05.12.2012 Views

Progress in Polymer Science Future perspectives and recent ...

Progress in Polymer Science Future perspectives and recent ...

Progress in Polymer Science Future perspectives and recent ...

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

<strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Contents lists available at <strong>Science</strong>Direct<br />

<strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong><br />

journal homepage: www.elsevier.com/locate/ppolysci<br />

<strong>Future</strong> <strong>perspectives</strong> <strong>and</strong> <strong>recent</strong> advances <strong>in</strong> stimuli-responsive<br />

materials<br />

Debashish Roy, Jennifer N. Cambre, Brent S. Sumerl<strong>in</strong> ∗<br />

Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, TX 75275-0314, USA<br />

article <strong>in</strong>fo<br />

Article history:<br />

Received 2 September 2009<br />

Received <strong>in</strong> revised form 20 October 2009<br />

Accepted 22 October 2009<br />

Available onl<strong>in</strong>e 3 November 2009<br />

Keywords:<br />

Stimuli-responsive polymers<br />

Smart polymers<br />

Drug delivery<br />

Dynamic covalent chemistry<br />

Hydrogels<br />

Controlled release<br />

Contents<br />

abstract<br />

Interest <strong>in</strong> stimuli-responsive polymers has persisted over many decades, <strong>and</strong> a great deal<br />

of work has been dedicated to develop<strong>in</strong>g environmentally sensitive macromolecules that<br />

can be crafted <strong>in</strong>to new smart materials. However, the overwhelm<strong>in</strong>g majority of reports<br />

<strong>in</strong> the literature describe stimuli-responsive polymers that are sensitive to only a few common<br />

triggers, <strong>in</strong>clud<strong>in</strong>g changes <strong>in</strong> pH, temperature, <strong>and</strong> electrolyte concentration. Here<strong>in</strong>,<br />

we aim to highlight <strong>recent</strong> results <strong>and</strong> future trends that exploit stimuli that have not<br />

yet been as heavily considered, despite their unique potential. Many of the topics represent<br />

clear opportunities for mak<strong>in</strong>g advances <strong>in</strong> biomedical fields due to their specificity <strong>and</strong> the<br />

ability to respond to stimuli that are <strong>in</strong>herently present <strong>in</strong> liv<strong>in</strong>g systems. Recent results<br />

<strong>in</strong> the area of polymers that respond to specific antigen–antibody <strong>in</strong>teractions, enzymes,<br />

<strong>and</strong> glucose are specifically discussed. Also considered are polymeric systems that respond<br />

to light, electric, magnetic, <strong>and</strong> sonic fields, all of which have potential <strong>in</strong> the area of controlled<br />

release as a result of their ability to be applied <strong>in</strong> a non-<strong>in</strong>vasive <strong>and</strong> easily controlled<br />

manner. Thiol-responsive <strong>and</strong> redox-responsive polymers are also highlighted, with particular<br />

attention be<strong>in</strong>g devoted to their reversible dynamic covalent chemistry. It is our goal<br />

to emphasize these underutilized adaptive behaviors so that novel applications <strong>and</strong> new<br />

generations of smart materials can be realized.<br />

© 2009 Elsevier Ltd. All rights reserved.<br />

1. Introduction ........................................................................................................................ 279<br />

2. Biologically responsive polymer systems ......................................................................................... 279<br />

2.1. Glucose-responsive polymers .............................................................................................. 280<br />

2.1.1. Glucose-responsive systems based on glucose-GOx ............................................................. 280<br />

Abbreviations: APBA, 3-acrylamidophenylboronic acid; ATRP, atom transfer radical polymerization; ConA, concanaval<strong>in</strong> A; CRP, controlled/“liv<strong>in</strong>g” radical<br />

polymerization; DDOPBA, 4-(1,6-dioxo-2,5-diaza-7-oxamyl) phenylboronic acid; DTT, dithiothreitol; DMAPA, N,N-(dimethylam<strong>in</strong>o)propylacrylamide;<br />

FITC, fluoresce<strong>in</strong> isothiocyanate; GOx, glucose oxidase; GSH, glutathione; IgG, immunoglobul<strong>in</strong> G; IPN, <strong>in</strong>terpenetrat<strong>in</strong>g network hydrogel; LCST, lower<br />

critical solution temperature; MBA, N,N-methylene-bis-acrylamide; NMP, nitroxide mediated radical polymerization; NSA, N-succ<strong>in</strong>imidylacrylate; NIR,<br />

near-<strong>in</strong>frared; PAA, poly(acrylic acid); PMAA, poly(methacrylic acid); PNIPAM, poly(N-isopropylacrylamide); PHEMA, poly(2-hydroxyethyl methacrylate);<br />

PDMAEMA, poly(N,N-dimethylam<strong>in</strong>oethyl methacrylate); PEG, poly(ethylene glycol); PDMA, poly(N,N-dimethylacrylamide); PVA, poly(v<strong>in</strong>yl alcohol);<br />

PHPMA, poly(N-hydroxypropyl methacrylamide); PEO, poly(ethylene oxide); PNVP, poly(N-v<strong>in</strong>ylpyrrolidone); PDEGA, poly(di(ethylene glycol)ethyl ether<br />

acrylate); PPO, poly(propylene oxide); RAFT, reversible addition-fragmentation cha<strong>in</strong> transfer; TCEP, tris(2-carboxyethyl)phosph<strong>in</strong>e; VPGVG, val<strong>in</strong>eprol<strong>in</strong>e-glyc<strong>in</strong>e-val<strong>in</strong>e-glyc<strong>in</strong>e;<br />

UV, ultraviolet.<br />

∗ Correspond<strong>in</strong>g author.<br />

E-mail address: bsumerl<strong>in</strong>@smu.edu (B.S. Sumerl<strong>in</strong>).<br />

0079-6700/$ – see front matter © 2009 Elsevier Ltd. All rights reserved.<br />

doi:10.1016/j.progpolymsci.2009.10.008


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 279<br />

2.1.2. Glucose-responsive systems based on ConA ..................................................................... 281<br />

2.1.3. Glucose-responsive systems based on boronic acid–diol complexation ........................................ 281<br />

2.2. Enzyme-responsive polymers.............................................................................................. 283<br />

2.3. Antigen-responsive polymers .............................................................................................. 285<br />

2.4. Redox/thiol-responsive polymers.......................................................................................... 286<br />

3. Field-responsive polymers......................................................................................................... 288<br />

3.1. Electro-responsive polymers ............................................................................................... 289<br />

3.2. Magneto-responsive polymers ............................................................................................. 290<br />

3.3. Ultrasound-responsive polymers .......................................................................................... 291<br />

3.4. Photo-responsive polymers ................................................................................................ 293<br />

4. Conclusions ........................................................................................................................ 294<br />

Acknowledgement ................................................................................................................. 294<br />

References ......................................................................................................................... 294<br />

1. Introduction<br />

At their most fundamental level, many of the most<br />

important substances <strong>in</strong> liv<strong>in</strong>g systems are macromolecules<br />

with structures <strong>and</strong> behaviors that vary accord<strong>in</strong>g<br />

to the conditions <strong>in</strong> their surround<strong>in</strong>g environment. A<br />

variety of biological processes rely on feedback-controlled<br />

communication <strong>in</strong>volv<strong>in</strong>g nucleic acids, prote<strong>in</strong>s, <strong>and</strong><br />

polypeptides that have the ability to adopt conformations<br />

specific to their surround<strong>in</strong>gs. Similar adaptive behavior<br />

can be imparted to synthetic (co)polymers such that their<br />

utility goes beyond provid<strong>in</strong>g structural support to <strong>in</strong>stead<br />

allow active participation <strong>in</strong> a dynamic sense. Incorporat<strong>in</strong>g<br />

multiple copies of functional groups that are readily<br />

amenable to a change <strong>in</strong> character (e.g., charge, polarity,<br />

<strong>and</strong> solvency) along a polymer backbone causes relatively<br />

m<strong>in</strong>or changes <strong>in</strong> chemical structure to be synergistically<br />

amplified to br<strong>in</strong>g about dramatic transformations <strong>in</strong><br />

macroscopic material properties.<br />

The “response” of a polymer can be def<strong>in</strong>ed <strong>in</strong> various<br />

ways. Responsive polymers <strong>in</strong> solution are typically<br />

classified as those that change their <strong>in</strong>dividual cha<strong>in</strong><br />

dimensions/size, secondary structure, solubility, or the<br />

degree of <strong>in</strong>termolecular association. In most cases, the<br />

physical or chemical event that causes these responses<br />

is limited to formation or destruction of secondary<br />

forces (hydrogen bond<strong>in</strong>g, hydrophobic effects, electrostatic<br />

<strong>in</strong>teractions, etc.), simple reactions (e.g., acid–base<br />

reactions) of moieties pendant to the polymer backbone,<br />

<strong>and</strong>/or osmotic pressure differentials that result from such<br />

phenomena. In other systems, the def<strong>in</strong>ition of a response<br />

can be exp<strong>and</strong>ed to <strong>in</strong>clude more dramatic alterations<br />

<strong>in</strong> the polymeric structure. For example, degradation of<br />

hydrogels upon the application of a specific stimulus can<br />

occur by reversible or irreversible bond breakage of the<br />

polymeric backbone or pendant cross-l<strong>in</strong>k<strong>in</strong>g groups. For<br />

the sake of this review, both concepts will be <strong>in</strong>cluded, with<br />

particular attention be<strong>in</strong>g paid to those that hold promise<br />

<strong>in</strong> the areas of biomedical, sens<strong>in</strong>g, <strong>and</strong> electronics applications.<br />

Interest <strong>in</strong> stimuli-responsive polymers has persisted<br />

over many decades, <strong>and</strong> a great deal of work has been dedicated<br />

to devis<strong>in</strong>g examples of environmentally sensitive<br />

macromolecules that can be crafted <strong>in</strong>to new smart materials.<br />

However, the overwhelm<strong>in</strong>g majority of reports <strong>in</strong> the<br />

literature describ<strong>in</strong>g stimuli-responsive polymers are ded-<br />

icated to macromolecular systems that are sensitive to a<br />

few common stimuli, usually changes <strong>in</strong> pH, temperature,<br />

<strong>and</strong> electrolyte concentration. The purpose of this review<br />

is not to describe every stimulus be<strong>in</strong>g employed to <strong>in</strong>duce<br />

a response <strong>in</strong> polymer systems. Rather, we aim to highlight<br />

<strong>recent</strong> results <strong>and</strong> future trends of a few particularly useful<br />

stimuli that have, <strong>in</strong> our op<strong>in</strong>ion, not yet been exploited<br />

to a similar extent, despite their unique potential. In many<br />

cases, the topics represent clear opportunities for mak<strong>in</strong>g<br />

advances <strong>in</strong> biomedical fields due to their specificity <strong>and</strong><br />

the ability to respond to stimuli that are <strong>in</strong>herently present<br />

<strong>in</strong> biological systems. Indeed, design<strong>in</strong>g synthetic polymers<br />

with the ability to adapt their properties <strong>in</strong> response<br />

to specific <strong>in</strong>teractions with biomacromolecules <strong>and</strong> small<br />

molecules commonly associated with healthy or diseased<br />

states (e.g., glucose) may facilitate the application of smart<br />

polymers <strong>in</strong> drug delivery, diagnostics, sens<strong>in</strong>g, separations,<br />

etc. Additionally, it is often advantageous to utilize<br />

a stimulus that is specifically applied from an external<br />

source so that the location <strong>and</strong> rate of response can be easily<br />

adjusted, as opposed to a stimulus that is encountered<br />

as an <strong>in</strong>herent feature of the system under consideration<br />

(e.g., change <strong>in</strong> pH occurr<strong>in</strong>g upon endocytosis). The ability<br />

to apply these sorts of stimuli <strong>in</strong> a non-<strong>in</strong>vasive manner<br />

particularly lends itself to applications <strong>in</strong> vivo. The discussion<br />

that follows will focus on <strong>recent</strong> research <strong>in</strong> the<br />

area of smart materials by emphasiz<strong>in</strong>g these underutilized<br />

adaptive behaviors that have the ability to affect polymer<br />

conformation, solubility, degradability, <strong>and</strong> self-assembly<br />

behavior <strong>in</strong> aqueous media. The first areas covered will<br />

perta<strong>in</strong> to specific responses that may be encountered<br />

<strong>in</strong> biological systems. <strong>Polymer</strong>s that alter their properties<br />

<strong>in</strong> response to glucose, enzymes, antigens/antibodies,<br />

<strong>and</strong> thiol/redox conditions are described. Secondly, we<br />

highlight <strong>recent</strong> results <strong>in</strong> the areas of field-responsive<br />

polymers, specifically macromolecules that exhibit adaptive<br />

behaviors when exposed to irradiation with light,<br />

electric, magnetic, or sonic energy.<br />

2. Biologically responsive polymer systems<br />

Smart polymers are becom<strong>in</strong>g <strong>in</strong>creas<strong>in</strong>gly important<br />

<strong>in</strong> the context of biomedical applications. Whether<br />

for the purpose of controlled drug delivery, biosens<strong>in</strong>g/diagnostics,<br />

smart films/matrices for tissue eng<strong>in</strong>eer<strong>in</strong>g,<br />

or for the <strong>in</strong> situ construction of structural networks,


280 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Fig. 1. (a) In the absence of glucose, the PAA cha<strong>in</strong>s are extended which lowers the permeability of the membrane. (b) Addition of glucose leads to a<br />

lower<strong>in</strong>g of local pH <strong>and</strong> cha<strong>in</strong> collapse due to a reduction <strong>in</strong> electrostatic repulsion [4].<br />

it is often advantageous to employ polymers that can<br />

respond to stimuli that are <strong>in</strong>herently present <strong>in</strong> natural<br />

systems. This approach is a form of biomimicry, s<strong>in</strong>ce<br />

many biomacromolecules are known to dramatically alter<br />

their conformation <strong>and</strong> degree of self-assembly <strong>in</strong> response<br />

to the presence of specific chemical species <strong>in</strong> their surround<strong>in</strong>gs.<br />

While great strides have been made <strong>in</strong> the<br />

design <strong>and</strong> implementation of new stimuli-responsive<br />

polymers, many of these suffer from adaptive behaviors<br />

that are <strong>in</strong>herently non-specific. Additionally, some of<br />

the more commonly considered stimuli (e.g., changes <strong>in</strong><br />

temperature) are challeng<strong>in</strong>g to apply <strong>in</strong> vivo. Therefore,<br />

<strong>recent</strong> attention has been devoted to endow<strong>in</strong>g synthetic<br />

polymers with functionality [1] that allows responsive<br />

behavior when exposed to biological small molecules or<br />

biomacromolecules. In some cases, this arises from <strong>in</strong>clud<strong>in</strong>g<br />

common functional groups that are known to <strong>in</strong>teract<br />

with biologically relevant species, <strong>and</strong> <strong>in</strong> others adaptive<br />

behavior is the result of the synthetic polymer be<strong>in</strong>g conjugated<br />

to a biological component. Examples of both of these<br />

concepts are provided below.<br />

2.1. Glucose-responsive polymers<br />

While a variety of specific biological responses can be<br />

envisioned <strong>and</strong> have been reported <strong>in</strong> the literature [2],<br />

polymers that respond to glucose have received considerable<br />

attention because of their potential application <strong>in</strong> both<br />

glucose sens<strong>in</strong>g <strong>and</strong> <strong>in</strong>sul<strong>in</strong> delivery applications. Diabetes<br />

mellitus, commonly referred to as diabetes, is a chronic disease<br />

characterized by <strong>in</strong>sufficient production or <strong>in</strong>effective<br />

usage of <strong>in</strong>sul<strong>in</strong>. Treatment generally <strong>in</strong>volves regular monitor<strong>in</strong>g<br />

of blood sugar concentrations <strong>and</strong> subcutaneously<br />

adm<strong>in</strong>ister<strong>in</strong>g <strong>in</strong>sul<strong>in</strong> several times per day. This need for<br />

consistent patient vigilance often leads to poor compliance<br />

with the prescribed therapy. One potential route proposed<br />

to <strong>in</strong>crease patient compliance is the development <strong>and</strong><br />

use of smart delivery systems <strong>in</strong> which <strong>in</strong>sul<strong>in</strong> delivery is<br />

automatically triggered by a rise <strong>in</strong> blood glucose levels.<br />

While a variety of approaches can be envisioned to achieve<br />

this objective, considerable research has been dedicated to<br />

develop<strong>in</strong>g self-regulated <strong>in</strong>sul<strong>in</strong> delivery systems based<br />

on glucose-responsive polymers [3]. Glucose-responsive<br />

polymeric systems are typically based on enzymatic oxidation<br />

of glucose by glucose oxidase (GOx), b<strong>in</strong>d<strong>in</strong>g of glucose<br />

with concanaval<strong>in</strong> A (ConA), or reversible covalent bond<br />

formation between glucose <strong>and</strong> boronic acids.<br />

2.1.1. Glucose-responsive systems based on glucose-GOx<br />

The majority of reports detail<strong>in</strong>g glucose-responsive<br />

polymers are based on the GOx-catalyzed reaction of<br />

glucose with oxygen. Typically, glucose-sensitivity is not<br />

caused by direct <strong>in</strong>teraction of glucose with the responsive<br />

polymer, but rather by the response of the polymer<br />

to the byproducts that result from the enzymatic oxidation<br />

of glucose. The enzymatic action of GOx on glucose is<br />

highly specific <strong>and</strong> leads to byproducts of gluconic acid <strong>and</strong><br />

H 2O 2. Therefore, <strong>in</strong>corporation of a polymer that responds<br />

to either of these small molecules can <strong>in</strong>directly lead to<br />

a glucose-responsive system. Typically, a pH responsive<br />

polymer is loaded or conjugated with GOx, <strong>and</strong> the gluconic<br />

acid byproduct that results from the reaction with glucose<br />

<strong>in</strong>duces a response <strong>in</strong> the pH-responsive macromolecule.<br />

For applications specifically <strong>in</strong>tended for diabetes therapy,<br />

the pH-response generally causes swell<strong>in</strong>g or collapse of<br />

hydrogel matrix that conta<strong>in</strong>s <strong>in</strong>sul<strong>in</strong>. For example, Imanishi<br />

<strong>and</strong> co-workers reported the covalent modification<br />

of a cellulose film with GOx-conjugated poly(acrylic acid)<br />

(PAA) [4]. At neutral <strong>and</strong> high pH levels, the carboxylate<br />

units of the PAA cha<strong>in</strong>s were negatively charged <strong>and</strong><br />

extended due to electrostatic repulsion, which resulted<br />

<strong>in</strong> occlusion of the pores <strong>in</strong> the cellulose membrane.<br />

The gluconic acid that resulted from the addition of glucose<br />

led to a local pH reduction, protonation of the PAA<br />

carboxylate moieties, <strong>and</strong> concomitant collapse of the<br />

cha<strong>in</strong>s obscur<strong>in</strong>g the membrane pores, with the latter<br />

event facilitat<strong>in</strong>g the release of entrapped <strong>in</strong>sul<strong>in</strong> (Fig. 1).<br />

Similar glucose-responsive gat<strong>in</strong>g membranes based on<br />

PAA-grafted poly(v<strong>in</strong>ylidene fluoride) have been reported<br />

[5].<br />

Peppas <strong>and</strong> co-workers exploited a similar concept<br />

to prepare glucose-responsive hydrogels [6].<br />

Poly(methacrylic acid (PMAA)-graft-ethylene glycol)<br />

gels were synthesized <strong>in</strong> the presence of GOx. At neutral<br />

<strong>and</strong> high pH values, the gels were swollen by repulsion<br />

between negative charges on methacrylate units. The


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 281<br />

Scheme 1. Aqueous ionization equilibria of boronic acids. As the concentration of diol <strong>in</strong>creases, the equilibria shift toward the anionic boronate forms of<br />

the boronic acid.<br />

reduction <strong>in</strong> pH upon oxidation of glucose by GOx led to gel<br />

collapse. In addition to a reduction <strong>in</strong> electrostatic repulsion,<br />

the efficient response of the gel was also attributed<br />

to enhanced hydrogen bond<strong>in</strong>g between the carboxyl <strong>and</strong><br />

ether groups of the ethylene glycol units. Similar hydrogels<br />

prepared by copolymerization of N-isopropylacrylamide<br />

(NIPAM) with methacrylic acid [7] or a sulfadimethox<strong>in</strong>e<br />

monomer with N,N-dimethylacrylamide (DMA) have also<br />

been reported [8].<br />

As opposed to gluconic acid production lead<strong>in</strong>g to cha<strong>in</strong><br />

collapse <strong>in</strong> carboxylate-conta<strong>in</strong><strong>in</strong>g polymers, the lower<strong>in</strong>g<br />

of pH could also lead to cha<strong>in</strong> expansion <strong>in</strong> the presence<br />

of a polybase [9–11]. For example, Kost <strong>and</strong> co-workers<br />

exam<strong>in</strong>ed the glucose-responsive nature of crossl<strong>in</strong>ked<br />

poly(2-hydroxyethyl methacrylate-co-N,N-dimethylam<strong>in</strong>oethyl<br />

methacrylate) (poly(HEMA-co-DMAEMA))<br />

that conta<strong>in</strong>ed entrapped GOx, catalase, <strong>and</strong> <strong>in</strong>sul<strong>in</strong> [12].<br />

In this case, as the pH of the hydrogel was lowered dur<strong>in</strong>g<br />

exposure to glucose, am<strong>in</strong>es <strong>in</strong> the DMAEMA units assumed<br />

a positive charge, <strong>and</strong> electrostatic repulsion caused hydrogel<br />

swell<strong>in</strong>g <strong>and</strong> <strong>in</strong>sul<strong>in</strong> escape. A similar system has been<br />

reported by Nar<strong>in</strong>es<strong>in</strong>gh <strong>and</strong> co-workers [13].<br />

The need for <strong>in</strong>creased biocompatibility <strong>in</strong> GOx-based<br />

responsive materials has <strong>recent</strong>ly led to the <strong>in</strong>corporation<br />

of poly(ethylene glycol) (PEG) grafts [9–11,14,15] <strong>and</strong> other<br />

nontoxic, nonimmunogenic, biocompatible polymers, such<br />

as chitosan [15,16]. Additionally, while the examples above<br />

were largely hydrogels that rely on changes <strong>in</strong> pH result<strong>in</strong>g<br />

from production of gluconic acid dur<strong>in</strong>g the oxidation of<br />

glucose, it is also possible to prepare other pH-responsive<br />

polymer morphologies. For example, Han <strong>and</strong> co-workers<br />

synthesized pH-sensitive liposomes us<strong>in</strong>g �-palmitoyl-�decyl-l-�-phosphatidylethanolam<strong>in</strong>e<br />

<strong>and</strong> oleic acid [17].<br />

The liposomes were <strong>in</strong>fused with GOx <strong>and</strong> <strong>in</strong>sul<strong>in</strong>, <strong>and</strong><br />

the acidic environment that resulted from glucose oxidation<br />

destabilized the liposomes <strong>and</strong> led to <strong>in</strong>sul<strong>in</strong><br />

delivery. Moreover, it is also possible to prepare polymers<br />

that respond to the <strong>in</strong>creased concentration of the H 2O 2<br />

byproduct <strong>in</strong>stead of gluconic acid [18].<br />

2.1.2. Glucose-responsive systems based on ConA<br />

Another type of glucose-responsive system utilizes<br />

competitive b<strong>in</strong>d<strong>in</strong>g of glucose with glycopolymer–lect<strong>in</strong><br />

complexes, as reported by Brownlee <strong>and</strong> Cerami [19].<br />

Lect<strong>in</strong>s are prote<strong>in</strong>s that specifically b<strong>in</strong>d carbohydrates.<br />

Because most lect<strong>in</strong>s are multivalent, glycopolymers<br />

tend to crossl<strong>in</strong>k <strong>and</strong>/or aggregate <strong>in</strong> their presence;<br />

however, this aggregation can be disrupted by <strong>in</strong>troduc<strong>in</strong>g<br />

a competitively b<strong>in</strong>d<strong>in</strong>g saccharide [3]. Numerous<br />

glucose-responsive materials have been reported based<br />

on competitive b<strong>in</strong>d<strong>in</strong>g between lect<strong>in</strong>s <strong>and</strong> glucose. The<br />

lect<strong>in</strong> most heavily employed to impart sensitivity to glucose<br />

is concanaval<strong>in</strong> A (ConA).<br />

Kim <strong>and</strong> co-workers reported the synthesis of monosubstituted<br />

conjugates of glucosyl-term<strong>in</strong>al PEG (G-PEG)<br />

<strong>and</strong> <strong>in</strong>sul<strong>in</strong> [20]. The G-PEG-<strong>in</strong>sul<strong>in</strong> conjugates were<br />

bound to ConA that was attached pendantly along a PEGpoly(v<strong>in</strong>ylpyrrolidone-co-acrylic<br />

acid) backbone. When<br />

the concentration of glucose <strong>in</strong> the surround<strong>in</strong>g aqueous<br />

solution <strong>in</strong>creased, competitive b<strong>in</strong>d<strong>in</strong>g of glucose with<br />

ConA led to displacement <strong>and</strong> release of the G-PEG-<strong>in</strong>sul<strong>in</strong><br />

conjugates. Sambanis reported a ConA-glycogen gel that<br />

underwent a gel–sol transition <strong>in</strong> the presence of glucose<br />

due to the preferred b<strong>in</strong>d<strong>in</strong>g of ConA with free glucose over<br />

the glycogen conta<strong>in</strong><strong>in</strong>g gel [21]. The authors <strong>in</strong>dicated the<br />

possibility of creat<strong>in</strong>g a hybrid pancreas substitute from<br />

constitutively secret<strong>in</strong>g cells <strong>and</strong> a glucose-responsive<br />

material that could mimic physiologic regulation of <strong>in</strong>sul<strong>in</strong><br />

release. Hoffman <strong>and</strong> co-workers synthesized a glucoseresponsive<br />

hydrogel via copolymerization of ConA v<strong>in</strong>yl<br />

macromonomers with a monomer modified with pendent<br />

glucose units [22]. The addition of free glucose caused the<br />

glycopolymer–ConA complex to dissociate <strong>and</strong> the gel to<br />

swell, with the degree of swell<strong>in</strong>g depend<strong>in</strong>g on glucose<br />

concentration. Responsive systems <strong>in</strong> which ConA is simply<br />

entrapped <strong>in</strong> the hydrogel can lead to leakage of the prote<strong>in</strong><br />

<strong>and</strong> irreversible swell<strong>in</strong>g. However, the copolymerized<br />

hydrogel described above prevented ConA leakage, <strong>and</strong> the<br />

hydrogels were demonstrated to be reversibly responsive.<br />

The response of these polymers was specific for glucose or<br />

mannose, while other sugars caused no response [23–25].<br />

2.1.3. Glucose-responsive systems based on boronic<br />

acid–diol complexation<br />

While the glucose-responsive systems based on GOx<br />

<strong>and</strong> lect<strong>in</strong>s are versatile <strong>and</strong> highly specific, the reliance on<br />

prote<strong>in</strong>-based components may limit applications under<br />

non-biological conditions or over longer time spans that<br />

might promote denaturation. An alternative mechanism of<br />

glucose-response relies on polymers endowed with purely<br />

synthetic components, namely boronic acid moieties. The<br />

ability of boronic acids to reversibly complex with sugars<br />

has led to their be<strong>in</strong>g heavily employed as glucose sensors<br />

<strong>and</strong> as lig<strong>and</strong> moieties dur<strong>in</strong>g chromatography [26].<br />

Boronic acids are unique because their water-solubility can<br />

be tuned by changes <strong>in</strong> pH or diol concentration (Scheme 1).<br />

In aqueous systems, boronic acids exist <strong>in</strong> equilibrium<br />

between an undissociated neutral trigonal form (1) <strong>and</strong> a<br />

dissociated anionic tetrahedral form (2) [2,27–30]. Inthe<br />

presence of 1,2- or 1,3-diols, cyclic boronic esters between


282 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Scheme 2. Synthesis of boronic ester-conta<strong>in</strong><strong>in</strong>g block copolymers via RAFT followed by deprotection (Route 1) <strong>and</strong> direct RAFT polymerization of an<br />

unprotected monomer to yield boronic acid-conta<strong>in</strong><strong>in</strong>g block copolymers [63–65].<br />

the neutral boronic acid <strong>and</strong> a diol are generally considered<br />

hydrolytically unstable [27]. On the other h<strong>and</strong>, the<br />

anionic form (2) is able to reversibly b<strong>in</strong>d with diols to form<br />

a boronate ester (3), shift<strong>in</strong>g the equilibria to the anionic<br />

forms (2 <strong>and</strong> 3) [30]. <strong>Polymer</strong>s conta<strong>in</strong><strong>in</strong>g neutral boronic<br />

acid groups are generally hydrophobic, whereas the anionic<br />

boronate groups impart water-solubility [28]. As the concentration<br />

of glucose is <strong>in</strong>creased, the ratio of the anionic<br />

forms (2 <strong>and</strong> 3) to the neutral form (1) <strong>in</strong>creases, <strong>and</strong> the<br />

hydrophilicity of the system <strong>in</strong>creases. Therefore, as a result<br />

of the <strong>in</strong>terrelated equilibria discussed above, the solubility<br />

of boronic acid-conta<strong>in</strong><strong>in</strong>g polymers is dependent not<br />

only on pH, but also on the concentration of compatible<br />

diols <strong>in</strong> the surround<strong>in</strong>g medium [2]. By exploit<strong>in</strong>g the<br />

complexation behavior between boronic acids <strong>and</strong> a particularly<br />

relevant 1,2-diol (i.e., glucose), the possibility for<br />

glucose-responsive materials exists [2].<br />

As with many of the glucose-responsive systems<br />

discussed above, most examples of boronic acid-based<br />

responsive polymers have been hydrogels that swell or<br />

collapse when exposed to glucose. Sakurai <strong>and</strong> co-workers<br />

reported the synthesis of a glucose-responsive hydrogel<br />

composed of terpolymers of 3-acrylamidophenylboronic<br />

acid (APBA), (N,N-dimethylam<strong>in</strong>o)propylacrylamide<br />

(DMAPA), <strong>and</strong> DMA [31]. The boronic acid groups present<br />

<strong>in</strong> the terpolymer were allowed to complex with poly(v<strong>in</strong>yl<br />

alcohol) (PVA) at physiological pH. Addition of glucose led<br />

to competitive displacement of the PVA, <strong>and</strong> the result<strong>in</strong>g<br />

decrease <strong>in</strong> crossl<strong>in</strong>k density led to swell<strong>in</strong>g of the gel. In<br />

similar systems, responsive hydrogels were made by complex<strong>in</strong>g<br />

PVA with poly(N-v<strong>in</strong>yl-2-pyrrolidone-co-APBA)<br />

[32] or poly(DMA-co-3-methacrylamidophenylboronic<br />

acid-co-DMAPA-co-butyl methacrylate) [33]. Sakurai<br />

reported another glucose-responsive polymeric hydrogel<br />

prepared via copolymerization of NIPAM with APBA <strong>and</strong><br />

N,N-methylene-bis-acrylamide (MBA) as a crossl<strong>in</strong>ker<br />

[29]. Glucose-responsive polymer gel particles have been<br />

reported us<strong>in</strong>g a similar system [34], <strong>and</strong> PNIPAM-based<br />

comb-type grafted hydrogels with rapid response to<br />

glucose concentration were <strong>recent</strong>ly reported by Xie <strong>and</strong><br />

co-workers [35]. In addition to conventional hydrogels,<br />

several glucose-responsive microgels [36–41] <strong>and</strong> fluorescent<br />

nanospheres based on poly(NIPAM-co-APBA) [42]<br />

have been reported.<br />

As shown <strong>in</strong> Scheme 1, modulation <strong>in</strong> solubility of<br />

most polymeric boronic acids occurs because of an apparent<br />

reduction <strong>in</strong> pKa of the boronic acid moiety <strong>in</strong> the<br />

presence of glucose. For this reason, potential therapeutic<br />

applications require boronic acids with a pKa near physiological<br />

pH. Most phenylboronic acids reported <strong>in</strong> the<br />

literature have pKa > 8. However, Kataoka <strong>recent</strong>ly reported<br />

the synthesis of a glucose-responsive copolymer of 4-(1,6dioxo-2,5-diaza-7-oxamyl)<br />

phenylboronic acid (DDOPBA)<br />

(pKa ≈ 7.8) <strong>and</strong> NIPAM [43,44]. Because of its more physiological<br />

relevant pKa, this copolymer is perhaps more<br />

appropriate for use <strong>in</strong> biological systems.<br />

Most glucose-responsive boronic acid-based (co)polymers<br />

have been synthesized by conventional radical<br />

polymerization to yield r<strong>and</strong>om copolymers [45,46], gels<br />

[37], or other crossl<strong>in</strong>ked materials [47,48]. To fully capitalize<br />

on the unique properties of boronic acid-conta<strong>in</strong><strong>in</strong>g<br />

polymers, especially sens<strong>in</strong>g <strong>and</strong> delivery applications<br />

that may rely on supramolecular self-assemblies, it is<br />

important to prepare well-def<strong>in</strong>ed copolymers with<br />

predictable molecular weights, narrow molecular weight<br />

distributions, <strong>and</strong> reta<strong>in</strong>ed cha<strong>in</strong> end functionalities,<br />

the latter of which facilitates block copolymer synthesis<br />

[49,50]. Controlled/“liv<strong>in</strong>g” radical polymerization (CRP) is<br />

a synthetic technique that offers control over these aspects.<br />

CRP methods such as atom transfer radical polymerization<br />

(ATRP) [51–53] <strong>and</strong> reversible addition-fragmentation<br />

cha<strong>in</strong> transfer (RAFT) polymerization [54–58] have been<br />

used to prepare well-def<strong>in</strong>ed organoboron polymers.<br />

Jäkle <strong>and</strong> co-workers reported the efficient synthesis of<br />

organoboron v<strong>in</strong>yl (co)polymers via ATRP, either from silylated<br />

precursors that were subsequently borylated [59–61]<br />

or from the polymerization of organoboron monomers<br />

[62]. We employed RAFT polymerization for the synthesis<br />

of well-def<strong>in</strong>ed boronic acid block copolymers by two<br />

different methods. The first approach <strong>in</strong>volved the polymerization<br />

of the p<strong>in</strong>acol ester of 4-v<strong>in</strong>ylphenylboronic<br />

acid followed by a mild deprotection procedure (Scheme 2)<br />

[63]. More <strong>recent</strong>ly, we reported the synthesis of welldef<strong>in</strong>ed<br />

block copolymers via direct RAFT polymerization<br />

of unprotected APBA [64,65].<br />

The block copolymers of hydrophilic DMA <strong>and</strong> responsive<br />

boronic acid-conta<strong>in</strong><strong>in</strong>g monomers were hydrophilic<br />

<strong>and</strong> fully soluble above the pKa of the boronic acid


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 283<br />

Fig. 2. PAPBA-b-PNIPAM self-assembly/dissociation <strong>in</strong> response to changes <strong>in</strong> pH, glucose concentration, <strong>and</strong> temperature [65]. Reproduced by permission<br />

of The Royal Society of Chemistry.<br />

units. However, at pH < pKa the block copolymers selfassembled<br />

to form micelles. The boronic acid functionality<br />

with<strong>in</strong> the hydrophobic core caused these micelles to<br />

dissociate with <strong>in</strong>creas<strong>in</strong>g pH or glucose concentration.<br />

Replac<strong>in</strong>g the hydrophilic poly(DMA) (PDMA) block<br />

with temperature-responsive PNIPAM [66–68] led to<br />

triply-responsive “schizophrenic” block copolymers that<br />

responded to changes <strong>in</strong> pH, glucose concentration, <strong>and</strong><br />

temperature [65]. Depend<strong>in</strong>g on the comb<strong>in</strong>ation of stimuli<br />

applied, these block copolymers were capable of form<strong>in</strong>g<br />

micelles or reverse micelles (Fig. 2).<br />

2.2. Enzyme-responsive polymers<br />

A relatively new area of research <strong>in</strong> stimuli-responsive<br />

polymeric systems is the design of materials that undergo<br />

macroscopic property changes when triggered by the<br />

selective catalytic actions of enzymes [69,70]. Sensitivity<br />

of this type is unique because enzymes are highly<br />

selective <strong>in</strong> their reactivity, are operable under mild conditions<br />

present <strong>in</strong> vivo, <strong>and</strong> are vital components <strong>in</strong> many<br />

biological pathways. Enzyme-responsive materials are typically<br />

composed of an enzyme-sensitive substrate <strong>and</strong><br />

another component that directs or controls <strong>in</strong>teractions<br />

that lead to macroscopic transitions [70]. Catalytic action<br />

of the enzyme on the substrate can lead to changes <strong>in</strong><br />

supramolecular architectures, swell<strong>in</strong>g/collapse of gels, or<br />

the transformation of surface properties [70].<br />

Similarity <strong>in</strong> properties with extracellular matrix<br />

make hydrogels especially promis<strong>in</strong>g materials for tis-<br />

sue eng<strong>in</strong>eer<strong>in</strong>g, <strong>and</strong> this <strong>in</strong> vivo applicability makes the<br />

<strong>in</strong>corporation of enzyme-sensitivity particularly <strong>in</strong>trigu<strong>in</strong>g.<br />

Hydrogels that are enzyme-responsive can be used for<br />

the non-<strong>in</strong>vasive formation of hydrogels <strong>in</strong> situ. Xu<strong>and</strong><br />

co-workers reported the use of enzymatic dephosphorylation<br />

to <strong>in</strong>duce a sol–gel transition. The small molecule<br />

fluorenylmethyloxycarbonyl (FMOC)-tyros<strong>in</strong>e phosphate<br />

was exposed to a phosphatase, <strong>and</strong> the result<strong>in</strong>g removal<br />

of phosphate groups led to a reduction <strong>in</strong> electrostatic<br />

repulsions, supramolecular assembly by �-stack<strong>in</strong>g of the<br />

fluorenyl groups, <strong>and</strong> eventual gelation [71,72]. In a similar<br />

example, Kaplan <strong>and</strong> co-workers reported the modification<br />

of a genetically eng<strong>in</strong>eered variant of spider dragl<strong>in</strong>e silk via<br />

enzymatic phosphorylation <strong>and</strong> dephosphorylation [73].<br />

Another approach to convey enzyme-sensitivity to a<br />

material is the <strong>in</strong>corporation of functional groups that react<br />

under enzymatic conditions. Exposure of the groups to a<br />

specific enzyme can lead to the creation of new covalent<br />

l<strong>in</strong>kages that cause a change <strong>in</strong> macroscopic properties. For<br />

example, Ulij<strong>in</strong> <strong>and</strong> co-workers used proteases to cause<br />

self-assembly of hydrogels via reversed hydrolysis (ligation)<br />

of peptides [74]. Transglutam<strong>in</strong>ase, a blood clott<strong>in</strong>g<br />

enzyme, has the ability to crossl<strong>in</strong>k the side cha<strong>in</strong>s of<br />

lys<strong>in</strong>e (Lys) residues with glutam<strong>in</strong>e (Gln) residues with<strong>in</strong><br />

or across peptide cha<strong>in</strong>s [70]. This process was exploited<br />

by Griffith <strong>and</strong> Sper<strong>in</strong>de for the synthesis of hydrogels<br />

of crossl<strong>in</strong>ked functionalized PEG <strong>and</strong> lys<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g<br />

polypeptides [75,76]. Controlled gelation k<strong>in</strong>etics were<br />

observed under rather moderate conditions, <strong>in</strong>dicat<strong>in</strong>g this<br />

route may allow hydrogel formation <strong>in</strong> the presence of<br />

Fig. 3. (a) Solution mixture of a peptide-PEG bioconjugate, calcium-loaded liposomes, Factor XIII, <strong>and</strong> thromb<strong>in</strong>; (b) heat<strong>in</strong>g to 37 ◦ C led to calcium release<br />

from liposomes, thromb<strong>in</strong> activation, <strong>and</strong> Factor XIII activation by thromb<strong>in</strong>; (c) activated Factor XIII crossl<strong>in</strong>ked the peptide-PEG result<strong>in</strong>g <strong>in</strong> hydrogel<br />

formation. Repr<strong>in</strong>ted from [78], Copyright (2002), with permission from Elsevier.


284 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Fig. 4. Collapse of enzyme-responsive hydrogels due to reduced electrostatic repulsion upon cleavage of pendant tripeptides [69]. Reproduced by permission<br />

of The Royal Society of Chemistry.<br />

liv<strong>in</strong>g cells. Transglutam<strong>in</strong>ase can similarly be used to<br />

crossl<strong>in</strong>k naturally occurr<strong>in</strong>g polymers <strong>in</strong> the presence<br />

of cells [77]. Escherichia coli cells entrapped <strong>in</strong> a prote<strong>in</strong><br />

gelat<strong>in</strong> mixture cont<strong>in</strong>ued to grow with<strong>in</strong> the hydrogel<br />

<strong>and</strong> even survived after hydrolytic gel degradation <strong>in</strong>duced<br />

by exposure to a protease enzyme. Because some transglutam<strong>in</strong>ase<br />

enzymes are only active <strong>in</strong> the presence of<br />

calcium ions, exposure to Ca 2+ can also trigger enzymatic<br />

crossl<strong>in</strong>k<strong>in</strong>g [70]. Messersmith <strong>and</strong> co-workers used this<br />

phenomenon with a four-arm star-shaped PEG that conta<strong>in</strong>ed<br />

a 20-residue fibr<strong>in</strong> peptide sequence at the end of<br />

each arm [78]. When the copolymer was mixed with Ca 2+ -<br />

loaded liposomes designed to release their contents at body<br />

temperature, crossl<strong>in</strong>k<strong>in</strong>g of the peptide–PEG conjugates<br />

led to gels with potential applications as drug/gene delivery<br />

agents <strong>and</strong> tissue adhesives (Fig. 3).<br />

A wide variety of approaches have been employed to<br />

prepare hydrogels that respond to the presence of proteases.<br />

Typically the preformed network is exposed to a<br />

protease enzyme, <strong>and</strong> hydrolysis of prote<strong>in</strong> or peptidebased<br />

crossl<strong>in</strong>kers <strong>in</strong> the network leads to gel degradation<br />

<strong>and</strong> subsequent release of encapsulated contents. Hubbell<br />

<strong>and</strong> co-workers formed hydrogels <strong>in</strong> the presence of cells,<br />

us<strong>in</strong>g a Michael-type reaction between v<strong>in</strong>yl sulfonefunctionalized<br />

multi-armed telechelic PEG macromers <strong>and</strong><br />

mono-cyste<strong>in</strong>e adhesion peptides or bis-cyste<strong>in</strong>e matrix<br />

metalloprote<strong>in</strong>ases [79]. The result<strong>in</strong>g hydrogels locally<br />

degraded <strong>in</strong> response to cell-surface proteases, which<br />

provided a route to gels with templated paths for cell<br />

migration. Moore <strong>and</strong> co-workers prepared chymotryps<strong>in</strong>responsive<br />

materials by <strong>in</strong>corporat<strong>in</strong>g a degradable CYKC<br />

tetrapeptide sequence as a crossl<strong>in</strong>ker with<strong>in</strong> polyacrylamide<br />

hydrogels [80]. The CYKC sequence conta<strong>in</strong>s a<br />

term<strong>in</strong>al cyste<strong>in</strong>e conjugation site, a tyros<strong>in</strong>e residue which<br />

can be cleaved at the carboxyl side by chymotryps<strong>in</strong>, <strong>and</strong><br />

a lys<strong>in</strong>e residue. When subjected to flow<strong>in</strong>g or stationary<br />

solutions of �-chymotryps<strong>in</strong>, the micron-sized gels<br />

dissolved <strong>in</strong> a matter of m<strong>in</strong>utes due to the degradation<br />

of CYKC by �-chymotryps<strong>in</strong>, while a control hydrogel<br />

with a non-cleavable tetrapeptide sequence showed no<br />

appreciable degradation under similar conditions. Ulij<strong>in</strong><br />

<strong>and</strong> co-workers reported protease-responsive hydrogels<br />

that potentially have applications for the removal of tox<strong>in</strong>s<br />

or entrapment of drug molecules [69]. In this case<br />

the response was caused by a change <strong>in</strong> osmotic pressure<br />

<strong>in</strong>stead of crossl<strong>in</strong>k degradation. Copolymer beads<br />

composed of acrylamide <strong>and</strong> PEG-macromonomers were<br />

modified via an enzyme cleavable tripeptide compris<strong>in</strong>g<br />

comb<strong>in</strong>ations of glyc<strong>in</strong>e, phenylalan<strong>in</strong>e, <strong>and</strong> positively<br />

charged arg<strong>in</strong><strong>in</strong>e residues that imparted swell<strong>in</strong>g due to<br />

electrostatic repulsions. Upon the addition of proteases,<br />

the tripeptide was cleaved, <strong>and</strong> the result<strong>in</strong>g loss of arg<strong>in</strong><strong>in</strong>e<br />

groups led to a reduction <strong>in</strong> electrostatic repulsions<br />

<strong>and</strong> subsequent collapse of the hydrogel (Fig. 4). The<br />

beads could alternatively be functionalized with zwitterionic<br />

peptides that left the hydrogel uncharged <strong>in</strong> its <strong>in</strong>itial<br />

state due to charge neutralization [81]. Enzyme-catalyzed<br />

hydrolysis of the pendant peptide resulted <strong>in</strong> a charge<br />

imbalance that caused significant swell<strong>in</strong>g.<br />

<strong>Polymer</strong>s that respond to a variety of other prote<strong>in</strong>s<br />

have also been reported. For <strong>in</strong>stance, Thayumanavan<br />

<strong>and</strong> co-workers <strong>recent</strong>ly demonstrated that supramolecu-


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 285<br />

Fig. 5. Non-reversible (a) <strong>and</strong> reversible (b) antigen-responsive hydrogels. The response <strong>in</strong> (a) is non-reversible as a result of loss of the antibody crossl<strong>in</strong>ks<br />

after addition of free antigen. Reversibility is possible <strong>in</strong> (b) because the antibody is covalently immobilized with<strong>in</strong> the network. Repr<strong>in</strong>ted by permission<br />

from Macmillan Publishers Ltd. [87], copyright (1999).<br />

lar polymer–surfactant complexes can self-assemble <strong>in</strong>to<br />

micellar structures <strong>and</strong> that these aggregates can be<br />

<strong>in</strong>duced to dissociate upon the addition of bov<strong>in</strong>e serum<br />

album<strong>in</strong>, lysozyme, avid<strong>in</strong>, chymotryps<strong>in</strong>, �-glucosidase,<br />

<strong>and</strong> other prote<strong>in</strong>s [82,83]. It is important to note, however,<br />

that <strong>in</strong> this case prote<strong>in</strong> sensitivity did not arise from<br />

enzymatic activity but was <strong>in</strong>stead the result of competitive<br />

complexation caused by the ability of polyelectrolytes<br />

to effectively b<strong>in</strong>d globular prote<strong>in</strong>s.<br />

2.3. Antigen-responsive polymers<br />

Antigen–antibody <strong>in</strong>teractions are highly specific <strong>and</strong><br />

are associated with complex immune responses that help<br />

recognize <strong>and</strong> neutralize foreign <strong>in</strong>fection-caus<strong>in</strong>g objects<br />

<strong>in</strong> the body. B<strong>in</strong>d<strong>in</strong>g between antigens <strong>and</strong> antibodies can<br />

rely on a variety of non-covalent <strong>in</strong>teractions, such as<br />

hydrogen bond<strong>in</strong>g, van der Waals forces, <strong>and</strong> electrostatic<br />

<strong>and</strong> hydrophobic <strong>in</strong>teractions. Antibodies are employed<br />

<strong>in</strong> a number of immunological assays for the detection<br />

<strong>and</strong> measurement of biological <strong>and</strong> non-biological substances<br />

[84], <strong>and</strong> the high aff<strong>in</strong>ity <strong>and</strong> specificity of their<br />

<strong>in</strong>teractions with antigens have been harnessed to yield a<br />

variety of responsive synthetic polymeric systems. In most<br />

cases, antigen–antibody b<strong>in</strong>d<strong>in</strong>g has been used to <strong>in</strong>duce<br />

responses <strong>in</strong> hydrogels prepared by physically entrapp<strong>in</strong>g<br />

antibodies or antigens <strong>in</strong> networks, chemical conjugation<br />

of the antibody or antigen to the network, or us<strong>in</strong>g<br />

antigen–antibody pairs as reversible crossl<strong>in</strong>kers with<strong>in</strong><br />

networks [85].<br />

Miyata et al. prepared antigen-sensitive hydrogels by<br />

coupl<strong>in</strong>g rabbit immunoglobul<strong>in</strong> G (Rabbit IgG) to Nsucc<strong>in</strong>imidylacrylate<br />

(NSA). The modified monomer was<br />

polymerized <strong>in</strong> the presence of goat anti-rabbit IgG as<br />

an antibody, acrylamide, <strong>and</strong> MBA to result <strong>in</strong> the formation<br />

of a hydrogel crossl<strong>in</strong>ked both covalently <strong>and</strong><br />

by antigen–antibody <strong>in</strong>teractions. Upon the addition of<br />

rabbit IgG as a free antigen, competitive b<strong>in</strong>d<strong>in</strong>g of the<br />

goat anti-rabbit IgG antibodies resulted <strong>in</strong> loss of the<br />

antigen–antibody crossl<strong>in</strong>kers <strong>and</strong> concomitant swell<strong>in</strong>g<br />

of the hydrogel (Fig. 5a) [86]. While this represented one<br />

of the first examples of an antigen-responsive polymeric<br />

system, the antibody was lost upon hydrogel swell<strong>in</strong>g, <strong>and</strong><br />

antigen–antibody crossl<strong>in</strong>ks could not be reformed [84].<br />

In a later report, Miyata et al. reported a similar hydrogel<br />

that was reversibly responsive [87]. The antigen (rabbit<br />

IgG) <strong>and</strong> antibody (goat anti-rabbit IgG) were each functionalized<br />

to conta<strong>in</strong> v<strong>in</strong>yl groups. The modified antibody<br />

Fig. 6. Chemical structure of Fab ′ -conta<strong>in</strong><strong>in</strong>g antigen-responsive hydrogels. Addition of free sodium fluoresce<strong>in</strong> led to competitive b<strong>in</strong>d<strong>in</strong>g <strong>and</strong> loss of<br />

antigen–antibody crossl<strong>in</strong>ks. Copyright Wiley-VCH Verlag GmbH & Co. KGaA. Reproduced with permission [85].


286 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Scheme 3. Redox/thiol-responsive behavior capable of be<strong>in</strong>g exploited <strong>in</strong> polymeric systems.<br />

was polymerized with acrylamide, <strong>and</strong> the modified antigen<br />

was polymerized with acrylamide <strong>and</strong> MBA <strong>in</strong> the<br />

presence of the polymerized antibody to synthesize an<br />

antigen–antibody semi-<strong>in</strong>terpenetrat<strong>in</strong>g network hydrogel<br />

(semi-IPN). Addition of free rabbit IgG antigen resulted<br />

<strong>in</strong> competitive b<strong>in</strong>d<strong>in</strong>g with the antibodies <strong>in</strong> the hydrogel,<br />

which disrupted the antigen–antibody crossl<strong>in</strong>ks <strong>and</strong><br />

led to swell<strong>in</strong>g of the hydrogel (Fig. 5b). Due to both antigen<br />

<strong>and</strong> antibody be<strong>in</strong>g covalently bound with<strong>in</strong> the semi-IPN,<br />

swell<strong>in</strong>g was reversible. Stepwise changes <strong>in</strong> the antigen<br />

concentration <strong>in</strong>duced pulsatile permeation of a prote<strong>in</strong><br />

through the network.<br />

Kopeček <strong>and</strong> co-workers reported the synthesis of antigen<br />

responsive hydrogels based on polymerizable antibody<br />

Fab ′ fragments [85]. The polymerizable Fab ′ fragment was<br />

copolymerized with NIPAM <strong>and</strong> MBA, <strong>and</strong> b<strong>in</strong>d<strong>in</strong>g of antigens<br />

to the Fab ′ fragment caused reversible changes <strong>in</strong><br />

volume (Fig. 6). The response of the hydrogels was shown<br />

to be dependent on Fab ′ content, pH, <strong>and</strong> temperature.<br />

Hubble <strong>and</strong> co-workers reported an antigen-responsive<br />

hydrogel membrane based on a crossl<strong>in</strong>ked dextran backbone<br />

grafted with both a fluoresce<strong>in</strong> isothiocyanate (FITC)<br />

antigen <strong>and</strong> a sheep anti-FITC IgG antibody [88]. When<br />

free sodium fluoresce<strong>in</strong> was added to the hydrogel,<br />

antibody–antigen crossl<strong>in</strong>ks were broken by competitive<br />

b<strong>in</strong>d<strong>in</strong>g of the free antigen. The disruption of the crossl<strong>in</strong>ks<br />

resulted <strong>in</strong> reversible hydrogel swell<strong>in</strong>g. Potential applications<br />

were envisioned <strong>in</strong> which the responsive membranes<br />

could serve as gates for selective diffusion <strong>in</strong> response to<br />

the presence of an antigen.<br />

2.4. Redox/thiol-responsive polymers<br />

Redox/thiol sensitive polymers are another class of<br />

responsive polymers that have <strong>recent</strong>ly received <strong>in</strong>creased<br />

attention, especially <strong>in</strong> various fields of controlled drug<br />

delivery [89–98]. The <strong>in</strong>terconversion of thiols <strong>and</strong> disulfides<br />

is a key step <strong>in</strong> many biological processes, plays an<br />

important role <strong>in</strong> the stability <strong>and</strong> rigidity of native prote<strong>in</strong>s<br />

<strong>in</strong> liv<strong>in</strong>g cells [99], <strong>and</strong> has been harnessed synthetically<br />

for various bioconjugation protocols [100,101]. Because<br />

disulfide bonds can be reversibly converted to thiols by<br />

exposure to various reduc<strong>in</strong>g agents <strong>and</strong>/or undergo disulfide<br />

exchange <strong>in</strong> the presence of other thiols, polymers<br />

conta<strong>in</strong><strong>in</strong>g disulfide l<strong>in</strong>kages can be considered both redox<strong>and</strong><br />

thiol-responsive (Scheme 3) [101,102].<br />

Glutathione (GSH), the most abundant reduc<strong>in</strong>g agent<br />

<strong>in</strong> most cells [95], has a typical <strong>in</strong>tracellular concentration<br />

of about 10 mM, whereas its concentration is only<br />

about 0.002 mM <strong>in</strong> the cellular exterior [103]. This significant<br />

variation <strong>in</strong> concentration has been utilized to<br />

design thiol/redox-responsive drug delivery systems that<br />

specifically release therapeutics upon entry <strong>in</strong>to cells. For<br />

<strong>in</strong>stance, Lee <strong>and</strong> co-workers synthesized polymer micelles<br />

with shells crossl<strong>in</strong>ked via thiol-reducible disulfide bonds<br />

to serve as biocompatible nanocarriers that preferentially<br />

release anticancer drugs <strong>in</strong> the reduc<strong>in</strong>g conditions characteristic<br />

of cancer tissues [104]. Redox-sensitive disulfide<br />

groups can also be directly <strong>in</strong>troduced <strong>in</strong>to side cha<strong>in</strong>s<br />

or backbones by us<strong>in</strong>g an appropriate monomer, <strong>in</strong>itiator,<br />

or cha<strong>in</strong> transfer agent [95,105–108]. For <strong>in</strong>stance,<br />

Stayton <strong>and</strong> co-workers synthesized a drug carrier by<br />

copolymerization of a pyridyl disulfide conta<strong>in</strong><strong>in</strong>g acryloyl<br />

monomer with methacrylic acid <strong>and</strong> butyl acrylate [94,95].<br />

The result<strong>in</strong>g terpolymers were thiol- <strong>and</strong> pH-sensitive <strong>and</strong><br />

demonstrated membrane-disruptive properties necessary<br />

for effective endosomal escape <strong>in</strong> gene delivery. Tsarevsky<br />

<strong>and</strong> Matyjaszewski synthesized redox/thiol-sensitive polymers<br />

us<strong>in</strong>g a disulfide-conta<strong>in</strong><strong>in</strong>g difunctional ATRP<br />

<strong>in</strong>itiator [109], <strong>and</strong> later employed a disulfide-functional<br />

dimethacrylate monomer (Fig. 7) to synthesize redox sensitive<br />

nanogels via <strong>in</strong>verse m<strong>in</strong>iemulsion ATRP [102,110].<br />

Fig. 7. (a) Difunctional disulfide-conta<strong>in</strong><strong>in</strong>g ATRP <strong>in</strong>itiator <strong>and</strong> (b) a disulfide-conta<strong>in</strong><strong>in</strong>g monomer employed to prepare redox/thiol-responsive polymers.


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 287<br />

Scheme 4. Preparation of hollow nanocapsule vesicles from redox-responsive block copolymers. The addition of reduc<strong>in</strong>g agent DTT <strong>in</strong>to a hetero-PEGdetachable<br />

polyelectrolyte complex micelle solution resulted <strong>in</strong> a morphology transition to polymeric vesicles. Repr<strong>in</strong>ted with permission from [115].<br />

Copyright 2009 American Chemical Society.<br />

Synthesis of the nanogels by ATRP led to <strong>in</strong>creased colloidal<br />

stability, higher swell<strong>in</strong>g ratios, <strong>and</strong> enhanced control of<br />

degradability on treatment with tributyl phosph<strong>in</strong>e or<br />

GSH, as compared to analogs prepared by conventional<br />

free radical polymerization <strong>in</strong> <strong>in</strong>verse m<strong>in</strong>iemulsion. Li<br />

<strong>and</strong> Armes used the disulfide-functional dimethacrylate<br />

as a branch<strong>in</strong>g agent dur<strong>in</strong>g the polymerization of N-(2hydroxypropyl)methacrylamide<br />

(HPMA) via ATRP [111].<br />

Disulfide bonds with<strong>in</strong> the branched copolymers were efficiently<br />

cleaved either upon exposure to dithiols or by<br />

treatment with benzoyl peroxide.<br />

Incorporat<strong>in</strong>g cleavable disulfides with<strong>in</strong> both micelle<br />

cores <strong>and</strong> shells has proven to be a feasible mechanism of<br />

stabiliz<strong>in</strong>g multimolecular aggregates. For example, Stenzel<br />

<strong>and</strong> co-workers used RAFT to synthesize thiol-sensitive<br />

core crossl<strong>in</strong>ked micelles consist<strong>in</strong>g of poly(polyethylene<br />

glycol methyl ether methacrylate)-block-poly(5 ′ -O-methacryloylurid<strong>in</strong>e)<br />

<strong>and</strong> a dimethacrylate crossl<strong>in</strong>ker [92]. The<br />

result<strong>in</strong>g nanoparticles demonstrated a drug release efficiency<br />

of up to 70% <strong>in</strong> 7 h <strong>in</strong> the presence of dithiothreitol<br />

(DTT). Liu <strong>and</strong> co-workers also synthesized redoxresponsive<br />

core crossl<strong>in</strong>ked micelles of poly(ethylene<br />

oxide) (PEO)-b-poly(NIPAM-co-N-acryloxysucc<strong>in</strong>imide)<br />

via RAFT [112]. After react<strong>in</strong>g the micelles with cystam<strong>in</strong>e,<br />

the disulfide bonds with<strong>in</strong> the hydrophobic core were<br />

cleaved by treatment with DTT <strong>and</strong> reformed aga<strong>in</strong> upon<br />

addition of cystam<strong>in</strong>e as a thiol/disulfide exchange promoter.<br />

McCormick <strong>and</strong> co-workers synthesized disulfide<br />

based cystam<strong>in</strong>e-conta<strong>in</strong><strong>in</strong>g triblock copolymer micelles<br />

that were shell crossl<strong>in</strong>ked [113]. Reversible cleavage<br />

of the micelles was accomplished with either DTT or<br />

tris(2-carboxyethyl)phosph<strong>in</strong>e (TCEP), <strong>and</strong> the degraded<br />

micelles could be re-crossl<strong>in</strong>ked us<strong>in</strong>g cystam<strong>in</strong>e as a<br />

thiol-exchanger. Shell crossl<strong>in</strong>ked micelles of poly(lcyste<strong>in</strong>e)-b-poly(l-lactide)<br />

were also synthesized via<br />

r<strong>in</strong>g-open<strong>in</strong>g polymerization [114]. When treated with<br />

DTT, the crossl<strong>in</strong>ks with<strong>in</strong> the micelle shells were lost, but<br />

when DTT was removed by dialysis, the shell crossl<strong>in</strong>ked<br />

micelles were reformed. Disulfide crossl<strong>in</strong>ked polymer<br />

capsules based on poly(N-v<strong>in</strong>ylpyrrolidone) (PNVP) <strong>and</strong><br />

PMAA have also been reported [97]. The result<strong>in</strong>g hydrogen<br />

bonded multilayer films were stable at physiological pH but<br />

could be <strong>in</strong>duced to disassemble when treated with DTT.<br />

Kataoka <strong>and</strong> co-workers most <strong>recent</strong>ly demonstrated<br />

that disulfide reduction could be used to <strong>in</strong>duce morphological<br />

transitions of block copolymer aggregates <strong>in</strong><br />

solution [115]. <strong>Polymer</strong>ic micelles with <strong>in</strong>terpolyelectrolyte<br />

complexed cores composed of positively <strong>and</strong><br />

negatively charged cha<strong>in</strong>s conta<strong>in</strong>ed a PEG corona l<strong>in</strong>ked<br />

by disulfide bonds. Upon reduction with DTT, the PEG<br />

segments were detached from the micelles, lead<strong>in</strong>g to<br />

homopolymer complexes that adopted a vesicular structure<br />

due to the small curvature that resulted from the<br />

absence of shield<strong>in</strong>g from PEG. The decreased free energy<br />

of the corona, due to the loss of the PEG cha<strong>in</strong>s from the<br />

polyion complex surface, is thought to be the driv<strong>in</strong>g force<br />

(Scheme 4).<br />

While the examples above rely on block copolymer selfassembly<br />

<strong>in</strong>to micelles or vesicles that can be subsequently<br />

(de)stabilized by thiol-disulfide chemistry, redox-response<br />

can also be <strong>in</strong>duced <strong>in</strong> aggregates that do not <strong>in</strong>volve block<br />

copolymers. For examples, Thayumanavan <strong>and</strong> co-workers<br />

demonstrated that supramolecular polymer-surfactant<br />

complexes can form micelles susceptible to thiol-<strong>in</strong>duced<br />

dissociation (Fig. 8) [116]. A polymer decorated with pendant<br />

carboxylates attached via disulfides was allowed to<br />

complex with a cationic surfactant. When micelles of the<br />

supramolecular complex were treated with GSH, cleavage<br />

of the polymer side cha<strong>in</strong>s resulted <strong>in</strong> aggregate dissociation<br />

<strong>and</strong> release of a model hydrophobic compound.<br />

Thiol-responsive triblocks composed of PNIPAM or<br />

PHPMA <strong>and</strong> PMPC have also been reported us<strong>in</strong>g the<br />

disulfide-based ATRP <strong>in</strong>itiator described above (Fig. 7a).<br />

Because the <strong>in</strong>tegrity of the gels relied on disulfide l<strong>in</strong>kages,


288 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Fig. 8. A glutathione <strong>in</strong>duced cleavage reaction <strong>and</strong> the result on the solution morphology of the polymer–surfactant complexes. Copyright 2009. Repr<strong>in</strong>ted<br />

with permission of John Wiley & Sons, Inc. [116].<br />

controlled degradation could be <strong>in</strong>duced under physiologically<br />

relevant conditions us<strong>in</strong>g GSH or DTT [90,117].<br />

Rapid dissociation of PHMA–PMC–PHMA triblock copolymer<br />

gels was observed under mild reduc<strong>in</strong>g conditions,<br />

<strong>in</strong>dicat<strong>in</strong>g that materials prepared from such polymers<br />

may have potential applications as wound dress<strong>in</strong>g [90].<br />

Vogt <strong>and</strong> Sumerl<strong>in</strong> <strong>recent</strong>ly reported RAFT-generated ABA<br />

triblocks copolymers capable of form<strong>in</strong>g hydrogels that<br />

were both temperature- <strong>and</strong> redox-responsive (Scheme 5)<br />

[118]. A difunctional trithiocarbonate cha<strong>in</strong> transfer agent<br />

was used to synthesize symmetrical triblock copolymers<br />

of PNIPAM-b-PDMA-b-PNIPAM <strong>and</strong> poly(di(ethylene glycol)ethyl<br />

ether acrylate) (PDEGA)-b-PDMA-b-PDEGA. In<br />

each case, heat<strong>in</strong>g above the LCST of the outer thermoresponsive<br />

block led to gelation. However, because<br />

the hydrophilic bridg<strong>in</strong>g PDMA cha<strong>in</strong>s conta<strong>in</strong>ed labile<br />

trithiocarbonate l<strong>in</strong>kages, am<strong>in</strong>olysis led to a free-flow<strong>in</strong>g<br />

solution of thiol-decorated polymeric micelles. Under<br />

oxidiz<strong>in</strong>g conditions, the thiols on the term<strong>in</strong>i of the<br />

micelle corona cha<strong>in</strong>s coupled to form disulfide-conta<strong>in</strong><strong>in</strong>g<br />

hydrogels. Reduction with either DTT or GSH led to gel<br />

degradation. Other examples of redox-responsive gels <strong>and</strong><br />

block copolymers have also been reported. Plunkett et al.<br />

synthesized polyacrylamide hydrogels us<strong>in</strong>g a tetrapeptide<br />

crossl<strong>in</strong>ker responsive to reduc<strong>in</strong>g agents such as<br />

TCEP [80], <strong>and</strong> W<strong>in</strong>nik <strong>and</strong> co-workers reported a redox<br />

sensitive nanogel prepared via RAFT polymerization of<br />

NIPAM mediated by a polysaccharide (pullulan)-based<br />

cha<strong>in</strong> transfer agent [119]. Self-assembly of the PNIPAMgraft-polysaccharide<br />

with thiol end groups rendered the<br />

nanogel responsive to changes <strong>in</strong> the redox environment,<br />

with both chemical <strong>and</strong> physical cross-l<strong>in</strong>k<strong>in</strong>g po<strong>in</strong>ts be<strong>in</strong>g<br />

destroyed upon treatment with TCEP. Monteiro <strong>and</strong> coworkers<br />

reported the synthesis <strong>and</strong> redox-sensitivity of<br />

reversible crossl<strong>in</strong>ked polystyrene networks. Am<strong>in</strong>olysis<br />

of RAFT-generated polymers led to telechelic thiol polymers<br />

that could reversibly assemble <strong>in</strong>to responsive cyclic,<br />

bicyclic, multiblock, <strong>and</strong> network architectures [120,121].<br />

Star, block, <strong>and</strong> multiblock copolymers can also be<br />

rendered thiol-responsive by <strong>in</strong>corporat<strong>in</strong>g redox-labile<br />

l<strong>in</strong>kages at block junction po<strong>in</strong>ts. For <strong>in</strong>stance, Liu et al.<br />

used RAFT to prepare thiol-sensitive biodegradable threearmed<br />

star polymers us<strong>in</strong>g both “core-first” <strong>and</strong> “arm-first”<br />

approaches [122]. Jeong <strong>and</strong> co-workers synthesized<br />

a disulfide-conta<strong>in</strong><strong>in</strong>g multiblock copolymer of PEO-bpoly(propylene<br />

oxide) (PPO)-b-PEO [93]. Drug release<br />

was significantly faster after treatment with GSH. Similarly,<br />

Oupicky <strong>and</strong> co-workers reported redox-responsive<br />

multiblock copolymers of PNIPAM <strong>and</strong> PDMAEMA that<br />

were readily reduced to the constituent start<strong>in</strong>g blocks<br />

due to the presence of disulfide bridge between the<br />

blocks [89]. Börner <strong>and</strong> co-workers <strong>in</strong>vestigated controlled<br />

disassembly of a polymeric drug carrier composed of<br />

disulfide-l<strong>in</strong>ked poly(amidoam<strong>in</strong>e) <strong>and</strong> PEO [123]. Release<br />

of the monodisperse poly(amidoam<strong>in</strong>e) segments was<br />

observed by mass spectrometric analysis. Hubbell reported<br />

the design <strong>and</strong> characterization of block copolymers with<br />

hydrophilic PEG tethered to hydrophobic poly(propylene<br />

sulfide) via a disulfide bridge [91,124–127]. Because they<br />

should undergo sudden vesicular burst with<strong>in</strong> the early<br />

endosome, polymeric vesicles assembled from such block<br />

copolymers may have promise for potential cytoplasmic<br />

delivery of biomolecular therapeutics such as peptides,<br />

prote<strong>in</strong>s, oligonucleotides, <strong>and</strong> DNA.<br />

3. Field-responsive polymers<br />

Most methods of <strong>in</strong>duc<strong>in</strong>g a response <strong>in</strong> smart polymeric<br />

systems rely on k<strong>in</strong>etically restricted diffusion of<br />

the stimulus. For example, polymer gels that respond


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 289<br />

Scheme 5. Temperature <strong>and</strong> redox-responsive gelation of triblock copolymers prepared by RAFT. (a) Molecularly-dissolved unimers of PNIPAM-b-PDMAb-PNIPAM<br />

or PDEGA-b-PDMA-b-PDEGA; (b) hydrogels formed upon heat<strong>in</strong>g above the LCST of the responsive PNIPAM or PDEGA blocks; (c) free-flow<strong>in</strong>g<br />

micellar solutions of PNIPAM-b-PDMA-SH or PDEGA-b-PDMA-SH result<strong>in</strong>g from trithiocarbonate am<strong>in</strong>olysis at T > LCST; (d) hydrogels formed from<br />

PNIPAM-b-PDMA-S-S-PDMA-b-PNIPAM or PDEGA-b-PDMA-S-S-PDMA-b-PDEGA upon oxidation of the thiol-term<strong>in</strong>ated diblock am<strong>in</strong>olysis products [118].<br />

Reproduced by permission of The Royal Society of Chemistry.<br />

to changes <strong>in</strong> electrolyte concentration or pH require<br />

transport of externally <strong>in</strong>troduced ions to or from the vic<strong>in</strong>ity<br />

of the polymer backbone. Similarly, the response of<br />

temperature-sensitive polymers can be significantly limited<br />

by issues of heat transfer. As a result, the response<br />

of many traditional stimuli-responsive polymers is a slow<br />

process [128]. An alternative mechanism of stimulation<br />

that overcomes this issue is the application of electric,<br />

magnetic, sonic, or electromagnetic (photo/light) fields. In<br />

addition to hav<strong>in</strong>g the ability to be applied or removed near<br />

<strong>in</strong>stantaneously, some of these stimuli have the added benefit<br />

of potentially be<strong>in</strong>g directional, which can give rise to<br />

anisotropic deformation. Indeed field-responsive polymers<br />

are some of the most convenient stimuli from the po<strong>in</strong>t of<br />

signal control [129,130].<br />

3.1. Electro-responsive polymers<br />

Electro-responsive polymers can be used to prepare<br />

materials that swell, shr<strong>in</strong>k, or bend <strong>in</strong> response to an electric<br />

field [131,132]. Because electro-responsive polymers<br />

can transform electrical energy <strong>in</strong>to mechanical energy<br />

<strong>and</strong> have promis<strong>in</strong>g applications <strong>in</strong> biomechanics, artificial<br />

muscle actuation, sens<strong>in</strong>g, energy transduction, sound<br />

dampen<strong>in</strong>g, chemical separations, <strong>and</strong> controlled drug<br />

delivery, these polymers are an <strong>in</strong>creas<strong>in</strong>gly important<br />

class of smart materials [132–136]. Gel deformation (gen-<br />

erally bend<strong>in</strong>g) <strong>in</strong> an electric field is <strong>in</strong>fluenced by a number<br />

of factors, <strong>in</strong>clud<strong>in</strong>g variable osmotic pressure based on<br />

the voltage-<strong>in</strong>duced motions of ions <strong>in</strong> the solution, pH<br />

or salt concentration of the surround<strong>in</strong>g medium, position<br />

of the gel relative to the electrodes, thickness or shape<br />

of the gel, <strong>and</strong> the applied voltage [132,137–139]. Transform<strong>in</strong>g<br />

the application of an electric field <strong>in</strong>to a physical<br />

response by a polymer generally relies on collapse of a<br />

gel <strong>in</strong> an electric field, electrochemical reactions, electrically<br />

activated complex formation, ionic polymer–metal<br />

<strong>in</strong>teractions, electrorheological effects, or changes <strong>in</strong> electrophoretic<br />

mobility [131].<br />

Typically, electro-responsive polymers have been<br />

<strong>in</strong>vestigated <strong>in</strong> the form of polyelectrolyte hydrogels<br />

[131,133,140–152]. Polyelectrolyte gels deform under an<br />

electric field due to anisotropic swell<strong>in</strong>g or deswell<strong>in</strong>g<br />

as charged ions are directed toward the anode or cathode<br />

side of the gel [131]. For <strong>in</strong>stance, under an electric<br />

field, <strong>in</strong> the case of hydrolyzed polyacrylamide gels, mobile<br />

H + ions migrate toward the cathode while the negatively<br />

charged immobile acrylate groups <strong>in</strong> the polymer networks<br />

are attracted toward the anode, creat<strong>in</strong>g a uniaxial stress<br />

with<strong>in</strong> the gel. The region surround<strong>in</strong>g the anode undergoes<br />

the greatest stress while the area <strong>in</strong> the vic<strong>in</strong>ity of<br />

the cathode exhibits the smallest stress. This stress gradient<br />

contributes to the anisotropic gel deformation under<br />

an electric field [153].


290 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Fig. 9. Electro-response of a PDMS gel loaded with 10% TiO2 as a function of uniform field strength. Repr<strong>in</strong>ted from [131], Copyright (2000), with permission<br />

from Elsevier.<br />

Both synthetic <strong>and</strong> natural polymers have been<br />

employed. Key naturally occurr<strong>in</strong>g polymers used to<br />

prepare electro-responsive materials <strong>in</strong>clude chitosan<br />

[140,144], chondroit<strong>in</strong> sulfate [154], hyaluronic acid [155],<br />

<strong>and</strong> alg<strong>in</strong>ate [147]. Major synthetic polymers have been<br />

based on v<strong>in</strong>yl alcohol [135,137,142,146], allylam<strong>in</strong>e<br />

[143], acrylonitrile [144], 2-acrylamido-2-methylpropane<br />

sulfonic acid [138,156], anil<strong>in</strong>e [157], 2-hydroxyethyl<br />

methacrylate [145], methacrylic acid [146,147], acrylic acid<br />

[135,157,158] <strong>and</strong> v<strong>in</strong>yl sulfonic acids [157,158]. In some<br />

cases, a comb<strong>in</strong>ation of natural <strong>and</strong> synthetic components<br />

have been employed. For <strong>in</strong>stance, Kim et al. prepared a<br />

semi <strong>in</strong>terpenetrat<strong>in</strong>g polymer network (IPN) hydrogel of<br />

PHEMA <strong>and</strong> chitosan [140]. The response of the hydrogel<br />

to an applied electric field was <strong>in</strong>vestigated through measurements<br />

of bend<strong>in</strong>g rate <strong>and</strong> angle, with these values<br />

<strong>in</strong>creas<strong>in</strong>g with ionic strength of the medium <strong>and</strong> applied<br />

voltage. The same research group also reported a purely<br />

synthetic IPN composed of poly(methyl methacrylate)<br />

(PMMA)/PVA that rapidly led to significant <strong>and</strong> reversible<br />

bend<strong>in</strong>g toward the cathode when the gel was subjected to<br />

an electric field <strong>in</strong> an NaCl solution [146]. Yao <strong>and</strong> Krause<br />

<strong>in</strong>vestigated the electromechanical response <strong>in</strong> a direct<br />

current electric field of crossl<strong>in</strong>ked strong acid hydrogels<br />

composed of sulfonated polystyrene or sulfonated<br />

poly(styrene-b-ethylene-co-butylene-b-styrene) <strong>in</strong> different<br />

electrolyte solutions of vary<strong>in</strong>g concentration [150].<br />

Both systems led to bend<strong>in</strong>g toward the cathode when<br />

pre-equilibrated <strong>in</strong> the correspond<strong>in</strong>g salt solutions. The<br />

bend<strong>in</strong>g angle of the gels <strong>in</strong>creased rapidly <strong>and</strong> l<strong>in</strong>early<br />

before eventually level<strong>in</strong>g off. This bend<strong>in</strong>g behavior <strong>in</strong><br />

response to the applied electric field was highly repeatable.<br />

In a <strong>recent</strong> study, Gao et al. reported an electro-responsive<br />

hydrogel based on PVA <strong>and</strong> poly(sodium maleate-cosodium<br />

acrylate) [137]. It was observed that hydrogel<br />

deformation <strong>in</strong>creased when the concentration of NaCl or<br />

the electric voltage was <strong>in</strong>creased.<br />

Although most polymers that exhibit electro-sensitive<br />

behavior are polyelectrolytes, a few neutral polymers<br />

have also demonstrated electric field sensitivity <strong>in</strong> nonconduct<strong>in</strong>g<br />

media. Typically such systems require the<br />

presence of an additional charged or polarizable component<br />

with the ability to respond to an applied electric field.<br />

For example, Zr<strong>in</strong>yi <strong>and</strong> co-workers synthesized a lightly<br />

crossl<strong>in</strong>ked poly(dimethyl siloxane) gel conta<strong>in</strong><strong>in</strong>g electrosensitive<br />

colloidal TiO 2 particles (Fig. 9) [131]. A significant<br />

<strong>and</strong> rapid bend<strong>in</strong>g of the gel <strong>in</strong> silicon oil was observed.<br />

Because the TiO 2 particles were not able to exit the matrix,<br />

the force act<strong>in</strong>g on these particles was transferred to the<br />

polymer, which resulted <strong>in</strong> gel deformation.<br />

3.2. Magneto-responsive polymers<br />

<strong>Polymer</strong>s that respond to the presence or absence<br />

of magnetic fields can exist as free cha<strong>in</strong>s <strong>in</strong> solution,<br />

be immobilized to surfaces, or be crossl<strong>in</strong>ked<br />

with<strong>in</strong> networks. The majority of reports <strong>in</strong> the literature<br />

<strong>in</strong>volve the latter <strong>and</strong> describe the rapid response<br />

of magneto-responsive gels swollen with complex fluids<br />

[128–130,159,160]. Generally, <strong>in</strong>organic magnetic<br />

(nano)particles are physically entrapped with<strong>in</strong> or covalently<br />

immobilized to a three-dimensional crossl<strong>in</strong>ked<br />

network [161,162], lead<strong>in</strong>g to materials with shape<br />

<strong>and</strong> size distortion that occurs reversibly <strong>and</strong> <strong>in</strong>stantaneously<br />

<strong>in</strong> the presence of a non-uniform magnetic field<br />

[159,161,163,164]. In this case, the magnetophoretic force<br />

[129] conferred to the polymeric material as a result of<br />

the magnetic susceptibility of the particles has led to such<br />

materials receiv<strong>in</strong>g significant attention for use as soft<br />

biomimetic actuators, sensors, cancer therapy agents, artificial<br />

muscles, switches, separation media, membranes,<br />

<strong>and</strong> drug delivery systems [129,161,165–167]. In uniform<br />

magnetic fields, a different phenomenon occurs. In this<br />

case, there is a lack of magnetic field–particle <strong>in</strong>teractions,<br />

but particle–particle <strong>in</strong>teractions arise from the creation<br />

of <strong>in</strong>duced magnetic dipoles. Particle assembly with<strong>in</strong> the<br />

surround<strong>in</strong>g polymer matrix can lead to dramatic transformations<br />

<strong>in</strong> material properties.<br />

The <strong>in</strong>corporation of magnetic nanoparticles (Fe 3O 4)<br />

with<strong>in</strong> PNIPAM-based microgels is well documented <strong>in</strong> the<br />

literature [129,168–170]. Zr<strong>in</strong>yi <strong>and</strong> co-workers <strong>in</strong>vestigated<br />

magneto-responsive polymer gel beads that were


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 291<br />

Fig. 10. 1D carbon nanostructures formed via functionalization of ferromagnetic nanoparticles with polyacrylonitrile, magnetic assembly, <strong>and</strong> pyrolysis.<br />

Repr<strong>in</strong>ted with permission from [174]. Copyright 2007 American Chemical Society.<br />

prepared by <strong>in</strong>corporat<strong>in</strong>g the magnetic nanoparticles <strong>in</strong>to<br />

PNIPAM <strong>and</strong> PVA hydrogels [129,171]. In uniform magnetic<br />

fields, the gel beads assembled <strong>in</strong>to straight cha<strong>in</strong>like structures.<br />

However, when a non-uniform field was applied, the<br />

gel beads aggregated. Incorporat<strong>in</strong>g the magnetic particles<br />

<strong>in</strong>to cyl<strong>in</strong>drical-shaped polymer gels led to materials that<br />

mimicked muscular contraction by undergo<strong>in</strong>g rapid <strong>and</strong><br />

controllable changes <strong>in</strong> shape when exposed to a magnetic<br />

field.<br />

Most examples of magneto-responsive polymer systems<br />

<strong>in</strong>volve non-covalent <strong>in</strong>teractions between polymer<br />

cha<strong>in</strong>s <strong>and</strong> magnetic particles [161,162,165,166]. However,<br />

<strong>recent</strong> advances <strong>in</strong> polymer synthesis have facilitated<br />

the covalent immobilization of polymer cha<strong>in</strong>s directly<br />

to the surface of magnetic particles. For example, Pyun<br />

<strong>and</strong> co-workers have employed nitroxide-mediated radical<br />

polymerization (NMP) to prepare polymeric surfactants<br />

that stabilize magnetic nanoparticles. By cast<strong>in</strong>g nanoparticle<br />

dispersions from organic media onto surfaces, a diverse<br />

range of mesoscale morphologies have been observed,<br />

rang<strong>in</strong>g from r<strong>and</strong>omly entangled cha<strong>in</strong>s, field aligned<br />

1D mesostructures, <strong>and</strong> nematic-like liquid crystal colloidal<br />

assemblies [160,172–176]. For <strong>in</strong>stance, after lig<strong>and</strong><br />

exchange to obta<strong>in</strong> a dispersion of polyacrylonitrilestabilized<br />

ferromagnetic cobalt (Co) nanoparticles, a film<br />

was cast under an applied magnetic field [174]. Stabilization<br />

<strong>and</strong> pyrolysis of the result<strong>in</strong>g nanoparticle cha<strong>in</strong>s led<br />

to 1D carbon nanoparticle cha<strong>in</strong>s with cobalt <strong>in</strong>clusions<br />

(Fig. 10). Ihara <strong>and</strong> co-workers <strong>recent</strong>ly reported a novel<br />

route to prepare magneto-responsive gels via surface <strong>in</strong>itiated<br />

ATRP [177]. Iron nanoparticles served as crossl<strong>in</strong>kers,<br />

elim<strong>in</strong>at<strong>in</strong>g the need for a conventional cross-l<strong>in</strong>k<strong>in</strong>g agent.<br />

3.3. Ultrasound-responsive polymers<br />

Many of the applications suggested for stimuliresponsive<br />

polymers <strong>in</strong>volve the controlled release of<br />

therapeutic compounds at a specified rate or location<br />

with<strong>in</strong> the body. In some cases, the change <strong>in</strong> environmental<br />

conditions necessary to impart responsive drug<br />

release can occur by passive or active migration of the<br />

polymeric carrier to an area of the body that has conditions<br />

that encourage release (e.g., pH-responsive polymers<br />

can release drugs at specific po<strong>in</strong>ts <strong>in</strong> the digestive tract<br />

or with<strong>in</strong> endosomes due to <strong>in</strong>herent differences <strong>in</strong> pH).<br />

However, the application of systems that rely on other<br />

stimuli may be complicated by the <strong>in</strong>ability to locally apply<br />

the stimulus at the targeted site. For <strong>in</strong>stance, a change<br />

<strong>in</strong> temperature could lead to release <strong>in</strong> thermoresponsive<br />

polymer carriers <strong>in</strong> vitro, but localized heat<strong>in</strong>g <strong>and</strong> cool<strong>in</strong>g<br />

<strong>in</strong> vivo is not always trivial at sites deep with<strong>in</strong> the body.<br />

However, ultrasound is a particularly effective stimulus<br />

that can be applied externally on dem<strong>and</strong> <strong>and</strong> has proven<br />

effective at <strong>in</strong>duc<strong>in</strong>g drug release with<strong>in</strong> the body [178].<br />

The concept of us<strong>in</strong>g ultrasound-responsive polymers for<br />

controlled drug delivery is attractive because the method is<br />

essentially non<strong>in</strong>vasive <strong>and</strong> has been successfully used <strong>in</strong><br />

other areas of medical treatment <strong>and</strong> diagnostics [179]. The<br />

success of ultrasonic mediation of drug delivery is generally<br />

ascribed to cavitation, which is the alternat<strong>in</strong>g growth <strong>and</strong><br />

shr<strong>in</strong>kage of gas-filled microbubbles that results from high<br />

<strong>and</strong> low pressure waves generated by ultrasound energy<br />

[180]. Eventually, these cavitat<strong>in</strong>g microbubbles implode,<br />

generat<strong>in</strong>g local shock waves that can disrupt polymer<br />

assemblies <strong>in</strong> their vic<strong>in</strong>ity [181].


292 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Scheme 6. Ultrasound-responsive drug delivery from triblock copolymer micelles [198].<br />

As opposed to the other stimuli-responsive polymers<br />

described <strong>in</strong> this review, it is difficult to p<strong>in</strong>po<strong>in</strong>t<br />

the specific macromolecular characteristics that allow<br />

response to ultrasound. As a consequence of this possibility<br />

for diversity, a wide variety of polymers of vary<strong>in</strong>g<br />

composition, architecture, polarity, Tg, etc. have been<br />

demonstrated to alter their behavior when exposed to<br />

ultrasonic stimulation. Additionally, as opposed to, for<br />

example, magneto-responsive polymers, foreign additives<br />

are not required to impart ultrasound-responsive behavior<br />

[178]. However, polymers exist<strong>in</strong>g <strong>in</strong> a few specific physical<br />

states have been most heavily considered. <strong>Polymer</strong>ic<br />

systems that respond to ultrasound have generally been<br />

gels or other non-swollen macroscopic solids, polymeric<br />

micelles, or layer-by-layer coated microbubbles.<br />

The ultrasound-<strong>in</strong>duced release rate of <strong>in</strong>corporated<br />

materials from biodegradable polyglycolides, polylactides,<br />

<strong>and</strong> poly[bis(p-carboxyphenoxy)alkane anhydrides with<br />

sebacic acid <strong>and</strong> non-biodegradable ethylene-v<strong>in</strong>yl acetate<br />

copolymers have been extensively studied by Langer <strong>and</strong><br />

co-workers [182–185]. Each of these systems exhibited<br />

release k<strong>in</strong>etics that were significantly enhanced with<br />

<strong>in</strong>creas<strong>in</strong>g ultrasound <strong>in</strong>tensity. It has been suggested that<br />

ultrasound significantly accelerates the rate of degradation<br />

<strong>in</strong> biodegradable polymers <strong>and</strong> enhances permeation<br />

through non-erodible polymers [186,187]. Poly(lactideco-glycolide)<br />

microspheres <strong>and</strong> poly(HEMA-co-DMAEMA)<br />

hydrogels have also been <strong>in</strong>vestigated as ultrasoundresponsive<br />

drug delivery systems [184,187]. Miyazaki et al.<br />

reported a ethylene-v<strong>in</strong>yl alcohol copolymer system that<br />

was capable of deliver<strong>in</strong>g on dem<strong>and</strong> <strong>in</strong>sul<strong>in</strong> at <strong>in</strong>creased<br />

rates <strong>in</strong> diabetic rats by external ultrasound irradiation<br />

[188]. Stoodley <strong>and</strong> co-workers reported ultrasoundresponsive<br />

antibiotic release from PHEMA hydrogels [179].<br />

The PHEMA hydrogels were coated to m<strong>in</strong>imize passive<br />

release with a layer of C 12-methylene cha<strong>in</strong>s by reaction<br />

with dodecyl isocyanate. In the absence of ultrasound,<br />

antibiotic was reta<strong>in</strong>ed with<strong>in</strong> the polymer matrix; however,<br />

the application of low <strong>in</strong>tensity ultrasound led to<br />

disruption of the alkane coat<strong>in</strong>g <strong>and</strong> concomitant drug<br />

release. Kooiman <strong>recent</strong>ly reported a similar system composed<br />

of ultrasound-responsive polymeric microcapsules<br />

with a shell of fluor<strong>in</strong>ated end-capped poly(l-lactic acid)<br />

[189].<br />

Acoustic destabilization of supramolecular polymer<br />

assemblies has also received attention [190–202]. Gener-<br />

ally, polymeric micelles are <strong>in</strong>duced to dissociate or to<br />

adopt loosely associated morphologies when exposed to<br />

ultrasound (Scheme 6) [198]. Low-frequency ultrasound<br />

also enhances local cellular uptake of drugs, which <strong>in</strong>dicates<br />

this approach could prove particularly useful for<br />

delivery, provided precautions are taken to prevent cavitational<br />

damage to vital structures <strong>in</strong> the body.<br />

Pitt <strong>and</strong> co-workers [191,199–202] have demonstrated<br />

that hydrophobic drugs can be <strong>in</strong>corporated <strong>in</strong>to PEO-b-<br />

PPO-b-PEO micelles <strong>and</strong> that release could be <strong>in</strong>duced with<br />

low-frequency ultrasound. Stabilization of the micelles at<br />

concentrations below the critical micellar concentration<br />

was accomplished by polymeriz<strong>in</strong>g N,N-diethylacrylamide<br />

<strong>and</strong> N,N ′ -bis(acryloyl)cystam<strong>in</strong>e <strong>in</strong> the presence of the<br />

micelles above the LCST of poly(N,N-diethylacrylamide)<br />

[203]. Interpenetrat<strong>in</strong>g networks of this k<strong>in</strong>d with<strong>in</strong> the<br />

hydrophobic cores were capable of solubiliz<strong>in</strong>g doxorubic<strong>in</strong><br />

that could selectively be released <strong>in</strong> tumor tissue<br />

only when ultrasound was applied [201]. Importantly, the<br />

observed efficacy enhancement could be attributed to a<br />

comb<strong>in</strong>ation of synergistic effects brought about by ultrasonic<br />

exposure, <strong>in</strong>clud<strong>in</strong>g ultrasound-responsive release<br />

of the drug, ultrasound-triggered extravasation of the<br />

polymeric micelles, <strong>and</strong> ultrasound-enhanced uptake of<br />

pre-released drug <strong>in</strong>to the cells.<br />

Another method by which polymers can contribute<br />

to ultrasound-responsiveness is through the coat<strong>in</strong>g <strong>and</strong><br />

stabilization of microbubbles that result from sonication.<br />

Cavitation <strong>and</strong> microbubble implosion generate local shock<br />

waves <strong>and</strong> microjets that can temporarily perforate membranes<br />

to facilitate cell entry of macromolecules [180,181].<br />

This process of “sonoporation” has proved effective <strong>in</strong> vitro<br />

<strong>and</strong> <strong>in</strong> vivo. For example, Smedt <strong>and</strong> co-workers <strong>recent</strong>ly<br />

demonstrated that the microbubbles that result from ultrasonic<br />

irradiation can be directly coated with a polymer<br />

shell <strong>and</strong> that the result<strong>in</strong>g structures can potentially be<br />

used for gene delivery applications [180]. Perfluorcarbon<br />

gas-filled microbubbles were coated via the layer-by-layer<br />

(LbL) approach with positively charged poly(allylam<strong>in</strong>e<br />

hydrochloride) <strong>and</strong> negatively charged DNA, <strong>and</strong> the<br />

ultrasound responsiveness, physical properties, DNA b<strong>in</strong>d<strong>in</strong>g/protection<br />

of the particles were <strong>in</strong>vestigated. B<strong>in</strong>d<strong>in</strong>g<br />

DNA on the microbubble surface ensured that it was<br />

proximal to the site of cell membrane poration, thereby<br />

enhanc<strong>in</strong>g the probability of DNA enter<strong>in</strong>g the cell by the<br />

generated microjets.


3.4. Photo-responsive polymers<br />

D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 293<br />

Scheme 7. Reversible photo-<strong>in</strong>duced transformations of (a) azobenzene <strong>and</strong> (b) spiropyran derivatives.<br />

Photo-responsive polymers are macromolecules that<br />

change their properties when irradiated with light of the<br />

appropriate wavelength [204,205]. Typically these changes<br />

are the result of light-<strong>in</strong>duced structural transformations<br />

of specific functional groups along the polymer backbone<br />

or side cha<strong>in</strong>s [206–211]. Possible applications of photoresponsive<br />

polymers <strong>in</strong>clude reversible optical storage,<br />

polymer viscosity control, photomechanical transduction<br />

<strong>and</strong> actuation, bioactivity switch<strong>in</strong>g of prote<strong>in</strong>s, tissue<br />

eng<strong>in</strong>eer<strong>in</strong>g, <strong>and</strong> drug delivery [207,212–222]. An important<br />

aspect of photo-sensitive polymer systems is that<br />

us<strong>in</strong>g irradiation as a stimulus is a relatively straightforward,<br />

non-<strong>in</strong>vasive mechanism to <strong>in</strong>duce responsive<br />

behavior. These types of polymers have been <strong>in</strong>vestigated<br />

for many years, but there has been a <strong>recent</strong> expansion <strong>in</strong><br />

research to create <strong>in</strong>creas<strong>in</strong>gly complex macromolecular<br />

architectures.<br />

The most well-studied examples of photo-responsive<br />

polymers are those that conta<strong>in</strong> azobenzene groups<br />

[204,223–225]. Azobenzene is a well-known chromophore<br />

with an irradiation-<strong>in</strong>duced cis-to-trans isomerization<br />

that is accompanied by a fast <strong>and</strong> complete change<br />

<strong>in</strong> electronic structure, geometric shape, <strong>and</strong> polarity<br />

(Scheme 7) [207,226]. For <strong>in</strong>stance, while the more stable<br />

trans-azobenzene has no dipole moment, the cis<br />

form is quite polar, hav<strong>in</strong>g a dipole moment of 3D<br />

[204]. By <strong>in</strong>corporat<strong>in</strong>g azobenzene derivatives <strong>in</strong>to polymer<br />

structures, materials with variable shape, polarity,<br />

<strong>and</strong> self-assembly behavior can be obta<strong>in</strong>ed [227]. For<br />

<strong>in</strong>stance, Wang <strong>and</strong> co-workers described photo-<strong>in</strong>duced<br />

deformation of epoxy-based azobenzene-conta<strong>in</strong><strong>in</strong>g polymer<br />

colloids [228,229]. Depend<strong>in</strong>g on the wavelength<br />

of irradiation, these photo-responsive colloids changed<br />

morphology from spheres to sp<strong>in</strong>dles <strong>and</strong> f<strong>in</strong>ally to rods<br />

[229]. Incorporat<strong>in</strong>g azobenzene groups <strong>in</strong> methylcellulose<br />

[230] <strong>and</strong> methylcellulose-cyclodextr<strong>in</strong> <strong>in</strong>clusion complexes<br />

[231] allowed photo-tun<strong>in</strong>g of the sol–gel transition<br />

<strong>and</strong> cloud po<strong>in</strong>ts <strong>in</strong> aqueous media. Tirrell <strong>and</strong> co-workers<br />

prepared photochromic derivatives of elast<strong>in</strong>-like polypeptides<br />

[poly(VPGVG)] [232]. The <strong>in</strong>herent thermoresponsive<br />

nature of the polymers could be tuned by <strong>in</strong>corporat<strong>in</strong>g<br />

one azobenzene moiety for every 30 am<strong>in</strong>o acid residues.<br />

Alonso et al. also reported the photo-responsive properties<br />

of azobenzene <strong>and</strong> spiropyran derivatives of elast<strong>in</strong>-like<br />

polypeptides [233,234].<br />

The change <strong>in</strong> polarity that accompanies isomerization<br />

has led to azobenzene-conta<strong>in</strong><strong>in</strong>g block copolymers be<strong>in</strong>g<br />

used to prepare photo-responsive micelles <strong>and</strong> vesicles<br />

[235–241]. Azo chromophores have been <strong>in</strong>corporated <strong>in</strong>to<br />

a variety of other polymeric systems, <strong>in</strong>clud<strong>in</strong>g poly(Nhydroxy<br />

propyl methacrylamide) (PHPMA) [242], PAA<br />

[243,244], PDMAEMA [245,246], <strong>and</strong> PNIPAM [247]. Photoresponsive<br />

dendrimers based on azobenzene derivatives<br />

have also been reported [248–251].<br />

In addition to enabl<strong>in</strong>g photo-switch<strong>in</strong>g of bulk material<br />

properties [207], surface properties [252,253], <strong>and</strong> polymeric<br />

aggregates <strong>in</strong> solution [223], azobenzene groups<br />

can be used to control the assembly of supramolecular<br />

polymers. Ghadiri <strong>and</strong> co-workers reported a new<br />

photo-responsive peptide system composed of two r<strong>in</strong>gshaped<br />

cyclic peptides tethered by an azobenzene moiety<br />

[254,255]. When the azobenzene group was <strong>in</strong> the<br />

trans state, the cyclic peptide units demonstrated <strong>in</strong>termolecular<br />

hydrogen bond<strong>in</strong>g to yield extended l<strong>in</strong>ear<br />

cha<strong>in</strong>s. UV-<strong>in</strong>duced isomerization to the cis state led<br />

to <strong>in</strong>tramolecular hydrogen bond<strong>in</strong>g <strong>and</strong> depolymerization<br />

of the supramolecular complex (Fig. 11). Similar<br />

photo-responsive supramolecular polymers based on<br />

diarylethene chromophores have also been reported [256].<br />

The non-<strong>in</strong>vasive nature <strong>in</strong> which light can be applied<br />

to a polymer solution has led to a variety of applications<br />

of photo-responsive polymers <strong>in</strong> biological systems. For<br />

example, Hoffman <strong>and</strong> co-workers employed azobenzeneconta<strong>in</strong><strong>in</strong>g<br />

polymers as switches to reversibly activate<br />

enzymes <strong>in</strong> response to dist<strong>in</strong>ct wavelengths of light<br />

[213] <strong>and</strong> used the same concept to reversibly control<br />

biot<strong>in</strong>-b<strong>in</strong>d<strong>in</strong>g by site-specific conjugation to streptavid<strong>in</strong><br />

[212]. In the latter case, a polymer–streptavid<strong>in</strong> conjugate<br />

successfully bound biot<strong>in</strong> under UV irradiation, but<br />

upon exposure to visible light, the polymer was collapsed<br />

to block biot<strong>in</strong> association. By employ<strong>in</strong>g an alternative<br />

photo-responsive polymer, the opposite photo-tunable<br />

behavior was observed.<br />

The responsive nature of azobenzenes has been used to<br />

generate photomechanical effects <strong>and</strong> even macroscopic<br />

motion [223,257]. Photo-contraction of azobenzene-


294 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

Fig. 11. Photo-responsive supramolecular assembly/disassembly of cyclic peptides tethered by azobenzene units, as reported by Ghadiri <strong>and</strong> co-workers<br />

[254]. Repr<strong>in</strong>ted from [223], Copyright (2006), with permission from Elsevier.<br />

conta<strong>in</strong><strong>in</strong>g polymer films leads to changes <strong>in</strong> film thickness<br />

[258,259] <strong>and</strong> bend<strong>in</strong>g/unbend<strong>in</strong>g motions [260–263]<br />

that can, <strong>in</strong> some cases, br<strong>in</strong>g about remarkable macroscopic<br />

3D motion rem<strong>in</strong>iscent of a robot arm or an<br />

<strong>in</strong>chworm [264]. Ikeda <strong>and</strong> co-workers <strong>recent</strong>ly developed<br />

a photo-responsive lam<strong>in</strong>ated film consist<strong>in</strong>g of<br />

an azobenzene-conta<strong>in</strong><strong>in</strong>g crossl<strong>in</strong>ked liquid-crystall<strong>in</strong>e<br />

polymer <strong>and</strong> flexible polyethylene [264]. The lam<strong>in</strong>ated<br />

film was fully extended <strong>and</strong> flat under UV light but returned<br />

to its orig<strong>in</strong>al bent shape when irradiated with visible light.<br />

This type of photo-responsive polymeric film may lead to<br />

devices capable of convert<strong>in</strong>g light energy <strong>in</strong>to mechanical<br />

work, such that motion is possible without a wired<br />

connection to a power source.<br />

In addition to polymers functionalized with azobenzene<br />

moieties, other chromophores have also been used<br />

to impart photo-responsive behavior. Several examples<br />

exist <strong>in</strong> which spiropyran derivatives were <strong>in</strong>corporated<br />

term<strong>in</strong>ally [265] or pendantly [217,246,266–268] to br<strong>in</strong>g<br />

about light sensitivity. Spiropyran groups are relatively<br />

non-polar, but irradiation with the appropriate wavelength<br />

of light leads to the zwitterionic merocyan<strong>in</strong>e<br />

isomer that has a larger dipole moment (Scheme 7b). The<br />

isomerization can be reversed by irradiat<strong>in</strong>g with visible<br />

light. This concept has been employed to prepare a<br />

variety of spiropyran-conta<strong>in</strong><strong>in</strong>g photo-responsive polymers,<br />

<strong>in</strong>clud<strong>in</strong>g, for example, PAA [217], PHPMA [267],<br />

<strong>and</strong> PNIPAM [266,269]. Matyjaszewski <strong>and</strong> co-workers<br />

used the photo-tunable change <strong>in</strong> polarity to prepare<br />

polymeric micelles with responsive spiropyran-conta<strong>in</strong><strong>in</strong>g<br />

blocks [268]. A block copolymer of PEO <strong>and</strong> a spiropyranconta<strong>in</strong><strong>in</strong>g<br />

methacrylate monomer was prepared by ATRP,<br />

<strong>and</strong> the polymeric micelles formed <strong>in</strong> aqueous solution<br />

of the result<strong>in</strong>g polymer were completely disrupted<br />

by UV irradiation <strong>and</strong> regenerated by irradiation with<br />

visible light (Fig. 12). This strategy allowed the controlled<br />

release of hydrophobic coumar<strong>in</strong> 102 from the<br />

micelle cores via UV irradiation <strong>and</strong> re-encapsulation of<br />

the dye upon irradiation with visible light. Laschewsky<br />

<strong>and</strong> Rekai modified PHPMA by copolymerization with a<br />

monomer conta<strong>in</strong><strong>in</strong>g the photo-reactive c<strong>in</strong>namate moiety<br />

[270]. Photoisomerization of pendant trans-c<strong>in</strong>namate<br />

groups to cis-c<strong>in</strong>namate groups led to polymers with<br />

<strong>in</strong>creased polarity <strong>and</strong> higher cloud po<strong>in</strong>ts. Unlike other<br />

frequently used photo-reactive groups, the c<strong>in</strong>namate<br />

group is easy to <strong>in</strong>corporate, rather chemically <strong>in</strong>ert,


D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 295<br />

Fig. 12. Photo-responsive micellization of a spiropyran-conta<strong>in</strong><strong>in</strong>g block copolymer prepared by ATRP. (a) Micellar dye encapsulation, (b) UV-<strong>in</strong>duced<br />

micelle dissociation <strong>and</strong> dye release, <strong>and</strong> (c) micelle reconstruction <strong>and</strong> dye re-encapsulation <strong>in</strong>duced by visible light irradiation. Copyright Wiley–VCH<br />

Verlag GmbH & Co. KGaA. Reproduced with permission [268].<br />

<strong>and</strong> exhibits thermal stability <strong>in</strong> both the trans- <strong>and</strong><br />

cis-forms.<br />

While most examples of photo-responsive behavior rely<br />

on light-<strong>in</strong>duced isomerization, another viable approach<br />

is to capitalize on polarity changes that result from<br />

cleavage of photo-labile esters that yield the correspond<strong>in</strong>g<br />

alcohol <strong>and</strong> acid components. Such photosolvolysis<br />

reactions have been used to impart responsive behavior<br />

to methacrylate polymers. Zhao <strong>and</strong> co-workers <strong>in</strong>vestigated<br />

light-responsive amphiphilic diblock copolymers<br />

of PEO <strong>and</strong> a methacrylate monomer with photo-labile<br />

pyrenylmethyl chromophores pendantly attached [271].<br />

When exposed to UV irradiation, cleavage of the pyrenylmethyl<br />

esters caused the pyrene-conta<strong>in</strong><strong>in</strong>g hydrophobic<br />

methacrylate units to be transformed to hydrophilic<br />

methacrylic acid units, result<strong>in</strong>g <strong>in</strong> micelle dissociation.<br />

However, while photosolvolysis of pyrenylmethyl esters<br />

requires nucleophilic solvents, photolysis of polymers<br />

conta<strong>in</strong><strong>in</strong>g 2-nitrobenzyl side cha<strong>in</strong> moieties can take<br />

place both <strong>in</strong> solution <strong>and</strong> the solid state [272]. Lepage<br />

et al. exploited this concept with triblock copolymers<br />

that formed micelles with photo-labile poly(2-nitrobenzyl<br />

methacrylate) coronas that were capable of releas<strong>in</strong>g Gdbased<br />

contrast agents under UV light exposure [273].<br />

Most of the examples mentioned above require isomerization<br />

<strong>in</strong>duced by UV irradiation. However, light<br />

of UV <strong>and</strong> visible wavelengths is readily absorbed by<br />

the sk<strong>in</strong>, so UV/visible-light-responsive systems have<br />

potential limitations for some biomedical applications.<br />

However, IR radiation can penetrate sk<strong>in</strong> with less risk<br />

of damage <strong>and</strong> might be more applicable for photoactivation<br />

of drug carriers with<strong>in</strong> a liv<strong>in</strong>g system. Therefore,<br />

Fréchet <strong>and</strong> co-workers <strong>in</strong>vestigated block copolymer<br />

micelles with PEG hydrophilic segments <strong>and</strong> 2-diazo-<br />

1,2-naphthoqu<strong>in</strong>one hydrophobic blocks. Irradiation with<br />

IR light led to micelle dissociation as a result of the<br />

photo-<strong>in</strong>duced rearrangement of the 1,2-naptho-qu<strong>in</strong>one<br />

units to yield anionic/hydrophilic 3-<strong>in</strong>denecarboxylate<br />

groups [274]. Near-<strong>in</strong>frared (NIR) dissociable polymeric<br />

micelles based on diblock copolymers of PEG <strong>and</strong> poly(2nitrobenzyl<br />

methacrylate) have also been developed where<br />

the latter undergoes photolysis <strong>and</strong> is converted to<br />

hydrophilic poly(methacrylic acid) (PMAA) [272].<br />

4. Conclusions<br />

With <strong>in</strong>spirations aris<strong>in</strong>g from a variety of sources,<br />

novel polymers with sensitivities to other triggers are con-<br />

stantly be<strong>in</strong>g developed. A <strong>recent</strong> report by Rowan <strong>and</strong><br />

co-workers capitalized on a phenomenon observed dur<strong>in</strong>g<br />

the self-defense mechanism of the sea cucumber [275].<br />

A nanocomposite of cellulose nanofibers embedded <strong>in</strong> a<br />

rubbery ethylene oxide-epichlorohydr<strong>in</strong> copolymer was<br />

prepared to mimic the sea cucumber dermis known to<br />

be composed of rigid collagen fibrils embedded with<strong>in</strong><br />

a viscoelastic glycoprote<strong>in</strong> matrix. The properties of the<br />

synthetic composite were largely dependent on hydrogen<br />

bond<strong>in</strong>g between surface hydroxyls on the imbedded<br />

nanofibers. When the material was placed <strong>in</strong> an aqueous<br />

medium, water acted as hydrogen bond disrupter, caus<strong>in</strong>g<br />

the composite to dramatically soften with a change<br />

<strong>in</strong> tensile modulus from 800 to 20 MPa. As this example<br />

<strong>in</strong>dicates, many new advances <strong>in</strong> the area of responsive<br />

polymers can be achieved by reproduc<strong>in</strong>g <strong>in</strong>herently complex<br />

natural phenomena with straight-forward polymer<br />

science.<br />

The topics covered here are at various levels of maturity,<br />

but many opportunities rema<strong>in</strong> to capitalize on their<br />

specificity <strong>and</strong> uniqueness. There is little doubt that many<br />

applications can benefit from a comb<strong>in</strong>ation of these<br />

stimuli sensitivities. Indeed, for many purposes like drug<br />

delivery <strong>and</strong> diagnostics, hybrid materials with the ability<br />

to respond to several stimuli would be extremely beneficial.<br />

Despite many advances, numerous challenges <strong>and</strong><br />

opportunities rema<strong>in</strong> for mak<strong>in</strong>g an impact <strong>in</strong> the field<br />

of smart polymers. While new responsive polymer compositions<br />

are cont<strong>in</strong>ually be<strong>in</strong>g developed <strong>and</strong> the ability<br />

to prepare macromolecules with topological complexity is<br />

exp<strong>and</strong><strong>in</strong>g, many underutilized stimuli will take on greater<br />

roles <strong>in</strong> the next generation of smart materials.<br />

Acknowledgement<br />

A portion of this material is based upon work supported<br />

by the National <strong>Science</strong> Foundation under Grant No. DMR-<br />

0846792.<br />

References<br />

[1] Theato P. Synthesis of well-def<strong>in</strong>ed polymeric activated esters. J<br />

Polym Sci Part A: Polym Chem 2008;46:6677–87.<br />

[2] Miyata T, Uragami T, Nakamae K. Biomolecule-sensitive hydrogels.<br />

Adv Drug Delivery Rev 2002;54:79–98.<br />

[3] Gil ES, Hudson SM. Stimuli-responsive polymers <strong>and</strong> their bioconjugates.<br />

Prog Polym Sci 2004;29:1173–222.<br />

[4] Ito Y, Casolaro M, Kono K, Imanishi Y. An <strong>in</strong>sul<strong>in</strong>-releas<strong>in</strong>g system<br />

that is responsive to glucose. J Control Release 1989;10:195–203.


296 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

[5] Chu LY, Li Y, Zhu JH, Wang HD, Liang YJ. Control of pore size <strong>and</strong><br />

permeability of a glucose-responsive gat<strong>in</strong>g membrane for <strong>in</strong>sul<strong>in</strong><br />

delivery. J Control Release 2004;97:43–53.<br />

[6] Hassan CM, Doyle FJ, Peppas NA. Dynamic behavior of glucoseresponsive<br />

poly(methacrylic acid-g-ethylene glycol) hydrogels.<br />

Macromolecules 1997;30:6166–73.<br />

[7] Huang HY, Shaw J, Yip C, Wu XY. Microdoma<strong>in</strong> pH gradient <strong>and</strong><br />

k<strong>in</strong>etics <strong>in</strong>side composite polymeric membranes of pH <strong>and</strong> glucose<br />

sensitivity. Pharm Res 2008;25:1150–7.<br />

[8] Kang SI, Bae YH. A sulfonamide based glucose-responsive hydrogel<br />

with covalently immobilized glucose oxidase <strong>and</strong> catalase. J Control<br />

Release 2003;86:115–21.<br />

[9] Podual K, Doyle III FJ, Peppas NA. Preparation <strong>and</strong> dynamic response<br />

of cationic copolymer hydrogels conta<strong>in</strong><strong>in</strong>g glucose oxidase. <strong>Polymer</strong><br />

2000;41:3975–83.<br />

[10] Podual K, Doyle III FJ, Peppas NA. Glucose-sensitivity of glucose<br />

oxidase-conta<strong>in</strong><strong>in</strong>g cationic copolymer hydrogels hav<strong>in</strong>g<br />

poly(ethylene glycol) grafts. J Control Release 2000;67:9–17.<br />

[11] Podual K, Doyle III FJ, Peppas NA. Dynamic behavior of glucose<br />

oxidase-conta<strong>in</strong><strong>in</strong>g microparticles of poly(ethylene glycol)-grafted<br />

cationic hydrogels <strong>in</strong> an environment of chang<strong>in</strong>g ph. Biomaterials<br />

2000;21:1439–50.<br />

[12] Traitel T, Cohen Y, Kost J. Characterization of glucose-sensitive<br />

<strong>in</strong>sul<strong>in</strong> release systems <strong>in</strong> simulated <strong>in</strong> vivo conditions. Biomaterials<br />

2000;21:1679–87.<br />

[13] Guiseppi-Elie A, Brahim SI, Nar<strong>in</strong>es<strong>in</strong>gh D. A chemically synthesized<br />

artificial pancreas: Release of <strong>in</strong>sul<strong>in</strong> from glucose-responsive<br />

hydrogels. Adv Mater 2002;14:743–6.<br />

[14] Schwartz LM, Peppas NA. Novel poly(ethylene glycol)-grafted,<br />

cationic hydrogels: preparation, characterization, <strong>and</strong> diffusive<br />

properties. <strong>Polymer</strong> 1998;39:6057–66.<br />

[15] Rava<strong>in</strong>e V, Ancia C, Catargi B. Chemically controlled closed-loop<br />

<strong>in</strong>sul<strong>in</strong> delivery. J Control Release 2008;132:2–11.<br />

[16] Kashyap N, Viswanad B, Sharma G, Bhardwaj V, Ramarao P, Kumar<br />

MNVR. Design <strong>and</strong> evaluation of biodegradable, biosensitive <strong>in</strong><br />

situ gell<strong>in</strong>g system for pulsatile delivery of <strong>in</strong>sul<strong>in</strong>. Biomaterials<br />

2007;28:2051–60.<br />

[17] Kim CK, Im EB, Lim SJ, Oh YK, Han SK. Development of glucosetriggered<br />

ph-sensitive liposomes for a potential <strong>in</strong>sul<strong>in</strong> delivery.<br />

Int J Pharm 1994;101:191–7.<br />

[18] Uchiyama T, Kiritoshi Y, Watanabe J, Ishihara K. Degradation of<br />

phospholipid polymer hydrogel by hydrogen peroxide aim<strong>in</strong>g at<br />

<strong>in</strong>sul<strong>in</strong> release device. Biomaterials 2003;24:5183–90.<br />

[19] Brownlee M, Cerami A. A glucose-controlled <strong>in</strong>sul<strong>in</strong>-delivery<br />

system: semisynthetic <strong>in</strong>sul<strong>in</strong> bound to lect<strong>in</strong>. <strong>Science</strong><br />

1979;206:1190–1.<br />

[20] Liu F, Song SC, Mix D, Baudy M, Kim SW. Glucose-<strong>in</strong>duced release of<br />

glycosylpoly(ethylene glycol) <strong>in</strong>sul<strong>in</strong> bound to a soluble conjugate<br />

of concanaval<strong>in</strong> a. Bioconjugate Chem 1997;8:664–72.<br />

[21] Cheng SY, Gross J, Sambanis A. Hybrid pancreatic tissue substitute<br />

consist<strong>in</strong>g of recomb<strong>in</strong>ant <strong>in</strong>sul<strong>in</strong>-secret<strong>in</strong>g cells <strong>and</strong> glucoseresponsive<br />

material. Biotechnol Bioeng 2004;87:863–73.<br />

[22] Miyata T, Jikihara A, Nakamae K, Hoffman AS. Preparation of<br />

reversibly glucose-responsive hydrogels by covalent immobilization<br />

of lect<strong>in</strong> <strong>in</strong> polymer networks hav<strong>in</strong>g pendent glucose. J<br />

Biomater Sci Polym Ed 2004;15:1085–98.<br />

[23] Miyata T, Jikihara A, Hoffman AS. Preparation of poly(2-glucosyloxyethyl<br />

methacrylate)-concanaval<strong>in</strong> a complex hydrogel <strong>and</strong> its<br />

glucose-sensitivity. Macromol Chem Phys 1996;197:1135–46.<br />

[24] Nakamae K, Miyata T, Jikihara A, Hoffman AS. Formation of<br />

poly(glucosyloxyethyl methacrylate)-concanaval<strong>in</strong> a complex <strong>and</strong><br />

its glucose-sensitivity. J Biomater Sci Polym Ed 1994;6:79–90.<br />

[25] Tanna S, Taylor MJ, Sahota TS, Sawicka K. Glucose-responsive uv<br />

polymerised dextran-concanaval<strong>in</strong> a acrylic derivatised mixtures<br />

for closed-loop <strong>in</strong>sul<strong>in</strong> delivery. Biomaterials 2006;27:1586–97.<br />

[26] James TD, Sh<strong>in</strong>kai S. Artificial receptors as chemosensors for carbohydrates.<br />

Top Curr Chem 2002;218:159–200.<br />

[27] Lor<strong>and</strong> JP, Edwards JO. Polyol complexes <strong>and</strong> structure of the benzeneboronate<br />

ion. J Org Chem 1959;24:769–74.<br />

[28] Kataoka K, Miyazaki H, Okano T, Sakurai Y. Sensitive glucose<strong>in</strong>duced<br />

change of the lower critical solution temperature of<br />

poly[n,n-(dimethylacrylamide)-co-3-(acrylamido)-phenylboronic<br />

acid] <strong>in</strong> physiological sal<strong>in</strong>e. Macromolecules 1994;27:1061–2.<br />

[29] Kataoka K, Miyazaki H, Bunya M, Okano T, Sakurai Y. Totally synthetic<br />

polymer gels respond<strong>in</strong>g to external glucose concentration:<br />

their preparation <strong>and</strong> application to on-off regulation of <strong>in</strong>sul<strong>in</strong><br />

release. J Am Chem Soc 1998;120:12694–5.<br />

[30] Spr<strong>in</strong>gsteen G, Wang B. A detailed exam<strong>in</strong>ation of boronic acid–diol<br />

complexation. Tetrahedron 2002;58:5291–300.<br />

[31] Hisamitsu I, Kataoka K, Okano T, Sakurai Y. Glucose-responsive<br />

gel from phenylborate polymer <strong>and</strong> poly(v<strong>in</strong>yl alcohol): prompt<br />

response at physiological pH through the <strong>in</strong>teraction of borate with<br />

am<strong>in</strong>o group <strong>in</strong> the gel. Pharm Res 1997;14:289–93.<br />

[32] Kitano S, Koyama Y, Kataoka K, Okano T, Sakurai Y. A novel drug<br />

delivery system utiliz<strong>in</strong>g a glucose responsive polymer complex<br />

between poly(v<strong>in</strong>yl alcohol) <strong>and</strong> poly(n-v<strong>in</strong>yl-2-pyrrolidone) with<br />

a phenylboronic acid moiety. J Control Release 1992;19:162–70.<br />

[33] Kikuchi A, Suzuki K, Okabayashi O, Hosh<strong>in</strong>o H, Kataoka K, Sakurai<br />

Y, et al. Glucose-sens<strong>in</strong>g electrode coated with polymer complex<br />

gel conta<strong>in</strong><strong>in</strong>g phenylboronic acid. Anal Chem 1996;68:823–8.<br />

[34] Matsumoto A, Kurata T, Shi<strong>in</strong>o D, Kataoka K. Swell<strong>in</strong>g <strong>and</strong> shr<strong>in</strong>k<strong>in</strong>g<br />

k<strong>in</strong>etics of totally synthetic, glucose-responsive polymer gel<br />

bear<strong>in</strong>g phenylborate derivative as a glucose-sens<strong>in</strong>g moiety.<br />

Macromolecules 2004;37:1502–10.<br />

[35] Zhang SB, Chu LY, Xu D, Zhang J, Ju XJ, Xie R. Poly(nisopropylacrylamide)-based<br />

comb-type grafted hydrogel with<br />

rapid response to blood glucose concentration change at physiological<br />

temperature. Polym Adv Technol 2008;19:937–43.<br />

[36] Zhang Y, Guan Y, Zhou S. Synthesis <strong>and</strong> volume phase<br />

transitions of glucose-sensitive microgels. Biomacromolecules<br />

2006;7:3196–201.<br />

[37] Ge H, D<strong>in</strong>g Y, Ma C, Zhang G. Temperature-controlled release<br />

of diols from n-isopropylacrylamide-co-acrylamidophenylboronic<br />

acid microgels. J Phys Chem B 2006;110:20635–9.<br />

[38] Lapeyre V, Gosse I, Chevreux S, Rava<strong>in</strong>e V. Monodispersed<br />

glucose-responsive microgels operat<strong>in</strong>g at physiological sal<strong>in</strong>ity.<br />

Biomacromolecules 2006;7:3356–63.<br />

[39] Hoare T, Pelton R. Eng<strong>in</strong>eer<strong>in</strong>g glucose swell<strong>in</strong>g responses<br />

<strong>in</strong> poly(n-isopropylacrylamide)-based microgels. Macromolecules<br />

2007;40:670–8.<br />

[40] Hoare T, Pelton R. Charge-switch<strong>in</strong>g, amphoteric glucoseresponsive<br />

microgels with physiological swell<strong>in</strong>g activity.<br />

Biomacromolecules 2008;9:733–40.<br />

[41] Lapeyre V, Ancia C, Catargi B, Rava<strong>in</strong>e V. Glucose-responsive<br />

microgels with a core–shell structure. J Colloid Interface Sci<br />

2008;327:316–23.<br />

[42] Zenkl G, Mayr T, Klimant I. Sugar-responsive fluorescent<br />

nanospheres. Macromol Biosci 2008;8:146–52.<br />

[43] Matsumoto A, Ikeda S, Harada A, Kataoka K. Glucose-responsive<br />

polymer bear<strong>in</strong>g a novel phenylborate derivative as a glucosesens<strong>in</strong>g<br />

moiety operat<strong>in</strong>g at physiological pH conditions.<br />

Biomacromolecules 2003;4:1410–6.<br />

[44] Matsumoto A, Yoshida R, Kataoka K. Glucose-responsive polymer<br />

gel bear<strong>in</strong>g phenylborate derivative as a glucose-sens<strong>in</strong>g<br />

moiety operat<strong>in</strong>g at physiological ph. Biomacromolecules<br />

2004;5:1038–45.<br />

[45] Pellon J, Schw<strong>in</strong>d LH, Gu<strong>in</strong>ard MJ, Thomas WM. <strong>Polymer</strong>ization of<br />

v<strong>in</strong>yl monomers conta<strong>in</strong><strong>in</strong>g boron. II. P-v<strong>in</strong>ylbenzeneboronic acid.<br />

J Polym Sci 1961;55:161–7.<br />

[46] Shiomori K, Ivanov AE, Galaev IY, Kawano Y, Mattiasson B.<br />

Thermoresponsive properties of sugar sensitive copolymer of<br />

n-isopropylacrylamide <strong>and</strong> 3-(acrylamido)phenylboronic acid.<br />

Macromol Chem Phys 2004;205:27–34.<br />

[47] Lennarz WJ, Snyder HR. Arylboronic acids. III. Preparation <strong>and</strong><br />

polymerization of p-v<strong>in</strong>ylbenzeneboronic acid. J Am Chem Soc<br />

1960;82:2169–71.<br />

[48] Lets<strong>in</strong>ger RL, Hamilton SB. Organoboron compounds. X. Popcorn<br />

polymers <strong>and</strong> highly cross-l<strong>in</strong>ked v<strong>in</strong>yl polymers conta<strong>in</strong><strong>in</strong>g boron.<br />

J Am Chem Soc 1959;81:3009–12.<br />

[49] Matyjaszewski K, Davis T. H<strong>and</strong>book of radical polymerization.<br />

Hoboken, NJ: Wiley Interscience; 2002.<br />

[50] Braunecker WA, Matyjaszewski K. Controlled/liv<strong>in</strong>g radical polymerization:<br />

features, developments, <strong>and</strong> <strong>perspectives</strong>. Prog Polym<br />

Sci 2007;32:93–146.<br />

[51] Wang JS, Matyjaszewski K. Controlled/“liv<strong>in</strong>g” radical polymerization.<br />

Atom transfer radical polymerization <strong>in</strong> the presence of<br />

transition-metal complexes. J Am Chem Soc 1995;117:5614–5.<br />

[52] Kato M, Kamigaito M, Sawamoto M, Higashimura T. <strong>Polymer</strong>ization<br />

of methyl methacrylate with the carbon tetrachloride/<br />

dichlorotris(triphenylphosph<strong>in</strong>e)ruthenium(ii)/methylalum<strong>in</strong>um<br />

bis(2,6-di-tert-butylphenoxide) <strong>in</strong>itiation system: Possibility of<br />

liv<strong>in</strong>g radical polymerization. Macromolecules 1995;28:1721–3.<br />

[53] Vogt AP, Sumerl<strong>in</strong> BS. An efficient route to macromonomers via<br />

ATRP <strong>and</strong> click chemistry. Macromolecules 2006;39:5286–92.<br />

[54] Chiefari J, Chong YK, Ercole F, Krst<strong>in</strong>a J, Jeffery J, Le TPT, et al. Liv<strong>in</strong>g<br />

free-radical polymerization by reversible addition-fragmentation<br />

cha<strong>in</strong> transfer: the raft process. Macromolecules 1998;31:<br />

5559–62.


[55] Perrier S, Pittaya T. Macromolecular design via reversible<br />

addition-fragmentation cha<strong>in</strong> transfer (raft)/xanthates (madix)<br />

polymerization. J Polym Sci Part A: Polym Chem 2005;43:5347–<br />

93.<br />

[56] Moad G, Rizzardo E, Thang SH. Liv<strong>in</strong>g radical polymerization by the<br />

raft process. Aust J Chem 2005;58:379–410.<br />

[57] Krasia T, Soula R, Borner HG, Schlaad H. Controlled synthesis<br />

of homopolymers <strong>and</strong> block copolymers based on 2-<br />

(acetoacetoxy)ethyl methacrylate via raft radical polymerisation.<br />

Chem Commun 2003:538–9.<br />

[58] De P, Gondi SR, Sumerl<strong>in</strong> BS. Folate-conjugated thermoresponsive<br />

block copolymers: highly efficient conjugation <strong>and</strong> solution selfassembly.<br />

Biomacromolecules 2008;9:1064–70.<br />

[59] Q<strong>in</strong> Y, Cheng G, Achara O, Parab K, Jäkle F. A new route to<br />

organoboron polymers via highly selective polymer modification<br />

reactions. Macromolecules 2004;37:7123–31.<br />

[60] Yang Q, Guanglou C, An<strong>and</strong> S, Jäkle F. Well-def<strong>in</strong>ed boronconta<strong>in</strong><strong>in</strong>g<br />

polymeric lewis acids. J Am Chem Soc 2002;124:<br />

12672–3.<br />

[61] Q<strong>in</strong> Y, Cheng G, Parab K, Sundararaman A, Jäkle F. Lewis acidic<br />

organoboron polymers. Macromol Symp 2003;196:337–45.<br />

[62] Q<strong>in</strong> Y, Sukul V, Pagakos D, Cui C, Jäkle F. Preparation of organoboron<br />

block copolymers via ATRP of silicon <strong>and</strong> boron-functionalized<br />

monomers. Macromolecules 2005;38:8987–90.<br />

[63] Cambre JN, Roy D, Gondi SR, Sumerl<strong>in</strong> BS. Facile strategy to welldef<strong>in</strong>ed<br />

water-soluble boronic acid (co)polymers. J Am Chem Soc<br />

2007;129:10348–9.<br />

[64] Roy D, Cambre JN, Sumerl<strong>in</strong> BS. Sugar-responsive block copolymers<br />

by direct raft polymerization of unprotected boronic acid<br />

monomers. Chem Commun 2008:2477–9.<br />

[65] Roy D, Cambre JN, Sumerl<strong>in</strong> BS. Triply-responsive boronic acid<br />

block copolymers: solution self-assembly <strong>in</strong>duced by changes<br />

<strong>in</strong> temperature, ph, or sugar concentration. Chem Commun<br />

2009;16:2106–8.<br />

[66] Schild HG. Poly(n-isopropylacrylamide): experiment, theory, <strong>and</strong><br />

application. Prog Polym Sci 1992;17:163–249.<br />

[67] Metz N, Theato P. Synthesis <strong>and</strong> characterization of base labile<br />

poly(n-isopropylacrylamide) networks utiliz<strong>in</strong>g a reactive crossl<strong>in</strong>ker.<br />

Macromolecules 2009;42:37–9.<br />

[68] Metz N, Theato P. Controlled synthesis of poly(acetone oxime<br />

acrylate) as a new reactive polymer: stimuli-responsive reactive<br />

copolymers. Eur Polym J 2007;43:1202–9.<br />

[69] Thornton PD, McConnell G, Ulij<strong>in</strong> RV. Enzyme responsive polymer<br />

hydrogel beads. Chem Commun 2005:5913–5.<br />

[70] Ulij<strong>in</strong> RV. Enzyme-responsive materials: a new class of smart biomaterials.<br />

J Mater Chem 2006;16:2217–25.<br />

[71] Yang Z, Gu H, Fu D, Gao P, Lam JK, Xu B. Enzymatic formation of<br />

supramolecular hydrogels. Adv Mater 2004;16:1440–4.<br />

[72] Yang Z, Xu B. A simple visual assay based on small molecule<br />

hydrogels for detect<strong>in</strong>g <strong>in</strong>hibitors of enzymes. Chem Commun<br />

2004:2424–5.<br />

[73] W<strong>in</strong>kler S, Wilson D, Kaplan DL. Controll<strong>in</strong>g b-sheet assembly<br />

<strong>in</strong> genetically eng<strong>in</strong>eered silk by enzymatic phosphorylation/dephosphorylation.<br />

Biochemistry 2000;39:12739–<br />

46.<br />

[74] Toledano S, Williams RJ, Jayawarna V, Ulij<strong>in</strong> RV. Enzyme-triggered<br />

self-assembly of peptide hydrogels via reversed hydrolysis. J Am<br />

Chem Soc 2006;128:1070–1.<br />

[75] Griffith LG, Sper<strong>in</strong>de JJ. Synthesis <strong>and</strong> characterization of enzymatically<br />

cross-l<strong>in</strong>ked poly(ethylene glycol) hydrogels. Macromolecules<br />

1997;30:5255–64.<br />

[76] Sper<strong>in</strong>de JJ, Griffith LG. Control <strong>and</strong> prediction of gelation k<strong>in</strong>etics<br />

<strong>in</strong> enzymatically cross-l<strong>in</strong>ked poly(ethylene glycol) hydrogels.<br />

Macromolecules 2000;33:5476–80.<br />

[77] Chen T, Small DA, McDermott MK, Bentley WE, Payne GF. Enzymatic<br />

methods for <strong>in</strong> situ cell entrapment <strong>and</strong> cell release. Biomacromolecules<br />

2003;4:1558–63.<br />

[78] Sanborn TJ, Messersmith PB, Barron AE. In situ crossl<strong>in</strong>k<strong>in</strong>g of a<br />

biomimetic peptide-peg hydrogel via thermally triggered activation<br />

of factor XIII. Biomaterials 2002;23:2703–10.<br />

[79] Lutolf MP, Raeber GP, Zisch AH, Tirelli N, Hubbell JA. Cell-responsive<br />

synthetic hydrogels. Adv Mater 2003;15:888–92.<br />

[80] Plunkett KN, Berkowski KL, Moore JS. Chymotryps<strong>in</strong> responsive<br />

hydrogels: application of a disulfide exchange protocol for the<br />

preparation of methacrylamide conta<strong>in</strong><strong>in</strong>g peptides. Biomacromolecules<br />

2005;6:632–7.<br />

[81] Thornton PD, Mart RJ, Ulij<strong>in</strong> RV. Enzyme-responsive polymer<br />

hydrogel particles for controlled release. Adv Mater<br />

2007;19:1252–6.<br />

D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 297<br />

[82] Savariar EN, Ghosh S, Gonzalez DC, Thayumanavan S. Disassembly<br />

of noncovalent amphiphilic polymers with prote<strong>in</strong>s <strong>and</strong> utility <strong>in</strong><br />

pattern sens<strong>in</strong>g. J Am Chem Soc 2008;130:5416–7.<br />

[83] Gonzalez DC, Savariar EN, Thayumanavan S. Fluorescence patterns<br />

from supramolecular polymer assembly <strong>and</strong> disassembly<br />

for sens<strong>in</strong>g metallo- <strong>and</strong> nonmetalloprote<strong>in</strong>s. J Am Chem Soc<br />

2009;131:7708–16.<br />

[84] Miyata T, Uragami T. Biological stimulus-responsive hydrogels. In:<br />

Dumitriu S, editor. <strong>Polymer</strong>ic biomaterials. 2nd ed New York: CRC<br />

Press; 2001. p. 959–74.<br />

[85] Lu Z, Kopeckova P, Kopecek J. Antigen responsive hydrogels<br />

based on polymerizable antibody fab fragment. Macromol Biosci<br />

2003;3:296–300.<br />

[86] Miyata T, Asami N, Uragami T. Preparation of an antigensensitive<br />

hydrogel us<strong>in</strong>g antigen–antibody b<strong>in</strong>d<strong>in</strong>gs. Macromolecules<br />

1999;32:2082–4.<br />

[87] Miyata T, Asami N, Uragami T. A reversibly antigen-responsive<br />

hydrogel. Nature 1999;399:766–9.<br />

[88] Zhang R, Bowyer A, Eisenthal R, Hubble J. A smart membrane<br />

based on an antigen-responsive hydrogel. Biotechnol Bioeng<br />

2007;97:976–84.<br />

[89] You Y-Z, Zhou Q-H, Manickam DS, Wan L, Mao G-Z, Oupicky<br />

D. Dually responsive multiblock copolymers via reversible<br />

addition-fragmentation cha<strong>in</strong> transfer polymerization: synthesis<br />

of temperature- <strong>and</strong> redox-responsive copolymers of<br />

poly(n-isopropylacrylamide) <strong>and</strong> poly(2-(dimethylam<strong>in</strong>o)ethyl<br />

methacrylate). Macromolecules 2007;40:8617–24.<br />

[90] Madsen J, Armes SP, Bertal K, Lomas H, MacNeil S, Lewis AL. Biocompatible<br />

wound dress<strong>in</strong>gs based on chemically degradable triblock<br />

copolymer hydrogels. Biomacromolecules 2008;9:2265–75.<br />

[91] Cerritelli S, Velluto D, Hubbell JA, Peg-ss-pps:. Reduction-sensitive<br />

disulfide block copolymer vesicles for <strong>in</strong>tracellular drug delivery.<br />

Biomacromolecules 2007;8:1966–72.<br />

[92] Zhang L, Liu W, L<strong>in</strong> L, Chen D, Stenzel MH. Degradable disulfide corecross-l<strong>in</strong>ked<br />

micelles as a drug delivery system prepared from v<strong>in</strong>yl<br />

functionalized nucleosides via the raft process. Biomacromolecules<br />

2008;9:3321–31.<br />

[93] Sun KH, Sohn YS, Jeong B. Thermogell<strong>in</strong>g poly(ethylene oxide-bpropylene<br />

oxide-b-ethylene oxide) disulfide multiblock copolymer<br />

as a thiol-sensitive degradable polymer. Biomacromolecules<br />

2006;7:2871–7.<br />

[94] El-Sayed MEH, Hoffman AS, Stayton PS. Rational design of composition<br />

<strong>and</strong> activity correlations for ph-sensitive <strong>and</strong> glutathionereactive<br />

polymer therapeutics. J Control Release 2005;101:47–58.<br />

[95] Bulmus V, Woodward M, L<strong>in</strong> L, Murthy N, Stayton P, Hoffman<br />

A. A new ph-responsive <strong>and</strong> glutathione-reactive, endosomal<br />

membrane-disruptive polymeric carrier for <strong>in</strong>tracellular delivery<br />

of biomolecular drugs. J Control Release 2003;93:105–20.<br />

[96] Kakizawa Y, Harada A, Kataoka K. Glutathione-sensitive stabilization<br />

of block copolymer micelles composed of antisense dna <strong>and</strong><br />

thiolated poly(ethylene glycol)-block-poly(l-lys<strong>in</strong>e): a potential<br />

carrier for systemic delivery of antisense dna. Biomacromolecules<br />

2001;2:491–7.<br />

[97] Zelik<strong>in</strong> AN, Qu<strong>in</strong>n JF, Caruso F. Disulfide cross-l<strong>in</strong>ked polymer capsules:<br />

en route to biodeconstructible systems. Biomacromolecules<br />

2006;7:27–30.<br />

[98] Meng F, Henn<strong>in</strong>k WE, Zhong Z. Reduction-sensitive polymers<br />

<strong>and</strong> bioconjugates for biomedical applications. Biomaterials<br />

2009;30:2180–98.<br />

[99] Castellani OF, Mart<strong>in</strong>ez EN, Anon MC. Role of disulfide bonds upon<br />

the structural stability of an amaranth globul<strong>in</strong>. J Agric Food Chem<br />

1999;47:3001–8.<br />

[100] Saito G, Swanson JA, Lee K-D. Drug delivery strategy utiliz<strong>in</strong>g conjugation<br />

via reversible disulfide l<strong>in</strong>kages: role <strong>and</strong> site of cellular<br />

reduc<strong>in</strong>g activities. Adv Drug Delivery Rev 2003;55:199–215.<br />

[101] Jocelyn PC. Chemical reduction of disulfides. Methods Enzymol<br />

1987;143:246–56.<br />

[102] Oh JK, Siegwart DJ, Lee H-i, Sherwood G, Peteanu L, Holl<strong>in</strong>ger<br />

JO, et al. Biodegradable nanogels prepared by atom transfer radical<br />

polymerization as potential drug delivery carriers: synthesis,<br />

biodegradation, <strong>in</strong> vitro release, <strong>and</strong> bioconjugation. J Am Chem Soc<br />

2007;129:5939–45.<br />

[103] Jones DP, Carlson JL, Samiec PS, Sternberg Jr P, Mody Jr VC, Reed<br />

RL, et al. Glutathione measurement <strong>in</strong> human plasma evaluation of<br />

sample collection, storage <strong>and</strong> derivatization conditions for analysis<br />

of dansyl derivatives by hplc. Cl<strong>in</strong> Chim Acta 1998;275:175–<br />

84.<br />

[104] Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, et al.<br />

Disulfide-cross-l<strong>in</strong>ked peg-poly(am<strong>in</strong>o acid)s copolymer micelles


298 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

for glutathione-mediated <strong>in</strong>tracellular drug delivery. Chem Commun<br />

2008:6570–2.<br />

[105] Tsarevsky NV, Matyjaszewski K. Reversible redox cleavage/coupl<strong>in</strong>g<br />

of polystyrene with disulfide or thiol groups<br />

prepared by atom transfer radical polymerization. Macromolecules<br />

2002;35:9009–14.<br />

[106] Wong L, Boyer C, Jia Z, Zareie HM, Davis TP, Bulmus V. Synthesis of<br />

versatile thiol-reactive polymer scaffolds via raft polymerization.<br />

Biomacromolecules 2008;9:1934–44.<br />

[107] Liu J, Bulmus V, Barner-Kowollik C, Stenzel MH, Davis TP. Direct<br />

synthesis of pyridyl disulfide-term<strong>in</strong>ated polymers by raft polymerization.<br />

Macromol Rapid Commun 2007;28:305–14.<br />

[108] Klaikherd A, Ghosh S, Thayumanavan S. A facile method for<br />

the synthesis of cleavable block copolymers from ATRP-based<br />

homopolymers. Macromolecules 2007;40:8518–20.<br />

[109] Tsarevsky NV, Matyjaszewski K. Comb<strong>in</strong><strong>in</strong>g atom transfer radical<br />

polymerization <strong>and</strong> disulfide/thiol redox chemistry: a route<br />

to well-def<strong>in</strong>ed (bio)degradable polymeric materials. Macromolecules<br />

2005;38:3087–92.<br />

[110] Oh JK, Tang C, Gao H, Tsarevsky NV, Matyjaszewski K. Inverse<br />

m<strong>in</strong>iemulsion ATRP: a new method for synthesis <strong>and</strong> functionalization<br />

of well-def<strong>in</strong>ed water-soluble/cross-l<strong>in</strong>ked polymeric<br />

particles. J Am Chem Soc 2006;128:5578–84.<br />

[111] Li Y, Armes SP. Synthesis <strong>and</strong> chemical degradation of branched<br />

v<strong>in</strong>yl polymers prepared via ATRP: use of a cleavable disulfidebased<br />

branch<strong>in</strong>g agent. Macromolecules 2005;38:8155–62.<br />

[112] Zhang J, Jiang X, Zhang Y, Li Y, Liu S. Facile fabrication of reversible<br />

core cross-l<strong>in</strong>ked micelles possess<strong>in</strong>g thermosensitive swellability.<br />

Macromolecules 2007;40:9125–32.<br />

[113] Li Y, Lokitz BS, Armes SP, McCormick CL. Synthesis of reversible shell<br />

cross-l<strong>in</strong>ked micelles for controlled release of bioactive agents.<br />

Macromolecules 2006;39:2726–8.<br />

[114] Sun J, Chen X, Lu T, Liu S, Tian H, Guo Z, et al. Formation of reversible<br />

shell cross-l<strong>in</strong>ked micelles from the biodegradable amphiphilic<br />

diblock copolymer poly(l-cyste<strong>in</strong>e)-block-poly(l-lactide). Langmuir<br />

2008;24:10099–106.<br />

[115] Dong W-F, Kishimura A, Anraku Y, Chuanoi S, Kataoka K.<br />

Monodispersed polymeric nanocapsules: spontaneous evolution<br />

<strong>and</strong> morphology transition from reducible hetero-peg picmicelles<br />

by controlled degradation. J Am Chem Soc 2009;131:3804–5.<br />

[116] Ghosh S, Yesilyurt V, Savariar EN, Irv<strong>in</strong> K, Thayumanavan S. Redox,<br />

ionic strength, <strong>and</strong> pH sensitive supramolecular polymer assemblies.<br />

J Polym Sci Part A: Polym Chem 2009;47:1052–60.<br />

[117] Li C, Madsen J, Armes SP, Lewis AL. A new class of biochemically<br />

degradable, stimulus-responsive triblock copolymer gelators.<br />

Angew Chem Int Ed 2006;45:3510–3.<br />

[118] Vogt AP, Sumerl<strong>in</strong> BS. Temperature <strong>and</strong> redox responsive hydrogels<br />

from aba triblock copolymers prepared by raft polymerization. Soft<br />

Matter 2009;5:2347–51.<br />

[119] Morimoto N, Qiu X-P, W<strong>in</strong>nik FM, Akiyoshi K. Dual stimuliresponsive<br />

nanogels by self-assembly of polysaccharides lightly<br />

grafted with thiol-term<strong>in</strong>ated poly(n-isopropylacrylamide) cha<strong>in</strong>s.<br />

Macromolecules 2008;41:5985–7.<br />

[120] Gemici H, Legge TM, Whittaker M, Monteiro MJ, Perrier S. Orig<strong>in</strong>al<br />

approach to multiblock copolymers via reversible additionfragmentation<br />

cha<strong>in</strong> transfer polymerization. J Polym Sci Part A:<br />

Polym Chem 2007;45:2334–40.<br />

[121] Whittaker MR, Goh Y-K, Gemici H, Legge TM, Perrier S, Monteiro<br />

MJ. Synthesis of monocyclic <strong>and</strong> l<strong>in</strong>ear polystyrene us<strong>in</strong>g<br />

the reversible coupl<strong>in</strong>g/cleavage of thiol/disulfide groups. Macromolecules<br />

2006;39:9028–34.<br />

[122] Liu J, Liu H, Jia Z, Bulmus V, Davis TP. An approach to biodegradable<br />

star polymeric architectures us<strong>in</strong>g disulfide coupl<strong>in</strong>g. Chem<br />

Commun 2008:6582–4.<br />

[123] Hartmann L, Haefele S, Peschka-Suess R, Antonietti M, Börner HG.<br />

Sequence position<strong>in</strong>g of disulfide l<strong>in</strong>kages to program the degradation<br />

of monodisperse poly(amidoam<strong>in</strong>es). Macromolecules<br />

2007;40:7771–6.<br />

[124] Napoli A, Valent<strong>in</strong>i M, Tirelli N, Müller M, Hubbell JA. Oxidationresponsive<br />

polymeric vesicles. Nat Mater 2004;3:183–9.<br />

[125] Napoli A, Tirelli N, Wehrli E, Hubbell JA. Lyotropic behavior <strong>in</strong> water<br />

of amphiphilic aba triblock copolymers based on poly(propylene<br />

sulfide) <strong>and</strong> poly(ethylene glycol). Langmuir 2002;18:8324–9.<br />

[126] Napoli A, Bermudez H, Hubbell JA. Interfacial reactivity of block<br />

copolymers: underst<strong>and</strong><strong>in</strong>g the amphiphile-to-hydrophile transition.<br />

Langmuir 2005;21:9149–53.<br />

[127] Napoli A, Tirelli N, Kilcher G, Hubbell A. New synthetic methodologies<br />

for amphiphilic multiblock copolymers of ethylene glycol <strong>and</strong><br />

propylene sulfide. Macromolecules 2001;34:8913–7.<br />

[128] Zr<strong>in</strong>yi M. Magnetic-field-sensitive polymer gels. Trends Polym Sci<br />

1997;5:280–5.<br />

[129] Zr<strong>in</strong>yi M. Intelligent polymer gels controlled by magnetic fields.<br />

Colloid Polym Sci 2000;278:98–103.<br />

[130] Filipcsei G, Csetneki I, Szilagyi A, Zr<strong>in</strong>yi M. Magnetic fieldresponsive<br />

smart polymer composites. Adv Polym Sci<br />

2007;206:137–89.<br />

[131] Filipcsei G, Feher J, Zr<strong>in</strong>yi M. Electric field sensitive neutral polymer<br />

gels. J Mol Struct 2000;554:109–17.<br />

[132] Shiga T. Deformation <strong>and</strong> viscoelastic behavior of polymer gels <strong>in</strong><br />

electric fields. Adv Polym Sci 1997;134:131–63.<br />

[133] Kim SY, Sh<strong>in</strong> HS, Lee YM, Jeong CN. Properties of electroresponsive<br />

poly(v<strong>in</strong>yl alcohol)/poly(acrylic acid) ipn hydrogels under an<br />

electric stimulus. J Appl Polym Sci 1999;73:1675–83.<br />

[134] Kulkarni RV, Biswanath S. Electrically responsive smart hydrogels<br />

<strong>in</strong> drug delivery: a review. J Appl Biomater Biomech<br />

2007;5:125–39.<br />

[135] Bajpai AK, Bajpai J, Soni SN. Preparation <strong>and</strong> characterization<br />

of electrically conductive composites of poly(v<strong>in</strong>yl alcohol)-gpoly(acrylic<br />

acid) hydrogels impregnated with polyanil<strong>in</strong>e (pani).<br />

Exp Polym Lett 2008;2:26–39.<br />

[136] Ramanathan S, Block LH. The use of chitosan gels as matrixes<br />

for electrically-modulated drug delivery. J Control Release<br />

2001;70:109–23.<br />

[137] Gao Y, Xu S, Wu R, Wang J, Wei J. Preparation <strong>and</strong> characteristic<br />

of electric stimuli responsive hydrogel composed of polyv<strong>in</strong>yl<br />

alcohol/poly (sodium maleate-co-sodium acrylate). J App Polym Sci<br />

2008;107:391–5.<br />

[138] Homma M, Seida Y, Nakano Y. Design <strong>and</strong> optimization of highperformance<br />

electrically-driven polymer hydrogel systems. J Appl<br />

Polym Sci 2000;75:111–8.<br />

[139] Shiga T, Kurauchi T. Deformation of polyelectrolyte gels under the<br />

<strong>in</strong>fluence of electric field. J Appl Polym Sci 1990;39:2305–20.<br />

[140] Kim SJ, Kim HI, Sh<strong>in</strong> SR, Kim SI. Electrical behavior of chitosan <strong>and</strong><br />

poly(hydroxyethyl methacrylate) hydrogel <strong>in</strong> the contact system. J<br />

Appl Polym Sci 2004;92:915–9.<br />

[141] Kim SJ, Park SJ, Kim IY, Sh<strong>in</strong> M-S, Kim SI. Electric stimuli<br />

responses to poly(v<strong>in</strong>yl alcohol)/chitosan <strong>in</strong>terpenetrat<strong>in</strong>g polymer<br />

network hydrogel <strong>in</strong> nacl solutions. J Appl Polym Sci 2002;86:<br />

2285–9.<br />

[142] Kim SJ, Park SJ, Lee SM, Lee YM, Kim HC, Kim SI. Electroactive<br />

characteristics of <strong>in</strong>terpenetrat<strong>in</strong>g polymer network hydrogels<br />

composed of poly(v<strong>in</strong>yl alcohol) <strong>and</strong> poly(n-isopropylacrylamide).<br />

J Appl Polym Sci 2003;89:890–4.<br />

[143] Kim SJ, Park SJ, Sh<strong>in</strong> M-S, Kim SI. Characteristics of electrical responsive<br />

chitosan/polyallylam<strong>in</strong>e <strong>in</strong>terpenetrat<strong>in</strong>g polymer network<br />

hydrogel. J Appl Polym Sci 2002;86:2290–5.<br />

[144] Kim SJ, Sh<strong>in</strong> SR, Lee JH, Lee SH, Kim SI. Electrical response characterization<br />

of chitosan/polyacrylonitrile hydrogel <strong>in</strong> nacl solutions.<br />

J Appl Polym Sci 2003;90:91–6.<br />

[145] Kim SJ, Sh<strong>in</strong> SR, Lee SM, Kim IY, Kim SI. Electromechanical properties<br />

of hydrogels based on chitosan <strong>and</strong> poly(hydroxyethyl<br />

methacrylate) <strong>in</strong> nacl solution. Smart Mater Struct 2004;<br />

13:1036–9.<br />

[146] Kim SJ, Yoon SG, Lee SM, Lee SH, Kim SI. Electrical sensitivity behavior<br />

of a hydrogel composed of poly(methacrylic acid)/poly(v<strong>in</strong>yl<br />

alcohol). J Appl Polym Sci 2004;91:3613–7.<br />

[147] Kim SJ, Yoon SG, Lee YH, Kim SI. Bend<strong>in</strong>g behavior of hydrogels composed<br />

of poly(methacrylic acid) <strong>and</strong> alg<strong>in</strong>ate by electrical stimulus.<br />

Polym Int 2004;53:1456–60.<br />

[148] Kim SJ, Yoon SG, Lee YM, Kim SI. Electrical sensitive behavior of<br />

poly(v<strong>in</strong>yl alcohol)/poly(diallyldimethylammonium chloride) ipn<br />

hydrogel. Sens Actuators B 2003;88:286–91.<br />

[149] Irv<strong>in</strong> DJ, Goods SH, Wh<strong>in</strong>nery LL. Direct measurement of extension<br />

<strong>and</strong> force <strong>in</strong> conductive polymer gel actuators. Chem Mater<br />

2001;13:1143–5.<br />

[150] Yao L, Krause S. Electromechanical responses of strong acid polymer<br />

gels <strong>in</strong> dc electric fields. Macromolecules 2003;36:2055–65.<br />

[151] Li H, Chen J, Lam KY. A transient simulation to predict the k<strong>in</strong>etic<br />

behavior of hydrogels responsive to electric stimulus. Biomacromolecules<br />

2006;7:1951–9.<br />

[152] Tanaka T, Nishio I, Sun ST, Ueno-Nishio S. Collapse of gels <strong>in</strong> an<br />

electric field. <strong>Science</strong> 1982;218:467–9.<br />

[153] Bajpai A, Shulka S, Bhanu S, Kankane S. Responsive polymers <strong>in</strong><br />

controlled drug delivery. Prog Polym Sci 2008;33:1088–118.<br />

[154] Jensen M, Birch Hansen P, Murdan S, Frokjaer S, Florence AT.<br />

Load<strong>in</strong>g <strong>in</strong>to <strong>and</strong> electro-stimulated release of peptides <strong>and</strong> prote<strong>in</strong>s<br />

from chondroit<strong>in</strong> 4-sulphate hydrogels. Eur J Pharm Sci<br />

2002;15:139–48.


[155] Sutani K, Kaetsu I, Uchida K. The synthesis <strong>and</strong> the electricresponsiveness<br />

of hydrogels entrapp<strong>in</strong>g natural polyelectrolyte.<br />

Radiat Phys Chem 2001;61:49–54.<br />

[156] L<strong>in</strong> S-B, Yuan C-H, Ke A-R, Quan Z-L. Electrical response characterization<br />

of pva-p(aa/amps) ipn hydrogels <strong>in</strong> aqueous na2so4 solution.<br />

Sens Actuators B 2008;134:281–6.<br />

[157] Kim HI, Gu BK, Sh<strong>in</strong> MK, Park S-J, Yoon S-G, Kim I-Y, et al.<br />

Electrical response characterization of <strong>in</strong>terpenetrat<strong>in</strong>g polymer<br />

network hydrogels as an actuator. Proc SPIE Int Soc Opt Eng<br />

2005;5759:447–53.<br />

[158] El-Hag Ali A, Abd El-Rehim HA, Hegazy E-SA, Ghobashy MM.<br />

Synthesis <strong>and</strong> electrical response of acrylic acid/v<strong>in</strong>yl sulfonic<br />

acid hydrogels prepared by g-irradiation. Radiat Phys Chem<br />

2006;75:1041–6.<br />

[159] Barsi L, Buki A, Szabo D, Zr<strong>in</strong>yi M. Gels with magnetic properties.<br />

Prog Colloid Polym Sci 1996;102:57–63.<br />

[160] Pyun J. Nanocomposite materials from functional polymers <strong>and</strong><br />

magnetic colloids. Polym Rev 2007;47:231–63.<br />

[161] Szabo D, Szeghy G, Zr<strong>in</strong>yi M. Shape transition of magnetic field<br />

sensitive polymer gels. Macromolecules 1998;31:6541–8.<br />

[162] Szabo D, Czako-Nagy I, Zr<strong>in</strong>yi M, Vertes A. Magnetic <strong>and</strong> mossbauer<br />

studies of magnetite-loaded polyv<strong>in</strong>yl alcohol hydrogels. J Colloid<br />

Interface Sci 2000;221:166–72.<br />

[163] Zr<strong>in</strong>yi M, Barsi L, Szabo D, Kilian HG. Direct observation of abrupt<br />

shape transition <strong>in</strong> ferrogels <strong>in</strong>duced by nonuniform magnetic field.<br />

J Chem Phys 1997;106:5685–92.<br />

[164] Wang G, Tian WJ, Huang JP. Response of ferrogels subjected to an<br />

ac magnetic field. J Phys Chem B 2006;110:10738–45.<br />

[165] Bab<strong>in</strong>cova M, Leszczynska D, Sourivong P, Cicmanec P, Bab<strong>in</strong>ec P.<br />

Superparamagnetic gel as a novel material for electromagnetically<br />

<strong>in</strong>duced hyperthermia. J Magn Magn Mater 2001;225:109–12.<br />

[166] Starodoubtsev SG, Saenko EV, Khokhlov AR, Volkov VV, Dembo<br />

KA, Klechkovskaya VV, et al. Poly(acrylamide) gels with embedded<br />

magnetite nanoparticles. Microelectron Eng 2003;69:324–9.<br />

[167] Sewell MK, Fugit KD, Ankareddi I, Zhang C, Hampel ML, Kim D-H,<br />

et al. Magnetothermally-triggered drug delivery us<strong>in</strong>g hydrogels<br />

with imbedded cobalt ferrite, iron plat<strong>in</strong>um or manganese ferrite<br />

nanoparticles. PMSE Prepr 2008;98:694–5.<br />

[168] Zhang J, Xu S, Kumacheva E. <strong>Polymer</strong> microgels: reactors for semiconductor,<br />

metal, <strong>and</strong> magnetic nanoparticles. J Am Chem Soc<br />

2004;126:7908–14.<br />

[169] Suzuki D, Kawaguchi H. Stimuli-sensitive core/shell template particles<br />

for immobiliz<strong>in</strong>g <strong>in</strong>organic nanoparticles <strong>in</strong> the core. Colloid<br />

Polym Sci 2006;284:1443–51.<br />

[170] Brugger B, Richter<strong>in</strong>g W. Magnetic, thermosensitive microgels<br />

as stimuli-responsive emulsifiers allow<strong>in</strong>g for remote control of<br />

separability <strong>and</strong> stability of oil <strong>in</strong> water-emulsions. Adv Mater<br />

2007;19:2973–8.<br />

[171] Xulu PM, Filipcsei G, Zr<strong>in</strong>yi M. Preparation <strong>and</strong> responsive<br />

properties of magnetically soft poly(n-isopropylacrylamide) gels.<br />

Macromolecules 2000;33:1716–9.<br />

[172] Benkoski JJ, Bowles SE, Jones RL, Douglas JF, Pyun J, Karim A.<br />

Self-assembly of polymer-coated ferromagnetic nanoparticles <strong>in</strong>to<br />

mesoscopic polymer cha<strong>in</strong>s. J Polym Sci Part B: Polym Phys<br />

2008;46:2267–77.<br />

[173] Keng PY, Shim I, Korth BD, Douglas JF, Pyun J. Synthesis <strong>and</strong><br />

self-assembly of polymer-coated ferromagnetic nanoparticles. ACS<br />

Nano 2007;1:279–92.<br />

[174] Bowles SE, Wu W, Kowalewski T, Schalnat MC, Davis RJ, Pemberton<br />

JE, et al. Magnetic assembly <strong>and</strong> pyrolysis of functional ferromagnetic<br />

colloids <strong>in</strong>to one-dimensional carbon nanostructures. J Am<br />

Chem Soc 2007;129:8694–5.<br />

[175] Benkoski JJ, Bowles SE, Korth BD, Jones RL, Douglas JF, Karim A, et al.<br />

Field <strong>in</strong>duced formation of mesoscopic polymer cha<strong>in</strong>s from functional<br />

ferromagnetic colloids. J Am Chem Soc 2007;129:6291–7.<br />

[176] Korth BD, Keng P, Shim I, Bowles SE, Tang C, Kowalewski T, et al.<br />

<strong>Polymer</strong>-coated ferromagnetic colloids from well-def<strong>in</strong>ed macromolecular<br />

surfactants <strong>and</strong> assembly <strong>in</strong>to nanoparticle cha<strong>in</strong>s. J Am<br />

Chem Soc 2006;128:6562–3.<br />

[177] Czaun M, Hevesi L, Takafuji M, Ihara H. A novel approach to<br />

magneto-responsive polymeric gels assisted by iron nanoparticles<br />

as nano cross-l<strong>in</strong>kers. Chem Commun 2008:2124–6.<br />

[178] Kost J, Langer R. Responsive polymer systems for controlled delivery<br />

of therapeutics. Trends Biotechnol 1992;10:127–31.<br />

[179] Norris P, Noble M, Francol<strong>in</strong>i I, V<strong>in</strong>ogradov AM, Stewart PS, Ratner<br />

BD, et al. Ultrasonically controlled release of ciprofloxac<strong>in</strong><br />

from self-assembled coat<strong>in</strong>gs on poly(2-hydroxyethyl methacrylate)<br />

hydrogels for pseudomonas aerug<strong>in</strong>osa biofilm prevention.<br />

Antimicrob Agents Chemother 2005;49:4272–9.<br />

D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 299<br />

[180] Lentacker I, De Geest BG, V<strong>and</strong>enbroucke RE, Peeters L,<br />

Demeester J, De Smedt SC, et al. Ultrasound-responsive polymercoated<br />

microbubbles that b<strong>in</strong>d <strong>and</strong> protect DNA. Langmuir<br />

2006;22:7273–8.<br />

[181] Marmottant P, Hilgenfeldt S. Controlled vesicle deformation <strong>and</strong><br />

lysis by s<strong>in</strong>gle oscillat<strong>in</strong>g bubbles. Nature 2003;423:153.<br />

[182] Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation<br />

<strong>and</strong> release of <strong>in</strong>corporated substances. Proc Natl Acad Sci USA<br />

1989;86:7663–6.<br />

[183] Kost J, Leong K, Langer R. Ultrasonic modulated drug delivery systems.<br />

Polym Sci Technol 1986;34:387–96.<br />

[184] Lavon I, Kost J. Mass transport enhancement by ultrasound <strong>in</strong> nondegradable<br />

polymeric controlled release systems. J Control Release<br />

1998;54:1–7.<br />

[185] Liu LS, Kost J, D’Emanuele A, Langer R. Experimental approach<br />

to elucidate the mechanism of ultrasound-enhanced polymer<br />

erosion <strong>and</strong> release of <strong>in</strong>corporated substances. Macromolecules<br />

1992;25:123–8.<br />

[186] Kost J, Leong K, Langer R. Ultrasonically controlled polymeric drug<br />

delivery. Makromol Chem Macromol Symp 1988;19:275–85.<br />

[187] Kost J, Liu LS, Gabelnick H, Langer R. Ultrasound as a potential trigger<br />

to term<strong>in</strong>ate the activity of contraceptive delivery implants. J<br />

Control Release 1994;30:77–81.<br />

[188] Miyazaki S, Yokouchi C, Takada M. External control of drug release:<br />

controlled release of <strong>in</strong>sul<strong>in</strong> from a hydrophilic polymer implant<br />

by ultrasound irradiation <strong>in</strong> diabetic rats. J Pharm Pharmacol<br />

1988;40:716–7.<br />

[189] Kooiman K, Boehmer MR, Emmer M, Vos HJ, Chlon C, Shi WT, et al.<br />

Oil-filled polymer microcapsules for ultrasound-mediated delivery<br />

of lipophilic drugs. J Control Release 2009;133:109–18.<br />

[190] Rapoport N. Physical stimuli-responsive polymeric micelles<br />

for anti-cancer drug delivery. Prog Polym Sci 2007;32:962–<br />

90.<br />

[191] Husse<strong>in</strong>i GA, Myrup GD, Pitt WG, Christensen DA, Rapoport NY. Factors<br />

affect<strong>in</strong>g acoustically triggered release of drugs from polymeric<br />

micelles. J Control Release 2000;69:43–52.<br />

[192] Rapoport N, Pitt WG, Sun H, Nelson JL. Drug delivery <strong>in</strong> polymeric<br />

micelles: from <strong>in</strong> vitro to <strong>in</strong> vivo. J Control Release 2003;91:85–95.<br />

[193] Gao Z-G, Fa<strong>in</strong> HD, Rapoport N. Controlled <strong>and</strong> targeted tumor<br />

chemotherapy by micellar-encapsulated drug <strong>and</strong> ultrasound. J<br />

Control Release 2005;102:203–22.<br />

[194] Gao Z, Fa<strong>in</strong> HD, Rapoport N. Ultrasound-enhanced tumor target<strong>in</strong>g<br />

of polymeric micellar drug carriers. Mol Pharm 2004;1:317–30.<br />

[195] Mar<strong>in</strong> A, Muniruzzaman M, Rapoport N. Mechanism of the ultrasonic<br />

activation of micellar drug delivery. J Control Release<br />

2001;75:69–81.<br />

[196] Mar<strong>in</strong> A, Muniruzzaman M, Rapoport N. Acoustic activation of drug<br />

delivery from polymeric micelles: effect of pulsed ultrasound. J<br />

Control Release 2001;71:239–49.<br />

[197] Howard B, Gao Z, Lee S-W, Seo M-H, Rapoport N. Ultrasoundenhanced<br />

chemotherapy of drug-resistant breast cancer tumors<br />

by micellar-encapsulated paclitaxel. Am J Drug Delivery<br />

2006;4:97–104.<br />

[198] Rapoport NY, Christensen DA, Fa<strong>in</strong> HD, Barrows L, Gao Z.<br />

Ultrasound-triggered drug target<strong>in</strong>g of tumors <strong>in</strong> vitro <strong>and</strong> <strong>in</strong> vivo.<br />

Ultrasonics 2004;42:943–50.<br />

[199] Husse<strong>in</strong>i GA, Rapoport NY, Christensen DA, Pruitt JD, Pitt WG. K<strong>in</strong>etics<br />

of ultrasonic release of doxorubic<strong>in</strong> from pluronic p105 micelles.<br />

Colloid Surf B 2002;24:253–64.<br />

[200] Rapoport NY, Herron JN, Pitt WG, Pit<strong>in</strong>a L. Micellar delivery of<br />

doxorubic<strong>in</strong> <strong>and</strong> its paramagnetic analog, ruboxyl, to hl-60 cells:<br />

effect of micelle structure <strong>and</strong> ultrasound on the <strong>in</strong>tracellular drug<br />

uptake. J Control Release 1999;58:153–62.<br />

[201] Nelson JL, Roeder BL, Carmen JC, Roloff F, Pitt WG. Ultrasonically<br />

activated chemotherapeutic drug delivery <strong>in</strong> a rat model. Cancer<br />

Res 2002;62:7280–3.<br />

[202] Munshi N, Rapoport N, Pitt WG. Ultrasonic activated drug delivery<br />

from pluronic p-105 micelles. Cancer Lett 1997;118:13–9.<br />

[203] Pruitt JD, Husse<strong>in</strong>i G, Rapoport N, Pitt WG. Stabilization of<br />

pluronic p-105 micelles with an <strong>in</strong>terpenetrat<strong>in</strong>g network of n,ndiethylacrylamide.<br />

Macromolecules 2000;33:9306–9.<br />

[204] Kumar GS, Neckers DC. Photochemistry of azobenzene-conta<strong>in</strong><strong>in</strong>g<br />

polymers. Chem Rev 1989;89:1915–25.<br />

[205] Dai S, Ravi P, Tam KC. Thermo- <strong>and</strong> photo-responsive polymeric<br />

systems. Soft Matter 2009;5:2513–33.<br />

[206] Pieroni O, Ciardelli F. Photoresponsive polymeric materials. Trends<br />

Polym Sci 1995;3:282–7.<br />

[207] Natansohn A, Rochon P. Photo<strong>in</strong>duced motions <strong>in</strong> azo-conta<strong>in</strong><strong>in</strong>g<br />

polymers. Chem Rev 2002;102:4139–75.


300 D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301<br />

[208] Irie M. Properties <strong>and</strong> applications of photoresponsive polymers.<br />

Pure Appl Chem 1990;62:1495–502.<br />

[209] Irie M. Photoresponsive polymers. Adv Polym Sci 1990;94:27–<br />

67.<br />

[210] Irie M, Ikeda T. Photoresponsive polymers. In: Takemoto K,<br />

Ottenbrite RM, Kamachi M, editors. Functional monomers <strong>and</strong><br />

polymers. 2nd ed. New York: Marcel Dekker; 1997. p. 65–<br />

116.<br />

[211] He J, Tong X, Zhao Y. Photoresponsive nanogels based on photocontrollable<br />

cross-l<strong>in</strong>ks. Macromolecules 2009;42:4845–52.<br />

[212] Shimoboji T, D<strong>in</strong>g ZL, Stayton PS, Hoffman AS. Photoswitch<strong>in</strong>g of<br />

lig<strong>and</strong> association with a photoresponsive polymer–prote<strong>in</strong> conjugate.<br />

Bioconjugate Chem 2002;13:915–9.<br />

[213] Shimoboji T, Larenas E, Fowler T, Kulkarni S, Hoffman AS, Stayton<br />

PS. Photoresponsive polymer-enzyme switches. Proc Natl Acad Sci<br />

USA 2002;99:16592–6.<br />

[214] Ruhmann R. <strong>Polymer</strong>s for optical storage—photoresponsive polymers<br />

by structure variation <strong>in</strong> side-group polymethacrylates.<br />

Polym Int 1997;43:103–8.<br />

[215] Pieroni O, Fissi A, Popova G. Photochromic polypeptides. Prog<br />

Polym Sci 1998;23:81–123.<br />

[216] Lee M-J, Jung D-H, Han Y-K. Photoresponsive polymers <strong>and</strong><br />

their applications to optical memory. Mol Cryst Liq Cryst<br />

2006;444:41–50.<br />

[217] Moniruzzaman M, Sabey CJ, Fern<strong>and</strong>o GF. Photoresponsive polymers:<br />

an <strong>in</strong>vestigation of their photo<strong>in</strong>duced temperature changes<br />

dur<strong>in</strong>g photoviscosity measurements. <strong>Polymer</strong> 2007;48:255–<br />

63.<br />

[218] Kopecek J, Kopeckova P, Konak C. Biorecognizable polymers:<br />

design, structure, <strong>and</strong> bioactivity. J Macromol Sci Part A: Pure Appl<br />

Chem 1997;A34:2103–17.<br />

[219] Cooper TM, Natarajan LV, Crane RL. Light-sensitive polypeptides.<br />

Trends Polym Sci 1993;1:400–5.<br />

[220] Nagasaki T. Photoresponsive polymeric materials for drug delivery<br />

systems: double target<strong>in</strong>g with photoresponsive polymers. Drug<br />

Delivery Syst 2008;23:637–43.<br />

[221] Ciardelli F, Pieroni O, Fissi A, Carl<strong>in</strong>i C, Altomare A. Photoresponsive<br />

optically active polymers—a review. Br Polym J 1989;21:97–106.<br />

[222] Leclerc E, Furukawa KS, Miyata F, Sakai Y, Ushida T, Fujii T. Fabrication<br />

of microstructures <strong>in</strong> photosensitive biodegradable polymers<br />

for tissue eng<strong>in</strong>eer<strong>in</strong>g applications. Biomaterials 2004;25:4683–90.<br />

[223] Yager KG, Barrett CJ. Novel photo-switch<strong>in</strong>g us<strong>in</strong>g azobenzene<br />

functional materials. J Photochem Photobiol A 2006;182:250–61.<br />

[224] Zhao Y, He J. Azobenzene-conta<strong>in</strong><strong>in</strong>g block copolymers: the <strong>in</strong>terplay<br />

of light <strong>and</strong> morphology enables new functions. Soft Matter<br />

2009;5:2686–93.<br />

[225] Jochum FD, Theato P. Temperature <strong>and</strong> light sensitive copolymers<br />

conta<strong>in</strong><strong>in</strong>g azobenzene moieties prepared via a polymer analogous<br />

reaction. <strong>Polymer</strong> 2009;50:3079–85.<br />

[226] Matejka L, Ilavsky M, Dusek K, Wichterle O. Photomechanical<br />

effects <strong>in</strong> crossl<strong>in</strong>ked photochromic polymers. <strong>Polymer</strong><br />

1981;22:1511–5.<br />

[227] Viswanathan NK, Kim DY, Bian S, Williams J, Liu W, Li L, et al.<br />

Surface relief structures on azo polymer films. J Mater Chem<br />

1999;9:1941–55.<br />

[228] Deng Y, Li N, He Y, Wang X. Hybrid colloids composed of two<br />

amphiphilic azo polymers: fabrication, characterization, <strong>and</strong> photoresponsive<br />

properties. Macromolecules 2007;40:6669–78.<br />

[229] Li Y, He Y, Tong X, Wang X. Photo<strong>in</strong>duced deformation of<br />

amphiphilic azo polymer colloidal spheres. J Am Chem Soc<br />

2005;127:2402–3.<br />

[230] Arai K, Kawabata Y. Changes <strong>in</strong> the sol-gel transformation behavior<br />

of azobenzene moiety-conta<strong>in</strong><strong>in</strong>g methyl cellulose irradiated with<br />

UV light. Macromol Rapid Commun 1995;16:875–80.<br />

[231] Hu X, Zheng PJ, Zhao XY, Li L, Tam KC, Gan LH. Preparation, characterization<br />

<strong>and</strong> novel photoregulated rheological properties of<br />

azobenzene functionalized cellulose derivatives <strong>and</strong> their [alpha]cd<br />

complexes. <strong>Polymer</strong> 2004;45:6219–25.<br />

[232] Strzegowski LA, Mart<strong>in</strong>ez MB, Gowda DC, Urry DW, Tirrell DA. Photomodulation<br />

of the <strong>in</strong>verse temperature transition of a modified<br />

elast<strong>in</strong> poly(pentapeptide). J Am Chem Soc 1994;116:813–4.<br />

[233] Alonso M, Reboto V, Guiscardo L, San Mart<strong>in</strong> A, Rodriguez-Cabello<br />

JC. Spiropyran derivative of an elast<strong>in</strong>-like bioelastic polymer:<br />

photoresponsive molecular mach<strong>in</strong>e to convert sunlight <strong>in</strong>to<br />

mechanical work. Macromolecules 2000;33:9480–2.<br />

[234] Alonso M, Reboto V, Guiscardo L, Mate V, Rodriguez-Cabello<br />

JC. Novel photoresponsive p-phenylazobenzene derivative of an<br />

elast<strong>in</strong>-like polymer with enhanced control of azobenzene content<br />

<strong>and</strong> without pH sensitiveness. Macromolecules 2001;34:8072–7.<br />

[235] Wang G, Tong X, Zhao Y. Preparation of azobenzene-conta<strong>in</strong><strong>in</strong>g<br />

amphiphilic diblock copolymers for light-responsive micellar<br />

aggregates. Macromolecules 2004;37:8911–7.<br />

[236] Yoshida E, Ohta M. Preparation of micelles with azobenzene at their<br />

coronas or cores from nonamphiphilic diblock copolymers. Colloid<br />

Polym Sci 2005;283:521–31.<br />

[237] Su W, Han K, Luo Y, Wang Z, Li Y, Zhang Q. Formation <strong>and</strong> photoresponsive<br />

properties of giant microvesicles assembled from<br />

azobenzene-conta<strong>in</strong><strong>in</strong>g amphiphilic diblock copolymers. Macromol<br />

Chem Phys 2007;208:955–63.<br />

[238] S<strong>in</strong> SL, Gan LH, Hu X, Tam KC, Gan YY. Photochemical <strong>and</strong> thermal<br />

isomerizations of azobenzene-conta<strong>in</strong><strong>in</strong>g amphiphilic diblock<br />

copolymers <strong>in</strong> aqueous micellar aggregates <strong>and</strong> <strong>in</strong> film. Macromolecules<br />

2005;38:3943–8.<br />

[239] Liu X-M, Yang B, Wang Y-L, Wang J-Y. New nanoscale pulsatile drug<br />

delivery system. Chem Mater 2005;17:2792–5.<br />

[240] Tong X, Wang G, Soldera A, Zhao Y. How can azobenzene block<br />

copolymer vesicles be dissociated <strong>and</strong> reformed by light? J Phys<br />

Chem B 2005;109:20281–7.<br />

[241] Liu X, Jiang M. Optical switch<strong>in</strong>g of self-assembly: micellization <strong>and</strong><br />

micelle-hollow-sphere transition of hydrogen-bonded polymers.<br />

Angew Chem Int Ed 2006;45:3846–50.<br />

[242] Sugiyama K, Sono K. Characterization of photo- <strong>and</strong> thermoresponsible<br />

amphiphilic copolymers hav<strong>in</strong>g azobenzene moieties as side<br />

groups. J Appl Polym Sci 2001;81:3056–63.<br />

[243] Khoukh S, Oda R, Labrot T, Perr<strong>in</strong> P, Tribet C. Light-responsive<br />

hydrophobic association of azobenzene-modified poly(acrylic acid)<br />

with neutral surfactants. Langmuir 2007;23:94–104.<br />

[244] Li Y, Deng Y, Tong X, Wang X. Formation of photoresponsive uniform<br />

colloidal spheres from an amphiphilic azobenzene-conta<strong>in</strong><strong>in</strong>g<br />

r<strong>and</strong>om copolymer. Macromolecules 2006;39:1108–15.<br />

[245] Ravi P, S<strong>in</strong> SL, Gan LH, Gan YY, Tam KC, Xia XL, et al. New water<br />

soluble azobenzene-conta<strong>in</strong><strong>in</strong>g diblock copolymers: Synthesis <strong>and</strong><br />

aggregation behavior. <strong>Polymer</strong> 2005;46:137–46.<br />

[246] Lee H-i, Pietrasik J, Matyjaszewski K. Phototunable temperatureresponsive<br />

molecular brushes prepared by ATRP. Macromolecules<br />

2006;39:3914–20.<br />

[247] Desponds A, Freitag R. Synthesis <strong>and</strong> characterization of<br />

photoresponsive n-isopropylacrylamide cotelomers. Langmuir<br />

2003;19:6261–70.<br />

[248] Junge DM, McGrath DV. Photoresponsive dendrimers. Chem Commun<br />

1997:857–8.<br />

[249] Momotake A, Arai T. Synthesis, excited state properties, <strong>and</strong><br />

dynamic structural change of photoresponsive dendrimers. <strong>Polymer</strong><br />

2004;45:5369–90.<br />

[250] Momotake A, Arai T. Photochemistry <strong>and</strong> photophysics of stilbene<br />

dendrimers <strong>and</strong> related compounds. J Photochem Photobiol<br />

C 2004;5:1–25.<br />

[251] Liao L-X, Stellacci F, McGrath DV. Photoswitchable flexible <strong>and</strong><br />

shape-persistent dendrimers: comparison of the <strong>in</strong>terplay between<br />

a photochromic azobenzene core <strong>and</strong> dendrimer structure. J Am<br />

Chem Soc 2004;126:2181–5.<br />

[252] Delaire JA, Nakatani K. L<strong>in</strong>ear <strong>and</strong> nonl<strong>in</strong>ear optical properties<br />

of photochromic molecules <strong>and</strong> materials. Chem Rev<br />

2000;100:1817–45.<br />

[253] Yager KG, Barrett CJ. All-optical pattern<strong>in</strong>g of azo polymer films.<br />

Curr Op<strong>in</strong> Solid State Mater Sci 2001;5:487–94.<br />

[254] Vollmer MS, Clark TD, Ste<strong>in</strong>em C, Ghadiri MR. Photoswitchable<br />

hydrogen-bond<strong>in</strong>g <strong>in</strong> self-organized cyl<strong>in</strong>drical peptide systems.<br />

Angew Chem Int Ed 1999;38:1598–601.<br />

[255] Ste<strong>in</strong>em C, Janshoff A, Vollmer MS, Ghadiri MR. Reversible photoisomerization<br />

of self-organized cyl<strong>in</strong>drical peptide assemblies at<br />

air–water <strong>and</strong> solid <strong>in</strong>terfaces. Langmuir 1999;15:3956–64.<br />

[256] Takeshita M, Hayashi M, Kadota S, Mohammed KH, Yamato T. Photoreversible<br />

supramolecular polymer formation. Chem Commun<br />

2005:761–3.<br />

[257] Hugel T, Holl<strong>and</strong> NB, Cattani A, Moroder L, Seitz M, Gaub HE. S<strong>in</strong>glemolecule<br />

optomechanical cycle. <strong>Science</strong> 2002;296:1103–6.<br />

[258] Tanchak OM, Barrett CJ. Light-<strong>in</strong>duced reversible volume changes<br />

<strong>in</strong> th<strong>in</strong> films of azo polymers: the photomechanical effect. Macromolecules<br />

2005;38:10566–70.<br />

[259] Bublitz D, Helgert M, Fleck B, Wenke L, Hvilsted S, Ramanujam<br />

PS. Photo<strong>in</strong>duced deformation of azobenzene polyester films. Appl<br />

Phys B: Lasers Opt 2000;70:863–5.<br />

[260] Yu Y, Nakano M, Ikeda T. Photomechanics: directed bend<strong>in</strong>g of a<br />

polymer film by light. Nature 2003;425:145.<br />

[261] Ikeda T, Nakano M, Yu Y, Tsutsumi O, Kanazawa A. Anisotropic<br />

bend<strong>in</strong>g <strong>and</strong> unbend<strong>in</strong>g behavior of azobenzene liquid-crystall<strong>in</strong>e<br />

gels by light exposure. Adv Mater 2003;15:201–5.


[262] Yanlei Y, Nakano M, Maeda T, Kondo M, Ikeda T. Precisely directioncontrollable<br />

bend<strong>in</strong>g of cross-l<strong>in</strong>ked liquid-crystall<strong>in</strong>e polymer<br />

films by light. Mol Cryst Liq Cryst 2005;436:1235–44.<br />

[263] Mamiya J-i, Yoshitake A, Kondo M, Yu Y, Ikeda T. Is chemical<br />

crossl<strong>in</strong>k<strong>in</strong>g necessary for the photo<strong>in</strong>duced bend<strong>in</strong>g of polymer<br />

films? J Mater Chem 2008;18:63–5.<br />

[264] Yamada M, Kondo M, Miyasato R, Naka Y, Mamiya J-i, K<strong>in</strong>oshita M,<br />

et al. Photomobile polymer materials-various three-dimensional<br />

movements. J Mater Chem 2009;19:60–2.<br />

[265] Such GK, Evans RA, Davis TP. Control of photochromism through<br />

local environment effects us<strong>in</strong>g liv<strong>in</strong>g radical polymerization<br />

(ATRP). Macromolecules 2004;37:9664–6.<br />

[266] Ivanov AE, Eremeev NL, Wahlund PO, Galaev IY, Mattiasson B. Photosensitive<br />

copolymer of n-isopropylacrylamide <strong>and</strong> methacryloyl<br />

derivative of spirobenzopyran. <strong>Polymer</strong> 2002;43:3819–23.<br />

[267] Konak C, Rathi RC, Kopeckova P, Kopecek J. Photoregulated<br />

association of water-soluble copolymers with spirobenzopyranconta<strong>in</strong><strong>in</strong>g<br />

side cha<strong>in</strong>s. Macromolecules 1997;30:5553–6.<br />

[268] Lee H-i, Wu W, Oh JK, Mueller L, Sherwood G, Peteanu L, et al. Light<strong>in</strong>duced<br />

reversible formation of polymeric micelles. Angew Chem<br />

Int Ed 2007;46:2453–7.<br />

D. Roy et al. / <strong>Progress</strong> <strong>in</strong> <strong>Polymer</strong> <strong>Science</strong> 35 (2010) 278–301 301<br />

[269] Shiraishi Y, Miyamoto R, Hirai T. Spiropyran-conjugated thermoresponsive<br />

copolymer as a colorimetric thermometer with l<strong>in</strong>ear <strong>and</strong><br />

reversible color change. Org Lett 2009;11:1571–4.<br />

[270] Laschewsky A, Rekai ED. Photochemical modification of the<br />

lower critical solution temperature of c<strong>in</strong>namoylated poly(n-<br />

2-hydroxypropylmethacrylamide) <strong>in</strong> water. Macromol Rapid<br />

Commun 2000;21:937–40.<br />

[271] Jiang J, Tong X, Zhao Y. A new design for light-breakable polymer<br />

micelles. J Am Chem Soc 2005;127:8290–1.<br />

[272] Jiang J, Tong X, Morris D, Zhao Y. Toward photocontrolled release<br />

us<strong>in</strong>g light-dissociable block copolymer micelles. Macromolecules<br />

2006;39:4633–40.<br />

[273] Lepage M, Jiang J, Bab<strong>in</strong> J, Qi B, Tremblay L, Zhao Y. Mri observation<br />

of the light-<strong>in</strong>duced release of a contrast agent from photocontrollable<br />

polymer micelles. Phys Med Biol 2007;52:N249–55.<br />

[274] Goodw<strong>in</strong> AP, Mynar JL, Ma Y, Flem<strong>in</strong>g GR, Frechet JMJ. Synthetic<br />

micelle sensitive to IR light via a two-photon process. J Am Chem<br />

Soc 2005;127:9952–3.<br />

[275] Capadona JR, Shanmuganathan K, Tyler DJ, Rowan SJ, Weder C.<br />

Stimuli-responsive polymer nanocomposites <strong>in</strong>spired by the sea<br />

cucumber dermis. <strong>Science</strong> 2008;319:1370–4.

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!