30.07.2015 Views

Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions

Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions

Finite-Size Effects in Lattice QCD with Dynamical Wilson Fermions

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

BERGISCHE UNIVERSITÄTWUPPERTALFACHBEREICH CMathematik undNaturwissenschaften<strong>F<strong>in</strong>ite</strong>-<strong>Size</strong> <strong>Effects</strong> <strong>in</strong> <strong>Lattice</strong> <strong>QCD</strong><strong>with</strong> <strong>Dynamical</strong> <strong>Wilson</strong> <strong>Fermions</strong>Dissertationzur Erlangung des Doktorgradesdes Fachbereichs Mathematik und Naturwissenschaften(Fachrichtung Physik)der Bergischen Universität Wuppertalvorgelegt vonBoris Orthaus TrierWUB-DIS 2004-03Juni 2004


AbstractDue to limited comput<strong>in</strong>g resources choos<strong>in</strong>g the parameters for a full lattice <strong>QCD</strong> simulationalways amounts to a compromise between the compet<strong>in</strong>g objectives of a lattice spac<strong>in</strong>g as small,quarks as light, and a volume as large as possible. Aim<strong>in</strong>g at push<strong>in</strong>g unquenched simulations<strong>with</strong> the standard <strong>Wilson</strong> action towards the computationally expensive regime of small quarkmasses, the GRAL project addresses the question whether comput<strong>in</strong>g time can be saved bystick<strong>in</strong>g to lattices <strong>with</strong> rather modest numbers of grid sites and extrapolat<strong>in</strong>g the f<strong>in</strong>ite-volumeresults to the <strong>in</strong>f<strong>in</strong>ite volume (prior to the usual chiral and cont<strong>in</strong>uum extrapolations). Inthis context we <strong>in</strong>vestigate <strong>in</strong> this work f<strong>in</strong>ite-size effects <strong>in</strong> simulated light hadron masses.Understand<strong>in</strong>g their systematic volume dependence may not only help sav<strong>in</strong>g computer time <strong>in</strong>light quark simulations <strong>with</strong> the <strong>Wilson</strong> action, but also guide future simulations <strong>with</strong> dynamicalchiral fermions which for a foreseeable time will be restricted to rather small lattices.We analyze data from hybrid Monte Carlo simulations <strong>with</strong> the N f = 2 <strong>Wilson</strong> action at twovalues of the coupl<strong>in</strong>g parameter, β = 5.6 (lattice spac<strong>in</strong>g a ≈ 0.08 fm) and β = 5.32144(a ≈ 0.13 fm). The larger β corresponds to the coupl<strong>in</strong>g used previously by SESAM/TχL. Theconsidered hopp<strong>in</strong>g parameters κ = 0.1575, 0.158 (at the larger β) and κ = 0.1665 (at the smallerβ) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. Ateach quark mass we study at least three different lattice extents <strong>in</strong> the range from L = 10 toL = 24 (0.85–2.04 fm). Estimates of autocorrelation times <strong>in</strong> the stochastic updat<strong>in</strong>g processand of the computational cost of every run are given. For each simulated sea quark mass wecalculate quark propagators and hadronic correlation functions <strong>in</strong> order to extract the pion,rho and nucleon masses as well as the pion decay constant and the quark mass from the PCACrelation. We exam<strong>in</strong>e to what extent the volume dependence of the masses can be parameterizedby simple functions based on M. Lüscher’s analytic formula and previous numerical f<strong>in</strong>d<strong>in</strong>gs byother groups. The applicability of results for the pion and the nucleon from chiral effectivetheory <strong>in</strong> the parameter regime covered by our simulations is discussed. Cut-off effects <strong>in</strong> thePCAC quark mass are found to be under control.


ContentsIntroduction 71 <strong>QCD</strong> on the <strong>Lattice</strong> 151.1 The <strong>QCD</strong> Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161.2 Functional Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181.3 Euclidean Space-Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191.4 Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201.4.1 Gauge Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211.4.2 Fermionic Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221.4.3 Improvement and Alternative Actions . . . . . . . . . . . . . . . . . . . . 231.5 Group Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241.6 <strong>Lattice</strong> Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251.6.1 The Hybrid Monte Carlo Algorithm . . . . . . . . . . . . . . . . . . . . . 261.6.2 Errors <strong>in</strong> <strong>Lattice</strong> Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292 Volume Dependence of the Light Hadron Masses 332.1 Lüscher’s Formula . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 342.1.1 Pion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 352.1.2 Nucleon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 372.2 Previous Results from Full <strong>QCD</strong> Simulations . . . . . . . . . . . . . . . . . . . . 402.3 <strong>F<strong>in</strong>ite</strong>-<strong>Size</strong> <strong>Effects</strong> <strong>in</strong> the Nucleon from Chiral Perturbation Theory . . . . . . . . 413 Numerical Simulation 453.1 Simulation Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463.2 Autocorrelation Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 503.3 Interpolat<strong>in</strong>g Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523.4 Wuppertal Smear<strong>in</strong>g . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 533.5 Quark Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 563.6 Parameterization of the Two-Po<strong>in</strong>t Functions . . . . . . . . . . . . . . . . . . . . 563.7 Fitt<strong>in</strong>g Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583.8 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594 Light Hadron Spectroscopy 614.1 Static Quark Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 614.2 Light Hadron Masses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 644.3 Polyakov Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694.4 Volume Dependence of the Light Hadron Masses . . . . . . . . . . . . . . . . . . 724.4.1 Simple Parameterizations of the Volume Dependence . . . . . . . . . . . . 76


6 Contents4.4.2 Discussion of the Applicability of ChPT Formulae . . . . . . . . . . . . . 814.5 Discretization Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94Summary and Conclusions 97A Conventions 101A.1 SU(3) Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101A.2 Euclidean Gamma Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102B Time Series and Autocorrelation Analysis 103C Parameters of the Correlator Fits 115D Fits of the Volume Dependence 119D.1 Power Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120D.2 Exponential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122List of Tables 126List of Figures 128References 129


IntroductionMost of the matter around us is made out of protons and neutrons which are bound by thestrong force to form the nuclei of atoms. In the current view, nucleons (and hadrons <strong>in</strong> general)are themselves bound states and the strong force between them is, fundamentally, an <strong>in</strong>teractionbetween quarks, mediated by gluons. The masses of the three valence quarks that form a nucleonare astonish<strong>in</strong>gly small compared to the total mass of the bound state: taken together, the massesof the constituent quarks account for only about one percent of the nucleon mass [1]. This, <strong>in</strong>turn, has the remarkable implication that 99% of the nucleon mass are a consequence of thestrong <strong>in</strong>teraction.The commonly accepted theory of the strong <strong>in</strong>teraction, formulated <strong>in</strong> terms of gluons andquarks, is Quantum Chromodynamics (<strong>QCD</strong>) [2]. Together <strong>with</strong> the Glashow-We<strong>in</strong>berg-Salam(GWS) theory [3] of the electroweak <strong>in</strong>teractions it constitutes today’s Standard Model of elementaryparticle physics [4, 5]. Like the GWS model, <strong>QCD</strong> is a renormalizable quantum fieldtheory built on the pr<strong>in</strong>ciple of local gauge <strong>in</strong>variance [6, 7]. At first sight the <strong>QCD</strong> Lagrangianappears relatively simple, because it has only few parameters and possesses a number of convenientsymmetry properties. But while the masses and many other properties of light hadrons(like the nucleon) are very precisely known from experiment, it turns out that on the theoreticalside it is difficult to calculate them from first pr<strong>in</strong>ciples.This is, on the one hand, due to the fact that the “color” gauge group SU(3) of <strong>QCD</strong> is non-Abelian. Unlike the photon <strong>in</strong> Quantum Electrodynamics (QED) <strong>with</strong> Abelian gauge groupU(1), the gluons as the gauge bosons of <strong>QCD</strong> <strong>in</strong>teract <strong>with</strong> themselves. This renders the basicequations non-l<strong>in</strong>ear. On the other hand, the strong coupl<strong>in</strong>g constant α s is simply not smallat low energies, so that perturbation theory, which has proven so immensely successful <strong>in</strong> QED,cannot be applied e.g. <strong>in</strong> the calculation of light hadron masses. This generally prevents us fromtest<strong>in</strong>g <strong>QCD</strong> to the precision that has been achieved <strong>in</strong> the electroweak sector—perhaps <strong>with</strong>the notable exception of some aspects that are governed by the (approximate) chiral and flavorsymmetries. But there is another important difference between QED and <strong>QCD</strong> that rescuesthe Feynman calculus as a legitimate tool for <strong>QCD</strong> at least <strong>in</strong> the high energy regime: while <strong>in</strong>QED the coupl<strong>in</strong>g strength grows—though only weakly—<strong>with</strong> <strong>in</strong>creas<strong>in</strong>g energy, <strong>QCD</strong> is asymptoticallyfree, mean<strong>in</strong>g that towards large energies the strong coupl<strong>in</strong>g vanishes and the quarksbehave at short distances like “quasi” free particles [8]. Nevertheless it is an experimentallywell-established fact that neither quarks nor gluons are asymptotic states, and even <strong>in</strong> the <strong>in</strong>com<strong>in</strong>gand outgo<strong>in</strong>g states of short-distance “hard” processes like deep <strong>in</strong>elastic scatter<strong>in</strong>g theyappear only conf<strong>in</strong>ed <strong>with</strong><strong>in</strong> hadrons, color-s<strong>in</strong>glet objects composed of two (mesons) or three(baryons) valence quarks. 1 Conf<strong>in</strong>ement <strong>in</strong>volves the long-range, <strong>in</strong>frared behavior of the quarkquark<strong>in</strong>teraction, but this is precisely where perturbation theory fails. To really show that,1 Similarly, gluons are presumed to exist only <strong>with</strong><strong>in</strong> hadrons, and possibly as color-neutral glueballs.


8 Introductionas it is widely believed, <strong>QCD</strong> entails a dynamical explanation for quark conf<strong>in</strong>ement [9], andthat the same Lagrangian that correctly describes the <strong>in</strong>teraction between quarks and gluons athigh energies also expla<strong>in</strong>s the spectrum and the properties of light hadrons, obviously requiresa non-perturbative approach. Currently, the only non-perturbative method for solv<strong>in</strong>g ratherthan just model<strong>in</strong>g the theory is the numerical simulation of <strong>Lattice</strong> <strong>QCD</strong> (L<strong>QCD</strong>) [10, 11, 12].The formulation of <strong>QCD</strong> on a discrete lattice <strong>in</strong> Euclidean space-time was first proposed by<strong>Wilson</strong> <strong>in</strong> 1974 [13]. The start<strong>in</strong>g po<strong>in</strong>t of the lattice approach is the functional quantization ofthe classical theory. In the Feynman path-<strong>in</strong>tegral framework, expectation values of observablesare obta<strong>in</strong>ed by <strong>in</strong>tegrat<strong>in</strong>g over all possible system “configurations”, weighted accord<strong>in</strong>g to theirrelative “importance” [14]. After an analytic cont<strong>in</strong>uation of the time variable to imag<strong>in</strong>aryvalues the weight of a given configuration is determ<strong>in</strong>ed by a real-valued exponential of theEuclidean action analogous to the Boltzmann factor <strong>in</strong> statistical mechanics. Discretiz<strong>in</strong>g spacetimenow renders the theory mathematically well-def<strong>in</strong>ed <strong>in</strong> two respects: First of all, the discretespace-time grid provides a non-perturbative, gauge <strong>in</strong>variant regularization scheme. The latticespac<strong>in</strong>g a <strong>in</strong>troduces an ultraviolet momentum cut-off at π/a, so that for f<strong>in</strong>ite values of athere are no <strong>in</strong>f<strong>in</strong>ities. Secondly, it reduces the functional <strong>in</strong>tegral to a large but f<strong>in</strong>ite numberof bounded <strong>in</strong>tegrals over the compact gauge group that can be evaluated stochastically us<strong>in</strong>gwell-established Monte Carlo methods. In practice, these methods are implemented on massivelyparallel computers <strong>in</strong> order to generate importance-sampled sets of gauge field configurationsthat are to serve as “background” fields for the calculation of quark propagators, hadroniccorrelation functions and, eventually, expectation values of observables. Apart from the numberof grid sites the only physically relevant, tunable <strong>in</strong>put parameters of such a computer simulationare the bare parameters of the <strong>QCD</strong> Lagrangian, i.e. the quark masses and the gauge coupl<strong>in</strong>g.Due to deeper physical <strong>in</strong>sight, improved algorithmic strategies and <strong>in</strong>creased computer power,lattice gauge theory has by now matured <strong>in</strong>to a powerful tool for non-perturbative ab <strong>in</strong>itiocalculations <strong>in</strong> <strong>QCD</strong> that can often be compared to experiment (see e.g. [15]). S<strong>in</strong>ce no heuristicmodel assumptions or uncontrolled approximations are needed, the lattice theory reta<strong>in</strong>s thefundamental character of <strong>QCD</strong> and thus provides a reliable test bed for the theory. However,computer resources are still a limit<strong>in</strong>g factor for the accuracy of the numerical results, so thatapart from the statistical errors that <strong>in</strong>evitably occur <strong>in</strong> any stochastic simulation, there area number of systematic uncerta<strong>in</strong>ties. Perhaps the most obvious source of systematic error isthe nonzero lattice spac<strong>in</strong>g a. As it is connected to the bare coupl<strong>in</strong>g g through the renormalizationgroup equation, the Callan-Symanzik β-function governs the flow of g as a function ofthe associated momentum cut-off a −1 . There is compell<strong>in</strong>g evidence that <strong>in</strong> <strong>QCD</strong> the strongcoupl<strong>in</strong>g g approaches zero as a → 0 <strong>with</strong>out a phase transition at <strong>in</strong>termediate values of g,and so the cont<strong>in</strong>uum limit can <strong>in</strong> pr<strong>in</strong>ciple be obta<strong>in</strong>ed by comput<strong>in</strong>g the quantities of <strong>in</strong>terestfor several values of a and extrapolat<strong>in</strong>g the results to a = 0. S<strong>in</strong>ce the computational costgrows <strong>with</strong> decreas<strong>in</strong>g a, one cannot perform numerical simulations at arbitrary small latticespac<strong>in</strong>gs, however. In fact, current lattice spac<strong>in</strong>gs <strong>in</strong> hadron mass calculations, for example, areusually not much smaller than 0.1 fm. Recent years have seen a number of attempts to reducediscretization errors and accelerate the approach to the cont<strong>in</strong>uum limit by “improv<strong>in</strong>g” thelattice action and operators. 2 Most of these methods have been built around Symanzik’s earlyidea of <strong>in</strong>clud<strong>in</strong>g additional operators <strong>in</strong>to the action to systematically remove lattice artefactsup to a given order <strong>in</strong> the lattice spac<strong>in</strong>g [16]. The disadvantage of improved actions, however,is that they are computationally more demand<strong>in</strong>g and <strong>in</strong> general more complicated to handle.2 The way <strong>in</strong> which the action is regularized by discretization is not unique. In pr<strong>in</strong>ciple, any bare action <strong>in</strong>the same universality class as <strong>QCD</strong> will produce universal results <strong>in</strong> the cont<strong>in</strong>uum limit.


9Another limitation of lattice <strong>QCD</strong> lies <strong>in</strong> the quark masses that can be simulated on currentcomputers. In order to accommodate light hadrons <strong>in</strong> currently feasible lattice volumes of about(2−3 fm) 3 , the simulated quarks must be considerably heavier than the physical u and d quarks.While, typically, their masses are of the order of the strange quark mass, recent exploratorysimulations by UK<strong>QCD</strong> [17], the qq+q collaboration [18] and CP-PACS [19] have reached seaquark masses as small as m s /3, m s /4 and m s /7, respectively. 3 The computational argumentfor simulat<strong>in</strong>g unphysically heavy quarks is twofold: First of all, the generation of gluon fieldconfigurations <strong>with</strong> the widely used Hybrid Monte Carlo (HMC) algorithm [20] necessitates therepeated <strong>in</strong>version of a huge Dirac matrix, the cost of which grows significantly towards smallerquark masses [21, 22, 23]. Secondly, simulations <strong>with</strong> <strong>Wilson</strong>’s action are <strong>in</strong>creas<strong>in</strong>gly affectedby statistical fluctuations as the quark mass is decreased. The first problem can be circumventedby us<strong>in</strong>g the “quenched approximation” <strong>in</strong> which the fermionic determ<strong>in</strong>ant is omitted from theaction, and which <strong>in</strong> physical terms amounts to completely neglect<strong>in</strong>g sea quark polarizationeffects <strong>in</strong> the <strong>QCD</strong> vacuum (N f = 0). It has the advantage of reduc<strong>in</strong>g the computational costby about three orders of magnitude compared to a “full” <strong>QCD</strong> simulation, but at the prizeof uncontrolled systematic errors of the order of 10% <strong>in</strong> the result<strong>in</strong>g hadronic spectrum [24].Orig<strong>in</strong>ally adopted solely for reasons of expediency, the quenched approximation has been moreand more abandoned <strong>in</strong> favor of <strong>QCD</strong> simulations <strong>with</strong> dynamical sea quarks after the advent ofsufficiently fast computers. While the first obstacle can thus be overcome, <strong>in</strong> pr<strong>in</strong>ciple, by sheercomputer power, the problem of fluctuations is more fundamental, as it is connected to the factthat the <strong>Wilson</strong> action breaks—at f<strong>in</strong>ite a—the chiral symmetry of the orig<strong>in</strong>al <strong>QCD</strong> action.This break<strong>in</strong>g of chiral symmetry is a consequence of <strong>Wilson</strong>’s fix of the notorious “fermiondoubl<strong>in</strong>g” problem <strong>in</strong>herent <strong>in</strong> the naive discretization of the quark action [25]. 4 Promis<strong>in</strong>gapproaches that preserve an exact lattice chirality also at f<strong>in</strong>ite values of the lattice spac<strong>in</strong>gand thus allow—at least <strong>in</strong> pr<strong>in</strong>ciple—for simulations at arbitrary small quark masses, are thedoma<strong>in</strong>-wall [29] and the overlap [30] formulations. Although dynamical simulations us<strong>in</strong>g thesemethods <strong>with</strong> realistic parameters are still prohibitively expensive (about a factor of 100 timesthe cost for the <strong>Wilson</strong> action), there is little doubt that more years will br<strong>in</strong>g the computerpower needed to do the calculations right (see e.g. [31, 32]). Until then, however, simulations<strong>with</strong> the <strong>Wilson</strong> action rema<strong>in</strong> an important tool <strong>in</strong> study<strong>in</strong>g full <strong>QCD</strong>.While first results of simulations <strong>with</strong> three dynamical quark flavors are becom<strong>in</strong>g available froma few collaborations [33, 34], most full <strong>QCD</strong> simulations so far have been obta<strong>in</strong>ed <strong>with</strong> onlytwo mass-degenerate flavors [35, 36, 37, 38, 39, 40, 41, 66], which are usually identified <strong>with</strong>exactly isosp<strong>in</strong>-symmetric u and d quarks. The orig<strong>in</strong>al limitation to N f = 2 primarily owesto the fact that the standard HMC algorithm can handle only even numbers of quark flavors,but nevertheless it is believed to be a reasonably good approximation <strong>in</strong> those cases <strong>in</strong> whichonly the light quarks are relevant. Physical results for quantities <strong>in</strong>volv<strong>in</strong>g light quarks areusually obta<strong>in</strong>ed by extrapolat<strong>in</strong>g <strong>in</strong> the quark mass us<strong>in</strong>g functional forms derived from chiralperturbation theory (ChPT), a low-energy effective field theory <strong>in</strong> which the dynamics of theGoldstone bosons is described by an expansion <strong>in</strong> terms of momenta and quark masses [42, 43].3 The natural light quark mass is m = (m u + m d )/2 ≈ m s/25.4 An alternative approach to the solution of the doubl<strong>in</strong>g problem is the Kogut-Sussk<strong>in</strong>d (staggered) action[26]. It reta<strong>in</strong>s a remnant of chiral symmetry also at f<strong>in</strong>ite lattice spac<strong>in</strong>g, but at the prize of an unwantedfour-fold degeneracy <strong>in</strong> flavor (“tastes”). An improved variant of the staggered action is extensively used by theHP<strong>QCD</strong>-MILC-UK<strong>QCD</strong> collaboration [27]. Very recently they have reported on three-flavor simulations <strong>with</strong>dynamical light quark masses below m s/2 and down to m s/8 [28]. There is, however, a fundamental concernassociated <strong>with</strong> the need to take the fourth root of the quark determ<strong>in</strong>ant <strong>in</strong> their action to convert the four-foldduplication of “tastes” <strong>in</strong>to one quark flavor.


10 IntroductionIn practice, however, there is a limited range of quark masses where both lattice simulationsare feasible and ChPT is applicable. This problem can be somewhat alleviated by exploit<strong>in</strong>ga particular merit of lattice <strong>QCD</strong>, namely that the valence quark masses <strong>in</strong> quark propagatorcalculations can be reduced <strong>in</strong>dependently of the sea quark mass that has been used for thegeneration of the underly<strong>in</strong>g gluon field configurations. This is computationally less demand<strong>in</strong>gand may be used <strong>in</strong> comb<strong>in</strong>ation <strong>with</strong> partially quenched ChPT (PQChPT) to extrapolateto light valence quark masses [44, 45, 46]. PQChPT is one example for recent extensions ofChPT aim<strong>in</strong>g at bridg<strong>in</strong>g the gap between results from the lattice and phenomenology. Anotherpromis<strong>in</strong>g development <strong>in</strong> this respect is ChPT for <strong>Wilson</strong>-type quarks (WChPT), which takesthe f<strong>in</strong>ite lattice spac<strong>in</strong>g <strong>in</strong>to account and <strong>in</strong> this way leads to an improved chiral extrapolation[47, 48, 49, 50].Besides the f<strong>in</strong>ite lattice spac<strong>in</strong>g and unphysically large quarks, the third ma<strong>in</strong> source of systematicerror <strong>in</strong> lattice <strong>QCD</strong> is the lattice volume, which <strong>in</strong> any numerical simulation is necessarilyf<strong>in</strong>ite. The f<strong>in</strong>ite lattice size is responsible, for example, for systematic shifts <strong>in</strong> the numericallycalculated masses or decay constants of light hadrons, and exactly these shifts are what we willbe ma<strong>in</strong>ly concerned <strong>with</strong> <strong>in</strong> this work. S<strong>in</strong>ce the size of a hadron may be characterized byits Compton wavelength which is <strong>in</strong>versely proportional to its mass m, and as the pion is thelightest particle <strong>in</strong> the theory, it is convenient to consider the l<strong>in</strong>ear spatial extent of a givenlattice <strong>in</strong> units of the Compton wave length of the pion, i.e. <strong>in</strong> terms of m π L. In summary, thephysical picture of how f<strong>in</strong>ite-size effects emerge is as follows: If L is much larger than the sizeof a pion (m π L ≫ 1), then a s<strong>in</strong>gle hadron is practically unaffected by the f<strong>in</strong>ite volume (exceptthat its momentum must be an <strong>in</strong>teger multiple of 2π/L). Then, if the box size is decreased untilthe hadron barely fits <strong>in</strong>to the box, the virtual pion cloud surround<strong>in</strong>g the particle is slightlydistorted, and a pion may be exchanged “around the world” (provided that periodic boundaryconditions have been imposed). A consequence of this effect is that the mass of the hadron isshifted relative to its asymptotic value by terms of order e −mπL . At still smaller values of L thequark wave functions of the enclosed hadron are squeezed and one observes rapidly <strong>in</strong>creas<strong>in</strong>gf<strong>in</strong>ite volume effects, approximately proportional to some negative power of L.The ultimate goal of lattice <strong>QCD</strong> is of course to make physically relevant predictions at “realistic”values of the fundamental parameters, and <strong>in</strong> particular of the quark masses. In view of limitedcomputer resources, however, the selection of parameters for numerical simulations alwaysrema<strong>in</strong>s a compromise between large volume, small lattice spac<strong>in</strong>g and small quark masses.Usually, <strong>in</strong> the context of spectrum calculations, extrapolations are attempted <strong>in</strong> the latticespac<strong>in</strong>g and the quark mass, whereas the physical volume is mostly chosen such that f<strong>in</strong>ite-sizeeffects can be largely neglected right from the start. In this work we take a complementaryapproach <strong>in</strong> that we <strong>in</strong>vestigate, for various fixed values of the gauge coupl<strong>in</strong>g and quark mass,the functional volume dependence of the light hadron masses. Aga<strong>in</strong>st the background of our“GRAL” project, whose name is an acronym for “Go<strong>in</strong>g Realistic And Light”, we address <strong>in</strong>particular the question if and under what conditions an extrapolation <strong>in</strong> the lattice volume ispossible [51, 52]. This issue is <strong>in</strong>terest<strong>in</strong>g <strong>in</strong> at least two respects: First of all, if one can getaway <strong>with</strong> simulations on small or medium-sized lattices (followed by an extrapolation to the<strong>in</strong>f<strong>in</strong>ite volume), this may be helpful <strong>in</strong> reach<strong>in</strong>g lighter quark masses <strong>with</strong> the <strong>Wilson</strong> action.Secondly, given that simulations <strong>with</strong> chiral fermions will become feasible <strong>in</strong> due course, theywill <strong>in</strong>itially be restricted to rather small volumes. Extrapolations <strong>in</strong> the lattice size will thenbe <strong>in</strong>evitable to obta<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite-volume estimates of the quantities of <strong>in</strong>terest.While <strong>in</strong> recent years the chiral extrapolation and the reduction of discretization errors (by bothimprovement and extrapolation) have been at the center of many theoretical and numerical


11studies, there have been rather few systematic <strong>in</strong>vestigations <strong>in</strong>to the lattice size dependence oflight hadron masses. These <strong>in</strong>clude, first of all, a sem<strong>in</strong>al analytic work by M. Lüscher of 1986,<strong>in</strong> which he proved a universal formula for the asymptotic volume dependence of stable particlemasses <strong>in</strong> arbitrary massive quantum field theories [53]. Later on, <strong>in</strong> a series of papers publishedbetween 1992 and 1994, Fukugita et al. carried out a systematic numerical <strong>in</strong>vestigation of f<strong>in</strong>itesizeeffects <strong>in</strong> pion, rho and nucleon masses from quenched and unquenched simulations (<strong>with</strong>the staggered action) [56, 57, 58, 59, 60]. Related numerical studies <strong>with</strong> staggered quarks camealso, at about the same time, from the MILC collaboration [61, 62, 63]. Today it appears thatthe systematic dependence of the light hadron masses on the lattice volume is receiv<strong>in</strong>g renewedattention. Beside our own work <strong>with</strong> its rather heuristic approach there have recently beenimportant analytical contributions from effective field theory [64, 65, 66, 67, 68, 69, 70]. These<strong>in</strong>clude, on the one hand, a determ<strong>in</strong>ation of the pion mass shift <strong>in</strong> f<strong>in</strong>ite volume us<strong>in</strong>g Lüscher’sasymptotic formula <strong>with</strong> <strong>in</strong>put from ChPT (<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume) up to next-to-next-to-lead<strong>in</strong>gorder [65]. On the other hand, the f<strong>in</strong>ite-size mass shift of the nucleon has been calculatedus<strong>in</strong>g baryon ChPT <strong>in</strong> f<strong>in</strong>ite volume up to next-to-next-to-lead<strong>in</strong>g order [66]. Compar<strong>in</strong>g thepion and nucleon masses from our simulations <strong>with</strong> these calculations it will be <strong>in</strong>terest<strong>in</strong>g tocheck to what extent the theoretical formulae can account for our numerical results. As it turnsout, the formula for the nucleon is a promis<strong>in</strong>g example of how suitable parameterizations for<strong>in</strong>f<strong>in</strong>ite-volume extrapolations <strong>with</strong> controlled errors may possibly be found quite generally bycalculat<strong>in</strong>g f<strong>in</strong>ite-size effects consistently <strong>with</strong><strong>in</strong> the very effective field theories that also describethe quark mass dependence [71, 72, 73].The numerical <strong>in</strong>vestigation of f<strong>in</strong>ite-volume effects described <strong>in</strong> this work requires data fromsimulations that differ only <strong>in</strong> the lattice volume while all other bare parameters are kept fixed.The GRAL project therefore builds on and extends previous SESAM/TχL simulations [35, 36]<strong>in</strong> which gauge field configurations for 16 3 and 24 3 lattices have been generated <strong>with</strong> the <strong>Wilson</strong>action at β = 5.6 (a ≈ 0.8 fm from the Sommer parameter r 0 [74]). The SESAM/TχL dataat κ = 0.1575 and κ = 0.158 (correspond<strong>in</strong>g to quark masses of roughly 85 and 50% of thestrange quark mass) have been complemented <strong>with</strong> GRAL ensembles at various smaller latticevolumes <strong>in</strong> the range from 10 3 to 16 3 , us<strong>in</strong>g the same unimproved N f = 2 <strong>Wilson</strong> action.All of the gauge field configurations considered here have been generated <strong>with</strong> variants of theSESAM HMC code <strong>in</strong> which a parallel ll-SSOR preconditioned BiCGStab solver is used for thefast <strong>in</strong>version of the quark matrix [75, 76]. To check on the feasibility of HMC simulations<strong>with</strong> the standard <strong>Wilson</strong> action at lighter quark masses around m s /3 (m π /m ρ ≈ 0.5) wehave conducted exploratory simulations on three different lattice volumes (12 3 , 14 3 and 16 3 )at a stronger coupl<strong>in</strong>g of β = 5.32144 (a ≈ 1.5 fm). Recent related work <strong>in</strong>cludes that ofthe qq+q collaboration which employs the same unimproved N f = 2 <strong>Wilson</strong> action, but usesthe two-step multi-boson (TSMB) <strong>in</strong>stead of the HMC algorithm [77, 78]. At a rather strongcoupl<strong>in</strong>g of β = 5.1 (a ≈ 0.2 fm) they have succeeded <strong>in</strong> simulat<strong>in</strong>g at slightly less than a thirdof the strange quark mass, but as they use only one lattice volume (16 3 ) the issue of f<strong>in</strong>itesizeeffects is not addressed [18]. The UK<strong>QCD</strong> and JL<strong>QCD</strong>/CP-PACS collaborations, whichare work<strong>in</strong>g <strong>with</strong> improved actions, have also tried to push their simulations towards lighterquarks [17, 19]. They have reported earlier on potential <strong>in</strong>stabilities <strong>in</strong> the molecular dynamicsevolution of the HMC algorithm <strong>in</strong> the regime of m π /m ρ 0.5 when us<strong>in</strong>g step sizes thatwere too large [79, 80]. It is therefore an <strong>in</strong>terest<strong>in</strong>g question whether we will encounter suchdifficulties, too. The total range of l<strong>in</strong>ear lattice sizes covered by our simulations is approximately0.85 − 2.04 fm. For our <strong>in</strong>vestigations, more than 80 000 gauge field configurations have beennewly generated on APE mach<strong>in</strong>es at DESY Zeuthen [81, 82] and on the cluster computerALiCE at the University of Wuppertal [83] <strong>in</strong> addition to the readily available SESAM/TχL


12 Introductionensembles. A conservative estimate of the total cost spent on the production of the GRALensembles results <strong>in</strong> approximately 260 Tflops-hours. All of the required quark propagators andhadronic correlation functions have been calculated on the Cray T3E [84] at FZ Jülich.The outl<strong>in</strong>e of the thesis is as follows:<strong>QCD</strong> on the <strong>Lattice</strong>The purpose of the first chapter is to <strong>in</strong>troduce the ma<strong>in</strong> concepts of lattice <strong>QCD</strong> and to fix thenotation. After the derivation of the <strong>QCD</strong> Lagrangian we <strong>in</strong>troduce the Feynman path <strong>in</strong>tegral asa convenient way of quantiz<strong>in</strong>g the classical theory such that the close analogy between quantumfield theory and statistical mechanics becomes apparent. <strong>Wilson</strong>’s approach to discretiz<strong>in</strong>g andthus regulariz<strong>in</strong>g the cont<strong>in</strong>uum <strong>QCD</strong> action <strong>in</strong> Euclidean space-time is expla<strong>in</strong>ed. We give acursory overview of improvement and recent developments regard<strong>in</strong>g alternative actions. Thebasic features of the Hybrid Monte Carlo algorithm are described. We close the chapter <strong>with</strong> alist of the most important uncerta<strong>in</strong>ties <strong>in</strong> lattice results.Volume Dependence of the Light Hadron MassesIn the second chapter we review the ma<strong>in</strong> theoretical and numerical f<strong>in</strong>d<strong>in</strong>gs published todate about the functional form and physical orig<strong>in</strong> of f<strong>in</strong>ite-size effects <strong>in</strong> light hadron masses.Lüscher’s exponential formula for the asymptotic mass shift <strong>in</strong> f<strong>in</strong>ite volume is quoted and discussed<strong>in</strong> some detail for the special cases of the pion and the nucleon. We recapitulate possibleexplanations for the observation made by Fukugita et al. that at small volumes the volumedependenceof the pion, rho and nucleon masses can be described by a power law. A recentresult by Ali Khan et al. for the nucleon mass-shift from baryon chiral perturbation theory <strong>in</strong>f<strong>in</strong>ite volume is presented.Numerical SimulationThe third chapter deals <strong>with</strong> the numerical aspects of our work. We describe the ma<strong>in</strong> featuresof the specific implementation of the HMC algorithm that we use for the generation of gaugefield configurations, and list the run parameters of our simulations. For reference and comparisonwe also quote the correspond<strong>in</strong>g numbers for all previous SESAM/TχL runs. Estimates ofthe computational costs for each run are given. We discuss the ma<strong>in</strong> aspects of the computationof smeared quark propagators and hadronic correlation functions and <strong>in</strong>troduce the parameterizationsto which these correlation functions are fitted <strong>in</strong> order to obta<strong>in</strong> the desired physicalquantities. We close the chapter <strong>with</strong> an account of our methods for fitt<strong>in</strong>g and error analysis.Light Hadron SpectroscopyThe fourth chapter is dedicated to the ma<strong>in</strong> results of this work, the analysis of f<strong>in</strong>ite-size effects.To set the physical scale <strong>in</strong> our simulations at β = 5.32144 we first determ<strong>in</strong>e the Sommerparameter r 0 from a fit of the static quark potential. We describe <strong>in</strong> detail how we obta<strong>in</strong>hadron masses and decay constants by fitt<strong>in</strong>g the mesonic and baryonic two-po<strong>in</strong>t functionsto appropriate parameterizations, and how the fit ranges are optimized. The result<strong>in</strong>g masses


of the pion and rho mesons and of the nucleon (before chiral or cont<strong>in</strong>uum extrapolation) aregiven. We also present results for the (unrenormalized) pion decay constant and the bare PCACquark mass. The role of spatial Polyakov-type loops <strong>in</strong> f<strong>in</strong>ite volume is discussed. To <strong>in</strong>vestigatethe functional form of the volume-dependence of our calculated hadron masses we first exam<strong>in</strong>evarious “naive” parameterizations motivated by Lüscher’s formula and the observations madeby Fukugita et al.. In a second step we check on the validity of available theoretical predictionsfrom effective field theory <strong>in</strong> the parameter regime covered by our simulations. The issue of thefeasibility of <strong>in</strong>f<strong>in</strong>ite-volume extrapolations (based on data from small and <strong>in</strong>termediate lattices)is discussed. F<strong>in</strong>ally we use the PCAC quark mass to check on the role of discretization errors<strong>in</strong> our simulations.13


1.1. The <strong>QCD</strong> Lagrangian 17For small a it can be expanded <strong>in</strong> terms of the group generators t a ,U(x + an, x) = 1 + igan µ A a µ(x)t a + O(a 2 ) (1.7)≡[ ∫ ]P exp ig dx µ A µ (x) , (1.8)Pwhere the factor g (the bare coupl<strong>in</strong>g constant) has been extracted for convenience. The secondexpression holds for any path P connect<strong>in</strong>g x and x + an (for any f<strong>in</strong>ite a); P <strong>in</strong>dicates pathorder<strong>in</strong>g.Insert<strong>in</strong>g Eq. (1.7) <strong>in</strong>to Eq. (1.5) we obta<strong>in</strong> for the covariant derivativeD µ = ∂ µ − igA a µt a . (1.9)The new fields A µ (x) ≡ A a µ(x)t a (called gauge fields and identified <strong>with</strong> the gluons) transformlike(A µ (x) ↦→ V (x) A µ (x) + i )g ∂ µ V † (x); (1.10)their very existence is a consequence of the postulate of local gauge symmetry. As the covariantderivative transforms just like the quark field itself,D µ ↦→ V (x)D µ , (1.11)any comb<strong>in</strong>ation of the fields and their covariant derivatives that is <strong>in</strong>variant under a globalgauge transformation is also locally <strong>in</strong>variant.In order to complete the construction of a gauge symmetric Lagrangian we must f<strong>in</strong>d a k<strong>in</strong>eticenergy term for the fields A µ that is locally <strong>in</strong>variant and depends only on A µ and its derivatives.Such a term can be obta<strong>in</strong>ed from the commutator of covariant derivatives,where the gluonic field tensor F µν ≡ F a µνt a is explicitely given by[D µ , D ν ] = −igF a µνt a , (1.12)F µν = ∂ µ A ν − ∂ ν A µ − ig [A µ , A ν ] (1.13)= ∂ µ A a νt a − ∂ ν A a µt a + gf abc A b µA c ν t a . (1.14)(See Appendix A.1 for the def<strong>in</strong>ition of the SU(3) structure constants f abc .) The transformationlaw for F µν isF µν (x) ↦→ V (x)F µν (x)V † (x). (1.15)The non-vanish<strong>in</strong>g gauge-field commutator [A µ , A ν ] <strong>in</strong> Eq. (1.13) reflects the fact that <strong>in</strong> contrastto the photon <strong>in</strong> QED the gluons <strong>in</strong>teract <strong>with</strong> themselves, a fact that renders the theorymathematically considerably more complicated than QED.From the <strong>in</strong>f<strong>in</strong>itesimal forms of Eqns. (1.3), (1.10) and (1.15) one can show that any globallysymmetric function of q, F a µν and their covariant derivatives is also locally symmetric. However,the most general gauge-<strong>in</strong>variant Lagrangian for <strong>QCD</strong> <strong>with</strong> terms up to dimension 4 that isrenormalizable and also <strong>in</strong>variant under parity transformation and time-reversal is (for onequark flavor) given byL = q(iγ µ D µ − m q )q − 1 4 (F a µν) 2 . (1.16)


18 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong>1.2 Functional QuantizationThe construction of the classical <strong>QCD</strong> Lagrangian is only the first step <strong>in</strong> the process of relat<strong>in</strong>gthe idea of non-Abelian gauge <strong>in</strong>variance to the real <strong>in</strong>teractions of particle physics. In thissection we <strong>in</strong>troduce the Feynman path <strong>in</strong>tegral, an <strong>in</strong>genious alternative to the “second quantization”of the classical fields. As it builds on the Lagrangian rather than the Hamiltonian itpreserves explicitly all the symmetries of the theory. With regard to lattice gauge theories thefunctional <strong>in</strong>tegral formalism offers a particular advantage: appropriately def<strong>in</strong>ed it reveals theclose analogy between quantum field theory and statistical mechanics, thus mak<strong>in</strong>g the powerfultechniques of the latter readily available for non-perturbative, ab-<strong>in</strong>itio calculations <strong>in</strong> <strong>QCD</strong>.In the path <strong>in</strong>tegral formalism, the fundamental quantity is the action S = ∫ d 4 x L, which for<strong>QCD</strong> is explicitly given by the space-time <strong>in</strong>tegral over the Lagrangian density (1.16),∫S = S q + S g = d 4 x[q(iγ µ D µ − m q )q − 1 ]4 (F µν) a 2 . (1.17)The expectation value of a physical observable O is given by the functional <strong>in</strong>tegral∫〈 〉 1 O = Dq Dq DA O[q, q, A] e iS[q,q,A] , (1.18)Znormalized by the partition function∫Z = Dq Dq DA e iS[q,q,A] . (1.19)The idea of <strong>in</strong>tegrat<strong>in</strong>g over all possible “paths” (contribut<strong>in</strong>g to a given outcome accord<strong>in</strong>gto their relative “importance”) goes back to the superposition pr<strong>in</strong>ciple <strong>in</strong> quantum mechanics,stat<strong>in</strong>g that if a process can take place <strong>in</strong> more than one way, its total amplitude is the coherentsum of the amplitudes for each way. A practical aspect facilitat<strong>in</strong>g actual (numerical)calculations is that the functional <strong>in</strong>tegral is an <strong>in</strong>tegral over ord<strong>in</strong>ary functions, not operators.But there is a caveat, because <strong>in</strong> the case of anticommut<strong>in</strong>g fermions even the classical fields<strong>in</strong> the functional <strong>in</strong>tegral must be replaced by anticommut<strong>in</strong>g numbers (so-called Grassmannnumbers). The Gaussian <strong>in</strong>tegration over the Grassmannian quark fields can then be carriedout analytically, however, lead<strong>in</strong>g to the appearance of the fermionic functional determ<strong>in</strong>ant,∫[ ∫ ]Dq Dq exp i d 4 x qMq = det M, (1.20)where we have set M ≡ iγ µ D µ − m q . It can be shown that the functional determ<strong>in</strong>ant is, <strong>in</strong>fact, equivalent to the sum of vacuum Feynman diagrams.In practice, an observable O is typically given <strong>in</strong> terms of time-ordered products of gauge andquark fields, the latter of which can be re-expressed <strong>in</strong> terms of quark propagators us<strong>in</strong>g Wick’stheorem for the contraction of fields. As the quark propagator, M[A] −1 , does not explicitlydepend on the quarks as dynamical fields, we can write for the expectation value of O:∫∫〈 〉 1 O = DA O[A] e iS[A] <strong>with</strong> Z = DA e iS[A] , (1.21)Zwhere we have def<strong>in</strong>ed the effective action∫S = d 4 x[log det M − 1 ]4 (F µν) a 2 . (1.22)


1.3. Euclidean Space-Time 19In order to give the path <strong>in</strong>tegral a well-def<strong>in</strong>ed mathematical mean<strong>in</strong>g we need to suitably regularizethe measure, DA, by discretiz<strong>in</strong>g space-time. Moreover, <strong>in</strong> order to make the exponentialweight factor real we will cont<strong>in</strong>ue the time variable to imag<strong>in</strong>ary values <strong>in</strong> the next section.1.3 Euclidean Space-TimeThe Wick rotation <strong>in</strong> configuration space is def<strong>in</strong>ed by a rotation of the time coord<strong>in</strong>ate <strong>in</strong> thecomplex plane,yield<strong>in</strong>g a Euclidean scalar product:t ≡ x 0 ↦→ τ ≡ x 4 = −ix 0 , x i ↦→ x i = x i (i = 1, 2, 3), (1.23)x 2 M = (x 0 ) 2 − x 2 ↦→ x 2 E = x 2 1 + x 2 2 + x 2 3 + x 2 4 = −x 2 M. (1.24)The covariant and contravariant components of a Euclidean 4-vector are identical, x µ = x µ ,and the metric tensor is just δ µν . The Euclidean γ-matrices are related to their counterparts <strong>in</strong>M<strong>in</strong>kowski space, γ µ M , byγ 0 M ↦→ γ 4 = γ 0 M, γ i M ↦→ γ i = iγ i M (i = 1, 2, 3). (1.25)(See Appendix A.2 for our explicit choice of Euclidean γ-matrices.)After Wick rotation, the Euclidean action S E is real and given byS ↦→ S E = −iS, (1.26)or, more explicitly,∫S E =d 4 x[q(γ µ D µ + m q )q + 1 4 (F a µν) 2 ]. (1.27)The <strong>QCD</strong> partition function now takes the form∫Z E = Dq Dq DA e −S E, (1.28)which is analogous to a partition function <strong>in</strong> statistical mechanics <strong>with</strong> a real weight correspond<strong>in</strong>gto the Boltzmann factor. 3 Unless otherwise stated we will exclusively work <strong>in</strong> Euclideanspace-time from now on and therefore drop the subscript E.In order to illustrate how one can extract physical observables like masses or decay constantsfrom expectation values of operators, we consider the Euclidean two-po<strong>in</strong>t function〈0|T [O f (x, τ)O i (0, 0)]|0〉, (1.29)where T is the time-ordered product, for τ > 0. The creation operator O i and the annihilationoperator O f are, typically, currents. The two-po<strong>in</strong>t correlation function gives the amplitude forthe creation of a state <strong>with</strong> the quantum numbers of the source operator O i out of the vacuum atspace-time po<strong>in</strong>t 0, the propagation of this state to the space-time po<strong>in</strong>t x, and its annihilationby the s<strong>in</strong>k operator O f . If we <strong>in</strong>sert a complete set of energy eigenstates and <strong>in</strong>tegrate over3 The reality of the action is actually only guaranteed if the functional determ<strong>in</strong>ant of the Dirac operator ispositive. We will come back to this po<strong>in</strong>t <strong>in</strong> Section 1.6.


20 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong>the space-like coord<strong>in</strong>ates we obta<strong>in</strong> a sum over all <strong>in</strong>termediate zero-momentum states <strong>with</strong> theright quantum numbers, exponentially damped <strong>in</strong> Euclidean time:∫〈0| d 3 x O f (x, τ)O i (0, 0)|0〉 = ∑ 〈0 |O f | n〉〈n |O i | 0〉e −Enτ (1.30)2EnnIf there is a s<strong>in</strong>gle-particle state |1〉 <strong>in</strong> the given channel, then the lowest energy, E 1 , is equal toits mass M, and the asymptotic behavior of the correlation function for large times is∫〈0| d 3 x O f (x, τ)O i (0, 0)|0〉 τ→∞ −→ 〈0 |O f | 1〉〈1 |O i | 0〉e −Mτ . (1.31)2MUs<strong>in</strong>g this relation the mass of a particle can be extracted from the rate of the exponential fall-off<strong>in</strong> Euclidean time of a suitable correlation function, because it can be shown that the mass M<strong>in</strong> Eq. (1.31) corresponds precisely to the pole mass of the particle’s propagator <strong>in</strong> M<strong>in</strong>kowskispace.We note <strong>in</strong> pass<strong>in</strong>g that if a Euclidean correlation function obeys the Osterwalder-Schraderreflection positivity it can, <strong>in</strong> pr<strong>in</strong>ciple, be translated back to M<strong>in</strong>kowski space by analyticcont<strong>in</strong>uation[86].1.4 DiscretizationHav<strong>in</strong>g <strong>in</strong>troduced the path <strong>in</strong>tegral and the <strong>QCD</strong> action <strong>in</strong> Euclidean space-time we are nowprepared to f<strong>in</strong>ally def<strong>in</strong>e the lattice theory. To this end we need to discretize space-time and,accord<strong>in</strong>gly, the fields, the action and the operators. We have seen <strong>in</strong> the previous section thatthere is a close analogy between Euclidean field theory and statistical mechanics, and how onecan obta<strong>in</strong> physical <strong>in</strong>formation from the calculation of Euclidean correlation functions. Discretiz<strong>in</strong>gthe cont<strong>in</strong>uum theory now serves two purposes: First, a discretized path <strong>in</strong>tegral ismathematically well-def<strong>in</strong>ed and allows for the numerical computation of exactly those correlationfunctions. Second, it provides a non-perturbative regularization scheme, <strong>with</strong> a hardultraviolet (UV) momentum cut-off given by the <strong>in</strong>verse of the lattice spac<strong>in</strong>g.Let us, then, def<strong>in</strong>e a f<strong>in</strong>ite, isotropic hypercubic space-time grid <strong>with</strong> lattice spac<strong>in</strong>g a and Lsites <strong>in</strong> the spatial directions and T sites <strong>in</strong> temporal direction. This discretization <strong>in</strong>troduces aUV cut-off because the allowed momenta on the lattice are discrete,k i = ± 2πn iLa , n i = 0, . . . , L/2, (1.32)so that the maximum momentum is π/a. At the opposite end of the momentum scale we havean <strong>in</strong>frared cut-off at 2π/La, correspond<strong>in</strong>g to the smallest non-zero momentum that can berealized on a f<strong>in</strong>ite lattice.The quark field qc α (x) <strong>in</strong> Euclidean space-time <strong>with</strong> SU(3) color <strong>in</strong>dex c = 1, 2, 3 and Dirac sp<strong>in</strong>or<strong>in</strong>dex α = 1, 2, 3, 4 is simply def<strong>in</strong>ed at the lattice sites x = an, <strong>with</strong> n 1 , n 2 , n 3 ∈ {0, 1, . . . , L−1}and n 4 ∈ {0, 1, . . . , T − 1}. The construction of gauge fields on the lattice is, on the otherhand, less straightforward. In Eq. (1.7) the cont<strong>in</strong>uum gauge fields A µ (x) naturally appearedwhen we expanded the parallel transporter, U(x + an, x), around the space-time po<strong>in</strong>t x for an<strong>in</strong>f<strong>in</strong>itesimally small a <strong>in</strong> the direction of an arbitrary unit vector n. The parallel transporter was<strong>in</strong>troduced <strong>in</strong> order to make the derivative gauge-covariant. Let us, then, consider the lattice


1.4. Discretization 21version of the covariant derivative, <strong>with</strong> the shortest distance between any two sites be<strong>in</strong>g thef<strong>in</strong>ite lattice spac<strong>in</strong>g a. In fact, if we denote by ˆµ a unit vector along the grid-axis <strong>in</strong> the µ’thdimension (µ ∈ {1, 2, 3, 4}), then the lattice covariant derivative <strong>in</strong> the correspond<strong>in</strong>g directionis given by the f<strong>in</strong>ite form of its cont<strong>in</strong>uum counterpart, Eq. (1.5), asD µ q(x) = 12a[U µ (x)q(x + aˆµ) − U † µ(x)q(x − aˆµ)], (1.33)where we conveniently def<strong>in</strong>ed U µ (x) ≡ U(x, x + aˆµ) and used the fact that U † µ(x) = U −µ (x).As they are associated <strong>with</strong> the connect<strong>in</strong>g l<strong>in</strong>ks between neighbor<strong>in</strong>g sites, the SU(3)-matricesU µ (x) are called gauge l<strong>in</strong>ks. In order to write down the path <strong>in</strong>tegral for lattice <strong>QCD</strong> we need alocally gauge <strong>in</strong>variant, discrete version of the <strong>QCD</strong> action. In the next section we will see thatit is convenient to formulate the gauge part of this action directly <strong>in</strong> terms of the gauge l<strong>in</strong>ks.1.4.1 Gauge ActionThere are only two gauge <strong>in</strong>variant objects one can construct on a lattice: First, so-called str<strong>in</strong>gs,path-ordered products of l<strong>in</strong>ks that either have a fermion on one end and an antifermion at theother, or, <strong>in</strong> case of periodic boundary conditions, w<strong>in</strong>d around the lattice. If a str<strong>in</strong>g goesaround the lattice <strong>in</strong> temporal direction it is called a Polyakov l<strong>in</strong>e (or loop), otherwise it is aso-called <strong>Wilson</strong> l<strong>in</strong>e. We will come back to these objects <strong>in</strong> Chapter 4. The second class ofgauge-<strong>in</strong>variant objects consists of closed <strong>Wilson</strong> loops. The simplest <strong>Wilson</strong> loop is the productof comparators around the smallest possible square on the lattice:W 1×1µν (x) = U µ (x)U ν (x + aˆµ)U † µ(x + aˆν)U † ν(x). (1.34)This object is the so-called plaquette variable. For convenience we will use the term plaquettealso for the real part of the mean diagonal entry of the SU(3)-matrix Wµν 1×1 (x), averaged overall smallest squares of a given lattice:□ = 1L 3 T∑x1 ∑ 11×1Re Tr Wµν (x). (1.35)6 3µ


22 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong>1.4.2 Fermionic ActionJust as <strong>in</strong> the gluonic case one would like to write down a discrete action for the quarks thatpreserves the fundamental properties of <strong>QCD</strong> not only <strong>in</strong> the cont<strong>in</strong>uum limit but also at f<strong>in</strong>itelattice spac<strong>in</strong>g. This refers <strong>in</strong> particular to gauge <strong>in</strong>variance and chiral symmetry. There is,however, a “no-go” theorem by Nielsen and N<strong>in</strong>omiya prov<strong>in</strong>g quite generally that, on a lattice,there is no local, Hermitian quark action that is chirally symmetric and, at the same time,provides an unambiguous one-to-one correspondence between lattice and cont<strong>in</strong>uum fields [87].This becomes manifest when one writes down the naive, straightforward discretization of thefermionic quark action, us<strong>in</strong>g the covariant derivative of Eq. (1.33):a 4 ∑ xq(x)(γ µ D µ + m q )q(x) =a 4 ∑ x,µ1[]q(x)γ µ U µ (x)q(x + aˆµ) − U †2aµ(x)q(x − aˆµ) + m q q(x)q(x). (1.39)While this fermion action is chirally <strong>in</strong>variant <strong>in</strong> the limit m q = 0, it exhibits the problem ofdoublers: When we compare the <strong>in</strong>verse of the massless free fermion propagator (obta<strong>in</strong>ed by aFourier transform of the massless naive lattice Dirac operator <strong>with</strong> all U µ (x) ≡ 0),to that, <strong>in</strong> the cont<strong>in</strong>uum,G −1naive (p) = i a∑γ µ s<strong>in</strong> p µ a, (1.40)µG −1cont (p) = iγ µp µ , (1.41)then it is evident that on a 4-dimensional lattice the naive propagator has 2 4 = 16 poles <strong>in</strong> aBrillou<strong>in</strong> zone <strong>in</strong>stead of just one <strong>in</strong> the cont<strong>in</strong>uum. 4Faced <strong>with</strong> the choice of tolerat<strong>in</strong>g either spurious doubler states or explicit chiral symmetrybreak<strong>in</strong>g, <strong>Wilson</strong> opted for the latter by add<strong>in</strong>g the follow<strong>in</strong>g irrelevant, gauge-symmetric dimension5 operator (<strong>in</strong> form of a second derivative, −r/2 a 5 ∑ xq □ q) to Eq. (1.39):− r ∑ 1[]2 a5 q(x)γ µa 2 U µ (x)q(x + aˆµ) − 2q(x) + U µ(x)q(x † − aˆµ) . (1.42)x,µDue to this term the 15 doublers of the naive action aquire heavy masses proportional to 2r/aand decouple <strong>in</strong> the cont<strong>in</strong>uum limit. If we def<strong>in</strong>e the quark mass parameter κ (also calledhopp<strong>in</strong>g parameter) as1κ =(1.43)2am q + 8rand rescale the quark fields accord<strong>in</strong>g towe can write the result<strong>in</strong>g <strong>Wilson</strong> action for fermions asa 3/2 (am q + 4r) 1/2 q ↦−→ q, (1.44)S q = ∑ x,yq(x)M(x, y)q(y), (1.45)4 One important consequence of the existence of doublers <strong>in</strong> the naive fermion action is the absence of theAdler-Bell-Jackiw anomaly: The axial current, which is conserved for gauge theories at the classical level but notconserved at the quantum level <strong>in</strong> the cont<strong>in</strong>uum theory, is conserved for naive lattice fermions.


1.4. Discretization 23where the quark <strong>in</strong>teraction matrix M(x, y) is explicitly given byM(x, y) = δ xy − κ ∑ ][(r − γ µ )U µ (x)δ x+aˆµ,y + (r + γ µ )U µ(x † − aˆµ)δ x−aˆµ,y . (1.46)µThe parameter r is usually set equal to one, because this choice results <strong>in</strong> a particularly convenientsp<strong>in</strong> structure of M(x, y). 5 Chiral symmetry is explicitly broken by the <strong>Wilson</strong> term(1.42) at f<strong>in</strong>ite a, but can be recovered <strong>in</strong> the cont<strong>in</strong>uum limit.Accord<strong>in</strong>g to Eq. (1.43) the mass of a <strong>Wilson</strong> quark is given byam q = 12κ − 4r = 12κ − 12κ c; (1.47)it vanishes <strong>in</strong> the free case for κ = κ c ≡ 1/8r. We def<strong>in</strong>e am q = 1/2κ − 1/2κ c also for the<strong>in</strong>teract<strong>in</strong>g theory, so that κ c becomes dependent on the lattice spac<strong>in</strong>g a. As a consequence thequark mass receives not only multiplicative but also additive renormalizations.In practice there are two ways to determ<strong>in</strong>e κ c at any given a, which may differ <strong>in</strong> general bycorrections of O(a): First, assume the chiral relation m 2 π ∝ m q , calculate m 2 π as a function of1/2κ and extrapolate to zero. Or, second, calculate the quark mass us<strong>in</strong>g the PCAC relation(based on the axial vector Ward identity) as a function of 1/2κ and aga<strong>in</strong> extrapolate to zero.In this work we will consider the PCAC quark mass <strong>in</strong> a slightly different context: as the PCACrelation is an operator identity it holds irrespective of the lattice volume and other parametersof the simulation, as long as the gauge coupl<strong>in</strong>g β and the bare quark mass parameter κ are keptconstant. The PCAC quark mass thus depends on the lattice size only through O(a) effects andmay be used to assess the impact of these effects on a given simulation (see Section 4.5).1.4.3 Improvement and Alternative ActionsThe ma<strong>in</strong> drawbacks of the <strong>Wilson</strong> action are the explicit violation of the chiral symmetry ofthe orig<strong>in</strong>al cont<strong>in</strong>uum action, and the relatively large discretization errors. These are onlyof order a 2 <strong>in</strong> the plaquette action, but the <strong>Wilson</strong> term <strong>in</strong> the quark action degrades thisto O(a). In recent years there have been many attempts to f<strong>in</strong>d better (so-called improved)discretizations of both the gauge and the quark part of the action <strong>with</strong> reduced errors, i.e. errorsof higher order <strong>in</strong> the lattice spac<strong>in</strong>g a. An early approach that goes by the name of Symanzik’simprovement program is to remove lattice artefacts order by order <strong>in</strong> a by <strong>in</strong>corporat<strong>in</strong>g higherdimensional,irrelevant terms (i.e. those that vanish <strong>in</strong> the cont<strong>in</strong>uum limit) <strong>in</strong> both the actionand the considered operators [16]. A widely used example of an O(a) improved quark actionis the Sheikholeslami-Wohlert (clover) action [89]. For the <strong>in</strong>volved coefficient c SW mean-fieldimproved perturbative values can be used [90], but non-perturbative values (determ<strong>in</strong>ed <strong>with</strong> thehelp of the Schröd<strong>in</strong>ger functional method [91]) are also available [92]. There are, furthermore,improved actions <strong>in</strong>spired by the renormalization group [93], rang<strong>in</strong>g from the Iwasaki gaugeaction [94] over block<strong>in</strong>g transformations to (classically) perfect actions <strong>in</strong> the gauge and quarksectors [95]. A recent <strong>in</strong>novation is the use of “fat” l<strong>in</strong>ks <strong>in</strong> fermionic actions which is based onthe idea that discretization errors from a smooth cut-off are less severe than those associated<strong>with</strong> a hard lattice cut-off. The currently most popular variants of fat-l<strong>in</strong>k actions are the Asqtad(“a 2 tadpole”) improved [96] and the HYP (hypercubic) actions [97].5 Recently, Frezzotti et al. have shown how this parameter can be used to improve the chiral behavior and theapproach to the cont<strong>in</strong>uum limit of correlation functions [88].


1.6. <strong>Lattice</strong> Simulations 25and∫dU = 1. (1.49)Property (1.48) guarantees gauge <strong>in</strong>variance, while (1.49) normalizes the measure.For the path <strong>in</strong>tegral on the lattice we def<strong>in</strong>eDU = ∏ x,µdU µ (x), (1.50)where the product is over all lattice sites, x, and all positive coord<strong>in</strong>ate directions, µ; it thuscovers all the gauge l<strong>in</strong>ks of the lattice.A very convenient consequence of the fact that we <strong>in</strong>tegrate over a compact group is thatwe encounter no divergences. Hence, unless we want to do perturbative calculations, the path<strong>in</strong>tegral approach is well def<strong>in</strong>ed <strong>with</strong>out fix<strong>in</strong>g of a gauge. Another important po<strong>in</strong>t is that onlygauge <strong>in</strong>variant quantities can have a non-zero expectation value. This is due to Elitzur’s theorem[100], stat<strong>in</strong>g that a local <strong>in</strong>variance <strong>in</strong> a Euclidean gauge theory <strong>with</strong> a positive Euclidean weight<strong>in</strong> the path <strong>in</strong>tegral cannot be broken spontaneously. 71.6 <strong>Lattice</strong> SimulationsThe goal of a typical lattice simulation is the numerical computation of the expectation valueof an operator O that is, <strong>in</strong> general, a correlation function <strong>in</strong>volv<strong>in</strong>g gluonic fields and quarkbil<strong>in</strong>ears (see Eq. (1.29)). The operators that are relevant for this work will be specified <strong>in</strong> detail<strong>in</strong> Section 3.3. We assume that, after Wick contraction of the fermion fields, O depends on thequarks only through the fermion matrix M[U]. Then, hav<strong>in</strong>g <strong>in</strong>tegrated out the quark degreesof freedom, the expectation value of O[U] is given by the purely bosonic path <strong>in</strong>tegral<strong>with</strong> the partition function〈O〉=1Z∫DU O[U] det M[U] e −Sg[U] , (1.51)∫Z = DU det M[U] e −Sg[U] . (1.52)The gauge <strong>in</strong>variant measure DU was def<strong>in</strong>ed <strong>in</strong> the previous section; the <strong>Wilson</strong> Dirac matrixM and the gauge action S g were given <strong>in</strong> Eqns. (1.46) and (1.36), respectively. As we work<strong>in</strong> Euclidean space-time, the exponential exp(−S g ) is real and positive and can thus act as astatistical weight. Because of the “γ 5 -Hermiticity” M = γ 5 M † γ 5 the determ<strong>in</strong>ant det M is alsoreal, but it is not <strong>in</strong> general positive. If we consider two mass-degenerate flavors of quarks,however, we have (det M) 2 ≥ 0, and the expression(det M) 2 exp(−S g ) = exp(log(det M) 2 − S g ) ≡ exp(−S eff ) (1.53)can be considered altogether as a weight function, analogous to the Boltzmann factor <strong>in</strong> a statisticalmechanics system. 8 Comput<strong>in</strong>g the path <strong>in</strong>tegral then amounts to generat<strong>in</strong>g importancesampledgauge field configurations {[U i ], i = 1, . . . , N conf } accord<strong>in</strong>g to the probability distributionP [U] = Z −1 e −S eff[U](1.54)7 See Ref. [101] for a recent re-exam<strong>in</strong>ation of Elitzur’s theorem.8 Physically we <strong>in</strong>terpret the two mass-degenerate quark flavors as exactly isosp<strong>in</strong> symmetric u and d quarks.The isosp<strong>in</strong> symmetric mass is def<strong>in</strong>ed as m q = (m u + m d )/2.


26 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong><strong>with</strong>∫Z =DU e −S eff[U] , (1.55)and calculat<strong>in</strong>g the expectation value of O by simply averag<strong>in</strong>g over the ensemble:N〈 〉 1 ∑ confO ≈N confn=11.6.1 The Hybrid Monte Carlo AlgorithmO[U n ]. (1.56)There are a number of Monte-Carlo based algorithms that can be used to generate samples ofgauge field configurations. For simulations <strong>with</strong> dynamical fermions, the most widely and <strong>in</strong> thiswork exclusively used is the Hybrid Monte Carlo (HMC) algorithm [20], a comb<strong>in</strong>ation of theMetropolis algorithm <strong>with</strong> heatbath and classical molecular dynamics methods. In contrast toa local updat<strong>in</strong>g algorithm the HMC algorithm uses conjugate momenta and a Hamiltonian togenerate a globally updated trial configuration which then undergoes a Metropolis accept-rejectdecision.In every lattice simulation <strong>with</strong> fermions, the computation of the determ<strong>in</strong>ant <strong>in</strong> Eq. (1.53)represents the ma<strong>in</strong> challenge, as it is a highly non-local object and represents as such a majorobstacle to any effective implementation on a parallel computer. For this reason the fermionicdeterm<strong>in</strong>ant is often simply set to a constant, which <strong>in</strong> physical terms corresponds to giv<strong>in</strong>g thefermions an <strong>in</strong>f<strong>in</strong>ite mass, so that vacuum polarization effects from virtual quark-antiquark pairsare fully suppressed. It must be stressed that, be<strong>in</strong>g an essentially uncontrolled simplification,this so-called quenched approximation is almost exclusively motivated by the requirement ofcomputational expediency. If possible one will always prefer a full lattice <strong>QCD</strong> simulation <strong>with</strong>dynamical quarks, i.e. <strong>with</strong> the fermionic determ<strong>in</strong>ant taken <strong>in</strong>to account.A practical tool for this purpose is the HMC algorithm. We consider it here for two flavors ofdynamical quarks <strong>with</strong> equal mass, <strong>in</strong> which case the fermion determ<strong>in</strong>ant can be written as∫(det M) 2 = det M † M = Dφ † Dφ e −S pf, (1.57)where S pf is given byS pf = φ † (M † M) −1 φ. (1.58)φ † and φ are bosonic fields <strong>with</strong> exactly the same number of degrees of freedom as the orig<strong>in</strong>alfermion fields; they are therefore called pseudo-fermions. One arrives thus at a purely bosonic,effective lattice representation of the <strong>QCD</strong> action:S eff [U, φ † , φ] = S g [U] + S pf [U, φ † , φ]. (1.59)The expectation value of O is now given by∫〈 〉 1 O = Dφ † DφDU O[U] e −S eff[U,φ †,φ] , (1.60)Z<strong>with</strong> the partition function∫Z = Dφ † DφDU e −S eff[U,φ †,φ] . (1.61)


1.6. <strong>Lattice</strong> Simulations 27Introduc<strong>in</strong>g a momentum field Π canonically conjugate to the gauge field U, we def<strong>in</strong>e a conservativedynamical system <strong>with</strong> the HamiltonianH[Π, U, φ † , φ] = T [Π] + S g [U] + S pf [φ † , φ, U], (1.62)where the k<strong>in</strong>etic term isT = 1 ∑Tr Π 22µ(x). (1.63)x,µThe canonical momenta Π µ (x) are elements of the Lie algebra of SU(3) and can thus be writtenas l<strong>in</strong>ear comb<strong>in</strong>ations of the eight Gell-Mann matrices λ a (see Appendix A.1). Only the gaugefield will be updated by a dynamical process, while the pseudofermion fields φ † , φ are randomlygenerated from a heatbath at the beg<strong>in</strong>n<strong>in</strong>g of each “trajectory” and then kept constant as astatic “background field” until the new gauge configuration has been either accepted or rejected.We therefore do not need to <strong>in</strong>troduce conjugate momenta also for the pseudofermion fields.We note that the expectation value∫〈 〉 1 O =ZDφ † DφDU O[U] e −H[Π,U,φ† ,φ](1.64)<strong>with</strong> the partition function∫Z =Dφ † DφDU e −H[Π,U,φ† ,φ](1.65)is equivalent to Eq. (1.60) because the constant from the Gaussian <strong>in</strong>tegration over the canonicalmomenta is canceled by the normalization.Hamilton’s equations, ˙U µ = ∂H/∂Π µ and ˙Π µ = −∂H/∂U µ , imply that U µ (x) and Π µ (x) satisfythe equations of motion˙U µ = iΠ µ U µ , (1.66a)˙Π µ = −iF µ (1.66b)<strong>with</strong> respect to a (fictitious) molecular dynamics time t. In Eq. (1.66b), F µ (x) is the force onthe momentum field, the form of which is found by impos<strong>in</strong>g the constra<strong>in</strong>t of conservation ofenergy, Ḣ = 0, on the dynamical system; it readsF µ (x) =(U µ (x) ˆF)µ (x) − h.c. − 1 [(3 Tr U µ (x) ˆF)]µ (x) − h.c.(1.67)<strong>with</strong>ˆF µ (x) = − β 6 G µ(x) + κW µ (x), (1.68)whereG µ (x) = ∑ ν≠µU ν (x + aˆµ)U † µ(x + aˆν)U † ν(x)+ U † ν(x + aˆµ − aˆν)U † µ(x − aˆν)U ν (x − aˆν)(1.69)


28 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong>stands for the sum over the upper and lower staples at each lattice site x. Def<strong>in</strong><strong>in</strong>g the fields Xand Y asX = ( M † M ) −1 φ, (1.70a)Y = ( M †) −1 φ, (1.70b)the part of the force (1.67), (1.68) <strong>in</strong>volv<strong>in</strong>g the fermionic matrix M, W µ (x), can be written as[]W µ (x) = Tr (1 + γ µ )Y (x + aˆµ)X † (x) + (1 − γ µ )X(x + aˆµ)Y † (x) , (1.71)where the trace is over the sp<strong>in</strong> <strong>in</strong>dices.The Hybrid Monte Carlo algorithm now proceeds by the follow<strong>in</strong>g steps:1. Heatbath: Given an <strong>in</strong>itial gauge configuration U at time t = t 0 , generate the pseudofermionfield φ accord<strong>in</strong>g to the Gaussian distributionP [φ † , φ, U] ∝ e −S pf[φ † ,φ,U] . (1.72)This can be done by generat<strong>in</strong>g a random sp<strong>in</strong>-color vector ξ <strong>with</strong> a Gaussian distributionof zero mean and unit variance, and then putt<strong>in</strong>g φ = M † ξ.Similarly, generate the momentum field Π randomly <strong>with</strong> the Gaussian distributionP [Π] ∝ e −T [Π] . (1.73)2. <strong>Dynamical</strong> evolution: Use a symmetric symplectic numerical <strong>in</strong>tegration scheme (e.g. theleapfrog scheme) to <strong>in</strong>tegrate the equations of motion (1.66). Apply<strong>in</strong>g the scheme N MDtimes <strong>with</strong> a step size δt we f<strong>in</strong>d trial updates Π ′ , U ′ of the fields at a time N MD δt later.Symmetric symplectic <strong>in</strong>tegration schemes are reversible and phase-space area preserv<strong>in</strong>gand thus ensure that the algorithm satisfies the detailed balance condition. The timeevolution of the fields over some length of time is called the trajectory, and N MD δt is thetrajectory length.3. Metropolis step: Accept the new gauge configuration <strong>with</strong> the probabilitywhereP A ([Π ′ , U ′ ] ← [Π, U]) = m<strong>in</strong> ( 1, e −∆H) , (1.74)∆H = H[Π ′ , U ′ ] − H[Π, U]. (1.75)Otherwise reject it and restore the orig<strong>in</strong>al configuration of t = t 0 . This step rendersthe numerical algorithm exact <strong>in</strong> the sense that it def<strong>in</strong>es a Markov process <strong>with</strong> thedistribution Z −1 e −H as its fixed po<strong>in</strong>t. S<strong>in</strong>ce Π and U are decoupled <strong>in</strong> H we obta<strong>in</strong> thedesired distribution of U.The computational challenge of a full <strong>QCD</strong> simulation <strong>with</strong> the HMC algorithm lies <strong>in</strong> thecalculation of the fermionic force (1.71) <strong>in</strong> each step of the dynamical evolution. In order toobta<strong>in</strong> a s<strong>in</strong>gle new trial configuration, the <strong>in</strong>tegration of the equations of motion (1.66) typicallyrequires N MD = O(100) steps <strong>in</strong> each of which the l<strong>in</strong>ear systems (1.70) must be solved. Also, the


1.6. <strong>Lattice</strong> Simulations 29calculation of S pf [φ † , φ, U] <strong>in</strong> the Hamiltonian requires a matrix <strong>in</strong>version. To give an example,for a typical lattice <strong>with</strong> L 3 ×T = 16 3 ×32 sites the <strong>Wilson</strong> Dirac operator M is a complex matrixof dimension 1 572 864 × 1 572 864. In any case the rank of M is too large to consider directsolvers for its <strong>in</strong>version, but as it couples only nearest-neighbor sites we can exploit its sparsenessto use iterative Krylov subspace methods like the conjugate gradient (CG) or the stabilized biconjugategradient (BiCGStab) algorithm [75]. The convergence behavior of an optimal Krylovsubspace solver is solely governed by the condition number of the matrix, which is def<strong>in</strong>ed as theratio of the largest to the smallest eigenvalue: the larger this number, the harder is the matrix<strong>in</strong>version. Precondition<strong>in</strong>g the matrix <strong>in</strong> general reduces the condition number and can thereforeconsiderably speed up the solver; <strong>in</strong> this work we use the locally-lexicographic SSOR method[76]. The computational cost of produc<strong>in</strong>g a given number of statistically <strong>in</strong>dependent gaugeconfigurations grows significantly <strong>with</strong> decreas<strong>in</strong>g quark mass and <strong>in</strong>creas<strong>in</strong>g lattice volume:Assum<strong>in</strong>g the temporal lattice extent T to be twice as large as the spatial extent L, the cost ofa N f = 2 simulation roughly scales like L 5 M −zPS , where the pseudoscalar mass M PS characterizesthe quark mass and z = 2.8(2)..4.3(2) [21].1.6.2 Errors <strong>in</strong> <strong>Lattice</strong> ResultsExpectation values obta<strong>in</strong>ed from numerical lattice <strong>QCD</strong> simulations are subject to both statisticaland systematic errors. Of course, this is <strong>in</strong> the very nature of a stochastic evaluation ofa f<strong>in</strong>ite and discrete approximation to an <strong>in</strong>f<strong>in</strong>ite cont<strong>in</strong>uous system. In order to obta<strong>in</strong> reliablelattice <strong>QCD</strong> results that can be compared <strong>with</strong> “real” experimental data we must have controlover the various error sources, the most important ones of which we will list <strong>in</strong> the follow<strong>in</strong>g.Statistical ErrorsThe Monte Carlo method we use to compute the high-dimensional path <strong>in</strong>tegral over the latticegauge fields <strong>in</strong>volves statistical sampl<strong>in</strong>g. The results, therefore, have statistical errors. However,the naive assumption that the statistical errors should decrease as 1/ √ N, where N is the size ofthe sample, holds only for statistically <strong>in</strong>dependent measurements, whereas <strong>in</strong> a typical latticesimulation the configurations generated by the updat<strong>in</strong>g process are correlated. In a reliableerror analysis this correlation has to be taken <strong>in</strong>to account. A suitable error estimator serv<strong>in</strong>gthis purpose is, for <strong>in</strong>stance, the blocked jackknife method which we will discuss <strong>in</strong> more detail<strong>in</strong> Section 3.8.In practice it is convenient to know, at least approximately, the autocorrelation times of theobservables one is <strong>in</strong>terested <strong>in</strong>, because it helps sav<strong>in</strong>g computer time when the cost <strong>in</strong>tensivecalculation of the quark propagator is done only for a subsample. Choos<strong>in</strong>g a subsample essentiallyamounts to choos<strong>in</strong>g a certa<strong>in</strong> separation <strong>in</strong> Monte Carlo time between successive elementsof the subsample, which is <strong>in</strong> general a trade-off between high statistics and available comput<strong>in</strong>gresources, <strong>with</strong> the estimated autocorrelation times taken <strong>in</strong>to account.<strong>F<strong>in</strong>ite</strong> VolumeIn any numerical lattice simulation, the lattice volume is necessarily f<strong>in</strong>ite and restricted bythe available computer power. In order to control potential f<strong>in</strong>ite-size effects on measurablequantities such as masses one either has to ensure that they are negligible by mak<strong>in</strong>g the latticelarge enough, or elim<strong>in</strong>ate them by a suitable extrapolation to the <strong>in</strong>f<strong>in</strong>ite volume. In either


30 Chapter 1. <strong>QCD</strong> on the <strong>Lattice</strong>case one has to compare results from different lattice volumes, <strong>with</strong> all other parameters heldfixed. <strong>F<strong>in</strong>ite</strong> volume effects are the ma<strong>in</strong> subject of this work, and we will discuss them <strong>in</strong> detail<strong>in</strong> the next chapters. 9In a lattice simulation, the physical box-size can be enlarged either by <strong>in</strong>creas<strong>in</strong>g the number ofspatial lattice sites at fixed lattice spac<strong>in</strong>g a, or by <strong>in</strong>creas<strong>in</strong>g a for fixed L. This, however, also<strong>in</strong>creases the associated discretization errors.<strong>F<strong>in</strong>ite</strong> <strong>Lattice</strong> Spac<strong>in</strong>gIn a mass-<strong>in</strong>dependent renormalization scheme the lattice spac<strong>in</strong>g a <strong>in</strong> a simulation is implicitlydeterm<strong>in</strong>ed by the choice of the gauge coupl<strong>in</strong>g parameter β. It can be determ<strong>in</strong>ed <strong>in</strong> physicalunits by match<strong>in</strong>g the lattice result for a chosen observable (the Sommer parameter r 0 [74] is themost popular choice) <strong>with</strong> the correspond<strong>in</strong>g experimental value. At f<strong>in</strong>ite values of a the sizeof the cut-off effects depends on the order <strong>in</strong> a of the lead<strong>in</strong>g corrections to the chosen latticeaction; for the <strong>Wilson</strong> action it is O(a). In order to obta<strong>in</strong> cont<strong>in</strong>uum results one has to performsimulations at a number of values for a and extrapolate the results to a = 0. One generallyexpects discretization errors to be smaller for low-energy quantities like Goldstone boson massesor decay constants than for the nucleon, for <strong>in</strong>stance, which is expected to be stronger affectedby a low cut-off.Unphysically Large Quark MassesIn summary, the previous two requirements of sufficiently large physical volume La and smalllattice spac<strong>in</strong>g a reada ≪ 1/m PS ≪ La, (1.76)where 1/m PS is the correlation length of the pseudoscalar meson (the lightest hadronic state).In view of this relation the physical u and d quark masses are clearly too small to simulate them<strong>with</strong> currently feasible lattice volumes. Moreover, the condition number of the Dirac matrixgrows <strong>with</strong> decreas<strong>in</strong>g quark mass. In terms of the <strong>Wilson</strong> quark mass parameter κ a decreas<strong>in</strong>gquark mass is equivalent to κ approach<strong>in</strong>g κ c , the critical value where the quark mass vanishes(see Eq. (1.47)). However, for a given set of simulation parameters (β, κ) the critical hopp<strong>in</strong>gparameter κ c is uniquely def<strong>in</strong>ed only as a statistical average over the whole gauge field ensemble,while its value on <strong>in</strong>dividual configurations fluctuates. From this, another complication arises: Ifthe fluctuat<strong>in</strong>g value of κ c gets close to κ, the quark matrix may become s<strong>in</strong>gular. This problembecomes <strong>in</strong>creas<strong>in</strong>gly severe <strong>with</strong> decreas<strong>in</strong>g quark mass, β and L. 10The standard way out of this dilemma is to choose the simulated quark mass sufficiently largeand extrapolate the results to the regime of physical quark masses us<strong>in</strong>g low-order polynomialsor functional forms derived from chiral perturbation theory (ChPT). However, statistical and9 Another consequence of the f<strong>in</strong>ite lattice volume is a f<strong>in</strong>ite momentum resolution. As can be seen fromEq. (1.32), the smallest non-zero momentum on the lattice is 2π/La. While this is not problematic for thedeterm<strong>in</strong>ation of ground state masses at zero momentum, one needs a rather f<strong>in</strong>e resolution for the <strong>in</strong>vestigationof dispersion relations or decays.10 The problem of fluctuat<strong>in</strong>g zero modes (lead<strong>in</strong>g to so-called “exceptional configurations”) is most severe <strong>in</strong> thecontext of quenched simulations. In full lattice <strong>QCD</strong> zero modes are suppressed by the functional determ<strong>in</strong>ant <strong>in</strong>the path <strong>in</strong>tegral. (However, they may still occur <strong>in</strong> the stochastic updat<strong>in</strong>g process, where they lead to an exceptionallylow acceptance rate.) A recent development that prevents the appearance of exceptional configurationsfor N f = 2 is “twisted mass” <strong>QCD</strong> [102, 103].


1.6. <strong>Lattice</strong> Simulations 31systematic uncerta<strong>in</strong>ties <strong>in</strong> lattice results often make it difficult to apply the full ChPT formulaeor to assess the size of various higher order chiral corrections. Some recent developments seek<strong>in</strong>gto improve on this situation are partially quenched ChPT (PQChPT) [44, 45, 46] or ChPT <strong>with</strong><strong>Wilson</strong>-type fermions (WChPT) [47, 48, 49, 50]. These are effective theories that <strong>in</strong>corporatethe effects of different valence and sea quark masses, and also account for a f<strong>in</strong>ite lattice spac<strong>in</strong>g.Reports on promis<strong>in</strong>g numerical results <strong>with</strong> these schemes have been published recently by theqq+q [18] and the CP-PACS [19] collaborations.


Chapter 2Volume Dependence of the LightHadron MassesIn this chapter we review the ma<strong>in</strong> theoretical and numerical f<strong>in</strong>d<strong>in</strong>gs published to date aboutthe nature of f<strong>in</strong>ite-size effects <strong>in</strong> light hadron masses. Although as a source of systematic errorthe f<strong>in</strong>ite volume has <strong>in</strong> pr<strong>in</strong>ciple always been an important issue <strong>in</strong> lattice <strong>QCD</strong>, there havebeen surpris<strong>in</strong>gly few systematic <strong>in</strong>vestigations up to now <strong>in</strong>to the lattice size dependence ofsimulated hadron masses. Usually one seeks to avoid f<strong>in</strong>ite-size effects altogether by work<strong>in</strong>gon sufficiently large lattices (where, as a rule of thumb, a lattice size of five times the Comptonwave length of the pion, M π L 5, is commonly considered “large”).Perhaps the most important theoretical contribution to the subject dates back to the year 1986when M. Lüscher proved, for stable particles <strong>in</strong> largely arbitrary quantum field theories, a formulapredict<strong>in</strong>g an exponential suppression of the f<strong>in</strong>ite-size mass shift towards large volumes [53].With <strong>in</strong>put from an effective theory like chiral perturbation theory Lüscher’s formula can beused to describe the asymptotic f<strong>in</strong>ite-size mass shifts for stable light hadrons like the pion or thenucleon [54]. The first systematic numerical <strong>in</strong>vestigations of f<strong>in</strong>ite volume effects <strong>in</strong> full lattice<strong>QCD</strong> were carried out by Fukugita et al. <strong>in</strong> 1992 [56]. Observ<strong>in</strong>g, rather unexpectedly, a powerlawbehavior of their data for the pion, rho and nucleon masses, they also made suggestions asto the underly<strong>in</strong>g mechanism. Lüscher’s formula, on the one hand, deals <strong>with</strong> asymptoticallylarge lattice volumes where f<strong>in</strong>ite-size effects arise from a squeez<strong>in</strong>g of the virtual pion cloud thatsurrounds the hadron due to vacuum polarization. In a box <strong>with</strong> periodic boundary conditionsthese pions can travel “around the world” and <strong>in</strong>teract <strong>with</strong> each other. Thus, the f<strong>in</strong>ite-sizemass shift is related to an (<strong>in</strong>f<strong>in</strong>ite volume) elastic forward scatter<strong>in</strong>g amplitude. In contrast,the power-law behavior of the data as observed by Fukugita et al. is due to a distortion of thehadron wave-function itself, as it is expected for rather small box volumes.Recently, alongside <strong>with</strong> progress that has been made <strong>in</strong> relat<strong>in</strong>g effective field theory to the lattice,f<strong>in</strong>ite-size effects have attracted more attention aga<strong>in</strong>. A particularly promis<strong>in</strong>g new resultfor the volume dependence of the nucleon mass has emerged from (baryon) chiral perturbationtheory [66]. We will show later <strong>in</strong> this work that it compares well <strong>with</strong> our data, over a widerange of lattice sizes.We will now <strong>in</strong>troduce the theoretical aspects of the different approaches <strong>in</strong> turn. Numericaldetails and comparisons <strong>with</strong> our f<strong>in</strong>d<strong>in</strong>gs are deferred to Chapter 4.


34 Chapter 2. Volume Dependence of the Light Hadron Masses2.1 Lüscher’s FormulaLüscher’s formula is a universal quantum field theoretic formula for the shift <strong>in</strong> the mass of astable particle enclosed <strong>in</strong> a box <strong>with</strong> periodic boundary conditions. For a field theory <strong>in</strong> f<strong>in</strong>itevolume the spectrum of the Hamiltonian (or the transfer matrix on the lattice) is discrete, andenergies associated <strong>with</strong> zero momentum eigenstates are <strong>in</strong>terpreted as masses of s<strong>in</strong>gle stableparticles at rest. In a large volume these masses are close, but not equal, to the rest masses ofthe particles <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume. Lüscher’s formula states that for asymptotically large volumesthe f<strong>in</strong>ite-size mass-shift vanishes exponentially <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g box size at a rate that dependson the particle under consideration and on the spectrum of light particles <strong>in</strong> the theory.The physical orig<strong>in</strong> of the mass shift of a po<strong>in</strong>tlike stable particle is that such a particle polarizesthe vacuum around it, so that it is surrounded by a cloud of virtual particles. The diameterof this cloud is roughly of the order of the Compton wave length, λ, of the lightest particle<strong>in</strong> the theory. When enclosed <strong>in</strong> a box, the mass of the particle starts to deviate from itsvalue <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume as soon as the box size approaches λ. In this physical picture thesize dependence of the particle’s mass arises from an exchange of virtual particles “around theworld”. Us<strong>in</strong>g abstract graph theory and complex contour <strong>in</strong>tegration, Lüscher calculates theasymptotic volume-dependence of the self-energy diagrams contribut<strong>in</strong>g to the particle’s fullpropagator, and hence of the pole mass of the propagator, <strong>in</strong> f<strong>in</strong>ite volume and to all orders <strong>in</strong>perturbation theory. The result<strong>in</strong>g formula relates the shift <strong>in</strong> the pole mass to the amplitudefor elastic forward scatter<strong>in</strong>g of the particle <strong>with</strong> the lightest particle(s) <strong>in</strong> the quantum fieldtheory under consideration. The detailed proof of this relation is given <strong>in</strong> Ref. [53].What we are <strong>in</strong>terested <strong>in</strong> here is the application of Lüscher’s formula to hadronic states <strong>in</strong>lattice <strong>QCD</strong>. 1 Let us therefore consider a stable hadron H (where H stands either for the pion,π, or the nucleon, N) on a lattice <strong>with</strong> lattice spac<strong>in</strong>g a, spatial volume (La) 3 and sufficientlylarge (Euclidian) time-extent T a (ideally, T → ∞). We assume periodic boundary conditions<strong>in</strong> the spatial directions. For the rest of this chapter we set the lattice spac<strong>in</strong>g a equal toone, so that the mass m H of H, which is def<strong>in</strong>ed through the lead<strong>in</strong>g exponential decay of anappropriate Euclidean 2-po<strong>in</strong>t function at large times, is dimensionless. Keep<strong>in</strong>g both the baregauge coupl<strong>in</strong>g g and the quark mass fixed, the hadron mass m H depends on the number oflattice sites <strong>in</strong> spatial direction, L, <strong>in</strong> a particular way. If we def<strong>in</strong>e the <strong>in</strong>f<strong>in</strong>ite-volume mass atfixed lattice spac<strong>in</strong>g and quark mass asm H = limL→∞ m H(L), (2.1)then, for large L, m H (L) is supposed to become a universal function of m π L <strong>in</strong> the f<strong>in</strong>ite-volumecont<strong>in</strong>uum limit, which is obta<strong>in</strong>ed by tak<strong>in</strong>g g → 0 and simultaneously L → ∞, while keep<strong>in</strong>gm π L fixed. However, s<strong>in</strong>ce f<strong>in</strong>ite-size effects probe the system at large distances L ≫ 1 and are1 Remarks: 1. The proof <strong>in</strong> Ref. [53] is given to all orders <strong>in</strong> perturbation theory, but the result itself is believedto be true beyond perturbation theory, as it is <strong>in</strong>dependent of the precise form of the Lagrangian of the theoryand refers only to the physical masses and scatter<strong>in</strong>g amplitudes of the particles. In particular it is <strong>in</strong>dependent ofa possible fixed UV cut-off, so that it should also hold for a lattice theory. In the orig<strong>in</strong>al proof of the formula it isassumed that all the <strong>in</strong>volved fields are massive. Although this is not the case for <strong>QCD</strong>, where perturbation theory<strong>in</strong> the gauge coupl<strong>in</strong>g constant <strong>in</strong>volves massless fields, one can always describe the low energy properties of <strong>QCD</strong>by effective Lagrangians (like the chiral Lagrangian), which are of exactly the type that the Feynman diagramtechnique used <strong>in</strong> the proof can be applied to. 2. Although hadrons can be seen as bound states of valence quarks,due to conf<strong>in</strong>ement the lead<strong>in</strong>g f<strong>in</strong>ite size effect on hadron masses orig<strong>in</strong>ates from the same mechanism as forpo<strong>in</strong>tlike particles, namely to the squeez<strong>in</strong>g of the virtual pion cloud. 3. We exclusively refer to full lattice <strong>QCD</strong>here. As the formula describes vacuum polarization effects, it does not apply to the quenched approximation.


2.1. Lüscher’s Formula 35thus <strong>in</strong>sensitive to short-distance effects, this function is expected to be largely <strong>in</strong>dependent ofthe form and magnitude of a possible ultraviolet cut-off. In particular it is then expected tohold also for f<strong>in</strong>ite lattice spac<strong>in</strong>gs.Lüscher’s formula relates the f<strong>in</strong>ite volume mass shift,∆m H (L) ≡ m H (L) − m H , (2.2)to the (<strong>in</strong>f<strong>in</strong>ite volume) elastic forward scatter<strong>in</strong>g amplitude F πH . Let us consider the elasticscatter<strong>in</strong>g processπ a (p)H b (q) → π a′ (p ′ )H b′ (q ′ ), (2.3)where the pion has 4-momentum p and isosp<strong>in</strong> a and the particle H carries 4-momentum q andquantum numbers b (isosp<strong>in</strong>, sp<strong>in</strong>). The primed quantities refer to the correspond<strong>in</strong>g outcom<strong>in</strong>gstates. All <strong>in</strong>go<strong>in</strong>g and outcom<strong>in</strong>g particles are on their mass shell, respectively, so that theenergy components of the 4-momenta (<strong>in</strong> M<strong>in</strong>kowski space) are given by p 0 = E p , p ′0 = E p ′etc., <strong>with</strong>E p = √ m 2 + p 2 , (2.4)where m is the mass of the particle and p its 3-momentum. General one-particle states |H a (p)〉on their mass-shell are normalized such that〈H a′ (p ′ )|H a (p)〉 = 2E p (2π) 3 δ (3) (p ′ − p) δ a′a . (2.5)The S-matrix for elastic πH scatter<strong>in</strong>g is given byout〈π a′ (p ′ )H b′ (q ′ )|π a (p)H b (q)〉 <strong>in</strong> ≡ 〈π a′ (p ′ )H b′ (q ′ ) |S| π a (p)H b (q)〉, (2.6)and as usual we def<strong>in</strong>e the T -matrix (the part that accounts for <strong>in</strong>teractions <strong>in</strong> the scatter<strong>in</strong>gevent) by S = 1 + iT . Matrix elements of T can be written <strong>in</strong> terms of the <strong>in</strong>variant matrixelement M as〈π a′ (p ′ )H b′ (q ′ ) |iT | π a (p)H b (q)〉 =(2π) 4 δ (4) (p ′ + q ′ − p − q) iM ( π a (p)H b (q) → π a′ (p ′ )H b′ (q ′ ) ) . (2.7)We are <strong>in</strong>terested <strong>in</strong> the forward scatter<strong>in</strong>g amplitudeF πH = ∑ aM ( π a (p)H b (q) → π a (p)H b (q) ) , (2.8)which <strong>in</strong> all cases considered here is a Lorentz scalar depend<strong>in</strong>g only on the cross<strong>in</strong>g variable2.1.1 Pionν = pqm H. (2.9)For the pion (H = π) the mass shift ∆m π (L) is given <strong>in</strong> terms of the ππ forward scatter<strong>in</strong>gamplitude F ππ by3m π (L) − m π = −16π 2 m π L∫ ∞−∞dy e −√ m 2 π +y2L F ππ (iy) + O(e − ¯mL ). (2.10)


36 Chapter 2. Volume Dependence of the Light Hadron Masses✻νIntegration✁−m π❡❡ν B✄ ✂m π−ν BFigure 2.1: Integration contour <strong>in</strong> the complex ν-plane. The poles at ν = ±ν B are due to 1-particleexchange reactions which do occur for the nucleon, but not for the pion.Eq. (2.10) is Lüscher’s formula for the asymptotic f<strong>in</strong>ite-size effect of the pion. Because of¯m ≥ √ 3/2 m π , the error term is exponentially suppressed compared to the first term. Dueto the negative <strong>in</strong>tr<strong>in</strong>sic parity of the pion and parity conservation <strong>in</strong> <strong>QCD</strong> there is no 3-pionvertex, so that the term referr<strong>in</strong>g to a 3-particle coupl<strong>in</strong>g <strong>in</strong> the orig<strong>in</strong>al formula of Ref. [53] isabsent. Hence the scatter<strong>in</strong>g amplitude F ππ (ν), which is analytic <strong>in</strong> the complex ν-plane <strong>with</strong>branch cuts between −∞ and −m π and between m π and ∞, has no isolated s<strong>in</strong>gularities from1-particle exchange reactions. F ππ (ν) is <strong>in</strong>tegrated over along the imag<strong>in</strong>ary axis <strong>in</strong> the ν-plane(see Fig. 2.1).The cross<strong>in</strong>g variable ν and the <strong>in</strong>variant matrix element M for elastic ππ scatter<strong>in</strong>g can bewritten <strong>in</strong> terms of the Mandelstam variabless = (p + q) 2 , t = (q ′ − q) 2 , u = (q ′ − p) 2 (2.11)(satisfy<strong>in</strong>g s + t + u = 4m 2 π) and the isosp<strong>in</strong>-<strong>in</strong>variant amplitude A(s, t, u) asandν =M ( π a (p)π b (q) → π a′ (p ′ )π b′ (q ′ ) ) =s2m π− m π (2.12)δ ab δ a ′ b ′A(s, t, u) + δ aa ′δ bb ′A(t, u, s) + δ ab ′δ ba ′A(u, s, t), (2.13)respectively. Eq. (2.13) is a consequence of cross<strong>in</strong>g symmetry, isosp<strong>in</strong> conservation and Bosestatistics. Follow<strong>in</strong>g Eq. (2.8) we sum over isosp<strong>in</strong> to obta<strong>in</strong> the follow<strong>in</strong>g expression for theforward amplitude:F ππ (ν) = A ( s(ν), 0, u(ν) ) + 3A ( 0, u(ν), s(ν) ) + A ( u(ν), s(ν), 0 ) (2.14)


2.1. Lüscher’s Formula 37wheres(ν) = 2m 2 π + 2m π ν, t ≡ 0, u(ν) = 2m 2 π − 2m π ν. (2.15)The scatter<strong>in</strong>g amplitude A(s, t, u) is known consistently from current algebra calculations [104]and chiral perturbation theory [43]; at lead<strong>in</strong>g order ChPT it readsA(s, t, u) = s − m2 πfπ2 , (2.16)where f π is the pion decay constant. Substitut<strong>in</strong>g this result <strong>in</strong>to Eq. (2.14) and us<strong>in</strong>g (2.15)we obta<strong>in</strong> the constant valueF ππ ≡ − m2 πfπ2 . (2.17)For this simple case the <strong>in</strong>tegral <strong>in</strong> Eq. (2.10) can be solved analytically, and we arrive at therelative pion f<strong>in</strong>ite size mass shift∣m π (L) − m π ∣∣∣LO= 3 m 2 π K 1 (m π L)m π 8π 2 fπ2 m π L(2.18)≃3 m 2 π e −mπL4(2π) 3/2 fπ2 , (2.19)(m π L) 3/2where K 1 is a modified Bessel function, and the second expression follows from its asymptoticbehavior, K 1 (x) ≃ e −x / √ x, for large x.In Chapter 4 we will <strong>in</strong>vestigate the importance of higher order chiral corrections to the amplitudeA and f<strong>in</strong>d that <strong>in</strong> the parameter region where f<strong>in</strong>ite size corrections to the pion mass aresignificant, the lead<strong>in</strong>g order result (2.16) is not sufficient to account for the full effect.2.1.2 NucleonIn case of the nucleon (H = N) the cross<strong>in</strong>g variable (2.9) is def<strong>in</strong>ed as ν = pq/m N . The forwardamplitude F πN (ν) has isolated s<strong>in</strong>gularities at ν = ±ν B , where<strong>with</strong> the residueν B = m2 π2m N, (2.20)lim (ν 2 − ν 2ν→±ν BB)F πN (ν) = −6gπNν 2 B. 2 (2.21)The poles come from one-nucleon exchange diagrams, because for ν = ±ν B the <strong>in</strong>termediate4-momenta <strong>in</strong> these diagrams are just on the nucleon’s mass shell. They give rise to the firstterm <strong>in</strong> Lüscher’s formula for the nucleon mass shift:m N (L) − m N = 9 [ ] 2 mπ gπN24 m N 4πL e−√ m 2 π−νB 2 L3−16π 2 m π L∫m ∞ πdy e −√ m 2 π +y2L F πN (iy)m N−∞+O(e − ¯mL ). (2.22)


38 Chapter 2. Volume Dependence of the Light Hadron MassesNote that the second term has, up to the suppression factor m π /m N , the same form as the pionformula (2.10). ¯m is now some mass <strong>with</strong> ¯m ≥ √ 3/2 m N , while for the πN forward scatter<strong>in</strong>gamplitude we have F πN (ν) ≡ 6m N [A + (ν)+νB + (ν)] <strong>with</strong> the usual Lorentz <strong>in</strong>variant amplitudesA + and B + (see e.g. Ref. [105]).In order to estimate F πN (ν) near ν = 0, one can separate out the pseudovector Born term [54],and expand the rema<strong>in</strong>der <strong>in</strong> a convergent power series,<strong>with</strong> the coefficientsF πN (ν) = 6g2 πN ν2 Bν 2 B − ν2 + ¯F πN (ν), (2.23)¯F πN (ν) =∞∑ ( ν) 2k,r k |ν| < mπ , (2.24)m πk=0r 0 = −60.7, r 1 = 45.3, r 2 = 8.1 (2.25)and the effective coupl<strong>in</strong>g gπN 2 /4π = 14.3 (from πN dispersion analyses, see Ref. [106]). It is<strong>in</strong>structive to look separately at the various contributions to the nucleon mass shift. Writ<strong>in</strong>gthe truncated series¯F(K)πN(ν) for f<strong>in</strong>ite K as¯F (K)K πN (ν) = ∑ ( ν) 2k,r k |ν| < mπ , (2.26)m πk=0the three contributions due to one-nucleon exchange diagrams, the pseudovector Born term and¯F (K)πN read ∆ 1 (L) = 9 4[ ] 2 mπ gπN2m N 4π∆ 2 (L) = − 9πm π L33 (L) = −16π 2 m π L∆ (K)m π gπN2m N 4πm πm Ne −√ m 2 π −ν2 B L, (2.27a)L∫∫ ∞0dy e−√ m 2 π+y 2 L1 + y 2 /ν 2 B|y|


2.1. Lüscher’s Formula 390.04∆ 10.02∆ 2∆ 1+∆ 2∆ 3(2)∆ 1+∆ 2+∆ 3(2)∆/m N0-0.02-0.041 2 3 4 5 6 7m πLFigure 2.2: Contributions to the relative f<strong>in</strong>ite-size mass shift of the nucleon at the physical value ofm π /m N . ∆ 1 , ∆ 2 and ∆ (2)3 are due to one-nucleon exchange diagrams, the pseudovector Born term and¯F (2)πN , respectively. 1 2 3 4 5 6 70.0250.02∆ 3(0)∆ 3(2)∆ 1+∆ 2+∆ 3(2)0.015∆/m N0.010.0050m πLFigure 2.3: Comparison of the lead<strong>in</strong>g non-pole contribution ∆ (0)3 <strong>with</strong> ∆ (2)3 and the complete sum ofall contributions to Lüscher’s formula for the nucleon mass-shift at the physical value of m π /m N .


40 Chapter 2. Volume Dependence of the Light Hadron Massesa qualitatively acceptable description of the predicted nucleon mass shift. This is demonstrated<strong>in</strong> Fig. 2.3, where we compare the result<strong>in</strong>g “zeroth” approximation∆ (0)3 (m [ ]πL)= −m ¯F 32 mπ K 1 (m π L)πN (0)N 8π 2 m N m π L(2.28)≃ − ¯F πN (0)[ ]32 mπ e −mπL4(2π) 3/2 m N (m π L) 3/2 (2.29)<strong>with</strong> ∆ (2)3 and the complete sum of all contributions (2.27) (normalized by m N , respectively).Note that <strong>in</strong> their functional form the approximations (2.28) and (2.29) correspond, up to thedifferent amplitude and the factors (m π /m N ) 2 , precisely to the pion mass shift formulae (2.18)and (2.19).2.2 Previous Results from Full <strong>QCD</strong> Simulations<strong>F<strong>in</strong>ite</strong>-size effects <strong>in</strong> the masses of the pion, rho and nucleon were extensively studied <strong>in</strong> numericalsimulations <strong>with</strong> dynamical staggered quarks about twelve years ago by Fukugita et al. [56, 57,58, 59, 60]. On the one hand it was found that f<strong>in</strong>ite-size effects <strong>in</strong> full lattice <strong>QCD</strong> are muchlarger than those <strong>in</strong> quenched simulations. Based on a comprehensive study of the dependence ofhadron masses on the boundary conditions the difference was ascribed to a partial cancellationof the f<strong>in</strong>ite-size effects among Z(3)-related gauge configurations <strong>in</strong> quenched lattice <strong>QCD</strong>. Sucha cancellation does not occur <strong>in</strong> full <strong>QCD</strong>, as the center-symmetry of the pure gauge action isbroken by dynamical quarks. On the other hand, the f<strong>in</strong>ite-size effects of hadron masses <strong>in</strong> full<strong>QCD</strong> simulations turned out to be much larger than predicted by Lüscher’s asymptotic formula.In fact, <strong>in</strong> the parameter regime studied by Fukugita et al. they could be well described by apower law∆m H (L) ∝ L −n <strong>with</strong> n ≃ 2..3. (2.30)This and the fact that the nucleon was found to show a larger f<strong>in</strong>ite-size effect than the pion(which has the larger Compton wave length) was considered as supportive of the idea that theorig<strong>in</strong> of the effect was a distortion of the hadronic wave-function, as opposed to Lüscher’spicture of a squeezed cloud of virtual pions surround<strong>in</strong>g po<strong>in</strong>t-like hadrons. To corroborate thisassumption, antiperiodic spatial boundary conditions where imposed <strong>in</strong> the calculation of thequark propagator on their smallest lattice and at their lightest quark mass. The observation thatthe result<strong>in</strong>g masses of the π- and ρ-mesons now displayed a negative f<strong>in</strong>ite-size effect lead themto the conclusion that the f<strong>in</strong>ite-size effects <strong>in</strong> their hadron masses were <strong>in</strong>deed a consequenceof the f<strong>in</strong>ite hadron extent: if it had been caused by virtual mesons go<strong>in</strong>g around the lattice,the mesonic correlation functions should have been unaffected by the sign flip <strong>in</strong> the quarkpropagator.Fukugita et al. proposed two possible explanations for the observed power law, which we willbriefly summarize <strong>in</strong> the follow<strong>in</strong>g. First they exam<strong>in</strong>ed how the effect of virtual particles go<strong>in</strong>garound the lattice is modified when the f<strong>in</strong>ite extent of hadrons is taken <strong>in</strong>to account. Let usconsider a hadron <strong>in</strong> a box of size L. If we assume periodic boundary conditions, the hadronwill see mirror images of itself at distances nL, <strong>with</strong> n be<strong>in</strong>g a 3-dimensional vector <strong>with</strong> <strong>in</strong>tegercomponents. If V (x) is the potential between two hadrons, the self-energy δE of the hadron is


2.3. <strong>F<strong>in</strong>ite</strong>-<strong>Size</strong> <strong>Effects</strong> <strong>in</strong> the Nucleon from Chiral Perturbation Theory 41given byδE = ∑ nV (nL). (2.31)For large L this can be approximated by V (0) + 6V (L). If we further assume a one-particleexchange potential which is, asymptotically, proportional to exp(−mr)/r (where m is the massof the exchanged particle), we essentially recover, at least qualitatively, the exponential behaviorof the f<strong>in</strong>ite-size mass shift predicted by Lüscher.One can now <strong>in</strong>corporate the effect of the f<strong>in</strong>ite spatial extent of the hadron by rewrit<strong>in</strong>gEq. (2.31) asδE = 1 ∑(ˆVL 3 n 2π ), (2.32)Lwhere the Fourier-transformed one-particle exchange potential ˆV (k) is given bynˆV (k) = F (k2 )k 2 + m 2 (2.33)and F (k 2 ) is a model-dependent form factor. Independently of the concrete choice of the formfactor one can assume that <strong>in</strong> the regime of small and <strong>in</strong>termediate lattice sizes L, where them<strong>in</strong>imal allowed non-zero momentum 2π/L is quite large, the form factor should cause a ratherstrong suppression. The n = 0 contribution would then be the dom<strong>in</strong>ant term <strong>in</strong> (2.32), and thef<strong>in</strong>ite-size corrections to the masses of hadrons can be expected to be proportional to 1/L 3 . Forsufficiently large sizes L, however, the 1/L 3 behavior of the f<strong>in</strong>ite-size mass shift is expected todisappear <strong>in</strong> favor of an exponential correction proportional to exp(−mL)/L. Numerical testshave shown that the lattice size L where this happens depends on the behavior of the assumedform factor.An alternative picture also produc<strong>in</strong>g a power-law is based on the follow<strong>in</strong>g non-relativisticargument: If we suppose that the quarks <strong>in</strong>side a hadron are bound by some conf<strong>in</strong><strong>in</strong>g potentialand characterize the asymptotic decrease of the wave function ψ(r) by the length scale r ′ , then asmall f<strong>in</strong>ite box <strong>with</strong> Dirichlet-type boundary conditions would lead to a reduced characteristiclength r ′ ∝ L. As a consequence of the steeper fall-off of the squeezed wave-function the k<strong>in</strong>eticenergy of the ground state is <strong>in</strong>creased as 1/L 2 . While the details of the exponent of thepower law depend on the adopted model assumptions, the power law behavior itself is a generalfeature of such a simple non-relativistic quark model picture. In the argument given abovewe have assumed Dirichlet-type boundary conditions, mean<strong>in</strong>g that the wave function at theboundary is kept small. Fukugita et al. argue that this situation is given if periodic boundaryconditions are used for both the valence quarks <strong>in</strong> the calculation of hadron correlators and thesea quarks <strong>in</strong> the generation of gauge configurations, which is the case for all the simulationsconsidered <strong>in</strong> this work.2.3 <strong>F<strong>in</strong>ite</strong>-<strong>Size</strong> <strong>Effects</strong> <strong>in</strong> the Nucleon from Chiral PerturbationTheoryIn a recent publication Ali Khan et al. calculate the volume dependence of the nucleon mass<strong>in</strong> the framework of N f = 2 relativistic baryon chiral perturbation theory up to and <strong>in</strong>clud<strong>in</strong>gO(p 4 ) <strong>in</strong> the chiral expansion [66]. Their analysis is based on the fundamental observationthat f<strong>in</strong>ite-size effects <strong>in</strong> hadron masses can be calculated from the same effective field theories


42 Chapter 2. Volume Dependence of the Light Hadron Massesthat also describe the quark mass dependence [71, 72, 73]. As we have already argued <strong>in</strong> theprevious sections, if the volume is not too small, the f<strong>in</strong>ite-size effects orig<strong>in</strong>ate from virtualpions propagat<strong>in</strong>g “around the world”. In ChPT this is the regime of the so-called p-expansionwhich is valid for small pion masses m π = O(p) and large volumes L 3 <strong>with</strong> 1/L = O(p), so thatm π L = O(1). 3Replac<strong>in</strong>g the cont<strong>in</strong>uous <strong>in</strong>tegral over the spatial loop momentum <strong>in</strong> the relevant O(p 3 ) contributionto the nucleon mass by a discrete sum over the allowed momenta <strong>in</strong> a f<strong>in</strong>ite volume ofl<strong>in</strong>ear size L, Ali Khan et al. obta<strong>in</strong>∆ a (L) = 3g2 A m 0m 2 π16π 2 f 2 π∫ ∞0dx ∑ ′n√)K 0(L|n| m 2 0 x2 + m 2 π(1 − x)(2.34)for the nucleon f<strong>in</strong>ite-size mass shift m N (L)−m N at NLO. Here and <strong>in</strong> the follow<strong>in</strong>g the constantsg A and f π are to be taken <strong>in</strong> the chiral limit, m 0 is the nucleon mass <strong>in</strong> the chiral limit andthe pion mass m π parameterizes the quark mass via the Gell-Mann-Oakes-Renner relation. Thepion decay constant f π is normalized such that its physical value is 92.4 MeV. K 0 is a modifiedBessel function, and the sum extends over all spatial 3-vectors n <strong>with</strong> <strong>in</strong>teger components n i ,i = 1, 2, 3, except n = 0. n i can be <strong>in</strong>terpreted as the number of times the pion goes around thelattice <strong>in</strong> the i-th direction.Similarly, at O(p 4 ) an additional contribution to the difference between the nucleon mass <strong>in</strong> avolume of size L 3 and <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume is given by∆ b (L) = 3m4 π4π 2 f 2 π∑ ′n[(2c 1 − c 3 ) K ]1(|n|m π L)|n|m π L + c K 2 (|n|m π L)2(|n|m π L) 2 , (2.35)where c 1 , c 2 and c 3 are effective coupl<strong>in</strong>g constants and K 1 and K 2 are aga<strong>in</strong> modified Besselfunctions. The complete result for the nucleon f<strong>in</strong>ite-size mass shift at NNLO is thusm N (L) − m N = ∆ a (L) + ∆ b (L) + O(p 5 ). (2.36)Compared <strong>with</strong> Lüscher’s asymptotic formula an important merit of (2.36) is that virtual pionswhich cross the boundaries of the f<strong>in</strong>ite box (<strong>with</strong> periodic boundary conditions) more than justonce are taken <strong>in</strong>to account. This is crucial to the applicability of the formula also at rather smallbox volumes, that we will demonstrate <strong>in</strong> Chapter 4. The numerical evaluation of Eq. (2.36)does <strong>in</strong>deed show that unless m π L is rather large the sub-lead<strong>in</strong>g terms <strong>with</strong> |n| > 1 are notnegligible. The other advantage is that (2.36) <strong>in</strong>corporates <strong>in</strong>formation from chiral perturbationtheory on the quark mass dependence of m N , g πN and the scatter<strong>in</strong>g amplitude. Lüscher’sformula (2.22) can be recovered, however, by restrict<strong>in</strong>g the sums <strong>in</strong> (2.34) and (2.35) to thosevectors n <strong>with</strong> |n| = 1. 4In Ref. [66] the parameters of the chiral expansion <strong>in</strong> (2.34) and (2.35) are taken partly fromphenomenology and partly from a fit of numerical data for m N from relatively f<strong>in</strong>e and large3 The chiral series can also be organized <strong>in</strong> form of the so-called ɛ-expansion, which is valid for m πL ≪ 1 [107].4 Actually only up to a factor of two <strong>in</strong> the first term (∆ 1 <strong>in</strong> (2.27a)) which <strong>in</strong> Lüscher’s derivation orig<strong>in</strong>atesfrom one-nucleon exchange diagrams.


2.3. <strong>F<strong>in</strong>ite</strong>-<strong>Size</strong> <strong>Effects</strong> <strong>in</strong> the Nucleon from Chiral Perturbation Theory 43lattices to the (<strong>in</strong>f<strong>in</strong>ite volume) O(p 4 ) formula [108]m N = m 0 − 4c 1 m 2 π − 3g2 A32πfπ2 m 3 π[+ e r 1(λ) −364π 2 f 2 π( g2A− c )2−m 0 2332π 2 f 2 π( g2)A− 8c 1 + c 2 + 4c 3 ln m ]πm 4 πm 0 λ+ 3g2 A256πfπm 2 2 m 5 π + O(m 6 π), (2.37)0which has been derived us<strong>in</strong>g <strong>in</strong>frared regularization [109]; the counterterm e r 1 (λ) is taken at therenormalization scale λ. With all parameters fixed <strong>in</strong> this way, the formulae (2.34) and (2.35)provide parameter-free predictions of the f<strong>in</strong>ite-volume effects <strong>in</strong> the nucleon mass.


Chapter 3Numerical SimulationAim<strong>in</strong>g at the simulation of <strong>QCD</strong> <strong>with</strong> light quarks, but faced <strong>with</strong> limited comput<strong>in</strong>g resources,it is an <strong>in</strong>terest<strong>in</strong>g question if one can possibly get away <strong>with</strong> simulations on small and mediumsizedlattices and yet obta<strong>in</strong> <strong>in</strong>f<strong>in</strong>ite-volume results through extrapolation or directly calculablef<strong>in</strong>ite-size corrections. One goal of the GRAL project is to address this question by an <strong>in</strong>vestigation<strong>in</strong>to the volume dependence of the light hadron masses <strong>in</strong> the currently accessible parameterregime. This chapter deals <strong>with</strong> the simulation aspects of the project. We present details aboutthe generation of the gauge field configurations, describe the calculation of quark propagatorsand hadronic correlation functions and f<strong>in</strong>ally <strong>in</strong>troduce the parameterizations to which thesecorrelation functions were fitted to obta<strong>in</strong> the desired physical quantities. F<strong>in</strong>ally we <strong>in</strong>troduceour methods for fitt<strong>in</strong>g and error analysis. The results of our simulations will then be presentedand discussed <strong>in</strong> the next chapter.A numerical <strong>in</strong>vestigation of f<strong>in</strong>ite-size effects requires data from simulations that differ only<strong>in</strong> the physical lattice volume, while all other parameters (gauge coupl<strong>in</strong>g and quark mass) arekept fixed. Although most of the gauge configurations that we analyze <strong>in</strong> this work have beennewly generated, the GRAL project has benefited substantially from the fruitful work of itsforerunners, the SESAM and TχL projects [35, 36].This is reflected, on the one hand, <strong>in</strong> the Hybrid Monte Carlo (HMC) code that we could freelyborrow from the SESAM/TχL project. The most recent version of the orig<strong>in</strong>al TAO code wasemployed on the APE100 (QH4) parallel computer [81] at DESY Zeuthen until the mach<strong>in</strong>ef<strong>in</strong>ally broke down <strong>in</strong> January 2003. As the code had been ported to the newer APEmille [82]already some time before, production could smoothly be shifted to this mach<strong>in</strong>e. In fact, someGRAL runs were already under way on APEmille at this time. In addition, a C/MPI versionof the SESAM HMC code [110] had been developed for the cluster computer ALiCE [83] atthe University of Wuppertal. S<strong>in</strong>ce its first employment for production runs <strong>in</strong> November 2002this code version has been runn<strong>in</strong>g very efficiently on ALiCE. Like the orig<strong>in</strong>al TAO code itfeatures the locally-lexicographic SSOR preconditioned BiCGStab solver for a fast <strong>in</strong>version ofthe fermion matrix [75, 76]. While the bulk of the code is written <strong>in</strong> C (us<strong>in</strong>g the standardMPICH-library [111] for message-pass<strong>in</strong>g), some time-critical core rout<strong>in</strong>es are coded <strong>in</strong> assemblerfor further acceleration [112]. A lot of effort has also been <strong>in</strong>vested <strong>in</strong>to the optimization ofthe parallelization and the data layout [113].On the other hand, gauge field ensembles from SESAM and TχL runs have directly enteredour analysis. As the data from both SESAM/TχL and GRAL were produced us<strong>in</strong>g the sameunimproved N f = 2 <strong>Wilson</strong> action they could be analyzed on an equal foot<strong>in</strong>g.


46 Chapter 3. Numerical SimulationIn the follow<strong>in</strong>g we specify the parameters of our simulations <strong>in</strong> detail. For reference and forcomparison we <strong>in</strong>clude <strong>in</strong> the tables also those SESAM simulations that have not been used forthis work.3.1 Simulation ParametersWe have performed a large-scale simulation of full <strong>QCD</strong> <strong>with</strong> two degenerate <strong>Wilson</strong> quarks attwo different values of the gauge coupl<strong>in</strong>g parameter, β = 5.32144 and β = 5.6, for one andtwo different values of κ, respectively. The larger β corresponds to the SESAM/TχL value.The smaller β and the correspond<strong>in</strong>g κ of 0.1665 result from a l<strong>in</strong>ear extrapolation of l<strong>in</strong>es ofconstant M PS /M V and 1/(M PS L) <strong>in</strong> the (β, κ)-plane, based on SESAM/TχL data and aim<strong>in</strong>gat M PS /M V 0.5 and 1/(M PS L) ≈ 0.2 on a 16 3 -lattice [51]. For every (β, κ)-comb<strong>in</strong>ationconsidered <strong>in</strong> this work we have produced gauge field configurations for at least three differentlattice volumes (La) 3 <strong>with</strong> L vary<strong>in</strong>g between 10 and 16, thus complement<strong>in</strong>g ensembles fromSESAM and TχL <strong>with</strong> L = 16 and 24, respectively. Generat<strong>in</strong>g the configurations we imposedperiodic boundary conditions <strong>in</strong> all four space-time dimensions for the gauge field, while for thepseudofermions we used periodic boundary conditions <strong>in</strong> the spatial directions and antiperiodicboundary conditions <strong>in</strong> the temporal direction. In addition to the orig<strong>in</strong>al SESAM code that wasemployed on the 512-node APE100 (QH4) we used a modified code version on APEmille [82].On APEmille, a 128-node partition (“crate”) was used to generate the 16 3 × 32-lattices, whilethe 12 3 ×32-lattices were produced on a “unit” consist<strong>in</strong>g of 32 nodes. On ALiCE, the 128-node“Alpha L<strong>in</strong>ux Cluster Eng<strong>in</strong>e” at the University of Wuppertal, a C/MPI-version of the SESAMcode (written ma<strong>in</strong>ly by Z. Sroczynski) was employed on partitions of 16 (12 3 × 32 and 14 3 × 32lattices) and 8 processors (10 3 × 32 lattice). All the codes are implementations of the Φ-version[114] of the HMC algorithm for two degenerate quark flavors as discussed <strong>in</strong> Section 1.6.1. Thebulk of the CPU costs for full <strong>QCD</strong> simulations <strong>with</strong> the HMC algorithm goes <strong>in</strong>to the timeconsum<strong>in</strong>g repeated <strong>in</strong>version of the quark matrix M. Throughout the simulations we employedthe Bi-Conjugate Gradient stabilized (BiCGStab) algorithm <strong>with</strong> ll-SSOR precondition<strong>in</strong>g forthe solve of the l<strong>in</strong>ear system (M † M)X = φ. This was done <strong>in</strong> a two-step procedure: first wesolved M † Y = φ for Y and then solved MX = Y for X. The TAO code on APE additionallyfeatures an implementation of the chronological start vector guess proposed <strong>in</strong> [115].Tables 3.1–3.3 give a detailed overview over the production runs we have carried out (referred toas GRAL). For reference and to allow for direct comparison we also list the respective figures forall previous SESAM/TχL runs. Configurations from the SESAM/TχL simulations at (β, κ, L) =(5.6, 0.1575, 16), (5.6, 0.1575, 24) and (5.6, 0.158, 24) have been <strong>in</strong>cluded <strong>in</strong> our analysis of f<strong>in</strong>itesizeeffects. Alongside the gauge coupl<strong>in</strong>g parameter β of Eq. (1.36) and the hopp<strong>in</strong>g parameterκ of Eq. (1.46) we display the simulated lattice volumes. While the number of lattice sites <strong>in</strong>the spatial directions, L, was varied, the time-like extent T was kept fixed at 32 (T = 40 <strong>in</strong> thecase of TχL).Except for some early SESAM simulations (or parts thereof) featur<strong>in</strong>g an even-odd representationof the quark matrix, ll-SSOR precondition<strong>in</strong>g was used <strong>in</strong> all later runs. The depth ofthe extrapolation <strong>in</strong> the chronological start vector guess, N csg , was fixed to 7 <strong>in</strong> all the GRALruns on APE mach<strong>in</strong>es. The step size δt <strong>in</strong> the leapfrog <strong>in</strong>tegration and the average numberof <strong>in</strong>tegration steps <strong>in</strong> the molecular dynamics update, N MD , were generally chosen such as toyield an acceptance rate of 60-90% <strong>in</strong> the accept-reject step at the end of each trajectory <strong>in</strong> theHMC. The trajectory lengths N MD were uniformly varied <strong>in</strong> the <strong>in</strong>tervals given <strong>in</strong> Table 3.1 <strong>in</strong>


3.1. Simulation Parameters 47β κ L 3 T Precnd. N csg N MD δt Acc. 〈N iter 〉 〈 □ 〉12 3 32 - 125 ± 20 0.004 71% 147(6) 0.53949(14)14 3 32 - 125 ± 20 0.004 64% 130(6) 0.53879(15)5.32144 0.1665 SSOR200 ± 40 0.005 41%16 3 32 7315(9) 0.538290(65)125 ± 20 0.004 65%5.55.60.1580 16 3 32 SSOR 7 100 ± 20 0.010 77% 45(1) 0.555471(45)0.1590 16 3 32 SSOR 7 100 ± 20 0.010 71% 85(1) 0.558164(38)0.1596 16 3 32 SSOR 7 100 ± 20 0.010 61% 138(2) 0.559745(58)0.1600 16 3 32 SSOR 7 100 ± 20 0.010 40% 216(3) 0.560776(47)0.1560 16 3 32 e/o 6 100 ± 20 0.010 82% 86(1) 0.569879(25)0.1565 16 3 32 SSOR 7 100 ± 20 0.010 77% 90(1) 0.570721(22)0.1570 16 3 32 SSOR 7 100 ± 20 0.010 67% 133(1) 0.571592(27)0.15750.158010 3 32 SSOR - 100 ± 20 0.010 87% 63(1) 0.573114(27)12 3 32 SSOR 7 100 ± 20 0.010 76% 146(2) 0.572771(30)14 3 32 SSOR - 100 ± 20 0.010 62% 79(1) 0.572598(22)16 3 32e/o 11 100 ± 20 0.010 78% 293(6)SSOR 3 71 ± 12 0.007 73% 160(6)0.572550(27)24 3 40 SSOR 6 125 ± 20 0.004 80% 109(1) 0.572476(13)12 3 32 7 125 ± 20 0.008 85% 150(5) 0.573793(32)14 3 32 - 100 ± 20 0.005 88% 113(1) 0.573677(25)16 3 SSOR327 125 ± 20 0.006 66% 302(5) 0.573461(25)24 3 40 6 125 ± 20 0.004 62% 256(7) 0.573375(16)Table 3.1: Overview of the GRAL simulation parameters <strong>in</strong> the context of all previous SESAM/TχLsimulations. Note that for ALiCE runs (see also Table 3.2) the slanted numbers for 〈N iter 〉 refer to thesolve of M † Y = φ only, whereas <strong>in</strong> the case of APE runs they refer to the full two-step solution of(M † M)X = φ. Details are expla<strong>in</strong>ed <strong>in</strong> the text.order to avoid deadlocks <strong>in</strong> periodic orbits of phase space due to the presence of well def<strong>in</strong>edFourier modes [116]. Both for decreas<strong>in</strong>g quark mass and <strong>in</strong>creas<strong>in</strong>g lattice volume (all otherparameters kept fixed, respectively) we observe a drop <strong>in</strong> the acceptance rate as anticipated.〈N iter 〉 denotes the average number of iterations the Krylov-subspace solver needs to convergewhen the fermionic matrix is <strong>in</strong>verted. The stopp<strong>in</strong>g accuracy R ≡ ‖MX − φ‖/‖X‖ for thesolve of the l<strong>in</strong>ear system MX = φ was constantly set to R = 10 −8 <strong>in</strong> all GRAL runs. For theruns on ALiCE the slanted numbers for 〈N iter 〉 quoted <strong>in</strong> Table 3.1 refer to the solve of M † Y = φonly, whereas for the APE runs they refer to the full two-step solution of (M † M)X = φ (seeTable 3.2 for mach<strong>in</strong>es). For a comparison a relative factor of k ≈ 2 must therefore be taken<strong>in</strong>to account. 〈 □ 〉 <strong>in</strong> the last column is the ensemble average of the plaquette as def<strong>in</strong>ed <strong>in</strong>Eq. (1.35). In order to boost the <strong>in</strong>itially low acceptance rate of only 41% <strong>in</strong> the simulation at(β, κ, L) = (5.32144, 0.1665, 16) we decreased the step size δt from 0.005 to 0.004 and reducedN MD from 200 ± 40 to 125 ± 20 at some stage of the simulation.Table 3.2 shows estimates of the simulation costs for all runs on ALiCE and for those (parts


48 Chapter 3. Numerical Simulationβ κ L 3 T5.32144 0.16655.55.6Speed T tot Cost[Gflop/s] [h] [Tflops-h]Mach<strong>in</strong>e N proc Project12 3 32 3.3 8875 30 ALiCE 1614 3 32 3.2 8014 26 ALiCE 1616 3 3210.5 5575 59 QH4 5126.1 2449 15 APEm 128GRAL0.1580 16 3 32 10.4 349 4 QH4 512 SESAM0.1590 16 3 32 10.3 987 10 QH4 512 SESAM0.1596 16 3 32 9.1 1683 15 QH4 512 SESAM0.1600 16 3 32 10.5 2296 24 QH4 512 SESAM0.1560 16 3 32 QH2 256 SESAM0.1565 16 3 32 7.0 1534 11 QH2 256 SESAM0.1570 16 3 32 6.7 2350 16 QH2 256 SESAM10 3 32 1.8 5638 10 ALiCE 8 GRAL12 3 32 1.5 6487 10 APEm 32 GRAL0.1575 14 3 32 2.9 7570 22 ALiCE 16 GRAL0.158016 3 32 5.4 > 932 > 5 QH2 256 SESAM24 3 40 8.9 6962 62 QH4 512 TχL12 3 32 1.5 3136 5 APEm 32 GRAL14 3 32 3.1 9240 29 ALiCE 16 GRAL16 3 32 6.1 8455 52 APEm 128 GRAL24 3 40 10.0 11151 112 QH4 512 TχLTable 3.2: Estimates of the HMC code performances on the various mach<strong>in</strong>es used for the generationof gauge fields, <strong>in</strong>clud<strong>in</strong>g previous SESAM/TχL simulations. Details are expla<strong>in</strong>ed <strong>in</strong> the text.of) runs on APE mach<strong>in</strong>es <strong>in</strong> which SSOR precondition<strong>in</strong>g was used. We have estimated thecode/mach<strong>in</strong>e performance on the basis of available run log data accord<strong>in</strong>g towhereSpeed ≈ 4 · 1404 · L 3 TT tot =T MC ∑t=1T MC ∑t=1kN iter (t)N MD (t)/T tot , (3.1)T (t) (3.2)is the <strong>in</strong>tegrated simulation time needed for the generation of T MC trajectories. In each of theN MD (t) molecular dynamics steps <strong>in</strong> trajectory t, kN iter (t) BiCGStab iterations are needed (onaverage) for the <strong>in</strong>version of M † M (to the required accuracy R). The <strong>in</strong>version is done <strong>in</strong> 2steps, respectively, each of which comprises a forward and a backward solve of the ll-SSORpreconditioned system. This yields a total of 4 calls to the forward/backward solver, each ofwhich requires 1404 float<strong>in</strong>g po<strong>in</strong>t operations (“flop”) per lattice site. The factor k <strong>in</strong> front ofN iter (t) has been <strong>in</strong>serted for convenience; it is equal to 1 for simulations on APE mach<strong>in</strong>es and


3.1. Simulation Parameters 49β κ L 3 T T MC T therm T equi ∆t N conf12 3 32 10100 1500 8600 50 ± 6 1705.32144 0.1665 14 3 32 5900 800 5100 40 ± 4 1295.55.616 3 32 15300 8600 6700 40 ± 4 1690.1580 16 3 32 4000 1000 3000 25 ± 3 1190.1590 16 3 32 6000 1000 5000 25 ± 3 2000.1596 16 3 32 5500 500 5000 25 ± 3 1990.1600 16 3 32 5500 500 5000 25 ± 3 2000.1560 16 3 32 5700 600 5100 25 1980.1565 16 3 32 5900 700 5200 24 2080.1570 16 3 32 6000 1000 5000 25 20110 3 32 16000 2600 13400 48 ± 4 27812 3 32 8000 700 7300 30 ± 4 2430.1575 14 3 32 8400 1400 7000 30 ± 4 2310.158016 3 32 6500 1400 5100 25 20624 3 40 5100 500 4600 25 18512 3 32 3000 500 2500 24 ± 2 10314 3 32 9100 1300 7800 40 ± 4 19516 3 32 6500 1100 5400 30 ± 4 18124 3 40 4500 700 3800 24 158Table 3.3: Overview of the various HMC run lengths, thermalization times and numbers of equilibriumconfigurations. N conf is the number of analyzed gauge configurations, separated <strong>in</strong> Monte Carlo time by∆T . See the text for details.set to 2 for runs on ALiCE. As the rema<strong>in</strong><strong>in</strong>g program overhead of the HMC (energy calculations,computation of the fermionic force etc.) has not been added to the flop count, the numbers forboth speed and cost <strong>in</strong> Table 3.2 have to be considered as lower bounds to the true speed andcost. They do, however, provide reasonably good estimates as the solver part is by far the mostcost-<strong>in</strong>tensive part of a dynamical fermion simulation.Table 3.3 shows some more simulation details. T MC denotes the total number of generated trajectories,the first T therm of which we attribute to the thermalization phase and therefore discard,so that we are left <strong>with</strong> T equi equilibrium configurations, respectively. 1 N conf configurations outof these, separated by ∆t trajectories (<strong>with</strong> a uniform, random variation as given <strong>in</strong> Table 3.3),have been analyzed further. In determ<strong>in</strong><strong>in</strong>g T therm and ∆t we let ourselves be guided by theautocorrelation analysis to be discussed next.1 In the thermalization phase of each production run we approached the respective target quark mass adiabaticallyfrom larger quark masses. These <strong>in</strong>itial trajectories are <strong>in</strong> general not counted here. An exception to thisrule is the run at (β, κ, L) = (5.32144, 0.1665, 16) where a rather long <strong>in</strong>itial tun<strong>in</strong>g phase <strong>in</strong>corporated severalchanges of the simulation parameters.


50 Chapter 3. Numerical Simulation3.2 Autocorrelation TimesBecause successive elements of a time-series 2 result<strong>in</strong>g from an updat<strong>in</strong>g process are correlated,it is convenient to analyze the autocorrelation <strong>in</strong> the observables one is <strong>in</strong>terested <strong>in</strong>. Thisserves two purposes: First, the exponential autocorrelation time is related to the length ofthe thermalization phase of the Markov cha<strong>in</strong>, i.e. the time that the system needs to convergefrom its <strong>in</strong>itial state to equilibrium. In order to avoid systematic errors <strong>in</strong> the f<strong>in</strong>al resultsdue to an <strong>in</strong>itialization bias one should discard the data from the <strong>in</strong>itial transient (of lengthT therm , say). Second, the variance of the sample mean <strong>in</strong> a dynamic Monte Carlo method (likethe HMC) is a factor of two times the <strong>in</strong>tegrated autocorrelation time higher than it wouldbe for <strong>in</strong>dependent sampl<strong>in</strong>g. Put differently, if we consider an observable A, a run of lengthT MC conta<strong>in</strong>s only T MC /2τ<strong>in</strong>t A effectively <strong>in</strong>dependent data po<strong>in</strong>ts. If a method like the blockedjackknife is used <strong>in</strong> the error analysis, this is, <strong>in</strong> general, not a problem, because one can just usethe full sample to calculate means, choose an appropriate block size and then let the jackknifetake care of autocorrelations <strong>in</strong> the statistical error analysis. 3 This has the obvious advantagethat no statistics is lost. However, if A is a derived quantity and its computation expensive (asit is the case for all quantities based on the quark propagator M −1 ) it is possible (and desirable)to save computer time by calculat<strong>in</strong>g A only on a subsample, consist<strong>in</strong>g of ensemble elements<strong>with</strong> a certa<strong>in</strong> separation ∆t <strong>in</strong> Monte Carlo time.For choos<strong>in</strong>g both T therm and ∆t it is helpful to have some knowledge of τexp A and τ<strong>in</strong>t A forsuitable observables A. In order to facilitate the autocorrelation analysis for our simulations wegenerally saw to it that the run parameters were not changed after the <strong>in</strong>itial tun<strong>in</strong>g phase soas to have the HMC evolve under stable conditions. (The one exception to this rule is the runat (β, κ, L) = (5.32144, 0.1665, 16) where the acceptance rate was at first so low that we had toreadjust δt and N MD at some po<strong>in</strong>t. The autocorrelation times for the result<strong>in</strong>g sub-sampleshave been determ<strong>in</strong>ed separately.) In Appendix B the time-series of the plaquette and theaverage number of solver iterations, N iter , are shown for all GRAL runs. A suitable estimator ofthe true autocorrelation (or autocovariance) function for a f<strong>in</strong>ite time-series A t , t = 1, . . . , T MC ,is given byC A (t) =1T MC − tT MC ∑−ts=1(As − 〈 A 〉 ) (As+t − 〈 A 〉 LRwhere the use of the “left” and “right” mean-value estimators), (3.3)T〈A〉L = 1MC ∑−tA r and 〈 A 〉 TT MC − tR = 1MC ∑−tA r+t (3.4)T MC − tr=1<strong>in</strong> general leads to a faster convergence of C A (t) to the true autocorrelation function forT MC → ∞ [117]. In Figures B.1–B.10 we plot the estimator for the normalized autocorrelationfunction,ρ A (t) = C A (t)/C A (0), (3.5)for A = 1 − □ (called “1 − P ” <strong>in</strong> the appendix) and A = N iter . From fits of ρ A to an exponentialwe extract estimates for the respective exponential autocorrelation times τ A exp, def<strong>in</strong>ed asτ A exp = lim supt→∞2 Monte-Carlo “time”, measured <strong>in</strong> trajectories.3 The blocked jackknife can even be used to estimate τ A <strong>in</strong>t (see Section 3.8).r=1t− log|ρ A (t)| . (3.6)


3.2. Autocorrelation Times 51β κ L 3 T τ N iterexp5.32144 0.16655.55.6τ N iter<strong>in</strong>tτ 1−□expτ 1−□<strong>in</strong>t12 3 32 103(16) 116( 9) 106(18) 99( 5)14 3 32 90(14) 77( 6) 91(13) 52( 3)16 3 3297(14) 105( 7) 77( 9) 54( 4)187(43) 154(24) 147(20) 113(10)0.1580 16 3 32 21( 5) 20( 1) 27( 3) 16( 1)0.1590 16 3 32 25( 7) 25( 1) 31( 3) 13( 1)0.1596 16 3 32 74(12) 38( 2) 37(11) 17( 1)0.1600 16 3 32 56( 6) 46( 3) 64( 7) 34( 2)0.1560 16 3 32 49(11) 24( 2) 10( 2) 6( 1)0.1565 16 3 32 29( 6) 19( 4) 7( 1) 5( 1)0.1570 16 3 32 35( 6) 25( 5) 9( 3) 6( 1)10 3 32 62( 7) 28( 2) 15( 3) 5( 1)12 3 32 24( 3) 20( 1) 15( 3) 6( 1)0.1575 14 3 32 88(27) 34( 3) 26( 8) 8( 1)0.158016 3 32 47( 7) 33( 4) 18( 6) 7( 4)24 3 40 51( 7) 36( 4) 11( 2) 7( 3)12 3 32 25( 5) 24( 1) 9( 3) 4( 1)14 3 32 27( 3) 24( 2) 19( 2) 8( 2)16 3 32 57(20) 32( 3) 19( 5) 11( 3)24 3 40 61(19) 50( 5) 20(10) 20( 2)Table 3.4: Measured exponential and <strong>in</strong>tegrated autocorrelation times for the average number of solveriterations, N iter , and the plaquette.The notorious difficulty of determ<strong>in</strong><strong>in</strong>g autocorrelation times for relatively short time-series isapparent <strong>in</strong> most of the plots of ρ A (t) <strong>in</strong> the appendix. We therefore aim for rough estimatesof the exponential autocorrelation time only and refra<strong>in</strong> from an elaborate optimization of thefit ranges. We have checked, however, that the differenc<strong>in</strong>g method described <strong>in</strong> Ref. [117] givesconsistent results. The measured values for τexp, A displayed <strong>in</strong> Table 3.4, are generally larger thanthe <strong>in</strong>tegrated autocorrelation times τ<strong>in</strong>t A that we measure <strong>with</strong> the help of Sokal’s “w<strong>in</strong>dow<strong>in</strong>g”procedure and which are also shown <strong>in</strong> the table. We use the f<strong>in</strong>ite sum<strong>in</strong>t = 1 T cut2 + ∑ρ A (t) (3.7)τ A<strong>with</strong> a variable cut-off T cut to estimate τ<strong>in</strong>t A . Plott<strong>in</strong>g the result<strong>in</strong>g values aga<strong>in</strong>st T cut does,ideally, reveal a plateau for T cut → T MC . If a plateau does not emerge, we typically eitherf<strong>in</strong>d a maximum, or τ<strong>in</strong>t A (T cut) is monotonously ris<strong>in</strong>g. If there is a maximum, we choose thecorrespond<strong>in</strong>g value as best estimate of τ<strong>in</strong>t A . Otherwise we reverse Sokal’s proposal to chooseT cut larger than 4 to 6 times τ<strong>in</strong>t A : we assume τA<strong>in</strong>t to lie <strong>in</strong> the <strong>in</strong>terval def<strong>in</strong>ed by the <strong>in</strong>tersectionsof the straight l<strong>in</strong>es <strong>with</strong> slopes T cut /4 and T cut /6, respectively, <strong>with</strong> the curve τ<strong>in</strong>t A (T cut).Compar<strong>in</strong>g autocorrelation times for runs <strong>with</strong> different lattice volumes it must be kept <strong>in</strong> m<strong>in</strong>dt=1


52 Chapter 3. Numerical Simulationthat the step size N MD δt of the molecular dynamics update was not the same for all simulations;<strong>in</strong> fact it varied between 0.5 and 1.0 (see Table 3.1). At (β, κ) = (5.6, 0.1575), however, thestep size was the same for L = 10, 12, 14, so we can directly compare these runs and f<strong>in</strong>d, onthe whole, only a weak <strong>in</strong>crease of the autocorrelation times <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g volume. Morestrik<strong>in</strong>g is the difference <strong>in</strong> the autocorrelation times between the simulations at β = 5.6 andβ = 5.32144. At the latter value, which corresponds to a stronger gauge coupl<strong>in</strong>g, the relativelylarge autocorrelation times reflect the long-ranged statistical fluctuations that we observe <strong>in</strong>Figures B.7–B.10. These fluctuations are more severe on the smaller lattices where, moreover,zero modes of the Dirac matrix start play<strong>in</strong>g a role. On the largest volume at this β the situationis somewhat better: While the autocorrelation times are comparable to those on the smallervolumes, we see no <strong>in</strong>dication of exceptional configurations on the 16 3 lattice. (Note that fromthe first to the second l<strong>in</strong>e of the (β, κ, L) = (5.32144, 0.1665, 16) entry <strong>in</strong> Table 3.4 N MD δt hasbeen halved.)In order to determ<strong>in</strong>e empirically when equilibrium had been achieved we first of all looked atthe time series of the plaquette and N iter and noted when the <strong>in</strong>itial transient appeared to end.We discarded approximately T therm = 10τ exp to 20τ exp <strong>in</strong>itial configurations, where we haveconservatively chosen τ exp ≡ τ N iterexp because N iter is closely related to the smallest eigenvalueof the Dirac matrix M, which is known to be among the slowest modes <strong>in</strong> the system (seee.g. [118]). Choos<strong>in</strong>g the separation ∆t two ma<strong>in</strong> aspects have been taken considered: On theone hand, estimates of τ A<strong>in</strong>t for N iter and the plaquette. These were based on autocorrelationstudies at early stages of the simulations, however, when the statistical basis was still smalland autocorrelation times were difficult to measure. The other aspect was the overall numberof produced gauge configurations versus available comput<strong>in</strong>g time on the Cray T3E at Jülich,where the quark propagators and hadronic correlation functions were calculated.3.3 Interpolat<strong>in</strong>g OperatorsAt the end of Section 1.3 we saw how the mass of a zero-momentum one-particle state can beextracted from the exponential decay of a suitable correlation function <strong>in</strong> Euclidean time. In thefollow<strong>in</strong>g we show how the left-hand side of Eq. 1.31 can be calculated on the lattice, so that wecan obta<strong>in</strong> the particle mass from a fit of appropriate exponential functions to the lattice data.In this work we <strong>in</strong>vestigate hadronic zero-momentum 2-po<strong>in</strong>t correlation functions of the form〈 〉 ∑O(τ)J(0) ≡ 〈0|O(x, τ)J(0, 0)|0〉, (3.8)xwhere the spatial Fourier <strong>in</strong>tegral of Eq. (1.31) has been replaced by a discrete sum over thespatial lattice sites and 〈 . 〉 is understood as the ensemble average. More specifically, for thesource J(x) and the s<strong>in</strong>k O(x) we use the flavor non-s<strong>in</strong>glet meson and baryon octet local<strong>in</strong>terpolat<strong>in</strong>g fields (x ≡ (x, τ))P (x) = q(x)γ 5 q(x) (pseudo-scalar) (3.9a)V µ (x) = q(x)γ µ q(x) (vector) (3.9b)A µ (x) = q(x)γ 5 γ µ q(x) (axial-vector) (3.9c)N(x) = ɛ abc(qTa (x)Cγ 5 q b (x) ) q c (x) (octet baryon) (3.9d)


3.4. Wuppertal Smear<strong>in</strong>g 53where C = γ 4 γ 2 is the usual charge conjugation matrix, and consider the follow<strong>in</strong>g zeromomentum2-po<strong>in</strong>t correlation functions 〈Γ(τ)〉 ≡ 〈 O(τ)J(0) 〉 :〈 〉 〈ΓPτ = P † (τ)P (0) 〉 (pseudo-scalar) (3.10a)〈ΓVτ〉=〈V†k (τ)V k(0) 〉 (vector) (3.10b)〈ΓNτ〉=〈N(τ)N(0)〉(octet baryon)(3.10c)In addition we consider the follow<strong>in</strong>g pseudoscalar correlators <strong>in</strong>volv<strong>in</strong>g the fourth componentof the axial current:〈ΓAτ〉=〈A†4 (τ)A 4(0) 〉 (3.11a)〈 〉 〈ΓAPτ = A†4 (τ)P (0)〉 (3.11b)〈 〉 〈ΓP Aτ = P † (τ)A 4 (0) 〉 (3.11c)Insert<strong>in</strong>g the operators (3.9) <strong>in</strong>to the correlators (3.10) and (3.11), perform<strong>in</strong>g all possible Wickcontractions(us<strong>in</strong>g the fact that the quark propagator is given by 〈 q(y)q(x) 〉 ≡ M −1 (y, x)) andproject<strong>in</strong>g onto zero-momentum states we obta<strong>in</strong> e.g. the pseudo-scalar correlation function〈P † (τ)P (0) 〉 =〈 ∑xTr [ γ 5 M −1 (0, 0; x, τ)γ 5 M −1 (x, τ; 0, 0) ]〉=〈 ∑xTr[ (M −1 (x, τ; 0, 0) ) † M −1 (x, τ; 0, 0)] 〉 , (3.12)where the trace is over sp<strong>in</strong> and color <strong>in</strong>dices and the last equation is due to the relationSimilarly, the vector correlator readsM −1 (y, x) = γ 5(M −1 (x, y) ) † γ5 . (3.13)〈V†k (τ)V k(0) 〉 =〈 ∑xTr [ γ k M −1 (0, 0; x, τ)γ k M −1 (x, τ; 0, 0) ]〉=〈 ∑xTr[ (M −1 (x, τ; 0, 0) ) † γ5 γ k M −1 (x, τ; 0, 0)γ k γ 5] 〉 . (3.14)All of the other mesonic 2-po<strong>in</strong>t functions are obta<strong>in</strong>ed analogously. For details on the calculationof the baryonic nucleon correlator see Refs. [12] or [119].3.4 Wuppertal Smear<strong>in</strong>gIn lattice simulations, operator smear<strong>in</strong>g is essential for achiev<strong>in</strong>g ground state dom<strong>in</strong>ance beforethe signal is lost <strong>in</strong> the noisy large time limit. The smear<strong>in</strong>g of the local operators (3.9), act<strong>in</strong>g


54 Chapter 3. Numerical Simulationas source and/or s<strong>in</strong>k <strong>in</strong> Eq. (3.8), can be implemented by directly smear<strong>in</strong>g the source and s<strong>in</strong>kof the quark propagator M −1 (see e.g. Eq. (3.12)). To this end we employ the approximatelyGaussian Wuppertal smear<strong>in</strong>g [120] at the source only (ls) or at both source and s<strong>in</strong>k (ss). Westart <strong>with</strong> a po<strong>in</strong>t source 4 , φ (0)0 (x) = δ xx 0, at x = x 0 <strong>in</strong> timeslice τ = 0, and apply the follow<strong>in</strong>giterative scheme to create a smeared source: Def<strong>in</strong>e φ (N)0 (x) ≡ φ 0 (x), and for n = 0, 1, . . . , N − 1letφ (n+1)0 (x) =[1φ (n)1 + 6α0 (x) + α 3∑k=1(U k (x, 0)φ (n)0 (x + ˆk) + U † k (x − ˆk, 0)φ (n)0 (x − ˆk)) ] .(3.15)The <strong>in</strong>itial po<strong>in</strong>t source is thus smeared by N times add<strong>in</strong>g to each lattice site the respectivecontributions from its six spatial neighbors <strong>with</strong> relative weight α, <strong>in</strong> a gauge <strong>in</strong>variant way.We then solve∑M(x, 0; y, τ)S(y, τ) = φ 0 (x) (3.16)y,τfor S, where M is the <strong>Wilson</strong> quark matrix of Eq. (1.46), to obta<strong>in</strong> the “local-smeared” propagatorS(y, τ) = ∑ M −1 (y, τ; x, 0)φ 0 (x) (3.17)xdescrib<strong>in</strong>g the propagation from a smeared source <strong>in</strong> timeslice 0 to the s<strong>in</strong>k <strong>in</strong> timeslice τ. Toobta<strong>in</strong> the fully smeared propagator, S τ (N) (y), we set S τ(0) (y) ≡ S(y, τ) and apply the smear<strong>in</strong>gprocedure for n = 0, 1, . . . , N − 1 aga<strong>in</strong>:[S τ (n+1) 13∑ ((y) = S τ(n) (y) + α U k (y, τ)S τ(n) (y + ˆk) + U †1 + 6αk (y − ˆk, τ)S τ (n) (y − ˆk)) ] .k=1(3.18)The pseudoscalar 2-po<strong>in</strong>t function, for <strong>in</strong>stance, <strong>with</strong> a local s<strong>in</strong>k and a smeared source is thencalculated via〈P † (τ)P (0) 〉 〈ls ∑ [ (S=(0)Tr τ (y) ) † S(0)τ (y)] 〉 , (3.19)ywhile the smeared-smeared correlator is obta<strong>in</strong>ed from〈P † (τ)P (0) 〉 ss =〈 ∑yTr[ (S(N)τ (y) ) † S(N)τ (y)] 〉 . (3.20)The trace is aga<strong>in</strong> over sp<strong>in</strong> and color <strong>in</strong>dices.calculated analogously.Other ls or ss correlation functions can beIn all SESAM/TχL simulations, N = 50 smear<strong>in</strong>g steps were used <strong>with</strong> a weight α = 4.0. Theseparameters were orig<strong>in</strong>ally optimized for the 16 3 SESAM lattice and then adopted for the larger24 3 TχL lattice, too. In order to adapt these parameters to the smaller lattices considered <strong>in</strong>4 Sp<strong>in</strong> and color <strong>in</strong>dices are suppressed. The described procedure is carried out separately for each of the 4 × 3<strong>in</strong>dependent sp<strong>in</strong>-color components of φ 0.


3.4. Wuppertal Smear<strong>in</strong>g 551|φ (N) (0,0,x 3)| 2 / |φ (N) (0,0,0)| 20.80.60.40.2L=24, α=4.0, N=50L=16, α=4.0, N=50L=14, α=3.0, N=40L=12, α=2.0, N=30L=10, α=1.0, N=200-0.5 -0.25 0 0.25 0.5x 3/LFigure 3.1: The parameters N, α for the Wuppertal smear<strong>in</strong>g scheme were chosen such as to yieldapproximately the same wave function shapes for both the smaller lattices and the SESAM lattice (L =16).this work we have <strong>in</strong>vestigated the effect of smear<strong>in</strong>g on the various volumes. We applied thesmear<strong>in</strong>g procedure described above to po<strong>in</strong>t sources φ (0) (x) of size L 3 <strong>with</strong> L = 24, 16, 14, 12, 10.We set φ (0) (x) ≡ 0 except for the po<strong>in</strong>t at (L/2, L/2, L/2), which we conveniently def<strong>in</strong>e as theorig<strong>in</strong> of the respective lattice and where we set φ (0) (0) = 1. 5 Apply<strong>in</strong>g the smear<strong>in</strong>g procedure(3.15) to φ (0) <strong>with</strong> all U µ (x) ≡ 1 we plot the amplitude of the “wave function” φ (N) along the(0, 0, 1)-direction relative to its maximum at the orig<strong>in</strong>, i.e. |φ (N) (0, 0, x 3 )| 2 /|φ (N) (0)| 2 , versusx 3 /L, for various values of N and α. The x 3 -direction has been chosen arbitrarily. On <strong>in</strong>spectionof the result<strong>in</strong>g wave function shapes we select the parameters N and α for our simulated volumesso as to make the the respective wave function profile look approximately like the SESAM one.The selected smear<strong>in</strong>g parameters are listed <strong>in</strong> Table 3.5, while the correspond<strong>in</strong>g wave functionprofiles are displayed <strong>in</strong> Fig. 3.1.L 10 12 14 16 24α 1.0 2.0 3.0 4.0 4.0N 20 30 40 50 50Table 3.5: Smear<strong>in</strong>g parameters.5 Aga<strong>in</strong>, this is done for every sp<strong>in</strong>-color degree of freedom of φ.


56 Chapter 3. Numerical Simulation3.5 Quark PropagatorsThe smeared quark propagators (3.17) and hadronic 2-po<strong>in</strong>t functions (ls and ss) have beencomputed on the Cray T3E at the John von Neumann Institute for Comput<strong>in</strong>g (NIC) <strong>in</strong> Jülich.For the flavor non-s<strong>in</strong>glet correlators considered here it is sufficient to calculate just one column ofthe quark propagator for a given source vector (see Eq. (3.17)), correspond<strong>in</strong>g to the propagationfrom this source to all other lattice sites.Calculat<strong>in</strong>g the quark propagator for a given gauge field configuration from the <strong>Wilson</strong> quarkmatrix M, the quark mass parameter κ <strong>in</strong> M does not need to be identical to the κ-valuethat was used <strong>in</strong> the generation of the underly<strong>in</strong>g gauge field. We refer to the former as the“valence” quark mass parameter, κ val , and to the latter as the “sea” quark mass parameter,κ sea . 6 Vary<strong>in</strong>g κ val for fixed κ sea ≠ 0 is known as the partially quenched approximation; as it iscomputationally less demand<strong>in</strong>g to reduce κ val this approximation is often used to extrapolatelattice <strong>QCD</strong> results to physical (valence) quark masses. We have calculated ls and ss quarkpropagators and hadronic 2-po<strong>in</strong>t functions for the κ sea -κ val comb<strong>in</strong>ations listed <strong>in</strong> Table 3.6.In this work we consider only the symmetric case, κ val = κ sea , while the other comb<strong>in</strong>ations are<strong>in</strong>tended for future use.3.6 Parameterization of the Two-Po<strong>in</strong>t FunctionsFor asymptotically large Euclidean times the 2-po<strong>in</strong>t functions (3.8) are dom<strong>in</strong>ated by the lowestmass state <strong>in</strong> the given channel, i.e.〈O(τ)J(0)〉−→〈0 |O| h〉〈h |J| 0〉2Me −Mτ for τ → ∞, (3.21)where |h〉 is the appropriate hadronic state <strong>with</strong> mass M that saturates the correlator at largeτ. Calculat<strong>in</strong>g the quark propagator on a f<strong>in</strong>ite lattice, boundary conditions must be specified;we choose them to be periodic <strong>in</strong> the space directions and antiperiodic <strong>in</strong> time. For any givenhadronic state this leads to an additional contribution from the correspond<strong>in</strong>g anti-state propagat<strong>in</strong>g<strong>in</strong> the opposite direction. In case of a meson the antiparticle is degenerate <strong>in</strong> mass, sothat we can average the lattice results for the 2-po<strong>in</strong>t function at τ and T − τ and account forthe antiparticle’s effect by choos<strong>in</strong>g the parameterizationf τ (C, M) = C(e −Mτ + e −M(T −τ)) , (3.22)where M corresponds to the (anti-)particle mass and C ∼ 〈0 |O| h〉〈h |J| 0〉/2M to the amplitude.In particular, the pseudoscalar and vector meson masses are obta<strong>in</strong>ed from fits of thelocal-smeared and smeared-smeared pseudoscalar and vector lattice correlators, 〈 P † (τ)P (0) 〉 ls ,〈P † (τ)P (0) 〉 ss 〈and V†k (τ)V k(0) 〉 ls 〈, V†k (τ)V k(0) 〉 ss , to the function (3.22).In case of the nucleon we anti-symmetrize the correlator at τ and T − τ. The backwards propagat<strong>in</strong>gnegative parity partner N ∗ of the nucleon is an excited state <strong>with</strong> higher mass, so thatits contribution is exponentially suppressed. The nucleon mass is therefore obta<strong>in</strong>ed from fits ofloops.6 Valence quarks are those which appear <strong>in</strong> external states, while sea quarks are those which appear <strong>in</strong> dynamical


3.6. Parameterization of the Two-Po<strong>in</strong>t Functions 57β κ sea L 3 T κ (1)valκ (2)valκ (3)valκ (4)valκ (5)valκ (6)val12 3 325.32144 0.1665 14 3 32 0.1660 0.1662 0.1665 0.1667 0.1670 -5.55.616 3 320.1580 16 3 32 0.1580 0.1590 0.1596 0.1600 0.1604 -0.1590 16 3 32 0.1580 0.1590 0.1596 0.1600 0.1604 -0.1596 16 3 32 0.1580 0.1590 0.1596 0.1600 0.1604 -0.1600 16 3 32 0.1580 0.1590 0.1596 0.1600 0.1604 -0.1560 16 3 32 0.1560 0.1570 0.1575 0.1580 0.1585 -0.1565 16 3 32 0.1560 0.1565 0.1570 0.1575 0.1580 -0.1570 16 3 32 0.1555 0.1560 0.1565 0.1570 0.1575 -10 3 32 0.1555 0.1560 0.1565 0.1570 0.1575 0.158012 3 32 0.1555 0.1560 0.1565 0.1570 0.1575 0.15800.1575 14 3 32 0.1555 0.1560 0.1565 0.1570 0.1575 0.15800.158016 3 32 0.1555 0.1565 0.1570 0.1575 - -24 3 40 0.1555 0.1560 0.1565 0.1570 0.1575 0.158012 3 3214 3 3216 3 3224 3 400.1555 0.1560 0.1565 0.1570 0.1575 0.1580Table 3.6: Comb<strong>in</strong>ations of κ sea and κ val for which quark propagators and hadronic 2-po<strong>in</strong>t functionshave been computed.the local-smeared and smeared-smeared lattice correlators 〈 N(τ)N(0) 〉 ls ,〈N(τ)N(0)〉 ss to thes<strong>in</strong>gle exponentialf τ (C, M) = Ce −Mτ . (3.23)A useful parameter to control the contribution of excited states to the observed signal is theeffective mass M eff , which for mesonic states is computed iteratively from the implicit equation〈 〉O(τ)J(0) e〈 〉 −τMeff(τ) + e −(T −τ)M eff(τ)=O(τ + 1)J(0) e −(τ+1)Meff(τ) + e −(T −τ−1)M eff(τ) . (3.24)For the nucleon it is simply def<strong>in</strong>ed as the logarithmic derivative〈 〉O(τ)J(0)M eff (τ) = log 〈 〉. (3.25)O(τ + 1)J(0)The effective mass is a measure for the local exponential decay of the correlator; for τ → ∞ itis expected to converge to the ground state mass M. The onset of a plateau <strong>in</strong> M eff (τ) thusrepresents an important criterion for the choice of a lower boundary for the fitted time <strong>in</strong>terval.In the follow<strong>in</strong>g we will denote the pseudoscalar mass and amplitude from a fit of 〈 P † (τ)P (0) 〉 lsto (3.22) by MPls and ClsP , those from a fit of 〈 A † 4 (τ)P (0)〉 ss by MssAPand CssAP, and so on.


58 Chapter 3. Numerical SimulationAmplitudes for local source and s<strong>in</strong>k (ll) can generally be obta<strong>in</strong>ed from ls and ss amplitudesaccord<strong>in</strong>g to the factorization formulaC ll = (Cls ) 2. (3.26)Css The def<strong>in</strong>ition of the pseudoscalar decay constant on the lattice is (for p = 0)Z A 〈0 |A 4 | PS〉 = M PS F PS , (3.27)where Z A is a renormalization constant. Us<strong>in</strong>g Eq. (3.26) and the asymptotic relation (3.21),the unrenormalized decay constant can e.g. be obta<strong>in</strong>ed from√ √F PS 2CAll= = C ls 2AZ A M PS M PS CAss , (3.28)where the pseudoscalar mass M PS = MPss is taken from a fit of 〈 P † (τ)P (0) 〉 ss . Alternatively itcan be calculated from e.g.[ (F PS= 1 √ ) ( √ )]CAPls√1 CssA√ +Z A 2 2 Css C ss + Cls A 1 CssP 2√ +P AP2 Css C ss, (3.29)A APM PSwhere this time the pion mass M PS is taken to be the averageM PS = 1 6()MPss + MA ss + MAP ss + MA ls + MAP ls + MP lsA . (3.30)Another quantity that can be obta<strong>in</strong>ed from pseudoscalar correlation functions is the quark massas def<strong>in</strong>ed via the PCAC relation on the lattice,am q = − M PS2Z A 〈0 |A 4 | PS〉Z P 〈0 |P | PS〉 . (3.31)In practice we calculate the unrenormalized quark mass accord<strong>in</strong>g to√√Z q am q = M PS CAll2 CPll = M PS CAls CPss2 CPls CAss , (3.32)where the renormalization constant is def<strong>in</strong>ed as Z q ≡ Z P /Z A and the pseudoscalar mass isobta<strong>in</strong>ed fromM PS = 1 ()MP ls + MPss + MA ls + MAss . (3.33)43.7 Fitt<strong>in</strong>g ProcedureLet N ≡ N conf be the number of gauge configurations selected from a MC time-series for which wecalculate the quark propagator M −1 (see Section 3.1). On every configuration U n , n = 1, . . . , N,we compute the desired local-smeared and smeared-smeared hadronic 2-po<strong>in</strong>t functionsΓ τn = ∑ xO(x, τ)J(0, 0) ∣ ∣Un, τ = 1, . . . , T, (3.34)


3.8. Error Analysis 59where <strong>in</strong> each time-slice we sum over the space-like coord<strong>in</strong>ates to project onto the zeromomentumstate. The correlator 〈Γ τ 〉 ≡ 〈 O(τ)J(0) 〉 is then the ensemble average over the<strong>in</strong>dividual time-slices,〈Γ τ 〉 = 1 N∑Γ τn , τ = 1, . . . , T. (3.35)Nn=1In order to obta<strong>in</strong> the mass M and amplitude C of a hadronic state we fit the averaged correlator〈Γ τ 〉 <strong>in</strong> the range [τ m<strong>in</strong> , τ max ] to the functionf τ (C, M) ={C(e −Mτ + e −M(T −τ)) for mesons, andCe −Mτfor baryons(3.36)by m<strong>in</strong>imiz<strong>in</strong>g the χ 2 -functionχ 2 =where the covariance matrixτ∑maxτ,τ ′ =τ m<strong>in</strong>(〈Γτ 〉 − f τ (C, M) ) Ω −1ττ ′ (〈Γτ ′〉 − f τ ′(C, M) ) , (3.37)Ω ττ ′ =1N(N − 1)N∑ (Γτn − 〈Γ τ 〉 )( Γ τ ′ n − 〈Γ τ ′〉 ) (3.38)n=1characterizes the correlations between the time-slices. The m<strong>in</strong>imization itself is done <strong>with</strong> theMINUIT package [122] from the CERN library [123]. In order to estimate the errors <strong>in</strong> the fitparameters C, M we use the jackknife method described <strong>in</strong> the next section.3.8 Error AnalysisLet us consider a sample of N measurements of a primary quantity X (N = N conf and X = Γ τ ,say). From the orig<strong>in</strong>al sample X 1 , X 2 , . . . , X N we create N b = N/b subsamples <strong>with</strong> N − belements each, where the k-th subsample is obta<strong>in</strong>ed from the orig<strong>in</strong>al sample by leav<strong>in</strong>g outthe b elements (block) X (k−1)b+1 , . . . , X kb . Then, if the k-th block average is given by〈X〉 B(k)= 1 bb∑X (k−1)b+i , k = 1, . . . , N b , (3.39)i=1the average of the k-th subsample isThe average of the re-sampled statistics,〈X〉 (k)= N 〈X〉 − b 〈X〉 B(k), k = 1, . . . , N b . (3.40)N − bN b〈X〉 = 1 ∑〈X〉N (k)= 1bNk=1N∑X i , (3.41)i=1


60 Chapter 3. Numerical Simulationis identical to the usual sample mean that serves as an estimate of the true population mean µ.The variance of the resampled statistics <strong>with</strong> blocksize b is def<strong>in</strong>ed asS 2 b /N = N b − 1N bN b∑k=1and agrees <strong>with</strong> the usual sample mean for b = 1:S 2 1/N = N − 1NN∑k=1() 2 1〈X〉 (k)− 〈X〉 =N(N − 1)(〈X〉 (k)− 〈X〉) 2(3.42)N∑(X i − 〈X〉) 2 = S 2 /N. (3.43)If the sample elements are statistically <strong>in</strong>dependent, S1 2 /N is a good estimate of the true varianceσ 2 /N. If, on the other hand, the data are correlated, then the true variance σ 2 is given by (seeSection 3.2)σ 2 ≈ 2τ<strong>in</strong>tS X1. 2 (3.44)The correlation between the sample elements can be elim<strong>in</strong>ated by choos<strong>in</strong>g the blocksize blarge enough (b ≫ τ<strong>in</strong>t X ) such that S2 b → σ2 . An appropriate blocksize b may be found selfconsistently<strong>with</strong>out any prior knowledge of τ <strong>in</strong>t by plott<strong>in</strong>g the b-dependence of Sb 2 (or S b) andobserv<strong>in</strong>g where it becomes <strong>in</strong>dependent of b. In this way one can even obta<strong>in</strong> an estimate ofthe autocorrelation time τ<strong>in</strong>t X us<strong>in</strong>g the relation7i=12τ X<strong>in</strong>t ≈ S2 bS 2 1for b large. (3.45)Suppose now we want to estimate the mean and error of a secondary quantity y, i.e. of a functionof the primary quantity X (the parameters C and M from a fit to a correlator, say). The bestestimate of a secondary quantity is 〈y〉 = y(〈X〉), not 〈y(X)〉. A robust error estimate for〈y〉 can be obta<strong>in</strong>ed by calculat<strong>in</strong>g y on the N b subsample means (3.40), yield<strong>in</strong>g the jackknifeestimatorsy (k) = y(〈X〉 (k)), k = 1, . . . , N b , (3.46)<strong>with</strong> an averageN b〈y〉 = 1 ∑yN (k) . (3.47)bThe variance of the jackknife estimators is obta<strong>in</strong>ed <strong>in</strong> analogy to (3.42) fromS 2 b /N = N b − 1N bk=1N b∑ (y(k) − 〈y〉 ) 2 . (3.48)For large enough b we take S b / √ N as an estimate of the standard error σ/ √ N of 〈y〉.k=17 This is usually a “remnant” autocorrelation time <strong>in</strong> the sense that the considered sample elements (actuallyconfigurations) are already separated by a number of HMC trajectories. To obta<strong>in</strong> the “full” autocorrelationtime, τ<strong>in</strong>t X has to be multiplied by this separation, ∆N conf (see Section 3.1).


Chapter 4Light Hadron SpectroscopyIn this chapter we present the ma<strong>in</strong> results of this work. We will describe <strong>in</strong> detail how we haveobta<strong>in</strong>ed the light hadron masses by fitt<strong>in</strong>g the correspond<strong>in</strong>g mesonic and baryonic two-po<strong>in</strong>tfunctions to the parameterizations <strong>in</strong>troduced <strong>in</strong> the previous chapter. The result<strong>in</strong>g masses(before chiral or cont<strong>in</strong>uum extrapolation) of the pseudoscalar (pion) and vector (rho) mesonsand of the nucleon are given. We also present results for the (unrenormalized) pseudoscalar decayconstant and the bare PCAC quark mass. The Sommer parameter r 0 is used to set the physicalscale. After a discussion of the role of spatial Polyakov-type loops <strong>in</strong> f<strong>in</strong>ite volume we willexam<strong>in</strong>e various “naive” parameterizations of the f<strong>in</strong>ite-size mass shifts motivated by Lüscher’sformula and the observations made by Fukugita et al.. We will then check on the validity ofavailable theoretical formulae from effective field theory <strong>in</strong> the parameter regime covered by oursimulations. The issue of <strong>in</strong>f<strong>in</strong>ite-volume extrapolations will be discussed. F<strong>in</strong>ally we will exploitthe volume-<strong>in</strong>dependence of the PCAC quark mass to check on the importance of discretizationerrors <strong>in</strong> our simulations.4.1 Static Quark PotentialWe calculate the static quark potential <strong>in</strong> order to determ<strong>in</strong>e the Sommer scale [74] that we useto set the scale <strong>in</strong> our simulations. For the SESAM/TχL simulations at β = 5.5 and β = 5.6the Sommer radii R 0 ≡ r 0 /a as listed <strong>in</strong> Table 4.1 have been determ<strong>in</strong>ed by G. Bali; they havepreviously been published <strong>in</strong> Refs. [124] and [125], respectively. S<strong>in</strong>ce the lattice-size dependenceof R 0 is assumed to be small and as we want to have a common length scale for the differentsimulated lattice volumes at fixed gauge coupl<strong>in</strong>g and quark mass, we adopt the R 0 -value fromthe largest available lattice, respectively, also for the smaller ones.In order to determ<strong>in</strong>e the Sommer radius for the 16 3 lattice at (β, κ) = (5.32144, 0.1665) wemeasure the <strong>Wilson</strong> loops W (R, τ) <strong>with</strong> temporal extents of up to τ = 8 and spatial separationsof up to R = √ 3 · 7 ≈ 12 lattice units on the same configurations that we use for spectroscopy.We employ the modified Bresenham algorithm of Ref. [126] to <strong>in</strong>clude all possible lattice vectorsR to a given separation R ≡ |R|. Us<strong>in</strong>g the spatial APE smear<strong>in</strong>g as described <strong>in</strong> Ref. [127],we applyl<strong>in</strong>k → α × l<strong>in</strong>k + staples (4.1)to the gauge l<strong>in</strong>ks of each configuration before actually calculat<strong>in</strong>g the <strong>Wilson</strong> loops. We useα = 2.3 and perform N = 26 iterations, followed by a projection back <strong>in</strong>to the gauge group [128].


62 Chapter 4. Light Hadron Spectroscopylog W(R,τ)/W(R,τ+1)2.521.51R = 11.09R = 9.38R = 8.06R = 6.48R = 5.00R = 3.46R = 2.000.51 2 3 4τFigure 4.1: The effective potential, V eff , at (β, κ) = (5.32144, 0.1665) on the 16 3 lattice, for selectedvalues of R <strong>in</strong> the range τ = 1, . . . , 4. Larger values of τ are dom<strong>in</strong>ated by statistical noise.The asymptotic behavior of the static potential V (R) for sufficiently large times τ is given byso that one can def<strong>in</strong>e an effective “local” potentialW (R, τ) ∼ C(R) e −V (R)τ , (4.2)V eff (R, τ) = lnW (R, τ)W (R, τ + 1) . (4.3)Figure 4.1 shows the τ-dependence of the effective potential V eff (R, τ) for various values ofR. At τ = 3 the effective potential is already largely <strong>in</strong>dependent of τ while the statisticalerrors are moderate, so that we determ<strong>in</strong>e V (R) from a s<strong>in</strong>gle exponential fit <strong>in</strong> the range[τ m<strong>in</strong> , τ max ] = [3, 4]. 1 As can be seen from Figure 4.2, the result<strong>in</strong>g values for V (R) show theexpected behavior. We observe no <strong>in</strong>dication of str<strong>in</strong>g break<strong>in</strong>g and therefore fit the data <strong>in</strong> therange [R m<strong>in</strong> , R max ] = [2.5, 8] toV (R) = V 0 − e + σR. (4.4)RThe upper boundary of the fitted range has been set to R max = 8 because up to this value thedata correspond nicely to the expected l<strong>in</strong>ear behavior, <strong>with</strong> small statistical errors. With R maxheld fixed the lower boundary has been determ<strong>in</strong>ed by <strong>in</strong>vestigat<strong>in</strong>g the R m<strong>in</strong> -dependence of r 0for various values R m<strong>in</strong> 2. (Below this value we observe a violation of rotational symmetry dueto the f<strong>in</strong>ite lattice spac<strong>in</strong>g.) From the fit we obta<strong>in</strong> the follow<strong>in</strong>g parameters for the potential1 The quality of the statistical signal does not allow to extend the upper boundary of the fitted range beyondτ max = 4.


4.1. Static Quark Potential 6321.5V(R)10.500 2 4 6 8 10 12 14RFigure 4.2: The static quark potential obta<strong>in</strong>ed from <strong>Wilson</strong> loops at (β, κ) = (5.32144, 0.1665) on the16 3 lattice.(<strong>in</strong> lattice units):V 0 = 0.8378(87), e = 0.440(18), σ = 0.08187(97). (4.5)The Sommer scale R 0 , which is def<strong>in</strong>ed through the force between two static quarks at some<strong>in</strong>termediate distance,R 2 dVdR ∣ = 1.65, (4.6)R=R0is obta<strong>in</strong>ed from these parameters accord<strong>in</strong>g to√1.65 − eR 0 = . (4.7)σOur result for the simulation at (β, κ, L) = (5.32144, 0.1665, 16) is given <strong>in</strong> Table 4.1.quoted uncerta<strong>in</strong>ty corresponds to the statistical error.In various nonrelativistic potential models the def<strong>in</strong>ition (4.6) consistently amounts to a physicalvalue of r 0 = 0.5 fm [74]. We use this value to set the scale <strong>in</strong> our simulations. The result<strong>in</strong>gphysical values for the momentum cut-off a −1 , the lattice spac<strong>in</strong>g a and the box size La aredisplayed <strong>in</strong> Table 4.1. As expected, the smallest simulated β of 5.32144 is associated <strong>with</strong> thelargest lattice spac<strong>in</strong>g (0.13 fm, correspond<strong>in</strong>g to a relatively low momentum cut-off of 1.52 GeV).While we have to look out for potentially large O(a) discretization errors at this coupl<strong>in</strong>g, thephysical volume is the biggest of all simulated volumes. With a l<strong>in</strong>ear extension of slightly morethan 2 fm it is comparable <strong>in</strong> size <strong>with</strong> the TχL lattice at (β, κ) = (5.6, 0.1575).The


64 Chapter 4. Light Hadron Spectroscopyβ κ sea L 3 T r 0 /a a −1 [GeV] a [fm] La [fm]5.32144 0.1665 16 3 32 3.845(37) 1.517(15) 0.1300(13) 2.081(21)0.1580 16 3 32 4.027(24) 1.5893(95) 0.12416(74) 1.987(12)5.50.1590 16 3 32 4.386(26) 1.731(11) 0.11400(68) 1.824(11)0.1596 16 3 32 4.675(34) 1.845(14) 0.10695(78) 1.711(13)0.1600 16 3 32 4.889(30) 1.929(12) 0.10227(63) 1.636(10)0.1560 16 3 32 5.104(29) 2.014(12) 0.09796(56) 1.5674(89)0.1565 16 3 32 5.283(52) 2.085(21) 0.09464(93) 1.514(15)0.1570 16 3 32 5.475(72) 2.161(29) 0.0913(12) 1.461(20)5.616 3 32 5.959(77) 2.352(31) 0.0839(11) 1.343(18)0.157524 3 40 5.892(27) 2.325(11) 0.08486(39) 2.0367(94)0.1580 24 3 40 6.230(60) 2.459(24) 0.08026(78) 1.926(19)Table 4.1: Sommer scale and result<strong>in</strong>g momentum cut-off, lattice spac<strong>in</strong>g and lattice size for r 0 = 0.5 fm.4.2 Light Hadron MassesAs described <strong>in</strong> Section 3.6, hadron masses and decay constants can be obta<strong>in</strong>ed by fitt<strong>in</strong>gthe simulated mesonic and baryonic two-po<strong>in</strong>t functions to the parameterizations (3.22) and(3.23), respectively. In do<strong>in</strong>g so it is important to tune the fitted <strong>in</strong>terval <strong>in</strong> such a way as toavoid systematic errors com<strong>in</strong>g e.g. from excited state contributions at small Euclidean times.Therefore the lower boundary of the fitted range, τ m<strong>in</strong> , should correspond to the onset of theasymptotic region <strong>in</strong> which these contam<strong>in</strong>ations can be neglected and the desired ground statedom<strong>in</strong>ates. The upper boundary τ max , on the other hand, is normally kept fixed at T/2 formesonic states. (Due to the symmetrization of the mesonic correlators at τ and T − τ an upperboundary τ max > T/2 does not lead to any further improvement.) In case of the nucleon wechoose τ max = T/2 − 1 by default <strong>in</strong> order to avoid potential contam<strong>in</strong>ations com<strong>in</strong>g from thebackwards propagat<strong>in</strong>g anti-particle. Both <strong>in</strong> the mesonic and the baryonic case it may happen,however, that due to statistical fluctuations and hence large error bars the correlator at large τis compatible <strong>with</strong> zero. In such cases we sometimes have to shift τ max to smaller values of τ <strong>in</strong>order to avoid potential systematic errors from this source.In practice we consider three different criteria to f<strong>in</strong>d the optimal fit <strong>in</strong>terval for a given correlator.First we exam<strong>in</strong>e a plot of the effective mass M eff as def<strong>in</strong>ed by (3.24) for mesons and (3.25)for the nucleon. S<strong>in</strong>ce M eff is a measure for the local exponential decay of the 2-po<strong>in</strong>t function,a plateau is expected to emerge when ground state dom<strong>in</strong>ance is reached. The convergence tothe asymptotic mass value can be from above or from below depend<strong>in</strong>g on the choice of the<strong>in</strong>terpolat<strong>in</strong>g source and s<strong>in</strong>k operators J and O. Only for O † = J is the correlation functionpositive def<strong>in</strong>ite and the convergence is monotonic and from above. In this work this is the casefor all the correlators used for the determ<strong>in</strong>ation of the pseudoscalar and vector meson massesand the nucleon mass. The upper left plot <strong>in</strong> Figure 4.3 shows as an example the effective massesfor the pseudoscalar correlator at (β, κ, L) = (5.6, 0.158, 16). The contribution of excited statesis most obvious at small τ where M eff decreases rapidly before flatten<strong>in</strong>g out. In the flat plateauregion one assumes that, <strong>with</strong><strong>in</strong> the numerical precision, only the lowest mass contribution issignificant. In case of a f<strong>in</strong>ite statistical sample, however, correlated statistical fluctuations occur


4.2. Light Hadron Masses 650.50.250.4PION lsPION ss0.2450.24M effM0.2350.30.230.2250.20 2 4 6 8 10 12 14 16τ0.220 2 4 6 8 10 12 14τ m<strong>in</strong>0.00750.00643σ(M)0.005χ 2 /dof20.00410.0030 2 4 6 8 10 12 14 16b00 2 4 6 8 10 12 14τ m<strong>in</strong>Figure 4.3: Plots used for the determ<strong>in</strong>ation of the optimal τ-<strong>in</strong>tervals <strong>in</strong> the correlator fits (here for〈P † (τ)P (0) 〉 ssat (β, κ, L) = (5.6, 0.158, 16)). The plots show, clockwise, the effective mass Meff (τ), thefit result M and the χ 2 /dof-value of the fit versus τ m<strong>in</strong> , and the standard error of M versus the jackknifeblocksize b. The horizontal l<strong>in</strong>es <strong>in</strong>dicate the fit result, the goodness of fit and the standard error of theresult, respectively, for the chosen τ-<strong>in</strong>terval (here [6, 15]) and blocksize (here b = 8). In the upper leftgraph we also plot, for comparison, the effective mass from the local-smeared correlator 〈 P † (τ)P (0) 〉 ls.


66 Chapter 4. Light Hadron Spectroscopy〈P † (τ)P (0) 〉 ss 〈V†k (τ)V k(0) 〉 ss〈N(τ)N(0)〉 ssβ κ sea L 3 T b [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df12 3 32 7 4,14 0.89 6,14 0.88 4,12 0.575.32144 0.1665 14 3 32 7 8,14 2.48 4,14 1.51 4,11 0.805.55.616 3 32 7 3,15 1.16 3,15 1.36 3,14 1.340.1580 16 3 32 7 6,15 0.87 6,15 1.05 4,14 0.950.1590 16 3 32 8 4,15 1.09 4,15 0.77 4,14 0.880.1596 16 3 32 5 4,15 1.24 4,15 1.08 4,14 1.210.1600 16 3 32 6 7,15 1.78 4,15 0.75 6,14 0.800.1560 16 3 32 5 4,15 0.43 4,15 0.59 4,14 0.600.1565 16 3 32 7 11,15 1.96 7,15 1.56 7,14 0.850.1570 16 3 32 7 4,15 0.45 6,15 0.50 6,14 0.9110 3 32 9 6,15 1.90 12,15 0.79 6,14 0.7212 3 32 9 8,15 0.90 6,15 0.37 7,14 1.470.1575 14 3 32 6 8,15 1.42 8,15 0.41 5,14 0.580.158016 3 32 4 7,15 0.40 9,15 0.61 7,14 0.9924 3 40 7 7,19 0.81 7,19 1.31 7,18 0.4012 3 32 3 6,15 1.07 6,15 1.31 5,14 0.9414 3 32 5 6,15 1.54 7,15 0.85 7,14 0.6016 3 32 8 6,15 0.51 10,15 1.72 4,14 0.3424 3 40 9 6,19 1.08 7,19 1.54 10,18 0.45Table 4.2: Fit parameters for the fully smeared pseudoscalar, vector and nucleon correlators. b denotesthe blocksize for the jackknife, [τ m<strong>in</strong> , τ max ] is the fitted <strong>in</strong>terval and χ 2 /df <strong>in</strong>dicates the fit quality.also <strong>in</strong> the plateau region. The effective mass plot <strong>in</strong> Figure 4.3 demonstrates that the sameasymptotic value is reached faster by the fully smeared correlation function than by the localsmearedcorrelator, which is usually reflected <strong>in</strong> smaller values for τ m<strong>in</strong> . While this is exactly thedesired effect it comes at a prize, though, because the statistical fluctuations around the plateaumass and the error bars are <strong>in</strong> general larger <strong>in</strong> case of the fully smeared correlator. With theexception of the pseudoscalar correlator the statistical noise <strong>in</strong> the data generally grows <strong>with</strong>τ, until it may eventually dom<strong>in</strong>ate over the signal. This effect can also be controlled via theeffective mass plot and accounted for by adapt<strong>in</strong>g τ max appropriately.The second control parameter used to f<strong>in</strong>d a suitable τ m<strong>in</strong> is the fit parameter M itself. Plottedaga<strong>in</strong>st τ m<strong>in</strong> (for fixed τ max ) it should, <strong>with</strong><strong>in</strong> the statistical uncerta<strong>in</strong>ty, show no bias <strong>with</strong>respect to the choice of τ m<strong>in</strong> . (Often, however, due to the statistical noise at large values ofτ, a plateau can only be identified at <strong>in</strong>termediate values of τ m<strong>in</strong> .) F<strong>in</strong>ally, the third criterionis supplied by the correspond<strong>in</strong>g values of χ 2 /dof which, ideally, should exhibit a dist<strong>in</strong>ctivem<strong>in</strong>imum near 1.Besides the boundaries of the fit <strong>in</strong>terval we also tune the blocksize b for the jackknife as <strong>in</strong>troduced<strong>in</strong> Section 3.8. Plott<strong>in</strong>g the standard error σ(M) versus b we look for a plateau <strong>in</strong>dicat<strong>in</strong>gwhere the error becomes <strong>in</strong>dependent of the blocksize. Due to the fact that our samples are


4.2. Light Hadron Masses 67β κ sea L 3 T M PS L M PS /M V M PS M V M N12 3 32 3.18(8) 0.521(23) 0.2648(67) 0.508(26) 0.788(26)5.32144 0.1665 14 3 32 3.6(1) 0.497(20) 0.2577(87) 0.518(12) 0.779(16)16 3 32 4.42(7) 0.552(11) 0.2760(42) 0.4999(78) 0.727(11)0.1580 16 3 32 8.85(6) 0.8506(31) 0.5534(39) 0.6506(46) 1.026(18)5.50.1590 16 3 32 7.09(4) 0.8010(53) 0.4429(26) 0.5529(54) 0.8718(78)0.1596 16 3 32 5.89(4) 0.7512(51) 0.3682(27) 0.4902(52) 0.7640(75)0.1600 16 3 32 4.89(5) 0.6725(93) 0.3058(34) 0.4547(61) 0.703(10)0.1560 16 3 32 7.15(4) 0.8330(16) 0.4469(23) 0.5365(36) 0.8533(62)0.1565 16 3 32 6.32(6) 0.7912(72) 0.3948(38) 0.4989(54) 0.785(10)0.1570 16 3 32 5.52(5) 0.7627(58) 0.3452(29) 0.4527(52) 0.7095(90)10 3 32 4.92(6) 0.838(30) 0.4919(55) 0.587(20) 1.042(20)12 3 32 4.3(1) 0.724(11) 0.3576(89) 0.494(12) 0.817(16)5.60.1575 14 3 32 4.27(6) 0.691(11) 0.3048(44) 0.4413(66) 0.719(16)16 3 32 4.49(6) 0.6952(99) 0.2806(35) 0.4036(68) 0.6254(89)24 3 40 6.64(6) 0.7010(62) 0.2765(26) 0.3944(38) 0.5920(75)12 3 32 4.6(1) 0.722(20) 0.387(12) 0.535(17) 0.882(25)0.158014 3 32 4.13(8) 0.630(13) 0.2949(60) 0.4677(90) 0.717(19)16 3 32 3.72(8) 0.627(21) 0.2325(51) 0.371(13) 0.622(12)24 3 40 4.78(8) 0.566(17) 0.1991(33) 0.3519(86) 0.500(12)Table 4.3: Masses of the pseudoscalar and vector mesons and of the nucleon <strong>in</strong> lattice units.f<strong>in</strong>ite, σ(M) does of course show statistical fluctuation even when it does not display an overalltendency to rise <strong>with</strong> <strong>in</strong>creas<strong>in</strong>g b. In this case we assume that the elements of the chosensubsample are, at least <strong>with</strong> regard to the considered observable, statistically <strong>in</strong>dependent. If,on the other hand, we observe a significant <strong>in</strong>itial <strong>in</strong>crease of the error on top of the fluctuationsand before saturation, we take this as a h<strong>in</strong>t that the elements of the sub-sample are stillcorrelated, mean<strong>in</strong>g that the separation <strong>in</strong> MC time between the selected gauge configurations,∆t, has been chosen too small for the configurations to be truly <strong>in</strong>dependent. This remnantautocorrelation time is however elim<strong>in</strong>ated by the blocked jackknife.Figure 4.3 shows examples of the plots that we have used to determ<strong>in</strong>e the boundaries of the fit<strong>in</strong>tervals, τ m<strong>in</strong> and τ max , and the blocksize b for the jackknife. The selected values for the fullysmeared pseudoscalar, vector and nucleon 2-po<strong>in</strong>t functions are displayed <strong>in</strong> Table 4.2, together<strong>with</strong> the χ 2 /dof-values the fits. The numbers for the correspond<strong>in</strong>g ls correlation functions andfor the pseudoscalar correlators (3.11) (ss and ls) are listed <strong>in</strong> Tables C.1–C.3 <strong>in</strong> Appendix C.Although a priori the onset of plateau formation is not <strong>in</strong>dependent of the considered correlatorit has always been possible to f<strong>in</strong>d—at a given β, κ and L— a universal blocksize b such as toaccount for the errors of all the respective hadron masses together.The masses (<strong>in</strong> lattice units) of the pseudoscalar and vector mesons and of the nucleon are given<strong>in</strong> Table 4.3. Hav<strong>in</strong>g checked that the masses obta<strong>in</strong>ed from the local-smeared and the fullysmeared correlators are consistent we only quote the values obta<strong>in</strong>ed from the latter here and


68 Chapter 4. Light Hadron Spectroscopyβ κ sea L 3 T La[ fm] (r 0 m PS ) 2 m PS [ GeV] m V [ GeV] m N [ GeV]12 3 32 1.56(2) 1.037(57) 0.402(11) 0.771(40) 1.195(42)5.32144 0.1665 14 3 32 1.82(2) 0.982(68) 0.391(14) 0.786(20) 1.182(26)5.55.616 3 32 2.08(2) 1.126(43) 0.4188(75) 0.759(14) 1.104(20)0.1580 16 3 32 1.99(1) 4.97(20) 0.8795(81) 1.0340(95) 1.631(30)0.1590 16 3 32 1.82(1) 3.77(12) 0.7666(64) 0.957(11) 1.509(16)0.1596 16 3 32 1.71(1) 2.96(10) 0.6793(70) 0.904(12) 1.410(17)0.1600 16 3 32 1.64(1) 2.235(85) 0.5901(75) 0.877(13) 1.356(21)0.1560 16 3 32 1.567(9) 5.20(18) 0.9002(69) 1.0807(94) 1.719(16)0.1565 16 3 32 1.51(1) 4.35(25) 0.823(11) 1.040(15) 1.637(27)0.1570 16 3 32 1.46(2) 3.57(21) 0.746(12) 0.978(17) 1.533(28)10 3 32 0.849(4) 8.40(59) 1.144(14) 1.365(48) 2.424(47)12 3 32 1.018(5) 4.44(48) 0.832(21) 1.149(27) 1.901(38)0.1575 14 3 32 1.188(5) 3.22(18) 0.709(11) 1.026(16) 1.671(39)0.158016 3 32 1.358(6) 2.73(12) 0.6524(86) 0.938(16) 1.454(22)24 3 40 2.037(9) 2.654(90) 0.6429(67) 0.9171(98) 1.377(19)12 3 32 0.963(9) 5.80(88) 0.951(30) 1.316(44) 2.167(66)14 3 32 1.12(1) 3.37(28) 0.725(16) 1.150(25) 1.763(50)16 3 32 1.28(1) 2.10(15) 0.572(14) 0.912(33) 1.530(32)24 3 40 1.93(2) 1.539(74) 0.4896(94) 0.865(23) 1.228(31)Table 4.4: Masses of the pseudoscalar meson, the vector meson and the nucleon <strong>in</strong> physical units (us<strong>in</strong>gr 0 = 0.5 fm).<strong>in</strong> the follow<strong>in</strong>g. The quoted errors are statistical <strong>in</strong> nature and of the order of one percent.Table 4.3 also shows M PS (L)L, the l<strong>in</strong>ear box size <strong>in</strong> units of the pseudoscalar correlation length1/M PS (L), where M PS (L) is the pion mass <strong>in</strong> the given f<strong>in</strong>ite volume. It should be borne<strong>in</strong> m<strong>in</strong>d that for sub-asymptotic volumes this value is <strong>in</strong> general different from M PS L, whereM PS is the pseudoscalar mass <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume. The ratios M PS /M V are a measure of thesimulated quark mass, respectively. 2 At (β, κ) = (5.32144, 0.1665) we atta<strong>in</strong> our lightest quarkmass, <strong>with</strong> M PS /M V be<strong>in</strong>g close to the vector meson decay threshold of M PS /M V = 0.5. Us<strong>in</strong>gr 0 = 0.5 fm to set the scale the hadron masses of Table 4.3 translate <strong>in</strong>to the physical values listed<strong>in</strong> Table 4.4. 3 It shows also the physical box sizes La, where the lattice spac<strong>in</strong>gs a have beendeterm<strong>in</strong>ed on the largest available lattice, respectively (see also Table 4.1). The dimensionlessquantityM r = (r 0 m PS ) 2 (4.8)2 The physical value is m π/m ρ = 0.178.3 Although the Sommer scale is <strong>in</strong> general quark mass dependent we neglect this dependence here because wehave only one quark mass at β = 5.32144 (and because we assume that the dependence is weak). The dimensionfulquantities <strong>in</strong> Table 4.4 have been calculated us<strong>in</strong>g r 0 as obta<strong>in</strong>ed on the largest lattice for the respective quarkmass, i.e. <strong>with</strong>out chiral extrapolation. A chiral extrapolation might yield slightly larger values for r 0 thanthose given <strong>in</strong> Table 4.1. This would mean that quantities <strong>with</strong> the dimension of a length (a, La) are somewhatoverestimated, whereas those <strong>with</strong> dimension of a mass (m PS, m V, m N ) are rather underestimated. See Ref. [98]for a recent discussion of the quark mass dependence of r 0.


4.3. Polyakov Loops 69β κ sea L 3 T F (1)PS /Z A F (2)PS /Z AZ q M q12 3 32 0.062(10) 0.058(15) 0.0106(33)5.32144 0.1665 14 3 32 0.0757(56) 0.0774(73) 0.0152(18)5.55.616 3 32 0.0843(62) 0.0771(44) 0.0155(12)0.1580 16 3 32 0.1073(42) 0.1062(49) 0.0821(35)0.1590 16 3 32 0.0945(23) 0.0930(27) 0.0544(12)0.1596 16 3 32 0.0815(16) 0.0766(14) 0.03724(81)0.1600 16 3 32 0.0750(23) 0.0746(39) 0.0279(15)0.1560 16 3 32 0.0843(19) 0.0823(21) 0.0620(11)0.1565 16 3 32 0.0805(18) 0.0757(20) 0.0467(15)0.1570 16 3 32 0.0726(16) 0.0704(18) 0.0391(15)10 3 32 0.0284(30) 0.0256(37) 0.0209(32)12 3 32 0.0429(34) 0.0425(31) 0.0249(19)0.1575 14 3 32 0.0566(30) 0.0559(44) 0.0261(22)0.158016 3 32 0.0626(26) 0.0640(34) 0.0275(16)24 3 40 0.0646(18) 0.0623(19) 0.02680(68)12 3 32 0.022(12) 0.016(10) 0.0113(88)14 3 32 0.0233(32) 0.0216(34) 0.0099(17)16 3 32 0.0469(26) 0.0456(34) 0.0141(11)24 3 40 0.0602(39) 0.0578(34) 0.0157(11)Table 4.5: The pseudoscalar decay constant and the PCAC quark mass. F (1)PS /Z A has been obta<strong>in</strong>edaccord<strong>in</strong>g to Eq. (3.29), F (2)PS /Z A accord<strong>in</strong>g to Eq. (3.28).is another measure of the quark mass, s<strong>in</strong>ce for m q → 0 the pion mass behaves like m π ∝ √ m q[78]. At the physical strange quark mass it gives M r ≈ 3.1. For those of our parameter setswhere we have simulated several lattice volumes the value of M r ranges between M r ≈ 2.65 andM r ≈ 1.13, correspond<strong>in</strong>g to about 85 and 36% of the value for the strange quark mass.Table 4.5 shows our lattice results for the unrenormalized pseudoscalar decay constant F PS /Z Aas obta<strong>in</strong>ed <strong>in</strong> the two different ways <strong>in</strong>troduced <strong>in</strong> Section 3.6. With<strong>in</strong> the statistical errors (ofcomparable size) the two methods yield consistent results. The normalization of the pseudoscalardecay constant is such that the physical value is f π = 92.4 MeV. The bare PCAC quark massZ q M q , where Z q = Z P /Z A is the multiplicative renormalization factor, is given <strong>in</strong> the last columnof Table 4.5.4.3 Polyakov LoopsAn <strong>in</strong>vestigation <strong>in</strong>to f<strong>in</strong>ite-size effects requires data from a number of simulations <strong>with</strong> differentlattice volumes, and <strong>with</strong> respect to the computational cost it is of course preferable to use rathersmall lattices. However, s<strong>in</strong>ce we want do do spectroscopy <strong>in</strong> the hadronic zero-temperaturephase of <strong>QCD</strong>, we should make sure that the lattices we <strong>in</strong>vestigate are not too small, because <strong>in</strong>


70 Chapter 4. Light Hadron Spectroscopyβ κ sea L 3 T〈 〉Re Pz〈 〉Im Pz12 3 32 -0.00056433(3) -0.0003573(2)5.32144 0.1665 14 3 32 -0.0000179(2) -0.00003209(4)16 3 32 0.00012251(3) -0.00021856(4)10 3 32 -0.0131032(3) -0.006341(8)12 3 32 -0.0029148(3) 0.0012405(6)0.1575 14 3 32 -0.00083854(3) 0.00008748(3)16 3 32 0.00020948(3) 0.00004254(5)5.6 24 3 40 -0.000078415(8) -0.00009462(1)12 3 32 -0.003798(2) 0.005014(3)0.158014 3 32 -0.00135725(6) 0.0003214(3)16 3 32 -0.00037040(4) -0.00022400(4)24 3 40 -0.00010810(2) 0.00012503(1)Table 4.6: Ensemble averages of the mean <strong>Wilson</strong> l<strong>in</strong>e <strong>in</strong> z-direction.this case we would expect the generated gauge fields to resemble more those at f<strong>in</strong>ite temperature.In the absence of dynamical quarks, i.e. <strong>in</strong> quenched <strong>QCD</strong>, the expectation value of the Polyakovloop, which is def<strong>in</strong>ed as〈〉〈 〉 1 ∑ T∏P =L 3 Tr U 4 (x, τ) , (4.9)xis zero <strong>in</strong> the conf<strong>in</strong>ed phase, while <strong>in</strong> the deconf<strong>in</strong>ed phase 〈P 〉 ̸= 0. Therefore <strong>in</strong> pure gaugetheory 〈P 〉 is an order parameter for the deconf<strong>in</strong><strong>in</strong>g phase transition. This is due to theglobal Z(3) symmetry of the pure SU(3) gauge theory which is spontaneously broken at thephase transition. 4 In full <strong>QCD</strong> the Polyakov loop is not an order parameter because the Z(3)symmetry of the gluonic action is explicitly broken by the quark action, so that 〈P 〉 is not exactlyzero <strong>in</strong> the hadronic phase. In our simulations it is not the time extent T which is varied, butthe spatial lattice size L. Due to the space-time symmetry of the Euclidean metric, however,similar considerations also apply to Polyakov-type loops <strong>in</strong> the spatial directions (which we alsocall <strong>Wilson</strong> l<strong>in</strong>es). Let us, for def<strong>in</strong>iteness, consider the mean <strong>Wilson</strong> l<strong>in</strong>e <strong>in</strong> z-direction, whichis def<strong>in</strong>ed configuration-wise asP z = 1L 2 T∑x 1 ,x 2 ,τTrL∏x 3 =1τ=1U 3 (x 1 , x 2 , x 3 , τ). (4.10)As can be seen from Table 4.6, the expectation values 〈P z 〉 for all GRAL simulations are <strong>in</strong>deedsignificantly different from zero, even on the largest lattices. While for the larger lattices the4 A Z(3) transformation is applied by multiply<strong>in</strong>g all l<strong>in</strong>ks orig<strong>in</strong>at<strong>in</strong>g from a given x µ = const. hyperplane<strong>in</strong> direction µ by an element z ∈ Z(3). The group Z(3) is the center of SU(3), i.e. it conta<strong>in</strong>s those elementsof SU(3) that commute <strong>with</strong> every U ∈ SU(3). These elements are explicitly given by the complex numbersz = e 2πνi/3 , ν = 0, 1, 2. The pure gauge action S g is left <strong>in</strong>variant by a Z(3) transformation, similarly anyclosed (<strong>Wilson</strong>-type) loop that crosses the x µ = const. plane the same number of times <strong>in</strong> the positive and <strong>in</strong> thenegative µ-direction. Under a Z(3) transformation of the time-like l<strong>in</strong>ks on a τ = const. hyperplane, Polyakovloops transform accord<strong>in</strong>g to P ↦→ zP .


4.3. Polyakov Loops 71-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.040.040.020-0.02-0.04L=10L=12L=140.040.020-0.02-0.04L=16 L=24Figure 4.4: Distribution <strong>in</strong> the complex plane of the <strong>Wilson</strong> l<strong>in</strong>e P z for the different lattices simulatedat (β, κ) = (5.6, 0.1575). The l<strong>in</strong>es <strong>in</strong>dicate the three Z(3) directions 1, e 2πi/3 and e 4πi/3 .deviation from zero is relatively small it becomes more pronounced as the box size shr<strong>in</strong>ks.〈Re P z 〉 <strong>in</strong> particular takes <strong>in</strong>creas<strong>in</strong>gly negative values towards the smaller lattice sizes. Thiscan be understood by look<strong>in</strong>g at the distribution of P z .Figure 4.4 shows the distribution <strong>in</strong> the complex plane of P z for the lattice volumes simulated at(β, κ) = (5.6, 0.1575). The l<strong>in</strong>es <strong>in</strong> the plots <strong>in</strong>dicate the three Z(3) directions 1, e 2πi/3 and e 4πi/3 .Apart from the L-dependent fluctuations we observe for the larger lattices an approximatelypo<strong>in</strong>t-symmetric accumulation of the <strong>Wilson</strong> l<strong>in</strong>e around zero. This is reflected <strong>in</strong> the smallnessof |〈P z 〉| and the correspond<strong>in</strong>g statistical errors at large L (see Table 4.6). The situation issomewhat different for the smallest, 10 3 lattice, where the distribution of <strong>Wilson</strong> l<strong>in</strong>es is shiftedtowards the Z(3) directions e 2πi/3 and e 4πi/3 , which leads to the relatively large negative valueof 〈Re P z 〉.The observed behavior of the <strong>Wilson</strong> l<strong>in</strong>e distribution as well as its implications for f<strong>in</strong>ite-sizeeffects <strong>in</strong> hadron masses have been expla<strong>in</strong>ed at length by S. Aoki et al. <strong>in</strong> the context of theircomparative study of f<strong>in</strong>ite-size effects <strong>in</strong> quenched and full <strong>QCD</strong> simulations [60]. Here webriefly recapitulate their arguments for our choice of boundary conditions. Let us consider ameson propagator Γ(τ) on a lattice of size L 3 <strong>with</strong> a sufficiently large time extent T . A hopp<strong>in</strong>gparameter expansion of Γ(τ) yields a representation of the meson propagator <strong>in</strong> terms of closedvalence quark loops C go<strong>in</strong>g through the meson source and s<strong>in</strong>k. If we denote the correspond<strong>in</strong>gl<strong>in</strong>k factors Tr ∏ l∈C U l by P (C) for Polyakov-type loops that w<strong>in</strong>d around the lattice <strong>in</strong> a spatial


72 Chapter 4. Light Hadron Spectroscopydirection, and W (C) for ord<strong>in</strong>ary <strong>Wilson</strong>-type loops, the meson propagator can be written as− 〈 Γ(τ) 〉 = ∑ Cκ L(C)val〈W (C)〉+∑Cκ L(C)valσ val〈P (C)〉, (4.11)where L(C) is the length of the respective loop and the sign factor σ val is equal to +1 for theperiodic spatial boundary conditions used for valence quarks <strong>in</strong> our simulations. Our observeddistribution of <strong>Wilson</strong> l<strong>in</strong>es (spatial Polyakov loops) can be understood <strong>with</strong> the help of the 3-dPotts model <strong>with</strong> magnetic field that we recover when we expand the full <strong>QCD</strong> action first <strong>in</strong> thegauge coupl<strong>in</strong>g β and then <strong>in</strong> <strong>in</strong>verse powers of the sea quark mass [130]. Introduc<strong>in</strong>g the quarkaction <strong>in</strong> <strong>QCD</strong> is then equivalent to switch<strong>in</strong>g on a magnetic field h <strong>in</strong> the Potts model thatbreaks the Z(3) symmetry of the system. Consider<strong>in</strong>g the phase of the spatial Polyakov loop asa sp<strong>in</strong> that can take one of the three possible values 1, e 2πi/3 and e 4πi/3 , the magnetic field alignsthe sp<strong>in</strong>s to preferred directions depend<strong>in</strong>g on the sign of h: for h = −|h| (correspond<strong>in</strong>g toantiperiodic spatial boundary conditions for sea quarks) the positive real axis is favored, whereasfor h = +|h| (periodic spatial boundary conditions for sea quarks) the two directions e 2πi/3 ande 4πi/3 (po<strong>in</strong>t<strong>in</strong>g towards negative values) are preferred. If we recall that we have used periodicboundary conditions for sea quarks this expla<strong>in</strong>s the plot for L = 10 <strong>in</strong> figure 4.4. The discussionabove shows, moreover, that <strong>in</strong> the case of periodic spatial boundary conditions for both seaand valence quarks the contribution of Polyakov-type loops to the meson propagator (4.11) isnegative. S<strong>in</strong>ce mean values of <strong>Wilson</strong>-type loops are always positive, the two contributions <strong>in</strong>(4.11) have opposite sign, which leads to a faster decrease of the correlator and thus to a largermeson mass.For fixed sea and valence quark mass this effect grows weaker for <strong>in</strong>creas<strong>in</strong>g lattice size becausethe contribution of the Polyakov-type loops decreases on the average. On the other hand, <strong>in</strong> afixed lattice volume <strong>with</strong> periodic boundary conditions f<strong>in</strong>ite-size effects <strong>in</strong> hadron masses get<strong>in</strong>creas<strong>in</strong>gly significant both for decreas<strong>in</strong>g sea and valence quark mass. This has <strong>in</strong>deed beenobserved e.g. <strong>in</strong> Ref. [124], where partially quenched chiral extrapolations of the pseudoscalarand vector masses were studied for the different κ sea -values at β = 5.5 and 5.6 (see Table 3.6).The sea quark mass dependence of the expectation value of the <strong>Wilson</strong> l<strong>in</strong>e can also be seen <strong>in</strong>Table 4.6 if one compares at β = 5.6 the value for a given lattice size at κ sea = 0.1575 <strong>with</strong> thecorrespond<strong>in</strong>g value at κ sea = 0.158. We f<strong>in</strong>d that <strong>in</strong> the same volume 〈Re P z 〉 is more negativefor the larger κ sea , correspond<strong>in</strong>g to a smaller quark mass. This leads to a stronger cancellationof the two terms <strong>in</strong> (4.11) and hence to a larger f<strong>in</strong>ite-size effect <strong>in</strong> the hadron masses.For completeness, Figures 4.5 and 4.6 show the distribution of the <strong>Wilson</strong> l<strong>in</strong>e for the simulatedvolumes at (β, κ) = (5.6, 0.158) and (5.32144, 0.1665). For the smallest, 12 3 lattice at (β, κ) =(5.6, 0.158) one might suspect a slight deviation from the rotation-symmetric pattern centeredapproximately around zero, as it is displayed by the other distributions. For a def<strong>in</strong>ite statementthe statistical basis is probably too small, however.4.4 Volume Dependence of the Light Hadron MassesLet us now take a closer look at the actual lattice size dependence of our measured hadron masses.The three parameter sets for which we have simulated several lattice volumes, namely (β, κ) =(5.6, 0.1575), (5.6, 0.158) and (5.32144, 0.1665), are characterized by the quark mass, which <strong>in</strong>turn can be expressed <strong>in</strong> terms of the pion mass via the GMOR relation. Therefore we sometimesquote the pion mass measured on the largest lattice, respectively, when we refer to a particular


4.4. Volume Dependence of the Light Hadron Masses 73-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.040.040.020-0.02-0.04L=12L=14L=160.040.020-0.02-0.04L=24Figure 4.5: Same as Figure 4.4 for (β, κ) = (5.6, 0.158).-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.04-0.04 -0.02 0 0.02 0.040.040.020-0.02-0.04L=12L=14L=16Figure 4.6: Same as Figure 4.4 for (β, κ) = (5.32144, 0.1665).


74 Chapter 4. Light Hadron Spectroscopyβ κ sea L 3 TM PS4πF PS /Z AR PS R V R N12 3 32 0.34(6) -0.04(3) 0.02(5) 0.08(4)5.32144 0.1665 14 3 32 0.27(2) -0.07(3) 0.04(3) 0.07(3)16 3 32 0.26(2) 0 0 010 3 32 1.4(1) 0.78(3) 0.49(5) 0.76(4)12 3 32 0.66(6) 0.29(3) 0.25(3) 0.38(3)0.1575 14 3 32 0.43(2) 0.10(2) 0.12(2) 0.21(3)16 3 32 0.36(2) 0.01(2) 0.02(2) 0.06(2)5.6 24 3 40 0.341(10) 0 0 00.158012 3 32 1.4(8) 0.94(7) 0.52(6) 0.76(7)14 3 32 1.0(1) 0.48(4) 0.33(4) 0.44(5)16 3 32 0.39(2) 0.17(3) 0.05(5) 0.25(4)24 3 40 0.26(2) 0 0 0Table 4.7: Ratios of the pseudoscalar mass to the chiral symmetry break<strong>in</strong>g scale, and the relativef<strong>in</strong>ite-size effects accord<strong>in</strong>g to Eq. (4.12).simulation po<strong>in</strong>t (β, κ) (bear<strong>in</strong>g <strong>in</strong> m<strong>in</strong>d that it is only a—sufficiently good—approximation tothe true <strong>in</strong>f<strong>in</strong>ite volume pion mass). Hence we <strong>in</strong>vestigate the volume dependence of the pion,rho and nucleon for pion masses of approximately 643 MeV, 490 MeV and 419 MeV <strong>in</strong> the ranges0.85 fm–2.04 fm, 0.96 fm–1.93 fm and 1.56 fm–2.08 fm, respectively. Although to our knowledgethere is no theoretical prediction of the f<strong>in</strong>ite-size effect of the rho resonance we <strong>in</strong>clude it <strong>in</strong> ourempirical analysis. 5Figures 4.7–4.9 show, for the three different quark masses, the pion, rho and nucleon masses <strong>in</strong>physical units as functions of the box-size. 6 Before we go <strong>in</strong>to the details of the fits that are alsoshown <strong>in</strong> the plots, let us first discuss the general features of the data. In Table 4.7 we list therelative differences of the masses measured at L and L max ,R H (L) = M H(L) − M H (L max ), (4.12)M H (L max )where H = PS, V, N and L max = 24 (L max = 16) for β = 5.6 (β = 5.32144). In the plots andthe table we f<strong>in</strong>d for both quark masses at β = 5.6 a large variation of the hadron masses overthe considered range of lattice sizes. While the f<strong>in</strong>ite-size effects <strong>in</strong> the pion, rho and nucleonmasses are relatively small if one compares only the two largest lattices at κ = 0.1575 (of theorder of a few percent, <strong>in</strong> case of the pion it is not even significant), they rapidly grow onthe smaller volumes (∼ 50–80% at L = 10). The rate of the <strong>in</strong>crease is hadron dependent:While at large L the pion has the smallest relative f<strong>in</strong>ite-size effect, the relative shift <strong>in</strong> thepion mass grows strongest <strong>with</strong> decreas<strong>in</strong>g L, until it exceeds the effect <strong>in</strong> the rho mass from5 Due to angular momentum conservation the decay ρ → ππ is suppressed on small lattices where the m<strong>in</strong>imumnon-zero momentum 2π/L is large.6 As we use the same scale r 0/a for all lattices at a given (β, κ) the conversion to physical units us<strong>in</strong>g r 0 = 0.5 fmsimply amounts to a rescal<strong>in</strong>g of the lattice sizes L by the same constant factor (0.5 fm)/(r 0/a), while the rawlattice masses M = am are multiplied by the <strong>in</strong>verse of this factor.


4.4. Volume Dependence of the Light Hadron Masses 752.52PSVNm [GeV]1.510.50.5 1 1.5 2 2.5La [fm]Figure 4.7: Box-size dependence of the pseudoscalar and vector meson masses and of the nucleon massat (β, κ) = (5.6, 0.1575). The solid l<strong>in</strong>es correspond to exponential fits to (4.15) <strong>with</strong> c 2 = m PS , whilethe dashed l<strong>in</strong>es represent fits to the power law (4.13) <strong>with</strong> c 2 = 3. Outside the fitted <strong>in</strong>terval the curvesare dotted.2.52PSVNm [GeV]1.510.500.5 1 1.5 2 2.5La [fm]Figure 4.8: Same as Figure 4.7 for (β, κ) = (5.6, 0.158).


76 Chapter 4. Light Hadron Spectroscopy2.52PSVNm [GeV]1.510.500.5 1 1.5 2 2.5La [fm]Figure 4.9: Same as Figure 4.7 for (β, κ) = (5.32144, 0.1665).L = 12 and that <strong>in</strong> the nucleon mass from L = 10 downwards. Consider<strong>in</strong>g the f<strong>in</strong>ite-sizeeffects at κ = 0.158 (correspond<strong>in</strong>g to a lower quark mass) we notice that at a given valueof L the f<strong>in</strong>ite-size effects are generally much larger at κ = 0.158 than at 0.1575. Aga<strong>in</strong> weobserve that the pion is subject to the strongest relative effect <strong>in</strong> the regime of small volumes.F<strong>in</strong>ally, at (β, κ) = (5.32144, 0.1665) (correspond<strong>in</strong>g to the lightest of our quark masses), we f<strong>in</strong>drather small f<strong>in</strong>ite-size effects of only a few percent <strong>in</strong> the simulated L-range, for all consideredhadrons. In view of the small M PS L values (see Table 4.4) this is rather strik<strong>in</strong>g: if the f<strong>in</strong>itesizeeffects were a function of M PS L only we would expect the effects at β = 5.32144 to matchthose on the smaller volumes at β = 5.6. On the other hand, due to the large lattice spac<strong>in</strong>gat β = 5.32144, the simulated boxes are, <strong>in</strong> physical units, also quite large. Both the pion andthe rho show no clear <strong>in</strong>crease of the f<strong>in</strong>ite-size effect towards decreas<strong>in</strong>g box-size, which weattribute to the smallness of the effect and statistical fluctuations (recall that the simulations<strong>with</strong> the smaller lattices at β = 5.32144 were affected by sizeable fluctuations). In case of thenucleon the f<strong>in</strong>ite-size effect is more significant. In view of these peculiarities we concentrate<strong>in</strong> the follow<strong>in</strong>g <strong>in</strong>vestigations on β = 5.6 and defer a more detailed discussion of the data at(β, κ) = (5.32144, 0.1665) to Section 4.4.2.4.4.1 Simple Parameterizations of the Volume DependenceIn order to <strong>in</strong>vestigate empirically the functional form of the box-size dependence of our hadronmass data we first exam<strong>in</strong>e two “naive” parameterizations motivated by the formulae <strong>in</strong>troduced<strong>in</strong> Chapter 2. It is important to realize that the formulae of Chapter 2 have their limited range ofvalidity, respectively, which probably does not co<strong>in</strong>cide <strong>with</strong> the entire parameter regime spannedby our simulations. In particular those formulae <strong>in</strong>volv<strong>in</strong>g results from chiral perturbation theory


4.4. Volume Dependence of the Light Hadron Masses 77require rather small quark masses, and Lüscher’s asymptotic formula moreover requires largevolumes. As we are first of all <strong>in</strong>terested <strong>in</strong> the question whether we can f<strong>in</strong>d a parameterizationof the f<strong>in</strong>ite-size effects that connects small and medium-sized volumes to the asymptotic regimewe defer a more detailed discussion of the applicability of the ChPT-related formulae until wehave seen how well the volume dependence of our data can be described by simpler functions.In the follow<strong>in</strong>g we focus on the data sets at (β, κ) = (5.6, 0.1575) and (5.6, 0.158). While onthe basis of the Polyakov loop distributions considered <strong>in</strong> Section 4.3 one might suspect that thesmallest lattices at these parameters are already too small, an unbiased look at the measuredhadron masses does not immediately confirm this suspicion. We therefore do not exclude thesedata po<strong>in</strong>ts a priori from the follow<strong>in</strong>g fits.Power LawThe first ansatz that we study is a power law of the formpow: m H (La) = m H + c 1 (La) −c 2. (4.13)We first keep the parameter c 2 fixed at 3. The parameters m H and c 1 as determ<strong>in</strong>ed by fitt<strong>in</strong>g thepion (PS), rho (V) and nucleon (N) data to (4.13) are listed <strong>in</strong> Tables D.1–D.3 <strong>in</strong> the appendix.For each of the 2-parameter fits we use at least three data po<strong>in</strong>ts. The last two columns ofthe tables show the relative deviations of m H (L max a) and m H ≡ m H (La = ∞) (as obta<strong>in</strong>edfrom the fits) from the hadron mass measured on the largest available lattice, respectively. 7 Weexam<strong>in</strong>e the effect of the fit range [L 1 , L 2 ] on the quality of the fits by first keep<strong>in</strong>g L 1 fixed and<strong>in</strong>creas<strong>in</strong>g L 2 up to its maximal value, and then vary<strong>in</strong>g L 1 for fixed L 2 . On <strong>in</strong>spection of the fitresults for (β, κ) = (5.6, 0.1575) we observe that for the same number of degrees of freedom χ 2is <strong>in</strong> general smaller <strong>in</strong> the region of small L than <strong>in</strong> the asymptotic regime. The same is truefor the pion and the nucleon at (β, κ) = (5.6, 0.158) (where the rho data cannot be fitted verywell <strong>in</strong> general). The fit results for the maximal fit ranges, [L m<strong>in</strong> , L max ], are displayed for all ourβ, κ comb<strong>in</strong>ations <strong>in</strong> Figures 4.7–4.9 (dashed curves). On the whole we f<strong>in</strong>d that the power law<strong>with</strong> fixed c 2 = 3 provides an acceptable description of the data at our two larger quark massesas long as the box-size is small ( 1.5 fm) and the relative f<strong>in</strong>ite-size effects are of the order ofat least several percent. From our results at (β, κ) = (5.6, 0.1575) and (5.6, 0.158) we <strong>in</strong>fer that<strong>in</strong> terms of M PS L the L −3 behavior holds <strong>with</strong><strong>in</strong> the regime ofM PS L 4.5..4.8. (4.14)In view of this result it is clear that the power law cannot correctly predict the asymptotic f<strong>in</strong>itesizeeffect. As we assume the largest, 24 3 volume at (β, κ) = (5.6, 0.1575) to be—for all practicalpurposes—free of f<strong>in</strong>ite-size effects, it is obvious from Table D.1 that an extrapolation of thepower law from its validity doma<strong>in</strong> at small volumes to the <strong>in</strong>f<strong>in</strong>ite volume grossly overestimatesthe true f<strong>in</strong>ite-size effect.The next ansatz we consider is the power law (4.13) <strong>with</strong> c 2 as a free parameter. The parametervalues result<strong>in</strong>g from different fits of the data are listed <strong>in</strong> Tables D.4–D.6 <strong>in</strong> the appendix.We f<strong>in</strong>d acceptable descriptions of the data <strong>with</strong> χ 2 /dof rang<strong>in</strong>g between 2.24 (pion) and 3.82(nucleon) at (β, κ) = (5.6, 0.1575), while at (β, κ) = (5.6, 0.158) the fit quality is somewhat7 By L max = L max(β, κ) we denote the largest l<strong>in</strong>ear lattice size we have simulated for a given β, κ comb<strong>in</strong>ation:L max = 24 for the two κ-values at β = 5.6, and L max = 16 for β = 5.32144. Similarly, L m<strong>in</strong>(5.6, 0.1575) = 10 andL m<strong>in</strong>(5.6, 0.158) = L m<strong>in</strong>(5.32144, 0.1665) = 12.


78 Chapter 4. Light Hadron Spectroscopyworse (χ 2 /dof = 4.18 for the pion and 9.23 for the rho). On the other hand, just as it wasthe case <strong>with</strong> our previous ansatz, the nucleon data at (β, κ) = (5.6, 0.158) fit the power lawparticularly well (χ 2 /dof = 0.02). The general improvement <strong>in</strong> the fit quality as compared to theparameterization <strong>with</strong> fixed c 2 is of course due to the <strong>in</strong>creased number of degrees of freedom.At the larger quark mass the values for c 2 obta<strong>in</strong>ed from the fits are significantly larger than 3;they range from approximately 4 (nucleon) to 6 (pion). This is an effect of the 24 3 lattice <strong>with</strong>M π L = 6.6. In contrast, M π L = 4.8 at L = 24 for the lower quark mass, and so the exponentsare close to or even compatible <strong>with</strong> 3.S<strong>in</strong>gle ExponentialLet us now, for comparison, consider the exponential formulaexp:m H (La) = m H + c 1e −c 2La(La) 3/2 (4.15)<strong>with</strong> three fit parameters: m H , c 1 and c 2 . The values obta<strong>in</strong>ed from the fits of our data areaga<strong>in</strong> summarized <strong>in</strong> the appendix (Tables D.7–D.9). The overall quality of the fits is betterthan that of the 3-parameter power law fits, and the relative deviations of the exponential fitfunctions at L = L max and L = ∞ from the data at L max are substantially reduced comparedto the power law.S<strong>in</strong>ce for (β, κ) = (5.6, 0.1575) as well as for (5.6, 0.158) the obta<strong>in</strong>ed values for c 2 are close to oreven consistent <strong>with</strong> the respective <strong>in</strong>f<strong>in</strong>ite-volume pseudoscalar mass m PS we are encouraged totry out the parameterization (4.15) <strong>with</strong> the constra<strong>in</strong>t c 2 = m PS . 8 The parameters obta<strong>in</strong>edfrom these fits are displayed <strong>in</strong> Tables 4.8–4.10, complemented for comparison by the parametersfrom the power law fits <strong>with</strong> c 2 = 3. The correspond<strong>in</strong>g fit functions are plotted <strong>in</strong> Figures 4.7–4.9 (solid: exponential <strong>with</strong> c 2 = m PS ; dashed: power law <strong>with</strong> c 2 = 3). We clearly observe thatover the entire range of simulated lattice sizes the exponential ansatz is superior to the cubicpower law. (Note that the number of free parameters is the same <strong>in</strong> both cases.) Moreover,except for the case of the pion mass at (β, κ) = (5.6, 0.1575) the quality of the exponentialfits <strong>with</strong> c 2 = m PS is comparable to or even better than that of the previous fits <strong>with</strong>out thisconstra<strong>in</strong>t. We f<strong>in</strong>d that <strong>with</strong> this ansatz all predicted asymptotic masses at (β, κ) = (5.6, 0.1575)are compatible <strong>with</strong> the measured masses from the 24 3 lattice (see Table 4.4), <strong>in</strong> accordance<strong>with</strong> our presumption that this rather large lattice should bear no significant f<strong>in</strong>ite-size effects.For the masses at (β, κ) = (5.6, 0.158) small effects between 1.6% for the nucleon and 4.9% <strong>in</strong>case of the pion are predicted for the 24 3 lattice. In order to study the stability of these results<strong>with</strong> regard to the fitted L-range we varied the lower boundary L 1 for fixed L 2 = L max ; theresults are summarized <strong>in</strong> Tables D.10–D.12 <strong>in</strong> the appendix.ExtrapolationIn order to check whether we can use this ansatz for an extrapolation from the small latticesto the <strong>in</strong>f<strong>in</strong>ite volume we aga<strong>in</strong> focus on our data sets at (β, κ) = (5.6, 0.1575) and (5.6, 0.158).Figures 4.10 and 4.11 show fits of the measured masses to the exponential (4.15) <strong>with</strong> c 2 = m PS .The different curves correspond to different lower boundaries L 1 of the fitted range [L 1 , L 2 ], <strong>with</strong>8 At (β, κ) = (5.32144, 0.1665), correspond<strong>in</strong>g to our smallest quark mass, the f<strong>in</strong>ite-size effect <strong>in</strong> the pseudoscalarmass is small. We can therefore fit the three available data po<strong>in</strong>ts <strong>with</strong> the two constra<strong>in</strong>ts c 1 = C andc 2 = m PS, so that the <strong>in</strong>f<strong>in</strong>ite-volume pion mass m PS rema<strong>in</strong>s the only free parameter.


4.4. Volume Dependence of the Light Hadron Masses 79Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 10,24 0.570(35) 41.2(7.1) 31.65 -5.57% -11.40%pow (c 2 =3) V 10,24 0.872(19) 35.1(5.3) 3.34 -1.38% -4.87%pow (c 2 =3) N 10,24 1.255(43) 88.5(9.3) 5.83 -2.99% -8.84%exp (c 2 =m PS ) PS 10,24 0.624(13) 65.9(4.2) 5.59 -2.41% -2.91%exp (c 2 =m PS ) V 10,24 0.9125(92) 63.5(5.6) 1.19 -0.17% -0.51%exp (c 2 =m PS ) N 10,24 1.372(22) 142.7(9.5) 2.37 0.18% -0.32%Table 4.8: Fit parameters for (β, κ) = (5.6, 0.1575). d = 2 for “pow” (Eq. (4.13)) and d = 1/2 for “exp”(Eq. (4.15)).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 12,24 0.417(33) 55.3(9.2) 8.55 -2.67% -14.81%pow (c 2 =3) V 12,24 0.780(59) 62.5(13.1) 5.22 -2.10% -9.86%pow (c 2 =3) N 12,24 1.0894(92) 124.0(2.3) 0.07 -0.44% -11.30%exp (c 2 =m PS ) PS 12,24 0.466(20) 47.9(4.2) 3.86 -1.50% -4.91%exp (c 2 =m PS ) V 12,24 0.836(45) 53.1(10.0) 4.31 -1.27% -3.41%exp (c 2 =m PS ) N 12,24 1.208(20) 104.1(5.1) 0.50 1.30% -1.65%Table 4.9: Same as Table 4.8 for (β, κ) = (5.6, 0.158).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 12,16 0.428(22) -15.0(16.3) 2.09 -0.83% 2.23%pow (c 2 =3) V 12,16 0.743(32) 23.3(29.0) 0.77 0.54% -2.08%pow (c 2 =3) N 12,16 1.037(63) 90.9(52.8) 1.87 0.98% -6.05%exp (c 1 =C, c 2 =m PS ) PS 12,16 0.4089(81) 2.04 -2.36% -2.36%exp (c 2 =m PS ) V 12,16 0.756(20) 18.4(26.7) 0.86 0.64% -0.31%exp (c 2 =m PS ) N 12,16 1.088(42) 74.9(50.5) 2.32 1.19% -1.46%Table 4.10: Same as Table 4.8 for (β, κ) = (5.32144, 0.1665).


80 Chapter 4. Light Hadron Spectroscopy2.52PSVNm [GeV]1.510.50.5 1 1.5 2 2.5La [fm]Figure 4.10: Inf<strong>in</strong>ite-volume extrapolation of the masses at (β, κ) = (5.6, 0.1575). The solid l<strong>in</strong>escorrespond to exponential fits accord<strong>in</strong>g to (4.15) <strong>with</strong> c 2 = m PS . Outside the fitted <strong>in</strong>tervals the curvesare dotted.2.52PSVNm [GeV]1.510.500.5 1 1.5 2 2.5La [fm]Figure 4.11: Same as Figure 4.10 for (β, κ) = (5.6, 0.158).


4.4. Volume Dependence of the Light Hadron Masses 81L 2 kept fixed at 16 (see Tables D.13 and D.14 for numbers). All the fits (aga<strong>in</strong> except for thecase of the vector meson at κ = 0.158) describe the data well <strong>with</strong><strong>in</strong> the fitted regime. Let usfirst take a closer look at Figure 4.10, where we take the deviation of the fit curves from the datapo<strong>in</strong>ts at L max = 24 as a measure of the quality of the extrapolation (Table D.13). We f<strong>in</strong>d that,while m PS (L max a) is underestimated by 6.3–7.4%, the predictions for the rho and the nucleonare consistent <strong>with</strong> the data at L max , respectively, if the data are fitted from L = 10. On theother hand, the fit of the pseudoscalar mass is quite stable <strong>with</strong> regard to the left boundary ofthe fitted L-range, whereas <strong>in</strong> case of both the vector meson and the nucleon the deviation ofthe fitted function from the data at L max <strong>in</strong>creases significantly <strong>with</strong> larger L 1 . At κ = 0.1575,correspond<strong>in</strong>g to the smaller quark mass at β = 5.6, m PS (L max a) is underestimated even more(by 21–28%). While the vector meson mass also comes out too low (by at least 12%), theprediction of the nucleon mass at L max agrees remarkably well <strong>with</strong> the data.ConclusionOur f<strong>in</strong>d<strong>in</strong>gs suggest that we are <strong>in</strong> an <strong>in</strong>termediate, sub-asymptotic regime where we see a transitionbehavior <strong>in</strong> the volume dependence of the light hadron masses . “Naive” approaches likethe cubic power law or the s<strong>in</strong>gle exponential function provide satisfactory empirical descriptionsof the f<strong>in</strong>ite-size dependence <strong>in</strong> limited ranges of L. We can confirm that the power law workswell <strong>in</strong> the regime of small volumes, while it fails at larger L where the f<strong>in</strong>ite-size effects becomesmall. There we clearly see an exponential behavior <strong>in</strong> our data for the light hadron masses.Unless we <strong>in</strong>clude data po<strong>in</strong>ts <strong>with</strong> quite small f<strong>in</strong>ite-size effects (of the order of a few percent)<strong>in</strong>to the fits, the asymptotic masses are generally underestimated considerably (more so for thepion, less for the nucleon). However, we can at least obta<strong>in</strong> lower bounds for the <strong>in</strong>f<strong>in</strong>ite-volumemasses, the systematic errors of which may be estimated by vary<strong>in</strong>g the boundaries of the fittedL-<strong>in</strong>tervals.4.4.2 Discussion of the Applicability of ChPT FormulaeIn order to understand why it is so problematic to extrapolate reliably from small volumes tothe <strong>in</strong>f<strong>in</strong>ite volume on the basis of the simple formulae (4.13) and (4.15) (at the quark massesand lattice volumes considered so far), we need to appreciate their respective orig<strong>in</strong> and scope.The power law (4.13) is, <strong>in</strong> fact, expected to hold only for small volumes, where it is supposed toorig<strong>in</strong>ate from a distortion of the hadronic wave function (or, alternatively, from a modificationof the effect of virtual particles travel<strong>in</strong>g around the lattice by a model-dependent form factorthat accounts for the f<strong>in</strong>ite hadron extent). Consequently, the L −3 -behavior cannot be expectedto persist towards large volumes, and this is <strong>in</strong>deed borne out by our data. On the other hand,the formula (4.15) essentially corresponds to Lüscher’s asymptotic formulae for the pion andthe nucleon. Lüscher’s general formula for the volume dependence of stable particles <strong>in</strong> a f<strong>in</strong>itevolume is designed to yield the lead<strong>in</strong>g term <strong>in</strong> a large L expansion, mean<strong>in</strong>g that whenever therelative suppression factorsublead<strong>in</strong>glead<strong>in</strong>gis not small, sublead<strong>in</strong>g effects may be of practical relevance.( )= O e −( ¯M−M π)L(4.16)


82 Chapter 4. Light Hadron SpectroscopyPionIn the case of the pion we furthermore rely on chiral perturbation theory to provide us <strong>with</strong> ananalytic expression for the ππ elastic forward scatter<strong>in</strong>g amplitude F ππ . At lead<strong>in</strong>g order <strong>in</strong> thechiral expansion this amplitude is given by the constant expression F ππ = −m 2 π/fπ. 2 Inserted <strong>in</strong>tothe Lüscher formula this leads to (2.19), which then has the functional form of our exponentialansatz (4.15). We have seen that the data can be well described by the parameterization (4.15)<strong>with</strong> the constra<strong>in</strong>t c 2 = m PS . It is therefore <strong>in</strong>structive to compare our results for the parameterc 1 to the constant3 m 3/2PSC =4(2π) 3/2 (f PS /Z A ) 2 (4.17)(see Eq. (2.19)), when for each (β, κ) we take m PS and f PS /Z A from the largest available lattice,respectively (see Tables 4.3 and 4.5; for def<strong>in</strong>iteness we use f (1)PS /Z A). For our simulationpo<strong>in</strong>ts (β, κ) = (5.6, 0.1575), (5.6, 0.158) and (5.32144, 0.1665) we have C/GeV −1/2 = 1.089(61),0.745(98) and 0.79(12), respectively. 9 Compar<strong>in</strong>g the first two of these values to the results forc 1 <strong>in</strong> Tables 4.8 and 4.9 (PS) we see that the relative factor between c 1 and C is O(10) providedthat, as we expect, Z A = O(1). The discrepancy is generally larger for smaller L 1 and decreasesfor <strong>in</strong>creas<strong>in</strong>g values of the left fit boundary.The large discrepancies between the coefficients c 1 from the fits to our pion data and C fromthe Lüscher formula (<strong>with</strong> LO ChPT <strong>in</strong>put) reflect the fact that not all of our data sets forthe different volumes at (β, κ) = (5.6, 0.1575) and (5.6, 0.158) comply <strong>with</strong> the conditions ofapplicability of this formula. Recall that these conditions are: (i) sufficiently large lattice volumes(because the the Lüscher formula corresponds to the lead<strong>in</strong>g term <strong>in</strong> a large L expansion), and(ii) small pion masses (because we take the pion scatter<strong>in</strong>g amplitude from chiral perturbationtheory).Quite recently, G. Colangelo and S. Dürr have determ<strong>in</strong>ed the f<strong>in</strong>ite-size shift of the pion massus<strong>in</strong>g Lüscher’s formula <strong>with</strong> the ππ forward scatter<strong>in</strong>g amplitude taken from two-flavor chiralperturbation theory up to NNLO <strong>in</strong> the chiral expansion [65]. These results have then beencompared to the lead<strong>in</strong>g order chiral expression for the pion mass <strong>in</strong> f<strong>in</strong>ite volume (<strong>in</strong>clud<strong>in</strong>gthe large-L suppressed terms neglected by the Lüscher formula) <strong>in</strong> order to estimate the effectof sublead<strong>in</strong>g terms <strong>in</strong> the large L expansion. 10 Both aspects of their <strong>in</strong>vestigation rely on chiralperturbation theory as an expansion <strong>in</strong> the pion mass m π and the particle momenta p, both ofwhich have to be small compared to the chiral symmetry break<strong>in</strong>g scale that is usually identified<strong>with</strong> 4πf π . The conditions of applicability thus read [65]andm π4πf π≪ 1 (4.18)p4πf π≪ 1. (4.19)In a f<strong>in</strong>ite box of size La (<strong>with</strong> periodic boundary conditions), where the particles’ momenta canonly take discrete values p k = 2πn k /(La) <strong>with</strong> n k ∈ Z, the second condition directly translates9 Us<strong>in</strong>g m π = 137 MeV and f π = 92.4 MeV the natural value is C = 0.283 GeV −1/2 .10 A calculation of the next to lead<strong>in</strong>g term (<strong>in</strong> L) of the general Lüscher formula is a non-trivial task that hasnot been tackled yet (see also Lüscher’s conclud<strong>in</strong>g remarks <strong>in</strong> Ref. [53]).


4.4. Volume Dependence of the Light Hadron Masses 830.70.6m PS[GeV]0.50.41 1.5 2 2.5La [fm]Figure 4.12: Volume dependence of our pion masses <strong>in</strong> the regime La 1.3 fm. The circles, squaresand diamonds represent our data at (β, κ) = (5.6, 0.1575) (m π = 643 MeV), (β, κ) = (5.6, 0.158)(m π = 490 MeV) and (β, κ) = (5.32144, 0.1665) (m π = 419 MeV), respectively. The curves correspond toLüscher’s formula <strong>with</strong> <strong>in</strong>put from ChPT at LO (dashed), NLO (long-dashed) and NNLO (solid). Thedotted curves show the full LO chiral expression. The dash-dotted curve is the full LO result shifted bythe difference between the NNLO and the LO Lüscher formula.<strong>in</strong>to a bound on the box size: 11 La ≫ 12f π∼ 1 fm. (4.20)Although a priori it is not clear what the practical significance of the relations (4.18) and (4.20)is, we can identify on the basis of the Tables 4.7 and 4.4 those data sets that stand the greatestchance of meet<strong>in</strong>g these criterions. From Table 4.7 we see that the ratios M PS (L)/(4πZ −1A F PS(L))for all simulated volumes at (β, κ) = (5.32144, 0.1665) are relatively small and compatible <strong>with</strong>each other. The correspond<strong>in</strong>g ratio at (β, κ) = (5.6, 0.158) is also relatively small for L = L max(and, moreover, comparable to the numbers at (5.32144, 0.1665)), but the value for the secondlargest lattice is already significantly larger. Consider<strong>in</strong>g only the largest lattice, respectively,M PS /(4πZ −1A F PS) is largest at (β, κ) = (5.6, 0.1575), but here the value at L = 16 is still consistent<strong>with</strong> the one at L max = 24. In the light of these f<strong>in</strong>d<strong>in</strong>gs and recall<strong>in</strong>g the relative f<strong>in</strong>ite-sizemass shifts R (Table 4.7) we <strong>in</strong>fer from Table 4.4 that for m π = 643 MeV and m π = 490 MeVwe can trust ChPT only on the largest volumes <strong>with</strong> La ≈ 2 fm (and possibly the 16 3 lattice<strong>with</strong> La ≈ 1.4 fm at m π = 643 MeV), while the lattices <strong>with</strong> La < 1.4 fm are most probably toosmall. At (β, κ) = (5.32144, 0.1665), on the other hand, where m π = 419 MeV, all lattices arelarger than 1.5 fm due to the relatively large lattice spac<strong>in</strong>g, and hence appear large enough forChPT to be applicable.11 As illustrated <strong>in</strong> Ref. [65], the pion mass dependence of f π predicted by ChPT at NNLO is rather mild. Weuse the physical value here.


84 Chapter 4. Light Hadron SpectroscopyIn order to corroborate these observations let us see how our simulated pion masses m PS (La),for La 1.3 fm, relate to the results of Ref. [65]. There, the chiral expression for the elastic ππforward scatter<strong>in</strong>g amplitude F ππ is written as an expansion <strong>in</strong> powers of ξ,where the parameter ξ is def<strong>in</strong>ed asF ππ = 16π 2 [ ξF 2 + ξ 2 F 4 + ξ 3 F 6 + O(ξ 4 ) ] , (4.21)ξ =(mπ4πf π) 2. (4.22)Insert<strong>in</strong>g the expansion (4.21) up to F 4 or F 6 <strong>in</strong>to Lüscher’s formula (2.10) for the pion and us<strong>in</strong>gthe chiral expression for the isosp<strong>in</strong> <strong>in</strong>variant amplitude A of Ref. [131], the lead<strong>in</strong>g term <strong>in</strong> thelarge-L expansion is obta<strong>in</strong>ed up to NLO and NNLO <strong>in</strong> the chiral expansion. (Correspond<strong>in</strong>gly,<strong>in</strong>sert<strong>in</strong>g (4.21) <strong>in</strong>to (2.10) only up to F 2 yields the LO expression (2.18).) In order to calculatethe predicted f<strong>in</strong>ite size shift for the pion numerically for our three different pion masses weneed to know the numerical value of the expansion parameter ξ, respectively. In order to avoidthe difficulties associated <strong>with</strong> the renormalization of the pion decay constant one can use theanalytic expression for the pion mass dependence of f π which is known to NNLO <strong>in</strong> ChPT. If wetake the pion mass from the largest lattice as a first approximation to the asymptotic pion massm π , respectively, we obta<strong>in</strong> the curves displayed <strong>in</strong> Figure 4.12. The dashed curves correspondto Lüscher’s formula (2.18) <strong>with</strong> F ππ from ChPT at lead<strong>in</strong>g order. The long-dashed and solidcurves show the NLO and NNLO predictions, respectively. For comparison, the dotted curvesshow the full lead<strong>in</strong>g-order chiral expression (N f = 2) for the pion mass <strong>in</strong> f<strong>in</strong>ite volume, givenby [65]∞∑m π (La) = m π[1 + ξ m(n) K 1( √ ]n m π La)√ , (4.23)n mπ Lan=1where the multiplicity m(n) counts the number of <strong>in</strong>teger vectors n satisfy<strong>in</strong>g n 2 1 + n2 2 + n2 3 = n.S<strong>in</strong>ce the modified Bessel function K 1 (x) falls off exponentially for large x, the sum <strong>in</strong> (4.23)is rapidly converg<strong>in</strong>g. For n = 1 Eq. (4.23) corresponds precisely to the LO Lüscher formula(2.18). F<strong>in</strong>ally, the dash-dotted curve <strong>in</strong> Figure 4.12 represents an estimate of the full f<strong>in</strong>ite-sizeeffect obta<strong>in</strong>ed by add<strong>in</strong>g to the Lüscher formula <strong>with</strong> F ππ at NNLO the difference betweenequation (4.23) and the Lüscher formula <strong>with</strong> F ππ at LO. This is the best theoretical estimatecurrently available.The ma<strong>in</strong> conclusion we draw from the plot is that for all our three pion masses and for ourlattices <strong>with</strong> La 1.3 fm the f<strong>in</strong>ite-size effects predicted by ChPT are considerably smaller thanour statistical errors. On the largest lattices <strong>with</strong> La ≃ 2 fm the maximal predicted f<strong>in</strong>ite-sizecorrection (correspond<strong>in</strong>g to the dash-dotted curve <strong>in</strong> the plot) is about 0.3% for the lightestpion and 0.05% for the heaviest one. This is <strong>in</strong> accordance <strong>with</strong> our presumption that for allpractical purposes the f<strong>in</strong>ite-size effects <strong>in</strong> the pion masses are negligible on our largest lattices.At La ≃ 1.3 fm the f<strong>in</strong>ite-size shift ranges between 1% for the heaviest and about 3% for thelightest pion, which is of the order of the statistical uncerta<strong>in</strong>ties. For La 1.3 fm the differencesbetween the full one-loop ChPT result and Lüscher’s formula <strong>with</strong> F ππ at LO are comparablysmall, <strong>in</strong>dicat<strong>in</strong>g that here the use of Lüscher’s asymptotic formula is <strong>in</strong>deed justified; themaximal difference <strong>in</strong> the relative effects is about 50% at La ≃ 1.3 fm for the smallest pionmass. By contrast, the difference between the relative effects predicted by Lüscher’s formula<strong>with</strong> F ππ at NNLO and LO amounts, for the same lattice size, to a factor of 3.2 for the lightestand 4.5 for the heaviest pion.


4.4. Volume Dependence of the Light Hadron Masses 8510.80.60.4(m PS(La) - m PS) / m PS(f PS(La) - f PS) / f PS0.2R0-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.13: Relative box-size dependence of the pseudoscalar meson mass and decay constant at(β, κ) = (5.6, 0.1575).10.80.6(m PS(La) - m PS) / m PS(f PS(La) - f PS) / f PS0.40.2R0-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.14: Same as Figure 4.13 for (β, κ) = (5.6, 0.158).


86 Chapter 4. Light Hadron Spectroscopy10.80.60.4(m PS(La) - m PS) / m PS(f PS(La) - f PS) / f PS0.2R0-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.15: Same as Figure 4.13 for (β, κ) = (5.32144, 0.1665).Incidentally, a formula similar to (4.23) exists also for the pion decay constant f π . 12 The onlydifference is that the relative f<strong>in</strong>ite size effect is negative and (for N f = 2) four times as large asthat of the pion mass:∞∑f π (La) = f π[1 − 4ξ m(n) K 1( √ ]n m π La)√ . (4.24)n mπ Lan=1We have already seen that the volume dependence of our pion masses can be accounted for bychiral perturbation theory on the largest lattices at most, and there is no reason to believe thatthis should be different for the decay constant. We can check, however, whether the relativefactor of m<strong>in</strong>us four also holds on smaller lattices. Figures 4.13–4.15 show the volume dependenceof the shifts <strong>in</strong> f π (La) and m π (La) relative to f π (L max a) and m π (L max a), respectively, for ourthree different quark masses. While the f<strong>in</strong>ite-size effect of the pion decay constant is <strong>in</strong>deednegative, its magnitude is, on the smaller lattices at (β, κ) = (5.6, 0.1575) and (5.6, 0.158), aboutthe same as that of the pion mass shift; on the second largest volume at (β, κ) = (5.6, 0.1575)the relative shift <strong>in</strong> f π (La) is about twice as big as the shift <strong>in</strong> m π (La). Unfortunately at(β, κ) = (5.32144, 0.1665), correspond<strong>in</strong>g to our smallest quark mass, the statistical basis is toopoor to make a def<strong>in</strong>ite statement, but on the smallest lattice the relative factor is (at least <strong>in</strong>terms of magnitude) compatible <strong>with</strong> 4.NucleonIn case of the nucleon mass, replac<strong>in</strong>g the s<strong>in</strong>gle exponential motivated by the approximation(2.28) by an ansatz correspond<strong>in</strong>g to the full formula (2.22) might be considered as the12 Only recently, also an asymptotic formula à la Lüscher has been derived for f π [70].


4.4. Volume Dependence of the Light Hadron Masses 872.2m N[GeV]21.81.61.4UK<strong>QCD</strong><strong>QCD</strong>SFCP-PACSJL<strong>QCD</strong>SESAMTχLGRAL1.210.80 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8m π2[GeV2]Figure 4.16: Nucleon mass data from various collaborations as a function of m 2 π ∝ m q , <strong>in</strong>clud<strong>in</strong>g ourdata. All data po<strong>in</strong>ts are from simulations on relatively large and f<strong>in</strong>e lattices. The curve corresponds toa fit of the data represented by the solid symbols to equation (2.37). Note that the fit result is consistent<strong>with</strong> the physical pion and nucleon masses (<strong>in</strong>dicated by the star).


88 Chapter 4. Light Hadron Spectroscopynext logical step towards a better description of the volume dependence. (Recall that our assumptionthat Eq. (2.28) is a good approximation of Eq. (2.22) is actually only justified forthe physical value of m π /m N .) Alternatively one could use the formula (2.22) (or rather thedecomposition (2.27)) directly, <strong>with</strong> the phenomenological value of g πN or g A . However, s<strong>in</strong>ceEq. (2.22) is <strong>in</strong> fact only a special case of the formula (2.35), let us <strong>in</strong>stead confront our data forthe nucleon mass directly <strong>with</strong> the formulae (2.34) and (2.35) from baryon chiral perturbationtheory. Follow<strong>in</strong>g Ref. [66] we fix g A and f π to the physical values g A = 1.267, f π = 92.4 MeV,and set the coupl<strong>in</strong>gs c 2 and c 3 to c 2 = 3.2 GeV −1 , c 3 = −3.4 GeV −1 . The rema<strong>in</strong><strong>in</strong>g parametersm 0 , c 1 and e r 1 (λ) (where the renormalization scale λ is chosen to be 1 GeV) are taken from a fitof data from various unquenched simulations <strong>with</strong>a < 0.15 fm, M π L > 5 and m π < 800 MeV (4.25)to Eq. (2.37). In Ref. [66], data from the UK<strong>QCD</strong> [38], CP-PACS [39], JL<strong>QCD</strong> [40] and <strong>QCD</strong>SF[66] collaborations have been used. These data are plotted <strong>in</strong> Figure 4.16, complemented <strong>with</strong>the results from our largest lattices, namely the TχL results at (5.6, 0.1575, 24), (5.6, 0.158, 24)and the GRAL result at (5.32144, 0.1665, 16). We also <strong>in</strong>clude the SESAM result at (β, κ, L) =(5.6, 0.1575, 16). Although the conditions (4.25) are to some extent arbitrary we stick to them fordef<strong>in</strong>iteness. Consequently we refra<strong>in</strong> from repeat<strong>in</strong>g the fits of Ref. [66] <strong>with</strong> our data, becauseonly the TχL po<strong>in</strong>t at (β, κ, L) = (5.6, 0.1575, 24) meets all of the requirements <strong>in</strong> (4.25). Insteadwe quote the result of fit 1 <strong>in</strong> Ref. [66] yield<strong>in</strong>g m 0 = 0.89(6) GeV, c 1 = −0.93(5) GeV −1 ande r 1 (λ = 1 GeV) = 2.8(4) GeV−3 , consistent <strong>with</strong> phenomenology. The correspond<strong>in</strong>g fit curveis represented by the solid l<strong>in</strong>e <strong>in</strong> Figure 4.16. 13 The fact that the TχL po<strong>in</strong>t at (β, κ, L) =(5.6, 0.1575, 24) lies close to the fit curve <strong>with</strong>out <strong>in</strong>clud<strong>in</strong>g it <strong>in</strong>to the fit h<strong>in</strong>ts to a smallO(a) effect at this po<strong>in</strong>t. We emphasize here that we use the standard <strong>Wilson</strong> plaquette andquark action <strong>with</strong> errors at O(a), whereas the data from the other collaborations have all beengenerated <strong>with</strong> O(a) improved actions: UK<strong>QCD</strong>, <strong>QCD</strong>SF and JL<strong>QCD</strong> employ the clover quarkaction <strong>with</strong> a non-perturbatively determ<strong>in</strong>ed improvement parameter c SW , and CP-PACS work<strong>with</strong> a mean-field improved clover quark action on top of the renormalization-group improvedIwasaki gauge action. The other TχL po<strong>in</strong>t at (β, κ, L) = (5.6, 0.158, 24), correspond<strong>in</strong>g to asmaller pion mass, lies somewhat below the curve. Correct<strong>in</strong>g it for the presumed f<strong>in</strong>ite-sizeeffects <strong>in</strong> the pion and the nucleon mass would shift it even slightly further away from the curve(recall that <strong>in</strong> this regime of larger L the f<strong>in</strong>ite-size effect is bigger for the nucleon than for thepion). The SESAM po<strong>in</strong>t at (β, κ, L) = (5.6, 0.1575, 16) illustrates how f<strong>in</strong>ite-size effects showup <strong>in</strong> such a plot. Correct<strong>in</strong>g it for the f<strong>in</strong>ite-size effects <strong>in</strong> the pion and the nucleon masses (seeTable 4.7) would shift it to the lower left, towards the correspond<strong>in</strong>g TχL po<strong>in</strong>t <strong>with</strong> L = 24.Our (f<strong>in</strong>ite-size corrected) data po<strong>in</strong>ts generally tend to lie somewhat below the curve, andthis is also true for the GRAL po<strong>in</strong>t <strong>with</strong> (β, κ) = (5.32144, 0.1665). In view of the statisticalfluctuations <strong>in</strong> m π (La) at this parameter set we plot <strong>in</strong> Figure 4.16 the mean of the respectivepion masses at L = 12, 14, 16, <strong>with</strong> a correspond<strong>in</strong>g error bar along the m 2 π axis. Even <strong>with</strong> thisuncerta<strong>in</strong>ty taken <strong>in</strong>to account the deviation of the GRAL po<strong>in</strong>t from the fit curve is significant.In view of the relatively low cut-off of only about 1.5 GeV at this po<strong>in</strong>t (to be compared to anucleon mass of 1.1 GeV) we assume that discretization errors are responsible for the deviation.In case of the TχL data cut-off effects are expected to be less important, due to the smallerlattice spac<strong>in</strong>gs <strong>in</strong> these simulations (see Table 4.1).13 Strictly speak<strong>in</strong>g, <strong>in</strong> the fit to equation (2.37) the chiral-limit values of g A and f π should be used as <strong>in</strong>put.However, replac<strong>in</strong>g the physical values of g A and f π <strong>with</strong> g (0)(0)A= 1.2 and f π = 88 MeV does not alter the fitresult significantly. A more detailed error analysis has been attempted <strong>in</strong> Ref. [132].


4.4. Volume Dependence of the Light Hadron Masses 892.62.42.2O(p 3 )O(p 4 )m N[GeV]21.81.61.41.20.5 1 1.5 2 2.5La [fm]Figure 4.17: Volume dependence of the nucleon mass for m π = 643 MeV. The dashed curve representsthe O(p 3 ) term only, while the solid curve also <strong>in</strong>cludes the O(p 4 ) contribution. The dotted curve resultsif the pion mass is reduced by 10% <strong>in</strong> the O(p 4 ) formula.Us<strong>in</strong>g the parameters correspond<strong>in</strong>g to the solid curve <strong>in</strong> Figure 4.16 we can evaluate the f<strong>in</strong>itesizeformulae (2.34) and (2.35) and compare the results to our data. Our three sets of simulations<strong>with</strong> different lattice sizes correspond to pion masses of approximately 643 MeV, 490 MeV and419 MeV. Note that the latter two masses are even lighter than the lightest of the pion masses<strong>in</strong>vestigated <strong>in</strong> Ref. [66] (732 MeV, 717 MeV and 545 MeV). The curves <strong>in</strong> Figures 4.17–4.19have been computed from equations (2.34) and (2.35) <strong>with</strong> no free parameters. Like <strong>in</strong> Ref. [66]the solid curves correspond to the O(p 4 ) predictionm N (La) = m N + ∆ a (La) + ∆ b (La), (4.26)where m N has been determ<strong>in</strong>ed such that the calculated value m N (L max a) equals the simulatedmass from the largest lattice <strong>with</strong> L = L max , respectively. Similarly, for the pion masses m πwe also take the simulated value from the largest lattice. For the dotted curve, correspond<strong>in</strong>gto the O(p 3 ) prediction, the O(p 4 ) contribution from ∆ b <strong>in</strong> (4.26) has been left out, while m Nhas been left unchanged. For all our pion masses we f<strong>in</strong>d a remarkably good overall descriptionof our data by the O(p 4 ) prediction down to lattice sizes of about 1 fm. Replac<strong>in</strong>g m π fromthe largest, L = 16 lattice at (β, κ) = (5.32144, 0.1665) by the mean of the pion masses fromthe L = 12, 14, 16 lattices (as we have done <strong>in</strong> the context of Figure 4.16) does not lead to asignificant difference <strong>in</strong> the result<strong>in</strong>g curve. S<strong>in</strong>ce both the statistical and the theoretical errorof the simulated m N (La) are smallest for the largest lattice, we consider the O(p 4 ) f<strong>in</strong>ite-sizecorrected nucleon mass˜m N (La) = m N (La) − ∆ a (La) − ∆ b (La), (4.27)


90 Chapter 4. Light Hadron Spectroscopy2.22O(p 3 )O(p 4 )m N[GeV]1.81.61.41.210.5 1 1.5 2 2.5La [fm]Figure 4.18:Same as Figure 4.17 for m π = 490 MeV.2.221.8O(p 3 )O(p 4 )m N[GeV]1.61.41.210.80.5 1 1.5 2 2.5La [fm]Figure 4.19:Same as Figure 4.17 for m π = 419 MeV.


4.4. Volume Dependence of the Light Hadron Masses 915.6β κ sea m PS [GeV] ˜m N (L max a) [GeV] m N (L max a) [GeV] ∆0.1575 0.6429(67) 1.370(19) 1.377(19) 0.53%0.1580 0.4896(94) 1.204(31) 1.228(31) 2.02%5.32144 0.1665 0.4188(75) 1.081(20) 1.104(20) 2.08%Table 4.11: <strong>F<strong>in</strong>ite</strong>-size shift of the nucleon mass on the largest lattice, respectively, as <strong>in</strong>ferred fromEq. (4.26). ∆ = (m N − ˜m N )/ ˜m N is the relative deviation of the Monte Carlo value m N from the shiftedmass ˜m N = m N − ∆ a − ∆ b (all values to be taken at L max a). We believe ˜m N (L max a) to be our bestestimate of the true asymptotic mass.taken at L = L max , as our best estimate of the asymptotic nucleon mass. Table 4.11 shows thepredicted <strong>in</strong>f<strong>in</strong>ite-volume masses for our simulations. The last column gives the relative massshift on the largest lattice, respectively. Just as it was the case for the pion, the f<strong>in</strong>ite sizeeffect <strong>in</strong> the nucleon at (β, κ, L) = (5.6, 0.1575, 24) is considerably smaller than the statisticaluncerta<strong>in</strong>ty. On the other hand, at (β, κ, L) = (5.6, 0.158, 24) and (5.32144, 0.1665, 16) the f<strong>in</strong>itesizeeffects amount to about 2% of the respective asymptotic mass, which is comparable to thestatistical errors.How can these f<strong>in</strong>d<strong>in</strong>gs be used <strong>in</strong> practice? We have seen previously that our nucleon data canbe fitted quite well to a simple exponential ansatz, <strong>with</strong> the correspond<strong>in</strong>g asymptotic pion massas <strong>in</strong>put. Moreover, <strong>in</strong> the case of our simulations at (β, κ) = (5.6, 0.1575), where the f<strong>in</strong>ite-sizeeffects <strong>in</strong> the masses from the second largest lattice are already of the order of a few percent only,it was even possible to reproduce the large-volume nucleon mass by an extrapolation. Althoughthe asymptotic pion mass that we need as <strong>in</strong>put for the fit of the nucleon mass generally comesout too small when it is estimated on the basis of the smaller volumes alone, the extrapolationof the nucleon mass is not so much affected by this, as even <strong>with</strong> this smaller value as <strong>in</strong>putit works remarkably well. This is, however, a purely empirical result, the caveats be<strong>in</strong>g thatwe have no control over the error, and that we need data from several volumes (at least three)before we can have some confidence <strong>in</strong> the extrapolation. The fact that the O(p 4 ) formula (4.26)describes our Monte Carlo data so well <strong>with</strong>out any free parameters opens up a more direct wayto estimate the asymptotic nucleon mass. Once we have conv<strong>in</strong>ced ourselves that we are <strong>in</strong> aparameter regime where the formula applies, we can directly calculate the amount by which wehave to shift the nucleon mass <strong>in</strong> order to compensate for the f<strong>in</strong>ite-size effect associated <strong>with</strong>the given volume. Our simulations together <strong>with</strong> the results of Ref. [66] suggest that at leastfor asymptotic pion masses larger than 400 MeV the formula provides a good description of thenucleon mass data down to physical lattice sizes of approximately 1 fm. For a direct calculationof the f<strong>in</strong>ite-size shift <strong>in</strong> the nucleon mass one needs to know the pion mass <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume,however. If one is already <strong>in</strong> a parameter regime where the f<strong>in</strong>ite-size effect <strong>in</strong> the pion massis small (of the order of a few percent) one may apply the results of Ref. [65] to obta<strong>in</strong> anestimate of the asymptotic pion mass. If this is not the case one can still revert to a “naive”exponential fit (provided that the pion mass is known for more than two different volumes) andextrapolate. S<strong>in</strong>ce we have learned that a naive extrapolation systematically underestimatesthe true pion mass <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume we illustrate, as an example, the impact of a 10% smallerpion mass by the dotted curves <strong>in</strong> Figures 4.17–4.19. Although <strong>in</strong> relation to the very shift thesystematic error associated <strong>with</strong> the pion mass grows <strong>with</strong> L, its absolute value becomes lessand less significant compared to the statistical uncerta<strong>in</strong>ties of the data. This means, on theone hand, that (assum<strong>in</strong>g the formula to exactly reproduce the volume dependence of the data


92 Chapter 4. Light Hadron Spectroscopy1.61.51.4~ mN (La) [GeV]1.31.21.110.90.80.5 1 1.5 2 2.5La [fm]Figure 4.20: <strong>F<strong>in</strong>ite</strong>-size corrected nucleon masses for m π = 643 MeV. The solid l<strong>in</strong>e results from a fitof the data represented by the solid symbols. The gray band <strong>in</strong>dicates the error associated <strong>with</strong> the fit.and the statistical uncerta<strong>in</strong>ties to be all of comparable size) <strong>in</strong> order to predict the asymptoticnucleon mass correctly (<strong>with</strong><strong>in</strong> the statistical errors) one needs to know m π the more accuratelythe smaller the physical size of the largest available lattice. On the other hand it means that ifL is sufficiently large so that one can reliably extrapolate the pion mass, the asymptotic nucleonmass can also be determ<strong>in</strong>ed quite accurately.While the formula (4.26) can already be used to estimate the asymptotic nucleon mass onthe basis of a s<strong>in</strong>gle lattice, one can of course also comb<strong>in</strong>e data from several lattice volumesto obta<strong>in</strong> a more reliable prediction. Figures 4.20–4.22 show our f<strong>in</strong>ite-size corrected nucleonmasses ˜m N (La) for the simulated lattice volumes and pion masses. The solid l<strong>in</strong>es correspondto fits of the corrected masses <strong>in</strong> the range 0.9 fm La 1.9 fm (solid symbols) to a constant,˜m fitN , leav<strong>in</strong>g out the largest available lattice, respectively.14 The associated uncerta<strong>in</strong>ties (fromthe fit) are <strong>in</strong>dicated by the gray error bands. Table 4.12 shows the values of ˜m fitNresult<strong>in</strong>gfrom these fits and their deviation from the corrected nucleon mass as obta<strong>in</strong>ed on the largestlattice, respectively. Both the plots and the table show that—<strong>with</strong><strong>in</strong> errors—the extrapolationsare consistent <strong>with</strong> the corrected values from the largest lattices. The relative deviations ∆are comparable <strong>in</strong> size to the deviations we found for the “naive” extrapolations (∆(L = ∞) <strong>in</strong>Tables D.13 and D.14), but us<strong>in</strong>g the formula (4.26) we have, <strong>in</strong> pr<strong>in</strong>ciple, a much better controlover the <strong>in</strong>volved uncerta<strong>in</strong>ties.14 Alternatively, one could directly fit the unshifted data to Eq. (4.26), <strong>with</strong> m N as a free parameter.


4.4. Volume Dependence of the Light Hadron Masses 931.61.51.4~ mN (La) [GeV]1.31.21.110.90.80.5 1 1.5 2 2.5La [fm]Figure 4.21:Same as Figure 4.20 for m π = 490 MeV.1.61.51.4~ mN (La) [GeV]1.31.21.110.90.80.5 1 1.5 2 2.5La [fm]Figure 4.22:Same as Figure 4.20 for m π = 419 MeV.


94 Chapter 4. Light Hadron Spectroscopy5.6β κ sea m PS [GeV] ˜m N (L max a) [GeV] ˜m fitN [GeV]0.1575 0.6429(67) 1.370(19) 1.350(25) -1.5%0.1580 0.4896(94) 1.204(31) 1.245(39) 4.1%5.32144 0.1665 0.4188(75) 1.081(20) 1.118(24) 3.4%Table 4.12: Estimates of the asymptotic nucleon masses <strong>with</strong>out tak<strong>in</strong>g the largest lattice, respectively,<strong>in</strong>to account. The ˜m fitN values result from fits of the corrected nucleon masses ˜m N (La) <strong>in</strong> the range0.9 fm La 1.9 fm to a constant. ∆ = ( ˜m fitN − ˜m N(L max a))/ ˜m N (L max a) gives the relative deviation ofthese estimates from the f<strong>in</strong>ite-size corrected values ˜m N (L max a), which we believe to be the best estimatesof the true asymptotic values.∆4.5 Discretization ErrorsOne way to check on the importance of O(a) lattice artefacts <strong>in</strong> our simulations is to considerthe PCAC relation∂ µ A a µ(x) = 2mP a (x) (4.28)between the isovector axial currentA a µ(x) = q(x)γ µ γ 512 τ a q(x) (4.29)and the associated densityP a 1(x) = q(x)γ 52 τ a q(x), (4.30)where τ a denotes a Pauli matrix act<strong>in</strong>g on the flavor <strong>in</strong>dices of the quark fields q. On the lattice,the bare quark mass Z q am q can be extracted from ratios of correlation functions,Z q am q = 1 〈∂µ A a µ(x)J a〉〈2 P a (x)J a〉+ O(a), (4.31)where the (smeared) source J a is a suitable polynomial <strong>in</strong> the quark and gluon fields, andZ q =Z P /Z A . The PCAC relation (4.28) is an operator identity that holds for the <strong>Wilson</strong> actionup to O(a) effects. Consequently, its lattice version holds—up to those effects—for any choice ofboundary conditions, source operators and lattice sizes. This means <strong>in</strong> particular that at fixedβ and κ any residual lattice size dependence of the PCAC quark mass (4.31) must be a latticeartefact. Figures 4.23–4.25 show the volume dependence of the relative deviation of the PCACquark mass m q (La) from its value m q on the largest lattices, for our three (β, κ) comb<strong>in</strong>ations.We f<strong>in</strong>d that at (β, κ) = (5.6, 0.1575) the discretization errors appear to be small for La 1 fm,while for (β, κ) = (5.6, 0.158) and (5.32144, 0.1665) they are small only for La 1.3 fm andLa 1.8 fm, respectively. On the smaller lattices the cut-off shows up <strong>in</strong> quark mass shifts of20–40% (<strong>with</strong> large error bars on the smallest lattices). The fact that the cut-off effects are smallfor (β, κ) = (5.6, 0.1575) and somewhat larger for (β, κ) = (5.6, 0.158) and (5.32144, 0.1665) isconsistent <strong>with</strong> our observations <strong>in</strong> the previous section. In Figure 4.16 we saw no significantlattice artifacts <strong>in</strong> the nucleon mass for m π = 643 MeV, while for m π = 490 MeV and m π =419 MeV the nucleon mass displayed some deviation from the curve (which was obta<strong>in</strong>ed froma fit to O(a) improved data).


4.5. Discretization Errors 950.20(m q(La) - m q) / m q-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.23: Box-size dependence of the relative shift <strong>in</strong> the PCAC quark mass at (β, κ) = (5.6, 0.1575).0.20(m q(La) - m q) / m q-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.24: Same as Figure 4.23 for (β, κ) = (5.6, 0.158).


96 Chapter 4. Light Hadron Spectroscopy0.20(m q(La) - m q) / m q-0.2-0.4-0.6-0.8-10.5 1 1.5 2 2.5La [fm]Figure 4.25: Same as Figure 4.23 for (β, κ) = (5.32144, 0.1665).


Summary and ConclusionsIn this work we have <strong>in</strong>vestigated f<strong>in</strong>ite-size effects <strong>in</strong> light hadron masses as obta<strong>in</strong>ed fromlattice <strong>QCD</strong> simulations <strong>with</strong> two degenerate flavors of dynamical <strong>Wilson</strong> fermions. We havecomplemented previous SESAM/TχL simulations at quark masses correspond<strong>in</strong>g roughly to 85and 50% of the strange quark mass <strong>with</strong> several runs at the same values of β and κ, but onsmaller lattices. In addition we have carried out exploratory simulations <strong>with</strong> three differentlattice volumes at a stronger coupl<strong>in</strong>g of β = 5.32144 <strong>in</strong> order to push our analysis towards theregime of lighter quark masses. We have succeeded <strong>in</strong> simulat<strong>in</strong>g near m s /3, which <strong>in</strong> terms ofm π /m ρ is very close to the rho decay threshold of 0.5. The physical extent of the <strong>in</strong>vestigatedlattices ranges between 0.85 fm and 2.04 fm.The gauge field configurations <strong>in</strong>vestigated <strong>in</strong> this work were produced on APE mach<strong>in</strong>es atDESY Zeuthen and the cluster computer ALiCE at the University of Wuppertal. While onAPE we have used the readily available Hybrid Monte Carlo code from the SESAM collaboration(<strong>with</strong> some modifications for APEmille), on ALiCE a new HMC code was employed. For allof the new production runs we have measured the computational cost and the autocorrelationtimes of the mean plaquette and average number of solver iterations. We have found that atβ = 5.32144 statistical fluctuations are quite large and zero modes start play<strong>in</strong>g a role on thesmaller volumes (12 3 and 14 3 ). This is reflected <strong>in</strong> rather long autocorrelation times. Thesimulation on a 16 3 lattice, however, is less affected by such problems, and we have not observedany severe <strong>in</strong>stabilities <strong>in</strong> the molecular dynamics part of the updat<strong>in</strong>g process at this latticesize.While <strong>in</strong> this work we have focused on the symmetric case κ val = κ sea we have calculated, forsubsets of the new gauge field ensembles, quark propagators and hadronic correlation functionsfor up to six different valence quark masses per given sea quark mass. In a further step thesecan be used for partially quenched analyses. For source and s<strong>in</strong>k smear<strong>in</strong>g we have adapted thepreviously determ<strong>in</strong>ed parameters for the Wuppertal smear<strong>in</strong>g method to the smaller volumesused <strong>in</strong> this work. Hadron masses and amplitudes of correlation functions have been obta<strong>in</strong>ed byfits of the local-smeared and smeared-smeared correlators, <strong>with</strong> correlations between time-slicesand among configurations taken <strong>in</strong>to account.We have determ<strong>in</strong>ed the Sommer radius r 0 for the largest lattice at β = 5.32144 from a fit ofour data for the static quark potential to a “Coulomb + l<strong>in</strong>ear” ansatz. Although our generalconclusions do not depend on this, a possible improvement at this po<strong>in</strong>t could be to <strong>in</strong>cludea lattice correction to the Coulomb term <strong>in</strong> order to account for the violation of rotational<strong>in</strong>variance at small distances due to the relatively large lattice spac<strong>in</strong>g. As a qualitative checkon whether the simulated system rema<strong>in</strong>s <strong>in</strong> the zero-temperature phase of <strong>QCD</strong> as the latticesize is decreased we have monitored the distributions and means of the Polyakov loops for all<strong>in</strong>vestigated parameter sets. Only on the smallest lattice for the heavier quark mass at β = 5.6 isa deviation from the expected, approximately po<strong>in</strong>t-symmetric distribution around zero clearly


98 Summary and Conclusionsvisible. Us<strong>in</strong>g the data from all simulated volumes we have addressed the question to what extentthe volume dependence of the computed pion, rho and nucleon masses can be parameterizedby simple functions, and if an extrapolation from small and <strong>in</strong>termediate lattices to the <strong>in</strong>f<strong>in</strong>itevolume is possible. To this end we have compared an exponential ansatz motivated by Lüscher’sformula to the power law observed by Fukugita et al.. On the basis of various fits we concludethat while the power law may be used to describe the volume dependence of the masses at smallvolumes smaller than roughly 1.5 fm, over the full range of simulated lattices and <strong>in</strong> particular<strong>with</strong> respect to the asymptotic behavior the exponential ansatz is superior. The extrapolationof simple exponential fits to the <strong>in</strong>f<strong>in</strong>ite volume <strong>in</strong> general provides only a lower bound to theasymptotic mass, but this bound may be close to the true asymptotic value if the relativedifference between the masses from the largest volumes <strong>in</strong>corporated <strong>in</strong> the fit is already quitesmall (of the order of a few percent). For small volumes alone, however, this is <strong>in</strong> general notthe case.The simple exponential parameterization corresponds <strong>in</strong> its functional form to the asymptoticLüscher formula for the pion (<strong>with</strong> <strong>in</strong>put from lead<strong>in</strong>g order ChPT <strong>in</strong> <strong>in</strong>f<strong>in</strong>ite volume). Althoughempirically we have found that the s<strong>in</strong>gle exponential allows for a good description of our lighthadron masses over a wide range of lattice volumes, a large coefficient multiply<strong>in</strong>g the exponentialattests to the fact that the data po<strong>in</strong>ts from the small lattices lie outside the parameter regime<strong>in</strong> which the formula holds. We have illustrated this by a comparison of our pion mass datato Lüscher’s formula <strong>with</strong> <strong>in</strong>put from cont<strong>in</strong>uum ChPT up to NNLO and to the full LO ChPTresult for the pion mass <strong>in</strong> f<strong>in</strong>ite volume. Of course, if a reliable analytic prediction <strong>with</strong>controllable errors is available it is always preferable to an extrapolation based on a fit <strong>with</strong> freeparameters. We have shown, however, that <strong>in</strong> the parameter regime of our simulations eventhe best currently available estimate for the pion f<strong>in</strong>ite-size effect, based on a comb<strong>in</strong>ation ofthe asymptotic Lüscher formula <strong>with</strong> NNLO ChPT <strong>in</strong>put and the full (but LO) ChPT result,yields mass shifts of a few percent only. This is comparable <strong>in</strong> size to the typical statisticalerrors and therefore hard to detect <strong>in</strong> practice. Our simulations at β = 5.32144 probably are<strong>in</strong> a pion mass regime where the box-size dependence can be described by such a formula, butmore statistics would be needed to corroborate this assumption. While Lüscher’s formula <strong>with</strong><strong>in</strong>put at next-to-lead<strong>in</strong>g and next-to-next-to-lead<strong>in</strong>g order <strong>in</strong> ChPT can be used to control theconvergence of the chiral expansion, a full higher order result from ChPT for the pion mass <strong>in</strong>f<strong>in</strong>ite volume would be useful to fully assess the role of the sub-lead<strong>in</strong>g terms <strong>in</strong> the large-Lexpansion.For the nucleon, a full f<strong>in</strong>ite-size mass formula from relativistic baryon ChPT up to NNLO hasrecently become available. We have shown for three different pion masses (two of which aresmaller than the ones considered <strong>in</strong> Ref. [66]) that it describes our simulated nucleon massesremarkably well even down to box-sizes of about 1 fm. We have also seen that above this size itcan, <strong>in</strong> pr<strong>in</strong>ciple, be used to estimate the <strong>in</strong>f<strong>in</strong>ite-volume mass already on the basis of a s<strong>in</strong>glemeasurement, provided that the asymptotic pion mass is known. If, as <strong>in</strong> our case, data fromseveral lattice volumes are available, they can be comb<strong>in</strong>ed to obta<strong>in</strong> a reliable estimate <strong>with</strong>controllable errors. We could thus corroborate and extend the f<strong>in</strong>d<strong>in</strong>gs of Ali Khan et al..PerspectivesIn view of our orig<strong>in</strong>al goal, “Go<strong>in</strong>g Realistic And Light”, an important result of this work isthat simulations <strong>with</strong> <strong>Wilson</strong> quarks at a relatively light quark mass are feasible. Statisticalfluctuations and autocorrelation times are under control if the chosen lattice size is not chosen


99too small. The same holds true for the performance of the HMC algorithm if the <strong>in</strong>tegrationstep size <strong>in</strong> the molecular dynamics updates is adequately small. S<strong>in</strong>ce <strong>with</strong> currently availableformulae reliable extrapolations from small volumes to the <strong>in</strong>f<strong>in</strong>ite volume are problematic atleast <strong>in</strong> the case of the pion, we suggest to simulate on lattices so large that the pion massescomputed on two different volumes differ only by a few percent and the results of Ref. [65] canbe applied. The f<strong>in</strong>ite-size corrected pion mass can then be used as <strong>in</strong>put for an estimate ofthe asymptotic nucleon mass. As we have demonstrated <strong>with</strong> our simulations at β = 5.32144,even <strong>with</strong> a moderate number of lattice sites we can make the physical volume large enough toaccommodate a relatively light pion by choos<strong>in</strong>g the gauge coupl<strong>in</strong>g (and thus the lattice spac<strong>in</strong>g)appropriately. Incidentally, such an approach has also been chosen by the qq+q collaboration.Us<strong>in</strong>g a large lattice spac<strong>in</strong>g may of course lead to large discretization errors, which for ourunimproved <strong>Wilson</strong> action are O(a). While at our smallest pion mass we have observed an effect<strong>in</strong> the nucleon mass that might be due to the low lattice cut-off at this po<strong>in</strong>t, one generallyexpects the cut-off effect to be less severe for low-energy quantities like the pion mass and decayconstant. This assumption is supported by results from the qq+q collaboration. Consider<strong>in</strong>gthe volume-<strong>in</strong>dependent PCAC quark mass we observe potentially large lattice artefacts on thesmall lattices, but see no <strong>in</strong>dication of significant O(a) effects on the larger lattices.As the GRAL project builds on and extends the previous SESAM and TχL projects we haveconcentrated <strong>in</strong> this work on the orig<strong>in</strong>al, unimproved N f = 2 <strong>Wilson</strong> action. We do believe,however, that our results may also be <strong>in</strong>terest<strong>in</strong>g for upcom<strong>in</strong>g full <strong>QCD</strong> simulations <strong>with</strong> chiralfermions. Us<strong>in</strong>g the overlap formalism <strong>with</strong> dynamical quarks, for example, is computationallystill extremely expensive and will for a foreseeable time be restricted to rather small volumes.A—possibly naive—extrapolation <strong>in</strong> the volume may <strong>in</strong> such simulations be the only way toextract approximate <strong>in</strong>f<strong>in</strong>ite-volume results.In the light of our f<strong>in</strong>d<strong>in</strong>gs at (β, κ) = (5.32144, 0.1665), the next steps towards the regime oflighter quark masses <strong>with</strong> the <strong>Wilson</strong> action could be the follow<strong>in</strong>g (see also Ref. [51]): First,simulate at the same β, but <strong>with</strong> a larger hopp<strong>in</strong>g parameter of κ = 0.1673 (say). This particularvalue should yield a quark mass well below m π /m ρ = 0.4. A first run can be conducted <strong>with</strong> alattice of size L = 16, correspond<strong>in</strong>g to a physical lattice extent of approximately 2 fm. Althoughfor κ = 0.1665 we have observed no significant f<strong>in</strong>ite-size effects at this size, we expect them tobecome more pronounced as the quark mass is decreased. As long as there is no sub-asymptoticformula for the pion mass-shift <strong>in</strong> f<strong>in</strong>ite volume that would allow for a reliable direct correctionof the calculated pion mass (and, then, also of the nucleon mass), at least one other run <strong>with</strong>,for example, L = 18 (La ≈ 2.35 fm) or L = 20 (La ≈ 2.6 fm) is needed to learn about the actualmagnitude of f<strong>in</strong>ite-size effects. (The alternative of simulat<strong>in</strong>g a smaller volume of L = 14,for example, appears less favorable due to the expected <strong>in</strong>crease <strong>in</strong> fluctuations.) Depend<strong>in</strong>gon the outcome one may then deal <strong>with</strong> these effects as expla<strong>in</strong>ed <strong>in</strong> this work. In a secondstep, further (<strong>in</strong>termediate or even smaller) quark masses at β = 5.32144 can be simulatedto set the stage for a chiral extrapolation, preferably us<strong>in</strong>g WChPT to account for the f<strong>in</strong>itelattice spac<strong>in</strong>g. The UK<strong>QCD</strong> and JL<strong>QCD</strong> collaborations have po<strong>in</strong>ted out ways of deal<strong>in</strong>g <strong>with</strong>potential <strong>in</strong>stabilities <strong>in</strong> the updat<strong>in</strong>g process <strong>with</strong> the HMC that are expected to occur along theroad (64 bit arithmetic for field storage and matrix vector-multiplications, smaller <strong>in</strong>tegrationstep size, improvement of the BiCGStab solver). F<strong>in</strong>ally, <strong>in</strong> view of the fact that we are us<strong>in</strong>gan unimproved action at a relatively large lattice spac<strong>in</strong>g, as a third step one might attempt ascal<strong>in</strong>g analysis by go<strong>in</strong>g to larger values of β and, thus, smaller values of a.To give a rough estimate of the computational cost of such a program we refer to our simulationat (β, κ) = (5.32144, 0.1665) <strong>with</strong> L = 16 and m π /m ρ ≈ 0.55, where the cost for produc<strong>in</strong>g 6700


100 Summary and Conclusionsgauge field configurations <strong>in</strong> thermal equilibrium was approximately 75 Tflops-hrs. If we assumethe cost to scale like (m π /m ρ ) −z <strong>with</strong> z = 6 we arrive at an <strong>in</strong>crease by a factor of 6.8 <strong>in</strong> go<strong>in</strong>gfrom m π /m ρ = 0.55 to 0.4. In addition, relative factors of 1.8 or 3 must be taken <strong>in</strong>to account<strong>in</strong> switch<strong>in</strong>g from a 16 3 × 32 to a 18 3 × 36 or 20 3 × 40 lattice (assum<strong>in</strong>g the cost to behave likeL 5 , and T = 2L). This <strong>in</strong>crease <strong>in</strong> effort (a factor of 12–20) is matched by the current <strong>in</strong>crease<strong>in</strong> available comput<strong>in</strong>g time. For example, the next-generation cluster computer ALiCEnext atthe University of Wuppertal will very soon provide at least 20 times more compute power thanits predecessor ALiCE (roughly a factor of two on a per-node basis, and <strong>with</strong> 1024 processorsabout ten times as many nodes), while the IBM p690 <strong>in</strong>stallation at FZ Jülich already delivers 50times the performance of ALiCE (5.6 Tflops from the LINPACK benchmark). Although thesenumbers provide only h<strong>in</strong>ts as to the real performance of our HMC code on these mach<strong>in</strong>es, weconclude that the regime of lighter quark masses is <strong>with</strong><strong>in</strong> reach, even <strong>with</strong> the standard <strong>Wilson</strong>action.


Appendix AConventionsA.1 SU(3) GeneratorsThe Hermitian generators t a , a = 1, . . . , 8, of the Lie group SU(3) satisfy the commutationrelations[t a , t b ] = if abc t c . (A.1)The numbers f abc are called structure constants. Together <strong>with</strong> their commutation relations andthe Jacobi identity,[t a , [t b , t c ]] + [t b , [t c , t a ]] + [t c , [t a , t b ]] = 0, (A.2)the group generators t a def<strong>in</strong>e a Lie algebra. They are conventionally written <strong>in</strong> terms of theGell-Mann matrices:⎛λ 1 = ⎝⎛λ 4 = ⎝⎛λ 6 = ⎝0 1 01 0 00 0 00 0 10 0 01 0 00 0 00 0 10 1 0⎞⎛⎠ , λ 2 = ⎝⎞⎠ , λ 5 = ⎝⎞⎛⎛⎠ , λ 7 = ⎝0 −i 0i 0 00 0 00 0 −i0 0 0i 0 00 0 00 0 −i0 i 0⎞⎛⎠ , λ 3 = ⎝⎞⎠ ,⎞⎛⎠ , λ 8 = √ 1 ⎝31 0 00 −1 00 0 0⎞⎠ ,1 0 00 1 00 0 −2⎞⎠ .(A.3)These matrices are normalized so that Tr λ i λ j = 2δ ij .


102 Appendix A. ConventionsA.2 Euclidean Gamma MatricesWe use the follow<strong>in</strong>g representation of the Euclidean gamma matrices:⎛⎞ ⎛⎞0 0 0 i0 0 0 1γ 1 = ⎜ 0 0 i 0⎟⎝ 0 −i 0 0 ⎠ , γ 2 = ⎜ 0 0 −1 0⎟⎝ 0 −1 0 0 ⎠ ,−i 0 0 01 0 0 0γ 3 =⎛⎜⎝0 0 i 00 0 0 −i−i 0 0 00 i 0 0⎞⎟⎠ , γ 4 =⎛⎜⎝1 0 0 00 1 0 00 0 −1 00 0 0 −1⎞⎟⎠(A.4)andγ 5 ≡ ∏ µγ µ =⎛⎜⎝0 0 1 00 0 0 11 0 0 00 1 0 0⎞⎟⎠ .(A.5)


Appendix BTime Series and AutocorrelationAnalysisThe plots on the follow<strong>in</strong>g pages show (from top left to bottom right, respectively) the timeseries of the average plaquette value and number of solver iterations, the respective normalizedautocorrelation functions and the correspond<strong>in</strong>g <strong>in</strong>tegrated autocorrelation times as functionsof T cut . The <strong>in</strong>set graphs show, on a logarithmic scale, the exponential fits from which we haveextracted the exponential autocorrelation time def<strong>in</strong>ed <strong>in</strong> Eq. (3.6). For all analyses <strong>in</strong> this workonly configurations right from the vertical l<strong>in</strong>e <strong>in</strong> the upper two plots were used. The verticall<strong>in</strong>es <strong>in</strong> the upper two plots <strong>in</strong>dicate the respective mean value and standard error. The resultsof the autocorrelation analysis are summarized and discussed <strong>in</strong> Section 3.2.


104 Appendix B. Time Series and Autocorrelation Analysis0.4311-P0.430.4290.428100N iter90800.427700.4260.4250.42460500.4230 4000 8000 12000 16000t400 4000 8000 12000 16000t1ρ N iter10.8τ exp= 14.39 ± 2.930.10.8τ exp= 61.86 ± 6.030.10.60.6ρ 1-P 8 10 12 14 16 18 200.40.010.40.0150 1000.20.200-0.20 40 80 120 160 200t-0.20 40 80 120 160 200t1-Pτ <strong>in</strong>t15Nτ iter<strong>in</strong>t403010205(1)τ <strong>in</strong>t = 4.09 ± 0.07τ <strong>in</strong>t10maxτ <strong>in</strong>t = 29.44 ± 0.37(1)τ <strong>in</strong>t = 26.58 ± 0.50(2)τ <strong>in</strong>t = 29.37 ± 0.62(2) = 5.46 ± 0.100 40 80 120 160 20000 40 80 120 160 2000T cutT cutFigure B.1: (β, κ, L) = (5.6, 0.1575, 10).


1050.4311-P0.43N iter2500.4292000.4280.4271500.4260.4251000.4240.4230 2000 4000 6000 8000t500 2000 4000 6000 8000t1ρ N iter10.8ρ 1-P 8 10 12 14 16 18 20τ exp= 14.32 ± 2.910.10.8τ exp= 23.59 ± 2.970.10.60.60.40.010.40.0130 40 50 60 70 80 900.20.200-0.20 40 80 120 160 200t-0.20 40 80 120 160 200t1-Pτ <strong>in</strong>t15Nτ iter<strong>in</strong>t3025102015510(1)τ <strong>in</strong>t = 5.17 ± 0.11τ <strong>in</strong>t5maxτ <strong>in</strong>t = 21.89 ± 0.38(1)τ <strong>in</strong>t = 18.99 ± 0.45(2)τ <strong>in</strong>t = 20.91 ± 0.56(2) = 6.65 ± 0.160 40 80 120 160 20000 40 80 120 160 2000T cutT cutFigure B.2: (β, κ, L) = (5.6, 0.1575, 12).


106 Appendix B. Time Series and Autocorrelation Analysis0.4311-P0.430.4290.428110N iter100900.427800.4260.4250.42470600.4230 2000 4000 6000 8000 10000 12000t500 2000 4000 6000 8000 10000 12000t1ρ N iter10.8ρ 1-P 10 15 20 25τ exp= 25.13 ± 7.830.8τ exp= 87.25 ± 26.920.60.60.40.440 50 60 70 80 900.20.200-0.20 40 80 120 160 200t-0.20 50 100 150 200 250t1-Pτ <strong>in</strong>t15Nτ iter<strong>in</strong>t50401030520maxτ <strong>in</strong>t = 12.54 ± 0.18(1)τ <strong>in</strong>t = 7.18 ± 0.1710(1)τ <strong>in</strong>t = 32.14 ± 0.71(2)τ <strong>in</strong>t = 36.24 ± 0.90τ <strong>in</strong>t(2) = 8.72 ± 0.230 50 100 150 200 25000 40 80 120 160 2000T cutT cutFigure B.3: (β, κ, L) = (5.6, 0.1575, 14).


1071-P0.4290.428N iter3002500.4270.4262000.4251500.4241000.4230 500 1000 1500 2000 2500 3000t0 500 1000 1500 2000 2500 3000t1ρ N iter10.8ρ 1-P 5 10 15τ exp= 8.81 ± 2.610.10.8τ exp= 24.55 ± 4.900.10.60.60.40.010.40.0130 40 50 60 700.20.200-0.20 40 80 120 160 200t-0.20 40 80 120 160 200t1-Pτ <strong>in</strong>t8Nτ iter<strong>in</strong>t3025620415102(1)τ <strong>in</strong>t = 3.47 ± 0.14τ <strong>in</strong>t5maxτ <strong>in</strong>t = 24.05 ± 0.84(1)τ <strong>in</strong>t = 23.97 ± 0.88(2) = 4.71 ± 0.200 40 80 120 160 200(2)τ <strong>in</strong>t = 22.83 ± 1.0500 40 80 120 160 2000T cutT cutFigure B.4: (β, κ, L) = (5.6, 0.158, 12).


108 Appendix B. Time Series and Autocorrelation Analysis1-P0.4290.428N iter1801600.4271400.4261200.4251000.424800.4230 2000 4000 6000 8000 10000t600 2000 4000 6000 8000 10000t1ρ N iter10.8ρ 1-P 10 15 20 25 30 35τ exp= 18.75 ± 1.910.10.8τ exp= 26.41 ± 2.950.10.60.60.40.010.40.0130 40 50 60 70 800.20.200-0.20 40 80 120 160 200t-0.20 40 80 120 160 200t1-Pτ <strong>in</strong>t20Nτ iter<strong>in</strong>t302515201015105(1)τ <strong>in</strong>t = 7.13 ± 0.14(1)τ <strong>in</strong>t = 22.73 ± 0.48τ <strong>in</strong>t5(2) = 9.15 ± 0.200 40 80 120 160 200(2)τ <strong>in</strong>t = 25.77 ± 0.6200 40 80 120 160 2000T cutT cutFigure B.5: (β, κ, L) = (5.6, 0.158, 14).


1091-P0.4290.428N iter6005000.4274000.4263000.4252000.4241000.4230 1000 2000 3000 4000 5000 6000 7000t00 1000 2000 3000 4000 5000 6000 7000t1ρ N iter10.8ρ 1-P 8 10 12 14 16 18 20τ exp= 18.67 ± 4.680.8τ exp= 56.08 ± 19.610.60.60.40.430 40 50 60 700.20.200-0.20 40 80 120 160 200t-0.20 40 80 120 160 200t1-Pτ <strong>in</strong>t30Nτ iter<strong>in</strong>t40253020152010(1)τ <strong>in</strong>t = 7.99 ± 0.1910maxτ <strong>in</strong>t = 32.03 ± 2.755τ <strong>in</strong>t(1)τ <strong>in</strong>t = 31.99 ± 1.67(2) = 13.44 ± 0.300 40 80 120 160 200(2)τ <strong>in</strong>t = 28.30 ± 1.8400 40 80 120 160 2000T cutT cutFigure B.6: (β, κ, L) = (5.6, 0.158, 16).


110 Appendix B. Time Series and Autocorrelation Analysis1-P0.466N iter5000.4644000.4623000.462000.4581000.4560 2000 4000 6000 8000 10000t00 2000 4000 6000 8000 10000t1ρ N iter10.8ρ 1-P 150 200τ exp= 105.71 ± 17.620.8τ exp= 102.78 ± 15.580.60.60.40.4150 2000.20.200-0.20 120 240 360 480 600t-0.20 120 240 360 480 600t1-Pτ <strong>in</strong>t150Nτ iter<strong>in</strong>t15010010050maxτ <strong>in</strong>t = 98.80 ± 5.01(1)τ <strong>in</strong>t = 97.98 ± 2.61τ <strong>in</strong>t50maxτ <strong>in</strong>t = 115.75 ± 8.97(1)τ <strong>in</strong>t = 113.44 ± 3.17(2)τ <strong>in</strong>t = 98.82 ± 3.52(2) = 91.74 ± 3.230 120 240 360 480 60000 120 240 360 480 6000T cutT cutFigure B.7: (β, κ, L) = (5.32144, 0.1665, 12).


1111-P0.4660.464N iter3002500.4622001500.461000.458500.4560 1000 2000 3000 4000 5000 6000t00 1000 2000 3000 4000 5000 6000t1ρ N iter10.8ρ 1-P 20 40 60 80τ exp= 90.67 ± 12.980.8τ exp= 89.50 ± 13.250.60.60.40.450 100 1500.20.200-0.2-0.2-0.40 70 140 210 280 350t-0.40 90 180 270 360 450t1-Pτ <strong>in</strong>t80Nτ iter<strong>in</strong>t100608060404020maxτ <strong>in</strong>t = 51.95 ± 2.97(1)τ <strong>in</strong>t = 51.08 ± 1.5420maxτ <strong>in</strong>t = 76.43 ± 5.42(1)τ <strong>in</strong>t = 76.41 ± 2.31τ <strong>in</strong>t(2) = 49.37 ± 1.880 90 180 270 360 450(2)τ <strong>in</strong>t = 65.83 ± 2.6300 70 140 210 280 3500T cutT cutFigure B.8: (β, κ, L) = (5.32144, 0.1665, 14).


112 Appendix B. Time Series and Autocorrelation Analysis1-P0.4660.464N iter6005000.4624003000.462000.4581000.4566000 8000 10000 12000 14000 16000t06000 8000 10000 12000 14000 16000t1ρ N iter10.8ρ 1-P 50 100τ exp= 76.92 ± 8.130.8τ exp= 96.75 ± 13.900.60.60.40.450 1000.20.200-0.20 80 160 240 320 400t-0.20 120 240 360 480 600t1-Pτ <strong>in</strong>t80Nτ iter<strong>in</strong>t15060100405020(1)τ <strong>in</strong>t = 49.42 ± 1.46τ <strong>in</strong>tmaxτ <strong>in</strong>t = 104.55 ± 6.72(1)τ <strong>in</strong>t = 103.82 ± 2.48(2)τ <strong>in</strong>t = 93.89 ± 2.95(2) = 57.70 ± 1.860 120 240 360 480 60000 80 160 240 320 4000T cutT cutFigure B.9: (β, κ, L) = (5.32144, 0.1665, 16) (larger <strong>in</strong>tegration step size).


1131-P0.4660.464N iter6005000.4624003000.462000.4581000.4566000 8000 10000 12000 14000 16000t06000 8000 10000 12000 14000 16000t1ρ N iter10.8ρ 1-P 100 150 200τ exp= 146.22 ± 19.510.8τ exp= 186.88 ± 42.870.60.60.40.4150 200 2500.20.200-0.2-0.2-0.40 120 240 360 480 600t-0.40 120 240 360 480 600t1-Pτ <strong>in</strong>t150Nτ iter<strong>in</strong>t20015010010050maxτ <strong>in</strong>t = 112.87 ± 9.83(1)τ <strong>in</strong>t = 110.22 ± 3.3050maxτ <strong>in</strong>t = 153.14 ± 23.53(1)τ <strong>in</strong>t = 139.99 ± 5.30τ <strong>in</strong>t(2) = 90.78 ± 3.650 120 240 360 480 60000 120 240 360 480 6000T cutT cutFigure B.10: (β, κ, L) = (5.32144, 0.1665, 16) (smaller <strong>in</strong>tegration step size).


Appendix CParameters of the Correlator Fits〈P † (τ)P (0) 〉 ls 〈V†k (τ)V k(0) 〉 ls〈N(τ)N(0)〉 lsβ κ sea L 3 T b [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df12 3 32 7 5,14 0.48 5,14 2.25 5,12 0.825.32144 0.1665 14 3 32 7 8,14 0.88 5,14 0.41 6,11 0.815.55.616 3 32 7 5,15 1.12 6,15 1.74 5,14 0.750.1580 16 3 32 7 9,15 0.69 9,15 0.77 6,14 0.940.1590 16 3 32 8 7,15 1.17 9,15 1.16 9,14 0.720.1596 16 3 32 5 7,15 1.47 7,15 2.30 7,14 1.180.1600 16 3 32 6 7,15 1.09 7,15 0.56 8,14 0.540.1560 16 3 32 5 7,15 2.33 11,15 0.90 7,14 1.310.1565 16 3 32 7 10,15 1.58 8,15 1.66 9,14 0.810.1570 16 3 32 7 10,15 0.34 8,15 1.51 8,14 2.4910 3 32 9 7,15 1.24 10,15 0.95 7,14 0.8212 3 32 9 10,15 1.73 8,15 0.70 10,14 0.380.1575 14 3 32 6 7,15 0.42 10,15 0.32 7,14 0.450.158016 3 32 4 8,15 0.29 10,15 0.15 9,14 0.6824 3 40 7 10,19 1.50 10,19 1.72 10,18 0.7612 3 32 3 6,15 1.17 9,15 2.18 9,14 0.6914 3 32 5 7,15 0.79 10,15 0.59 9,14 0.1716 3 32 8 7,15 0.54 11,15 1.66 7,14 0.7424 3 40 9 10,19 2.15 10,19 1.33 12,18 1.04Table C.1: Fit parameters for the local-smeared pseudoscalar, vector and nucleon correlators. b denotesthe blocksize for the jackknife, [τ m<strong>in</strong> , τ max ] is the fitted <strong>in</strong>terval and χ 2 /df <strong>in</strong>dicates the fit quality.


116 Appendix C. Parameters of the Correlator Fits〈A†4 (τ)A 4(0) 〉 ss 〈A†4 (τ)P (0)〉 ss 〈P † (τ)A 4 (0) 〉 ssβ κ sea L 3 T b [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df12 3 32 7 4,14 0.65 6,14 0.44 5,12 0.885.32144 0.1665 14 3 32 7 4,14 1.34 4,14 1.86 4,11 1.465.55.616 3 32 7 7,15 1.42 7,15 0.81 5,14 1.000.1580 16 3 32 7 4,15 1.06 3,15 1.03 6,14 0.980.1590 16 3 32 8 5,15 1.24 5,15 1.33 8,14 1.050.1596 16 3 32 5 3,15 0.91 3,15 1.87 9,14 1.160.1600 16 3 32 6 8,15 1.95 3,15 1.86 3,14 1.430.1560 16 3 32 5 4,15 0.67 3,15 0.70 3,14 0.580.1565 16 3 32 7 3,15 0.69 3,15 0.83 3,14 1.020.1570 16 3 32 7 3,15 0.59 3,15 0.41 8,14 0.1110 3 32 9 4,15 1.52 3,15 0.79 5,14 1.3612 3 32 9 6,15 1.11 3,15 0.97 3,14 1.260.1575 14 3 32 6 5,15 0.45 6,15 0.86 5,14 1.410.158016 3 32 4 4,15 0.80 7,15 0.48 3,14 0.9824 3 40 7 7,19 1.31 7,19 1.16 4,18 0.9812 3 32 3 5,15 1.04 3,15 0.92 4,14 1.2714 3 32 5 6,15 0.63 6,15 1.32 4,14 0.6116 3 32 8 4,15 0.84 4,15 1.21 6,14 1.0324 3 40 9 9,19 1.02 3,19 2.48 3,18 2.09Table C.2: Fit parameters for the fully smeared pseudoscalar correlators <strong>in</strong>volv<strong>in</strong>g A 4 .


117〈A†4 (τ)A 4(0) 〉 ls 〈A†4 (τ)P (0)〉 ls 〈P † (τ)A 4 (0) 〉 lsβ κ sea L 3 T b [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df [τ m<strong>in</strong> ,τ max ] χ 2 /df12 3 32 7 5,14 1.81 6,14 1.53 6,12 0.395.32144 0.1665 14 3 32 7 4,14 1.81 4,14 1.23 4,11 0.785.55.616 3 32 7 7,15 1.12 8,15 0.95 8,14 1.090.1580 16 3 32 7 5,15 1.10 3,15 0.97 9,14 0.770.1590 16 3 32 8 6,15 1.52 4,15 2.08 9,14 0.890.1596 16 3 32 5 4,15 1.89 3,15 1.93 8,14 0.630.1600 16 3 32 6 3,15 1.16 3,15 1.31 8,14 0.920.1560 16 3 32 5 6,15 1.62 3,15 1.60 8,14 1.740.1565 16 3 32 7 3,15 1.19 3,15 1.04 6,14 0.450.1570 16 3 32 7 3,15 1.17 8,15 0.58 9,14 0.0510 3 32 9 5,15 1.42 3,15 1.21 5,14 1.0912 3 32 9 6,15 1.10 6,15 1.01 5,14 0.860.1575 14 3 32 6 6,15 0.74 6,15 0.91 10,14 1.200.158016 3 32 4 9,15 1.24 9,15 0.67 5,14 0.6624 3 40 7 8,19 1.13 7,19 1.25 7,18 0.9312 3 32 3 5,15 1.66 3,15 1.03 5,14 1.2514 3 32 5 6,15 1.26 7,15 1.47 4,14 1.0616 3 32 8 3,15 0.94 4,15 1.26 5,14 1.2524 3 40 9 10,19 0.39 10,19 2.16 6,18 1.43Table C.3: Fit parameters for the local-smeared pseudoscalar correlators <strong>in</strong>volv<strong>in</strong>g A 4 .


Appendix DFits of the Volume DependenceThe tables on the follow<strong>in</strong>g pages show the parameters from fits of our data for the pseudoscalarmeson (PS), the vector (V) meson and the nucleon masses to the power law (4.13) and theexponential (4.15) as discussed <strong>in</strong> Section 4.4.1.


120 Appendix D. Fits of the Volume DependenceD.1 Power LawFit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −2 ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 10,14 0.455(19) 54.5(2.3) 1.09 -21.46% -29.17%pow (c 2 =3) PS 10,16 0.484(17) 51.7(2.6) 2.42 -17.38% -24.70%pow (c 2 =3) PS 10,24 0.570(35) 41.2(7.1) 31.65 -5.57% -11.40%pow (c 2 =3) PS 12,24 0.612(26) 21.8(8.3) 10.28 -1.70% -4.78%pow (c 2 =3) PS 14,24 0.625(23) 14.6(8.5) 6.94 -0.68% -2.75%pow (c 2 =3) V 10,14 0.8310(94) 42.9(1.5) 0.06 -5.14% -9.39%pow (c 2 =3) V 10,16 0.806(16) 46.2(3.1) 0.44 -7.54% -12.12%pow (c 2 =3) V 10,24 0.872(19) 35.1(5.3) 3.34 -1.38% -4.87%pow (c 2 =3) V 12,24 0.879(24) 32.1(7.4) 4.11 -0.99% -4.18%pow (c 2 =3) V 14,24 0.889(28) 26.3(10.8) 4.88 -0.49% -3.10%pow (c 2 =3) N 10,14 1.228(31) 94.5(3.8) 0.25 -4.56% -10.80%pow (c 2 =3) N 10,16 1.155(32) 102.1(5.3) 1.05 -9.38% -16.12%pow (c 2 =3) N 10,24 1.255(43) 88.5(9.3) 5.83 -2.99% -8.84%pow (c 2 =3) N 12,24 1.276(54) 79.2(16.0) 6.83 -2.06% -7.29%pow (c 2 =3) N 14,24 1.307(74) 62.0(29.2) 8.74 -0.95% -5.04%Table D.1: Parameters of L −3 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.1575).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −2 ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 12,16 0.294(26) 77.7(5.1) 0.63 -22.84% -39.91%pow (c 2 =3) PS 12,24 0.417(33) 55.3(9.2) 8.55 -2.67% -14.81%pow (c 2 =3) PS 14,24 0.430(41) 49.0(13.2) 10.75 -1.43% -12.19%pow (c 2 =3) V 12,16 0.67(16) 81.3(28.5) 6.55 -12.85% -22.95%pow (c 2 =3) V 12,24 0.780(59) 62.5(13.1) 5.22 -2.10% -9.86%pow (c 2 =3) V 14,24 0.779(93) 62.7(24.8) 10.44 -2.13% -9.93%pow (c 2 =3) N 12,16 1.0655(38) 128.28(75) < 0.01 -2.02% -13.25%pow (c 2 =3) N 12,24 1.0894(92) 124.0(2.3) 0.07 -0.44% -11.30%pow (c 2 =3) N 14,24 1.095(11) 121.6(3.3) 0.07 -0.19% -10.84%Table D.2: Parameters of L −3 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.158).


D.1. Power Law 121Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −2 ] χ 2 /df ∆(L max ) ∆(L=∞)pow (c 2 =3) PS 12,16 0.428(22) -15.0(16.3) 2.09 -0.83% 2.23%pow (c 2 =3) V 12,16 0.743(32) 23.3(29.0) 0.77 0.54% -2.08%pow (c 2 =3) N 12,16 1.037(63) 90.9(52.8) 1.87 0.98% -6.05%Table D.3: Parameters of L −3 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.32144, 0.1665).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)pow PS 10,24 0.635(11) 2954(3063) 5.94(72) 2.31 -0.77% -1.21%pow V 10,24 0.901(20) 248(335) 4.27(88) 2.24 -0.48% -1.74%pow N 10,24 1.331(51) 408(444) 4.05(75) 3.82 -0.95% -3.29%Table D.4: Parameters of general power-law fits at (β, κ) = (5.6, 0.1575) (full L-range). d = c 2 − 1.Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)pow PS 12,24 0.471(28) 1241(2338) 4.9(1.2) 4.18 -0.55% -3.86%pow V 12,24 0.82(12) 270(1222) 3.9(2.9) 9.23 -1.10% -5.06%pow N 12,24 1.114(10) 173(23) 3.218(85) 0.02 -0.04% -9.28%Table D.5: Parameters of general power-law fits at (β, κ) = (5.6, 0.158) (full L-range). d = c 2 − 1.Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −d ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)pow PS 12,16 0.410 100.1 27.4 -2.22% -2.22%pow V 12,16 -26.3 27.3 0.004 0.36% -3564.89%pow N 12,16 -84.4 86.4 0.004 0.59% -7746.92%Table D.6: Parameters of general power-law fits at (β, κ) = (5.32144, 0.1665) (full L-range). d = c 2 − 1.


122 Appendix D. Fits of the Volume DependenceD.2 ExponentialFit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)exp PS 10,24 0.6385(73) 210.7(94.5) 0.89(10) 1.30 -0.60% -0.70%exp V 10,24 0.909(14) 50.5(34.4) 0.58(14) 1.68 -0.40% -0.84%exp N 10,24 1.355(36) 96.5(51.5) 0.53(12) 2.78 -0.74% -1.59%Table D.7: Parameters of general exponential fits at (β, κ) = (5.6, 0.1575) (full L-range).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)exp PS 12,24 0.481(20) 133.6(121.6) 0.66(18) 3.17 -0.46% -1.83%exp V 12,24 0.841(90) 64.1(154.8) 0.50(49) 8.56 -1.01% -2.78%exp N 12,24 1.1655(16) 61.22(90) 0.3553(30) < 0.01 -0.01% -5.10%Table D.8: Parameters of general exponential fits at (β, κ) = (5.6, 0.158) (full L-range).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] c 2 χ 2 /df ∆(L max ) ∆(L=∞)exp PS 12,16 0.410 111.99 6.695 -2.22% -2.22%exp V 12,16 0.694 1.69 -0.03 0.45% -8.48%exp N 12,16 0.857 6.39 -0.03 0.77% -22.40%Table D.9: Parameters of general exponential fits at (β, κ) = (5.32144, 0.1665) (full L-range).


D.2. Exponential 123Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] χ 2 /df ∆(L max ) ∆(L=∞)exp (c 2 =m PS ) PS 10,24 0.624(13) 65.9(4.2) 5.59 -2.41% -2.91%exp (c 2 =m PS ) V 10,24 0.9125(92) 63.5(5.6) 1.19 -0.17% -0.51%exp (c 2 =m PS ) N 10,24 1.372(22) 142.7(9.5) 2.37 0.18% -0.32%exp (c 2 =m PS ) PS 12,24 0.632(12) 52.7(9.4) 3.70 -1.28% -1.64%exp (c 2 =m PS ) V 12,24 0.9092(98) 72.6(8.7) 1.18 -0.52% -0.87%exp (c 2 =m PS ) N 12,24 1.361(22) 167.9(17.8) 1.99 -0.59% -1.13%exp (c 2 =m PS ) PS 14,24 0.637(13) 42.3(14.9) 3.78 -0.66% -0.94%exp (c 2 =m PS ) V 14,24 0.910(15) 73.1(19.8) 2.32 -0.46% -0.80%exp (c 2 =m PS ) N 14,24 1.357(35) 184.9(53.3) 3.69 -0.88% -1.44%exp (c 2 =m PS ) PS 16,24 0.642 15.1 -0.09%exp (c 2 =m PS ) V 16,24 0.916 34.1 -0.15%exp (c 2 =m PS ) N 16,24 1.372 123.8 -0.36%Table D.10: Parameters of exp(−m PS L)/L 3/2 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.1575).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] χ 2 /df ∆(L max ) ∆(L=∞)exp (c 2 =m PS ) PS 12,24 0.466(20) 47.9(4.2) 3.86 -1.50% -4.91%exp (c 2 =m PS ) V 12,24 0.836(45) 53.1(10.0) 4.31 -1.27% -3.41%exp (c 2 =m PS ) N 12,24 1.208(20) 104.1(5.1) 0.50 1.30% -1.65%exp (c 2 =m PS ) PS 14,24 0.469(27) 46.1(6.6) 6.29 -1.05% -4.22%exp (c 2 =m PS ) V 14,24 0.827(66) 58.6(19.6) 7.75 -2.12% -4.40%exp (c 2 =m PS ) N 14,24 1.195(15) 114.1(5.4) 0.21 0.39% -2.74%exp (c 2 =m PS ) PS 16,24 0.479 34.8 -2.17%exp (c 2 =m PS ) V 16,24 0.859 19.7 -0.70%exp (c 2 =m PS ) N 16,24 1.189 127.9 -3.18%Table D.11: Parameters of exp(−m PS L)/L 3/2 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.158).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] χ 2 /df ∆(L max ) ∆(L=∞)exp (c 1 =C, c 2 =m PS ) PS 12,16 0.4093(79) 1.99 -2.29% -2.29%exp (c 2 =m PS ) V 12,16 0.756(20) 18.4(26.8) 0.86 0.64% -0.31%exp (c 2 =m PS ) N 12,16 1.088(42) 75.0(50.6) 2.32 1.19% -1.46%exp (c 1 =C, c 2 =m PS ) PS 14,16 0.412(12) 3.22 -1.58% -1.58%exp (c 2 =m PS ) V 14,16 0.733395 66.446 -3.31%exp (c 2 =m PS ) N 14,16 1.03317 186.934 -6.41%Table D.12: Parameters of exp(−m PS L)/L 3/2 -fits <strong>in</strong> var. L-<strong>in</strong>tervals at (β, κ) = (5.32144, 0.1665).


124 Appendix D. Fits of the Volume DependenceFit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] χ 2 /df ∆(L max ) ∆(L=∞)exp (c 2 =m PS ) PS 10,16 0.5912(48) 62.35(85) 0.22 -7.39% -8.04%exp (c 2 =m PS ) V 10,16 0.902(20) 56.7(7.1) 1.52 -1.19% -1.61%exp (c 2 =m PS ) N 10,16 1.363(40) 124.3(11.1) 3.09 -0.38% -0.99%exp (c 2 =m PS ) PS 12,16 0.59829(24) 59.909(72) < 0.01 -6.36% -6.95%exp (c 2 =m PS ) V 12,16 0.883(22) 71.2(10.7) 1.00 -3.25% -3.74%exp (c 2 =m PS ) N 12,16 1.331(53) 151.2(25.6) 3.12 -2.62% -3.31%Table D.13: Parameters of <strong>in</strong>f<strong>in</strong>ite-volume extrapolation at (β, κ) = (5.6, 0.1575).Fit type H [L 1 ,L 2 ] m H [ GeV] c 1 [ GeV −1/2 ] χ 2 /df ∆(L max ) ∆(L=∞)exp (c 2 =m PS ) PS 12,16 0.343(50) 35.8(5.3) 0.54 -21.46% -29.84%exp (c 2 =m PS ) V 12,16 0.72(14) 37.2(12.8) 6.31 -11.75% -16.68%exp (c 2 =m PS ) N 12,16 1.15393(39) 58.440(40) < 0.01 -0.59% -6.05%Table D.14: Parameters of <strong>in</strong>f<strong>in</strong>ite-volume extrapolation at (β, κ) = (5.6, 0.158).


List of Tables3.1 Run parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473.2 Code/mach<strong>in</strong>e performances and computational costs. . . . . . . . . . . . . . . . 483.3 Run lengths, thermalization times and numbers of equilibrium configurations. . . 493.4 Autocorrelation times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 513.5 Smear<strong>in</strong>g parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 553.6 κ sea -κ val comb<strong>in</strong>ations used <strong>in</strong> propagator calculations. . . . . . . . . . . . . . . . 574.1 Sommer scales, momentum cut-offs, lattice spac<strong>in</strong>gs and lattice sizes. . . . . . . . 644.2 Fit parameters for the fully smeared pseudoscalar, vector and nucleon correlators 664.3 Masses of the pseudoscalar and vector mesons and of the nucleon <strong>in</strong> lattice units. 674.4 Masses of the pseudoscalar and vector mesons and of the nucleon <strong>in</strong> physical units 684.5 Pseudoscalar decay constants and the PCAC quark masses. . . . . . . . . . . . . 694.6 Ensemble averages of the mean <strong>Wilson</strong> l<strong>in</strong>e <strong>in</strong> z-direction. . . . . . . . . . . . . . 704.7 Ratios of m PS to the chiral symmetry break<strong>in</strong>g scale and relative f<strong>in</strong>ite-size effects 744.8 Parameters of exponential and power-law fits at (β, κ) = (5.6, 0.1575) (full L-range) 794.9 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 794.10 Same for (β, κ) = (5.32144, 0.1665). . . . . . . . . . . . . . . . . . . . . . . . . . . 794.11 <strong>F<strong>in</strong>ite</strong>-size effects <strong>in</strong> the nucleon masses on the largest lattices. . . . . . . . . . . 914.12 Estimates of the asymptotic nucleon masses. . . . . . . . . . . . . . . . . . . . . . 94C.1 Fit parameters for the local-smeared pseudoscalar, vector and nucleon correlators 115C.2 Fit parameters for the fully smeared pseudoscalar correlators <strong>in</strong>volv<strong>in</strong>g A 4 . . . . 116C.3 Fit parameters for the local-smeared pseudoscalar correlators <strong>in</strong>volv<strong>in</strong>g A 4 . . . . 117D.1 Parameters of L −3 -fits <strong>in</strong> various L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.1575). . . . . . . . 120D.2 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120D.3 Same for (β, κ) = (5.32144, 0.1665). . . . . . . . . . . . . . . . . . . . . . . . . . . 121D.4 Parameters of general power-law fits at (β, κ) = (5.6, 0.1575) (full L-range). . . . 121D.5 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121D.6 Same for (β, κ) = (5.32144, 0.1665). . . . . . . . . . . . . . . . . . . . . . . . . . . 121


126 List of TablesD.7 Parameters of general exponential fits at (β, κ) = (5.6, 0.1575) (full L-range). . . 122D.8 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122D.9 Same for (β, κ) = (5.32144, 0.1665). . . . . . . . . . . . . . . . . . . . . . . . . . . 122D.10 Parameters of exp(−m PS L)/L 3/2 -fits <strong>in</strong> var. L-<strong>in</strong>tervals at (β, κ) = (5.6, 0.1575) . 123D.11 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123D.12 Same for (β, κ) = (5.32144, 0.1665). . . . . . . . . . . . . . . . . . . . . . . . . . . 123D.13 Parameters of <strong>in</strong>f<strong>in</strong>ite-volume extrapolation at (β, κ) = (5.6, 0.1575). . . . . . . . 124D.14 Same for (β, κ) = (5.6, 0.158). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124


List of Figures2.1 Integration contour <strong>in</strong> the complex ν-plane. . . . . . . . . . . . . . . . . . . . . . 362.2 Terms contribut<strong>in</strong>g to Lüscher’s f<strong>in</strong>ite-size mass shift formula for the nucleon. . . 392.3 Comparison of the complete nucleon formula <strong>with</strong> an approximation. . . . . . . . 393.1 Wave function shapes from the Wuppertal smear<strong>in</strong>g scheme. . . . . . . . . . . . . 554.1 Effective potential for various values of R at (β, κ) = (5.32144, 0.1665, 16). . . . . 624.2 Static quark potential at (β, κ) = (5.32144, 0.1665, 16). . . . . . . . . . . . . . . . 634.3 Plots used for the determ<strong>in</strong>ation of the optimal τ-<strong>in</strong>tervals <strong>in</strong> the correlator fits. . 654.4 Distributions of the complex <strong>Wilson</strong> l<strong>in</strong>e P z for (β, κ) = (5.6, 0.1575). . . . . . . . 714.5 Distributions of the complex <strong>Wilson</strong> l<strong>in</strong>e P z for (β, κ) = (5.6, 0.158). . . . . . . . 734.6 Distributions of the complex <strong>Wilson</strong> l<strong>in</strong>e P z for (β, κ) = (5.32144, 0.1665). . . . . 734.7 Box-size dependence of the pion, rho and nucleon masses at (β, κ) = (5.6, 0.1575) 754.8 Box-size dependence of the pion, rho and nucleon masses at (β, κ) = (5.6, 0.158) . 754.9 Box-size dependence of the masses at (β, κ) = (5.32144, 0.1665). . . . . . . . . . . 764.10 Inf<strong>in</strong>ite-volume extrapolation of the masses at (β, κ) = (5.6, 0.1575). . . . . . . . 804.11 Inf<strong>in</strong>ite-volume extrapolation of the masses at (β, κ) = (5.6, 0.158). . . . . . . . . 804.12 Volume dependence of the pion masses <strong>in</strong> the regime La 1.3 fm. . . . . . . . . 834.13 Relative box-size dependence of m PS and f PS at (β, κ) = (5.6, 0.1575). . . . . . . 854.14 Relative box-size dependence of m PS and f PS at (β, κ) = (5.6, 0.158). . . . . . . . 854.15 Relative box-size dependence of m PS and f PS at (β, κ) = (5.32144, 0.1665). . . . . 864.16 Quark mass dependence of the nucleon mass. . . . . . . . . . . . . . . . . . . . . 874.17 Box-size dependence of the nucleon mass for m π = 643 MeV. . . . . . . . . . . . 894.18 Box-size dependence of the nucleon mass for m π = 490 MeV. . . . . . . . . . . . 904.19 Box-size dependence of the nucleon mass for m π = 419 MeV. . . . . . . . . . . . 904.20 <strong>F<strong>in</strong>ite</strong>-size corrected nucleon masses for m π = 643 MeV. . . . . . . . . . . . . . . 924.21 <strong>F<strong>in</strong>ite</strong>-size corrected nucleon masses for m π = 490 MeV. . . . . . . . . . . . . . . 934.22 <strong>F<strong>in</strong>ite</strong>-size corrected nucleon masses for m π = 419 MeV. . . . . . . . . . . . . . . 934.23 Box-size dependence of the PCAC quark mass shifts at (β, κ) = (5.6, 0.1575). . . 95


128 List of Figures4.24 Box-size dependence of the PCAC quark mass shifts at (β, κ) = (5.6, 0.158). . . . 954.25 Box-size dependence of the PCAC quark mass shifts at (β, κ) = (5.32144, 0.1665) 96B.1 Time-series of average plaquette and number of solver iterations, autocorrelationfunctions and <strong>in</strong>tegrated autocorrelation times for (β, κ, L) = (5.6, 0.1575, 10). . . 104B.2 Same for (β, κ, L) = (5.6, 0.1575, 12). . . . . . . . . . . . . . . . . . . . . . . . . . 105B.3 Same for (β, κ, L) = (5.6, 0.1575, 14). . . . . . . . . . . . . . . . . . . . . . . . . . 106B.4 Same for (β, κ, L) = (5.6, 0.158, 12). . . . . . . . . . . . . . . . . . . . . . . . . . . 107B.5 Same for (β, κ, L) = (5.6, 0.158, 14). . . . . . . . . . . . . . . . . . . . . . . . . . . 108B.6 Same for (β, κ, L) = (5.6, 0.158, 16). . . . . . . . . . . . . . . . . . . . . . . . . . . 109B.7 Same for (β, κ, L) = (5.32144, 0.1665, 12). . . . . . . . . . . . . . . . . . . . . . . 110B.8 Same for (β, κ, L) = (5.32144, 0.1665, 14). . . . . . . . . . . . . . . . . . . . . . . 111B.9 Same for (β, κ, L) = (5.32144, 0.1665, 16) (larger <strong>in</strong>tegration step size). . . . . . . 112B.10 Same for (β, κ, L) = (5.32144, 0.1665, 16) (smaller <strong>in</strong>tegration step size). . . . . . 113


Bibliography[1] K. Hagiwara et al. [Particle Data Group Collaboration], “Review Of Particle Physics,”Phys. Rev. D 66 (2002) 010001.[2] D. J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343; S. We<strong>in</strong>berg, Phys. Rev. Lett.31 (1973) 494; H. Fritzsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. B 47 (1973) 365.[3] S. L. Glashow, Nucl. Phys. 22 (1961) 579; S. We<strong>in</strong>berg, Phys. Rev. Lett. 19 (1967) 1264;A. Salam and J. C. Ward, Phys. Lett. 13 (1964) 168; A. Salam <strong>in</strong> Elementary particlephysics (Nobel Symp. No. 8) (ed. N. Svartholm) Almqvist and Wilsell, Stockholm (1968).[4] D. J. Griffiths, “Introduction To Elementary Particles,” John Wiley, S<strong>in</strong>gapore (1987).[5] M. E. Pesk<strong>in</strong> and D. V. Schroeder, “An Introduction To Quantum Field Theory,” Addison-Wesley, Read<strong>in</strong>g, Mass. (1995).[6] C. N. Yang and R. L. Mills, Phys. Rev. 96 (1954) 191.[7] G. ’t Hooft, Nucl. Phys. B 33 (1971) 173, Nucl. Phys. B 35 (1971) 167.[8] H. D. Politzer, Phys. Rev. Lett. 30 (1973) 1346, Phys. Rept. 14 (1974) 129; D. J. Grossand F. Wilczek, Phys. Rev. Lett. 30 (1973) 1343, Phys. Rev. D 8 (1973) 3633.[9] S. Mandelstam, Phys. Rept. 23 (1976) 245.[10] M. Creutz, “Quarks, Gluons And <strong>Lattice</strong>s,” Cambridge University Press, Cambridge (1983).[11] R. Gupta, “Introduction to lattice <strong>QCD</strong>,” arXiv:hep-lat/9807028.[12] I. Montvay and G. Munster, “Quantum Fields On A <strong>Lattice</strong>,” Cambridge University Press,Cambridge (1994).[13] K. G. <strong>Wilson</strong>, Phys. Rev. D 10 (1974) 2445.[14] R. P. Feynman, Rev. Mod. Phys. 20 (1948) 367.[15] S. Aoki, S. Hashimoto, N. Ishizuka, K. Kanaya and Y. Kuramashi (eds.), “<strong>Lattice</strong> FieldTheory. Proceed<strong>in</strong>gs, 21st International Symposium, <strong>Lattice</strong> 2003, Tsukuba, Japan, July15-19, 2003,” Nucl. Phys. B, Proc. Suppl. 129/130 (2004).[16] K. Symanzik, Nucl. Phys. B 226 (1983) 187, 205.[17] C. R. Allton et al. [UK<strong>QCD</strong> Collaboration], arXiv:hep-lat/0403007.[18] F. Farchioni, I. Montvay and E. Scholz [qq+q Collaboration], arXiv:hep-lat/0403014.


130 Bibliography[19] Y. Namekawa et al. [CP-PACS Collaboration], arXiv:hep-lat/0404014.[20] S. Duane, A. D. Kennedy, B. J. Pendleton and D. Roweth, Phys. Lett. B 195 (1987) 216.[21] T. Lippert [SESAM/TXL Collaboration], Nucl. Phys. Proc. Suppl. 106 (2002) 193[arXiv:hep-lat/0203009].[22] A. Ukawa [CP-PACS and JL<strong>QCD</strong> Collaborations], Nucl. Phys. Proc. Suppl. 106 (2002)195.[23] H. Wittig [UK<strong>QCD</strong>, <strong>QCD</strong>SF and ALPHA Collaborations], Nucl. Phys. Proc. Suppl. 106(2002) 197 [arXiv:hep-lat/0203021].[24] S. Aoki et al. [CP-PACS Collaboration], Phys. Rev. Lett. 84 (2000) 238 [arXiv:heplat/9904012],Phys. Rev. D 67 (2003) 034503 [arXiv:hep-lat/0206009].[25] K. G. <strong>Wilson</strong>, CLNS-321 New Phenomena In Subnuclear Physics. Part A. Proceed<strong>in</strong>gs ofthe First Half of the 1975 International School of Subnuclear Physics, Erice, Sicily, July11 - August 1, 1975, ed. A. Zichichi, Plenum Press, New York, 1977, p. 69, CLNS-321[26] J. B. Kogut and L. Sussk<strong>in</strong>d, Phys. Rev. D 11 (1975) 395.[27] C. T. H. Davies et al. [HP<strong>QCD</strong>-MILC-UK<strong>QCD</strong> Collaboration], Phys. Rev. Lett. 92 (2004)022001 [arXiv:hep-lat/0304004].[28] C. Aub<strong>in</strong> et al. [HP<strong>QCD</strong>-MILC-UK<strong>QCD</strong> Collaboration], arXiv:hep-lat/0405022.[29] D. B. Kaplan, Phys. Lett. B 288 (1992) 342 [arXiv:hep-lat/9206013].[30] R. Narayanan and H. Neuberger, Phys. Rev. Lett. 71 (1993) 3251 [arXiv:hep-lat/9308011],Nucl. Phys. B 443 (1995) 305 [arXiv:hep-th/9411108]; H. Neuberger, Phys. Lett. B 417(1998) 141 [arXiv:hep-lat/9707022].[31] J. van den Eshof, A. Frommer, T. Lippert, K. Schill<strong>in</strong>g and H. A. van der Vorst, Comput.Phys. Commun. 146, 203 (2002) [arXiv:hep-lat/0202025]; G. Arnold, N. Cundy, J. van denEshof, A. Frommer, S. Krieg, T. Lippert and K. Schafer, arXiv:hep-lat/0311025; N. Cundy,J. van der Eshof, A. Frommer, S. Krieg, T. Lippert and K. Schafer, arXiv:hep-lat/0405003.[32] Z. Fodor, S. D. Katz and K. K. Szabo, arXiv:hep-lat/0311010.[33] C. W. Bernard et al., Phys. Rev. D 64 (2001) 054506 [arXiv:hep-lat/0104002].[34] T. Kaneko et al. [CP-PACS Collaboration], Nucl. Phys. Proc. Suppl. 129 (2004) 188[arXiv:hep-lat/0309137].[35] N. Eicker et al. [SESAM Collaboration], Phys. Rev. D 59 (1999) 014509 [arXiv:heplat/9806027].[36] T. Lippert et al. [SESAM/TχL Collaboration], Nucl. Phys. Proc. Suppl. 60A (1998) 311[arXiv:hep-lat/9707004].[37] N. Eicker, T. Lippert, B. Orth and K. Schill<strong>in</strong>g [SESAM/TχL Collaboration], Nucl. Phys.Proc. Suppl. 106 (2002) 209 [arXiv:hep-lat/0110134].


Bibliography 131[38] C. R. Allton et al. [UK<strong>QCD</strong> Collaboration], Phys. Rev. D 65 (2002) 054502 [arXiv:heplat/0107021];Phys. Rev. D 60 (1999) 034507 [arXiv:hep-lat/9808016].[39] A. Ali Khan et al. [CP-PACS Collaboration], Phys. Rev. D 65 (2002) 054505 [Erratum-ibid.D 67 (2003) 059901] [arXiv:hep-lat/0105015], Phys. Rev. Lett. 85 (2000) 4674 [Erratumibid.90 (2003) 029902] [arXiv:hep-lat/0004010].[40] S. Aoki et al. [JL<strong>QCD</strong> Collaboration], Phys. Rev. D 68 (2003) 054502 [arXiv:heplat/0212039].[41] H. Stuben [<strong>QCD</strong>SF-UK<strong>QCD</strong> Collaboration], Nucl. Phys. Proc. Suppl. 94 (2001) 273[arXiv:hep-lat/0011045].[42] S. We<strong>in</strong>berg, PhysicaA 96 (1979) 327.[43] J. Gasser and H. Leutwyler, Annals Phys. 158 (1984) 142.[44] C. W. Bernard and M. F. L. Golterman, Phys. Rev. D 49 (1994) 486 [arXiv:heplat/9306005].[45] S. R. Sharpe, Phys. Rev. D 56 (1997) 7052 [Erratum-ibid. D 62 (2000) 099901] [arXiv:heplat/9707018].[46] M. F. L. Golterman and K. C. L. Leung, Phys. Rev. D 57 (1998) 5703 [arXiv:heplat/9711033].[47] S. R. Sharpe and R. J. S<strong>in</strong>gleton, Phys. Rev. D 58 (1998) 074501 [arXiv:hep-lat/9804028].[48] G. Rupak and N. Shoresh, Phys. Rev. D 66 (2002) 054503 [arXiv:hep-lat/0201019].[49] O. Bär, G. Rupak and N. Shoresh, arXiv:hep-lat/0306021.[50] S. Aoki, Phys. Rev. D 68 (2003) 054508 [arXiv:hep-lat/0306027].[51] B. Orth, N. Eicker, T. Lippert, K. Schill<strong>in</strong>g, W. Schroers and Z. Sroczynski, Nucl. Phys.Proc. Suppl. 106 (2002) 269 [arXiv:hep-lat/0110158].[52] B. Orth, T. Lippert and K. Schill<strong>in</strong>g, Nucl. Phys. Proc. Suppl. 129 (2004) 173 [arXiv:heplat/0309085].[53] M. Lüscher, Commun. Math. Phys. 104 (1986) 177;[54] M. Lüscher, “On A Relation Between <strong>F<strong>in</strong>ite</strong> <strong>Size</strong> <strong>Effects</strong> And Elastic Scatter<strong>in</strong>g Processes,”DESY 83/116, Lecture given at Cargese Summer Inst., Cargese, France, Sep 1-15, 1983.[55] B. Sheikholeslami-Sabzevari, Phys. Lett. B 227 (1989) 439.[56] M. Fukugita, H. M<strong>in</strong>o, M. Okawa and A. Ukawa, Phys. Rev. Lett. 68 (1992) 761.[57] M. Fukugita, H. M<strong>in</strong>o, M. Okawa, G. Parisi and A. Ukawa, Phys. Lett. B 294 (1992) 380,Nucl. Phys. Proc. Suppl. 30 (1993) 365.[58] M. Fukugita, N. Ishizuka, H. M<strong>in</strong>o, M. Okawa and A. Ukawa, Phys. Rev. D 47 (1993) 4739.[59] S. Aoki, T. Umemura, M. Fukugita, N. Ishizuka, H. M<strong>in</strong>o, M. Okawa and A. Ukawa, Nucl.Phys. Proc. Suppl. 34 (1994) 363 [arXiv:hep-lat/9311049].


132 Bibliography[60] S. Aoki, T. Umemura, M. Fukugita, N. Ishizuka, H. M<strong>in</strong>o, M. Okawa and A. Ukawa, Phys.Rev. D 50 (1994) 486.[61] C. W. Bernard, T. A. DeGrand, C. DeTar, S. Gottlieb, A. Krasnitz, R. L. Sugar andD. Toussa<strong>in</strong>t [MILC Collaboration], Nucl. Phys. Proc. Suppl. 30 (1993) 369 [arXiv:heplat/9211007].[62] C. W. Bernard et al., Phys. Rev. D 48 (1993) 4419 [arXiv:hep-lat/9305023].[63] S. Gottlieb, Nucl. Phys. Proc. Suppl. 53 (1997) 155 [arXiv:hep-lat/9608107].[64] D. Becirevic and G. Villadoro, Phys. Rev. D 69 (2004) 054010 [arXiv:hep-lat/0311028].[65] G. Colangelo and S. Dürr, Eur. Phys. J. C 33 (2004) 543 [arXiv:hep-lat/0311023]; G. Colangelo,S. Dürr and R. Sommer, Nucl. Phys. Proc. Suppl. 119 (2003) 254 [arXiv:heplat/0209110].[66] A. A. Khan et al. [<strong>QCD</strong>SF-UK<strong>QCD</strong> Collaboration], arXiv:hep-lat/0312030.[67] M. Guagnelli, K. Jansen, F. Palombi, R. Petronzio, A. Sh<strong>in</strong>dler and I. Wetzorke [Zeuthen-Rome (ZeRo) Collaboration], arXiv:hep-lat/0403009.[68] D. Arndt and C. J. D. L<strong>in</strong>, arXiv:hep-lat/0403012.[69] S. R. Beane, arXiv:hep-lat/0403015.[70] G. Colangelo and C. Haefeli, arXiv:hep-lat/0403025.[71] J. Gasser and H. Leutwyler, Phys. Lett. B 184 (1987) 83, Phys. Lett. B 188 (1987) 477,Nucl. Phys. B 307 (1988) 763.[72] H. Leutwyler, Phys. Lett. B 189 (1987) 197.[73] P. Hasenfratz and H. Leutwyler, Nucl. Phys. B 343 (1990) 241.[74] R. Sommer, Nucl. Phys. B 411 (1994) 839 [arXiv:hep-lat/9310022].[75] A. Frommer, V. Hannemann, B. Nockel, T. Lippert and K. Schill<strong>in</strong>g, Int. J. Mod. Phys. C5 (1994) 1073 [arXiv:hep-lat/9404013];[76] S. Fischer, A. Frommer, U. Glässner, T. Lippert, G. Ritzenhöfer and K. Schill<strong>in</strong>g, Comput.Phys. Commun. 98 (1996) 20 [arXiv:hep-lat/9602019].[77] I. Montvay, Nucl. Phys. B 466 (1996) 259 [arXiv:hep-lat/9510042].[78] F. Farchioni, C. Gebert, I. Montvay and L. Scorzato, Eur. Phys. J. C 26 (2002) 237[arXiv:hep-lat/0206008].[79] A. C. Irv<strong>in</strong>g [UK<strong>QCD</strong> Collaboration], arXiv:hep-lat/0208065.[80] Y. Namekawa et al. [CP-PACS Collaboration], arXiv:hep-lat/0209073.[81] C. Battista et al., Int. J. of High Speed Comp. 5 (1993) 637; R. Tripiccione, Int. J. Mod.Phys. C 4 (1993) 425.[82] F. Aglietti et al., Nucl. Instrum. Meth. A 389 (1997) 56.


Bibliography 133[83] N. Eicker, C. Best, T. Lippert and K. Schill<strong>in</strong>g, Nucl. Phys. Proc. Suppl. 83 (2000) 798[arXiv:hep-lat/9909146].[84] N. Attig, S. Güsken, P. Lacock, T. Lippert, K. Schill<strong>in</strong>g, P. Überholz and J. Viehoff, Lect.Notes Comput. Sci. 1401 (1998) 183.[85] P. W. Higgs, Phys. Lett. 12 (1964) 132, Phys. Rev. Lett. 13 (1964) 508, Phys. Rev. 145(1966) 1156.[86] K. Osterwalder and R. Schrader, Commun. Math. Phys. 31 (1973) 83, Commun. Math.Phys. 42 (1975) 281.[87] H. B. Nielsen and M. N<strong>in</strong>omiya, Phys. Lett. B 105 (1981) 219.[88] R. Frezzotti and G. C. Rossi, arXiv:hep-lat/0306014.[89] B. Sheikholeslami and R. Wohlert, Nucl. Phys. B 259 (1985) 572.[90] G. P. Lepage and P. B. Mackenzie, Phys. Rev. D 48 (1993) 2250 [arXiv:hep-lat/9209022].[91] M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, Nucl. Phys. B 384 (1992) 168 [arXiv:heplat/9207009].[92] K. Jansen and R. Sommer [ALPHA Collaboration], Nucl. Phys. B 530 (1998) 185 [Erratumibid.B 643 (2002) 517] [arXiv:hep-lat/9803017].[93] K. G. <strong>Wilson</strong>, Phys. Rev. 179 (1969) 1499.[94] Y. Iwasaki, Nucl. Phys. B 258 (1985) 141.[95] For a review, see e.g.: P. Hasenfratz, arXiv:hep-lat/9803027.[96] K. Org<strong>in</strong>os, D. Toussa<strong>in</strong>t and R. L. Sugar [MILC Collaboration], Phys. Rev. D 60 (1999)054503 [arXiv:hep-lat/9903032].[97] A. Hasenfratz and F. Knechtli, Phys. Rev. D 64 (2001) 034504 [arXiv:hep-lat/0103029].[98] R. Sommer et al. [ALPHA Collaboration], arXiv:hep-lat/0309171.[99] P. H. G<strong>in</strong>sparg and K. G. <strong>Wilson</strong>, Phys. Rev. D 25 (1982) 2649.[100] S. Elitzur, Phys. Rev. D 12 (1975) 3978.[101] K. Splittorff, Phys. Rev. D 68 (2003) 054504 [arXiv:hep-lat/0305013].[102] R. Frezzotti, P. A. Grassi, S. S<strong>in</strong>t and P. Weisz, Nucl. Phys. Proc. Suppl. 83 (2000) 941[arXiv:hep-lat/9909003], JHEP 0108 (2001) 058 [arXiv:hep-lat/0101001].[103] For a recent review, see: R. Frezzotti, Nucl. Phys. Proc. Suppl. 119 (2003) 140 [arXiv:heplat/0210007].[104] S. We<strong>in</strong>berg, Phys. Rev. Lett. 17 (1966) 616.[105] T. Becher and H. Leutwyler, JHEP 0106 (2001) 017 [arXiv:hep-ph/0103263].[106] G. Höhler, F. Kaiser, R. Koch and E. Pietar<strong>in</strong>en, “Handbook Of Pion Nucleon Scatter<strong>in</strong>g,”published by Fach<strong>in</strong>form. Zentr. Karlsruhe 1979, 440 P. (Physics Data, No.12-1 (1979)).


134 Bibliography[107] H. Neuberger, Phys. Rev. Lett. 60 (1988) 889, Nucl. Phys. B 300 (1988) 180; P. Hasenfratzand H. Leutwyler, Nucl. Phys. B 343 (1990) 241; F. C. Hansen, Nucl. Phys. B 345 (1990)685.[108] M. Procura, T. R. Hemmert and W. Weise, Phys. Rev. D 69 (2004) 034505 [arXiv:heplat/0309020].[109] T. Becher and H. Leutwyler, Eur. Phys. J. C 9 (1999) 643 [arXiv:hep-ph/9901384].[110] Z. Sroczynski, “HMC for ALiCE,” unpublished, Wuppertal (2002).[111] W. Gropp and E. Lusk, ANL-96-6 (1996); ANL-96-5 (1996).[112] Z. Sroczynski, Nucl. Phys. Proc. Suppl. 119 (2003) 1047 [arXiv:hep-lat/0208079].[113] Z. Sroczynski, N. Eicker, T. Lippert, B. Orth and K. Schill<strong>in</strong>g, arXiv:hep-lat/0307015.[114] S. Gottlieb, W. Liu, D. Toussa<strong>in</strong>t, R. L. Renken and R. L. Sugar, Phys. Rev. D 35 (1987)2531.[115] R. C. Brower, T. Ivanenko, A. R. Levi and K. N. Org<strong>in</strong>os, Nucl. Phys. B 484 (1997) 353[arXiv:hep-lat/9509012].[116] P. B. Mackenzie, Phys. Lett. B 226 (1989) 369.[117] T. Lippert, Habilitationsschrift, Wuppertal (2001).[118] T. Lippert et al. [TXL Collaboration], Nucl. Phys. Proc. Suppl. 63 (1998) 946 [arXiv:heplat/9712020].[119] B. L. Ioffe, Nucl. Phys. B 188 (1981) 317 [Erratum-ibid. B 191 (1981) 591]; F. Fucito,G. Mart<strong>in</strong>elli, C. Omero, G. Parisi, R. Petronzio and F. Rapuano, Nucl. Phys. B 210 (1982)407.[120] S. Güsken, Nucl. Phys. Proc. Suppl. 17 (1990) 361.[121] A. Frommer, B. Nockel, S. Güsken, T. Lippert and K. Schill<strong>in</strong>g, Int. J. Mod. Phys. C 6(1995) 627 [arXiv:hep-lat/9504020].[122] F. James, CERN Program Library Long Writeup D 506 (1998).[123] CERN Program Library, http://cernlib.web.cern.ch/cernlib/[124] N. Eicker, Dissertation (<strong>in</strong> German), WUB DIS 2001 11, Wuppertal (2001).[125] G. S. Bali et al. [TXL Collaboration], Phys. Rev. D 62 (2000) 054503 [arXiv:heplat/0003012].[126] B. Bolder et al., Phys. Rev. D 63 (2001) 074504 [arXiv:hep-lat/0005018].[127] M. Albanese et al. [APE Collaboration], Phys. Lett. B 192 (1987) 163.[128] G. S. Bali and K. Schill<strong>in</strong>g, Phys. Rev. D 46 (1992) 2636.[129] M. Fukugita, Y. Oyanagi and A. Ukawa, Phys. Rev. D 36 (1987) 824.


Bibliography 135[130] S. Antonelli et al., Phys. Lett. B 345 (1995) 49 [arXiv:hep-lat/9405012].[131] J. Bijnens, G. Colangelo, G. Ecker, J. Gasser and M. E. Sa<strong>in</strong>io, Phys. Lett. B 374 (1996)210 [arXiv:hep-ph/9511397], Nucl. Phys. B 508 (1997) 263 [Erratum-ibid. B 517 (1998)639] [arXiv:hep-ph/9707291].[132] S. R. Beane, arXiv:hep-lat/0403030.


DanksagungAn erster Stelle möchte ich me<strong>in</strong>em Doktorvater, Herrn Prof. Dr. Klaus Schill<strong>in</strong>g, für die Ermöglichungdieser Arbeit und se<strong>in</strong> Vertrauen danken. Se<strong>in</strong>e Unterstützung, se<strong>in</strong>e Diskussionsbereitschaftund se<strong>in</strong>e Anregungen waren wesentliche Voraussetzungen für das Gel<strong>in</strong>gen desProjekts. Me<strong>in</strong> großer Dank gilt ebenso Herrn Priv.-Doz. Dr. Dr. Thomas Lippert. Se<strong>in</strong>e Ideen,se<strong>in</strong>e Unterstützung und se<strong>in</strong>e unermüdliche E<strong>in</strong>satzbereitschaft haben mich immer wieder <strong>in</strong>spiriertund motiviert.Beiden möchte ich besonders auch für ihre Verdienste um die Beantragung und Bereitstellung dertechnischen und organisatorischen Rahmenbed<strong>in</strong>gungen danken, die für den Erfolg der Arbeitmaßgeblich waren. Dazu gehören sowohl die erheblichen Computerressourcen der Universitätund des NIC, zu denen ich Zugang hatte, als auch die f<strong>in</strong>anzielle Unterstützung von Seiten derDFG und der EU, die mir im Rahmen e<strong>in</strong>es Graduiertenkollegs und e<strong>in</strong>es IHP Netzwerkes dieTeilnahme an vielen <strong>in</strong>teressanten wissenschaftlichen Begegnungen ermöglicht hat.Für den reibungslosen Betrieb der Rechner des NIC <strong>in</strong> Jülich und Zeuthen möchte ich mich <strong>in</strong>diesem Zusammenhang bei den dortigen Kollegen und Kolleg<strong>in</strong>nen bedanken.E<strong>in</strong> besonders herzlicher Dank gilt Herrn Dr. Stephan Dürr für e<strong>in</strong>ige wertvolle Diskussionen unddie Bereitschaft, mir die nummerischen Daten zu se<strong>in</strong>er Arbeit über die Volumenabhängigkeitder Pionmasse zur Verfügung zu stellen.Bei Thomas Düssel bedanke ich mich für se<strong>in</strong>e Hilfe bei der Bestimmung von r 0 .Des weiteren möchte ich mich herzlich bei den Freunden und Kollegen bedanken, mit denen ich<strong>in</strong> Wuppertal e<strong>in</strong>e schöne Zeit verbr<strong>in</strong>gen durfte. Dazu gehören besonders Dr. Hartmut Neff undme<strong>in</strong>e Zimmergenossen Dr. Guido Arnold und Dr. Norbert Eicker. Letzterem danke ich auch fürse<strong>in</strong>e Hilfbereitschaft <strong>in</strong> vielen kle<strong>in</strong>en und größeren Computerangelegenheiten. Weitere, teilslangjährige gute Wegbegleiter waren u.a. Dr. Sabr<strong>in</strong>a Casanova, Dr. Nigel Cundy, Dr. ThorstenFeldmann, Priv.-Doz. Dr. Ra<strong>in</strong>er Jakob, Stefan Krieg, Dr. Carsten Merten, Dr. Kornelija Passek-Kumericki, Dr. Oliver Passon, Zdravko Prkac<strong>in</strong>, Dr. Marcus Richter, Dr. Wolfram Schroers,Dr. Zbigniew Sroczynski, Dr. Thorsten Struckmann, Dr. Antonios Tsapalis, Dr. Jochen Viehoff,Dr. Carsten Vogt, sowie me<strong>in</strong>e früheren Zimmerkollegen Bram Bolder, Thomas Moschny undDr. Andreas Schmitz. In me<strong>in</strong>er Anfangszeit <strong>in</strong> Wuppertal konnte ich außerdem auf den Ratund die Hilfe von Priv.-Doz. Dr. Stephan Güsken und Prof. Dr. Peer Überholz zählen.E<strong>in</strong> besonderer Dank für ihre immer engagierte Hilfsbereitschaft gilt den Damen des Theorie-Sekretariats, Frau Anita Wied und Frau Sab<strong>in</strong>e Hoffmann.Schließlich möchte ich mich von ganzem Herzen bei me<strong>in</strong>er Familie bedanken, die mich von jeher<strong>in</strong> allen me<strong>in</strong>en Vorhaben unterstützt hat. Ihr bed<strong>in</strong>gungsloser Rückhalt hat mir immer sehrviel bedeutet.Zu guter Letzt gebührt me<strong>in</strong>er Freund<strong>in</strong> Renate me<strong>in</strong> aufrichtiger Dank für ihre Zuneigung undihre unendliche Geduld.Boris OrthWuppertal, Juni 2004

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!