05.12.2012 Views

C. Spiering Hamburg, March 20, 2007 - Desy

C. Spiering Hamburg, March 20, 2007 - Desy

C. Spiering Hamburg, March 20, 2007 - Desy

SHOW MORE
SHOW LESS

You also want an ePaper? Increase the reach of your titles

YUMPU automatically turns print PDFs into web optimized ePapers that Google loves.

C. <strong>Spiering</strong><br />

<strong>Hamburg</strong>, <strong>March</strong> <strong>20</strong>, <strong>20</strong>07


� „Astroparticle Physics European Coordination“<br />

� Founded <strong>20</strong>01 (originally 6, now 13 countries)<br />

� Why ApPEC ?<br />

� Astroparticle projects of the next phase (><strong>20</strong>10)<br />

reach the 50-500 M€ scale<br />

� � Coordination<br />

� � Cooperation<br />

� � Convergence towards a few major projects<br />

� � Create necessary infrastructures (underground-<br />

labs, observatories)


� Steering Committee<br />

(Funding Agencies)<br />

� Peer Review Committee (Expert Group)<br />

� Frank Avignone<br />

� Jose Bernabeu<br />

� Leonid Bezrukov<br />

� Pierre Binetruy<br />

� Hans Bluemer<br />

� Karsten Danzmann<br />

� Franz v. Feilitzsch<br />

� Enrique Fernandez<br />

� Werner Hofmann<br />

� John Iliopoulos<br />

� Uli Katz<br />

� Paolo Lipari<br />

� Manel Martinez<br />

� Antonio Masiero<br />

� Benoit Mours<br />

� Francesco Ronga<br />

� Andre Rubbia<br />

� Subir Sarkar<br />

� Guenther Sigl<br />

� Gerard Smadja<br />

� Nigel Smith<br />

� Christian <strong>Spiering</strong> (chair)<br />

� Alan Watson<br />

� Observer SC:<br />

Thomas Berghöfer


� June <strong>20</strong>05: ApPEC SC charges PRC to write<br />

a roadmap<br />

� Questionnaires from all European APP<br />

experiments<br />

� PRC meetings, numerous presentation to<br />

AP community (~ <strong>20</strong>00 physicists), CERN<br />

strategy meetings, etc.<br />

� October <strong>20</strong>06: circulation of full text<br />

� November <strong>20</strong>06: open meeting in Valencia<br />

� January <strong>20</strong>07: document submitted to SC<br />

� February <strong>20</strong>07: document approved by SC


� February <strong>20</strong>07: .<br />

„PHASE-I“ Roadmap<br />

http://www.ifh.de/~csspier/Roadmap-Jan30.pdf<br />

� PHASE-II (Feb.-Sept. <strong>20</strong>07):<br />

� (milestones, cost) within sub-communities<br />

(working groups)<br />

� PHASE-III (to be completed in June <strong>20</strong>08):<br />

� Prioritization between fields � action plan<br />

� Draft agreements for large infrastructures<br />

� „Brochure“ á la European Strategy for Particle Physics


1) What is the Universe made of ?<br />

2) Do protons have a finite lifetime ?<br />

3) What are the properties of the neutrinos?<br />

What is their role in cosmic evolution ?<br />

4) What do neutrinos tell us about the interior of Sun and<br />

Earth, and about Supernova explosions ?<br />

5) What is the origin of high energy cosmic rays?<br />

What is the view of the sky at extreme energies?<br />

6) Can we detect gravitational waves?<br />

What will they tell us about violent cosmic processes ? ?


IceCube<br />

Charged Cosmic Rays<br />

GeV-TeV gamma<br />

(incl. DM indirect)<br />

HE neutrinos<br />

atm. neutrinos<br />

(incl. DM indirect)<br />

WIMP<br />

HESS, AugerCAST<br />

LNGS<br />

DM direct<br />

LNGS<br />

satellite<br />

MeV/GeV γ (Agile, Glast)<br />

MeV/GeV CR (Pamela, AMS)<br />

CR @ extreme energies (EUSO)<br />

Solar axions<br />

Solar ν<br />

Supernova ν


No particles from heaven but:<br />

- same infrastructure (ββ)<br />

- closely related question (tritium decay)<br />

Double Chooz ?<br />

CHOOZ<br />

ββ<br />

m ν<br />

Oscillations (accelerators) � NO<br />

proton decay<br />

CERN


Interferometers<br />

(Geo-600, VIRGO)<br />

Interferometer<br />

low frequency<br />

(LISA)<br />

Resonance Antennas


1) What is the Universe made of ?<br />

2) Do protons have a finite lifetime ?<br />

3) What are the properties of the neutrinos?<br />

What is their role in cosmic evolution ?<br />

4) What do neutrinos tell us about the interior of Sun and<br />

Earth, and about Supernova explosions ?<br />

5) What is the origin of high energy cosmic rays?<br />

What is the view of the sky at extreme energies?<br />

6) Can we detect gravitational waves?<br />

What will they tell us about violent cosmic processes ? ?


- Dark matter: WIMPS direct and indirect, axions<br />

- Dark energy (not addressed in detail but closely related<br />

to dark matter)<br />

- Other particles beyond the standard model<br />

- Cosmic antimatter<br />

now: Pamela, later: AMS<br />

now: Pamela, later: AMS<br />

> <strong>20</strong>12:<br />

Two direct-search experiments with 10-10 Two direct-search experiments with 10 pb sensitivity<br />

-10 pb sensitivity<br />

Price tag 60-100 M€


Noble liquids<br />

TPC<br />

Ionization<br />

DRIFT<br />

MIMAC<br />

EDELWEISS,<br />

CDMS<br />

bolometric Ge, Si<br />

ZEPLIN, XENON, LUX (Xe)<br />

WARP, ArDM (Ar)<br />

WIMP<br />

Heat<br />

Noble liquids<br />

XMASS, DEAP,<br />

CLEAN, DAMA/LXe<br />

Scintillation<br />

DAMA,<br />

ANAIS, KIMS<br />

crystals NaI, CsI<br />

CRESST<br />

bolometric CaWO 4<br />

Superheated SIMPLE, PICASSO,<br />

liquids COUPP<br />

> <strong>20</strong> expt‘s worldwide


- effect from movement<br />

through WIMP sea<br />

- would be 7% of full signal<br />

-100 kg<br />

- not „zero-background“<br />

days<br />

… has not been confirmed<br />

by any other experiment.


Now: 10 kg scale <strong>20</strong>09/11: 100 kg scale <strong>20</strong>12/14: ton scale<br />

CRESST<br />

Edelweiss<br />

LXe<br />

LXe<br />

LAr<br />

LAr<br />

…<br />

EURECA-100<br />

Xe-100<br />

Ar-100<br />

EURECA<br />

@ ton scale<br />

Noble liquid<br />

@ ton scale<br />

a possible convergence scenario


Cross section (pb)<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

Stage 1:<br />

Field in<br />

Infancy<br />

Stage 2:<br />

Prepare the<br />

instruments<br />

Stage 4:<br />

- Understand remaining<br />

background.100 kg scale<br />

- Determine best method<br />

for ton-scale detectors<br />

Stage 3:<br />

Maturity.<br />

Rapid<br />

progress<br />

results of LHC<br />

may modify<br />

this picture !<br />

Stage 5:<br />

Build and operate<br />

ton-scale detectors<br />

1980 1985 1990 1995 <strong>20</strong>00 <strong>20</strong>05 <strong>20</strong>10 <strong>20</strong>15<br />

LHC


Cross section (pb)<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

� Background !<br />

� Stable operation<br />

� Funding<br />

results of LHC<br />

may modify<br />

this picture !<br />

1980 1985 1990 1995 <strong>20</strong>00 <strong>20</strong>05 <strong>20</strong>10 <strong>20</strong>15<br />

LHC


Spectrum endpoint and ββ , oscillations at reactors<br />

Soon: KATRIN<br />

Soon: KATRIN<br />

m ν<br />

≥ <strong>20</strong>13: ~2 experiments<br />

with sensitivity to<br />

test inverted hierarchy<br />

Soon: Double CHOOZ<br />

Soon: Double CHOOZ<br />

Majorana vs. Dirac<br />

m ν<br />

θ 13


(A,Z) → (A,Z+2) + 2e -<br />

� Neutrino must be Majorana type<br />

� Plus: non-zero rest mass or admixture of right handed currents<br />

� Is also possible in some SUSY models (exchange of SUSY<br />

particle)


(A,Z) → (A,Z+2) + 2e -<br />

� Neutrino must be Majorana type<br />

� Plus: non-zero rest mass or admixture of right handed currents<br />

� Is also possible in some SUSY models (exchange of SUSY<br />

particle)<br />

Best upper limits from 76 Ge (HM, IGEX):<br />

T ½ > 1.9/1.6 ⋅ 10 25 years � m ββ < 0.3-0.9 eV<br />

Klapdor-Kleingrothaus claim:<br />

T ½ ~ 1.2 ⋅ 10 25 years � m ββ ~ 0.2-0.6 eV


(50 meV) 2<br />

(9 meV) 2<br />

normal inverted


proof/disprove Klapdor<br />

test inverted scenario<br />

Start next 2-5 years:<br />

GERDA, Cuore,<br />

Super-NEMO, EXO-<strong>20</strong>0, ..<br />

Following generation:<br />

GERDA+Majorana,<br />

Cuore-enr., EXO-1ton,<br />

COBRA, ….


<strong>20</strong>-50 meV range requires active mass<br />

of order one ton, good resolution, low BG.<br />

Need several isotopes. Price tag 50-<strong>20</strong>0 M€.<br />

Gain experience within next 5 years.<br />

Start next 2-5 years:<br />

GERDA, Cuore,<br />

Super-NEMO, EXO-<strong>20</strong>0, ..<br />

Following generation:<br />

GERDA+Majorana,<br />

Cuore-enr., EXO-1ton,<br />

COBRA,. ..


now<br />

<strong>20</strong>05 <strong>20</strong>06 <strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16<br />

operation<br />

construction<br />

operation<br />

design study<br />

CUORICINO<br />

operation<br />

NEMO-3<br />

construction<br />

CUORE<br />

operation<br />

construction operation GERDA<br />

design study<br />

bolometric 41 kg 130 Te<br />

bolometric 740 kg 130 Te<br />

tracking 8 kg 130 Mo/ 82 Se<br />

Super-NEMO<br />

tracking<br />

100 kg 150 Nd/ 82 Se<br />

15 � 35 kg 76 Ge<br />

construction operation EXO (USA) <strong>20</strong>0 kg 130 Xe<br />

(Projects running, under construction or with substantial R&D funding)


now<br />

<strong>20</strong>05 <strong>20</strong>06 <strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16<br />

operation<br />

construction<br />

operation<br />

design study<br />

CUORICINO<br />

operation<br />

NEMO-3<br />

construction<br />

CUORE<br />

operation<br />

construction operation GERDA<br />

design study<br />

construction operation EXO (USA)<br />

Converge<br />

towards<br />

2 large<br />

European<br />

Projects !<br />

Start construction<br />

<strong>20</strong>12-<strong>20</strong>15


Soon: Borexino<br />

Soon: Borexino<br />

≥ <strong>20</strong>12 (civil engineering):<br />

A very large multi-purpose facility<br />

Options:<br />

--Water Water Megatonne („MEMPHYS“)<br />

Price tag<br />

--100 100 kton Liquid Argon („GLACIER“)<br />

400-800 M€<br />

--50 50 kton scintillaton detector („LENA“)


Water, LAr<br />

LAr, Scint


Large Detectors for SN Neutrinos<br />

SNO (800)<br />

MiniBooNE (190)<br />

Artemevsk<br />

(<strong>20</strong>)<br />

Amanda(50000)<br />

IceCube(10 6 )<br />

LVD (400)<br />

Borexino(100)<br />

Super-Kamiokande<br />

Super Kamiokande (8500)<br />

Kamland (330)<br />

Baksan Scint. Scint.<br />

Detector (70)<br />

In brackets events for a SN<br />

at distance 10 kpc


Large Detectors for SN Neutrinos<br />

SNO (800)<br />

MiniBooNE (190)<br />

Artemevsk<br />

(<strong>20</strong>)<br />

Amanda(50000)<br />

IceCube(10 6 )<br />

LVD (400)<br />

Borexino(100)<br />

Super-Kamiokande<br />

Super Kamiokande (8500)<br />

Kamland (330)<br />

Baksan Scint. Scint.<br />

Detector (70)<br />

GLACIER100 kt (60 000)<br />

LENA50 kt (<strong>20</strong> 000)<br />

MEMPHYS4<strong>20</strong> kt (<strong>20</strong>0 000)<br />

In brackets events for a SN<br />

at distance 10 kpc


Large Detectors for SN Neutrinos<br />

SNO Also: (800)<br />

MiniBooNE (190)<br />

Artemevsk<br />

(<strong>20</strong>)<br />

Amanda(50000)<br />

IceCube(10 6 )<br />

LVD (400)<br />

Borexino(100)<br />

- Solar neutrinos<br />

- Geo-neutrinos<br />

Super-Kamiokande<br />

Super Kamiokande (8500)<br />

Kamland (330)<br />

- LBL accelerator experiments<br />

Baksan Scint. Scint.<br />

Detector (70)<br />

� converge to one large<br />

infrastructure,<br />

start construction ~<strong>20</strong>13<br />

In brackets events for a SN<br />

at distance 10 kpc


Charged cosmic rays, neutrinos, TeV γ<br />

Started: Auger<br />

≥ <strong>20</strong>09:<br />

Auger North<br />

≥ <strong>20</strong>15: EUSO ?<br />

≥ <strong>20</strong>11: KM3NeT<br />

under underconstruction: construction:<br />

IceCube<br />

H.E.S.S., Magic ��<br />

Very Large Array(s)<br />

(„CTA“, ≥ <strong>20</strong>10)


Balloons,<br />

PAMELA<br />

AMS<br />

Kascade-Grande<br />

IceTop/IceCube<br />

Tunka-133<br />

Telescope Array<br />

Pierre Auger<br />

Observatory


Integrated Aperture (km^2*str*year)<br />

1000000<br />

100000<br />

10000<br />

1000<br />

100<br />

Fly'e Eye<br />

AGASA<br />

HiRes<br />

Auger-S<br />

1985 1990 1995 <strong>20</strong>00 <strong>20</strong>05 <strong>20</strong>10 <strong>20</strong>15 <strong>20</strong><strong>20</strong><br />

Year<br />

EUSO<br />

Auger(S+N)<br />

Auger-N<br />

TA


� Site: Colorado<br />

� Estimated cost 85 M€<br />

(30 M€ from Europe)<br />

� Full sky coverage<br />

� Expect confirmation of<br />

physics case by Auger-South<br />

→ need first point sources<br />

� Start construction <strong>20</strong>09 ?


1996:<br />

2 sources<br />

<strong>20</strong>06:<br />

~ 40 sources


Not to scale !<br />

Beyond H.E.S.S.<br />

and MAGIC:<br />

CTA<br />

Telescope type Cost/Unit Units<br />

Large (30 m class) telescope 10 – 15 M€ ~ 3-4<br />

Medium (15 m class) telescope 2.5 – 3.5 M€ ~ 15-<strong>20</strong><br />

Small (


expect about<br />

10 3 sources


Distance<br />

Pulsed emission<br />

Microquasars<br />

Molecular clouds<br />

Clusters of galaxies<br />

H.E.S.S.<br />

CTA


now<br />

<strong>20</strong>05 <strong>20</strong>06 <strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16<br />

operation<br />

construction<br />

operation<br />

construction<br />

CTA<br />

H.E.S.S.<br />

design study<br />

operation<br />

MAGIC-I<br />

operation<br />

Seeking partners<br />

worldwide<br />

H.E.S.S.- II<br />

MAGIC- II<br />

construction + operation<br />

four 11-m telescopes<br />

+ one 25-m<br />

telescope<br />

one 17-m telescope<br />

2 nd 17-m<br />

telescope<br />

operation


�Need larger detectors:<br />

IceCube, KM3NeT


now<br />

<strong>20</strong>05 <strong>20</strong>06 <strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16<br />

operation<br />

oonstruction + operation<br />

operation<br />

construction<br />

c + o<br />

AMANDA<br />

NT<strong>20</strong>0, NT<strong>20</strong>0+<br />

operation<br />

R&D KM3 NESTOR, NEMO<br />

FP6 Design Study<br />

operation<br />

?<br />

design study construction + operation<br />

ANTARES<br />

construction + operation<br />

IceCube<br />

operat<br />

KM3NeT<br />

GVD<br />

operat


now<br />

<strong>20</strong>05 <strong>20</strong>06 <strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16<br />

operation<br />

construction<br />

oonstruction + operation<br />

operation<br />

c + o<br />

AMANDA<br />

design study<br />

NT<strong>20</strong>0, NT<strong>20</strong>0+<br />

operation<br />

R&D KM3 NESTOR, NEMO<br />

FP6 Design Study<br />

operation<br />

construction + operation<br />

IceCube<br />

GVD<br />

Recommendation: only operat<br />

ONE large detector on<br />

the Northern ANTARES hemisphere.<br />

Expect confirmation<br />

of physics caseKM3NeT from<br />

Icecube and H.E.S.S.<br />

construction + operation<br />

operat


Flux * E² (GeV/ cm² sec sr)<br />

10 -4<br />

10 -6<br />

10 -8<br />

10 -10<br />

Dumand<br />

Frejus Macro<br />

Baikal/Amanda<br />

Waxman-Bahcall limit<br />

Sensitivity to<br />

Rice AGASA<br />

Rice GLUE<br />

IceCube/<br />

KM3NeT<br />

HE diffuse neutrino fluxes<br />

Anita, Auger<br />

1 EeV<br />

10-1000 TeV<br />

1980 1985 1990 1995 <strong>20</strong>00 <strong>20</strong>05 <strong>20</strong>10 <strong>20</strong>15


� Radio detection of air showers<br />

� Radio detection of showers at the moon<br />

� Radio detection of neutrinos in ice or salt<br />

� Acoustic detection of neutrinos in water and ice<br />

� Detection of cosmic ray & neutrino interactions<br />

from space (by fluorescence)<br />

� Wide angle Gamma detection<br />

� New photosensors<br />

� ….


� Ground based<br />

Interferometers<br />

(here: VIRGO)<br />

10 Hz – 10 kHz<br />

� Resonant antennas: ~ 1 kHz<br />

� Space based interferometer (LISA): < mHz - 1 Hz


3-1000<br />

0.01-3<br />

10 3 -10 5


<strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16 <strong>20</strong>17 <strong>20</strong>18<br />

Auger North<br />

CTA<br />

30 M€ (from 85)<br />

KM3NeT<br />

> 2/3 from 100 + 50 M€<br />

250 M€<br />

Megaton<br />

Grav Wave 3rd generation<br />

DM search 1 ton<br />

60-100 M€<br />

Double Beta 1 ton<br />

400-800 M€<br />

60-100 M€<br />

300 M€<br />

50-<strong>20</strong>0 M€<br />

50-<strong>20</strong>0 M€


<strong>20</strong>07 <strong>20</strong>08 <strong>20</strong>09 <strong>20</strong>10 <strong>20</strong>11 <strong>20</strong>12 <strong>20</strong>13 <strong>20</strong>14 <strong>20</strong>15 <strong>20</strong>16 <strong>20</strong>17 <strong>20</strong>18<br />

Auger North<br />

CTA<br />

30 M€ (from 85)<br />

KM3NeT<br />

> 2/3 from 100 + 50 M€<br />

250 M€<br />

Megaton<br />

Grav Wave 3rd generation<br />

DM search 1 ton<br />

add 300 M€ for running<br />

experiments, upgrades,<br />

new methods<br />

60-100 M€<br />

Double Beta 1 ton<br />

400-800 M€<br />

60-100 M€<br />

300 M€<br />

50-<strong>20</strong>0 M€<br />

50-<strong>20</strong>0 M€<br />

30+100+250+<strong>20</strong>0+<br />

100+100+50+100 ~ 950 M€


� Estimated total cost to be spent between <strong>20</strong>11<br />

and <strong>20</strong>15 in Europe<br />

~ 1250 M€<br />

� 250 M€ per year (now 135 M€) � factor 2<br />

� Manpower not always included � more than factor 2<br />

� Solutions:<br />

� Increased funding<br />

� Further internationalization<br />

� Staging<br />

„factor-2 pressure“


�From infancy to maturity: the past 1-2 decades<br />

have born the instruments & methods for doing<br />

science with high discovery potential.<br />

�Accelerated increase in sensitivity in nearly<br />

all fields.<br />

�A lot of advanced, interesting world-class projects.<br />

Europeans lead in many fields.<br />

�Physics harvest has started (TeV gamma) or is<br />

in reach. Most techniques are mature.<br />

�Need increased funding<br />

�Need radical process of convergence<br />

�Detailed milestones (until <strong>20</strong>08), technical<br />

design reports (<strong>20</strong>08-<strong>20</strong>11)


Field/<br />

Experiment<br />

Dark Matter<br />

Search:<br />

Low background<br />

experiments with<br />

1-ton mass<br />

cost scale<br />

(M€)<br />

Desirable<br />

start of<br />

construction<br />

Remarks<br />

60-100 M€ <strong>20</strong>11-<strong>20</strong>13 two experiments<br />

(different nuclei,<br />

different techniques),<br />

e.g.<br />

� 1 bolometric<br />

� 1 noble liquid<br />

more than 2 expt‘s<br />

worldwide<br />

Expect technical proposals ~ <strong>20</strong>09/10


Field/<br />

Experiment<br />

Properties of<br />

neutrinos:<br />

Double beta<br />

experiments<br />

cost scale<br />

(M€)<br />

Desirable<br />

start of<br />

construction<br />

Remarks<br />

50-<strong>20</strong>0 M€ <strong>20</strong>12-<strong>20</strong>15 1)<br />

Explore inverted<br />

hierarchy scenario<br />

2)<br />

two experiments<br />

with different nuclei<br />

(and desirably more<br />

worldwide)<br />

For instance: - GERDA + MAJORANA<br />

- advanced CUORE


Field/<br />

Experiment<br />

Proton decay and<br />

low energy<br />

neutrino<br />

astronomy:<br />

Large infrastructure<br />

for p-decay and ν<br />

astronomy on the<br />

100kt-1 Mton scale<br />

cost scale<br />

(M€)<br />

Desirable<br />

start of<br />

construction<br />

400-800 M€ Civil<br />

engineering:<br />

<strong>20</strong>12-<strong>20</strong>13<br />

Remarks<br />

- multi-purpose<br />

- 3 technological<br />

..options<br />

- needs huge new<br />

..excavation<br />

- most of expen-<br />

..ditures likely after<br />

..<strong>20</strong>15<br />

- worldwide sharing


Field/<br />

Experiment<br />

High Energy Univ.<br />

Gamma Rays<br />

Cherenkov<br />

Telescope Array<br />

CTA<br />

Charged Cosmic<br />

Rays<br />

Auger North<br />

Neutrinos<br />

KM3NeT<br />

cost scale<br />

(M€)<br />

100 M€ South<br />

50 M€ North<br />

85 M€<br />

250 M€<br />

Desirable<br />

start of<br />

construction<br />

First site<br />

<strong>20</strong>10<br />

<strong>20</strong>09<br />

<strong>20</strong>11<br />

Remarks<br />

Physics potential<br />

well defined by rich<br />

physics from<br />

present γ exp‘s<br />

Confirmation of<br />

physics potential<br />

from Auger South<br />

expected in <strong>20</strong>07<br />

FP6 design study<br />

Confirm. of physics<br />

potential expected<br />

from IceCube and<br />

gamma telescopes<br />

Proposal in <strong>20</strong>09


Field/<br />

Experiment<br />

Gravitational<br />

waves:<br />

Third generation<br />

interferometer<br />

cost scale<br />

(M€)<br />

Desirable<br />

start of<br />

construction<br />

250-300 M€ Civil<br />

engineering<br />

<strong>20</strong>12<br />

Remarks<br />

Conceived as<br />

underground<br />

laboratory


Ionization<br />

WIMP<br />

Smoking guns:<br />

Heat<br />

� annual modulation<br />

� directionality<br />

� target dependence<br />

Scintillation<br />

Initial recoil energy<br />

Displacements,<br />

Vibrations<br />

Thermal phonons<br />

(Heat)<br />

Ionization<br />

(~30 %)<br />

Scintillation<br />

(~3 %)


Noble liquids<br />

TPC<br />

Ionization<br />

DRIFT<br />

MIMAC<br />

EDELWEISS,<br />

CDMS<br />

bolometric Ge, Si<br />

Superheated<br />

liquids<br />

ZEPLIN, XENON, LUX (Xe)<br />

WARP, ArDM (Ar)<br />

WIMP<br />

Heat<br />

SIMPLE, PICASSO,<br />

COUPP<br />

Noble liquids<br />

XMASS, DEAP,<br />

CLEAN, DAMA/LXe<br />

Scintillation<br />

DAMA,<br />

ANAIS, KIMS<br />

crystals NaI, CsI<br />

CRESST<br />

bolometric CaWO 4


Noble liquids<br />

TPC<br />

Ionization<br />

DRIFT<br />

MIMAC<br />

EDELWEISS,<br />

CDMS<br />

bolometric Ge, Si<br />

Superheated<br />

liquids<br />

ZEPLIN, XENON, LUX (Xe)<br />

WARP, ArDM (Ar)<br />

WIMP<br />

Heat<br />

SIMPLE, PICASSO,<br />

COUPP<br />

Noble liquids<br />

XMASS, DEAP,<br />

CLEAN, DAMA/LXe<br />

Scintillation<br />

DAMA,<br />

ANAIS, KIMS<br />

crystals NaI, CsI<br />

CRESST<br />

bolometric CaWO 4


Site exploration<br />

Array design<br />

Component prototypes<br />

Telescope prototypes<br />

Array construction<br />

Partial operation<br />

Full operation<br />

06 07 08 09 10 11 12 13<br />

GLAST


� Radio detection of air showers: LOPES, LOFAR,...<br />

� Hybrid: water-C [+ fluorescence] + radio @ Auger & SP<br />

� Radio detection of showers at the moon: GLUE, NuMOON,<br />

.LORD, LIFE<br />

� Radio detection of neutrinos in ice/salt: RICE, AURA, SALSA<br />

� Acoustic detection of neutrinos in water and ice: SPATS @ SP<br />

. + many water approaches<br />

� Hybrid (optical + acoustic [+radio] ): South Pole “CONDOR”<br />

� Detection of cosmic ray & neutrino interactions<br />

from space (by fluorescence): EUSO<br />

� New photosensors<br />

� …


Klapdor-<br />

Kleingrothaus<br />

claim

Hooray! Your file is uploaded and ready to be published.

Saved successfully!

Ooh no, something went wrong!