryal cells <strong>in</strong>clud<strong>in</strong>g plants and mammals. Hence, weconclude and propose <strong>in</strong> this session that microbial tRNase ribotox<strong>in</strong>s maybe <strong>in</strong>voked as novel anti-proliferative factors for biomedical oragrobiological <strong>in</strong>tervention schemes [1].1. Support of the work to RS by funds from the alumni programme of the Alexander von Humboldtfoundation, Bonn, Germany, Department of Genetics, University of Leicester, UK, theBiotechnology and Biological Sciences Research Council, UK (grant BB/F019106/1) andUniversität Kassel, Germany, is greatly acknowledged.BIOspektrum | Tagungsband <strong>2012</strong>


240 AUTORENAbdel-Mageed, W.Achstetter, T.Adam, A.Adam, P.Adam, S.Adler, M.Adler, N.L.Adrian, L.Aeron, A.Afon<strong>in</strong>, S.Agha, A.Ahmad, I.Ahmed, Y.Aistleitner, K.Ak<strong>in</strong>eden, M.Akob, D.M.Akopian, T.Al Nayal, A.Al Rowaihi, I.Al Toma, R.Al-Salamah, A.Alawi, M.Albada, B.Alber, J.Albermann, C.Albers, S.V.Albert, S.Albrecht, D.Alexandre, B.Alfaro-Esp<strong>in</strong>oza, G.Alfetory, A.Algora, C.Alruba, A.Altenbuchner, J.Amann, R.Amelung, W.Am<strong>in</strong>, R.Amoozegar, M.A.Andrei, A.M.Andresen, K.Anetzberger, C.Angel, R.Angelov, A.Ansorge, H.Antelmann, H.Antranikian, G.Antwerpen, M.Apelt, S.Aranda, E.Arendt, W.Arkenberg, A.Armitage, J.Arndt, A.Arndt, M.Asam, D.Aschenbach, K.Ashraf, A.Ashraf, H.Assmy, P.Attaiech, L.Aurass, P.Aurich, A.MEP022PSP031MEV007HMP007MPP030FUP006MPP054OTP051OTP061OTP090PSP021PSP036PSP061SMP035CEP004OTP003MPV017RSP032OTV026OTP074OTP094MPP074OTP139OTP139MEP044OTP002SMP029SMP045CEV008OTP076OTP134ISV04CEV016OTV006OTP067RSV006RSP016SIV7-FGRSV003SMV002SMP010OTP143OTP051OTP056OTV022OTP087OTP088OTP109OTP117OTV011OTP154SSP027SYV3-FGSMV013RSP031RSP032OTP038FUP014FUV004RSP004RSP009SMP015OTP105PSP049SSP028RSV003SSP008OTV018OTP057OTP070OTP105SMP023OTP010OTP072FUV006CEV003MPP064MPP001MPP025RSP027FBV6-FGMPV5-FGSMP015RSP020MEP004OTP154OTP125MPP055MPP058FUP021FUP023Autenrieth, I.B.Averhoff, B.Axmann, I.M.Azhar, A.Azhough, R.Bab<strong>in</strong>, D.Bab<strong>in</strong>ger, P.Babski, J.Bach, J.Backofen, R.Bahl, H.Bahr, A.Baier, S.Baierle<strong>in</strong>, C.Bailey, J.Bajerski, F.Ballhausen, B.Banasiak, R.Bandow, J.E.Banerji, S.Bang, C.Bange, F.C.Barchmann, S.Bardiaux, B.Barends, T.Barkovits, K.Barta, J.Bartetzko, S.Barth, G.Barthel, M.Bartolo, D.Bartsch, A.Barzantny, H.Bashir, S.Basi-Chiplau, S.Bauermeister, J.Baumann, S.Baumgardt, K.Baumgarten, T.Baumgartner, V.Baumgärtner, F.Baur, S.Bayer, K.Bayram, Z.Becher, D.Bechlars, S.Becker, A.Becker, B.Becker, J.Becker, K.Becker, M.Beckmann, B.Beckmann, S.Behr, S.Behr, T.Behrends, V.CEV007CEP032HMP007HMP008HMP009HMP013MPV005MPP022MPP038MPP065OTP069SSV005OTP137MPP002MPP003HMP002SMP047OTP047OTP089CEP005OTP113CEP008PSV005PSP043RSP046SMV009OTP129YEV3-FGSYV3-FGSMP026MPP034FUP005CEV008MPP061HMP011MPV022OTP032OTP071OTV016OTP155OTV005PSV015RSP040SMV006OTP119FUP021FUP023MPV017BDP008MEV010SSV001RSP003OTP026MEP009SIP1-FGSSP010SMP044CEV004SMP013OTP134MPV026MPP042MEP043FUP017CEV008FBV5-FGFUP007MPV014MPP013MPP033MPP055RSV003SSP008MPP071MPV019SMP044FUP012YEV2-FGMEV010MPV011OTP128SSV001MPP034SSP004OTP071OTP004RSP013OTP016MPV015SSV002Behrens, S.Beier, A.Beier, D.Bendas, G.Bender, J.Bengelsdorf, F.Bennke, C.Bensalem, K.Benz, J.Bera, A.Berditsch, M.Berendt, S.Bereswill, S.Berg, C.Berg, I.Berg, T.Berger, C.Berger, J.Berger, S.Berghoff, B.Bergmann, J.Bergmann, S.Berkelmann-Löhnertz, B.Berscheid, A.Bertram, R.Bertsche, U.Beuttler, H.Beyer, L.Bhansali, A.Biddle, J.Biener, R.Bier, N.Bierbaum, G.Bigelmayr, S.Bijtenhoorn, P.Bilal, Z.E.Bills, G.B<strong>in</strong>nenkade, L.Birke, J.Birkigt, J.Bisch, G.Bischoff, M.Bischoff, S.C.Biskup, S.Bittner, N.Bižić-Ionescu, M.Blank, S.Blanka, A.Blaser, M.Blatt, J.Blaut, M.Blaß, L.Bleichert, P.Bleiziffer, I.Bleses, K.Bl<strong>in</strong>, K.Blocker, A.J.Bloemendal, S.Bloes, D.Blokesch, M.Blum, P.Blumenberg, M.Blöthe, M.Bochmann, S.Bockemühl, V.Bocola, M.SMV010SMP020SMP021SMP022FUP028MPP029CEP022MPV001MPP063MPP044SSP027OTP025OTP089RSP031RSP032CEP004SSP002BDV004MPV027OTP004PSP042HMV002CEP008SMV007PSP030RSV011RSP005PSP016MPP016MPP023MEP030MPP072PSP018PSP024SSV010SSP011CEP013OTP077OTP109PSV003SMP020SMP021OTV029MEP011MEP034MPP071CEP022MEV002MEP009MPP070MPP072MPV2-FGMPP069MPP048MEV009MEP004SMP028PSP058SSP019OTP042OTP073SMV011SMP042MPP034HMV003HMV003SMV014PSP064OTP105MPV021SMP014MPP034HMV001SMP050SSP014MPV002MPP034OTP015MPV012MEP029MPP039OTP127SMP042OTP110OTV030OTV001OTV002OTP057OTP105OTV004Bode, H.B.Bodi, X.Boehm, D.Boetius, A.Boettger, U.Bohn, E.Boldt, S.Boles, E.Boll, B.Boll, M.Bolte, K.Bombach, P.Bondarev, V.Bongaerts, J.Bongen, P.Bonitz, T.Borg, S.Bormann, J.Borries, A.Bos, K.Bosch, J.Boschi Bazan, S.Bosch<strong>in</strong>i, A.Bott, M.Brachmann, A.O.Brakhage, A.A.Brameyer, S.Bramkamp, M.Brana, A.F.Brandes Ammann, A.Brandl, H.Brandt, K.Braun, B.Braun, M.Braun, V.Braune, A.Braunschweig, J.Braus-Stromeyer, S.A.Braus, G.H.Breddermann, H.Bre<strong>in</strong>ig, F.Bre<strong>in</strong>ig, T.Breitl<strong>in</strong>g, R.Bremer, E.Brendel, J.Brenner-Weiß, G.Bretsche, U.Breuer, M.Briegel, A.Br<strong>in</strong>ger, S.Brock, M.MEV006RSP019OTV027HMV003OTV029OTP097MPP022MPP038OTP152YEV6-FGMEV004RSV005RSP008RSP011RSP021RSP053EMV7-FGBDP011SMV009EMV3-FGOTP099OTP106MEP026BDP012BDP013PSP020FBV7-FGMPP066MPV020OTP080OTV013SSP018BDP007OTV023PSP062RSV014RSP026RSP044SSV003RSP019FBV4-FGFUP017FUP032FUP033MEP020RSV007RSP019BDP017CEV012CEP005CEP019OTP104MEP018BDP003BDP003PSP057OTP009SMP037OTP049CEP002CEP003OTP116HMV001OTP080FBV5-FGFUV005FUP007FUP034FBV3-FG,FBV5-FGFUV005FUP007FUP008FUP017FUP016FUP034OTP126OTV013OTV013OTP015MEP002MEP003MEP006SSP031SSV011MPP079OTP059BDP011RSV014OTP152BIOspektrum | Tagungsband <strong>2012</strong>


241Brocker, M.Brodz<strong>in</strong>ski, A.Broetz-Oesterhelt, H.Broszat, M.Broughton, W.J.Brown, G.G.Bruchmann, A.Brune, A.Brune, I.Bruß, C.Brzonkalik, K.Brzuszkiewicz, E.Brändel, S.Bräsen, C.Bröcker, M.Brötz-Oesterhelt, H.Brückner, R.Brüser, T.Bubendorfer, S.Buchner, S.Buckel, I.Buckel, W.Budisa, N.Bugert, B.Bundy, J.G.Bunge, M.Burd, W.Burghartz, M.Burian, M.Burkard, N.Burkhardt, J.Burkovski, A.Bus, T.Busch, M.Busche, T.Buschke, N.Buscot, F.Bush, T.Bussmann, I.Bäcker, A.K.Bär, C.Bóna-Lovász, J.Böer, S.Böhm, AlexanderBöhm, AlexanderBöhm, O.Böhm, S.Böhme, K.Börngen, K.Böttcher, J.P.Böttger, L.Bücker, R.Bühler, K.Bürmann, F.Büs<strong>in</strong>g, I.Caetano, T.Camacho, A.Camacho, M.Carballido-López, R.Carius, A.Carius, L.Carne, A.Casper, P.Castelli, R.Castro Soares, S.Casutt, M.Centler, F.Chastanet, A.Chatz<strong>in</strong>otas, A.SSV003RSP026HMV002MPP074SMP032FUP003FUP005FUP006SMV004MPP028MPP062SIV4-FGSIP2-FGSIP3-FGRSP003SMP002MEP016MEP033MPP047MPP048MPP044SSP020PSV014MPV001MPP073PSV004CEP023CEP028CEP029PSV002RSP025MEP030MEP003PSV009PSP010PSP012MEP044RSP035MPV015SSV002OTP150FUP019MPV014MPV018MPP057MPP077MEP026OTP069MPP020MPP030FUP005MPV024OTP153OTP128SMP031SMP049OTP114OTP157RSP042YEV8-FGOTP109OTP093MPP066RSV5-FGSSP028MPV022HMV002MPP059SSP004MPV010CEP009MPV011OTV021PSP032OTP125PSP028MEP044OTP131SMP041CEV009RSV010RSV010SSP007SMV016OTP014MPP027PSP035OTP083CEV009HMV002Chaves Moreno, D.Chellamuthu, V.R.Chen, Z.Chettibi, H.Cheunuie-Ambe, V.Chhatwal, G.S.Chi, B.K.Chiriac, A.I.Chorus, I.Chow, J.Christ, E.Christ, N.A.Christmann, M.Christner, M.Chu, Y.Y.Ciornei, C.Citiulo, F.Clarke, D.Clermont, L.Colley, B.Commichau, F.Conesa, A.Connery, S.Conrad, C.Conrad, R.Conrads, G.Cook, G.M.Cooper, M.Coote, J.Cottier, F.Coudouel, S.Cramer, N.Crevenna, A.H.Cuny, C.Dahl, C.Dahmke, A.Dandekar, T.Daniel, R. A.Daniel, R.Danner, H.Darm, K.Dartscht, M.Darveau, R.Dashti, J.I.Dattagupta, S.Dausend, J.Davenport, C.F.Daxer, S.Daza, A.de Almeida, N.de Beer, D.De Benedetti, S.de Hoog, G.S.de Vera, J.P.Dealtry, S.Debnar-Daumler, C.Decker, E.M.Deevong, P.Defeu Soufo, H.J.Dehio, C.Deibert, J.De<strong>in</strong>zer, H.T.Dell, A.Demmer, U.Denapaite, D.Denger, K.Denkel, L.Denkmann, K.Depkat-Jakob, P.S.Deppenmeier, U.MPV014RSP055OTP102OTP025OTP150MPV006MPP016MPP023RSV003CEV008OTP072OTP106OTP092OTV001OTV002FUP016MPV024MEP035FUP014MPP049RSV007PSV006SSV012RSV009FBV3-FGRSP056OTP005ISV02SMP014SMP015HMP010RSV3-FGSSP007OTP061MPP005MPP024OTV027MPP068CEV009MPP034PSP016PSP022PSP044SMP045CEP017MPP057CEV002MPP014MPP047MPP048OTP041OTP127SMP023SMP034SMP037CEV013SSP036HMP009MPV027SIP1-FGYEV2-FGMPP068CEP010PSV001SMP041OTV008PSP064CEP006MPP019OTP097SMP046PSP002HMP006SMV014OTP126MPV013CEP013OTP077RSP042CEV016PSP010CEP014OTP022MPV022PSP016SMV004OTP054OTP055OTP142PSP030Derichs, J.Dermer, J.Dersch, P.Deuschle, E.Deutzmann, J.Devakota, S.Dheilly, A.Dhople, V.M.Di Pietro, A.Dibbern, D.Diebolder, R.Dieckmann, R.Diekert, G.Dienst, D.Diepold, A.Dietrich, C.Dietrich, M.Dietz, S.Dimmeler, S.Dimmer, K.S.D<strong>in</strong>g, G.C.D<strong>in</strong>tner, S.Dippon, U.Disch<strong>in</strong>ger, J.Dittmann, E.Dittmar, T.Dizer, H.Djukic, M.Doberenz, C.Dobler, N.Dobr<strong>in</strong>dt, U.Dolch, K.Dol<strong>in</strong>sky, S.Dom<strong>in</strong>guez-Escobar, J.Domínguez-Cuevas, P.Donat, S.Dong, X.Donner, J.Donovan, C.Dorer, C.Downie, J.A.Drake, H.L.Drees, A.Dreier, A.Drepper, T.Dreusch, A.Drozdowska, M.du Toit, M.Dube, L.Dubilier, N.Duchardt-Ferner, E.Duckworth, A.Dudzik, A.Duerr, M.Dufresne, A.Dugar, G.Dumont, M.Dupuy, B.Dyall-Smith, M.Dziallas, C.Dzieciol, M.Dörnte, B.SSP022PSV010MPV011MPV019MPP031MPP051MPP059MPP022MPP038OTV025SMV011OTV027MPP060FBV3-FGSMP039MPP044MPP071OTP031PSP006PSP008PSP021PSP050PSP054RSP051MPP025SIV4-FGOTP049RSP048MPP043CEP032SMV013SMP047CEP001RSV3-FGSMP009MEV002MEP009CEP018MEV011MEP037OTP133EMV3-FGPSP064OTP132MPP047PSV003PSP022HMP007SMV012MPV1-FGCEV009CEV002ISV09CEP022MPP033OTV032FUV008OTP104EMP2-FGCEV006EMV6-FGSMV004SMV008SMP002SMP011SMP016MPP031OTP110OTP060OTP062OTP085MPP028MPP062PSP012MEP041MEP036MPP045SIV3-FGOTV001CEP025PSP038MPV008OTV027MPP078SMV016MPP007SSP005SSP006SIV6-FGOTP140FUP029Dötsch, A.Dürre, P.Düsterhus, S.MPV021MPP044OTP063,PSP027RSP027OTV001OTV002Ebelt, L.RSP011Eberhard, J.HMP012Eberl, L.SMP018Eberle<strong>in</strong>, C.EMV7-FGEck, A.W.CEV015PSP055Eckart, M.FUP020Eckelt, E.MPP015Eckert, M.PSP005Eckste<strong>in</strong>, M.OTP106Eder, D.PSP056Edwards, A.CEV006Edwards, D.MEV012Egert, M.QDV4-FGEggel<strong>in</strong>g, L.OTV023RSP044Ehler, M.SSP021Ehlers, C.OTP103Ehl<strong>in</strong>g-Schulz, M. OTP101OTP140Ehrenreich, A.MPP007OTV014OTP081OTP099PSP037Ehricht, R.MPP034Eichhof, I.FUP018Eickhorst, T.SMP025E<strong>in</strong>sle, O.OTP033OTP049Eisenberg, T.MPP081Eisenreich, W.SSP011Eitel, K.MEP038Ekhaise, F.O.HMP001El Moslimany, W.OTP139El-Badawi, Y.OTP002El-Tayeb, M.OTP002El-turby, J.OTP056Elgheriani, H.OTP143Elleuche, S.OTV018OTP070Elmarzugi, N.OTP003Elmegerhi, S.OTP118OTP143Emmerich, M.SMP020Endres, S.OTP062Engel, M.OTV032Engelmann, S.CEP031Engeser, M.CEV011Enseleit, M.PSP052Ensle, P.MEV003Ensser, A.MPP020Entian, K.D.OTV001OTV002RSP039YEV5-FGEppendorfer, M.SMP002Erb, T.J.PSV011Erck, C.MPV003Erdmann, V.MEP015Erhard, A.MEP014Ermithi, O.OTP003Ermler, U.PSP010Ernst, C.MPP046Ernst, J.F.FUP018MPP024Err<strong>in</strong>gton, J.ISV09Espirito Santo, C.SSP014Essen, L.O.BDV002Esser, D.RSV006Etienne, M.OTP008Ettwig, K.F.OTV017SMV005Eustáquio, A.MEV012Evers, S.OTP099Evguenieva-Hackenberg, E. OTV015SMP044Ewers, H.OTV007Falke, D.Famulla, K.PSV003PSP013MPP073MPP074BIOspektrum | Tagungsband <strong>2012</strong>


242 AUTORENFarajkhah, H.HMP002Faraldo-Gómez, J. PSV016Fatu, A.C.FUP014Fatu, V.FUP014Faulstich, M.MPV010MPV3-FGFaustmann, M.MPV013Fazle Rouf, S.MPV022Faßbender, S.SSP033Fedtke, I.MPP079Fedorova, K.RSP049Felipe-López, A.CEP026SSP035Ferdi, S.OTP061Fetzner, S.OTP112RSV016RSP045Feussner, I.FBV5-FGFUP007Feßler, A.MPP034Fiedler, H.P.FUV007MEP022MEP024MEP026Fierer, N.SMP018F<strong>in</strong>sel, I.MPP013Fischer, And.MPV027Fischer, Ank.SMV009Fischer, C.SMP034Fischer, H.M.RSV6-FGFischer, M.PSP013Fischer, N.MEP034Fischer, R.J.BDP005BDP006PSP043PSP048Fischer, R.FUV002FUP013Fischer, S.YEV7-FGFischer, Su.SSP026Flade, I.HMP013Flechl, S.SMP040Flechsler, J.OTP100PSP029Flechsler, J.OTP100PSP029Fleischmann, F. EMP4-FGFlieger, A.MPP1-FGMPP014MPP055MPP058MPP061MPP063Flitsch, S.K.RSP027Flohé, L.OTP032Flor, L.MEP028SIP4-FGFlötenmeyer, M.CEV007Flüchter, S.PSP027Focks, A.SMP033Fok<strong>in</strong>a, O.RSV004Fonseca, J.HMP005Forchhammer, K. BDV004CEV005PSV013RSV004RSP049RSP055Forth, M.OTP115PSP005Foster, A.J.FUV004Foster, S.MPP080Foster, S.J.MPV002Fotouhi Ardakani, M. CEP004Francez, A.OTV027Francke, W.MEP023Francois, P.MPP033Franke, G.MPV024Frankel, G.MPP054Frankenberg-D<strong>in</strong>kel, N. RSP040RSP041PSP041Franz-Wachtel, M. MPP045Franz, B.MPV013MPP052Franz, C.SMV002François, P.MPP072Frasch, H.J.CEP021Frauenkron-Machedjou, J. OTP145Fraunholz, M.MPV010MPV6-FGFrerichs, J.Frey, E.Frick, J.S.Fricker, M.Fried, L.Friedmann, A.Friedrich, P.Fritz, C.Fritz, G.Frohnert, A.Frunzke, J.Frädrich, C.Fränzel, B.Fröls, S.Frömmel, U.Früh, S.Fuchs, B.Fuchs, G.Fulcher, N.B.Fulde, M.Fulton, A.Fundakowski, J.Fässler, R.Förster-Fromme, K.Förstner, K.Fösel, B.Fünfhaus, A.Gaballah, A.Gabriel, G.Gadkari, J.Gaerdes, A.Gal<strong>in</strong>ski, E.A.Galyov, E.E.Galán, J.E.Garbe, A.Garcia-Betancur, J.C.Garcia-Lara, J.García Romera, I.Garcia, S.L.Gaspar, M.Gauer, S.Gebhard, S.Gebhardt, H.Geerlof, A.Gees<strong>in</strong>k, P.Geg<strong>in</strong>at, G.Geiger, T.Geisel, J.Geissen, S.U.Genersch, E.Genilloud, O.Genz, C.Georg, J.Gerdts, G.Gerlach, T.Gerten, B.Gerthsen, D.Gerwick, L.Gerwick, W.Gescher, J.Ges<strong>in</strong>g, S.Geyer, S.Ghassemi nezhad, R.Gholch<strong>in</strong>, F.Ghosh, A.Giegerich, R.Gießelmann, E.Giffhorn, F.Gilbert, J.Girnth, A.C.Gisch, N.Gis<strong>in</strong>, J.SSP012SSP018HMP007HMP008HMP009HMP013OTP140RSP013SMP005PSV009SMV005MPP021PSP035OTP072OTP132BDP007RSP012RSP018FUP001SSP005SSP006SSP028MPV025OTP154SSP027PSV010MPP037MPP016MPP023OTP145YEV4-FGMPP022MPP038HMV003MPP078SMP012SMP013MPP047CEP006RSP023PSP054OTP035SSV006SSP024SSP025MPP054MPV009RSP034BDV007MPP080FUV006SMP028OTV016OTP094OTP155OTP008CEP001RSV3-FGFUP023RSP036OTP094OTV013RSP047HMP008OTP122MPP047MEV001YEV4-FGRSP051SSP027MPP055QDV1-FGCEP004MEV012MEV012SMV012PSP045PSP047FUP001PSP064HMP003HMP003OTV006MPV019YEV2-FGOTP008SMV006SYV3-FGCEV013CEV010Gittel, A.Giubergia, S.Glaeser, J.Glaeser, S.Gleisner, M.Gloeckner, V.Glow<strong>in</strong>ski, F.Glöckner, F.O.Glöckner, I.Gniese, C.Goecke, F.Goerke, C.Goethe, R.Golch<strong>in</strong>, F.Goldberg, A.Goldf<strong>in</strong>ger, V.Gold<strong>in</strong>g, B.T.Goldmann, K.Goldmann, O.Goldmann, T.Golman, W.Gomez Santos, N.Gong, W.González Pastor, J.Goodfellow, M.Gorbush<strong>in</strong>a, A.A.Goris, T.Gottschalk, G.Gottselig, C.Gottste<strong>in</strong>, D.Govender, L.Gov<strong>in</strong>den, R.Graf, N.Grammel, H.Granitsiotis, M.Grass, G.Graumann, P.L.Greenman, J.Gre<strong>in</strong>, F.Gre<strong>in</strong>acher, A.Greßler, M.Griebler, C.Griess, J.Gr<strong>in</strong>, I.Grohmann, E.Gronau, K.Gronbach, K.Grond, S.Grooneweg, J.Grosch, R.Gross, T.Grossart, H.P.Grosz, M.Groß, H.Groß, J.Groß, U.Große, C.Gruber, K.Gruber, S.Gröngröft, A.Grönheim, H.Grön<strong>in</strong>g, J.A.D.SMV006MPP041OTV031OTP141OTV031OTP141OTP150SIV9-FGSIV2-FGMPV6-FGBDV008PSP031PSP064SSP027FUP027SSP012OTP048MPV023MPP076RSP047MPP015HMP002HMP004MPP074MEP021PSP012SMP049MPP016HMP011MPP055OTP121RSP024RSP002OTP121MEP022MEP024FUP003FUP005FUP006SMP005PSP021PSP050MPP072OTP041CEP007OTV001OTP114OTP114OTP117RSV010OTV028OTP010SSP014OTV007OTP121OTP130PSP016MPV007OTP152BDP009SMP042SMP006SMP024CEP026CEP032SMP032RSV003SSP008HMP007HMP013MEP035SMV013SMP048YEV3-FGOTV016OTV031OTP141SIV6-FGMPV6-FGMPV001OTP142SSP028MPV027SSP032SSP037OTP014OTP125SMP040OTV010OTP005OTP039Grün, A.Grünberg, M.Gründger, F.Grün<strong>in</strong>g, P.Grützmann, K.Grützner, A.Gschwendtner, S.Guezguez, J.Guillossou, E.Guldan, H.Gunka, K.Gust, B.Gutiérrez Acosta, O.B.Gutsmann, T.Gutzki, F.M.Gwosdz, S.Göbel, M.O.Göbel, U.B.Gödeke, J.Göhr<strong>in</strong>g, N.Göpel, Y.Görke, B.Görsch, J.Götker, S.Göttfert, M.Göttig, S.Götz, F.Gößner, A.S.Güntert, P.Günther, T.Haag, L.M.Haas, H.Haase, S.Habeck, M.Haberzettl, K.Hackmann, A.Haderle<strong>in</strong>, S.B.Hadiati, A.Hagel, C.Hagemann, A.Hagemann, M.Hagemann, N.Hagen, S.Hahn, B.Hahn, F.Hahn, R.Hakenbeck, R.Halan, B.Halang, P.Halbedel, S.Hall, P.Haller, B.Hallo<strong>in</strong>, C.Hallström, T.Hamacher, A.Hambsch, N.Hamann, H.P.Hammerschmidt, C.Hammerschmidt, S.Hammes, F.Hamoen, L.W.Hampel, A.Hampp, R.Hamza, R.OTP086PSP023SMP051MPP031FUV003FUP020MPV006SMP036MEP025MPV012OTV004RSV009RSP034MEP026MEP038OTP053HMP011OTP071SMV017SMV007MPV027SSP019MPP079RSV002RSV002RSV015RSP054SMP006PSV007SIV7-FGSIP4-FGMPV004CEV014MEP010MEP035MEP036MPP045OTP030SMP002OTV001CEP011MPV027FBV3-FGMPP045OTV005RSP006YEV3-FGEMV5-FGOTP158MEP013PSP038SSP020MEP037SMP022SSV008MPP014FUP031RSP052CEP014OTV021PSP032PSP039CEP019CEP020MPP014OTP115MPP044SSP010MPV016MPV025MPP017MPP065MEP017OTP042OTP073MPP081MPP017MPP069CEV013MPV007MPV016MPP023EMV2-FGCEV001CEV008CEP019MPP073OTP071FUV007OTP139BIOspektrum | Tagungsband <strong>2012</strong>


243Hanczaruk, M.Haneburger, I.Hanelt, D.Hannemann, S.Hansen, M.Harder, J.Hardt, P.Hardt, W.D.Harm, M.Harmath, C.Harms, A.Harms, H.Harms, M.Harrison, C.Hartelt, K.Harter, J.Hartmann, And.Hartmann, Ant.Hartmann, I.Hartmann, J.Hartmann, M.D.Hartmann, M.Hartmann, N.Hartung, S.Hartwig, S.Hasenkampf, T.Hashemi aghdam, Y.Haskamp, V.Hassan, A.A.Hasselt, K.Hauer, B.Hauf, W.Haufschildt, K.Hause, G.Hausmann, B.Hausmann, R.Hausmann, S.Haß<strong>in</strong>g, B.He, B.Hebecker, S.Hebisch, E.Heck, A.Heck, C.Hecker, M.Heddergott, C.Heermann, R.Hegler, F.Heide, L.Heider, J.Heider, S.A.E.Heidrich, N.Heilmann, A.Heilmann, C.Heimerl, T.Heimesaat, M.M.Heimlich, D.He<strong>in</strong>, I.He<strong>in</strong>e, S.He<strong>in</strong>e, T.He<strong>in</strong>ekamp, T.He<strong>in</strong>emann, I.He<strong>in</strong>isch, J.OTP010MPV1-FGRSP025OTP068MPV009OTP011PSP023PSP031CEP022MPV017MPP067RSV007BDV006BDP015BDP020OTP034PSP009MPP018RSV008OTP075SMP022OTP010HMP005MPP041HMV002MPP3-FGRSP055CEP004SSP036OTV006OTP020CEV003HMP002HMP003HMP004OTP050OTP074OTP076OTP078MPP020OTV019OTP059OTP117OTP135PSV013RSP018SSP032SMV014MEP008OTP085SSP035BDP019CEV003MPP064SSP018OTP060OTP062SSP010CEP031FBV5-FGFUP007MPP013MPP048MPP055MEP020RSV007RSP019RSP023SMP042MEV004MEP022MEP026OTP019PSP002PSP038PSP040RSP020MEP015MPP078SMP005MPV002OTP100PSP029MPV027OTP029OTP140RSP040OTP005FUP017CEV003YEV7-FGHe<strong>in</strong>z, T.He<strong>in</strong>ze, C.He<strong>in</strong>zle, E.Heipieper, H.J.Heister, K.Helaly, S.Helbig, S.Held, C.Held, S.Heller, K.Heller, W.Hellmich, U.Hematti, G.Henke, H.Henke, P.Henkel, M.Henn, V.Hennecke, H.Henrich, A.Henrichfreise, B.Hense, B.A.Hensel, M.Hentschel, U.Herbig, A.Herbst, F.A.Hermann, B.Hermanns, Y.Hermawan, S.Hermes, B.Hernandez Alvarez, B.Hernández Suárez, P.Heroven, A.K.Herrig, I.Herrmann, Mar.Herrmann, Mat.Hertel, R.Hertweck, C.Herzberg, M.Herzner, A.M.Herzog, B.Hess, V.Hess, W.Hessl<strong>in</strong>g, B.Hetz, S.Heueis, N.Heuer, H.Heun, M.Heuner, K.Heuvel<strong>in</strong>k, A.Heyer, R.Hibst, R.Hiery, E.Higgs, P.I.Hihlal, E.K.Hijaz<strong>in</strong>, M.Hilbi, H.Hildebrandt, P.Hillmann, F.H<strong>in</strong>richs, W.Hirscher, J.Hirschmann, M.Hirth, T.Hitkova, I.Hitzmann, A.MPP035MPV024PSP014PSP015SMP050CEV004OTP102OTP079SMV007SSP017SMP047MEP024CEP002PSP037PSV002OTP032EMP4-FGOTV001OTP156MPP008OTP006MEP008CEP009RSV6-FGCEV015CEP006SSP021RSP033CEP026SSP035MEP043SIV2-FGMPP078PSP024SSP011OTP016OTP049RSV011RSP005RSP006OTP040MPP061MPP3-FGSMP028MPV011MPV019MPP059OTP093OTP091OTP094MPP034OTP111MEV011OTP152SSV007SSP034MEV002EMP5-FGPSP059RSP015RSP051MPV014SSP008SMP011RSP048SMV013SMP047PSP058MPP063OTP074OTP078OTP089MPP044MPP030RSV013FUP022OTP076OTP078MPV1-FGMPP013MPP036RSV008MPP060MPP077FUP032RSV003CEP016PSP007OTP119RSV007MPP016Hochgräfe, F.Hochw<strong>in</strong>d, K.Hoff, B.Hoffmann, C.Hoffmann, J.Hoffmann, Ke.Hoffmann, Kr.Hoffmann, T.Hofmann, Jo.Hofmann, Ju.Hofrichter, M.Holatko, J.Holert, J.Holst, O.Holtzendorff, J.Holz, M.Homayounimehr, A.Homeier, T.Honda, S.Honorary, V.Hoppe, M.Hoppe, T.Hoppenau, C.Hoppert, M.Horlacher, N.Horn, H.Horn, M.A.Horn, M.Hornung, C.Horst, S.Hortschansky, P.Horz, H.P.Hosse<strong>in</strong>i, S.D.Hou, B.Hou, L.Hube, B.Huber, A.Huber, H.Huber, K.Huebner, J.Huhn, S.Huhn, T.Humam, A.Hunger, S.Hunke, S.Huskens, D.Huson, D.H.Hussa<strong>in</strong>, M.Hussa<strong>in</strong>, S.F.Huwiler, S.Härtig, E.Härtner, T.Häusler, S.Häussler, S.Høgslund, S.Hümmer, D.Iatsenko, I.Ibrahim, A.Ichikawa, S.Ieropoulos, I.Iftime, D.Ilieva, D.Imhoff, J.F.MPP018MPP067HMP005OTP096MEP029MPP013OTP109FUP020MPP019RSP044FUP009MEP011BDP008FUV006FUP010FUP031RSP001PSP046CEP017RSP042FUP021OTP144OTP107OTV019ISV04SIP4-FGMPP035FBV5-FGFUV005FUP007FUP034OTP110PSP052RSP024FUV007EMP5-FGEMV6-FGSMV003SMV004SMP016SMP027OTV026SIV5-FGOTP127MPV022FUP033HMP010OTP027OTP144CEP028OTV015MPP049OTP117CEP010OTP100PSV001PSP005PSP029SMP012SMP032OTP050OTP022OTP139SMP002MPP006RSV1-FGOTP133HMV003HMP013MPV002MPP002MPP003RSP053RSP012RSP018MEV005PSP064MPV021SYV3-FGMEP016MPP082OTP002MEP038OTP130MEP031OTP158MEP014MEP024OTV003OTP048Imparato, V.Inouye, M.Ionescu, D.Irmer, H.Irmler, S.Ishida, K.Ismail, M.Iwase, T.Jablonowski, D.Jacobsen, I.D.Jadidi, A.Jaeger, K.E.Jaeger, T.Jafari, P.Jahn, D.Jahn, M.Jaitzig, J.Jakob, Z.Hildebrandt, J.P.Janatkova, K.Janek, D.Jansen, A.Jansen, R.P.Janssen, H.Jantzer, K.Jarosch<strong>in</strong>sky, M.Jaspars, M.Jechalke, S.Jeganathan, T.Jehmlich, N.Jenal, U.Jendrossek, D.Jenk<strong>in</strong>s, V.A.Jensen, G.J.Jessen, G.Jesußek, A.Jetten, M.S.M.Jiang, C.Y.Jimenez-Garcia, N.Joehnk, B.Jogler, C.Jolivalt, C.Jonas, K.Jones, A.Jones, D.Jookar kashi, F.Jorge, A.M.Jost, G.Josten, M.Joyce, S.Jrgensen, T.R.Jucker, M.Juhl, B.Jung, Ke.OTP102PSP024SIP1-FGPSP064FBV3-FGFUP034MEP041MEV011MPP002MPP003SSP038YEV8-FGMPP019OTP144MEP039OTP060OTP062OTP085PSP033RSP052MPV021OTP027OTP144CEV003MPV018OTV012OTP028OTP050PSV014MPV014MPV018OTP028OTP050MEP042SMV002MPP018SMP015HMV004MPP072YEV4-FGBDP005PSV005PSP048OTP089PSP004MEP022SMV013RSV013OTP016MPV021RSP024RSV5-FGOTP040OTP042OTP059OTP073OTP123SSP009SSP013SSP015SSV002BDP011SYV3-FGSMP045CEP012OTV008OTV017PSV015SMV005PSP044SMP051FUP017BDV008BDP004OTV020BDV001MEV012SMV017OTP038MPP079OTP004MEV002MEP009MPP073PSP044RSV007FBV2-FGHMP008OTP059OTP075BIOspektrum | Tagungsband <strong>2012</strong>


244 AUTORENJung, Kr.Jung, P.Junge, K.Junker, C.Jäckel, U.Jäger, D.Jäger, J.Jäger, S.Jäger, Th.Jäger, Ti.Jänsch, L.Jöchl, C.Jürgens, K.Kaddumukasa, M.Kaesler, J.Kaever, V.Kahnt, J.Kai, M.Kaimer, C.Kalamorz, F.Kalbacher, H.Kal<strong>in</strong>owski, J.Kalko, E.K.V.Kallscheuer, N.Kalscheuer, R.Kamerewerd, J.Kanaparthi, D.Kandror, O.Kanukollu, S.Kappelmeyer, U.Kappler, A.Karande, R.Karich, A.Karl-Erich, J.Karstens, K.Kartal, B.Kasama, T.Kaschabek, S.R.Kas<strong>in</strong>a, M.Kaspar, D.Kassack, M.Kastl, E.M.Katschorowski, A.Katzmann, E.Kaval, K.G.Kawai, Y.Kaysser, L.Kayumov, A.Kazemi, B.Kazenwadel, C.Kehr, J.C.Keller, B.Kellermann, C.Keltjens, J.Kemper, F.Kempf, V.A.J.RSV4-FGRSP004RSP009RSP013RSP023RSP025MPP034CEP009FUP027QDV3-FGOTP113OTP124MPP026MPP064SSP002MPV022OTP032MPP055FBV3-FGOTP004MPP011SMP019RSP034BDP011BDP020MEP005PSP012MEV001MEP023BDV003RSV3-FGSSP007HMP008MEP031OTP153MPP044PSP062MPP074MEP029SMV016MPP074SMP007OTP102ISV03SMV010SMV015SMP001SMP003SMP004SMP009SMP017SMP020SMP021SMP022OTV021FUP010OTP145PSP034OTV008CEP009OTP005OTP039OTP151PSP056MEP017SMP036MEP029BDV005BDP002BDP012BDP014BDP018CEP009PSP020CEP020ISV09MEP038RSP049MEP007OTP135MEP037OTP133MPP022MPP038BDP009OTV008OTP049MPV004MPV013MPP052Kempken, F.Kennedy, T.Kepert, I.Kepp, O.Kermer, R.Kern, M.Kerzenmacher, S.Kessler, A.Kessler, O.Keul, F.Khadouma, S.Khan, L.Khandavalli, P.C.Khandekar, S.Khanh Chi, B.Khatoon, A.Khavari-Nejad, R.A.Khodakaramian, G.Khodakaramian, N.Khosravani, A.Kiekebusch, D.Kiesel, B.Kim, B.Y.Kipry, J.Kirchberg, J.Kirk, P.M.Kirsch, K.M.Kirsten, A.Kitowski, V.Kjelleberg, S.Klebensberger, J.Kleepies, R.G.Kle<strong>in</strong>, Ba.Kle<strong>in</strong>, Bi.Kle<strong>in</strong>, F.Kle<strong>in</strong>, J.Kle<strong>in</strong>, T.Kle<strong>in</strong>schnitz, E.M.Kle<strong>in</strong>sorge, D.Kle<strong>in</strong>steuber, S.Kle<strong>in</strong>tschek, T.Klemm, C.Klemm, P.Klenk, H.-P.Kletz<strong>in</strong>, A.Kleyböcker, A.Kliefoth, M.Klimmek, O.Kl<strong>in</strong>dworth, A.Kl<strong>in</strong>gbeil, K.Kl<strong>in</strong>ger, M.Kl<strong>in</strong>gl, A.Kl<strong>in</strong>gner, A.Klippel, B.Klitzke, S.Klockgether, J.Klockow, C.Klotz, M.G.Kluegle<strong>in</strong>, N.Klug, G.Kluge, M.Knack, D.Knapp, A.Kneuper, H.Kniemeyer, O.Knittel, K.FUP004FUP022OTP146OTP147OTP148HMP005MPV3-FGSMP031OTP049PSV012PSP007PSP011OTV020RSV008HMP010PSP007RSP016OTP134OTP032MPP032SSP008MPP002MPP003MEP007OTP156OTP156MPP005BDV002OTP083MEP024OTP007MPP035SYV4-FGPSP001SSV007MPV022SSV012OTP059OTP117OTP135SSV012OTP075SMV011RSP010MPP071OTV012PSP014PSP015BDP001PSP040OTP083OTP098MPP053SSP028SMP041PSP005PSP026OTP046OTP151SSP030PSP007PSP063PSP031SSP027MPV016MEP040CEP012PSV002MEV010SSV001OTV018OTP072MPP068PSP031PSV012SMP009OTV015RSV011RSP005RSP006RSP007SMP044FUP010FUP031PSP038RSP052CEP027FBV4-FGFUP032FUP033OTV029Knoll, C.Knoop, D.Knüfer, A.Koch, O.Koenigs, A.Kogel, K.H.Kohlbacher, O.Kohler, T.Kohr<strong>in</strong>g, G.W.Kokoschka, S.Kolb, S.Kol<strong>in</strong>ko, I.Kol<strong>in</strong>ko, S.Kolk, A.Kolter, R.Kontermann, R.Koop, J.Kopke, K.Kopmann, C.Kopp, A.Korbsrisate, S.Kort, J.Kostner, D.Kostrzewa, M.Kotas<strong>in</strong>ska, M.Kouzel, N.Kozjak-Pavlovic, V.Kraemer, U.Kraft, F.Krahn, I.Kraiczy, P.Krakat, N.Kranzioch, I.Kranzusch, B.Krappmann, S.Krasny, L.Krauel, K.Kraus, A.Krause, H.M.Krause, J.P.Krause, J.Kraushaar, T.Krauss-Etschmann, S.Krawczyk, B.Krawczyk, J.M.Kraxenberger, T.Krebber, H.Krehenbr<strong>in</strong>k, M.Kreienbaum, M.Krementowski, A.Kretschmer, D.Kreuter, L.Krismer, B.Krohn-Molt, I.Krohn, S.Kroll, K.Kroneck, P.M.H.Krämer, R.Krögerrecklenfort, E.Krüger, D.Krüger, M.Krüger, S.Kublik, A.Kucklick, M.Kuhle, K.Kulik, A.MEP041OTP010CEV008OTP032MPV025MPP017MPP069SMP044OTP015CEV013OTP008PSP052SMV008SMP011BDP004BDP014QDV3-FGBDV008MPV003OTP136MEP029OTP096SMV013HMP011MPP054OTP067OTV014OTP081OTP076OTP078MPV024OTP012MPV3-FGSMP003SMV007PSP053MPV025MPP017MPP069OTP024EMP3-FGSIV7-FGFBV3-FGRSP001MPV007MPP080SMP022MEP013PSP053MPV020RSP020HMP005MEV003MEP044MEP045RSV4-FGRSP013YEV3-FGBDP016CEV006PSP058PSP037MPV008MPP039CEP010PSV001HMV004MEP010OTP030MPP008OTP068HMV002FBV4-FGOTP033OTP104PSV006PSP001PSP003SSP004SMV013SMP049SMV017SMP051SSP012MPP026PSP061FUP027MPP063MEV005MEP024MEP026Kulić, Ž.Kull, L.Kumar, A.Kung, J.Kung, J.W.Kunke, M.Kunte, H.J.Kuntze, K.Kunze, B.Kunze, K.Kuppardt, A.Kurka, H.Kuroll, M.Kurutsch, A.Kurz, M.Kusari, S.Kusch, H.Kuschk, P.Kutchm<strong>in</strong>a, E.Kuthn<strong>in</strong>g, A.Kutschke, S.Kuttler, C.Kuypers, M.M.M.Kähkönen, M.Kästle, B.Kästner, M.Köcher, S.Köck, R.Kögel-Knabner, I.Köhler, T.Köllmeier, T.Kölschbach, J.König, H.Kötter, P.Kück, U.Kües, U.Kühl, A.A.Kühn, A.Kühnel, L.Kühner, D.Kühner, M.Kümmel, S.Küper, U.Küsel, K.Laaß, S.Labes, A.Labrenz, M.Lacanna, E.Lacmanova, I.Lakkireddy, K.K.Lamprokostopoulou, A.Landmann, J.Lang, Ch.Lang, Cl.Lang, E.Lange, C.M.Lange, C.Lange, S.Langfeldt, D.Laronne, J.B.Lasch<strong>in</strong>ski, M.Lasota, S.Lassak, J.PSP046MPV026MPP042FUP004RSP053RSP011SIV7-FGSSP033RSP008MPP056SIV7-FGMEP032OTP083MPP007OTV026OTP129SSP024MEP001FBV5-FGFUV005FUP007OTP102RSP051MEP044OTP013SSP021SIP1-FGOTP150RSP047EMV4-FGOTP102SMV007SSP029MPP034SMP047SIV4-FGSMP038RSP036OTP092OTV001OTV002FUV001FUP028MEP029OTP096FBV6-FGFUP024FUP026FUP029FUP030MPV027FBV5-FGFUV005FUP007OTV019CEP013OTP077RSP028RSP008CEP010OTP100PSV001PSP005PSP029OTP091OTP094OTV012MEP014OTV003OTP048OTP004MPP066RSV5-FGSMV006FUP026MPV017RSP054MPP061BDP002SMP041PSP003PSV014YEV4-FGHMP012OTP103PSP064PSP033PSP052RSV4-FGBIOspektrum | Tagungsband <strong>2012</strong>


245Lassak, K.Lassek, C.Laub, M.T.Lauber, K.Lau<strong>in</strong>ger, B.Laut, S.Lavik, G.Lawrence, S.Layer, G.Le Guyon, S.Leadlay, P.Lechner, S.Lechner, U.Leclerque, A.Lederer, F.Lee, B.Lee, S.H.Lehmann, D.Lehmen, W.Lehner, J.Lehnik-Habr<strong>in</strong>k, M.Lehr, M.Leibel<strong>in</strong>g, S.Leisner, M.Lemaire, H.G.Lemmer, H.Lendzian, F.Lenk, S.Lenz, O.Leo, J.Leone, V.Lerm, S.Leslie, D.J.Leunert, F.Leuprecht, D.Lewis, K.Lewis, R.Li, Jia.Li, J<strong>in</strong>.Li, S.M.Li, Y.Liang, C.Libl, W.Licha, T.Liebe, M.Liebl, W.Liebrich, M.Lienen, T.Liermann, J.Liers, C.Liese, J.Liesegang, H.Liljebladth, B.L<strong>in</strong>, L.L<strong>in</strong>de, J.L<strong>in</strong>dner, S.N.L<strong>in</strong>dquist, N.L<strong>in</strong>ke, D.L<strong>in</strong>ne, U.L<strong>in</strong>nerbauer, S.Lipski, A.Liu, L.Liu, S.J.OTV006RSP016MPV014OTV015BDV001MPP043OTP106FUP025EMV3-FGMPP2-FGSSP001RSP028MPV017ISV14PSP018SSV010SSP011OTP020OTP021OTP090FUP014FUP025OTP075OTP013RSV013CEV011PSV008SSP028BDV004OTP120OTP108PSP009OTP014SSP018OTP098EMP5-FGPSV014OTP018OTP095PSP034CEV007MPV005PSV016SMP029RSV3-FGOTV031SSP015SSV010CEP031MEP042HMP010MEV008MEP017MEP019MEP020PSP020CEP017MPP057OTP105PSP064FUP019MPP007OTV014OTP081OTP099PSP049OTP151OTP046MEP030FUV006FUP031MPP077OTP111OTP115BDP020MPP049PSP053SIV2-FGCEV007CEP026CEP032MPV005OTV005OTP064MEP005RSV007SSP022SSP023PSP044EMV6-FGPSP044Liu, Y.Loddenkemper, C.Loganathan, M.B.Lohße, A.Lopez, D.Lorenz, U.Losensky, G.Lott, C.Loy, A.Luckmann, M.Ludwig, P.Ludwig, W.Lueders, T.Lupas, A.N.Lupastean, D.Lämmerhofer, M.Lämmler, C.López Vidal, Y.Löffler, C.Lösekann-Behrens, T.Löwe, J.Lück<strong>in</strong>g, G.Lüddeke, F.Lüders, T.Lühr, K.Lütke-Eversloh, T.Lüttge, M.Lüttmann, D.Maalcke, W.Mack, A.Mader, A.Madhugiri, R.Madlung, J.Madzgalla, M.Maeda, T.Maier, G.Maier, U.G.Majcherczyk, A.Majzlan, J.Makarewicz, O.Makower, K.Malach, A.Maldener, I.Malone, J.G.Manderscheid, N.Manfredi, P.Mangelsdorf, K.Mank, N.Manncke, B.Manske, C.Manz, W.Marc, R.Marchfelder, A.Mar<strong>in</strong>, K.Mar<strong>in</strong>cola, G.Marles-Wright, J.Marmulla, R.Mart<strong>in</strong>, E.Mart<strong>in</strong>ez-Argudo, I.Mart<strong>in</strong>s, B.M.Martínez-Lavanchy, P.M.Marxsen, J.Mascher, T.Maser, E.Maskow, T.Masloboeva, N.Mast, Y.Masuch, R.Matheis, S.EMV6-FGMPV027SMV010BDP012BDV007BDP021BDP022MPV003SSP005SSP006PSP064SMV014SMP040PSP011OTP108MPP007OTV028SMP039MPP3-FGFUP014MEP026OTP076OTP078SMP032RSP021SMP020BDV002OTP101PSP023SMP042SMP051MPP030PSV008MPP023RSV015OTV008MPP044OTP014SMP044MPP045OTP086PSV006HMP006BDP011FBV6-FGFUP024SMV012OTP138MEP040CEP018MEV011OTP060BDV004CEV005SSP011MPV021MEP024MPV021SMP024RSP005MPP022MPP038RSV007OTP086OTP093OTP136OTP015OTP089SSP031PSV006PSP001PSP003SSP003MPV023CEP031PSP023QDV3-FGMPV012PSV009OTP102OTP149CEV002RSV3-FGRSP002OTP083RSV6-FGMEP025RSP031MEP011FUV004Matsuda, A.Matura, A.Matuschek, M.Matysik, F.M.Matzanke, B.Mauch, K.Mauerer, S.Mauersberger, S.Maurer, K.H.Mayans, O.Mayer, C.Mayer, F.Mayr, S.McAulay, K.McMahon, T.Mechler, L.Meckenstock, R.U.Medema, M.H.Meel, C.Meens, J.Mehmood, A.Mehne, F.Mehner, D.Meier, J.Meisohle, D.Meissner, S.Meißner, T.Melhuish, C.Melton, E.D.Mendo, S.Menz, S.Menéndez González, V.Mercier, R.Merkl, R.Mesa, S.Meschke, H.Messerer, M.Messner, P.Metzler-Nolte, N.Metzler, M.Mewes, D.Meyer, A.Meyer, Be.Meyer, Br.Meyer, C.Meyer, M.Meyer, T.Meyer, T.F.Meyer, V.Michel, A.Michels, K.Michie, K.Michta, E.Mielich, B.Mientus, M.Miethl<strong>in</strong>g-Graff, R.Mikaelyan, A.Milbredt, S.Miltner, A.M<strong>in</strong>nen, A.Miracle, M.R.Miriam, S.Mitchell, T. J.Mitra, S.Mizunoe, Y.Mock, J.Mohammed Hassan, A.Mohr, J.Moliere, N.Molitor, B.Molitor, D.Moll, J.Mondorf, S.Monecke, S.Monot, M.Montazeri, V.MEP038FUP019MEV008OTV004CEP009MEP011MPV5-FGMPP053FUP021FUP023OTP099OTP045CEV010CEP016CEP025PSV001PSP001MPV002OTV016PSP018EMV7-FGOTP080RSP036OTP015OTP012MPP015MPP032RSP034CEP029OTP136OTP063MEP037MPP015OTP130SMV015SMP001MEP044HMP007SMP028ISV09OTP047RSV6-FGFUP002BDV005BDP002CEV016CEV008MEP015OTP136OTP080SMP033CEV016YEV5-FGOTP080OTP100OTP054MPV010ISV05SSV008FBV2-FGSSV003FBV5-FGFUP007BDV002MEP012BDP021BDP022OTV014OTP081SMP029SIP3-FGMEP029EMV4-FGSMV007OTP125OTP131SSV005MPP023HMV003SSP038OTP019PSP010SSP032BDP010RSP041MEP030SMP049OTP055MPP034MPP007HMP002Montero-Calasanz, M.D.C.Montoya, D.Montoya, J.Monzel, C.Moody, C.J.Moore, B.Morabbi Heravi, K.Moradi, A.Morasch, B.Morris, H.R.Morschhäuser, J.Moser, J.Mostertz, J.Mouttaki, H.Muangman, S.Muangsombut, V.Muehe, E.M.Mueller, A.Mueller, N.Munch, J.C.Mund, A.Mungenast, S.Mungenast, S.Munoz, M.Munwes, Y. Y.Muras, V.Musat, N.Musiol, E.M.Muth, G.Muyodi, F.Mußmann, M.Mäder, U.Mändle, T.Möker, N.Möller, H.Möller, P.Mösker, E.Mückschel, B.Mühlenweg, A.Mühlthaler, B.Müller, Annet.Müller, Annel.Müller, C.Müller, D.Müller, E.Müller, F.D.Müller, J.A.Müller, J.E.N.Müller, J.Müller, Ma.Müller, Mic.Müller, Mir.Müller, R.H.Müller, R.Müller, S.Müller, V.S.Müller, V.Müller, W. M.Münch, D.Nachtigall, J.Nacke, H.Naegele, B.Nagel, M.Naghavi behzad, M.Nai, C.SMP041PSP027PSP027RSP029MEP018MEV012OTP087HMP002HMP003HMP004OTP158EMV5-FGCEV016MPP049CEV003MPP064PSV014MPP018MPP067RSP036EMV7-FGMPP054MPP054SMP003MPV001FUP011SMP036SSP021EMP3-FGSMP007MPV027PSP064MPP021SIV3-FGMEV005BDP001CEP015OTP029MPP011OTP018CEP031SSP008MPP043MPP080PSP046RSP015MEP044OTP117MEP026OTP099RSP050OTP044RSV016PSP057EMP5-FGBDV005BDP002BDP018CEV004OTP102SSP017CEP032OTP051CEP031OTP129PSV004OTP034PSP009BDP004PSP037PSP056MPP006RSV1-FGPSV001PSV016PSP057PSP059PSP060SSP029MEV003CEV011MPV001FUV007SMP034CEP016MPP070HMP002HMP003FUP003FUP005BIOspektrum | Tagungsband <strong>2012</strong>


246 AUTORENNajafi, F.MEP007Naji, S.OTP003Napierala, R.MPP028MPP062Naqu<strong>in</strong>, D.OTV027Narberhaus, F.RSP015Nasvera, J.RSP001Natarajan, J.RSV2-FGNavarro-Gonzaléz, M. FBV6-FGFUP026FUP030Nazli Çelik, I.CEP019Naß, B.PSP005Nega, M.MEP010MEP035MEP036OTP030Ne<strong>in</strong>er, T.OTV006Nejadsattari, T.MEP007Nerlich, A.MPP023Nesemann, K.FUP034Nesper, J.RSP024Nesseler, A.MPP081Nestl, B.OTV019Netzer, S.OTP049Neubauer, P.MEP042Neubauer, R.MPV018Neumann, A.MEP016MEP033Neumeyer, A.BDP007Nguyen, H.D.PSP006Nguyen, M.T.MEP035Nianios, D.OTP112Nickel, L.OTP124Nicolau, A.MPP010Nienhaus, G.U.CEP007Nies, D.H.SSV007SSP032SSP034Nieselt, K.MPP078PSP024SSP011Niewerth, H.RSP045Nigusie Woldeyohannis, N. CEP028Nijenhuis, I.OTP026OTP037OTP043OTP090SMV011SMP019Nikola, N.MPV008Nilkens, S.RSP017Nimtz, M.MPP064N<strong>in</strong>fa, A.J.ISV11Nitsche, B.M.FBV2-FGNitschke, J.SSP028Nitzsche, K.SMP021Noack, Stefa.OTV023RSP010Noack, Steff.FUP005FUP006RSP027Nolle, N.PSP024Nonoh, J.SIP2-FGNordzieke, S.FUP028Nowrousian, M.FUV001FUP001Nowruzi, B.MEP007Nusser, M.SSV011Nußberger, S.SSP013Nägele, B.CEV010Näther, D.J.OTP079OTP108O’Rourke, F.Oberender, J.Oberhett<strong>in</strong>ger, P.Obst, M.Obst, U.Ochoa Fand<strong>in</strong>o, A.Oedenkoven, M.Oehler, D.Oestherhelt, D.Oesterreich, B.Ohlendorf, B.MPP043RSV005RSP053CEV007MPV005SMP004MEP008OTP098OTP149MEV002MPP072OTP041ISV16SSP033MPV003MEP014Ohlsen, K.Okuda, K.Olbermann, P.Oldach, F.Oldiges, M.Op den Camp, H.Opatz, T.Opitz, W.Oren, A.Ortmann, C.Osadnik, H.Osipenkov, N.Ostertag-Henn<strong>in</strong>g, C.Osudar, R.Oswald, F.Ott, J.Ott, L.Ottilie, S.Otto, A.Otto, B.Otto, C.Otto, M.Ouedraogo, J.P.Ouellette, A.Overhage, J.Overkamp, K.Overlöper, A.Overmann, J.Owens, S.Owila, P.Ölschläger, T.Öz, H.-H.Pabst, M.Pal Chowdhury, N.Palige, K.Palm, G.Palmer, K.Palmer, T.Panico, M.Pantke, C.Pantoja, S.Pané-Farré, J.Papageorgiou, T.Papenfort, K.Papic, D.Paprotka, K.Paramasivam, N.Park, J.H.Parthasarathy, A.Parton, R.Patallo, E. P.Patek, M.Pathom-aree, W.Patrick, B.Patzer, S.IPaul, K.Paulick, A.Pelnikevich, A.Pelzer, A.Peplies, J.Perconti, S.Pereira, I.Per<strong>in</strong>g, S.Perner, M.Pernitzsch, S.R.Perzborn, M.Peschel, A.CEP022MPV003MPV023MPP033SSP038FBV3-FGMEP044RSP010PSV015MEP030MPP051MPP059PSP064MPP004CEP023OTP029SSP012OTP157MEP033SIV3-FGMPP020MEV012CEV008MPV014MPV027FUP023MPV008MPP039SSV008CEP030SSV011RSP035RSP037PSP041RSP015OTP006OTP052SMP012SMP013SMP040SMV006OTP038HMP007HMP008CEV016PSP010MPP049RSV003SMV003CEP027CEV016SMP009SYV3-FGCEP031OTP040RSV002CEP032MPV6-FGOTP064PSP024PSP012MPP005MEP018RSP001MEP022OTV004OTP045CEP002OTP116SIP2-FGPSV002PSP051RSP022PSP033RSP052PSP064MEP010PSP016QDV1-FGOTP011OTP017MPP029OTP113EMP1-FGISV07CEP017HMV004MPV002MPV008MPP039Peschel, A.Pesic, A.Pessione, A.Pessione, E.Pester, M.Peterhoff, D.Peters-Wendisch, P.Peters, B.Peters, G.Peters, K.Peters, V.Petersen, J.M.Petrasch, D.Petri, T.Petruschka, L.Petters, T.Petzold, A.Peuser, V.Peyfoon, E.Pfaffenhäuser, M.Pfannstiel, J.Pfeffer, M.Pfeifer, F.Pfeiffer, D.Pfeiffer, P.Pförtner, H.Pham, T.K.Philipp, B.Picazo-Mozo, A.Piechulla, B.Piel, J.Piepenbrock, A.Pieper, D.Pietruszka, J.Pietsch, R.Pilloni, G.P<strong>in</strong>ho, M.G.P<strong>in</strong>now, N.P<strong>in</strong>ske, C.Pittelkow, M.Pičmanová, M.Pjevac, P.Pla, J.Platzen, L.Pleiss, J.Plessow, U.Pletz, M.Pletzer, D.Plickert, R.Plitzko, J.Poehle<strong>in</strong>, A.Poetsch, A.Pohl, M.Pohlentz, G.Pohlon, E.Po<strong>in</strong>ar, H.Polen, T.Polerecky, L.Pollmann, K.Polnick, S.Pommeren<strong>in</strong>g-Röser, A.Pommerenke, B.Pomowski, A.Popella, P.Popp, F.Potzkei, J.Poxleitner, G.Pozzi, R.MPP046MPP079OTP030MEP045MPP041MPP041SMV014SMP040OTP047MEP015PSV007OTV014OTP081MPV002CEP014MPV017SIV3-FGPSP026RSV3-FGMPV016RSP024FUV003RSP007CEV016OTP099OTP117OTP107OTP065OTP084SSP005SSP006OTP123SSP009SSP013OTP092MPP060MPP077RSV006PSP046OTP131MEP023MEV002SMP017MPV014OTP106SMP050OTV028MPP079HMP012OTP103PSP004MEP002MEP003MEP006OTP153OTP018MPP024SSV003OTP059OTP107MEP040OTP138MPP009MPV027BDP002CEP009OTP041OTP127PSP003FUV003MPV002OTP149MPV020PSP022PSP062SYV3-FGPSP064CEP011OTP013MEP026MPP008OTP068SMV016OTP033MEP010BDP008OTP062OTP085CEP009SSP018CEP021Pramanik, A.Prasse, D.Prax, M.Preissner, K.T.Prenger-Bern<strong>in</strong>ghoff, E.Pricope, L.Proctor, R.A.Pronk, G.J.Pátek, M.Pähtz, V.Pósfai, M.Pöritz, M.Quaiser, A.Quast, C.Rabat<strong>in</strong>ova, A.Rabsch, W.Rabus, R.Rachel, R.Rachfall, N.Rach<strong>in</strong>ger, M.Raff, J.Rahimi, S.Rahnert, M.Rais, D.Ram, A.F.J.Ramette, A.Ramm, A.Rapaport, D.Rappuoli, R.Raschdorf, O.Rasigraf, O.Rastew, E.Rathmann, C.Rattei, T.Rauhut, D.Rauschmeier, M.Rautenberg, M.Read, R. J.Reck, M.Reder-Christ, K.Rehakova, K.Reichenbach, B.Reichert, S.Reid, S.Reiger, M.Reil<strong>in</strong>g, N.Reimann, J.Reimold, C.Re<strong>in</strong>a, R.Re<strong>in</strong>hardt, R.Re<strong>in</strong>hold-Hurek, B.Re<strong>in</strong>hold, A.Re<strong>in</strong>kensmeier, J.Reis<strong>in</strong>ger, R.Reiter, J.Reith, F.Reiß, S.Reiß, W.Remes, B.Rempeters, L.Renpenn<strong>in</strong>g, J.Resch, A.Reuchsel, A.Reuther, J.Reutimann, L.Rhen, M.Richardson, D.Richnow, H.H.CEP003OTP113PSP018PSP024MPP023OTP076MPP010ISV17SMP047OTP153FUP032BDP018CEP009OTP090OTV027PSP064RSP001MPP1-FGPSP012PSP028CEP010CEP012OTP100PSV001PSP029FUP008OTP099CEP011HMP002HMP003HMP004OTV022OTP123FBV2-FGOTV029PSP064SIP1-FGSMP027YEV1-FGCEP032ISV06BDV005BDP018OTV017MPP061CEP029SMP040MEP041RSP025CEV014MPV026MPP042MPP050RSV003MPP056MPV001SMP015RSV002CEP013OTP077MPP030RSP009MPP060RSV006RSP016OTP126FUV006MPP078SMP040OTP031MPV019RSP047FUP009SSP032CEP031CEP031RSP007OTP120SMP019RSP056OTP072RSP031RSV6-FGMPV022MPP001EMP2-FGOTV017OTP026OTP043BIOspektrum | Tagungsband <strong>2012</strong>


248 AUTORENSeidel, M.Seifert, J.Seiffert, F.Seip, B.Seipel, K.Seither, K.Seitz, M.Sel<strong>in</strong>ka, H.C.Sell, K.Selsted, M.Selzer, M.Selzer, P.M.Sepulveda, E.Serrano, P.Sessions, R.B.Seyfarth, D.Seyhan, D.Shahid, S.Shahid, S.M.Sharma, C.M.Sheer, M.Shima, S.Sh<strong>in</strong>ji, H.Shkumatov, A.Shub, D.Siebenberg, S.Sieber, E.Siebers, B.Siebert, C.Siedenburg, G.Siedler, F.Siegbrecht, E.Siegel, C.Sieger, B.Siegfried, A.Siegl, A.Siemann-Herzberg, M.Siemens, A.Siemens, J.Sigle, S.Sigov<strong>in</strong>i, M.Šilar, R.Silber, J.Siles Martos, J.Simeonova, D.Simon, Ju.Simon, Jö.Simon, L.Simon, Ma.Simon, Me.Simon, O.Simon, Sa.Simon, Sy.S<strong>in</strong>genstreu, M.S<strong>in</strong>gh, Se.S<strong>in</strong>gh, Sh.S<strong>in</strong>ha, B.Sivonen, K.Sixt, B. S.Skarstad, K.Skerka, C.Slavet<strong>in</strong>sky, C.Smalla, K.Smeulders, M.Smith, K.Smittenberg, R.Sommer, E.EMV3-FGCEV004OTP016OTP061PSP036PSP050RSP021SMP031FUP006SMP005SSP024MPP058FUP013OTP059OTP072OTP132SSP036SSV006CEP030RSP056OTP032CEP015OTP097MPV012OTP151RSP056OTV005MPP002MPP003MPP029MPP078OTP113RSV002RSP015RSP040MEP005SSP038CEV014OTV011MEP038YEV7-FGOTP067RSV006SSP020PSP064OTP059SSP033MPP061MPV025CEV012MPP022MPP038SIV5-FGOTV022PSP016SMV013BDP001OTP110OTP153RSP001MEP014SMP028SSP016OTP052OTP049PSV012PSP007PSP011OTV007MPP060EMV3-FGOTP117MPP1-FGMPP036RSP017FUV005MEV001MPV6-FGMEP007SIV5-FGOTV009MPV025MPP017MPP046SMV013SMP047SMP048PSV015SMV017SMV007RSP050Sommer, R.J.Sonia, T.Sonnensche<strong>in</strong>, E.Sonnewald, S.Soppa, J.Sorger, A.Sourjik, V.Spang, J.Speert, D.A.Spellerberg, B.Spieß, T.Spiteller, M.Spohn, M.Spott, O.Sprenger, G.Sr<strong>in</strong>on, V.Srivastava, A.Stacheter, A.Stahlmann, C.Staib, P.Staiger, N.Stamboliyska, R.Stams, A.J.M.Stannek, L.Stansen, K. C.Staron, P.Starón, A.Statt, M.Staufenberger, T.Staßen, M.Stecher, B.Steegborn, C.Stefanie Sperl<strong>in</strong>g, S.Stefanski, V.Steffen, W.Steffens, E.Stegmann, B.Stegmann, E.Stehle, T.Steimle, A.Ste<strong>in</strong>, C.Ste<strong>in</strong>ert, M.Ste<strong>in</strong>iger, F.Ste<strong>in</strong>kämper, A.Ste<strong>in</strong>metz, P.A.Stepanauskas, R.Stephan, D.Stephan, S.Sterner, R.Steuber, J.Stich, S.Stiefel, P.Stigebrandt, A.Stock, T.Stockdreher, Y.Stockmar, F.Stoll, B.Stonek<strong>in</strong>g, M.Stopnisek, N.Stoppel, D.Strahl, H.Strauch, E.Streck, A.Streck, E.Strehmel, J.Streit, W.R.Strempel, N.Strittmatter, A.Sträter, N.Studenik, S.Stuhlmann, F.Sturm, G.MPP082SMV002OTP035MPP030OTP058OTP089OTP108SMP023RSP050MPP030MPV015MPV5-FGMPP053RSP039MEP001MEP021MEP027OTP091OTP129OTP134MPP054OTV016SMV008CEP014MPP049OTP119BDP016EMP2-FGFUV008OTP110PSV007CEV005RSV3-FGRSP048OTV003RSP041HMP013MPP037CEV004PSP039MPP021OTV010FUP028MPP044CEP021MEP021CEV014HMP008OTP138MPP023MPP026MPP055CEV004MEP011RSP030OTV016FUP025PSP047OTV004OTP047MPP021OTV010PSP035PSP039EMP4-FGRSV6-FGOTP115RSP056PSP044CEP007SSP031HMP010SMP018PSP053CEV001MPP071OTP107MPV017RSP037MPP008MPP048OTP068OTP106OTP127SSV011MPP072OTP039PSP006PSP008OTP032PSP045Stutz, C.Stärk, H.J.Stöveken, N.Stülke, J.Suess, B.Sugimoto, S.Suhr, M.Sullivan, D.J.Sun, W.Sundrum, A.Surmann, K.Susanne, W.Sutcliffe, I.C.Svatoš, A.Swidergall, M.Syldatk, C.Sylvia, H.Szafranski-Schneider, E.Szafranski, K.Szagunn, C.Szaleniec, M.Szczepanski, S.Szekat, C.Szentgyörgyi, E.Szewzyk, R.Szewzyk, U.Sznajder, A.Söll, D.Söllner, S.Søgaard-Andersen, L.Süssmuth, R.D.Ta<strong>in</strong>er, J.A.Tajabadi Ebrahimi, M.Tajima, A.Takano, E.Takors, R.Talay, S.R.Tang, K.T.Tan<strong>in</strong>o, T.Tanne, C.Tarazona Corrales, P.Tarazona, S.Tarkka, M.Tarouco, P.Taubert, M.Taubiz, T.Tauch, A.Taviani, M.Tavlaridou, S.Teichert, I.Tesar, M.Teske, A.Tetsch, L.Teutenberg, T.Thalmann, S.Thanbichler, M.Thiel, Ve.Thiel, Vo.Thiele, S.Thiemer, B.Thies, S.OTP045RSP021MEP006ISV12OTP120RSP034RSP054RSV012RSP048SSP038CEP011MPP049OTP122MPP081MPP060OTP145SYV1-FGMEV001MPP024EMP1-FGMEP016MEP033SMV002MPP024FUV003MPV004PSP038SSP023MEP009MPP070MPP072SIV7-FGOTP132OTP072SSP036SSP030OTP009OTP122SMP037SSP015CEV003OTV022ISV010BDV006BDP015BDP020RSP024FUV007MEV003MEP024MEP042MEP044MEP045OTV006OTP027SSP038OTP015OTV022MPV006SIV6-FGMEP038SSP025FUP034FBV3-FGOTP090PSP021RSP036OTP016MEV004MPP027RSP003OTP110OTP065FUV001FUP028MPP080OTV029RSP025SMP007SMP044BDV002BDP011BDP019BDP020OTP048OTP110OTP154MPP035PSV003MEP039Th<strong>in</strong>es, E.Tholen, S.Thoma, B.Thoma, L.Thompson, C.L.Thompson, M.Thon, M.Thormann, K.Thum, O.Thumm, G.Thürmer, A.Tiehm, A.Tielen, P.Tielker, D.Tiemann, C.Timke, M.Timmis, K.N.Timpner, C.T<strong>in</strong>dall, B.J.Tischler, D.Tomasch, J.Tommassen, J.Topal, H.Torres-Monroy, I.Torsvik, V.Totsche, K.U.Tran, V.T.Treuner-Lange, A.Treusch, A.Trost, E.Truttmann, M.Truyen, U.Trötschel, C.Tsai, S.M.Tschapka, M.Tschauner, K.Tsikas, D.Tuppatsch, K.Turgay, K.Turras, D.Tümmler, B.Türck, M.Ude, S.Uebe, R.Uhde, A.Uhlig, R.Ulbrich, M.Ulbricht, K.Uliczka, F.Ullrich, M.Ullrich, R.Ullrich, S.Ulrich, A. S.Ulrich, T.Unden, G.Unsleber, S.Urbanczyk, M.Urbich, C.Urich, T.Utpatel, C.Vagner, T.Valent<strong>in</strong>-Weigand, P.Valerius, O.van Baarle, S.FUV004MEP030RSV009OTP010CEP015SIP3-FGSSP029OTP125PSV002PSP051PSP058SSP019OTP106OTP030MPP048SMP034EMP3-FGSMP007MPV018OTV012FUP018MPP024OTP010OTP076OTP078OTP079FUV005SYV2-FGOTP005MPP056ISV08MPP037OTP035RSP014SMV006OTP094SMP039FUV005BDV006BDP015RSP024OTP115MPP027MPV013OTP107PSP003SMV004MPP044MPP040RSV1-FGOTP071FUP033BDP010FBV3-FGMPP068CEP022MPV2-FGRSV4-FGCEP009PSV006PSP043OTV007OTP066MPP031OTP035RSP014SMP010FUV006FUP010FUP031BDP012CEP004CEP007SSP002CEP032RSV001RSP017RSP029RSP030CEP025MEP010MPP043SMV006MPP048SIP1-FGMPP031FUV005FUP008CEP019BIOspektrum | Tagungsband <strong>2012</strong>


249van Dijk, G.van Engelen, E.van Hemert, S.van Niftrik, L.van Ooyen, J.van Pée, K.H.van Rossum, B.van Teesel<strong>in</strong>g, M.Van Thuat, N.van Weer<strong>in</strong>g, H.van Zandbergen, G.Vandenkoornhuyse, P.Vasileva, D.Veen<strong>in</strong>g, J.W.Vente, A.Ventz, K.Verma, V.Verspohl, J.Vicente, E.Vier, R.Vilhena, C.Vladimirova, T.Vockenhuber, M.Vogel, J.Vogel, M.Vogel, S.Vogelmann, J.Voges, R.Vogt, C.Vohl, G.Voigt, A.Voigt, B.Voigt, C.Voigt, K.Vollmer, S.Vollstedt, C.Volmer, J.Volmer, R.von Bergen, M.von Müller, L.von Netzer, F.von Ohle, C.von Ohlshausen, P.von Reuß, S.H.von Wallbrunn, C.Vonck, J.Voravuthikunchai, S.Vorburger, T.Voss, B.Voss, J.Voß, S.Vödisch, M.Völker, U.Völler, G.H.Waack, P.Wadhwani, P.Wagner-Döbler, I.Wagner, Al.Wagner, An.Wagner, D.Wagner, I.Wagner, Marc.Wagner, Mari.SMV005OTP078HMP005CEP012OTV023PSP062FUP019MEV007MEP028OTV005CEP012FBV7-FGOTP074MPP053OTV027PSV005OTP125MEP026MPP018MPP067OTP001MPP031OTP131SIP3-FGRSP023SSP002RSV012RSP048RSV002PSP008SSP028CEP015RSP010EMP2-FGOTV017PSP017RSP008PSP035MPP012FBV5-FGFUP007MPP048MPP055PSP048FUV003FUP020MPP019SYV4-FGCEP007MPP048OTP106PSP032MPP081OTP016PSP036SMP031MPP034SMP051HMP006OTP126MEP023YEV7-FGOTP069MEP036PSP035PSP039RSP015PSP049MPV016FBV4-FGCEV013MPP057MPP060MPP077MEP045RSV003SSP002MPP056OTP067OTP061OTP097SMP006SMP024SMP026SMP043MPP044MEP022MPP036Wagner, Mart.Wagner, Mi.Wagner, N.Wahl, A.Walcarius, A.Waldmann, B.Waldm<strong>in</strong>ghaus, T.Walheim, E.Walker, A.W.Wallich, R.Wallisch, S.Wallwey, C.Walochnik, J.Walser, O.Walter, J.Walter, S.Walter, X.A.Walther, T.Wang, Z.Wanner, G.Wanner, S.Warnecke, F.Wasmund, K.Watzka, M.Weber, Ch.Weber, Cl.Weber, S.Weber, T.Wedlich-Söldner, R.Wegner, C.E.Wei, X.Weichelt, V.Weidenbach, K.Weidenmaier, C.Weigand, S.Weigel, C.Weil, B.Weiland, N.We<strong>in</strong>gart, H.We<strong>in</strong>reich, J.Weis, V.Weise, T.Weiss, A.Weiss, M.Weissgerber, T.Weisskopf, L.Weiz, A.R.Welte, C.Wendisch, V. F.Wenzel, Ma.Wenzel, Mi.Werner, C.Werner, S.Werth, C.J.Wessels, H.West, J.Westermann, C.Westphal, A.Wetzel, D.Wex, T.Wiacek, C.Wichelhaus, T.A.Wichels, A.Wick, L. Y.Wickert, S.Widdel, F.Widderich, N.MPP010OTP044OTP140SMV014SMP040MEP034SSP013OTP008MPV019OTV009MPV5-FGISV15MPP017EMP4-FGMEV008MEP020OTP044SIV7-FGOTP062FUP002OTP130OTP131CEP007OTP008BDP014CEP009MPV026MPP042MPP050OTV016OTP094OTP155OTP051SIV5-FGCEP004MPV007MPV1-FGMEV005MEP031OTP015CEV009PSP031PSP050SMV013HMP011OTP124MPV026MPP042MPP050MEP002OTV009SSV003HMP012OTV024MPP009SSP028SIV1-FGMEP023SIV7-FGOTP022PSP022SMP018MEV011OTP055PSP030PSV006PSV007MEP013MEP015PSP053OTP088CEV008MPP081RSP043PSP009OTV008SMV017SIV9-FGSMP045BDP005SSP028OTP007MPV004SSP027CEV004QDV2-FGEMV1-FGPSP012MEP002MEP003MEP006Wiechert, W.Wieczorek, A.Wiegard, A.Wienemann, T.Wiese, J.Wiesemann, N.Wieser, A.Wietzke, M.Wilde, A.Wilhelm, S.Wilkes, H.Williams, H.D.Williams, K.J.Wilmes, M.Wiltshire, K.W<strong>in</strong>del, N.W<strong>in</strong>gen, M.W<strong>in</strong>kelmann, C.W<strong>in</strong>klhofer, M.W<strong>in</strong>stel, V.Wirth, R.Witan, J.Witek, D.Witharana, C.Wittmann, A.Wittmann, C.Woche, S.K.Wohlleben, W.Wohlwend, D.Wolf, A.Wolf, C.Wolf, D.Wolff, G.Wolfgang, M.C.Wolfgramm, M.Wolfram, D.Wollenberg, T.Woll<strong>in</strong>sky, B.Wolter, S.Wolters, D.Wolz, C.Wong, H.Woods, A.Woyke, T.Wrede, C.Wright, P.C.Wubet, T.Wöhlbrand, L.Wöhnert, J.Wölfle, M.Wöstemeyer, J.Würdemann, H.Wüst, A.Wüst, P.Wüstenhagen, E.Wüstner, S.Xia, G.RSP010SMP011OTP137SIP3-FGMEP024OTP048SSP032HMP007RSP046RSP006RSP042RSP051MEP039PSP033RSP052PSP012MPV015SSV002CEP030SSP027PSV002OTP062OTP085OTP136BDP002CEP017OTP100PSP029RSV001MPP028MPP062OTV015HMP009MEV010MPV011SSV001OTP128SMV007ISV13BDP001MEV005MEP021MEP031OTP029RSP031RSP032OTP049MEP011OTP154CEV002FUV001MPP037SMP029OTP043SMV011FUV008MEP017OTP066FUP001MPV023MPP076MPP077RSP047FUP003OTP037OTV016OTP110RSV006OTP090PSP021SMP031PSP028OTV001OTV002MEP035RSP043OTP046OTP151SMP029SMP045OTP033SMP012SMP013MPP052PSP037CEP017MPV002MPV4-FGMPP079Xie, X.Xiong, G.Yakéléba, A.Yan, A.Yaneva, N.Yang, S.Yemel<strong>in</strong>, A.Yepes Garcia, A.Youn, J.W.Yousaf, A.Yovkova, V.Yu, X.Yu, Y.Yun-Yueh, L.Yücel, O.Zadora, P.Zaehle, C.Zaparty, M.Zarivach, R.Zautner, A.E.Zeder, M.Zehner, S.Zelder, M.Zellner, H.Zeng, A.P.Zeth, K.Zhang, J.Zhang, X.Zhang, Ya.Zhang, Yo.Zhang, You.Zhang, Z.Zhou, Q.Zhou, Y.Zhu, B.Zhu, H.Zhur<strong>in</strong>a, D.Zibek, S.Ziebandt, A.K.Ziegler, M.Ziegler, S.Ziel<strong>in</strong>ski, F.Ziemert, N.Ziemski, M.Ziert, C.Zigann, R.Zilles, J.L.Zilliges, Y.Zimmerl<strong>in</strong>g, U.Zimmermann, J.Zimmermann, K.Z<strong>in</strong>ke, O.Zipfel, P.F.Zlosnik, J. E.Zocher, P.Zocher, S.Zolghadr, B.Zoll, S.Zomorrodi, M.Zopfi, J.Zorn, M.Zschiedrich, C.Zschöck, M.Zschöck, W.Zumft, W.G.Zusman, D.Zuther, K.Zverlov, V.V.Zwerschke, D.Zähriger, F.Zähr<strong>in</strong>ger, U.Zöller, L.MEV008MEP005MEP019MEP020RSP002MEV002SSV004OTP034SMP043FUV004BDV007PSV006MEV009FUP021FUP023MEP019FUP030MPV013PSP046PSP042OTP152SSP020CEP009MPV027SSP027SIP4-FGPSP018OTP047SMP023CEP002MPV3-FGPSV009RSP024BDV004OTP122BDP004YEV7-FGMEV006RSP019BDP009SMV005OTP122SIV9-FGOTP119MEP036MPP045SMP030SMV012OTP083MEV011PSP042MEP013PSP016PSP009MEP037SMV013SMP048SIV3-FGBDP006SSP028MPV016MPV025MPP017MPV015SMP048SIP4-FGCEV016CEV014FBV6-FGOTP131PSV003RSP054OTP074OTP076OTP078MPP081OTP033BDV003FUV008SMP038OTP028RSV5-FGCEV013OTP010BIOspektrum | Tagungsband <strong>2012</strong>


250 PERSONALIA AUS DER MIKROBIOLOGIE 2011Personalia aus der Mikrobiologie 2011HabilitationenStephan Seiler habilitierte sichim Januar 2011 an Universität Gött<strong>in</strong>gen(Signaltransduktion undZellmorphogenese <strong>in</strong> filamentösenAskomyceten).Marc Bramkamp habilitierte sicham 27. Januar 2011 an der Universitätzu Köln (Temporal andspatial control of cell division <strong>in</strong>Gram positive, rod-shaped bacteria).Imke Wiedemann habilitiertesich am 25. Mai 2011 an der UniversitätBonn (Die ZellwandvorstufeLipidII – E<strong>in</strong>e Zielstruktur fürAntibiotika).Rudolf Hausmann habilitiertesich am 5. Juli 2011 an der UniversitätKarlsruhe (Strategien zurbiotechnologischen Produktionvon Rhamnolipiden – umweltfreundlichenmikrobiellen Biotensiden).Darío Ortiz de Orué Lucanahabilitierte sich am 7. Juli 2011 ander Universität Osnabrück (Sens<strong>in</strong>gmediated by the novel Streptomycesthree-component systemHbpS-SenS-SenR).Johannes Gescher habilitiertesich am 7. Juli 2011 an der UniversitätFreiburg (Metal Respiration/ On the components thatdef<strong>in</strong>e a respiratory cha<strong>in</strong> to thecell surface <strong>in</strong> Shewanella oneidensis).Ivan Berg habilitierte sich am 7.Juli 2011 an der Universität Freiburg(Diversity of autotrophic carbonfixation and acetyl-coenzymeA assimilation pathways).Gesche Braker (MPI Marburg)habilitierte sich am 23. November2011 an der Universität Marburgfür das Fachgebiet Mikrobiologie(Ökologie denitrifizierenderLebensgeme<strong>in</strong>schaften – E<strong>in</strong>flüsse,Struktur und Funktion).Sonja-Verena Albers (MPI Marburg)habilitierte sich am 14.Dezember 2011 an der UniversitätMarburg für das FachgebietMikrobiologie (The archaeal surface).Rufe angenommenMarc Thilo Figge von der UniversitätFrankfurt am Ma<strong>in</strong> übernahmam 1. Januar 2011 die W2-Professur Angewandte Systembiologiean der Universität Jenaund die Leitung der ForschungsgruppeAngewandte Systembiologieam Leibniz-Institut für Naturstoff-Forschungund Infektionsbiologie– Hans-Knöll-Institut.Vera Meyer von der UniversitätLeiden übernahm am 1. März2011 die W3 Professur für denLehrstuhl Angewandte und MolekulareMikrobiologie an der TechnischenUniversität Berl<strong>in</strong>.Johannes Gescher von der UniversitätFreiburg übernahm am1. April 2011 die W3-Professur fürden Lehrstuhl Angewandte Biologieam Karlsruher Institut fürTechnologie.Peter Graumann von der UniversitätFreiburg nahm im Mai 2011e<strong>in</strong>en Ruf an die Universität Marburgan und wird dort im April<strong>2012</strong> beg<strong>in</strong>nen.Lars Blank von der TU Dortmundübernahm am 1. Juli 2011 e<strong>in</strong>eW3-Professur als Leiter des Institutsfür Angewandte Mikrobiologiean der RWTH Aachen.Mart<strong>in</strong> Thanbichler vom Max-Planck-Institute für terrestrischeMikrobiologie <strong>in</strong> Marburg übernahmam 5. Juli 2011 e<strong>in</strong>e W2-Professur für Mikrobiologie an derUniversität Marburg.Marcel Kuypers, Direktor amMax-Planck-Institut für Mar<strong>in</strong>eMikrobiologie, nahm im Juli 2011den Ruf zum Professor für Biogeochemieim Fachbereich Geologieder Universität Bremen an.Kathar<strong>in</strong>a Pahnke von der Universitätvon Hawaii <strong>in</strong> Manoaübernahm am 1. August 2011 dieW2-Gruppenleitung der Max-Planck-Research Group „Mar<strong>in</strong>eIsotope Geochemie“ am Institutfür Chemie und Biologie des Meeres(ICBM) der Universität Oldenburg.Michael Rother von der UniversitätFrankfurt am Ma<strong>in</strong> übernahmam 1. Oktober 2011 die W2-Professur für Mikrobielle Diversitätan der Technischen UniversitätDresden.Kürsad Turgay von der FU Berl<strong>in</strong>übernahm am 1. Oktober 2011 dieW2- Professur für Mikrobiologiean der Universität Hannover.Kathar<strong>in</strong>a Riedel von der TechnischenUniversität Braunschweigübernahm am 1. Oktober 2011e<strong>in</strong>e W3-Professur am Lehrstuhlfür Mikrobiologie an der UniversitätGreifswald.Anke Becker von der UniversitätFreiburg übernahm am 1. Oktober2011 e<strong>in</strong>e W3-Professur für Mikrobiologiean der Universität Marburg<strong>in</strong> Verb<strong>in</strong>dung mit demLOEWE-Zentrum für SynthetischeMikrobiologie (SYNMIKRO).Bodo Philipp von der UniversitätKonstanz übernahm am 1. Ok -tober 2011 die W2-Professur fürMikrobielle Biotechnologie amInstitut für Molekulare Mikrobiologieund Biotechnologie der UniversitätMünster.Sab<strong>in</strong>e Hunke von der Humboldt-Universität zu Berl<strong>in</strong> übernahmam 1. Oktober 2011 die Juniorprofessurim Bereich Mikrobiologieam Fachbereich Biologie/Chemieder Universität Osnabrück.Christoph Mayer, Heisenberg-Stipendiat der Universität Konstanz,übernahm am 1. Oktober2011 e<strong>in</strong>e Akademische Ratsstelleim Bereich Mikrobiologie undBiotechnologie / Glykobiologie ander Universität Tüb<strong>in</strong>gen.Fördergeld für Bakterien <strong>in</strong> der ArktisProf. Dr. Antje Boetius, Leiter<strong>in</strong> der Tiefsee-Forschungsgruppe am Alfred-Wegener-Institutfür Polar- und Meeresforschung <strong>in</strong> derHelmholtz-Geme<strong>in</strong>schaft und Professor<strong>in</strong> fürGeomikrobiologie an der Universität Bremen,erhält vom Europäischen Forschungsrat 3,4Millionen Euro Fördergelder. Damit will dierenommierte Bremer Biolog<strong>in</strong> <strong>in</strong> den kommendenfünf Jahren den Meeresboden <strong>in</strong> derarktischen Tiefsee untersuchen und denGeheimnissen se<strong>in</strong>er rätselhaften Bakterienwelt auf die Spurkommen.Das Forschungsprojekt „ABYSS – Assessment of bacterial lifeand matter cycl<strong>in</strong>g <strong>in</strong> deep-sea surface sediments“ setzt auf dieKooperation verschiedener Forschungse<strong>in</strong>richtungen <strong>in</strong> Bremen,aber auch im Ausland. Die Forschungen beg<strong>in</strong>nen bereits diesesJahr. E<strong>in</strong>en Großteil der Untersuchungen wird Boetius auf See undam Tiefsee-Observatorium des Alfred-Wegener-Instituts vornehmen:„Wir müssen zu den Bakterien h<strong>in</strong>abtauchen, denn die meisten lassensich nicht im Labor kultivieren“, so die Wissenschaftler<strong>in</strong>.„Jedes Gramm Schlamm aus der Tiefsee enthält bis zu 10.000Arten Mikroorganismen, von denen die meisten unbekannt s<strong>in</strong>d“,schildert Boetius. „Viele s<strong>in</strong>d wahre Hungerkünstler und können ausjedem noch so kle<strong>in</strong>en Algenrest Energie gew<strong>in</strong>nen und Biomasseaufbauen. Wie sie das machen, ist e<strong>in</strong> Rätsel und von großer Bedeutungfür den globalen Kohlenstoffkreislauf, die geologischen Ablagerungsprozesseund die Vielfalt des Lebens am Meeresboden“.BIOspektrum | Tagungsband <strong>2012</strong>


251Eckhard Boles von der UniversitätFrankfurt am Ma<strong>in</strong> nahm imNovember 2011 e<strong>in</strong> Bleibeangebotauf e<strong>in</strong>e W3-Professur amInstitut für Molekulare Biowissenschaftenan.Marc Bramkamp von der Universitätzu Köln nahm am 27.November 2011 den Ruf auf e<strong>in</strong>eW2-Professur für Mikrobiologiean der Ludwig-Maximilians-UniversitätMünchen an.Rolf Daniel von der UniversitätGött<strong>in</strong>gen übernahm am 1. De -zem ber 2011 die W3-ProfessurAngewandte und GenomischeMikrobiologie an der UniversitätGött<strong>in</strong>gen.Re<strong>in</strong>hard Guthke wurde am 15.Dezember 2011 auf e<strong>in</strong>e außerplanmäßigeProfessur Systembiologiean der Universität Jenaberufen.Emeritierungen/PensionierungenGeorg Fuchs vom Institut fürMikrobiologie der Universität Freiburgwurde am 31. März 2011emeritiert.Alasdair M. Cook vom FachbereichBiologie an der UniversitätKonstanz wurde am 31. März 2011pensioniert.Bo Barker Jørgensen, Direktoram Max-Planck-Institut für Mar<strong>in</strong>eMikrobiologie, wurde am 30. September2011 emeritiert.Rudolf Eichenlaub vom Institutfür Gentechnologie/Mikrobiologiean der Universität Bielefeldwurde am 30. September 2011emeritiert.Wissenschaftliche Preise2011(sofern nicht bereits <strong>in</strong> BIOspektrumgemeldet)Susanne Fetzner von der UniversitätMünster erhielt am 7.Januar 2011 den Forschungspreisder Universität Münster für ihreArbeiten über Reaktionsmechanismenr<strong>in</strong>gspaltender bakteriellerDioxygenasen.Marcel Thön vom Leibniz-Institutfür Naturstoff-Forschung undInfektionsbiologie – Hans-Knöll-Institut – erhielt am 14. April 2011den Wissenschaftspreis fürLebenswissenschaften und Physikdes Beutenberg-Campus Jenae.V. für se<strong>in</strong>e Arbeiten zum Thema„Redox regulation of the Aspergillusnidulans CCAAT-b<strong>in</strong>d<strong>in</strong>g factor(AnCF)“.Holger Z<strong>in</strong>ke von der BRAIN AGwurde am 15. Juni 2011 für se<strong>in</strong>eBeiträge auf dem Gebiet der Biologisierungvon Industrien undse<strong>in</strong> unternehmerisches Engagementmit dem IBN-Award desVere<strong>in</strong>s Industrielle BiotechnologieNord ausgezeichnet.Tamas Dolowschiak von derMediz<strong>in</strong>ischen Hochschule Hannover,Institut für Mediz<strong>in</strong>ischeMikrobiologie und Krankenhaushygiene,erhielt am 01.07.2011den HIRSIB-Preis für se<strong>in</strong>e Arbeit„Cell-cell communications asessential component of the epithelial<strong>in</strong>nate host defence“.Jutta Vogelmann von der UniversitätTüb<strong>in</strong>gen erhielt am 21.Juli 2011 den Promotionspreis derMathematisch-NaturwissenschaftlichenFakultät für ihreArbeiten über „Biochemische undbiophysikalische Analyse desDNA-Translokator-Prote<strong>in</strong>s TraBdes konjugativen Plasmids pSVH1aus Streptomyces venezuelae“.Christian Hertweck von der UniversitätJena und vom LeibnizInstitut für Naturstoff-Forschungund Infektionsbiologie, Hans-Knöll-Institut (HKI), erhielt am 16.August 2011 den NPR LectureAward für se<strong>in</strong>e Arbeiten zur Biosynthesemikrobieller Wirkstoffe.Stephan Fuchs von der UniversitätGreifswald erhielt am 25.September 2011 den Doktorandenpreisder DGHM für se<strong>in</strong>eArbeiten über Physiologische undmolekularbiologische Untersuchungenzur Adaptation von Staphylococcusaureus an anerobeBed<strong>in</strong>gungen.Jörg Vogel von der UniversitätWürzburg erhielt am 25. September2011 den Hauptpreis derDeutschen Gesellschaft für Hygieneund Mikrobiologie für se<strong>in</strong>eArbeiten über kle<strong>in</strong>e RNAs <strong>in</strong>pathogenen Bakterien und wurdeim Oktober 2011 auf Lebenszeitals Mitglied bei EMBO (EuropeanMolecular Biology Organisation)gewählt.Matthias Brock vom Leibniz-Institut für Naturstoff-Forschungund Infektionsbiologie – Hans-Knöll-Institut – erhielt am 27. Oktober2011 den Pettenkofer-Preisfür se<strong>in</strong>e Arbeiten über „Pilz<strong>in</strong>fektionenbei abwehrgeschwächtenPatienten: Pathogenese, Diagnostik,Therapie und Prävention“.Markus Bröcker von der UniversitätYale erhielt am 4. November2011 den He<strong>in</strong>rich-Büss<strong>in</strong>g-Preisder Stiftung zur Förderung derWissenschaften an der TechnischenUniversität Braunschweigfür se<strong>in</strong>e Promotion zum Thema„Function and Structure of theLight-Independent ProtochlorophyllideOxidoreductase“Cynthia M. Sharma vom Zentrumfür Infektionsforschung der UniversitätWürzburg erhielt am 04.November 2011 den Ingrid-Zu-Solms Naturwissenschaftspreis2011 für ihre Dissertation überdas Magenbakterium Helicobacterpylori sowie am 11. November2011 den Robert-Koch-Postdoktorandenpreisfür Mikrobiologie2011.Cecilia Chass<strong>in</strong> von der Mediz<strong>in</strong>ischenHochschule Hannover,Institut für Mediz<strong>in</strong>ische Mikrobiologieund Krankenhaushygiene,erhielt am 11.11.2011 denPostdoktorandenpreis der Robert-Koch-Stiftung für ihre Arbeit über„miR-146a mediates protective<strong>in</strong>nate immune tolerance <strong>in</strong> theneonate <strong>in</strong>test<strong>in</strong>e“.Hans-Wilhelm Nützmann undKirst<strong>in</strong> Scherlach vom Leibniz-Institut für Naturstoff-Forschungund Infektionsbiologie – Hans-Knöll erhielten am 7. November2011 den medac-Forschungspreisfür ihre Arbeiten zum Thema„Bacteria-<strong>in</strong>duced natural productformation <strong>in</strong> the fungus Aspergillusnidulans requires Saga/Adamediatedhistone acetylation“.Volker Schroekh, Fabian Hornund Julia Schümann vom Leibniz-Institutfür Naturstoff-Forschungund Infektionsbiologie –Hans-Knöll erhielten am 7.November 2011 den medac-Forschungspreisfür ihre Arbeitenzum Thema „Bacteria-<strong>in</strong>ducednatural product formation <strong>in</strong> thefungus Aspergillus nidulans requiresSaga/Ada-mediated histoneacetylation“.Qian Chen und Andrea Hartmannvom Leibniz-Institut fürNaturstoff-Forschung und Infektionsbiologie– Hans-Knöll erhieltenam 7. November 2011 denmedac-Forschungspreis für ihreArbeiten zum Thema „Comb<strong>in</strong>edC3b and Factor B autoantibodiesand MPGN2“.Judith Klatt vom Max-Planck-Institut für Mar<strong>in</strong>e Mikrobiologie<strong>in</strong> Bremen erhielt am 10. November2011 <strong>in</strong> Berl<strong>in</strong> den nationalenFörderpreis aus dem UNESCO-L’Oréal-Förderprogramm ForWomen <strong>in</strong> Science als exzellenteDoktorand<strong>in</strong> mit K<strong>in</strong>d u. a. für ihreExpeditionen zur Erforschung derBakterienpopulationen an denSulfidquellen vor den Grotten vonFrasassi, Italien.E<strong>in</strong> Team Bielefelder Studenten(Timo Wolf, Michael Limberg,Jan Schwarzhans, Simon Schäper,Anna Drong, ChristianRückert, Panagiotis Papavasiliou,Dom<strong>in</strong>ik Cholewa, NilsLübke, Maurice Telaar, RobertBraun, Jonas Aretz, ManuelWittchen, Arm<strong>in</strong> Neshat, Kathar<strong>in</strong>aThiedig, Niko Kessler, MatthiasEder) erhielt beim InternationaleniGEM-Wettbewerb <strong>in</strong> Boston,MA, USA e<strong>in</strong>en Gold Award,nachdem sie bereits die Europa-Ausscheidung und damit dieF<strong>in</strong>alteilnahme <strong>in</strong> Boston gewonnenhatten.BIOspektrum | Tagungsband <strong>2012</strong>


252 PROMOTIONEN 2011Promotionen 2011Universität BayreuthKelly Leite: Construction of anefficient secretion system forrecomb<strong>in</strong>ant prote<strong>in</strong>s <strong>in</strong> BacillussubtilisBetreuer: Wolfgang SchumannQuynh Anh Nguyen: Developmentof Bacillus subtilis sporesand cells for surface display ofprote<strong>in</strong>sBetreuer: Wolfgang SchumannTechnische UniversitätBerl<strong>in</strong>Jean Paul Ouedraogo: The elucidationof signall<strong>in</strong>g and survivalmechanisms of fungi to counter -act the antifungal prote<strong>in</strong> AFPBetreuer<strong>in</strong>: Vera MeyerMarco Albrecht: Global transcriptomeAnalysis of the HumanPathogens Chlamydia trachomatisand Chlamydia pneumoniaBetreuer: Roland LausterFreie Universität Berl<strong>in</strong>Christ<strong>in</strong>a Pesavento: InverseKoord<strong>in</strong>ation von Motilität undUniversität BielefeldDaniella Kar<strong>in</strong>e Cavalcanti deGenereller Stressantwort <strong>in</strong> Lucena: Characterization of SigmaEscherichia coliBetreuer<strong>in</strong>: Reg<strong>in</strong>e Hengge Factors of S<strong>in</strong>orhizobium meli-loti <strong>in</strong>volved <strong>in</strong> Stress ResponseTim Kolmsee: TranslationaleBetreuer: Alfred PühlerRegulation der SigmaS–Untere<strong>in</strong>heitder RNA-Polymerase <strong>in</strong>Escherichia coliBetreuer<strong>in</strong>: Reg<strong>in</strong>e HenggeAnh Vu Nguyen: Time CourseMicroarray Study of Bio-HydrogenProduction under Sulfur Starvation<strong>in</strong> the Green Alga Chlamydomonasre<strong>in</strong>hardtiiMohammad Rawway Khlaf:Betreuer: Olaf KruseExperimental evolution of halotolerance<strong>in</strong> Escherichia coliBetreuer: Rupert MutzelJohannes Wittmann: Die Endolys<strong>in</strong>evon Clavibacter michi -ganensis-Phagen als KandidatenElisabeth Hauser: Gefahren -für den biologischen Pflanzenschutzvon Tomatenpflanzenidentifizierung der im Schwe<strong>in</strong>epidemiologisch bedeutendenBetreuer: Rudolf EichenlaubSalmonella enterica subsp. ente -rica Serovare 4,[5],12:i:- undDerbyBetreuer: Bernd Appel (Bundes<strong>in</strong>stitutfür Risikobewertung), RupertMutzelCharlott Sterthoff: Clostridiumbotul<strong>in</strong>um <strong>in</strong> der Landwirtschaftund <strong>in</strong> der Biogasproduktion:Funktionale Charakterisierunge<strong>in</strong>es neuen C2-Tox<strong>in</strong>s und Metagenomike<strong>in</strong>es GärrestesSusann Dupke: UntersuchungBetreuer: Andreas Tauchder Virulenz Bacillus anthracisähnlicherIsolate aus West- undZentralafrikaBetreuer: Roland Grunow (RobertKoch-Institut), Rupert MutzelMatthias Keck: Isolierung undStrukturanalyse äußerer Membranlipidevon Sorangium cellulosumSo ce56Betreuer: Karsten NiehausHumboldt-Universität zu Marcus Persicke: EtablierungBerl<strong>in</strong>und Weiterentwicklung der MetabolomanalyseTobias Goris: Der E<strong>in</strong>fluss e<strong>in</strong>esneuartigen Fe-S Clusters auf dieO 2-Toleranz der membrangebundenenHydrogenase aus RalstoniaeutrophaBetreuer<strong>in</strong>: Bärbel FriedrichVolker Müller: The role of the Cpxtwo-component system <strong>in</strong> the<strong>in</strong>vasion of Salmonella entericaserovar Typhimuriumzur Untersuchungvon Am<strong>in</strong>osäure-produzierendenCorynebacterium glutamicumStämmenBetreuer: Alfred PühlerJens Plassmeier: Funktion undRegulation des Propionatstoffwechsels<strong>in</strong> Corynebacterium glutamicumBetreuer: Alfred PühlerBetreuer: Erw<strong>in</strong> SchneiderUniversität BochumS<strong>in</strong>a Langklotz: Substrate diversityand substrate selection of thebacterial FtsH and Lon proteasesBetreuer: Franz NarberhausAlexandra Müller: Molybdän-Aufnahmeund Mo-abhängige Genregulation<strong>in</strong> Rhodobacter capsulatusBetreuer: Franz NarberhausIna Wilms: Small regulatoryRNAs <strong>in</strong> Agrobacterium tumefaciensBetreuer: Franz NarberhausAndrea Busch: Biosynthesis ofphycoerythrobil<strong>in</strong> and its attachmentto phycobiliprote<strong>in</strong>sBetreuer<strong>in</strong>: Nicole Frankenberg-D<strong>in</strong>kelChristian Schäfers: HeterotrimereG-Prote<strong>in</strong>e <strong>in</strong> Pilzen: DieFunktion der Gα-Untere<strong>in</strong>heitGSA1 <strong>in</strong> der Entwicklung desModellorganismusmacrosporaBetreuer: Ulrich KückSordariaKatar<strong>in</strong>a Kopke: Entwicklungmolekulargenetischer Technikenzur Anwendung bei biotechnologischrelevanten HyphenpilzenBetreuer: Ulrich KückStefan Ges<strong>in</strong>g: VergleichendeGenexpressionsuntersuchungenbei der Entwicklung von HyphenpilzenBetreuer<strong>in</strong>: M<strong>in</strong>ou NowrousianUniversität BonnChristian Krätzer: Substratum -setzung und Schutz vor Sauerstoffradikalen<strong>in</strong> Methanosarc<strong>in</strong>amazeiBetreuer: Uwe DeppenmeierCornelia Welte: Ferredox<strong>in</strong>dependentelectron transportdur<strong>in</strong>g methanogenesis from acetateBetreuer: Uwe DeppenmeierAnne Korsten: Das seltene kompatibleSolut N-Acetyl-glutam<strong>in</strong>ylglutam<strong>in</strong>-1-amid(NAGGN):Heterologe Expression des Genclustersaus Pseudomonas putidaund Untersuchungen zur Funktionder putativen BiosyntheseenzymeBetreuer: Erw<strong>in</strong> A. Gal<strong>in</strong>skiAndrea Meffert: Die Hydroxylierungvon Ecto<strong>in</strong> und Derivatendurch die Hydroxylase EctD ausHalomonas elongataBetreuer: Erw<strong>in</strong> A. Gal<strong>in</strong>skiTechnische UniversitätBraunschweigStefanie Hebecker: Alanyl-PhosphatidylglycerolSynthase fromPseudomonas aerug<strong>in</strong>osa:Physiological relevance andmechanism of tRNA-dependentcatalysisBetreuer: Dieter JahnNathalie Ros<strong>in</strong>: Physiologie vonPseudomonas aerug<strong>in</strong>osa unterHarnwegs-ähnlichen Bed<strong>in</strong>gungenBetreuer: Dieter JahnAnna-Lena Kaufholz: Am<strong>in</strong>olevul<strong>in</strong>icacid synthase of RhodobactercapsulatusBetreuer: Dieter JahnMaike Narten: Charakterisierungder Antibiotikaresistenzmechanismenvon Pseudomonas aerug<strong>in</strong>osaunter Harnwegs-ähnlichenBed<strong>in</strong>gungenBetreuer: Dieter JahnSonja Storbeck: Structure andFunction of Pseudomonas aerug<strong>in</strong>osaNirE <strong>in</strong>volved <strong>in</strong> heme d 1biosynthesisBetreuer: Gunhild LayerJohannes Walther: Biosynthesedes Isobacteriochlor<strong>in</strong>s Häm d 1:Charakterisierung der Prote<strong>in</strong>eNirJ und NirDLGH aus Pseudomonasaerug<strong>in</strong>osaBetreuer: Gunhild LayerLars Remus: Strategien gegenmikrobielle Kontam<strong>in</strong>ationen vonLackieranlagen <strong>in</strong> der Automobil<strong>in</strong>dustrieBetreuer: Dieter JahnChristopher Untucht: Blut-Hirnschranke-ModelleECV304-C6und HBMEC und ihre Anwendung<strong>in</strong> Transmigrationsuntersuchungenvon Streptokokken und afrikanischenTrypanosomenBetreuer: Michael Ste<strong>in</strong>ertFrank Uliczka: Regulation andfunction of adhesion and <strong>in</strong>vasionfactors of enteropathogenic Yers<strong>in</strong>iaspeciesBetreuer<strong>in</strong>: Petra DerschBIOspektrum | Tagungsband <strong>2012</strong>


253Anna-Kathar<strong>in</strong>a Wagner: Regulationdes VirulenzgenregulatorsSlyA <strong>in</strong> pathogenen und apathogenenEscherichia coli-StämmenBetreuer<strong>in</strong>: Petra DerschKathar<strong>in</strong>a Herbst: The temperature-and growth phase-dependentregulation of the global virulenceregulator RovA from Yers<strong>in</strong>apseudotuberculosisBetreuer<strong>in</strong>: Petra DerschBenjam<strong>in</strong> Stielow: Taxonomy,axenic cultivation, cryopreservationand pathogens of sequestratemacrofungiBetreuer: Peter HoffmannUniversität Bremen undMPI für Mar<strong>in</strong>e Mikrobiologie,BremenJana Milucka: Dissimilatory sulfurmetabolism coupled to anae -robic oxidation of methaneBetreuer: Rudolf AmannSab<strong>in</strong>e Lenk: Molecular ecologyof key organisms <strong>in</strong> sulfur and carboncycl<strong>in</strong>g <strong>in</strong> mar<strong>in</strong>e sedimentsBetreuer: Rudolf AmannKyoko Kubo: Autecology of crenarchaeotaland bacterial clades<strong>in</strong> mar<strong>in</strong>e sediments and microbialmatsBetreuer: Rudolf AmannMariette Kassabgy: Diversitiyand abundance of gammaproteobacteriadur<strong>in</strong>g the w<strong>in</strong>ter-spr<strong>in</strong>gtransition at station Kabeltonne(Helgoland)Betreuer: Rudolf AmannJörg Brock: Impact of sulphideoxid<strong>in</strong>gbacteria on the phosphoruscycle <strong>in</strong> mar<strong>in</strong>e sedimentsBetreuer<strong>in</strong>: Heide Schulz-VogtVerena Salman: Diversity studiesand molecular analyses with s<strong>in</strong>glecells and filaments of large,colorless sulphur bacteriaBetreuer<strong>in</strong>: Heide Schulz-VogtAnne Schwedt: Physiology of amar<strong>in</strong>e Beggiatoa stra<strong>in</strong> and theaccompany<strong>in</strong>g organism Pseudovibriosp. – a facultatively oligotrophicbacteriumBetreuer<strong>in</strong>: Heide Schulz-VogtCarsten Frank: PolyphasischeTaxonomie, Kerngenom undLebenszyklus von Rhodopirellula-StämmenBetreuer: Friedrich WiddelUlrike Jaekel: Anaerobic oxidationof short-cha<strong>in</strong> and cyclic alkanesby sulphate-reduc<strong>in</strong>g bacteriaBetreuer: Friedrich WiddelDennis F<strong>in</strong>k: Dynamics of SymbiontAbundance <strong>in</strong> Bathymodiol<strong>in</strong>Deep-sea SymbiosesBetreuer<strong>in</strong>: Nicole DubilierFrauke Lüddeke: Genetische undbiochemische Charakterisierungvon Enzymen des anaerobenMonoterpenabbaus <strong>in</strong> CastellanielladefragransBetreuer: Friedrich WiddelHang Gao: Nitrogen loss <strong>in</strong> the<strong>in</strong>tertidal permeable Wadden SeasedimentsBetreuer: Marcel KuypersJoanna Sawicka: Arctic to tropic– adaptation and response of anaerobicmicroorganisms to temperatureeffects <strong>in</strong> mar<strong>in</strong>e sedimentsBetreuer: Bo Barker JørgensenKyriakos Vamvakopoulos: Plastify<strong>in</strong>gmar<strong>in</strong>e microhabitats –explor<strong>in</strong>g biogeochemical processes<strong>in</strong> microscaleBetreuer: Bo Barker JørgensenChrist<strong>in</strong>a Bienhold: Diversity andecology of bacterial communitiesat the deep seafloorBetreuer<strong>in</strong>: Antje BoetiusJan Erik Rau: Characterisation of<strong>in</strong>hibitory substances producedby two Pseudoalteromonas speciesand the cyanobacterial stra<strong>in</strong>Flo 1Betreuer: Ulrich FischerClelia Dona: Mobilization of sulfurby green sulfur bacteria – Physiologicaland molecular studies onChlorobaculum parvum DSM 263Betreuer: Ulrich FischerJan P. Schrübbers: Strategien zurDetektion und Identifizierung vonNaturstoffen bei Cyanobakterienam Beispiel von Geitler<strong>in</strong>ema Flo1 und Fischerella ambiguaBetreuer: Ulrich FischerAstrid Näther: Phylogenetischeund funktionelle Diversität vonAcidobacteria <strong>in</strong> Wald- und GrünlandbödenunterschiedlicherLandnutzungBetreuer: Michael W. FriedrichInternational Jacobs UniversityBremen und MPI fürMar<strong>in</strong>e MikrobiologieBasak Öztürk: Assess<strong>in</strong>g theGenetic Accessibility of Rhodopirellulabaltica SH 1^tBetreuer: Frank-Oliver GlöcknerIvaylo Kostad<strong>in</strong>ov: Mar<strong>in</strong>e Metagenomics:From high-throughputdata to ecogenic <strong>in</strong>terpretationBetreuer: Frank-Oliver GlöcknerWolfgang Hankeln: Data <strong>in</strong>tergration<strong>in</strong> microbial genomics –contextualiz<strong>in</strong>g sequence data <strong>in</strong>aid of biological knowledgeBetreuer: Frank-Oliver GlöcknerElmar Prüße: Scaleable bio<strong>in</strong>formaticmethods and resources forribosomal RNA based studiesBetreuer: Frank-Oliver GlöcknerPel<strong>in</strong> Yilmaz: Improv<strong>in</strong>g theUsage of Ribosomal RNA Gene <strong>in</strong>Microbiology and Microbial Ecology– Importance of standardizationand biocurationBetreuer: Frank-Oliver GlöcknerUniversität DarmstadtAndreas Veith: Sulfur oxygenasereductases – a structural and biochemicalperspectiveBetreuer: Arnulf Kletz<strong>in</strong>Technische Universität DortmundJan Heyland: β-Am<strong>in</strong>opeptidases:Recomb<strong>in</strong>ant production and cellbased biocatalysisBetreuer: Andreas Schmid, LarsBlankBirgitta Ebert: A systems ap -proach to understand and eng<strong>in</strong>eerwhole-cell redox biocatalystsBetreuer: Andreas Schmid, LarsBlankSjef Cornelissen: Whole-cell biotransformationsus<strong>in</strong>g cytochromeP450 monooxygenases:potential and limitationsBetreuer: Andreas Schmid, BrunoBühlerÖzde Ütkür: Regioselective aerobicand anaerobic aromatic hydroxylationswith molybdenumhydroxylases <strong>in</strong> Pseudomonas sp.Betreuer: Andreas Schmid, BrunoBühlerTechnische UniversitätDresdenVenel<strong>in</strong>a Yovkova: GentechnischeOptimierung der Hefe Yarrowialipolytica für die biotechnologischeGew<strong>in</strong>nung von α-KetoglutarsäureBetreuer: Gerold BarthMart<strong>in</strong>a Holz: GentechnischeOptimierung der Hefe Yarrowialipolytica zur biotechnologischenProduktion von Succ<strong>in</strong>atBetreuer: Gerold BarthAngela Jacobi: Die Rolle derCXCR4/SDF-1-Achse <strong>in</strong> FLT3-ITDpositivenhumanen hämatopoetischenStammzellenBetreuer: Gerold BarthChrist<strong>in</strong>e Ste<strong>in</strong>brenner: Biochemischeund molekularbiologischeCharakterisierung von Biofilmendes WSB-Verfahrens im Vergleichzum Belebungsverfahren unterbesonderer Berücksichtigung derNitrifikationBetreuer<strong>in</strong>: Isolde RöskeLysann Mehlig: Analyse und Vergleichder Biodiversität <strong>in</strong> derGeme<strong>in</strong>schaft Polyphosphatakkumulierender Mikroorganismen(PAO) an Belebtschlämmenkommunaler KläranlagenBetreuer<strong>in</strong>: Isolde RöskeUniversität Duisburg-EssenMiriam Moritz: Integration ofhygienically relevant bacteria <strong>in</strong>dr<strong>in</strong>k<strong>in</strong>g water biofilms grown ondomestic plumb<strong>in</strong>g materialsBetreuer: Hans-Curt Flemm<strong>in</strong>gUniversität DüsseldorfEva M. Szafranski-Schneider:Charakterisierung des Msb2 Sensorprote<strong>in</strong>s<strong>in</strong> Candida albicansBetreuer: Joachim F. ErnstTheresia Lassak: Untersuchungenzur Regulation und B<strong>in</strong>despezifitätdes TranskriptionsfaktorsEfg1 <strong>in</strong> Candida albicansBetreuer: Joachim F. ErnstUniversität Erlangen-NürnbergNadja Jeßberger: The GlnRdependentnitrogen regulatorynetwork of Mycobacterium smegmatisBetreuer: Andreas BurkovskiBIOspektrum | Tagungsband <strong>2012</strong>


254 PROMOTIONEN 2011Katr<strong>in</strong> Pfeffer: Leader-RNA vermittelteRegulation der TetO-ExpressionBetreuer: Andreas BurkovskiCarol<strong>in</strong> Wagner: Characterizationof the Salmonella PathogenicityIsland 4-encoded prote<strong>in</strong>s SiiE,SiiA and SiiB: a new mechanismof bacterial adhesionBetreuer: Michael Hensel (Osna-brück)Universität Frankfurt amMa<strong>in</strong>Saskia Köcher: Etablierung e<strong>in</strong>esgenetischen Systems für dasmoderat halophile BakteriumHalobacillus halophilus: Mutantenanalysenzur physiologischenFunktion von Carot<strong>in</strong>oiden undder Osmolyte Prol<strong>in</strong> und Glutam<strong>in</strong>Betreuer: Volker MüllerEva Biegel: Energy conservation<strong>in</strong> Acetobacterium woodii: Identificationand characterization ofa Na + -translocat<strong>in</strong>g ferredox<strong>in</strong>:NAD + oxidoreductase (Rnf) and aNa + -pyrophosphataseBetreuer: Volker MüllerSilke Schmidt: Die Entschlüsselungdes Genoms von Acetobacteriumwoodii: neue E<strong>in</strong>blicke <strong>in</strong>die Lebensweise und Bioenergetike<strong>in</strong>es acetogenen BakteriumsBetreuer: Volker MüllerTilmann Stock: MolekulargenetischeAnalyse trans-aktiver Faktorender Selenoprote<strong>in</strong>-Biosynthese<strong>in</strong> Methanococcus maripaludisBetreuer: Michael RotherUniversität FreiburgMiriam Kaufenste<strong>in</strong>: The assemblyof the competence mach<strong>in</strong>ery<strong>in</strong> Bacillus subtilisBetreuer: Peter GraumannRafael Say: Die Fructose-1,6-Bisphosphat-Aldolase/Phosphatase– e<strong>in</strong> ursprüngliches gluconeogenetischesEnzymBetreuer: Georg FuchsTobias Knust: Regulation of SMCby associate prote<strong>in</strong>s and ATPBetreuer: Peter GraumannTheresa Bauer: Investigation ofpLS20 mediated conjugative DNAtransfer <strong>in</strong> the Gram positive bacteriumBacillus subtilisBetreuer: Peter GraumannRob<strong>in</strong> Teufel: Aerobic pheylacetatecatabolism – A novel pr<strong>in</strong>cipleof aromatic degradationBetreuer: Georg FuchsMiriam Pediaditakis: Investigationson behaviour and specificlocalization of DNA repair prote<strong>in</strong>s<strong>in</strong> Bacillus subtilisBetreuer: Peter GraumannLiv Rather: Structure and mechanismof benzoyl-CoA epoxidaseBoxAB from Azoarcus evansiiBetreuer: Georg FuchsUniversität GießenCarol<strong>in</strong>e Knoll: Evaluat<strong>in</strong>g the<strong>in</strong>fluence of stress parameters onOenococcus oeni and the subsequentvolatile aroma compositionof white w<strong>in</strong>eBetreuer<strong>in</strong>: Sylvia SchnellBork Berghoff: The role of smallregulatory RNAs <strong>in</strong> the photooxidativestress response of Rhodobacterand RoseobacterBetreuer<strong>in</strong>: Gabriele KlugRamakanth Madhugiri: MessengerRNA stability determ<strong>in</strong>ants <strong>in</strong>Halobacterium sal<strong>in</strong>arum NRC-1& Process<strong>in</strong>g and turn-over of thesmall non-cod<strong>in</strong>g RNA RprA <strong>in</strong>Escherichia coliBetreuer<strong>in</strong>: Gabriele KlugVerena Roppelt: Die Untersuchungder physiologischen Rolleder Exosom-Untere<strong>in</strong>heiten Rrp4,Csl4 und DnaG aus SulfolobussolfataricusBetreuer<strong>in</strong>: Gabriele KlugJenny Schäfer: Untersuchungenzur Diversität von Act<strong>in</strong>obacteria<strong>in</strong> InnenräumenBetreuer: Peter KämpferKerst<strong>in</strong> Fallschissel: Untersuchungan Bioaerosolen <strong>in</strong> Tierställenunter Etablierung e<strong>in</strong>erREAL-TIME PCR-basierten Methodezur Erfassung luftgetragenerSalmonella und Thermoact<strong>in</strong>omycesZellenBetreuer: Peter KämpferElena Mart<strong>in</strong>: Luftgetragene Bakterien<strong>in</strong> der Geflügelwirtschaft –Erfassung der Exposition undEmissionBetreuer: Peter KämpferUniversität Gött<strong>in</strong>genVan Tuan Tran: Adhesion of therapeseed pathogen Verticilliumlongisporum to its host Brassicanapus – Uncover<strong>in</strong>g adhesiongenes and the evolutionary orig<strong>in</strong>of the fungusBetreuer: Gerhard BrausAnne Dettmann: Regulation andcommunication between the NDRk<strong>in</strong>ase COT1, the MAK2 MAPk<strong>in</strong>ase cascade and the Striat<strong>in</strong>complex <strong>in</strong> Neurospora crassaBetreuer: Gerhard Braus, StephanSeilerChrist<strong>in</strong>e Diethmaier: Die Rollevon YmdB als Regulator der Zelldifferenzierung<strong>in</strong> Bacillus subtilisBetreuer: Jörg StülkeKatr<strong>in</strong> Gunka: Der E<strong>in</strong>fluss derGlutamatdehydrogenasen auf dieVerknüpfung des Kohlenstoff- undStickstoffstoffwechsels <strong>in</strong> BacillussubtilisBetreuer: Jörg StülkeChristoph Wrede: Metabolismusund Biom<strong>in</strong>eralisation <strong>in</strong> anaerobMethan-oxidierenden Lebensgeme<strong>in</strong>schaftenBetreuer: Michael HoppertMart<strong>in</strong> Lehnik-Habr<strong>in</strong>k: AnmRNA degradation complex <strong>in</strong>Bacillus subtilisBetreuer: Jörg StülkeJens Landmann: Das crh-Operon<strong>in</strong> Bacillus subtilis: E<strong>in</strong> neuartigesGensystem mit e<strong>in</strong>er zentralenRolle <strong>in</strong> KohlenstoffmetabolismusBetreuer: Boris GörkeUniversität GreifswaldCarmen Wolf: Charakterisierungvon Staphylococcus aureus Isolatenaus bov<strong>in</strong>en Mastitis<strong>in</strong>fektionenund Analyse der oxidativenund nitrosativen StressantwortBetreuer: Michael HeckerAndreas Willy Otto: Mass spectrometrybased proteomicsapproaches unravel<strong>in</strong>g dynamicprocesses <strong>in</strong> the entire bacterialcellBetreuer: Michael HeckerAlexander Elsholz: Regulation ofProte<strong>in</strong> quality control systems <strong>in</strong>low GC, Gram-positive bacteriaBetreuer: Michael HeckerJan Muntel: Entwicklung und Etablierungvon Massenspektrometrie-basiertenrelativen und absolutenQuantifizierungsmethodenzur physiologischen ProteomanalyseGram positiver BakterienBetreuer: Michael HeckerTobias Härtel: Aufklärung grundlegenderAm<strong>in</strong>osäuresynthesewegevon Streptococcus pneumoniaemittels Isotopolog Profil<strong>in</strong>gund E<strong>in</strong>fluss des Glutam<strong>in</strong>mangelsauf die bakterielle VirulenzBetreuer: Sven HammerschmidtUniversität Halle-WittenbergDoreen Koch: Charakterisierunge<strong>in</strong>es neuen, zweiteiligen Eisenaufnahmesystemsaus dem uropathogenenEscherichia coliStamm F11Betreuer: Dietrich H. NiesUniversität HamburgDagmar Krysciak: The completegenome sequence of Rhizobiumsp. NGR234 reveals a surpris<strong>in</strong>glylarge number of quorum quench<strong>in</strong>gassociated genesBetreuer: Wolfgang StreitPatrick Bijtenhoorn: Characterizationof novel metagenomicquorum quench<strong>in</strong>g enzymes attenuat<strong>in</strong>gPseudomonas aerug<strong>in</strong>osamotility, biofilm formation andvirulenceBetreuer: Wolfgang StreitNele Ilmberger: Metagenomiccellulases l<strong>in</strong>k<strong>in</strong>g IL-tolerance,halotolerance and thermostabilityBetreuer: Wolfgang StreitSab<strong>in</strong>e Keuter: Characterizationof nitrify<strong>in</strong>g bacteria <strong>in</strong> mar<strong>in</strong>erecirculation aquaculture systemswith regard to process optimizationBetreuer<strong>in</strong>: Eva SpieckTechnische UniversitätHamburg-HarburgBarbara Klippel: Charakterisierungvon cellulolytischen und xylanolytischenEnzymen aus demthermophilen anaeroben BakteriumFervidobacterium gondwanenseBetreuer: Garabed AntranikianBIOspektrum | Tagungsband <strong>2012</strong>


255Vera Bockemühl: Produktione<strong>in</strong>er Endo-β-1,4-Xylanase ausMyceliophthora thermophilamittels Hochzelldichtefermentationvon Pichia pastoris und Charakterisierungdes EnzymsBetreuer: Garabed AntranikianD<strong>in</strong>a Jabbour: A Novel β-Glucosidaseand a Chimeric Endoglucanase-CBMfor Cellulose Hydrolysisat Elevated TemperaturesBetreuer: Garabed AntranikianAdriane Lochner: Proteomic characterizationof the cellulolyticenzyme system expressed by theextremely thermophilic bacteriaCaldicellulosiruptor spp.Betreuer: Garabed AntranikianUniversität HannoverDenise Mehner: Charakterisierungund Identifizierung e<strong>in</strong>esInteraktionspartners des Tat-Translokons von Escherichia coliBetreuer: Thomas BrüserMediz<strong>in</strong>ische HochschuleHannoverHenriette Langhans: The role ofthe global transcriptional regulatorSlyA for the virulence of entericEscherichia coliBetreuer<strong>in</strong>: Petra DerschN<strong>in</strong>a Coombs: Helicobacter pyloriaffects ubiquit<strong>in</strong>-related pathwaysand components with<strong>in</strong> thehuman host cellBetreuer<strong>in</strong>: Christ<strong>in</strong>e JosenhansTamas Dolowschiak: Cell-cellcommunication as essential componentof the epithelial <strong>in</strong>natehost defenceBetreuer: Mathias HornefJohanna Pott: Epithelial host responseto <strong>in</strong>fections of the neonatalenteric mucosaBetreuer: Mathias HornefUniversität HohenheimMaike Schwidder: MolekulargenetischeUntersuchungen zurExpression des Typ III-EffektorsNleA4795 von Shiga-Tox<strong>in</strong> produzierendenEscherichia coliBetreuer: Herbert SchmidtHelen Stöber: Interaktionen vonMilchsäurebakterien mit pathogenenBakterien und WirtszellenBetreuer: Herbert SchmidtStefan Roth: Investigations onthe mechanism of sterilization bynon-thermal low-pressure nitrogen-oxygenplasmasBetreuer: Christian HertelUniversität JenaTchize Ndejouong Basile LeSage: Isolation, Structure Elucidationand Biological Evaluationof Metabolites from Streptomycesspp. Dwell<strong>in</strong>g <strong>in</strong> Extreme andUnusual HabitatsBetreuer: Christian HertweckThorger Leif L<strong>in</strong>ke: Isolierungund Strukturaufklärung kryptischerSekundärmetabolite ausBurkholderia thailandensis undClostridium cellulolyticumBetreuer: Christian HertweckGerald Lackner: Das Genom desendofungalen Bakteriums Burkholderiarhizox<strong>in</strong>ica – molekulareGrundlagen der Bakterien-Pilz-InteraktionBetreuer: Christian HertweckRanda Abdou: Bioactive secondarymetabolites from the endophyticmicroorganisms of themedic<strong>in</strong>al plant Bidens pilosaBetreuer: Christian HertweckPatrícia Bezerra Gomes: Sekundärmetabolitevon Act<strong>in</strong>omycetenaus belasteten InnenräumenBetreuer: Christian HertweckMichael Reuter: Die Regulationdes Komplementsystems im Rahmenvon InfektionenBetreuer: Peter F. ZipfelJoseph<strong>in</strong>e Losse: Interaktionneutrophiler Granulozyten mitCandida albicans: Rolle von Komplementrezeptor-3-Ligandenbeider Bee<strong>in</strong>flussung der WirtszellantwortBetreuer: Peter F. Zipfel, MihályJózsiRadhika Ja<strong>in</strong>: The Map K<strong>in</strong>ase A(MpkA) regulated cell wall <strong>in</strong>tegritysignal<strong>in</strong>g pathway <strong>in</strong> thepathogenic fungus AspergillusfumigatusBetreuer: Axel BrakhageMart<strong>in</strong> Vödisch: Anpassung vonAspergillus fumigatus an hypoxischeBed<strong>in</strong>gungen: VergleichendeProteomanalysen und CharakterisierungHypoxie-regulierterProte<strong>in</strong>eBetreuer: Axel BrakhageFelicitas Schöbel: Lys<strong>in</strong>biosynthesevon Aspergillus fumigatus:Virulenzstudien und biochemischeAnalysenBetreuer: Matthias BrockLydia Schild: E<strong>in</strong>fluss zelloberflächenassoziierterProteasen aufdie Zellbiologie und Pathogenitätvon Candida albicansBetreuer: Bernhard HubeBetty Wächtler: Molekulare Charakterisierungder Invasionsmechanismenvon Candida albicansbei oberflächlichen InfektionenBetreuer: Bernhard HubeJohannes Wollbold: AttributeExploration of Gene RegulatoryProcessesBetreuer: Re<strong>in</strong>hard GuthkeSandro Lambeck: SystembiologischeCharakterisierung derorganübergreifenden Transkriptomantwort<strong>in</strong> mur<strong>in</strong>er Sepsis unddie Modellierung bimodaler MusterBetreuer: Re<strong>in</strong>hard GuthkeMarc Carlsohn: Isolation andcharacterization of m<strong>in</strong>e-dwell<strong>in</strong>gact<strong>in</strong>omycetes as potential producersof novel bioactive secondarymetabolitesBetreuer: Hans Peter SaluzNicole Borth: Funktionelle Charakterisierungneuer Interaktionenzwischen chlamydialen Prote<strong>in</strong>enund Wirtszellprote<strong>in</strong>enBetreuer: Hans Peter SaluzKatr<strong>in</strong> Voll<strong>in</strong>g: The human pathogenicfungus Aspergillus fumigatus<strong>in</strong>hibits apoptosis <strong>in</strong> alveolarmacrophagesBetreuer: Hans Peter SaluzAn<strong>in</strong>dita Sarkar: Characterizationof Silent Secondary metaboliteGene Clusters <strong>in</strong> the filamentousfungi: Aspergillus nidulansBetreuer: Uwe HornForschungszentrum JülichGraziella Bosco: Charakterisierungvon Prote<strong>in</strong>en e<strong>in</strong>er neuartigenSignaltransduktionskaskade<strong>in</strong> Corynebacterium glutamicumBetreuer: Michael BottAbigail Koch-Koerfges: Novel<strong>in</strong>sights <strong>in</strong>to the energy metabolismof Corynebacterium glutamicumby comprehensive analysisof mutants defective <strong>in</strong> respirationor oxidative phosphorylationBetreuer: Michael BottSab<strong>in</strong>e Krawczyk: Signaltransduktion<strong>in</strong> Corynebacterium glutamicum:Studien zur Rolle derFHA-Prote<strong>in</strong>eBetreuer: Michael BottBoris Litsanov: Metabolic eng<strong>in</strong>eer<strong>in</strong>gof Corynebacterium glutamicumfor efficient succ<strong>in</strong>ateproductionBetreuer: Michael BottKathar<strong>in</strong>a Raasch: Der Oxoglutarat-Dehydrogenase-Komplex<strong>in</strong>Corynebacterium glutamicumund se<strong>in</strong>e Interaktion mit OdhlBetreuer: Michael BottStephanie Schelder: CopRS andCsoR: two regulatory systems<strong>in</strong>volved <strong>in</strong> copper homeostasisof Corynebacterium glutamicumBetreuer: Michael BottStefanie Schweikert: Transcriptionalresponses and transcriptionalregulators of Gluconobacteroxydans 621HBetreuer: Michael BottTechnische Universität KaiserslauternJens Rutschmann: PBP2a Resistenzdeterm<strong>in</strong>ante<strong>in</strong> Labormutantenund kl<strong>in</strong>ischen Isolaten vonStreptococcus pneumoniaeBetreuer<strong>in</strong>: Reg<strong>in</strong>e HakenbeckMiriam Müller: Die Regulationdes ZweikomponentensystemsCiaRH von Streptococcus pneumoniaeund die phänotypischenKonsequenzenBetreuer<strong>in</strong>: Reg<strong>in</strong>e HakenbeckT<strong>in</strong>a Becker: Das ESX-1 Sekretionsclustervon Streptococcusoralis Uo5Betreuer<strong>in</strong>: Reg<strong>in</strong>e HakenbeckUniversität Karlsruhe – KITSonja Sand: Charakterisierunge<strong>in</strong>es Blaulichtrezeptors <strong>in</strong> AlternariaalternataBetreuer: Re<strong>in</strong>hard FischerBIOspektrum | Tagungsband <strong>2012</strong>


256 PROMOTIONEN 2011Tobias Schunck: Charakterisierungdes Motorprote<strong>in</strong>s KipA undder E<strong>in</strong>satz von K<strong>in</strong>es<strong>in</strong>en zur Entwicklunge<strong>in</strong>es Transportsystemsim NanomaßstabBetreuer: Re<strong>in</strong>hard FischerJan Siebenbrock: Isolierung undCharakterisierung von Vesikelnaus dem Spitzenkörper vonAspergillus nidulans und derenE<strong>in</strong>satz <strong>in</strong> der NanobiologieBetreuer: Re<strong>in</strong>hard FischerTanja Throm: Charakterisierungder Hydrophob<strong>in</strong>e <strong>in</strong> Aspergillusnidulans und deren Anwendungzur Oberflächenbeschichtung und–funktionalisierungBetreuer: Re<strong>in</strong>hard FischerNad<strong>in</strong>e Zekert: On the role of thek<strong>in</strong>es<strong>in</strong>-3 motor prote<strong>in</strong> UncA andthe role of different microtubulepopulations <strong>in</strong> the filamentousfungus Aspergillus nidulans.Betreuer: Re<strong>in</strong>hard FischerBirgit Hobl: Konstruktion neuartigerExpressionsvektoren zurOptimierung der Prote<strong>in</strong>produktion<strong>in</strong> der Hefe Pichia pastorisBetreuer: Matthias Mack (Mannheim),Re<strong>in</strong>hard FischerHannah Kuhn: Identification andcharacterization of Medicagotruncatula marker genes forrecognition of fungal signals <strong>in</strong>the arbuscular mycorrhiza symbiosisBetreuer<strong>in</strong>: Natalia RequenaSilke Kloppholz: Das Effektorprote<strong>in</strong>SP7 und se<strong>in</strong>e Rolle <strong>in</strong> derarbuskulären MycorrhizasymbioseBetreuer<strong>in</strong>: Natalia RequenaIbrahim Njimona: Molecular studieson light <strong>in</strong>duced prote<strong>in</strong> conformationalchanges on Agrobacteriumtumefaciens phytochrome,Agp1Betreuer: Tilman LamparterGregor Rottw<strong>in</strong>kel: Studien zuVerbreitung, Charakteristika undFunktionen der Bakteriophytochrome<strong>in</strong> RhizobialesBetreuer: Tilman LamparterBenjam<strong>in</strong> Zienicke: Fluoreszenzeigenschaftenund Photokonversionder Modell-PyhtochromeAgp1 und Agp2 aus AgrobacteriumtumefaciensBetreuer: Tilman LamparterKatr<strong>in</strong> Brzonkalik: Process Developmentfor the Production ofAlternaria Tox<strong>in</strong>s <strong>in</strong> a BioreactorBetreuer: Christoph Syldatk, ClemensPostenMarkus Michael Müller: Optimizationand Characterization ofMicrobial Rhamnolipid Productionfrom Renewable ResourcesBetreuer: Christoph Syldatk, ClemensPostenBerna Gerce: Bacterial Communitiesof Different MediterraneanSponge Species – Basic Investigationsfor BiotechnologicalSponge CultivationBetreuer: Christoph Syldatk, UrsulaObstMax Rubner Institut, KarlsruheEva Graf: Vorkommen, Biodiversitätund molekulares Monitor<strong>in</strong>gvon mykotox<strong>in</strong>bildenden Alternaria-Spezies<strong>in</strong> LebensmittelnBetreuer: Rolf GeisenUniversität KielRebekka Krämer: The moon jellyfish(Aurelia aurita): Analys<strong>in</strong>ga model system for host-microbiota<strong>in</strong>teractions and the <strong>in</strong>nateimmune systemBetreuer<strong>in</strong>: Ruth Schmitz-StreitCarol<strong>in</strong> Löscher: Sensitivity ofthe biological oceanic nitrogencycle to changes <strong>in</strong> dissolved oxygenBetreuer<strong>in</strong>: Ruth Schmitz-StreitLeibniz-Institut für MeereswissenschaftenIFM-GEO-MAR, KielAndrea Gärtner: Isolation andcharacterization of bacteria fromthe deep-sea and their potentialto produce bioactive natural productsBetreuer: Johannes F. ImhoffImke Schneemann: Nachweisvon Biosynthesegenen des bakteriellenSekundärstoffwechselssowie Isolierung und Strukturaufklärungvon Naturstoffen ausausgewählten Act<strong>in</strong>omycetenBetreuer: Johannes F. ImhoffHerwig He<strong>in</strong>dl: Antimicrobiallyactive microorganisms associatedwith mar<strong>in</strong>e bryozoansBetreuer: Johannes F. ImhoffFranz Goecke: Association betweenmicrobes and macroalgae:host, epiphyte and environmentaleffectsBetreuer: Johannes F. ImhoffUniversität KölnKanstants<strong>in</strong> Kavalchuk: Osmoregulationoft he proU operon ata posttranscriptional level <strong>in</strong>Escherichia coliBetreuer<strong>in</strong>: Kar<strong>in</strong> SchnetzAlexander Henrich: Characterizationof Maltose and TrehaloseTransport <strong>in</strong> Corynebacterium glutamicumBetreuer: Re<strong>in</strong>hard KrämerInes Ochrombel: Untersuchungenzu Mechanismen der Stressantwortund des Kaliumtransports<strong>in</strong> Corynebacterium glutamicumBetreuer: Re<strong>in</strong>hard KrämerUniversität KonstanzJörg Deutzmann: Aerobic andanaerobic oxidation of methane<strong>in</strong> sediments of Lake ConstanceBetreuer: Bernhard Sch<strong>in</strong>kCarlos H Dullius: Physiology andbiochemistry of the anaerobicbiodegradation of isopropanoland acetoneBetreuer: Bernhard Sch<strong>in</strong>kJan<strong>in</strong>a Horst: Characterization ofthe ribosome-associated complexRAC from S. cerevisiaeBetreuer<strong>in</strong>: Elke Deuerl<strong>in</strong>gSteffen Preißler: Insights <strong>in</strong>to cotranslationalprote<strong>in</strong> fold<strong>in</strong>g andprote<strong>in</strong> quality control systemson ribosomesBetreuer<strong>in</strong>: Elke Deuerl<strong>in</strong>gJoachim Schott: Physiology, ecologyand biochemistry of anaerobicphototrophic oxidation ofnitriteBetreuer: Bernhard Sch<strong>in</strong>kVemparthan Suvekbala: Physiologyand biochemical diversity ofbacterial cholate degradationBetreuer: Bodo PhilippJutta Mayer: Microbial desulfonationpathways for natural andpharmacologically relevant C 3-sulfonatesBetreuer: Alasdair M. CookUniversität LeipzigJohannes W. Kung: Identifizierungund Charakterisierung e<strong>in</strong>erneuen Klasse von Benzoyl-CoAReduktasenBetreuer: Matthias BollKev<strong>in</strong> Kuntze: Nachweis undCharakterisierung von Schlüsselenzymendes anaeroben Abbaushalogenierter und nicht-halogenierteraromatischer Verb<strong>in</strong>dungenBetreuer: Matthias BollUniversität Ma<strong>in</strong>zPatrick Sebastian: Identifizierungbiogene Am<strong>in</strong>e bildenderBakterien und E<strong>in</strong>satz von Enzymenzur Hemmung ihres Wachstumswährend der We<strong>in</strong>bereitungBetreuer: Helmut KönigPia Dünnwald: PAS cals signaltransduzierendeDomäne desSensorproteiens DcuS von EscherichiacoliBetreuer: Gottfried UndenUniversität Marburg undMPI für TerrestrischeMikrobiologie, MarburgMarie Kim: Explor<strong>in</strong>g the biosyntheticpathways of glutamate andbenzoate <strong>in</strong> Syntrophus aciditrophicusBetreuer: Wolfgang BuckelDaniela Kiekebusch: Die P-loop-ATPase MipZ: Mechanismus derBildung e<strong>in</strong>es Prote<strong>in</strong>gradienten<strong>in</strong> e<strong>in</strong>er prokaryotischen ZelleBetreuer: Mart<strong>in</strong> ThanbichlerAndrea Möll: Anatomy of the divisomedur<strong>in</strong>g the late stages of celldivision <strong>in</strong> the asymmetric α-proteobacteriumCaulobacter crescentusBetreuer: Mart<strong>in</strong> ThanbichlerPittelkow, Marco: Synthese undphysiologische Funktion der chemischenChaperone Ecto<strong>in</strong> undHydroxyecto<strong>in</strong>Betreuer: Erhard BremerSusan Schlimpert: About r<strong>in</strong>gsand crossbands – Characterizationof prote<strong>in</strong>s <strong>in</strong>volved <strong>in</strong> celldivision and compartmentalization<strong>in</strong> Caulobacter crescentusBetreuer: Mart<strong>in</strong> ThanbichlerBIOspektrum | Tagungsband <strong>2012</strong>


257Meike Ammon: Analyse der subzellulärenLokalisation des C-Signalvorläuferprote<strong>in</strong>sp25 und dieIdentifikation der PopC-Spaltstelle<strong>in</strong> p25 <strong>in</strong> Myxococcus xanthusBetreuer<strong>in</strong>: Lotte Søgaard-AndersenHassan Ghareeb: Molecular Dissectionof Maize-S. reilianumInteractions: Host DevelopmentalChanges and Pathogen EffectorsBetreuer: Jan Schirawski (Gött<strong>in</strong>gen)Julia Gödeke: Molekulare Mechanismenwährend der Anheftungund Biofilmbildung <strong>in</strong> Shewanellaoneidensis MR1 – Die Tücken desBesiedelnsBetreuer: Kai ThormannJan<strong>in</strong>e Koepke: Die Rolle desRNA-b<strong>in</strong>denden Prote<strong>in</strong>s Rrm4während des polaren Wachstumsvon Ustilago maydisBetreuer: Michael Feldbrügge (Düsseldorf)Andrea Koerdt: Biofilm formation<strong>in</strong> the thermoacidophilic crenarchaeaSulfolobus sppBetreuer<strong>in</strong>: Sonja-Verena AlbersAnna Konovalova: Regulation ofsecretion of the signall<strong>in</strong>g proteasePopC <strong>in</strong> Myxococcus xanthusBetreuer<strong>in</strong>: Lotte Søgaard-AndersenDaniel Lanver: Apressorienbildungvon Ustilago maydis aufhydrophoben Oberflächen: Regulationdurch Membranprote<strong>in</strong>eBetreuer<strong>in</strong>: Reg<strong>in</strong>e KahmannJennifer Pratscher: Investigationof microbial groups <strong>in</strong>volved <strong>in</strong>the uptake of atmospheric tracegases <strong>in</strong> upland soilsBetreuer: Ralf ConradLei Wang: Functional characterizationof a seven-WD40 repeatprote<strong>in</strong> Rak1 <strong>in</strong> Ustilago maydisBetreuer<strong>in</strong>: Reg<strong>in</strong>e KahmannHolger Webert: Strukturelle undfunktionelle Charakterisierungvon Komponenten der eukaryotischenEisen-Schwefel-Cluster-Biogenese-Masch<strong>in</strong>erieBetreuer: Roland LillTechnische UniversitätMünchenGeorg Lutterschmid: Surfaceactive prote<strong>in</strong>s from Fusariumspp. and their role <strong>in</strong> gush<strong>in</strong>g ofcarbonated beveragesBetreuer: Rudi F. Vogel, Mart<strong>in</strong>KrottenthalerSimone Freid<strong>in</strong>g: Identificationof genetic markers and bottlenecks<strong>in</strong> Lactobacillus sakei constitut<strong>in</strong>gsafety and quality determ<strong>in</strong>antsof fermented sausagesBetreuer: Rudi F. Vogel, SiegfriedSchererMatthias Stübner: Hydrophob<strong>in</strong>sand Fungispum<strong>in</strong>s – surface activefungal prote<strong>in</strong>s with a role <strong>in</strong>foam stability of carbonatedbeverages and fungus-plant <strong>in</strong>teractionBetreuer: Rudi F. Vogel, RalphHückelhovenPatrick Preissler: Categorizationof Lactobacillus brevis along theirbeer-spoil<strong>in</strong>g potentialBetreuer: Rudi F. Vogel, WolfgangLiebl, Elke ArendtSamir Velagić: Partielle Charakterisierungder antilisteriellen Wirkungvon Pichia norvegensis undStaphylococcus equorumBetreuer: Siegfried SchererEvi Lang Halter: Prävalenz undBiodiversität von Listeria Spezies<strong>in</strong> limnischen HabitatenBetreuer: Siegfried SchererElrike Frenzel: Regulation of thebiosynthesis of the food-borneBacillus cereus tox<strong>in</strong> cereulideBetreuer: Siegfried SchererLMU MünchenTobias Kraxenberger: Zur Funktiondes Sensor-Histid<strong>in</strong>k<strong>in</strong>ase/AntwortregulatorSystemsYehU/YehT <strong>in</strong> Escherichia coliBetreuer<strong>in</strong>: Kirsten JungIna Maria Suntka Haneburger:Insights <strong>in</strong>to the Molecular SignalPerception Mechanism of theMembrane-Integrated TranscriptionalActivator CadC of EscherichiacoliBetreuer<strong>in</strong>: Kirsten JungT<strong>in</strong>a Wecke: ExtracytoplasmicFunction Sigma Factors <strong>in</strong> BacillusSpecies: Investigation of CellEnvelope Stress Responses andNovel Signal Transduc<strong>in</strong>g MechanismsBetreuer: Thorsten MascherDan Li: Phenotypic variation andmolecular signal<strong>in</strong>g <strong>in</strong> the <strong>in</strong>teractionof the rhizosphere bacteriaAcidovorax sp. N35 and Rhizobiumradiobacter F4 with rootsBetreuer: Anton HartmannXiao Chen: Development andcharacterisation of an immunochemicaltest system for thedeterm<strong>in</strong>ation of bacterial signalmolecules (N-acylated homoser<strong>in</strong>elactones)Betreuer: Anton HartmannAnnemarie Hütz: Bacterial chemotaxis<strong>in</strong> the ultraoligotrophicEastern Mediterranean SeaBetreuer: Jörg OvermannHong Cheng: Population structureand species description ofaquatic Sph<strong>in</strong>gomonadaceaeBetreuer: Jörg OvermannUniversität MünsterBjörn Andreeßen: Biotechnologicalconversion of glycerolBetreuer: Alexander Ste<strong>in</strong>büchelClaudia Borgmeier: Appliedaspects of extracellular enzymesynthesis regulation <strong>in</strong> <strong>in</strong>dustriallyrelevant Bacilli for stra<strong>in</strong> optimizationfocuss<strong>in</strong>g on the DegSUsystemBetreuer: Friedhelm Me<strong>in</strong>hardtVeronika Deppe: Degradation ofAmadori products <strong>in</strong> Bacillus subtilis:The physiological relevanceand transcriptional regulation ofthe frl BONMD operonBetreuer: Friedhelm Me<strong>in</strong>hardtKerst<strong>in</strong> Hoffmann: Genetic andmolecular biological analysis ofnatural genetic competence <strong>in</strong>Bacillus licheniformis and stra<strong>in</strong>improvementBetreuer: Friedhelm Me<strong>in</strong>hardtChlud Kaddor: Ralstonia eutrophaH16: a PTS view to the genomeBetreuer: Alexander Ste<strong>in</strong>büchelNicole Lange: BiotechnologischeProduktion von Terpenen mitrekomb<strong>in</strong>anten Stämmen vonSaccharomyces cerevisiaeBetreuer: Alexander Ste<strong>in</strong>büchelKaichien L<strong>in</strong>: Studies on cyanophyc<strong>in</strong>produced by recomb<strong>in</strong>antbacteria and the related enzymesBetreuer: Alexander Ste<strong>in</strong>büchelMatthias Raberg: A proteomicview on Ralstonia eutropha’s versatilephysiologyBetreuer: Alexander Ste<strong>in</strong>büchelUniversität OldenburgSabr<strong>in</strong>a Beckmann: MicrobialMethane formation <strong>in</strong> abandonedcoal m<strong>in</strong>es <strong>in</strong> the Ruhr Bas<strong>in</strong> ofGermanyBetreuer: Heribert CypionkaJutta Graue: Bioreactor Janssand:fermentation processes <strong>in</strong> tidalflatsediments of the GermanNorth SeaBetreuer: Heribert CypionkaDaniela Kalhöfer: Genome analysisand comparative genomicsof host-associated bacteria of themar<strong>in</strong>e Roseobacter cladeBetreuer: Me<strong>in</strong>hard SimonDagmar Rocker: BakteriellerAbbau von refraktärem organischemMaterial im Weserästuarund <strong>in</strong> der NordseeBetreuer: Me<strong>in</strong>hard SimonKathleen Trautwe<strong>in</strong>: Physiologicaland proteomic response ofAromatoleum aromaticum EbN1to substrate mixtures and carbonlimitationBetreuer: Ralf RabusUniversität OsnabrückWael Abdel Halim Hegazy: Optimizationof Salmonella entericaas live vacc<strong>in</strong>e carrier,Betreuer: Michael HenselUniversität PotsdamLars Ganzert: Bacterial diversityand adaptation <strong>in</strong> permafrostaffectedsoils of maritime Antarcticaand Northeast GreenlandBetreuer: Dirk WagnerUniversität RegensburgUlf Küper: Untersuchungen zurEnergiegew<strong>in</strong>nung des hyperthermophilen,schwefelreduzierendenArchaeons IgnicoccushospitalisBetreuer: Harald Huber, Re<strong>in</strong>hardRachelBIOspektrum | Tagungsband <strong>2012</strong>


258 PROMOTIONEN 2011Simone Schopf: Untersuchungender Flagellen von Pyrococcusfuriosus: FlagellenvermittelteInteraktionen, Ultrastruktur undMolekularbiologieBetreuer: Re<strong>in</strong>hard WirthAnnett Bellack: Cell Architectureand Flagella of HyperthermophilicArchaeaBetreuer: Re<strong>in</strong>hard WirthUniversität RostockClaudia Hackenberg: Photorespiration<strong>in</strong> Cyanobakterien: funktionelle,regulatorische und evolutionäreAspekteBetreuer: Mart<strong>in</strong> HagemannUniversität des SaarlandesEsther Gießelmann: Endozytoseund <strong>in</strong>trazellulärer Tox<strong>in</strong>transport<strong>in</strong> Hefe- und Säugerzellen mittelsfluoreszenzmarkierter K28-VariantenBetreuer: Manfred SchmittSilvia Boschi Bazan: VergleichendeUntersuchungen zurAnwendung verschiedener Hefegattungenals Vehikel für das Prote<strong>in</strong>-Delivery<strong>in</strong> Antigen-präsentierendeZellenBetreuer: Manfred SchmittEva Dörrschuck: MolekularbiologischeUntersuchungen zurInteraktion der antiretroviral wirkendenporz<strong>in</strong>en und humanenA3-Prote<strong>in</strong>e mit porz<strong>in</strong>en endogenenRetroviren (PERV) undCharakterisierung des porz<strong>in</strong>enA3-GenlokusBetreuer: Manfred SchmittJulia Dausend: In vivo-Topologieund Lokalisation des zellulärenHDEL-Rezeptors Erd2p und dessenFunktion bei Endozytose undendosomaler Zielsteuerung desviralen K28-Tox<strong>in</strong>s <strong>in</strong> HefeBetreuer: Manfred SchmittMark L<strong>in</strong>d: Struktur- und Funktionsuntersuchungenvon Zygoc<strong>in</strong>– e<strong>in</strong> kanalbildendes Prote<strong>in</strong>tox<strong>in</strong>mit antimykotischem PotentialBetreuer: Manfred SchmittUniversität StuttgartClarisse Brün<strong>in</strong>g Schmit Roepke:Development of Acetylchol<strong>in</strong>esterasebiosensors for neurotox<strong>in</strong>sdetection <strong>in</strong> foods and theenvironmentBetreuer: Bernhard HauerBenjam<strong>in</strong> Juhl: Entwicklung undAnwendung e<strong>in</strong>er flexiblenDock<strong>in</strong>gmethode für Enzyme undSubstrate: Substrate-impr<strong>in</strong>teddock<strong>in</strong>gBetreuer: Jürgen PleissEvelyne Weber Prote<strong>in</strong> Eng<strong>in</strong>eer<strong>in</strong>gvon P450 Monooxygenasenzur selektiven Hydroxylierung vonacyclischen AlkanenBetreuer: Bernhard HauerSven Rustler: Die enzymatischeHydrolyse von Nitrilen unter saurenBed<strong>in</strong>gungen durch neu isolierteund rekomb<strong>in</strong>ante Mikroorganismenund die Verwendungvon säuretoleranten Ganzzellbiokatalysatorenzur enantioselektivenSynthese von alpha-HydroxycarbonsäurenBetreuer: Andreas StolzUniversität Tüb<strong>in</strong>genJiyong Su: Structure-functionanalysis of a cyanobacterial prote<strong>in</strong>phosphatase 2C homologueBetreuer: Karl ForchhammerOleksandra Fok<strong>in</strong>a: From metabolitesens<strong>in</strong>g to prote<strong>in</strong> regulationby Synechococcus elongatusPCC 7942 PII prote<strong>in</strong>Betreuer: Karl ForchhammerSusanne Berendt: FunktionelleCharakterisierung von Zellwandprote<strong>in</strong>en<strong>in</strong> der Zelldifferenzierungvon Heterozysten bildendenCyanobakterien der OrdnungNostocalesBetreuer: Karl Forchhammer, IrisMaldenerEva Waldvogel: Am<strong>in</strong>osäureanalysevon Streptomyces coelicolorMutanten des Stickstoff-Metabolismusund verschiedenen Cyanophyc<strong>in</strong>-ProduzentenBetreuer: Wolfgang WohllebenAndrea Heichl<strong>in</strong>ger: Charakterisierungder MreB homologen Prote<strong>in</strong>ewährend der morphologischenDifferenzierung <strong>in</strong> Streptomycescoelicolor A3(2)Betreuer: Wolfgang WohllebenEwa Musiol: The discrete acyltransferasesKirCI and KirCII <strong>in</strong>volved<strong>in</strong> kirromyc<strong>in</strong> biosynthesisBetreuer: Wolfgang WohllebenUniversität WürzburgT<strong>in</strong>a Schäfer: Biolum<strong>in</strong>eszenzbasierteUntersuchungen zurDynamik kl<strong>in</strong>isch relevanter Staphylococcusaureus-Infektionenund zum Virulenzpotenzial ausgewählterPathogenitätsfaktorenBetreuer: Knut OhlsenThomas Menzel: Studien zumWirkmechanismus neuer anti<strong>in</strong>fektiverBisnaphthalimide gegenStaphylococcus aureus undTranskriptomanalysen zur Auswirkungvon Antibiotika auf S. epidermidisBetreuer: Knut OhlsenSonja M. K. Schoenfelder (UniversitätBelfast): Gene expressioncontrol <strong>in</strong> healthcare-associatedStaphylococci: Characterisationof a T-box regulatory RNA elementgovern<strong>in</strong>g methion<strong>in</strong>e biosynthesisgene transcriptionBetreuer<strong>in</strong>: Wilma ZiebuhrNicole Philippi: Modellierung vonSignalwegen <strong>in</strong> verschiedenenbiologischen SystemenBetreuer: Thomas DandekarJochen Füller: Analysis of the b<strong>in</strong>d<strong>in</strong>gproperties of the k<strong>in</strong>ase C-RAF to mitochondria and characterizationof its effects on thecellular and molecular levelBetreuer: Ulf RappKrist<strong>in</strong>a Keidel: Charakterisierungdes Hfq-Regulons <strong>in</strong> Bordetellapertussis und BordetellabronchisepticaBetreuer: Roy GrossVerstorbene Mikrobiologen:Dr. Eckhard R. Lucius, (Jg 1954),Schierensee, IPN Kiel, Geschäftsführerder BiologieOlympiade(IBO) Deutschland, der EuropäischenScience Olympiade (EUSO)Deutschland und der InternationalenJunior Science Olympiade(IJSO).Dr. Re<strong>in</strong>hard Schaper, (Jg 1958),Vöhl-MarienhagenDipl. Biologe Hans-JochenVockerodt, (Jg 1938), VecheldeProf. Dr. Peter Fortnagel, (Jg1938), Leiter des Lehrstuhls fürMikrobiologie an der UniversitätHamburg von 1977 bis 2003.Dr. Kar<strong>in</strong> Schmidt, (Jg 1932),Timmendorfer StrandIMPRESSUMVerantwortlich für den Inhalt:Prof. Dr. Wolfgang WohllebenUniversität Tüb<strong>in</strong>genMikrobiologie/BiotechnologieInterfakultäres Institut für Mikrobiologie undInfektionsmediz<strong>in</strong>Auf der Morgenstelle 28D-72076 Tüb<strong>in</strong>genTel.: +49 (0)7071 29-76945Fax: +49 (0)7071 29-5979wolfgang.wohlleben@biotech.unitueb<strong>in</strong>gen.deOrganisation:Isabelle Lärz/Mart<strong>in</strong> S<strong>in</strong>gerConventusCongressmanagement & Market<strong>in</strong>g GmbHCarl-Pulfrich-Straße 1D-07743 JenaTel.: +49 (0)3641-311 63-20/-10Fax: +49 (0)3641-311 6241isabelle.laerz@conventus.demart<strong>in</strong>.s<strong>in</strong>ger@conventus.deRedaktion:Dr. Christ<strong>in</strong>e SchreiberRedaktion BIOspektrumSpr<strong>in</strong>ger Spektrum | Spr<strong>in</strong>ger-Verlag GmbHTiergartenstraße 17D-69121 HeidelbergTel.: +49 (0)6221 - 487 8043Fax: +49 (0)6221 - 487 68043christ<strong>in</strong>e.schreiber@spr<strong>in</strong>ger.combiospektrum@spr<strong>in</strong>ger.comVerlag:Spr<strong>in</strong>ger Spektrum | Spr<strong>in</strong>ger-Verlag GmbHTiergartenstraße 1769121 HeidelbergTel.: +49 (0)6221 - 487 8043Fax: +49 (0)6221 - 487 68043www.spr<strong>in</strong>ger-spektrum.deGeschäftsführer:Derk Haank, Mart<strong>in</strong> Mos, Peter HendriksAnzeigen:top-ad Bernd BeutelSchlossergäßchen 10D-69469 We<strong>in</strong>heimTel.: +49 (0)6201-290 92 0Fax: +49 (0)6201-290 92 20<strong>in</strong>fo@top-ad-onl<strong>in</strong>e.deSatz:TypoDesign Hecker GmbHStralsunder R<strong>in</strong>g 13D-69181 LeimenTel.: +49 (0)62 24-8 27 60Fax: +49 (0)62 24-82 76 20<strong>in</strong>fo@typodesign-hecker.deAbo-Service:Spr<strong>in</strong>ger Customer Service Center GmbHHaberstraße 7 | 69126 Heidelbergtel +49 (0)6221 / 345 – 4304fax +49 (0)6221 / 345 – 4229Montag – Freitag | 08:00 – 18:00 Uhrsubscriptions@spr<strong>in</strong>ger.comDruck:Stürtz GmbH, Würzburg© Spr<strong>in</strong>ger Spektrum ist e<strong>in</strong>e Markevon Spr<strong>in</strong>ger DE. Spr<strong>in</strong>ger DE ist Teil derFachverlagsgruppe Spr<strong>in</strong>gerScience+Bus<strong>in</strong>ess Media.BIOspektrum | Tagungsband <strong>2012</strong>


spr<strong>in</strong>ger-spektrum.deDas große neueLehrbuch zurMikrobiologieBestellen Sie jetztIhr Dozenten-Freiexemplar!!Registrieren Sie sich fürunseren DozentenserviceDOZENTENPLUS unterwww.spr<strong>in</strong>ger-spektrum.de .Sie erhalten Ihr Exemplarvon „Mikrobiologie“ sofortnach Ersche<strong>in</strong>en!Ersche<strong>in</strong>t:Juli <strong>2012</strong>J. L. Slonczewski / J. W. ForsterMikrobiologieE<strong>in</strong>e Wissenschaft mit ZukunftDieses Lehrbuch basiert auf dem <strong>in</strong> den USA erfolgreichen Bestseller „Microbiology – An Evolv<strong>in</strong>g Science“, der b<strong>in</strong>nenzwei Jahren schon <strong>in</strong> 2. Auflage erschienen ist. Neues didaktisches Pr<strong>in</strong>zip ist, dass das Grundlagenwissen der Mikrobiologiemit Beispielen aus der aktuellen Forschung erklärt wird. Studierende der Biologie, Biotechnologie, Ingenieurwissenschaftund Mediz<strong>in</strong> erhalten auf diese Weise Zugang zur modernen Mikrobiologie, e<strong>in</strong>er Wissenschaft mit Zukunft.Das Buch gliedert sich <strong>in</strong> die fünf Teile: Struktur, Funktion und Wachstum der mikrobiellen Zelle Transkription, Translation und Regulation bakterieller und viraler Gene und Genome Metabolismus, Biochemie und <strong>in</strong>dustrielle Mikrobiologie Mikrobielle Diversität und Ökologie Pathogene Bakterien und ImmunabwehrIm 2. Teil werden die Grundlagen der Genomik ausführlich erklärt, <strong>in</strong> den übrigen Kapiteln werden dann genomischeAspekte immer wieder hervorgehoben. Dies erleichtert das Verständnis dafür, wie die bakteriellen Genome dieStoffwechselwege bee<strong>in</strong>flussen und was für Auswirkungen Genomik und Metagenomik auf mikrobielle Lebensgeme<strong>in</strong>schaftenhaben.Das Werk ist illustriert mit stilistisch e<strong>in</strong>heitlichen und anschaulichen Farbgrafiken, die Erklärungen und korrekteMaßangaben enthalten. Spezielle Exkurse beschreiben die experimentellen Ansätze der mikrobiellen Spitzenforschung,über 300 Webl<strong>in</strong>ks verweisen zu <strong>in</strong>teressanten Quellen im Internet, Interviews mit prom<strong>in</strong>enten deutschen Mikrobiologengeben der Wissenschaft e<strong>in</strong> menschliches Gesicht. Zum Lehrbuch gibt es e<strong>in</strong>e englischsprachige Webseite mitProzessanimationen, Quizze, Webl<strong>in</strong>ks u. a.2. Aufl. <strong>2012</strong>. 1.425 S. 940 Abb. <strong>in</strong> Farbe. Geb.ISBN 978-3-8274-2909-4 7 € (D) 89,95 / € (A) 92,47 / *sFr 112,00Dazu: Bild-DVD Mikrobiologiemit allen Grafiken des Buches2. Aufl. <strong>2012</strong>. 650 Abb. <strong>in</strong> Farbe. DVDISBN 978-3-8274-2937-7 7 € (D) 25,00 / € (A) 25,21 / *sFr 29,50Bei Fragen oder Bestellung wenden Sie sich bitte an 7 Spr<strong>in</strong>ger Customer Service Center GmbH, Haberstr. 7, 69126 Heidelberg 7 Telefon: +49 (0) 6221-345-4301 7 Fax: +49 (0) 6221-345-42297 Email: orders-hd-<strong>in</strong>dividuals@spr<strong>in</strong>ger.com 7 € (D) s<strong>in</strong>d gebundene Ladenpreise <strong>in</strong> Deutschland und enthalten 7% MwSt; € (A) s<strong>in</strong>d gebundene Ladenpreise <strong>in</strong> Österreich und enthalten 10% MwSt.Die mit * gekennzeichneten Preise für Bücher und die mit ** gekennzeichneten Preise für elektronische Produkte s<strong>in</strong>d unverb<strong>in</strong>dliche Preisempfehlungen und enthalten die landesübliche MwSt.7 Preisänderungen und Irrtümer vorbehalten.


Neu!Jetzt auch als RE-Mix:die praktischeMaster Mix Variante!EIN PUFFER FÜR 200 ENZYMERestriktionsenzyme von New England BiolabsNew England Biolabs bietet Ihnen die größte Auswahl an Restriktionsenzymen weltweit! Unser optimiertes NEBufferSystem garantiert e<strong>in</strong>e unerreichte Enzymkompatibilität - 1 Puffer für 200 Enzyme - <strong>in</strong>klusive der bewährten Standardundder neuartigen High Fidelity (HF ) Enzymvarianten: HF Enzyme s<strong>in</strong>d funktionsoptimierte Restriktasen mitdramatisch reduzierter Star-Aktivität und e<strong>in</strong>er unerreichten Performance. Restriktionsenzyme - NEB!New England Biolabs -seit 1975 weltweit die Nummer 1 <strong>in</strong> Restriktionsenzymen:NEB Restriktionsenzyme * gesamt (<strong>in</strong>kl. 23 HF-Enzyme) rekomb<strong>in</strong>ante Enzyme Time-Saver qualifizierte Enzyme166Enzyme mit 100% Aktivität im gleichen PufferEnzyme mit 37°C Optimum*Zahlenangaben <strong>in</strong>kl. HF-, Hom<strong>in</strong>g- und Nick<strong>in</strong>g Enyzmes (Stand 11/11)200209250276Ihr Vorteil: Nur 1 Puffer für 200 Enzyme:Für 177 NEB Standard Enzyme sowie alle 23 HF Enzymegarantiert der NEBuffer 4 e<strong>in</strong>e 100% Aktivität im E<strong>in</strong>zel- oderDoppelverdau Flexible Reaktionszeiten:E<strong>in</strong>setzbar vom Time-Saver Verdau <strong>in</strong> nur 5 m<strong>in</strong>bis zum Übernachtverdau HF Enzyme - Eng<strong>in</strong>eered for Performance! Dramatisch reduzierte Star Aktivität:HF Enzyme mit bis zu 62.500-fach erhöhter GenauigkeitGünstiger PreisCLONING & MAPPINGDNA AMPLIFICATION& PCRRNA ANALYSISPROTEIN EXPRESSION &ANALYSISGENE EXPRESSION& CELLULAR ANALYSISNew England Biolabs GmbH, Frankfurt/Ma<strong>in</strong> DeutschlandTel. 0800/246-5227 (kostenfrei <strong>in</strong> D) Tel. 00800/246-52277 (kostenfrei <strong>in</strong> A); email: <strong>in</strong>fo@de.neb.comwww.neb-onl<strong>in</strong>e.de

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!